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To my family, teachers,
friends and students.



Preface to the English Translation

The original Russian version of this textbook appeared in electronic preprint form
in 2004 and was then published officially in 2006 under the title “A Course in
Functional Analysis”. At that time, the Functional Analysis course in my University
was obligatory for pure math majors. It ran over three semesters (each for 4 hours
weekly) and included the Measure Theory course as an integral part. The textbook
was intended to cover those three semesters, as well as the optional one-semester
course in Topological Vector Spaces. Later, Measure Theory was separated from
the Functional Analysis course, which explains why the 2012 Ukrainian translation
of the book appeared with the changed title “A Course in Functional Analysis and
Measure Theory”. We live in an epoch of permanent changes. In 2015, the former
School of Mechanics and Mathematics was renamed the School of Mathematics
and Computer Science, some new courses were introduced, and others were
modified; in particular, the Functional Analysis course was divided into two,
entitled “Functional Analysis” (for Bachelors) and “Advanced Functional Analysis”
(for Masters), so an appropriate title for the book should be something long and
unpleasant like “Courses in Measure Theory, Functional Analysis, and Advanced
Functional Analysis in one book, with an introduction to Topological Vector
spaces”.

The Functional Analysis universe is immense, so one book cannot cover
everything. There is some basic material, such as orthonormal systems in Hilbert
spaces, or the Hahn–Banach theorem, that every decent Functional Analysis book
ought to include, but advanced topics, to a great extent, reflect the mathematical
tastes and research interests of the author. The present book is not an exception.

The book consists of 18 chapters, the structure of which is reflected in detail in
the “Contents” below. The reader is assumed to be familiar with the basics of
Mathematical Analysis and Linear Algebra and to have some elementary knowl-
edge of the language of General Topology. In Chap. 1 “Metric and Topological
Spaces”, we briefly recall the well-known basic definitions and facts, discuss the
terminology and notation adopted in the book, and present in more detail results
that are important for our course, such as a compactness criterion in CðKÞ or the
Baire theorem. In Chaps. 2–4, we present the key results about the Lebesgue
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measure and integral, starting from basic definitions and reaching the most often
applied results, such as the Lebesgue dominated convergence theorem and the
Fubini theorem on the integration of functions of two variables. In the next two
Chaps. 5 and 6, we already pass to elements of Functional Analysis, which are
supposed to help the reader understand the more advanced questions of Measure
Theory collected in Chap. 7, “Absolute Continuity of Measures and Functions. The
Connection Between Derivative and Integral”. The main subject of Chap. 8 is the
description of continuous linear functionals on CðKÞ as integrals with respect to
charges (signed measures). In Chap. 9, we talk about various forms of the Hahn–
Banach theorem and its applications. The closed graph theorem, uniform bound-
edness principle, and their multiple applications can be found in Chap. 10. Chapter
11 is devoted to spectral properties of bounded linear operators in Banach spaces; in
particular, it treats the spectral theory of compact operators. Chapters 12 and 13
cover basic results about Hilbert spaces and self-adjoint operators, up to the con-
struction of Borel functions of self-adjoint operators and of spectral measures. In
Chap. 14, “Operators in Lp”, we start with the duality between Lp and Lp0 , and then
pass to the Fourier transform theory in L1, L2, and, through an operator interpolation
theorem, in Lp. The title of Chap. 15, “Fixed Point Theorems and Applications”, is
self-explanatory. Chapters 16–18, “Topological Vector Spaces”, “Elements of
Duality Theory”, and “The Krein–Milman Theorem and Applications”, present
material for the optional course in Topological Vector Spaces mentioned above.

Acknowledgments. All those mentioned in the dedication: my family, teachers,
friends and students, should be mentioned here as well. In my student years, I
learned a lot from my teachers, who influenced my tastes in mathematics (especially
Boris Yakovlevich Levin, who taught me Mathematical Analysis and Complex
Analysis, and Victor Dmitrievich Golovin, my teacher in Measure Theory and
Functional Analysis). But undoubtedly the major influence on me as a mathe-
matician came from my father, Mikhail Kadets, and the members of the Kharkiv
Banach space theory seminar. My wife Anna Vishnyakova works in the same
department. She was the very first reader of the Russian version of this textbook and
used it in her teaching practice; her encouragement and advice helped me a lot.
Communication with my co-authors, friends, and students (my apologies for not
mentioning everyone by name: I am rather lucky to have long lists in all three
mutually intersecting categories) broadened my horizons and influenced, indirectly
or directly, the selection of material and the exposition style. It is perhaps inter-
esting and encouraging to mention here that my nephew Boris Shumyatsky, niece
Asya Shumyatska, and children Lucy and Borys survived my lectures in Measure
Theory and Functional Analysis without complaints.

I am grateful to Igor Chyzhykov from the Ivan Franko National University of
Lviv, who did the Ukrainian translation of this book (together with Ya. Magola)
and organized its publication; special thanks to him for providing me with the
LaTeX source files of the Ukrainian translation, which facilitated the preparation
of the English version.
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It was a nice surprise for me when, in August 2016, Rémi Lodh, mathematics
editor at Springer Verlag, wrote to me that “a senior mathematician in Germany”
recommended my book for translation into the English. So, my special thanks to
that senior mathematician, unknown to me, to Rémi Lodh, and to Springer Verlag
for following his/her advice, and for all the cooperation and help in all stages of the
book’s preparation. I wish to express my gratitude to Andrei Iacob for his excellent
translation, not only of this book, but also of our joint book with my father “Series
in Banach Spaces”, published by Birkhäuser in 1997.

Kharkiv, Ukraine Vladimir Kadets
January 2018
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Introduction

Functional Analysis is devoted to the study of various structures that are defined on
infinite-dimensional linear spaces. Normed, Banach, and topological vector spaces,
Hilbert spaces, function spaces, Banach algebras, spaces of operators—this is a
rather incomplete list of the basic objects of Functional Analysis. Although some
results that belong to this direction of mathematics also emerged earlier, Functional
Analysis established itself as an independent field in the 1920s. Banach’s famous
monograph [1], published in its first version in 1931, in Polish, provided an
overview of the period of establishment of this new branch of mathematics, period
in which a leading role was played by the members of the Lviv mathematics school
under the leadership of Stefan Banach. Through the efforts of many mathemati-
cians, Functional Analysis has grown into one of the most interesting fields of
contemporary mathematics, a field whose active development continues intensively
to the present day.

The textbook you are holding in your hands was elaborated on the basis of a
Functional Analysis course which has been delivered by the author since 1990 in
the Mathematics Department of the School of Mechanics and Mathematics of the
Kharkiv National University. The course is divided into three semesters, with the
first semester devoted first and foremost to the study of Measure Theory and the
Lebesgue integral, and the second and third dealing with the fundamental structures
of Functional Analysis and Operator Theory. In addition, for students interested in
making a deeper acquaintance with the subject, special courses, such as
“Topological Vector Spaces” and “Introduction to the Theory of Banach spaces”,
are offered. Some of the material (and the closer to the end of the textbook one gets,
the more material of this kind is included in the text) can be regarded not as part
of the main course, but as a bridge connecting the standard course to the specialized
ones. For the reader’s convenience, the textbook includes additional sections
covering material from preliminarily delivered courses. Thus, we recall the nec-
essary terminology from Linear Algebra and reproduce the introductory chapters
of the theory of metric spaces and compact sets, which belong more to
Mathematical Analysis and Topology.
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To strengthen the analogy with the Riemann integral, the theory of the Lebesgue
integral is treated on the basis of Fréchet’s definition, namely by means of the
convergent integral sums analogous to the Riemann integral sums. One of the
advantages of this approach is the simplicity with which this definition extends to
vector-valued functions.

In mathematics, nothing can be learned without solving problems. This text
includes many exercises: simple ones, designed to facilitate the mastering of the
new notions, as well as more complicated ones, which help to move deeper into the
subject. The material that goes beyond the standard course is often presented in
survey form. Proofs are frequently replaced by chains of exercises, which, once
solved, allow the reader to independently obtain the stated results. Exercises include
also some of the assertions used in the main text. This is done in those cases where
the assertions seem too elementary to us to require writing their proofs explicitly, or
are not too obvious, yet fully accessible to the students and serve as good training
tests. Some exercises are supplied with comments, placed at the end of the corre-
sponding chapter.

Functional Analysis is founded on a geometric approach to the study of objects
that are actually analytic in nature: functions, equations, series, sequences. This
approach, which enables one to use geometric intuition in complicated analytic
problems, proved to be highly productive. Thanks to it, powerful methods were
developed in the framework of Functional Analysis that found application in a
variety of fields of mathematics. The language of Functional Analysis found its way
into branches of pure and applied mathematics such as Harmonic Analysis,
Differential and Integral Equations, Approximate Computation Methods, Linear
Programming, Optimization Methods, and this list of applications could go on. The
present textbook is also an attempt to represent the main ideas and directions of
such applications, first and foremost to questions in Harmonic Analysis.

The preparation of this book extended over a period of several years, and at
different stages of its writing, many teachers and students participated in the dis-
cussion of the text and provided advice. I want to thank all the listeners of this
course, and especially my former students Yu. Zabelyshinskii and I. Rud’, who
provided access to their course notes; to my colleagues A. Vishnyakova and L.
Bezuglaia, who used the draft of the textbook to teach a Functional Analysis course,
and whose remarks enabled me to improve the text, and also to the many students
who used the textbook to study Functional Analysis and provided a list of mis-
prints. I am deeply grateful to V. Maslyuchenko, A. Plichko, M. Popov, and V.
Romanov who provided reviews of this textbook, and to T. Banakh, who made a
series of useful remarks that were taken into account in the work on the manuscript.
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Chapter 1
Metric and Topological Spaces

Topological, and especially metric spaces, are frequently mentioned and used in
courses on mathematical analysis, linear algebra (in which one of the most important
examples of metric spaces, the finite-dimensional Euclidean space, is examined),
differential geometry (in which geodesic curves and the intrinsic metric of a surface
are studied), and also, it goes without saying, in topology courses. For this reason, we
only briefly recall the well-known definitions and facts, discuss the terminology and
notation adopted in this book, while dwelling in more detail on issues that possibly
are not treated in other courses.

1.1 Sets and Maps

In the exposition of functional analysis it is assumed that the reader is familiar with
the notion of set and the simplest operations on sets: union and intersection of a finite
or infinite number of sets, difference, complement, symmetric difference, Cartesian
product, as well as with the notions of relation, function, graph of a relation or of a
function, equivalence classes; terms like countable or uncountable sets, and so on.
In the main part of the this course we will not use the technique of transfinite num-
bers and transfinite induction; but the reader will undoubtedly benefit from making
acquaintance with the elements of the theory of transfinite numbers in, say, Kelley’s
textbook [23], the “Appendix” of which provides a strict formal exposition of the
theory, or in Natanson’s book [31], where the exposition is less formal, but readily
accessible. Some finer questions of measure theory and functional analysis require a
command of the method of transfinite induction. We shall touch upon such questions
only in exercises and comments to them (though not often).

As a rule, sets will be denoted by uppercase Latin letters, and their elements by
lowercase letters. The terms “collection (of elements)”, “system (of elements)”, or
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2 1 Metric and Topological Spaces

“family (of elements)” will often be used with the same meaning as “set”. Now let
us explain some of the terms and notations used in the text.

— A\B — the (set-theoretic) difference of the sets A and B: A \ B consists of all
elements of A that do not belong to B.

— A�B—the symmetric difference of the sets A and B: A�B = (A\B) ∪ (B\A).
Another, equivalent definition: A�B = (A ∪ B)\(A ∩ B).

— A × B —Cartesian product of the sets A and B: A × B = {(a, b) : a ∈ A, b ∈
B}. In other words, the Cartesian product of the sets A and B is the set of all
ordered pairs, where the first coordinate belongs to A and the second to B.

—
n∏

k=1
Ak — the Cartesian product of the sets A1, …, An:

n∏

k=1

Ak = {(a1, . . . , an) : ak ∈ Ak}.

Formally, the Cartesian product operation is not associative. For example, the
elements of the set (A × B) × C are of the form ((a, b), c), whereas those of
A × (B × C) are of the form (a, (b, c)). At the same time, both ((a, b), c) and
(a, (b, c)) are naturally identified with the triple (a, b, c). If one agrees to use
such an identification, then the Cartesian product operation becomes associative,
and one has that

(∏n
k=1 Ak

) × (∏m
k=n+1 Ak

) = ∏m
k=1 Ak .

— 2A — the collection of all subsets of A.
— R — the set of all real numbers (alternative name — the real line or axis).
— Q— the set of all rational numbers.
— Z— the set of all integers.
— N— the set of all natural numbers.
— C— the set of all complex numbers.
— R

n —the n-dimensional coordinate space, i.e., the Cartesian product of n copies
of the real line.

— R
+ = {t ∈ R : t � 0} (the non-negative half-line).

In the exercises given below we have collected some relations among sets that
will be used later in various arguments. Generally such relations will be used without
proof; their verification is purely technical and requires only a few routine manipu-
lations with logic expressions and enumeration of possible cases.

Exercises

1. Let A = ⋃∞
k=1 Ak , B = ⋃∞

k=1 Bk . Then A ∩ B = ⋃∞
k, j=1 (Ak ∩ Bj ).

2. Let A, B ⊂ �. Then (� \ A)�(� \ B) = A�B.

3. For any sets A1, A2, A3 one has the inclusion A1�A3 ⊂ (A1�A2) ∪ (A2�A3).
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4. Let {An}n∈M and {Bn}n∈M be two collections of sets. Then

(
⋂

n∈M
An

)

�
(

⋂

n∈M
Bn

)

⊂
⋃

n∈M
(An�Bn)

and (
⋃

n∈M
An

)

�
(

⋃

n∈M
Bn

)

⊂
⋃

n∈M
(An�Bn).

5. For any map f : X → Y and any subsets A, B ⊂ X, it holds that f (A ∪ B) =
f (A) ∪ f (B); also,

6. f (A ∩ B) ⊂ f (A) ∩ f (B).

7. Give an example where f (A ∩ B) 	= f (A) ∩ f (B).

8. The map f : X → Y is injective if and only if, for any subsets A, B ⊂ X , one
has that f (A ∩ B) = f (A) ∩ f (B).

9. Let f1 : X → Y1, f2 : X → Y2, and let the map f : X → Y1 × Y2 be given by
the rule f (x) = ( f1(x), f2(x)). Then f −1(A1 × A2) = f −1

1 (A1) ∩ f −1
2 (A2) for any

subsets A1 ⊂ Y1, A2 ⊂ Y2.

10. Let {An}n∈M be some collection of subsets of a set �. Then the de Morgan
formulas hold:

� \
⋂

n∈M
An =

⋃

n∈M
(�\An) and � \

⋃

n∈M
An =

⋂

n∈M
(� \ An).

1.2 Topological Spaces

1.2.1 Terminology

A family τ of subsets of the set X is called a topology if it satisfies the following
axioms:

1. The empty set and the set X itself belong to τ .
2. The union of any collection of sets of the family τ belongs to τ .
3. The intersection of any finite number of sets of the family τ belongs to τ .

A set equipped with a topology is called a topological space. If on a set one con-
siders only one topology, then the corresponding topological space will be denoted
by the same letter as the set itself. If the topology needs to be specified, then we will
use the notation (X, τ ). The sets belonging to the family τ are said to be open in the
topology τ (or simply open, if it is clear which topology one is talking about).
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The simplest example of a topology on an arbitrary set X is the discrete topology
2X , where as the open sets one takes all subsets of X . Another standard example of
a topological space is the real line R, where the open sets are the finite or countable
unions of open intervals.

Let X be a topological space and x ∈ X . A subset U ⊂ X is called an open
neighborhood of the point x ifU is open and x ∈ U . A setU is called a neighborhood
of the point x if it contains an open neighborhood of x . A topological space X is said
to be separated in the sense of Hausdorff, or aHausdorff space (or simply separated),
if it satisfies the following separation axiom:

4. For any points x, y ∈ X , x 	= y, there exist neighborhoods U and V of x and y,
respectively, such that U ∩ V = ∅.
Henceforth we will, as a rule, consider Hausdorff spaces.
Let X be a topological space and x ∈ X . A family U of subsets of X is called

a neighborhood basis of the point x if all the elements of U are neighborhoods of
x , and for any neighborhood U of x there exists a neighborhood V ∈ U such that
V ⊂ U .

A topology can be defined locally, i.e., starting not with the entire family of open
sets, but with bases of open neighborhoods. Thus, suppose that for each point x of
the set X there is given a non-empty family Ux of sets with the following properties:

— if U ∈ Ux , then x ∈ U ;
— if U1,U2 ∈ Ux , then there exists a set U3 ∈ Ux such that U3 ⊂ U1 ∩U2;
— if U ∈ Ux and y ∈ U , then there exists a set V ∈ Uy such that V ⊂ U .

Then there exists a unique topology on X for which the familiesUx are neighborhood
bases of the corresponding points. This topology is given as follows: a point x is said
to be an interior point of the set A if some neighborhood U ∈ Ux of the point x is
contained in A; the set A is declared as open if all its points are interior points. In
other words, a set is open if and only if together with any of its points it also contains
a neighborhood of that point.

Let A be a subset of the topological space X . The set A is said to be closed if its
complement X \ A is open. The union of any finite number of closed sets is closed,
while the intersection of any number of closed sets is closed. The closure of a set
A is defined as the intersection of all closed sets that contain A, and is denoted by
A. The set A is the smallest, with respect to inclusion, closed set containing A. A
point x ∈ X is called a limit point for A if every neighborhood of x contains a point
of A different from x . The closure of the set A consists of the points of A itself and
all its limit points. The set A is said to be dense in the set B if A ⊃ B. The set A is
said to be dense if it is dense in the entire space X . A topological space X is called
separable if X contains a countable dense subset.

Let (xn) be a sequence of elements of the topological space X . The point x ∈ X is
called the limit of the sequence (xn) if for any neighborhood U of the point x all the
terms of the sequence, starting with one of them, belong toU . In this case we say that
the sequence (xn) converges to x . A point x is called a limit point for the sequence
(xn) if any neighborhood U of x contains infinitely many terms of the sequence.
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A map f acting from a topological space X to a topological space Y is said
to be continuous if for any open set A in Y its preimage f −1(A) is an open set
in X . Continuity can be reformulated in terms of neighborhoods: the map f is
continuous if for any point x ∈ X and any neighborhood U of the point f (x) there
exists a neighborhood V of x such that f (V ) ⊂ U . The map f : X → Y is called
a homeomorphism if it is bijective, continuous, and its inverse map f −1 : Y → X
is continuous. Two topological spaces are said to be homeomorphic if there exists
a homeomorphism between them. Suppose that on the set X there are given two
topologies, τ1 and τ2. By definition, the topology τ1 is stronger than the topology τ2
(or, equivalently, τ2 is weaker than τ1) if any set open in the topology τ2 is also open
in the topology τ1. In other words, the topology τ1 is stronger than the topology τ2 if
the identity map x �→ x , acting from the topological space (X, τ1) to the topological
space (X, τ2), is continuous. The relation “τ1 is stronger than τ2” is denoted τ1  τ2.

If a set is closed, then it is also closed in any stronger topology. Correspondingly,
the closure of any set in a weaker topology contains the closure of that set in the
stronger topology.A limit point of a set remains a limit point in any stronger topology.
If a sequence (xn) converges to x in the topology τ1 and τ1  τ2, then (xn) converges
to x in the topology τ2, too.

Let A be a subset of the topological space X . A set B ⊂ A is said to be open in
A if B can be represented as the intersection of some open subset of the space X
with A. The subsets open in A define on A a topology, called the induced topology.
A subset of a topological space X , equipped with the induced topology, is called a
subspace of the topological space X . For example, the set Z of integers, equipped
with the discrete topology, is a subspace of R, while R, in turn, is a subspace of
the space C of all complex numbers. The induced topology is also referred to as the
restriction of the topology of the space X to the subset A.

Exercises

1. In a Hausdorff topological space every subset consisting of a single point (sin-
gleton) is closed.

2. Suppose the topological space X satisfies the following separation axiom: each
single-point set is a closed subset of X . Suppose further that x ∈ X is a limit point
for A. Then every neighborhood of x contains infinitely many points of A.

3. Suppose the topological space X contains an uncountable collection of pairwise
disjoint open subsets. Then X is not separable.

4. Let A, B,C be subsets of the topological space X such that A is dense in B and
B is dense in C . Then A is dense in C .

5. If the system of neighborhoods of a point x has a countable basis, then there
exists a decreasing — with respect to inclusion — sequence of neighborhoods that
constitutes a neighborhood basis of x .
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6. Let A be a subset of the topological space X , and x a limit point of A. Suppose
x has a countable neighborhood basis. Then there exists a sequence of points of A
that converges to x .

7. Let f : X → Y be a continuous map. If the subset A is dense in X , then f (A) is
dense in f (X).

8. Let f : X → Y be a continuous map. If A is a dense subset of X and f (X) is
dense in Y , then f (A) is dense in Y .

9. Let f : X → Y be a continuous map. Let A be a dense subset of X and B a closed
subset of Y . If f (A) ⊂ B, then also f (X) ⊂ B.

10. Give an example of a continuous function f : [0, 1] → [0, 1] and a dense set
A ⊂ [0, 1] such that f −1(A) is not dense in [0, 1].
11. Can two dense subsets of a topological space be disjoint?

12. Two continuous maps from a topological space X into a Hausdorff topological
space Y that coincide on a dense subset X1 ⊂ X coincide everywhere on X .

13. The interior of a set A is defined as the set of all interior points of A. Show that
the interior is an open set.

14. Suppose the set A ⊂ X intersects all dense subsets of the space X . Then A has
a non-empty interior.

15. The composition of two continuous maps is continuous.

16. Consider the following topology τ onR: for each number x take as the neighbor-
hood basis of x the family of all sets of the form {x} ∪ ((x − a, x + a) ∩ Q), a > 0.
Show that the topological space (R, τ ) thus constructed is separable, but contains a
non-separable subspace.

1.2.2 The Product of Two Topological Spaces

Let X1 and X2 be topological spaces. We define on the Cartesian product X1 × X2

a topology by taking for each point x = (x1, x2) ∈ X1 × X2 the neighborhood basis
Ux consisting of all sets of the form U1 ×U2, where U1 is a neighborhood of the
point x1 in X1 and U2 is a neighborhood of the point x2 in X2. The topology thus
described is called the product topology, and the set X1 × X2 equipped with the
product topology is called the product of the topological spaces X1 and X2.

Consider the mappings Pj : X1 × X2 → X j , j = 1, 2, which send the point
x = (x1, x2) to its j th coordinates: P1(x) = x1, P2(x) = x2. These maps are called
coordinate projectors or projections.
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Exercises

1. The coordinate projectors are continuous.

2. Among all topologies on X1 × X2 in which the coordinate projectors are contin-
uous, the product topology is the weakest.

3. The usual topology on R
2 = R × R coincides with the corresponding product

topology.

4. Let x, xn ∈ X1 × X2. Show that the convergence of the sequence (xn) to a point
x in the product topology is equivalent to the simultaneous convergence of the
sequences (P1(xn)) to P1(x) and (P2(xn)) to P2(x). This justifies calling the product
topology also the “topology of componentwise convergence” (also called the topology
of coordinatewise or pointwise convergence).

5. Let X,Y1,Y2 be topological spaces, f1 : X → Y1, f2 : X → Y2, and let the map
f : X → Y1 × Y2 be defined by the rule f (x) = ( f1(x), f2(x)). Then f is continu-
ous if and only if the two maps f1 and f2 are continuous.

6. The functions (x, y) �→ x + y and (x, y) �→ x · y are continuous as functions
from R

2 to R.

7. From the two preceding exercises and the theorem on the composition of contin-
uous maps derive the theorem asserting the continuity of the sum and of the product
of functions acting from a topological space into R.

8. Deduce the theorem on the limit of the sum and product of numerical sequences
from Exercises 3, 4, and 6.

9. Denote by [0, 1] the unit interval equipped with the usual topology, and by [0, 1]d
the same interval, equippedwith the discrete topology. Describe the product topology
on X1 × X2, when: a) X1 = X2 = [0, 1]; b) X1 = X2 = [0, 1]d; c) X1 = [0, 1],
X2 = [0, 1]d.
10. Any product of Hausdorff spaces is Hausdorff.

11. The coordinate projectors are open mappings: the image of an open set under a
coordinate projector is again an open set.

1.2.3 Compact Spaces

A Hausdorff topological space X is said to be compact, if it is non-empty and from
any open cover of X one can extract a finite subcover. In more detail: X is compact
if for every family U of open sets whose union is the entire space X there exists a
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finite number of elements U1, . . . ,Un ∈ U whose union is, as before, the entire X .
A subset A of a topological space X is called a compact set if A is a compact set in
the induced topology. In other words, A is a compact set if any two distinct points
of A can be separated by a pair of neighborhoods and for any family U of open
subsets of X whose union contains A, there exist finitely many elementsU1, . . . ,Un

of the family U, whose union also contains A. Any compact subset of a Hausdorff
topological space is closed; any closed subset of a compact space is itself compact.

Let X,Y be Hausdorff spaces with X compact, and let f : X → Y be continuous.
Then f (X) is a compact subset of Y (this assertion is an easy consequence of the
definitions). In particular, if X is a compact space and Y is a Hausdorff space, then the
image of any closed subset K of X under f is closed. Consequently, if X is compact,
Y is Hausdorff, and the map f : X → Y is not only continuous, but also bijective,
then the map f −1 : Y → X is also continuous, i.e., f is a homeomorphism. The last
assertion can be reformulated as follows: suppose on X there are given two separated
topologies, τ1  τ2, and X is compact in the topology τ1. Then τ1 = τ2.

A family of setsW is said to be centered if the intersection of any finite collection
of sets fromW is not empty.

Theorem 1. AHausdorff topological space K is compact if and only if any centered
family of closed subsets of K has a common point.

Proof. Let K be a compact space and W be a centered family of subsets of K .
Suppose that the sets ofW have no common point, i.e., the intersection

⋂
W∈W W is

empty. Passing to complements, we see that
⋃

W∈W (K \ W ) = K . Hence, the open
sets of the form K \ W form a cover of the compact space K . Extract a finite subcover
K \ W1, . . . , K \ Wn , Wi ∈ W,

⋃n
i=1 (K \ Wi ) = K . But this last condition means

that the set
⋂n

i=1 Wi is empty. This contradicts the assumption that the family W is
centered.

Conversely, suppose that every centered family of closed subsets of the space K
has a common point. We claim that the space K is compact. Indeed, let the family
U of open sets cover the space K . Then the complements of the elements of U form
a family W of closed sets with empty intersection. By assumption, the family W
cannot be centered, hence there exists a finite collection of sets W1, . . . ,Wn ∈ W
that have an empty intersection. Then

⋃n
i=1 (K \ Wi ) = K , K \ Wi ∈ U, i.e., from

the cover U one can extract a finite subcover. The theorem is proved. �

Theorem 2. Any infinite subset of a compact space has a limit point.

Proof. Let A be an infinite subset of the compact space K . Consider the family W
of all closed subsets W ⊂ K with the property that the difference A \ W consists of
finitely many points. The family W is centered, hence there exists a point x which
belongs to all the elements ofW.We claim that the point x is a limit point of A. Indeed,
let U be an arbitrary open neighborhood of x . Then the complement K \U does
not contain x , and hence does not belong to W. Therefore, A \ (K \U ) = A ∩U
contains infinitely many points. �
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Let us state, without proof, theUrysohn lemma on the functional separation of sets
and the Tietze extension theorem. The proofs of these well-known results (even in a
somewhat more general formulation) can be found, for instance, in K. Kuratowski’s
textbook [25, v. 1].

Lemma 1 (Urysohn’s lemma). Let A and B be disjoint closed subsets of a compact
space K . Then there exists a continuous function f : K → [0, 1] that is equal to 0
on A and to 1 on B.

Theorem 3 (Tietze’s theorem). Every continuous real-valued function defined on
a closed subset of a compact space extends to a continuous function defined on the
entire space.

Exercises

1. Let K be a compact space, x ∈ K , and A a closed subset of K such that x /∈ A.
Then in K there exist two open disjoint subsetsU and V such that x ∈ U and A ⊂ V .

2. Let A and B be disjoint closed subsets of the compact space K . Then in K there
exist two open subsets U and V such that A ⊂ U and B ⊂ V .

The properties of compact spaces formulated in the previous two exercises can
be regarded as strengthenings of the Hausdorff separation axiom (Subsection 1.2.1,
Axiom 4). Topological spaces in which any two disjoint closed subsets can be sep-
arated by disjoint neighborhoods (as in Exercise 2 above) are called normal spaces.
Urysohn’s lemma is valid not only for compact spaces, but also for arbitrary normal
spaces. A sketch of the proof of this fact is given in Exercises 4–6 below.

3. Let A and B be disjoint closed subsets of K , and f : K → [0, 1] a continuous
function equal to 0 on A and 1 on B. Let D denote the set {n/2m : m ∈ N; 1 � n <

2m} of all dyadic rational points of the interval (0, 1); and finally, for any r ∈ D, let
Fr = f −1([r, 1]). Then the sets Fr have the following properties: (1) all Fr are closed;
(2) for any r1 < r2 there exists an open set G = Gr1,r2 satisfying Fr1 ⊃ G ⊃ Fr2 (in
particular, Fr1 ⊃ Fr2 ); (3) B ⊂ Fr ⊂ K \ A for any r ∈ D.

4. Suppose some family Fr of sets has the properties (1)–(3) listed in the preceding
exercise. Define the function f : K → [0, 1] by f (x) = sup{r ∈ D : x ∈ Fr } (if in
this equality the set is empty, then its supremum is taken to be 0). Then the function
f is continuous, Fr = f −1([r, 1]) for all r ∈ D, f (x) = 0 on A, and f (x) = 1 on B.

5. Let K be a normal topological space, F a closed set in K , G an open set in K ,
and F ⊂ G. Then there exist sets F̃ and G̃ in K , such that F̃ is closed, G̃ is open,
and F ⊂ G̃ ⊂ F̃ ⊂ G.

6. Let A and B be disjoint closed subsets of the normal space K . The there exists a
family of sets Fr , r ∈ D, with the properties (1)–(3). (The sets Fr can be constructed
sequentially: first F1/2, then F1/4 and F3/4, and so on, making sure that at each step
properties (1)–(3) are satisfied.)
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1.2.4 Semicontinuous Functions

Let X be a topological space. A function f : X → R is said to be lower semicontin-
uous if for any a ∈ R the set f −1((a,+∞)) is open. In other words, the function f is
lower semicontinuous if for any point x ∈ X and any a ∈ R, the condition f (x) > a
implies the existence of an entire neighborhood of the point x on which all values of
f are also bigger than a. A function f : X → R is said to be upper semicontinuous
if the function− f is lower semicontinuous. The function f is upper semicontinuous
if and only if for any a ∈ R the set f −1((−∞, a)) is open. A function f : X → R

is continuous if and only if it is both lower and upper semicontinuous. The set of
lower semicontinuous (respectively upper semicontinuous, continuous) real-valued
functions on X will be denoted by LSC(X) (respectively, by USC(X) and C(X)),
the notation being self-explanatory.

Example 1. Let A ⊂ X be an arbitrary subset, and put

1A(x) =
{
1, if x ∈ A,

0, if x ∈ X \ A

(1A is called the characteristic function of the set A). The function 1A is lower
semicontinuous if and only if the set A is open, and upper semicontinuous if and
only if A is closed.

Theorem 1. The class LSC(X) has the following properties:

1. If f, g ∈ LSC(X), then f + g ∈ LSC(X).

2. If f ∈ LSC(X) and g ∈ C(X), then f − g ∈ LSC(X).

3. If f ∈ LSC(X) and λ ∈ [0,+∞), then λ f ∈ LSC(X).

4. The supremumof any pointwise bounded collection of lower semicontinuous func-
tions belongs again to LSC(X). In detail: let S ⊂ LSC(X) and let the function
f : X → R be given by f (x) = sup{g(x) : g ∈ S}. Then f ∈ LSC(X).

5. If f, g ∈ LSC(X), then min{ f, g} ∈ LSC(X).

Proof. 1. For any a ∈ R, the set ( f + g)−1
(
(a,+∞)

)
can be represented as a union

of open sets:

( f + g)−1
(
(a,+∞)

) =
⋃

t∈R

(
f −1

(
(t,+∞)

) ∩ g−1
(
(a − t,+∞)

))
.

As such, it is itself open.

2. This follows from the previous assertion, since −g ∈ C(X) ⊂ LSC(X).

3. (λ f )−1
(
(a,+∞)

) = f −1
(
(a/λ,+∞)

)
.

4. The supremum of a set of numbers is bigger than a if and only if at least one
of the numbers in the set is bigger than a. Hence, f −1

(
(a,+∞)

)
can be written as

the union of open sets
⋃

g∈S g−1
(
(a,+∞)

)
, and consequently is open.
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5. (min{ f, g})−1
(
(a,+∞)

) = f −1
(
(a,+∞)

) ∩ g−1
(
(a,+∞)

)
, and now recall

that the intersection of two open sets is open. �

Theorem 2. Any lower semicontinuous function on a compact space is bounded
from below.

Proof. Let f ∈ LSC(X), where X is a compact space. Set An = f −1
(
(−n,+∞)

)
,

n ∈ N. The sets An increase with the growth of n and form an open cover of the
compact space X . Hence, there exists an n0 ∈ N such that An0 = X , and consequently
f (t) > −n0 for all points t ∈ X . �

Theorem 3. Let X be a compact space and f ∈ LSC(X). Then the function f
coincides with the supremum of the family of all continuous functions that majorize
f . In other words, for any x ∈ X and any ε > 0 there exists a function g ∈ C(X)

such that g � f at all points, and g(x) � f (x) − ε.

Proof. With no loss of generality, one can assume that f is non-negative: by the
preceding theorem, this can be achieved by adding to f a sufficiently large constant.
Fix a point x ∈ X and denote f (x) − ε by a. If a � 0, then the function g ≡ 0
satisfies all the conditions of the theorem.Hence,we can assume thata > 0.Applying
Urysohn’s lemma to the pair of disjoint closed sets A = f −1

(
(−∞, a]) and B = {x},

we deduce that there exists a continuous function h : X → [0, 1] that is equal to 0 on
A and 1 on B. We claim that g = ah is the sought-for function. Indeed, at the points
t ∈ X where g(t) = 0, the inequality 0 � g(t) � f (t) is obvious. As for the points
where g(t) 	=0, they lie in X \ A, i.e., at these points we have f (t)>a�g(t). �

Exercises

1. Let X be a compact space and f ∈ LSC(X). Then there exists a point x ∈ X for
which f (x) = mint∈X f (t).

Let X be a topological space, f : X → R, and let Ux be the system of neigh-
borhoods of x ∈ X . The lower limit of the function f at the point x is the number
lim
t→x

f (t) ∈ R ∪ {−∞}, defined by the formula

lim
t→x

f (t) = sup
V∈Ux

inf
t∈V \{x} f (t).

The upper limit, lim
t→x

is defined in a similar manner:

lim
t→x

f (t) = inf
V∈Ux

sup
t∈V \{x}

f (t).

Other commonly used names for these quantities are limit inferior and limit superior,
with the corresponding notations lim inf

t→x
f (t) and lim sup

t→x
f (t).
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2. A function f : X → R on a topological space X is lower semicontinuous if and
only if the inequality f (x) � lim

t→x
f (t) holds for all x ∈ X .

3. Let f : X → R be an arbitrary bounded function on the topological space X . The

function f (x) = min
{
f (x), lim

t→x
f (t)

}
is called the lower envelope of the function

f , while f (x) = max
{
f (x), lim

t→x
f (t)

}
is called the upper envelope of f . Prove that

f is lower semicontinuous and f is upper semicontinuous.

4. Let f : X → R be an arbitrary function, g ∈ LSC(X), and assume that g � f .
Then g � f .

1.3 Metric Spaces

1.3.1 The Axioms of Metric. Sequences and Topology

A function of two variables ρ : X × X → R
+ is called ametric on the set X if it has

the following properties:

1. ρ(x, x) = 0;
2. if ρ(x, y) = 0, then x = y (non-degeneracy);
3. ρ(x, y) = ρ(y, x) (symmetry);
4. ρ(x, z) � ρ(x, y) + ρ(y, z) (triangle inequality).

The properties listed above are called the metric axioms. The quantity ρ(x, y)
is referred to as the distance between the elements x and y. A set equipped with a
metric is called a metric space.

A subset of a metric space X , endowed with the metric of X , is called a subspace
of the metric spaceX .

Let X be a metric space, x0 ∈ X , and r > 0. By BX (x0, r) (or B(x0, r), when it is
clear what space one is talking about) one denotes the open ball of radius r centered
at x0: BX (x0, r) = { x ∈ X : ρ(x, x0) < r }. The topology of a metric space is given
by means of balls: the balls centered at x0 form a neighborhood basis of the point
x0. In other words, a subset A of the metric space X is declared to be open if
together with any of its points, A contains some ball centered at that point: for any
x ∈ A, there exists an r > 0 such that BX (x, r) ⊂ A. A sequence (xn) of elements
of the metric space X converges to an element x if ρ(xn, x) → 0 as n → ∞. Since
a metric space is simultaneously a topological space, all basic topological notions
remain meaningful in metric spaces. The peculiarity of the metric spaces is that in
them topological concepts can be equivalently defined in terms of convergence of
sequences (sequential definitions). Some of these definitions are given below.

Let A be a subset of themetric space X . A point x ∈ X is said to be a limit point for
A if there exists a sequence of elements xn ∈ A \ {x}which converges to x . A subset
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A ⊂ X is said to be closed if it contains all its limit points. A subset A ⊂ X is said
to be open if its complement X \ A is closed.

Thus, in metric spaces the convergence of sequences uniquely determines the
topology. This fact can be alternatively explained by providing sequential definitions
of the concepts of continuity and homeomorphism. Thus, let X and Y be metric
spaces. A map f : X → Y is said to be continuous if it takes convergent sequences
into convergent ones: for any (xn), x ∈ X , if xn → x , then f (xn) → f (x). As for
the notions of homeomorphism and homeomorphic spaces, they are defined in terms
of continuity (see Subsection 1.2.1). Here is one more definition: a map f : X → Y
is called an isometry (or bijective isometry) if it is bijective and preserves the metric,
i.e., ρ(x1, x2) = ρ ( f (x1), f (x2)) for all x1, x2 ∈ X . Two metric spaces X and Y are
said to be isometric if there exists an isometry between them.

Exercises

1. In a metric space the neighborhood system of any point has a countable basis.

2. Show that for metric spaces the sequential definitions given above are equivalent
to the topological ones.

3. For two subsets A and B of ametric space, the distance between them is defined as
the infimum of the distances between their elements: ρ(A, B) = infa∈A,b∈B ρ(a, b).
Prove that this “distance” obeys neither the non-degeneracy axiom, nor the triangle
inequality.

4. Let X andY bemetric spaces.Define ametric on their Cartesian product X × Y by
the rule ρ((x1, y1), (x2, y2)) = ρ(x1, x2) + ρ(y1, y2). Verify the metric axioms for
this expression. Show that the topology generated by this metric on X × Y coincides
with the usual product topology. In particular, the convergence in thismetric coincides
with the coordinatewise (componentwise) convergence: (xn, yn) → (x, y) in X × Y
if and only if xn → x in X and yn → y in Y .

5. Let X and Y be metric spaces and f : X → Y be a continuous map. Then the
graph�( f ) = {(x, f (x)) : x ∈ X} of the map f is closed in X × Y . The statement
of this exercise remains valid for separated topological spaces. The separation of
which of the two spaces X , Y is important here, and of which not?

6. Give an example of discontinuous function f : R → R with closed graph.

7. Show that the graph of a continuous map f : X → Y is homeomorphic to the
space X .

8. Let Y be a subspace of the metric space X . Then on Y one has the topology
induced by the topology of X , and also the topology given by the metric of the space
Y . Show that these topologies coincide.



14 1 Metric and Topological Spaces

9. The closed ball of radius r centered at the point x0 of themetric space X is defined
as the set BX (x0, r) = {x ∈ X : ρ(x, x0) � r}. Show that every open ball is an open
set, and every closed ball is a closed set.

10. Using the example of the metric space consisting of two points, X = {0, 1},
ρ(0, 1) = 1, show that the closure of an open ball does not necessarily coincide with
the corresponding closed ball. Using the example of the metric space consisting of
three points, X = {0, 1, 2}, equipped with the natural metric, show that a closed ball
of larger radius can be strictly included in a ball of smaller radius1 (of course, in this
situation the centers of the balls cannot coincide). What values can the ratio of radii
for closed balls strictly included in one another take?

11. Equip the space Rω of all numerical sequences with the metric

ρ(x, y) =
∞∑

n=1

1

2n
|xn − yn|

1 + |xn − yn| ,

where xn and yn are the components of the elements x and y, respectively. Verify the
metric axioms. Prove that convergence in this metric coincides with the componen-
twise (coordinatewise) convergence.

12. Another metric on R
ω that induces the same topology is the Fréchet metric,

defined by

ρ1(x, y) = inf
n∈N

{
1

n
+ max

1�k�n
|xk − yk |

}

.

13. Any subspace of a separable metric space is separable. (For general topological
spaces this is not the case: see Exercise 16 in Subsection 1.2.1.)

14. Which of the metric spaces you know about are separable, and which not?

1.3.2 Distance of a Point to a Set. Continuity of Distance

The distance of a point x of a metric space X to a non-empty subset A ⊂ X is defined
to be the infimumof the distances of x to the elements of A:ρ(x, A) = infa∈A ρ(x, a).
We note that the point x belongs to the closure of the set A if and only if ρ(x, A) = 0.

Proposition 1. The function x �→ ρ(x, A) is continuous.

Proof. Let x, y ∈ X . By the triangle inequality,

ρ(x, A) = inf
a∈A

ρ(x, a) � inf
a∈A

ρ(y, a) + ρ(x, y) = ρ(y, A) + ρ(x, y).

1“... and the other explained to me that inside the globe there was another globe much bigger than
the outer one” (Jaroslav Hašek, “The good solider Švejk”, Chapter “Švejk thrown out of the lunatic
asylum”).
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Hence,ρ(x, A) − ρ(y, A) � ρ(x, y). Since x and y play symmetric roles,ρ(y, A) −
ρ(x, A) � ρ(x, y), that is

|ρ(x, A) − ρ(y, A)| � ρ(x, y) (1)

for all x, y ∈ X . This inequality obviously yields the required continuity (in fact,
we actually established not only the continuity, but also that the Lipschitz condition
with constant equal to 1 holds; see the corresponding definition in Exercise 4 of
Subsection 1.3.4). �

If A = {z} is a singleton, we obtain a useful particular case of inequality (1):

|ρ(x, z) − ρ(y, z)| � ρ(x, y),

which leads to the following important property of the distance.

Proposition 2. The distance is a continuous function of two variables, i.e., if xn →
x, yn → y, then ρ(xn, yn) → ρ(x, y).

Proof. Indeed, |ρ(xn, yn)−ρ(x, y)|� |ρ(xn, yn)−ρ(xn, y)|+|ρ(xn, y)−ρ(x, y)|�
ρ(yn, y) + ρ(xn, x) → 0 as n → ∞. �

Exercises

1. The Hausdorff distance between two closed subsets A and B of a metric space
X is defined as

ρH(A, B) = max

{

sup
b∈B

ρ(b, A), sup
a∈A

ρ(a, B)

}

.

Show that the Hausdorff distance ρH is indeed a metric on the family of all non-
empty bounded closed subsets of the metric space X (for comparison, see Exercise3
in Subsection 1.3.1).

2. Let A and B be disjoint closed subsets of the metric space X . Consider the sets
A1 = {x ∈ X : ρ(x, A) < ρ(x, B)} and B1 = {x ∈ X : ρ(x, A) > ρ(x, B)}. Verify
that A1 and B1 are disjoint open neighborhoods of the sets A and B, respectively. This
will show that every metric space is a normal topological space (see the exercises in
Subsection 1.2.3).

3. Let A and B be disjoint closed subsets of the metric space X . For each x ∈ X ,
put

f (x) = ρ(x, A)

ρ(x, A) + ρ(x, B)
.
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Then f is a continuous function, equal to 0 on A and to 1 on B, and taking all its
values in the interval [0, 1]. This will provide a simple proof of Urysohn’s lemma in
metric spaces (see Subsection 1.2.3). Moreover, in contrast to the general Urysohn
lemma, the function f constructed here is equal to 0 only at the points of the set A
and equal to 1 only at the points of the set B.

4. Let A be a closed subset of a metric space X and f : A → [0, 1] a continuous
function. Extend the function f to X \ A by means of the Haudsorff formula

f (x) = inf
t∈A

{

f (t) + ρ(t, x)

ρ(x, A)
− 1

}

.

Verify that the thus extended function f is continuous on the entire space X . Deduce
from this Tietze’s theorem (Subsection 1.2.3) in the case of metric spaces.

1.3.3 Completeness

A sequence (xn) of elements of the metric space X is called a Cauchy sequence (or a
fundamental sequence) if ρ(xn, xm) → 0 as n,m → ∞. In detail, (xn) is a Cauchy
sequence if for any ε > 0 there exists a number N , beginningwithwhich all distances
between pairs of elements xn are smaller than ε. If a sequence xn ∈ X has a limit
x ∈ X , then it is a Cauchy sequence: indeed, ρ(xn, xm) � ρ(xn, x) + ρ(x, xm) → 0
as n,m → ∞. Ametric space X is said to be complete if everyCauchy sequence in X
has a limit. As known from calculus, the spacesR,C, as well as all finite-dimensional
Euclidean spaces, are complete.

Let us recall a number of facts.

Theorem 1. Any closed subspace of a complete metric space is itself complete; a
complete subspace of any metric space is closed.

Proof. Let A be a closed subset of the metric space X , and xn ∈ A form a Cauchy
sequence. Since X is complete, the sequence (xn) has a limit x ∈ X . Since A is
closed, this limit belongs to A. This establishes the completeness of A.

Conversely, suppose A is complete and the sequence of xn ∈ A has a limit x ∈ X .
Then (xn) is a Cauchy sequence. Thanks to completeness, (xn) has a limit in A, and
by the uniqueness of the limit, this limit coincides with x . Thus, x ∈ A. This shows
that A is closed and completes the proof. �

Let A be a non-empty set of the metric space X . The diameter of the set A is
defined as diam(A) = supx,y∈A ρ(x, y).

Theorem 2 (Nested sets theorem). LetA1 ⊃ A2 ⊃ · · · be a decreasing chain of
non-empty closed subsets of a complete metric space X and let diam(An) → 0 as
n → ∞. Then the intersection

⋂∞
n=1 An is non-empty and consists of exactly one

point.
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Proof. Pick in each set An a pointan . Let N be somenatural number, and let k, j > N .
Then since the sequence An is decreasing, the points ak and a j belong to the set AN .
Therefore, ρ(a j , ak) � diam(AN ) → 0 as N → ∞, i.e., (an) is a Cauchy sequence.
Denote the limit of this sequence by a. For any N and any k > N , the point ak lies in
AN . Consequently, a = limn→∞ ak also lies in AN . We have shown that a ∈ AN for
all N , i.e., the intersection of the sets An is not empty. Now note that

⋂∞
n=1 An ⊂ AN

for all N , and so

diam

( ∞⋂

n=1

An

)

� diam AN → 0, N → ∞.

But a set of diameter zero necessarily reduces to a single point. This completes the
proof of the theorem. �

Exercises

1. Suppose the Cauchy sequence (xn) in the metric space X contains a convergent
subsequence. Then the sequence (xn) itself also converges.

2. The metric space X is complete if and only if any sequence (xn) satisfying∑∞
n=1 ρ(xn, xn+1) < ∞ converges.

3. Consider a cube of unit side length and a ball of unit radius in the three-
dimensional Euclidean space R

3. Which of these objects has a larger diameter?
Does the answer change if the objects are considered in the four-dimensional space?
The five-dimensional one? (The unit cube in Rn is the set of all vectors whose com-
ponents lie between 0 and 1, while the unit ball is the set of all vectors for which the
sum of the squares of their components is not larger than 1.)

4. Show that in an incomplete space the nested sets theorem fails.

5. Give an example of a decreasing chain A1 ⊃ A2 ⊃ A3 ⊃ · · · of closed subsets
of the real line with void intersection.

6. Construct a homeomorphism between the open interval (0, 1) and the real line
R. This will show that completeness is a metric property, and not a topological one:
an incomplete space and a complete space can be homeomorphic.

7. Show that if X,Y are complete metric spaces, then the Cartesian product X ×
Y , equipped with the metric introduced in Exercise 4 of Subsection 1.3.1, is also
complete.

8. Show that the spaceRω considered in Exercise 11 of Subsection 1.3.1 is complete.

9. In a Euclidean space the diameter of a ball is twice its radius. Is this true in an
arbitrary metric space?
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10. Show that in the Euclidean plane any set of unit diameter can be included in a
disc of radius 1√

3
(Jung’s theorem).

11. Show that in the Euclidean plane any set of unit diameter can be decomposed
into three sets, each of diameter less than 1 (Borsuk’s theorem).

Exercises 10 and 11 belong to a direction in mathematics called combinatorial
geometry. Combinatorial geometry studies problems concerned with the mutual dis-
position of geometric figures, optimal covers, decomposition into smaller parts, and
so on. In spite of the seeming simplicity of their formulations, such problems often
turn out to be highly non-trivial; many naturally arising problems in the field remain
unsolved at this time. An example is provided by Borsuk’s Problem: Can any set
of diameter 1 in the 4-dimensional Euclidean space be divided into 5 pieces, each
of diameter smaller than 1? For details about this problem and other questions of
combinatorial geometry, refer to the monographs [7, 16, 17].

12. Aclosed subset of a topological space is called perfect if it does not have isolated
points (in other words, if each point of the set is a limit point of the set itself). Prove
that in a complete metric space the cardinality of any perfect set is not smaller than
the cardinality of the continuum.

13. Prove that a metric space is separable if and only if for each ε > 0 the space can
be covered by a countable number of balls or radius ε.

14. Let A be a uncountable subset of the complete separable metric space X . A point
x ∈ X is called a condensation point of the set A if the intersection of A with any
neighborhood of the point x is uncountable. Prove that the set Ac of condensation
points of A is not empty, is perfect, and such that the difference A \ Ac is at most
countable.

1.3.4 Uniform Continuity. The Extension Theorem

Definition 1. Let X and Y be metric spaces. A map f : X → Y is said to be
uniformly continuous if for any ε > 0 there exists a δ = δ(ε) > 0 such that for any
two elements x1, x2 ∈ X satisfying ρ(x1, x2) < δ, the distance between their images
is smaller than ε: ρ( f (x1), f (x2)) � ε.

We note that every uniformly continuous map is continuous, but in general con-
tinuity does not imply uniform continuity: as an example, consider the function
f (x) = 1/x on the open interval (0, 1).

Lemma 1. Let f : X → Y be a uniformly continuous map of the metric space X
into the metric space Y . Then for any Cauchy sequence (xn) of points of X its image
( f (xn)) is a Cauchy sequence in Y .
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Proof. Given any ε > 0, take δ(ε) as in the definition of uniform continuity. By
the definition of a Cauchy sequence, there exists a number N = N (ε) such that
beginning with N = N (ε) the distances between all the pairs of elements xn become
smaller than δ(ε), i.e., for any n,m > N it holds that ρ(xn, xm) < δ(ε). But then
also ρ( f (xn), f (xm)) � ε for all n,m > N . �

Theorem 1 (Extension theorem). Let X1 be a subspace of the metric space X, X1

the closure of the set X1 in X, and Y a complete metric space. Then any uniformly
continuous map f : X1 → Y extends uniquely to a uniformly continuous map f̄ :
X1 → Y .

Proof. For each point x ∈ X1 there exists a sequence of elements xn ∈ X1 which
converges to x . Since the space Y is complete, the preceding lemma shows that
the sequence ( f (xn)) has a limit. Furthermore, this limit does not depend on the
choice of the sequence (xn), but only on the point x . Indeed, if xn, yn ∈ X1 are two
different sequences that converge to x , then the “mixed” sequence x1, y1, x2, y2, . . .
also converges to x . Hence, the sequence of images f (x1), f (y1), f (x2), f (y2), . . .
converges to a limit. It follows that the sequences ( f (xn)) and ( f (yn))must have the
same limit. Denote by f̄ (x) the common limit of all sequences of the form ( f (xn)),
where xn ∈ X1 and xn → x .

If x ∈ X1, then for (xn) one can take the sequence (x, x, x, . . .). In this case
f̄ (x) = f (x), so we have shown that the map f̄ is an extension of f . It remains
to verify the uniform continuity of f̄ . We take an arbitrary ε > 0 and show that the
δ = δ(ε) given by the definition of the uniform continuity of themap f alsoworks for
f̄ . Let x, y ∈ X1 be arbitrary elements satisfying ρ(x, y) < δ, and let xn, yn ∈ X1 be
such that xn → x and yn → y as n → ∞. Since ρ(xn, yn) � ρ(xn, x) + ρ(x, y) +
ρ(y, yn), it follows that ρ(xn, yn) < δ for sufficiently large n. Therefore, for n large
we have the inequality ρ( f (xn), f (yn)) � ε. Letting n → ∞, we obtain the required
inequality ρ( f̄ (x), f̄ (y)) � ε. �

Exercises

A quantitative characteristic of the uniform continuity of a map is provided by the
quantity

ω( f, ε) = sup{δ > 0 : (ρ(x1, x2) < δ) =⇒ (ρ ( f (x1), f (x2)) � ε)}

(here we adopt the convention that the supremum of the empty set is 0).

1. The map f is uniformly continuous if and only ω( f, ε) > 0 for all ε > 0.

2. For a function f on a segment or on the line, the modulus of continuity is semi-
additive: ω( f, ε1 + ε2) � ω( f, ε1) + ω( f, ε2) for all ε1, ε2 > 0.

3. Give an example of a metric space X and a real-valued function f on X whose
modulus of continuity is not semi-additive.
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4. Suppose the map f : X → Y satisfies the Lipschitz condition (there existsC > 0
such that ρ( f (x1), f (x2)) � Cρ(x1, x2) for all x1, x2 ∈ X ). Then f is uniformly
continuous. Estimate from below the modulus of continuity of f .

5. Calculate the modulus of continuity of an isometry.

1.3.5 Pseudometric Spaces and the Associated Metric Spaces.
The Completion of a Metric Space

A function of two variables ρ : X × X → R
+ is called a pseudometric on the set

X if it satisfies the metric Axioms 1, 3, and 4 (ρ(x, x) = 0, ρ(x, y) = ρ(y, x), and
ρ(x, z) � ρ(x, y) + ρ(y, z)), but not necessarily Axiom 2 (non-degeneracy axiom).
A set equipped with a pseudometric is called a pseudometric space. The topology
on a pseudometric space is given in the same way as on a metric space, by means
of balls. The main difference between pseudometric spaces and metric spaces is that
the topology defined by a pseudometric is not separated. Let us show that “gluing
together” those points of a pseudometric space that cannot be separated from one
another naturally yields a metric space.

Thus, let (X, ρ) be a pseudometric space. Two elements x, y ∈ X are said to be
ρ-equivalent (written x ≈ y) if ρ(x, y) = 0.

Theorem 1. The relation≈ is an equivalence relation on X. If A, B are equivalence
classes, and a ∈ A, b ∈ B arbitrary representatives, then the quantity ρ(A, B) =
ρ(a, b) does not depend on the choice of these representatives and gives a metric on
the space X/≈ of all equivalence classes generated by the relation ≈.

Proof. The symmetry property of the relation ≈ is obvious. Next, note that

if x, y, z ∈ X and z ≈ y, then ρ(x, y) = ρ(x, z). (i)

Indeed, by the triangle inequality, ρ(x, y) � ρ(x, z) + ρ(z, y) = ρ(x, z) and
ρ(x, z) � ρ(x, y) + ρ(y, z) = ρ(x, y). This immediately yields the transitivity of
the relation ≈. The fact that the number ρ(a, b) does not depend on the choice of
the representatives a ∈ A, b ∈ B of the equivalence classes A, B is also an obvious
consequence of (i). The symmetry and triangle inequality for the function ρ on X/≈
follow from the corresponding properties of the pseudometric ρ on X . Finally, the
non-degeneracy of the metric ρ on X/≈ is a result of the performed “gluing”: if
A, B ∈ X/≈ are equivalence classes for which ρ(A, B) = 0, then there exist repre-
sentatives a ∈ A, b ∈ B, such that ρ(a, b) = 0. Thus, a ≈ b, and so the equivalence
classes A and B coincide. �
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The space X/≈ just described is called the metric space associated with the
pseudometric space X .

As in a metric space, a sequence (xn) of elements of the pseudometric space X
is called a Cauchy, or fundamental sequence, if ρ (xn, xm) → 0 as n,m → ∞. A
pseudometric space X is said to be complete if any Cauchy sequence in X has a limit.
The mapping F : X → X/≈ that associates to each element its equivalence class
preserves distances, and hence preserves the Cauchy property and the convergence
of sequences. Consequently, the pseudometric space X is complete if and only if the
metric space X/≈ is complete.

Definition 1. Let X be an incomplete metric space. A metric space Y ⊃ X is called
a completion of the space X if Y is a complete space, the restriction of the metric of
Y to X coincides with the original metric of the space X (that is, X is a subspace of
Y ), and X is a dense subset of Y .

By solving the chain of exercises given below, the reader will establish the exis-
tence of a completion for every incomplete space and the uniqueness of this com-
pletion up to an isometry.

Exercises

1. Let X be a metric space. Define X̃ to be the space of all Cauchy sequences in X .
Let x, y ∈ X̃ , x = (xn)n∈N, y = (yn)n∈N. Put ρ(x, y) = limn→∞ ρ(xn, yn). Verify
that the quantity ρ(x, y) is well defined for any x, y ∈ X̃ and gives a pseudometric
on X̃ .

2. Prove that X̃ is a complete pseudometric space.

3. Denote by ˜̃X the metric space associated with the pseudometric space X̃ . Identify
each element x of the space X with the equivalence class of the Cauchy sequence
(x, x, x, . . .). Verify that under this identification X is a subspace of the space ˜̃X .

4. Show that ˜̃X is a completion of the space X .

5. Uniqueness of the completion: let Y1,Y2 be two completions of the space X . Then
there exists a bijective isometry S : Y1 → Y2 which keeps fixed the elements of the
space X (S(x) = x for all x ∈ X ). That is to say, from the point of view of their
metric structure, the spaces Y1 and Y2 are indistinguishable.

6. Use the existence of a completion to extend the result of Exercise 14 in Subsection
1.3.3 to an incomplete separable space.
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1.3.6 Sets of First Category and Baire’s Theorem

A subset A of a topological space X is said to be nowhere dense if A is not dense in
any non-empty open subset of X . In other words, the set A is nowhere dense if its
closure contains no open sets. Since in a metric space for any point the closed balls
of non-zero radii centered at that point constitute a neighborhood basis, for metric
spaces the above definition can be reformulated as follows: the subset A is nowhere
dense if any ball BX (x0, r), r > 0, contains a smaller closed ball of non-zero radius
in which there are no points of A.

Typical examples of nowhere dense sets are the Cantor set in the interval (see
Subsection 1.4.4), and rectifiable curves in the plane. We should emphasize that
when we speak about a nowhere dense set we need to specify its ambient space. For
instance, a segment is a nowhere dense set in the plane, but not on the line; A = {0}
is nowhere dense on the real line, but in the set of natural numbers the same set A is
open.

Theorem 1 (Baire’s theorem). A complete metric space cannot be covered by a
countable collection of nowhere dense subsets.

Proof. Let X be a complete metric space and A1, A2, . . . be nowhere dense subsets
of X . We need to show that

⋃∞
n=1 An does not coincide with X . Since A1 is nowhere

dense in X , there exists a closed ball B1 = BX (x1, r1) with 0 < r1 < 1/2 which
does not intersect A1. Since A2, in its turn, is nowhere dense (in particular, A2 is not
dense in B1), there exists a closed ball B2 = BX (x2, r2) with 0 < r2 < 1/4, which
is contained in B1 and does not intersect A2. Continuing this argument, we obtain a
decreasing chain B1 ⊃ B2 ⊃ B3 ⊃ · · · of closed balls whose radii tend to zero, and
such that each Bn does not intersect the corresponding set An . By the nested sets
theorem, the sets Bn have a common point, which we denote by x . Since x ∈ Bn for
all n, and Bn ∩ An = ∅, we conclude that x does not belong to any of the sets An .
Thus, we have shown that there exists a point x ∈ X\⋃∞

n=1 An , i.e., the sets An do
not cover the entire space X . �

In connection with Baire’s theorem just proved, the following terminology was
introduced. A subset A of a topological space X is called a set of first category (or a
meagre set in X ) if A can be written as a countable union of nowhere dense subsets
in X . A subset of X that is not of first category is called a set of second category in
X . In these terms Baire’s theorem asserts that any complete metric space is a set of
second category in itself.

Exercises

1. Verify that the complement of a dense open set is a nowhere dense set.
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2. Check that in the proof of Baire’s theorem the ball B1 can be chosen to lie inside
a given open subset of X . Deduce from this that every open subset of a complete
metric space X is a set of second category in X .

3. Show that in an incomplete metric space Baire’s theorem may not hold.

4. Verify the following properties: a subset of a set of first category is also a set of
first category; a finite or countable union of sets of first category is also a set of first
category; if a set contains a subset of second category, then it itself is a set of second
category.

5. Is it true that the intersection of two sets of second category is always of second
category?

6. Use Baire’s theorem to prove Cantor’s theorem asserting that the interval [0, 1]
is not countable.

7. Show that a single-point subset A = {x} of a topological space X is nowhere
dense if and only if x is a limit point in X . In conjunction with Baire’s theorem, this
easily yields the following weakened version of Exercise 12 of Subsection 1.3.3: any
perfect set in a complete metric space is uncountable.

8. Suppose the infinitely differentiable function f on the interval [0, 1] has the
following property: for every point t ∈ [0, 1] there exists a number n = n(t) such
that the n-th derivative of f at t is equal to zero. Using the sets An = {t ∈ [0, 1] :
f (n)(t) = 0} and Baire’s theorem, show that on some interval [a, b] ⊂ [0, 1] the
function f is a polynomial.

9. Under the assumptions of the preceding exercise, show that the function f is
actually a polynomial on the entire interval [0, 1]. The proof of this theorem by
Ernest Corominas and Ferran Sunyer i Balaguer (1954), as well as several other
non-trivial applications of Baire’s theorem, can be found in [6, Chap. 1, Sect. 10].

10. Prove the following analogue of Baire’s theorem: any compact topological space
is a set of second category in itself.

1.4 Compact Sets in Metric Spaces

1.4.1 Precompact Sets

Let X be a metric space, A,C ⊂ X , and ε � 0. The set C is called an ε-net for A if⋃
x∈C B(x, ε) ⊃ A; in other words, for each a ∈ A there exists an x ∈ C such that

ρ(x, a) < ε. Yet another reformulation: the set C is an ε-net for A if and only if
ρ(a,C) < ε for every a ∈ A. From the triangle inequality it follows that if C is an
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ε-net for A and D is an ε-net for C , then D is an 2ε-net for A. For example, the
center of an open ball of radius r is an r -net for that ball, while the set C = { 13 , 2

3 } is
a 1

3 -net for the interval (0, 1). The set C is called a finite ε-net for A if C is an ε-net
for A and has a finite number of elements.

Lemma 1. If the set A admits a finite ε-net, then A also admits a finite 2ε-net
consisting of elements of A.

Proof. Let C be a finite ε-set for A. In each ball B(c, ε) with c ∈ C , if B(c, ε)
intersects A, pick a point x ∈ B(c, ε) ∩ A. The resulting finite set of elements is the
sought-for 2ε-net. �

A subset A of a metric space X is said to be precompact if for any ε > 0 there
exists a finite ε-net for A.

We note the following obvious properties of precompact sets: if A ⊃ B and A is
precompact, then B is precompact; any finite union of precompact sets is precompact.
Every precompact set is bounded, i.e., is contained in some ball of finite radius (for
this it even suffices that there exists a finite ε-net for some fixed value of ε). A set in
R

n is precompact if and only if it is bounded.

Lemma 2. Suppose the set A admits a precompact ε-net for every ε > 0. Then A is
precompact.

Proof. Choose a precompact (ε/2)-net B for A, and a finite (ε/2)-net C for B. Then
C will be a finite ε-net for A. �

Theorem 1. Let A be a subset of the metric space X. Then the following conditions
are equivalent:

1. A is precompact.
2. For any ε > 0, from any sequence of elements of A one can extract a subsequence

in which all distances between pairs of terms are no larger than ε.
3. From any sequence of elements of A one can extract a Cauchy subsequence.

Proof. 1. =⇒ 2.Let A be precompact, and {an}n∈N ⊂ A. Cover A by a finite number
of balls of radius ε/2. Then at least one of these balls contains an infinite subsequence
of the sequence (an).

2. =⇒ 3. Let {an}n∈N ⊂ A. Applying condition 2. successively with ε = 1, ε =
1/2, ε = 1/3,…, we obtain infinite sets of indices N1 ⊃ N2 ⊃ N3 ⊃ · · · , for which
diam{an}n∈Nk � 1/k. We construct an increasing set of indices M , taking the first
element in N1, the second in N2, the third in N3, and so on. The subsequence (an)n∈M
is a Cauchy sequence because for every k ∈ N all distances between pairs of its terms
of starting with the k-th, are not larger than 1/k.

3. =⇒ 1.Suppose the set A is not precompact. Then there exists an ε > 0 such that
no finite set is an ε-net for A. Let us show that there exists a sequence {an}n∈N ⊂ A
for which all distances between pairs of elements are larger than or equal to ε.
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Such a sequence cannot have Cauchy subsequences. We proceed as follows. For a1
take an arbitrary element of A. The set C1 = {a1} does not constitute an ε-net, so
there exists an a2 ∈ A such that ρ(a2,C1) � ε. In the set C2 = {a1, a2} the distances
between pairs of elements are larger than or equal to ε. The setC2 does not constitute
an ε-net, hence there exists an a3 ∈ A such that ρ(a3,C2) � ε. Suppose we have
already constructed the elementsa1, . . . , an of the sought-for sequencewith distances
between pairs not smaller than ε. The set Cn = {a1, . . . , an} is finite, and so it is not
an ε-net for A. Choose the point an+1 ∈ A so that ρ(an+1,Cn) � ε. Continuing the
described process indefinitely, we obtain the required sequence. �

In complete spaces this result can be strengthened.

Theorem 2. Let A be a closed subset of a complete metric space X. Then the
following conditions are equivalent:

1. A is compact.
2. A is precompact.
3. From any sequence of elements of A one can extract a convergent subsequence.

Proof. The equivalence 2. ⇐⇒ 3. follows from the preceding theorem; the impli-
cation 1. =⇒ 3. follows from the fact that any subset of a compact set, in particular
any subsequence, has a limit point. It remains to establish the implication 2. =⇒ 1.
To this end we remark first that for any centered family W of subsets of a closed
precompact set D and any ε > 0 there exists a closed subset B of D such that the
family W1 = { V ∩ B : V ∈W} is again centered and diam(B) < ε. Indeed, it suf-
fices to cover the precompact set D by a finite number of closed subsets of diameter
smaller than ε; then at least one of these subset can be taken as B. Now let us show
that any centered familyW of closed subsets of our precompact set A has a common
element. By Theorem 1 of Subsection 1.2.3, this will mean that the set A is compact.

Thus, suppose A is precompact and W is a centered family; then there exists
a closed subset B1 ⊂ A with diam(B1) < 1 such that the family W1 = { V ∩ B1 :
V ∈ W} is again centered. Since B1 is also a precompact set, there exists a closed
subset B2 ⊂ B1 with diam(B2) < 1/2 such that the family W2 = { V ∩ B2 : V ∈
W} is centered. Continuing in this way, we produce a decreasing chain B1 ⊃ B2 ⊃
B3 ⊃ · · · of closed subsets with diam(Bn) → 0 such that for each n the family
{ V ∩ Bn : V ∈ W} is centered. In particular, all intersections V ∩ Bn , with V ∈ W
and n ∈ N, are not empty. By the nested sets theorem (Subsection 1.3.3, Theorem
2),

⋂∞
n=1 Bn is not empty and consists of exactly one point, which we denote by x .

Now let us consider an arbitrary element V ∈ W and show that x ∈ V , i.e., x is the
required common point of all sets in the family W. Indeed, since for any n ∈ N the
intersection V ∩ Bn is not empty and x ∈ Bn , we have ρ(x, V ) < diam(Bn) for all
n, i.e., ρ(x, V ) = 0, as needed. �
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Exercises

1. Every compact metric space is separable.

2. A Cartesian product of precompact (compact) sets in the metric of Exercise 4 in
Subsection 1.3.1 is also precompact (respectively, compact).

3. Let K , X be metric spaces, f : K → X a continuous map, and suppose K is
compact. Then f is uniformly continuous.

For a subset A of the metric space X denote by nA(r) the largest possible number
of pairwise disjoint balls of radius r centered at points of A. Show that:

4. A is precompact if and only if nA(r) < ∞ for any r .

5. The function r �→ nA(r) does not increase with the growth of r .

6. The function nA(r) is bounded (in a neighborhood of zero) if and only if the set
A is finite.

7. Let A be a bounded set in R
m with non-empty interior. Then nA(r) has the

same order of growth at zero as r−m . This shows that nA(r) can be used to define a
dimension of the set A.

Let us remark that the exact values of nA(r) are not easy to calculate even for
relatively simple sets, like, for instance, a ball in R

3. The classical problem of the
densest packing of balls (spheres) inR3 was solved only in 1998! Finding a possibly
exact estimate of the numbers nA(r) for sets in R

m is of great practical value. For
instance, if one identifies a signal consisting of m numerical components with a
point in R

m , then the distance measures how easy it is to recognize these signals.
Accordingly, the task of determining the possible number of recognizable signals
of a given power reduces to the search for the possibly largest numbers of pairwise
disjoint balls of radius r in a fixed ball.

1.4.2 Spaces of Continuous Maps and Functions. Arzelà’s
Theorem

Let � be a set, and X a metric space. We endow the set of all bounded X -valued
functions on � (i.e., bounded maps from � to X ) with the metric ρ defined by
ρ( f, g) = supt∈� ρ( f (t), g(t)).2 The resulting metric space of bounded X -valued
functions is denoted by 
∞(�, X). The metric of this space is called the uniform
metric, and the convergence in 
∞(�, X) coincides with the uniform convergence.

2In this definition the symbol ρ is used with two distinct meanings: on the left — as the distance
in 
∞(�, X), and on the right — as the distance in X . This ambiguity can be removed by denoting
the metric on the space X by ρX .
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Theorem 1. If X is a complete metric space, then the space 
∞(�, X) is also
complete.

Proof. Let ( fn) be an arbitrary Cauchy sequence in 
∞(�, X). Then for any t ∈ �

the values fn(t) form a Cauchy sequence in X : ρ( fn(t), fm(t)) � ρ( fn, fm) → 0
as n,m → ∞.

Since the space X is complete, the sequence ( fn(t)) has a limit, which we denote
by f (t). To show that ( fn) converges to f uniformly, let us write in more detail
the definition of a Cauchy sequence: for any ε > 0 there exists an N ∈ N, such that
ρ( fn, fm) � ε for all n,m > N . Making the definition of the metric in 
∞(�, X)

explicit, we see that for any ε > 0 there exists an N ∈ N such that for any t ∈ �

and any n,m > N one has ρ( fn(t), fm(t)) � ε. Letting here m → ∞, we conclude
that ρ( fn(t), f (t)) � ε for all t ∈ �. In conjunction with the boundedness of the
functions fn , this shows that the function f is bounded, i.e., f ∈ 
∞(�, X). Further,
for n > N we take the supremum over t ∈ � in the inequality ρ( fn(t), f (t)) � ε to
conclude that ρ( fn, f ) � ε for all n > N . Therefore, fn → f in the metric of the
space 
∞(�, X), which establishes the completeness of this space. �

Let K be a compact topological space and X be a metric space. The set of con-
tinuous maps from K to X , equipped with the uniform metric, is called the space of
continuous X-valued functions and is denoted byC(K , X). The distance inC(K , X)

can be expressed by the formulaρ( f, g) = maxt∈K ρ( f (t), g(t)). By thewell-known
theorem of calculus asserting the continuity of the limit of a uniformly conver-
gent sequence of continuous functions, C(K , X) is a closed subspace of the space

∞(K , X). Hence, if X is a complete metric space, then C(K , X) is also complete.

We recall also that any function f ∈ C(K , X) is uniformly continuous (being a
continuous map on a compact metric space).

Lemma 1. Let X be a precompact space and� a finite set. Then the space 
∞(�, X)

is precompact.

Proof. Let A be a finite ε-net for X . Then the set 
∞(�, A) of all maps from � to A
is a finite ε-net for 
∞(�, X). �

Lemma 2. Suppose the family G of continuous functions constitutes a precompact
set in C(K , X). Then the set G(K ) = ⋃

f ∈G f (K ) is precompact in X.

Proof. Let G1 ⊂ G be a finite ε-net for G. Put G1(K ) = ⋃
f ∈G1

f (K ). Since each
of the sets f (K ) is compact (as the image of a compact set under a continuous
map), G1(K ) is compact, being a finite union of compact sets. At the same time,
G1(K ) is an ε-net for G(K ). By Lemma 2 of the preceding Subsection 1.4.1, G(K )

is precompact in X . �

Definition 1. Let K and X be metric spaces. A family G of maps from K to X is
said to be equicontinuous if for every ε > 0 there exists a δ > 0 such that for anymap
f ∈ G and any points t1, t2 ∈ K satisfying ρ(t1, t2) < δ, the distance between the
images of these points is not larger than ε: ρ(t1, t2) < δ =⇒ ρ( f (t1), f (t2)) � ε.
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Lemma 3. Let K and X be metric spaces with K compact, and let the family G of
continuous maps be precompact in C(K , X). Then the family G is equicontinuous.

Proof. Fix ε > 0 and choose a finite ε-net G1 ⊂ G for G. Since every map g ∈ G1

is uniformly continuous and the number of these maps is finite, there exists a δ > 0
such that for any map g ∈ G1 and any points t1, t2 ∈ K such that ρ(t1, t2) < δ one
has ρ(g(t1), g(t2)) � ε. Now let f ∈ G. By the definition of an ε-net, there exists a
g ∈ G1 such that ρ( f, g) < ε. By the triangle inequality, for any t1, t2 ∈ K satisfying
ρ(t1, t2) < δ we have

ρ( f (t1), f (t2)) � ρ( f (t1), g(t1)) + ρ(g(t1), g(t2)) + ρ(g(t2), f (t2)) � 3ε.

Since ε is arbitrary, the equicontinuity of the family G is established. �

The following theorem was obtained in 1895 by Arzelà for subsets of C[a, b]. A
weaker form was discovered earlier by Ascoli, therefore the result is often referred
to as the “Arzelà–Ascoli theorem”. The extension to C(K ) for an arbitrary metric
compact space K was made by Fréchet in 1906.

Theorem 2 (Arzelà’s theorem). Let K and X be metric spaces with K compact,
and let G ⊂ C(K , X). In order for the family G to be precompact it is necessary
and sufficient that the following two conditions be satisfied: (1) G is equicontinuous,
and (2) the images of all the maps in the family G are contained in one and the same
precompact set Y ⊂ X.

Proof. The necessity of the two conditions was already established in Lemmas 2 and
3 above. Let us prove their sufficiency. Fix an ε > 0 and the corresponding δ = δ(ε)

from the definition of the uniform continuity of the family G. Pick a finite δ-net �

in K . Now consider the restriction mapping F : G → 
∞(�,Y ), which associates
to each map f ∈ G its restriction to �. By Lemma 1, the subspace 
∞(�,Y ) is
precompact, and hence F(G) is precompact as well. Therefore, there exists a finite
set G1 ⊂ G such that F(G1) is an ε-net in F(G). We claim that G1 is a 3ε-net for G.

Indeed, let f ∈ G be an arbitrary map. By the definition of the set G1, there exists
a g ∈ G1 such that ρ(F( f ), F(g)) < ε. Interpreting the definition of the set F and
the metric in 
∞(�,Y ), we see that ρ( f (t), g(t)) < ε for all t ∈ �. Further, for each
x ∈ K there exists a t ∈ � such that ρ(x, t) < δ (because � is a δ-net in K ). Finally,
recalling that δ was taken from the definition of uniform continuity, we have

ρ( f (x), g(x)) � ρ( f (x), f (t)) + ρ( f (t), g(t)) + ρ(g(t), g(x)) < 3ε.

Since this holds for all x ∈ K , it follows that

ρ( f, g) = max
x∈K ρ( f (x), g(x)) < 3ε.

Hence, G has a finite 3ε-net for any ε > 0, so the proof is complete. �



1.4 Compact Sets in Metric Spaces 29

Corollary 1. If under the assumptions of Arzelà’s theorem the space X is complete,
then for a set G ⊂ C(K , X) to be compact it is necessary and sufficient that the
following three conditions be satisfied: (1) G is equicontinuous, (2) the images of all
the maps in the family G are contained in one and the same precompact set Y ⊂ X,
and (3) G is a closed subset of the space C(K , X). �

In the most important particular cases, when the range space X is R, C, or Rn ,
the precompact sets in X are simply the bounded sets. Condition 2) in Arzelà’s the-
orem can be restated in a simpler way: the family G is uniformly bounded, i.e.,
sup f ∈G, t∈K ρ(0, f (t)) < ∞. Concerning the uniform continuity, we provide a suf-
ficient condition which is rather convenient in practice: if all the functions of the
family G satisfy the Lipschitz condition with a common constant (i.e., if there exists
a c > 0 such that for any f ∈ G one has ρ( f (t), f (τ )) � cρ(t, τ ) for all t, τ ∈ K ),
then G is uniformly continuous.

Exercises

1. Why is the distance between any two elements of the space C(K , X) finite?

2. Why in the definition of the uniform metric on C(K , X) are we allowed to write
“max” instead of “sup”?

3. Verify that the metric axioms hold for the uniform metric.

4. Show that if C(K , X) is a complete metric space, then the space X is also com-
plete.

Denote by C[0, 1] the metric space C([0, 1],R).

5. No non-empty open set inC[0, 1] can be equicontinuous. In particular, inC[0, 1]
there are bounded, but at the same time not precompact, sets.

For the sets in C[0, 1] listed below, check whether they are (a) bounded, (b) open,
(c) closed, (d) equicontinuous, (e) precompact, (f) compact:

6. A1 = { f : 0 � f (t) � 1 for all t ∈ [0, 1]}.
7. A2 = { f : f (t) > 0 for all t ∈ [0, 1]}.
8. The set A3 of those functions from A2 for which

∫ 1
0 f (t)dt < 1.

9. The set A4 of all continuously differentiable functions that satisfy the condition
maxt∈[0,1] | f ′(t)| � 1.

10. The set A5 of all continuously differentiable functions that satisfy the condition∫ 1
0 | f ′(t)|2dt � 1.
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11. The set A6 of all continuously differentiable functions that satisfy the condition∫ 1
0 | f ′(t)|dt � 1.

12. A7 = A1 ∩ A4.

13. The set A8 of all convex functions belonging to A1.

1.4.3 Application: The Isoperimetric Problem

The isoperimetric problem in the plane is the problem of finding, among all closed
convex curves of a given length, the curve that bounds the maximal possible area.
This classical problem, already considered in ancient Greece,2 has numerous gen-
eralizations which play an important role in the geometry of convex bodies (see
W. Blaschke’s wonderful book [5]) and functional analysis (see the monograph of
V.Milman andG. Schechtman [30], which is small, yet very rich in ideas and results).

Assuming that the isoperimetric problem has a solution, one can prove by elemen-
tary methods that the sought-for optimal curve is necessarily a circle. Some of these
elementary proofs, like, say, Steiner’s four-hingemethod (§1 in Blaschke’s book), are
so simple and elegant, that they are often included in the syllabus of extracurricular
mathematics school clubs. Establishing the existence of a solution itself turned out to
be rather challenging; the first proof was provided byWeierstrass in the 1870s. Since
then mathematics, in its development, has traveled a long path and now, armed with
such strong tools as the theory of compact spaces — in particular Arzelà’s theorem
— we are able to prove the aforementioned theorem of Weierstrass without major
efforts.

Let us denote by G the family of all functions f : [0, 2π ] → R
2 that satisfy

f (0) = f (2π) = 0 and the Lipschitz condition with constant 1, and for which
f ([0, 2π ]) is a convex curve (in other words, G is the family of parametrically-
given convex curves). Every convex curve of length no bigger than 2π , and which
starts and ends at zero, can be identified with a function from G. To do this it suffices
to consider the natural parametrization of the curve, i.e., take as parameter the arc
length of the curve, measured from zero to the current point. For each function g ∈ G
we denote by s(g) the area bounded by the curve f ([0, 2π ]).
Theorem 1. The family of functions G is a compact set in C[0, 2π ]. Moreover, s is
a continuous function on G, and hence s attains its supremum on G.

2The isoperimetric problem is associated with the legend of queen Dido, the founder of Carthage
(in modern-day Tunisia). When the colonists arrived in the new place, the locals did not receive
them kindly. The request of allotting a piece of land for the construction of the new city was de facto
rejected by the following statement: “You are allowed to use as much land as can be encompassed
by the skin (hide) of an ox.” However, Dido did not allow herself to get confused and faced the
challenge. She ordered her people to cut the skin into very thin strips and, connecting them, mark
the border of the new settlement. Needless to say, in doing so it was desirable to obtain the largest
area, i.e., to solve the isoperimetric problem.
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Proof. As we mentioned at the end of the preceding subsection, the existence of a
common Lipschitz constant means that the family we are dealing with is equicon-
tinuous. Further, for any function g ∈ G it holds that ρ(0, g(t)) = ρ(g(0), g(t)) �
|t | � 2π , hence the family G is uniformly bounded. A uniform (or even pointwise)
limit of a sequence of functions satisfying the Lipschitz condition with constant 1
itself satisfies the Lipschitz condition with constant 1. Convexity is also not affected
by passing to such a limit. Hence, the family G is closed. Thus, compactness of the
family G is established. It remains to verify that the function s is continuous. Given
f1 and f2 in G, denote the figures bounded by these curves by F1 and F2, respec-
tively, and denote ρ( f1, f2) by ε. Further, denote by F1,ε the set of all points lying at
distance at most ε from F1. Now choose on the interval [0, 2π ] an ε-net {t1, . . . , tn}
with n < 2π/ε. Thanks to the Lipschitz condition, the set { f1(t1), . . . , f1(tn)} is an
ε-net on the curve f1([0, 2π ]). For each k take a disc of radius 2ε centered at the point
f1(tk). The union of these n discs and the set F1 covers the whole set F1,ε, and hence
also covers the set F2. We have s( f2) � s( f1) + 4nπε2 � s( f1) + 8π2ε. Since in
this argument the roles of the functions f1 and f2 can be switched, we conclude that
|s( f2) − s( f1)| � 8π2ε = 8π2ρ( f2, f1), i.e., the function s is not just continuous,
it actually satisfies the Lipschitz condition. �

Exercises

1. Show that the set F1,ε appearing in the proof of the preceding theorem is convex.

2. Show that F1,ε ⊃ F2.

3. Provide the details of the proof that the family G is closed in C[0, 2π ].
4. Prove that the supremum of the areas of all convex figures of a given perimeter l
coincides with the supremum of the areas of all figures bounded by rectifiable curves
of length l. In other words, in the isoperimetric problem the convexity condition is
not essential.

1.4.4 The Cantor Set

The ternary expansion of a number x ∈ [0, 1] is the representation of the number
in the form x = x1

3 + x2
32 + x3

33 + · · · , where the expansion digits xk are 0, 1, or 2. In
abridged form, one writes x = (0.x1x2...)3. Some numbers have two ternary expan-
sions, for instance (0.10000...)3 = (0.02222...)3. The Cantor set is defined as the
subsetK ⊂ [0, 1] consisting of the numbers having at least one ternary expansion that
does not contain the digit 1. The structure of the Cantor set can be better understood
by looking at its complement. Specifically, the numbers whose ternary expansion
necessarily has 1 as the first digit form the interval Δ1

1 = ( 13 ,
2
3 ). The numbers for
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which the first digit is not 1, but the second is necessarily 1, form together two
intervals,Δ2

1 = ( 19 ,
2
9 ) andΔ2

2 = ( 79 ,
8
9 ). This reasoning provides a description of the

entire complement of K. Accordingly, K can be seen as the result of the following
construction: in the first step one discards from the interval [0, 1] its middle third,
i.e., the interval ( 13 ,

2
3 ). Two intervals remain, [0, 1

3 ] and [ 23 , 1]. Then in each of the
remaining intervals one discards the middle third. Now one is left with four intervals.
Again one discards from of each of these remaining intervals the middle third. What
is left at the end of this infinite process is precisely the Cantor set K.

Exercises

1. Show that the Cantor set K is closed.

2. Show that K is a perfect set, i.e., it has no isolated points.

3. Shows that the cardinality of the Cantor set is equal to the cardinality of the
continuum.

4. Determine the rate of growth at zero of the quantity nK(r) for the Cantor set (for
the definition, see the exercises in Subsection 1.4.1).

5. Show that the Cantor set is nowhere dense in the interval [0, 1].
6. Show that for every compact metric space X there exists a surjective continuous
mapping f : K → X .

7. Consider the set 2N of all subsets of the natural numbers N and endow it with
the following topology: for any subset A ⊂ N, a neighborhood basis is given by
the family of setsUn(A) = {B ⊂ N : B ∩ {1, 2, . . . , n} = A ∩ {1, 2, . . . , n}}. Verify
that with this topology 2N is homeomorphic to the Cantor set.



Chapter 2
Measure Theory

2.1 Systems of Sets and Measures

2.1.1 Algebras of Sets

Let� be a fixed set andA a family of subsets of�. The familyA is called an algebra
of sets on � (or simply an algebra on �) if it obeys the following axioms:

1. � ∈ A.

2. If A ∈ A, then also � \ A ∈ A.

3. If A1, A2 ∈ A, then also A1 ∩ A2 ∈ A.

The reader will easily be able to verify that if A is an algebra of sets on �, then:

— ∅ ∈ A;

— the intersection of any finite collection of sets from A again lies in A;

— the union of any two sets in A again lies in A (here it is helpful to observe that
the complement of a union is the intersection of the individual complements);

— the union of any finite collection of sets from A again lies in A;

— the set-theoretic difference and symmetric difference of any two sets from A

again lies in A.

Let us introduce a useful notation. Let the sets A1, A2, . . . be disjoint (i.e., pair-
wise disjoint — no two of them intersect). Then their union will be denoted by
the disjoint union symbol

⊔∞
k=1 Ak . Accordingly, whenever we use the disjoint

union symbol �, we will assume that the sets involved in the union are pairwise
disjoint. For instance, the notation C = A � B means that A and B are disjoint and
A ∪ B = C .

Proposition 1. For any sequence A1, A2, . . . of elements of the algebraA there exist
elements Ã1, Ã2, . . . ∈ A such that Ãk ⊂ Ak for all k, and

⋃∞
k=1 Ak = ⊔∞

k=1 Ãk .
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Proof. The required pairwise disjoint sets Ãk can be constructed in different ways.
The simplest approach is to remove from each set the points belonging to the pre-

ceding sets, i.e., take Ã1 = A1 and Ãk = Ak \
(⋃k−1

j=1 A j

)
for k > 1. �

Clearly, Proposition1 holds for countable as well as for finite sequences of sets.
An example of an algebra of sets is provided by the family 2� of all subsets of a

set �. Other, less trivial examples are provided in the exercises below.

Theorem 1. Let � be a family of subsets of the set �. Then among all algebras on
� that contain � as a subfamily there exists a smallest one with respect to inclusion.

Proof. Define A to be the intersection of all algebras of sets on � that contain �. In
other words, a set A belongs to A if and only if A belongs to all algebras that contain
� as a subfamily. Obviously, any algebra of sets that contains � also contains A. At
the same time, it is easy to verify that A satisfies the axioms of algebras of sets:

1. � belongs to all algebras on � that contain �, hence � ∈ A.

2. If A ∈ A, then A belongs to all algebras on � that contain �. Hence, � \ A
belongs to all algebras of sets on � that contain �, and so � \ A ∈ A.

3. If A1, A2 ∈ A, then both sets A1 and A2 belong to all algebras of sets that con-
tain �. Hence, A1 ∩ A2 belongs to all algebras of sets that contain �, and so
A1 ∩ A2 ∈ A. �

The smallest algebra that contains � is denoted by A = A(�) and is called the
algebra generated by the family �. In this case we also say that � generates the
algebra A. A constructive description of the algebra generated by a family of sets is
given in Exercise6 below.

Exercises

1. Which of the axioms of an algebra of sets are not satisfied for the collection of
all finite subsets of the interval [0, 1]? And for the collection of all infinite subsets
of [0, 1]?
2. Describe the smallest algebra of sets on [0, 1] that contains all single-point
subsets.

3. Verify that the family of sets {∅, [0, 1/2], ]1/2, 1], [0, 1]} is an algebra on [0, 1].
4. A subinterval of the interval [0, 1] is any open, closed, or semi-open interval
contained in [0, 1]. Verify that the sets that are finite unions of subintervals constitute
an algebra on [0, 1]. Is this algebra generated by the family of all open subintervals
of [0, 1]? Or by the family of all semi-open subintervals?
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5. Verify that the intersection of any collection of algebras on a set � is again an
algebra.

6. Let � be a family of subsets of � that includes � as an element. Show that the
sets obtained from the elements of the family � by a finite number of operations of
intersection and passage to the complement constitute an algebra. In fact, this algebra
coincides with the algebra generated by the family �.

7. Let A be a family of subsets of � that satisfies Axioms 1 and 2 of an algebra of
sets and is closed under taking the union of two sets. Show that A is an algebra.

2.1.2 σ -Algebras of Sets. Borel Sets

A family � of subsets of a set � is called a σ -algebra if it is an algebra of sets
and is stable under the countable union operation: for any sequence An , n ∈ N, of
elements of the algebra� their union is an element of�. Passing to complements we
immediately see that a σ -algebra is also stable under taking countable intersections
(de Morgan formulas: Sect. 1.1, Exercise10). As follows from Proposition1 of the
preceding subsection, if the family � is an algebra of sets, then in order to verify
that � is a σ -algebra, it suffices to check the stability under union property not
for all countable unions, but only for unions of pairwise disjoint sets. To verify the
correctness of the following definition, one proceeds as in the proof of Theorem1 of
Subsection2.1.1.

Definition 1. Let � be a family of subsets of a set�. The smallest σ -algebra � that
contains � is called the σ -algebra generated by the family �. � coincides with the
intersection of all σ -algebras on � that contain �.

Let us rephrase the definition as the following statement:

Proposition 1. If a σ -algebra �0 contains the family �, then �0 also contains the
entire σ -algebra generated by the family �. �

Let � be a topological space. The σ -algebra B generated by the family of all
open subsets of � is called the σ -algebra of Borel sets on �. The elements of the
σ -algebra B are called Borel sets.

Unfortunately, in general the σ -algebra generated by a family of sets, in particular,
the family of Borel subsets of a topological space, does not admit a nice constructive
description analogous to that given in Exercise6 of the preceding Subsection2.1.1.
Nevertheless, one can get a feeling for the meaning of Borel sets from the following
considerations. The familyB contains all open subsets of the space�. SinceB is an
algebra, it also contains the complements of all open sets, that is, all the closed sets.
Being a σ -algebra,B contains all countable unions of closed sets (the latter are called
sets of class Fσ , or simply Fσ -sets). Moreover,B contains all countable intersections
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of open sets (the latter are called sets of class Gδ , or simplyGδ-sets).Countable unions
of Gδ-sets are called sets of class Gδσ , or simply Gδσ -sets). Similarly, countable
intersections of Fσ -sets are called sets of class Fσδ , or simply Fσδ-sets). Continuing,
countable unions of Fσδ-sets form the class Fσδσ . In a similar manner one introduces
the Borel classesGδσδ , Fσδσδ , and so on, to infinity. All these classes of Borel sets are
contained in the σ -algebra of Borel sets, but even on � = [a, b] they do not exhaust
the whole class of Borel sets.1 For more details on Borel sets we refer the reader to
Kuratowski’s book [25, Chap.2, §30]. The importance of studying Borel sets comes
from the fact that sets that arise naturally in problems of analysis, such as sets of
points of continuity, smoothness, or convergence, etc., are usually Borel sets, and in
fact belong to Borel classes of not too high index.

The next useful statement illustrates the fact that one and the same σ -algebra can
be generated by different systems of sets.

Proposition 2. The collection of the sets (a,+∞) with a ∈ R generates the σ -
algebra B of Borel sets on the real line.

Proof. Denote the σ -algebra generated by the sets (a,+∞), a ∈ R, by B1. We need
to show that B1 = B. SinceB contains all the open sets, it contains in particular all
the sets (a,+∞). By Proposition1, this means that B1 ⊂ B. Again by Proposition1,
to establish the opposite inclusion it suffices to show that all open sets lie in B1. So let
b ∈ R be arbitrary. The closed half-line [b,+∞) can be represented as a countable
intersection of sets of the form (a,+∞), namely, [b,+∞) = ⋂∞

n=1 (b − 1
n ,+∞).

Consequently, [b,+∞) ∈ B1. The σ -algebra B1 contains all open intervals, because
(a, b) = (a,+∞) \ [b,+∞). Since every open set on the line is the union of an
at most countable collection of open intervals, all open sets are elements of the
σ -algebra B1. The proof is complete. �

Definition 2. The restriction of the family of subsets � to a subset A ⊂ � is the
collection �A of all intersections of the elements of the family � with A: �A =
{A ∩ B : B ∈ �}.

Exercises

1. Define the family � of subsets of the interval [0, 1] as follows: a set belongs to
� if either itself or its complement is at most countable. Is the family �aσ -algebra?

2. Is the family of countable unions of subintervals of the interval [0, 1]aσ -algebra?

1To obtain all the Borel sets, one needs to define the classes Gδσδ... and Fσδσ ... not only in the case
where the index σδσ . . . is a finite sequence, but also for arbitrary countable ordinals. Here we
run into one of the problems of measure theory that require familiarity with ordinal numbers and
transfinite induction.
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3. Let � be a set, �aσ -algebra on �, and A ⊂ �. Then �A is a σ -algebra on A.

4. Let X be a topological space and A be a Borel subset of X . Regard A as a subspace
of X . Show that every subset B ⊂ A that is a Borel set in the subspace A is also a
Borel set in the original space X .

5. Do the sets of first category in the interval [0, 1] form a σ -algebra? Describe the
smallest σ -algebra of sets on [0, 1] that contains all the subsets of first category.
6. Describe the smallest σ -algebra on the interval [0, 1] which contains all the sub-
sets of second category.

7. Let A be a dense Gδ-set in the complete metric space X . Show that X \ A is a set
of first category in X .

8. The intersection of a finite or countable number of dense Gδ-sets in a complete
metric space is again a dense Gδ-set.

9. Let A be a Gδ-set in a complete metric space X and let A be the closure of A.
Then A \ A is a set of first category in X .

10. Give an example of a decreasing chain of countable dense subsets of an interval
which has an empty intersection.

11. A countable dense subset of an interval cannot be a Gδ-set.

12. Let f be a real-valued function on an interval. Show that the set dc( f ) of all
discontinuity points of f is an Fσ -set.

13. Write the collection of all open intervals with rational endpoints as a sequence
(an, bn), n = 1, 2, . . ., and consider the sets An = (−∞, an] ∪ [bn,+∞). In these

notations, dc( f ) = ⋃∞
n=1

(
f −1(An) \ f −1(An)

)
.

Definition. A function f : [0, 1] → R is said to be of the first (Baire) class if
it can be represented as the pointwise limit of a sequence of continuous functions
fn ∈ C[0, 1]. For details on functions of the first class, see [25, Chap.2, §31].

14. Let f : [0, 1] → R be a function of the first class. Then f −1([a,+∞)) ∈ Gδ

for any a ∈ R.

15. For functions f of the first class the set dc( f ) is of first category; consequently,
f necessarily has continuity points.

16. Show that the set of all differentiability points of a continuous function on an
interval is a Borel set. To which Borel class does it belong?

17. Let ( fn) be a sequence of continuous functions on an interval. Show that the set
of all convergence points of the sequence ( fn) is a Borel set. To which Borel class
does it belong?
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18. Prove that every open (respectively closed) subset of a metric space is an Fσ -set
(respectively, Gδ-set). In arbitrary topological spaces this assertion is in general not
true.

19. Show that the classes Fσ and Gδ on an interval do not coincide.

20. Show that in a separable metric space the σ -algebra generated by the family of
all open balls coincides with the σ -algebra of Borel sets.

21. Does the preceding assertion remain true if one discards the separability
assumption?

22. Show that the σ -algebra of Borel sets on the real line is generated by a countable
collection of sets (σ -algebras with this property are said to be countably generated).

23. Show that the cardinality of any countably-generated σ -algebra is not larger than
the cardinality of the continuum. Show that, in particular, the σ -algebra of Borel sets
on the real line has the cardinality of the continuum.

2.1.3 Products of σ -Algebras

Let (�1, �1) and (�2, �2) be sets endowedwith σ -algebras. A rectangle in�1 × �2

is any set of the form A1 × A2, where A1 ∈ �1 and A2 ∈ �2.We define the σ -algebra
�1 ⊗ �2 on the Cartesian product�1 × �2 as the smallest σ -algebra which contains
all rectangles.

Exercises

1. Let B1 and B2 be the Borel σ -algebras on the topological spaces X1 and X2,
respectively, andB be the σ -algebra of Borel sets on X1 × X2. ThenB1 ⊗ B2 ⊂ B.

2. The product of the σ -algebras of Borel sets on two separable metric spaces X1

and X2 coincides with the σ -algebra of Borel sets on X1 × X2. In particular, the
product of the σ -algebras of Borel sets on the (coordinate) lines coincides with the
σ -algebra of Borel sets on the plane.

3. Does the preceding assertion remain valid if one drops the separability
assumption?

4. Show that 2N ⊗ 2N = 2N×N.

5. Is it true that 2[0,1] ⊗ 2[0,1] = 2[0,1]×[0,1]?

6. Let A ∈ �1 ⊗ �2, t1 ∈ �1. Put At1 = {t2 ∈ �2 : (t1, t2) ∈ A}. Show that
At1 ∈ �2.
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2.1.4 Measures: Finite and Countable Additivity

The reader has undoubtedly already encountered the notion of measure, though
perhaps under a different name. For instance, the number of elements in a set is
a measure on the family Nf of all finite subsets of the set of natural numbers; area is
a measure on the family of plane figures that have an area; the length of a rectifiable
curve, the volume, the mass, are all examples of measures. In Subsection2.3.1 we
will construct a central example in measure theory, the Lebesgue measure on an
interval.

Before giving the formal definition, let us remark that in the initial stage of our
exposition all values of a measure are assumed to be finite non-negative numbers,
i.e., the value +∞ is not permitted. This simplifies the exposition and brings in
some convenient additional properties of the measures under consideration, like for
example the property from Exercise2 of this subsection. Measures of this kind are
often called finite positive measures. A more general kind of measure, called σ -
finite, which may also take infinite values, will appear in Subsection2.3.7. Later on,
in Sect. 7.1, we will study a generalization to the case of values of arbitrary sign, in
Subsection8.4.5 to the case when the values are complex numbers, and in Sect. 13.4
even more general measures whose values are elements of a vector space. All these
generalizations are widely used in Functional Analysis and Operator Theory, but
before they appear in our textbook, the word “measure” will be used exclusively for
finite positive measures.

Definition 1. Let � be a set with a family of subsets � given on it. A set function
μ : � → R is called a finitely additive measure if it satisfies the following conditions:

1. μ(A) � 0 for any A ∈ �.

2. If A1, A2, . . . , An ∈ �, the sets Ak are pairwise disjoint, and
⋃n

k=1 Ak ∈ �, then
μ

(⋃n
k=1 Ak

) = ∑n
k=1 μ (Ak).

Assume that ∅ ∈ �. Then from Condition 2 it follows that μ(∅) + μ(∅) =
μ(∅ ∪ ∅) = μ(∅), i.e., μ(∅) = 0. Note, however, that there can be non-empty sets
of measure zero.

If the domain� of a finitely additive measure is an algebra of sets, then Condition
2 can be restated in a simpler way:

2′. For any pair of disjoint sets A1, A2 ∈ � the measure of their union is equal to
the sum of their individual measures: μ(A1 � A2) = μ(A1) + μ(A2).

Let us list a number of properties of finitely additive measures.

Proposition 1. Let μ be a finitely additive measure on an algebra A of subsets of
the set �. Then:

(a) If A1, A2 ∈ A, then μ(A1 \ A2) = μ(A1) − μ(A1 ∩ A2). If moreover A2 ⊂ A1,
then μ(A1 \ A2) = μ(A1) − μ(A2).
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(b) If A1, A2 ∈ A and A2 ⊂ A1, then μ(A2) � μ(A1). In particular, if μ(A1) = 0,
then also μ(A2) = 0.

(c) If μ(A2) = 0, then μ(A1 \ A2) = μ(A1).

(d) μ(A1 ∪ A2) = μ(A1) + μ(A2) − μ(A1 ∩ A2) � μ(A1) + μ(A2).

(e) μ
(⋃n

k=1 Ak
)

�
∑n

k=1 μ (Ak) for any sets A1, A2, . . . , An ∈ A.

Proof. (a) A1= (A1 \ A2) � (A1 ∩ A2).Hence,μ(A1)= μ(A1 \ A2)+ μ(A1 ∩ A2).

(b) is a direct consequence of (a): μ(A1) − μ(A2) = μ(A1 \ A2) � 0.

(c) If μ(A2) = 0, then also μ(A2 ∩ A1) = 0. It remains to apply assertion (a).

(d) Write A1 ∪ A2 as the union A1 ∪ A2 = (A1 \ A2) � (A2 \ A1) � (A2 ∩ A1)

of three disjoint sets. Then we have

μ(A1 ∪ A2) = μ(A1 \ A2) + μ(A2 \ A1) + μ(A1 ∩ A2)

= (
μ(A1 \ A2) + μ(A1 ∩ A2)

) + (
μ(A2 \ A1) + μ(A1 ∩ A2)

) − μ(A1 ∩ A2)

= μ(A1) + μ(A2) − μ(A1 ∩ A2).

(e) is derived from (d) by induction on n. �

The most studied and most useful finitely additive measures are the countably
additive measures, i.e., the measures that, in addition to conditions 1 and 2 of Defi-
nition1, obey the countable additivity axiom:

μ

( ∞⊔

k=1

Ak

)

=
∞∑

k=1

μ (Ak)

for every disjoint collection of sets An ∈ �, n = 1, 2, . . . , with
⊔∞

k=1 Ak ∈ �.
Countably-additive measures are also called σ -additive.
For a measure given on a σ -algebra �, the verification of countable additivity is

somewhat simpler: if An ∈ �, n = 1, 2, . . . , then automatically also
⋃∞

k=1 Ak ∈ �.
A countably additive measure μ given on a σ -algebra � of subsets of a set � is

called a probability measure if μ(�) = 1.

Proposition 2. Let μ be a countably additive measure given on a σ -algebra � of
subsets of a set �. Then:

1. If An ∈ �, n = 1, 2, . . . , is an increasing chain of sets (i.e., A 1 ⊂ A2 ⊂ · · · ⊂
An ⊂ · · · ), then μ

(⋃∞
k=1 Ak

) = limk→∞ μ (Ak).

2. If An ∈ �, n = 1, 2, . . . , is a decreasing chain of sets (i.e., A 1 ⊃ A2 ⊃ · · · ⊃
An ⊃ · · · ), then μ

(⋂∞
k=1 Ak

) = limk→∞ μ (Ak).

Proof. The proofs of assertions 1 and 2 of the propositionmay be carried out in a sim-
ilar way; moreover, one follows from the other by passing to complements. So let us
prove, for example, the first assertion. Suppose the sets An form an increasing chain.
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Put A∞ := ⋃∞
k=1 Ak and Bn = An+1 \ An . The sequence of sets A 1, B1, B2, B3, . . .

is disjoint (i.e., its elements are pairwise disjoint), and A 1 � (⊔n
k=1 Bk

) = An+1,
A 1 � (⊔∞

k=1 Bk
) = A∞. Using the countable additivity assumption and the defini-

tion of the sum of a series, we have

μ(A∞) = μ(A1) +
∞∑

j=1

μ(Bj ) = lim
k→∞

⎛

⎝μ(A1) +
k∑

j=1

μ(Bj )

⎞

⎠ = lim
k→∞ μ(Ak).

The assertion is proved. �

Here are two very simple yet useful remarks.

Proposition 3. Let μ be a countably additive measure given on a σ -algebra � of
subsets of a set �, An ∈ �, n = 1, 2, . . .. Then:

1. μ
(⋃∞

k=1 Ak
)

�
∑∞

k=1 μ(Ak). In particular, if μ(Ak) = 0 for all k, then also
μ

(⋃∞
k=1 Ak

) = 0.

2. If μ(Ai ∩ A j ) = 0 for any i, j ∈ N, i = j , then μ
(⋃∞

k=1 Ak
) = ∑∞

k=1 μ(Ak).

Proof. 1. Since the sets
⋃n

k=1 Ak form an increasing (with respect to n) chain, then by
Assertion 1 of Proposition2, in the inequality μ

(⋃n
k=1 Ak

)
�

∑n
k=1 μ(Ak) proved

in Proposition1 we are allowed to take the limit n → +∞.

2. Consider the sets D = ⋃
i, j∈N (Ai ∩ A j ) and A′

k = Ak \ D. The auxiliary sets
A′
k are already pairwise disjoint. Since μ(D) = 0, we have μ(A′

k) = μ(Ak) and
μ

(⋃∞
k=1 Ak

) = μ
(⋃∞

k=1 A
′
k

)
. It remains to use the countable additivity. �

Exercises

1. Prove the Assertion 2 of Proposition2.

2. If the countably additive measure μ is given on a σ -algebra �, then μ(An) → 0
as n → ∞, for any disjoint sequence of sets An ∈ �, n = 1, 2, . . ..

3. Let μ be a finitely additive measure given on a σ -algebra � of subsets of a
set �. Suppose that for any increasing chain of sets one has that μ

(⋃∞
k=1 Ak

) =
limk→∞ μ (Ak). Then the measure μ is countably additive.

4. For a finitely additive measure μ defined on a σ -algebra, countable additivity is
equivalent to the following condition: for any sets An ∈ �, n = 1, 2, . . . , that form
a decreasing chain with empty intersection, limk→∞ μ(Ak) = 0.

5. Let (bm) be a sequence of positive numbers such that
∑∞

m=1 bm < ∞. On the set
N of all natural numbers consider the σ -algebra 2N of all subsets. For any A ∈ 2N

define its measure μ(A) as μ(A) = ∑
m∈A bm . Verify that μ is a countably additive

measure.
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6. Show that what the preceding exercise describes is the general form of a countably
additive measure on 2N.

7. Give an example of a finitely additive, but not countably additive measure on
some algebra of subsets of N.

8. Give an example of a finitely additive, but not countably additive measure on the
σ -algebra 2N of all subsets of the set N of natural numbers.

9. Prove assertion (e) of Proposition1 and also Proposition3 by using Proposition1
of Subsection2.1.1.

10. Let μ be a finitely additive measure on an algebra � of subsets of a set �. Let
A, A j ∈ �, A ⊂ ⋃n

j=1 A j . Then μ(A) �
∑n

j=1 μ(A j ). Does this assertion remain
true if we replace n by +∞?

11. In the setting of the preceding exercise, suppose that for some k ∈ N each point
of the set A belongs to at least k distinct sets A j , 1 � j � n (a so-called k-fold cover).
Then μ(A) � 1

k

∑n
j=1 μ(A j ).

2.1.5 Measure Spaces. Completeness. Completion
of a σ -Algebra with Respect to a Measure

A triple (�,�,μ), where � is a set endowed with a σ -algebra � of its subsets
and μ is a countably additive measure on �, is called a measure space. Recall
that the measures we are considering at this stage take only finite non-negative
values. If one needs to stress this feature one may use the name “finite measure
space”. If, in addition, μ is a probability measure (i.e., μ(�) = 1), then (�,�,μ)

is called a probability space. In probability theory the set � is referred to as the
space of elementary events, the elements of the σ -algebra � as events, and μ(A) as
the probability of the event A taking place. The measurable functions, which will
be treated in the next chapter, are referred to in the setting of probability theory
as random variables, while the integral of a random variable is referred to as its
mathematical expectation. We will not use the probabilistic terminology, but many
of the problems that will be studied in the next chapter also play a role in probability
theory.

Definition 1. A measure space (�,�,μ) is said to be complete (alternatively, one
says that � is complete with respect to the measure μ) if the following condition is
satisfied: for any A ∈ � such that μ(A) = 0, if B ⊂ A, then B ∈ �.

If the σ -algebra � is not complete with respect to the measure μ, then one can
naturally extend the domain of definition of μ to a wider σ -algebra �′ that will
already be complete with respect to the extended μ. The extension procedure for
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achieving this, described below, is called the completion of the σ -algebra � with
respect to the measure μ.2

Thus, let (�,�,μ) be a measure space (which may be incomplete). A subset
B ⊂ � is said to be negligible if there exists a set A ∈ � such that μ(A) = 0 and
B ⊂ A. We list the following obvious properties of negligible sets:

— if the set B is negligible and B ∈ �, then μ(B) = 0;
— if the set B is negligible, then all its subsets are negligible;
— the union of any finite or countable family of negligible subsets is negligible

(this follows from Proposition3 in Sect. 2.1.4).

Two sets A1, A2 ⊂ � are said to be equivalent (and one writes A1 ∼ A2), if
their symmetric difference A1�A2 is negligible. The relation ∼ is symmetric and
reflexive (obviously), as well as transitive: if A1 ∼ A2 and A2 ∼ A3, then the sym-
metric difference A1�A3 ⊂ (A1�A2) ∪ (A2�A3) is negligible, i.e., A1 ∼ A3. Let
us mention some further properties.

Lemma 1. 1. If A ∼ B, then (� \ A) ∼ (� \ B).

2. If An ∼ Bn, n ∈ M, where M is a finite or countable index set, then
⋃

n∈M An ∼⋃
n∈M Bn and

⋂
n∈M An ∼ ⋂

n∈M Bn.

3. If B1 ∼ B2, B1, B2 ∈ �, then μ(B1) = μ(B2).

Proof. Assertion 1 follows from the relation (� \ A)�(� \ B) = A�B, and asser-
tion 2 from the relations

(
⋂

n∈M
An

)

�
(

⋂

n∈M
Bn

)

⊂
⋃

n∈M
(AnΔBn)

and (
⋃

n∈M
An

)

�
(

⋃

n∈M
Bn

)

⊂
⋃

n∈M
(An�Bn).

Let us prove assertion 3. Since μ(B1�B2) = 0, the sets B1 \ B2 and B2 \ B1

have measure zero. We have μ(B1) = μ(B1 ∩ B2) + μ(B1 \ B2) = μ(B1 ∩ B2) =
μ(B1 ∩ B2) + μ(B2 \ B1) = μ(B2). �

Let us introduce the promised new collection of sets �′ as follows: A ∈ �′ if
there exists a set B ∈ � such that A ∼ B.

Theorem 1. The family of sets�′ contains the σ -algebra� and is itself a σ -algebra
on �.

Proof. If A ∈ �, then A ∈ �′: it suffices to take B = A in the definition. Now let
us verify that �′ satisfies the axioms of a σ -algebra.

2We advise the reader to regard the assertions proved in this subsection as exercises and attempt to
provide her/his own proofs.
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1. � ∈ �′.

2. If A ∈ �′, then also � \ A ∈ �′. Indeed, by the definition, there exists a B ∈ �

such that A ∼ B. But then � \ B ∈ � and (� \ A) ∼ (� \ B).

3. Suppose the set An belongs to�′, Bn ∈ �, and An ∼ Bn for all n = 1, 2, . . . Then⋃∞
n=1 Bn ∈ � and

⋃∞
n=1 An ∼ ⋃∞

n=1 Bn . Therefore,
⋃∞

n=1 An ∈ �′. �

Let us extend the measure μ to a measure μ′, defined now on �′. Let A ∈ �′ and
B ∈ � be such that A ∼ B. Set μ′(A) = μ(B). This definition is correct thanks to
assertion 3 of the Lemma1, that is, μ′(A) depends only on A and not on the choice
of B.

Theorem 2. The measure μ′ is countably additive.

Proof. Let An ∈ �′ be a disjoint sequence of sets and let Bn ∈ � such that An ∼ Bn .
Since Ai ∩ A j = ∅ for any pair i, j ∈ N with i = j , and since Bi ∩ Bj ∼ Ai ∩ A j ,
one has μ(Bi ∩ Bj ) = 0. Using assertion 2 of Proposition3 in Subsection2.1.4 and
the relations An ∼ Bn and

⋃∞
n=1 An ∼ ⋃∞

n=1 Bn , we conclude that

μ′
( ∞⋃

k=1

Ak

)

= μ

( ∞⋃

k=1

Bk

)

=
∞∑

k=1

μ (Bk) =
∞∑

k=1

μ′ (Ak). �

The measure space (�,�′, μ′) so constructed is called the completion of the
measure space (�,�,μ). The measure μ′ is usually denoted by the same letter μ as
the original measure. This does not lead to confusion, since μ′ = μ on �.

Note that the completion procedure of a measure space considered above can
be viewed as a particular case of Lebesgue’s procedure for extending a measure,
which will be addressed in Subsection2.2.3 below. This fact will be formulated in
Exercise5 of that subsection.

Exercises

1. The completion of a measure space is a complete space.

2. A measure space is complete if and only if it coincides with its completion.

3. Let
(
�,�′, μ′) be the completion of the measure space (�,�,μ), A ⊂ �. Show

that

— A ∈ �′ if and only there exist sets B,C ∈ � such that B ⊂ A ⊂ C and μ(B) =
μ(C);

— A ∈ �′ if and only there exist a set B ∈ � and a negligible set C such that
A = B ∪ C .

4. Let (�,�,μ) be ameasure space. Show that the expression ρ(A, B) = μ(A�B)

gives a pseudometric on �.
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5. Suppose An ∈ � and the series
∑∞

n=1 ρ(An, An+1) converges. Then the sequence
(An) converges to A∞ = ⋂∞

n=1

(⋃∞
k=n Ak

)
in the pseudometric ρ.

6. Show that (�, ρ) is a complete pseudometric space.

2.1.6 Operations on Measures. δ-Measure. Atoms, Purely
Atomic and Non-atomic Measures

Let� be a set endowedwith a σ -algebra�. Formeasures on� there are natural oper-
ations of addition and of multiplication by positive real numbers: (μ1 + μ2)(A) =
μ1(A) + μ2(A) and (aμ)(A) = aμ(A). We leave to the reader to verify that the
operations thus introduced take the class of countably additive measures into itself.

Definition 1. An atom of the measure μ is a set A ∈ � with the property that
μ(A) > 0 and for any B ∈ �A either μ(B) = 0, or μ(A \ B) = 0. If a measure has
atoms it is called atomic; in the opposite case, the measure is called non-atomic (or
atomeless). A measure is called purely atomic if � can be written as the union of a
finite or countable number of atoms.

A typical example of a purely atomic measure is the δ-measure. Specifically, let
x be an arbitrary point of �. The δ-measure concentrated (or supported) in the point
x is the measure δx defined by δx (A) = 1, if x ∈ A, and δx (A) = 0, if x /∈ A.

Recall that two sets A1, A2 ∈ � are said to be equivalent (written A1 ∼ A2) if
μ (A1�A2) = 0. For example, for the measure δx its atom � is equivalent to the
singleton {x}. The equivalence class of a set A ∈ � is denoted by [A].

By solving the exercises proposed below, the reader will obtain, in particular, the
proofs of the following theorems:

Theorem 1. Every countably additive measure on a σ -algebra can be written as
the sum of a purely atomic measure and a non-atomic measure; moreover, this rep-
resentation is unique.

Theorem 2. Suppose � is a separable metric space, the σ -algebra � contains all
the Borel sets, and μ is a countably additive measure on �. Then each atom of the
measure μ is equivalent to a singleton.

Exercises

1. Any set equivalent to an atom is itself an atom.

2. If the atoms A1, A2 of the measure μ are not equivalent, then μ (A1 ∩ A2) = 0.
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3. Let An ∈ �, n = 1, 2, . . . , be a finite or countable sequence of pairwise non-
equivalent atoms of the measure μ. Then there exists a disjoint sequence A′

n ∈ �,
n = 1, 2, . . ., of atoms of the measure μ, such that A′

k ∼ Ak , k = 1, 2, . . . (use
Proposition1 of Subsection2.1.1).

4. All representatives of an equivalence class of sets have the same measure.

As suggested by the previous exercise, let us define the measure of an equivalence
class to be the measure of any representative of the class, that is, μ([A]) := μ(A).

5. The equivalence class of an atom will be called an atomic class. The sum of the
measures of any finite number of pairwise distinct atomic classes is not larger than
μ(�).

6. There are at most countably many distinct atomic classes.

7. There exists a finite or countable disjoint sequence A1, A2, . . . of atoms of the
measure μ such that any atom of μ is equivalent to one of the atoms An .

8. In the setting of the preceding exercise, put A∞ := ⋃∞
k=1 Ak and define mea-

sures μ1 and μ2 on � by the rules μ1(A) = μ(A ∩ A∞) and μ2(A) = μ(A \ A∞),
respectively. Verify that μ1 and μ2 are countably additive measures, μ = μ1 + μ2,
the measure μ1 is purely atomic, and the measure μ2 is non-atomic. This establishes
the representation in Theorem1.

9. Let μ = μ′
1 + μ′

2 be a decomposition into a purely atomic and a non-atomic
measure, and B be an atom of the measure μ. Then B is an atom for μ′

1 and μ(B) =
μ′
1(B). Conversely, any atom of the measure μ′

1 is μ′
1-equivalent to an atom of the

measure μ.

10. In the setting of the preceding exercise, the measure μ′
1 coincides with the

measure μ1 from Exercise8 above. This establishes the uniqueness in Theorem1.

11. Let � and � be as in the formulation of Theorem2, and let A ∈ �. Then the
set A can be partitioned into at most countably many pairwise disjoint sets from �,
with diameters not larger than ε.

12. Under the conditions of Theorem2, for any atom A of the measure μ and any
ε > 0, there exists an atom A1 ⊂ A (automatically equivalent to the atom A) such
that diam(A1) < ε.

13. Under the conditions of Theorem2, let A be an atom of the measure μ. Using
the preceding exercise, construct a chain A ⊃ A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ · · · of atoms
with diam(An) < 1/n. Show that the intersection of the sets in this chain consists of
a single point, and that the resulting singleton is an atom. This completes the proof
of Theorem2.
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14. Let � be the σ -algebra on [0, 1] considered in Exercise1 of Subsection2.1.2.
Put μ(A) = 0, if A is at most countable, and μ(A) = 1, if the complement of A is
at most countable. Verify that the interval [0, 1] is an atom of the measure μ, but it
is not equivalent to any singleton.

15. Let μ be a countably additive non-atomic measure on the σ -algebra �. Then
for any A ∈ � and any α ∈ (0, 1), there exists a subset B ∈ �A such that μ(B) =
αμ(A).

2.2 Extension of Measures

Often a measure is initially defined naturally on some relatively narrow class of sets,
and before one starts using this measure, one needs to extend it to a wider class
of sets. This situation is encountered even in school textbooks: area is defined first
for rectangles, then for triangles, and then, via decomposition into smaller parts, for
arbitrary polygons. Further, approximating a disc by polygons, one can define the
area of a disc. One proceeds similarly to define the volume of figures in space. In this
section we study a general scheme for extension of measures and apply it to construct
the example of measure of highest importance for us, the Lebesgue measure on an
interval.

2.2.1 Extension of a Measure from a Semiring of Sets
to the Algebra Generated by the Semiring

Definition 1. A family � of subsets of a set � is called a unital semiring if:

1. � ∈ �.

2. If A, B ∈ �, then A ∩ B ∈ �.

3. For any set A ∈ �, its complement � \ A can be written as the union of a finite
number of pairwise disjoint elements of the family �.

For a set A ⊂ � a basic representation is a representation A = ⊔n
k=1 Ak , where

Ak ∈ �. Needless to say, there may exist sets that admit no basic representation.

Theorem 1. Let � be a unital semiring. Then the family A of all sets that admit a
basic representation constitutes the smallest algebra of sets A(�) containing �.

Proof. Let us show that A is an algebra of sets. Let A, B ∈ A, and let A =⊔n
k=1 Ak and B = ⊔m

j=1 Bk be corresponding basic representations. Then A ∩ B =
⊔n

k=1

⊔m
j=1 Ak ∩ Bj is a basic representation for A ∩ B. Hence, A is stable under

taking the intersection of a finite number of sets.
Now let us show that A is stable under taking complements. Thus, let A =⊔n
k=1 Ak be an arbitrary element of A, {Ak}nk=1 ⊂ �. By Axiom 3 in the defini-

tion of a unital semiring, all the sets � \ Ak lie in A. Therefore, by what was proved
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above, � \ A = ⋂n
k=1 (� \ Ak) also lies in A. Hence, A is an algebra. It remains to

observe that any algebra of sets that contains all the elements of � must also contain
their finite unions, i.e., all elements of A. This shows that A = A(�). �

Theorem 2. Any finitely additive measure μ given on a unital semiring � extends
uniquely to a finitely additive measure on the algebra A(�) generated by �.

Proof. Let us start with uniqueness. Letμ′ be some extension toA(�) of themeasure
μ, and A = ⊔n

k=1 Ak be a basic representation of an element A of the algebra A(�).
Then μ′(A) = ∑n

k=1 μ′(Ak) = ∑n
k=1 μ(Ak). Hence, μ′(A) is uniquely determined

by the measure μ.
Now let us show that the expression μ′(A) = ∑n

k=1 μ(Ak) obtained above does
indeed give a finitely additive measure on A(�). We begin by verifying the correct-
ness of our definition, namely, by showing thatμ′(A) is determined by the set A, i.e.,
it does not depend on the choice of a basic representation of A. Let A = ⊔n

k=1 Ak

and A = ⊔m
j=1 Bj be two different basic representations of the set A ∈ A(�).

Consider the sets Ci, j = Ai ∩ Bj . They are pairwise disjoint, and Ai = ⊔m
j=1 Ci j ,

Bj = ⊔n
i=1 Ci j . We have

n∑

i=1

μ(Ai ) =
n∑

i=1

⎛

⎝
m∑

j=1

μ(Ci j )

⎞

⎠ =
m∑

j=1

(
n∑

i=1

μ(Ci j )

)

=
m∑

j=1

μ(Bj ).

The correctness of the definition is thus established. The finite additivity of the
measure μ′ is rather simply to verify. Indeed, let A, B ∈ A(�) be disjoint sets, and
let A = ⊔n

i=1 Ai and B = ⊔m
j=1 Bj be basic representations. Taken together, the sets

Ai and Bj , i = 1, . . . , n, j = 1, . . . ,m, provide a basic representation for A � B.
Therefore, μ′(A � B) = ∑n

i=1 μ(Ai ) + ∑m
j=1 μ(Bj ) = μ′(A) + μ′(B). �

Theorem 3. Let μ be a countably additive measure on the unital semiring �, and
μ′ be its extension to the algebra A = A(�) constructed in Theorem 2. Then the
measure μ′ is also countably additive.

Proof. Let An ∈ A, n = 1, 2, . . . , be a disjoint sequence of sets and suppose their
union B = ⊔∞

n=1 An also belongs to the algebra A. Further, let B = ⊔m
j=1 Bj be a

basic representation for B, and Ak = ⊔mk
i=1 Aki be basic representations for Ak . Then

Bj = ⊔∞
k=1

(
Ak ∩ Bj

) = ⊔∞
k=1

⊔mk
i=1

(
Aki ∩ Bj

)
, and all the sets figuring in the last

representation belong to the semiring �. Since the measure μ on � is countably
additive, μ(Bj ) = ∑∞

k=1

∑mk
i=1 μ(Aki ∩ Bj ). Therefore,

μ′(B) =
m∑

j=1

μ(Bj ) =
m∑

j=1

( ∞∑

k=1

mk∑

i=1

μ(Aki ∩ Bj )

)

=
∞∑

k=1

⎛

⎝
m∑

j=1

mk∑

i=1

μ(Aki ∩ Bj )

⎞

⎠ =
∞∑

k=1

μ′
⎛

⎝
mk⋃

i=1

m⋃

j=1

Aki ∩ Bj

⎞

⎠ =
∞∑

k=1

μ′(Ak). �
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Definition 2. Let � be a family of sets, μ : � → R
+. The set function μ is said

to be countably semiadditive if for any sets A, Bk ∈ � the inclusion A ⊂ ⋃∞
k=1 Bk

implies μ(A) �
∑∞

k=1 μ(Bk).

Theorem 4 (Countable additivity test). Let μ be a finitely additive measure on
the unital semiring � which satisfies the countable semiadditivity condition. Then μ

is countably additive.

Proof. Let A, Bk ∈ �, A = ⊔∞
k=1 Bk . We need to show that μ(A) = ∑∞

k=1 μ(Bk).
Thanks to the countable semiadditivity condition, in order to do this it suffices to
prove the inequality

∑∞
k=1 μ(Bk) � μ(A). Let μ′ be the extension of the measure

μ to the algebra A(�) constructed in Theorem2. From the inclusion A ⊃ ⋃n
k=1 Bk

and the already established finite additivity of the measure μ′ it follows that μ(A) =
μ′(A)�μ′ (⋃n

k=1 Bk
)=∑n

k=1 μ′(Bk)=∑n
k=1 μ(Bk). It remains to let n → ∞. �

Exercises

1. What allowed us, in the proof of Theorem3, to regroup the terms in the infinite
sum? In general the sum of a series may change as a result of such an action. Why
this did not happen in our case here?

2. Give an example of a family of sets � on the interval [0, 1] and of a finitely
additive measure μ on � such that no extension of μ to the algebra generated by �

will be a finitely additive measure.

3. Let � be a family of sets on [0, 1], μ a finitely additive measure on �. Can it
happen that the measure μ has more than one extension to the algebra generated by
�, with preservation of finite additivity?

4. Justify the equality Ai = ⋃m
j=1 Ci j in the proof of Theorem2. Where was an

analogous relation used in Theorem3?

5. Let � be a unital semiring. Show that ∅ ∈ �.

6. Let� denote the family of all triangles in the plane (here triangles are considered
together with their interior). For each A ∈ �, let r(A) denote the radius of the disc
inscribed in the triangle A. Verify that the set function r is countably semiadditive
on �. Is r a finitely additive measure on �?

2.2.2 Outer Measure

In this subsection � will be a set endowed with an algebra of subsets A and a
countably additive measure μ. As already mentioned, the most natural domain of
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definition for a countably additive measure is not an algebra, but a σ -algebra of sets.
Hence, it is highly desirable to know how to extend a countably additive measure
to the σ -algebra generated by the algebra A. The first idea that comes to mind is to
proceed by analogy with Theorem2 of the preceding subsection. Namely, consider
disjoint countable unions of sets from A. If all these sets again lie in A, it means that
we were actually dealing from the very beginning with a σ -algebra. In the opposite
case, we define the measure of any such union as the sum of the measures of its
components. The correctness of this definition can be justified, but in contrast to
Theorem2, the class of sets to which the measure is extended in the indicated way
will now not be a �-algebra. Moreover, that class will not even be invariant under
passage to complements, i.e., it will not even be an algebra! Hence, it is further
necessary to define the measure in some way on the complements of the obtained
sets. And then what should one do with the unions of such complements? Although
in principle the idea just described can actually be implemented (some remarks on
this theme are made below in Subsection2.2.4), many technical difficulties can be
avoided by using a different approach, based on the notion of outer measure. It is to
H. Lebesgue that we owe this last approach.

Definition 1. Let A ⊂ � be an arbitrary set. The outer measure of the set A is the
quantity

μ∗(A) = inf

{ ∞∑

k=1

μ(Ak) : Ak ∈ A, A ⊂
∞⋃

k=1

Ak

}

.

The outer measure is defined already on all subsets of the set�, but on such a wide
class of sets it does not even enjoy the finite additivity property. In the next subsection
we will construct a σ -algebra of sets� ⊃ A on which μ∗ will be countably additive,
thus solving the problem of extending the measure μ. In the present subsection we
do some preparatory work.

Properties of the Outer Measure:

1. Monotonicity: if A ⊂ B, then μ∗(A) � μ∗(B).

2. Semiadditivity: for any sets A, B ⊂ � it holds thatμ∗(A ∪ B) � μ∗(A) + μ∗(B).

3. Countable semiadditivity: if A ⊂ ⋃∞
k=1 Bk , then μ∗(A) �

∑∞
k=1 μ∗(Bk).

4. μ∗(A) = inf
{∑∞

k=1 μ(Bk) : Bk ∈ A, A ⊂ ⊔∞
k=1 Bk

}
.

5. If A ∈ A, then μ∗(A) = μ(A), that is, μ∗ is an extension of the measure μ.

Proof. 1. Forμ∗(A) the infimum in the definition ofμ∗ is taken for a wider family of
sets {Ak}∞1 than for μ∗(B): if B ⊂ ⋃∞

k=1 Ak , then also A ⊂ ⋃∞
k=1 Ak . The infimum

over a wider family does not exceed the infimum over a narrower one.

2. Again, instead of the infimum over all covers we are taking the infimum over
a narrower class:
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μ∗ (A ∪ B) �

inf

{ ∞∑

k=1

μ(Ak) +
∞∑

k=1

μ(Bk) : Ak, Bk ∈ A, A ⊂
∞⋃

k=1

Ak, B ⊂
∞⋃

k=1

Bk

}

= μ∗ (A) + μ∗ (B).

3. Here one argues as in item 2.

4. Let A ⊂ � be an arbitrary set. Denote by

ν(A) = inf

{ ∞∑

k=1

μ(Bk) : Bk ∈ A, A ⊂
∞⊔

n=1

Bk

}

the right-hand side of the equality in question. By Proposition1 in Subsection2.1.1,
for any family of sets Ak ∈ A, A ⊂ ⋃∞

k=1 Ak , there exists a disjoint family of sets
Bk ∈ A, A ⊂ ⊔∞

k=1 Bk , such that Bk ⊂ Ak for all k. For this family we haveμ(Bk) �
μ(Ak), and therefore

∑∞
k=1 μ(Bk) �

∑∞
k=1 μ(Ak). Consequently, ν(A) � μ∗(A).

The opposite inequality follows from the fact that the infimum in the definition of
ν(A) is taken over a narrower class of sets than in the definition of the outer measure.

5. Let A ∈ A, Ak ∈ A, and A ⊂ ⊔∞
k=1 Ak . Set Bk = A ∩ Ak . Then Bk ∈ A, A =⊔∞

k=1 Bk , and μ(Bk) � μ(Ak). Now we use the countable additivity of the measure
μ: μ(A) = ∑∞

k=1 μ(Bk) �
∑∞

k=1 μ(Ak). Taking the infimum over all such families
{Ak}∞1 yields μ(A) � μ∗(A). The opposite inequality is obtained if in the definition
of the outer measure we take the specific family {Ak}∞1 given by A1 = A, Ak = ∅
for k � 2. �

By analogy with Exercises4–6 in Subsection2.1.5, we introduce on the collection
of all subsets of the set � the pseudometric ρ generated by the outer measure by the
rule ρ(A, B) = μ∗(A�B).

Properties of the Pseudometric ρ:

1. For any sets A, B,C ⊂ � the triangle inequality ρ(A,C) � ρ(A, B) + ρ(B,C)

holds (this justifies using the term “pseudometric” for ρ).

2. |μ∗(A) − μ∗(B)| � ρ(A, B) for any A, B ⊂ �. In particular, the outer measure
μ∗ is continuous with respect to ρ.

3. ρ(A, B) = ρ(� \ A,� \ B), i.e., passage to the complement is an isometry.

4. ρ(A1 ∩ A2, B1 ∩ B2) � ρ(A1, B1) + ρ(A2, B2).

5. ρ
(⋃

n∈M An,
⋃

n∈M Bn
)

�
∑

n∈M ρ(An, Bn), where the index set M is finite or
countable and An, Bn ⊂ �.

Proof. For each of the listed properties we provide the relations that yield it (together
with properties of outer measure):

1. A�C ⊂ (A�B) ∪ (B�C).

2. A ⊂ B ∪ (A�B), B ⊂ A ∪ (A�B).
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3. (� \ A)�(� \ B) = A�B.

4.
(⋂

n∈M An
) � (⋂

n∈M Bn
) ⊂ ⋃

n∈M (An�Bn) (applied to M = {1, 2}).
5.

(⋃
n∈M An

) � (⋃
n∈M Bn

) ⊂ ⋃
n∈M (An�Bn). �

Recall that in Exercises2–4 proposed at the very beginning of Sect. 1.1 the reader
was asked to check the set-theoretical relations used in the above proof. Now is a
good occasion to look at those exercises again. �
Exercises

1. Fill in the details of the proof that the outer measure is countably semiadditive.

2. Show that ρ(
⋂

n∈M An,
⋂

n∈M Bn) �
∑

n∈M ρ(An, Bn) for all finite or countable
collections of sets An, Bn ⊂ �.

3. Show that the mapping (A, B) �→ A ∩ B is continuous as a function of two
variables with respect to the pseudometric ρ.

A set A is called ρ-negligible if ρ(A,∅) = 0.
Derive the following properties of ρ-negligible sets:

4. A is ρ-negligible if and only if μ∗(A) = 0.

5. If A ⊂ B and B is ρ-negligible, then so is A.

6. Any finite or countable union of ρ-negligible sets is ρ-negligible.

7. If our algebra A is a σ -algebra, then the definition of negligible sets from Sub-
section2.1.5 applied to the measure space (�, A, μ) is equivalent to the definition
of ρ-negligible sets.

2.2.3 Extension of a Measure from an Algebra to a σ -Algebra

Let, as in the preceding subsection, � be a set endowed with an algebra A of its
subsets and a countably additive measure μ. A set A ⊂ � is called measurable if it
belongs to the closure of the family A with respect to the pseudometric ρ. We let �
denote the collection of all measurable subsets of �. In detail, A ∈ � if and only if
for any ε > 0 there exists a B ∈ A such that ρ(A, B) < ε. Obviously, A ⊂ �. Note
that the class of measurable sets depends not only on the algebra A, but also on the
measure μ. Whenever we need to emphasize that the measurable sets considered
are generated specifically by the measure μ, we will refer to them not simply as
measurable, but as μ-measurable sets.
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Example 1. If the set A isρ-negligible (i.e.,ρ(A,∅)=0 or, equivalently,μ∗(A)=0),
then A is measurable.

Lemma 1. Let A ⊂ � and suppose that for any ε > 0 there exists a set B ∈ � such
that ρ(A, B) < ε. Then A ∈ �.

Proof. Here we can simply refer to the fact that the closure of a set is a closed
set. But we can also fill in the details: Pick a set B ∈ � such that ρ(A, B) < ε/2.
By the definition of measurable sets, for this B there exists a set C ∈ A such that
ρ(B,C) < ε/2. By the triangle inequality, ρ(A,C) < ε. �

Lemma 2. Any countable union of elements of the algebra A is measurable.

Proof. Let An ∈A be a disjoint sequence of sets, A= ⊔∞
n=1 An . Since

∑∞
n=1 μ(An)�

μ(�), the series converges, and for every ε > 0 there exists an index n such
that

∑∞
k=n+1 μ(Ak) < ε. Denote

⊔n
k=1 Ak by B. Then we have that B ∈ A and

ρ(A, B) = μ∗ (⊔∞
k=n+1 Ak

)
�

∑∞
k=n+1 μ(Ak) < ε. To reduce the case of an arbi-

trary sequence of sets An ∈ A to the case just treated it suffices to apply Proposition1
of Subsection2.1.1. �

Theorem 1. The family � of all measurable subsets of � is a σ -algebra.

Proof. First, � ∈ �, because � ∈ A. Next, let A, B ∈ �, and let An, Bn ∈ A be
sequences that approximate A and B, respectively, in the sense that ρ(A, An) → 0
and ρ(B, Bn) → 0 as n → ∞. Then An ∩ Bn ∈ A and

ρ(A ∩ B, An ∩ Bn) � ρ(A, An) + ρ(B, Bn) → 0 as n → ∞.

Hence, A ∩ B∈�.Analogously,� \ An ∈A andρ(� \ A,� \ An)=ρ(A, An) → 0
as n → ∞, which means that � \ A ∈ �. It remains to establish the stability under
the operation of taking countable unions. So, let An ∈ �, n = 1, 2, .... Pick sets
Bn ∈ A such that ρ(An, Bn) � ε2−n . Then

⋃∞
n=1 Bn is a measurable set which ε-

approximates
⋃∞

n=1 An: ρ
(⋃∞

n=1 An,
⋃∞

n=1 Bn
)

�
∑

n∈N ρ(An, Bn) = ε. �

Theorem 2. The restriction of the outer measureμ∗ to the σ -algebra� is countably
additive.

Proof. First let us show that the outer measure is finitely additive on�. Let A1, A2 ∈
� be a disjoint pair and let ε > 0. By the definition of measurable sets, there exist
sets B1, B2 ∈ A such that ρ(A1, B1) + ρ(A2, B2) < ε. The sets Bj may intersect,
but this intersection cannot be large: by Property 4 of the pseudometric ρ,

μ(B1 ∩ B2) = μ∗(B1 ∩ B2) = ρ(∅, B1 ∩ B2)

= ρ(A1 ∩ A2, B1 ∩ B2) � ρ(A1, B1) + ρ(A2, B2) � ε.

Now let us use properties 2 and 5 of the function ρ. We get
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∣
∣μ∗(A1 ∪ A2) − (

μ∗(A1) + μ∗(A2)
)∣
∣ � |μ(B1 ∪ B2) − (μ(B1) + μ(B2))| + 2ε

= μ(B1 ∩ B2) + 2ε � 3ε.

Since ε is arbitrary, it follows that μ∗(A1 ∪ A2) = μ∗(A1) + μ∗(A2), which estab-
lishes the finite additivity.

To complete the proof we use Theorem4 of Subsection2.2.1: any finitely additive
measure on a unital semiring (and hence, also on a σ -algebra, since σ -algebras are
also semirings) that is countably semiadditive is automatically countably additive.3

�

Thus, we managed to extend the measureμ to a countably additive measure given
on the σ -algebra� ⊃ A. Hence, we simultaneously established the existence of such
an extension to the σ -algebra generated by the algebra A. Combining this with the
results of Subsection2.2.1, we obtain the following assertion.

Theorem 3. Every countably additive measure given on a unital semiring can be
extended to a countably additivemeasure on theσ -algebra generated by the semiring.

�

The resulting extension of the measure to the σ -algebra of μ-measurable sets
will be denoted by the same letter μ as the original measure. That is, by definition,
μ(A) = μ∗(A) for all A ∈ �. The uniqueness of the extension and other useful
properties of the construction described above are given as exercises below. Before
passing to the exercises, let us emphasize that the measurability of all sets A for
which μ∗(A) = 0 (Example1) is an important addition to Theorems1 and 2.

Proposition 1. The measure space (�,�,μ) obtained by the extension procedure
described in this subsection is complete. �

Exercises

1. Let � be a set endowed with an algebra A of subsets and a countably additive
measure μ; let �1 be the σ -algebra generated by A, and μ1 some extension of the
measure μ to �1. Then μ1(A) � μ∗(A) for all A ∈ �1.

2. Suppose that on some algebra of sets �̃ there are given two finitely additive
measures μ1 and μ2 which satisfy μ1(�) = μ2(�) and μ1(A) � μ2(A) for all A ∈
�̃. Then the measures μ1 and μ2 coincide.

3If our mathematician found his tea kettle empty on Monday, filled it with water, and boiled it to
prepare tea, then on Tuesday, in order to prepare tea, he must first empty completely the kettle to
reduce the task to the previous one. We have proceeded in a similar way. Our measure was already
given on a σ -algebra. To achieve countable additivity, we reduced the problem to the criterion where
the measure is given on a semiring and where in the proof we need to extend the measure from the
semiring to the algebra.
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3. Use the preceding two exercises to establish the uniqueness of the countably
additive extension from an algebra to the σ -algebra it generates. Deduce from this
the uniqueness of the extension in Theorem3.

4. Establish the uniqueness of the extension to any σ -algebra that lies between �1

and �.

5. Show that the completion of the measure space (�,�1, μ
∗) coincides with the

space (�,�,μ∗). In particular, if our algebra A is a σ -algebra, then the completion
of the measure space (�, A, μ) is equal to (�,�,μ∗).

6. Let (�, A, μ) be a completemeasure space. Show that the family� ofmeasurable
sets constructed for (�, A, μ) by the recipe described in the present subsection
coincides with A.

2.2.4 A Monotone Class Theorem for Sets

In this subsection we go deeper into the structure of measurable sets and we prove a
theorem that will be needed in Subsection4.4.4.

Let (�,�,μ) be the measure space obtained, as described above, by extending
the measureμ from some unital semiring� ⊂ �. More precisely, from the semiring
we constructed the algebra A(�) it generates, from this algebra the outer measure
μ∗, and then for the outer measure the class of measurable sets (which is just our
�) and the measure on � defined by the rule μ(A) = μ∗(A). Let �1 denote the
family of all sets that can be represented as the union of a disjoint finite or countable
collection of elements of the semiring �. Further, denote by �2 the family of all sets
that can be represented as the intersection of a decreasing sequence of sets from the
family �1. Since the family of measurable sets � is a σ -algebra, �1 and �2 consist
of measurable sets.

Proposition 1. The class of sets�1 is stable with respect to taking the intersection of
finitelymany sets and under taking the union of disjoint finite or countable collections
of sets.

Proof. Let A = ⊔∞
k=1 Ak and B = ⊔∞

k=1 Bk be two arbitrary elements of the family
�1, written as corresponding countable unions of disjoint collections of elements of
the semiring � (to avoid treating finite unions separately, we note that here some of
the sets Ak, Bk may be empty). Then A ∩ B can also bewritten as a disjoint countable
union of elements of �: A ∩ B = ⊔∞

k, j=1 (Ak ∩ Bj ) ∈ �1.
Further, let the sets An be written as the corresponding disjoint unions An =⊔∞
k=1 An,k ∈ �1 and be themselves disjoint. Then

⊔∞
n=1 An = ⊔∞

n,k=1 An,k ∈ �1.
�

Proposition 2. For any set A ⊂ �,

μ∗(A) = inf{μ(B) : B ∈ �1, B ⊃ A}.
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Proof. Each element of the algebra A, being a disjoint union of elements of the
semiring �, lies in �1. Hence, any countable disjoint union of elements of the
algebra A also lies in �1. It remains to use Property 4 of the outer measure (see
Subsection2.2.2), where we replace

⊔∞
k=1 Bk by B. �

Proposition 3. For any set A ⊂ � there exists a set B ∈ �2 such that A ⊂ B and
μ∗(A) = μ(B).

Proof. By the preceding proposition, for any n ∈ N there exists a set Bn ∈ �1, Bn ⊃
A, such that μ(Bn) < μ∗(A) + 1/n. With no loss of generality, we may assume that
the sets Bn form a decreasing chain (otherwise, we replace Bn by B ′

n = ⋂n
k=1 Bk).

The intersection of the sets of this decreasing chain is the sought-for set B. �

Definition 1. Let (�,�,μ) be ameasure space. A familyM ⊂ � is called amono-
tone class of sets if it obeys the following axioms:

A. If A, B ∈ M and A ∩ B = ∅, then A ∪ B ∈ M.

B. If A, B ∈ M and A ⊂ B, then B \ A ∈ M.

C. If B ∈ M, A ∈ �, A ⊂ B, and μ (B) = 0, then A ∈ M.

D. If An ∈ M, n = 1, 2, . . . , is an increasing chain of sets, then
⋃∞

n=1 An ∈ M.

We note that from axiom A it follows that a monotone class is stable under taking
the union of finitely many disjoint sets. Hence, applying axiom D, we deduce that a
monotone class is stable under taking the union of countably many disjoint sets.

Theorem 1 (Monotone class theorem for sets). Let (�,�,μ) be a measure space
obtained, as described in Sect.2.2, by extending the measure μ from some unital
semiring � ⊂ �. Further, let M ⊂ � be a monotone class which contains all the
elements of the semiring �. Then M = �.

Proof. Since � ∈ M ⊂ �, axiom B of a monotone class implies that for any ele-
ment A ∈ M the complement � \ A also belongs to M. Passing in axiom D to
complements, we deduce that the class M is stable under taking the intersection of
decreasing chains of sets.

The families �1 and �2 introduced in the begining of this subsection lie in M.
By Proposition3, for any set A ∈ � of measure 0, there exists a set B ∈ �2 ⊂ M
such that A ⊂ B and μ(B) = 0. Hence, by axiom C, every set A of measure 0 lies
in the class M. Finally, consider an arbitrary set A ∈ �. We use again Proposi-
tion3 and choose a B ∈ M such that A ⊂ B and μ(A) = μ(B). Then C = B \ A
is a set of measure 0, hence C ∈ M. It remains to apply axiom B to deduce that
A = B \ C ∈ M. �
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Exercises

1. Show that the class �1 is the family of all sets that can be written as a (not
necessarily disjoint) finite or countable union of elements of the algebra A.

2. Show that the class �1 is the family of all sets that can be written as a (not
necessarily disjoint) finite or countable union of elements of the semiring �.

3. Show that the class �1 is stable under taking the union of finitely or countably
many sets (possibly not disjoint).

4. Show that the class of sets �2 is stable under taking the intersection of finitely or
countably many sets.

5. Justify the inclusion �2 ⊂ M in the proof of the last theorem.

6. Where in the proof of the theorem was the condition A ∈ � (i.e., measurability)
used? Is it not possible to prove in the same way that every subset A ⊂ � belongs
toM?

7. On the interval [0, 1] consider the semiring � (which in fact is an algebra) con-
sisting of the finite sets and their complements. Show that in this case the class �1

is not an algebra of sets.

8. In the setting of the preceding exercise, describe the class �2. Show that in the
present case �2 is a σ -algebra of sets.

9. Let � be a set consisting of four points, � = 2�, and define the measure of an
element A ∈ � as the number of points in the set A (the so-called counting measure).
Show that the familyM of all subsets consisting of an even number of elements is a
monotone class that does not coincide with �. Doesn’t this example contradict the
preceding theorem?

10. Prove the following version of the monotone class theorem: let (�,�0, μ) be
a measure space, � ⊂ �0 a unital semiring that generates the σ -algebra �0, and
(�,�′

0, μ) the completion of the measure space (�,�0, μ). Further, let � be a σ -
algebra that lies between�0 and�′

0 (i.e.,�0 ⊂ � ⊂ �′
0), andM ⊂ � be amonotone

class of sets that contains all elements of the semiring �. Show that M ⊃ �.

11. Use Proposition3 in order to obtain an easy solution of Exercise7 from Subsec-
tion2.2.2.
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2.3 Measures on an Interval and on the Real Line

2.3.1 The Lebesgue Measure on the Interval

As we already mentioned, length is a measure on the family of intervals. In this
subsection we apply the general theory of extension of measures to this example,
historically the first and fundamental for the entire theory of measures.

Let � = (ω1, ω2) be a non-degenerate bounded open interval. A subinterval of
� is any open, closed, or semi-open interval lying in �, i.e., any subset of the form
[a, b], [a, b), (a, b), or (a, b] that is contained in �. In particular, the empty set as
well as the one-point sets (singletons) are subintervals.

The family of all subintervals of � is a semiring of sets, which we denote by �.
For any subinterval Δ ∈ � we let λ(Δ) denote its length, i.e., λ(Δ) = b − a, where
a and b are the left and right endpoints of Δ.

Theorem 1. The length λ is a countably additive measure on the semiring �.

Proof. By the countable additivity test (Theorem4 in Subsection2.2.1), we need to
verify that the measure λ is finitely additive and countably semiadditive.

Finite additivity. Let Δk , k = 1, 2, . . . , n, be disjoint subintervals, written in
increasing order, let ak and bk be the endpoints of Δk , and let

⋃n
k=1 Δk = Δ ∈ �.

Then a1 and bn coincide with the endpoints of the interval Δ, and ak+1 = bk , k =
1, 2, . . . , n − 1. We have

∑n
k=1 λ(Δk) = ∑n

k=1 (bk − ak) = bn − a1 = λ(Δ).

Countable semiadditivity. LetΔ ⊂ ⋃∞
k=1 Δk ,Δk,Δ ∈ �, and let a and b be the

endpoints of the interval Δ, and ak and bk the endpoints of Δk . Take an arbitrary
ε > 0 and, slightly moving away from the original endpoints, introduce auxiliary
intervals Δ′ ⊂ Δ and Δ′

k ⊃ Δk , such that Δ′ is closed, Δ′
k are open subsets of the

interval �, and

λ(Δ) − λ(Δ′) +
∞∑

k=1

(
λ(Δ′

k) − λ(Δk)
)

< ε, (1)

i.e., such that the endpoints are not displaced too much. For the new intervals, as
before, we have the inclusion Δ′ ⊂ ⋃∞

k=1 Δ′
k , but now this inclusion has a different

meaning, namely, we obtained a cover of a compact set, something we are familiar
with! Let us choose a finite subcover, i.e., take a finite set of indices N ⊂ N such
that Δ′ ⊂ ⋃

k∈N Δ′
k . Thanks to the finite additivity we may apply assertion (e) of

Proposition1 from Subsection2.1.4: λ(Δ′) �
∑

k∈N λ(Δ′
k) �

∑∞
k=1 λ(Δ′

k). Using
condition (1), we see that λ(Δ) �

∑∞
k=1 λ(Δk) + ε. In view of the arbitrariness of

ε, the countable semiadditivity is established. �

Now let us extend the measure λ by means of the extension recipe described
in Sect. 2.2. This yields a countably additive measure (denoted again by λ), given
on a σ -algebra � ⊃ �, such that λ ((a, b)) = b − a for any interval (a, b), and the
resulting measure space (�,�, λ) is complete. The elements of the σ -algebra � are
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called Lebesgue-measurable sets, and the constructed measure λ on � is called the
Lebesgue measure.

For the moment, the Lebesgue measure is given in a somewhat encoded way, by
referring to the general scheme of measure extension. The purpose of the remarks
below is to recast this definition in maximal detail and accessibility.

Remarks

1. Let A = ⊔∞
k=1 (ak, bk) ⊂ � (recall that this is the general form of an open sub-

set of the interval � = (ω1, ω2)). Then A is Lebesgue measurable, and λ(A) =∑∞
k=1 |bk − ak |.

2. Any one-point set (singleton) is measurable and its Lebesgue measure is equal to
zero. Consequently, the Lebesgue measure of any finite or countable set is also equal
to zero.

3. The outer measure of any set A ⊂ � can be calculated by the rule λ∗(A) =
inf

{∑∞
k=1 |bk − ak | : ⋃∞

k=1 [ak, bk] ⊃ A
}
.

4. If
⋃∞

k=1 [ak, bk] ⊃ A, then every interval [ak, bk] can be replaced by a slightly
larger open interval such that the sum of lengths changes by an arbitrarily small
amount. This means that in the formula given above one can equally well use open
intervals instead of closed intervals:

λ∗(A) = inf

{ ∞∑

k=1

|ck − dk | :
∞⋃

k=1

(ck, dk) ⊃ A

}

= inf {λ(B) : B open, B ⊃ A}

= inf

{ ∞∑

k=1

|bk − ak | :
∞⊔

k=1

(ak, bk) ⊃ A

}

. (2)

5. By the definition, a subset A of � is Lebesgue measurable if for any ε > 0 there
exists a set B which is a finite union of intervals such that λ∗(A�B) < ε.

6. By the definition of the extension of a measure, λ(A) = λ∗(A) for any Lebesgue-
measurable set A.

7. The outer measure and hence the Lebesgue measure of a set A do not depend on
the interval � ⊃ A with which the construction starts. Accordingly, henceforth we
do not have to specify in which particular interval all the sets considered lie.

8. The Lebesgue measure of a set does not change under translations A �→ A + t .

9. If λ∗(A) = 0, then A is Lebesgue measurable and λ(A) = 0 (see the Example1
in Subsection2.2.3). Such sets are called negligible, or sets of measure zero.

10. Since any open subset of an interval is Lebesgue measurable, so is every Borel
subset of an interval (� is a sigma-algebra containing all the open sets, and B is,
by definition, the smallest σ -algebra that contains all the open sets). In particular, all
closed sets, all Gδ-sets, all Fσ -sets, etc, are Lebesgue measurable.
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Theorem 2. A set A ⊂ � is Lebesgue measurable if and only if it can be written as
the difference B \ C of a Gδ-set B and a set C ⊂ B with λ∗(C) = 0.

Proof. Since theGδ-sets, aswell as the negligible sets, aremeasurable, any difference
of such sets is also measurable. Hence, we only have to prove the converse statement.
Suppose the subset A ⊂ � is Lebesgue measurable. By definition, λ(A) = λ∗(A).
By formula (2) for the outer measure, for any n ∈ N there exists an open set Bn ⊃ A
such that λ(Bn) < λ(A) + 1/n. Put B = ⋂∞

n=1 Bn . The set B, as required, belongs
to the class Gδ and contains A. Further, for any n ∈ N, λ(A) � λ(B) � λ(Bn) <

λ(A) + 1
/
n. Hence, λ(A) = λ(B). It remains to put C = B \ A. �

Passing to complements we obtain the following:

Corollary 1. The set A ⊂ � is Lebesgue measurable if and only if it can be written
as the disjoint union of an Fσ -set and a negligible set. �

Since the Borel sets on an interval are Lebesgue measurable, the preceding theo-
rem and its corollary apply to them. We deduce that, although the Borel subsets of
the interval do not reduce to the Fσ - and Gδ-sets, they do not differ too much from
the sets of the latter two classes. Moreover, the Fσ -sets and Gδ-sets can be obtained
from one another by adding or removing negligible sets.

The aforementioned way of expressing measurable sets in terms of Borel classes
and negligible sets provides useful information on the structure of the Lebesgue
measure and the Lebesgue-measurable sets. However, one should not let ourselves
be excessively seduced by the beauty of the picture just painted: while negligible
sets can indeed be neglected from the point of view of measure theory, in many other
settings they may have a rather complicated structure.

Example 1 (A set of measure zero with the cardinality of the continuum). Recall that
the Cantor set is the closed subsetK ⊂ [0, 1] consisting of the numbers whose triadic
expansion either does not contain the digit 1, or contains it only as the last digit in the
expansion (Subsection1.4.4). The Cantor set can be also constructed bymeans of the
following procedure of step-by-step removal of parts from the interval [0, 1]. In the
first step, remove the setΔ1

1 = (1/3, 2/3). Let K1 = [0, 1] \ Δ1
1. The set K1 consists

of two intervals of length 1/3. In each of these intervals recede from the endpoints by
1/3 of its length and remove the resulting middle subintervals, Δ2

1 = (1/9, 2/9) and
Δ2

2 = (7/9, 8/9). Let K2 = K1 \ (Δ2
1 ∪ Δ2

2). In the n-th step, the set Kn will consist
of 2n intervals of length 1/3n , and to obtain Kn+1 remove from the middle of each
component of Kn its third. The Cantor set coincides with

⋂∞
n=1 Kn . The measure

of the set Kn is the sum of the measures of its components, i.e., λ(Kn) = 2n
/
3n ,

which tends to zero when n → ∞. Since λ(K) � λ(Kn) for all n, we conclude that
λ(K) = 0.

To prove that the Cantor set has continuum cardinality we can proceed in different
ways. Here is one of the simplest. K is a subset of [0, 1], so that the cardinality of
cardK does not exceed that of the continuum. To prove the opposite inequality, we
construct an injective map of a set having the cardinality of the continuum into K.
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Namely, to each dyadic fraction x ∈ (0, 1) we assign the triadic fraction f (x) by
keeping all the zeros of the fraction x unchanged and replacing every 1 by a 2. Then
x �→ f (x) is the required injective map. Another proof of the fact that K has the
cardinality of the continuum is given in Exercise12 of Subsection1.3.3.

Exercises

1. Calculate the Lebesgue measure of the following sets:

A. [1, 3] ∪ [5, 6];
B. (2, 4) \ ([1, 3] ∪ [5, 6]);
C. ((2, 4) \ [1, 3]) ∪ [5, 6];
D. [1, 4]�[2, 6];
E.

∞⋃

n=1

[
1
2n ,

1
2n+1

]
;

F.
∞⋃

n=1

[
1
n ,

1
2n

]
;

G. the set of rational numbers in the interval [0, 1];
H. the set of irrational numbers in the interval [0, 1].
2. Let A ⊂ [0, 1] be such that the complement of A has Lebesgue measure zero.
Then A is dense in [0, 1].
3. For every A ⊂ [0, 1] consider on the interval [0, 1] the function f given by
f (x) = λ∗(A ∩ [0, x]). Show that f is continuous.

4. Construct in the interval [0, 1] a nowhere dense set of positive Lebesgue measure.

5. Construct in the interval [0, 1] a set A of the second category with λ(A) = 0.

6. Is the Lebesgue measure atomic or non-atomic?

Show that:

7. If a measurable set has non- zero Lebesgue measure, then it has the cardinality
of the continuum.

8. The cardinality of the family of negligible sets on an interval is equal to the
cardinality of the family of all subsets of the interval. Therefore (see Exercise23 in
Subsection2.1.2), on an interval there exist negligible sets that are not Borel sets.

9. Every negligible set is contained in a negligible Gδ-set.

The inner measure of a set A ⊂ � is defined as

λ∗(A) = sup{λ(B) : B ⊂ A, B closed}.
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Prove that:

10. λ∗ � λ∗.

11. A set A ⊂ � is Lebesgue measurable if and only if λ∗(A) = λ∗(A).

2.3.2 A Bit More Terminology. The Meaning of the Term
“Almost Everywhere”

Let (�,�,μ) be a measure space. The elements of the σ -algebra � are called
measurable sets. If on � we need to consider simultaneously several σ -algebras,
and we need to specify which σ -algebra we have in mind, then we will refer to the
elements of the σ -algebra � as �-measurable sets. For example, suppose that on an
interval one considers, along with the Lebesgue-measurable sets, the σ -algebra B
of Borel sets. Then in accordance with the above terminology, the Borel sets can be
alternatively referred to as B-measurable sets, or Borel-measurable sets.

Recall that a set A ⊂ � is called negligible (see Subsection2.1.5) if A is contained
in a measurable set of measure zero. If (�,�,μ) is a complete measure space (say,
an interval with the Lebesgue measure), then the definition simplifies: “negligible
set” and “set of measure zero” are synonyms. A set is said to be of full measure if
its complement is negligible.

An assertion P concerning points of the set � is said to hold for almost all
points t ∈ �, or to hold almost everywhere (abbreviated a.e.) if the set of all points
t for which P is not true is negligible. For instance, a function f : � → R is said
to be zero (or vanish) almost everywhere (abbreviated as f

a.e.= 0) if the set of all

points t where f (t) = 0 is negligible. Further, we write f
a.e.
� g if the set of all

points t where f (t) < g(t) is negligible; and so on. Considerations and estimates
that are made almost everywhere are considerably more convenient than the usual
pointwise considerations. Thus, on an interval (tacitly assumed to be endowed with
the Lebesguemeasure), if a function has a finite or countable number of discontinuity
points, then it is often not necessary to define the function at those points or one can
define it in the way most suitable for the task at hand, since for almost all values of
the argument this does not affect the function.

We mention two important properties that are immediate consequences of the
properties of negligible sets (Subsection2.1.5).

— Suppose that statement P1 implies statement P2, and that P1 holds almost every-
where. Then P2 also holds almost everywhere.

— Let Pj , j ∈ M , be a finite or countable set of statements, and P be the statement
that all the statements Pj hold simultaneously. If all Pj hold almost everywhere,
then P also holds almost everywhere.
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Exercises

1. Prove the last two assertions.

2. Explain what the negation of the assertion f
a.e.
� g means. Does it coincide with

the assertion f
a.e.
< g?

3. Can the assertions f
a.e.
� g and f

a.e.
< g hold simultaneously?

4. Show that if f
a.e.
� g and g

a.e.
� h, then f

a.e.
� h.

5. Show that if simultaneously f
a.e.
� g and f

a.e.
� g, then f

a.e.= g.

6. Suppose that two continuous functions on an interval coincide a.e. with respect
to the Lebesgue measure. Show that then the functions coincide at all points.

7. Does the preceding statement remain true if we replace the Lebesgue measure by
an arbitrary countably additive measure given on the Borel subsets of the interval?

2.3.3 Lebesgue’s Theorem on the Differentiability
of Monotone Functions

The proof of existence theorems often make use of the following idea: instead of
constructing the required object explicitly, one shows that in some or another sense
there are “many” such objects. But if already there are many, then they of course
exist. For instance, the simplest proof of the existence of transcendental numbers is
based on considerations of cardinality: the algebraic numbers form a countable set,
therefore the transcendental number not only exist, but constitute the “main mass” of
all numbers. In Exercise15 of Subsection2.1.2 it is shown how, in exactly the same
manner, to prove existence theorems (specifically, to prove the existence of continuity
points for the pointwise limit of a sequence of continuous functions) one can use sets
of the first and second category. In each such argument the most important point is
to appropriately choose what notion of “smallness” should be used. In the present
subsection we will, as a first non-obvious application of measure theory, prove that
everymonotone function has points of differentiability. Actually, wewill provemore:

Theorem 1. Every monotone function on an interval is differentiable almost every-
where, i.e., the set of points at which the function is not differentiable has Lebesgue
measure zero.

For the reader to truly appreciate the depth and elegance of this result, I insistently
advise her/him to set aside the book for the moment and reflect on it for at least a
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couple of days. I have to sincerely confess that although in my time I got “hooked”
on this problem, I failed to solve it by myself. On the other hand, this experience
provided a good stimulus for studying measure theory, and subsequently my teacher
had no need to convince me that this field is important.

Before we can prove the theorem, we need some notation and lemmas. Let g be an
upper-continuous function given on the interval � = [ω1, ω2] (see Subsection1.2.4
for the corresponding definition). An interior point x of � is said to be invisible from
the right for the function g if there exists a t > x , t ∈ �, such that g(x) < g(t).

Lemma 1 (F. Riesz’s “rising sun” lemma). Let g be an upper-semicontinuous
function on �. Then the set A of all points that are invisible from the right for the
function g is open. Moreover, if one writes A canonically as a union of disjoint
subintervals Δk = (ak, bk), then g(ak + 0) � g(bk). (Here g(ak + 0) is understood
as the upper limit of the function g(t) as t → ak + 0.)

Proof. Let x0 be a point that is invisible from the right and let t0 > x0 such that
g(x0) < g(t0). Then thanks to the semi-continuity of the function g, the point x0 has
an entire neighborhood where g(x) < g(t0). All the points of this neighborhood are
invisible from the right. Hence, A is an open set. Now let Δ = (a, b) be one of the
intervals composing A, i.e., (a, b) ⊂ A, a, b /∈ A. Suppose that the conclusion of the
lemma is false. Then there exists a point x0 ∈ Δ such that g(x0) > g(b). Consider the
set D of all points x ∈ [x0, b) at which g(x) � g(x0). Then D is a non-empty closed
and bounded set. Denote the extreme right point of D by x1. Since x1 is invisible
from the right, there is in� a point t0 > x1 such that g(t0) > g(x1). Clearly, t0 cannot
lie to the right of the point b, as otherwise b will also be invisible from the right:
g(t0) > g(x1) � g(x0) > g(b). It follows that t0 ∈ (x1, b). But then t0 ∈ D, that is,
x1 is not the extreme right point of the set D: contradiction. �

Note that, by symmetry, an analogous statement holds true for points invisible
from the left (the point x is invisible from the left if there exists a t < x , t ∈ �, for
which g(x) < g(t)); only at the endpoints of the intervals composing the set of points
invisible from the left will the opposite condition g(ak) � g(bk − 0) be satisfied.

Lemma 2 (negligibility test). Suppose the set A ⊂ (ω1, ω2) has the following prop-
erty: there exists a θ ∈ (0, 1) such thatλ∗(A ∩ (a, b)) � θ(b − a) for any subinterval
(a, b) ⊂ (ω1, ω2). Then A is negligible.

Proof. Let B = ⊔
k∈M Δk be an arbitrary open set containing A and Δk be the

(finitely or countably many) open subintervals that constitute A. By the hypoth-
esis, λ∗(A) = ∑

k∈M λ∗(A ∩ Δk) � θ
∑

k∈M λ(Δk) = θλ(B). Taking the infimum
over all such sets B, we get the inequality λ∗(A) � θλ∗(A), which can hold only if
λ∗(A) = 0. �

Beforewe address the proof of themain theorem,weneed tomake several prepara-
tory remarks. The term “increasing function” will be used here as meaning “non-
decreasing function”, i.e., we will not require that the function be strictly increasing.
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It suffices to prove the theorem for increasing functions: the case of decreasing func-
tions is obtained viamultiplication by−1. Let� = [ω1, ω2] and let f : � → R be an
increasing function. For any interior point x of the interval�we define the following
quantities, finite or equal to +∞:

• right upper derivative number R(x) = lim
t→x+0

f (t) − f (x)

t − x
;

• right lower derivative number r(x) = lim
t→x+0

f (t) − f (x)

t − x
;

• left upper derivative number L(x) = lim
t→x−0

f (x) − f (t)

x − t
;

• the left lower derivative number l(x) = lim
t→x−0

f (x) − f (t)

x − t
.

To prove the theorem, we need to show that all the derivative numbers listed above
are almost everywhere equal to one another and finite. To do this, it in turn suffices
to show that for any increasing function f on � the following two relations hold:

R(x)
a.e.
< ∞, (1)

R(x)
a.e.
� l(x). (2)

Indeed, applying (2) to the auxiliary function g(x) = − f (−x) and returning to the

original function, we get the condition L(x)
a.e.
� r(x). Combining these conditions

with the obvious inequalities r(x)
a.e.
� R(x) and l(x)

a.e.
� L(x), we conclude that

R(x)
a.e.
� l(x)

a.e.
� L(x)

a.e.
� r(x)

a.e.
� R(x), i.e., all the inequalities in this chain are

in fact equalities.

Proof of Lebesgue’s theorem. Let f : [ω1, ω2] → R be an increasing function. Since
a monotone function may have only discontinuities of the first kind, we can assume
for the sake of convenience that the function f is upper-semicontinuous: it suffices
to redefine the function at the points of discontinuity, putting f (t) = lim

x→t
f (x). The

reader should verify that under this modification the set of differentiability points
does not change, and the derivative numbers change in atmost countablymany points
(the discontinuity points of f ), i.e., they remain unchanged almost everywhere.

For any C > 0 consider the set R>C = {x ∈ (ω1, ω2) : R(x) > C}. To prove the

relation R(x)
a.e.
< ∞ we need to estimate from above by zero the outer measure of

the set R∞ of all points x of (ω1, ω2) for which R(x) = ∞. Since R∞ ⊂ R>C , it
suffices to verify that λ∗(R>C) → 0 as C → ∞.

Let x ∈ R>C . Then there exists a point t > x such that ( f (t) − f (x))/(t − x) >

C , i.e., f (t) − Ct > f (x) − Cx . Hence, the set R>C consists of the points that are
invisible from the right for the function g(x) = f (x) − Cx . By the rising sun lemma,
R>C is contained in the open set B = ⊔

k∈M (ak, bk), with g(ak + 0) � g(bk). That
is,

bk − ak � 1

C
( f (bk) − f (ak + 0)) � 1

C
( f (bk) − f (ak)).
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The intervals ( f (ak), f (bk)) are disjoint subintervals of ( f (ω1), f (ω2 − 0)) (here
we use the monotonicity of f ). Consequently,

λ∗(R>C) �
∑

k∈M
(bk − ak) � 1

C

∑

k∈M
( f (bk) − f (ak)) � 1

C
( f (ω2 − 0) − f (ω1)),

(3)
which tends to 0 as C → ∞.

Now let us turn to the proof of the relation R(x)
a.e.
� l(x). Denote by D the set

of all points x ∈ (ω1, ω2) in which R(x) > l(x). Further, for any pair of rational
numbers (C, c)with 0 < c < C , denote by D(C, c) the set of all points x ∈ (ω1, ω2)

in which simultaneously l(x) < c and R(x) > C . Since the set of pairs of rational
numbers is countable, there are countably many sets D(C, c). Now D is the union
of our collection of sets D(C, c), so to show that D is negligible, it suffices to show
that all sets D(C, c) have measure zero. To this end we will use the negligibility test
provided by Lemma2, with θ = c/C .

Let (a, b) ⊂ � be an arbitrary interval, and let x ∈ D(C, c) ∩ (a, b). Since
l(x) < c, there exists a t ∈ (a, x) such that ( f (x) − f (t))/(x − t) < c. Then f (x) −
cx < f (t) − ct , i.e., the point x is invisible from the left for the function g(y) =
f (y) − cy on the interval (a, b). Applying again the rising sun lemma, we see
that the set D(C, c) ∩ (a, b) is contained in a finite or countable union of dis-
joint intervals (αk, βk) ⊂ (a, b), k ∈ N , and at the endpoints of these intervals
f (βk − 0) − f (αk) � c(βk − αk).
Inequality (3) was proved for an increasing function on an arbitrary interval.

Recall that D(C, c) ⊂ R>C , and apply condition (3) to the function f on the interval
(αk, βk):

λ∗(D(C, c) ∩ (αk, βk)) � λ∗(R>C ∩ (αk, βk))

� 1

C
( f (βk − 0) − f (αk)) � c

C
(βk − αk).

It remains to use the fact that, by construction,

D(C, c) ∩ (a, b) =
⋃

k∈N
(D(C, c) ∩ (αk, βk)),

and the countable semiadditivity of the outer measure:

λ∗(D(C, c) ∩ (a, b))�
∑

k∈N
λ∗(D(C, c) ∩ (αk, βk))�

c

C

∑

k∈N
(αk − βk)�

c

C
(b − a).

Thus, the condition of the negligibility test is satisfied, hence λ∗ (D(C, c)) = 0. �
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Exercises

1. Give an example of a continuous monotone function with a dense set of points of
non-differentiability.

2. Prove the Borel measurability of all sets that appear in the theorem on the dif-
ferentiability of monotone functions (the set R>C , the set D of all points x ∈ (α, β)

such that R(x) > l(x), and so on).

3. Prove Fubini’s theorem on the differentiation of series: If the series
∑∞

n=1 fn
of increasing functions on an interval converges at every point to the function f ,
then the series of derivatives

∑∞
n=1 f ′

n converges almost everywhere to f ′.

4. Let A be a Lebesgue-measurable subset of the interval [a, b]. The density of the
set A at the point x ∈ [a, b] is the limit as α, β → +0 (if it exists) of the expression
λ([x − α, x + β] ∩ A)/(α + β). A point x ∈ [a, b] is called a density point of A if
the density at x exists and is equal to 1. Prove that almost every point x ∈ A is a
density point of A (Lebesgue’s density theorem).

2.3.4 The Difficult Problem of Measure Theory. Existence
of Sets that are not Lebesgue Measurable

The difficult problem of measure theorywe are going to address here is to construct a
σ -additive measure μ with μ ([0, 1]) = 1, defined on the family of all subsets of the
interval [0, 1] and invariant under translations, i.e., if both the set A and its translate
A + t lie in the interval, thenμ(A) = μ(A + t). In this subsection we will show that
this problem is not solvable, i.e., there is no measure with the required properties.
The construction presented here is due to Vitali.

The reasoning plan is natural. Namely, we will assume that a measure μ with the
required properties exists, study its properties, and eventually reach a contradiction.
First let us note that the measure of any singleton is equal to zero. Indeed, points are
obtained from one another by translations, and consequently they all have the same
measure, call itα.Assuming thatα > 0, themeasure of the entire interval [0, 1]would
be infinite, since the interval has infinitely many points. Hence, α = 0. Therefore,
we can consider [0, 1) instead of [0, 1] without affecting the measure of subsets.
The interval [0, 1) can be regarded as being rolled into a circle. Let us introduce on
[0, 1) the operation +1 of addition modulo 1: a +1 b equals the fractional part of
the number a + b. On the circle, this operation corresponds to the counter-clockwise
rotation of the point 2πa by the angle 2πb. If A ⊂ [0, 1) and t ∈ [0, 1), then instead
of the usual translate A + t it is more convenient to consider the translate A +1 t ,
corresponding to the rotation on the circle, since here one does not need to track
whether or not part of the set falls outside the interval. Obviously,μ(A) = μ(A +1 t),
since A +1 t = (A ∩ [0, 1 − t) + t)

⊔
(A ∩ [1 − t, 1) + t − 1), i.e., the set A splits

into two parts, one that is translated to the right of the interval [0, 1), and the second
to the left of it.
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Now let us introduce on [0, 1) the following equivalence relation: a ∼ b if
a − b ∈ Q (Q denotes, as usual, the set of rational numbers). Pick a single ele-
ment in each equivalence class and denote the set of selected elements by E . Note
that the sets E +1 t with t ∈ Q ∩ [0, 1) are pairwise disjoint. Indeed, if E +1 t inter-
sects E +1 τ at the point x , where t, τ ∈ Q ∩ [0, 1), then the elements x −1 t and
x −1 τ , which belong to the same equivalence class, both belong to E , which is
impossible by construction. There are infinitely many sets E +1 t ; they are obtained
from one another by translations, and are disjoint. Hence, their measures must be all
equal, and equal to zero. But [0, 1) = ⋃

t∈Q∩[0,1) (E +1 t), whence μ ([0, 1)) = 0:
contradiction.

Theorem 1. There exist subsets of the interval [0, 1] that are not Lebesgue measur-
able.

Proof. Assuming that all the subsets of [0, 1] are Lebesguemeasurable, the Lebesgue
measure would be a translation-invariant σ -additive probability measure defined on
the family of all subsets of [0, 1]. But we have just established that there is nomeasure
with such properties. �

Exercises

1. In the proof of the non-solvability of the difficult problem of measure theory
considered above, find the place where the Axiom of Choice was used.

2. Give an example of a countably additive probability measure defined on all the
subsets of an interval. (Needless to say, such a measure will not be invariant under
translations.)

3. Show that the interval [0, 1] can bewritten as the union of twodisjoint sets A and B
such that λ∗(A) = λ∗(B) = 1. Show that both sets A and B must be non-measurable.
This will provide another proof of the existence of non-measurable sets.

4. In the setting of the preceding exercise, show that λ∗(A ∩ C) = λ∗(B ∩ C) =
λ(C) for any Lebesgue-measurable set C .

5. If one adopts the Continuum Hypothesis, the interval [0, 1] can be expressed as
the disjoint union of a continuum cardinality family of sets that have outer measure
equal to 1.

2.3.5 Distribution Functions and the General form of a Borel
Measure on the Interval

A Borel measure on a topological space X is a countably additive measure given on
the σ -algebra of all Borel subsets of X . For instance, the Lebesgue measure on the
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family of Borel subset of the interval � = [ω1, ω2] is a Borel measure on �. In this
subsection we will establish a bijective correspondence between the Borel measures
on an interval and the increasing right-continuous functions on that interval.

Definition 1. Let μ be a Borel measure on the interval � = [ω1, ω2]. The distri-
bution function of the measure μ is the function F : � → R

+ given by F(t) =
μ([ω1, t]).
Theorem 1. The distribution function of a Borel measure on an interval is a (not
strictly) increasing right-continuous function.

Proof. If ω1 � a < b � ω2, then [ω1, a] ⊂ [ω1, b], and consequently F(a) =
μ([ω1, a]) � μ([ω1, b]) = F(b). Let us prove the right continuity. Let tn ∈ � be
a decreasing sequence that converges to t . Then [ω1, tn] is a decreasing sequence of
sets, and [ω1, t] = ⋂∞

n=1 [ω1, tn]. It follows that

F(t) = μ([ω1, t]) = lim
n→∞ μ([ω1, tn]) = lim

n→∞ F(tn). �

Theorem 2. Let F : � → R
+ be an increasing right-continuous function on the

interval� = [ω1, ω2]. Then there exists a unique Borel measureμ on [α, β] that has
F as distribution function.

Proof. We argue by analogy with the construction of the Lebesgue measure. Let �
be the semiring of all subintervals of the interval �. Define the measure μ on � as
follows: μ([ω1, a]) = F(a), μ([a, b]) = F(b) − F(a − 0) for a > ω1 (these two
formulas can be combined into one if we adopt the convention that F(ω1 − 0) = 0),
μ((a, b]) = F(b) − F(a), μ((a, b)) = F(b − 0) − F(a), and μ([a, b)) = F(b −
0) − F(a − 0).

These formulas were not chosen arbitrarily: this is precisely the way in which a
Borelmeasure and its distribution functionmust be related. The finite additivity of the
measureμ defined above is readily established. To prove its countable semiadditivity
(which in turnwill imply its countable additivity),wefirst note that themeasure of any
subinterval coincides with the supremum of the measures of all closed subintervals
contained in it, as well as with the infimum of the measures of all open subintervals
that contain it. Then we must use the finite cover lemma in the same way we did in
the proof of the countable semiadditivity of the Lebesgue measure on� (Theorem1,
Subsection2.3.1). To complete the proof, it remains to use the theorem asserting the
existence and uniqueness of the extension of a measure from a unital semiring to the
σ -algebra it generates (Theorem3 and Exercises1–3 in Subsection2.2.3). �

We provide below a chain of simple exercises, which, once solved, will allow
the reader to obtain an important theorem on the structure of monotone functions,
namely, the representation as a sum of a continuous function and a step function.
(See Subsection2.1.6 for the necessary definitions and results. In particular, we recall
Theorem2 of that subsection asserting that any atom of a Borel measure reduces to
a singleton.)
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Exercises

1. The mapping that assigns to each Borel measure on an interval its distribution
function is additive, i.e., it takes a sum of measures into the sum of the corresponding
distribution functions.

Let M be a finite or countable subset of the interval [α, β] and h : M → R
+ be a

function satisfying
∑

x∈M h(x) < ∞. The step function associated to the set M and
the function h is defined by the formula fM,h(t) = ∑

x∈M∩[α,t] h(x).

2. To understand why one uses the term “step function”, draw the graph of the
function fM,h on the interval [0, 3] for M = {1, 2} and h(1) = h(2) = 1.

3. What is the distribution function of the δ-measure δx concentrated in a point
x ∈ [α, β]?
4. Letμbe apurely atomicBorelmeasure on the interval [α, β]. Then the distribution
function of μ is a step function.

5. Let μ be a Borel measure on the interval [α, β], F its distribution function, and
α < t � β. Then μ({t}) = F(t) − F(t − 0), μ({α}) = F(α).

6. A Borel measure on the interval [α, β] is non-atomic if and only its distribution
function is continuous and vanishes at the point α.

7. From the representability of a measure as the sum of a non-atomic measure and
a purely atomic one it follows that every non-negative, right-continuous, increasing
function on the interval [α, β] can be uniquely represented at the sum of a continuous
increasing function that vanishes at the point α and a step function.

8. Every right-continuous increasing function on the interval [α, β] can be repre-
sented as the sum of a continuous increasing function and a step function. This
representation is unique up to a constant term, meaning that to one of the terms one
can add, and from the other subtract, the same number, without affecting the sum.
There are no other sources of non-uniqueness.

9. Every increasing function on the interval [α, β] is uniquely representable as the
sum of a right-continuous function and a function that differs from zero in at most
countably many points.

10. Every increasing function f on the interval [α, β] is uniquely (up to an additive
constant) representable as a sum of three terms, f1 + f2 + f3, where f1 is a contin-
uous function, f2 a step function, and f3 a function that differs from zero in at most
countably many points.
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2.3.6 The Cantor Staircase and a Measure Uniformly
Distributed on the Cantor Set

The description of Borelmeasures on an interval obtained in the preceding subsection
may give the impression that all these measures are similar to the Lebesgue measure
(at least after one removes atoms). While this impression is in some sense correct,
the picture is not as simple as a first glance might suggest. Below we construct a
non-atomic probability Borel measure on the interval [0, 1] that is concentrated on
the Cantor set: the complement of the Cantor set is negligible from the point of view
of that measure. Thus, in some sense this measure has properties opposite to those of
the Lebesgue measure: the Lebesgue measure of the Cantor set is equal to 0, while
that of the complement of the Cantor set is equal to 1 (Subsection2.3.1 Example1).
The constructed measure and its distribution function— the Cantor staircase—will
provide a source of important examples in the sequel.

As usual, we denote the Cantor set by K, and the intervals of length 1/3n that are
removed from [0, 1] at thenth stepof the constructionofK byΔn

j , j = 1, 2, . . . , 2n−1.
For fixed n we label the intervals Δn

j in increasing order: Δ1
1 = (1/3, 2/3), Δ2

1 =
(1/9, 2/9), Δ2

2 = (7/9, 8/9), and so on.
The main idea of the construction of the sought-for measure is to define its distri-

bution function F so that the measures of all intervalsΔn
j will be equal to zero, while

the measures of the symmetric parts of the set K will be equal to one another. Thus,
K = (K ∩ [0, 1/3]) ∪ (K ∩ [2/3, 1]), and the parts K ∩ [0, 1/3] and K ∩ [2/3, 1]
are symmetric, so it is natural to set their measures equal to 1/2. By the same
symmetry considerations, the measures of the sets K ∩ [0, 1/9], K ∩ [2/9, 3/9],
K ∩ [6/9, 7/9], and K ∩ [8/9, 1] must be equal to 1/4, and so on. Accordingly, we
define the distribution function F as follows: we put F(t) = 1

2 on Δ1
1, F(t) = 1/4

on Δ2
1, F(t) = 3/4 on Δ2

2,…, and on Δn
j we put F(t) = (2 j − 1)/2n ,…. We have

thus defined the distribution function on a dense set, namely, the complement of
K. It is readily seen that this function F is uniformly continuous on [0, 1] \ K:
if |x − y| < 1/3n , then |F(x) − F(y)| � 1/2n . It follows (Subsection1.3.4) that F
extends uniquely to a continuous function on the whole interval. The resultingmono-
tone continuous function is called the Cantor staircase and is denoted by FK. The
Borel measureμK on [0, 1]with distribution function FK is referred to as ameasure,
uniformly distributed on the Cantor set.

Exercises

1. To understand the origin of the term “Cantor staircase”, draw the graph of the
function FK.

2. Provide the explicit expression of the value of FK(t) in terms of the triadic expan-
sion of the number t .
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3. Prove that the image of the Cantor set under the function FK(t) is the whole
interval [0, 1].
4. Let �1 be a set, (�,�,μ) a measure space, f : �1 → � a surjective map.
Then the family of sets �1 = {

f −1(A) : A ∈ �
}
is a σ -algebra on �, and the rule

μ1
(
f −1(A)

) = μ(A) defines a countably additive measure μ1 on �1. If the mea-
sure space (�,�,μ) is complete, is the measure space (�1, �1, μ1) necessarily
complete?

5. For a function f : [0, 1] → [0, 1], call the point x ∈ [0, 1] a sticking point if its
preimage f −1(x) consists of more than one point. Show that the set of sticking points
of a monotone function is at most countable.

6. Let f : [0, 1] → [0, 1] be an increasing function. Then for any collection of
subsets An ⊂ [0, 1], n ∈ M , the symmetric difference of the sets

⋃
n∈M f (An) and

f
(⋃

n∈M An
)
is at most countable.

7. Let f : [0, 1] → [0, 1] be an increasing function. Then the family of all subsets
A ⊂ [0, 1] for which f (A) is a Borel set is a σ -algebra containing all the intervals.

8. From the preceding exercise it follows that the image of a Borel set under a
monotone function is again a Borel set.

9. Let μ be a non-atomic Borel measure on [0, 1], F its distribution function, and λ

the Lebesgue measure. Then μ(A) = λ (F(A)) for any Borel subset A ⊂ [0, 1].

2.3.7 σ -Finite Measures and the Lebesgue Measure
on the Real Line

In many problems it is reasonable to allow a measure to take not only finite positive
values, but on some sets also the value+∞. One of these generalizations is the notion
of a σ -finite measure.

Definition 1. Let � be a σ -algebra of subsets of a set �. A map μ : � → [0,+∞]
is called a σ -finite measure if it satisfies the following axioms:

1. Countable additivity: μ
(⊔∞

k=1 Ak
) = ∑∞

k=1 μ(Ak) for all Ak ∈ �.

2. σ -finiteness: the whole set� can be written as� = ⊔∞
k=1 Ak , where Ak ∈ � and

μ(Ak) < ∞.

A typical example of a σ -finite measure is the Lebesgue measure on the real line.

Definition 2. A set A ⊂ R is said to be Lebesgue measurable if its intersection with
any finite interval is a Lebesgue-measurable subset of that interval. The Lebesgue
measure of a set A is defined by means of the measures of the intersections of A with
finite intervals: λ(A) = ∑+∞

n=−∞ λ(A ∩ [n, n + 1)).
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A triple (�,�,μ), where � is a set endowed with a σ -algebra � of subsets
and μ is a σ -finite measure on �, is called a space with σ -finite measure or a σ -
finite measure space. The ordinary measure spaces are also called spaces with finite
measure, or finite measure spaceswhenever one needs to emphasize that the measure
is finite.

Exercises

1. The Lebesgue-measurable subsets of the real line form a σ -algebra, and the
Lebesgue measure on the line is a σ -finite measure.

2. Any Borel subset of the real line is Lebesgue measurable.

3. For measurable subsets A of the real line the Lebesgue measure can be calculated
by the formulas

λ(A) = lim
n,m→∞ λ(A ∩ [−n,m]) = lim

n→∞ λ(A ∩ [−n, n]).

4. The Lebesgue measure of an open subset of the real line is equal to the sum of
the lengths of the intervals composing the subset.

5. The Lebesgue measure of a Lebesgue-measurable subset A of the real line coin-
cides with its outer measure λ∗(A) = inf{λ(B) : B open, B ⊃ A}.
6. Every Lebesgue-measurable subset of the real line can be written as the union of
a Borel set and a set of measure zero.

7. Let M be an index set and (�n, �n, μn), n ∈ M , be finite measure spaces such
that the sets �n are pairwise disjoint. Put � = ⋃

n∈M �n , define the σ -algebra �

as the family of all sets of the form A = ⋃
n∈M An with An ∈ �n , and put μ(A) =∑

n∈M μ(An). Under what conditions is (�,�,μ)aσ -finite measure space? A finite
measure space?

8. Let (�,�,μ) be a σ -finite measure space. Then for any increasing sequence An

of measurable sets it holds that μ
(⋃∞

k=1 Ak
) = limk→∞ μ(Ak).

9. For finite measures we noted earlier the following property (Proposition2 in
Subsection2.1.4): if An ∈ �, n = 1, 2, . . ., is a decreasing chain of sets (i.e.,
A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ · · · ), then μ

(⋂∞
k=1 Ak

) = limk→∞ μ(Ak). On the exam-
ple of the Lebesgue measure show that for σ -finite measures this property does not
hold: there exists a decreasing chain of measurable sets An such that λ(An) = +∞
and λ

(⋂∞
k=1 Ak

) = 0 (i.e., = limk→∞ μ(Ak)). Nevertheless, if one assumes that the
measures of the sets An are finite, the property also holds in σ -finite measure spaces.
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Comments on the Exercises

Subsection2.1.1

Exercise2. The smallest algebra of sets on [0, 1] that contains all single-point sub-
sets (singletons) consists of all finite subsets and all subsets (called cofinite) whose
complement is finite.

Subsection2.1.2

Exercise7. Write A as
⋂∞

n=1 An , where the An are open. Then An ⊃ A, and hence
are dense sets. Accordingly, X \ A = ⋃∞

n=1 (X \ An) and all the sets X \ An are
closed and nowhere dense (see Exercise1 in Subsection1.3.6).

Exercise8. Pass to complements and use the preceding exercise.

Exercise9. By Exercise7 in Subsection2.1.2, A \ A is a set of first category in A.

Exercise11. Any countable subset of an interval is a set of first category, and any
dense Gδ-subset of an interval is of second category.

Exercise12. Let f and f be the lower and respectively upper envelope of
the function f (Exercise3 in Subsection1.2.4). Then dc( f ) can be expressed as
⋃∞

n=1

{
t : f (t) − f (t) � 1/n

}
, where each of the sets

{
t : f (t) − f (t) � 1/n

}
is

closed.

Exercise14. Suppose the functions fn are continuous and converge to f at all
points asn→∞. Then f −1([a,+∞))=⋂∞

m=1

⋂∞
k=1

⋃∞
n=k f −1

k ((a− 1
m ,+∞))∈Gδ .

Exercise15. Use Exercises13, 9 and 14.

Exercise18. See Lemma1 in Subsection8.1.1.

Exercise19. Use Exercise11.

Subsection2.1.3

Exercise1. Fix an open set U ⊂ X1 and consider the family � of all subsets
V ⊂ X2 such thatU × V ∈ B. Then� is a σ -algebra that contains all the open sets,
and so � ⊃ B2. That is, the Borel sets are precisely the sets of the form U × V ,
where U ⊂ X1 is open and V ∈ B2. Now fix V ∈ B2 and consider the family Ψ of
all subsets U ⊂ X1 with the property that U × V ∈ B. Then Ψ is a σ -algebra on
X1 that contains all open sets, and so Ψ ⊃ B1. Hence, all the “rectangles” A1 × A2,
where A1 ∈ B1 and A2 ∈ B2, belong toB. It follows that B1 ⊗ B2 ⊂ B.
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Exercise2. For any point x = (x1, x2) ∈ X1 × X2, the productB1 ⊗ B2 contains
all neighborhoods of x of the form B(x1, r1) × B(x2, r2), i.e., a neighborhood basis
of x . In view of the separability, every open set in X1 × X2 can be written as a union
of sets of the form B(x1, r1) × B(x2, r2). Therefore,B1 ⊗ B2 contains all the open
sets, and hence also all the Borel sets in X1 × X2.

Exercise3. In general, the answer may be negative for X1 = X2 = [0, 1] endowed
with the discrete metric. See Exercise5 and the comments to it given below.

Exercise5. The answer relies on axiomatic set theory (say, some version of the
Continuum Hypothesis is assumed to hold). In some of the axiomatic systems these
families of sets are not identical, see [50]. I am grateful to Taras Banakh for commu-
nicating this reference to me.

Exercise6. Fix t1 ∈ �1 and consider the family � of all sets A ⊂ �1 × �2 for
which At1 ∈ �2. Then � is a σ -algebra that contains all the “rectangles”. Conse-
quently, � ⊃ �1 ⊗ �2.

Subsection2.1.5

Exercises4–6. Although these problems can be solved directly, the most ele-
gant way of doing this relies on the correspondence between sets and their char-
acteristic functions (Subsection3.1.3), and the utilization of the normed space
L1(�,�,μ) and its completeness (Subsections6.1.3 and 6.3.2). Namely, the map
A �→ 1A reduces all these problems to the analogous problems for the subset
{1A : A ∈ �} ⊂ L1(�,�,μ). The solution of Exercise4 reduces to proving that
μ(A�B) = ‖1A − 1B‖, and that of Exercise6— to the closedness of {1A : A ∈ �}
in the complete metric space L1(�,�,μ).

Subsection2.1.6

Exercise2. Supposeμ (A1 ∩ A2) = 0. Since A1 is an atom, for any subset of non-
zero measure of the set A1 its complement in A1 has measure 0. Consequently, we
have μ (A1 \ (A1 ∩ A2)) = 0. For the same reason, μ (A2 \ (A1 ∩ A2)) = 0. There-
fore, also μ (A1�A2) = 0.

Exercise9. The innocent looking “conversely” part is far from easy. Let us sketch
the shortest proof known to us, which relies on Hahn’s decomposition for charges
(signed measures) (Subsection7.1.2). Let B be an atom forμ′

1. On the σ -algebra�B

of subsets of B define the charge ν by ν(A) = μ′
1(A) − μ′

2(A). Let B = B+ � B− be
Hahn’s decomposition of B for ν, that is, ν(A) � 0 for all A ⊂ B+ and ν(D) � 0 for
all D ⊂ B−. Then for every A ∈ �B+ with μ(A) > 0 we have μ′

1(A) = 1
2 (ν(A) +

μ(A)) > 0, so μ′
1(A) = μ′

1(B) because B was an atom of μ′
1. This applies also to

A = B+, and consequently μ′
1(B

+) = μ′
1(B). This means that for every A ∈ �B+

with μ(A) > 0 we have μ′
1(A) = μ′

1(B
+) and so μ′

1(B
+ \ A) = 0. Then,
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μ′
2(B

+ \ A) = μ′
1(B

+ \ A) − ν(B+ \ A) = −ν(B+ \ A) � 0,

so also μ′
2(B

+ \ A) = 0. Thus, we have shown that μ(B+ \ A) = 0 for every
A ∈ �B+ with μ(A) > 0, i.e. B+ is an atom for μ. μ′

1-equivalence of B and B+
follows from the already established equality μ′

1(B
+) = μ′

1(B).

Exercise15. A much more general result, known as the Lyapunov convexity the-
orem, can be found in Subsection18.2.4.

Subsection2.2.1

Exercise2. Take � = {[0, 1], [ 12 , 1
]}

and put μ([0, 1]) = 1, μ
([

1
2 , 1

]) = 2.

Exercise3. Take� = {[
0, 2

3

]
,
[
1
3 , 1

]}
and putμ

([
0, 2

3

]) = μ
([

1
3 , 1

]) = 1. Then
A(�) = {∅, [0, 1] ,

[
0, 2

3

]
,
[
1
3 , 1

]
,
[
1
3 ,

2
3

]
,
[
0, 1

3

)
,
(
2
3 , 1

]
,
[
0, 1

3

) � (
2
3 , 1

]}
, and one

can define the extended measure to have μ
([

1
3 ,

2
3

]) = 0 (and then μ
([
0, 1

3

)) =
μ

((
2
3 , 1

]) = 1), or alternatively to have μ
([

1
3 ,

2
3

]) = μ
([
0, 1

3

)) = μ
((

2
3 , 1

]) = 1
2 .

Exercise6. According to a theorem of the author [58], the assertion in question
remains valid in a considerably more general setting: for convex sets in Hilbert space
and inscribed balls, instead of triangles in the plane and discs. Later a proof in the
two-dimensional case was independently obtained by András Bezdek [49].

Subsection2.2.4

Exercise10. Use the fact (established in the exercises at the end of the previous
Subsection2.2.3) that the measure space obtained, as described in Sects. 2.2.1–2.2.3,
by extending the measureμ from the semiring� ⊂ �0, is equal to

(
�,�′

0, μ
)
. After

that check that the proof of the monotone class theorem for sets works in this case
as well.

Subsection2.3.1

Exercise4. The required set A can be constructed analogously to the Cantor set,
with the difference that the removed intervals must be “small”, namely, with total
length smaller than 1. Moreover, one can ensure that λ(A) is arbitrarily close to 1.

Exercise5. Taking A = ⋃∞
n=1 An , where An are nowhere dense sets with λ(An) �

1 − 1/n, we obtain a set of first category with λ(A) = 1. The complement of A is
the required set.

Subsection2.3.3

Exercise3. See [36, Chap.1, §2]. Another solution, based on the theory of
Lebesgue integration, is outlined in Exercise6 of Subsection7.2.4.
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Exercise4. See [36, Chap.1, §2]. Another, more natural solution based on the
derivative of a Lebesgue integral, regarded as a function of the upper integration
limit, is outlined in Exercise1 of Subsection7.2.4.

Subsection2.3.4

Exercise3. In order that λ∗(A) = λ∗(B) = 1, it is necessary and sufficient that
both A and B intersect all closed sets of non-zero measure. Since there exist only
a continuum of closed subsets of the interval, one can write the closed sets of pos-
itive measure as a transfinite sequence Kγ , γ < c, where c is the smallest ordi-
nal of continuum cardinality. Now for each γ < c we choose two distinct points
aγ , bγ ∈ Kγ \ ({aβ}β<γ ∪ {bβ}β<γ

)
. That such a choice is possible is justified by

the fact that at each step the set Kγ is a continuum, while the set {aβ}β<γ ∪ {bβ}β<γ

of already chosen points has cardinality smaller than that of the continuum. It remains
to put A = {aγ }γ<c, B = [0, 1] \ A ⊃ {bγ }γ<c.

Exercise5. One of the possible constructions is provided in the remarks at the end
of the proof of [63, Theorem2.16].

Subsection2.3.7

Exercise9. The promised example is An = [n,+∞), n = 1, 2, . . .



Chapter 3
Measurable Functions

Measure and integration theory studies above all real-valued functions. To avoid
unnecessary repetition, let us agree that, unless otherwise stipulated, the term “func-
tion” will be used for real-valued functions. Thus, when we say “function f on �”,
we mean that f is a function from � to R. For functions whose range does not lie in
R we will use the term “map” or “mapping”.

The operations on functions will be understood pointwise. For example, f1 + f2
is the function on � given by the rule ( f1 + f2)(t) = f1(t) + f2(t), the function
max{ f, g} is defined as max{ f, g}(t) = max{ f (t), g(t)}, and so on. The limit of a
sequence of functions will also be understood as the pointwise limit.

3.1 Measurable Functions and Operations on Them

In this section (�,�) will be a set endowed with a σ -algebra of its subsets. All
functions, unless otherwise stipulated, will be assumed to be defined on �; the
elements of the σ -algebra � will be referred to as measurable sets.

3.1.1 Measurability Criterion

Definition 1. Let (�1, �1) and (�2, �2)be sets endowedwithσ -algebras of subsets.
A map f : �1 → �2 is said to be measurable if f −1(A) ∈ �1 for all A ∈ �2.

As the definition indicates, measurable maps play in measure theory the same role
that continuous maps do in the theory of topological spaces. Particular examples of
measurable maps are the measurable functions introduced below.

© Springer International Publishing AG, part of Springer Nature 2018
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Definition 2. A function f on � is said to be measurable (more specifically, mea-
surable with respect to the σ -algebra �, or �-measurable), if for any Borel subset
A ⊂ R the set f −1(A) is measurable.

Theorem 1. Let (�1, �1) and (�2, �2) be sets endowed with σ -algebras of their
subsets, and let � be a family of subsets of �2 that generates the σ -algebra �2. In
order for the map f : �1 → �2 to be measurable it is necessary and sufficient that
for any set A ∈ � its preimage f −1(A) lies in the σ -algebra �1.

Proof. If f is measurable, then the preimage of any set A ∈ �2 lies in �1. In partic-
ular, �1 contains the preimages of all sets A ∈ �.

Conversely, suppose that �1 contains all sets of the form f −1(A) with A ∈ �.
We need to show that the preimages of all elements of the family �2 lie in �1. To do
this, we introduce the following family �1 of subsets of the set �2: a set A belongs
to �1 if f −1(A) ∈ �1. It is readily verified that �1 is a σ -algebra and contains all
elements of the family�. Since�2 is the smallest σ -algebra containing�, it follows
that �2 ⊂ �1, as we needed to show. �

Let f : � → R be a function and a ∈ R. Denote f −1((a,+∞)) by f>a , i.e., f>a

is the set of all t ∈ � at which f (t) > a. Since (see Subsection 2.1.2, Proposition2)
the sets (a,+∞) with a ∈ R generate the σ -algebraB of Borel set on R, we obtain
the following simple measurability criterion:

Corollary 1. The function f : � → R is measurable if and only if all the sets f>a

with a ∈ R are measurable. �

Corollary 2. Let (�,�), (�1, �1), and (�2, �2) be sets endowed with σ -algebras
of subsets. Endow, as usual, the Cartesian product �1 × �2 with the σ -algebra
�1 ⊗ �2 (see Subsection2.1.3). Then for any measurable maps f1 : � → �2 and
f2 : � → �2, the map f : � → �1 × �2 given by the rule f (t) = ( f1(t), f2(t)) is
also measurable.

Proof. By definition, the σ -algebra �1 ⊗ �2 is generated by the sets A1 × A2 with
A1 ∈ �1 and A2 ∈ �2. We have f −1(A1 × A2) = f −1

1 (A1) ∩ f −1
2 (A2) ∈ �. �

If we take for � a topological space and for � the σ -algebra B of Borel sets on
�, we obtain a particular case of measurability, Borel measurability:

Definition 3. A function f on the topological space� is said to beBorel measurable
if the preimage f −1(A) of any Borel subset A of the real line is a Borel subset of �.

As an example of a Borel-measurable function one can take any continuous func-
tion. Indeed, for a continuous function f all the sets f>a are open, and hence belong
to the σ -algebra B of Borel sets, i.e., the above measurability criterion applies.

For an arbitrary set A ∈ � we can consider the σ -algebra �A of all measurable
subsets of A. If the restriction of the function f to A is measurable with respect to
the σ -algebra �A, then f is said to be measurable on the subset A.
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Exercises

1. If the function f is measurable, then for any a ∈ R the sets f �=a = {t ∈ � :
f (t) �= a}, f=a = {t ∈ � : f (t) = a}, f�a = {t ∈ � : f (t) � a}, f<a = {t ∈ � :
f (t) < a}, and f�a = {t ∈ � : f (t) � a} are measurable.

2. Let f be a Borel-measurable function on the interval [a, b]. Then the set of
maximum points of f is a Borel set.

3. The set of local maximum points of a Borel-measurable function on the real line
is a Borel set.

4. Let (�1, �1) and (�2, �2) be sets endowed with σ -algebras of subsets, and let
�1 × �2 be endowed with the σ -algebra �1 ⊗ �2. Prove that the projection maps
P1 and P2, which send each element (t1, t2) ∈ �1 × �2 into its coordinates t1 and
t2, respectively, are measurable.

5. Prove the converse of Corollary2: if the map f : � → �1 × �2 given by f (t) =
( f1(t), f2(t)) is measurable, then the maps f1 and f2 are also measurable.

6. Show that every monotone function on the real line is Borel measurable.

7. Let f be a Borel-measurable function on the interval [a, b]. Then the set of
maximum points of f is a Borel set.

8. Let f be a measurable function on �. Prove that the functions | f |, sign f , f +,
and f − are measurable.

9. If the function f is measurable, then λ f is measurable for any λ ∈ R.

10. Let the function f be measurable on �. Then f is measurable on any subset
A ∈ �.

11. Suppose that � can be written as the union of two measurable subsets A and B,
and the function f is measurable on both A and B. Then f is measurable on �.

12. Give an example of a bijective measurable map f : �1 → �2 whose inverse is
not measurable.

13. Let g : R → R be a continuous function and A be a Lebesgue-measurable set
in R.

(a) Is the set g(A) necessarily Borel measurable?

(b) Lebesgue measurable?

(c) Can the set g−1(A) be not Lebesgue measurable?

14. Let g : R → R be a continuous function and A be an open subset of R. Then
g(A) is a Borel set. Moreover, g(A) is an Fσ -set.
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15. Let g : R → R be a continuous function and A be a Borel set in R. Can the set
g(A) be not Borel?

16. Let (�,�,μ) be a measure space. Two measurable functions f and g on �

are said to be equimeasurable, if μ( f>a) = μ(g>a) for all a ∈ R. Show that if f
and g are equimeasurable then μ( f −1(A)) = μ(g−1(A)) for any Borel set A of real
numbers.

3.1.2 Elementary Properties of Measurable Functions

Theorem 1. Let (�1, �1), (�2, �2), and (�3, �3) be sets endowed with σ -algebras
of subsets, and let f : �1 → �2 and g : �2 → �3 be measurable maps. Then the
composition g ◦ f : �1 → �3 is also a measurable map.

Proof. Let A ∈ �3. Then g−1(A) ∈ �2, and so (g ◦ f )−1(A) = f −1(g−1(A)) ∈ �1,
as needed. �

Corollary 1.

1. Suppose the function f : � → R is measurable and the function g : R → R is
Borel measurable. Then the composition g ◦ f is also measurable.

2. In particular, if f : � → R is measurable and g : R → R is continuous, then
g ◦ f is measurable.

3. Suppose the functions f1, f2 : � → R aremeasurable, and the function g : R2 →
R of two variables is continuous. Then the function f (t) = g( f1(t), f2(t)) is
measurable.

Proof. Only item 3 requires a proof. Consider the planeR2 = R × R, endowed with
the σ -algebra of Borel sets, or, which is the same, with the product of the σ -algebras
of Borel sets on the line R. By Corollary2 in the preceding subsection, the function
F : � → R

2 defined by the rule F(t) = ( f1(t), f2(t)) is measurable. It remains to
note that f = g ◦ F and apply the preceding theorem. �

Theorem 2. The class ofmeasurable functions on (�,�) enjoys the following prop-
erties: if the functions f and g are measurable, then so are the functions f + g, f g,
max{ f, g}, and min{ f, g}. Moreover, the functions | f |, sign f , f + = max{ f, 0},
f − = (− f )+, and λ f with any λ ∈ R are measurable. If f does not vanish at any
point, then the function 1/ f is measurable.

Proof. The functions g1 (x, y) = x + y and g2 (x, y) = xy of two variables are con-
tinuous, and so are the functions max{x, y} and min{x, y}. By item 3 of the last
corollary, this implies that the functions f + g, f g, max{ f, g}, and min{ f, g} are
measurable. The continuity of the functions |t |, t+, t−, and λt , in conjunction with
item 2 of the preceding corollary, guarantee the measurability of the functions | f |,
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f +, f −, and λ f . The measurability of the function sign f follows from item 1 of
the same corollary and the Borel measurability of the function sign t . Finally, if f
does not vanish at any point, then the function 1/ f can be represented as the compo-
sition of the measurable function f : � → R \ {0} (where R \ {0} is endowed with
the σ -algebra of Borel sets), and the continuous — and hence Borel-measurable —
function 1/t : R\{0} → R. �

Theorem 3. Suppose the sequence ( fn) of measurable functions converges point-
wise to a function f , i.e., for any t ∈ �, fn(t) → f (t) as n → ∞. Then f is a
measurable function.

Proof. Fix a number a ∈ R. The value of the function f at the point t ∈ � is larger
than a if and only if there exist a rational number r ∈ Q and a number n ∈ N such
that for anym > n it holds that fm(t) > a + r . Translating this statement into the lan-
guageofmeasure theory,weconclude that f>a =⋃

r∈Q(
⋃∞

n=1

⋂∞
m=n+1 ( fm)>a+r ∈�.

�
Applying this theorem to the sequence of partial sums of a series we obtain the

following statement.

Corollary 2. If a series of measurable functions converges pointwise, then its sum
is a measurable function. �

Exercises

1. Prove directly that if the functions f and g are measurable, then for any a ∈ R

the set ( f + g)>a belongs to �. According to the criterion in the preceding section,
this will provide another proof of the measurability of the sum of two measurable
functions.

2. Express the sets (max{ f, g})>a and (min{ f, g})>a in terms of the analogous sets
for the functions f and g.

3. If the functions f and g are measurable, then the sets of points t ∈ � in which
f = g, f �= g, f > g, and f < g, respectively, are measurable.

4. Let ( fn) be a pointwise bounded sequence of measurable functions. Then the
functions f = supn fn and g = limn→∞ fn are also measurable.

5. Let A denote the set of all differentiability points of the function f on the line
(see Exercise13 in Subsection2.1.2). Show that the function f ′ is Borel-measurable
on A.

6. Identify in the standard way the field C of complex numbers with the plane R2,
and endow C with the σ -algebra of Borel subsets of the plane. A measurable map
f : � → C is called a measurable complex-valued function. Prove that f : � → C

is measurable if and only if the real-valued functions Re f and Im f are measurable.
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7. Prove the following properties of complex-valued functions:

(1) if the functions f and g are measurable, then so is their sum f + g;

(2) if the function f is measurable, then so is λ f for any λ ∈ C;

(3) if the functions f and g are measurable, then so is their product f g;

(4) if the function f is measurable, then | f | is a measurable real-valued function.

3.1.3 The Characteristic Function of a Set

Let � be a set and A be a subset of �. The characteristic function of the set A
is the function 1A on � equal to 1 on A and equal to zero on the complement
� \ A of A. Alternative notations found in the literature are χA and IA. We note
that the last notation is most frequently encountered in probability theory, where
the characteristic function of a set is called the indicator of that set, and the term
“characteristic function” is used for a completely different object. Of course, it would
be reasonable, in the notation for the characteristic function, to account not only for
the set A, but also for the ambient set �. For instance, one and the same set A of real
numbers can be regarded as a subset of an interval in one situation, and as a subset of
the real line in another. In the first case the function 1A is defined on the interval, and
in the second on the real line, and the same symbol is used in both situations. This
slight ambiguity does not have unpleasant consequences: here, like in many other
situations, a function defined on a subset is tacitly extended to the ambient set by
zero.

The properties listed in Exercises1–5 below will be used in the sequel, and for
this reason the reader is advised to pay close attention to them.

Exercises

1. Let (�,�) be a set endowedwith aσ -algebra of subsets, and A ⊂ �. The function
1A is measurable if and only if the set A is measurable.

2. 1A∪B = max{1A,1B}.
3. 1A∩B = min{1A,1B} = 1A · 1B .

4. If the sets A and B are disjoint, then 1A�B = 1A + 1B .

5. Let A = ⊔∞
n=1 An . Then 1A = ∑∞

n=1 1An .

6. Let (An) be a sequence of sets. Then lim
n→∞1An is the characteristic function of a

set A, called the upper limit of the sequence (An). Express the set A in terms of the
sets An by means of the usual operations of union and intersection.
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7. Consider the set 2N of all subsets of the natural numbers with the topology
described inExercise7 of Subsection1.4.4.Verify that a sequence of sets converges in
this topology if and only if the characteristic functions of the sets converge pointwise
to the corresponding characteristic function.

3.1.4 Simple Functions. Lebesgue Approximation
of Measurable Functions by Simple Ones.
Measurability on the Completion of a Measure Space

Let (�,�) be a set endowed with a σ -algebra. A function f on � is called simple
if it can be represented as f = ∑∞

n=1 an1An , where An ∈ � is a disjoint sequence of
sets and an are numbers. Since the sets An are disjoint, the series

∑∞
n=1 an1An does

not merely converge pointwise: for any point t ∈ � all the terms of the series, except
possibly for one (with the index n for which t ∈ An), vanish at t . On each of the sets
An the function f is equal to the constant an , and f (t) = 0 in the complement of
the union of all An . Simple functions are also called countably-valued functions or,
in more detail, countably-valued measurable functions. This terminology is justified
by the following assertion.

Theorem 1. The function f is simple if and only if it is measurable and the set of
its values (i.e., its image, or range) is at most countable.

Proof. The measurability of a simple function f = ∑∞
n=1 an1An can be verified

directly (the preimage of any set under f is a finite or countable union of some of
the sets An); alternatively, one can refer to the measurability of the sum of a series
of measurable functions. Further, f (�) ⊂ {an}∞n=1 ∪ {0}, which shows that the set
of all values of f is at most countab le. Conversely, suppose f is measurable and
the set M of its values is at most countable. Then for any t ∈ M , the set f −1(t) is
measurable and f = ∑

t∈M t1 f −1(t). �
If the set of values of a simple function is finite, then the function is said to be

finitely-valued.

Theorem 2. The classes of finitely-valued and countably-valued functions are stable
under taking sums and products, as well as the maximum and the minimum of two
functions.

Proof. We already know that the listed operations preserve measurability. Now let
f and g be two functions on �, and let f (�) and g(�) be their images. If f (�) and
g(�) are finite (countable), then the sets

f (�) + g(�) = {t + r : t ∈ f (�), r ∈ g(�)}

and
f (�) · g(�) = {t · r : t ∈ f (�), r ∈ g(�)}
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are finite (respectively, countable). The assertion of the theorem follows from the
fact that the images of the functions f + g, f g, max{ f, g}, and min{ f, g} lie in
f (�) + g(�), f (�) · g(�), f (�) ∪ g(�), and f (�) ∪ g(�), respectively. �

Measurable functions can have a rather complicated structure. For this reason, to
facilitate the study of their structure one uses approximations ofmeasurable functions
by simple functions.

Theorem 3. Let f be a measurable function on �. Then for any ε > 0 there exists
a simple function fε � f which at all points differs from f by at most ε. Moreover,
if f � 0, then fε can also be chosen to be non-negative, and if f is bounded, then
for fε one can take a finitely-valued function.

Proof. For each integer n introduce the number tn = nε and the intervals Δn =
[tn, tn+1). Denote the set f −1(Δn) by An . Some of the sets An may be empty. In
particular, if f � 0, then all the An with index n < 0 are empty. Further, if f is
bounded in modulus by some constant C , then all the An with |n| > (C/ε) + 1 are
empty. The sets An are pairwise disjoint, their union is the whole �, and on An

the values of the function f satisfy the inequalities tn � f (t) < tn+1. We define the
function fε so that its value on An is equal to the corresponding tn: fε = ∑∞

n=1 tn1An .
The function fε defined in this way enjoys all the properties stated in the theorem.

Indeed, on each An we have tn = fε(t) � f (t) < tn+1, i.e., f (t) − ε < fε(t) � f (t)
at all points t ∈ �. If f � 0, then fε cannot take negative values tn: the sets An that
correspond to negative tn will be empty. If f is bounded, then all the An , except for
a finite number of them, will be empty, and so fε will be finitely-valued. �

Corollary 1. For anymeasurable function f there exists a non-decreasing sequence
f1 � f2 � · · · of simple functions which converges uniformly to f . If, in addition,
f is non-negative (bounded), then the functions fn can be chosen to be non-negative
(respectively, finitely-valued).

Proof. We use the preceding theorem and chose a simple function f1 such that
0 � f − f1 � 1. The function f − f1 is measurable and non-negative, so by the
preceding theorem there exists a simple non-negative function g1 which satisfies
the inequalities 0 � f − f1 − g1 � 1/2. Put f2 = f1 + g1. Then f1 � f2 and 0 �
f − f2 � 1/2.The function f − f2 is againmeasurable andnon-negative, and soone
can approximate it by a simple function g2: 0 � f − f2 − g2 � 1/3. Naturally, we
define the function f3 as f2 + g2. Continuing this process, we obtain an increasing
sequence of simple functions satisfying the conditions 0 � f − fn � 1/n, which
ensures that the sequence converges uniformly. Ensuring that the additional non-
negativity or finite-valuedness requirements in the statement of the corollary are
satisfied presents no difficulty. �

The proof of the next result is based on the fact that measurable functions can be
approximated by simple ones.
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Theorem 4. Let (�,�,μ) be a measure space and (�,�′, μ) be its completion.
Then for any �′-measurable function f on �, there exists a �-measurable function
g that coincides with f almost everywhere.

Proof. First we will prove this assertion for simple functions. Let f = ∑∞
n=1 an1An ,

where the sets An belong to the σ -algebra �′ and are disjoint. In each of the sets
An we choose a subset Bn ∈ � for which μ(An \ Bn) = 0 (see Exercise3 in Sub-
section2.1.5). Then g = ∑∞

n=1 an1Bn is the sought-for function. Now let f be an
arbitrary �′-measurable function, let ( fn) be a sequence of simple �′-measurable
functions that converges pointwise to f , and finally let gn be �-measurable func-
tions that coincide almost everywhere with the corresponding fn . Denote by A ⊂ �

the negligible set in the complement of which fn = gn for all n = 1, 2, . . .. By the
definition of negligible sets, there exists a �-measurable set B of null measure such
that B ⊃ A. Consider the full-measure set C = �\A. The functions gn · 1C are �-
measurable, converge on C to f , and vanish in the complement of C . That is, the
functions gn · 1C converge pointwise to g = f · 1C , and, by Theorem3 of Subsec-
tion3.1.2, this limit function is �-measurable. It remains to observe that g = f
almost everywhere, since the set B where this equality can fail is negligible. �

Exercises

1. The function fε figuring in the statement of Theorem3 can be chosen so that
fε(�) ⊂ f (�).

2. Let X be ametric space endowedwith theσ -algebra ofBorel sets, and let f : � →
X be a measurable map. Then the following conditions are equivalent:

— for every ε > 0 there exists a countably-valued map fε : � → X such that
ρ( f (t), fε(t)) � ε for all t ∈ �;

— the set f (�) is separable.

3. In the setting of the preceding exercise, the following conditions are equivalent:

— for every ε > 0, there exist a finitely-valued measurable map fε : � → X such
that ρ( f (t), fε(t)) � ε for all t ∈ �;

— the set f (�) is precompact.

4. The map fε in the two preceding exercises can be chosen so that it will satisfy
fε(�) ⊂ f (�).

5. Show that for every Lebesgue-measurable function f on the interval one can
find an equimeasurable decreasing function f̃ (for the definition of equimeasura-
bility, see Exercise 16 in Subsection3.1.1). This function f̃ is called a decreasing
rearrangement of the function f .
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3.2 Main Types of Convergence

In this section (�,�,μ) will be a fixed finite measure space, and the functions f ,
fn , and all the others will be assumed, unless otherwise stipulated, to be defined on
�, measurable, and real-valued.

3.2.1 Almost Everywhere Convergence

The sequence of functions ( fn) is said to converge almost everywhere to the function
f (written fn

a.e.−→ f ) if the set of all points t ∈ � at which the numerical sequence
fn(t) does not converge to f (t) as n → ∞ is negligible.
We note the following elementary properties of almost everywhere convergence,

the verification of which is left to the reader.

A. If fn
a.e.−→ f and fn

a.e.−→ g, then f
a.e.= g.

B. If fn
a.e.−→ f and fn

a.e.= gn , then gn
a.e.−→ f .

C. If fn
a.e.−→ f , gn

a.e.−→ g, and fn
a.e.
� gn , then f

a.e.
� g.

D. If G : R
2 → R is a continuous function, fn

a.e.−→ f and gn
a.e.−→ g, then

G ( fn, gn)
a.e.−→ G ( f, g). This implies, in particular, the theorems on the limit

of a sum and of a product.

Almost everywhere convergence plays an important role in the theory of the
Lebesgue integral. Under relatively mild additional assumptions (see Subsection4.4)
the integral of the limit function can be calculated as the limit of the integrals of
the terms of the sequence. Moreover, almost everywhere convergence is in many
respects far more convenient to work with than the usual pointwise convergence.
First of all, it is a more general type of convergence, so it is easier to verify. Next,
here, as in general when one deals with properties that hold almost everywhere, we
can ignore the behavior of functions on negligible sets. For example, for a piecewise-
continuous or for a monotone function it is not at all necessary to define the values
in discontinuity points, as they have no influence whatsoever on almost everywhere
convergence! On the other hand, almost everywhere convergence has an essential
drawback: this convergence is not generated by a metric or topology, so there is no
natural way of defining a “rate of convergence” for it. Let us give an example of a
problem where this drawback shows up.

Definition 1. Let X and Y be two families of measurable functions on �. We say
that X is a.e. dense in Y (dense in the sense of almost everywhere convergence) if
for any f ∈ Y there exists a sequence ( fn) of elements of the family X such that
fn

a.e.−→ f .
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Theorem 1. Suppose that X is a.e. dense in Y and Y is a.e. dense in Z. Then X is
a.e. dense in Z. �

This natural property is important not only from the point of view of the inner
harmony of the theory of almost everywhere convergence, but also from the point
of view of applications. For instance, it enables one to show that the family of
continuous functions on an interval is a.e. dense in the family of all Lebesgue-
measurable functions on that interval. Although these results can be established
using only the definition of almost everywhere convergence, devising such proofs
is far from simple (we invite the reader to have a try at it!). If, on the contrary, the
convergence had been given by some topology, the problem would have been rather
trivial (see Exercise4 in Subsection1.2.1). Fortunately, here the following subtle
idea comes to the rescue. As it turns out, the space of measurable functions carries
a topology for which the notion of denseness of a subset coincides precisely with
a.e. denseness, though the convergence in it (the so-called convergence in measure)
is not equivalent to almost everywhere convergence. The study of this topology and
the corresponding type of convergence is addressed next.

3.2.2 Convergence in Measure. Examples

Let a and ε be strictly positive numbers, f a measurable function. We denote by
Ua,ε( f ) the set of all measurable functions g for which μ (|g − f |>a) < ε. (Here, as
earlier, the symbol h>a stands for the set of all points t ∈ � at which h(t) > a). The
topology of convergence in measure on the space of all measurable functions on � is
the topology in which a neighborhood basis of f is provided by the setsUa,ε( f )with
a, ε > 0. Accordingly, a sequence of functions ( fn) is said to converge in measure

to the function f (written fn
μ−→ f ) if for any a > 0,

μ (| fn − f |>a) → 0 as n → +∞.

Theorem 1. Convergence in measure enjoys the following properties:

A. fn
μ−→ f if and only if fn − f

μ−→ 0.

B. If fn
μ−→ f and fn

μ−→ g, then f
a.e.= g.

C. If fn
μ−→ f and fn

a.e.= gn, then gn
μ→ f .

Proof. Properties A and C are obvious. We prove property B. Let A be the set
of all points t ∈ � at which f (t) �= g(t), and An the set of all points t ∈ � at
which | f (t) − g(t)| > 1/n. Since A = ⋃

n∈N An , it suffices to show thatμ(An) = 0
for all n. For any k ∈ N, at each point t ∈ An either | f (t) − fk(t)| > 1/(2n), or
|g(t) − fk(t)| > 1/(2n). Hence, if we denote by Bn,k the set of all points at which
| f (t) − fk(t)| > 1/(2n), and by Cn,k the set of all points where |g(t) − fk(t)| >

1/(2n), then An ⊂ Bn,k ∪ Cn,k . By the definition of convergence in measure, for
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fixed n and k → ∞, the measures of the sets Bn,k and Cn,k tend to 0. Hence, μ(An)

can only be 0. �

Theorem 2. Let X be a family of measurable functions on �. Then every point in
the closure of X in the topology of convergence in measure is the limit of a sequence
of elements of X that converges in measure.

Proof. We use here the idea of Exercise6 of Subsection1.2.1. Let f be a point in the
closure of the set X . Note that the neighborhood Ua,ε( f ) increases with the growth
of a, as well as with the growth of ε. Consider the neighborhoodsUn = U1/n,1/n( f ).
Clearly, U1 ⊃ U2 ⊃ · · · and together the sets Un constitute a neighborhood basis
of f (if Ua,ε( f ) is an arbitrary neighborhood of f , then Ua,ε( f ) ⊃ Un for n >

max {1/a, 1/ε}). By the definition of the closure, all sets X ∩Un are non-empty.
Pick in each set X ∩Un an element fn . Then ( fn) is the sought-for sequence of
elements of the set X that converges in measure to f . �

Example 1 (sliding hump). In the interval [0, 1] consider the subintervals In,k =
[ k−1

2n , k
2n ],n = 0, 1, 2, . . ., k = 1, . . . , 2n . Forfixedn, the intervals In,k , k = 1, . . . , 2n ,

cover the whole interval [0, 1]. Now consider the sequence of functions f1 = 1[0,1],
f2 = 1[0,1/2], f3 = 1[1/2,1], …, f2n+k = 1In,k , …. For each a > 0, the set of points
x ∈ [0, 1] where | f2n+k(x)| > a is either empty (if a � 1), or coincides with In,k .
Since the lengths of the intervals In,k tend to zero when n → ∞, the sequence ( fn)
tends to zero in measure (with respect to the Lebesgue measure). At the same time,
the sequence ( fn) does not tend to zero at any point, since every point of the interval
[0, 1] belongs to infinitely many intervals In,k . This example allows one to get a
feeling for the meaning of the convergence in measure, and at the same time shows
that convergence in measure is not equivalent to almost everywhere convergence.

Exercises

1. In the preceding example, find a subsequence of the sequence ( fn) that tends to
0 at every point.

2. Why are the sets | fn − f |>a in the definition of convergence in measure measur-
able?

3. Verify that our definition of convergence in measure is correct, i.e., that conver-
gence in the topology of convergence inmeasure is indeed equivalent to the condition
appearing in the definition.

4. If fn
μ−→ f , gn

μ−→ g, and fn
a.e.
� gn , then f

a.e.
� g.
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5. On the segment [0, 1] consider the sequence of functions gn(x) = xn . Show that
gn

μ−→ 0 (in the sense of the Lebesgue measure). Does this sequence converge to
zero pointwise? Almost everywhere?

6. Flesh out the proof of Theorem2.

7. μ (| f − h|>a) � μ
(| f − g|> a

2

) + μ
(|g − h|> a

2

)
for any measurable functions

f, g, h and any a > 0.

8. Let fn
μ−→ f and gn

μ−→ g. Then fn + gn
μ−→ f + g.

9. By definition, ( fn) is a Cauchy sequence in the sense of convergence in measure
if μ(| fn − fm |>a) → 0 as n,m → ∞. Prove that any sequence that converges in
measure is a Cauchy sequence in the above sense.

10. The sequence of functions sin(πnx) on [0, 1] does not tend in measure to any
function; moreover, it does not contain a subsequence that converges in measure.

11. Let fn be an increasing sequence of functions and let fn
μ−→ f . Then fn

a.e.−→ f .

12. The expression ρ( f, g) = infa∈(0,+∞)

{
a + μ(| f − g|>a)

}
is a pseudometric

that generates the topology of convergence in measure.

13. Another example: the pseudometric d( f, g) = inf
{
a > 0 : μ(| f − g|>a) � a

}

also gives the topology of convergence in measure.

14. Let (�,�,μ) be a finite measure space and let the measure μ be purely atomic.
Then for functions on� convergence in measure is equivalent to convergence almost
everywhere. If μ is not purely atomic, then these two types of convergence are not
equivalent.

3.2.3 Theorems Connecting Convergence in Measure
to Convergence Almost Everywhere

Definition 1. The upper limit of a sequence of sets (An) is the set lim An =⋂∞
n=1

⋃∞
k=n Ak .

Another commonly used name for the same object is the limit superior, with the
corresponding notation lim supn→∞ An . That our use of the terms “upper limit” or
“limit superior” is natural will become clear once Exercise 6 in Subsection3.1.3 is
solved.

Lemma 1 (on the upper limit of a sequence of sets). Let An ∈ � and A∞ =
lim An. Then

(i) μ(A∞) � limμ(An). In particular, ifμ(A∞) = 0, thenμ(An) → 0 as n → ∞.

(ii) If
∑∞

n=1 μ(An) < ∞, then μ(A∞) = 0.
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Proof. Consider the sets Bn = ⋃∞
k=n Ak . Then A∞ = ⋂∞

n=1 Bn . Since the sets Bn

form a decreasing chain,

lim
n→∞ μ(Bn) = μ(A∞). (3.1)

To prove assertion (i), it remains to note that Bn ⊃ An , andμ(Bn) � μ(An). Further,
if

∑∞
n=1 μ(An) < ∞, thenμ(Bn) �

∑∞
k=n μ(Ak) → 0 as n → ∞, which in view of

(3.1) yields assertion (ii). �

We note that in probability theory the assertion (ii) of the preceding lemma is
known as the “Borel–Cantelli lemma”.

Theorem 1 (Lebesgue). Convergence almost everywhere implies convergence in
measure. Precisely, if f, fn are measurable functions on � and fn → f almost

everywhere, then fn
μ−→ f .

Proof. By hypothesis, the set D of all points at which fn does not converge to f
is negligible (of measure zero). Fix a > 0. Consider the sets An = | fn − f |>a and
A∞ = lim An . By the definition of the upper limit, A∞ = ⋂∞

n=1

⋃∞
k=n Ak , i.e., A∞

is the set of all points t ∈ � with the property that for any n ∈ N there exists a k > n
such that | fn(t) − f (t)| > a. Hence, A∞ ⊂ D and μ(A∞) = 0. By the preceding
lemma, μ(An) → 0 as n → ∞, i.e., μ (| fn − f |>a) → 0 as n → ∞. �

Lemma 2. Let fn be measurable functions, and an and εn be positive numbers such
that an → 0 as n → ∞ and

∑∞
n=1 εn < ∞. Moreover, suppose that fn satisfy the

condition μ
(| fn|>an

)
< εn. Then fn

a.e.−→ 0.

Proof. Denote by D the set of all points where fn does not tend 0, and set
An = | fn|>an , Bn = ⋃∞

k=n Ak , A∞ = lim An = ⋂∞
n=1 Bn . Let t ∈ � be an arbitrary

point such that fn(t) does not tend to zero. For any n ∈ N, there exists k � n such
fk(t) > ak , that is, t ∈ Bn . Hence, D ⊂ Bn for all n, and D ⊂ A∞. At the same time,∑∞

n=1 μ(An) <
∑∞

n=1 εn < ∞ by hypothesis. Applying assertion (ii) of the lemma
on the upper limit of sequence of sets, we conclude that μ(D) � μ(A∞) = 0. �

Theorem 2 (F. Riesz). Any sequence of measurable functions that converges in
measure contains a subsequence that converges almost everywhere.

Proof. Suppose that fn
μ−→ f . Fix an, εn > 0, such that the conditions of the pre-

ceding lemma are satisfied, and choose an increasing sequence of indices mn such
that μ

(| fmn − f |>an

)
< εn . By Lemma2, fmn − f

a.e.−→ 0, hence fmn

a.e.−→ f . �
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Theorem 3 (convergence in measure criterion). The sequence of measurable
functions ( fn) converges in measure to the function f if and only if any subse-
quence of the sequence ( fn), in its turn, contains a subsequence that converges to f
almost everywhere.

Proof. Suppose fn
μ−→ f . Then each subsequence of the sequence ( fn) also con-

verges in measure, so by the preceding theorem, it contains a subsequence that
converges to f almost everywhere. Conversely, suppose that fn does not converge
in measure to f . Then there exist a, ε > 0 and a subsequence (gn) of ( fn) such
that none of the functions gn lies in the neighborhood Ua,ε( f ). It follows that the
subsequence (gn) does not contain subsequences that converge in measure to f ,
and hence, by Theorem1, neither does it contain subsequences that converge almost
everywhere to f . �

Corollary 1. If G : R2 → R is a continuous function, fn
μ−→ f and gn

μ−→ g,

then G ( fn, gn)
μ−→ G ( f, g). In particular, it follows that fn + gn

μ−→ f + g and

fngn
μ−→ f g.

Proof. Use the preceding criterion and the corresponding properties of convergence
almost everywhere. �

Corollary 2 (Theorem1 in Subsection3.2.1). Let X, Y and Z be sets ofmeasurable
functions on �. If X is a.e. dense in Y and Y is a.e. dense in Z, then X is a.e. dense
in Z.

Proof. By Theorem1, in the topology of convergence in measure X is dense in Y
and Y is dense in Z . Therefore (Exercise4 of Subsection1.2.1), X is dense in Z in
the topology of convergence in measure. Hence, by Theorem2 of Subsection3.2.2,
the set X is sequentially dense in Z in the sense of convergence in measure, i.e., for
any f ∈ Z there exists a sequence ( fn) of elements of the set X such that fn

μ−→ f .
It remains to apply Theorem2. �

Exercises

1. Solve Exercise 4 in Subsection3.2.2 based on the results obtained in the current
subsection.

2. Let ( fn) be a Cauchy sequence in the sense of convergence in measure (see
Exercise 9 in Subsection3.2.2). Then ( fn) contains a subsequence that converges
almost everywhere.

3. If a sequence of measurable functions is Cauchy in the sense of convergence in
measure, then it has a limit in the same sense.
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4. Suppose that in some space X of measurable functions on a finite measure space
almost everywhere convergence coincides with convergence in some topology τ

on X . Then in X almost everywhere convergence coincides with convergence in
measure.

5. Almost everywhere convergence in the space of all measurable functions on an
interval cannot be given by a topology.

6. The subset of all continuous functions is a.e. dense in the space of all measurable
functions on an interval.

7. Let (An) be a decreasing chain of sets. Then lim An = ⋂∞
n=1 An andμ( limAn) =

limn→∞ μ(An).

8. For any increasing chain of sets An it also holds thatμ( lim An) = limn→∞ μ(An),
because in this case lim An = ⋃∞

n=1 An .

9. Give an example in which μ( lim An) �= lim
n→∞ μ(An).

10. A point t ∈ � belongs to lim An if and only if t belongs to infinitely many of
the sets An .

11. Consider the functions fn = 1(n,∞) on R. Verify that fn converge almost every-
where onR to 0 but does not converge inmeasure. This example shows thatTheorem1
does not extend to σ -finite measure spaces.

12. Let (�,�,μ) be aσ -finitemeasure space, then any sequence ( fn) ofmeasurable
functions on � that converges in measure to a measurable function f contains a
subsequence that converges to f almost everywhere. In other words, Theorem2
remains valid in σ -finite measure spaces.

3.2.4 Egorov’s Theorem

The functions gn(x) = xn on the interval [0, 1] provide a typical example of a
sequence that converges at each point, but does not converge uniformly. At the same
time, the convergence can be improved if one removes an arbitrarily small neigh-
borhood of the point 1: on the remaining interval [0, 1 − ε] the convergence will
already be uniform. A similar situation arises in the theory of power series: a series
converges to its sum uniformly not in the entire disc of convergence, but in any disc
of a slightly smaller radius. These facts are particular cases of the following very
general result.

Theorem 1 (Egorov’s theorem). Suppose that fn
a.e.−→ f on �. Then for every

ε > 0 there exists a set A = Aε ∈ � with μ(A) < ε, on the complement of which
( fn) converges uniformly to f .
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Proof. Fix an, εn > 0 such that an → 0 as n → ∞ and
∑∞

n=1 εn < ε. Consider the
sets Am,n = | fm − f |>an and Bm,n = ⋃∞

k=m Ak,n . For fixed n, the sets Bm,n form a
chain decreasingwithm, andμ

(⋂∞
m=1 Bm,n

) = 0 (since
⋂∞

m=1 Bm,n is included in the
negligible set D consisting of all points atwhich fn does not tend to f ). Consequently,
μ(Bm,n) → 0 asm → ∞. Now for each n pick an indexmn such thatμ(Bmn ,n) < εn .
Let us prove that A = ⋃∞

n=1 Bmn ,n is the required set. First, μ(A) �
∑∞

n=1 εn < ε.
Further, � \ A ⊂ � \ Bmn ,n , that is, for every k > mn the set Ak,n = | fk − f |>an
does not contain points of � \ A. It follows that supt∈�\A | fk(t) − f (t)| � an for
k > mn , which establishes the uniform convergence on � \ A. �

Exercises

1. Use Exercise 6 in Subsection3.2.3 and Egorov’s theorem to obtain the following
result: Luzin’s theorem. For any Lebesgue-measurable function f on the interval
[a,b] and any ε > 0 there exists a measurable set A with μ(A) < ε, such that the
restriction of f to [a, b]\A is continuous.

2. Show that in the statement of Luzin’s theorem the set A can be chosen to be open.

3. In the statement of Egorov’s theorem, can the condition μ(A) < ε be replaced
by μ(A) = 0? What about the analogous question for Luzin’s theorem?

4. In the statement of Egorov’s theorem, can the sequence fn , which converges
almost everywhere, be replaced by a sequence which converges in measure?

5. Where in Egorov’s theorem did the measurability of the involved functions play
a role?

Comments on the Exercises

Subsection3.1.1

Exercise2. Denote the supremum of the values of the function f on [a, b] by m.
Then the set of maximum points of f coincides with f=m .

Exercise3. Write all intervals with rational endpoints as a sequence (an, bn),
n ∈ N, and denote the set of points of “true” maximum of the function f on (an, bn)
by Mn . The sought-for set of local maxima of f coincides with

⋃∞
n=1 Mn .

Exercise4. Take as (�1, �1) the interval [0, 1] endowed with the σ -algebra of
Lebesgue-measurable sets, and take for (�2, �2) the same intervalwith theσ -algebra
of Borel sets, and for f the identity map.
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Exercise13. (a) No (even for the function g(x) = x).

(b) No. Let g be the Cantor staircase (Subsection2.3.6), extended to (−∞, 0) by
0, and to (1,+∞) by 1. Let B ⊂ [0, 1] be a set that is not Lebesgue measurable.
With no loss of generality, we may assume that B consists only of irrational points
(otherwise one can replace B by B \ Q). As the required A take g−1(B). Then A is a
subset of the Cantor set, whence λ(A) = 0, so A is Lebesgue measurable. However,
f (A) = B is not measurable.

(c) It can. To produce an example, one needs to come up with a continuous strictly
monotone function which maps some set of positive measure into a set of measure 0.

Exercise14. One needs to represent A as the union of a sequence of compact sets
and recall that the image of a compact set under a continuous map is again compact.

Exercise15. It can. The author is not aware of a simple example. A set that is the
image of a Borel set under a continuous map is called an analytic set, or a projective
set of class 1. The existence of an analytic set that is not Borel is a particular case of
TheoremVI in §38 of the monograph [25, vol. 1].

Subsection3.2.3

Exercise6. Continuous functions can be used to approximate characteristic func-
tions of intervals; linear combinations of characteristic functions of intervals can in
turn be used to approximate characteristic functions of open sets; then characteristic
functions of open sets to approximate characteristic functions of arbitrary Lebesgue-
measurable sets; then linear combinations of characteristic functions of measurable
sets (i.e., finitely-valued functions) to approximate simple functions; and finally, sim-
ple functions to approximate arbitrarymeasurable functions. An analogous statement
will be proved in a considerably more general situation in Subsection8.3.3.

Exercise12. Write � as a disjoint union of sets �m , m = 1, 2, . . ., of finite mea-
sure. Successively applying on each set �m the theorem asserting that from any
sequence that converges in measure one can extract an almost-everywhere conver-
gent subsequence, we construct an infinite sequence of sets of indices N ⊃ N1 ⊃
N2 ⊃ N3 ⊃ · · · such that on each of the sets �m the sequence { fn}n∈Nm converges
almost everywhere. Picking a diagonal subsequence nm (i.e., one for which n1 ∈ N1,
n2 ∈ N2 and n2 > n1, n3 ∈ N3 and n3 > n2, and so on), we obtain a subsequence fnm
which converges almost everywhere on each set � j , i.e., converges almost every-
where on � = ⊔∞

j=1 � j .

Subsection3.2.4

Exercise1. In a more general situation Luzin’s theorem will be proved in
Subsection8.3.3.



Chapter 4
The Lebesgue Integral

4.1 Convergence Along a Directed Set. Partitions

4.1.1 Directed Sets

We recall that a relation � on a set G is called an order relation, or simply an order,
if it satisfies the following conditions:

1. g � g for any g ∈ G (reflexivity).

2. If g2 � g1 and g1 � g2, then g1 = g2 (antisymmetry).

3. If g2 � g1 and g3 � g2, then g3 � g1 (transitivity).

A set G endowed with a binary relation � is called a directed set if the following
axioms are satisfied:

(a) g � g for any g ∈ G;

(b) if g2 � g1 and g3 � g2, then g3 � g1;

(c) for any two elements g1, g2 ∈ G there exists an element g3 ∈ G such that g3 � g1
and g3 � g2.

We note that often when the notion of a directed set is defined one requires that
the relation � is an order relation, whereas in our definition a directed set does not
have to satisfy Condition 2 of order relations.

Exercise

1. In which of the examples below is the relation � on the set Z of integers an order
relation? In which of these examples is (Z,�) a directed set?
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1. n1 � n2, if n1 > n2.

2. n1 � n2, if n1 � n2.

3. n1 � n2, if n1 � n2.

4. n1 � n2, if |n1| � |n2|.
5. n1 � n2, if n1 � n2 and n1 is divisible by n2.

6. n1 � n2, if n1 � n2 and n1 − n2 is divisible by 2.

Let (G,�) be a directed set. Two elements g1, g2 ∈ G are said to be equivalent
(written g1 ∼ g2), if g2 � g1 and g1 � g2.

7. Verify that “∼” is an equivalence relation.

4.1.2 Limit Along a Directed Set. Cauchy’s Criterion

Let (G,�) be a directed set and f : G → R a function. The number a ∈ R is called
the limit of the function f along the directed set (G,�) if for any ε > 0 there
exists a g ∈ G such that | f (g1) − a| < ε for any g1 � g. In this case one writes
a = lim(G,�) f , or, if the directed set is clear from the context, a = limg f (g). The
function f : G → R is said to converge along the directed set (G,�) if lim(G,�) f
exists.

Let us list a number of simple properties of the limit along a directed set.

1. If a = lim(G,�) f , then for any g ∈ G and any ε > 0 there exists an element
g1 � g such that | f (h) − a| < ε for all h � g1.

2. If a = lim(G,�) f and b = lim(G,�) f , then a = b (uniqueness of the limit).

3. Suppose that for the functions f1 and f2 there exists a g ∈ G such that f1(h) =
f2(h) for all h � g. If one of these functions converges along the directed set
(G,�), then so does the other, and lim(G,�) f1 = lim(G,�) f2. It follows that for
the existence of the limit it is not necessary that the function be defined on the
entire set G: it suffices that it is defined for all h that succeed some fixed element
g ∈ G.

4. Suppose that f1 � f2 and the limits of the functions f1 and f2 along the directed
set G exists. Then lim(G,�) f1 � lim(G,�) f2.

5. Let a1 = lim(G,�) f1, a2 = lim(G,�) f2, and suppose the function of two variables
F : R

2 → R is continuous at the point (a1, a2). Then limg F( f1(g), f2(g)) exists
and is equal to F(a1, a2).

6. If lim(G,�) f exists, then for any scalar t ∈ R the limit lim(G,�) t f exists, and
lim(G,�) t f = t lim(G,�) f .

7. If a1 = lim(G,�) f1 and a2 = lim(G,�) f2, then a1 + a2 = lim(G,�)( f1 + f2).

For example, let us prove property 5 (incidentally, properties 6 and 7 are con-
sequences of property 5). Fix ε > 0 and choose δ > 0 such that for any point
(b1, b2) ∈ R

2, if max{|a1 − b1|, |a2 − b2|} < δ, then |F(a1, a2) − F(b1, b2)| < ε.
Since a1 = lim(G,�) f1, there exists a g ∈ G such that | f1(h) − a1| < δ for all h � g.
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Further, since a2 = lim(G,�) f2, then by the first of the properties listed above, there
exists a g1 � g such that | f2(h) − a2| < δ for all h � g1. Then for any h � g1
one simultaneously has that | f1(h) − a1| < δ and | f2(h) − a2| < δ. Hence, for any
h � g1 one has |F(a1, a2) − F( f1(h), f2(h))| < ε, as we needed to prove.

Theorem 1 (Cauchy’s criterion for convergence along a directed set). For the
function f : G → R to converge along the directed set (G,�) it is necessary and
sufficient that for every ε > 0 there exist an element g ∈ G such that | f (g) − f (h)| <

ε for all h � g.

Proof. Necessity. Suppose f converges along the directed set (G,�) and limg f (g)
= a. By the definition of the limit, for every ε > 0 there exists a g ∈ G such that
| f (h) − a| < ε/2 for all h � g. Then for any h that succeeds g one has | f (g) −
f (h)| < | f (g) − a| + |a − f (h)| < ε.
Sufficiency. Let us first use the condition of the theoremwith ε = 1. Let g1 ∈ G be

such that | f (g1) − f (h)| < 1 for all h � g1. Nowwe use the conditionwith ε = 1/2.
Denote by g2 an element such that g2 � g1 and | f (g2) − f (h)| < 1/2 for all h
succeeding g2. Continuing this reasoning, we obtain a sequence g1 ≺ g2 ≺ g3 ≺ · · ·
such that | f (gn) − f (h)| < 1/n for all h � gn . In particular, | f (gn) − f (gm)| <

1/n for all m, n ∈ N, m > n. Therefore, the numerical sequence ( f (gn)) satisfies
the Cauchy condition, and so it converges. Denote limn→∞ f (gn) by a. We claim
that limg f (g) = a. Indeed, for any ε > 0 there exists an n0 ∈ N such that 2/n0 < ε.
By construction, for every h � gn0 we have | f (gn0) − f (h)| < 1/n0. In particular,
since gn � gn0 for all n > n0, we see that for any n > n0 and any h � gn0 ,

| f (gn) − f (h)| � | f (gn) − f (gn0)| + | f (gn0) − f (h)| <
1

n0
+ 1

n0
< ε.

Letting n → ∞ in the obtained inequality | f (gn) − f (h)| < ε, we conclude that
|a − f (h)| � ε for all h � gn0 . �

Exercises

1. Consider R with the natural directed set structure: a � b if a � b. Verify that the
limit of a function with respect to this directed set coincides with the usual limit as
t → +∞.

2. Describe other examples of limits known from calculus, such as limt→−∞,
limt→∞, limt→a , and limt→a−0, as limits along the corresponding directed sets.

3. The Riemann integral is defined as a limit of integral sums. Write this kind of
limit as a limit along a directed set.
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4. Let Nf denote the family of all finite subsets of the set N of natural numbers. We
say that the finite set A succeeds the finite set B if A ⊃ B. Show that, equipped with
this order relation, Nf is a directed set.

5. Let (an) be an arbitrary sequence of numbers. Define the function s : Nf → R

by the formula s(A) = ∑
n∈A an . Show that the function s has a limit along the

directed set N f if and only the series
∑∞

n=1 an is absolutely convergent. In this case
limA s(A) = ∑∞

n=1 an .

6. Define the limit along a directed set for functions taking values in an arbitrary
topological space. Then show that the Cauchy criterion holds for convergence along
a directed set for functions with values in complete metric spaces.

4.1.3 Partitions

From this point on till the endof Sect. 4.5, (�,�,μ)will be afinitemeasure space and
A a measurable subset of � (i.e., A ∈ �). Unless otherwise stipulated, the functions
f, fn , will be defined on A and take real values.
Let A ∈ � be an arbitrary non-empty set. A partition of the set A is a finite or

countable collection D of pairwise disjoint non-empty measurable subsets Δk ⊂ A,
k = 1, 2, . . ., such that

⋃
k Δk = A. To avoid treating each time separately the cases

when the number of elements in a partition is finite or countable, henceforth we will
write partitions as countable collections of measurable sets, with the understanding
that the collection may also be finite.

A partition D = {Δk}∞k=1 of the set A is said to be admissible for the func-
tion f if for every element Δk ∈ D of non-zero measure, supt∈Δk

| f (t)| < ∞ and∑∞
k=1 supt∈Δk

(| f (t)|μ(Δk)) < ∞.
By definition, the partition D1 = {Δ1

k}∞k=1 succeeds the partition D2 = {Δ2
k}∞k=1 if

D1 is a refinement of the partition D2. In other words, D1 � D2 if for any k, j ∈ N,
if Δ1

k intersect Δ2
j , then Δ1

k ⊂ Δ2
j . One also says that the partition D1 is finer than

D2, or refines D2.

Theorem 1. If the partition D = {Δk}∞k=1 of the set A is admissible for the function
f , then so is any finer partition D1 = {Δ1

k}∞k=1 � D.

Proof. Group together the sets Δ1
k that lie in the same element of the partition D:

∞∑

k=1

sup
t∈Δ1

k

| f (t)|μ(Δ1
k) =

∞∑

j=1

∑

Δ1
k⊂Δ j

sup
t∈Δ1

k

| f (t)|μ(Δ1
k)

�
∞∑

j=1

sup
t∈Δ j

| f (t)|
∑

Δ1
k⊂Δ j

μ(Δ1
k) =

∞∑

j=1

sup
t∈Δ j

| f (t)|μ(Δ j ) < ∞.

The theorem is proved. �
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The verification of the following properties of admissible partitions is left to the
reader.

1. Suppose the partition D is admissible for the function f , and a ∈ R is an arbitrary
scalar. Then the partition D is admissible for the function a f .

2. Suppose the partition D is simultaneously admissible for the functions f and g.
Then D is admissible for the function f + g.

Let D = {Δk}∞k=1 be a partition of the set A. A sequence T = {tk}∞1 ⊂ � is called
a selection of marked points for D if tk ∈ Δk for every k ∈ N. Let (D1, T1) and
(D2, T2) be partitions with respective collections of marked points. By definition,
we say that the pair (D1, T1) succeeds the pair (D2, T2) if D1 succeeds D2.

Exercises

1. Show that for two partitions D1 = {Δ1
k}∞k=1 and D2 = {Δ2

k}∞k=1 of the set A the
following conditions are equivalent:

(a) D1 � D2;

(b) for every k ∈ N there exists a j ∈ N such that Δ1
k ⊂ Δ2

j ;

(c) for every j ∈ N there exists a subset of indices J ⊂ N such that
⋃

k∈J Δ1
k = Δ2

j .

2. Show that the relation� introduced on the set of partitions of the set A is an order
relation.

3. Let D1 = {Δ1
k}∞k=1 and D2 = {Δ2

k}∞k=1 be partitions of the set A. Define a new
partition D3 by arranging in a sequence all the non-empty sets of the form Δ1

k ∩ Δ2
j ,

k, j ∈ N. Show that D3 refines both D1 and D2; hence, the family of all partitions
of the set A is a directed set.

4. Let D1, D2, and D3 be the partitions in the preceding exercise. Show that if the
partition D refines both D1 and D2, then D � D3.

5. Show that the family of all pairs (D, T ) of partitions with marked points is a
directed set.

4.2 Integrable Functions

4.2.1 Integral Sums

Definition 1. Let A ∈ �, f : A → R be a function, D = {Δk}∞k=1 be an admissible
partition of A, and T = {tk}∞1 be a collection of marked points. The integral sum of
the function f on the set A, associated with the pair (D, T ), is the number
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SA( f, D, T ) =
∞∑

k=1

f (tk)μ(Δk).

Note that the admissibility of the partition D guarantees the absolute convergence
of the series

∑∞
k=1 f (tk)μ(Δk) in the definition of the integral sum. This absolute

convergence is necessary for the integral sum to depend on the partition with marked
points itself, and not on the order in which the elements of the partition are written.

The verification of the following properties of integral sums is again left to the
reader.

1. SA(a f, D, T ) = aSA( f, D, T ).

2. SA( f + g, D, T ) = SA( f, D, T ) + SA(g, D, T ).

3. If f � 0 on the set A, then SA( f, D, T ) � 0.

4. If f � g on the set A, then SA( f, D, T ) � SA(g, D, T ).

5. If the function f is identically equal to a constant a on the set A, then any partition
D is admissible for f and SA( f, D, T ) = aμ(A).

6. If on the set A it holds that f � a, then SA( f, D, T ) � aμ(A).

7. If on the set A it holds that f � b, then SA( f, D, T ) � bμ(A).

By analogywith the Riemann integral sums one can introduce the upper and lower
integral sums for partitions of general form.

Definition 2. Let f : A → R be a function on the measurable set A, and D =
{Δk}∞k=1 be an admissible partition of A. The upper integral sum of the function
f associated to the partition D is the number

SA( f, D) =
∞∑

k=1

sup
t∈Δk

( f (t)μ(Δk)) ,

and the lower integral sum is the number

SA( f, D) =
∞∑

k=1

inf
t∈Δk

( f (t)μ(Δk)) .

Remark 1. By the definition of an admissible partition, for eachΔk ∈ D of non-zero
measure, supt∈Δk

| f (t)| < ∞. Consequently, all the terms supt∈Δk
( f (t)μ(Δk)) and

inf t∈Δk ( f (t)μ(Δk)) in the definition of the upper and lower integral sums are finite.
Their sumswill also be finite, thanks to the condition

∑∞
k=1 supt∈Δk

(| f (t)|μ(Δk)) <

∞. Henceforth, whenever we write upper and lower integral sums, we will remem-
ber that the terms corresponding to sets Δk ∈ D with μ(Δk) = 0 are themselves
equal to zero. The remaining terms can be written without additional parentheses as
supt∈Δk

f (t)μ(Δk) and inf t∈Δk f (t)μ(Δk), without risk of running into the indeter-
minacy ∞ · 0.
Lemma 1. Suppose the partition D = {Δk}∞k=1 of the set A is admissible for the
function f . Then:
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(1) for any choice T of marked points,

SA( f, D) � SA( f, D, T ) � SA( f, D).

(2) Further, suppose D1 � D. Then

SA( f, D) � SA( f, D1) � SA( f, D1) � SA( f, D).

(3) Finally,
SA( f, D) = inf

T
SA( f, D, T )

and
SA( f, D) = sup

T
SA( f, D, T ).

Proof. (1) Since tk ∈ Δk , inf t∈Δk f (t) � f (tk) � supt∈Δk
f (t) for all k ∈ N, which

implies the needed inequalities.

(2) Let D1 = {Δ1
k}∞k=1. Grouping together the sets Δ1

k that are included in one and
the same element of the partition D, we have

SA( f, D1) =
∞∑

j=1

∑

Δ1
k⊂Δ j

sup
t∈Δ1

k

f (t)μ(Δ1
k)

�
∞∑

j=1

sup
t∈Δ j

f (t)
∑

Δ1
k⊂Δ j

μ(Δ1
k) = SA( f, D).

One similarly verifies that SA( f, D) � SA( f, D1).

(3) To show the equality SA( f, D) = supT SA( f, D, T ), we construct for each δ > 0
a collection Tδ = {tk}∞1 of marked points such that f (tk) � supt∈Δk

f (t) − δ.
Then

SA( f, D, Tδ) �
∞∑

k=1

sup
t∈Δk

f (t)μ(Δk) −
∞∑

k=1

δμ(Δk) = SA( f, D) − δμ(A),

which in view of the arbitrariness of δ yields the required relation. The equality
SA( f, D) = infT SA( f, D, T ) is established in the same manner. �

Exercises

1. In general, the sum of a series may change when its terms are permuted. Why
were we allowed to regroup the terms in the estimates carried out in the proof of the
lemma?
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2. Let D1 = {
Δ1

k

}∞
k=1 be a partition of the set A which is admissible for f ,

and let D2 = {Δ2
k}∞k=1 be such that D2 � D1. Define the countable-valued func-

tions f i and f
i
, i = 1, 2, by the rules f i = ∑

k∈N : μ(Δi
k )�=0

(
supt∈Δi

k
f (t)

)
1Δi

k
and

f
i
= ∑

k∈N : μ(Δi
k )�=0

(
inf t∈Δi

k
f (t)

)
1Δi

k
, respectively. Show that at almost all points

of the set A it holds that f
1

� f
2

� f 2 � f 1. (We note that in this exercise the
unpleasantly looking sums

∑
k∈N : μ(Δi

k )�=0 appear instead of the pretty ones
∑∞

k=1
only in order to avoid values±∞ for some of the terms supt∈Δi

k
f (t) and inf t∈Δi

k
f (t).

For, say, bounded f , we could use the ordinary summation
∑∞

k=1.)

4.2.2 Definition and Simplest Properties of the Lebesgue
Integral

Definition 1. Let A ∈ � be a measurable set and f : A → R a function on A. The
number a ∈ R is called the integral (specifically,Lebesgue integral) of the function f
on the set A with respect to the measureμ (notation: a = ∫

A f dμ) if for every ε > 0
there exists an admissible partition Dε of A such that for any partition D that refines
Dε, and any choice of marked points T for D, one has |a − SA( f, D, T )| � ε. The
function f : A → R is said to be integrable on the set A with respect to the measure
μ, or μ-integrable on A, if the corresponding integral exists.

In other words, the function f is integrable on A if, starting with some partition,
the integral sums are defined and the limit of the integral sums along the directed set
of partitions with marked points, described in Subsection4.1.3, exists. This limit is
called the Lebesgue integral of f and is denoted by f = ∫

A f dμ.
The assertions about the Lebesgue integral listed below are straightforward con-

sequences of the corresponding properties of integral sums and of the limit along a
directed set.

1. Let f : A → R be an integrable function and λ ∈ R. Then the function λ f is also
integrable and

∫
A λ f dμ = λ

∫
A f dμ.

2. If the functions f and g are integrable on A, then so is the function f + g, and∫
A ( f + g)dμ = ∫

A f dμ + ∫
A g dμ.

3. If the integrable function f is greater than or equal to zero on the set A, then∫
A f dμ � 0.

4. If f � g on the set A and both f and g are integrable on A, then
∫
A f dμ �∫

A g dμ.

5. If f : A → R is an integrable function, f � 0, and
∫
A f dμ = 0, then any

function g satisfying the inequality 0 � g � f is also integrable on A, and∫
A g dμ = 0.

6. Let a ∈ R be a constant. Then
∫
A a dμ = aμ(A).
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7. Let f : A → Rbe an integrable function,a ∈ R, and f � a on A. Then
∫
A f dμ �

aμ(A). Similarly, if f � b, then
∫
A f dμ � bμ(A).

Theorem 1. For a function f : A → R, where A ∈ �, the following conditions are
equivalent:

(1) f is integrable and
∫
A f dμ = a;

(2) for any ε > 0 there exists an admissible partition Dε = {Δ j }∞j=1 of the set A
such that for any choice T of marked points, |a − SA( f, Dε, T )| < ε;

(3) for any ε > 0 there exists an admissible partition Dε of the set A such that the
corresponding upper and lower integral sums of the function f approximate a
to within ε: |a − SA( f, Dε)| � ε and |a − SA( f, Dε)| � ε.

Proof. The implication (1) =⇒ (2) is obvious. The implication (2) =⇒ (3) follows
fromLemma1proved in the preceding subsection (item (3) of that lemma). Indeed, all
the integral sums SA( f, Dε, T ) lie in the interval [a − ε, a + ε] by assumption; con-
sequently, SA( f, D) = infT SA( f, D, T ) and SA( f, D) = supT SA( f, D, T ) also lie
in that interval. The same lemma yields the implication (3) =⇒ (1). Namely, let Dε

be the partition in item (3). By the indicated lemma, for any partition D that refines
Dε,

a − ε � SA( f, Dε) � SA( f, D) � SA( f, D) � SA( f, Dε) � a + ε.

Further, for any choice T = {tk}∞1 of marked points for D,

SA( f, D) � SA( f, D, T ) � SA( f, D).

Hence, a − ε � SA( f, D, T ) � a + ε and |a − SA( f, D, T )| � ε. �

Example 1. Let {Ak}∞1 be a partition of the set A ∈ � into measurable sets, f =∑∞
k=1 ak1A k be a countably-valued measurable function, and suppose the series∑∞
k=1 akμ (Ak) converges absolutely. Then the function f is integrable on A and∫

A f dμ = ∑∞
k=1 akμ(Ak). Indeed, if for D we take the partition of A into the sets

{Ak}∞1 , then

SA( f, D) = SA( f, D) =
∞∑

k=1

akμ(Ak).

It remains to apply condition (3) in Theorem1 with Dε = D.

By the Cauchy criterion for convergence along a directed set, a function
f : A → R is integrable on the set A if and only if for every ε > 0 there exist
an admissible partition Dε of A and a choice T of marked points such that
|SA( f, Dε, T ) − SA( f, D, T̃ )| < ε for any D � Dε and any choice T̃ of marked
points of the partition D.

Since according to Lemma1 in the preceding subsection [SA( f, Dε), SA( f, Dε)]
is the smallest closed interval containing all possible values of the sums of the form
SA( f, D, T̃ ), we obtain the following useful reformulation of the Cauchy criterion.
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Theorem 2. A function f : A → R is integrable on the set A if and only if
for any ε > 0 there exists an admissible partition Dε of A such that the corre-
sponding upper and lower integral sums of the function f differ by less than ε:∣
∣SA ( f, Dε) − SA ( f, Dε)

∣
∣ < ε. �

Theorem 3. Let f : A → R be an integrable function. Then the function | f | is also
integrable.

Proof. Let ε > 0 and let Dε = {
Δ j
}∞
j=1 be the partition provided for the function f

by the preceding theorem. Then

∣
∣SA(| f |, Dε) − SA(| f |, Dε)

∣
∣ =

∞∑

k=1

(

sup
t∈Δk

(| f (t)|μ(Δk)) − inf
t∈Δk

(| f (t)|μ(Δk))

)

�
∞∑

k=1

(

sup
t∈Δk

( f (t)μ(Δk)) − inf
t∈Δk

( f (t)μ(Δk))

)

= SA( f, Dε) − SA( f, Dε) < ε.

Hence, for every ε > 0 we proved the existence of a partition Dε for which∣
∣SA(| f |, Dε) − SA (| f |, Dε)

∣
∣ < ε. By Theorem2, this establishes the integrability

of the function | f |. �

Corollary 1. Let f : A → R be an integrable function. Then the functions f + and
f − are also integrable.

Proof. Recall that, by definition, f +(t) coincides with f (t) for all t where f (t) >

0; for those t where f (t) � 0, f +(t) = 0. Similarly, f −(t) = | f (t)| at the points
where f (t) � 0, and at the remaining points f −(t) = 0. Since f + = 1

2 ( f + | f |)
and f − = 1

2 (| f | − f ), the assertion of the corollary follows from the preceding
theorem and the properties of the integrals listed earlier. �

Corollary 2. Let f and g be two integrable functions. Then the functionsmax { f, g}
and min { f, g} are also integrable.
Proof. The assertion is a straightforward consequence of the formulas max{ f, g} =
1
2 ( f + g + | f − g|) and min{ f, g} = 1

2 ( f + g − | f − g|). �

Exercises

1. Prove the implication (1) =⇒ (2) in Theorem1 of Subsection4.2.2.

2. Prove Theorem2 of Subsection4.2.2.

3. Why in Theorem3 of Subsection4.2.2 is Dε an admissible partition for the func-
tion | f |?
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4. Verify the formulas f + = 1
2 ( f + | f |), f − = 1

2 (| f | − f ), max{ f, g} = 1
2 ( f + g

+ | f − g|), and min{ f, g} = 1
2 ( f + g − | f − g|) that figure in the last two corol-

laries.

5. Let A be a set of measure zero. Show that any function f on A is integrable and∫
A f dμ = 0.

6. Let f and g be two functions defined on themeasurable set A and such that f and g
coincide almost everywhere. If f is integrable, then so is g, and

∫
A g dμ = ∫

A f dμ.

7. Suppose the functions f and g are integrable on A and f � g almost everywhere.
Then

∫
A f dμ �

∫
A g dμ.

8. Let � be the σ -algebra of Lebesgue-measurable subsets of the interval [a, b],
λ be the Lebesgue measure on [a, b], and f : [a, b] → R be a Riemann-integrable
function. Use Theorem1 of Subsection4.2.2 to prove that the function f is Lebesgue
integrable on [a, b] and ∫[a,b] f dλ = ∫ b

a f (t)dt .

9. Here is a more general result. Let F : [a, b] → R be a monotone non-decreasing
Stieltjes function, andμbe the correspondingBorelmeasure, i.e., F is the distribution
of μ (see Subsection2.3.5). Then any Stieltjes-integrable function f : [a, b] → R is
μ-integrable on [a, b] and ∫[a,b] f dμ = ∫ b

a f (t)dF(t).

10. Let A ⊂ [a, b] be a dense subset of Lebesgue measure zero. Show that the
characteristic function 1A is not Riemann integrable, but is Lebesgue integrable on
[a, b]. What is

∫
[a,b] 1Adλ equal to?

11. Show that the function f (x) = 1/x is not Lebesgue integrable on the interval
(0, 1].
12. Prove the following reformulation of Theorem2 in Subsection4.2.2: a function
f : A → R is integrable on the set A if and only if for any ε > 0 and any partition D
of A, there exists an admissible partition Dε � D, such that the corresponding upper
and lower integral sums of f differ by less than ε: |SA( f, Dε) − SA( f, Dε)| < ε.

13. Give an example of two countably-valued integrable functions whose product
is not integrable.

14. Let μ be the measure on N described in Exercise5 of Subsection2.1.4. Then a
function f : N → R is integrable onNwith respect to themeasureμ if and only if the
series

∑∞
n=1 f (n)bn is absolutely convergent. In this case

∫
N
f dμ = ∑∞

n=1 f (n)bn .

15. The definition of the integral remains valid for complex-valued functions. Verify
the properties

∫

A

λ f dμ = λ

∫

A

f dμ,

∫

A
( f + g)dμ =

∫

A
f d μ +

∫

A
g dμ
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and the inequality ∣
∣
∣
∣

∫

A
f dμ

∣
∣
∣
∣ �

∫

A
| f |dμ

for complex-valued functions and complex scalars.

16. Let f be a complex-valued function on A, and denote by f1 and f2 the real and
imaginary parts of f . Show that f is integrable if and only if f1 and f2 are integrable,
and in this case

∫

A
f dμ = ∫

A
f1dμ + i

∫

A
f2dμ.

17. Verify for complex-valued functions the validity of the equivalence (1) ⇐⇒ (2)
in Theorem1, of the integrability criterion for countably-valued functions (Exam-
ple1), and of the assertion of Theorem3, all from Subsection4.2.2.

4.2.3 The Integral as a Set Function

Theorem 1. Let f : A → R be a function integrable on A, and B a measurable
subset of A. Then f is integrable on B.

Proof. By Theorem2 in Subsection4.2.2, for any ε > 0 there exists an admissible
partition Dε = {Δ j }∞j=1 of the set A such that the corresponding upper and lower

integral sums of the function f differ by less than ε: |SA( f, Dε) − SA( f, Dε)| < ε.
Consider the set K of those indices k for which Δk intersects B. Then the sets Δ1

k =
B ∩ Δk , k ∈ K , constitute an admissible partition of B. Denote this partition by D1

ε .
Note that supt∈Δ1

k
f (t) � supt∈Δk

f (t), inf t∈Δ1
k
f (t) � inf t∈Δk f (t), and μ(Δ1

k) �
μ(Δk). Let us estimate the quantity |SA( f, D1

ε )−SA( f, D
1
ε )|. We have

|SB( f, D1
ε ) − SB( f, D1

ε )| =
∑

k∈K

(

sup
t∈Δ1

k

[
f (t)μ(Δ1

k)
]− inf

t∈Δ1
k

[
f (t)μ(Δ1

k)
]
)

�
∞∑

k=1

(

sup
t∈Δk

[ f (t)μ(Δk)] − inf
t∈Δk

[ f (t)μ(Δk)]

)

= |SA( f, Dε) − SA( f, Dε)| < ε.

Thus, we have shown that for any ε > 0 there exists a partition of the set B such that
the corresponding upper and lower integral sums differ by less than ε. By Theorem2
of Subsection4.2.2, this establishes the integrability of the function f on B. �
Theorem 2. Let A1, A2 ∈ � be disjoint sets and let the function f be integrable on
both A1 and A2. Then f is integrable on the union A1 ∪ A2, and

∫

A1∪A2

f dμ =
∫

A1

f dμ +
∫

A2

f dμ.
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Proof. Denote
∫
Ai

f dμ by ai , i = 1, 2. We use condition (2) in Theorem1 of Sub-
section4.2.2. Fix ε > 0 and choose admissible partitions D1 and D2 of the sets A1

and A2, respectively, with the property that for any choice T1 and T2 of marked
points, one has |ai − SAi ( f, Di , Ti )| < ε, i = 1, 2. Construct a partition D of the
union A1 ∪ A2 by taking all the elements of the partitions D1 and D2. Now let T be
an arbitrary collection of marked points for D and denote by Ti the part of T that
falls in the set Ai , i = 1, 2. Then

SA1∪A2( f, D, T ) = SA1( f, D1, T1) + SA2( f, D2, T2),

and consequently

|a1 + a2 − SA1∪A2( f, D, T )|� |a1 − SA1( f, D1, T1)| + |a2 − SA2( f, D2, T2)|< 2ε.

Since ε was arbitrary, the aforementioned integrability criterion applies. �

Corollary 1. If the function f is integrable and non-negative on A, then the
set function G(B) = ∫

B f dμ is a finitely-additive measure on the family �A =
{B ∈ � : B ⊂ A}. �

Theorem 3. Suppose the function f takes on the set A only non-negative values.
Let {Ak}∞1 be a partition of the set A into measurable subsets. Suppose also that f is
integrable on each Ak and the series

∑∞
k=1

∫
Ak

f dμ converges. Then f is integrable
on the whole set A and

∫
A f dμ = ∑∞

k=1

∫
Ak

f dμ.

Proof. We argue by analogy with the preceding proof. Denote
∫
Ak

f dμ by ak , k =
1, 2, . . .. Fix an ε > 0 and admissible partitions Dk of the sets Ak , k = 1, 2, . . .,
such that for any choice Tk of marked points for the Dk , k = 1, 2, . . ., one has
|ak − SAk ( f, Dk, Tk)| < ε/2k . Now construct a partition D = {Δ j }∞j=1 of the set A
by taking all the elements of the partitions Dk , k = 1, 2, . . .. For any choice T of
marked points for D, denote by Tk the part of T consisting of the points that fall in
the corresponding set Ak , k = 1, 2, ... . Then

∞∑

j=1

sup
t∈Δ j

[| f (t)|μ(Δ j )
] = sup

T

∞∑

j=1

[
f (t j )μ(Δ j )

]

= sup
T

∞∑

k=1

SAk ( f, Dk, Tk) �
∞∑

k=1

(
ak + ε

2k

)
< ∞.

Hence, we have proved that the partition D is admissible for f . Further,
∣
∣
∣
∣
∣

∞∑

k=1

ak − SA ( f, D, T )

∣
∣
∣
∣
∣
�

∞∑

k=1

∣
∣ak − SAk ( f, Dk, Tk)

∣
∣ <

∞∑

k=1

ε

2k
= ε.

By item (2) in Theorem1 in Subsection4.2.2, the proof is complete. �

Corollary 2. Under the assumptions ofCorollary1 (non-negativity and integrability
of f on A), the set function G(B) = ∫

B f dμ is not merely finitely-additive: in fact,
it is a countably-additive measure on �A.
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Proof. Let {Bk}∞1 be a partition of some set B ∈ � into measurable subsets. In view
of the already proved finite-additivity of the set function G, we have

n∑

k=1

∫

Bk

f dμ =
∫

⋃n
k=1 Bk

f dμ �
∫

B

f dμ

for all n ∈ N. Therefore,
∞∑

k=1

∫

Bk

f dμ �
∫

B

f dμ < ∞,

and now we are under the conditions of the theorem. Applying the theorem, we
conclude that ∫

⋃∞
k=1 Bk

f dμ =
∫

B

f dμ =
∞∑

k=1

∫

Bk

f dμ. �

We are now ready to prove the main result of this subsection.

Theorem 4. Let (Bk)
∞
1 be a sequence of pairwise-disjoint measurable sets, and

A = ⋃∞
k=1 Bk. Then the function f is integrable on A if and only if f is integrable

on each Bk and the series
∑∞

k=1

∫
Bk

| f |dμ converges. Moreover, in this case

∫

B
f dμ =

∞∑

k=1

∫

Bk

f dμ.

Proof. In the case where f � 0 the result follows from Theorem3 and Corollary 2.
Hence, the assertion holds true for the functions f + and f −. To complete the proof,
it suffices to apply the relations | f | = f + + f − and f = f + − f −. �

Corollary 3. Let {Bk}∞1 be a partition of the set A ∈ � into measurable sets and
f = ∑∞

k=1 bk1Bk be a countably-valued function. Then for f to be integrable on A
it is necessary and sufficient that the series

∑∞
k=1 bkμ(Bk) be absolutely convergent.

In this case,
∫

A
f dμ =

∞∑

k=1

bkμ(Bk). �

Example 1. Let (Ak)
∞
k=1 be a sequence of pairwise disjoint subsets of non-zero

measure of the interval [0, 1] such that
⋃∞

k=1 Ak = [0, 1]. Consider the countably-
valued function f = ∑∞

k=1
(−1)k

μ(Ak )
1Ak . By Corollary 3, the function f is not Lebesgue

on [0, 1]. Put Bn = A2n−1 ∪ A2n . Then (Bn)
∞
1 is again a sequence of pairwise-disjoint

subsets ofmeasure zero of the interval [0, 1] and⋃∞
n=1 Bn = [0, 1]. Nownote that the

function f is integrable on each set Bn and
∫
Bn

f dλ = 0. Consequently, the series
∑∞

n=1

∫
Bn

f dλ is absolutely convergent. Thus, in general the convergence (and even
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absolute convergence) of the series of integrals over subsets does not imply the
integrability of the function on the union of these subsets.

Remark 1. Suppose the function f is defined almost everywhere on the set A, i.e.,
there exists a set B ⊂ A of measure zero such that f is defined on A \ B. As readily
follows from Exercise5 in Subsection4.2.2, the following assertions are equivalent:

(a) f is integrable on A \ B;

(b) f can be extended to the entire set A so that it becomes integrable on A;

(c) any extension of f to the whole set A is integrable on A.

It is also obvious that the value of the integral does not change if the values of the
function are changed on a negligible set. Therefore, in the framework of integration
theory one can consider functions that are defined almost everywhere. This proves
very convenient when one deals with functions such as 1√

x
, x

|x | , and so on: we don’t
have to worry about how to redefine the function at points of discontinuity.

Exercises

1. Doesn’t Example1 above contradict the assertion of Theorem4?

2. Let A ∈ �. Denote by �A the collection of all elements of the σ -algebra � that
are subsets of A, and letμ1 : �A → R be the restriction of the measureμ to�A (i.e.,
μ1(B) = μ(B) for all B ∈ �A). Verify that (A, �A, μ1) is again a measure space.

3. Let A ∈ � and let f be defined and integrable on A. Extend the function f to
� \ A by zero. Show that the function f redefined in this way is integrable on �.

4. As we already mentioned (Exercises15–17 in Subsection4.2.2), the definition of
the integral can be extended to complex-valued functions. Verify that Theorems1, 2
and 4 hold for complex-valued functions.

4.3 Measurability and Integrability

4.3.1 Measurability of Integrable Functions

The following simple estimate proves very useful when dealing with the Lebesgue
integral. In Analysis its habitual name is Chebyshev’s inequality, or the first Cheby-
shev inequality. In the setting of Probability Theory, the same estimate, written in the
language of random variables and probability, is usually calledMarkov’s inequality.

Lemma 1 (Chebyshev’s inequality). Let a > 0 be a constant, g an integrable
function on A ∈ �, g � 0, and B ⊂ A a measurable set such that g(t) � a for all
t ∈ B. Then
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μ (B) � 1

a

∫

A

g dμ.

Proof. We have ∫

A

g dμ �
∫

B

g dμ �
∫

B

adμ = aμ (B) . �

Theorem 1. If a measure space is complete, then every function integrable on a set
is measurable on that set.

Proof. Let the function f be integrable on the set A ∈ �. Choose a sequence of
increasingly finer admissible partitions Dj = {Δ j

k }∞k=1, D1 ≺ D2 ≺ D3 ≺ · · · , for
each of which | SA( f, Dj ) − SA( f, Dj ) | < 1/j . By analogy with Exercise2 in Sub-
section4.2.1, define two sequences of countably-valued functions,

f j =
∑

k∈N : μ(Δ
j
k )�=0

sup
t∈Δ

j
k

f (t)1
Δ

j
k

and f
j
=

∑

k∈N : μ(Δ
j
k )�=0

inf
t∈Δ

j
k

f (t)1
Δ

j
k
.

These functions are integrable on A,
∫

A
f j dμ = SA( f, Dj ), and

∫

A
f
j
dμ = SA( f, Dj ).

Outside of the negligible set Δ formed by the union of all those Δ
j
k that have zero

measure the sequence ( f j ) is pointwise non-increasing and bounded below by the
function f . Consequently, on A \ Δ the functions f j have a pointwise limit when
j → ∞, which we denote by f . Similarly, we denote by f the pointwise limit of

the functions f
j
when j → ∞. The functions f and f are measurable on A \ Δ

(as limits of sequences of measurable functions), and satisfy f � f � f . If we can

prove that f = f almost everywhere, then it will follow that f = f = f almost
everywhere, and hence that f is measurable (here we use the assumption that the
measure is complete). So, denote by B the set of all points of A \ Δ where f �= f ,

and by Bn the set of all points where f − f > 1
n . Since B = ⋃∞

n=1 Bn , it suffices to

prove that μ (Bn) = 0 for all n. Observe that f j − f
j
� f − f for all j ∈ N, and

so on Bn one has f j − f
j
> 1

n . By the Chebyshev inequality,

μ(Bn) � n
∫

A

( f j − f
j
) dμ = n(SA( f, Dj ) − SA( f, Dj )) <

n

j
.

Letting j → ∞, we get the desired equality μ (Bn) = 0. �

Remark 1. Analogously to Exercise2 from Subsection4.2.1, the summation over
only those k for which the sets Δ

j
k have non-zero measure, which we used in the

definition of the functions f j and f
j
, instead of the ordinary summation

∑∞
k=1,

is done in order to avoid possible infinite values at some points. There is another
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way to fix this inconvenience, proceeding in the spirit of Remark 1 at the end of the
Subsection4.2.3. Namely, we could use the formulas

f j =
∞∑

k=1

sup
t∈Δ

j
k

f (t)1
Δ

j
k

and f
j
=

∞∑

k=1

inf
t∈Δ

j
k

f (t)1
Δ

j
k
,

but agree that these functions are not defined at all points, but only almost everywhere.

Remark 2. If (�,�,μ) is an incomplete measure space and (�,�′, μ) is its com-
pletion, then a function that is integrable on (�,�,μ)may be not�-measurable, but
is necessarily �′-measurable. As we know, these two types of measurability differ
only slightly: for every �′-measurable function f there exists a �-measurable func-
tion that coincides with f almost everywhere. To avoid being hindered each time
we encounter this inessential difference, in the setting of integration theory we will
assume that, unless otherwise stipulated, the measure spaces under consideration are
complete. Accordingly, henceforth, all integrable functions will be assumed to be
measurable. Another convention most frequently encountered in the literature is that
on incomplete measure spaces one considers only measurable integrable functions,
i.e., measurability is treated as a necessary part of the definition of integrability.

Exercises

1. Justify the existence of the sequence of partitions Dj in the proof of the last
theorem.

2. The proof of Theorem1 used the completeness of the measureμ and the assertion
that if f

a.e.= g and f is measurable, then g is also measurable. Verify this assertion!
Can we manage without completeness here?

3. The proof of Theorem1 used implicitly the fact that supt∈Δ
j
k
and inf t∈Δ

j
k
are finite

whenever μ(Δ
j
k ) �= 0. Why is this fact true?

From the measurability of an integrable function and Chebyshev’s inequality
proved at the beginning of the present subsection one derives the following useful
assertion.

4. Let
∫
A | f |dμ = 0. Then on the set A the function f is equal to zero almost

everywhere.

4.3.2 The Uniform Limit Theorem

Theorem 1. Suppose the sequence of functions ( fn) converges uniformly on the set
A to a function f . If all fn are integrable on A, then f is also integrable on A, and∫
A f dμ = limn→∞

∫
A fn dμ.
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Proof. Let an = ∫
A fn dμ. The sequence (an) is Cauchy:

|an − am | �
∫

A

| fn − fm | dμ � sup
t∈A

| fn(t) − fm(t)|μ(A) → 0, n,m → ∞.

Denote the limit of (an) by a. Let ε be an arbitrary positive number. Thanks to the
uniform convergence of the sequence ( fn) to f , there exists a number N = N (ε) such
that for every n > N and any t ∈ A, one has | fn(t) − f (t)| < ε/(4μ(A)). Nowfix an
n > N such that |an − a| < ε/4. Using the integrability of the function fn , construct
an admissible partition D = {Δk}∞k=1 of the set A with the following property: for
any choice T = {tk}∞1 of marked points it holds that |an − SA( fn, D, T )| < ε/2.

Since | fn(t) − f (t)| < ε/(4μ(A)), the partition D is also admissible for the func-
tion f :

∞∑

k=1

sup
t∈Δk

[| f (t)|μ(Δk)] �
∞∑

k=1

sup
t∈Δk

[| fn(t)|μ(Δk)] + ε

4
< ∞.

Further, for any choice T = {tk}∞1 of marked points we have

|a − SA( f, D, T )| =
∣
∣
∣
∣
∣
∣
a −

∞∑

k=1

f (tk)(Δk)

∣
∣
∣
∣
∣
∣

� |a − an | +
∣
∣
∣
∣
∣
∣
an −

∞∑

k=1

fn(tk)μ(Δk)

∣
∣
∣
∣
∣
∣
+
∣
∣
∣
∣
∣
∣

∞∑

k=1

( fn(tk) − f (tk))μ(Δk)

∣
∣
∣
∣
∣
∣

<
ε

4
+ ε

2
+ ε

4
= ε.

By criterion (2) in Theorem1 of Subsection4.2.2, the function f is integrable
and

∫
A f dμ = a. To complete the proof, it remains to recall that a denotes

limn→∞
∫
A fn dμ. �

4.3.3 An Integrability Condition for Measurable Functions

Theorem 1. If the measurable function f admits an integrable majorant, then it is
itself integrable.More precisely: suppose that on the set A the function f is integrable,
| f | � g, and the function g is integrable. Then f is also integrable.

Proof. First we treat the special case where f is a countably-valued function, i.e.
f = ∑∞

k=1 ak1Ak , where (Ak) is a sequence of pairwise disjoint measurable sets. In
this case the inequality | f | � g means that |ak | � g(t) for all t ∈ Ak . Consequently,
the series

∑∞
k=1 akμ(Ak) is absolutely convergent:

∞∑

k=1

|ak | μ (Ak) �
∞∑

k=1

∫

Ak

g dμ �
∫

A

g dμ < ∞.
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ByExample1 in Subsection4.2.2 (or byCorollary 3 of Subsection4.2.3), the function
f is integrable.
The general case may be deduced from two already known results: the theorem on

approximation of a measurable function by countably-valued functions (Theorem3
of Subsection3.1.4), and the uniform limit theorem. Indeed, suppose f ismeasurable,
| f | � g, and g is integrable. Construct a sequence ( fn) of measurable countably-
valued functions such that supA | fn(t) − f (t)| < 1/n. Then | fn| � g + 1/n, hence,
by the particular case treated above, the functions fn are integrable. Hence, we were
able to represent the function f as the limit of a uniformly convergent sequence of
integrable functions. This establishes the integrability of f . �

The integrability condition for measurable functions established above will prove
useful in many situations. The reason is that measurability is preserved by the usual
operations on functions: sum, product, passing to the limit, etc. Thanks to this, the
verification of the measurability of some given function is usually not too difficult.
Finding an integrable majorant is easier than verifying integrability based directly
on the definition.

Exercises

1. Let f be a measurable function and let | f | be integrable. Then f is integrable.

2. Suppose that for the measurable function f there exist an admissible partition.
Then f is integrable.

3. Any bounded measurable function is integrable.

4. The product of a bounded measurable function with an integrable function is
again integrable.

5. Describe the measure spaces on which every measurable function is integrable.

6. Let (�,�,μ) be a finite measure space, E the space of all measurable scalar-
valued functions on �, and F be the subspace of E consisting of all functions
that vanish almost everywhere. Denote by L0(�,�,μ) the quotient space E/F .
To simplify the terminology, it is customary to say that the elements of the space
L0(�,�,μ) are measurable functions of �, but with the understanding that func-
tions that are equal almost everywhere are identified. Let f, g ∈ L0 (�,�,μ). Put
ρ( f, g) = ∫

�

| f −g|
1+| f −g| dμ. Show that ρ gives a metric on L0 (�,�,μ), andmoreover

that convergence in this metric coincides with the convergence in measure.

4.4 Passage to the Limit Under the Integral Sign

In Sect. 4.2 we made acquaintance with the Lebesgue integral and we saw that
although the Lebesgue integral is a more general notion than the Riemann integral,
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it retains all the convenient properties of the integral familiar from calculus. We now
turn to exhibiting the advantages of the Lebesgue integral over the Riemann integral.
We will show that for the Lebesgue integral not only is the uniform limit theorem
valid, but several considerably more general theorems on the passage to the limit
under the integral sign also hold, which are particularly convenient in applications.

Recall that in this chapter, till the end of Sect. 4.5, we are dealing with a finite
measure space (�,�,μ), A ∈ �, and unless otherwise stipulated, the functions
f, fn , are defined on A and take real values. The extension of the obtained results to
σ -finite measure spaces will carried out in Subsection4.6.2.

4.4.1 Fatou’s Lemma

Theorem 1 (Fatou’s lemma). Suppose that on the set A there is given a sequence
( fn) of non-negative integrable functions such that ( fn) converges almost everywhere
to some function f , and the integrals of the functions ( fn) are jointly bounded, i.e.,∫
A fn dμ � C < ∞ for all n. Then f is integrable and

∫

A

f dμ � lim
n→∞

∫

A

fn dμ.

Proof. We use Egorov’s theorem (Subsection3.2.4). Pick a measurable subset A1 ⊂
A with μ (A\A1) � 1/2, on which the sequence ( fn) converges uniformly to f .
Denote A \ A1 by B1. Applying again Egorov’s theorem, pick in B1 a measurable
subset A2 with μ (B1 \ A2) � 1/4, on which ( fn) also converges uniformly to f .
Denote B1 \ A2 by B2. Continuing this process, we produce a sequence (A j ) of
pairwise-disjoint measurable sets and a decreasing sequence of sets Bj , A j+1 ⊂ Bj ,
Bj+1 = Bj \ A j+1, μ

(
Bj
)

� 1/2 j , with the property that on each A j the sequence
( fn) converges to f uniformly.

By the uniform limit theorem, the function f is integrable on each set A j . Further,
for any N ∈ N we have the estimate

N∑

k=1

∫

Ak

f dμ = lim
n→∞

N∑

k=1

∫

Ak

fn dμ = lim
n→∞

∫

⋃N
k=1 Ak

fn dμ � lim
n→∞

∫

A

fn dμ,

and so
∑∞

k=1

∫
Ak

f d μ � lim
n→∞

∫

A
fn dμ. By Theorem3 in Subsection4.2.3, the func-

tion f is integrable on D = ⋃∞
k=1 Ak , and

∫
D f dμ � lim

n→∞

∫

A
fndμ. It remains

to observe that, by construction, the complement of D in A has measure zero:
μ
(
A \⋃∞

k=1 Ak
) = μ

(⋂∞
k=1 Bk

) = limn→∞ μ (Bn) = 0. Hence, the function f is
integrable on the whole set A and

∫
A f dμ � lim

n→∞

∫
A fn dμ. �
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Remark 1. The assumption in the formulation of Fatou’s lemma that the functions
fn are non-negative can be slightly relaxed: it suffices to require that all fn are greater
than or equal to some integrable function g. Indeed, in this case the functions fn − g
are non-negative, and Fatou’s lemma applies to them in the original formulation.
That is, the function f − g is integrable (and hence so is f = g + ( f − g)), and∫
A ( f − g)dμ � lim

n→∞

∫
A ( fn − g)dμ. It remains to add

∫
A gdμ to both sides of the

last inequality to obtain the desired estimate
∫
A f dμ � lim

n→∞

∫
A fndμ.

Exercises

1. If themeasurable function f is positive and the integrals of all integrable functions
that are smaller than f are jointly bounded, then f is integrable.

2. Verify that the example of the step functions fn = n 1(0,1/n), given on A = [0, 1]
equipped with the Lebesgue measure, shows that under the assumptions of Fatou’s
lemma

∫
A f dμ is not necessarily equal to lim

n→∞

∫
A fndμ.

3. Give an example showing that under the assumptions of Fatou’s lemma the limit
lim
n→∞

∫
A fndμ does not necessarily exist.

4. Show that in Fatou’s lemma the assumption that the functions fn are non-negative
can be replaced by the assumption that fn � 0 almost everywhere.

5. Let (Ak)
∞
1 be a sequence of pairwise disjoint subsets of non-zero measure of the

interval [0, 1]. Consider the sequence of integrable functions fn = ∑2n
k=1

(−1)k

λ(Ak )
1Ak .

Show that the integrals of the functions fn are equal to 0 (and consequently are
jointly bounded), that the functions fn converge at each point to the function f =
∑∞

k=1
(−1)k

λ(Ak )
1Ak , but the limit function f is not integrablewith respect to theLebesgue

measure λ. Which of the hypotheses of Fatou’s lemma is not satisfied here?

4.4.2 Lebesgue’s Dominated Convergence Theorem

Theorem 1. Suppose that on the set A there is given a sequence ( fn) of integrable
functions which converges almost everywhere to a function f . Suppose further that
the sequence ( fn) has an integrable majorant g (i.e., g is integrable and | fn| � g
for all n). Then the limit function f is integrable and

∫

A
f dμ = lim

n→∞

∫

A
fndμ.
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Proof. All the functions fn are bounded from below by the integrable function −g,
and the integrals of the fn’s are jointly bounded:

∫
A fndμ �

∫
A g dμ < ∞. By the

remark made after the proof of the Fatou lemma, the function f is integrable and∫
A f dμ � lim

n→∞

∫

A
fndμ. Applying the same reasoning to the functions − fn yields

∫

A
(− f )dμ � lim

n→∞

∫

A
(− fn)dμ = − lim

n→∞

∫

A
fndμ,

i.e.,

lim
n→∞

∫

A
fndμ �

∫

A
f dμ � lim

n→∞

∫

A

fndμ. (*)

But when can the upper limit of a sequence be bounded from above by the lower limit
of the same sequence? Only when the sequence has a true limit. Hence, from the
double inequality (∗) it follows that the limit limn→∞

∫
A fndμ exists and

∫
A f dμ is

equal to this limit. �

Exercises

1. Based on Lebesgue’s theorem and Exercise14 in Subsection4.2.2 on the rela-
tionship between series and integrals for functions defined on N (see also Exercise5
of Subsection2.1.4), prove the following dominated convergence theorem for series:
Suppose given an infinite matrix

(
an,m

)∞
n,m=1 in which every column converges to a

corresponding limit: limn→∞ an,m = am . Further, suppose that there exists a sequence
(bm)of positive numbers,

∑∞
m=1 bm < ∞, which dominates all the rows of thematrix,

i.e.,
∣
∣an,m

∣
∣ � bm for all n,m ∈ N. Then the series

∑∞
m=1 am is absolutely convergent

and
∑∞

m=1 am = limn→∞
∑∞

m=1 an,m .

2. Formulate and prove the analogue of Fatou’s lemma for series.

3. Show that the assumption | fn| � g in the statement of the Lebesgue dominated

convergence theorem can be replaced by the assumption that | fn|
a.e.
� g.

4.4.3 Levi’s Theorems on Sequences and Series

Theorem 1 (Levi’s theorem on monotone sequences). Suppose f1 � f2 � f3 �
· · · is a non-decreasing sequence of functions that are integrable on A, and the
integrals of the functions fn are jointly bounded by a constant C < ∞. Then
the sequence ( fn) converges almost everywhere to an integrable function f , and∫
A f dμ = limn→∞

∫
A fndμ.



4.4 Passage to the Limit Under the Integral Sign 119

Proof. With no loss of generality we may assume that all fn � 0 (the general case
reduces to this particular one by introducing the auxiliary functions fn − f1). Thanks
to monotonicity, at each point t ∈ A the sequence ( fn(t)) converges to either a finite
limit, or to +∞. Denote by B the set of those points t ∈ A where fn(t) → +∞ as
n → ∞. We claim that B is a set of measure zero. Indeed, consider for each pair
n,m ∈ N the set Bn,m = {t ∈ A : fn(t) > m}, and put Bm = ⋃∞

n=1 Bn,m . In other
words, Bm is the set of those points t ∈ A where, starting with some index n, the
values of fn are larger thanm. Clearly, B = ⋂∞

m=1 Bm . By the Chebyshev inequality
(Lemma1 in Subsection4.3.1),

μ(Bn,m) � 1

m

∫

A

fndμ � C

m
.

Since for fixed m the sets Bn,m grow as n grows,

μ(Bm) = lim
n→∞ μ(Bn,m) � C/m.

In its turn, the set Bm decreases with the growth of m, i.e.,

μ(B) = lim
m→∞ μ(Bm) � lim

m→∞C/m = 0,

as claimed.
Now define the function f on B in an arbitrary way (for instance, put f = 0

on B), and on A \ B, where, by construction, for each t the sequence ( fn(t)) has a
finite limit, put f (t) = limn→∞ fn(t).With this definition, the sequence fn converges
almost everywhere to f , and so, by Fatou’s lemma, f is integrable. Moreover, f is
an integrable majorant for all functions fn , so to complete the proof it remains to
apply the Lebesgue dominated convergence theorem. �
Theorem 2 (Levi’s theorem on series). Suppose that on the set A there is given a
sequence ( fn) of non-negative integrable functions satisfying

∑∞
n=1

∫
A fndμ < ∞.

Then the series
∑∞

n=1 fn converges almost everywhere to an integrable function f ,
and

∫
A f dμ = ∑∞

n=1

∫
A fndμ.

Proof. It suffices to note that the sequence of partial sums of the series
∑∞

n=1 fn
satisfies the conditions of Levy’s theorem on monotone sequences. �

Exercises

1. Show that the condition fn � fn+1, n ∈ N, in the statement of Levi’s theorem
on monotone sequences can be replaced by the condition “for all n ∈ N , fn � fn+1

almost everywhere”.

2. Provide the details of the proof of Levi’s theorem on series.
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3. Using the representation of a function as the difference of its positive and neg-
ative parts, prove the following strengthening of Levi’s theorem on series: Sup-
pose the functions fn are integrable on the set A and

∑∞
n=1

∫
A | fn|dμ < ∞. Then

the series
∑∞

n=1 fn converges almost everywhere to an integrable function f , and∫
A f dμ = ∑∞

n=1

∫
A fndμ. This resultwill be used later, in Subsection6.3.2, to prove

the completeness of the space L1.

4. Derive the solution of Exercise4 of Subsection4.3.1 by applying Levi’s theorem
on monotone sequences to the sequence fn = n| f |.

4.4.4 A Monotone Class Theorem for Functions

Definition 1. Let (�,�,μ) be a finite measure space. A family E of functions
integrable on � is called a monotone class of functions if it obeys the following
axioms:

(1) if f1, f2 ∈ E , then a1 f1 + a2 f2 ∈ E for any scalars a1, a2 (linearity);

(2) if f1, f2, . . . , fn, . . . ∈ E , the fn form a non-decreasing sequence which con-
verges at each point to a function f , and supn

∫
�
fndμ = C < ∞, then f ∈ E

(analogue of Levi’s theorem);

(3) if f ∈ E , f � 0, and
∫
�
f dμ = 0, then all the measurable functions g which

satisfy the double inequality 0 � g � f also belong to E (analogue of complete-
ness).

Note that by passing from fn to − fn one readily obtains another property of a
monotone class:

(2′) if f1, f2, . . . fn, . . . ∈ E , the functions fn form a non-increasing sequence
which converges at each point to a function f , and infn

∫
�
fndμ > −∞, then f ∈ E .

Theorem 1. Let (�,�,μ) be a finite measure space obtained, as described in
Sect.2.2, by extending the measure μ from some unital semiring 
 ⊂ � to �. Let E
be a monotone class of functions which contains the characteristic functions of all
elements of the semiring 
. Then E coincides with the set of all integrable functions
on �.

Proof. Denote by M the family of all sets whose characteristic functions belong
to E . Then M is a monotone class that contains 
 as a subclass. By the monotone
class theorem for sets (Subsection2.2.4), M = �. Hence, the class E contains the
characteristic functions of all measurable sets.

Every finitely-valued integrable function has the form
∑n

k=1 ak1Ak , with Ak ∈ �,
and thanks to linearity all such functions lie in E . Every non-negative countably-
valued integrable function f = ∑∞

k=1 ak1Ak , ak � 0, is the limit of a non-decreasing
sequence of finitely-valued functions fn = ∑n

k=1 ak1Ak , and consequently also lies in
E . Further, every non-negative integrable function can be represented as the limit of a
non-decreasing sequence of non-negative countably-valued integrable functions, and
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finally, every integrable function f is representable as the difference f = f + − f −
of two integrable functions. �

Exercises

1. Let E be amonotone class, f ∈ E , f � 0 and
∫
�
f dμ = 0. Then anymeasurable

function g that satisfies the inequality ‖g| � f also lies inE .Moreover, if themeasure
space (�,�,μ) is complete (which we tacitly assume in this chapter), then every
function g satisfying |g| � f is automatically measurable and belongs to E .
2. Show the independence of the axioms of a monotone class. In other words, give
examples of families of integrable functions that satisfy two of the monotone class
axioms, but not the remaining axiom. For instance, an example of a family that
satisfies axioms (1) and (3), but not axiom (2), and so on.

3. Verify that Theorem1 can be proved in the slightly more general situation of a
monotone class of measurable integrable functions defined on the (possibly incom-
plete) measure space (�,�,μ) described in Exercise10 of Subsection2.2.4.

4.5 Multiple Integrals

4.5.1 Products of Measure Spaces

Let (�1, �1, μ1) and (�2, �2, μ2) be finite measure spaces and � = �1 × �2. Fol-
lowing Subsection2.1.3, a rectangle in � is any set of the form A1 × A2, where
A1 ∈ �1 and A2 ∈ �2. We let 
 denote the family of all rectangles in �.

Theorem 1. The family 
 is a unital semiring.

Proof. Let A = A1 × A2 and B = B1 × B2 be arbitrary rectangles. Then A ∩ B =
(A1 ∩ B1) × (A2 ∩ B2) is again a rectangle. Next, � \ A = ((�1 \ A1) × �2) �
(A1 × (�2 \ A2)), that is, the complement of a rectangle can bewritten as the disjoint
union of two rectangles. Finally, the space � is itself a rectangle. �

Define the measure μ on 
 by the rule μ(A1 × A2) = μ1(A1) · μ2(A2).

Theorem 2. The measure μ on 
 is countably additive.

Proof. Let A = A1 × A2, Bn = A1,n × A2,n , and suppose the rectangles Bn are pair-
wise disjoint and their union is the rectangle A. For any t ∈ A1, denote by N (t) the set
of all indices n for which t ∈ A1,n . Then the family of sets A2,n , n ∈ N (t), is disjoint,
and

⋃
n∈N (t) A2,n =A2. Consider on A1 the auxiliary functions fn = μ2(A2,n)1A1,n .
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These functions are μ1-integrable, and their integrals are equal to μ(Bn). We note
that for each t ∈ A1 it holds that

∑

n∈N
fn(t) =

∑

n∈N (t)

μ2(A2,n) = μ2

⎛

⎝
⋃

n∈N (t)

A2,n

⎞

⎠ = μ2(A2).

It remains to integrate both sides of this equality, which is allowed by Levi’s theorem
on series, to conclude that

∑

n∈N
μ(Bn) =

∫

A1

∑

n∈N
fn(t)dμ1 =

∫

A1

μ2(A2)dμ1 = μ1(A1) · μ2(A2) = μ(A),

as needed. �

Let us apply the extension of measure recipe described in Sect. 2.2 to the measure
μ on 
. The resulting measure space (�,�,μ) is called the product of the measure
spaces (�1, �1, μ1) and (�2, �2, μ2). The measure μ is denoted by μ1 × μ2, and
the elements of the σ -algebra � are also referred to as μ1 × μ2-measurable sets.
It is clear that the σ -algebra � includes as a subsystem the smallest σ -algebra that
contains all rectangles (the latter was denoted by �1 ⊗ �2).

Remark 1. Let (�k, �k, μk), k ∈ {1, 2, . . . , n} be a finite collection of measure
spaces. A parallelepiped in

∏n
k=1 �k = �1 × �2 × · · · × �n is a set of the form∏n

k=1 Ak with Ak ∈ �k . Put μ
(∏n

k=1 Ak
) = ∏n

k=1 μ(Ak). One can show that the
parallelipipeds form a unital semiring and that the measure μ is countably addi-
tive on this semiring. Applying again the extension of measure recipe, we obtain
a measure space, called the product of the spaces (�k, �k, μk). However, to avoid
repeating in the case of arbitrary n the reasoning used in the case n = 2, it is more
convenient to define the product of a finite number of measure spaces by induction
on the number of factors. That is, we first take the product of two spaces, then take
the product of the resulting space by the third space, then the product by the next
space, and so on. This second approch is also more convenient because the theorems
obtained for the product of a pair of measure spaces can be subsequently extended
by induction to an arbitrary finite number of factors.

Remark 2. For the moment, we only have a formal definition of the product of
measure spaces. The reader will get a better feeling about what this notion means
after studying the next subsection. In particular, Exercise1 in Subsection4.5.2, where
an explicit formula for the calculation of the measure analogous to the formula for
the area of a curvilinear trapezoid will prove helpful. However, one can successfully
work with the product of measures without resorting to this formula, using only the
countable additivity and completeness of the measure, together with the formula for
the measure of a rectangle.
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Exercises

Regard the unit square K as the product of intervals [0, 1] × [0, 1] and define the
two-dimensional Lebesgue measure λ × λ on K as the product of the usual one-
dimensional Lebesgue measures on the corresponding factor intervals.

1. Verify that the diagonal of the square K is a set of measure zero.

2. Let the set A ⊂ [0, 1] have one-dimensional measure zero. Show that the set of all
points x = (x1, x2) ∈ K for which x1 − x2 ∈ A has two-dimensional measure zero.

3. Let A be a subset of K that has an area. Show that (λ × λ)(A) coincides with the
area of A.

4. Let f be an arbitrary measurable function on [0, 1]. Show that the function
g : K → R defined by the rule g(x1, x2) = f (x1) is measurable on K .

5. Show that the function g given by g(x1, x2) = x1 − x2 is measurable on K .

6. Show that the function from the preceding exercise has the following property:
for any Lebesgue measurable set A ⊂ [0, 1], the preimage f −1(A) is Lebesgue mea-
surable in the square.

7. Let f be a measurable function on [0, 1]. Show that the function g : K → R

defined by the rule g(x1, x2) = f (x1 − x2) is measurable on K .

8. Consider the function g : K → Rdefinedby the rule g(x1, x2) = x1. Let D denote
the main diagonal of the square K . Now define the measure μ on the σ -algebra B
of Borel subsets of the square K by the rule μ(A) = λ(g(A ∩ D)). Verify that μ

is a countably-additive measure on B and that the values of the measures μ and
λ × λ coincide on the rectangles of the form [a, b] × [0, 1] and [0, 1] × [a, b], but
on squares of the form [a, b] × [a, b] they differ.

9. Show that B is the smallest σ -algebra of subsets of the square K that contains
all rectangles of the form [a, b] × [0, 1] and [0, 1] × [a, b]. Combined with the pre-
ceding exercise, this fact provides a nice (although not the simplest possible, see
the comment to Exercise3 of Subsection2.2.1) example of two countably-additive
measures which coincide on a family of subsets that generates a given σ -algebra, but
do not coincide on the whole σ -algebra.

4.5.2 Double Integrals and Fubini’s Theorem

Throughout Subsections4.5.2 and 4.5.3, (�1, �1, μ1) and (�2, �2, μ2)will be finite
measure spaces, and (�,�,μ) will denote their product. Each element of the set
� = �1 × �2 has the form (t1, t2), where t1 ∈ �1 and t2 ∈ �2. Accordingly, it is
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natural to regard any function f defined on� as a function f (t1, t2) of two variables
and, by analogy with what is done in calculus, call the integral

∫
�
f dμ a double

integral. When we consider the integral with respect to one of the variables with the
other kept fixed, we will use the expression

∫
�1

f (t1, t2)dμ1(t1), where the notation
dμ1(t1) emphasizes with respect to which variable one is integrating.

Definition 1. We say that for the function f : � → R there exists the iterated inte-

gral
∫
�2

[∫
�1

f (t1, t2)dμ1(t1)
]
dμ2(t2) if, for almost every fixed value of the vari-

able t2 ∈ �2, the function t1 �→ f (t1, t2) is μ1-integrable on �1, and the function
g(t2) = ∫

�1
f (t1, t2)dμ1(t1) of the variable t2 is μ2-integrable on �2.

Theorem 1 (Fubini’s Theorem). If the function f : � → R is integrable as a func-
tion of two variables (i.e., the double integral

∫
�
f dμ exists), then the iterated

integral of f exists, and the double integral is equal to the iterated integral:

∫

�

f dμ =
∫

�2

⎡

⎣
∫

�1

f (t1, t2)dμ1(t1)

⎤

⎦ dμ2(t2).

Proof. We say that the function f : � → R belongs to the Fubini class (and write
f ∈ Fub(μ)), if f isμ-integrable on�, the iterated integral of f exists, and thedouble

integral is equal to the iterated integral:
∫
�
f d μ=∫

�2

[∫
�1

f (t1, t2)dμ1(t1)
]
dμ2(t2).

We need to show that the Fubini class coincides with the class of functions that are
integrable as functions of two variables. Since the Fubini class contains the character-
istic functions of all rectangles, it suffices to show (seeTheorem1 in Subsection4.4.4)
that the Fubini class is a monotone class of functions on (�,�,μ). The first of the
monotone class axioms, linearity, is readily verified. The verification of the second
and third axioms requires some efforts.

We need to prove two statements.

A. If fn ∈ Fub(μ), n � 1, the functions fn form a non-decreasing sequence that
converges at each point to some function f , and supn

∫
�
fndμ = C < ∞, then

f ∈ Fub(μ).

B. If f ∈ Fub(μ), f � 0,
∫
�
f dμ = 0, and the measurable function g satisfies the

inequality 0 � g � f , then g ∈ Fub(μ).

Let us start with assertion A. Denote
∫
�1

fn(t1, t2)dμ1(t1) by gn(t2). By hypothe-
sis, the functions gn are defined almost everywhere and are integrable on �2; more-
over,

∫

�2

gndμ2 = ∫

�

fndμ. Further, gn form almost everywhere a non-decreasing

sequence of functions, and supn
∫
�2

gndμ2 = supn
∫
�
fndμ = C < ∞. By Levi’s

theorem, the sequence (gn) converges almost everywhere on �2 to an integrable
function g, and

∫

�2

g dμ2 = lim
n→∞

∫

�2

gndμ2 = lim
n→∞

∫

�

fndμ. (1)
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Denote by D the set of all points t2 ∈ �2 for which the values gn(t2) and g(t2)
are defined,

∫
�1

fn(t1, t2)dμ1(t1) = gn(t2), gn(t2) do not decrease with the growth
of n, and converge to g(t2). By construction, μ2(�2 \ D) = 0. For each point t2 ∈
D, the functions fn(·, t2) are integrable with respect to the first variable, do not
decrease with the growth of n, and converge to the function f (·, t2). Moreover, we
have

∫
�1

fn(t1, t2)dμ1(t1) = gn(t2) � g(t2) < ∞. Applying again Levi’s theorem,
but now with respect to the variable t1, we conclude that for every t2 ∈ D (i.e., for
almost every value of the variable t2) the function f is integrable with respect to t1,
and

∫

�1

f (t1, t2)dμ1(t1) = lim
n→∞

∫

�1

fn(t1, t2)dμ1(t1) = lim
n→∞ gn(t2) = g(t2). (2)

Finally, Levi’s theorem, applied to the functions fn on� (i.e., with respect to both
variables), yields the equality limn→∞

∫
�
fndμ = ∫

�
f dμ. Combining this equality

with relations (1) and (2), we see that

∫

�2

⎡

⎣
∫

�1

f (t1, t2)dμ1(t1)

⎤

⎦ dμ2(t2) =
∫

�2

g dμ2

= lim
n→∞

∫

�2

gndμ2 = lim
n→∞

∫

�

fndμ =
∫

�

f dμ,

that is, f ∈ Fub(μ).
Now let us prove assertionB. First of all, the relations 0 � g � f and

∫
�
f dμ = 0

imply that g is integrable on � and
∫

�

g dμ = 0. (3)

Denote
∫
�1

f (t1, t2)dμ1(t1) by h (t2). Since f ∈ Fub (μ), the function h is defined
almost everywhere on �2, is integrable, and

∫
�2

h dμ2 = ∫
�
f dμ = 0. Thanks to

non-negativity, h vanishes almost everywhere on�2 (surely the respected reader has
already managed to solve Exercise4 in Subsection4.3.1). Denote by Δ the set of all
points t2 ∈ �2 in which h(t2) = 0. The complement of Δ in �2 has measure zero,
and for each fixed t2 ∈ Δ the function f (t1, t2) is integrable on�1 with respect to the
variable t1, and

∫
�1

f (t1, t2)dμ1(t1) = 0. Again thanks to positivity, for each fixed
t2 ∈ Δ, we have f (t1, t2) = 0 for almost every t1 ∈ �1. But due to the inequality
0 � g � f , at the points where f (t1, t2) = 0 one also has g(t1, t2) = 0. Hence, for
each fixed t2 ∈ Δ we have g(t1, t2) = 0 for almost all t1 ∈ �1. Therefore, for t2 ∈ Δ

(i.e., for almost every value of t2) the function g is integrable with respect to t1,
and

∫
�1

g(t1, t2)dμ1(t1) = 0. In conjunction with equality (3), this shows that the
function g belongs to the Fubini class. �
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Remark 1. Since in the assumptions of Fubini’s theorem the variables t1 and t2 play
equivalent roles, one can also exchange their roles in the conclusion of the theorem.
Hence, if the double integral exists, then the iterated integrals are defined in the two
possible orders of integration, and both these integrals are equal to the double integral.
Therefore, if the double integral exists, one can change the order of integration in
the iterated integral without affecting the result:

∫

�2

⎡

⎣
∫

�1

f (t1, t2)dμ1(t1)

⎤

⎦ dμ2(t2) =
∫

�1

⎡

⎣
∫

�2

f (t1, t2)dμ2(t2)

⎤

⎦ dμ1(t1).

It is in this form that Fubini’s theorem is most often applied.

Exercises

1. Let A be a measurable subset of � = �1 × �2. For any t1 ∈ �1 denote by At1
the set of all points t2 ∈ �2 such that (t1, t2) ∈ A. Using Fubini’s theorem, show that
At1 ∈ �2 for almost every t1 ∈ �1 and μ(A) = ∫

�1
μ2(At1)dμ1(t1).

2. In the setting of the preceding exercise, suppose that the function f isμ-integrable

on A. Show that
∫
A f dμ = ∫

�1

[ ∫
At1

f (t1, t2)dμ2(t2)
]
dμ1(t1).

3. Suppose the set A1⊂[0, 1] is not Lebesguemeasurable.Define the set A⊂[0, 1]×
[0, 1] as the union of the sets A1 × [0, 1/2] and ([0, 1] \ A1) × (1/2, 1]. Show that

for the function f = 1A the iterated integral
∫
[0,1]

[ ∫
[0,1] f (t, τ )dλ(τ)

]
dλ(t) exists.

That is this integral equal to? Show that the integral
∫
[0,1]

[∫
[0,1] f (t, τ )dλ(t)

]
dλ(τ)

does not exist. Is f integrable as a function of two variables? Measurable?

4. Give an example of a function on the square for which the two iterated integrals
exist, but are not equal to one another.

5. Give an example of a function on the square for which the two iterated integrals
exist and are equal, but the function is not integrable as a function of two variables.

4.5.3 A Converse to Fubini’s Theorem

As the exercises above show, changing the order of integration in an iterated integral
is not always possible. One condition under which this can be done, namely the
joint integrability of the function, does indeed sound pleasant, but it is too abstract.
Indeed, how does one determine for a concrete function, say, of two variables, that it
is integrable as a function of two variables? It would have been much simpler to be
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able to deal with the iterated integral if, after verifying that it exists for some function
in one order, we could be sure that this function is also integrable in the other order,
as well as a function of two variables. Unfortunately, not everything in life is so
simple. Yet, as the next theorem shows, there are no special grounds for complaining
about life (at least concerning this subject). This “inverse Fubini theorem” is due to
L. Tonelli.

Theorem 1. Let f be a non-negative measurable function on � = �1 × �2 for

which the iterated integral
∫
�2

[ ∫
�1

f (t1, t2)dμ1(t1)
]
dμ2 (t2) exists. Then for f the

double integral also exists, and consequently

∫

�2

⎡

⎣
∫

�1

f (t1, t2)dμ1(t1)

⎤

⎦ dμ2(t2) =
∫

�1

⎡

⎣
∫

�2

f (t1, t2)dμ2(t2)

⎤

⎦ dμ1(t1).

Proof. Consider the sets An = {t ∈ � : f (t) � n} and the functions fn = f · 1An .
Each fn is bounded and measurable on �, and hence μ-integrable (see Theorem1
and Exercise3 in Subsection4.3.3). Further,

∫

�

fndμ =
∫

�2

⎡

⎣
∫

�1

fn(t1, t2)dμ1(t1)

⎤

⎦ dμ2(t2) �
∫

�2

⎡

⎣
∫

�1

f (t1, t2)dμ1(t1)

⎤

⎦ dμ2(t2),

i.e., the integrals
∫
�
fndμ are bounded from above by a constant that does not depend

on n. Finally, the functions fn form a non-decreasing sequence and converge point-
wise to f . To complete the proof, it remains to apply Levi’s theorem. �

Recall that if a function is measurable, then its integrability is equivalent to the
integrability of its modulus.

Corollary 1. For a measurable function f on� the following conditions are equiv-
alent:

(1) f is integrable on � as a function of two variables;

(2) for the function | f | there exists the iterated integral

∫

�2

[ ∫

�1

| f (t1, t2)|dμ1(t1)

]

dμ2(t2). �

Remark 1. Since the product
∏n

k=1 (�k, �k, μk) of a finite number of measure

spaces is constructed inductively, as
(∏n−1

k=1 (�k, �k, μk)
)

× (�n, �n, μn), the

results of the last two subsections can be generalized with no difficulty to the case
of multiple integrals.



128 4 The Lebesgue Integral

Remark 2. As alreadymentioned, for incompletemeasure spaces the integrability of
a function does not necessarily imply its measurability: to obtain measurability one
still has to remove a set of measure zero. A product of measure spaces is complete by
construction, but in principle the factors themselves may also be incomplete spaces.
In such a case, if for some reason or another we need that a function of two variables
be measurable as a function of the first or the second variable, then we need to restrict
ourselves to �1 ⊗ �2-measurable functions. We leave to the reader to verify that in
this case, for each fixed value of one of the variables, the function is measurable
in the other variable. To show this, it is reasonable to consider first characteristic
functions of sets (see Exercise6 in Subsection2.1.3) and then use the approximation
of measurable functions by countably-valued functions. When one speaks about the
version of the Fubini theorem for a product of incomplete measure spaces and one
also needs the measurability of the inner integral as a function of the other variable,
then one runs into an unavoidable difficulty: for some values of t2, the inner integral∫

�1

f (t1, t2)dμ1(t1) may be not defined (for example, it may be infinite). One can

overcome this difficulty by either considering bounded functions, or considering
non-negative functions and extending the definition of measurability to functions
that are allowed to take the value+∞ at some points. In this way the Fubini theorem
for characteristic functions of sets can be deduced from the version of the monotone
class theorem for sets given in Exercise10 of Subsection2.2.4, with 
 being the
semiring of rectangles and �1 ⊗ �2 being the σ -algebra in question, and then one
can appeal to the proof of the monotone class theorem for functions, together with
the fact that in Levi’s theorem on monotone sequences the exceptional set on which
the sequence of functions goes to infinity is measurable.

Exercises

1. Show that if the function f on [0, 1] × [0, 1] is Riemann integrable as a function
of two variables, then it is also Lebesgue integrable as a function of two variables.

2. Prove the formula for passing to polar coordinates in the Lebesgue integral.

4.6 The Lebesgue Integral on an Interval and on the Real
Line

4.6.1 The Lebesgue Integral and the Improper Integral
on an Interval

As we already remarked in Exercise8 of Subsection4.2.2, from the condition (2)
of Theorem1 in Subsection4.2.2 it obviously follows that any Riemann integrable
function f : [a, b] → R is also Lebesgue integrable. Moreover, by Theorem1 in



4.6 The Lebesgue Integral on an Interval and on the Real Line 129

Subsection4.3.3, all bounded measurable functions on an interval are Lebesgue inte-
grable.

If a function is Riemann integrable, then it necessarily is bounded. For this reason
in calculus one studies in detail the improper integral as a means of defining the
integral for some unbounded functions on an interval. To get a better feeling about
the nature of the Lebesgue integral, we discuss below the connection between the
improper integral and the Lebesgue integral.

Theorem 1. Suppose the function f : [a, b] → R is continuous everywhere except
at the point a and is Lebesgue integrable on [a, b]. Then for f there exists the
improper integral

∫ b
a f (t)dt, and this integral is equal to the corresponding Lebesgue

integral
∫
[a,b] f dλ.

Proof. Let an ∈ (a, b], an → a as n → ∞. Consider the auxiliary functions fn =
f · 1[an ,b]. The fn form a sequence of (both Riemann and Lebesgue) integrable
functions that converge almost everywhere to the function f ; moreover, | f | serves as
a majorant for all the functions fn . By Lebesgue’s theorem,

∫
[a,b] fndλ = ∫

[an ,b] f dλ

tends to
∫
[a,b] f dλ as n → ∞. But by the definition of the improper integral, for f

there exists the improper integral, which is equal to
∫
[a,b] f dλ. �

Theorem 2. Suppose the function f : [a, b] → R is continuous everywhere except
at the point a, and is non-negative. If the improper integral of f exists, then f is
Lebesgue integrable on [a, b].
Proof. Let an and ( fn) be as in the proof of the preceding theorem. The sequence
( fn) is non-decreasing and tends almost everywhere to the function f . Next, by the
definition of the improper integral,

∫
[a,b] fndλ = ∫

[an ,b] f dλ tends to
∫ b
a f (t)dt as

n → ∞. It remains to apply Levi’s theorem on monotone sequences. �

Fromcalculus the reader is certainly familiarwith examples of functions forwhich
the improper integral exists, but the modulus of which is not integrable even in the
improper sense. Such functions are not Lebesgue integrable, because the modulus
of a Lebesgue-integrable function is itself Lebesgue integrable.

In what follows, if a function f is Lebesgue integrable on a segment, then for
its Lebesgue integral we will use the notation

∫
[a,b] f (t)dλ, as well as the notation

∫ b
a f (t)dt , which is more usual in calculus courses.

Exercises

Which of the functions f listed below is Lebesgue integrable on the interval [a, b]?

1. f (t) = t2, [a, b] = [0, 1].
2. f (t) = t−2, [a, b] = [0, 1].
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3. f (t) = t−2, [a, b] = [1, 2].
4. f (t) = sin(t−2), [a, b] = [0, 1].
5. f (t) = (sin t)−2, [a, b] = [0, 1].
6. f (t) = t−1/2, [a, b] = [0, 1].
7. f (t) = 1/t , [a, b] = [−1, 1].

Which of the functions f on the square [0, 1] × [0, 1] listed below are integrable
with respect to the Lebesgue measure in the plane, and which not?

8. f (x, y) = x + y.

9. f (x, y) = 1/(x + y).

10. f (x, y) = x − y.

11. f (x, y)) = 1/(x − y).

12. f (x, y) = sin
(
1/(x − y)

)
.

13. For which values of the parameter α is the function f (x, y) = (x2 + y2)−α

integrable on [0, 1] × [0, 1]?

4.6.2 The Integral with Respect to a σ -finite Measure

In Sects. 4.2–4.5 we studied the Lebesgue integral on a finite measure space
(�,�,μ). To successfully define the Lebesgue integral on the real line, or, say,
on an unbounded subset of the plane, we also have to consider the case of countably-
additive measures that are allowed to take the value +∞ on some elements of the
σ -algebra �. We refer to such measures as infinite.

Thus, let (�,�,μ) be an infinite measure space. A subset A ∈ � is called a set
of σ -finite measure (alternatively, one says that the measure μ is σ -finite on A), if
A can be written as a countable union of sets of finite measure. σ -finite measures
have already been mentioned in Subsection2.3.7. If the measure μ is σ -finite on A,
then A can be represented as A = ⊔∞

n=1 An , 0 < μ(An) < ∞, where the sets A j are
pairwise disjoint. We note also that any countable union of sets of σ -finite measure
is itself a set of σ -finite measure.

For functions defined on a set A of σ -finite measure one can introduce partitions
of the set A into subsets of finite measure. One can also introduce integral sums
and the Lebesgue integral in the same way we proceeded for sets of finite measure.
The reader can verify independently that the proofs of the main properties of the
integral remain valid in this case, too. The only difficulty that one must overcome
in extending the properties of the integral from the case of a finite measure to that
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of a σ -finite measure is that functions that are constant on A are not integrable. We
insistently advise the reader to go over again the entire scheme for the construction of
the Lebesgue integral presented above with the goal of independently constructing,
following the already available model, the theory of the Lebesgue integral on a set
of σ -finite measure. In the present subsection we will propose a roundabout path
whereby, using an artificial device, we can reduce integration with respect to a σ -
finite measure to the already familiar case of integration with respect to a finite
measure. This allows one to reduce the properties of the integral with respect to a
σ -finite measure to the corresponding already known results.

Let A be a set of σ -finite measure. Fix some representation of A in the form
A = ⊔∞

n=1 An , with An ∈ � and 0 < μ(An) < ∞. We are already familiar with the
notion of integral on any set of finite measure, in particular on each of the sets An .
Relying on this, we can give the following

Definition 1. A function f is said to be integrable on Awith respect to the σ -finite
measure μ if f is μ-integrable on each of the sets Ak and

∑∞
k=1

∫
Ak

| f |dμ < ∞. In
this case we put

∫
A f dμ = ∑∞

k=1

∫
Ak

f dμ.

Let an = 2nμ(An). Define on the family �A of all measurable subsets of the set
A a new measure μ1 by the formula

μ1(B) =
∞∑

n=1

μ(B ∩ An)

an
.

The triplet (A, �A, μ1) so defined is a finite measure space. Consider on A the
function g = ∑∞

n=1 an1An .

Lemma 1. Let B ∈ �A and μ(B) < ∞. Then the function h : B → R is integrable
on B with respect to the measure μ if and only if the function f · g is integrable on
the set B with respect to the measure μ1. In this case,

∫
B h dμ = ∫

B hg dμ1.

Proof. On �An we have μ1 = 1
an

μ, and on An the function g is equal to the constant
an . Hence, for B ⊂ An the assertion is obvious:

∫

B
h dμ =

∫

B
anh d

(
1

an
μ

)

=
∫

B
hg dμ1.

An arbitrary set B can be written as B = ⊔∞
n=1(B ∩ An), where the sets B ∩ An are

disjoint and each of them is contained in the corresponding An . Since on B not only
μ1, but also the measure μ is finite, we can apply Theorem4 of Subsection4.2.3 on
the countable additivity of the integral as a set function to the integral on B with
respect to μ1, as well as with respect to μ, and deduce our assertion by combining
the already proved assertions on the sets B ∩ An . �
Lemma 2. The function f is integrable on the set A with respect of the measure μ

if and only if the function f · g is integrable on A with respect to the measure μ1. In
this case,

∫
A f dμ = ∫

A f g dμ1.
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Proof. We apply Lemma1 to each of the sets Ak , using Definition 1 and applying
Theorem4 of Subsection4.2.3 to the measure μ1. �

In view of Lemma2, the linearity of the integral, the fact that one can integrate
inequalities, the measurability of integrable functions, the integrability criterion for
measurable functions, Fatou’s lemma, Lebesgue’s dominated convergence theorem,
Levi’s theorem — all these properties for the integral with respect to the measure μ

are obvious consequences of the corresponding properties for the measure μ1.
The following property of the integral over a set of σ -finitemeasuremeans that the

integral does not depend on the representation of the set A in the form A = ⊔∞
n=1 An

(the reader undoubtedly wondered whether this is true when Definition 1 was stated).

Theorem 1. Let A be a set of σ -finite measure, A = ⊔∞
n=1 Bn, where Bn ∈ �

and μ(Bn) < ∞. The integral
∫
A f dμ exists if and only if the function f is inte-

grable on each of the sets Bn and
∑∞

k=1

∫
Bk

| f |dμ < ∞. In this case,
∫
A f dμ =

∑∞
k=1

∫
Bk

f dμ.

Proof. Let μ1 be the finite measure figuring in Lemmas1 and 2. Using Lemma2
and applying Theorem4 of Subsection4.2.3 to μ1, we see that the function f is μ-
integrable on A if and only if the function f · g is μ1-integrable on each Bn and the
series

∑∞
k=1

∫
Bk

| f |g dμ1 converges. Then one has
∫
A f dμ = ∑∞

k=1

∫
Bk

f g dμ1. To
complete the proof, it remains to apply Lemma1 to the sets Bk , which is possible
because the measure μ is finite on each Bk . �

Exercises

In all the exercises below An and μ1 are as in Definition 1 and Lemma1.

1. Suppose B ⊂ An for some n. Then μ1 (B) = μ (B) /an .

2. Let D be a partition of the set A into subsets An . Then for any partition D1 =
{Δk}∞k=1 � D and any choice T of marked points the integral sum SA( f, D, T ) =∑∞

k=1 f (tk)μ(Δk) with respect to the measure μ coincides with the integral sum
SA( f g, D, T ) = ∑∞

k=1( f g)(tk)μ1(Δk) with respect to the measure μ1. Therefore,∫
A f dμ can be defined as a limit of integral sums, and by Lemma2 this definition

is equivalent to the preceding one.

3. Show that for a set B ⊂ A the conditionsμ(B) = 0 andμ1(B) = 0 are equivalent.

4. For a sequence of functions ( fn) on A the following conditions are equivalent:
fn → f a.e. with respect to the measure μ; fn → f a.e. with respect to the measure
μ1; fng → f g a.e. with respect to the measure μ1.

5. Let λ be the Lebesgue measure on the real line. The measurable function f on
the line is λ-integrable if and only if
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∞∑

k=−∞

∫

[k,k+1)

| f |dλ < ∞,

and then ∫

R

f dλ =
∞∑

k=−∞

∫

[k,k+1)

f dλ = lim
n→∞

∫

[−n,n)

f dλ.

6. Based on the already proved theorems about passage to the limit under the integral
signwith respect to a finitemeasure, prove the Fatou lemma, the Lebesgue dominated
convergence theorem, and Levi’s theorems on sequences and series for the case of a
σ -finite measure.

7. (Caution!) The uniform limit theorem does not hold for the integral with respect
to a σ -finite measure. Show this by means of the following example: the sequence
fn = 1

2n1[−n,n] of functions integrable on the whole real line converges uniformly to
zero, but the integrals of these functions are all equal to 1.

8. Prove Theorem1 without the assumption μ(Bn) < ∞.

9. Let (�1, �1, μ1) and (�2, �2, μ2) be σ -finite measure spaces, and let {Ak}∞1 and
{Bk}∞1 be correspondingpartitions of the sets�1 and�2 into subsets of finitemeasure.
Then the rectangles

{
Ak × Bj

}∞
k, j=1 form a partition of the Cartesian product �1 ×

�2 into subsets of finite measure. Using this partition, prove the Fubini theorem and
the inverse Fubini theorem for products of σ -finite measure spaces.

10. One can also define the integral on sets whosemeasure is infinite without assum-
ing their σ -finiteness, but this definition does not extend the given one too much.
Recall that the support of a function f : A → R is defined as the set supp f =
{t ∈ A : f (t) �= 0}. Call a function f integrable on A, if supp f is a set of σ -finite
measure and f is integrable on supp f . By definition,

∫
A f dμ = ∫

supp f f dμ. Ver-
ify that the main properties of the integral with respect to a σ -finite measure remain
valid for the more general integral thus introduced.

11. Show that it is not possible to extend the notion of an integral to functions whose
supports are not sets of σ -finite measure with preservation of the main properties
of the integral, specifically, of properties (a) if f � g on the set A and both f and
g are integrable on A, then

∫
A f dμ �

∫
A g dμ, and (b)

∫
A a dμ = aμ(A) for any

constant a ∈ R and any measurable set A of finite measure.

4.6.3 Convolution

Definition 1. Given functions f and g on the real line, we say that their convolution
is defined if for almost every t ∈ R the function f (τ )g(t − τ) is Lebesgue integrable
on R as a function of the variable τ .
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If this is the case, then the convolution of the functions f and g is the function
f ∗ g defined for almost every t ∈ R by the formula

( f ∗ g)(t) =
∫

R

f (τ )g(t − τ)dλ(τ).

The notion of convolution proves important in probability theory (the density of
the distribution of the sum of two independent random variables is the convolution
of the densities of the distributions of the summands), as well as in Fourier transform
theory (the Fourier transform of the convolution of two functions is equal to the
product of the Fourier transforms of the factors). In this subsection we establish the
following useful result.

Theorem 1. If the functions f and g are Lebesgue integrable on the real line, then
their convolution is defined. Moreover, the function f ∗ g is integrable on the line
and ∫

R

| f ∗ g|dλ �
∫

R

| f |dλ

∫

R

|g|dλ.

Proof. First of all, we remind the reader that a product of integrable functions is
not necessarily integrable, that is, for some values of the parameter t the function
f (τ ) g (t − τ) may not be integrable with respect to the variable τ . But where have
we already encountered an assertion of the kind “for almost all values of the first
variable, the function is integrable with respect to the second variable”? In Fubini’s
theorem, of course! So it is precisely to Fubini’s theorem that we will reduce our
assertion.

Note that the functions f (τ ), g(t − τ), and so also their product f (τ )g(t − τ)

are measurable as functions of two variables (Exercises4–7 in Subsection4.5.1).
According to the integrability criterion for measurable functions (Theorem1 in Sub-
section4.3.3), to show that f (τ )g(t − τ) is integrable on R × R, it suffices to estab-
lish the integrability of the positive function | f (τ )g(t − τ)|. For this, in turn, it
suffices (see Subsection4.5.3) to verify that the iterated integral exists.

By assumption, the function g is integrable, and consequently the function g(t −
τ) is integrable with respect to t for any fixed value of τ . We have

∫

R

| f (τ )g(t − τ)|dλ(t) = | f (τ )|
∫

R

|g(t − τ)|dλ(t) = | f (τ )|
∫

R

|g(t)|dλ(t).

Now we can easily calculate the iterated integral:

∫

R

⎡

⎣
∫

R

| f (τ )g(t − τ)|dλ(t)

⎤

⎦ dλ(τ) =
∫

R

| f (τ )|dλ(τ)

∫

R

|g(t)|dλ(t). (1)
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Hence, the product f (τ )g(t − τ) is integrable as a function of two variables.
ApplyingFubini’s theorem,we see that for almost every t ∈ R the function f (τ )g(t −
τ) is Lebesgue integrable on R as a function of the variable τ and the function
( f ∗ g)(t) = ∫

R
f (τ )g(t − τ)dλ(τ) is integrable with respect to the variable t , i.e.,

the convolution exists and is integrable. The claimed inequality
∫
R

| f ∗ g|dλ �∫
R

| f |dλ
∫
R

|g|dλ is a direct consequence of relation (1). �

Exercises

1. The convolution operation is commutative, i.e., f ∗ g = g ∗ f for any integrable
functions f and g.

As we observed above, for complex-valued functions the definition and properties of
the integral do not differ essentially from the corresponding definitions and properties
for real-valued functions. One of the branches of mathematics where integration of
complex-valued functions is ubiquitous is harmonic analysis: the theory of Fourier
series and integrals and of problems concerned with them. In this book we will often
address various problems of harmonic analysis to demonstrate applications of the
material we are treating.

2. Let f be a complex-valued function on R. Show that for every t ∈ R the function
f (τ )eitτ is integrable on R as a function of the variable τ .

3. The Fourier transform of the integrable function f on the real line is the function
f̂ on R (alternative customary notations are F( f ) andF( f )) defined by the formula
f̂ (t) = ∫

R
f (τ )eitτdλ(τ). Show that the function f̂ is bounded on R.

4. Show that the function f̂ is continuous and tends to 0 at infinity.

5. Suppose the functions f and g are integrable on the line. Then f̂ ∗ g = f̂ · ĝ.
6. Let f and g be 2π -periodic functions on the real line that are integrable on the
interval [0, 2π ]. The convolution of f and g on the interval [0, 2π ] is the function
f ∗ g defined for t ∈ [0, 2π ] by the rule ( f ∗ g)(t) = ∫

[0,2π] f (τ )g(t − τ)dλ1(τ ),

where λ1 = 1
2π λ is the normalized Lebesgue measure on the interval. Show that, as

in the case of the convolution on the line, the convolution of two integrable functions
on the interval is well defined, the function f ∗ g is itself integrable on the interval,
and ∫

[0,2π]
| f ∗ g|dλ1 �

∫

[0,2π]
| f |dλ1

∫

[0,2π]
|g|dλ1.

7. Recall that theFourier coefficients of the integrable function f on the interval
[0, 2π ] are the numbers f̂n = ∫

[0,2π] f (t)e
intdλ1, n ∈ Z. In the setting of the preced-

ing exercise, show that the Fourier coefficients of the function f ∗ g on the interval
[0, 2π ] are the products of the corresponding Fourier coefficients of the functions f
and g.

8. Show that f̂n → 0 as n → ∞.
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Comments on the Exercises

Subsection4.2.2

Exercise8. Any Riemann-integrable function satisfies condition (2) of Theorem1
of Subsection4.2.2; moreover, in the definition of the Riemann integral, one can take
as a partition any partition into a finite number of sufficiently small intervals.

Subsection4.3.1

Exercise3. By the definition of an admissible partition!

Exercise4. By the Chebyshev inequality (Lemma1 of Subsection4.3.1), all the
sets | f |>1/n = {t ∈ A : | f (t)| > 1/n} have measure zero. Hence, their union, i.e.,
the set of all points t in which f (t) �= 0, has measure zero.

Subsection4.6.3

Fourier Analysis is one of the subjects where the methods of Functional Analysis
are widely applicable. In particular, the most natural solution for Exercise4 will
appear in Theorem1 of Subsection14.2.2, and for Exercise8 — in Corollary 1 of
Subsection10.4.3.We formulate these facts now just in order to advertise thepowerful
methods that will appear later in our book.



Chapter 5
Linear Spaces, Linear Functionals, and
the Hahn–Banach Theorem

5.1 Linear Spaces

5.1.1 Main Definitions

Since the reader is assumed to be familiar with elementary linear algebra, this short
subsection does not pretend to be a linear algebra manual. Our goal here is modest:
just fixing notations that will be used later.

LetK be a field. A set X with operations of addition of its elements and multipli-
cation of its elements by elements ofK is called a linear space over the field K (or a
K-linear space, vector space over the field K, or K-vector space) if X is an abelian
group with respect to addition and for any λ,μ ∈ K and any x, y ∈ X the following
relations connecting multiplication by elements of K with addition hold:

— 1 · x = x ;

— (λμ)x = λ(μx);

— (λ + μ)x = λx + μx ;

— λ(x + y) = λx + λy.

Functional analysis courses usually treat linear spaces over the field of real or
complex numbers. Henceforth, the symbol K will be used whenever an argument is
equally valid for the real and the complex numbers. The elements of the fieldK will
be also referred to as numbers or scalars, while the elements of the linear space itself
will be called “vectors”.

Let A be a subset of the linear space X . An element x ∈ X is said to be a linear
combination of elements of the set A if it can be written as

x =
n∑

k=1

λk xk,
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where λk ∈ K and xk ∈ A. The set of all linear combinations of elements of the set A
is called the linear span (alternatively, linear hull or linear envelope) of the set A;
we denote it by Lin A. We note that even if the set A is infinite, when we speak about
linear combinations we consider only finite (though arbitrarily large) collections of
elements of A.

A subset Y of the linear space X is called a linear subspace (we will simply say
“subspace” if the context is clear) if for any x, y ∈ Y and any λ,μ ∈ K, the linear
combination λx + μy also lies in Y . The linear span of the set A is the smallest linear
subspace containing A; accordingly, it is also called the linear subspace spanned
by A.

A subset A of the linear space X is said to be complete if Lin A = X ; further, A is
said to be a linearly independent set if for any finite subset {xk}nk=1 ⊂ A, the equality∑n

k=1 λk xk = 0 can hold only if all the coefficients λk are equal to 0. A complete
linearly independent set is called aHamel basis. If the linear space X contains a finite
Hamel basis, then it is said to be finite-dimensional; in the opposite case the space
is said to be infinite-dimensional. In contrast to linear algebra, functional analysis
studies mainly infinite-dimensional spaces.

Exercises

1. Recall how one proves that in a finite-dimensional space X all Hamel bases have
the same number of elements (this number is called the dimension of the space X
and is denoted by dim X ). Show that:

— if a linear space contains an infinite linearly independent set, then the space is
infinite-dimensional;

— if a linear space contains a finite complete set of vectors, then the space is finite-
dimensional;

— if a linear space contains a countable complete set of vectors, then any Hamel
basis is at most countable;

— if a linear space contains a countable linearly independent set of vectors, then
any Hamel basis contains at least a countable number of elements;

— if a linear space contains a countable Hamel basis, then any other Hamel basis
of this space is countable.

Prove the last three statements above with “countable” replaced by any other
“fixed cardinality”.

2. Show that the following spaces are infinite-dimensional:

— the space P of all polynomials in one variable;

— the spaceC[a, b] of all continuous scalar-valued functions on the interval [a, b];
— the space of all Lebesgue-integrable scalar-valued functions on the interval [a, b].
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3. Describe the compact spaces K for which the space C(K ) is finite-dimensional.
(Recall that in this book the terms “compact space” and “Hausdorff compact space”
are synonymous.) For which measure spaces (�,�,μ) is the space of all Lebesgue-
integrable scalar functions on (�,�,μ) finite-dimensional?

5.1.2 Ordered Sets and Zorn’s Lemma

Let (�,≺) be an ordered set, i.e., a set endowed with an order relation ≺. If two
elements a, b ∈ � satisfy b ≺ a, we say that the element a majorizes the element b.
If, in addition, a �= b, then we say that a strictly majorizes b. A subset A ⊂ � is said
to be bounded if � contains an element that majorizes all elements of A. Such an
element is called an upper bound of the subset A. A subset A ⊂ � is called a chain,
or a linearly ordered subset, if any two elements a, b ∈ A are comparable, i.e., either
a ≺ b, or b ≺ a. An element a ∈ � is called a maximal element of the set � if �

contains no element that strictly majorizes a. The ordered set � is called inductive
if � �= ∅ and every chain in � bounded.

Although historically the following statement retained the name “lemma”, nowa-
days it is often taken as one of the axioms of set theory. Essentially, this statement
replaces for uncountable sets the principle of mathematical induction. If one assumes
the most common axiomatic system in modern set theory ZFC (Zermelo–Fraenkel
+ Axiom of Choice), then Zorn’s lemma is not an axiom, but is a theorem. We don’t
provide a proof here because its nature lies too far from our subject. The proof can
be found in books devoted to the foundations of set theory, or in the already cited
set-theoretic appendix in [23] or set-theoretic chapters of [31].

Lemma 1 (Zorn’s Lemma). Every inductive ordered set has a maximal element.
�

Exercises

1. Consider the following order on the coordinate plane R
2: (x1, x2) ≺ (y1, y2) if

either x1 + x2 < y1 + y2, or (x1, x2) = (y1, y2). Give in each case an example of a
subset of R2 that with respect to the indicated order has the property listed below:

— has no maximal element;

— has two maximal elements;

— has infinitely many maximal elements.

2. Show that in every ordered set any finite chain � contains a largest element: there
exists an a ∈ � such that b ≺ a for all a ∈ �. Is this assertion true for infinite chains?
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5.1.3 Existence of Hamel Bases

Theorem 1. Every linear space contains a Hamel basis.

Proof. Let X be a linear space. Denote by � the family of all linearly independent
subsets of the space X , equipped with the natural order relation (by inclusion): the
subset A majorizes the subset B if A ⊃ B. Let us prove that the ordered set � is
inductive. To this end, we pick an arbitrary chain �1 ⊂ � and show that the set
M = ⋃

A∈�1
A, i.e., the union of all sets that are elements of �1, is an upper bound

for the chain �1 in �. Since M majorizes all elements of �1, we only need to show
that M ∈ �. In other words, we have to verify that M is a linearly independent set.
Let A = {a1, a2, . . . , an} be an arbitrary finite subset ofM ; let Bk , k = 1, 2, . . . , n be
the corresponding elements of the chain �1 such that ak ∈ Bk . Since the sets Bk are
pairwise comparable, one of them (say, Bj ), contains all the others. Thus, A ⊂ Bj , Bj

is linearly independent, and so A is also linearly independent. Thus, we have shown
that every finite subset of the set M is linearly independent, and consequently so is
M . By Zorn’s lemma, � has a maximal element A. We claim that A is the sought-for
Hamel basis. Indeed, any element of the family � is linearly independent, and hence,
in particular, so is A. Let us show that the set A is complete. Suppose Lin A �= X .
Pick an arbitrary element x ∈ X \ Lin A. Then A ∪ {x} is a linearly independent set
that strictly majorizes A, which contradicts the maximality of the set A. �

Exercises

1. Show that any linearly independent set in a linear space can be completed to a
Hamel basis.

2. Let X1 be a subspace of the linear space X . Show that there exists a subspace
X2 ⊂ X with the following properties: Lin (X1 ∪ X2) = X , X1 ∩ X2 = {0}.
3. Exhibit a Hamel basis in the space P of all polynomials in one variable.1

5.1.4 Linear Operations on Subsets

Let A1, A2 be subsets of the linear space X . By A1 + A2 we denote the set of all
elements of the form a1 + a2 with a1 ∈ A1 and a2 ∈ A2. In geometry, A1 + A2 is
called theMinkowski sum of the sets A1 and A2. Analogously, for A ⊂ X and t ∈ K,
we denote by t A the set of all elements of the form t x with x ∈ A. The set (−1)A is
naturally denoted by −A, and for A1 + (−A2) we simply write A1 − A2.

1It is interesting that, despite the existence theorem proved above, no explicit example of a Hamel
basis in more complicated infinite-dimensional spaces (say, in C[0, 1]) is known.
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Exercises

1. 0 ∈ A1 − A2 if and only if the sets A1 and A2 intersect.

2. If A ⊂ X is a subspace, then A + A = A and t A = A for every t �= 0.

3. If A1 and A2 are subspaces, then A1 + A2 is also a subspace.

4. If A1 and A2 are subspaces, then Lin (A1 ∪ A2) = A1 + A2.

5. If A1 and A2 are subspaces and A1 ∩ A2 = {0}, then every element x ∈ A1 + A2

has a unique decomposition as x = a1 + a2, with a1 ∈ A1 and a2 ∈ A2. In this case,
to emphasize the uniqueness of the decomposition, one uses the direct sum symbol
⊕: instead of A1 + A2 one writes A1 ⊕ A2.

6. A subset Y of a linear space X is a subspace if and only if λ1Y + λ2Y ⊂ Y for
all scalars λ1 and λ2.

7. Let A1 and A2 be closed segments in the plane R
2. What geometric figure is

A1 + A2? When is A1 + A2 a segment?

8. Let A be a closed set in the plane. Show that A + A = 2A if and only if A is
convex.

5.2 Linear Operators

5.2.1 Injectivity and Surjectivity

Let X,Y be linear spaces over the field K. A mapping T : X → Y is called a linear
operator if for any x1, x2 ∈ X and any λ1, λ2 ∈ K it holds that T (λ1x1 + λ2x2) =
λ1T (x1) + λ2T (x2).

In particular, when Y = K, a linear operator T : X → K is called a linear func-
tional.

A linear operator T : X → Y is said to be injective if its kernel Ker T = T−1 (0)
reduces to zero. An operator T is said to be surjective if its image (or range) T (X)

coincides with the whole space Y . Finally, an operator is said to be bijective, or
invertible, if it is both injective and surjective. In other words, if the equation T x = b
has a solution for any right-hand side b ∈ Y , then the operator T is surjective; if
from the solvability of the equation T x = b for a given right-hand side it necessarily
follows that its solution is unique, then the operator T is injective. Hence, bijectivity
means existence and uniqueness of the solution for any right-hand side.
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Exercises

1. Verify that the kernel and image of an operator are linear subspaces.

2. Let X and Y be linear spaces and X1 be a subspace of X . Prove that any linear
operator T : X1 → Y can be extended to a linear operator acting from X to Y .

3. Let X, Y , and Z be linear spaces,U : X → Y and V : Y → Z be linear operators,
and T = V ◦U . Show that: (a) if T is injective, then U is also injective; (b) if T is
surjective, then V is also surjective. Are the converse assertions true?

4. Let T : X → Y be a linear operator and A1, A2 ⊂ X . Then T (A1 + A2) =
T (A1) + T (A2).

5. Let T1, T2 : X → Y be linear operators and A ⊂ X . Then (T1 + T2)(A) ⊂
T1(A) + T2(A). Give an example where (T1 + T2)(A) �= T1(A) + T2(A).

6. Let T : X → Y be a linear operator and A1, A2 ⊂ Y . Then T−1(A1 + A2) ⊃
T−1(A1)+ T−1(A2).Give an examplewhereT−1(A1 + A2) �= T−1(A1)+ T−1(A2).

5.2.2 Quotient Spaces

Let X be a linear space and X1 be a subspace of X . We introduce on X the following
equivalence relation: x ∼ y if x − y ∈ X1. The equivalence class of an element x
is readily seen to be the set [x] = x + X1 = {x + y : y ∈ X1}. The set of all such
equivalence classes, equipped with the operations described in Subsection 5.1.4, is
called the quotient space (or factor space) of the space X by the subspace X1, and
is denoted2 by X/X1. Let us list the simplest properties of the linear operations on a
quotient space, which imply, in particular, that every quotient space is a linear space.

1. The equivalence class of zero is the zero element of the quotient space:

[0] + [x] = X1 + (x + X1) = x + (X1 + X1) = x + X1 = [x].
2. λ1[x1] + λ2[x2] = [λ1x1 + λ2x2]:

λ1[x1] + λ2[x2]=λ1(x1+ X1) + λ2(x2+ X1)=λ1x1 + λ2x2+ (λ1X1+ λ2X1)=
λ1x1 + λ2x2 + X1 = [λ1x1 + λ2x2].
A quotient space comes with a closely related operator q, the quotient map of the

space X onto X/X1, given by q(x) = [x]. The linearity of the quotient map follows
from the property 2. above. The quotient map is surjective.

2Like in computer programming languages, inmathematics slash and backslash have rather different
meanings. Caution: the notation X/X1 stands for the quotient space, whereas X \ X1 stands for the
set-theoretic difference.
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An important example of a quotient space arises naturally in integration theory (see
Problem 6 in Subsection 4.3.3). Let (�,�,μ) be a (finite or σ -finite) measure space.
One denotes by L0 (�,�,μ) the quotient space of the space X of all measurable
scalar-valued functions on� by the subspace X1 of functionswith negligible support.
In this example the corresponding equivalence relation is already well-known to the
reader: f ∼ g if and only if f = g almost everywhere.

5.2.3 Injectivization of a Linear Operator

Let X and Y be linear spaces and T : X → Y be a linear, not necessarily injective,
operator. The injectivization of T is defined to be the operator T̃ : X/Ker T → Y
which associates to the equivalence class [x] of the element x ∈ X the element T x :
T̃ ([x]) = T x .

Exercises

1. Show that the operator T̃ is well defined, namely, that if the equivalence classes
of the elements x1 and x2 coincide, then T x1 = T x2. In other words, T̃ ([x]) does
not depend on the choice of the representative in the equivalence class [x].
2. Verify the linearity and injectivity of the operator T̃ .

3. Verify that T = T̃ ◦ q, where q : X → X/Ker T is the quotient map operator.
Hence, every operator can be written as the composition of a surjective operator and
an injective one. Compare to Exercise 3 in Subsection 5.2.1.

Let X be a linear space, X1 a subspace of X , and X ′ the space of all linear
functionals on X . The annihilator in X ′ of the subspace X1 is the set X⊥

1 of all
functionals f ∈ X ′ for which Ker f ⊃ X1. For each linear functional g on X/X1 we
define the functional Ug ∈ X ′ by the rule (Ug)(x) = g([x]). In other words, Ug is
the composition of the functional g and the quotient map.

4. Show that U : (X/X1)
′ → X ′ is a linear injective operator.

5. Show that U ((X/X1)
′) = X⊥

1 , i.e., X⊥
1 is a linear subspace isomorphic to

(X/X1)
′.
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5.3 Convexity

Functional analysis deals mainly with analytical objects — functions, sequences,
limits, and so on, but the approach to these objects differs essentially from the
approach of mathematical analysis (calculus). Instead of studying individual func-
tions or sequences with certain properties, one considers the corresponding spaces,
subspaces, or subsets. Thanks to such an approach, many problems of analysis can
be reduced to problems on the mutual disposition or properties of sets in appropriate
spaces. For example, the question of the approximability of a continuous function
by polynomials reduces to the question of whether the space of polynomials is dense
in the space of continuous functions with respect to some metric; the problem of
defining the integral for functions that are not Riemann integrable can be formulated
as the problem of extending a linear functional to a larger space; the Cauchy problem
for a differential equation becomes the problem of searching for the fixed point of
an appropriate mapping. This approach allows one, in the search for a solution, to
use geometric considerations, draw sketches, examine examples where as models
for infinite-dimensional sets one can take figures in the plane or three-dimensional
space. However, in order to be able to successfully use our geometric intuition in
problems of functional analysis it is necessary to accumulate some experience. One
has to learn how to distinguish the essential properties of themodel from the specifics
of the planar figure, and learn to translate the ideas inspired by the figure into rigor-
ous mathematical reasoning. To this end one needs, in particular, to define correctly,
whenever possible, infinite-dimensional analogues of notions and constructions that
are ordinarily used in geometric arguments. In this section we introduce such ana-
logues for the notions of line, segment, convex set, as well as that of the partition of
three-dimensional space into two half-spaces by a plane.

5.3.1 Definitions and Properties

Let X be a linear space, and let x, y ∈ X , x �= y. The straight line passing
through the points x and y is defined as the set of all elements of the form λx+
(1 − λ)y, where λ runs through the whole real line. The segment joining x and y is
defined to be the set of all elements of the form λx + (1 − λ)y with λ ∈ [0, 1]. A
subset A ⊂ X is said to be convex if together with any pair of its points it contains
the segment joining them.

Exercises

1. Lines and segments are convex sets.

2. The intersection of any number of convex sets is convex.
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3. The union of two convex sets is convex.

4. Let X,Y be linear spaces,U : X → Y a linear operator. Show that for any convex
subset A of X the set U (A) is also convex. Show that if B is a convex subset of Y ,
then the set U−1(B) is convex.

Which of the sets in the space s of all real numerical sequences listed below are
convex?

5.
{
a = (an)∞1 : infn an > 1

}
.

6.
{
a = (an)∞1 : infn an < 1

}
.

7.
{
a = (an)∞1 : supn an = +∞ }

.

8.
{
a = (an)∞1 : limn→∞ an = +∞}

.

Which of the sets in the space of all real-valued functions on the interval [0, 1]
sequences listed below are convex?

9. The set of all continuous functions.

10. The set of all discontinuous functions.

11. The set of all infinitely differentiable functions.

12. The set of all nowhere differentiable functions.

Let A be a subset of the linear space X . Show that

13. A + A ⊃ 2A.

14. If A is convex, then A + A = 2A.

5.3.2 Convex Hull

Let {xk}nk=1 be an arbitrary finite collection of vectors of the linear space X . A vector
of the form x = ∑n

k=1 λk xk is called a convex combination of the vectors xk if the
coefficients λ1, . . . , λn are non-negative numbers and satisfy

∑n
k=1 λk = 1.

Proposition 1. Let A be a convex set in a linear space X, and let {xk}nk=1 ⊂ A. Then
any convex combination of the vectors xk lies in A.

Proof. We proceed by induction on the number n of vectors figuring in the convex
combination. The induction base, i.e., the case n = 2, follows directly from the
definition of a convex set. Let us pass from n − 1 to n. Let {λk}nk=1 be nonnegative
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numbers, and let
∑n

k=1 λk = 1 and x = ∑n
k=1 λk xk . If among the scalars λk there

is one equal to zero, then x is actually a combination of n − 1 vectors, so that
x ∈ A by the induction hypothesis. Now assume that all λk are different from zero.
Put μ = ∑n−1

k=1 λk and μk = λk/μ, k = 1, . . . , n − 1. Then y = ∑n−1
k=1 μk xk , being a

convex combination of n − 1 vectors from A, belongs to A. Since x = μy + λnxn ,
the vector x is a convex combination of two vectors from A, and so x ∈ A. �

Let A be an arbitrary subset of the linear space X . The set of all convex combi-
nations of vectors from A is called the convex hull (or convex envelope) of the set A
and is denoted by conv(A) or conv A.

Exercises

Adopting the preceding definition, show that:

1. conv(A) is a convex set.

2. conv(A) is the smallest convex set that contains A.

3. If A consists of only two points, then conv(A) is the segment joining those points.

Show that

4. The convex hull of a set of three points in the plane is the triangle with vertices
at those points.

5. The convex hull of any subset A of the plane is the union of all triangles with
vertices at points of A.

Is this last assertion valid for subsets of three-dimensional space?

5.3.3 Hypersubspaces and Hyperplanes

A subspace Y of the linear space X is called a hypersubspace if there exists a vector
e ∈ X \ Y such that Lin{e,Y } = X .

Proposition 1. For a subspace Y of the linear space X the following conditions are
equivalent:

1. Y is a hypersubspace in X.
2. dim(X/Y ) = 1.
3. There exists a non-zero linear functional f on X such that Ker f = Y .
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Proof. 1. =⇒ 2. Let Y be a hypersubspace in X , and let e ∈ X \ Y be such that
Lin{e,Y } = X . Consider the equivalence class of e, [e] ∈ X/Y . Then [e] �= 0, since
e /∈ Y . At the same time, Lin [e] = X/Y , i.e., in X/Y there exists a basis consisting
of a single element.

2. =⇒ 3.Sincedim(X/Y ) = 1, there exists a bijective linear operatorU : X/Y →
K between our quotient space and the field K. Consider the functional f = U ◦ q,
where q : X → X/Y is the quotient map. For this functional, Ker f = Y .

3. =⇒ 1. Let f the functional figuring in assertion 3. Pick a vector e ∈ X for
which f (e) = 1. Clearly, e ∈ X \ Y . Let us show that Lin{e,Y } = X . To this end we
take an arbitrary vector x ∈ X and decompose it as x = f (x)e + (x − f (x)e). In
this decomposition the second term x − f (x)e lies in Ker f = Y , hence wemanaged
to write the vector x as ae + y, with a ∈ K and y ∈ Y . �

A subset A of the linear space X is called a hyperplane if it is the translate of
a hypersubspace. In other words, a hyperplane in X is any set of the form x + Y ,
where x ∈ X and Y is a hypersubspace of X .

Exercises

1. Let f be a nonzero linear functional on the space X , and a an arbitrary number.
Show that the level set fa = {x ∈ X : f (x) = a} of the functional f is a hyperplane
in X .

2. Show that every hyperplane in X is the level set of somenon-zero linear functional.

3. Let Y be a hypersubspace in X . Show that Lin{e,Y } = X for every vector e ∈
X \ Y .

4. Suppose thekernels of two linear functionals coincide. Show that these functionals
are linearly dependent.

5. Let Y be a hyperplane in the real linear space X . Introduce on X \ Y the following
equivalence relation: x1 ∼ x2 if the segment joining the points x1 and x2 does not
intersect the hyperplane Y . Verify that this is indeed an equivalence relation. The set
X \ Y splits into two equivalence classes, called the half-spaces determined by the
hyperplane Y .

6. Suppose a hyperplane is the level set fa of the functional f in the real linear
space X . Verify that the half-spaces determined by the hyperplane fa are the sets
f<a = {x ∈ X : f (x) < a} and f>a = {x ∈ X : f (x) > a}.
7. Why is the assumption that the space is real important in the two preceding
exercises?
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Definition 1. We say that the subspace Y of the linear space X has (is of) codimen-
sion n ∈ N (and write codimXY = n) if the dimension of the quotient space X/Y is
equal to n. If X/Y is infinite-dimensional, we put codimXY = +∞.

In the exercises below n stands, as usual, for a (finite) natural number.

8. codimXY ≤ n if and only if there exist n vectors {xk}n1 ⊂ X such that
Lin {x1, . . . , xn,Y } = X .

9. codimXY ≤ n if and only if Y has nonzero intersection with any subspace Z of
X of dimension greater than or equal to n + 1.

10. codimXY = n if and only if there exists a subspace Z of X such that dim Z = n,
Z ∩ Y = {0}, and Z + Y = X .

11. LetY ⊂ Z be two subspaces of the linear space X . Then codimXY =codimZY +
codimX Z .

12. For any two subspaces Y, Z of the space X it holds that

max{codimXY, codimX Z} ≤ codimX (Y ∩ Z) ≤ codimXY + codimX Z .

13. codimXY = dim Y⊥.

14. codimXY ≤ n if and only if there exists a collection of n linear functionals in
X such that the intersection of their kernels is contained in Y .

15. codimXY = n if and only if there exists a collection of n linearly independent
linear functionals on X such that the intersection of their kernels coincides with Y .

16. Let f and { fk}nk=1 be linear functionals on X and supposeKer f ⊃ ⋂n
k=1 Ker fk .

Then f ∈ Lin { fk}nk=1.

5.4 The Hahn–Banach Theorem on the Extension of Linear
Functionals

5.4.1 Convex Functionals

A real-valued function p given on the linear space X is called a convex functional (a
precise, but too long name, should be convex positively-homogeneous functional) if
it satisfies the following conditions:

— p(λx) = λp(x) for any vector x ∈ X and any non-negative number λ (positive
homogeneity);

— p(x + y) ≤ p(x) + p(y) for any x, y ∈ X (triangle inequality).
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Exercises

1. Let p be a convex functional. Then p(0) = 0.

2. Let t > 0 and let p be a convex functional. Then tp is a convex functional.

3. The modulus of a convex functional is also a convex functional.

4. Let p1 and p2 be convex functionals. Then p1 + p2 and max{p1, p2} are also
convex functionals.

5. Every linear functional on a real linear space is a convex functional. Verify that
if p and −p are convex functionals, then p is a linear functional.

6. Let p be a convex functional and x ∈ X be a fixed vector such that p(x) ≤ 0 and
p(−x) ≤ 0. Then p(x) = p(−x) = 0.

Which of the expressions listed below define convex functionals on the space
C[0, 1] of continuous functions on the interval [0, 1]?
7. p1( f ) = max{ f (t) : t ∈ [0, 1]}.
8. p2( f ) = min { f (t) : t ∈ [0, 1]}.
9. p3( f ) = p1( f ) − p2( f ).

10. p4( f ) = | f |.
Which of the expressions listed below define convex functionals on the space �∞

of all bounded numerical sequences?

11. p5(x) = x5.

12. p6(x) = x5 · x6.

13. p7(x) =
∞∑
n=1

|xn|.

14. p8(x) = lim
n→∞xn .

15. p9(x) =
∞∑
n=1

1

2n
|xn|.

(In the last five exercises x stands for the sequence (x1, x2, . . . , xn, . . .).)

Convex functionals and convex sets are closely connected. The next subsection
is devoted to the description of this connection.
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5.4.2 The Minkowski Functional

A subset A of the linear space X is said to be absorbing if for any x ∈ X there exists
an n ∈ N such that 1

t x ∈ A for every t > n. Note that an absorbing set A necessarily
contains the zero element of the space and satisfies

⋃∞
n=1 nA = X .

Let A be a convex absorbing set in X . The Minkowski functional of the set A is
the real-valued function on X defined as

ϕA(x) = inf

{
t > 0 : 1

t
x ∈ A

}
.

The functional ϕA is connected with the convex set A by the following obvious
relations:

— if x ∈ A, then ϕA(x) ≤ 1;

— if ϕA(x) < 1, then x ∈ A.

Proposition 1. Let A be a convex absorbing set in X. Then ϕA(x) is a convex
functional that takes only non-negative values.

Proof. Let us show first that the functional ϕA(x) is positively homogeneous. Take
λ > 0 and x ∈ X . Then

ϕA(λx) = inf

{
t > 0 : 1

t
λx ∈ A

}
= inf

{
λs > 0 : 1

s
x ∈ A

}

= λ inf

{
s > 0 : 1

s
x ∈ A

}
= λϕA(x)

(in the last chain of equalities we used the change of notation t → λs).
Now let us verify the triangle inequality. Take x, y ∈ X . We need to show that

ϕA(x + y) ≤ ϕA(x) + ϕA(y). Obviously, it suffices to show that for any a > ϕA(x)
and b > ϕA(y) one has the inequality ϕA(x + y) ≤ a + b. So, fix numbers a >

ϕA(x) and b > ϕA(y). Then ϕA
(
x
a

)
< 1 and ϕA

( y
b

)
< 1, i.e., x

a ∈ A and y
b ∈ A. In

view of the convexity of A, the vector x+y
a+b = a

a+b
x
a + b

a+b
y
b also belongs to A. Hence,

ϕA
( x+y
a+b

) ≤ 1, and the needed inequality ϕA(x + y) � a + b is proved. �

Exercises

A set A in the linear space X is said to be balanced if λA ⊂ A for any scalar λ with
|λ| ≤ 1.

1. Let A be a convex balanced set. Then Y = ⋃∞
n=1 nA is a linear subspace of X

and A is an absorbing set in Y .
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Let p be a convex functional that takes only non-negative values. Put A =
{x ∈ X : p(x) < 1}. Verify that
2. A is a convex absorbing set.

3. For any x ∈ A there exists an ε > 0 such that (1 + ε)x ∈ A.

4. ϕA = p.

Let A and B be convex absorbing sets. Verify that:

5. ϕA∩B = max (ϕA, ϕB).

6. ϕ−A(x) = ϕA(−x).

5.4.3 The Hahn–Banach Theorem—Analytic Form

The Hahn–Banach theorem on the extension of linear functionals that will be proved
in the present subsection (alternatively known as the analytic form of the Hahn–
Banach theorem) is one of the most important theorems in functional analysis. It is
frequently used, both in the subject itself and in applications of functional analysis
to a wide circle of related fields. Some of these applications will be treated in this
book. TheHahn–Banach theorem is traditionally regarded as one of the “fundamental
principles of functional analysis”. Such “fundamental principles” also include the
geometric form of the Hahn–Banach theorem (Subsection 9.3.2), Banach’s inverse
operator theorem, the open mapping and the closed graph theorems, as well as the
Banach–Steinhaus theorem (see Chap. 10).

Theorem 1. Suppose that on the real linear space X there is given a convex func-
tional p; let Y be a subspace of X and f be a linear functional on Y such that
f (y) ≤ p(y) for all y ∈ Y . Then f can be extended to a linear functional g defined
on the whole X, with preservation of the majorization condition: g(x) ≤ p(x) for
all x ∈ X.

Proof. Wefirst treat the special case where Y is a hypersubspace of X . Let e ∈ X \ Y
be a vector such that Lin{e,Y } = X . Any element of X is uniquely representable as
x = λe + y, where y ∈ Y and λ is a real number. Hence, the sought-for functional
g, the extension of the functional f from Y to X , is uniquely determined by its value
on the vector e: g(λe + y) = λg(e) + f (y). In order for the majorization condition
to be preserved, the number g(e) must satisfy the requirement

λg(e) + f (y) ≤ p(λe + y) for all λ ∈ R and all y ∈ Y. (∗)

For λ = 0, condition (∗) is satisfied thanks to the assumption of the theorem. For
positive λ, (∗) can be recast as

g(e) ≤ 1

λ
(p(λe + y) − f (y)) for all λ > 0 and all y ∈ Y,
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whereas for negative λ = −μ (∗) becomes

g(e) ≥ − 1

μ
(p(−μe + v) − f (v)) for all μ > 0 and all v ∈ Y.

Hence, for the sought-for extension to exist it is necessary and sufficient that the
following inequality be satisfied:

sup

{
− 1

μ
(p(−μe + v) − f (v)) : μ > 0, v ∈ Y

}

≤ inf

{
1

λ
(p(λe + y) − f (y)) : λ > 0, y ∈ Y

}
.

Let us verify this inequality. Takeλ,μ > 0 and y, v ∈ Y .Moving the terms involv-
ing f to the left-hand side and those involving p to the right-hand side, we reduce
the inequality

− 1

μ
(p(−μe + v) − f (v)) ≤ 1

λ
(p(λe + y) − f (y))

to
1

μ
f (v) + 1

λ
f (y) ≤ 1

μ
p(−μe + ν) + 1

λ
p(λe + y).

The latter follows from the majorization condition for f ; indeed,

1

μ
f (v) + 1

λ
f (y) = f

(
1

μ
v + 1

λ
y

)
≤ p

(
1

μ
v + 1

λ
y

)

≤ 1

μ
p(−μe + y) + 1

λ
p(λe + y).

Thus, the particular case of a subspace of codimension 1 is dealt with. What we
proved can be restated as follows: a linear functional f given on Y and satisfying
the majorization condition can be extended to the linear span of the subspace Y
and an arbitrary vector, with preservation of the majorization condition. Iterating
this statement, we can produce an extension of the functional f to the linear span
of the subspace Y and an arbitrary finite number of vectors. Unfortunately, since
the ambient space X is infinite-dimensional, this argument does not always yield an
extension to the whole X . For this reason, to complete the argument we need to use
Zorn’s lemma— a standard recipe for organizing induction arguments in the case of
an infinite number of steps.

So, let � denote the family of all pairs (Z , h), where Z is a subspace of X
containing Y , and h is a linear functional on Z that coincides with f on Y and satisfies
the majorization condition on Z . Essentially, the elements of � are extensions of the
functional f . We need to show that among the elements (Z , h) ∈ � there is one
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with Z = X . We introduce on � an order relation by setting (Z1, h1) � (Z2, h2)
if Z1 ⊃ Z2 and the restriction of the functional h1 to Z2 coincides with h2. It is
readily seen that the ordered set � is inductive. Hence, by Zorn’s lemma, � contains
a maximal element (Z0, h0). Suppose Z0 does not coincide with the whole space X .
Then by the already established particular case of the Hahn–Banach theorem, the
functional h0 can be extended, with preservation of the majorization, to a subspace
of the form Lin{e, Z0} that includes Z0 strictly. The existence of such an extension
contradicts themaximality of the pair (Z0, h0). Therefore, Z0 = X , which completes
the proof. �

Remark 1. The Hahn–Banach theorem establishes the existence of an extension,
but this extension is not necessarily unique (give an example with a two-dimensional
space X and a one-dimensional subspace Y ). Accordingly, in all applications of
the Hahn–Banach theorem that will be encountered in the sequel we will assert the
existence of some or another object, but uniqueness will not necessarily hold.

Exercises

1. Where in the above formulation of the Hahn–Banach theorem did the assumption
that the space considered, and hence the functionals involved, are real play a role?

2. Try to formulate and prove a generalization of the Hahn–Banach theorem to the
complex case.

3. In the case where the quotient space X/Y has a finite or countable Hamel basis,
the Hahn–Banach theorem can be proved without resorting to Zorn’s lemma. How?

5.5 Some Applications of the Hahn–Banach Theorem

5.5.1 Invariant Means on a Commutative Semigroup

LetG be a commutative (Abelian) semigroup; we denote the semigroup operation on
G by the symbol ‘+’. Consider the space �∞(G) of all bounded real-valued functions
on G. Each element g ∈ G generates a shift or translation operator Sg : �∞(G) →
�∞(G) by the rule

(
SgF

)
(h) = F (g + h). A linear functional I on �∞(G) is called

an invariant mean on G if it satisfies the following conditions:

— infg∈G F(g) ≤ I (F) ≤ supg∈G F(g) for any function F ∈ �∞(G) (i.e., I (F) is
a mean value for F);

— I (SgF) = I (F) for any function F ∈ �∞(G) and any g ∈ G (shift or translation
invariance).

In this subsection we show that on any commutative semigroup G there exists an
invariant mean.



154 5 Linear Spaces, Linear Functionals, and the Hahn–Banach Theorem

Given a function F ∈ �∞(G), set

p(F) = inf

{
sup
h∈G

1

n

n∑

k=1

F(gk + h) : n ∈ N, (gk)
n
k=1 ∈ Gn

}
,

where the infimum is taken over all finite collections of elements gk ∈ G, possibly
with repetitions.

Proposition 1. p is a convex functional on �∞(G) which satisfies for any function
F ∈ �∞(G) and any g ∈ G the conditions

(1) p(SgF − F) ≤ 0;

(2) p(F − SgF) ≤ 0

(according to Exercise 5 in Subsection 5.4.1, conditions (1) and (2) mean that the
estimated quantities are in fact equal to zero).

Proof. The positive homogeneity is here obvious, so let us verify the triangle
inequality. Let F1, F2 ∈ �∞(G), ε > 0. Pick elements g1k , k = 1, 2, . . . , n1, and g2k ,
k = 1, 2, . . . , n2, of the semigroup G such that

sup
h∈G

{
1

ni

ni∑

k=1

Fi (g
i
k + h)

}
< p(Fi ) − ε, i = 1, 2.

Then

p(F1 + F2) ≤ sup
h∈G

⎧
⎨

⎩
1

n1n2

n2∑

j=1

n1∑

k=1

(F1 + F2)(g
1
k + g2j + h)

⎫
⎬

⎭ .

Using the fact that the supremumof a sum is not larger than the sumof the suprema
of its summands, we continue the estimate as

≤ 1

n2

n2∑

j=1

sup
h∈G

{
1

n1

n1∑

k=1

F1(g
1
k + g2j + h)

}
+ 1

n1

n1∑

k=1

sup
h∈G

⎧
⎨

⎩
1

n2

n2∑

j=1

F2(g
1
k + g2j + h)

⎫
⎬

⎭

≤ p(F1) + p(F2) − 2ε,

which in view of the arbitrariness of ε establishes the triangle inequality.
Now let us verify condition (1). We have

p(SgF − F) ≤ sup
h∈G

{
1

n

n∑

k=1

(SgF − F)(h + kg)

}

= sup
h∈G

1

n

(
F(h + (n + 1)g) − F(h + g)

) ≤ 2

n
sup
h∈G

|F(h)|.
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Letting here n → ∞, we obtain the needed estimate. Condition (2) is verified anal-
ogously. �

Denote the function identically equal to 1 on G by 1. We mention two more
obvious properties of the functional p:

— p(c1) = c for every c ∈ R;

— if the function F is everywhere smaller than or equal to 0, then p(F) ≤ 0.

Theorem 1. On any commutative semigroup G there exists an invariant mean.

Proof. Consider in �∞(G) the subspace Y = Lin{1}. Define the functional f on
Y by f (c · 1) = c. Clearly, f is linear and f ≤ p on Y . Using the Hahn–Banach
theorem, we extend f to a linear functional I on the whole space �∞(G), pre-
serving the majorization. Let us show that I is an invariant mean. First, note that
the functional I is monotone, meaning that if F1, F2 ∈ �∞(G) and F1 ≤ F2 at all
points, then I (F1) ≤ I (F2). Indeed, since F1 − F2 ≤ 0, we have I (F1) − I (F2) =
I (F1 − F2) ≤ p(F1 − F2) ≤ 0. Next, the monotonicity of the functional I implies
that if the function F is bounded from above and from below by constants, i.e.,
c11 ≤ F ≤ c21, then I (F) is bounded by the same constants: c1 ≤ I (F) ≤ c2. This
establishes the first condition in the definition of an invariant mean. The second
condition — shift invariance — is an immediate consequence of the majorization
condition and properties (1) and (2) of the functional p:

I (SgF) − I (F) = I (SgF − F) ≤ p(SgF − F) ≤ 0,

I (F) − I (SgF) = I (F − SgF) ≤ p(F − SgF) ≤ 0.

Remark 1. The commutativity of the semigroup is not a necesary condition for the
existence of an invariant mean. For details on groups that admit invariant means we
refer to the monograph [32].

5.5.2 The “easy” Problem of Measure Theory

Recall that we proved earlier (Subsection 2.3.4) the insolvability of the what we
called the difficult problem of measure theory: the construction of a shift-invariant
countably-additive probability measureμ defined on all subsets of the interval [0, 1).
From this we then deduced the existence of sets that are not Lebesgue measurable: if
every subset of the interval were Lebesgue measurable, then the Lebesgue measure
would be a solution of the difficult problem of measure theory. At the same time, the
analogous problem where countable additivity is replaced by finite additivity (what
we call here the “easy” problem of measure theory) is already solved.
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Theorem 1 (Banach). There exists a finitely-additive measure μ, defined on all
subsets of the interval [0, 1), such that μ([0, 1)) = 1 and μ is shift invariant (i.e.,
μ (A + t) = μ(A) for all subsets A ⊂ [0, 1) and all t ∈ R such that A + t ⊂ [0, 1)).
Proof. We equip the interval [0, 1) with the operation of addition modulo 1: the sum
of the numbers a and b modulo 1 is the fractional part of the number a + b. Let I be
an invariant mean on this group. The measure μ defined by the rule μ(A) = I (1A),
where 1A is the characteristic function of the set A, does the job. �

It is interesting that to construct a similar measure on the sphere of the three-
dimensional Euclidean space (i.e., a finitely-additive probability measure defined on
all subsets of the sphere and invariant under the isometries of the sphere) is already
not possible (Hausdorff [54, 1914]). The reason is the complicated structure of the
group of isometries of the sphere. The reader interested in questions concerned with
the existence of invariant measures is referred to the monograph [43] and the survey
[65], where one can read about facts in the spirit of the famous Banach–Tarski para-
dox, where the sphere is cut into a finite number of “pieces”, from which one can
then assemble two new spheres of exactly the same size. The possibility of such a
partition would of course lead to a contradiction if the “pieces” could be “measured”
by means of a finitely-additive measure invariant under isometries.

Exercises

4. Let μ be a measure and I be the invariant mean appearing in the preceding
theorem. Although we have proved that these objects exists, no computation rules
were provided. Moreover, the invariant mean (and hence the invariant measure) on
the interval is not unique. Nevertheless, for some functions the invariant mean can
be calculated, based on the definition of this object. Show that μ([0, 1/n)) = 1/n.

5. Let m < n. Show that μ([0,m/n)) = m/n.

6. Let [a, b) ⊂ [0, 1). Show that μ([a, b)) = b − a.

7. Let f be a piecewise constant function on [0, 1). Then I ( f ) = ∫ 1
0 f (t)dt .

8. Show that I ( f ) = ∫ 1
0 f (t)dt for anyRiemann-integrable function on the interval.

For bounded Lebesgue-integrable functions I ( f ) may not coincide with the
Lebesgue integral. Nevertheless, if we carry out the proof of the theorem assert-
ing the existence of an invariant mean (Subsection 5.5.1) for the case of the interval,
taking for Y not the subspace of constants, but the subspace of bounded Lebesgue-
integrable functions, then one can show that:

9. There exists an invariant mean I on the interval such that I ( f ) = ∫
[0,1) f (t)dλ

for every bounded Lebesgue-integrable function.
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10. Based on the existence of an invariant measure on the interval, show that there
exists a finitely-additive shift-invariantmeasure on the real line, definedon all subsets,
with the property that the measure of any interval is equal to its length. Needless to
say, this measure is also allowed to take infinite values.

Consider the semigroup N of natural numbers with the addition operation. The
functions on N are sequences; the invariant mean on N is called the generalized
Banach limit and denoted by the symbol Lim. Verify that:

11. The generalized Banach limit of any bounded sequence lies between the upper
and lower limits of the sequence.

12. If the sequence x = (x1, x2, . . . , xn, . . .) has a limit, then Lim x = limn→∞ xn .

13. If the sequence x = (x1, x2, . . . , xn, . . .) is uniformly Cesàro convergent to the
number s (i.e., the sequence (xk+1 + xk+2 + · · · + xk+n)/n converges uniformly in
k to s as n → ∞), then Lim x = s.

14. Using the example of the sequence x = (1, 0, 1, 0, . . .) convince yourself that
the generalized Banach limit of a sequence is not necessarily a limit point of the
sequence.

15. Using the example of the sequences x = (1, 0, 1, 0, . . .) and y = (0, 1, 0, 1, . . .)
convince yourself that the generalized Banach limit is not a multiplicative functional:
Lim (xy) is not necessarily equal to the product of Lim x and Lim y.

Comments on the Exercises

Subsection 5.1.3

Exercise 1. Let G be a linearly independent subset of X . Denote by � the family
of all linearly independent subsets of X that contain G. After that proceed as in the
proof of Theorem1.

Subsection 5.3.3

Exercise 4. Denote the functionals considered by f and g, and Ker f = Ker g by
Y . Then Y is a hypersubspace of X . Hence, there exists a vector e ∈ X \ Y such that
Lin{e,Y } = X . The numbers a = f (e) and b = g(e) are different from 0, because
e /∈ Y . The functional ag − b f , being a linear combination of the functionals f and
g, is equal to zero both on Y and on the vector e. It follows that ag − b f vanishes
on the entire space X = Lin{e,Y }, i.e., f and g are linearly dependent.

Exercises 13–16. Here the duality between quotient spaces and annihilators
described in Exercises 4 and 5 of Subsection 5.2.3 will be of help. A direct (without
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resorting to the codimension argument) solution of Exercise 16 will be provided in
Lemma 1 of Subsection 16.3.2.

Subsection 5.4.3

Exercise 2. For complex spaces substitute in the statement of Theorem 1 the
conditions f (y) ≤ p(y) and g(y) ≤ p(y) by Re f (y) ≤ p(y) and Re g(y) ≤ p(y),
respectively.

Subsection 5.5.2

Exercise 10. This assertion admits in a certain sense a converse, proved in 1948
by Lorentz [69]: if all generalized Banach limits of a bounded numerical sequence
x = (x1, x2, . . . , xn, . . .) are equal to one and the same number s, then the sequence
x is uniformly Cesàro convergent to s.



Chapter 6
Normed Spaces

6.1 Normed Spaces, Subspaces, and Quotient Spaces

6.1.1 Norms. Examples

Let X be a linear space. A mapping x �→ ‖x‖ that associates to each element of the
space X a nonnegative number is called a norm if it obeys the following axioms:

(1) if ‖x‖ = 0, then x = 0 (non-degeneracy);

(2) ‖λx‖ = |λ|‖x‖ for all x ∈ X and all scalars λ;

(3) ‖x + y‖ � ‖x‖ + ‖y‖ (triangle inequality).

Conditions (2) and (3) show that a norm is a particular case of a convex functional.
In connection with this we suggest that the reader return to the exercises in Subsec-
tion5.4.1 and examine which of the properties 1–5 of convex functionals hold in the
case of a norm, and also which of the functionals pi in Exercises7–15 are norms.

Definition 1. A linear space X endowed with a norm is called a normed space.

Let us note that if a linear space X is endowed with some norm, then one has a
normed space, but if the same linear space is endowed with another norm, then it
already becomes a different normed space. Below we provide examples of normed
spaces that will be repeatedly encountered in the sequel. The verification of the norm
axioms in these examples is left to the reader.

Examples

1. Let K be a compact topological space.We letC(K ) denote the normed space of
continuous scalar-valued functions on K with the norm ‖ f ‖ = max{| f (t)| : t ∈ K }.
An important particular case of the space C(K ) is the space C[a, b] of continuous
functions on the interval [a, b].
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2. �1 is the space of numerical sequences x = (x1, x2, . . . , xn, . . .) that satisfy
the condition

∑∞
n=1 |xn| < ∞, equipped with the norm ‖x‖ = ∑∞

n=1 |xn|. Since any
sequence can be regarded as a function defined on the set N of natural numbers,
the space �1 is a particular case of the space L1(�,�,μ) studied below in Sub-
section6.1.3: � = N, � is the family of all subsets of N, and μ is the counting
measure.

3. �∞ denotes the space of all bounded numerical sequences with the norm ‖x‖ =
supn |xn|.

4. c0 is the space of all numerical sequences that tend to zero. The norm on c0 is
given in the same way as on �∞.

Definition 2. A mapping x �→ p(x) that associates to each element of the linear
space X a non-negative number is called a seminorm if it obeys the norm axioms (2)
and (3).

Exercises

1. Give an example of a seminorm on R
2 which is not a norm.

2. Give an example of a convex functional on R
2 that is not a seminorm.

3. Let B be a convex absorbing set in the linear space X . Suppose, in addition, that
B is a balanced set, i.e., λB ⊂ B for any scalar λ with |λ| � 1. Then the Minkowski
functional of B (see Subsection5.4.2) is a seminorm.

6.1.2 The Metric of a Normed Space and Convergence.
Isometries

Let X be a normed space. The distance between the elements x1, x2 ∈ X is defined
by ρ(x1, x2) = ‖x2 − x1‖. From the norm axioms is follows that ρ is indeed a metric
on X . Hence, every normed space is simultaneously a metric space, and so all the
notions defined in metric spaces — open and closed sets, compact sets, limit points,
completeness, etc., — also make sense in normed spaces. In particular, a sequence
(xn) of elements of the normed space X converges to the element x if ‖xn − x‖ → 0
asn → ∞. An essential difference in terminologybetweennormed andmetric spaces
shows up in the definition of isometries: in a normed space one additionally requires
that the map in question is linear.

A linear operator T acting from a normed space X to a normed space Y is called
an isometric embedding if ‖T x‖ = ‖x‖ for all x ∈ X .

A bijective isometric embedding is called an isometry. The normed spaces X and
Y are said to be isometric if there exists an isometry between them.
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Exercises

1. Suppose the sequence (xn)of elements of a normed space converges to the element
x . Show that ‖xn‖ → ‖x‖ as n → ∞.

2. Consider in the space �1 the elements xn = (nk/(n + 1)k+1)∞k=1. Write in explicit
form the coordinates of x1 and x2. What are the norms of x1 and x2? Calculate the
norms ‖xn‖ for arbitrary n.

3. Show that convergence in C(K ) is the uniform convergence on K . In particular,
convergence in C[a, b] is uniform convergence on [a, b], a type of convergence well
known from calculus.

4. Show that for any a < b the space C[a, b] is isometric to the space C[0, 1].
5. If the compact spaces K1 and K2 are homeomorphic, then the space C(K1) is
isometric to C(K2). Conversely, if C(K1) is isometric to C(K2), then K1 and K2 are
homeomorphic (this converse is far from trivial).

6. Show that in the space �1 the convergence of a sequence of vectors xn = (xkn )
∞
k=1 to

a vector x = (xk)∞k=1 implies the coordinatewise convergence: xkn → xk as n → ∞,
for all k = 1, 2, . . . . On the other hand, coordinatewise convergence does not imply
convergence in �1.

7. The sequence (xn) in Exercise2 above can be regarded as a sequence in �1, and
also as one in c0. What are the norms ‖xn‖ in c0 equal to? Show that the sequence
(xn) converges coordinatewise to 0 and converges to 0 in c0, but does not converge
in �1.

8. Let X be some sequence space. The positive cone in X is defined to be the set of
vectors of X all the coordinates of which are non-negative. Consider the three cases
X = c0, X = �1, and X = �∞. In each of them prove that the positive cone is closed
and convex, and describe its interior and boundary.

6.1.3 The Space L1

Let (�,�,μ) be a (finite or infinite) measure space, E the linear space of all
μ-integrable scalar-valued functions on �, and F the subspace of E consisting of
all functions that vanish almost everywhere. By L1(�,�,μ) we denote the quotient
space E/F . The analogous quotient space L0(�,�,μ) was mentioned in Subsec-
tion5.2.2. To simplify the terminology, one usually says that the elements of the
space L1(�,�,μ) are functions integrable on �, with the understanding that two
functions that coincide almost everywhere are identified. The norm in L1(�,�,μ) is
given by the formula ‖ f ‖ = ∫

�
| f (t)|dμ. An important particular case of the space
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L1(�,�,μ) is the space L1[a, b] of Lebesgue-integrable functions on an interval
[a, b]. In this case � = [a, b], � is the family of all Lebesgue-measurable subsets
of the interval, and μ is the Lebesgue measure.

Exercises

1. Show that L1(�,�,μ) is a normed space.

2. Show that for any a < b the space L1[a, b] is isometric to the space L1[0, 1].
3. Show that the space L1[0, 1] is isometric to the space L1(−∞,+∞).

4. Show that the space L1[0, 1] is isometric to the space L1([0, 1] × [0, 1]).
5. The convergence of a sequence of functions in L1(�,�,μ) implies its conver-
gence in measure, but if the measure is not purely atomic (a typical example is
the space L1[a, b]), then convergence in L1(�,�,μ) does not imply convergence
almost everywhere.

6. If (�,�,μ) is a finite measure space and a sequence of integrable functions
converges uniformly on �, then this sequence also converges in L1(�,�,μ).

7. Show that regardless of what norm the space L1[a, b] is endowed with, conver-
gence in this norm cannot coincide with convergence in measure. (Compare with
Exercise6 in Subsection4.3.3.)

8. Consider the positive cone in L1(�,�,μ), that is, the set G of all functions from
L1(�,�,μ) that are almost everywhere greater than or equal to zero. Show that G
is a closed convex set that has no interior points.

9. By analogywith the preceding exercise, consider the positive cone inC(K ). Show
that this set is convex and closed, and describe its interior and boundary.

Let p be a seminorm on the space X . The kernel of the seminorm p is the set
Ker p of all points x ∈ X such that p(x) = 0.

10. Ker p is a linear subspace of X .

11. The expression ρ(x1, x2) = p(x2 − x1) defines a pseudometric on X .

12. Show that for any x ∈ X and any y ∈ Ker p, we have p(x + y) = p(x).

13. The expression ‖[x]‖ = p(x) defines a norm on the quotient space X/Ker p.

Since the expression p( f ) = ∫
�

| f (t)|dμ gives a seminorm on the linear space
E of all scalar-valued μ-integrable functions on �, F = Ker p is the subspace of
E consisting of all functions that vanish almost everywhere, the definition given
above for the space L1(�,�,μ) is a particular case of the construction described in
Exercises10–13 of this subsection.
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6.1.4 Subspaces and Quotient Spaces

A linear subspace Y of the normed space X , equipped with the norm of X , is called
subspace of the normed space X . Hence, any subspace of a normed space is itself a
normed space.

Let Y be a closed subspace of the normed space X , x ∈ X an arbitrary ele-
ment, and [x] = x + Y the corresponding element of the quotient space X/Y . Define
‖[x]‖ = inf y∈Y ‖x + y‖. In other words, ‖[x]‖ is the distance in X from 0 to the set
x + Y . Since Y is a subspace, and hence Y = −Y , the original definition is equivalent
to the following one: ‖[x]‖ = inf y∈Y ‖x − y‖. The geometric meaning of the latter
is that ‖[x]‖ is the distance in X from x to the subspace Y .

Proposition 1. The expression ‖[x]‖ introduced above gives a norm on the space
X/Y .

Proof. Let us verify the norm axioms.

1. Suppose ‖[x]‖ = 0. Then inf y∈Y ‖x − y‖ = 0, and so x is a limit point of the
subset Y . Since Y is closed, x ∈ Y and [x] = Y = [0].

2. Since Y is a subspace, λY = Y for any nonzero scalar λ. We have
‖[λx]‖ = inf y∈Y ‖λx + y‖ = inf y∈Y ‖λx + λy‖ = |λ| inf y∈Y ‖x + y‖ = |λ| · ‖[x]‖.

3. Let x1, x2 ∈ X and ε > 0. By the definition of the infimum, there exist y1,
y2 ∈ Y , such ‖x1 + y1‖ < ‖[x1]‖ + ε and ‖x2 + y2‖ < ‖[x2]‖ + ε. It follows that

‖[x1 + x2]‖ = inf
y∈Y ‖x1 + x2 + y‖ � ‖x1 + x2 + y1 + y2‖

� ‖x1 + y1‖ + ‖x2 + y2‖ � ‖[x1]‖ + ‖[x2]‖ + 2ε,

which in view of the arbitrariness of ε means that the needed triangle inequality
holds.

Henceforth we will always assume that the quotient space of a normed space is
equipped with the norm described above.

Example Let (�,�,μ) be a measure space, X the space of all bounded mea-
surable functions on �, endowed with the norm ‖ f ‖ = supt∈� | f (t)|, and Y the
subspace of X consisting of the functions that vanish almost everywhere. The cor-
responding quotient space X/Y is denoted by L∞(�,�,μ).

Exercises

1. Prove the following formula for the norm in L∞(�,�,μ):

‖ f ‖∞ = inf
A∈�, μ(A)=0

{

sup
t∈�\A

| f (t)|
}

.
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2. Prove the inequality | f | a.e.
� ‖ f ‖∞.

3. Show that ‖ f ‖∞ is equal to the infimum of the set of all constants c such that

| f | a.e.
� c.

4. In the space C[a, b] consider the subspace Y consisting of the constants (i.e.,
constant functions). Show that the norm of the element [ f ] of the quotient space
C[a, b]/Y can be calculated by the formula

‖[ f ]‖ = 1

2

(
max{ f (t) : t ∈ [a, b]} − min{ f (t) : t ∈ [a, b}

)
.

5. The space �1 can be regarded as a linear subspace of c0, though it will not be a
normed subspace of c0: the norm given on �1 does not coincide with the norm on c0.
Show that �1 is not closed and is dense in c0. Show that as a subset of c0, �1 belongs
to the class Fσ .

6. Show that the space c0 of all sequences that converge to zero is closed in �∞.

7. Show that the norm of the element [a] in the space �∞/c0 is calculated by the
formula ‖[a]‖ = lim

n→∞ |an|, where an are the coordinates of the element a ∈ �∞.1

6.2 Connection Between the Unit Ball and the Norm.
L p Spaces

6.2.1 Properties of Balls in a Normed Space

Let X be a normed space, x0 ∈ X , and r > 0. As usual, we denote by BX (x0, r) the
open ball of radius r centered at x0:

BX (x0, r) = {x ∈ X : ‖x − x0‖ < r} .

The unit ball BX in the space X is the open ball of unit radius centered at zero:
BX = { x ∈ X : ‖x‖ < 1 }. The unit sphere SX and closed unit ball BX are similarly
defined as

SX = { x ∈ X : ‖x‖ = 1 }, and BX = { x ∈ X : ‖x‖ � 1 }.

Let us list some of the simplest properties of the objects just introduced.

1In Soviet times, one of the Kharkiv newspapers published a paper on the fulfillment of the pro-
duction plan by highly productive workers (“peredoviks”), entitled “The [production] norm is not
a limit!”. The last assertion above can be considered as a counterexample to this assertion.
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— The unit ball is an open set, while the unit sphere and the closed unit ball are
closed sets.

— BX (x0, r) = x0 + r BX .

— BX is a convex absorbing set (see Exercise2 in Subsection5.4.2).

— BX is a balanced set, i.e., for any scalar λ such that |λ| � 1, we have λBX ⊂ BX .

— For any x0 ∈ X and r > 0, the linear span of the ball BX (x0, r) coincides with
the whole space X .

Exercises

1. Prove that the closure of the open ball BX (x0, r) in a normed space is the closed
ball BX (x0, r). Compare with Exercise10 in Subsection1.3.1.

2. The spaceof numerical rows x = (x1, x2, . . . , xn)with thenorm‖x‖ = ∑n
k=1 |xn|

is denoted by �n1; the analogous space of rows with the norm ‖x‖ = supn |xn| is
denoted by �n∞. The spaces �n1 and �n∞ are finite-dimensional analogues of the spaces
�1 and �∞. Construct in the coordinate plane the unit balls of the spaces �21 and �2∞.
Exhibit an isometry between these two spaces.

3. Construct in the three-dimensional coordinate space the unit balls of the spaces
�31 and �3∞. Show that these normed spaces are not isometric.

4. Nested balls principle. Let X be a complete normed space, and Bn = BX (xn, rn)
be a decreasing (with respect to inclusion) sequence of closed balls. Show that the
intersection

⋂∞
n=1 Bn is not empty. (In contrast to the nested sets principle, here one

does not assume that the diameters of the balls tend to zero, but neither does one
assert that the intersection consists of a single point.)

5. Give an example of a completemetric space inwhich the assertion of the preceding
exercise is not true.

6.2.2 Definition of the Norm by Means of a Ball.
The Spaces L p

Let B be a convex absorbing set in the linear space X . Recall (see Subsection5.4.2)
that the Minkowski functional of the set B is the function on X given by the formula
ϕB(x) = inf

{
t > 0 : t−1x ∈ B

}
.

Theorem 1. Let B be a convex, absorbing, balanced set in the space X which also
has the following algebraic boundedness property: for each x ∈ X \ {0} there exists
an a > 0 such that ax /∈ B. Then the Minkowski functional ϕB gives a norm on X.
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Proof. The fact that ϕB is a convex functional was already established in Subsec-
tion5.4.2. Since the set B is balanced, ϕB(λx) = ϕB(|λ|x) = |λ|ϕB(x) for all x ∈ X
and all scalarsλ, i.e.,ϕB is a seminorm. Finally, if x ∈ X \ {0}, then thanks to the alge-
braic boundedness there exists an a > 0 such that ax /∈ B. Hence, ϕB(x) � 1

a > 0,
which establishes the non-degeneracy of the Minkowski functional. �

Let (�,�,μ) be a (finite or not) measure space, and p ∈ [1,∞) a fixed number.
We denote by L p(�,�,μ) the subset of the space L0(�,�,μ) of all measur-
able scalar-valued functions on � consisting of the functions for which the integral∫
�

| f (t)|pdμ exists. Here, as in the case of the space L0(�,�,μ), functions in
L p(�,�,μ) that are equal almost everywhere are regarded as one and the same

element. For f ∈ L p(�,�,μ), we put ‖ f ‖p = (∫
�

| f (t)|pdμ
)1/p

.

Theorem 2. L p(�,�,μ) is a linear space, and ‖·‖p is a norm on L p(�,�,μ).

Proof. Consider the set Bp ⊂ L p(�,�,μ) consisting of all functions for which∫
�

| f (t)|pdμ < 1. Let f, g ∈ Bp and λ ∈ [0, 1]. Since the function |x |p is convex
on R, for any t ∈ � we have the numerical inequality

|λ f (t) + (1 − λ)g(t)|p � λ| f (t)|p + (1 − λ)|g(t)|p.

Integrating this inequality we conclude that λ f + (1 − λ)g ∈ Bp, and so Bp is
a convex set. It is readily verified that the set Bp is balanced and algebraically
bounded. From the fact that Bp is convex and balanced and the obvious equality
L p(�,�,μ) = ⋃∞

n=1 nBp it follows that L p(�,�,μ) is a linear space and Bp is
an absorbing set in L p(�,�,μ) (Exercise1 in Subsection5.4.2). Consequently, the
Minkowski functional of the set Bp is defined on L p(�,�,μ) and gives a norm on
this linear space. It remains to observe that ‖·‖p coincides with ϕBp . Indeed, for any
f ∈ L p(�,�,μ), 1

t f ∈ Bp if and only if t > ‖ f ‖p, i.e., ‖ f ‖p = ϕBp ( f ). �

In what follows, L p(�,�,μ) will be regarded as a normed space equipped with
the norm ‖·‖p. Important particular cases are the spaces L p[a, b] (i.e., the case
� = [a, b] with the Lebesgue measure) and the spaces �p, where the role of � is
played by N, � = 2N, and μ is the counting measure (the measure of a set is the
number of its elements). Since every function defined on the set N of natural num-
bers can be regarded as a sequence, �p is usually defined as the space of numerical
sequences x = (xk)k∈N that satisfy the condition

∑∞
k=1 |xk |p < ∞, equipped with

the norm ‖x‖p = (∑∞
k=1 |xk |p

)1/p
.

Exercises

1. Suppose the linear space X is endowed with two norms, ‖·‖1 and ‖·‖2, and let B1

and B2 be the corresponding unit balls. Then B1 ⊂ B2 if and only if the inequality
‖·‖1 � ‖·‖2 holds in X .
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2. Suppose the linear space X is endowed with three norms, ‖·‖1, ‖·‖2, ‖·‖3, and
let B1, B2, and and B3 be the corresponding unit balls. Suppose ‖·‖3 is expressed in
terms of ‖·‖1 and ‖·‖2 as ‖x‖3 = max{‖x‖1, ‖x‖2}. Then B3 = B1 ∩ B2.

3. �p, regarded as a set, increases with the growth of p, while for fixed x the norm
‖x‖p decreases with the growth of p.

4. The set �0 of terminating (finitely supported) sequences (i.e., sequences in which,
starting with some index, all terms are equal to 0) is dense in �p for any p ∈ [1,∞).

5. If p1 < p, then the set �p1 is dense in the space �p.

6. Let B be a convex, absorbing, balanced, and algebraically bounded set in the
normed space X . Endow X with the norm defined by the Minkowski functional of
B. In order for the unit ball of this norm to coincide with B it is necessary and
sufficient that B have the following property: for every x ∈ B, there exists an ε > 0,
such that (1 + ε)x ∈ B.

7. For 1 � p < ∞, the set of bounded functions is dense in L p[a, b].
8. For 1 � p < ∞, the set of continuous functions is dense in L p[a, b].
9. For 1 � p < ∞, the set of all polynomials is dense in L p[a, b].
10. For 1 � p < ∞, the set of continuous functions satisfying the condition
f (0) = 0 is dense in L p[0, b].
11. The set of continuous functions is not dense L∞[a, b].

6.3 Banach Spaces and Absolutely Convergent Series

A Banach space is a complete normed space, i.e., a normed space in which every
Cauchy sequence converges. Banach spaces constitute the most important class of
normed spaces: they are the spaces most often encountered in applications, and
many of the most important results of functional analysis revolve around the notion
of Banach space.2

6.3.1 Series. A Completeness Criterion in Terms of Absolute
Convergence

Let (xn) be a sequence of elements of the normed space X . The partial sums of
the series

∑∞
n=1 xn are the vectors sn = ∑n

k=1 xk . If the partial sums of the series

2At least in the opinion of the author of these lines, who specializes in the theory of Banach spaces.
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∑∞
n=1 xn converge to an element x , the series is said to converge and the element x

is called the sum of the series. The equality
∑∞

n=1 xn = x is the generally adopted
short way of writing that “the series

∑∞
n=1 xn converges and its sum is equal to x”.

The series
∑∞

n=1 xn is called absolutely convergent if
∑∞

n=1 ‖xn‖ < ∞.

Proposition 1 (Cauchy convergence criterion for series). For the series
∑∞

n=1 xn
of elements of a Banach space X to converge it is necessary and sufficient that∥
∥
∑m

k=n xk
∥
∥ → 0 as n,m → ∞.

Proof. Convergence of a series is equivalent to convergence of the sequence of its
partial sums sn . In turn, in a complete space convergence of a sequence is equivalent
to the sequence being Cauchy. It remains to note that sm − sn = ∑m

k=n+1 xk . �

Proposition 2. Suppose the series
∑∞

n=1 xn of elements of the Banach space X
converges absolutely. Then the series

∑∞
n=1 xn converges.

Proof. Since the numerical series
∑∞

n=1 ‖xn‖ converges,∑m
k=n ‖xk‖ → 0 as n,m →

∞. Consequently, ‖∑m
k=n xk‖ �

∑m
k=n ‖xk‖ → 0 as n,m → ∞. To complete the

proof, it remains to apply Proposition 1. �

Proposition 3. Let X be normed space that is not complete. Then in X there exists
an absolutely convergent, but not convergent series.

Proof. Since X is not complete, there exists a Cauchy sequence vn ∈ X which does
not have a limit. By the definition of a Cauchy sequence, ‖vn − vm‖ → 0 as n,m →
∞. It follows that there exists an n1 ∈ N such that ‖vn − vm‖ < 1

2 for all n,m � n1.
Analogously, pick an n2 � n1 such that ‖vn − vm‖ < 1

4 for all n,m � n2. Continuing
this argument, we obtain an increasing sequence of indices n j such that ‖vn − vm‖ <
1
2 j for all n,m � n j . Then for the sequence vn j it holds that

‖vn2 − vn1‖ <
1

2
, ‖vn3 − vn2‖ <

1

4
, . . . , ‖vn j+1 − vn j ‖ <

1

2 j
, . . . .

Now we define the sought-for series
∑∞

j=1 x j by x1 = vn1 , x2 = vn2 − vn1 , …,
x j = vn j − vn j−1 , and so on. The constructed series is absolutely convergent:
∑∞

j=2 ‖x j‖ < 1
2 + 1

4 + · · · = 1. At the same time, its partial sums are equal to vn j ,
and so they form (see Exercise1 in Subsection1.3.3) a divergent sequence. �

Propositions 2 and 3 provide the following characterization of complete normed
spaces.

Theorem 1. For the normed space X to be complete it is necessary and sufficient
that every absolutely convergent series in X be convergent. �
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6.3.2 Completeness of the Space L1

Sobriety is a life norm …

True, but is life complete with this norm?3

We begin by proving a reformulation of Levi’s theorem, essentially stated above
in Exercise3 of Subsection4.4.3.

Lemma 1. Suppose the series
∑∞

n=1 fn of functions from L1 = L1(�,�,μ) con-
verges absolutely in the normof this space. Then the series

∑∞
n=1 fn converges almost

everywhere to an integrable function f and ‖ f ‖ �
∑∞

n=1 ‖ fn‖.
Proof. By the definition of the norm in L1, the absolute convergence means that∑∞

n=1

∫
�

| fn|dμ < ∞. By Levi’s theorem, the series
∑∞

n=1 | fn| converges almost
everywhere to an integrable function g, and

∫
�
g dμ = ∑∞

n=1

∫
�

| fn|dμ. Denote
the set of measure 0 in the complement of which

∑∞
n=1 | fn| converges by A. For

each point t ∈ � \ A, the numerical series
∑∞

n=1 fn(t) converges absolutely to some
number f (t). Thus, we defined on � \ A (i.e., almost everywhere on �) a function
f , and the series

∑∞
n=1 fn converges to f at all points of �\A. Extend f to the

set A by 0. The function f is measurable on � \ A, being the pointwise limit of a
sequence of measurable functions; moreover, f has an integrable majorant, namely,
the function g. Hence, f is integrable and

∫

�

| f |dμ �
∫

�

g dμ =
∞∑

n=1

∫

�

| fn|dμ. �

Theorem 1. L1 is a Banach space.

Proof. We use the theorem of the preceding subsection, i.e., the completeness crite-
rion in terms of absolute convergence. Suppose the series

∑∞
n=1 fn of L1-functions

converges absolutely. By the preceding lemma,
∑∞

n=1 fn converges almost every-
where to an integrable function f .We claim that the series

∑∞
n=1 fn converges to f in

the normof the space L1. Indeed, ‖ f − ∑k
n=1 fn‖ = ‖∑∞

n=k fn‖ �
∑∞

n=k ‖ fn‖ → 0
as k → ∞. �

Exercise

Prove the completeness of the space L p.

The completeness of the space L p will be established later, in Chap.14, by an
indirect argument. Nevertheless, the reader will profit from finding a direct proof of
this fact.

3A joke from the times of the Gorbachev anti-alcoholism campaign in Soviet Union, 1985–1990.
Quoted from a toast given by Ya.G. Prytula at the banquet for the International Conference on
Functional Analysis and its Applications dedicated to the 110th anniversary of Stefan Banach, May
28–31, 2002, Lviv, Ukraine.
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6.3.3 Subspaces and Quotient Spaces of Banach Spaces

Let X be a Banach space. A linear subspace Y ⊂ X , equipped with the norm of X ,
is called a subspace of the Banach space X if Y is closed in X . Hence, a subspace
of a Banach space is itself a Banach space. As the reader had undoubtedly noticed,
the meaning of the term “subspace” depends on where this subspace is considered.
Since a Banach space is simultaneously a metric as well as a linear and normed
space, the term “subspace” is somewhat overloaded. For this reason we emphasize
once again that in Banach spaces subspaces will be tacitly understood to be closed
linear subspaces. If for some reasonwe need to consider a non-closed linear subspace,
we will state explicitly that the subspace is not closed.

Theorem 1. Let X be a Banach space and Y be a subspace of X. Then the quotient
space X/Y is also a Banach space.

Proof. Let xn ∈ X be such that the corresponding equivalence classes form an abso-
lutely convergent series:

∑
n ‖[xn]‖ < ∞. By the completeness criterion, we need to

prove that the series
∑

n [xn] converges to some element of the quotient space. To
this end we pick in each class [xn] a representative yn such that ‖yn‖ � ‖[xn]‖ + 1

2n .
Then

∑
n yn is an absolutely convergent series in X , which in view of the complete-

ness of X means that the series
∑

n yn converges in X to some element x . We claim
that

∑
n[yn] = [x]. Indeed,

∥
∥
∥
∥
∥
[x] −

n∑

k=1

[xk]
∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥
[x] −

n∑

k=1

[yk]
∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥
[x −

n∑

k=1

yk]
∥
∥
∥
∥
∥

�
∥
∥
∥
∥
∥
x −

n∑

k=1

yk

∥
∥
∥
∥
∥

→ 0

as n → ∞. �

Exercises

12. Let X be a Banach space, and let xn ∈ X be a fixed sequence of nonzero
vectors. We introduce the space E of all numerical sequences a = (an)

∞
1 for

which the series
∑∞

n=1 anxn converges. We endow the space E with the norm
‖a‖ = sup{‖∑N

n=1 anxn‖ : N = 1, 2, . . .}. Verify that E is a Banach space.

13. Let X be a Banach space, Y a nontrivial subspace of X (i.e., Y is closed and
Y 	= X ). Prove that Y is nowhere dense in X .

14. Show that a Banach space cannot be represented as a countable union of non-
trivial subspaces.

15. Show that a Hamel basis of an infinite-dimensional Banach space is not count-
able.
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16. LetP be the space of all polynomials (of arbitrarily large degree) with real coef-
ficients, equipped with the norm ‖a0 + a1t + · · · + antn‖ = |a0| + |a1| · · · + |an|. Is
P complete?

17. Denote by {en}∞1 the standard basis of the space �1: e1 = (1, 0, 0, . . .), e2 =
(0, 1, 0, . . . ),….Show that for everya = (an)∞1 ∈ �1 the series

∑∞
n=1 anen converges

to a. Is the convergence absolute?

18. Consider in �∞ the sequence {en}∞1 from the previous exercise. What are the
partial sums of the series

∑∞
n=1 en equal to? Does this series converge to the element

x = (1, 1, . . .) ∈ �∞? Describe the elements a = (an)∞1 ∈ �∞ for which the series∑∞
n=1 anen converges to a. For which a will the convergence be absolute?

19. Prove that the space L∞(�,�,μ) is complete.

20. Prove that in each of the spaces L p(�,�,μ) with 1 � p � ∞, the subspace of
finite-valued measurable functions is dense.

21. The space �p with 1 � p < ∞ is separable, whereas �∞ is not separable.

6.4 Spaces of Continuous Linear Operators

6.4.1 A Continuity Criterion for Linear Operators

Definition 1. Let X and Y be normed spaces. A linear operator T : X → Y is said
to be bounded if it maps bounded sequences into bounded sequences. In other words,
if xn ∈ X and supn ‖xn‖ < ∞ imply supn ‖T xn‖ < ∞.

Themain purpose of this subsection is to prove that for a linear operator continuity
and boundedness are equivalent.

Theorem 1. Let X and Y be normed spaces. For a linear operator T : X → Y the
following conditions are equivalent:

(1) T is continuous;

(2) T maps sequences that converge to zero into sequences that converge to zero;

(3) T maps sequences that converge to zero into bounded sequences;

(4) T is bounded.

Proof. The implications (1) =⇒ (2) =⇒ (3) ⇐= (4) are obvious: indeed, condition
(2), i.e., the continuity of the operator at zero, is a particular case of condition (1);
condition (3) follows from (2) as well as from (4), because sequences that converge
to zero are bounded. Now let us prove the converse implications.
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(2) =⇒ (1). Suppose the sequence of vectors xn ∈ X converges to the vector
x ∈ X . Then xn − x → 0 asn → ∞, so by condition (2),T xn − T x = T (xn − x) →
0 as n → ∞. That is, convergence of xn to x implies convergence of T xn to T x .

(3) =⇒ (2). We proceed by reductio ad absurdum. Suppose condition (2) is not
satisfied: there exists a sequence (xn) in X which converges to zero, but such that
T xn does not converge to zero. Then one can extract from (xn) a subsequence,
denoted (vn), for which infn ‖T vn‖ = ε > 0. Consider the vectors wn = 1√‖vn‖vn .
The sequence wn still converges to 0, but ‖Twn‖ � ε√‖vn‖ → ∞, which contradicts
condition (3).

(3) =⇒ (4). Suppose condition (4) is not satisfied: there exists a bounded
sequence (xn) in X such that supn ‖T xn‖ = ∞. Then one can extract from (xn)
a subsequence, denoted (vn), for which ‖T vn‖ → ∞. Consider the vectors wn =

1√‖T vn‖vn . The sequence (wn) already converges to 0, but ‖Twn‖ = √‖T vn‖ → ∞,
which contradicts condition (3). �

Exercises

1. Let X and Y be normed spaces, T : X → Y a continuous linear operator. Then
Ker T = T−1(0) is a closed linear subspace in X . (N.B.!) This is a simple yet impor-
tant fact, and in the sequel will be used without further clarifications.

2. The image (range) of a continuous operator is not necessarily closed. Examine this
in the case of the integration operator T : C[0, 1] → C[0, 1], (T f )(t) = ∫ t

0 f (τ )dτ .

6.4.2 The Norm of an Operator

The norm of the linear operator T , acting from the normed space X into the normed
space Y , is defined as

‖T ‖ = sup
x∈SX

‖T x‖.

Proposition 1. Let ‖T ‖ < ∞. Then ‖T x‖ � ‖T ‖ · ‖x‖ for any x ∈ X.

Proof. For x = 0 the inequality holds trivially. Now let x 	= 0. Since x/‖x‖ ∈ SX ,
we have ‖T (x/‖x‖)‖ � ‖T ‖. Therefore, ‖T x‖ = ‖x‖ · ‖T (x/‖x‖)‖ � ‖T ‖ · ‖x‖,
as claimed. �

Proposition 2. Let X and Y be normed spaces. For a linear operator T : X → Y
the following conditions are equivalent:
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(1) T is bounded;

(2) ‖T ‖ < ∞;

(3) there exists a constant C > 0 such that ‖T x‖ � C‖x‖ for all x ∈ X.

Proof. (1) =⇒ (2). Suppose ‖T ‖ = ∞. Then for any positive integer n there exists
a vector xn ∈ SX such that ‖T xn‖ > n. The sequence (xn) is bounded, and the images
of its terms tend in norm to infinity. This contradicts condition (1). The implication
(2) =⇒ (3) was proved in Proposition 1 (with C = ‖T ‖). It remains to show that
(3) =⇒ (1). Let xn ∈ X be a bounded sequence: ‖xn‖ � K for some constant K .
Then, by condition (3), ‖T xn‖ � CK for all n. Hence, the operator T maps bounded
sequences into bounded sequences, as we needed to prove. �

Remark 1. If condition (3) of the preceding theorem is satisfied, then

‖T ‖ = sup
x∈SX

‖T x‖ � sup
x∈SX

C‖x‖ = C.

That is, if ‖T x‖ � C‖x‖ for all x ∈ X , then ‖T ‖ � C . This observation is often
used in the estimation of norms of operators.

Remark 2. In the literature one encounters quite a few equivalent definitions of the
norm of an operator:

— ‖T ‖ = supx∈BX
‖T x‖;

— ‖T ‖ = supx∈BX
‖T x‖;

— ‖T ‖ = supx∈X\{0}
‖T x‖
‖x‖ ;

— ‖T ‖ is the infimumof all constantsC � 0 such that the inequality ‖T x‖ � C‖x‖
is satisfied for all x ∈ X .

The verification of the equivalence of these definitions is left to the reader.
We let L(X,Y ) denote the space of all continuous linear operators acting from

the normed space X into the normed space Y . L(X,Y ) is naturally endowed with
linear operations: if T1, T2 ∈ L(X,Y ) are operators and λ1, λ2 are scalars, then
the operator λ1T1 + λ2T2 ∈ L(X,Y ) acts according to the rule (λ1T1 + λ2T2) x =
λ1T1x + λ2T2x . We described above how to introduce a norm on L(X,Y ) — the
norm of the operator, but it remains to verify that the norm axioms are indeed
satisfied.

Proposition 3. The space L(X,Y ) of continuous operators is a normed space.

Proof. Let us verify the norm axioms (Subsection6.1.1).
1. Suppose ‖T ‖ = 0. Then the operator T is equal to 0 on all elements of the unit

sphere of the space X , which in view of its linearity means that T is equal to zero on
the entire space X .
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2. ‖λT ‖ = sup
x∈SX

‖λT x‖ = |λ| sup
x∈SX

‖T x‖ = |λ| ‖T ‖.

3. Let T1, T2 ∈ L(X,Y ) and x ∈ X . By Proposition 1,

‖(T1 + T2)x‖� ‖T1x‖ + ‖T2x‖ � ‖T1‖ · ‖x‖ + ‖T2‖ · ‖x‖ = (‖T1‖ + ‖T2‖) · ‖x‖.

By Remark1, this yields the needed triangle inequality: ‖T1 + T2‖ � ‖T1‖ + ‖T2‖.
�

The norm of an operator is an important concept that will be frequently used in
our text. For this reason the reader who has no experience working with norms is
strongly advised to seriously pay attention to the exercises given below.

Exercises

1. Let T ∈ L(X,Y ) and x1, x2 ∈ X . Then ‖T x1 − T x2‖ � ‖T ‖ · ‖x1 − x2‖.
2. Let T1, T2 ∈ L(X,Y ) and x ∈ X . Then ‖T1x − T2x‖ � ‖T1 − T2‖ · ‖x‖.
3. Let X ,Y , Z be normed spaces, T1 ∈ L(X,Y ), T2 ∈ L(Y, Z). Prove themultiplica-
tive triangle inequality for the composition of operators: ‖T2 ◦ T1‖ � ‖T2‖ · ‖T1‖.
4. Let X be a Banach space, (xn)

∞
1 a bounded sequence in X , and {en}∞1 the standard

basis in the space �1 (see Exercise6 in Subsection6.3.3). Define the operator T :
�1 → X by the formula Ta = ∑∞

n=1 anxn , for any element a = (an)∞1 of the space
�1. Show that T is a continuous linear operator, T en = xn , and ‖T ‖ = supn ‖xn‖.
Show that any continuous linear operator T : �1 → X can be described as indicated
above.

5. Let X be a normed space and X1 a closed subspace of X . Show that the quotient
map q of the space X onto the space X/X1 (see Subsection5.2.2) is a continuous
linear operator. Calculate the norm ‖q‖. Show that q(BX ) = BX/X1 .

6. Let X and Y be normed spaces, and T : X → Y a linear operator. Prove that
the injectivization T̃ of the operator T (see Subsection5.2.3) is a continuous linear
operator and ‖T̃ ‖ = ‖T ‖.
7. In the setting of the preceding exercise, suppose that T (BX ) = BY . Show that in
this case T̃ is a bijective isometry of the spaces X/Ker T and Y .

8. Let P be the space of all polynomials, as in Exercise5 in Subsection6.3.3, and
let Dm : P → P be the m-th derivative operator. Verify that Dm is a linear operator
and calculate its norm. Is Dm a continuous operator?

9. Equip the linear space P of polynomials with the norm ‖a0 + a1t + · · · +
antn‖1 = ∑n

k=0 k! |ak |. Denote the resulting normed space by P1. Is them-th deriva-
tive operator Dm : P1 → P1 continuous? What is its norm?
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10. Let X and Y be normed spaces and T : X → Y be a bijective linear operator.
Show that the operator T is an isometry if and only if ‖T ‖ = ‖T−1‖ = 1.

6.4.3 Pointwise Convergence

Theorem 1. Suppose X and Y are normed spaces, Tn : X → Y is a linear operator,
and the limit limn→∞ Tnx exists for all x ∈ X. Then the map T : X → Y given by
the recipe T (x) = limn→∞ Tnx is a linear operator.

Proof. Indeed,
T (ax1 + bx2) = lim

n→∞ Tn(ax1 + bx2)

= a lim
n→∞ Tn(x1) + b lim

n→∞ Tn(x2) = aT (x1) + bT (x2). �

Definition 1. A sequence of operators Tn : X → Y is said to converge pointwise to
the operator T : X → Y if T x = limn→∞ Tnx for all x ∈ X .

Theorem 2. Suppose the sequence of operators Tn ∈ L(X,Y ) converges point-
wise to the operator T : X → Y and supn ‖Tn‖ = C < ∞. Then T ∈ L(X,Y ) and
‖T ‖ � C.

Proof. The estimate ‖T x‖ = limn→∞ ‖Tnx‖ � C‖x‖ holds for all x ∈ X . �

Theorem 3. If the sequence of operators Tn ∈ L(X,Y ) converges to the operator
T in the norm of the space L(X,Y ), then it also converges pointwise to T .

Proof. Indeed,

‖Tnx − T x‖ = ‖(Tn − T )x‖ � ‖Tn − T ‖ · ‖x‖ → 0 as n → ∞. �

Exercises

1. Let X = C[0, 1], Y = R, and let the operators Tn ∈ L(X,Y ) act as Tn( f ) =
f (0) − f (1/n). Calculate the norms of Tn .

2. Pointwise convergence does not imply convergence in norm. Example: the
sequence of operators from the preceding exercise tends to 0 pointwise, but not
in norm.

3. The following general fact is known (Josefson and Nissenzweig, [55, 72], see
also [47]): On any infinite-dimensional normed space there exists a sequence of
linear functionals that converges to 0 pointwise, but not in norm. Give corresponding
examples in all infinite-dimensional normed spaces you know.
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4. Under the assumptions of Theorem2, show that ‖T ‖ � limn→∞‖Tn‖. In other
words, the norm on L(X,Y ) is lower semicontinuous with respect to pointwise
convergence.

5. Introduce on L(X,Y ) a topology in which convergence coincides with pointwise
convergence.

6.4.4 Completeness of the Space of Operators. Dual Space

Theorem 1. Let X be a normed space and Y a Banach space. Then L(X,Y ) is a
Banach space.

Proof. We use the definition. Suppose the operators Tn ∈ L(X,Y ) form a Cauchy
sequence: ‖Tn − Tm‖ → 0 as n,m → ∞. Then for any point x ∈ X the values
Tnx form a Cauchy sequence in the complete space Y , because ‖Tnx − Tmx‖ �
‖Tn − Tm‖ · ‖x‖ → 0 as n,m → ∞. Hence, for any x ∈ X the sequence (Tnx) has
a limit. Define the operator T : X → Y by the rule T x = limn→∞ Tnx . By Theorem1
of the preceding subsection, the operator T is linear. Since every Cauchy sequence is
bounded, Theorem2 of the preceding subsection shows that T ∈ L(X,Y ). It remains
to verify that T = limn→∞ Tn in the norm of the space L(X,Y ). Since the sequence
Tn is Cauchy, for any ε > 0 there exists a number N (ε) such that ‖TN − TM‖ < ε

for all M > N > N (ε). Then for any point x of the unit sphere SX of X it also
holds that ‖TN x − TMx‖ < ε for M > N > N (ε). Letting here M → ∞ in the last
inequality, we obtain ‖TN x − T x‖ < ε. Now if in the left-hand side of this inequal-
ity we take the supremum over x ∈ SX , we get ‖TN − T ‖ � ε for N > N (ε), i.e.,
T = limn→∞ Tn , as needed. �

The dual (or conjugate) space of the normed space X is the space X∗ of all
continuous linear functionals on X , equipped with the norm ‖ f ‖ = supx∈SX | f (x)|.
In other words, if X is a real space, then X∗ = L(X,R), while if X is a complex
space, X∗ = L(X,C). SinceR andC are complete spaces, the theorem above shows
that the space X∗ is complete, regardless of whether the space X itself is complete
or not. The space X∗ will also be referred to simply as the dual of X .

As was the case with the norm of an operator (see Remark2 in Subsection 6.4.2),
there are other standard definitions for the norm of a functional. We provide one of
them that is specific for functionals rather than for general operators.

Remark 1. Let X be a real normed space, and let f ∈ X∗. Then ‖ f ‖ = supx∈SX f (x).

Proof. We use the symmetry of the sphere: x ∈ SX if and only if −x ∈ SX . Hence,
supx∈SX f (x) = supx∈SX f (−x). Consequently,

‖ f ‖ = sup
x∈SX

| f (x)| = sup
x∈SX

max{ f (x),− f (x)}

= max

{

sup
x∈SX

f (x), sup
x∈SX

f (−x)

}

= sup
x∈SX

f (x). �
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Exercises

1. Let X be a real normed space, and f ∈ X∗. Then ‖ f ‖ = supx∈BX
f (x).

2. Let X be a complex normed space, and f ∈ X∗. Then ‖ f ‖ = supx∈SX Re f (x).

3. On the space �∞ of all bounded numerical sequences x = (x1, x2, . . .), equipped
with the norm ‖x‖ = supn |xn|, define the functional f by the formula f (x) =∑∞

n=1 anxn , where a = (a1, a2, . . . ) is a fixed element of the space �1. Show that
‖ f ‖ = ∑∞

n=1 |an|.
4. On the space C[0, 1] consider the linear functional F defined by the rule
F(x) = ∫ 1/2

0 x(t) dt − ∫ 1
1/2 x(t) dt . Show that ‖F‖ = 1 and that |F(x)| < 1 for all

x ∈ SC[0,1]. This example shows that the supremum in the definition of the norm of
a functional (or operator) is not necessarily attained.

6.5 Extension of Operators

In this section we consider several simple yet useful conditions under which a con-
tinuous operator can be extended from a subspace of a normed space to the entire
ambient space.

6.5.1 Extension by Continuity

Theorem 1. Let X1 be a dense subspace of the normed space X, Y a Banach space,
and T1 ∈ L(X1,Y ). Then the operator T1 admits a unique extension T ∈ L(X,Y ).

Proof. Since the subspace X1 is dense, for any x ∈ X there exists a sequence of
vectors xn ∈ X1 which converges to x . Then (T1xn) is a Cauchy sequence in Y :

‖T1xn − T1xm‖ � ‖T1‖ · ‖xn − xm‖ → ∞ as n,m → ∞.

Denote the limit of this sequence by T x . Then

‖T x‖ = lim
n→∞ ‖T1xn‖ � ‖T1‖ lim

n→∞ ‖xn‖ = ‖T1‖ · ‖x‖.

Note that T x does indeed depend only on x , and not on the choice of the sequence
xn: if x ′

n ∈ X1 is some other sequence that converges to x , then ‖T1xn − T1x ′
n‖ �

‖T1‖ · ‖xn − x ′
n‖ → 0 as n → ∞, and so the sequences (T1xn) and (T1x ′

n) have
the same limit. Hence, for every x ∈ X we defined a map T : X → Y by the rule
T x = limn→∞ T1xn , where xn ∈ X1 form a sequence that converges to x . It remains
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to show that T is the sought-for operator. Let us verify that the operator T is linear.
Let x1, x2 ∈ X , xn1 , x

n
2 ∈ X1, xn2 → x2, xn1 → x1 as n → ∞. Then

T (a1x1 + a2x2) = lim
n→∞ T1(a1x

n
1 + a2x

n
2 )

= a1 lim
n→∞ T1x

n
1 + a2 lim

n→∞ T1x
n
2 = a1T x1 + a2T x2

for all scalars a1, a2. Thanks to the already established inequality ‖T x‖ � ‖T1‖ · ‖x‖,
the operator T is continuous, i.e., T ∈ L(X,Y ). This proves the existence of the
extension. Its uniqueness follows from the fact that two continuous functions which
coincide on a dense set coincide everywhere. �

Exercises

1. In the argument above we skipped the verification of the fact that the operator
T is an extension of the operator T1. Complete this step.

2. Show that under the conditions of the preceding theorem ‖T ‖ � ‖T1‖.
3. Let X and Y be normed spaces, X1 ⊂ X be an arbitrary subspace, and T ∈
L(X,Y ) be an extension of the operator T1 ∈ L(X1,Y ). Show that ‖T ‖ � ‖T1‖.
4. Combining Exercises2 and 3 above, show that under the assumptions of Theo-
rem1, ‖T ‖ = ‖T1‖.
5. Give an example of a continuous function which is defined on a dense subset
of the interval [0, 1], but which cannot be extended to a continuous function on the
whole interval.

6. Show that every continuous linear operator is a uniformly continuous mapping.
Deduce the main theorem of the present subsection from the theorem, given in
Subsection1.3.4, on the extension of uniformly continuous mappings. Moreover,
the linearity of the extended operator can be deduced from the uniqueness of the
extension.

6.5.2 Projectors; Extension from a Closed Subspace

Let X1 be a subspace of the normed space X . The operator P ∈ L(X, X) is called a
projector onto X1 if P(X) ⊂ X1 and Px = x for all x ∈ X1.

Theorem 1. For a subspace X1 of the normed space X, the following conditions
are equivalent:
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(1) in X there exists a projector onto X1;

(2) for any normed space Y , any operator T1 ∈ L(X1,Y ) extends to an operator
T ∈ L(X,Y ).

Proof. (1) =⇒ (2). Define T ∈ L(X,Y ) by the rule T x = T1(Px).

(2) =⇒ (1). Take Y = X1 and define T1 ∈ L(X1,Y ) by the rule T1x = x . Let
T ∈ L(X,Y ) be an extension of the operator T1. Since in our case Y ⊂ X , we can
regard T as an operator from X to X . We have T (X) ⊂ Y = X1, and T x = T1x = x
for all x ∈ X1. Hence, T is the required projector onto X1. �

Exercises

1. Provide the details of the proof of the implication (1) =⇒ (2) in the preceding
theorem.

2. Let X1 be a subspace of the normed space X and P ∈ L(X, X) be a projector
onto X1. Then P(X) = X1 = Ker(I − P) and the subspace X1 is closed in X .

3. Suppose that under the conditions of the preceding exercise X1 	= {0}. Then
‖P‖ � 1.

4. For a subspace X1 of the normed space X the following conditions are equivalent:

— in X there exists a projector P onto X1 with ‖P‖ = 1;

— for any normed space Y , any operator T1 ∈ L(X1,Y ) extends to an operator
T ∈ L(X,Y ) with ‖T ‖ = ‖T1‖.

5. Let X = �31 (see Exercise2 in Subsection6.2.1 for the definition), and let X1 be
the subspace consisting of all elements for which the sum of their coordinates is
equal to zero. Show that in X there is no projector P onto X1 with ‖P‖ = 1.

Comments on the Exercises

Subsection6.1.2

Exercise1. Since ‖x‖ = ρ(0, x), the result follows from the continuity of the dis-
tance (Subsection1.3.2).

Exercise5. See Subsection18.2.1.
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Subsection6.2.2

Exercise3. See Theorem2 in Subsection14.1.2.

Exercise7. Let g ∈ L p[a, b]. Consider the sequence of truncations

gn = min{n,max{g,−n}}.

The sequence of functions |gn − g|p converges almost everywhere to zero and admits
the integrable majorant |g|p. Hence, by the Lebesgue dominated convergence theo-
rem, ‖gn − g‖p → 0 as n → ∞.

Exercise8. By the preceding exercise, it suffices to show that any bounded func-
tion f ∈ L p[a, b] can be approximated in the metric of L p by continuous functions.
By Exercise6 in Subsection3.2.3, there exists a sequence of continuous functions
( fn) that converges to f a.e. With no loss of generality we can assume that all fn
are bounded in modulus by the same constant C as f (otherwise we replace fn by
the truncations f̃n = min {C,max { fn,−C}}). The convergence of ‖ fn − f ‖p to 0
follows from the Lebesgue dominated convergence theorem.

Subsection6.4.2

Exercise 5. [x] ∈ q(BX ) ⇐⇒ ∃y ∈ BX : [y] = [x] ⇐⇒ ‖[x]‖ < 1 ⇐⇒ [x] ∈
BX/X1 .

Exercise 6.

‖T̃ ‖ = sup
[x]∈BX/X1

‖T̃ [x]‖ = sup
[x]∈q(BX )

‖T̃ [x]‖

= sup
x∈BX

‖T̃ [x]‖ = sup
x∈BX

‖T x‖ = ‖T ‖.



Chapter 7
Absolute Continuity of Measures
and Functions. The Connection Between
Derivative and Integral

7.1 Charges. The Hahn and Radon–Nikodým Theorems

The family of all finite measures on a fixed σ -algebra does not constitute a linear
space: such measures can be added, but already the difference of two of them may
take negative values, and consequently not be a measure. This creates some incon-
veniences, so to avoid them one introduces a generalized notion of measure that is
allowed to take negative values. Such generalized measures are called charges, or
signed measures.

In this section (�,�) is a set with a given σ -algebra of its subsets. Unless other-
wise stipulated, all functions will be assumed to be defined on �, and all measures
and charges to be defined on �.

7.1.1 The Boundedness of Charges Theorem

A mapping ν : � → R is called a charge, or a signed measure, if it satisfies the
countable additivity condition: for any sequence of pairwise disjoint sets An ∈ �,
n = 1, 2, . . ., the series

∑∞
k=1 ν (Ak) converges and ν

(⋃∞
k=1 Ak

) = ∑∞
k=1 ν (Ak).

We immediately note that this definition implies that the series
∑∞

k=1 ν (Ak) con-
verges for all permutations of its terms, i.e., it converges absolutely. Many of the
properties of measures carry over to charges, with the same proofs. Thus, the charge
of the empty set is equal to zero (in the definition of countable additivity take all
An = ∅); charges are finitely additive (take An = ∅ for all n > N ). In particular, we
shall use the following assertions:

— if An ∈ �, n = 1, 2, . . ., is an increasing chain of sets, then ν
(⋃∞

k=1 Ak
) =

limk→∞ ν (Ak);

— if An ∈ �, n ∈ N, form a decreasing chain of sets, then ν
(⋂∞

k=1 Ak
) =

limk→∞ ν (Ak).
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Nevertheless, some care should be takenwhenworkingwith charges: for instance,
it may well happen that ν(A) > ν(B) for some sets A ⊂ B ∈ �, something that is
not possible for measures.

For charges there are defined natural operations of addition and multiplication by
scalars: (a1ν1 + a2ν2) (A) = a1ν1(A) + a2ν2(A), as well as inequalities: μ � ν, if
μ(A) � ν(A) for all A ∈ �.

For A ∈ � we define ν+(A) = sup{ν(B) : B ∈ �A}. Since for B one can take,
in particular, the empty set, ν+(A) � 0.

Lemma 1. Let A = ⊔∞
k=1 Ak. Then ν+(A) = ∑∞

k=1 ν+ (Ak). In other words, ν+
satisfies the countable additivity condition.

Proof. Every set B ∈ �A can be written as B = ⊔∞
n=1 Bn with Bn ⊂ An: it suffices

to put Bn = B ∩ An . We have

ν+(A) = sup{ν(B) : B ∈ �A} = sup
{ ∞∑

n=1

ν(Bn) : Bn ∈ �An , n ∈ N

}

=
∞∑

n=1

sup{ν(Bn) : Bn ∈ �An } =
∞∑

n=1

ν+(An). �

Lemma 2. Suppose ν+(A) = +∞. Then for any n ∈ N there exists a measurable
set B ⊂ A such that ν+(B) = +∞ and |ν(B)| > n.

Proof. Take B1∈ �A withν(B1) > n + |ν(A)| andput B2 = A \ B1. Then |ν(B2)| �
|ν(B2)| − |ν(A)| > n. Since ν+(B1) + ν+(B2) = ν+(A) = +∞, at least one of the
numbers ν+(B1) and ν+(B2) is infinite. The corresponding Bi is the sought-for set B.

�

Theorem 1. ν+ is a finite countably-additive measure on �.

Proof. The countable additivity was already established in Lemma 1. Let us prove
the finiteness. Suppose there exists a set A ∈ � such that ν+(A) = +∞. By Lemma
2, there exists a set A1 ∈ �A such that ν+(A1) = +∞ and |ν(A1)| > 1. Apply-
ing Lemma 2 again to the set A1 with n = 2, we produce a set A2 ⊂ A1 such that
ν+(A2) = +∞ and |ν(A2)| > 2. Continuing this process, we obtain an increasing
sequence of sets A1, A2, . . . , An, . . . ∈ � such that |ν(An)| > n, which contradicts
the condition ν

(⋂∞
k=1 Ak

) = limk→∞ ν (Ak)mentioned at the beginning of this sub-
section. �

Corollary 1 (boundedness of charges). For every charge ν there exist constants
C1, C2 ∈ R such that C1 � ν(A) � C2 for all A ∈ �.

Proof. It suffices to take C2 = ν+(�) and C1 = −(−ν)+(�). �

Definition 1. Themeasure ν+ is called the positive part of the charge ν; themeasure
ν− = (−ν)+ is called the negative part of the charge ν; finally, the measure |ν| =
ν+ + ν− is called the variation of the charge ν.
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Theorem 2. Every charge ν admits the Jordan decomposition ν = ν+ − ν−. Hence,
every charge can be written as the difference of two measures.

Proof. For any A ∈ � it holds that

ν+(A) − ν(A) = sup{ν(B) − ν(A) : B ∈ �A} = sup{−ν(A \ B) : B ∈ �A}.

Denote A \ B by C . When B runs over �A, so does C . Consequently,

ν+(A) − ν(A) = sup{−ν(C) : C ∈ �A} = (−ν)+(A) = ν−(A). �

Exercises

1. Prove the formulas −ν−(A) = inf{ν(B) : B ∈ �A} and ν(A) = sup{ν(B) : B ∈
�A} + inf{ν(B) : B ∈ �A}.
2. Show that |ν(A)| � |ν|(A) for all A ∈ �.

3. Let μ be a measure and ν a charge. Suppose that μ � ν. Then μ � ν+.

4. Let μ be a measure and ν a charge. Suppose that |ν(A)| � μ(A) for all A ∈ �.
Then |ν| � μ.

5. Verify that the assertion ofExercise 4 inSubsection 2.1.4 remains valid for charges
and even for more general set functions: Let ν be a finitely-additive set function
given on a σ -algebra � and taking values in a normed space X . Suppose that for any
decreasing chain of sets A1, A2, . . . , An, . . . ∈ � with empty intersection one has
limk→∞ ν (Ak) = 0. Then ν is a countably-additive set function.

6. Verify that the formula ‖ν‖ := |ν| (�) defines a norm on the space M(�,�) of
all charges on �. Show that the normed space M(�,�) is complete.

7.1.2 The Hahn Decomposition Theorem

Lemma 1. For every charge ν on � there exists a set �+ ∈ � such that ν+(�+) =
ν+(�) and ν−(�+) = 0.

Proof. Fix a sequence εn > 0 satisfying
∑∞

n=1 εn < ∞. For each n ∈ N choose a set
An ∈ � with ν(An) > ν+(�) − εn . Then

ν+(An) > ν+(�) − εn, (1)

ν−(An) = ν+(An) − ν(An) � ν+(�) − ν(An) � εn. (2)
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Now put�+ = lim An . By assertion (i) of the lemma on the upper limit of a sequence
of sets (Lemma1 in Subsection 3.2.3), applied to themeasure ν+, estimate (1) implies
that ν+(�+) � lim ν+(An) = ν+(�). Assertion (ii) of the same lemma, now applied
to ν−, yields the equality ν−(�+) = 0: here estimate (2) helped. �

Theorem 1 (Hahn’s theorem). For every charge ν there exists a decomposition
of � as the union of two disjoint measurable sets �+ and �− with the property
that any subset of �+ has charge greater than or equal to zero, while any subset of
�− has charge smaller than or equal to zero. This decomposition is unique up to
|ν|-equivalence.

Proof. Take for �+ the corresponding set from Lemma 1. Since ν−(�+) = 0, no
subset of �+ can have a negative charge. Now put �− = � \ �+. Since ν+(�−) =
ν+(�) − ν+(�+) = 0, no subset of �− can have a positive charge. This estab-
lishes the existence of the decomposition. Now let us show the uniqueness. Let
�+

1 	 �−
1 be another decomposition with the same properties. Then ν−(�+

1 ) = 0,
ν−(�+) = 0, and so ν−(�+

1 
 �+) = 0. Analogously, ν+(�−
1 
 �−) = 0. But

�+
1 
 �+ = �−

1 
 �− (the symmetric difference of two sets coincides with the
symmetric difference of their complements), so we also have ν+(�+

1 
 �+) = 0
and ν−(�−

1 
 �−) = 0. Therefore, |ν| (�+
1 
 �+) = |ν| (�−

1 
 �−) = 0. �

The sets �+ and �− are called thepositivity and negativity sets of the charge ν,
and the decomposition � = �+ 	 �− is called the Hahn decomposition.

Exercises

1. Show that ν+(A) = ν(A ∩ �+) and ν−(A) = −ν(A ∩ �−).

2. Solve Exercise 3 of Subsection 7.1.1 based on the preceding exercise.

By analogy with Subsection 2.1.6, an atom of the charge ν is a subset A ∈ � such
that ν(A) �= 0 and for any B ∈ �A either ν(B) = 0, or ν(A \ B) = 0. If a charge
has atoms, it is called atomic; if there are no atoms, the charge is called non-atomic
or atomless. The charge ν is called purely atomic if � can be written as the union of
a finite or countable number of disjoint atoms of ν.

3. The atoms of the charge ν coincide with the atoms of the measure |ν|. The charge
ν is non-atomic if and only if the measure |ν| is non-atomic.

4. Any charge can be uniquely represented as the sum of a purely atomic charge and
a non-atomic charge.

In the normed space M(�,�) (see Exercise 6 of Subsection 7.1.1) consider
the subsets Mat(�,�) of purely atomic charges and Mnonat(�,�) of non-atomic
charges. Prove that:
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5. Mat(�,�) and Mnonat(�,�) are closed subspaces in M(�,�) and M(�,�) =
Mat(�,�) ⊕ Mnonat(�,�).

6. Show that if ν1 ∈ Mat(�,�) and ν2 ∈ Mnonat(�,�), then ‖ν1 + ν2‖ = ‖ν1‖ +
‖ν2‖.

As in the case of measures, we introduce admissible partitions (i.e., such that∑∞
k=1 limt∈Δk [| f (t)| · |ν| (Δk)] < ∞) and integral sums of a function f with respect

to the charge ν: SA ( f, D, T, ν) = ∑∞
k=1 f (tk)ν(Δk). The integrability and integral

of a function with respect to a charge are also defined by means of integral sums.

7. A measurable function f is integrable with respect to the charge ν on the set
A ∈ � if and only if f is integrable on A with respect to ν on both A ∩ �+ and
A ∩ �−.

8. A measurable function f is integrable with respect to the charge ν on the set
A ∈ � if and only if f is integrable on A with respect to the measure ν+, as well as
with respect to the measure ν−. Moreover,

∫
A f dν = ∫

A f dν+ − ∫
A f dν−.

9. A measurable function f is integrable with respect to the charge ν on the set
A ∈ � if and only if f is integrable on A with respect to the measure |ν|.
10. Show that the expression

∫
A f dν is linear in f , as well as in ν, and is also

countably additive with respect to A.

11. Prove the inequality
∣
∣
∫

A f dν
∣
∣ �

∫
A | f |d|ν|.

7.1.3 Absolutely Continuous Measures and Charges

Let ν be a charge and μ be a countably-additive measure on �. We say that the
charge ν is absolutely continuous with respect to the measure μ (and write ν  μ)1,
if for any A ∈ � with μ(A) = 0 one also has ν(A) = 0.

At a first glance, the notion of absolute continuity just introduced does not elicit
any associations with the usual notion of continuity. However, such associations
become evident once we provide the following equivalent formulation:

Theorem 1. For a charge ν and a measure μ the following conditions are equiva-
lent:

(1) ν  μ;

(2) |ν|  μ;

(3) for every ε > 0 there exists a δ > 0 such that for any A ∈ �, if μ(A) < δ, then
|ν|(A) < ε.

1Do not confuse with the inequality ν � μ !
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Proof. (1) =⇒ (2). Suppose μ(A) = 0. Then μ(B) = 0 for all B ∈ �A. Hence,
ν(B) = 0 for all B ∈ �A, i.e., all quantities ν+(A), ν−(A), and |ν|(A) are equal to
zero.

(2) =⇒ (3). Suppose that condition (3) is not satisfied. Then there is an ε > 0
such that for any δ > 0 there exists a set A ∈ � such that μ(A) < δ and |ν|(A) �
ε. Applying this with δ = 2−n , we produce a sequence of sets An ∈ � such that
μ(An) < 2−n and |ν|(An) � ε. Then for the set B = lim An it holds that |ν|(B) � ε

and μ(B) = 0, which contradicts the assumption that |ν|  μ.

(3) =⇒ (1). Supposeμ(A) = 0. Thenμ(A) < δ for any δ > 0, and so |ν|(A) <

ε for all ε > 0. Therefore, |ν|(A) = 0, and consequently ν(A) = 0. �

Exercises

1. Let ν  μ. Then ν+  μ and ν−  μ.

2. Denote by Mabs(�,�,μ) the subset of M(�,�) consisting of all charges that
are continuous with respect to the measure μ. Show that Mabs(�,�,μ) is a closed
subset of M(�,�).

3. Endow � with the pseudometric ρ(A, B) = μ(A 
 B). Show that the charge ν

defines a continuous mapping of the pesudometric space (�, ρ) into R if and only
if ν  μ.

4. Let μ be a finite countably-additive measure and ν a finitely-additive measure
on �. Suppose that for every ε > 0 there exists a δ > 0 such that for any A ∈ �, if
μ(A) < δ, then ν(A) < ε. Then the measure ν is also countably additive.

5. Extend the results of the present subsection to the case of a σ -finite measure μ.

7.1.4 The Charge Induced by a Function

Let μ be a fixed measure. Given an arbitrary function f ∈ L1(�,�,μ), we define
the charge μ f by the formula

μ f (A) =
∫

A
f dμ.

Ifμ(A) = 0, then also
∫

A f dμ = 0; therefore,μ f  μ. Below, in Subsection 7.1.6,
we will see that μ f is a typical example of an absolutely continuous charge.

Theorem 1. Let f ∈ L1 (�,�,μ). Then for every ε > 0 there exists a δ > 0 such
that for any A ∈ �, if μ(A) < δ, then

∫

A

| f |dμ < ε.
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Proof. Apply the main theorem of the preceding subsection to the measure
μ| f |. �

Theorem 2. For f, g ∈ L1(�,�,μ) the following conditions are equivalent:

(1) f � g almost everywhere with respect to the measure μ;

(2) μ f � μg.

In particular, f = g almost everywhere with respect to the measure μ if and only
if μ f = μg.

Proof. The implication (1) =⇒ (2) is obvious. Let us prove the converse implica-
tion. Denote by A the set of all t ∈ � for which f (t) > g(t). Then, on the one hand,
f − g > 0 on A, while on the other hand,

∫
A ( f − g)dμ = μ f (A) − μg(A) � 0.

That is, μ(A) = 0. �

Let us mention another simple yet useful corollary of Levi’s theorem.

Theorem 3. Suppose fn ∈ L1(�,�,μ) is an increasing sequence, and μ fn � ν

for all n. Then the sequence ( fn) converges μ-almost everywhere to a function
f ∈ L1(�,�,μ), and μ f � ν.

Exercises

1. Find explicit expressions for (μ f )
+, (μ f )

−, and |μ f |.
2. Verify that the mapping f �→ μ f is a linear isometric embedding of the space
L1(�,�,μ) in M(�,�).

3. Find �+ and �− for the charge μ f .

Recall that in Exercises 7–11 of Subsection 7.1.2 we defined the integral of a
function with respect to a charge.

4. A measurable function g on � is integrable with respect to the charge μ f if and
only if the function g f is integrable with respect to the measure μ. If this is the case,
then

∫
�

g f dμ = ∫
�

g dμ f .

The statement of the last exercise is conventionally written as the equality dμ f =
f dμ, which means that under the integral sign one of these expressions can be
replaced by the other.

5. Verify that Theorems 1 and 2 remain valid for a σ -finite μ.
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7.1.5 Strong Singularity

Let ν1 and ν2 be charges on �. The charge ν1 is said to be strongly singular with
respect to the charge ν2 (notation: ν1 ⊥ ν2) if there exists a decomposition of the set
� as a union of disjoint sets A1, A2 ∈ � such that |ν1|(A2) = |ν2|(A1) = 0. In other
words, the charges ν1 and ν2 are concentrated on two distinct and disjoint sets: ν1 on
A1, and ν2 on A2. As one can see from the definition, the strong singularity relation
is symmetric: (ν1 ⊥ ν2) ⇐⇒ (ν2 ⊥ ν1). For example, ν+ ⊥ ν− for any charge ν. For
a pair of measures μ, ν on �, we introduce the family F(μ, ν) of all nonnegative
μ-integrable measurable functions f for which μ f � ν. Further, we introduce the
quantity

m(μ, ν) = sup

⎧
⎨

⎩

∫

�

f dμ : f ∈ F(μ, ν)

⎫
⎬

⎭
.

We note here one obvious property of the notions just introduced: if 0 � ν1 � ν2,
then F(μ, ν1) ⊂ F(μ, ν2), and hence m(μ, ν1) � m(μ, ν2).

Lemma 1. The following conditions on the pair of measures μ, ν are equivalent:

— μ⊥ ν;

— m(μ, ν) = 0.

Proof. If μ⊥ ν, then there exists a partition � = A1 	 A2 for which μ(A2) =
ν(A1) = 0. Let f ∈ F(μ, ν). Then

∫
A1

f dμ = μ f (A1) � ν(A1) = 0, and hence
∫
�

f dμ = ∫
A1

f dμ + ∫
A2

f dμ = 0. Therefore, m(μ, ν) = 0.

Conversely, suppose that m(μ, ν) = 0. Consider the auxiliary charges μ − nν

and the corresponding Hahn decompositions � = �+
n 	 �−

n . Set A1 = ⋂∞
n=1 �+

n ,
A2 = ⋃∞

n=1 �−
n .We claim that these sets form the sought-for partition� = A1 	 A2,

with μ(A2) = ν(A1) = 0. Indeed, since

∫

A

1

n
1�−

n
dμ = 1

n
μ

(
A ∩ �−

n

)
� ν

(
A ∩ �−

n

)
� ν(A) for all A ∈ �,

we infer that 1
n1�−

n
∈ F(μ, ν). Hence,

∫
�

1
n1�−

n
dμ = 0, i.e., μ(�−

n ) = 0 for all n.
Thus, we have shown that μ(A2) = 0. Further, A1 ⊂ �+

n , that is, (μ − nν)(A1) � 0
for all n. Consequently, ν(A1) = 0, too. �

Exercises

1. If μ⊥ ν and μ̃  μ, then μ̃ ⊥ ν.

2. If μ⊥ ν and ν  μ, then ν = 0.
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3. Let ν1 and ν2 be charges on � and ν1 ⊥ ν2. Then |ν1 + ν2| = |ν1| + |ν2|. Is the
converse statement true?

4. Suppose |ν1 + ν2| = |ν1 − ν2| = |ν1| + |ν2|. Then ν1 ⊥ ν2.

5. Denote by Mss(�,�,μ) the subset of M(�,�) consisting of all charges that are
strongly singular with respect to the measure μ. Show that Mss(�,�,μ) is a closed
subspace of M(�,�).

6. Let ν1 ∈ Mabs(�,�,μ) and ν2 ∈ Mss(�,�,μ). Then‖ν1 + ν2‖ = ‖ν1‖ + ‖ν2‖.
7. Let ν1 be a non-atomic charge and ν2 be a purely atomic charge. Then ν1 ⊥ ν2.

8. Verify that the quantity m(μ, ν) is lower semiadditive in the second variable, i.e.,
m(μ, ν1 + ν2) � m(μ, ν1) + m(μ, ν2).

9. If ν1 � ν2 � 0, then m(μ, ν1 − ν2) � m(μ, ν1) − m(μ, ν2).

7.1.6 The Radon–Nikodým Theorem

In this subsection μ will be a fixed measure on �. We continue to use the notations
F(μ, ν) and m(μ, ν) introduced in the preceding subsection.

Theorem 1. Any charge ν on � admits a unique decomposition ν = η1 + η2 as the
sum of a charge η1 that is absolutely continuous with respect to the measure μ and
a charge η2 ⊥μ. Moreover, the charge η1 has the form μ f with f ∈ L1(�,�,μ).

Proof. We begin with the uniqueness of the representation. Thus, suppose that in
addition to the representation ν = η1 + η2, there exists another similar representation
ν = η̃1 + η̃2. Then η1 − η̃1  μ and η1 − η̃1 = η̃2 − η2 ⊥ μ. That is to say (see
Exercise 2 in Subsection 7.1.5), η1 − η̃1 = 0, and consequently η̃2 − η2 = 0.

To establish the existence of the needed decomposition, it suffices to consider
the case where ν � 0: indeed, the general case can be dealt with by considering
separately the problem on the positivity and negativity sets of the charge ν. The
proof relies on the so-called exhaustion method: the sought-for function f will be
constructed as the sum of a series

∑∞
n=1 fn , each term of which “absorbs” a part of

the quantity m(μ, ν) that was not absorbed by the preceding terms.
So, take for f1 an element of F(μ, ν) such that

∫
�

f1dμ � 1
2m (μ, ν). Since f1 ∈

F(μ, ν), we have ν − μ f1 � 0. Now choose a function f2 ∈ F(μ, ν − μ f1) such that∫
�

f2dμ � 1
2m(μ, ν − μ f1). Since f2 ∈ F(μ, ν − μ f1), we have ν − μ f1+ f2 � 0.

Continuing this process, at the (n + 1)-th stepwe choose a function fn+1 ∈ F(μ, ν −
μ f1+ f2+···+ fn ) such that

∫

�

fn+1dμ � 1

2
m(μ, ν − μ f1+ f2+···+ fn ).
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Proceeding in this way, at each step we have the inequality ν − μ f1+ f2+···+ fn � 0
or, equivalently, μ f1+ f2+···+ fn � ν. Since all the functions fn are non-negative, the
partial sums of the series

∑∞
n=1 fn form an increasing sequence of functions. By the

version of Levi’s theorem given in Theorem 3 of Subsection 7.1.4, the series
∑∞

n=1 fn

converges μ-almost everywhere to a function f ∈ L1(�,�,μ), and μ f � v. By
construction, μ f1+ f2+···+ fn � μ f for all n. Consequently,

m(μ, ν − μ f ) � m(μ, ν − μ f1+ f2+···+ fn ) � 2
∫

�

fn+1dμ → 0 as n → ∞.

That is, m(μ, ν − μ f ) = 0 and, by the lemma in Subsection 7.1.5, ν − μ f ⊥μ. To
complete the proof, it remains to put η1 = μ f and η2 = ν − μ f . �

Let us apply this last theorem to the particular case when ν  μ. In this case,
thanks to the uniqueness of the representation ν = η1 + η2, we have ν = η1 and
η2 = 0.Accordingly, the charge ν itself has the form ν = μ f . Decoding the definition
of the charge μ f , we obtain the following deep result due to Radon and Nikodým.

Theorem 2 (Radon–Nikodým theorem). Suppose the charge ν is absolutely con-
tinuous with respect to the measure μ. Then there exists a function f ∈ L1(�,�,μ)

such that
∫

A f dμ = ν(A) for all A ∈ �. �
One can readily verify (for instance, by referring to Theorem 2 of Subsection

7.1.4) that the function f in the Radon–Nikodým theorem is uniquely determined
by the measure μ and the charge ν up to equality μ-a.e. This function f is called
the Radon–Nikodým derivative of the charge ν with respect to the measure μ and is

denoted by
dν

dμ
.

Exercises

1 Justify the fact that
∫
�

fn+1dμ → 0 as n → ∞ in the proof of Theorem 1.

2 Suppose that ν  μ. Show that a measurable function g on � is integrable with
respect to the charge ν if and only if the function g dν

dμ
is integrable with respect to

the measure μ. In this case,
∫
�

g dν
dμ

dμ = ∫
�

g dν.

7.2 Derivative and Integral on an Interval

In calculus the Newton–Leibniz formula

∫ b

a
f ′(t)dt = f (b) − f (a)
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is usually proved only for continuously differentiable functions. Below we provide
a complete description of all the functions f for which the Newton–Leibniz formula
holds if the integral is understood in the sense of Lebesgue. We will see that such
a description is closely related to the subject discussed above, namely, charges and
the Radon–Nikodým theorem. Throughout this section we will consider real-valued
functions of a real variable and λ will be the Lebesgue measure on the interval
considered or on the real line.

7.2.1 The Integral of a Derivative

Theorem 1. Let f : [a, b] → R be an increasing function. Then f ′ ∈ L1[a, b], and
∫ b

a f ′(t)dt � f (b) − f (a).

Proof. Fix a sequence εn > 0 that converges to zero and consider the divided differ-
ences fn(t) = ( f (t + εn) − f (t))/εn . To ensure that this expression has a meaning
on the whole interval [a, b], we put f (x) = f (b) for x > b. The functions fn are
integrable, and

b∫

a

fn(t)dt = 1

εn

b∫

a

( f (t + εn) − f (t))dt = 1

εn

⎛

⎝

b+εn∫

a+εn

f (t)dt −
b∫

a

f (t)dt

⎞

⎠

= 1

εn

⎛

⎝

b+εn∫

b

f (t)dt −
a+εn∫

a

f (t)dt

⎞

⎠ � f (b) − f (a).

Further, fn
a.e.−→ f ′ on [a, b]. Hence, by Fatou’s lemma, the function f ′ is integrable

on [a, b], and
b∫

a

f ′(t)dt � lim
n→∞

b∫

a

fn(t)dt � f (b) − f (a). �

Exercises

1. Under the assumptions of thepreceding theorem, prove the inequality
∫ b

a f ′(t)dt �
f (b − 0) − f (a + 0).

2. An example of an increasing function for which
∫ b

a f ′(t)dt �= f (b) − f (a) is
given by f = 1[1,2], [a, b] = [0, 2].
3. The Newton–Leibniz formula can fail even for continuous increasing functions
f : an example is provided by the Cantor staircase (Subsection 2.3.6).
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7.2.2 The Derivative of an Integral as a Function
of the Upper Integration Limit

Let f ∈ L1[a, b] and let F be the “primitive function” of f , i.e., F(x) = ∫ x
a f (t)dt .

Theorem 1. For any f ∈ L1[a, b] the function F is continuous on [a, b].
Proof. By Theorem 1 in Subsection 7.1.4, for every ε > 0 there exists a δ > 0 such
that for any set A ∈ �, if μ(A) < δ, then

∫
A | f |dμ < ε. Applying this assertion to

A = [x, x + δ], we obtain the inequality |F(x) − F(x + δ)| < ε, which proves the
claimed continuity. �

Lemma 1. For any f ∈ L1[a, b] the function F is differentiable almost everywhere,
F ′ ∈ L1[a, b], and

∫ b
a |F ′(t)|dt �

∫ b
a | f (t)|dt.

Proof. Write F as the difference F = F1 − F2, where F1(x) = ∫ x
a f +(t)dt and

F2(x) = ∫ x
a f −(t)dt . The functions F1 and F2 are monotone, hence they are dif-

ferentiable almost everywhere, and so is F ; moreover, the derivatives of these three
functions are integrable. Further,

b∫

a

|F ′(t)|dt =
b∫

a

|F ′
1(t) − F ′

2(t)|dt �
b∫

a

F ′
1(t)dt +

b∫

a

F ′
2(t)dt

� F1(b) − F1(a) + F2(b) − F2(a) =
b∫

a

f +(t)dt +
b∫

a

f −(t)dt =
b∫

a

| f (t)|dt .

�

Theorem 2. F ′ a.e.= f for any function f ∈ L1[a, b]. In other words, the derivative
of a Lebesgue integral, regarded as a function of the upper integration limit, is equal
a.e. to the integrand.

Proof. Consider the linear operator T acting from L1[a, b] to L1[a, b] by the rule
T f = F ′ − f . By the preceding lemma,

‖T f ‖ =
b∫

a

|F ′(t) − f (t)|dt � 2

b∫

a

| f (t)|dt = 2‖ f ‖,

i.e., the operator T is continuous. By a known theorem of calculus, if f ∈ C[a, b],
then T f = 0. Since the set C[a, b] of continuous functions is dense in L1[a, b], it
follows that T = 0 on the whole space L1[a, b], as we needed to prove. �
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Exercises

1. Let A be a measurable subset of an interval. Applying the last theorem to the
function f = 1A, solve Exercise 4 of Subsection 2.3.3 on density points of a set.

2. Show that the Cantor staircase cannot serve as the primitive F for an integrable
function f .

7.2.3 Functions of Bounded Variation and the General Form
of a Borel Charge on the Interval

Since the basic properties of functions of bounded variation are usually presented in
calculus courses (as a foundation for the theory of the Stieltjes integral), we recall
here these properties with no proof. Readers who for some reason or another have
not encountered the notions discussed below are advised to treat the material in the
current section as a series of exercises, solving them on their own, or read the detailed
presentation in, say, the textbook of A. Kolmogorov and S. Fomin [24].

Definition 1. The variation of the function f on the interval [a, b] is the quantity

V b
a ( f ) = sup

{
n∑

k=1

| f (bk) − f (ak)|
}

,

where the supremum is taken over all finite disjoint collections of open subintervals
(ak, bk) ⊂ [a, b]. If V b

a ( f ) < ∞, then f is called a function of bounded variation
on [a, b].

By its definition, the variation of a function is a nonnegative quantity.

1. In the definition of the variation V b
a ( f ) it suffices to take the supremum over

the collections of subintervals (ak, bk) ⊂ [a, b] such that a = a1 < b1 = a2 < · · · <

bn = b: in other words, over disjoint collections whose union is the whole interval
[a, b], except for a finite number of points. This is precisely the way in which the
variation is most often defined in the literature.

2. The set of functions of bounded variation on a fixed interval [a, b] constitutes
a linear space, and V b

a is a convex functional on that space.

3. Monotone functions have bounded variation: V b
a ( f ) = | f (b) − f (a)|. Conse-

quently, linear combinations of monotone functions also have bounded variation.

4. V b
a ( f ) = V c

a ( f ) + V b
c ( f ) for any a < c < b.

5. Every function f of bounded variation is representable as the difference of two
increasing functions: f = f1 − f2,where f1(t) = V t

a ( f ) and f2(t) = V t
a ( f ) − f (t).
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Lemma 1. Every right-continuous function f of bounded variation on the interval
[a, b] is representable as the difference of two increasing right-continuous functions.

Proof. First write f in someway as a difference f1 − f2 of two increasing functions.
Now define the sought-for functions g1 and g2 by the respective formulas g1(t) =
limx→t+0 f1(x) and g2(t) = limx→t+0 f2(x) for t ∈ [a, b), and put g1(b) = f1(b)

and g2(b) = f2(b). Then the functions g1 and g2 are right continuous, and f (t) =
limx→t+0 f (x) = limx→t+0 ( f1(x) − f2(x)) = g1(t) − g2(t). �

Definition 2. A Borel charge on the interval [a, b] is a charge given on the family of
all Borel subsets of [a, b]. The distribution function of the Borel charge ν on [a, b]
is the function Fν(t) given by Fν(t) = ν([a, t]).

In Subsection 2.3.5 we proved that by associating to each Borel measure μ on
the interval [a, b] its distribution function Fμ(t) = μ ([a, t]) one establishes a one-
to-one correspondence between the Borel measures on [a, b] and the increasing
right-continuous functions on [a, b]. This fact in conjunction with the preceding
lemma yields the following result.

Theorem 1. The mapping ν �→ Fν establishes a bijective correspondence between
the family of all Borel charges on the segment [a, b] and the set of all right-continuous
functions of bounded variation on [a, b].
Proof. The linearity relations Fν1+ν2 = Fν1 + Fν2 and Fcν = cFν follow directly
from the definition of the distribution function of a Borel charge. Further, Fν =
Fν+ − Fν− , i.e., the function Fν is representable as the difference of two distribu-
tion functions of measures — increasing right-continuous functions. Hence, Fν is
a right-continuous function of bounded variation. Conversely, any right-continuous
function f of bounded variation can be written as the difference f = f1 − f2 of two
increasing right-continuous functions, each of which, in its turn, can be regarded as
the distribution function of a corresponding Borel measure: f1 = Fμ1 and f2 = Fμ2 .
Consequently, f = Fμ1−μ2 , which proves the surjectivity of the map under consider-
ation. Finally, let us establish its injectivity. Suppose that Fν = 0. Then Fν+ = Fν− .
By Theorem 2 of Subsection 2.3.5, if the distribution functions of two Borel mea-
sures on an interval coincide, then so do the measures themselves. Hence, ν+ = ν−,
and so ν = ν+ − ν− = 0. �

Exercises

1. Adding a constant to a function does not modify its variation.

2. The notions of variation of a charge (Definition 1 in Subsection 7.1.1) and varia-
tion of a function are compatible: if ν is a Borel charge on [a, b] and the point a is
not an atom of ν, then V b

a (Fν) = |ν|([a, b]).
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3. In the general case, V t
a (Fν) = F|ν|(t) − |ν| ({a}).

4. Suppose the function f of bounded variation is continuous on [a, b]. Then the
function f1(t) = V t

a ( f ) is also continuous [a, b].

7.2.4 Absolutely Continuous Functions

Afunction f on the interval [a, b] is said to beabsolutely continuous if for every ε > 0
there exists a δ = δ(ε) > 0 such that for any choice of disjoint open subintervals
(ak, bk) ⊂ [a, b], k = 1, . . . , n, satisfying

∑n
k=1 |bk − ak | � δ (i.e., the total length

of which does not exceed δ), the total oscillation of the function does not exceed ε:∑n
k=1 | f (bk) − f (ak)| � ε.

Note that every absolutely continuous function is continuous (just apply the defi-
nition, taking a single interval of length smaller than δ), and any linear combination
of absolutely continuous functions is absolutely continuous.

Theorem 1. Let f be an absolutely continuous continuous function on [a, b]. Then
f is a function of bounded variation. Moreover, the functions f1(t) = V t

a ( f ) and
f2(t) = V t

a ( f ) − f (t) are also absolutely continuous, i.e., f is representable as the
difference f1 − f2 of two increasing absolutely continuous functions.

Proof. Take δ = δ(ε) > 0 from the definition of absolute continuity. Fix a collec-
tion of pairwise disjoint subintervals (cn, dn) ⊂ [a, b], n = 1, 2, . . . , N , such that∑N

n=1 |dn − cn| � δ. In each of the intervals (cn, dn) pick a finite collection of dis-
joint subintervals (ak,n, bk,n) ⊂ (cn, dn), k = 1, 2, . . . , mn . Then

∑N
n=1

∑mn
k=1 |bk,n −

ak,n| � δ, and so
∑N

n=1

∑mn
k=1

∣
∣ f (bk,n) − f (ak,n)

∣
∣ � ε. Taking the supremum over

all collections (ak,n, bk,n), we obtain the estimate

N∑

n=1

V dn
cn

( f ) � ε (∗)

for any collection of disjoint subintervals (cn, dn) ⊂ [a, b]with∑N
n=1 |dn − cn| � δ.

All the assertions of the theorem follow from this estimate. Indeed, divide [a, b)

into a finite number of disjoint subintervals [ck, dk) ⊂ [a, b], k = 1, 2, . . . , m with
|dk − ck | < δ. Then V b

a ( f ) = ∑m
k=1 V dk

ck
( f ) � mε < ∞, i.e., f is a function of

bounded variation. Further, condition (∗) says that the function f1 is absolutely
continuous, and together with it so is the function f2 = f1 − f . �

Exercises

1. Suppose the sequence fn of functions on [a, b] converges pointwise to the function
f . Then V b

a ( f ) � supn∈N V b
a ( fn).
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2. Denote by bv[a, b] the linear space of functions of bounded variation on the
interval [a, b]. Verify that V b

a is a seminorm on bv[a, b] (the notion of seminorm is
defined just before Exercise 10 of Subsection 6.1.3).

3. Show that the kernel of the seminorm V b
a consists of constants.

4. Consider the quotient space of bv[a, b] by the subspace X of constants. Define the
norm of an equivalence class [ f ] ∈ bv[a, b]/X by ‖[ f ]‖ = V b

a ( f ). Verify that this
definition is correct. We denote the resulting normed space bv[a, b]/X by V [a, b].
5. Define the operator T : V [a, b] → L1[a, b] by the rule T f = f ′ (differentiation,
or derivative operator). Verify that T is a continuous linear operator.

6. Based on the preceding exercise, prove Fubini’s theorem on the differentiation of
series (Exercise 3 in Subsection 2.3.3).

7. Show that V [a, b] is a Banach space.

We let AC[a, b] denote the subset of the space V [a, b] consisting of the equiva-
lence classes of absolutely continuous functions.

8. Show that AC[a, b] is a closed subspace of V [a, b].

7.2.5 Absolutely Continuous Functions and Absolutely
Continuous Borel Charges

Theorem 1. For the distribution function F of a Borel measure μ on the interval
[a, b] the following conditions are equivalent:

A. F is absolutely continuous and F(a) = 0;

B. The measure μ is absolutely continuous with respect to the Lebesgue measure
λ.

Proof. B=⇒A. First, recall that the measure of a semi-open subinterval can be
calculated by the formula μ((t1, t2]) = F(t2) − F(t1). If μ  λ, then by the the-
orem in Subsection 7.1.3, for any ε > 0 there exists a δ > 0 such that for any
Borel set A ⊂ [a, b] satisfying λ(A) < δ we have μ(A) < ε. Consider a col-
lection of disjoint open subintervals (ak, bk) ⊂ [a, b], k = 1, 2, . . . , n, such that∑n

k=1 |bk − ak | � δ, and put A = ⋃n
k=1 (ak, bk]. Then λ(A) < δ, and henceμ(A) =∑n

k=1 (F(bk) − F(ak)) < ε. This establishes the absolute continuity of the function
F . The equality F(a) = 0 follows from the fact that the singleton {a} has Lebesgue
measure zero, and so μ ({a}) = 0.

A=⇒B. Let F be absolutely continuous, ε > 0 be an arbitrary number, and take
δ = δ(ε) > 0 as in the definition of an absolutely continuous function. First, let us
show that μ(A) � ε for any open subset A ⊂ [a, b] satisfying λ(A) < δ. Indeed,
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such an open set can be written as A = ⊔∞
k=1 (ak, bk) with

∑∞
k=1 |bk − ak | � δ. (To

be completely rigorous, two of these intervals, the ones lying at the beginning and the
end of the interval [a, b], can be semi-open.) Then

∑n
k=1 (F(bk) − F(ak)) < ε for

all n ∈ N. Correspondingly, μ(A) �
∑∞

k=1(F(bk) − F(ak)) � ε. Now let us prove
the requisite absolute continuity of the measure μ with respect to the Lebesgue
measure. Let D ⊂ [a, b] be a set of Lebesgue measure zero. Then for any ε > 0
there exists an open set A ⊂ [a, b] such that A ⊃ D and λ(A) < δ(ε). Therefore,
μ(D) � μ(A) � ε. Since ε is arbitrary, μ(D) = 0. �

Corollary 1. Let f be an absolutely continuous function on [a, b] with f (a) = 0.
Then there exists a Borel charge ν, absolutely continuous with respect to the Lebesgue
measure and connected on [a, b] with f by the equality f (t) = ν ([a, t]).
Proof. Write f as the difference f1 − f2 of two increasing absolutely continuous
functions (according to the main theorem of the preceding subsection) that vanish at
the point a. For each of these functions f j , construct a Borel measure μ j that has f j

as distribution function. Now define the sought-for charge as ν = μ1 − μ2. �

Exercises

1. Why in the last proof above can the functions f1 and f2 be chosen so that they
vanish at the point a?

2. The Cantor staircase (see Subsection 2.3.6) is an example of a continuous, but
not absolutely continuous function.

7.2.6 Recovering a Function From its Derivative

Having done much preparatory work, we are now finally ready to deal with the
Newton–Leibniz formula for the Lebesgue integral. We call the reader’s attention to
the fact that the proof, at the surface simple and short, makes essential use of deep
results revolving around the Radon–Nikodým theorem.

Theorem 1. For a function F on the interval [a, b] the following conditions are
equivalent:

(1) F is absolutely continuous;

(2) F is representable as F(x) = F(a) + ∫ x
a f (t)dt for some f ∈ L1[a, b] (that is,

in the terminology of Subsection 7.2.2, F(x) − F(a) is the “primitive” of some
function from L1[a, b]);
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(3) F is differentiable almost everywhere on [a, b], F ′ ∈ L1[a, b], and for any x ∈
[a, b] there holds the Newton–Leibniz formula F(x) − F(a) = ∫ x

a F ′(t)dt.

Proof. (1)=⇒ (2). By the corollary in the preceding subsection, there exists a Borel
charge μ on [a, b] which has F(x) − F(a) as its distribution function. Since μ is
absolutely continuous with respect to the Lebesgue measure λ (by a theorem in
the preceding subsection), we can use the Radon–Nikodým theorem (Theorem 2 in
Subsection 7.1.6). By this theorem, there exists a function f ∈ L1[a, b] such that∫

A f dλ = μ(A) for all Borel subsets of the interval [a, b]. Taking for A subintervals
[a, x], we conclude that F(x) − F(a) = μ([a, x]) = ∫ x

a f (t)dt .

(2)=⇒ (1). The condition F(x) − F(a) = ∫ x
a f (t)dt means that F(x) − F(a)

is the distribution function of the charge λ f (see Subsection 7.1.4), given by the
formula λ f (A) = ∫

A f dλ. Such a charge is absolutely continuous with respect to
the Lebesgue measure, hence its distribution function is also absolutely continuous.

(2)=⇒ (3). It suffices to use Theorem 2 of Subsection 7.2.2 on the derivative of
an integral as function of the upper integration limit.

(3)=⇒ (2). For f one needs to take F ′. �

7.2.7 Exercises: Change of Variables in the Lebesgue
Integral

Let� and�1 be sets,� a σ -algebra on�, and F : � → �1 an arbitrarymapping.We
introduce a family�1 of subsets of�1 by the rule: A ∈ �1 if and only if F−1(A) ∈ �.

1. The family �1 is a σ -algebra on �1.

Further, let μ be a charge on �. The image of the charge μ under the mapping F
is the set function F(μ) : �1 → R defined by the rule (F(μ)) (A) = μ(F−1(A)).

2. F(μ) is a countably-additive charge; moreover, ifμ is a measure, then so is F(μ).

3. For fixed F , the mapping μ �→ F(μ) is linear.

4. Give an example where F(μ) is a measure, but the charge μ is not.

5. If (�,�,μ) is a complete measure space, the measure space (�1, �1, F(μ)) is
also complete.

6. Can the measure space (�1, �1, F(μ)) be complete when the measure space
(�,�,μ) is not?

7. Suppose the mapping F is injective and the measure space (�1, �1, F(μ) is
complete. Then the measure space (�,�,μ) is also complete.

8. Let μ be a measure for which F(μ) is non-atomic. Then μ is also non-atomic.
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9. Let μ be a measure. The function f : �1 → R is integrable with respect to the
measure F(μ) if and only if the composition f ◦ F is integrable with respect to the
measure μ. Moreover, in this case,

∫
�

f ◦ F dμ = ∫
F(�)

f d F(μ).

Let us consider now a concrete case of the construction described above, taking
functions of a real variable and the Lebesgue measure λ.

Let F be an increasing continuous function on the interval [a, b]. With no loss
of generality, we can assume that F is the distribution function of some non-atomic
Borel measure μ on the interval [a, b].
10. For any interval [c, d] ⊂ [F(a), F(b)] it holds that (F(μ))([c, d]) = d − c. In
other words, the restriction of the measure F(μ) to the σ -algebra of Borel subsets of
the interval [F(a), F(b)] coincides with the Lebesgue measure λ on [F(a), F(b)].
11. Under the conditions of the preceding exercise,

∫ b
a f ◦ F dμ = ∫ F(b)

F(a)
f dλ for

all f ∈ L1[F(a), F(b)].

Recall that a monotone function F on an interval is absolutely continuous if
and only if the measure μ it generates is absolutely continuous with respect to
the Lebesgue measure and the Radon–Nikodým derivative dμ

dλ
coincides with F ′.

Therefore,when the function F is absolutely continuous, the formula of the preceding
exercise takes on the well-known form:

12.
∫ b

a f (F(x))F ′(x) dx = ∫ F(b)

F(a)
f (t) dt , where the integrals on both sides of this

equality are understood in the sense of Lebesgue.

13. Let us make the convention that, as in the case of the Riemann integral, for the
Lebesgue integral it holds that

∫ d
c g(x)dx = − ∫ c

d g(x)dx . Show that the formula

b∫

a

f (F(x))F ′(x) dx =
F(b)∫

F(a)

f (t) dt

remains valid for any, not necessarily monotone, absolutely continuous function F
on the interval [a, b] and any function f ∈ L1[F([a, b])].

Comments on the Exercises

Subsection 7.1.1

Exercise 5. LetΔ1,Δ2, . . . be a sequence of pairwise disjoint measurable sets, and
Δ = ⋃∞

k=1 Δk . Then the sets An = ⋃∞
k=n+1 Δk form a decreasing chain with empty

intersection. Consequently, limn→∞
(
ν(Δ) − ∑n

k=1 ν(Δk)
) = limn→∞ ν(An) = 0.
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Subsection 7.1.2

Exercises 7–11. See Subsection 8.4.2.

Subsection 7.1.4

Exercise 4. It suffices to prove the assertion for positive functions f : the general
case is then deduced by considering separately the sets �+ = {t : f (t) > 0} and
�− = {t : f (t) < 0}. For the same reason, we can assume that g � 0, too. By the
definition of μ f , for g = 1A with A ∈ �, the two integrals exist and coincide; by
Levi’s theorem on series, the assertion holds for countably-valued functions g � 0.
Now let g be an arbitrary non-negative measurable function. By the corollary to The-
orem 3 in Subsection 3.1.4, there exists an increasing sequence of countably-valued
functions gn � 0 such that gn − g � 1/n. Suppose that the integral

∫
�

g f dμ exists.
Then, since the functions gn + 1/n admit the μ-integrable majorants g + 1/n, the
integrals

∫
�

gn f dμ exist. For countably-valued functions the theorem is already
proved, so the integrals

∫
�

gndμ f exist; moreover,
∫
�

gn f dμ = ∫
�

gndμ f . Passing
to the limit by applying the Levi theorem for sequences, we conclude that the integral∫
�

g dμ f exists and
∫
�

g f dμ = ∫
�

g dμ f . The converse implication: (if
∫
�

g dμ f

exists, then so does
∫
�

g f dμ) is established in the same way.

Subsection 7.1.6

Exercise 1. The inequality μ f1+ f2+···+ fn � ν implies that
∑∞

n=1

∫
�

fndμ � ν(�).
Hence, the general term of the series converges to zero.

Exercise 2. See Subsection 7.1.4, Exercise 4, and the comment to it.

Subsection 7.2.3

Exercise 4. Let ν be a Borel charge with the property that f − f (a) = Fν . The
charge ν has no atoms (if the point t0 was an atom, then f would have a discontinuity
at t0), hence themeasure |ν| also has no atoms aswell (Exercise 3 in Subsection 7.1.2).
It follows that the function f1 = F|ν| we are interested in is continuous.

However, here a straightforward argument yields more: if f is right-continuous in
some point t0 ∈ [a, b), then f1(t) = V t

a ( f ) is also right-continuous at t0. By symme-
try (replacing the f (x) by f (−x)), a similar assertion holds true for left-continuous
functions.

Indeed, fix an ε > 0 and pick a finite collection of open subintervals (ak, bk),
t0 = a1 < b1 = a2 < · · · < bn = b, of the interval [t0, b], such that V b

t0 ( f ) �∑n
k=1 | f (bk) − f (ak)| + ε.Now take δ ∈ (t0, b1] such that | f (δ) − f (t0)| < ε. Then
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V b
δ ( f ) � | f (b1) − f (δ)| +

n∑

k=2

| f (bk) − f (ak)|

�
n∑

k=1

| f (bk) − f (ak)| − ε � V b
t0 ( f ) − 2ε.

Consequently,

| f1(t0) − f1(δ)| = V δ
t0 ( f ) = V b

t0 ( f ) − V b
δ ( f ) � 2ε.



Chapter 8
The Integral on C(K )

In the first three sections of this chapter we treat in detail the integration theory for
functions on a compact topological space K . In the last section the results obtained
will be applied to the proof of the Riesz–Markov–Kakutani theorem on the general
form of linear functionals on the space C(K ). In the last two subsections of this
chapter we consider the integration of complex-valued functions with respect to
complex charges and also functionals on the complex spaceC(K ). Up to thatmoment
all the functions, charges and functionals will be assumed to be real-valued.

8.1 Regular Borel Measures on a Compact Space

8.1.1 Inner Measure and Regularity

Recall that, by definition, a Borel measure on a topological space X is a finite
countably-additive measure given on the family of all Borel subsets of X .

Definition 1. Let μ be a Borel measure on the topological space X . For any subset
A ⊂ X , we define the inner measure μ∗(A) as the supremum of the measures of all
closed sets contained in A. The measure μ is called regular if μ∗(A) = μ(A) for all
open subsets A ⊂ X . In other words, the measureμ is regular if for any open A ⊂ X
and any ε > 0 there exists a closed subset B ⊂ A such that μ(B) � μ(A) − ε.

Lemma 1. Let X be a metric space. Then every open subset A ⊂ X can be repre-
sented as the union of an increasing sequence of closed sets.

Proof. Consider on X the function f (x) = ρ(x, X \ A). This function is continuous
(Subsection1.3.2), and consequently the sets An = f −1([1/n,+∞)) are closed. The
sets An form an increasing sequence, and

⋃∞
n=1 An = f −1((0,+∞)) = A. �
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Theorem 1. On a metric space every Borel measure is regular.

Proof. Let μ be a Borel measure on the metric space X , and A ⊂ X an open subset.
By the preceding lemma, there exists an increasing sequence of closed sets An , the
union of which is the whole set A. By the countable additivity, limk→∞ μ(Ak) =
μ(A), i.e., the measure of A can be arbitrarily well approximated by measures of its
closed subsets. �

On general topological spaces one also encounters non-regular Borel measures.
As an example, consider the interval [0, 1] equipped with the following topology τ : a
set is τ -open if its complement is finite or countable. In this special topology the open
and closed sets together already form a σ -algebra. Accordingly, the only τ -Borel sets
are the τ -open and τ -closed sets. Define the measure μ by the rule μ(A) = 0 if A
is τ -closed (i.e., if A is finite or countable), and μ(A) = 1 if A is τ -open. Then
μ([0, 1]) = 1, and μ∗([0, 1]) = 0.1

In Sect. 8.3 we will prove, as a corollary of general results, that for a regular Borel
measure on a compact space the equality μ∗(A) = μ(A) holds not only for open,
but also for arbitrary Borel sets (see Exercise1 in Subsection8.3.2).

Exercises

1. If the set A ⊂ K is closed, then μ∗(A) = μ(A).

2. μ∗(A) � μ(A) for any Borel subset A ⊂ K .

3. If A ⊂ B ⊂ K , then μ∗(A) � μ∗(B).

4. Let A1 ⊂ A2 ⊂ · · · be an increasing chain of subsets of the compact space K ,
and A = ⋃∞

k=1 Ak . Then μ∗(A) � limn→∞ μ∗(Ak).

The Baire σ -algebra on the topological space K is defined to be the smallest
σ -algebra �0 with respect to which all continuous functions on K are measurable.
Show that

5. If K is compact, then the σ -algebra �0 is generated by the family of all open
Fσ -sets.

6. If K is ametric compact space, then theσ -algebra�0 coincideswith theσ -algebra
of Borel sets.

1For the readers familiar with the theory of ordinal numbers (ordinals): Denote by ω1 the first
uncountable ordinal. Consider the set X of all ordinals that are not larger than ω1. We call a
neighborhood of the ordinal α any subset U ⊂ X that contains an interval of the form (β, α]
with β < α. With the topology thus defined, the space X will be compact. Further, define a Borel
measure μ on X as follows: if the Borel set A contains a subset of the form B \ {ω1}, where B
is a closed set that has ω1 as a limit point, then put μ(A) = 1; otherwise, put μ(A) = 0. Then
we have μ((1, ω1)) = 1, while at the same time the measure of any closed subset of the interval
(1, ω1) is equal to zero. Hence,μ provides an example of a non-regular Borel measure on a compact
topological space.
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8.1.2 The Support of a Measure

Let μ be a regular Borel measure on the compact space K . A point x ∈ K is called
an essential point of the measure μ if any neighborhood of x has nonzero measure.
The support of the measureμ is the set suppμ of all essential points of this measure.

Theorem 1. In the above notation, suppμ is a closed set, μ(K \ suppμ) = 0, and
no open set of measure zero intersects suppμ.

Proof. We need to show that the set V = K \ suppμ for all inessential points of the
measureμ is open, hasmeasure zero, and every open set of measure zero is contained
in V .

First note that ifU is an open subset of the compact space K and μ(U ) = 0, then
U ⊂ V . Indeed, every point of U has a neighborhood of measure zero (namely, U
itself), and so no point of U is essential.

Now let x ∈ V . This means that there exists an open neighborhoodU of the point
x for which μ(U ) = 0, and hence U ⊂ V . Thus, we have shown that together with
any of its points, V contains a neighborhood of that point, i.e., V is open.

In view of the regularity of the measure μ, to prove that μ(V ) = 0 it suffices
to verify that all closed subsets of the set V have measure zero. So, let W ⊂ V be
closed. For each point x ∈ W pick an open neighborhood Ux such that μ(Ux ) = 0.
The neighborhoods Ux constitute an open cover of the compact set W . Extract a
finite subcover Ux1 ,Ux2 , . . . ,Uxn . We have μ(W ) �

∑n
k=1 μ(Uxk ) = 0. �

Theorem 2. Let μ be a regular Borel measure on the compact space K . Suppose
that two continuous functions, f1 and f2, coincide μ-almost everywhere on K . Then
f1 and f2 coincide at all points of suppμ.

Proof. The set U of all points x at which f1(x) �= f2(x) is an open set of measure
zero. Hence, U ∩ suppμ = ∅. �

8.2 Extension of Elementary Integrals

8.2.1 Elementary Integrals

Definition 1. An elementary integral on the compact space K is a linear functional
I on C(K ) which satisfies the following positivity condition: if the function f is
non-negative, then I( f ) � 0.

Properties of elementary integrals

(1) For any f, g ∈ C(K ), if f � g, then I( f ) � I(g).
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(2) If | f | � g, then |I( f )| � I(g).

(3) I is a continuous functional on C(K ) and ‖I‖ = I(1).2

Proof. (1) f � g =⇒ f − g � 0 =⇒ I( f − g) � 0 =⇒ I( f ) � I(g).

(2) | f | � g =⇒ −g � f � g =⇒ −I(g) � I( f ) � I(g) =⇒ |I( f )| � I(g).

(3) Let f be an arbitrary function belonging to the unit sphere of the space C(K ).
Then | f | � 1 everywhere, and, by property (2), |I( f )| � I(1). �

Since the continuous functions on K are Borel measurable and bounded, they are
integrable with respect to any Borel measure on K . Accordingly, as an example of an
elementary integral one can take the integral with respect to an arbitrary fixed Borel
measure on K .

Definition 2. The elementary integral generated by the Borel measure μ on the
compact space K is the linear functional Fμ on C(K ) given by the formula Fμ( f ) =∫
K f dν.

We will show below that apart from the functionals of the form Fμ there are
no other elementary integrals. Moreover, we will prove that for any functional I
there exists a regular Borel measure μ which generates this functional. The idea
underlying the construction of such a measure μ is simple: one needs to put μ(A) =
I(1A). However, the implementation of this idea runs into an essential obstacle:
the functional I is defined only for continuous functions, whereas the characteristic
functions of sets are, as a rule, discontinuous. For this reason our immediate aim is
to extend the functional I to a sufficiently wide class of functions that includes, at
least, the characteristic functions of all Borel sets. This will be carried out in the next
three subsections.

8.2.2 The Upper Integral of Lower Semi-continuous
Functions

Recall that the symbols �∞(K ) and LSC(K ) denote the classes of all bounded,
respectively all lower semi-continuous functions on K (for the definition and prop-
erties of lower semi-continuous functions refer to Subsection1.2.4). For functions
g ∈ LSC(K ) ∩ �∞(K ), i.e., lower semi-continuous bounded functions on K , we
introduce the quantity

I∗(g) = sup{I(h) : h ∈ C(K ) and h < g}.

Theorem 1. The quantity I∗ has the following properties:

(1) if g ∈ C(K ), then I∗(g) = I(g);

2The symbol 1 stands for the function identically equal to 1.
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(2) if g1, g2 ∈ LSC(K ) ∩ �∞(K ) and g1 � g2, then I∗(g1) � I∗(g2);
(3) I∗(λg) = λI∗(g) for positive scalars λ;

(4) I∗(g1 + g2) = I∗(g1) + I∗(g2) for all g1, g2 ∈ LSC(K ) ∩ �∞(K ).

Proof. The first three properties are obvious. Let us prove the fourth one. Fix ε > 0
and choose functions h1, h2 ∈ C(K ), h1 < g1, h2 < g2, forwhichI(h1) � I∗(g1) −
ε and I(h2) � I∗(g2) − ε. Then we have

I∗(g1 + g2) � I(h1 + h2) � I∗(g1) + I∗(g2) − 2ε.

Since ε is arbitrary, the inequality I∗(g1 + g2) � I∗(g1) + I∗(g2) is established.
To prove the opposite inequality, pick a function h ∈ C(K ) such that h < g1 + g2

and I(h) � I∗(g1 + g2) − ε. By Theorem3 in Subsection1.2.4, applied to the func-
tions g1, g2, for any point x ∈ K there exists functions h1,x , h2,x ∈ C(K ) such that
h1,x < g1, h2,x < g2 at all points of the compact space K , and h1,x (x) + h2,x (x) >

h(x). In view of the continuity of all functions figuring in the last inequality,
for every point x ∈ K there exists an open neighborhood Ux such that, as above,
h1,x (t) + h2,x (t) > h(t) for all t ∈ Ux . The neighborhoodsUx , x ∈ K , form a cover
of the compact space K ; hence, one can extract a finite subcover Ux1 ,Ux2 , . . . ,Uxn .
Set h1 = maxk∈{1,2,...,n} h1,x , h2 = maxk∈{1,2,...,n} h2,x . These continuous functions
obey the inequalities h1 < g1 and h2 < g2, and by construction h1 + h2 > h already
at all points. Consequently,

I∗(g1 + g2) � I(h) + ε � I(h1) + I(h2) + ε � I∗(g1) + I∗(g2) + ε.

It remains to let ε → 0. �

Remark 1. The quantity I∗ cannot be referred to as a linear functional, since its
domain of definition is not a linear space. Lower semi-continuity is preserved under
addition and multiplication by positive scalars, but can be lost under multiplication
by negative scalars or under subtraction. However, if h ∈ C(K ), then also −h ∈
C(K ) ⊂ LSC(K ) ∩ �∞(K ). Then for any g ∈ LSC(K ) ∩ �∞(K ) the difference
g − h lies in the domain of definition of I∗, so by the previous theorem I∗(g − h) +
I∗(h) = I∗(g), and consequently I∗(g − h) = I∗(g) − I∗(h).

Theorem 2. Let (gn), with gn ∈ LSC(K ) ∩ �∞(K ), be an increasing and uniformly
bounded sequence of functions that converges pointwise to some function g. Then
g ∈ LSC(K ) ∩ �∞(K ) and I∗(g) = limn→∞ I∗(gn).

Proof. The function g is bounded by the same constant as all the functions gn , so
g ∈ �∞(K ). Further, g(x) = sup{gn(x) : n ∈ N}. By Theorem1 item (4) of Subsec-
tion1.2.4, g ∈ LSC(K ). That is, g ∈ LSC(K ) ∩ �∞(K ).

The numbers I∗(gn) form a non-decreasing sequence and are bounded from
above by the number I∗(g). Consequently, limn→∞ I∗(gn) exists and is not larger
than I∗(g). To establish the opposite inequality is suffices to derive the estimate
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limn→∞ I∗(gn) � I(h) for all continuous functions h that are smaller than g. For
fixed h, let An = {t ∈ K : gn(t) > h(t)}. The sets An are open, form an increas-
ing chain, and together cover the entire compact space K . Hence, there exists an
index n = n0 for which An0 = K . This means that gn0(t) > h(t) everywhere on K .
Therefore, limn→∞ I∗(gn) � I∗(gn0) � I(h). �

8.2.3 The Upper Integral on �∞(K )

The upper integral of a function f ∈ �∞(K ) is defined as

I( f ) = inf{I∗(g) : g ∈ LSC(K ) ∩ �∞(K ), and g � f }.

Theorem 1. The quantity I has the following properties:

(1) if f ∈ LSC(K ) ∩ �∞(K ), then I( f ) = I∗( f ); 3

(2) if f1, f2 ∈ �∞(K ) and f1 � f2, then I( f1) � I( f2);

(3) I(λ f ) = λI( f ) for all positive scalars λ;

(4) I( f1 + f2) � I( f1) + I( f2) for all f1, f2 ∈ �∞(K ).

Proof. As in Theorem1 of the preceding subsection, only property (4) needs to be
verified. Fix ε > 0 and pick functions g1, g2 ∈ LSC(K ) ∩ �∞(K ), gi � fi , such
that I∗(gi ) � I( fi ) + ε, i = 1, 2. We have I( f1 + f2) � I∗(g1 + g2) � I( f1) +
I( f2) + 2ε. It remains to let ε → 0. �
Remark 1. The last theorem says, in particular, that I is a convex functional on
�∞(K ); moreover, on C(K ) this functional majorizes our elementary integral I. It
follows that in order to provide the desired extension of the elementary integral and
construct the Borel measure that generates this integral one can resort to the Hahn–
Banach theorem. Such an aproach is perfectly feasible, but we will take a different
path, whichwill lead to an explicit construction of the extension. This will complicate
slightly the very definition of the sought-for measure, but simplify the proof of its
countable additivity and regularity.

Theorem 2. Let f, fn ∈ �∞(K ), fn � 0, f �
∑∞

n=1 fn at all points.Then I( f ) �
∑∞

n=1 I( fn).

Proof. Denote sup{ f (x) : x ∈ K }bya. Fix ε > 0, and for eachn ∈ Npick a function
gn ∈ LSC(K ) ∩ �∞(K ) such that gn � fn and I∗(gn) � I( fn) + ε/2n . Consider

the auxiliary functions sn(x) = min
{
a,

∑n
j=1 g j (x)

}
. Since gn � 0, the sequence

(sn) is increasing. Further, s1 � sn � a, i.e., the sequence (sn) is uniformly bounded.
Denote the pointwise limit of the sequence (sn) by s. By Theorem2 of the preceding
subsection, s ∈ LSC(K ) ∩ �∞(K ) and I∗(s) = limn→∞ I∗(sn). We have

3This property justifies using the term “upper integral” also for the quantity I∗.
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s(x) = lim
n→∞ sn(x) = min

{

a,

∞∑

j=1

g j (x)

}

� min

{

a,

∞∑

j=1

f j (x)

}

� min {a, f (x)} = f (x),

whence

I( f ) � I∗(s) = lim
n→∞ I∗(sn) � lim

n→∞ I∗
⎛

⎝
n∑

j=1

g j (x)

⎞

⎠

=
∞∑

j=1

I∗(g j ) �
∞∑

j=1

I( f j ) + ε.

Since ε is arbitrary, the theorem is proved. �

8.2.4 The Space L(K,I)

Let us equip �∞(K ) with the seminorm p( f ) = I(| f |). Then equipped with the
pseudometric ρ( f1, f2) = I(| f1 − f2|) generated by this norm, �∞(K ) is a pseu-
dometric space. We let L(K , I) denote the closure in �∞(K ), with respect to this
pseudometric, of the set C(K ) of all continuous functions.

Theorem 1. L(K , I) is a closed linear subspace in (�∞(K ), p), and LSC(K ) ∩
�∞(K ) ⊂ L(K , I).

Proof. Since C(K ) is a linear subspace, so is its closure. We only need to prove
the inclusion LSC(K ) ∩ �∞(K ) ⊂ L(K , I). Let f ∈ LSC(K ) ∩ �∞(K ). By the
definition of the functional I∗, for every n there is a continuous function fn < f
such that I∗( f − fn) = I∗( f ) − I( fn) < 1/n. But then

ρ( f, fn) = I (| f − fn|) = I∗( f − fn) → 0 as n → ∞,

i.e., we succeeded in representing the function f as the limit of a sequence of con-
tinuous functions. �

Theorem 2. L(K , I) enjoys the following properties:

(1) if f ∈ L(K , I), then | f | ∈ L(K , I);

(2) if f ∈ L(K , I), then f + ∈ L(K , I) and f − ∈ L(K , I);

(3) if f, g ∈ L(K , I), then max{ f, g} ∈ L(K , I) and min{ f, g} ∈ L(K , I).
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Proof. (1) Let fn ∈ C(K ) be such that I(| f − fn|) → 0 as n → ∞. Then | fn| ∈
C(K ) and

ρ(| f |, | fn|) = I(| f | − | fn|) � I(| f − fn|) → 0 as n → ∞,

i.e., the function | f | is the limit of the sequence | fn| ∈ C(K ), and consequently
| f | ∈ L(K , I).

(2) follows from the already established item (1) and the formulas f + = f +| f |
2 ,

f − = (− f )+.

(3) follows from (2) and the formulas max{ f, g} = f + (g − f )+, min{ f, g} =
−max{− f,−g}. �

The next theorem shows that the elementary integral I extends to a linear func-
tional on L(K , I), and that as this extension one can take the upper integral.

Theorem 3. On L(K , I) the upper integral I is a p-continuous linear functional.

Proof. For any f, g ∈ L(K , I) one has that I( f ) � I(| f − g|) + I(g) and I(g) �
I(| f − g|) + I( f ) (property (4) in Theorem1 of Subsection8.2.3). Consequently,

|I( f ) − I(g)| � I(| f − g|) = ρ( f, g),

i.e., I is continuous (it satisfies the Lipschitz condition). Linearity follows from the
continuity and the fact that on C(K ) (that is, on a dense subset) I coincides with the
linear functional I, and so on the subspace C(K ) the upper integral itself is linear.
Indeed, let f, g ∈ L(K , I), a, b be scalars, and ( fn) and (gn) be sequences of contin-
uous functions which in the pseudometric ρ tend to f and g, respectively. Then

I(a f + bg) = lim
n→∞ I(a fn + bgn) = lim

n→∞ I(a fn + bgn)

= a lim
n→∞ I( fn) + b lim

n→∞ I(gn) = a I( f ) + b I(g). �

The next result is an analogue of Levi’s theorem on series for the upper integral
on L(K , I).

Theorem 4. Let fn ∈ L(K , I), f ∈ �∞(K ), fn � 0, and suppose the series
∑∞

n=1 fn
converges to f at all points. Then f ∈ L(K , I) and I( f ) = ∑∞

n=1 I( fn).

Proof. First let us show that f ∈ L(K , I). Let a = sup{ f (x): x ∈ K }. Fix ε > 0 and
approximate each of the functions fn by a continuous function gn to within ε/2n:
I (| fn − gn|) � ε/2n . Replacing, if necessary, gn by g+

n , one can assume that all the
functions gn are non-negative. Now put s(x) = min{a,

∑∞
j=1 g j (x)}. The function

s is lower semi-continuous and bounded, so by Theorem2, s ∈ L(K , I). Further,
|s − f | �

∑∞
n=1 | fn − gn|atallpoints, andbyTheorem1of theprecedingsubsection,

I(|s − f |) �
∞∑

n=1

I(| fn − gn|) � ε.
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Thus, the function f can be arbitrarily well approximated in the pseudometric ρ by
elements of the space L(K , I), which in view of the fact that L(K , I) is closed in
�∞(K ) means that f ∈ L(K , I).

Now let us establish the equality I( f ) = ∑∞
n=1 I( fn). One direction, namely

I( f ) �
∑∞

n=1 I( fn), follows from Theorem2 of the preceding subsection. The
opposite inequality is an easy consequence of the linearity of the upper integral
on L(K , I). Indeed, thanks to the positivity of the terms, we have

∑n
k=1 fk � f for

any natural number n. Consequently,

n∑

k=1

I( fk) = I
(

n∑

k=1

fk

)

� I( f ).

It remains to let n → ∞. �
Corollary 1 (analogue of Levi’s theorem on sequences). Let gn ∈ L(K , I), g ∈
�∞(K ), and suppose that pointwise the sequence (gn) is non-decreasing and con-
verges to g. Then g ∈ L(K , I) and I(g) = limn→∞ I(gn).

Proof. It suffices to apply the preceding theorem to the series
∑∞

n=1 (gn+1 − gn).
The partial sums of this series are equal to gn+1 − g1, so it converges to g − g1.
Therefore, g − g1 ∈ L(K , I), hence g = (g − g1) + g1 ∈ L(K , I) and

I(g) − I(g1) = lim
n→∞

n−1∑

k=1

I(gk+1 − gk) = lim
n→∞ I(gn) − I(g1). �

8.3 Regular Borel Measures and the Integral

8.3.1 I-measurable Sets. The Measure Generated
by an Integral

A subset A ⊂ K is said to be I-measurable if 1A ∈ L(K , I). The family of all I-
measurable subsets of the compact space K will be denoted by �I . For each set
A ∈ �I we put μI(A) = I(1A).

Theorem 1. The family�I is a σ -algebra, and μI is a countably-additive measure
on �I .

Proof. We rely on Theorems1–4 of the preceding susbection. Let A ∈ �I . Then
1K\A = 1 − 1A ∈ L(K , I), and so K \ A ∈ �I .Next, let A, B ∈�I . Then1A∩B =
min{1A,1B} ∈ L(K , I), hence A ∩ B ∈ �I . Finally, let An ∈ �I be a disjoint
sequence of sets, and A = ⋃∞

n=1 An . Then the series
∑∞

n=1 1An converges pointwise
to 1A. By Theorem4 of the preceding subsection, this means that 1A ∈ L(K , I) and
μI(A) = I(1A) = ∑∞

n=1 I(1An ) = ∑∞
n=1 μI(An). �
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Theorem 2. L(K , I) coincides with the family of all bounded�I-measurable func-
tions, and

∫
K f dμI = I( f ) for all f ∈ L(K , I).

Proof. First let us show that L(K , I) consists of �I-measurable functions. Let f ∈
L(K , I) and a be an arbitrary real number. Consider the sequence of functions
gn = min{n( f − a)+, 1}. This sequence is pointwise non-decreasing. If f (t) � a,
then gn(t) = 0, while if f (t) > a, then n( f − a)+(t) → ∞ as n → ∞, so that
starting with some index n, we have gn(t) = 1. In other words, the sequence, being
non-decreasing, converges pointwise to the characteristic function of the set f>a . By
the analogue of Levi’s theorem (the corollary at the end of the preceding subsection),
this characteristic function belongs to L(K , I), i.e., f>a ∈ �I . This establishes the
measurability of the function f .

To prove the last assertion of the theorem, denote by X the set of all f ∈ L(K , I)

for which
∫
K f dμI = I( f ). By the definition of the measure μI , the characteristic

functions of all sets from �I lie in X . Since X is a linear space, this implies that
all finitely-valued measurable functions (i.e., linear combinations of characteristic
functions) also lie in X . By the approximation theorem (the corollary to Theorem3
in Subsection3.1.4), every bounded�I-measurable function can be expressed as the
pointwise (and even uniform) limit of an increasing sequence of finitely-valued �I-
measurable functions. By Levi’s theorem and its analogue for L(K , I), this implies
that all bounded �I-measurable functions belong to our set X . �

Theorem 3. The family �I contains all Borel subsets of the compact space K , and
for any A ∈ �I and any ε > 0, there exists an open set U such that U ⊃ A and
μI(U ) < μI(A) + ε.

Proof. Since the characteristic functions of open subsets of the compact space K are
lower semi-continuous, such functions lie in L(K , I); consequently, all open sets lie
in �I . Since �I is a σ -algebra, then all Borel subsets lie in �I .

Now let A be an arbitrary element of the σ -algebra �I . Using the definition of
the upper integral for the function 1A and the fact that the upper integral on L(K , I)

coincides with the integral with respect to the measure μI , pick a function f ∈
LSC(K ) ∩ �∞(K ) such that f > 1A and

∫
K f dμI <

∫
K 1A dμI + ε = μI(A) +

ε. Now for the requisite set U take the set f>1 of all points t ∈ K where f (t) > 1.
Thanks to the semicontinuity of f , the set U is open. For any point t ∈ A it holds
that f (t) > 1A(t) = 1, i.e., t ∈ U . This completes the proof of the inclusion A ⊂ U .
Finally, it is readily seen that 1U � f at all points, and so μI(U ) = ∫

K 1U dμI �∫
K f dμI < μI(A) + ε. �

Passing to complements of sets, we obtain the following

Corollary 1. For any A ∈ �I and any ε > 0 there exists a closed set V such that
V ⊂ A and μI(V ) > μI(A) − ε. In other words, the inner measure generated by
the measure μI coincides on �I precisely with the measure μI .
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Exercises

1. (K , �I, μI) is a complete measure space.

2. The completion of the measure space (K ,B, μI), where B is the σ -algebra of
Borel subsets of the compact space K , coincides with (K , �I, μI).

3. Let K = [0, 1]. As the elementary integral I take the Riemann integral on the
interval K . Verify that in this case �I coincides with the σ -algebra of Lebesgue-
measurable subsets of the interval, and μI coincides with the Lebesgue measure.

8.3.2 The General Form of Elementary Integrals

We say that the Borel measure μ generates the elementary integral I on C(K )

if
∫
K f dμ = I( f ) for all functions f ∈ C(K ). (In the notation of Definition2 in

Subsection8.2.1, I = Fμ.)

Theorem 1. For any elementary integral I on C(K ) there exists a unique regular
Borel measure μ that generates I.
Proof. The existence of the requisite measure has actually been already established:
for μ one can take the restriction of the measure μI , constructed in the preceding
subsection, to the σ -algebra B of Borel subsets. Indeed, by Theorem3 of Sub-
section8.3.1 and its corollary, the measure μI is defined on the Borel subsets
and is regular, while Theorem2 of the same subsection asserts that the equality∫
K f dμI = I( f ) holds not only for continuous functions, but for all f ∈ L(K , I).

Hence, our main task is to establish the uniqueness, i.e., show that if μ is a regular
Borel measure obeying the conditions of the theorem, then μ coincides with μI
onB.

To begin with, note that μI(U ) � μ(U ) for any open set U . To verify this, we
use the regularity of the measure μ. For every ε > 0 there exists a closed set V such
that V ⊂ U and μ(V ) > μ(U ) − ε. Now the Urysohn lemma yields a continuous
function f with the following properties: 0 � f � 1 everywhere on K , f (t) = 1 on
V , and f (t) = 0 on K \U . We have

μI(U ) �
∫

K

f dμI =
∫

K

f dμ � μ(V ) � μ(U ) − ε.

It remains to let ε → 0.
Now let us prove that the inequality μI(A) � μ(A) actually holds for all Borel

sets. To this endwe again fix an ε > 0 and pick an open setU ⊃ A such thatμI(U ) <

μI(A) + ε (this is possible according to Theorem3 of Subsection8.3.1). We have
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μI(A) � μI(U ) − ε � μ(U ) − ε � μ(A) − ε,

so in view of the arbitrariness of ε, μI(A) � μ(A).
Applying the established inequality to the complement of the set A and using the

obvious equality μ(K )=∫

K
dμ=∫

K
dμI =μI(K ), we obtain the opposite inequality

μI(A) = μI(K ) − μI(K \ A) � μ(K ) − μ(K \ A) = μ(A).

Thus, we have shown that the measures μ and μI coincide on the Borel sets. �

Exercises

1. Based on the corollary stated as the end of Subsection8.3.1 and the uniqueness
theorem, show that if μ is a regular Borel measure on a compact space, then for
any A ∈ B and any ε > 0 there exists a closed set such that V ⊂ A and μ(V ) >

μ(A) − ε.

2. Based on the theorem on the general form of a Borel measure on the interval
(Subsection2.3.5), prove the following theorem: For every elementary integral I on
[0, 1] there exists a monotone function F on [0, 1] such that I is expressed as the
Stieltjes integral with respect to dF : I( f ) = ∫ 1

0 f dF for all f ∈ C[0, 1].
The power moment problem on the interval [0, 1] is the problem of finding, given

a sequence of numbers a0, a1, . . ., a function F on [0, 1] such that ∫ 1
0 tndF(t) = an

for all n = 0, 1, 2, . . .. The reader is invited to derive from the preceding exercise
the following result.

3. In order for the powermoment problem for the sequence a0, a1, . . . to have a solu-
tion that is a nondecreasing function, it is necessary and sufficient that

∑n
k=0 akbk � 0

for any non-negative polynomial b0 + b1t + · · · + bntn on [0, 1].

8.3.3 Approximation of Measurable Functions
by Continuous Functions. Luzin’s Theorem

Lemma 1. Let (,�,μ) be a measure space. Then the subset of all bounded func-
tions is dense in L1(,�,μ).

Proof. Let f ∈ L1(,�,μ) be an arbitrary function. Introduce the sets An =
{t ∈  : | f (t)| < n} and consider the functions fn = f · 1An . The functions
| fn − f | = | f | · 1\An admit | f | as a common integrable majorant and converge
pointwise to zero.Consequently,‖ fn − f ‖ = ∫

K | fn − f |dμ → 0 asn → ∞. Since
the functions fn are bounded (| fn| < n at all points), this establishes the claimed
denseness of the set of bounded functions in L1. �
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Let μ be a regular Borel measure on the compact space K . Denote by B the
σ -algebra of Borel subsets of K , and by L1 the Banach space L1(K ,B, μ).

Theorem 1. The subset C(K ) of continuous functions is dense in L1.

Proof. Let I be the elementary integral on C(K ) given by the formula I( f ) =∫
K f dμ. Then, by the theorem on the general form of elementary integrals proved

in the preceding subsection (the uniqueness part), the measure μI generated by the
integral I coincides on B with the original measure μ. Hence, for bounded Borel
functions we have I( f ) = ∫

K f dμ (see Theorem2 in Subsection8.3.1). Accord-
ingly, for functions from L1 the distance ρ, defined in Subsection8.2.4, coincides
with distance in L1. Since L(K , I) is the ρ-closure of the set C(K ), Theorem2 of
Subsection8.3.1 shows that the closure of the set C(K ) in L1 contains all bounded
functions from L1. It remains to apply Lemma 1 above. �

Theorem 2. The subset C(K ) of continuous functions is dense in the space L0 of
all Borel-measurable functions on K in the sense of convergence almost everywhere.

Proof. Using the functions fn = f · 1An introduced in the proof of Lemma 1 it is
readily verified, as in the preceding theorem, that L1 is dense in L0 is the sense of
convergence almost everywhere. Further, by the preceding theorem,C(K ) is dense in
the space L1 in the L1-norm. Since convergence in the L1-norm implies convergence
in measure, and since from any sequence that converges in measure one can extract
a subsequence that converges almost everywhere, it follows that C(K ) is indeed
dense in L1 in the sense of convergence almost everywhere. To complete the proof,
it remains to use that in the present case the property of “being dense in” is transitive
(Corollary2 in Subsection3.2.3). �

Theorem 3. (Luzin’s theorem). Let f be a Borel-measurable function on K . Then
for any ε > 0 there exists a Borel subset A ⊂ K with μ(K \ A) < ε such that the
restriction of the function f to A is continuous.

Proof. By the preceding theorem, there exists a sequence ( fn) of continuous func-
tions that converges to f almost everywhere. Using Egorov’s theorem, choose a set
A ⊂ K with μ(K \ A) < ε, on which the sequence ( fn) converges uniformly. Now
the restriction of the function f to A is the limit of an already uniformly convergent
sequence of continuous functions, and as such it is a continuous function. �

Exercises

1. Show that the set A in the statement of Luzin’s theorem can always be taken to
be closed.

2. Give an example (on an interval) in which the set A in the statement of Luzin’s
theorem cannot be taken to be open.
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8.4 The General Form of Linear Functionals on C(K )

8.4.1 Regular Borel Charges

A charge (signed measure) ν given on the σ -algebra B of Borel subsets of the
compact space K is called a regular Borel charge on K if for any A ∈ B and any
ε > 0 there exists a closed subset C ⊂ A such that |ν(A) − ν(C)| < ε.

We note that, according to Exercise1 in Subsection8.3.2, every regular Borelmea-
sure is simultaneously a regular Borel charge. Further, it follows from the definition
that a linear combination of regular Borel charges is again a regular Borel charge.
In particular, the difference of two regular Borel measures is a regular Borel charge.
The next theorem shows that such differences exhaust all regular Borel charges.

Theorem 1. For a Borel charge ν on a compact space K the following conditions
are equivalent:

(1) ν is a regular Borel charge;

(2) ν+ and ν− are regular Borel measures;

(3) the charge ν can be written as the difference of two regular Borel measures;

(4) |ν| is a regular Borel measure.

Proof. (1) =⇒ (2). Recall that for every A ∈ B the quantity ν+(A) is defined by the
formula ν+(A) = sup{ν(Δ) : Δ ∈ B,Δ ⊂ A}. That is, for every ε > 0 there exists
a Borel subset Δ ⊂ A such that ν(Δ) > ν+(A) − ε. Since the charge ν is regular,
one can find a closed subset C ⊂ Δ such that ν(C) > ν+(A) − ε. Using the fact that
ν+(C) � ν(C), we finally conclude that there exists a closed subset C ⊂ A such
that ν+(C) > ν+(A) − ε, i.e., that the measure ν+ is regular. The regularity of the
measure ν− now follows from the relation ν− = ν+ − ν.

(2) =⇒ (3). Indeed, ν = ν+ − ν−.
(3) =⇒ (1). Let ν = μ1 − μ2, whereμ1 andμ2 are regular Borel measures. Then

for every A ∈ B and every ε > 0 there exist closed subsets C1,C2 ⊂ A such that
μ1(C1) > μ1(A) − ε and μ2(C2)-Dą > μ2(A) − ε. Set C = C1 ∪ C2. Then C is a
closed subset of A and the inequalities μ1(A) − ε < μ1(C) < μ1(A) and μ2(A) −
ε < μ2(C) < μ2(A) hold. Therefore,

|ν(A) − ν(C)| � |μ1(A) − μ1(C)| + |μ2(A) − μ2(C)| < 2ε.

Since ε is arbitrary, this establishes the regularity of the charge ν.

(2) =⇒ (4). It suffices to use the equality |ν| = ν+ + ν−.
(4) =⇒ (1). Let A ∈ B, and let C ⊂ A be a closed set such that |ν|(A) −

|ν|(C) < ε. Then |ν(A) − ν(C)| = |ν(A\C)| � |ν|(A\C) = |ν|(A) − |ν|(C) < ε.
�
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Exercises

1. Suppose the Borel charge ν is absolutely continuous with respect to a regular
Borel measure μ. Then ν is a regular Borel charge.

2. On a metric compact space every Borel charge is regular.

3. Let M(K ,B) be the space of all Borel charges on the compact space K , endowed
with the norm ‖ν‖ = |ν|(K ). Denote by Mr(K ) the set of all regular Borel charges
on K . Prove that Mr(K ) is a closed linear subspace of the space M(K ,B). From
this and Exercise6 in Subsection7.1.1 it follows that in the norm ‖ν‖ = |ν|(K ) the
space Mr(K ) is Banach.

4. Suppose the compact space K is not countable. Then the space Mr(K ) is not
separable.

8.4.2 Formulation of the Riesz–Markov–Kakutani Theorem.
Uniqueness Theorem. Examples

Recall that in the exercises of Subsection7.1.2, by analogy with the integral with
respect to a measure, we defined the integral with respect to a charge as the limit of
the corresponding integral sums. To avoid relying on the results of the aforementioned
exercises and actually solving them for the reader, we will define here the integral
with respect to a charge by reduction to the integral with respect to a measure.

Theorem 1. Let (,�) be a set endowed with a σ -algebra of subsets, Δ ∈ �,
and μ1, μ2 : � → [0,+∞) countably-additive measures satisfying μ1 � μ2. If the
function f : Δ → R is μ2-integrable, then it is also μ1-integrable.

Proof. By Theorem2 in Subsection4.2.2, the function f is integrable on the set Δ

with respect to the measure μ if and only if for every ε > 0 there exists a partition
Dε of Δ such that the corresponding upper and lower integral sums, SΔ ( f, Dε, μ)

and SΔ ( f, Dε, μ), of f with respect to the measure μ are defined and differ by less
than ε. The assertion of the theorem follows from the inequality

|SΔ( f, Dε, μ1) − SΔ( f, Dε, μ1)| � |SΔ( f, Dε, μ2) − SΔ( f, Dε, μ2)|. �

Definition 1. Let (,�) be a set with a σ -algebra on it, ν a charge on �, and f
a measurable function on . Then f is said to be integrable on the set Δ ∈ � with
respect to the charge ν (or simply ν-integrable) if f is integrable with respect to the
variation of the charge ν.

It follows from Theorem1 and the inequalities ν+ � |ν| and ν− � |ν| that if f is
integrable with respect to ν, then f is integrable with respect to ν+, as well as with
respect to ν−.
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Definition 2. The integral of the function f with respect to the charge ν on the set
Δ is the quantity ∫

Δ

f dν =
∫

Δ

f dν+ −
∫

Δ

f dν−. (1)

Using formula (1) one can easily transfer to the integral with respect to a charge
basic properties of the integral with respect to ameasure such as linearity with respect
to the integrand, countable additivity with respect to the integration set, and even the
Lebesgue dominated convergence theorem. It is slightly harder to deal with estimates
of the integral: the integral with respect to a charge of the bigger of two functions
may turn to be smaller than the integral of the smaller function. For this reason, in
the case of integration with respect to a charge one uses the inequality

∣
∣
∣
∣
∣
∣

∫

A

f dν

∣
∣
∣
∣
∣
∣
�

∫

A

| f |d|ν|, (2)

which is also an easy consequence of the definition:
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∫

A

f dν
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∫
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f dν−
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∫

A

| f |dν+ +
∫

A

| f |dν− =
∫

A

| f | d|ν|.

Let us show that the definition of the integral with respect to a charge just given
agrees with the definition provided in the exercises of Subsection7.1.2.

Theorem 2. If the function f is integrable on the set Δ ∈ � with respect to the
charge ν, then the integral sums of f tend to

∫
Δ
f dν along the directed set of

partitions.

Proof. Let us apply the Hahn theorem to the charge ν on Δ. Let Δ+ and Δ− be the
corresponding positivity and negativity sets. Then the measure ν+ is concentrated
on Δ+, while ν− is concentrated on Δ−. Use the definition of the integral with
respect to a measure and for any ε > 0 choose partitions D1 and D2 of the sets
Δ+ and Δ−, respectively, such that any integral sums of the function f on Δ+ with
respect to partitions finer than D1, and onΔ− with respect to partitions finer than D2,
approximate

∫
Δ+ f dν+ and

∫
Δ− f dν−, respectively, to within ε/2. Now construct

a partition D of the set Δ, taking as its elements all elements of the two partitions
D1 and D2. Then every integral sum s of f corresponding to partitions finer than D
splits into parts s1 and s2, corresponding to the pieces of that partition that are finer
than D1 and D2, respectively. Consequently,
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8.4 The General Form of Linear Functionals on C(K ) 219

which establishes the required convergence of integral sums to the integral. �

Theorem 3. The integral with respect to a charge is linear as a function of the
charge: if ν1, ν2 : � → R are charges, a1, a2 ∈ R are scalars, and the function
f : Δ → R is integrable with respect to the charges ν1 and ν2, then f is also inte-
grable with respect to the charge a1ν1 + a2ν2, and

∫

Δ

f d(a1ν1 + a2ν2) = a1

∫

Δ

f dν1 + a2

∫

Δ

f dν2. (3)

Proof. The integrability follows from the inequality |a1ν1 + a2ν2| � |a1| · |ν1| +
|a2| · |ν2| and Theorem1. Equality (3) is readily derived from the analogous equality
for integral sums. �

In this section we will devote our attention to the particular case of Borel charges
and continuous functions on a compact space K .

Definition 3. Let ν be a Borel charge on the compact space K . The functional
generated by the charge ν is the mapping Fν : C(K ) → R given by the rule Fν( f ) =∫
K f dν.

Here the existence of the integral is guaranteed by formula (1) and the fact that
every bounded measurable function is integrable with respect to any finite measure
(Subsection4.3.3).

Proposition 1. Fν is a continuous linear functional on C(K ) and ‖Fν‖ � ‖ν‖ (here
and in the sequel we will use the notation ‖ν‖ = |ν|(K ) introduced in Exercise3 of
Subsection8.4.1).

Proof. The linearity of the functional Fν is obvious. Let us estimate the norm of Fν .
Take f ∈ C(K ), ‖ f ‖ = 1. Then | f (t)| � 1 at all points of the compact space K .
Now apply inequality (2):

|Fν( f )| =
∣
∣
∣
∣
∣
∣

∫

K

f dν

∣
∣
∣
∣
∣
∣
�

∫

K

| f | d|ν| �
∫

K

d|ν| = |ν|(K ) = ‖ν‖. �

The following obvious property is stated without proof.

Proposition 2. Let ν1, ν2 be Borel charges on the compact space K , and let a1, a2 ∈
R. Then Fa1ν1+a2ν2 = a1Fν1 + a2Fν2 . In other words, the mapping ν �→ Fν is linear.

�

Proposition 3. Let ν be a regular Borel charge on the compact space K such that
Fν = 0. Then ν is the null charge. If for two regular Borel charges ν1 and ν2 it holds
that Fν1 = Fν2 , then ν1 = ν2.
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Proof. Suppose Fν = 0. Then

∫

K

f dν+ −
∫

K

f dν− =
∫

K

f dν = 0,

for all functions f ∈ C(K ). That is, the elementary integrals on C(K ) generated by
the measures ν+ and ν− coincide. Since ν+ and ν− are regular Borel measures, the
uniqueness of the representation in the theorem on the general form of elementary
integrals (Subsection8.3.2) implies that themeasures ν+ and ν− coincide. Therefore,
ν = ν+ − ν− = 0.

The second part of the assertion reduces to the first thanks to the linearity of the
mapping ν �→ Fν . Indeed, if Fν1 = Fν2 , then for the auxiliary charge ν = ν1 − ν2 we
have Fν = Fν1 − Fν2 = 0. That is, ν = ν1 − ν2 = 0. �

Together the propositions given above mean that the mapping U : ν �→ Fν ,
regarded as an operator acting from the space Mr(K ) of all regular Borel charges on
K into the spaceC(K )∗, is a continuous injective linear operator satisfying ‖U‖ � 1.
The next theorem can be interpreted as the assertion thatU is a bijective isometry of
the spaces Mr(K ) and C(K )∗.

Theorem 4. (general form of linear functionals on C(K )). For any continuous
linear functional F on C(K ) there exists a unique regular Borel measure ν on K
which generates F (i.e., such that F = Fν). Moreover, ‖F‖ = ‖ν‖.

Parts of the Riesz–Markov–Kakutani theorem just stated, namely the uniqueness
of the charge ν and the inequality ‖Fν‖ � ‖ν‖, have been already established above.
The existence of the sought-for charge will be proved below in Subsection8.4.3,
based on the theorem on the general form of elementary integrals. The idea of the
proof is to express the functional F as the difference of two elementary integrals.
The formula for the norm will be established in Subsection8.4.4.

Exercises

1. Prove the following analogue of the Lebesgue dominated convergence theorem:
Suppose the functions fn are integrable on the set Δ with respect to the charge ν,
fn → f |ν|-almost everywhere as n → ∞, and there exists a ν-integrable function
g that dominates all fn (i.e., | fn| � g |ν|-almost everywhere for all n ∈ N). Then
the function f is also ν-integrable, and

∫
Δ
f dν = lim

n→∞
∫
Δ
fndν.

2. Let ν1 and ν2 be regular Borel charges and f1 and f2 be bounded functions on
the compact space K such that

∫
K g f1 dν1 = ∫

K g f2 dν2 for all g ∈ C(K ). Then∫
K g f1 dν1 = ∫

K g f2 dν2 for all bounded Borel-measurable functions g on K .
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For each of the functionals G j on C[0, 1] listed below: (a) verify its linearity and
continuity; (b) calculate its norm; (c) find a representation as Fν , where ν is a regular
Borel charge on the interval [0, 1]; (d) calculate the variation of the obtained charge
and verify the formula ‖Fν‖ = ‖ν‖.
3. G1( f ) = f (0).

4. G2( f ) = f (0) − f (1).

5. G3( f ) =
∫ 1/2

0
f (t)dt .

6. G4( f ) =
∫ 1

0
f (t)

(

t − 1

2

)

dt .

8.4.3 Positive and Negative Parts of a Functional F∈C(K )∗

Consider now the set C+(K ) = { f ∈ C(K ) : f � 0}, the positive cone of the space
C(K ). For each f ∈ C+(K ) we denote by [0, f ]c the following set of functions:

[0, f ]c = {g ∈ C(K ) : 0 � g � f }.

Let F be a continuous linear functional on C(K ). Define the positive part F+ of
F as follows: for f ∈ C+(K ), put

F+( f ) = sup{F(g) : g ∈ [0, f ]c}, (I)

while for an arbitrary function f ∈ C(K ) put

F+( f ) = F+( f +) − F+( f −). (II)

Further, we defined the negative part F− of the functional F as F− = F+ − F .

The aim of the following chain of assertions is to prove that F+ and F− are
elementary integrals.

Lemma 1. Let f1, f2 ∈ C+(K ). Then [0, f1 + f2]c = [0, f1]c + [0, f2]c.
Proof. Let g1 ∈ [0, f1]c and g2 ∈ [0, f2]c, that is, 0 � g1 � f1 and 0 � g2 � f2.
Then 0 � g1 + g2 � f1 + f2, that is, g1 + g2 ∈ [0, f1 + f2]c. This establishes the
inclusion [0, f1 + f2]c ⊃ [0, f1]c + [0, f2]c.

Now let g ∈ [0, f1 + f2]c. We introduce auxiliary functions g1 and g2 by the
equalities g1 = min{g, f1} and g2 = g − g1. Since g1 ∈ [0, f1]c and g2 ∈ [0, f2]c,
we have that g = g1 + g2 ∈ [0, f1]c + [0, f2]c. This establishes the inclusion
[0, f1 + f2]c ⊂ [0, f1]c + [0, f2]c. �
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Lemma 2. Let f1, f2 ∈ C+(K ). Then F+( f1 + f2) = F+( f1) + F+( f2).

Proof. We have

F+( f1) + F+( f2) = sup{F(g1) : g1 ∈ [0, f1]c} + sup{F(g2) : g2 ∈ [0, f2]c}
= sup{F(g1 + g2) : g1 ∈ [0, f1]c, g2 ∈ [0, f2]c}
= sup{F(g) : g ∈ [0, f1]c + [0, f2]c}
= sup{F(g) : g ∈ [0, f1 + f2]c} = F+( f1 + f2). �

Lemma 3. Let f ∈ C+(K ) and a ∈ R
+. Then F+(a f ) = aF+( f ).

Proof. We have
F+(a f ) = sup{F(g) : g ∈ [0, a f ]c}

= sup{F(ah) : h ∈ [0, f ]c} = a sup{F(h) : h ∈ [0, f ]c} = aF+( f ). �

Lemma 4. Let f1, f2 ∈ C+(K ). Then F+( f1 − f2) = F+( f1) − F+( f2).

Proof. Since the function f = f1 − f2 is not necessarily positive, to calculate F+( f )
we need to use formula (II). Further, since

f + − f − = f = f1 − f2, f + + f2 = f1 + f −,

Lemma 2 shows that F+( f +) + F+( f2) = F+( f1) + F+( f −). Consequently,

F+ ( f1 − f2) = F+( f ) = F+( f +) − F+( f −) = F+ ( f1) − F+ ( f2) . �

Theorem 1. F+ is an elementary integral on C(K ).

Proof. First let us verify that F+ is a linear functional. Let h1, h2 ∈ C(K ) be
arbitrary functions. Write the function h1 + h2 in the form (h+

1 + h+
2 ) − (h−

1 + h−
2 )

and apply Lemmas 4 and 2 above. Then

F+(h1 + h2) = F+(h+
1 + h+

2 ) − F+(h−
1 + h−

2 ) = F+(h+
1 ) − F+(h−

1 )

+ F+(h+
2 ) − F+(h−

2 ) = F+(h1) + F+(h2).

This shows that our functional is additive. The positive homogeneity follows from
Lemma 3 and formula (II): if f ∈ C(K ) and a ∈ R

+, then

F+(a f ) = F+(a f +) − F+(a f −) = aF+( f +) − aF+( f −) = aF+( f ).

The fact that theminus sign passes from the argument to the value is a consequence
of Lemma 4:

F+(− f ) = F+( f − − f +) = F+( f −) − F+( f +) = −F+( f ).
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To complete the proof it remains to verify that on C+(K ) the functional F+ takes
only non-negative values. Indeed, let f ∈ C+(K ). Now use formula (I): F+( f ) =
sup{F(g) : g ∈ [0, f ]c} � F(0) = 0. �

Theorem 2. F− = (−F)+. In particular, F− is an elementary integral on C(K ).

Proof. From the preceding theorem and the relation F− = F+ − F it follows that
F− is a linear functional.Hence, it suffices to verify the equality F−( f ) = (−F)+( f )
for f ∈ C+(K ), because it extends to C(K ) by linearity. Thus,

F−( f ) = F+( f ) − F( f )

= sup{F(g) − F( f ) : g ∈ [0, f ]c} = sup{−F( f − g) : g ∈ [0, f ]c}.

Now denoting f − g by h and observing that the conditions g ∈ [0, f ]c and h ∈
[0, f ]c are equivalent, we obtain the desired equality F−( f ) = sup{−F(h) : h ∈
[0, f ]c} = (−F)+( f ). �

As a corollary of the theorems proved above and the equality F = F+ − F−, we
obtain the existence of the sought-for charge in the theorem on the general form of
linear functionals on C(K ) (Theorem4 of Subsection8.4.2).

Corollary 1. For every continuous linear functional F on C(K ) there exists a reg-
ular Borel charge ν on K which generates this functional by the rule F = Fν .

Proof. Since F+ and F− are elementary integrals (theorem in Subsection8.3.2),
there exist regular Borel measures μ1 and μ2 which generate these elementary inte-
grals: F+ = Fμ1 and F− = Fμ2 . Then F = F+ − F− = Fμ1 − Fμ2 = Fμ1−μ2 , i.e.,
as the desired charge ν one can take μ1 − μ2. �

Remark 1. As the reader has undoubtedly noticed, the notions of positive and nega-
tive parts can be defined formany quite different objects: numbers, functions, charges
— and now also for functionals. The general approach to such objects is part of the
theory of semi-ordered spaces, vector and normed lattices. A first impression of this
useful and far-developed direction of functional analysis can be gained by consulting
the textbook of L.V. Kantorovich (one of the founders of this subject) andG.P.Akilov
[22, Chapter10].

Exercises

1. Show that the formula (II) does not contradict formula (I), i.e., that if for positive
functions f one defines the quantity F+( f ) by formula (I), then formula (II) gives
the same result.

2. For the functions g1 = min{g, f1} and g2 = g − g1 figuring in the second part of
the proof of Lemma 1, verify the conditions g1 ∈ [0, f1]c and g2 ∈ [0, f2]c.
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8.4.4 The Norm of a Functional on C(K )

As before, we denote by 1 the function identically equal to 1 on K . Let F be a
continuous linear functional on C(K ), F+ and F− its positive and negative parts,
and μ1 and μ2 the regular Borel measures that generate the elementary integrals F+
and F−, respectively: F+( f ) = ∫

K f dμ1 and F−( f ) = ∫
K f dμ2 for any function

f ∈ C(K ).

Lemma 1. ‖F‖ = μ1(K ) + μ2(K ).

Proof. First observe that

μ1(K ) + μ2(K ) =
∫

K

dμ1 +
∫

K

dμ2 = F+(1) + F−(1),

i.e., what we need to prove is the equality ‖F‖ = F+(1) + F−(1). We have

‖F‖ = sup{F( f ) : f ∈ SC(K )} = sup{F( f + − f −) : f ∈ SC(K )}.
Since in the present case f + and f − belong to the set [0,1]c, we can continue our
estimate as follows:

‖F‖ � sup{F( f1) − F( f2) : f1, f2 ∈ [0,1]c}
= sup{F( f1) : f1 ∈ [0,1]c} + sup{−F( f2) : f2 ∈ [0,1]c} = F+(1) + F−(1).

Now let us prove the opposite inequality. We have already established in the
preceding calculation that F+(1) + F−(1) = sup {F( f1 − f2) : f1, f2 ∈ [0,1]c}.
Since in the last expressionwehave−1 � f1 − f2 � 1, it follows that ‖ f1 − f2‖ � 1
and F( f1 − f2) � ‖F‖, i.e., F+(1) + F−(1) � ‖F‖. �

Now for the functional F under studywe introduce the charge ν = μ1 − μ2. Then
F = Fν .

Theorem 1. ‖F‖ = ‖ν‖.
Proof. The estimate‖F‖ � ‖ν‖was established inProposition 1 of Subsection8.4.2.
Let us prove the opposite inequality. Since the measures μ1 and μ2 assume only
positive values, ν(Δ) = μ1(Δ) − μ2(Δ) � μ1(Δ) � μ1(K ) for all Borel sets
Δ ⊂ K . Consequently,

ν+(K ) = sup{ν(Δ) : Δ ∈ B} � μ1(K ).

Similarly, ν−(K ) � μ2(K ). It remains to apply the preceding lemma: ‖F‖ =
μ1(K ) + μ2(K ) � ν+(K ) + ν−(K ) = ‖ν‖. �

This last assertion completes the proof of the theorem on the general form of linear
functionals on C(K ), formulated in Subsection8.4.2. Since this theorem establishes
an isomorphism (called the canonical isomorphism) between the spaces C(K )∗ and
Mr(K ), it is often stated as the equality C(K )∗ = Mr(K ).
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Exercises

1. Verify that BC(K ) = [0,1]c − [0,1]c. Then derive from this the equality ‖F‖ =
F+(1) + F−(1) established above.

2. Show that ‖F‖ = ‖F+‖ + ‖F−‖.
3. For every (not necessarily regular) Borel charge ν on K consider the elementary
integral Fν generated by ν. Now for the elementary integral Fν construct a regular
Borel charge P(ν) such that Fν = FP(ν). Show that the mapping P defined in this
manner is a projector of the spaceM(K ,B) onto the subspaceMr(K ) (see Exercise3
in Subsection8.4.1). Show that ‖P‖ = 1.

4. On the example of the space C[0, 1], convince yourself that the dual space to a
separable Banach space can be non-separable.

5. Let σ be a regular Borel charge on K and g a function on K , integrable with
respect to σ . Define the functional F ∈ C(K )∗ by the formula F( f ) = ∫

K f g dσ .
Howdoes onewrite this functional in the form indicated in the theorem on the general
form of linear functionals on C(K )? Prove the equality ‖F‖ = ∫

K |g|d|σ |.

8.4.5 Complex Charges and Integrals

In this subsection we address the integration of complex-valued functions with
respect to complex-valued charges. Those assertions for which, in our opinion, the
differences from the real-valued case are not essential will be only stated, the proof
being left to the reader.

Definition 1. Let (,�) be a set endowed with a σ -algebra. A complex-valued
set function η : � → C is called a complex charge on  if it satisfies the countable
additivity condition. For a complex charge η we define in the natural manner the
charges Re η and Im η: (Re η)(Δ) = Re(η(Δ)) and (Im η)(Δ) = Im(η(Δ)) for all
Δ ∈ �. Then

η = Re η + i Im η. (∗)

Definition 2. The variation of the complex charge η on a set Δ ∈ � is the quantity
|η|(Δ), defined as the supremum of sums of the form

∑n
k=1 |η(Δk)|, taken over all

finite collections {Δk}n1 of pairwise disjoint subsets of Δ.

Theorem 1. For a real-valued charge the value of the variation, calculated by
Definition 2 above, coincides with the value calculated by the rule

|η|(Δ) = η+(Δ) + η−(Δ).

In other words, the new definition of the variation agrees with the already known
one. �
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Theorem 2. The variation of a complex charge η has the following properties:

(i) |η(Δ)| � |η|(Δ);

(ii) max{|Re η|(Δ), |Im η|(Δ)} � |η|(Δ) � |Re η|(Δ) + |Im η|(Δ);

(iii) |η| is a finite countably-additive measure on . �

Like in the case of measures, we introduce admissible partitions (those for which
∞∑

k=1
supt∈Δk

[| f (t)| · |ν|(Δk)] < ∞) and the integral sums of a complex-valued func-

tion f with respect to a complex charge ν: SA( f, D, T, ν) = ∑∞
k=1 f (tk)ν(Δk).

Integrability and the integral of a function with respect to a charge are also defined
as the limit of integral sums for increasingly finer partitions.

Theorem 3. The integral of a complex-valued function with respect to a complex
charge depends linearly on the charge for a fixed function:

∫

Δ

f d(a1η1 + a2η2) = a1

∫

Δ

f dη1 + a2

∫

Δ

f dη2,

and depends linearly on the function for a fixed charge:

∫

Δ

(a1 f1 + a2 f2)dη = a1

∫

Δ

f1dη + a2

∫

Δ

f2dη;

here, the existence of the integrals in the right-hand side implies the existence of the
integrals in the left-hand side. �

Theorem 4. A measurable function f is integrable on the set Δ ∈ � with respect
to the complex charge η if and only if the integral

∫
Δ

| f | d|η| exists. In this case,
∣
∣
∣
∣

∫

Δ

f dη

∣
∣
∣
∣ �

∫

Δ

| f | d|η|.

Proof. If for a measurable function the integral
∫
Δ

| f | d|η| exists, then in view of
the inequalities |Im η|(Δ) � |η| (Δ) and |Re η|(Δ) � |η|(Δ), so do the following
four integrals:

∫
Δ
Re f d Re η,

∫
Δ
Re f d Im η,

∫
Δ
Im f d Re η, and

∫
Δ
Im f d Im η.

Using the linearity (the preceding theorem), the appropriate combination of these
integrals yields

∫
Δ
f dη.

Conversely, the existence of the integral
∫
Δ
f dη implies the existence of an

admissible partition D for f with respect to ν. This partition will also be admissible
for | f | with respect to |ν|, which in view of the measurability of the function | f |
and Exercise2 in Subsection4.3.3 means that the integral

∫
Δ

| f | d|η| exists. Finally,
the inequality | ∫

Δ
f dη| �

∫
Δ

| f | d|η| is obtained by passing to the limit in the
corresponding integral sums. �
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Using formula (∗), the main notions and results concerning real charges (for
instance, the absolute continuity criterion and the Radon–Nikodým theorem in
Sect. 7.1) can be easily transferred to the case of complex charges. Similarly, by
separating the real and and imaginary parts it is easy to extend to the complex case
properties of the integrals, such as countable additivity with respect to the set and
the Lebesgue dominated convergence theorem.

8.4.6 Regular Complex Charges and Functionals
on the Complex Space C(K )

Definition 1. A complex Borel charge on the compact space K is a complex charge
defined on the σ -algebraB of Borel subsets of K . A complex Borel charge η on the
compact space K is called regular if |η| is a regular Borel measure.

From property (ii) in Theorem2 of Subsection8.4.5 and Exercise1 in Subsec-
tion8.4.1 it follows that a complex Borel charge η on the compact space K is regular
if and only if the real charges Re η and Im η are regular.

Next we consider linear functionals on the complex space C (K ), i.e., the space
of all complex-valued continuous functions on K .

Definition 2. Let η be a Borel charge on the compact space K . The functional
generated by the charge η is themappingFη : C(K ) → C acting by the ruleFη( f ) =∫
K f dη.

Here the existence of the integral is guaranteed by Theorem4 in the preceding
subsection and the integrability criterion for real-valued measurable functions (Sub-
section4.3.3).

As in the real case, for complex Borel charges on the compact space K , we will
use the notation ‖η‖ = |η|(K ).

Theorem 1. Fη is a continuous linear functional on C(K ) and ‖Fη‖ � ‖η‖. More-
over, if the charge η is regular, then ‖Fη‖ = ‖η‖.
Proof. The linearity of the functional Fν is obvious. The upper bound for the norm
follows, like in the real version, from the inequality

∣
∣
∫
K f dη

∣
∣ �

∫
K | f | d|η|. It

remains to prove in the case of a regular charge the inequality ‖Fη‖ � ‖η‖.
Fix ε > 0. By the definition of the variation, there exist a finite collection {Δk}n1 of

pairwise disjoint subsets of the compact space K such that
∑n

k=1 |η(Δk)| > |η|(K ) −
ε. Since the charge is regular, we can, with no loss of generality, assume that all sets
Δk are closed: otherwise, one can replace them by smaller closed sets that have
approximately the same charge η(Δk). Now consider K1 = ⊔n

k=1 Δk . The set K1 is
closed, and

|η|(K\K1) = |η|(K ) − |η|(K1) � |η|(K ) −
n∑

k=1

|η(Δk)| < ε.
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Now denote by f the function on K1 that on each set Δk takes the constant
valueαk = e−i arg η(Δk ). Since the setsΔk are pairwise disjoint, the piecewise-constant
function f is continuous on K1. Extend f to a continuous function on the whole
space K with preservation of the condition | f | � 1. Then f ∈ SC(K ) and

‖Fη‖ � |Fη( f )| =
∣
∣
∣
∣
∣
∣

∫

K

f dη

∣
∣
∣
∣
∣
∣
�

∣
∣
∣
∣
∣
∣

∫

K1

f dη

∣
∣
∣
∣
∣
∣
− ε

=
∣
∣
∣
∣
∣

n∑

k=1

αkη(Δk)

∣
∣
∣
∣
∣
− ε =

n∑

k=1

|η(Δk)| − ε �‖η‖ − 2ε.

Letting ε → 0, we obtain the requisite estimate. �

The formulation of the theorem on the general form of linear functionals on the
complex space C(K ) is a verbatim repetition of the real version, and its proof can
be done by reduction to the real case.

Theorem 2. For every continuous linear functional F on the complex space C(K )

there exists a unique regular complex Borel charge η on K which generates this
functional (i.e., for which F = Fη). Moreover, ‖F‖ = ‖η‖.
Proof. The equality ‖Fη‖ = ‖η‖ was established above. It implies the injectivity
of the mapping η �→ Fη on the space of regular complex Borel charges, i.e., the
uniqueness of the charge η in the theorem. It remains to prove the existence of the
requisite charge.

Regard the space CR(K ) of real-valued continuous functions on K as a subset
of the complex space C(K ). Now define on CR(K ) two linear functionals, F1 and
F2, by the formulas F1( f ) = Re F( f ) and F2( f ) = Im F( f ). By the real version of
the theorem on the general form of linear functionals on CR(K ), applied to F1 and
F2, there exist regular real Borel charges ν1 and ν2, such that for every function f ∈
CR(K ) it holds that F1( f ) = ∫

K f dν1 and F2( f ) = ∫
K f dν2. Substituting these

equalities into the formula F( f ) = F1( f ) + i F2( f ) and denoting ν1 + iν2 by η,
we obtain the equality F( f ) = ∫

K f dη, which holds for all f ∈ CR(K ). Since both
sides of this last equality depend linearly on f , it easily extends to complex functions
of the form f = f1 + i f2, with f1, f2 ∈ CR(K ). Therefore, the equality F( f ) =∫
K f dη holds on the entire complex space C(K ), and consequently η is the sought-

for charge. �

Remark 1. The reader should note that the argument in the proof of Theorem1 yields
a direct proof of the equality

∥
∥Fη

∥
∥ = ‖η‖ also in the case of real charges.
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Exercises

1. The proof of Theorem1 contains the phrase: “Extend f to a continuous function
on the whole space K with preservation of the condition | f | � 1.” Why is such an
extension possible?

2. Prove the following — historically the first version — of the theorem on the
general form of linear functionals on C[0, 1]. F. Riesz’s theorem: For every linear
functional F ∈ C[0, 1]∗ there exists a function F̃ of bounded variation on [0, 1],
with V 1

0 (F̃) = ‖F‖, such that the functional F is expressed as a Stieltjes integral

with respect to d F̃ : F( f ) = ∫ 1
0 f d F̃ for all f ∈ C[0, 1].

3. Is the function F̃ in F. Riesz’s theorem stated above uniquely determined by the
functional F?

4. Sharpen F. Riesz’s theorem as follows: the function F̃ can be chosen in the class
of functions that are right-continuous on (0, 1] and take the value 0 at the point zero,
and in this class F̃ is uniquely determined by F .

5. Solve the complex version of Exercise2 in Subsection8.4.2.

6. Solve the complex version of Exercise5 in Subsection8.4.4.

Comments on the Exercises

Subsection8.4.2

Exercise2. For the proof one has to take the measure μ = |ν1| + |ν2|, which
majorizes both charges appearing in the formula; represent the function g as a limit
of a μ-almost everywhere convergent uniformly bounded sequence (gn) of continu-
ous functions, and apply the dominated convergence theorem.

Subsection8.4.4

Exercise5. See Subsection7.1.4, Exercise4, and the comment on it. The requisite
charge ν, for which F = Fν , is defined as ν(Δ) = ∫

Δ
g dσ . To prove the formula

‖ν‖ = ∫
K |g| d|σ |, one can express the positivity and negativity sets of the charge

ν, K+
ν and K−

ν in terms of the positivity and negativity sets of the charge σ , K+
σ

and K−
σ : K

+
ν = (K+

σ ∩ g>0) ∪ (K−
σ ∩ g�0), K−

ν = (K+
σ ∩ g�0) ∪ (K−

σ ∩ g>0), and
then use the equality |ν|(K ) = ν(K+

ν ) − ν(K−
ν ).

Subsection8.4.6

Exercises2–4. Use the theorem on the general form of a Borel charge on the
interval (Subsection7.2.3): take F̃ equal to 0 at the point zero, and in the remaining
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points of the interval take F̃ equal to the distribution function of the Borel charge
that generates the functional F . A direct proof of F. Riesz’s theorem can be found in
A. Kolmogorov and S. Fomin’s textbook [24, Chapter IV]. Therein one can also find
the definition and main properties of the Stieltjes integral, as well as a discussion of
the uniqueness of the function F̃ . True, the terminology in [K-F] is not completely
identical with the one adopted in the present book (for instance, here the distribution
function is defined somewhat differently).



Chapter 9
Continuous Linear Functionals

9.1 The Hahn–Banach Theorem in Normed Spaces

The Hahn–Banach theorem on the extension of a linear functional proved in Sub-
section5.4.3 is extremely general in nature and is applicable in any real linear space.
In particular, it can also be used in normed spaces. However, this last application
requires some refinements. First of all, in normed spaces, among all linear function-
als the most interest is attached to continuous functionals. Accordingly, it is desirable
that the extension will preserve continuity. Second, we would like to have a version
of the theorem that is equally appropriate for real as well as complex spaces.

9.1.1 The Connection Between Real and Complex
Functionals

Let X be a complex linear space, i.e., in X multiplication by complex scalars is
defined. Then, in particular, multiplication by real scalars is also defined in X , i.e., X
can be also regarded as a real linear space.Hence, on X one can talk about two types of
linear functionals. Specifically, a functional f on X is called a real linear functional
if f takes real values, is additive (i.e., f (x + y) = f (x) + f (y) for all x, y ∈ X ),
and is real-homogeneous (i.e., f (λx) = λ f (x) for all x ∈ X and all λ ∈ R), and
is called a complex linear functional if f takes complex values, is additive, and
iscomplex-homogeneous (i.e., f (λx) = λ f (x) for all x ∈ X and all λ ∈ C).

For each complex functional f wedefine in a naturalmanner its real and imaginary
parts: (Re f )(x) = Re( f (x)) and (Im f )(x) = Im( f (x)). The so-defined Re f and
Im f are real linear functionals, and f = Re f + i Im f . The following two theorems
describe completely the connectionbetween the real and imaginaryparts of a complex
linear functional.

Theorem 1. Let f be a complex linear functional on X. Then for any x ∈ X it holds
that Im f (x) = −Re f (i x).
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Proof. In the equality f (λx) = λ f (x) put λ = i and calculate the real parts. We
obtain Re f (i x) = Re (i f (x)) = −Im f (x). �

Theorem 2. Let g be a real linear functional on X. Then the functional f defined
by the formula f (x) = g(x) − ig(i x) is a complex linear functional.

Proof. The additivity of f and its real homogeneity are obvious. Let us verify
the complex homogeneity. First, note that f (i x) = g(i x) − ig(−x) = i(g(x) −
ig(i x)) = i f (x). Now let λ = a + ib be an arbitrary complex number. Then

f ((a + ib)x) = f (ax) + f (ibx) = a f (x) + ib f (x) = (a + ib) f (x),

as needed. �

Theorems1 and 2 show that the correspondence f �→ Re f between complex and
real linear functionals is bijective. In the case of a normed space X one can say more.

Theorem 3. Let X be a complex normed space, and f a continuous complex linear
functional on X. Then ‖ f ‖ = ‖Re f ‖.
Proof. Let T = {λ ∈ C : |λ| = 1}. Using the definition of the norm of a functional
and the fact that the set of products {λx : x ∈ SX , λ ∈ T} coincides with SX , we
have

‖Re f ‖ = sup
x∈SX

|Re f (x)| = sup
x∈SX ,λ∈T

|Re f (λx)|

= sup
x∈SX

(
sup
λ∈T

|Re λ f (x)|
)

. (∗)

For fixed x , the set of numbers {λ f (x) : λ ∈ T} is a circle of radius | f (x)| centered
at zero. The real parts of these numbers fill the segment from −| f (x)| to | f (x)|.
Therefore, supλ∈T |Re λ f (x)| = | f (x)|. Substituting this relation into (∗), we obtain
the claimed relation ‖Re f ‖ = supx∈SX | f (x)| = ‖ f ‖. �

9.1.2 The Hahn–Banach Extension Theorem

Theorem 1. Let Y be a subspace of the normed linear space X, and let f ∈ Y ∗.
Then there exists a functional f̃ ∈ X∗ such that f̃ (y) = f (y) for all y ∈ Y and
‖ f̃ ‖ = ‖ f ‖. In other words, every continuous linear functional given on a subspace
of a normed space extends to the entire space with preservation of its norm.

Proof. The theorem as stated covers both the real and the complex case, but we
need separate proofs. We begin with the real case. Define on X a convex functional
p by the formula p(x) = ‖ f ‖ · ‖x‖. Then the functional f obeys the majorization
condition f (y) � p(y) for all y ∈ Y . Let us apply the analytic form of the Hahn–
Banach theorem given in Subsection5.4.3. So, let f̃ be an extension of the functional
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f to the entire space X with preservation of the majorization condition. Let x ∈ X be
an arbitary element. Writing the majorization condition for x and −x , we obtain two
inequalities: f̃ (x) � p(x) and − f̃ (x) � p(x). This means that | f̃ (x)| � p(x) =
‖ f ‖ · ‖x‖ for all x ∈ X . Hence, ‖ f̃ ‖ � ‖ f ‖, and consequently f̃ is continuous. The
opposite inequality ‖ f̃ ‖ � ‖ f ‖ follows from the fact that the functional f̃ is an
extension of the functional f :

‖ f̃ ‖ = sup
x∈SX

‖ f̃ (x)‖ � sup
x∈SY

‖ f̃ (x)‖ = sup
x∈SY

‖ f (x)‖ = ‖ f ‖.

Now let us address the complex case. Let X be a complex normed space and
f a continuous complex linear functional on Y . Then g = Re f is already a real
functional, and by what we just proved, there exists a real functional g̃ on X such that
g̃(y) = g(y) for all y ∈ Y and ‖g̃‖ = ‖g‖. Nowdefine the sought-for functional f̃ by
the formula f̃ (x) = g̃(x) − i g̃(i x). By Theorem2 of the preceding Subsection9.1.1,
f̃ is a complex linear functional. Further, for any y ∈ Y , Theorem1 of the preceding
subsection shows that Im f (y) = −Re f (iy) = −g(iy). Therefore,

f̃ (y) = g̃(y) − i g̃(iy) = g(y) − ig(iy) = f (y).

Finally, by Theorem3 of Subsection9.1.1, ‖ f̃ ‖ = ‖g̃‖ = ‖g‖ = ‖ f ‖. �

Exercises

1. Let X be a normed space, let f be a linear functional on X , and let A = {x ∈
X : f (x) = 1}. Show that ρ(0, A) = ‖ f ‖−1. In particular, if ρ(0, A) �= 0, then the
functional f is continuous.

2. Let X be a normed space, x ∈ X , f ∈ X∗, a an arbitrary scalar, and A =
{x ∈ X : f (x) = a}. Then ρ(x, A) = | f (x) − a|/‖ f ‖.
3. For a non-zero linear functional f on a normed space X , the following conditions
are equivalent:

— f is continuous;

— the kernel of f is closed;

— the kernel of f is not dense in X .

4. Let 1 � p < ∞. Denote by Cp[a, b] the subspace of the normed space L p[a, b]
consisting of all the functions continuous on [a, b]. Let t0 ∈ [a, b] be a given point.
Prove that the linear functional δt0 on Cp[a, b], acting by the rule δt0( f ) = f (t0), is
discontinuous. From this fact and the preceding exercise deduce that the subset of
functions satisfying the condition f (0) = 0 is dense in Cp[a, b].
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5. Solve Exercise10 of Subsection6.2.2: for 1 � p < ∞, the set of continuous func-
tions satisfying the condition f (0) = 0 is dense in L p[0, 1].
6. Call a set Δ ∈ [a, b] “very small” if the subspace VΔ of the space Cp[a, b] con-
sisting of the functions that vanish identically on Δ is dense in Cp[a, b]. Prove that
the set Δ is very small if and only if its closure has measure 0.

9.2 Applications

9.2.1 Supporting Functionals

Let X be a normed space, and x0 ∈ X \ {0}. A functional f0 ∈ X∗ is called a sup-
porting functional at the point x0 if ‖ f0‖ = 1 and f0(x0) = ‖x0‖.
Theorem 1. For any point x0 ∈ X \ {0} there exists a supporting functional at x0.

Proof. Consider the subspace Y = Lin{x0}. Then Y is one-dimensional and x0 is a
basis in Y . Define a linear functional f on Y by setting f (x0) = ‖x0‖. In other words,
for each y = λx0 put f (y) = λ ‖x0‖. Let us compute the norm of f . If y = λx0 ∈ SY ,
then |λ| ‖x0‖ = 1. Therefore,

‖ f ‖ = sup
λx0∈SY

| f (λx0)| = sup
λx0∈SY

|λ| ‖x0‖ = 1.

Now use the Hahn–Banach theorem from the preceding subsection and extend
the functional f to a functional f0 ∈ X∗ preserving its norm. The resulting exten-
sion is the sought-for supporting functional, because ‖ f0‖ = ‖ f ‖ = 1 and f0(x0) =
f (x0) = ‖x0‖. �
Corollary 1. If X is a normed space and X �= {0}, then also X∗ �= {0}. �

At this point, let us recall some facts from linear algebra. If X is a finite-
dimensional linear space and X ′ is the space of all linear functionals on X , then
dim X ′ = dim X . If E ⊂ X ′ is a subspace and E �= X ′, then there exists an element
x0 ∈ X \ {0} that is annihilated by all functionals from E : f (x0) = 0 for all f ∈ E
(this last fact is equivalently restated as follows: if in a system of linear homogeneous
equations the number of unknowns is larger than the number of equations, then the
system has a non-zero solution).

Corollary 2. On a finite-dimensional normed space every linear functional is con-
tinuous.

Proof. Let X be a finite-dimensional normed space. Consider the space X∗ of con-
tinuous linear functionals on X as a linear subspace of the space X ′ of all linear
functionals on X . Now suppose that X∗ �= X ′. Then there exists an x0 ∈ X \ {0}
such that f (x0) = 0 for all f ∈ X∗. Hence, for this element there is no supporting
functional. This contradicts Theorem1. �
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Theorem 2. Let X and E be normed spaces, with X finite-dimensional. Then any
linear operator T acting from X into E is continuous.

Proof. Pick a basis {xk}nk=1 in X . For each x ∈ X denote by {x∗
k (x)}nk=1 the coeffi-

cients of the decomposition of the element x in the basis {xk}nk=1: x = ∑n
k=1 x

∗
k (x)xk .

We claim that x∗
k are linear functionals. Indeed, for any x, y ∈ X and any scalars a, b

we have that

n∑
k=1

(ax∗
k (x) + bx∗

k (y))xk = a
n∑

k=1

x∗
k (x)xk + b

n∑
k=1

x∗
k (y)xk

= ax + by =
n∑

k=1

x∗
k (ax + by)xk .

In view of the uniqueness of the decomposition with respect to a basis, ax∗
k (x) +

bx∗
k (y) = x∗

k (ax + by), i.e., linearity is established. By the preceding corollary, x∗
k ∈

X∗, k = 1, 2, . . . , n. Using the linearity of the operator T and the triangle inequality,
we get the estimate

‖T x‖ =
∥∥∥∥∥

n∑
k=1

x∗
k (x)T xk

∥∥∥∥∥ �
n∑

k=1

|x∗
k (x)| · ‖T xk‖ �

n∑
k=1

‖x∗
k ‖ · ‖T xk‖·‖x‖,

for all x ∈ X , i.e., ‖T ‖ �
∑n

k=1 ‖x∗
k ‖ · ‖T xk‖ < ∞. �

Exercises

1. On any infinite-dimensional normed space there exists a discontinuous linear
functional.

2. Consider �
(2)
1 , the two-dimensional analogue of the space �1. That is, �

(2)
1 is the

space of vectors x̄ = (x1, x2), equipped with the norm ‖x̄‖ = |x1| + |x2|. Show that
the supporting functional at the point x̄0 = (1, 0) is not unique. Describe all support-
ing functionals at this point.

3. Take for the normed space X the space R2, endowed with some norm. The unit
sphere with respect to this norm is a convex closed curve γ in R

2. Prove the equiv-
alence of the following conditions: (1) at each nonzero point of the space X there
exists a unique supporting functional; (2) the curve γ has at each of its points a
unique tangent line.
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9.2.2 The Annihilator of a Subspace

Let A be a subset of the normed space X . The annihilator of the subset A is the set
of functionals

A⊥ = { f ∈ X∗ : f (y) = 0 for all y ∈ A}.

Theorem 1. A⊥ is a closed subspace of the normed space X∗.

Proof. Let f1, f2 ∈ A⊥. Then for any y ∈ A and any λ1, λ2 we have (λ1 f1 +
λ2 f2)(y) = λ1 f1(y) + λ2 f2(y) = 0, so λ1 f1 + λ2 f2 ∈ A⊥. Linearity is established.
Let us prove that A⊥ is closed. Let f1, f2, f3, . . . ∈ A⊥, f = limn→∞ fn , and y ∈ A.
Then

| f (y)| = | f (y) − fn(y)| = |( f − fn)(y)| � ‖ f − fn‖ · ‖y‖ → 0 as n → ∞,

and so f ∈ A⊥. Therefore, a limit of functionals from A⊥ itself lies in A⊥. �

Let us list the simplest properties of the annihilator.

Theorem 2. (1) If A ⊂ B, then A⊥ ⊃ B⊥.

(2) A⊥ = (Lin A)⊥.

(3) Let B denote the closure of the set B. Then (B)⊥ = B⊥.

(4) A⊥ = (Lin A)⊥.

Proof. (1) If f ∈ B⊥, then f annihilates all elements of the set B, and hence all
elements of the set A.

(2) The inclusion A⊥ ⊃ (Lin A)⊥ follows from the first property. To prove
the opposite inclusion, let f ∈ A⊥, and let x = ∑n

k=1 λk xk be an arbitrary linear
combination of elements of the set A. Then f (x) = ∑n

k=1 λk f (xk) = 0. Hence,
f ∈ (Lin A)⊥.

(3) If the functional f vanishes on the whole set B and is continuous, then f also
vanishes on B. Therefore, (B)⊥ ⊃ B⊥. The opposite inclusion follows from the first
property.

(4) This assertion follows from properties (2) and (3). �

Theorem 3. For a closed subset Y of the normed space X, the following conditions
are equivalent:

1. Y = X.

2. Y⊥ = {0}.
Proof. We only need to prove that 2.=⇒ 1. So suppose that condition 1. is not
satisfied, i.e., Y is strictly included in X . Then the quotient space X/Y does not
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reduce to zero, and by Corollary1 in Subsection9.2.1, on X/Y there exists a non-
zero continuous linear functional g. Let q : X → X/Y be the quotient mapping,
q(x) = [x]. Define the functional f as the composition f (x) = g(q(x)). Since q is
surjective and g is not identically zero, f is also not identically zero. At the same
time, f ∈ Y⊥, so we have reached a contradiction. �

Exercises

1. Let A and B be subsets of the normed space X . Then (A ∪ B)⊥ = A⊥ ∩ B⊥.

2. Extend the result of the preceding exercise to the annihilator of the union of an
arbitrary (even infinite) number of sets.

3. Show that A⊥ is closed in X∗ not only in the sense of convergence in norm, but
also in the sense of pointwise convergence.

4. Give an example of two subsets A and B for which (A ∩ B)⊥ �= A⊥ ∪ B⊥.

5. Prove that (A ∩ B)⊥ ⊃ A⊥ ∪ B⊥. Deduce from this the inclusion (A ∩ B)⊥ ⊃
Lin (A⊥ ∪ B⊥).

6. Give an example of two subsets A and B for which (A ∩ B)⊥ �= Lin
(
A⊥ ∪ B⊥)

.

7. Give an example of two closed subspaces A, B ⊂ X for which (A ∩ B)⊥ �=
Lin (A⊥ ∪ B⊥).

9.2.3 Complete Systems of Elements

A subset A of the normed space X is called a complete system of elements of the
normed space X if the closure of the linear span of the set A coincides with the whole
space X .1

Complete systems arise in various problems of mathematical analysis, when cer-
tain functions are to be approximated by simpler ones. For example, Weierstrass’
theorem asserting that the set of polynomials is dense in the space of continuous
functions on an interval can be stated as follows: the sequence of power functions
{1, t, t2, . . .} is complete in C[a, b]. In the theory of trigonometric series one estab-
lishes the completeness in the (complex) space C[0, 2π ] of the systems {eikt }∞k=−∞
and {1, cos t, sin t, cos 2t, ...}. Important examples of complete system are encoun-
tered in mathematical physics as systems of eigenfunctions of various differential
operators.

1Not to be confused with the notion of a complete system of elements of a linear space (see
Subsection5.1.1), the definition of which does not include the word “closure”.
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Theorem3of the preceding subsection can be recast as the following completeness
criterion for systems of elements.

Theorem 1. Let X be a normed space. A set A ⊂ X is a complete system of elements
if and only if A⊥ = {0}.
Proof. By item (4) in Theorem2 of Subsection9.2.2, the condition A⊥ = {0} is
equivalent to the condition (Lin A)⊥ = {0}, which in turn, by Theorem3 of Sub-
section9.2.2, is equivalent to the equality Lin A = X , i.e., the completeness of the
system of elements A. �

This criterion often allows one to reduce the question of the completeness of a
system of elements in a complex normed space to problems in the theory of functions
of a complex variable. This is precisely theway inwhich one provesMüntz’s theorem
asserting the completeness of the system of power functions (let b > a > 0, λk > 0;
then the system { fk(t) = tλk }∞k=1 is complete in C[a, b] if and only if

∑∞
k=1 λ−1

k =
∞); Levinson’s theorem [27] asserting the completeness of the system of exponential
functions (see the monograph of B. Ya. Levin [26], Appendix 3); and many other
results.

Example 1. Let b > a > 0, λk ∈ C, k = 1, 2, . . . , suppose the sequence (λk) has a
limit point and define fk(t) = tλk , k = 1, 2, . . . . Then the system { fk}∞k=1 is complete
in C[a, b].
Proof. Consider a functional x∗ ∈ (C[a, b])∗ that annihilates all fk . Next, let the
function gz ∈ C[a, b] be given by gz(t) = t z and consider the function of a complex
variable F(z) = x∗(gz). We claim that F is holomorphic for all z ∈ C. Indeed,

F(z + Δz) − F(z)

Δz
= x∗

(gz+Δz − gz
Δz

)
.

Since as Δz → 0 the function (gz+Δz(t) − gz(t))/Δz = (t z+Δz − t z)/Δz converges
uniformly on [a, b] to f (t) := ∂(t z)/∂z = t z ln t , and since the functional x∗ is con-
tinuous precisely with respect to uniform convergence, we see that

F(z + Δz) − F(z)

Δz
→ x∗( f ) as Δz → 0.

Hence, holomophicity is established. Further, by construction, F(λk) = x∗(gλk ) =
x∗( fk) = 0. That is, the holomorphic function F vanishes on a sequence that has a
limit in its domain of holomorphy. By the uniqueness theorem, F(z) ≡ 0. In partic-
ular, F(n) = 0, n = 0, 1, 2, . . .. This means that the functional x∗ annihilates all the
elements of the complete system of functions {1, t, t2, . . .}. Hence, x∗ = 0. We have
thus proved that the annihilator of the system { fk}∞k=1 reduces to the null functional.
Therefore, by the proved criterion, the system { fk}∞k=1 is complete. �
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Exercises

1. Anormed space is separable if and only if it contains a countable complete system
of elements.

2. The system { fk}∞k=1 ⊂ C[a, b] from the example given above has the following
unusual property called overcompleteness: every infinite subsystem of it is again
complete.

9.3 Convex Sets and the Hahn–Banach Theorem
in Geometric Form

Throughout this section X will be a real normed space, and A, B will be nonempty
subsets of X . Accordingly, all linear functionals will be assumed to be real.

9.3.1 Some Lemmas

Lemma 1. 1. If A is an open set, then for any b ∈ X the set A + b is also open; if
A is a neighborhood of a point x ∈ X, then A + b is a neighborhood of the point
x + b.

2. If λ �= 0 and A is a neighborhood of the point x ∈ X, then λA is a neighborhood
of the point λx.

Proof. 1. The (parallel) translation map x �→ x + b is bijective and preserves the
distance between elements. Hence, translation takes balls into balls (of the same
radius), and open sets into open sets.

2. The homothety x �→ λx is bijective and multiplies the distance between ele-
ments by the factor |λ|. Hence, it takes balls again into balls, even though the radius
changes. �

Lemma 2. If A is an open set and B ⊂ X, then the set A + B is also open.

Proof. A + B = ⋃
b∈B (A + b), so A + B is represented as a union of open sets. �

Lemma 3. If A and B are convex, then so is A + B.

Proof. Let x1, x2 ∈ A + B and λ ∈ [0, 1]. By the definition of the sum of two sets,
there exist elements a1, a2 ∈ A and b1, b2 ∈ B such that x1 = a1 + b1 and x2 =
a2 + b2. Consequently,
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λx1 + (1 − λ)x2 = λ(a1 + b1) + (1 − λ)(a2 + b2)

= (λa1 + (1 − λ)a2) + (λb1 + (1 − λ)b2) ∈ A + B. �

Lemma 4. Let A be convex, a1, a2 ∈ A, λ ∈ (0, 1), and suppose a1 is an interior
point of A. Then the convex combination λa1 + (1 − λ)a2 is also an interior point
of A.

Proof. The set A is a neighborhood of the point a1. By Lemma1, λA is a neigh-
borhood of the point λa1, and λA + (1 − λ)a2 is a neighborhood of the point
λa1 + (1 − λ)a2. At the same time, in view of the convexity of the set A, λA + (1 −
λ)a2 ⊂ λA + (1 − λ)A ⊂ A. Hence, we have found a neighborhood of the point
λa1 + (1 − λ)a2 that is entirely contained in A. �

Corollary 1. The interior of a convex set A is convex.

Proof. It suffices to apply Lemma4 to the case when both a1 and a2 are interior
points. �

Corollary 2. If the interior
◦
A of the convex set A is not empty, then

◦
A is dense in A.

Proof. Let a be an arbitrary point of A. Fix x ∈ ◦
A. By Lemma4, the whole segment

λa + (1 − λ)x with λ ∈ (0, 1) consists of interior points. Since λa + (1 − λ)x → a

as λ → 1, we conclude that the point a belongs to the closure of the set
◦
A. �

Lemma 5. Suppose the linear functional f on X does not vanish identically. Let
θ ∈ R, let A ⊂ X be a set with nonempty interior, and suppose that f (a) � θ for all

a ∈ A. Then for all x ∈ ◦
A the strict inequality f (x) < θ holds. In particular, if A is

open, then f (x) < θ for all x ∈ A.

Proof. By hypothesis, there exists a vector e ∈ X such that f (e) > 0. Let x ∈ A be
an interior point. Choose an ε > 0 small enough for the point x + ε e to lie in A.
Then f (x) < f (x) + ε f (e) = f (x + ε e) � θ . �

Wenote that in Lemma5 the functional may be discontinuous, and the assumption
that the set A is open can be replaced by the more general algebraic assumption that
for every point x ∈ A the set A − x is absorbing.

9.3.2 The Separation Theorem for Convex Sets

All the statements collected in this subsection can be regarded as generalizations
of the following statement from ordinary geometry: Let A and B be disjoint convex
subsets in the plane. Then one can draw a line l such that A and B lie on different sides
with respect to l. To separate bodies in three-dimensional space we already need a



9.3 Convex Sets and the Hahn–Banach Theorem in Geometric Form 241

plane instead of a line. In higher dimensions (in particular, in an infinite-dimensional
space), the role of the separating line or plane is played by a hyperplane — a con-
stant level set of a linear functional. The reader can find more about hyperplanes in
Subsection5.3.3 and the exercises therein.

Lemma 1. Let A be an open convex subset of the normed space X and x0 ∈ X \ A.
Then there exists a functional f ∈ X∗\{0}, such that f (a) � f (x0) for all a ∈ A.

Proof. First we prove the lemma under the additional assumption that A contains
the zero element of the space X . In this case A will also contain some ball r BX ,
and so is an absorbing set. Accordingly, the Minkowski functional ϕA of the set A
is a convex functional (see Subsection5.4.2). The inclusion r BX ⊂ A means that
ϕA(x) � ‖x‖/r . As in the proof of Theorem1 of Subsection9.2.1, we consider the
space Y = Lin{x0}. We define on Y a linear functional f such that f (x0) = ϕA(x0).
We claim that on Y the linear functional f is majorized by the convex functional ϕA.
Indeed, for λ � 0 the positive homogeneity of the Minkowski functional implies
that f (λx0) = ϕA(λx0). At the same time, f (−λx0) = − f (λx0) = −ϕA(λx0) �
0 � ϕA(−λx0). Hence, the majorization condition f (t x0) � ϕA(t x0) is proved for
positive as well as negative t , i.e., it is satisfied for all elements of the space Y .

Now using the analytic form of the Hahn–Banach theorem, we extend f to the
entire space X with preservation of the linearity and the majorization condition.
The majorization condition means, in particular, that f (x) � ϕA(x) � ‖x‖/r , i.e.,
f ∈ X∗. Recall that, by the definition of the Minkowski functional, ϕA(a) � 1 for
all a ∈ A, and since x0 /∈ A, we have ϕA(x0) � 1. Combining these conditions, we
see that f (a) � ϕA(a) � 1 � ϕA(x0) = f (x0) for all a ∈ A. Moreover, f does not
vanish identically since, as we just verified, f (x0) � 1.

Thus, the lemma is established under the additional assumption that 0 ∈ A. The
general case reduces to the one already treated by translation. Namely, suppose a0 ∈
A. Consider the auxiliary set B = A − a0. Then B is a convexopen setwhich contains
0, and x0 − a0 /∈ B. Aswe already proved, there exists a functional f ∈ X∗ \ {0} such
that f (b) � f (x0 − a0) for all b ∈ B. Putting b = a − a0, where a ∈ A, in the last
inequality, we obtain f (a) − f (a0) = f (a − a0) � f (x0 − a0) = f (x0) − f (a0),
i.e., f (a) � f (x0). �
Theorem 1 (Hahn–Banach theorem— geometric form). Let A and B be disjoint
convex sets of the normed space X and let A be open. Then there exist a functional
f ∈ X∗ \ {0} and a scalar θ ∈ R such that f (a) < θ for all a ∈ A and f (b) � θ

for all b ∈ B.

Proof. Consider the auxiliary set C = A − B. By Lemmas2 and 3 of Subsec-
tion9.3.1, C is open and convex. Since A and B are disjoint, 0 /∈ C . Apply-
ing the last lemma to the set C and the point x0 = 0, we conclude that there
exists a functional f ∈ X∗ \ {0} such that f (a − b) � 0 for all a ∈ A and b ∈ B.
Put θ = supa∈A f (a). Since the inequality f (a) � f (b) holds for all a ∈ A and
b ∈ B, we also have θ = supa∈A f (a) � f (b) for all b ∈ B. The fact that f (a) < θ

for all a ∈ A follows from the obvious inequality f (a) � θ and Lemma5 of
Subsection9.3.1. �
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Corollary 1. Suppose A and B are disjoint convex subsets of the normed space X
and A has nonempty interior. Then there exist a functional f ∈ X∗ \ {0} and a scalar
θ ∈ R such that f (a) � θ for all a ∈ A and f (b) � θ for all b ∈ B. Moreover, at
the interior points of the set A there holds the strict inequality f (x) < θ .

Proof. The interior
◦
A of the set A is a convex open set. It remains to use the preceding

theorem and the fact that
◦
A is dense in A. �

By a direct application of Lemma5 of Subsection9.3.1, we deduce from the main
theorem the following

Corollary 2. Let A and B be a disjoint convex open subsets of the normed space
X. Then there exist a functional f ∈ X∗\{0} and a scalar θ ∈ R such that f (a) < θ

for all a ∈ A and f (b) > θ for all b ∈ B. �

Finally, we have

Corollary 3. Let A and B be disjoint convex closed subsets of the normed space
X and suppose that one of these sets is compact. Then there exist a functional f ∈
X∗\{0} and a scalar θ ∈ R such that f (a) < θ for all a ∈ A and f (b) > θ for all
b ∈ B.

Proof. Denote by r = infa∈A,b∈B ‖a − b‖ the distance between the sets A and B.
From the hypotheses it follows that r > 0. Consider the auxiliary sets A + r

3 BX and
B + r

3 BX , i.e., the r
3 -neighborhoods of the sets A and B, respectively. These auxiliary

sets are open, convex, and disjoint, so the preceding corollary applies. �

9.3.3 Examples

The fact that some of the conditions imposed on the sets A and B in the formulation
of the geometric form of the Hahn–Banach theorem are essential is obvious. For
instance, the sets cannot be separated if they intersect. Further, if for one of the sets
one takes a circle, and for the other the center of this circle, then it becomes clear why
the theorem is not valid for non-convex sets. At the same time, the importance of
the assumptions of topological character, such as, say, some of the sets being open,
closed, or compact, is not that obvious. Belowwe provide examples that demonstrate
the role of such conditions.

Example 1. Consider in the plane R2 the sets A = {(x, y) : y � 0} (the lower half-
plane) and B = {(x, y) : x > 0, y � 1

x } (the part of the first quadrant lying over the
graph y = 1/x). Then A and B are closed and disjoint, but to strictly separate them
by a line so that neither A nor B will intersect that line is impossible. That is, one
cannot drop the assumption that one of the sets in Corollary3 of Subsection9.3.2 is
compact. True, in this example the abscissa axis separates the sets in the sense of the
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geometric form of the Hahn–Banach theorem: the sets lie on different sides of the
line, and only one of them intersects the line. In the next example even this type of
separation fails.

Example 2. Consider in the plane R2 the sets A = {(x, 0) : x � 0} (the closed pos-
itive half-line of the abscissa axis) and B = {(x, y) : y < 0} ∪ {(x, 0) : x < 0} (the
union of the open lower half-plane and the strictly negative half-line of the abscissa
axis). These are disjoint convex sets, one of which is closed. As the same time, they
cannot be strictly separated by a line: the only line with respect to which A and B lie
(non-strictly) on different sides is the abscissa axis, but both sets intersect this axis.

Finally, let us give an example of disjoint convex sets for which no hyperplane
that separates them even non-strictly exists. Such an example can only live in an
infinite-dimensional space.

Example 3. Consider the linear space P of all polynomials with real coefficients.
Take for A the set of all polynomials with strictly negative leading coefficient, and
for B the set of all polynomials with non-negative (� 0). These sets are convex and
disjoint. We will show that for any non-zero linear functional f on P there exists
no scalar θ ∈ R such that f (a) � θ for all a ∈ A and f (b) � θ for all b ∈ B. First
we note that the monomials pn(t) = tn , n = 0, 1, 2, . . ., form a Hamel basis in P .
Hence, a functional f is uniquely determined by its values on pn; we denote f (pn)
by fn .

Suppose that f (a) � θ for all a ∈ A and f (b) � θ for all b ∈ B. Then, in partic-
ular, since 0 ∈ B, it follows that 0 = f (0) � θ , i.e., θ � 0. Next, for any ε > 0 we
have ε p0 ∈ A and ε f0 = f (ε p0) � θ . Letting ε → 0, we conclude that θ � 0, i.e.,
θ = 0. Further, each of the monomials pn lies in B, and so fn = f (pn) � 0. On the
other hand, for any ε > 0 we have pn − εpn+1 ∈ A. Consequently, fn − ε fn+1 =
f (pn − ε pn+1) � 0, whence, upon letting ε → 0, we obtain that fn � 0. Therefore,
all fn are equal to 0, and so f = 0.

Exercises

1. Verify that in Examples1–3 of Subsection9.3.3 the sets A and B are convex.

A family of sets is said to be linked if any two members of the family intersect.
We say that a Banach space X has the linked balls property if every linked family
of non-empty closed balls (with arbitrary centers and arbitrary radii) has non-empty
intersection. Prove that

2. The real line R has the linked balls property, but C does not.

3. The real space �∞ has the linked balls property.
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A Banach space E is said to be 1-injective if for operators acting in E , the
following analogue of the Hahn–Banach extension theorem holds: for any subspace
Y of an arbitrary normed space X and any operator T ∈ L(Y, E), there exists an
operator T̃ ∈ L(X, E) such that T̃ (y) = T (y) for all y ∈ Y and ‖T̃ ‖ = ‖T ‖.

If in this last definition we remove the condition ‖T̃ ‖ = ‖T ‖, then we arrive at
the more general concept of injective space.

4. If the Banach space E has the linked balls property, then E is 1-injective (I.
Nachbin, 1950). In particular, the space �∞ is 1-injective.

5. Prove the injectivity of the space �∞ without using the linked balls property, based
only on the Hahn–Banach extension theorem.

6. Suppose that in the plane there are given N convex closed bounded sets, any three
of which intersect. Then all N sets have a common point (E. Helly, 1936).

7. Show that in the preceding exercise the assumption that the sets are closed can
be discarded.

8. Suppose that in the plane there is given an infinite family of convex closed sets,
one of which is bounded, and with the property that any three sets of the family
intersect. Then the whole family has a non-empty intersection.

9. Give an example showing that in the formulation of the preceding statement the
boundedness assumption cannot be discarded.

10. Formulate and prove a version of Helly’s theorem for sets in n-dimensional
space.

11. Using Helly’s theorem, solve Exercise10 of Subsection1.3.3: in the Euclidean
plane any set A of unit diameter can be included in a disc U of radius 1/

√
3 (Jung’s

Theorem).

9.4 Adjoint Operators

9.4.1 The Connection Between Properties of an Operator and
Those of Its Adjoint

Let X and E be normed spaces, and T ∈ L(X, E). The adjoint (also referred to in the
literature as the dual, or conjugate) of the operator T is the operator T ∗ : E∗ → X∗
that sends each functional f ∈ E∗ into the functional T ∗ f = f ◦ T . In other words,
the functional T ∗ f ∈ X∗ acts according to the rule (T ∗ f )(x) = f (T x).
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Lemma 1. For any element e ∈ E we have ‖e‖ = sup f ∈SE∗ | f (e)|.
Proof. For every f ∈ SE∗ , it holds that | f (e)| � ‖ f ‖ · ‖e‖ = ‖e‖, and so
sup f ∈SE∗ | f (e)| � ‖e‖. To obtain the opposite inequality, we use the existence of
a supporting functional f0 at the point e. By the definition of a supporting functional
(Subsection9.2.1), f0 ∈ SE∗ and f0(e) = ‖e‖. We have sup f ∈SE∗ | f (e)| � | f0(e)| =
‖e‖. �

Theorem 1. The operator T ∗ is continuous and ‖T ∗‖ = ‖T ‖.
Proof. Indeed,

‖T ∗‖ = sup
f ∈SE∗

‖T ∗ f ‖ = sup
f ∈SE∗

sup
x∈SX

|(T ∗ f )(x)|

= sup
x∈SX

sup
f ∈SE∗

| f (T x)| = sup
x∈SX

‖T x‖ = ‖T ‖. �

Theorem 2. The image and kernel of the operators T and T ∗ are connected by the
following relations:

(1) Ker T ∗ = (T (X))⊥;
(2) T ∗(E∗) ⊂ (Ker T )⊥.

Proof. (1)

( f ∈ Ker T ∗) ⇐⇒ (T ∗ f = 0) ⇐⇒ ((T ∗ f )x = 0 ∀x ∈ X)

⇐⇒ ( f (T x) = 0 ∀x ∈ X) ⇐⇒ ( f ∈ (T (X))⊥).

(2) Let g ∈ T ∗(E∗), i.e., g = T ∗ f for some f ∈ E∗. Then for every x ∈ Ker T
we have g(x) = (T ∗ f )(x) = f (T x) = 0, i.e., g ∈ (Ker T )⊥. �

Corollary 1. For the operator T ∗ to be injective it is necessary and sufficient that
T have dense image. In particular, if T is surjective, then T ∗ is injective. �

Corollary 2. If the operator T ∗ is surjective, then T injective. �

To prove Corollary1, it suffices to apply the first part of the preceding Theorems2
and 3 of Subsection9.2.2. Corollary2 follows from the second part of Theorem2.

Exercises

1. Let X , Y and Z be normed spaces, T1 ∈ L(X,Y ) and T2 ∈ L(Y, Z). Then
(T2T1)

∗ = T ∗
1 T

∗
2 .
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2. Give an example of an operator T ∈ L(X, E) for which T ∗(E∗) �= (Ker T )⊥.

3. If the operator T ∗ has dense image, then T is injective. The converse assertion is
not true. (In Chap. 17 we will see that the injectivity of the operator T is equivalent
to the image of T ∗ being dense, not in the norm topology, but instead in the weak∗
topology σ(X∗, X) introduced in that chapter.)

4. Let T ∈ L(X,Y ) be a bijective operator, T−1 ∈ L(Y, X). Then (T−1)∗ = (T ∗)−1.

9.4.2 The Duality Between Subspaces and Quotient Spaces

Let X be a normed space and Y be a subspace of X . Consider the operator R : X∗ →
Y ∗ (the restriction operator) which sends each functional f ∈ X∗ to its restriction to
the subspace Y . Since every functional given on Y can be extended to a functional
on X , the operator R is surjective. The kernel of R coincides with Y⊥. Denote by
U the injectivization of the operator R. By the definition of the injectivization, U ∈
L(X∗/Y⊥,Y ∗), and if f ∈ X∗ and [ f ] is the corresponding element in the quotient
space X∗/Y⊥, the functionalU [ f ] acts on the element y ∈ Y by the rule (U [ f ])(y) =
f (y). The operator U is bijective (being the injectivization of a surjective operator)
and is called the canonical isomorphism of the spaces X∗/Y⊥ and Y ∗.

Theorem 1. The canonical isomorphismof the spaces X∗/Y⊥ andY ∗ is an isometry,
i.e., ‖U [ f ]‖ = ‖[ f ]‖ for all [ f ] ∈ X∗/Y⊥.

Proof. U [ f ] is a continuous linear functional given on the space Y . By the Hahn–
Banach theorem, U [ f ] admits an extension g to the whole space X with ‖g‖ =
‖U [ f ]‖. Since the functionals g and f coincide on Y , [ f ] = [g].We have ‖U [ f ]‖ =
‖g‖ � ‖[g]‖ = ‖[ f ]‖. Conversely, the restriction operator R does not increase the
norm of functionals, i.e., ‖R‖ � 1. Since U is the injectivization of the operator R,
we also have ‖U‖ � 1. Therefore, ‖U [ f ]‖ � ‖[ f ]‖. �

The equivalence class [ f ] is often identified with the functional U [ f ], and one
says that [ f ] acts on the element y ∈ Y by the rule [ f ](y) = f (y). In the framework
of this convention one can say that X∗/Y⊥ and Y ∗ are one and the same space:
X∗/Y⊥ = Y ∗.

An analogous description holds for the dual of a quotient space. The reader will
obtain this description, expressed by the equality (X/Y )∗ = Y⊥, by solving the
exercises below.
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Exercises

Let q : X → X/Y be the quotient mapping (i.e., q(x) = [x] for all x ∈ X ), and let
q∗ : (X/Y )∗ → X∗ be the adjoint operator. Show that:

1. The operator q∗ acts by the rule (q∗ f )(x) = f ([x]).
2. The image of the operator q∗ coincides with Y⊥.

3. The operator q∗ effects a bijective isometry between the spaces (X/Y )∗ and Y⊥.

Let j be the natural operator which embeds the subspace Y in the ambient space
X ( j (y) = y for all y ∈ Y ), and j∗ : X∗ → Y ∗ be its adjoint.

4. Verify that j∗ coincides with the restriction operator R.

Comments on the Exercises

Subsection9.1.2

Exercise3. Theorem4 in Subsection16.2.3 gives this result in the general setting
of topological vector spaces.

Exercise6. First, it is sufficient to consider [a, b] = [0, 1]. If a continuous func-
tion vanishes on a set, then it also vanishes on the closure of that set. Hence, with
no loss of generality we can assume that the set Δ is closed. Suppose λ (Δ) �= 0,
where λ is the Lebesgue measure on [0, 1]. Then the formula FΔ( f ) = ∫

Δ
f dλ

defines a non-zero continuous functional on the space Cp[0, 1]; Ker FΔ is not a
dense set in Cp[0, 1], and consequently VΔ ⊂ Ker FΔ is not dense. For the con-
verse assertion, suppose λ (Δ) = 0. Fix ε > 0 and an element f ∈ Cp[0, 1]. Let
C = max{| f (t)| : t ∈ [0, 1]}. The regularity of the Lebesgue measure gives us a
closed subset K ⊂ [0, 1] \ Δ with λ(K ) > 1 − ε. Consider on the closed set Δ � K
the continuous function g that equals 0 on Δ and equals f on K . Extend g to a
continuous function h on the whole segment [0, 1] with preservation of the condi-
tion |h| � C . Then h ∈ VΔ and ‖ f − h‖p � (2C)pε, which by the arbitrariness of
ε establishes the desired density of VΔ in Cp[0, 1].

Subsection9.3.3

Exercise2. Let [aγ , bγ ], γ ∈ �, be a family of pairwise intersecting intervals (the
balls inR are intervals). Then for any γ1, γ2 ∈ � one has aγ1 � bγ2 (otherwise the cor-
responding intervals would not intersect). This means that the number a = supγ∈�aγ

lies to the right of all left, and to the left of all right endpoints of the segments [aγ , bγ ],
i.e., it lies in the intersection of all these intervals.
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Exercise4. For the proof of this theorem of Nachbin and the main facts about
1-injective subspaces, the reader is referred to the textbook by L. Kantorovich and
G. Akilov [22, Chapter5, Section8.3]. For injective spaces one can consult the book
by J. Lindenstrauss and L. Tzafriri [28, Vol. 1, §2.f ].

Exercise6. One can proceed by induction on N . Let A1, . . . , AN be convex sets
satisfying the assumption of the exercise. By the induction hypothesis, B = ⋂N−1

k=1 Ak

is a nonempty closed convex set. Suppose the assertion is not true, i.e., B does not
intersect AN . Then there exists a line � such that B and AN lie strictly on different
sides with respect to �. Consider the sets Ck = Ak ∩ �, k = 1, 2, . . . , N − 1. Since
each of the sets Ak ∩ A j , 1 � k � j � N − 1, intersects both B and AN , convexity
implies that all the sets Ak ∩ A j , 1 � k � j � N − 1, intersect the line �. That is
to say, the sets Ck are nonempty and any two of them intersect. Since Ck are closed
segments on �, it follows (see Exercise2 and the comments to it) that the intersection
of all sets Ck , k = 1, 2, . . . , N − 1, is not empty. Then the set B ∩ � = ⋂N−1

k=1 Ck is
also nonempty, which contradicts our choice of the line �.

Exercise10. Statement: let A1, . . . , AN be convex, closed, bounded subsets ofRn ,
each n + 1 of which intersect. Then all the N sets have a common point. The proof
is completely analogous to the proof, given above, of the planar version of Helly’s
theorem.

For other versions of Helly’s theorem and its applications one can consult the
short book by Hadwiger and Debrunner [17].

Exercise11. Consider the collection of all discs of radius 1/
√
3 centered at points

of A. Any common point of this collection can serve as the center of the required
disc U .



Chapter 10
Classical Theorems on Continuous
Operators

10.1 Open Mappings

Let X,Y be Banach spaces, and T ∈ L(X,Y ). We say that T is an open operator,
or an open mapping, if the image T (A) of any open set A ⊂ X is an open set in Y .

Let us list a few elementary properties of open operators.

— Any open operator is surjective. Indeed, the image T (X) of the operator is open
in Y and forms a linear subspace. Hence, T (X) contains the linear span of some
ball in Y , i.e., T (X) = Y .

— If an open operator T is injective, then it is also bijective, and T−1 is a continuous
operator. (This is an immediate consequence of the definition of continuity in
terms of preimages of open sets.)

10.1.1 An Openness Criterion

Theorem 1. The operator T ∈ L(X,Y ) is open if and only if the image T (BX ) of
the unit ball contains some ball r BY with r > 0.

Proof. The necessity of the condition in the theorem follows from the fact that the
image T (BX ) of the unit ball under an open mapping is an open set that contains
the zero element of the space Y . Now let us prove the sufficiency. Let A ⊂ X be
an arbitrary open subset, and x0 ∈ A. Pick α > 0 such that the ball BX (x0, α) =
x0 + αBX is also contained in A. Then

T (A) ⊃ T x0 + αT (BX ) ⊃ T x0 + αr BY ,

that is, any point T x0 of the set T (A) has an entire neighborhood contained in T (A).
Hence, the set T (A) is open, and since A was arbitrary, this shows that the operator
T is open. �
© Springer International Publishing AG, part of Springer Nature 2018
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Exercises

1. Let X be a normed space, X1 a closed subspace of X . Then the quotient mapping
q : X → X/X1 is an open operator.

2. Is the set of open operators acting from the normed space X into the normed
space Y a linear subspace of L(X,Y )? Is this set closed in L(X,Y )? Open?

10.1.2 Ball-Like Sets

A subset A of a Banach space X is called ball-like if for any sequence of points
xn ∈ A and any sequence of scalars λn that satisfy the condition

∑∞
n=1 |λn| � 1, the

series
∑∞

n=1 λnxn converges to an element of A.
The verification of the properties of ball-like sets listed below is left to the reader.

1. Ball-like sets are bounded.
2. Any closed, convex, bounded, and balanced set in a Banach space is ball-like.
3. The open unit ball of a Banach space is ball-like. Hence, ball-like sets are not

necessarily closed.
4. The image of a ball-like set under a continuous linear operator is again a ball-like

set.

Theorem 2. Suppose the closure A of the ball-like set A in the Banach space X
contains the ball r BX , where r is some positive number. Then the set A itself contains
the ball r BX .

Proof. With no loss of generality, we can assume that r = 1 (one is reduced
to this case by replacing the set A by 1

r A). Fix x ∈ BX . We claim that x ∈ A.
Indeed, take an ε > 0 such that 1

1−ε
x ∈ BX , and put x0 = 1

1−ε
x . By hypothe-

sis, x0 ∈ A. Now take a point y0 ∈ A that approximates x0 to within ε, i.e.,
‖x0 − y0‖ < ε. The vector x1 = x0 − y0 lies in εBX , which in turn is contained
in εA. Pick y1 ∈ A such that ‖x1 − εy1‖ < ε2. Then the vector x2 = x1 − εy1 =
x0 − y0 − εy1 lies in ε2A. Continuing this process, we obtain vectors yn ∈ A, such
that ‖x0 − y0 − εy1 − · · · − εn yn‖ < εn+1. Then the series

∑∞
n=0 εn yn converges to

x0. Hence, since the set A is ball-like, the vector x = (1 − ε)x0 = ∑∞
0 (1 − ε)εn yn

lies in A, as we needed to prove. �

Exercise

Let X be a separable Banach space. Using the properties of ball-like sets and
Exercise4 in Subsection6.4.2, show that there exists a continuous linear operator
T : �1 → X for which T

(
B�1

) = BX . This implies the quotient universality of the
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space �1: for any separable Banach space X there exists a subspace Y ⊂ �1 such
that the quotient space �1/Y is isometric to the space X (see Exercise7 in Subsec-
tion6.4.2).

Remark 1. The idea of considering ball-like sets and using them in solving the
exercise above, as well as the proof of the Banach open mapping theorem given
below, are taken from a paper by T. Banakh, W.E. Lyantse, and Ya.V. Mykytyuk
[46].

10.1.3 The Banach Open Mapping Theorem

Theorem 1. Let X,Y be Banach spaces and T ∈ L(X,Y ) be a surjective operator.
Then T is an open mapping.

Proof. Consider the set A = T (BX ). By the openness criterion for mappings (see
Subsection10.1.1), it suffices to show that A contains some open ball r BY with r > 0.
Since A is a ball-like set (see Subsection10.1.2, properties 3 and 4), Theorem2 of
Subsection10.1.2 shows that it suffices to prove that the closure A of the set A
contains such a ball r BY . To do this, we resort to Baire’s theorem.

We use the surjectivity of the operator T and write the space Y as

Y = T (X) =
∞⋃

n=1

T (nBX ) =
∞⋃

n=1

nA .

By Baire’s theorem, A cannot be nowhere dense in Y , that is, A must contain some
ball of the form y0 + r BY . Since A is convex and symmetric, this implies that

A ⊃ 1

2

(
A − A

) ⊃ 1

2
((y0 + r BY ) − (y0 + r BY )) ⊃ r BY .

The theorem is proved. �

In the literature the Open Mapping Theorem just proved is sometimes called
the “Banach–Schauder1 theorem”.

1To Juliusz Schauder, a prominent member of the Lviv school of mathematics, we owe many
fruitful ideas. For example, Schauder was the first to use Baire’s theorem to prove the open mapping
theorem; to him also belongs the theorem on the compactness of the adjoint operator (Theorem3
in Subsection11.3.2), which lies at the foundations of the theory of compact operators. Also, it is
clearly hard to overestimate the importance of the fixed-point principle (Subsection15.1.4) and of
the concept of a Schauder basis (Subsection10.5). Thus, whenever hearing Schauder’s name, the
reader should be ready to grasp something valuable for his mathematical culture.
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10.2 Invertibility of Operators and Isomorphisms

10.2.1 Isomorphisms. Equivalent Norms

Definition 1. Let X and Y be normed spaces. A linear operator T : X → Y is called
an isomorphism if it is continuous, bijective, and the inverse operator T−1 : Y → X
is also continuous. The normed spaces X and Y are said to be isomorphic (denoted
in this book as X ≈ Y ), if there exists an isomorphism T : X → Y . A particular case
of isomorphism, isometry, was considered earlier in Subsection6.1.2.

As follows from the definition, an isomorphism preserves all topological struc-
tures: it maps opens sets into open sets, closed sets into closed sets, convergent
sequences into convergent sequences. The next theorem exhibits yet another exam-
ple of structure preserved by isomorphisms.

Theorem 1. Let X and Y be isomorphic normed spaces and let X be complete. Then
the space Y is also complete.

Proof. By hypothesis, there exists an isomorphism T : X → Y . To show that the
space Y is complete, take an arbitrary Cauchy sequence yn ∈ Y . Set xn = T−1yn .
Thanks to the linearity and continuity of the operator T−1, the vectors xn also form
a Cauchy sequence:

‖xn − xm‖ = ‖T−1(yn − ym)‖ � ‖T−1‖ · ‖yn − ym‖ → 0 as n,m → ∞.

Since the space X is complete, the sequence (xn) has a limit, which we denote by
x . In view of the continuity of the operator T , T x = limn→∞ T xn = limn→∞ yn .
Hence, the sequence yn has a limit. �

Theorem 2. Let X andY be finite-dimensional normed spaceswith dim X = dim Y .
Then X ≈ Y .

Proof. Since X and Y have the same dimension, there exists a bijective linear
operator T : X → Y . By Theorem2 of Subsection9.2.1, every operator on a finite-
dimensional space is continuous. In particular, the operators T and T−1 are contin-
uous, i.e., T is an isomorphism. �

Corollary 1. Every finite-dimensional normed space is complete. Every finite-
dimensional subspace of an arbitrary normed space is closed.

Proof. Let X be a finite-dimensional normed space, dim X = n. By the preceding
theorem, the space R

n (and in the complex case, Cn), equipped with the standard
norm ‖x‖ = (∑n

k=1 |xk |2
)1/2

, is isomorphic to the space X . Since R
n is complete,

Theorem1 shows that so is X . The fact that every finite-dimensional subspace is
closed is a particular case of the assertion that every complete subspace of a metric
space is closed. �
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In contrast to the finite-dimensional spaces, many of the infinite-dimensional
spaces introduced above in the text are pairwise not isomorphic. Thus, for instance,
among the spaces L p[0, 1] and �q with 1 � p, q � ∞ there are only two pairs of
isomorphic spaces: L2[0, 1] ≈ �2 (this fact will be established in Chapter 12), and
L∞[0, 1] ≈ �∞ (the proof of this by far not obvious theorem of A. Pełczyński can
be found, e.g., in the first volume of the book by Lindenstrauss and Tzafriri [28, p.
111]).

Definition 2. Two norms, ‖ · ‖1 and ‖ · ‖2, on the linear space X are said to be
equivalent (and then one writes ‖ · ‖1 ∼ ‖ · ‖2) if there exist constants C1,C2 > 0
such that C1‖x‖1 � ‖x‖2 � C2‖x‖1 for all x ∈ X .

Theorem 3. For two norms on a linear space X, ‖ · ‖1 and ‖ · ‖2, the following
conditions are equivalent:

(1) ‖ · ‖1 ∼ ‖ · ‖2;
(2) the identity operator I on X, regarded as an operator acting from the normed

space (X, ‖ · ‖1) into the normed space (X, ‖ · ‖2), is an isomorphism;

(3) the norms ‖ · ‖1 and ‖ · ‖2 give the same topology on X .

Proof. In order for the operator I , regarded as acting from (X, ‖ · ‖1) to (X, ‖ · ‖2),
to be continuous, it is necessary and sufficient that there exist a constantC2 > 0, such
that ‖x‖2 � C2‖x‖1 for all x ∈ X . Similarly, for the operator I−1 to be continuous, it
is necessary and sufficient that there exist a constantC1 > 0 such thatC1‖x‖1 � ‖x‖2
for all x ∈ X . This establishes the equivalence of conditions (1) and (2).

Condition (3) means that the spaces (X, ‖ · ‖1) and (X, ‖ · ‖2) have the same
families of open sets. It can be reformulated as follows: a set A is open in (X, ‖ · ‖1)
if and only if the set I (A) is open in (X, ‖ · ‖2). But since the operator I is bijective,
this is equivalent to the simultaneous continuity of the operators I and I−1. �

Theorem 4. Let X be a finite-dimensional linear space. Then all the norms on X
are equivalent.

Proof. Since every operator on a finite-dimensional space is continuous, it follows
that for any two norms ‖ · ‖1 and ‖ · ‖2 on X , the operator I figuring in item (2) of
Theorem3 above is an isomorphism. Hence, ‖ · ‖1 ∼ ‖ · ‖2.

Exercises

1. On any collection of normed spaces the isomorphism relation ≈ is an equivalence
relation.
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2. Let X , Y be normed spaces. If the operator T : X → Y is an isomorphism, then
the adjoint operator T ∗ : Y ∗ → X∗ is also an isomorphism. For non-complete spaces
the converse statement is not true (for the case of Banach spaces, see Exercises4 and
5 in Subsection10.2.3 below).

3. Show that on the set of all norms given on a fixed linear space, the equivalence
of norms is a genuine equivalence relation.

4. On every infinite-dimensional linear space there exist non-equivalent norms.

5. For each pair among the three norms on Rn listed below, prove their equivalence
and calculate the best possible constantsC1,C2 appearing in the equivalence of those
norms:

‖x‖1 =
n∑

k=1

|xk |, ‖x‖2 =
(

n∑

k=1

|xk |2
)1/2

, and ‖x‖∞ = max
1�k�n

|xk |.

6. For each pair among the three norms on C[0, 1] listed below prove that they are
not equivalent:

‖ f ‖1 =
∫ 1

0
| f (t)|dt, ‖ f ‖2 =

(∫ 1

0
| f (t)|2dt

)1/2

, and ‖ f ‖∞ = max
t∈[0,1] | f (t)|.

10.2.2 The Banach Inverse Operator Theorem

Theorem 1. Let X,Y be Banach spaces and T ∈ L(X,Y ) be a bijective operator.
Then the operator T−1 is continuous, i.e., T is an isomorphism.

Proof. Since T , in particular, is surjective, it is an open operator. And as we already
remarked, if an open operator is bijective, then T−1 is a continuous operator. �

This theorem is also referred to as the Banach inverse mapping theorem.
The inverse operator theorem admits the following useful reformulation: Let X,Y

be Banach spaces, T ∈ L(X,Y ). Suppose that for any b ∈ Y the equation T x = b
has a solution, and this solution is unique. Then the solution depends continuously on
the right-hand side. In other words, the solution is stable under small perturbations
of the right-hand side.
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Exercises

1. Using the injectivization of the operator (Subsection5.2.3 and Exercises5–6
in Subsection6.4.2), deduce the open mapping theorem from the inverse operator
theorem.

2. Suppose that on the linear space X there are given two norms, ‖ · ‖1 and ‖ · ‖2
such that ‖ · ‖1 � ‖ · ‖2, and the space is complete with respect to both these norms.
Then ‖ · ‖1 ∼ ‖ · ‖2.
3. In the infinite-dimensional Banach space X choose a linearly independent
sequence of vectors {en}∞n=1, and choose a set A ⊂ X , such that A ∪ {en}∞n=1 is a
Hamel basis of X . Now define the operator T : X → X by the following rule: for
x ∈ A put T x = x , and for the vectors {en}∞n=1 put T en = 1

n en , and then extend T to
the whole space X by continuity. Prove that T is a bijective linear operator, but not
an isomorphism. Which of the conditions of the inverse operator theorem does our
operator T fail to satisfy?

4. On every infinite-dimensional Banach space there exists a norm that is not equiv-
alent to the original norm, yet in which the space nevertheless remains complete.

The exercises given below show, in particular, that in the inverse operator theorem
— and hence in the open mapping theorem as well — the completeness of the space
is an essential condition.

5. Let P be the space of all polynomials (of arbitrarily large degree) with real
coefficients, equipped with the norm ‖a0 + a1t + · · · + antn‖ = |a0| + |a1| + · · · +
|an|. Define the operator T : P → P by the formula

T
(
a0 + a1t + · · · + ant

n
) = a0 + a1

2
t + · · · + an

n + 1
tn.

Show that T is continuous, but T−1 is discontinuous.

6. In the setting of Exercise6 in Subsection10.2.1, verify that ‖ · ‖1 � ‖ · ‖∞. Using
the fact that these norms are not equivalent, show that in the inverse operator theo-
rem one cannot just require that the space X be complete without imposing further
constraints on the space Y .

7. In the infinite-dimensional real Banach space X , choose a Hamel basis A. Mul-
tiplying, if necessary, the elements of this basis by positive scalars, one can ensure
that A ⊂ BX . Now as the unit ball of a new norm ‖ · ‖1 take the set conv(A ∪ (−A)).
Find the explicit expression of the norm ‖ · ‖1 in terms of the coefficients of the
expansion in the Hamel basis A. Prove that ‖ · ‖1 majorizes the original norm, but
that with respect to ‖ · ‖1 the space X is not complete. Based on this example, show
that in the inverse operator theorem one cannot merely require that the space Y be
complete without imposing further constraints on the space X .
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10.2.3 Bounded Below Operators. Closedness of the Image
Criterion

Let X,Y be normed spaces. The operator T ∈ L(X,Y ) is said to be bounded below
if there exists a constant c > 0 such that ‖T x‖ � c‖x‖ for all x ∈ X .

We immediately note that every bounded below operator is injective. Indeed, if
T x = 0 for some x ∈ X , then the inequality 0 = ‖T x‖ � c‖x‖ means that x = 0.
The reader will find examples of injective, but not bounded below operators in the
exercises.

Theorem 1. The operator T is not bounded below if and only if there exists a
sequence xn ∈ SX such that T xn → 0 as n → ∞.

Proof. If the operator is bounded below with some constant c > 0 and xn ∈ SX , then
since ‖T xn‖ � c‖xn‖ = c, the images T xn of the elements xn cannot converge to
zero. Conversely, if the operator is not bounded below, then, in particular, it is not
bounded below with constant c = 1/n. That is, for each n there exists a yn such
that ‖T yn‖ < 1

n ‖yn‖. Put xn = yn
‖yn‖ . This is the sought-for sequence: xn ∈ SX and

‖T xn‖ < 1
n → 0 as n → ∞. �

Theorem 2. The operator T is bounded below if and only if T establishes an iso-
morphism between the normed spaces X and T (X).

Proof. If T is bounded below, then it is injective. Hence, regarded as an operator
acting from X to T (X), T is bijective. Let c > 0 be the constant in the definition of
boundedness below. Then for any y ∈ T (X) we have

‖T−1y‖ � 1

c
‖T (T−1y)‖ = 1

c
‖y‖,

i.e., the operator T−1 : T (X) → X is continuous. Conversely, if T is an isomor-
phism of the spaces X and T (X), then there exists the operator T−1 : T (X) → X
and ‖T−1‖ < +∞. Then for every x ∈ X we have that ‖x‖ = ‖T−1(T x)‖ �
‖T−1‖‖T x‖, i.e., T is bounded below with the constant c = 1/‖T−1‖. �

In view of the last theorem, bounded below operators are also called isomorphic
embeddings.

Theorem 3. Let X be a Banach space and let the operator T ∈ L(X,Y ) be bounded
below. Then the image of T is closed in Y .

Proof. By the preceding theorem, the subspace T (X) is isomorphic to the space X .
Hence, T (X) is complete, and we know that complete subspaces are closed. �

In Banach spaces, for injective operators the converse also holds.
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Theorem 4. If X and Y are Banach spaces and the operator T ∈ L(X,Y ) has
closed image, then T is bounded below.

Proof. Since a closed subspace of a complete space is itself complete, T (X) is a
Banach space. By the Banach inverse operator theorem, the operator T is an isomor-
phism of the spaces X and T (X). �

Recall (see Subsection5.2.3 and also Exercises5 and 6 in Subsection6.4.2) that
the injectivization of the operator T ∈ L(X,Y ) is the operator T̃ : X/Ker T → Y
that acts on the elements of the quotient space by the rule T̃ [x] = T x . The operator
T̃ is continuous and ‖T̃ ‖ = ‖T ‖. Since the image of the injectivization coincides
with the image of the original operator, we obtain the following assertion.

Corollary 1. Let X and Y be Banach spaces. The operator T ∈ L(X,Y ) has closed
image if and only if its injectivization T̃ is bounded below. In other words, the image
of the operator T is not closed if and only if there exists a sequence [xn] ∈ SX/Ker T ,
such that T xn → 0 as n → ∞.

Using the fact that ‖[xn]‖ = dist(xn,Ker T ), we restate the last assertion without
using the term “quotient space”.

Theorem 5. Let X and Y be Banach spaces. An operator T ∈ L(X,Y ) has a non-
closed image if and only if there exists a sequence xn ∈ X with the following prop-
erties:

(1) dist(xn,Ker T ) = 1;

(2) ‖T xn‖ → 0 as n → ∞.

If the norm of an equivalence class is equal to 1, then in that class there are repre-
sentatives with norm arbitrarily close to 1. Hence, one can add another condition:

(3) ‖xn‖ → 1 as n → ∞. �

Exercises

Let X, E be Banach spaces and T ∈ L(X, E).

1. For the operator T ∗ to be bounded below with a constant c it is necessary and
sufficient that T (BX ) ⊃ cBE .

2. For the operator T to be bounded below with constant c it is necessary and
sufficient that T ∗(BE∗) ⊃ cBX∗ .

3. For the operator T ∗ to be surjective it is necessary and sufficient that the operator
T be bounded below.
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4. For the operator T to be surjective it is necessary and sufficient that the operator
T ∗ be bounded below.

5. For the operator T to be an isomorphism it is necessary and sufficient that the
operator T ∗ be an isomorphism.

6. For the operator T ∈ L(X, E) to be non-invertible it is necessary and sufficient
that one of the following mutually exclusive cases holds:

— T is not injective;

— T is injective, but not bounded below;

— T is bounded below, but not surjective.

7. The last of the cases listed in the preceding exercise means, in particular, that the
operator T ∗ is not injective.

8. On the example of the integration operator T : C[0, 1] → C[0, 1], (T f )(t) =∫ t
0 f (τ )dτ , convince yourself that a continuous linear operator can be simultaneously
injective and not bounded below. Compare this example with the result of Exercise2
in Subsection6.4.1.

Let g ∈ C[0, 1] be a fixed function. Define the operator Tg : C[0, 1] → C[0, 1]
of multiplication by the function g by the rule Tg( f ) = f · g. Verify that:
9. Tg is continuous and ‖Tg‖ = ‖g‖.
10. Tg is injective if and only if the set g−1(0) has no interior points.

11. Tg is bounded below if and only if the function g is everywhere different from
zero.

12. Now consider the multiplication operator Tg by the function g ∈ C[0, 1] as an
operator acting from L1[0, 1] to L1[0, 1]. What is the norm of this operator equal to?
What do the injectivity and boundedness below criteria look like in the present case?
And the closedness of the image criterion? Do the answers change if g ∈ L∞[0, 1]?

10.3 The Graph of an Operator

10.3.1 The Closed Graph Theorem

Let X and Y be normed spaces. Then their Cartesian product X × Y is a linear space
with respect to componentwise addition and multiplication by scalars. We define a
norm on X × Y by the formula ‖(x, y)‖ = ‖x‖ + ‖y‖. It is readily verified that this
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expression satisfies the norm axioms; that convergence in this norm coincides with
the component-wise convergence: (xn, yn) → (x, y) in X × Y if and only if xn → x
in X and yn → y in Y ; and that if X and Y are Banach spaces, then their Cartesian
product X × Y is also a Banach space.

The graph of the linear operator T : X → Y is the set�(T ) = {(x, T x) : x ∈ X}.
We leave it to the reader to verify that the graph of a linear operator is a linear subspace
of the space X × Y .

Theorem 1 (Closed graph theorem). Let X and Y be Banach spaces. The linear
operator T : X → Y is continuous if and only if its graph is closed in X × Y .

This theorem is usually applied in the following, more detailed formulation: T is
continuous if and only if, for any sequence xn ∈ X , if xn → x in X and T xn → y in
Y as n → ∞, then y = T x (in other words, if the sequence (xn, T xn) of points of
the graph �(T ) converges to the point (x, y) ∈ X × Y , then (x, y) ∈ �(T )).

Proof. Suppose T is continuous and xn → x . Then T xn → T x . If we also have
T xn → y, then y = T x .

Conversely, suppose �(T ) is a closed subspace of the space X × Y . Then �(T )

is a Banach space. Consider the auxiliary operatorU : �(T ) → X acting by the rule
U (x, T x) = x . Since‖U (x, T x)‖ = ‖x‖ � ‖x‖ + ‖T x‖ = ‖(x, T x)‖, the operator
U is continuous (and ‖U‖ � 1). Moreover, since U is bijective, the inverse opera-
tor theorem shows that the norm ‖U−1‖ is finite. Therefore, ‖T x‖ � ‖(x, T x)‖ =
‖U−1x‖ � ‖U−1‖ · ‖x‖, which proves the requisite continuity of the operator T . �

Exercises

1. Verify that the definitions of the Cartesian product of normed spaces and of
the graph of an operator agree with the definitions considered in Exercises4–7 of
Subsection1.3.1.

2. According to Exercise6 of Subsection1.3.1, for non-linear mappings the closed
graph theorem fails. Where in the proof of the closed graph theorem is the linearity
of the operator T used?

3. Give an example showing that in the closed graph theorem the completeness
assumption cannot be discarded.

4. The space �1 × �1 is isometric to �1.

5. The space c0 × c0 is isomorphic, but not isometric, to c0.

6. Show that the following norms on X × Y are equivalent to the original norm:
‖(x, y)‖∞ = max{‖x‖, ‖y‖}, and ‖(x, y)‖2 = (‖x‖2 + ‖y‖2)1/2.
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10.3.2 Complemented Subspaces

Let X be a linear space and X1, X2 be subspaces of X . We say that the space X
decomposes into the direct sum of the subspaces X1 and X2 (brief notation: X =
X1 ⊕ X2), if any element x ∈ X admits a unique representation as a sum x = x1 + x2
with x1 ∈ X1 and x2 ∈ X2.

Theorem 1. For the decomposition X = X1 ⊕ X2 to hold it is necessary and suffi-
cient that the following two conditions be simultaneously satisfied:

(1) X = X1 + X2, i.e., every x ∈ X can be written in the form x = x1 + x2, with
x1 ∈ X1 and x2 ∈ X2;

(2) X1 ∩ X2 = {0}, i.e., the subspaces have trivial intersection.
Proof. Let us show that condition (2) is equivalent to the uniqueness of the represen-
tation x = x1 + x2. Suppose first uniqueness holds. Consider an arbitrary element
x ∈ X1 ∩ X2. Then we can write the two equalities 0 = 0 + 0 and 0 = x + (−x). In
both equalities the first term lies in X1, and the second in X2. Then the uniqueness
yields x = 0.

Conversely, let X1 ∩ X2 = {0}. Suppose that some x ∈ X admits two decom-
positions, x = x1 + x2 and x = x̃1 + x̃2, where x1, x̃1 ∈ X1 and x2, x̃2 ∈ X2. Then
x1 − x̃1 ∈ X1, and at the same time x1 − x̃1 = x̃2 − x2 ∈ X2. Consequently, x1 −
x̃1 ∈ X1 ∩ X2 = {0}, and so x1 = x̃1. Similarly, x2 = x̃2, and the uniqueness is estab-
lished. �

Recall (Subsection6.5.2) that a linear operator P : X → X is called a projector
onto the subspace X1 if P(X) ⊂ X1 and Px = x for all x ∈ X1. Clearly, if P is a
projector, then P(Px) = Px for all x ∈ X , i.e., P2 = P .

Theorem 2. Suppose the operator P : X → X satisfies the equality P2 = P. Then
P is a projector onto the subspace P(X); moreover, Q = I − P is a projector onto
the subspace Ker P, and X = P(X) ⊕ Ker P.

Proof. Let y ∈ P(X) be an arbitrary element of the image of P . Then y = Px with
x ∈ X , and Py = P(Px) = P2x = Px = y. This shows that P is a projector onto
P(X). Since the operator Q also satisfies the relation Q2 = Q, because (I − P)2 =
I − 2P + P2 = I − P , Q is a projector onto Q(X). We claim that Q(X) = Ker P .
Indeed, x ∈ Ker P ⇐⇒ Px = 0 ⇐⇒ Qx = x ⇐⇒ x ∈ Q(X).

It remains to verify that X = P(X) ⊕ Ker P . First, every element x ∈ X has
the representation x = Px + Qx . Since Px ∈ P(X) and Qx ∈ Ker P , we conclude
that X = P(X) + Ker P . By Theorem1, to complete the proof it remains to show
that P(X) ∩ Ker P = {0}. Suppose that x ∈ P(X) ∩ Ker P . Then, on the one hand,
x ∈ P(X), so that x = Px , and on the other hand x ∈ Ker P , so that Px = 0. Hence,
x = 0. �

Let X be a linear space, and let X1 and X2 be subspaces of X such that X = X1 ⊕
X2. Define the operator P : X → X by the following rule. Given x ∈ X , decompose
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it as x = x1 + x2, where x1 ∈ X1, x2 ∈ X2 (by assumption, this decomposition exists
and is unique), and then put P(x) = x1. Next, if x = x1 + x2 and y = y1 + y2 are the
decompositions of the vectors x and y, respectively, then ax + by = (ax1 + by1) +
(ax2 + by2) is the decomposition of the vector ax + by. Therefore, P(ax + by) =
ax1 + by1 = aPx + bPy, so P is a linear operator. Now, by construction, P(X) ⊂
X1, and for every x1 ∈ X1 the decomposition x1 = x1 + 0 means that Px1 = x1.
Hence, P is a projector onto the subspace X1; it is called the projector onto the
subspace X1 parallel to the subspace X2.

Theorem 3. Let X be a Banach space, X1 and X2 be closed 2 subspaces of X, and
X = X1 ⊕ X2. Then the projector P onto X1 parallel to X2 is a continuous operator.

Proof. This statement — the central result of the present subsection — can be
regarded as a typical example of application of the closed graph theorem.

We need to show that for every sequence xn ∈ X , if xn → x and Pxn → y as
n → ∞, then y = Px . Write xn = xn,1 + xn,2, with xn,1 ∈ X1 and xn,2 ∈ X2. By
definition, Pxn = xn,1. It follows that xn,1 → y as n → ∞, and since the subspace
X1 is closed, y ∈ X1. Next, xn,2 = xn − xn,1 → x − y as n → ∞. Again because
of closedness, but now of the space X2, we have x − y ∈ X2. Thus, the obvious
equality x = y + (x − y) yields the decomposition of x as a sum of vectors from
X1 and from X2. The first of these terms will be the projection of the vector x to X1

parallel to X2: y = Px . �
A closed subspace X1 of the Banach space X is said to be complemented if

there exists a closed subspace X2 ⊂ X (called a complement of X1) such that
X = X1 ⊕ X2. By the preceding theorem, the subspace X1 ⊂ X is complemented if
and only if there exists a projector P ∈ L(X, X) with P(X) = X1. Complemented
subspaces play an important role in the extension of operators (Subsection6.5.2). It is
easy to provide examples of complemented subspaces (see the exercises below), but
the justification of each particular example of non-complemented subspace requires
substantial efforts. A classical example of a non-complemented subspace is c0 as a
subspace of �∞. Another example, which arises naturally in the theory of Fourier
series, is provided in the exercises of Subsection10.4.3.

Exercises

1. Using the operator U : X1 × X2 → X , U (x1, x2) = x1 + x2, reduce Theorem1
to the following assertion: a linear operator is injective if and only if its kernel reduces
to zero.

2By definition, a subspace of a Banach space is a closed linear subspace, so the word “closed”
in the statement of this theorem is superfluous. We emphasize the closedness here because in the
previous chain of results we were speaking about subspaces of linear spaces, which were just linear
subspaces. Also, for a continuous projector P in a normed space X its image P(X) is automatically
closed, because it is equal to Ker(I − P).
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2. Suppose the Banach space X decomposes into a direct sum of two closed sub-
spaces X1 and X2. Then X1 × X2 ≈ X .

3. Show that the adjoint of a projector is also a projector. Describe the kernel and
image of the adjoint projector in terms of the kernel and image of the original pro-
jector.

4. Give an example showing that in the formulation of Theorem3 the completeness
assumption on the space X cannot be discarded.

5. Any one-dimensional subspace of a Banach space is complemented, and the
corresponding projector can be chosen so that ‖P‖ = 1.

6. Any finite-dimensional subspace of a Banach space is complemented.

7. Any closed subspace of finite codimension is complemented.

8. Let X1 be a subspace of the Banach space X , and X2 be a subspace of X1 such
that X2 is complemented in X . Then X2 is complemented in X1.

9. The space �∞ is complemented in any ambient Banach space.

10. A more general result: Suppose the subspace X1 of the Banach space X is
injective (see exercises in Subsection9.3.3). Then X1 is complemented in X .

11. Show that in C[−1, 1] the subspace of all even functions is complemented.

12. Show that in C[−1, 1] the subspace of all odd functions is complemented.

13. Show that in C[−1, 1] the subspace of all functions that vanish on the interval
[−1, 0] is complemented.

14. Let X1 be a complemented subspace of the Banach space X . Then any comple-
ment of X1 is isomorphic to the quotient space X/X1.

10.4 The Uniform Boundedness Principle and Applications

10.4.1 The Banach–Steinhaus Theorem on Pointwise
Bounded Families of Operators

Definition 1. Let X and Y be normed spaces. A family G ⊂ L(X,Y ) of continuous
linear operators is said to be pointwise bounded if for every x ∈ X it holds that
supT∈G ‖T x‖ < ∞.

The family G is said to be uniformly bounded if supT∈G ‖T ‖ < ∞.
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Theorem 1 (Uniform boundedness principle). Any pointwise bounded family of
continuous linear operators from a Banach space X into a Banach space Y is uni-
formly bounded.

Proof. Let G ⊂ L(X,Y ) be a pointwise bounded family. For each x ∈ X , define
Mx = supT∈G ‖T x‖ and An = {x ∈ X : Mx � n}. The sets An are closed and their
union is the whole space X . Therefore, by Baire’s theorem, at least one of the sets
An is not nowhere dense, and consequently contains some ball. That is, there exist
a number n ∈ N and a ball of the form BX (x0, r) = x0 + r BX such that for any
x ∈ x0 + r BX the inequality ‖T x‖ � n holds for all T ∈ G. Then for any x ∈ BX

and any T ∈ G,

‖T x‖ =
∥
∥
∥
∥
1

r
T (x0 + r x) − T x0

∥
∥
∥
∥ � 2n

r
.

Taking here the supremumover all x ∈ BX , we obtain that ‖T ‖ � 2n/r for all T ∈ G,
which establishes the claimed uniform boundedness of the family G. �

Exercises

1. Verify that the sets An introduced above are indeed closed.

2. Where in the proof have we used the fact that the space X is Banach?

3. Let P1 be the space of polynomials considered in Exercise9 of Subsection6.4.2,
and Dn : P1 → P1 be the n-th derivative operator. Show that the operators nDn form
a pointwise bounded, but not uniformly bounded family.

4. Give an example of a pointwise bounded, but not uniformly bounded family of
functions on the interval [0,1].

5. Deduce the uniform boundedness principle established above from the closed
graph theorem by using the following recipe. Let G ⊂ L(X,Y ) be a pointwise
bounded family. Consider the auxiliary space �∞(G × BY ∗) of all bounded func-
tions on G × BY ∗ , endowed with the sup-norm. Define the operator U : X →
�∞(G × BY ∗) by the formula (Ux)(T, y∗) = y∗(T x). This operator has a closed
graph, and so it is continuous. We have

sup
T∈G

‖T ‖ = sup
x∈BX

sup
T∈G

‖T x‖ = sup
x∈BX

sup
T∈G

sup
y∗∈BY∗

|y∗(T x)|

= sup
x∈BX

‖Ux‖ = ‖U‖ < ∞.
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10.4.2 Pointwise Convergence of Operators

Recall (Subsection6.4.3) that a sequence of operators Tn ∈ L(X,Y ) is said to con-
verge pointwise to the operator T ∈ L(X,Y ), if for any x ∈ X the sequence Tnx
converges to T x as n → ∞. Since a pointwise converging sequence is also point-
wise bounded, the next theorem is a direct consequence of the uniform boundedness
principle.

Theorem 1 (Banach–Steinhaus theorem). Any pointwise convergent sequence of
operators Tn ∈ L(X,Y ), acting from a Banach space X to a normed space Y , is
uniformly bounded. �

Let X and Y be normed spaces and A a subset of X . Naturally, the sequence
of operators Tn ∈ L(X,Y ) is said to converge pointwise on A to the operator T ∈
L(X,Y ) if limn→∞ Tnx = T x for all x ∈ A.

Theorem 2 (pointwise convergence criterion). If the uniformly bounded sequence
of Tn ∈ L(X,Y ), acting from the normed space X into the normed space Y , converges
pointwise on a dense subset A ⊂ X to an operator T ∈ L(X,Y ), then Tn → T
pointwise as n → ∞ on the whole space X.

Proof. LetM = supn ‖Tn − T ‖. Fix x ∈ X and ε > 0. Suppose a ∈ A approximates
x to within ε/M , i.e., ‖x − a‖ � ε/M . Then

lim
n→∞ ‖(Tn − T )x‖ � lim

n→∞ ‖(Tn − T )(x − a)‖ + lim
n→∞ ‖(Tn − T )a‖

= lim
n→∞ ‖(Tn − T )(x − a)‖ � M

ε

M
= ε.

Since ε is arbitrary, this means that

lim
n→∞ ‖(Tn − T )x‖ = 0,

i.e., Tnx → T x as n → ∞.

Exercises

1. Let Tn, T ∈ L(X,Y ) and ‖Tn − T ‖ → 0 as n → ∞. Then the sequence Tn con-
vergence pointwise to T .

2. Suppose that X, Y are Banach spaces, Tn, T ∈ L(X,Y ), Un,U ∈ L(Y, Z), the
sequence Tn converges pointwise to T and the sequence Un converges pointwise to
U . Then the sequence UnTn converges pointwise to UT .
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3. Deduce the pointwise convergence criterion based on Exercise9 in Subsec-
tion1.2.1, using the following recipe. Consider the space �∞(N,Y ) of all bounded
sequences of elements of the space Y , equipped with the norm

∥
∥(yn)

∞
n=1

∥
∥ =

supn ‖yn‖. Then consider the subspace c0(N,Y ) ⊂ �∞(N,Y ) consisting of all
sequences that converge to 0 and show that it is closed. Define the operator
U : X → �∞(N,Y ) by the rule Ux = (T1x, T2x, . . .). If the sequence (Tn) con-
verges pointwise to 0 on a dense subset A, then U (A) ⊂ c0(N,Y ). If, in addition,
(Tn) is a bounded sequence of operators, then the operator U is continuous. There-
fore,U (X) ⊂ c0(N,Y ), i.e., the sequence (Tn) converges pointwise to 0 on thewhole
space X .

4. Suppose X, Y are metric spaces, A is a dense subset of X , and fn, f : X → Y
are functions satisfying the Lipschitz condition with the same constant C . Then
the pointwise convergence of the sequence ( fn) to f on A implies its pointwise
convergence on the whole space X .

5. Suppose X, Y are Banach spaces and A is a dense subset of X . Then for the
sequence of operators Tn ∈ L(X,Y ) to converge pointwise on X and its limit to be
a continuous operator, it is necessary and sufficient that the following conditions be
satisfied simultaneously:

(1) the sequence (Tn) is bounded;

(2) for any x ∈ A, the sequence of values (Tnx) is Cauchy.

6. Give an example of a pointwise bounded sequence of continuous functions on
the interval [0, 1] that converges to 0 on a dense subset, but does not converge to 0
on the whole interval.

7. Suppose the sequence of operators Tn ∈ L(X,Y ) converges pointwise on the
subset A ⊂ X to an operator T ∈ L(X,Y ). Then Tn converges to T on Lin A.

Remark 1. In view of this last exercise, in the pointwise convergence criterion estab-
lished above, the requirement that set is dense can be relaxed: it suffices to require
that the set Lin A is dense, i.e., A forms a complete system of elements.

8. For the sequence of operators Tn ∈ L(�1,Y ) to converge pointwise to the operator
T ∈ L(�1,Y ), it is necessary and sufficient that the following two conditions be
satisfied simultaneously: supn,m ‖Tnem‖ < ∞, and for every m ∈ N, Tnem → T em
as n → ∞ (for the terminology/notation, see Exercise6 in Subsection6.3.3; see also
Exercise4 in Subsection6.4.2).

9. Consider the functionals fn ∈ �∗
1, acting as fn (a1, a2, . . .) = an . Show that the

sequence ( fn) converges pointwise to 0, but ‖ fn‖ = 1, and so this sequence does not
converge to 0 in norm.
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10.4.3 Two Theorems on Fourier Series on an Interval

Theorem 1. Let (gn) be a uniformly bounded sequence of measurable functions on
the interval [a, b] which obeys the following condition:

∫
Δ
gn(t)dt → 0 as n → ∞

for any intervalΔ ⊂ [a, b]. Then ∫
[a,b] f (t)gn(t)dt → 0 as n → ∞ for any function

f ∈ L1[a, b].
Proof. SupposeM :=supn,t |gn(t)| < ∞.Define the linear functionals Fn on L1[a, b]
by the rule Fn( f ) = ∫

[a,b] f (t)gn(t)dt . Since |Fn( f )| � M
∫
[a,b] | f (t)| dt = M ‖ f ‖,

the functionals Fn are continuous and ‖Fn‖ � M . By hypothesis, the functionals Fn

converge to 0 on any function of the form 1Δ. Consequently, the sequence (Fn) con-
verges to 0 on all piecewise-constant functions. Since the set of piecewise-constant
functions is dense in L1[a, b] (see Exercise1 below), to complete the proof it remains
to apply the pointwise convergence criterion established in Subsection10.4.2. �

For a function f ∈ L1[−π, π ] one defines its Fourier coefficients f̂n , n ∈ Z, by
the formula

f̂n = 1

2π

∫ π

−π

f (t)e−int dt .

Corollary 1. For any integrable function f on [a, b] the integrals of the form
∫ b
a f (t)eiαt dt ,

∫ b
a f (t) sin αt dt , or

∫ b
a f (t) cosαt dt tend to 0 as α → ±∞. In

particular, the Fourier coefficients of any function f ∈ L1[−π, π ] tend to zero as
n → ∞.

Proof. Weapply the preceding theorem on the interval [a, b] to the functions gn(t) =
eiαn t , gn(t) = sin αnt , or gn(t) = cosαnt , with real αn such that αn → ∞ as n → ∞.
The fact that the condition

∫
Δ
gn(t)dt → 0 as n → ∞ is satisfied for any interval

Δ = [c, d] is verified by direct calculation of the corresponding integral. �
Denote by C(T) ⊂ C[−π, π ] the subspace consisting of the functions g that

satisfy g(−π) = g(π).3 Every function f ∈ C(T) can be extended from the interval
[−π, π ] to the whole real line as a continuous 2π -periodic function. Accordingly,
the elements of the space C(T) can be regarded as 2π -periodic functions defined on
the whole real line. We let Sn f denote the partial sums of the Fourier series of f :
(Sn f )(t) = ∑n

k=−n f̂keikt . For completeness of the exposition, we recall a formula
the reader is undoubtedly familiar with from calculus:

(Sn f )(t) = 1

2π

π∫

−π

f (t + τ)
sin((n + 1/2)τ )

sin(τ/2)
dτ. (1)

To prove this relation, we insert in the definition of the partial sums Sng the expres-
sions of the Fourier coefficients:

(Sn f )(t) =
n∑

k=−n

f̂ke
ikt = 1

2π

π∫

−π

f (x)
n∑

k=−n

eik(t−x)dx .

3The usage of the notation C(T) is explained in Exercise2 below.
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Now making the change of variables τ = x − t and using the fact that the integral
of a 2π -periodic function over any interval of length 2π coincides with the integral
over [−π, π ], we obtain

(Sn f )(t) = 1

2π

π∫

−π

f (t + τ)

n∑

k=−n

eikτdτ = 1

2π

π∫

−π

f (t + τ)
e−inτ − ei(n+1)τ

1 − eiτ
dτ .

To obtain formula (1) it remains to divide the numerator and denominator of the
integrand by eiτ/2 and use the formula eix − e−i x = 2i sin x .

As one knows from calculus, the Fourier series
∑+∞

n=−∞ f̂neint of any continu-
ously differentiable function f converges uniformly to f . On the other hand, if the
differentiability assumption is discarded this assertion is no longer true. Moreover,
there exist continuous functions whose Fourier series do not converge pointwise.
The next theorem shows how to establish the existence of such examples without
constructing them explicitly. A similar reasoning proves particularly useful in situ-
ations where the explicit construction and justification of an example is associated
with considerable difficulties.

Theorem 2. There exists a function g ∈ C(T) for which the sequence of values
(Sng)(0) of the partial sums of its Fourier series is not bounded.

Proof. Introduce the linear functionalsGn onC(T)by the ruleGn(g) = (Sng)(0).We
need to show that the sequence of functionals (Gn) is not pointwise bounded. In view
of the uniform boundedness principle, to this end it suffices to verify that the func-
tionals Gn are continuous, but their norms are not jointly bounded. By formula (1),

Gn( f ) = 1

2π

π∫

−π

f (t)
sin((n + 1/2)t)

sin(t/2)
dt.

Therefore (see Exercise3 below),

‖Gn‖ = 1

2π

π∫

−π

∣
∣
∣
∣
sin((n + 1/2)t)

sin(t/2)

∣
∣
∣
∣ dt = 1

π

π∫

0

∣
∣
∣
∣
sin((n + 1/2)t)

sin(t/2)

∣
∣
∣
∣ dt < ∞,

i.e., the functionals Gn are continuous. Let us estimate their norms from below:

‖Gn‖ � 2

π

π∫

0

∣
∣
∣
∣
sin((n + 1/2)t)

t

∣
∣
∣
∣ dt � 2

π

n−1∑

k=1

π(k+1)/(n+1/2)∫

πk/(n+1/2)

∣
∣
∣
∣
sin((n + 1/2)t)

t

∣
∣
∣
∣ dt

� 2

π

n−1∑

k=1

n + 1/2

π(k + 1)

π(k+1)/(n+1/2)∫

πk/(n+1/2)

| sin((n + 1/2)t)|dt

= 2

π

n−1∑

k=1

1

π(k + 1)

π(k+1)∫

πk

| sin τ |dτ = 4

π2

n−1∑

k=1

1

k + 1
� 4

π2

n+1∫

2

dx

x
= 4

π2
ln

n + 1

2
.
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Hence, ‖Gn‖ � 4

π2
ln

n + 1

2
→ ∞ as n → ∞. �

Exercises

1. Prove that the set of piecewise-continuous functions is dense in L1[−π, π ] by
using the following recipe. First, C[−π, π ] is dense in L1[−π, π ] (this we already
know, and even in a more general situation — see Theorem1 is Subsection8.3.3).
Further, every continuous function can be approximated in the metric of L1[−π, π ]
(and even uniformly) by piecewise-constant functions.

2. Every function g ∈ C[−π, π ] that satisfies g(−π) = g(π) corresponds to a
continuous function f on the unit circle T = {eit : t ∈ [−π, π ]} via the formula
f (eit ) = g(t). Verify that the map g �→ f is a bijective isometry between the sub-
space of functions g ∈ C[−π, π ] that satisfy g(−π) = g(π) and the space of all
continuous functions on T.

3. (A particular case of Exercise5 in Subsection8.4.4.) Given a function
v ∈ L1[−π, π ], define a linear functional V on C(T) by the formula V (g) =∫ π

−π
g(t)v(t)dt . Based on the theorem on the general form of linear functionals on

C(K ), show that ‖V ‖ = ∫ π

−π
|v(t)|dt .

4. Suppose the function f isLebesgue integrable on the interval [−π, π ] and satisfies
the Dini condition in the point x0 ∈ [−π, π ]: ( f (x0 + t) − f (x0)) /t ∈ L1[−π, π ].
Then the Fourier series of the function f converges at the point x0 to f (x0).

By solving the next chain of exercises the reader will be able, in particular, to
justify the fact that the subspace A(T) of C(T), defined as the closure in C(T) of the
span of the sequence of functions {eikt }∞k=0, is not complemented in C(T).

5. Interpret the partial sum Sn of the Fourier series as an operator acting from C(T)

into C(T): (Sng)(t) = ∑n
k=−n f̂keikt . Prove that Sn is a projector onto the subspace

En = Lin{eikt }nk=−n . Prove that ‖Sn‖ coincides with the norm of the functional Gn

figuring in the proof of Theorem2, and consequently ‖Sn‖ � 4
π2 ln

(
n+1
2

)
.

6. Let Uτ be the shift operator by τ in C(T): (Uτ f )(t) = f (t + τ). Verify that Uτ

maps C(T) bijectively into C(T) and that ‖Uτ f ‖ = ‖ f ‖ for all f ∈ C(T).

Let P ∈ L(C(T),C(T)) be a projector onto A(T). For each function f ∈ C(T)

consider the function (P̃ f )(t) = 1
2π

∫ π

−π
(Uτ PU−τ f )(t)dτ . Show that this “shift-

averaged” operator P enjoys the following properties

7. P̃ f ∈ C(T) for all f ∈ C(T).
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8. P̃ ∈ L(C(T),C(T)) and ‖P̃‖ � ‖P‖.
9. P̃ is a projector onto A(T).

10. The operator P̃ commutes with shifts: P̃Uτ = Uτ P̃ , for all τ . In particular,
if we define gk = P̃(eikt ), then gk(t + τ) = gk(t)eikτ . For t = 0 we have gk(τ ) =
gk(0)eikτ .

11. From Exercise9 above and the last equality it follows that P̃(eikt ) = eikt for
k � 0, while P̃(eikt ) = 0 for k < 0.

12. Let f ∈ C(T) and g = P̃ f . Then ĝk = f̂k for k � 0, while ĝk = 0 for k < 0.

13. Denote by Un the multiplication operator by eint : (Un f )(t) = f (t)eint . The
operators Un ∈ L(C(T)) are bijective isometries. The operator P̃ is related to the
partial sum of Fourier series operator Sn by the identity

Sn = Un+1(I − P̃)U−(2n+1) P̃Un

Consequently, ‖I − P̃‖ · ‖P̃‖ � ‖Sn‖.
14. In view of the arbitrariness of n in the preceding exercise and Exercise5, the
operator P̃ is discontinuous. This contradicts Exercise8 above. Thus, we proved that
there exists no projector of C(T) onto A(T), i.e., that the subspace A(T) of C(T) is
not complemented.

15. Let Pn ∈ L(C(T),C(T)) be a projector onto En = Lin{ eikt }nk=−n . Consider
again the shift-averaged operator, i.e., the projector

(P̃n f )(t) = 1

2π

∫ π

−π

(Uτ PnU−τ f )(t)dτ .

Prove that

‖Pn‖ � 4

π2
ln

(
n + 1

2

)

.

That is, this estimate is satisfied by any projector onto En , and not only by the partial
sum of Fourier series operator.

16. For each n ∈ N, fix some collection Kn ⊂ [−π, π) of 2n + 1 points of the
interval. For any function f ∈ C(T), denote by Tn f the trigonometric interpolation
polynomial of f : Tn f ∈ Lin{eikt }nk=−n , and (Tn f )(t) = f (t) in each point t ∈ Kn .
Based on the preceding exercise and the Banach–Steinhaus theorem, show that there
exists a function f ∈ C(T) for which the sequence Tn f of interpolants does not
converge to f .
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10.5 The Concept of a Schauder Basis

10.5.1 Definition and Simplest Properties

The reader is already familiar with one generalization of the concept of basis to
the infinite-dimensional case, namely, the Hamel basis, the existence of which was
established in Subsection5.1.3.Although any linear space contains aHamel basis, for
Banach spaces such Hamel bases turn out to be rather inconvenient in applications.
First of all, Hamel bases in infinite-dimensional Banach spaces are not countable
(Exercise4 in Subsection6.3.3). Further, despite the existence theorem, there is no
concrete infinite-dimensional Banach space in which an example of a Hamel basis is
known. Finally, Hamel bases are not at all connected with the topological structure
of the ambient space. For instance, if a sequence of elements of a Banach space
converges to a limit, the coefficients of the decomposition of its terms in a Hamel
basis do not necessarily converge to the coefficients of the limit element. For these
reasons, in the theory of Banach spaces the fundamental notion of basis is not that
of a Hamel basis, but that of a Schauder basis, the study of which we now begin.

Definition 1. The sequence of elements {en}∞1 of a Banach space X is called a basis
(or, equivalently, a Schauder basis) of X , if for any element x ∈ X there exists a
unique sequence of coefficients {an}∞1 such that the series

∑∞
n=1 anen converges to

x . The series
∑∞

n=1 anen is called the decomposition of the element x in the (or with
respect to) the basis {en}∞1 , and the numbers {an}∞1 are called the coefficients of the
decomposition.

An example of a basis is provided by any orthonormal basis in a Hilbert space.
This example will be treated in detail in Subsection12.3.3. Another example is the
standard basis in the space �1 that we already encountered in Exercise6 of Sub-
section6.3.3. In Theorem2 of Subsection14.3.3 we will show that the trigonomet-
ric system {1, eit , e−i t , e2i t , e−2i t , . . . } forms a basis in L p[0, 2π ] for 1 < p < ∞.
Numerous examples of bases in all classical separable Banach spaces, various classes
of bases, and their generalizations, can be found in the fundamental two-volume trea-
tise by I. Singer [39, 40]. A modern survey on various classes of bases in function
spaces is provided by T. Figiel and T. Wojtaszczyk in Chap.14 of the collection [20].

Exercises

1. The elements of a basis are linearly independent. In particular, no element of a
basis can be equal to 0.

2. Each basis {en}∞1 of a Banach space X is a complete system of elements in X :
Lin {en}∞1 = X .
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3. Using the properties of Taylor series, show that the sequence 1, t, t2, t3, . . . does
not form a basis in the space C[0, 1]. This will prove that, in contrast to the finite-
dimensional case, completeness and linear independence together are not sufficient
for the basis property to hold.

4. If the Banach space X has a Schauder basis, then X is necessarily infinite-
dimensional and separable.

Let X be one of the sequence spaces �p (1 � p � ∞) or c0. The standard basis
(also referred to as the canonical, or sometimes as the natural basis) of the space X is
the system of vectors {en}∞1 , where e1 = (1, 0, 0, . . .), e2 = (0, 1, 0, . . .),…. Prove
that:

5. The standard basis of the space c0 is a basis.

6. The standard basis of the space �∞ is not a basis of �∞.

7. For 1 � p < ∞, the standard basis of the space �p is a basis.

8. The space �∞ is not separable, hence it contains no Schauder basis.

The following question, formulated already by S. Banach, turned out to be far
from simple: does every separable infinite-dimensional Banach space have a basis?
A negative answer was provided in 1973 by P. Enflo [53] (see also [28, Sec. 2.d]).

10.5.2 Coordinate Functionals and Partial Sum Operators

Definition 1. Let {en}∞1 be a basis of the Banach space X , and let x ∈ X . Denote
by e∗

n(x) the coefficients of the decomposition of x in the basis {en}∞1 , and by Sn(x)

the n-th partial sum of the decomposition, i.e., Sn(x) =
n∑

k=1
e∗
k (x)ek .

Proposition 1. e∗
n are linear functionals on X, and Sn are linear operators acting

from X into X.

Proof. Let x, y ∈ X , and let a, b be arbitrary scalars. Then we have the following
decompositions:

x =
∞∑

k=1

e∗
k (x)ek, y =

∞∑

k=1

e∗
k (y)ek, ax + by =

∞∑

k=1

e∗
k (ax + by)ek .

Hence,
∞∑

k=1

(ae∗
k (x) + be∗

k (y))ek =
∞∑

k=1

e∗
k (ax + by)ek .

In view of the uniqueness of the decomposition of an element in a basis, we conclude
that ae∗

k (x) + be∗
k (y) = e∗

k (ax + by). �
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Henceforth the functionals e∗
n will be referred to as the coordinate functionals,

and the operators Sn as the partial sum operators with respect to the basis {en}∞1 .

Theorem 1 (Banach’s theorem). Let {en}∞1 be a basis of the Banach space X. Then
the partial sum operators Sn are continuous and supn ‖Sn‖ = C < ∞.

Proof. Let us introduce the auxiliary space E of all numerical sequences a = (an)
∞
1

for which the series
∑∞

n=1 anen converges. We equip the space E with the norm

‖a‖ = sup

{∥
∥
∥
∥
∥

N∑

n=1

anen

∥
∥
∥
∥
∥

: N = 1, 2, . . .

}

.

As we observed in Exercise1 of Subsection6.3.3, E is a Banach space. Define the
operator T : E → X by the rule

Ta =
∞∑

n=1

anen.

Then T is bijective, because {en}∞1 is a basis. In view of the obvious inequality
‖Ta‖ � ‖a‖, T is continuous. Hence, by the Banach inverse operator theorem, the
operator T−1 is also continuous. This means that there exists a constant C such that
‖a‖ � C‖Ta‖ for all a ∈ E . In other words, for any a ∈ E it holds that

sup

{∥
∥
∥
∥
∥

N∑

n=1

anen

∥
∥
∥
∥
∥

: N = 1, 2, . . .

}

� C

∥
∥
∥
∥
∥

∞∑

n=1

anen

∥
∥
∥
∥
∥

.

This last inequality establishes the requisite continuity and joint boundedness of the
partial sum operators. �

Corollary 1. Let {en}∞1 be a basis of the Banach space X. Then the coordinate
functionals e∗

n are continuous and supn
{‖en‖ · ‖e∗

n‖
}

< ∞.

Proof. It suffices to use the estimate

∥
∥e∗

n(x)en
∥
∥ = ‖(Sn − Sn−1)(x)‖ � (‖Sn‖ + ‖Sn−1‖) ‖x‖ � 2C ‖x‖ ,

where C is the constant from the preceding theorem. �

10.5.3 Linear Functionals on a Space with a Basis

Let X be a Banach space with a basis {en}∞1 . Then any linear functional f ∈ X∗ is
uniquely determined by its values on the elements of the basis. In other words, each
functional f can be identified with the numerical sequence ( f (e1), f (e2), . . .), and
accordingly the space X∗ can be identified with the set of all such sequences. This
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observation is more rigorously formulated in the following theorem, the easy proof
of which is left to the reader.

Theorem 1. For every f ∈ X∗, put U f = ( f (e1), f (e2), . . .). Denote by X̃ the set
of all numerical sequences of the form U f , f ∈ X∗. Then X̃ is a linear space with
respect to the coordinatewise operations, and U is a bijective linear mapping of the
space X∗ onto the space X̃ . Further, let f ∈ X∗, U f = ( f1, f2, . . .). Then for any
x = ∑∞

n=1 xnen ∈ X the action of the functional f on the element x can be calculated
by the rule f (x) = ∑∞

n=1 xn fn. �

Theorem 2. Let ( f1, f2, . . .) be a sequence of numbers. Set

‖( f1, f2, . . .)‖X̃ = sup

{∣
∣
∣
∣
∣

N∑

n=1

an fn

∣
∣
∣
∣
∣
: N ∈ N,

∥
∥
∥
∥
∥

N∑

n=1

anen

∥
∥
∥
∥
∥

� 1

}

.

Then for the sequence of numbers ( f1, f2, . . .) to belong to the space X̃ it is necessary
and sufficient that ‖( f1, f2, . . .)‖X̃ < ∞. Moreover, if f ∈ X∗ is a functional that
generates the sequence ( f1, f2, . . .), then ‖ f ‖ = ‖( f1, f2, . . .)‖X̃ .

Proof. The (non-closed) linear subspace Y = Lin{en}∞n=1 is dense in X . It is readily
seen that the condition ‖( f1, f2, . . .)‖X̃ < ∞ is equivalent to the following: the linear
functional f given on Y by the rule

f

(
N∑

n=1

anen

)

=
N∑

n=1

an fn

is continuous. The normof this functional is equal to ‖( f1, f2, . . .)‖X̃ . Since every lin-
ear functional given on Y uniquely extends by continuity (see Subsection6.5.1) to the
whole space X , this is equivalent with the existence of a functional f ∈ X∗, acting on
linear combinations of vectors of the basis by the rule f

(∑N
n=1 anen

)
= ∑N

n=1 an fn .

SinceU f = ( f1, f2, . . .), the last condition is equivalent to ( f1, f2, . . .) ∈ X̃ . Finally,
the equality ‖ f ‖ = ‖( f1, f2, . . .)‖X̃ simply means that the norm of the restriction of
the functional f ∈ X∗ to the dense subspace Y , that is, the number ‖( f1, f2, . . .)‖X̃ ,
coincides with ‖ f ‖. �

In the examples given below X̃ will be regarded as a normed space equipped with
the norm from Theorem2. Theorem 2 means, in particular, that the normed spaces
X∗ and X̃ are isomorphic, and the operator U effects this isomorphism (and is even
isometric).

Example 1. Let X = c0 with the standard basis {en}∞1 : e1 = (1, 0, 0, . . .), e2 =
(0, 1, 0, . . .),…. Then ‖( f1, f2, . . .)‖X̃ = ∑∞

n=1 | fn|, and so the space X̃ coincides

with �1. Indeed, in the present case the condition
∥
∥
∥
∑N

n=1 anen
∥
∥
∥ � 1 simply means

that all an are smaller than or equal in modulus to 1. Under this condition, the largest
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possible value of the quantity
∣
∣
∣
∑N

n=1 an fn
∣
∣
∣ is

∑N
n=1 | fn| (this value is attained for

an = sign fn). We have

‖( f1, f2, . . . , )‖X̃ = sup

{∣
∣
∣
∣
∣

N∑

n=1

an fn

∣
∣
∣
∣
∣
: N ∈ N,

∥
∥
∥
∥
∥

N∑

n=1

anen

∥
∥
∥
∥
∥

� 1

}

= sup

{
N∑

n=1

| fn| : N ∈ N

}

=
∞∑

n=1

| fn|.

Since, by Theorem2, the space X̃ can be identified with the dual space, the result
of the last example can be briefly expressed by the equality (c0)∗ = �1. In detail, this
is stated as the theorem on the general form of linear functionals on the space c0:
every element ( f1, f2, . . .) of the space �1 generates a continuous linear functional
f (x) = ∑∞

n=1 xn fn on c0, and the norm of the functional f coincides with the norm
of the element ( f1, f2, . . .) in �1. Conversely, every functional f ∈ (c0)∗ is generated
by an element ( f1, f2, . . .) ∈ �1 by the rule described above; moreover, the element
( f1, f2, . . .) is uniquely determined by the functional f .

Example 2. Let X = �1 with the standard basis {en}∞1 . Then

‖( f1, f2, . . .)‖X̃ = sup
n∈N

| fn|,

hence the space X̃ coincides with �∞. In other words, (�1)∗ = �∞.
Indeed, in the present case, if

∥
∥∑N

n=1 anen
∥
∥ � 1, then

∑N
n=1 |an| � 1, and

∣
∣
∑N

n=1 an fn
∣
∣ � supn∈N | fn|. Accordingly, ‖( f1, f2, . . . , )‖X̃ � supn∈N | fn|. On the

other hand, if in the definition of the norm on the space X̃ we replace the linear
combination

∑N
n=1 anen by a single basis vector en , then we obtain the estimate

‖( f1, f2, . . .)‖X̃ � | fn|. Taking the supremum over all n, we obtain the inequality
‖( f1, f2, . . . , )‖X̃ � supn∈N | fn|.

Exercises

1. Recast the equality (�1)
∗ = �∞ from Example 2 as a theorem on the general form

of linear functionals on the space �1.

2. Based on the completeness of the dual space (Subsection6.4.4) and Theorem2,
establish the completeness of the spaces �1 and �∞.

3. Let 1 < p < ∞, and let p′ be the conjugate (or dual) index of p: 1
p + 1

p′ = 1.
Using Hölder’s inequality for finite sums,

∣
∣
∣
∣
∣

N∑

n=1

an fn

∣
∣
∣
∣
∣
�

(
N∑

n=1

|an|p
)1/p (

N∑

n=1

| fn|p′
)1/p′

,
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derive the theorem on the general form of linear functionals on the space �p, 1 <

p < ∞: (�p)
∗ = �p′ . Prove the completeness of the space �p for 1 < p < ∞.

4. As we already observed in Exercise6 of Subsection10.5.1, the standard basis of
the space �∞ is not a basis of this space. Accordingly, for �∞ we cannot use the
description of functionals on a space with a basis. Show that there exists a functional
f ∈ (�∞)∗ that cannot be represented in the form f (x) = ∑∞

n=1 xn fn of a “scalar
product” with a fixed numerical sequence.

Comments on the Exercises

Subsection10.4.2

Exercise2. By the Banach–Steinhaus theorem, supn‖Un‖ = M < ∞. For every
x ∈ X it holds that

‖(UnTn −UT )x‖ � ‖Un(Tn − T )x‖ + ‖(Un −U )T x‖
� M‖(Tn − T )x‖ + ‖(Un −U )T x‖ → 0 as n → ∞.

Subsection10.4.3

Exercise4. Denote f (x0) by a. We have

(Sn f )(x0) − a = (Sn( f − a))(x0) = 1

2π

π∫

−π

( f (x0 + t) − a)
sin(n + 1/2)t

sin(1/2)t
dt.

Applying Theorem1 of Subsection10.4.3 to the functions gn(t) = sin(n + (1/2))t ,
we obtain the requisite condition (Sn f )(x0) → a. For an alternative formulation of
this argument, see Subsection14.2.1.

Exercises7–12. The shift-averaging construction described here is treated in a
more general form in the textbook by W. Rudin [38, Chapter5, Sections5.15–5.19].
The idea of using this construction to prove that the subspace A(T) is not comple-
mented in C(T) is also due to Rudin.

Subsection10.5.3

Exercise4. From Theorem3 of Subsection9.2.2 applied to X = �∞ and Y = c0 it
follows that there exists a nonzero functional f ∈ (�∞)∗ which annihilates the whole
space c0. This provides the sought-for example.



Chapter 11
Elements of Spectral Theory
of Operators. Compact Operators

11.1 Algebra of Operators

Let X and Y be Banach spaces. The space L(X,Y ) of continuous operators is itself
a Banach space when equipped with the operator norm. In this space the opera-
tions of addition of operators and multiplication of operators by numbers (scalars)
are defined in a natural manner. The reader is familiar with yet another operation,
namely, the composition (multiplication) of operators.We note that, generally speak-
ing, the composition is not defined for all pairs of elements of the space L(X,Y ).
The composition A ◦ B is not defined if the operator A is not defined on the image
of the operator B. The situation changes radically in the case when X = Y . The mul-
tiplication turns out to be well-defined, and the space L(X, X) (henceforth denoted
for simplicity by L(X)) is an algebra with respect to the operations of addition and
multiplication of operators. That is to say, with operators acting in one space one
can in some sense work as we would with numbers: add, subtract, multiply, pass to
a limit. This analogy with numbers proves rather fruitful. In many cases it allows
us to find simple reasoning methods that lead to important and useful results. To
understand how to use this analogy, it is convenient to forget for a while that we are
dealing with operators, andmake acquaintance with the general properties of Banach
algebras.

11.1.1 Banach Algebras: Axiomatics and Examples

A complex Banach space A endowed with a supplementary operation of multipli-
cation of its elements is called a Banach algebra if the multiplication obeys the
following axioms:

— a(bc) = (ab)c for any a, b, c ∈ A (associativity);
— a(λb) = (λa)b = λ(ab) for any a, b ∈ A and any scalar λ;
— a(b + c) = ab + ac and (a + b)c = ac + bc (distributivity);

© Springer International Publishing AG, part of Springer Nature 2018
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— ‖ab‖ � ‖a‖ · ‖b‖ for all a, b ∈ A (multiplicative triangle inequality);
— there exists an element e ∈ A (e is called the unit element of the algebraA), such

that multiplication by e leaves elements unchanged: ea = ae = a for all a ∈ A;
— ‖e‖ = 1.

One introduces in a natural manner the notions of subalgebra (a closed linear
subspace X ⊂ A that is stable under multiplication and contains the element e) and
of isomorphism of Banach algebras (i.e., an isomorphism T of Banach spaces which
additionally satisfies the condition T (ab) = T (a)T (b)).

One example of a Banach algebra has already been mentioned above — the
algebra L(X) of continuous linear operators in the Banach space X . The role of the
multiplication in L(X) is played by the composition of operators, and the identity
operator serves as the identity element of the algebra L(X). Let us list a few more
examples, leaving the verification of the Banach algebra axioms in these examples
to the reader.

Examples

1. The space C(K ) endowed with the usual multiplication of functions. The unit
element here is the function identically equal to 1.

2. The space L∞(�,�,μ) with the usual mutiplication.

3. The space �∞ with coordinatewise multiplication.

4. The space �1, where for the multiplication one takes the convolution of
sequences: recall that for x, y ∈ �1, x = (x0, x1, . . .), and y = (y0, y1, . . .), the con-
volution x ∗ y is defined as the vector ((x ∗ y)0, (x ∗ y)1, . . . , (x ∗ y)n, . . .) whose
coordinates are calculated by the rule (x ∗ y)n = ∑n

k=0 xk yn−k . The unit element is
the vector e = (1, 0, 0, . . .).

5. The space W consisting of the functions g ∈ C(T) whose Fourier coefficients
obey the condition

∑+∞
n=−∞ | f̂n| < ∞. On this space one considers the usual multi-

plication, and the norm is given by the formula ‖ f ‖ = ∑+∞
n=−∞ | f̂n|.

In examples 1–5, the multiplication is commutative: ab = ba for any elements
a, b ∈ A. Note, however, that commutativity of multiplication is not included among
the axioms of an algebra. Moreover, commutativity does not hold in the most impor-
tant example for us here: the algebra of operators L(X).

As in the case of numbers, for the elements of a Banach algebra the following
theorem on the limit of a product holds true.

Theorem 1. The multiplication in a Banach algebra is continuous as a function of
two variables. In other words, if an → a and bn → b as n → ∞, then anbn → ab
as n → ∞.

Proof. We have

‖anbn − ab‖ � ‖anbn − anb‖ + ‖anb − ab‖

≤ ‖an‖ · ‖bn − b‖ + ‖an − a‖ · ‖b‖ → 0 as n → ∞. �
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Exercises

1. A Banach algebra has only one unit element.

2. The spaces L2[0, 1] and L1[0, 1] are not Banach algebras with respect to the
multiplication of functions.

3. The spaces �2 and �1 are not Banach algebras with respect to the coordinatewise
multiplication of vectors.

4. The space W described in Example 5 is isomorphic, as a Banach space, to the
space �1. How do we need to define a multiplication operation on the space �1, so
that �1 with this operation will be isomorphic to W also as a Banach algebra?

5. For each a ∈ A, define the operator Ta : A → A by the formula Ta(b) = ab.
Verify that Ta is a continuous linear operator and ‖Ta‖ = ‖a‖.
6. EveryBanach algebraA is isomorphic to a subalgebra of the algebra L(A). Hence,
in a certain sense that algebra of operators is a universal example of a Banach algebra.

7. Give an example of two operators in the two-dimensional space C2 that do not
commute.

11.1.2 Invertibility in Banach Algebras

An element a of the Banach algebraA is said to be invertible if there exists an element
a−1 ∈ A, called the inverse of a, such that a−1a = aa−1 = e. If the inverse element
exists, it is unique. Indeed, if in addition to a−1 there is another inverse b ∈ A of a,
then b = be = baa−1 = ea−1 = a−1.

Note that if two elements a, b ∈ A are invertible, then their product ab is also
invertible, and (ab)−1 = b−1a−1.

Lemma 1. If for two elements a, b ∈ A both products ab and ba are invertible, then
the elements a and b themselves are invertible. In particular, if a, b ∈ A commute
and their product ab is invertible, then a and b are invertible.

Proof. In view of the symmetry of the condition, it suffices to verify that a is
invertible. Let us show that the element g = b(ab)−1 is the inverse of a. First,
ag = ab(ab)−1 = e. On the other hand, ga = b(ab)−1a = b(ab)−1aba(ba)−1 =
ba(ba)−1 = e. �

Lemma 2 (on small perturbations of the unit element). Suppose the element a
of the Banach algebra A satisfies the condition ‖a‖ < 1. Then the element e − a is
invertible, and the following inversion formula holds:

(e − a)−1 = e + a + a2 + · · · + an + · · · .
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Proof. Let us prove the inversion formula. Since ‖an‖ � ‖a‖n , the series e + a +
a2 + · · · + an + · · · is majorized by a convergent geometric progression, and hence
converges to some element b ∈ A. It remains to verify that b(e − a) = (e − a)b = e.
The two required equalities are derived by simply opening the parentheses:

(e + a + a2 + · · · ) (e − a) = (e + a + a2 + · · · ) − (a + a2 + · · · ) = e,

(e − a) (e + a + a2 + · · · ) = (e + a + a2 + · · · ) − (a + a2 + · · · ) = e. �

The inversion formula is the natural analogue of the formula for the sum of a geo-
metric progression.At the same time, care should be exercisedwhen similar analogies
are used: unlike numbers, elements of an algebra do not necessarily commute. Other
complications may also arise, connected with non-invertibility, the impossibility of
expressing the norm of a product in terms of the norms of its factors, etc.

Theorem 1 (on small perturbations of an invertible element). Suppose a, b ∈ A,
a is invertible, and ‖b‖ < 1/‖a−1‖. Then the element a − b is also invertible. In
other words, if a is invertible, then the whole ball of radius r = 1/‖a−1‖ centered at
a consists of invertible elements.

Proof. Write the element a − b as the product a − b = a(e − a−1b). The first fac-
tor is invertible by assumption, and the second satisfies the conditions of Lemma
2: ‖a−1b‖ � ‖a−1‖ · ‖b‖ < 1. Hence, the second factor is also invertible, which
establishes the invertibility of the element a − b. �

Corollary 1. The set of all invertible (respectively, non-invertible) elements of a
Banach algebra A is open (respectively, closed) in A. �

Theorem 2. Let a ∈ A be an invertible element and {an} be a sequence such that
an → a as n → ∞. Then for n large enough all the elements an are also invertible
and a−1

n → a−1 as n → ∞. In other words, the operation of passing to the inverse
is continuous in its domain of definition.

Proof. Via multiplication by a−1, the problem reduces to the case a = e. Thus, let
an → e as n → ∞. Denote e − an by bn . Fix a number N such that ‖bn‖ < 1/2 for
n > N . Then, thanks to Lemma 2, for n > N all the an are invertible and

‖a−1
n − e‖ = ‖(e − bn)

−1 − e‖ = ‖(e + bn + b2n + · · · ) − e‖ = ‖bn + b2n + · · · ‖

� ‖bn‖ · ‖e + bn + b2n + · · · ‖ � ‖bn‖
(

1 + 1

2
+ 1

4
+ · · ·

)

= 2‖bn‖ → 0

as n → ∞. �
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Exercises

1. If the series e + a + a2 + · · · + an + · · · converges, then the inversion formula
(e − a)−1 = e + a + a2 + · · · + an + · · · holds.

2. On the example of the operator on C
2 with a matrix of the form

(
0 0
M 0

)

show

that in the two-dimensional Euclidean spaceC2 there exist operators T with arbitrar-
ily large norm for which the series I + T + T 2 + · · · nevertheless converges. This
demonstrates that, in contrast to the scalar case, the inversion formula is applicable
to some elements with large norm.

3. In L(�2) the set of all non-invertible operators has nonempty interior.

4. In L(�2) the set of all non-invertible operators is not closed in the sense of point-
wise convergence.

5. If the space X is finite-dimensional, then the set of all non-invertible operators
has empty interior in L(X).

6. A(T) is a subalgebra of the algebra C(T) (for the definition, see the exercises in
Subsection10.4.3).

7. Give an example of a function f ∈ A(T) for which 1
f ∈ C(T) \ A(T).

This shows that an element can be non-invertible in a subalgebra, yet be invertible
in a wider algebra.

8. Give an example of a function f ∈ C[0, 1] that is non-invertible not only in
C[0, 1], but also in any other wider algebra.

9. Let a ∈ A and suppose the operator Ta from Exercise 5 of Subsection11.1.1 is
not bounded below. Then the element a is non-invertible not only in A, but also in
any other wider Banach algebra.

10. Based on the preceding exercise and Exercise 11 in Subsection10.2.3, show that
if the element f ∈ C[0, 1] is non-invertible in C[0, 1], then it also is non-invertible
in any other wider Banach algebra.

11. Based on the theorem on small perturbations of an invertible element, prove that
if an are invertible elements, an → a as n → ∞, and supn

∥
∥a−1

n

∥
∥ < ∞, then a is

also invertible.

An element a ∈ A is said to be right invertible if there exists an element b ∈ A
(called a right inverse) such that ab = e. Similarly, an element a ∈ A is said to be
left invertible if there exists an element d ∈ A (called a left inverse) such that da = e.
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12. If the element a ∈ A is both right and left invertible, then it is invertible, and
both its right inverse and its left inverse coincide with a−1.

13. On the example of the right-shift operator Sr ∈ L(�2), acting as Sr(x1, x2, . . .) =
(0, x1, x2, . . .), show that an operator can be left invertible, but not right invertible,
and that the left inverse is not necessarily unique.

14. On the example of the left-shift operator Sl ∈ L(�2), acting as Sl(x1, x2, . . .) =
(x2, x3, . . .), show that an operator can be right invertible, but not left invertible, and
that the right inverse is not necessarily unique.

11.1.3 The Spectrum

Definition 1. A complex number λ is said to belong to the spectrum of the element
a ∈ A if the element a − λe is not invertible. The set of all such points is called the
spectrum of the element a, and is denoted by σ(a). A complex number that does not
belong to the spectrum of a is called a regular point of the element a.

Theorem 1. The spectrum of any element a ∈ A has the following properties:

— σ(a) is closed in C;

— σ(a) is bounded and lies in the closed disc of radius ‖a‖ centered at 0.

Proof. Closedness. Letλn ∈ σ(a)be such thatλn → 0 asn → ∞. Then the elements
a − λne are not invertible, and neither is their limit a − λe, since the set of non-
invertible elements of a Banach algebra is closed (Corollary 1, Subsection11.1.2).
Hence, λ ∈ σ(a), so the spectrum is closed, as claimed.

Boundedness. Let |λ| > ‖a‖. Then a − λe = −λ(e − λ−1a), and the element
e − λ−1a is invertible by the lemma on small perturbations of the unit element.
Therefore, all complex numbers that are larger in modulus than the norm ‖a‖ of a
are regular points, hence all the points of the spectrum are not larger in modulus than
‖a‖.

Exercises

1. Prove that the spectrum of any element f ∈ C[0, 1] coincides with the set of
values (range) of the function f .

2. Describe the spectrum of an element of the algebra L∞[0, 1].
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The spectral radius of the element a is the number

r(a) = lim
n→∞ ‖an‖1/n .

3. Show thatσ(a) ⊂ r(a)D ⊂ ‖a‖ D, where D is the closed unit disc in the complex
plane (to do this, sharpen the lemma on small perturbations of the unit element).

4. Show that in the formula for the spectral radius the upper limit can be replaced
by the ordinary limit.

5. Show that r(a) is the minimal radius of a disc that contains the spectrum of the
element a.

6. Show that σ(a + te) = σ(a) + t , and σ(t A) = tσ(A).

11.1.4 The Resolvent and Non-emptyness of the Spectrum

The resolvent of the element a ∈ A is the function Ra : C \ σ(a) → A defined by
the formula

Ra(λ) = (a − λe)−1.

Properties of the resolvent: 1. Main (or first) resolvent identity:

Ra(λ) − Ra(μ) = (λ − μ)Ra(λ)Ra(μ).

Proof. We have

(λ − μ)(a − λe)−1(a − μe)−1 = (a − λe)−1 ((a − μe) − (a − λe)) (a − μe)−1

= (a − λe)−1 − (a − μe)−1. �

2. Commutativity: Ra(λ)Ra(μ) = Ra(μ)Ra(λ). This is an obvious consequence
of the main identity.

3. Continuity at each point λ of the domain of definition. This follows from the
continuity of the operations of addition, multiplication, and passage to the inverse
element (concerning the latter, see Theorem 2 in Subsection11.1.2).

4. The resolvent converges to 0 at infinity.

Proof. Letting λ → ∞ is allowed, since the spectrum is a bounded set; in the proof
we will take |λ| > 2‖a‖. Let us rewrite the resolvent as

Ra(λ) = −λ−1(e − λ−1a)−1.

Since |λ| > 2‖a‖, we have ‖λ−1a‖ < 1/2, and so we can apply to the element
e − λ−1a the inversion formula:
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Ra(λ) = −λ−1
(
e + λ−1a + λ−2a2 + · · · ) .

Passing to norms and using the triangle inequality, we obtain

‖Ra(λ)‖ <
1

|λ|
(
1 + 1

2
+ 1

4
+ · · ·

)
= 2

|λ| ,

which obviously converges to 0 as λ → ∞. �

Definition 1. Let D ⊂ C be an open set and E be a complex Banach space. A
function F : D → E is said to be differentiable at the point λ0 ∈ D if the limit

lim
λ→λ0

F(λ) − F(λ0)

λ − λ0

exists. As in the scalar case, this limit is called the derivative of the function F at the
point λ0 and is denoted by F ′(λ0). The function F(λ) is said to be analytic in the
domain D if it is differentiable at all points of D.

Proposition 1. The resolvent is analytic in its domain of definition.

Proof. We use the main resolvent identity to calculate the needed limit:

lim
λ→λ0

Ra(λ) − Ra(λ0)

λ − λ0
= lim

λ→λ0

Ra(λ)Ra(λ0) = (Ra(λ0))
2. �

Theorem 1 (Liouville’s theorem forBanach space-valued functions). If the func-
tion F : C → E is analytic and bounded, then it is constant.

Proof. Suppose F(z1) �= F(z2) for some points z1, z2 ∈ C. By the Hahn–Banach
theorem, there exists a functional f ∈ E∗ such that f (F(z1)) �= f (F(z2)). Consider
the auxiliary function g : C → C given by g(z) = f (F(z)).

In view of the continuity, the functional f can be switched with the limit symbol,
so the function g is analytic. Moreover, supz∈C |g(z)| � ‖ f ‖ · supz∈C ‖F(z)‖ < ∞.
Hence, by Liouville’s theorem for scalar-valued functions, g is a constant, so g(z1) =
g(z2). The contradiction we reached completes the proof of the theorem. �

We are now ready to prove the theorem for the sake of which we introduced the
notion of resolvent.

Theorem 2 (Non-emptyness of the spectrum). The spectrum of any element of a
Banach algebra is not empty.

Proof. We argue by reduction ad absurdum. Suppose the spectrum of the element
a ∈ A is empty. Then the domain of definition of the resolvent Ra is the entire
complex plane. Since the resolvent is continuous and tends to 0 at ∞, it follows that
Ra is bounded in the entire plane C. And since Ra is analytic in C, the conditions
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of Liouville’s theorem are satisfied. Hence, Ra = const. But limλ→∞ Ra(λ) = 0, so
necessarily Ra(λ) ≡ 0, which contradicts the definition of the resolvent: the values
of Ra are necessarily invertible elements of the algebra. �

Remark 1. The application of Liouville’s theorem here is not accidental. The analo-
gous theorem establishing that the spectrum of a square matrix is not empty is based
on the existence of a root of the equation det(A − λI ) = 0, which follows from
the fundamental theorem of algebra, in its turn most frequently proved by using
Liouville’s theorem.

Exercises

1. Calculate the spectrum and resolvent of the unit element.

2. Suppose the element a ∈ A satisfies the equation a2 = a (such elements are called
idempotent elements, or simply idempotents). Using the inversion formula, calculate
the resolvent of a. What kind of spectrum can an idempotent have?

3. Suppose the element a ∈ A satisfies for some n ∈ N the equation an = 0 (such
elements are called nilpotent elements, or simply nilpotents). Using the inversion
formula, calculate the resolvent and the spectrum of a.

4. Let λ ∈ σ(a), and let λn be regular points of the element a such that λn → λ as
n → ∞. Then ‖Ra(λn)‖ → ∞ as n → ∞.

5. Let σ(a) = {0} and suppose ‖Ra(λ)‖ � C |λ|−1, for all λ ∈ C \ {0}, whereC > 0
is some constant. Show that a = 0.

6. Suppose the Banach algebra A has the property that all its nonzero elements are
invertible. Based on the theorem on the non-emptiness of the spectrum, show that in
this case every element a ∈ A has the form a = λe for some λ ∈ C. In other words,
up to isomorphism, the only Banach algebra that is a field is the field C of complex
numbers.

11.1.5 The Spectrum and Eigenvalues of an Operator

Henceforth, up to the moment we will pass to the theme of “operators in Hilbert
space”, the letter X will stand only for a complex Banach space. In the present
subsection we will consider continuous linear operators in a space X , i.e., elements
of the algebra L(X). The spectrum of an operator is a particular case of the spectrum
of an element in an algebra: the number λ belongs to the spectrum of the operator
T ∈ L(X) if the operator T − λI is not invertible.

The number λ ∈ C is called an eigenvalue of the operator T ∈ L(X) if there exists
a non-zero element x ∈ X , called an eigenvector corresponding (or associated, or
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belonging) to the eigenvalue λ, if T x = λx . In this case (T − λI )x = 0, i.e., the
operatorT − λI is not injective, andhence is not invertible. Therefore, any eigenvalue
of the operator T belongs to the spectrum of T . However, besides non-injectivity, a
reason for the operator T − λI to be non-invertible is lack of surjectivity. Therefore,
generally speaking, the spectrum of an operator is not exhausted by its eigenvalues.
Moreover, even rather simple operatorsmay have no eigenvalues, while aswe already
know, the spectrum is always non-empty.

Example 1. Consider the operator T ∈ L (C [0, 1]), acting by the rule (T f )(x) =∫ x
0 f (t)dt . Suppose that T has an eigenvalueλwith eigenvector f . Then

∫ x
0 f (t)dt =

λ f (x), and so f (x) = λ f ′(x), f (0) = 0. This Cauchy problem has the unique solu-
tion f ≡ 0, so the operator T has no eigenvalues.

It goes without saying that similar examples are possible only in infinite-
dimensional spaces. Aswe know from linear algebra, every operator inCn is given by
a square matrix A, and the search for its eigenvalues reduces to solving the equation
det(A − λI ) = 0, which in turn is always solvable.

Let λ be an eigenvalue of the operator T ∈ L(X). The eigenspace (or eigensub-
space) corresponding (or associated, or belonging) to the eigenvalueλ is defined to be
the set Ker(T − λI ). In other words, the eigenspace corresponding to the eigenvalue
λ consists of the eigenvectors corresponding to λ, and zero.

Definition 1. A subspace Y ⊂ X is called an invariant subspace of the operator
T ∈ L(X), if T (Y ) ⊂ Y .

Eigenspaces are obvious examples of invariant subspaces. Conversely, knowing
invariant subspaces of an operator can help in the search for eigenvectors and eigen-
values. For example, if the operator T ∈ L(X) has a finite-dimensional invariant sub-
space Y , then the restriction of T to Y is already an operator in a finite-dimensional
space, so it has eigenvectors in this space.

Theorem 1. Suppose the operators A and T commute. Then any eigenspace of one
of these two operators is an invariant subspace of the other operator.

Proof. Let λ be an eigenvalue of A and Y = Ker (A − λI ) be the corresponding
eigensubspace. Take an arbitrary eigenvector x ∈ Y . We claim that T x ∈ Y , i.e.,
T x is also an eigenvalue of A corresponding to the eigenvalue λ. Indeed, A(T x) =
T (Ax) = T (λx) = λ(T x). �

Exercises

1. Verify that for the operator T in Example 1, 0 ∈ σ(T ).

2. In a finite-dimensional space X the injectivity and surjectivity of an operator
T ∈ L(X) are equivalent.
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3. In a finite-dimensional space the spectrum of an operator and the set of its eigen-
values coincide.

4. In a finite-dimensional space the invertibility of an operator is equivalent to its
right invertibility (do not confuse with the case of operators acting from one space
to another!).

5. The assertions of Exercises 2 and 4 above fail in the space �2 for the left-shift
operator V acting as V (x1, x2, . . .) = (x2, x3, . . .).

Let us introduce two more notions. A point λ is called an approximate eigenvalue
of the operator T if there exists a sequence of elements xn ∈ SX such that T xn −
λxn → 0 as n → ∞. For large n the elements xn are “almost” eigenvalues of the
operator T , though a genuine eigenvector corresponding to the number λ does not
necessarily exist.

6. The number λ belongs to the spectrum of the operator T if and only if one of the
following cases occur:

— λ is an eigenvalue of T , i.e., the operator T − λI is not invertible.
— λ is an approximate eigenvalue of T , i.e., the operator T − λI is not bounded

below.
— λ is an eigenvalue of the adjoint operator T ∗, i.e., the operator (T − λI )∗ is not

injective.

7. Calculate the spectrum and resolvent of the unit operator.

8. Let T be a projector in the space X . Describe the spectrum and resolvent of T .

9. Determine the spectrum for the following operators:

— the right-shift operator U (a1, a2, . . .) = (0, a1, a2, . . .) and the left-shift oper-
ator V (a1, a2, . . .) = (a2, a3, . . .) in sequence spaces for the particular spaces
X = �2 and X = �∞;

— the shift operators (Tτ f )(t) = f (t + τ) in spaces of functions for the following
particular spaces: X is the space Cb(R) of all bounded continuous functions on
the real line equipped with the sup-norm, and X = L2(R).

10. Prove that the left-shift operator U ∈ L(�2) defined in Exercise 9 above is an
interior point in the set of all non-invertible operators in L(�2). This enables one to
solve Exercise 3 in Subsection11.1.2. A more general fact: every bounded below
non-invertible operator T ∈ L(X,Y ) is surrounded by a neighborhood consisting of
non-invertible operators.

11. Prove that the boundary points of the spectrum of an operator are either eigen-
values, or approximate eigenvalues.

12. Prove that in the space L(X,Y ) (although this space is not an algebra) the set
of invertible operators is open.
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11.1.6 The Matrix of an Operator

In linear algebra operators are often given by their matrices. The notion of the matrix
of an operator is also meaningful in infinite-dimensional spaces (needless to say,
with finite matrices replaced by infinite matrices).

Let X,Y be Banach spaces, A ∈ L(X,Y ) an operator, and {em}m∈N and {gn}n∈N
bases in the spaces X and Y , respectively. The operator A is determined if we know
the images Aem of all elements of the basis, since the linear span of the basis is a
dense subset in X , and the operator A is continuous. Denote by g∗

n the coordinate
functionals of the basis {gn} in Y . Each element of the space Y can be expressed as
a series y = ∑∞

n=1 g
∗
n (y) gn; in particular, Aem = ∑∞

n=1 g
∗
n (Aem) gn .

Therefore, the numbers an,m = g∗
m (Aen) completely determine the operator A.

Definition 1. The collection of numbers an,m = g∗
n (Aem), n,m ∈ N, is called the

matrix of the operator A in the bases {em}, {gn}. With this notation, Aem =∑∞
n=1 an,mgn , hence, the n-th column of the matrix A consists of the coefficients

of the expansion of the element Aen in the basis {gm}.
Up to this point we have studied spectral theory having in our possession a rather

restricted supply of examples. The next exercises show how, by using the notion of
the matrix of an operator, one can construct wide classes of operators in classical
spaces.

Exercises

1. Let the numbers an,m form the matrix of the operator A in the bases {em}, {gn}.
Let x = ∑∞

m=1 xmem . Then

Ax =
∞∑

m=1

( ∞∑

n=1

anmxmgn

)

=
∞∑

n=1

( ∞∑

m=1

anmxmgn

)

.

2. Suppose that in the standard basis of the space �2 the matrix of the operator
T ∈ L (�2)has diagonal form.Show that the spectrumof such anoperatorT coincides
with the closure of the set of diagonal elements of its matrix.

3. Using the preceding exercise, show that every bounded nonempty closed set of
complex numbers can serve as the spectrum of some operator.

4. Under the conditions of Exercise 2 above, let all diagonal elements of the matrix
of the operator T be distinct. Describe all operators that commute with T .

5. Suppose the matrix A has the two-diagonal form
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⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 . . .

1 1 0 0 . . .

0 1 1 0
0 0 1 1
...

...
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and so on to infinity. Show that in the space �2 there exists a continuous operator
whose matrix in the standard basis of �2 is A. Calculate the norm of this operator
and its spectrum. Are the points of the spectrum eigenvalues?

6. Prove that the numbers an,m form the matrix of a continuous operator in the
standard basis of the space �1 if and only if the quantity supm

∑
n |an,m | is finite.

Express the norm of such an operator through the elements of this matrix.

7. By analogy with the preceding exercise, describe the operators in the space c0. To
this end consider the matrix of the adjoint operator and use the result of the preceding
exercise.

8. The matrix A = {an,m} is called a Hilbert–Schmidt matrix, if
∑

n,m∈N |anm |2 <

∞. Show that any Hilbert–Schmidt matrix A is the matrix of a some continuous
operator in the standard basis of the space �2.

9. Give an example of a continuous operator A in �2 whose matrix is not Hilbert–
Schmidt.

Remark 1. Unfortunately, specifying an operator by a matrix becomes less conve-
nient when dealing with infinite-dimensional spaces. Verifying that a matrix does
indeed give a continuous operator is often not an easy task, and sometimes is practi-
cally impossible. It is for this reason that in infinite-dimensional spaces matrices are
applied far less frequently that in the finite-dimensional setting.

11.2 Compact Sets in Banach Spaces

An important task of functional analysis is to reveal new effects that appear when
one passes from finite-dimensional spaces to infinite-dimensional spaces. Knowl-
edge of these effects allows one to avoid mistakes that result when one superfi-
cially applies analogies with the finite-dimensional case or, say, through the unsub-
stantiated “approximation” of an infinite-dimensional object by finite-dimensional
objects when looking for numerical solutions of equations or optimization problems
in Banach spaces. Even more important (especially in applications) is to learn to
single-out classes of objects for which the analogy with the finite-dimensional case
is, though not to a full extent, nevertheless applicable. Below, in Section11.3, we
study one such object — the class of compact (completely continuous) operators.
Compactness will play an important role in fixed-point theorems (Chap. 16), in the
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study of the duality between a space and its conjugate (dual) space, as well as in
many other sections of our book. Although the main properties of compact sets in
topological and metric spaces were already recalled in Chap.1, it is not redundant to
pause and discuss special features emerging in the study of compact sets in Banach
spaces.

11.2.1 Precompactness: General Results

As in the case of an arbitrary complete metric space (Theorem 2 of Subsection1.4.1),
for a closed subset A of a Banach space X the following conditions are equivalent:

— A is compact;
— A is precompact;
— from any sequence of elements of A one can extract a convergent subsequence.

However, in a Banach space there are structures that are not present in an arbitrary
completemetric space. These are the operations of addition,multiplication by scalars,
and notions they generate, such as dimension, linear subspace, linear operator, etc.
The connections between precompactness and these linear structures are discussed
in this subsection.

Theorem 1. Precompactness is stable under the linear operations:

(a) if A, B are precompact in a normed space, then A + B is precompact;
(b) if A ⊂ X is precompact and T ∈ L(X,Y ), then T (A) is precompact in Y ;
(c) in particular, precompactness is preserved under multiplication by a scalar.

Proof. (a) Let A1 and B1 be finite ε/2-nets of the sets A and B, respectively. Then
A1 + B1 is a finite ε-net of the set A + B.

(b) If A1 is a finite ε/‖T ‖-net of the set A, then T (A1) is a finite ε-net of the set
T (A).

(c) Multiplication by a fixed scalar is a continuous linear operator. �

Theorem 2. For a bounded subset A of a normed space X the following conditions
are equivalent:

(1) A is precompact;
(2) for any ε > 0 there exists a finite-dimensional subspace Y ⊂ X that constitutes

an ε-net for A.

Proof. (1) =⇒ (2). Let A1 be a finite ε-net of the set A. Then Lin A1 is a finite-
dimensional subspace that provides the requisite ε-net.

(2) =⇒ (1). Let the subspace Y ⊂ X be finite-dimensional and an ε-net for A.
Denote by r a positive number such that A ⊂ r BX . The set (r + ε)BY is a bounded
subset of the finite-dimensional space Y , and hence is precompact. Since Y is an ε-net
for A, for any x ∈ A there exists a y ∈ Y such that ‖x − y‖ < ε. But this element
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y lies in (r + ε)BY , because ‖y‖ � ‖x‖ + ‖y − x‖ < r + ε. Therefore, (r + ε)BY

is an ε-net for A. That is, for every ε > 0 we found a precompact ε-net for A; this
means (Lemma 2 of Subsection1.4.1) that A is precompact. �

Theorem 3. The convex hull of any precompact set is precompact.

Proof. Weuse the preceding theorem. Let A be a precompact set, and let the subspace
Y ⊂ X be finite-dimensional and be an ε-net for A. We claim that Y is also an ε-
net for conv A. Indeed, let x = ∑n

k=1 λk xk be an arbitrary convex combination of
elements xk ∈ A. Since Y is an ε-net for A, one can choose elements yk ∈ Y such
that ‖xk − yk‖ < ε. Put y = ∑n

k=1 λk yk . Then we have

‖x − y‖ =
∥
∥
∥
∥
∥

n∑

k=1

λk(xk − yk)

∥
∥
∥
∥
∥

�
n∑

k=1

λk‖xk − yk‖ < ε

n∑

k=1

λk = ε.

But y ∈ Y (because Y is a linear subspace!), so Y is an ε-net for the set conv A, and
conv A is a precompact. �

Theorem 4. Let X,Y be Banach spaces, and let Tn, T ∈ L(X,Y ). Suppose the
sequence of operators (Tn) converges to T at every point of a precompact set A ⊂ X
and the norms of all the operators Tn and T are bounded from above by some constant
C < ∞. Then the sequence (Tn) converges to T uniformly on A. In particular, by
the Banach–Steinhaus theorem, if Tn converge to T pointwise on the whole X, then
the boundedness condition is satisfied, so the pointwise convergence on X implies
uniform convergence on every precompact set.

Proof. Fix ε > 0, and choose in the precompact set A a finite ε/(4C)-net B. The set
B is finite, and at each of its points y, Tn y → T y as n → ∞. Hence, one can choose
a number m such that for any n > m the inequality ‖(Tn − T )y‖ < ε/2 holds for all
y ∈ B. Since B is an ε/(4C)-net for A, for any x ∈ A there exists a y ∈ Y such that
‖x − y‖ < ε/(4C). It follows that for any n > m and any x ∈ A,

‖(Tn − T )x‖ � ‖(Tn − T )y‖ + ‖(Tn − T )(x − y)‖
<

ε

2
+ ‖Tn − T ‖ · ‖x − y‖ <

ε

2
+ 2C

ε

4C
= ε.

This establishes the uniform convergence on A. �

The next theorem should be regarded as an important call for caution: in an
infinite-dimensional space bounded sets are not necessarily precompact!

Theorem 5 (F. Riesz’s theorem). The unit ball in an infinite-dimensional normed
space cannot be precompact.
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Proof. Suppose, by contradiction, that BX is precompact. Fix ε ∈ (0, 1). Let Y ⊂ X
be an arbitrary finite-dimensional subspace. Since Y �= X , the quotient space X/Y is
nontrivial. Pick an element [x] ∈ X/Y such that ε < ‖[x]‖ < 1. By the definition of
the norm in the quotient space, there exists a representative z ∈ [x] such that ‖z‖ < 1.
Then z ∈ BX , but at the same time inf y∈Y ‖z − y‖ = ‖[z]‖ = ‖[x]‖ > ε, that is, Y
is not an ε-net for BX . Thus, we have shown that no finite-dimensional space can be
an ε-net for the precompact set BX , which contradicts Theorem 2. �

Exercises

1. Reduce assertion (b) of Theorem 1 to the theorem asserting that the image of a
compact set under a continuous map is compact.

2. Using the operator U : X1 × X2 → X given by U (x1, x2) = x1 + x2, reduce
assertion (a) of Theorem 1 to assertion (b) and the fact that a Cartesian product
of compact sets is compact.

3. Derive the following generalization of Theorem 4: Let X,Y be metric spaces,
Tn : X → Y , and suppose the sequence ofmappings {Tn}∞n=1 is uniformly continuous.
If the sequence (Tn) converges pointwise to a mapping T , then on any precompact
set A ⊂ X the sequence (Tn) converges to T uniformly.

Definition 1. A metric space X is said to have the small ball property (and one
writes X ∈ SBP), if for any ε > 0 the space X can be covered by a sequence of balls
B(xn, rn) whose radii satisfy the conditions supn rn < ε and rn → 0 as n → ∞.

4. If X is precompact, then X ∈ SBP.

5. If X = ⋃∞
n=1 Xn and all Xn ∈ SBP, then X ∈ SBP.

6. If X is a Banach space and X ∈ SBP, then X is finite-dimensional.

7. The closure of the convex hull of a compact set is compact.

8. Give an example showing that the convex hull of a compact set is not necessarily
compact.

9. For any precompact set K in a Banach space X there exists a sequence (xn) of
elements of X , with xn → 0, such that K is included in the closure of the convex
hull of the sequence (xn).
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11.2.2 Finite-Rank Operators and the Approximation
Property

A continuous operator is called a finite-rank operator (or finite-dimensional opera-
tor) if its image is finite-dimensional. We have already encoutered various examples
of finite-rank operators: linear functionals, partial-sum of Fourier series operators
(Subsection10.4.3), partial-sum operators with respect to a Schauder basis (Subsec-
tion10.5.2).

A sequence of operators Tn ∈ L(X) is called an approximate identity if all the
operators Tn are of finite rank and Tn → I pointwise. The space X is said to have
the pointwise approximation property1 if X admits an approximate identity.

Examples

1. Let {en}∞1 be a basis of the Banach space X . Then the partial-sum operators
Sn form an approximate identity. Indeed, let x ∈ X be an arbitrary element and
x = ∑∞

k=1 akek be its decomposition in the basis {en}∞1 . Then Sn(x) = ∑n
k=1 akek

and Sn(x) → x as n → ∞. Therefore, any space with a basis has the pointwise
approximation property.

2. For any function f ∈ C[0, 1] denote by Ln( f ) the piecewise-linear continuous
function that coincides with f at the points 0, 1

n ,
2
n ,

3
n , . . . , 1, and is linear on the

intervals
[
k
n ,

k+1
n

]
. The operators Ln thus defined form an approximate identity in

the space C[0, 1].
3. Let Δn,k = [

k−1
n , k

n

]
, k = 1, 2, . . . , n. For any function f ∈ L1[0, 1], put

En( f ) =
n∑

k=1

(

n
∫

Δn,k

f (t)dt 1Δn,k

)

.

In other words, En( f ) is a piecewise-constant function whose value on the interval
Δn,k is the mean value of the function f on Δn,k , k = 1, 2, . . . , n. The operators En

so defined (called averaging operators) form an approximate identity in L1[0, 1].
Theorem 1. Let X be a Banach space with the pointwise approximation property.
Let the sequence Tn ∈ L(X) be some fixed approximate identity in the space X. Then
for any set D ⊂ X the following two conditions are equivalent:

(1) D is precompact;

(2) D is bounded, and the sequence (Tn) converges uniformly on D to the identity
operator.

1Actually, there is an entire group of properties of “approximation property” type (see [28]). What
we call here the pointwise approximation property should be more accurately referred to as the
bounded approximation property for separable spaces.
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Proof. The implication (1) =⇒ (2) is a direct consequence of Theorem 4 of Sub-
section11.2.1. Let us prove the converse implication. Suppose that Tn → I on
D as n → ∞. Then for any ε > 0 there exists a number m = m(ε) such that
‖Tmx − x‖ < ε for all x ∈ D. This means, in particular, that the subspace Tm(X) is
an ε-net for D. Since by the definition of an approximate identity all the operators Tn
are of finite rank, the subspace Tm(X) is finite-dimensional. To complete the proof
it remains to apply Theorem 2 of Subsection11.2.1. �

Exercises

1. Prove that if an operator is given by a matrix with only finitely many non-zero
elements, then the operator is of finite rank.Give an example of amatrixwith infinitely
many non-zero elements which defines a finite-rank operator in the space �2.

2. Let X,Y be Banach spaces, and let {yk}nk=1 ⊂ Y and { fk}nk=1 ⊂ X∗ be finite
collections of vectors and functionals, respectively.Define the operator T ∈ L(X,Y ),
written T = ∑n

k=1 fk ⊗ yk , by the rule T x = ∑n
k=1 fk(x)yk2. Prove that T is a finite-

rankoperator, and that everyfinite-rankoperator canbe represented in the above form,
where moreover the vectors {yk}nk=1 and the functionals { fk}nk=1 can be chosen to be
linearly independent.

3. Verify that the mappings Ln constructed in the second example above are indeed
finite-rank continuous operators that form an approximate identity in C[0, 1].
4. Justify the third example above by using the following recipe: Verify that the aver-
aging operators En are linear and dim En(L1[0, 1]) = n; prove that ‖En‖ = 1. Prove
that for any continuous f , En f → f as n → ∞ uniformly on [0, 1] (and hence, also
in themetric of L1[0, 1]). To prove the pointwise convergence of En to I on thewhole
space L1[0, 1], use the pointwise convergence criterion (Subsection10.4.2).
5. Prove that the operator T ∈ L(C[0, 1]) acting as (T f )(t) = ∫ 1

0 (x + t) f (x)dx
has finite rank.

6. Let T ∈ L(X) be a finite-rank operator. Then the image of T is a finite-
dimensional invariant subspace. Since every eigenvector with non-zero eigenvalue
lies in T (X), the search for non-zero eigenvalues reduces to the study of the action
of the operator T in the subspace T (X). Based on these considerations, find all non-
zero eigenvalues and the corresponding eigenvectors of the operator of the preceding
exercise.

2Here the symbol ⊗ is read as tensor product.
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11.2.3 Compactness Criteria for Sets in Specific Spaces

Since the compactness criterion (closedness+boundedness) known from calculus
fails in infinite-dimensional spaces, verifying compactenss often becomes a non-
trivial problem. In the attempt to solve this problem, knowing the specifics of the
ambient space in which the set tested for compactness lies is of help. Each con-
crete space comes with its own compactness criterion. The reader is already familiar
with one such compactness criterion, Arzelà’s theorem. As we remarked in Subsec-
tion1.4.2, in the space C(K ) of continuous functions on a compact metric space,
precompactness of a set is equivalent to two conditions being satisfied simultane-
ously: uniform boundedness and equicontinuity. All the other classical compactness
criteria are based on the theorem given in the preceding subsection. The recipe for
producing such criteria is sufficiently simple: one needs to choose an approximate
identity and write out in detail what uniform convergence on the set in question
means.

Theorem 1 (Compactness criterion in c0). For a set D ⊂ c0 to be precompact
it is necessary and sufficient that there exists an element z ∈ c0 which majorizes
coordinatewise all elements of D, i.e., z = (z1, z2, . . .) ∈ c0 and zn � |xn| for all
vectors x = (x1, x2, . . .) ∈ D and all n ∈ N.

Proof. Since both precompactness and the existence of a majorant imply bounded-
ness, it suffice to carry out the proof for bounded sets. So, consider the sequence
of operators Pn ∈ L(c0), acting by the rule Pn((x j )

∞
j=1) = (x1, . . . , xn, 0, 0, 0, . . .).

Clearly, the operators Pn form an approximate identity in c0. According to the the-
orem in the preceding subsection, we need to prove that for a bounded set D the
existence of a majorant z ∈ c0 is equivalent to the uniform convergence of the oper-
ators Pn to I on D.

By definition, the uniform convergence Pn → I on D means that for any ε > 0
there exists a number n(ε) such that for every vector x = (x1, x2, . . .) ∈ D and any
n � n(ε), we have ‖x − Pnx‖ � ε. Decoding what the norm in c0 and the definition
of the operators Pn mean, we obtain an equivalent formulation: for any ε > 0 there
exists a number n(ε) such that for any n � n(ε),

sup{|x j | : x = (x1, x2, . . .) ∈ D, j � n + 1} � ε.

If we define yn = sup{|x j | : x = (x1, x2, . . .) ∈ D, j � n}, the last conditionmeans
that yn → 0 as n → ∞, i.e., the vector y = (y1, y2, . . .) is an element of the space
c0. It remains to observe that convergence of yn to zero is equivalent to the existence
of the requisite majorant. Indeed, the vector y = (y1, y2, . . .) is an element of c0 and
yn � |xn| for all vectors x = (x1, x2, . . .) ∈ D, i.e., y is a majorant of all elements
of the set D. Conversely, if D admits a majorant z = (z1, z2, . . .) ∈ c0, then

yn � sup{|z j | : j � n} → 0 as n → ∞. �
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Applying the same operators Pn((x j )
∞
j=1) = (x1, . . . , xn, 0, 0, 0, . . .) in the space

�p, we obtain the following result.

Theorem 2 (Compactness criterion in �p). Let 1 � p < ∞. Then for a bounded
set D ⊂ �p to be precompact, it is necessary and sufficient that for any ε > 0 there
exists a number n(ε) such that

∑∞
k=n(ε) |xk |p � ε for all x = (x1, x2, . . .) ∈ D.

Upon considering partial-sum operators one arrives at the following compactness
criterion in a space with a basis:

Theorem 3. Let X be a Banach space with a basis {en}∞1 . Then for a set D ⊂ X to
be precompact, it is necessary and sufficient that for any ε > 0 there exists a number
n(ε) such that

∥
∥
∑∞

k=n(ε) xkek
∥
∥ � ε for all vectors x = ∑∞

k=1 xkek ∈ D.

In exactly the same way we can obtain a compactness criterion in the space
L1[0, 1], based on the averaging operators En from the third example of an approx-
imate identity given in the preceding subsection. This criterion is indeed valid, and
in many cases proves sufficiently convenient. However, with no major effort, we can
come up with a more elegant formulation.

All functions f ∈ L1[0, 1] will be considered to be defined not only on the inter-
val [0, 1], but also on the whole real line. To this end we extend them by peri-
odicity with period 1. Now for each τ ∈ R define the shift (or translation) opera-
torLτ : L1[0, 1] → L1[0, 1] by the rule (Lτ f )(t) = f (t + τ). As one can readily
see, Lτ is a bijective isometry; in particular, ‖Lτ‖ = 1.

Lemma 1. Lτ f → f as τ → 0, for all f ∈ L1[0, 1].
Proof. Since the operators Lτ are jointly bounded, it suffices to establish the point-
wise convergence to the unit operator not on all of L1[0, 1], but only on a dense subset
(Subsection10.4.2). As such a subset we take the set E of all 1-periodic continu-
ous functions. For f ∈ E , denote ‖ f ‖∞ = supt∈[0,1] | f (t)|. Then for all t, τ ∈ [0, 1]
we have | f (t + τ) − f (t)| ≤ 2‖ f ‖∞, and by continuity | f (t + τ) − f (t)| → 0 as
τ → 0. Now the Lebesgue dominated convergence theorem gives us the desired
property

‖Lτ f − f ‖ =
∫ 1

0
| f (t + τ) − f (t)|dt → 0

as τ → 0. �

The lemma just proved can be restated as follows:
For any function f ∈ L1[0, 1] and any ε > 0, there exists a δ > 0 such that for

every τ ∈ [−δ, δ] it holds that ∫ 1
0 | f (t + τ) − f (t)|dt < ε.

This property of a function f is called continuity in the mean.

Definition 1. A family of functions D ⊂ L1[0, 1] is said to be equicontinuous in
the mean if for any ε > 0 there exists a δ > 0 such that for every function f ∈ D
and every τ ∈ [−δ, δ] it holds that ∫ 1

0 | f (t + τ) − f (t)|dt < ε.
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Theorem 4 (Compactness criterion in L1[0, 1]). For a bounded subset D ⊂
L1[0, 1] to be precompact it is necessary and sufficient that it is equicontinuous
in the mean.

Proof. Suppose D is precompact. Since, by the lemma, Lτ → I pointwise, one has
that Lτ → I uniformly on D. This uniform convergence is just another formulation
of the requisite equicontinuity in the mean.

Now the converse. Suppose the set D is equicontinuous in the mean. Let us show
that in this case the averaging operators En introduced in Example 3 of Subsec-
tion11.2.2 converge uniformly on D to the unit operator. Since the sequence (En)

is an approximate identity in L1[0, 1], this will establish the precompactness of D.
Thus, given an arbitrary ε > 0, take a δ > 0 as in the definition of the equicontinuity
in the mean:

∫ 1
0 | f (t + τ) − f (t)|dt < ε for all f ∈ D and all τ ∈ [−δ, δ]. Then for

any n > 1/δ and any f ∈ D we have

‖En( f ) − f ‖ =
1∫

0

∣
∣
∣
∣

n∑

k=1

n
∫

Δn,k

f (x)dx1Δn,k (t) − f (t)

∣
∣
∣
∣dt

=
1∫

0

∣
∣
∣
∣

n∑

k=1

n

( ∫

Δn,k

[ f (x) − f (t)]dx
)

1Δn,k (t)

∣
∣
∣
∣dt

�
∫ 1

0

n∑

k=1

n
∫

Δn,k

| f (x) − f (t)|dx1Δn,k (t)dt = n
n∑

k=1

∫

Δn,k

∫

Δn,k

| f (x) − f (t)|dxdt .

Using the fact that all pairs (x, t) ∈ ⋃n
k=1 Δn,k × Δn,k obey the conditions 0 � t � 1

and t − 1
n � x � t + 1

n , andmaking the change of variables x → t + τ , we complete
the estimate to

‖En( f ) − f ‖ �
∫

[−1/n,1/n]

∫ 1

0
| f (t + τ) − f (t)|dtdτ < 2ε. �

Exercises

1. In the definitions of continuity and equicontinuity in the mean, instead of τ ∈
[−δ, δ] one can write τ ∈ [0, δ].
2. In the space �∞, the operators Pn , acting as Pn((x j )

∞
j=1) = (x1, . . . , xn, 0, 0, . . .),

do not form an approximate identity.

3. The space �∞ admits no approximate identity (indeed, we note that in �∞ no
convenient compactness criterion is known).

4. Give an example of a precompact set D ⊂ �p that admits no jointmajorant z ∈ �p.



298 11 Elements of Spectral Theory of Operators. Compact Operators

5. For the subsets of C[0, 1] listed below, determine whether or not they are (a)
bounded, (b) convex, (c) closed, (d) precompact. Also, find (e) the interior and (f)
the boundary of these sets.

(i) The set of all non-decreasing functions f ∈ C[0, 1] that satisfy the condition
0 � f � 1.

(ii) The set of all non-decreasing functions f ∈ C[0, 1] that satisfy the conditions
f � 0 and

∫
[0,1] f (t)dt � 1.

(iii) The set of all continuously differentiable functions f that satisfy the condi-
tions f (0) = 0 and

∫ 1
0 | f ′(t)|dt � 1.

(iv)The set of all continuously differentiable functions f that satisfy the conditions
f (0) = 0 and

∫ 1
0 | f ′(t)|2dt � 1.

6. For the sets in L1[0, 1] listed below, determinewhether or not they are (a) bounded,
(b) convex, (c) closed, (d) precompact. Also, find (e) the interior and (f) the boundary
of these sets.

(i) The set of all non-decreasing functions f ∈ L1[0, 1] that satisfy the condition
0 � f � 1.

(ii) The set of all non-decreasing functions f ∈ L1[0, 1] that satisfy the conditions
f � 0 and

∫
[0,1] f (t)dt � 1.

(iii) The set of all continuously differentiable functions f that satisfy the condi-
tions f (0) = 0 and

∫ 1
0 | f ′(t)|dt � 1.

(iv)The set of all continuously differentiable functions f that satisfy the conditions
f (0) = 0 and

∫ 1
0 | f ′(t)|2dt � 1.

11.3 Compact (Completely Continuous) Operators

In this section the letters X , Y , and Z will be used exclusively to denote Banach
spaces.

11.3.1 Definition and Examples

Definition 1. The operator T : X → Y is called compact, or completely continuous,
if the image T (BX ) of the unit ball of the space X under T is precompact in the space
Y . The set of all compact operators acting from the space X into the space Y will be
denoted by K (X,Y ).

Since every bounded set is contained in some ball, the image of any bounded set
under a compact operator is contained in a set of the form rT (BX ), and hence is
precompact.
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Example 1. Consider the kernel operator (or integration/integral operator with
kernel) T : C[0, 1] → C[0, 1], acting as

(T f (t))(x) =
∫ 1

0
K (t, x) f (t)dt,

where the kernel K : [0, 1] × [0, 1] → C is jointly continuous in its variables.3

To verify that a kernel operator is compact in C[0, 1], i.e, that the set T (BC[0,1])
is precompact, we resort to Arzelà’s theorem. First, we have

‖T f ‖ � max
x∈[0,1]

1∫

0

|K (t, x)| · | f (t)| dt � ‖ f ‖ max
t,x∈[0,1] |K (t, x)|,

which proves the boundedness of the set T (BC[0,1]). To prove the equicontinuity
of T (BC[0,1]), we first, given an arbitrary ε > 0, choose a δ(ε) > 0 such that for
any x1, x2 ∈ [0, 1] satisfying |x1 − x2| < δ(ε) the estimate |K (t, x1) − K (t, x2)| <

ε holds. Now let g ∈ T (BC[0,1]) be an arbitrary element. Then g = T f , with f ∈
BC[0,1]. Accordingly, for any x1, x2 ∈ [0, 1] satisfying |x1 − x2| < δ(ε), we have

|g(x1) − g(x2)| = |(T f )(x1) − (T f )(x2)|
�

∫ 1

0
|K (t, x1) − K (t, x2)| · | f (t)| dt < ε

∫ 1

0
| f (t)| dt�ε‖ f ‖�ε,

so the set T (BC[0,1]) is indeed equicontinuous.

Example 2. If the space X is infinite-dimensional, then the unit operator X is not
compact. Indeed, I (BX ) = BX , and the unit ball of an infinite-dimensional space is
not precompact.

Exercises

1. Show that every finite-rank operator is compact.

2. A diagonal operator T ∈ L(�p) (i.e., an operator whose matrix in the standard
basis is diagonal) is compact if and only if the diagonal elements of its matrix form
a sequence that converges to zero.

3. Calculate the norm of the operator from Exercise 2.

3Clearly, it is unfortunate that we use the same letter K to denote the class of compact operators
as well as the kernel of a kernel operator, not to speak of using it to denote compact spaces when
we are dealing with the space C(K ). But what can we do: these notations are widely accepted. To
make the reader even happier, we could, as customary, also denote a compact operator by K ! But
enough is enough.



300 11 Elements of Spectral Theory of Operators. Compact Operators

4. Show that for an integration operator T with kernel K in C[0, 1] it holds that
‖T ‖ = maxx∈[0,1]

∫ 1
0 |K (t, x)| dt (see Example 1 above).

5. Show that the integration operator with kernel considered in Example 1 above is
compact as an operator acting from L1[0, 1] to C[0, 1].
6. Show that the integration operator appearing in the example in Subsection11.1.5
is compact.

7. Let K : [0, 1] × [0, 1] → C be a function of two variables which satisfies the
following condition: for each fixed x ∈ [0, 1], the function Kx (t) = K (t, x) of the
variable t is integrable. Suppose further that the mapping x �→ Kx is continuous
from [0, 1] to L1[0, 1]. Then the integration operator with kernel K (t, x) is compact
in C[0, 1].

11.3.2 Properties of Compact Operators

Theorem 1. The set K (X,Y ) of compact operators has the following properties:

(1) K (X,Y ) is a linear subspace of L(X,Y ).

(2) K (X,Y ) is an operator ideal, i.e., if T ∈ K (X,Y ), then the products AT and
T A are compact for every continuous operator A for which the composition is
defined.

(3) The set K (X,Y ) is closed in L(X,Y ) in the sense of convergence in norm.4

Proof. (1) Stability under multiplication by a scalar is obvious, while stability under
addition follows from the relation (T1 + T2)(BX ) ⊂ T1(BX ) + T2(BX ) and the fact
that a sum of precompact sets is precompact.

(2) Let A ∈ L(Z , X). Then every bounded subset of the space Z is mapped by
the operator A into a bounded set, which, in its turn, is mapped by the operator T
into a precompact set. Therefore, the operator T A is compact. Now let A ∈ L(Y, Z).
Then every bounded subset of the space X is mapped by T into a precompact set,
which in turn is mapped by A also into a precompact set.

(3) Suppose the sequence of compact operators Tn converges to an operator T .
We need to show that the limit T is also compact. To this end, we fix an ε > 0 and
construct a precompact ε-net for T (BX ). Choose a number n such that ‖T − Tn‖ <

ε. Consider the precompact set K = Tn(BX ). Then for any x ∈ BX it holds that
‖T x − Tnx‖ � ‖T − Tn‖ · ‖x‖ < ε. Hence, K provides the sought-for ε-net. �

Corollary 1. If the compact operator A ∈ L(X,Y ) is invertible, then the spaces X
and Y are finite-dimensional.

4The reader should note that here closedness in the sense of pointwise convergence does not hold.
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Proof. In the present case IX = A−1A and IY = A A−1, where IX and IY are the
identity operators in the respective spaces X and Y . Hence, by property (2), IX and
IY are compact operators, which for infinite-dimensional spaces X and Y is not
possible, as we remarked in Example 2 of the preceding subsection. �

The next theorem shows that in a wide class of spaces (which practically includes
all spaces encountered in applications) the compact operators can be approximated
in norm by finite-rank operators. The theory of compact operators emerged from
Fredholm’s investigations on the theory of integral equations. In Fredholm’s work
the approach to integral operators relied on the approximation of integral operators by
finite-rank operators. The contemporary treatment, more general and technically less
complicated, is based on other ideas, due in the first place to F. Riesz. Nevertheless,
the approximation by finite-rank operators remains a useful tool for the investigation
of specific operators, in particular, in problems of numerical resolution of equations
involving compact operators.

Theorem 2. Let Y be a Banach space with the pointwise approximation property
(for example, a space with a basis) and T ∈ K (X,Y ). Suppose that the operators
Sn form an approximate identity in Y . Then the operators Tn = SnT form a sequence
of finite-rank operators that converges in norm to the operator T .

Proof. The operators Tn are of finite rank, because so are the operators Sn . Moreover,
the sequence (Sn) converges pointwise to the identity operator I , therefore (Theorem
4 in Subsection11.2.1), one also has uniform convergence on the precompact set
T (BX ). Consequently,

‖Tn − T ‖ = sup
x∈BX

‖Tnx − T x‖ = sup
x∈BX

‖(Sn − I )T x‖ = sup
y∈T (BX )

‖(Sn − I )y‖ → 0

as n → ∞. �
Theorem 3 (Schauder’s theorem on compactness of the adjoint operator). Let
X,Y be Banach spaces, and T ∈ K (X,Y ). Then T ∗ ∈ K (Y ∗, X∗).

Proof. According to the definition, we need to show that the sets G = T ∗(BY ∗) are
precompact in X∗. Let K = T (BX ). By assumption, K is compact in Y . Consider the
space C(K ) of continuous functions on this compact set and the mapping U : G →
C(K ) which acts by the rule U (T ∗ f ) = f |K , i.e., sends the functional T ∗ f ∈ X∗
into the restriction of the functional f ∈ Y ∗ to K .

We claim that U is an isometry. Indeed, let T ∗ f1 and T ∗ f2 be two arbitrary
elements of the set G. We have

‖T ∗ f1 − T ∗ f2‖ = ‖T ∗( f1 − f2)‖ = sup
x∈BX

|T ∗( f1 − f2)x |

= sup
x∈BX

|( f1 − f2)(T x)| = sup
y∈T (BX )

|( f1 − f2)y|

= sup
y∈K

|( f1 − f2)y| = ∥
∥ f1|K − f2|K

∥
∥
C(K )

.
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This estimate also shows that the mapping U is well defined: if T ∗ f1 = T ∗ f2,
then

‖U (T ∗ f1) −U (T ∗ f2)‖ = ∥
∥ f1|K − f2|K

∥
∥ = 0,

that is, U (T ∗ f1) = U (T ∗ f2).
Since the mappingU is an isometry, the precompactness of the setG is equivalent

to the precompactness in C(K ) of its image U (G) = { f |K : f ∈ B(Y ∗)}. Now the
set U (G) is uniformly bounded, since for any f ∈ B(Y ∗) we have

∥
∥ f |K

∥
∥
C(K )

= sup
x∈BX

∣
∣ f |K (T x)

∣
∣ � ‖ f ‖ · sup

x∈BX

‖T x‖ � ‖T ‖.

On the other hand, the set U (G) is equicontinuous, since its elements are functions
that satisfy the Lipschitz condition with constant 1:

∣
∣ f |K (y1) − f |K (y2)

∣
∣ = | f (y1) − f (y2)| � ‖ f ‖ · ‖y1 − y2‖ � ‖y1 − y2‖.

To complete the proof, it remains to apply Arzelà’s theorem. �

Exercises

1. Let T be the kernel operator (see Example 1 and Exercise 4 in Subsection11.3.1),
with a kernel of the form K (t, τ ) = ∑n

j=1 f j (t)g j (τ ). Show that this operator has
finite rank.

2. Show that the kernel operator from Example 1 of Subsection11.3.1 can be arbi-
trarily well approximated by finite-rank kernel operators.

3. Represent the operator from Exercise 1 above in the form T = ∑n
k=1 fk ⊗ yk ,

as in Exercise 2 of Subsection11.2.2.

4. The adjoint of a finite-rank operator is itself a finite-rank operator.

5. For any finite-rank operator A ∈ L(X,Y ) it holds that

codimXKer A = codim Y ∗Ker A∗ = dim A(X) = dim A∗(X∗).

If the operator A has infinite rank, then all these four numerical characteristics are
infinite (recall that for a subspace E of a linear space Z its codimension codimZ E
is defined as dim(Z/F), see Definition 1 and Exercises 8–15 in Subsection5.3.3).

6. The image of a compact operator A ∈ L(X,Y ) is closed if and only if A is of
finite rank (i.e., as a rule, the image of a compact operator is not closed).

7. Give an example of a noncompact operator whose image is not closed.
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8. Prove the following theorem, due to I. K. Daugavet: Let T : C[0, 1] → C[0, 1] be
a compact operator. Then ‖I + T ‖ = 1 + ‖T ‖. For details aboutDaugavet’s theorem
and its role in the theory of Banach spaces, see [57, 62].

9. Prove that the Daugavet equality ‖I + T ‖ = 1 + ‖T ‖ for an operator T in the
space �2 holds if and only if ‖T ‖ ∈ σ(T ).

11.3.3 Operators of the Form I − T with T a Compact
Operator

In the study of the spectrum of a compact operator a central role is played by the
following assertion.

Theorem 1. Let T ∈ K (X, X). Then

(1) The image of the operator I − T is a closed subspace.

(2) If the operator I − T is injective, then it is surjective.

(3) If the operator I − T is surjective, then it is injective.

We note that properties (2) and (3) together mean that the operator I − T is either
invertible, or simultaneously not injective and not surjective.

The present subsection is devoted to the proof of properties (1)–(3), devoting to
each of them a separate proposition.

Proposition 1. Let T ∈ K (X, X). Then the image of the operator A = I − T is a
closed subspace.

Proof. We argue by contradiction. Let Y = Ker A. By the criterion established in
Theorem 5 of Subsection10.2.3, the image not being closed means that there exists
a sequence (xn) in X with the following properties

1. dist(xn,Y ) = 1;

2. ‖Axn‖ → 0 as n → ∞;

3. ‖xn‖ → 1.

By the third property, the sequence (xn) is bounded, i.e., it lies in r BX for some
r > 0. In view of the compactness of the operator T , the sequence (T xn) lies in the
precompact set rT (BX ). Passing, if necessary, to a subsequence, one can ensure that
the sequence (T xn) has a limit, which we denote by s. Since xn = Axn + T xn → s
as n → ∞, we have dist(s,Y ) = 1. On the other hand, As = limn→∞ Axn = 0, so
that s lies in the kernel of the operator A, i.e., in the subspace Y . The contradiction
we reached completes the proof. �

Proposition 2. If the operator A = I − T , where T ∈ K (X, X), is injective, then
it is surjective.
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Proof. We again argue by contradiction. So, suppose A(X) �= X . Consider the sub-
spaces Yn = An(X), n = 0, 1, 2, . . .. First, let us prove that the Yn’s form a sequence
Y0 ⊃ Y1 ⊃ Y2 ⊃ · · · of strictly included subspaces. To this end we proceed by
induction.

The strict inclusion Y0 ⊃ Y1 is obvious, since Y0 = X and Y1 = A(X). Now
assume that the inclusion Yn−1 ⊃ Yn is strict. The injective operator A preserves
strict inclusions, hence Yn = A(Yn−1) ⊃ A(Yn) = Yn+1, as needed.

Let us continue our reasoning. In view of the strict inclusions established above,
there exist functionals f̃n ∈ S(Y ∗

n ) such that f̃n(Yn+1) = 0 forn = 0, 1, 2, . . .. Extend
these functionals to the whole space X , preserving their norms. Let fn ∈ X∗ be the
extended functionals. By the theorem on the compactness of the adjoint operator,
the operator T ∗ maps the set { fn}∞n=1 into a precompact set. Now let us prove that
the sequence (T ∗ fn) is separated, i.e., infm �=n∈N ‖T ∗ fm − T ∗ fn‖ > 0. This way we
will contradict the precompactness and complete the proof of the proposition.

Let n > m. Then

‖T ∗ fm − T ∗ fn‖ � sup
x∈BYn

|(T ∗ fm − T ∗ fn)(x)|

= sup
x∈BYn

|((T ∗ − I ∗) fn + fn + (I ∗ − T ∗) f m − fm)(x)|

= sup
x∈BYn

| fn((T − I )x) + fm((I − T )x) + fn(x) − fm(x)|

= sup
x∈BYn

| − fn(A(x)) + fm(A(x)) + fn(x) − fm(x)|

= sup
x∈BYn

| fn(x)| = ∥
∥ f̃n

∥
∥ = 1.

Here we used the fact that Ax ∈ Yn+1 for x ∈ Yn and the functionals f j are equal to
0 on the subspaces with bigger index. �

Let us record an important consequence of the last proposition.

Corollary 1. Suppose the operator A = I − T , where T is compact, is not invert-
ible. Then A is not injective.

Proof. Suppose, by contradiction, that A is injective. By the preceding proposition,
A is also surjective, and injectivity plus surjectivity means invertibility. �

Proposition 3. If the operator A = I − T , where T ∈ K (X, X) is surjective, then
it is also injective.

Proof. Suppose the operator A is surjective. Then A∗ is injective (Corollary 1 in
Subsection9.4.1). Since A∗ is again of the form “identity minus compact”, the pre-
ceding theorem shows that the operator A∗ is also surjective. Therefore, the operator
A is injective (Corollary 2 in Subsection9.4.1), as we needed to prove. �
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Remark 1. The main results of the present section are particular cases of the more
general Fredholm theorem, formulated below in Exercise 2. Fredholm studied cor-
responding phenomena for integral operators. Fredholm’s results were transferred to
the more general case of compact operators by F. Riesz.

Exercises

1. Show that for an operator of the form A = I − T , with T compact, the following
conditions are equivalent:

— the equation Ax = b is solvable for any right-hand side;
— the homogeneous equation Ax = 0 does not have non-zero solutions;
— the equation Ax = b is solvable for any right-hand side, and moreover the solu-

tion is unique.

2. Fredholm’s theorem. Let A = I − T , where the operator T ∈ L(X) is compact.
Then dimKer A = dimKer A∗ = codim A(X) = codim A∗(X∗).

Operators of the form “scalar+ compact”.An operator A ∈ L(X) is said to be
of scalar + compact form if it can be represented as A = λI + T , with T ∈ K (X, X)

and λ ∈ C.

3. In an infinite-dimensional space, an operator cannot have two distinct scalar
+ compact representations A = λI + T .

4. The operators of scalar+ compact form form a subalgebra in L(X).

5. Let T be a diagonal operator in the space �2 (see Exercise 2 in Subsection11.1.6),
and let λn be the diagonal elements of its matrix in the standard basis {en}∞n=1 of �2 (in
other words, T en = λnen , n = 1, 2, . . .). Prove that T is of scalar+ compact form if
and only if the sequence (λn) has a limit.

6. Let T be a projector. Then T is of scalar+ compact form if and only if either its
image, or its kernel, has finite dimension.

A linear functional f on a Banach algebra A is called a multiplicative functional
(another term used is that of complex homomorphism), if f (e) = 1 and f (xy) =
f (x) f (y) for all x, y ∈ A.

7. A multiplicative functional can vanish only on non-invertible elements of the
algebra.

8. Every multiplicative functional on a Banach algebra is continuous and its norm
is equal to 1.

9. Construct a multiplicative functional on the algebra of all scalar+ compact oper-
ators acting on a Banach space X .
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10. Show that on L(�2) there exist no multiplicative functionals.

11. For multiplicative functionals the analogue of the Hahn–Banach theorem fails:
not every multiplicative functional, given on a subalgebra, can be extended to the
entire Banach algebra with preservation of linearity and multiplicativity.

12. Let X be an infinite-dimensional Banach space. We say that X has the
scalar + compact property if every operator A ∈ L(X) is of scalar+ compact form.
Prove that none of the spaces C(K ), �p, and L p has this property.

11.3.4 The Structure of the Spectrum of a Compact Operator

Theorem 1. Let T ∈ L(X) be a compact operator acting on an infinite-dimensional
Banach space. Then:

(1) The spectrum of T is either finite, or consists of a sequence of complex numbers
that converges to 0.

(2) 0 belongs to the spectrum.

(3) If λ �= 0 belongs to the spectrum, then λ is an eigenvalue of T ; the eigenspaces
corresponding to the nonzero eigenvalues are finite-dimensional.

Proof. We begin by establishing the last property. Suppose λ �= 0 does not belong to
the spectrum of T . Then the operator (T − λI ) = −λ(I − λ−1T ) is not invertible.
Hence, by the corollary to Proposition 2 of Subsection11.3.3, this operator is not
injective, i.e., there exists a non-zero element x ∈ X such that (T − λI )x = 0. This
means that x is an eigenvector, and λ an eigenvalue, of the operator T . Further, let Y
be the eigenspace corresponding to the eigenvalue λ. Since the restriction of T to Y
is a bijective compact operator, Corollary 1 in Subsection11.3.2 yields the required
finite-dimensionality.

The fact that 0 belongs to the spectrum, i.e., that the operator T is not invertible,
follows from the same Corollary 1 in Subsection11.3.2.

Finally, let us prove property (1). We proceed by reductio ad absurdum. So, sup-
pose the spectrum of the operator T is infinite and has a non-zero limit point a ∈ C.
Further, let λk �= a be a sequence of eigenvalues that converges to a, and xk be
corresponding eigenvectors. Consider the closed linear span Y = Lin{xk}∞k=1 of this
sequence of eigenvectors and denote by A ∈ L(Y ) the restriction of the operator
I − a−1T to Y . Notice that Axk = (1 − a−1λk)xk . Therefore, the image of the oper-
ator A contains all the vectors xk , so this image is dense in Y . By the main theorem
of Subsection11.3.3, the image is closed, that is, the operator A is surjective, and
hence bijective. But this is impossible, because A is not bounded below:

‖Axk‖
‖xk‖ =

∣
∣
∣
∣1 − λk

a

∣
∣
∣
∣ → 0 as k → ∞. �
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Exercises

1. Show that a compact operator cannot be an interior point of the set of invertible
operators in L(X). Use this fact to solve Exercise 5 in Subsection11.1.2.

Find the spectra of the following operators:

2. The integration operator from the example in Subsection11.1.5.

3. T ∈ L(C[0, 1]), T f (t) =
∫ 1

0
(x + t) f (x)dx .

4. T ∈ L(C[0, 1]), T f (t) = f (t) +
∫ 1

0
(x + t) f (x)dx .

5. T ∈ L(C[0, 2π ]), T f (t) =
∫ 2π

0
cos(x + t) f (x)dx .

6. T ∈ L(C[0, 1]), T f (t) =
∫ 1

0
(x + t) f (t)dx .

Comments on the Exercises

References for the theme “Banach algebras”: the textbooks [44, Chapter9] and [38,
Ch. 10].

Subsection 11.1.1

Exercise 2. The product may not lie in the same space.

Exercise 3. There is no identity element.

Subsection 11.1.4

Exercise 4. Use Exercise 11 in Subsection11.1.2.

Subsection 11.1.5

Exercise 6. See Exercises 6 and 7 in Subsection10.2.3.

Exercise 11. Use Exercise 4 in Subsection11.1.4.
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Subsection 11.1.6

Exercise 5. See the indications at the end of Subsection12.3.5 (just below the
isomorphism theorem).

Subsection 11.2.1

Exercises 4–6. Details on this property are found in the paper [48]. As communi-
cated to the author by Zbigniew Lipecki, this property was studied earlier by a series
of authors: E. Szpilrajn-Marczewski, Fund. Math. 15 (1930), 126–127 and Fund.
Math. 22 (1934), 303–311; R. Duda and R. Telgársky, Czechoslovak Math. J. 18(93)
(1968), 66–82; Ch. Bandt, Mathematika 28 (1981), 206–210.

Exercise 9. See [28, V.1, Proposition 1.e.2].

Subsection 11.2.2

Exercise 2. We need to prove only the second part of the assertion. Let T be a
finite-rank operator and {yk}nk=1 be a basis of the finite-dimensional space T (X).
Further, let gk ∈ T (X)∗ be the coordinate functionals corresponding to the basis
{yk}nk=1. Then we have T x = ∑n

1 gk(T x)yk , i.e., as the sought-for { fk}nk=1 one can
take fk(x) = gk(T x).

Exercise 5. In view of the equality (T f )(t) = ∫ 1
0 x f (x)dx + t

∫ 1
0 f (x)dx , the

image of the operator is contained in the two-dimensional space of functions of the
form g(t) = a + bt .

Subsection 11.3.2

Exercise 5. Using the representation Ax = ∑n
k=1 fk(x)yk with linearly inde-

pendent collections {yk}nk=1 and { fk}nk=1 (Exercise 2 of Subsection11.2.2 and the
comments to it), find the expression of A∗. Deduce from this that dim A(X) =
dim A∗(X∗) = n. To convince yourself that the codimension of the kernel is equal
to the dimension of the image, use the injectivization of a linear operator (Subsec-
tion5.2.3).

Exercise 6. If the image is finite-dimensional, then it is closed, since a finite-
dimensional space is closed in any ambient space. Conversely, suppose the image is
closed. Then A(X) is a Banach space. By the open mapping theorem, the image of
the unit ball is an open set in A(X); hence, the precompact set A(B(X))) contains
some ballU of the space A(X). Then this ballU is precompact, and so the unit ball of
the space A(X), which is obtained fromU by parallel translation and multiplication
by a scalar, is also precompact. Therefore, A(X) is a finite-dimensional space.
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Subsection 11.3.3

Exercise 2. See [29, Chapter6, pp. 281–284]. Hint: arguing as in Proposition 2 of
Subsection11.3.3, deduce that among the subspaces Yn = An(X), n = 0, 1, 2, . . .,
only finitely many of them can be pairwise distinct. Convince yourself that Y =⋂

n Yn is a finite-codimensional subspace that is mapped by the operator A bijec-
tively into itself. Consider the subspace Z = ⋃

n Ker A
n . Prove that X = Y ⊕ Z .

Determine how A acts on each of these components.

Exercise 12. In 2006, when the Russian version of this book was published, the
long-standing open problemof the existence of such spaceswith the scalar+ compact
property was still open. It was solved in the affirmative in 2011 by S. Argyros and
R. Haydon, Acta Math. 206, No. 1, 1–54 (2011), Zbl 1223.46007.

Subsection 11.3.4

Exercise 2. σ(T ) = {0}. Indeed, the operator is compact, and so 0 ∈ σ(T ). There
are no non-zero points in the spectrum, since by the theorem in Subsection11.3.4,
such points would be eigenvalues, and as was shown in Subsection11.1.5, our oper-
ator has no eigenvalues.

https://zbmath.org/?q=an:1223.46007


Chapter 12
Hilbert Spaces

Among the infinite-dimensional Banach spaces, Hilbert spaces are distinguished by
their relative simplicity. In Hilbert spaces we are able to use our geometric intu-
ition to its fullest potential: measuring angles between vectors, applying Pythagoras’
theorem, and using orthogonal projections. Here we do not run into anomalous phe-
nomena1 such as non-complemented subspaces or, say, linear functionals that do
not attain their upper bound on the unit sphere. All separable infinite-dimensional
Hilbert spaces are isomorphic to one another. Thanks to this relative simplicity,
Hilbert spaces are often used in applications. In fact, whenever possible (true, this is
not always the case), one seeks to use the language of Hilbert spaces rather than that
of general Banach or topological vector spaces. The theory of operators in Hilbert
spaces is developed in much more depth than that in the general case, which is yet
another reason why this technique is frequently employed in applications.

12.1 The Norm Generated by a Scalar Product

12.1.1 Scalar Product

Let X be a complex linear space. A function 〈·, ·〉 : X × X → C, which associates
to each pair of elements x, y of the space X a complex number, is called a scalar
product (or, frequently, inner product) if it obeys the following axioms:

(1) 〈x, x〉 � 0 for all x ∈ X (positivity);

(2) if 〈x, x〉 = 0, then x = 0 (non-degeneracy);

1Although as far aswe know, flying saucers, poltergeists, telepathy, andBig Foot are not encountered
even in general Banach spaces!

© Springer International Publishing AG, part of Springer Nature 2018
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(3) 〈a1x1 + a2x2, y〉 = a1〈x1, y〉 + a2〈x2, y〉 for all x1, x2, y ∈ X and all a1, a2 ∈ C

(linearity in the first variable);

(4) 〈x, y〉 = 〈y, x〉 for all x, y ∈ X (Hermitian, or complex conjugate, symmetry)
(the overline in the last formula stands for complex conjugation).
Note that the third and fourth axioms imply the rules of opening the brackets
with respect to the second variable:

(5) 〈x, y1 + y2〉 = 〈x, y1〉 + 〈x, y2〉;
(6) 〈x, ay〉 = a〈x, y〉.

Two elements x, y for which 〈x, y〉 = 0 are said to be orthogonal (to one another;
this is abbreviated as x ⊥ y).

Examples

I. Scalar product in C
n: let x, y ∈ C

n , x = (x1, . . . , xn), y = (y1, . . . , yn). Put
〈x, y〉 = ∑n

k=1 xk yk .

II. Scalar product in �2: let x, y ∈ �2, x = (x1, x2, . . .), y = (y1, y2, . . .). Put
〈x, y〉 = ∑∞

k=1 xk yk .

III. Scalar product in L2(�,�,μ): let f, g ∈ L2. Put 〈 f, g〉 = ∫
�
f g dμ.

Although, needless to say, in all the spaces listed above there exist other scalar
products, from now, unless otherwise stipulated, by the scalar products in the spaces
C

n , �2 and L2 we will mean precisely the examples given above.
In this book we will focus on scalar products in complex spaces. This is motivated

mainly by applications to operator theory, where the non-emptiness of spectrum the-
orem requires the field of complex numbers. Nevertheless, the scalar product axioms
and the above examples also make sense in real spaces. The only changes are in fact
simplifications: in the real case 〈x, y〉 is defined to take real values, so all the com-
plex conjugations in the axioms and examples just disappear. All the results of this
chapter remain valid for real spaces with the real version of the scalar product. The
significant differences appear in the next chapter when we study unitary operators
(Subsection 13.2.2) and the polar representation (Subsection 13.2.3). In that part of
the theory complex numbers are unavoidable.

Exercises

1. Based on the numerical inequality |ab| � |a|2 + |b|2 (a, b ∈ C), prove the con-
vergence of the series and the existence of the integral in the definition of the scalar
product in �2 and L2[0, 1], respectively.
2. Verify that all the examples of scalar products given above do indeed satisfy the
necessary axioms.

3. What must the interval [a, b] be in order for the functions f (t) = eit and g(t) =
e2i t to be orthogonal in L2[a, b]?
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4. Can two polynomials of degree one be orthogonal in L2[0, 1]?
5. Can two positive functions be orthogonal in L2[0, 1]? Two negative functions?
Two sign-changing functions?

6. Is the orthogonality relation ⊥ an equivalence relation? An order relation?

7. Derive the following (square of a sum) formula:

〈x + y, x + y〉 = 〈x, x〉 + 2Re 〈x, y〉 + 〈y, y〉.

Note! This formula will be repeatedly used in the sequel.

12.1.2 The Cauchy–Schwarz Inequality

Theorem 1. Let X be a space with a scalar product. Then for any x, y ∈ X the
following Cauchy–Schwarz inequality (also known as the Cauchy–Bunyakovsky or
Cauchy–Bunyakovsky–Schwarz inequality) holds:

|〈x, y〉| � 〈x, x〉1/2〈y, y〉1/2.

Proof. By the positivity axiom,

〈x + t y, x + t y〉 � 0

for all t ∈ R. Opening the brackets, we see that for every t ∈ R,

〈x, x〉 + 2t Re 〈x, y〉 + t2〈y, y〉 � 0.

A quadratic polynomial with real coefficients can be non-negative on the whole
real line only if its discriminant is non-positive. Hence, we have shown that, for any
elements x, y ∈ X ,

Re 〈x, y〉 � 〈x, x〉1/2〈y, y〉1/2.

To derive from this the required Cauchy–Schwarz inequality, we observe that

|〈x, y〉| = Re 〈x, ei arg〈x,y〉y〉

� 〈x, x〉1/2〈ei arg〈x,y〉y, ei arg〈x,y〉y〉1/2 = 〈x, x〉1/2〈y, y〉1/2. �

Exercises

1. For the functions f (t) = t and g(t) = t2 in L2[0, 1] calculate in L2[0, 1] the
scalar products 〈 f, g〉, 〈 f, f 〉, and 〈g, g〉. Verify in this example the Cauchy–Schwarz
inequality.
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2. Suppose that for two elements x, y of a space with scalar product the Cauchy–
Schwarz inequality becomes an equality: |〈x, y〉| = 〈x, x〉1/2 〈y, y〉1/2. Then x and
y are linearly dependent.

3. Based on the examples II and III in Subsection 12.1.1, derive the following ver-
sions of the Cauchy–Schwarz inequality:2

∣
∣
∣
∣
∣

∞∑

k=1

xk yk

∣
∣
∣
∣
∣
�

( ∞∑

k=1

|xk |2
)1/2 ( ∞∑

k=1

|yk |2
)1/2

and ∣
∣
∣
∣

∫

�

f g dμ

∣
∣
∣
∣ �

(∫

�

| f |2dμ

)1/2 (∫

�

|g|2dμ

)1/2

.

4. Suppose the function F of two variables on the linear space X obeys all the scalar
product axioms, except for non-degeneracy. Verify that in this case, too, the Cauchy–
Schwarz inequality |F(x, y)| � F(x, x)1/2F(y, y)1/2 holds. (Note! This fact will be
used later in the study of self-adjoint operators.)

12.1.3 The Concept of Hilbert Space

Definition 1. Let H be a space equipped with a scalar product. The quantity ‖x‖ =√〈x, x〉 is called the norm generated by the scalar product 〈·, ·〉.
With the notation just introduced, the Cauchy–Schwarz inequality can be recast

as |〈x, y〉| � ‖x‖ · ‖y‖, and the square of a sum formula takes on the form ‖x +
y‖2 = ‖x‖2 + 2Re 〈x, y〉 + ‖y‖2.

Let us verify that the norm generated by the scalar product satisfies the triangle
inequality. To this end we square the required inequality ‖x + y‖ � ‖x‖ + ‖y‖ and
open the parentheses:

‖x‖2 + 2Re 〈x, y〉 + ‖y‖2 � ‖x‖2 + 2‖x‖ · ‖y‖ + ‖y‖2.

Reducing here the like terms, this last inequality becomes Re 〈x, y〉 � ‖x‖ · ‖y‖,
a simple consequence of the Cauchy–Schwarz inequality. We leave to the reader
the verification of the remaining norm axioms for the norm generated by the scalar
product.

2Citation from the Wikipedia article titled “Cauchy–Schwarz inequality” that explains the different
names used for this inequality: “The inequality for sums was published by Augustin-Louis Cauchy
(1821), while the corresponding inequality for integrals was first proved by Viktor Bunyakovsky
(1859). The modern proof of the integral inequality was given by Hermann Amandus Schwarz
(1888)”.
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The following parallelogram identity, also known as the parallelogram law,3 is
an important additional property of the norm generated by a scalar product.

Proposition 1 (parallelogram identity). Let H be a space equipped with a scalar
product, then for any two elements x, y ∈ H

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2.

Proof. The square of a sum formula gives us ‖x + y‖2 = ‖x‖2 + 2Re 〈x, y〉 + ‖y‖2.
Taking−y instead of y we also obtain the square of a difference formula ‖x − y‖2 =
‖x‖2 − 2Re 〈x, y〉 + ‖y‖2. It remains to put these two formulas together. �

Theorem 1. Equip the space H with the norm generated by the scalar product. Let
h ∈ H and define the mapping F : H → C by the formula F(x) = 〈x, h〉. Then F
is a continuous linear functional and ‖F‖ = ‖h‖.
Proof. The linearity of the functional F is just axiom (3) of the scalar product. The
continuity of F and the inequality ‖F‖ � ‖h‖ follow from the Cauchy–Schwarz
inequality, rewriting the latter as |F(x)| = |〈x, h〉| � ‖x‖ · ‖h‖. To estimate the norm
of the functional F from below, evaluate F on the element h/‖h‖ ∈ SH :

‖F‖ � |F(h/‖h‖)| = | 〈h, h〉/‖h‖ | = ‖h‖2/‖h‖ = ‖h‖.

The theorem is proved. �

Definition 2. Aspace H with scalar product is called aHilbert space if it is complete
in the norm generated by the scalar product.4

As in the case of general Banach spaces, in the theory of Hilbert spaces subspaces
are understood to be closed linear subspaces. On a subspace of a Hilbert space there
is defined the same scalar product as on the whole space. With respect to this scalar
product any subspace of a Hilbert space is itself a Hilbert space.

Exercises

1. Suppose x ⊥ y. Then ‖x + y‖2 = ‖x‖2 + ‖y‖2 (the analogue of Pythagoras’ the-
orem). Is the converse true, i.e., if‖x + y‖2 = ‖x‖2 + ‖y‖2, does it follow that x ⊥ y?

3The “Parallelogram Law” was approved by the Athens Popular Assembly around 345 B.C. and
stated that in a parallelogram the sum of the squared lengths of the diagonals should be equal to the
sum of the squares of the lengths of all four sides.�
4Motivated by this terminology, many authors call general spaces with a scalar product “pre-Hilbert
spaces”.
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2. Verify that the norms on the spaces �2 and L2 introduced earlier in Subsection
6.2.2 are generated by the corresponding scalar products (see examples II and III in
Subsection 12.1.1).

3. Let xn , x , yn , and y be elements of H , and let xn → x and yn → y as n → ∞.
Then 〈xn, yn〉 → 〈x, y〉 as n → ∞.

4. Verify that in the Banach spaces C[0, 1], L1[0, 1], c0, and �1 the parallelogram
identity does not hold.

5. Show that if the parallelogram identity is satisfied for any two elements x, y of
the normed space X , then the norm in X is generated by a scalar product.

6. Verify that the following useful formula holds for every element h of the Hilbert
space H : ‖h‖ = supy∈SH |Re 〈h, y〉| = supy∈SH Re 〈h, y〉. This can be done either
directly, using the Cauchy–Schwarz inequality, or deduced from Theorem 1 and the
formula ‖F‖ = ‖Re F‖ (Theorem 3 in Subsection 9.1.1).

12.2 Hilbert Space Geometry

12.2.1 The Best Approximation Theorem

Theorem 1. Let H be a Hilbert space and A ⊂ H a convex closed set. Then for any
element h ∈ H there exists in A a unique element closest to h. In other words, there
exists a unique a0 ∈ A such that ‖h − a0‖ = ρ(h, A).

Proof. Since ρ(h, A) = ρ(0, A − h), it suffices to prove the theorem for the case
when h = 0. Denote ρ(0, A) by r and consider the set

An =
{

a ∈ A : ‖a‖ � r + 1

n

}

= A ∩
(

r + 1

n

)

BH .

The intersection of all the sets An is the set of all elements lying at distance r from
zero. Hence, we have to prove that

⋂∞
n=1 An consists of a single point. To this end we

use the nested sets theorem (Subsection 1.3.3). The An’s form a decreasing chain of
convex closed sets. It remains to show that diam(An) → 0 as n → ∞. To estimate
the diameter, we take two arbitrary points x, y ∈ An and apply the parallelogram
identity and the inequality r � ‖e‖ � r + 1/n, which holds for all e ∈ An . This
yields

‖x − y‖2 = 2‖x‖2 + 2‖y‖2 − ‖x + y‖2 = 2

(

‖x‖2 + ‖y‖2 − 2

∥
∥
∥
∥
x + y

2

∥
∥
∥
∥

2
)

� 2
(
(r + 1/n)2 + (r + 1/n)2 − 2r2

) = 8r

n
+ 4

n2
.
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Therefore,

diam(An) �
(
8r

n
+ 4

n2

)1/2

→ 0 as n → ∞. �

Exercises

1. Verify that the sets An figuring in the proof of the best approximation theorem
are convex and closed.

2. Where in the proof was the convexity of the sets An used?

3. Where in the proof was the fact that the norm of the Hilbert space is generated
by the scalar product used?

4. On the space C[0, 1] consider the functional F given by the rule F(x) =
∫ 1/2
0 x(t)dt − ∫ 1

1/2 x(t)dt . Then A = {x ∈ C[0, 1] : F(x) = 1} is a convex closed
set which contains no element closest to zero (see also Subsection 6.4.4, Exercise 4).

5. In the space C[0, 1] consider the set A of all functions that take the value 1 at 0.
Verify that the distance from A to 0 is equal to 1, that this distance is attained, but
there is more than one point in A closest to 0.

6. For a normed space X the following properties are equivalent:

— in any convex subset A ⊂ X , for any element x ∈ X , if A contains an element
that is closest to x , then this element is unique;

— for any two non-collinear vectors x, y ∈ X there holds the strict triangle inequal-
ity ‖x + y‖ < ‖x‖ + ‖y‖;

— ‖x + y‖ < 2 for any two distinct vectors x, y ∈ SX ;

— the unit sphere of the space does not contain rectilinear segments of non-zero
length (this property of a space is called strict convexity).

7. Suppose that for a subset A of the normed space X the assertion of the best
approximation theorem holds true: For any element h ∈ X , A contains an element
that is closest to h. Then A is closed.

8. Suppose that for a subset A of a finite-dimensional Hilbert space H the assertion
of the best approximation theorem holds true. Then A is convex.

9. Generalize the assertion of the last exercise to the case of an infinite-dimensional
Hilbert space.5

5If you succeed in doing so, publish the result! At least at the time these lecture notes were written,
the problem was still open. The subsets A ⊂ H enjoying the property that for every h ∈ H there
exists in A a unique element closest to h are called Chebyshev sets. A Google search with the
keywords “convexity of Chebyshev sets" will give the reader dozens of references to papers about
this challenging open problem.
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12.2.2 Orthogonal Complements and Orthogonal Projectors

Definition 1. Let H be a Hilbert space. An element h ∈ H is said to be orthogonal
to the subset X ⊂ H (in which case one writes h ⊥ X ) if h is orthogonal to all
the elements of X . The set of all elements orthogonal to the subset X is called the
orthogonal complement to X and is denoted by X⊥.

Proposition 1. X⊥ is a subspace of H (recall that in Banach spaces, and hence
also in Hilbert spaces, we agreed to use the term subspace to mean, without special
mention, closed linear subspace).

Proof. We have X⊥ = ⋂
x∈X x⊥. Hence, it is sufficient to prove that for any element

x the set x⊥ is a (closed!) subspace of H . But x⊥ coincides with the kernel F−1(0)
of the continuous linear functional F : y �→ 〈y, x〉 (see Theorem 1 of Subsection
12.1.3). �

The next assertion is a direct generalization of a fact that is already well-known
from school geometry: to find in a subspace X the closest element to a point h, we
need to drop a perpendicular onto the subspace.

Proposition 2. Let X be a subspace of the Hilbert space H, h ∈ H, and h0 ∈ X.
Then the following conditions are equivalent:

(a) h0 is the element of X closest to h;

(b) h − h0 ∈ X⊥.

Proof. (a) =⇒ (b). Suppose that condition (b) is not satisfied. Then there exists an
element x ∈ X for which 〈x, h − h0〉 �= 0.Multiplying x , if necessary, by a constant,
we obtain a vector for which 〈x, h − h0〉 = 1. By condition (a), for every t > 0 it
holds that

‖h − h0‖2 � ‖h − h0 − t x‖2 = ‖h − h0‖2 − 2t + t2‖x‖2.

That is, for every t > 0 one has t2‖x‖2 − 2t � 0, which obviously does not hold for
small t .

(b) =⇒ (a). Let h1 ∈ X be an arbitrary element. Then

‖h − h1‖2 = ‖(h − h0) − (h0 − h1)‖2 = ‖h − h0‖2 + ‖h0 − h1‖2 � ‖h − h0‖2.

This means that h0 is the closest element to h in X , as we needed to prove. �

Theorem 1. Let X be a subspace of the Hilbert space H. The H decomposes into
the direct sum of the subspaces X and X⊥: H = X ⊕ X⊥.

Proof. We have to show that 1) X ∩ X⊥ = {0}, and 2) for any h ∈ H there exist
elements x ∈ X and y ∈ X⊥ such that h = x + y.
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1) Suppose some element x belongs simultaneously to the subspaces X and X⊥.
Then x ⊥ x , i.e., 〈x, x〉 = 0, and so x = 0.

2) Let h ∈ H be an arbitrary element. Denote by x the element of the subspace
X closest to h and put y = h − x . Then x ∈ X , y ∈ X⊥ (according to Proposition 2
above), and h = x + y. �

Since H = X ⊕ X⊥, there exists (see Subsection 10.3.2) a bounded projector P
onto the subspace X with Ker P = X⊥. The action of this projector can be described
directly as follows: for each h ∈ H , write the decomposition h = x + y, with x ∈ X
and y ∈ X⊥. Then Ph = x . Such a projector P is called the orthogonal projector
(or orthoprojector) onto the subspace X . Since, as was shown in the second step of
the proof of Theorem 1, the element x in the above decomposition h = x + y is the
closest in X to h, another equivalent way to define P is to say that it sends each
element h ∈ H into the element Ph ∈ X closest to h. The reader should familiarize
himself with the properties of orthogonal projectors by solving the exercises given
below.

Remark 1. As we just proved, in a Hilbert space for any subspace there
exists a bounded projector onto that subspace. The converse statement, called the
Lindenstrauss–Tzafriri theorem [67], is also true: if in the Banach space X any sub-
space is complemented, then X is isomorphic to a Hilbert space.

Exercises

1. The norm of the orthogonal projector onto a nonzero subspace is equal to 1.

2. If a projector P onto the subspace X is such that ‖P‖ = 1, then P is an orthogonal
projector.

3. Based directly on the definition, show that the orthogonal complement to a subset
is a closed linear subspace.

4. Let X be a subspace of the Hilbert space H . Then (X⊥)⊥ = X .

5. For any subset X ⊂ H , (X⊥)⊥ coincides with the closure of the linear span of
the set X .

6. Let ek ∈ H , k = 1, 2, . . ., and put X = Lin{ek}∞1 . Then for an element y ∈ H to
belong to X⊥, it is necessary and sufficient that y is orthogonal to all ek . In other
words, X⊥ = ⋂

k∈N e⊥
k .

12.2.3 The General Form of Linear Functionals on a Hilbert
Space

Theorem 1. Forany linear functional F onaHilbert space H there exists an element
h ∈ H such that
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F(x) = 〈x, h〉 (1)

for all x ∈ H. The element h is uniquely determined, and ‖F‖ = ‖h‖.
Proof. In the case of the trivial (identically equal to 0) functional F the assertion is
obvious. Now suppose F �= 0. Denote the kernel of F by X . There exists a norm-1
element e that is orthogonal to X . As the sought-for element take h = F(e)e. For
this choice, if we take x ∈ X , then both F(x) = 0 and 〈x, h〉 = 0, so (1) holds for
all x ∈ X . The equality (1) also holds for x = e:

〈e, h〉 = F(e)〈e, e〉 = F(e).

Consequently, by linearity, F(x) = 〈x, h〉 for any x ∈ Lin{e, X}. But X is a hyper-
subspace in H (see Subsection 5.3.3), therefore Lin{e, X} = H and (1) holds on the
whole space H . The equality ‖F‖ = ‖h‖ was established above, in Theorem 1 of
Subsection 12.1.3. It remains to verify the uniqueness of the element h. Let h1 ∈ H
be another element such that F(x) = 〈x, h1〉 for all x ∈ H . Then 〈x, h − h1〉 = 0
for all x ∈ H ; in particular, 〈h − h1, h − h1〉 = 0. That is, h − h1 = 0 and h = h1.
The theorem is proved. �

Remark 1. The final argument of the proof can be formulated as an individual propo-
sition: If 〈x, h1〉 = 〈x, h2〉 for all x ∈ H , then h1 = h2. This assertion will be used
repeatedly in the sequel.

Exercises

1. In the proof above we dealt only with the case F �= 0 (by the way, where was this
condition implicitly used?). Treat the case F = 0 yourself.

2. In what way was the continuity of the functional F used?

3. Why does the fact that the equality F(x) = 〈x, h〉 holds for all x ∈ X and for
x = e imply that it holds for all x ∈ Lin{e, X} ?
4. Is the completeness of the space H important in the last theorem?

5. Define the map U : H → H∗ by the rule: for h ∈ H , (Uh)(x) = 〈x, h〉. Show
thatU is bijective, additive (i.e.,U (h1 + h2) = Uh1 +Uh2), but not homogeneous.
Instead of homogeneity, one has that U (λh) = λU (h).

6. Let H be the subspace of L2[0, 1] consisting of the polynomials of degree at most
2. Represent the functional F on H given by F( f ) = f (0), as F( f ) = 〈 f, h〉, as
indicated in the theorem on the general form of linear functionals on H . Do the same
for the functional F1 on H given by the formula F1( f ) = f ′(0).
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7. Based on the theorem in Subsection 12.1.3 and Exercise 2 in Subsection 9.1.2,
prove the following n-dimensional analogue of the well-known formula for comput-
ing the distance of a point to a plane. Suppose the hyperplane A in the n-dimensional
coordinate space is given by the equation a1x1 + · · · + anxn = b. Then the distance
of any vector x = (x1, . . . , xn) to the hyperplane A is given by the formula

ρ(x, A) = |a1x1 + · · · + anxn − b|
√
a21 + · · · + a2n

.

8. Suppose the numerical sequence a = (a1, a2, . . .) has the property that the series∑∞
m=1 amxm converges for any x = (x1, x2, . . .) ∈ �2. Then a ∈ �2 and the formula

f (x) = ∑∞
m=1 amxm gives a linear functional on �2.

By using the preceding exercise, the following theorem is reduced to the closed
graph theorem.

9. Suppose the infinite matrix A = (an,m)∞n,m=1 has the following property: for any
x = (x1, x2, . . .) ∈ �2 and any n ∈ N, the series

∑∞
m=1 an,mxm converges, and the

numerical sequence Ax = (∑∞
m=1 an,mxm

)∞
n=1 belongs to �2 (in other words, the

operator of multiplication by the matrix A maps �2 into �2). Then the operator of
multiplication by the matrix A is continuous as an operator mapping �2 into �2.

12.3 Orthogonal Series

We next turn to the study of a subject that to some degree is discussed in other
university courses: calculus — in the treatment of trigonometric series, and linear
algebra — in the construction of orthonormal bases in finite-dimensional Euclidean
spaces.

12.3.1 A Convergence Criterion for Orthogonal Series

Lemma 1 (n-dimensional Pythagoras’ theorem). Suppose the elements (xk)
n
1 of

the Hilbert space H are pairwise orthogonal: 〈xk, x j 〉 = 0 for all k �= j . Then
∥
∥
∑n

k=1 xk
∥
∥2 = ∑n

k=1 ‖xk‖2.

Proof. We need to use the definition of the norm, open the brackets, and discard the
null terms:

∥
∥
∥
∥
∥

n∑

k=1

xk

∥
∥
∥
∥
∥

2

=
〈

n∑

k=1

xk,
n∑

k=1

xk

〉

=
n∑

k=1

〈xk, xk〉 +
n∑

k, j=1, k �= j

〈xk, x j 〉 =
n∑

k=1

‖xk‖2. �
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Theorem 1 (convergence criterion fororthogonal series).Let (xk)∞1 bea sequence
of pairwise-orthogonal elements of the Hilbert space H. Then for the series

∑∞
k=1 xk

to converge it is necessary and sufficient that the numerical series
∑∞

k=1 ‖xk‖2 con-
verges.

Proof. By the Cauchy criterion, for the series
∑∞

k=1 xk to converge it is necessary and

sufficient that
∥
∥
∑m

k=n xk
∥
∥2 → 0 as n,m → ∞. In view of the lemma proved above,

this is equivalent to the condition
∑m

k=n ‖xk‖2 → 0 as n,m → ∞, which again by
the Cauchy criterion is equivalent to the convergence of the series

∑∞
k=1 ‖xk‖2. �

Remark 1. If the series of pairwise-orthogonal terms
∑∞

k=1 xk converges, then by

simply letting n → ∞ in the relation
∥
∥
∑n

k=1 xk
∥
∥2 = ∑n

k=1 ‖xk‖2 we obtain an

infinite-dimensional version of Pythagoras’ theorem:
∥
∥
∑∞

k=1 xk
∥
∥2 = ∑∞

k=1 ‖xk‖2.

Exercises

Let
∑+∞

k=−∞ akeikt be a series in L2[0, 2π ]. Under what conditions on the coefficients
ak does this series converge in L2[0, 2π ]? What is the norm of the sum of this series
equal to?

12.3.2 Orthonormal Systems. Bessel’s Inequality

For the sake of simplicity, throughout this subsection � will stand for a finite or
countable set of indices. However, the exposition will proceed in such a manner that
the reader should be able, with no major effort, to extend the main assertions to the
case of uncountable sets �.

Definition 1. A system {xk}k∈� of elements of the Hilbert space H is said to be
orthonormal if the elements xk are pairwise orthogonal and the norms of all xk are
equal to 1. These two conditions can be written as a single relation 〈xk, x j 〉 = δk, j ,
where δk, j is the Kronecker symbol. The Fourier coefficients of the element h ∈ H
in (with respect to) the orthonormal system {xk}k∈� are the numbers ĥk = 〈h, xk〉,
k ∈ �.

The next statement clarifies the role of the Fourier coefficients.

Proposition 1. Let {xk}k∈� be an orthonormal system, {ak}k∈� be scalars, and h =∑
k∈� akxk (if in this last sum there are infinitely many non-zero terms, then the sum

is understood as a series, written in some fixed order). Then ak = ĥk for all k ∈ �.

Proof. Taking the scalar product of both sides of the equality h = ∑
k∈� akxk with

x j , we obtain 〈h, x j 〉 = ∑
k∈� ak〈xk, x j 〉. Since 〈xk, x j 〉 = δk, j , the sum in the right-

hand side of the last equality reduces to a single term, a j . This yields the needed
equality a j = 〈h, x j 〉. �



12.3 Orthogonal Series 323

Proposition 2. Let {xk}k∈� be an orthonormal system of elements of the Hilbert
space H. Let the subspace X be the closed linear span of the set {xk}k∈� , h ∈ H.
Then for h0 ∈ X to be the closest element to h in X it is necessary and sufficient
that the Fourier coefficients of h0 with respect to the system {xk}k∈� coincide with
the Fourier coefficients of h.

Proof. By Proposition 2 of Subsection 12.2.2, h0 is the closest element to h in X
if and only if h − h0 ∈ X⊥. Since X = Lin{xk}k∈� , the condition h − h0 ∈ X⊥ is
equivalent to the equalities 〈h − h0, xk〉 = 0 holding simultaneously for all k ∈ �

(Exercise 6 in Subsection 12.2.2), which in turn means that 〈h0, xk〉 = 〈h, xk〉 for all
k ∈ �, as needed. �

Proposition 3. Let in the above proposition � be finite. Denote by P the orthogo-
nal projector onto the subspace X = Lin {ek}k∈� . Then Ph = ∑

k∈� ĥk xk for every
h ∈ H.

Proof. Consider the element x = ∑
k∈� ĥk xk . By Proposition 1, x̂k = ĥk for all

k ∈ �. By Proposition 2, x is the closest element to h in the subspace X , i.e.,
Ph = x . �

Theorem 1 (Bessel’s inequality). Let {xk}k∈� be an orthonormal system in the
Hilbert space H, and let h ∈ H. Then

∑

k∈�

|̂hk |2 � ‖h‖2.

Proof. It suffices to prove Bessel’s inequality for finite orthonormal systems: indeed,
if

∑
k∈Δ |̂hk |2 � ‖h‖2 for every finite subset Δ ⊂ �, then the sum over the whole �

is bounded by the same number.
So, suppose the set � is finite. In the notation of Proposition 3, Ph = ∑

k∈� ĥk xk .
The definition of the orthoprojector implies that (h − Ph)⊥ Ph, and consequently
‖Ph‖2 + ‖h − Ph‖2 = ‖h‖2. Therefore, ∑k∈� |̂hk |2 = ‖Ph‖2 � ‖h‖2. �

Exercises

1. Why in the proof of Proposition 1 were we allowed to move the scalar product
inside the sum?

2. Why in the formulation ofBessel’s inequality does the sum
∑

k∈� |̂hk |2 not depend
on the order in which the terms are written?

Let � be some, possibly uncountable, index set. By definition, a series
∑

k∈� xk
of elements of a Banach space is said to converge unconditionally to an element x
if for any ε > 0 there exists a finite subset Δ ⊂ � such that for any finite subset
Δ1 ⊂ �, if Δ1 ⊃ Δ, then

∥
∥x − ∑

k∈Δ1
xk

∥
∥ < ε. (Essentially, we are dealing here
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with convergence along a certain directed set. Comparewith Exercise 5 in Subsection
4.1.2.)

Suppose the series
∑

k∈� xk of elements of a Banach space converges uncondi-
tionally to the element x . Show that:

3. For every ε > 0, the number of elements of norm larger than ε is finite.

4. The number of non-zero terms of the series is at most countable.

5. If we write in an arbitrary way all non-zero terms of the series as a sequence
xk1 , xk2 , . . ., then the resulting series

∑∞
n=1 xkn converges to x in the ordinary sense.

6. Verify that if the convergence of a series with uncountable many terms is under-
stood as unconditional convergence, then the assertions about orthogonal series
and orthonormal systems proved in the preceding two subsections remain valid for
uncountable systems and series.

12.3.3 Fourier Series, Orthonormal Bases, and the Parseval
Identity

The series
∑∞

n=1 ĥnen , where ĥn are the corresponding Fourier coefficients, is called
the Fourier series of the element h ∈ H in (with respect to) the system {en}∞1 ⊂ H .

Theorem 1. Let {en}∞1 be an orthonormal system in the Hilbert space H, X =
Lin {ek}∞1 , and P be the orthogonal projector on the subspace X. Then the Fourier
series of any element h ∈ H converges and its sum coincides with Ph.

Proof. The convergence of the series
∑∞

n=1 ĥnen follows from the Bessel inequality
(Subsection 12.3.2) and the convergence criterion for orthogonal series (Subsection
12.3.1). Further, for the element x := ∑∞

n=1 ĥnen ∈ X its Fourier coefficients x̂k are
equal to the corresponding ĥk (Proposition 1 of Subsection 12.3.2). By Proposition
2 of Subsection 12.3.2, this means that x is the closest element to h in X , that is,
Ph = x . �

Definition 1. A complete orthonormal system {en}n∈� in the Hilbert space H is
called an orthonormal basis. In other words, the elements {en}n∈� constitute an
orthonormal basis if 〈ek, e j 〉 = δk, j for all k, j ∈ � and Lin {en}n∈� = H .

If under the assumptions of Theorem1 {en}∞1 is an orthonormal basis, then X = H
and the orthogonal projector P is simply the identity operator. This implies the
following result.

Theorem 2. Let {en}∞1 be an orthonormal basis in the Hilbert space H. Then the
Fourier series of any element h ∈ H converges and

∑∞
n=1 ĥnen = h. �
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Exercises

1. Let H be a Hilbert space, and
∞∑

n=1
ĥnen be the Fourier series of the element h ∈ H .

The following conditions are equivalent:

—
∞∑

n=1
ĥnen = h;

— the Parseval identity (also referred to as the Parseval equality) holds for h:

∞∑

n=1

|̂hk |2 = ‖h‖2.

2. If {en}∞1 is an orthonormal basis, then the Parseval identity holds for all elements
h ∈ H .

3. Choose the coefficients ak so that the functions fk = akeikt , k ∈ Z, form an
orthonormal system in L2[0, 2π ].
4. Suppose the sequence ( fk) of continuously differentiable functions constitutes
an orthonormal system in L2[0, 2π ]. Prove that the derivatives of the functions ( fk)
cannot be jointly bounded.

5. Give an example of a sequence ( fk) of continuously differentiable functions
with jointly bounded derivatives such that ( fk) constitutes an orthonormal system in
L2(−∞,+∞).

12.3.4 Gram–Schmidt Orthogonalization and the Existence
of Orthonormal Bases

Theorem 1. Let H be aHilbert space, {xn}∞1 ⊂ H a linearly independent sequence,
and Xn = Lin{xk}n1 . Then there exists an orthonormal system {en}∞1 with the property
that Lin{ek}n1 = Xn for all n. The orthonormal system {en}∞1 is called the Gram–
Schmidt orthogonalization of the system {xn}∞1 .

Proof. Denote by Pn the orthogonal projector onto the subspace Xn . Set

e1 = x1
‖x1‖ , e2 = x2 − P1x2

‖x2 − P1x2‖ , . . . , en+1 = xn+1 − Pnxn+1

‖xn+1 − Pnxn+1‖ , . . . .

All elements ek with k � n thus defined lie in Xn , and en+1 ⊥ Xn . Hence, for every
n the vector en+1 is orthogonal to all the preceding ek . Moreover, ‖ek‖ = 1 for all k.
Therefore, {en}∞1 is an orthonormal system. By construction, Lin{ek}n1 ⊂ Xn and the
dimensions of these spaces coincide. Consequently, Lin{ek}n1 = Xn . �
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Remark 1. Since the elements {ek}n1 form an orthonormal basis in Xn , Proposition
3 of Subsection 12.3.2 shows that Pnh = ∑n

k=1 ĥkek for all h ∈ H . That is, ek can
be constructed from the elements {xn}∞1 in explicit form, by means of the recursion
formula

en+1 =
xn+1 −

n∑

k=1
〈xn+1, ek〉ek

∥
∥
∥
∥xn+1 −

n∑

k=1
〈xn+1, ek〉ek

∥
∥
∥
∥

.

Theorem 2. In every infinite-dimensional separable Hilbert space there exists an
orthonormal basis.

Proof. Since theHilbert space H is separable, it contains a countable dense sequence.
Discarding from this sequence the elements that are linearly dependent on the pre-
ceding ones, we obtain a linearly independent sequence {xn}∞1 ⊂ H that is complete
in H . Let {en}∞1 be the Gram–Schmidt orthogonalization of the sequence {xn}∞1 .
Then {en}∞1 is an orthonormal system, and Lin{ek}∞1 = Lin{xk}∞1 . Therefore, the
constructed system {en}∞1 is complete in H , which by definition means that {en}∞1 is
an orthonormal basis of the space H . �

Exercises

1. In the proof of Theorem 1 we stated that the vector en+1 is orthogonal to all the
preceding vectors ek . Why is en+1 also orthogonal to all the succeeding vectors ek?

2. Why in the formula en+1 = xn+1 − Pnxn+1

‖xn+1 − Pnxn+1‖ can the denominator be never equal

to zero?

3. In Theorem 1 we proved the existence of a Gram–Schmidt orthogonalization of
the sequence (xn)∞1 . Is this orthogonalization unique?

4. What property of the projector Pn was used when we asserted that en+1 is orthog-
onal to Xn?

5. Justify the equality Lin{ek}∞1 = Lin{xk}∞1 in the proof of Theorem 2.

6. Prove that the family of all orthonormal systems in the Hilbert space H , ordered
by inclusion, satisfies the conditions of Zorn’s lemma. From this one can derive both
the theorem on the existence of an orthonormal basis in a separable Hilbert space
and its analogue for the non-separable case. The drawback of this argument is that it
does not provide an explicit construction of a basis.

7. Let H be a Hilbert space. Then any two orthonormal bases in H have the same
cardinality (“number of elements”).
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12.3.5 The Isomorphism Theorem

Definition 1. Let H1 and H2 beHilbert spaces. The operator T : H1 → H2 is called a
Hilbert space isomorphism if T is bijective and 〈T x, T y〉 = 〈x, y〉 for all x, y ∈ H1.
The Hilbert spaces H1, H2 are said to be isomorphic if there exists a Hilbert space
isomorphism T : H1 → H2.

Theorem 1. Every separable infinite-dimensional Hilbert space is isomorphic to
the space �2.

Proof. Let {en}∞1 be an orthonormal basis in H . Define the operator T : H → �2 by
the rule Th = (〈h, e1〉, 〈h, e2〉, . . . , 〈h, en〉, . . .). That is, to each element h ∈ H we
associate the sequence of its Fourier coefficients in the basis {en}∞1 . By the Bessel
inequality, Th ∈ �2 and ‖Th‖ � ‖h‖. The operator T has an inverse T−1, which acts
from �2 to H as T−1(an)∞1 = ∑∞

n=1 anen . Therefore, the operator T is invertible, and
hence bijective. It remains to verify that 〈T x, T y〉 = 〈x, y〉.

So, let x = ∑∞
k=1 akek and y = ∑∞

j=1 b j e j be arbitrary elements of H . We have

〈x, y〉 =
〈 ∞∑

k=1

akek,
∞∑

j=1

b j e j

〉

=
∞∑

k=1

⎛

⎝
∞∑

j=1

akb j 〈ek, e j 〉
⎞

⎠ =
∞∑

k=1

akbk = 〈T x, T y〉,

as needed. �
Since all separable infinite-dimensional Hilbert spaces are isomorphic to each

other, whenever one needs to solve a concrete problem one can choose a space that is
more convenient for that problem. Let us give an example. In Exercise 5 of Subsection
11.1.6, the reader was asked to establish the existence and calculate the spectrum of
an operator A which in the standard basis of the Hilbert space �2 has a two-diagonal
matrix, with all elements on the two diagonals equal to 1. Let H2 be the subspace of
L2[0, 1] obtained by taking the closure of the linear span of the orthonormal system
en = e2π int , n = 0, 1, 2, . . .. Now in H2 consider the operator T of multiplication by
the function g(t) = 1 + e2π i t , acting as T f = g · f . In the considered basis en the
operator T has the matrix ⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 . . .

1 1 0 0 . . .

0 1 1 0 . . .

0 0 1 1 . . .
...

...
...

. . .
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

i.e., the same matrix as A. Hence, instead of considering the operator A in �2, one
can consider the operator T in H2, which enjoys the same properties. However, the
operatorT is alreadygivenby a simple explicit expression, and its properties aremuch
easier to investigate. We invite the reader to solve Exercise 5 in Subsection11.1.6
using the idea described above of replacing �2 by the space H2.
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Exercises

8. The proof of the isomorphism theorem started with the words: “Let {en}∞1 be an
orthonormal basis in H”. Why does such a basis exist in H?

9. Show that the operator T figuring in the proof of the isomorphism theorem is
linear.

10. Why does the series
∑∞

n=1 anen figuring in the definition of the operator T−1

converge?

11. Verify that the operator T−1 acting as T−1(an)∞1 = ∑∞
n=1 anen is indeed the

inverse of T .

12. Whydoes every element of the space H admit the representation x = ∑∞
n=1 anen

as the sum of a convergent series with respect to the system {en}∞1 ?

13. Justify the convergence of the series
∑∞

k=1

(∑∞
j=1 akb j 〈ek, e j 〉

)
and the equality

〈∑∞
k=1 akek,

∑∞
j=1 b j e j 〉 = ∑∞

k=1

(∑∞
j=1 akb j 〈ek, e j 〉

)
in the proof of the isomor-

phism theorem.

14. Construct a concrete Hilbert space isomorphism between the spaces L2[0, 1]
and �2.

15. Any Hilbert space isomorphism T of two Hilbert spaces H1 and H2 is an isom-
etry: ‖Th‖ = ‖h‖ for all h ∈ H1.

16. Every bijective isometry between two Hilbert spaces H1 and H2 is an isomor-
phism of Hilbert spaces.

17. Can a finite-dimensional Hilbert space be isomorphic to an infinite-dimensional
one?

18. Can a separable Hilbert space be isomorphic to a non-separable one?

19. Suppose the Hilbert spaces H1 and H2 have complete orthonormal systems of
the same cardinality. Then H1 and H2 are isomorphic.

12.4 Self-adjoint Operators

12.4.1 Bilinear Forms on a Hilbert Space

Definition 1. Let H be a Hilbert space. A mapping F : H × H → C is called a
bilinear form if for any elements x, y, x1, x2, y1, y2 ∈ H and any complex numbers
λ1, λ2 the following relations hold:
— F(λ1x1 + λ2x2, y) = λ1F(x1, y) + λ2F(x2, y);
— F(x, λ1y1 + λ2y2) = λ1F(x, y1) + λ2F(x, y2).
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Using the term “bilinear form” here is not entirely correct: linearity in the second
variable is modified. Inmany textbooks the so-modified condition is called sesquilin-
earity, and the form is called sesquilinear instead of bilinear.

Examples

1. In the finite-dimensional coordinate space C
n every bilinear form can be

expressed as F(x, y) = ∑n
k, j=1 ak, j xk y j , where xk and y j are the coordinates of

the vectors x and y, respectively, and ak, j are elements of a complex n × n matrix A.

2. Let A be a linear operator in H . The expressions F(x, y) = 〈x, Ay〉 and
G(x, y) = 〈Ax, y〉 give bilinear forms.

Definition 2. A bilinear form is said to be continuous if it is continuous in each of
its variables.

Theorem 1 (General formof continuous bilinear forms6 on aHilbert space).Let
F be a continuous bilinear form on aHilbert space H. Then there exists a continuous
linear operator A ∈ L(H) such that

F(x, y) = 〈x, Ay〉

for all x, y ∈ H. The operator A is uniquely determined by the form F.

Proof Fix an element y ∈ H . Then the mapping x �→ F(x, y) is a continuous linear
functional. By the theorem on the general form of continuous linear functionals on a
Hilbert space, there exists an element A(y) ∈ H such that F(x, y) = 〈x, A (y)〉 for
all x ∈ H . Moreover, the element A(y) is uniquely determined by y. It remains to
verify that the mapping y �→ A(y) is linear and continuous.

Linearity. We have 〈x, A(λ1y1 + λ2y2)〉 = F(x, λ1y1 + λ2y2) = λ1F(x, y1) +
λ2F(x, y2) = 〈x, λ1A(y1) + λ2A(y2)〉. Since the element x is arbitrary, this means
that A(λ1y1 + λ2y2) = λ1A(y1) + λ2A(y2).

Continuity. For each x ∈ H the expression F(x, y) = 〈x, Ay〉 is continuous in
y. That is, for any sequence (yn) in H that converges to zero, we have 〈x, Ayn〉 → 0
as n → ∞. This means that the sequence of functionals fn(x) = 〈x, Ayn〉 converges
pointwise to zero. By the Banach–Steinhaus theorem, the sequence ( fn) is bounded.
Since ‖ fn‖ = ‖Ayn‖, we deduce that the operator A takes any sequence (yn) that
converges to zero into a bounded sequence. But by Theorem 1 of Subsection 6.4.1,
this property is equivalent to the continuity of the operator A. The theorem is proved.

�

6It’s funny to speak about the “form of forms”. Mathematical language has many such pearls. One
of my favorite ones is the inequality n > N in the standard definition of the limit: lim

n→∞ an = a if

∀ε > 0 ∃N ∈ N∀n > N |an − a| < ε.
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12.4.2 The Adjoint of a Hilbert Space Operator

The reader is already familiar with the notion of an adjoint (conjugate, dual) operator,
defined as an operator acting between the corresponding dual spaces; but since in a
Hilbert space the continuous linear functionals are identified with elements of the
space itself, here it is natural to introduce the notion of adjoint operator in a somewhat
different way.

Definition 1. Let A ∈ L(H). The adjoint of the operator A is the operator A∗ such
that 〈Ax, y〉 = 〈x, A∗y〉 for all elements x, y ∈ H .

The correctness of this definition, i.e., the existence and uniqueness of the operator
A∗, is guaranteed by the theorem on the general form of bilinear forms.

Let us list the basic properties of the operation of passing to the adjoint operator:

1. (A1 + A2)
∗ = A∗

1 + A∗
2;

2. I ∗ = I ;

3. (λA)∗ = λA∗;

4. (A1A2)
∗ = A∗

2A
∗
1;

5. (A∗)∗ = A.

All the listed properties are verified by following the same scheme. For exam-
ple, let us establish property 1. We have to verify that (A1 + A2)

∗y = A∗
1y + A∗

2y
for all y ∈ H . To this end we need, in turn, to verify that 〈x, (A1 + A2)

∗y〉 =
〈x, A∗

1y + A∗
2y〉 for all x ∈ H . We have

〈x, (A1 + A2)
∗y〉 = 〈(A1 + A2)x, y〉 = 〈A1x, y〉 + 〈A2x, y〉

= 〈x, A∗
1y〉 + 〈x, A∗

2y〉 = 〈x, A∗
1y + A∗

2y〉.

Remark 1. Although in the setting of Hilbert space theory the adjoint operator is
defined differently than for general Banach spaces (Subsection 9.4.1), we are in fact
dealing with a particular case of that general definition. Indeed, if one identifies
each element y ∈ H with the linear functional on H that it generates, i.e., y(x) =
〈x, y〉, the definition 〈Ax, y〉 = 〈x, A∗y〉 takes on the familiar form (A∗y)(x) =
y(Ax). Accordingly, the general theorems proved in Subsection 9.4.1 concerning
the connections between images, kernels, injectivity and surjectivity of an operator
and of its adjoint, as well as the formula ‖A∗‖ = ‖A‖, remain in force. (Prove this!)
In particular, if the operator A∗ is injective, then the image of the operator A is dense
in H .

Lemma 1. Suppose the operators A and A∗ are bounded below. Then A is invertible.

Proof. Since A is bounded below, it is injective, and its image is closed. Next, since
A∗ is bounded below, it also is injective, and so the image of the operator A is dense
in H . Since the image of A is closed and dense in H , we have that A(H) = H , i.e.,
A is surjective. Injectivity + surjectivity = invertibility. �
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Exercises

1. Verify properties 2–5 of the operation of passing to the adjoint operator.

2. If the definition of an adjoint operator in a Hilbert space is a particular case of that
of an adjoint operator defined for general Banach spaces, then why does property
3 of the operation of passage to the adjoint operator in a Hilbert space differ from
the analogous property in Banach spaces? Where does the complex conjugation bar
over λ come from?

3. Does the analogue of property 5 hold for general Banach spaces?

4. Prove the relations σ(U−1) = {1/λ : λ ∈ σ(U )} and σ(U ∗) = {λ : λ ∈ σ(U )},
the first for invertible, and the second for arbitrary operators U ∈ L(H).

5. Verify that a continuous bilinear form is jointly continuous in its variables.

6. Will the above definition of the adjoint operator be correct if H is a non-complete
space with scalar product?

7. Let P ∈ L(H) be a projector. Then P∗ is also a projector. Onto what subspace?

The Hilbert–Schmidt norm of the operator A is defined as

‖A‖HS =
⎛

⎝
∑

n,m∈N
|〈Aen, gm〉|2

⎞

⎠

1/2

,

where {en}∞1 , {gn}∞1 is a fixed pair of orthonormal bases of the Hilbert space. The
operator A is called a Hilbert–Schmidt operator if ‖A‖HS < ∞, i.e., if its matrix in
this pair of bases is Hilbert–Schmidt. Show that:

8. ‖A‖ � ‖A‖HS.

9.
(

∑

n∈N
‖A∗gn‖2

)1/2
= ‖A‖HS =

(
∑

n∈N
‖Aen‖2

)1/2
.

10. ‖A‖HS does not depend on the choice of the pair of orthonormal bases {en}∞1 ,
{gn}∞1 , and ‖A‖HS = ‖A∗‖HS.
11. Use the preceding exercise to establish the following fact: let U be a fixed
ellipsoid in afinite-dimensionalEuclidean space.Then all rectangular parallelepipeds
circumscribing U have the same diameter. Note that even in the three-dimensional
case proving this fact by methods of analytic geometry is far from simple.

12. Any Hilbert–Schmidt operator is compact.
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12.4.3 Self-adjoint Operators and Their Quadratic Forms

Definition 1. The operator A in a Hilbert space H is called self-adjoint if A∗ = A
or, equivalently, if 〈Ax, y〉 = 〈x, Ay〉 for all x, y ∈ H .

We mentioned earlier the analogy between operators and complex numbers. For
Hilbert space operators, thanks to the notion of an adjoint operator, this analogy is far
more effective than in the general case. In particular, self-adjoint operators (A∗ = A)
are the analogues of real numbers (z = z). At the same time, one has to be careful
with this analogy, since operators, in contrast to numbers, may not commute!

The next theorem provides nontrivial examples of self-adjoint operators.

Theorem 1. For a projector P ∈ L(H) the following conditions are equivalent:

(1) P is a self-adjoint operator;

(2) P is an orthogonal projector.

Proof. Since P is a projector, H decomposes into the direct sum H = H1 ⊕ H2,
where H1 and H2 are respectively the kernel and the image of P . First, let us prove
that (1) =⇒ (2), i.e., that if P is a self-adjoint operator, then H1 ⊥ H2. Indeed, let
h1 ∈ H1 and h2 ∈ H2. Then 〈h1, h2〉 = 〈h1, Ph2〉 = 〈Ph1, h2〉 = 〈0, h2〉 = 0.

Now let us show that (2) =⇒ (1), i.e., that if H1 ⊥ H2, then P is self-adjoint.
To this end, take elements x, y ∈ H and decompose them as x = x1 + x2 and y =
y1 + y2, where x1, y1 ∈ H1 and x2, y2 ∈ H2. Then we have 〈Px, y〉 = 〈x2, y〉 =
〈x2, y2〉 = 〈x, y2〉 = 〈x, Py〉, as needed. �

Definition 2. Let A be a self-adjoint operator. The bilinear form of (or associated
to) the operator A is the function F(x, y) = 〈Ax, y〉; the function g(x) = 〈Ax, x〉
is called the quadratic form of (or associated to) the operator A.

Note that g(x) = 〈Ax, x〉 = 〈x, Ax〉 = 〈Ax, x〉 = g(x), hence the quadratic
form of a self-adjoint operator takes only real values. It is not hard to verify that

Re 〈Ax, y〉 = 1

4
(〈A(x + y), (x + y)〉 − 〈A(x − y), (x − y)〉) . (1)

In a similar way one can find also the imaginary part of 〈Ax, y〉. Hence, the
bilinear form is uniquely determined by the quadratic form. By the theorem on the
general form of bilinear forms, from the bilinear form one can in turn recover the
operator itself. Therefore, all the information about a self-adjoint operator can be
obtained if one knows the properties of its quadratic form. As an example, we give
the following very useful formula for the norm of a self-adjoint operator.

Theorem 2. Let A be a self-adjoint operator. Then

‖A‖ = sup
x∈SH

|〈Ax, x〉|. (2)
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Proof. Let q = supx∈SH |〈Ax, x〉|. Then for every z ∈ SH one has the estimate
|〈Az, z〉| � q‖z‖2. By homogeneity, this estimate also holds for all z ∈ H . We need
to show that ‖A‖ = q. Using formula ‖h‖ = supy∈SH Re 〈h, y〉 (Subsection 12.1.3,
Exercise 6) for h = Ax and formula (2) we deduce that

‖A‖ = sup
x∈SH

‖Ax‖ = sup
x,y∈SH

Re 〈Ax, y〉

= sup
x,y∈SH

1

4

(〈A(x + y), (x + y)〉 − 〈A(x − y), (x − y)〉)

� sup
x,y∈SH

q

4

(‖x + y‖2 + ‖x − y‖2) = sup
x,y∈SH

2q

4

(‖x‖2 + ‖y‖2) = q,

i.e., ‖A‖ � q. The converse inequality is an immediate consequence of the Cauchy–
Schwarz inequality:

q = sup
x∈SH

|〈Ax, x〉| � sup
x∈SH

‖Ax‖ = ‖A‖. �

Exercises

1. For which scalars λ is the operator λI self-adjoint?

2. Calculate the norm of the operator A given by the matrix

(
0 0
1 0

)

in the two-

dimensional coordinate space (equipped with the standard Euclidean norm). Is for-
mula (2) valid for this operator?

3. Where in the proof of formula (2) was the self-adjointness of the operator A —
without which (2) is not valid — used?

4. If A is different from zero, can the function g(x) = 〈Ax, x〉 be identically equal
to zero?

5. Verify that the self-adjoint operators form a closed linear subspace in L(H). Is
this subspace closed in the sense of pointwise convergence?

6. Verify that a product of self-adjoint operators is self-adjoint if and only if the
operators commute. (N.B. In the sequel we will use the results of the last two
exercises!)

7. How must the subspaces H1, H2 ⊂ H be related in order for the orthogonal
projectors P1, P2 onto these subspace to commute?

8. Calculate the adjoint of the kernel integral operator T on L2[0, 1], given by
(T f )(x) = ∫ 1

0 K (t, x) f (t)dt , where K ∈ L2([0, 1] × [0, 1]). Such operators are
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called Hilbert–Schmidt integral operators. Under what conditions on K will the
operator T be self-adjoint? Using the expansion of the kernel K in a double Fourier
series, prove that a Hilbert–Schmidt integral operator is a Hilbert–Schmidt operator
in the sense described in Exercises 8–12 of Subsection 12.4.2.

9. Let the operator T be given by its matrix in an orthonormal basis. How are the
matrices of the operators T and T ∗ connected?

10. Given an operator T ∈ L(H), define its real and imaginary parts by the formulas
Re T = 1

2 (T + T ∗) and Im T = 1
2i (T − T ∗). Verify that Re T and Im T are self-

adjoint operators and T = Re T + i Im T .

11. Suppose that T and T ∗ commute (operators T with this property are called

normal). Then ‖T ‖ =
√∥

∥(Re T )2 + (Im T )2
∥
∥.

12.4.4 Operator Inequalities

The following definition helps us take further the analogy between operators and
numbers.

Definition 1. The operator A ∈ L(H) is said to be positive (and one writes A � 0)
if it is self-adjoint and its quadratic form is non-negative (i.e., 〈Ax, x〉 � 0 for all
x ∈ H ). Let A, B ∈ L(H). We say that A � B, if A − B � 0.

Theorem 1. Let A ∈ L(H) be a positive operator. Then for all x ∈ H

‖Ax‖ �
√‖A‖ √〈Ax, x〉.

Proof. The bilinear form of the operator A satisfies all the scalar product axioms,
except for non-degeneracy. Hence, as noted in Exercise 4 of Subsection 12.1.2, the
Cauchy–Schwarz inequality holds for it: |〈Ax, y〉| �

√〈Ax, x〉√〈Ay, y〉. Taking
here the supremum over y ∈ SH , we obtain the required estimate. �

The main objective of this subsection is to prove for operators a result analogous
to the theorem asserting the existence of a limit for a bounded monotone sequence
of numbers.

Theorem 2. Suppose the operators An ∈ L(H) form a bounded increasing
sequence, i.e., A1 � A2 � · · · and supn ‖An‖ < ∞. Then this sequence has a point-
wise limit.

Proof. Fix an arbitrary vector x ∈ H . The sequence of non-negative reals an :=
〈Anx − A1x, x〉 is non-decreasing and bounded. Therefore, it has a limit, and so

an − am = 〈(An − Am)x, x〉 → 0 as n,m → ∞.



12.4 Self-adjoint Operators 335

Applying Theorem 1, we obtain the claimed pointwise convergence:

‖Anx − Amx‖ �
√‖An − Am‖√〈(An − Am)x, x〉 → 0 as n,m → ∞. �

Exercises

1. For which scalars λ is λI a positive operator?

2. Any orthogonal projector is a positive operator.

3. Let {en}∞n=1 be an orthonormal basis in H . Verify that the partial sum operators
Sn form a non-decreasing bounded sequence. Describe its pointwise limit.

4. Under the conditions of Theorem 2, can the sequence An fail to converge in the
norm of the space L(H)?

5. Let A, B be positive operators and A + B = 0. Then A = B = 0.

6. Prove that the product of two commuting positive operators is a positive operator.7

12.4.5 The Spectrum of a Self-adjoint Operator

Since the quadratic form of a self-adjoint operator takes only real values, the eigen-
values of the operator are necessarily real (this reasoning is well known from linear
algebra). Although the spectrum of an operator in an infinite-dimensional space is
not exhausted by its eigenvalues, the assertion about the positivity of the spectrum
remains in force.

Theorem 1 (Structure of the spectrumof a self-adjoint operator).Let A ∈ L(H)

be a self-adjoint operator. Define

α− = α−(A) = inf{〈Ax, x〉 : x ∈ SH },
α+ = α+(A) = sup{〈Ax, x〉 : x ∈ SH }.

Then

(i) the spectrum of the operator A consists only of real numbers;
(ii) σ(A) ⊂ [α−, α+];
(iii) the endpoints of the interval [α−, α+] belong to the spectrum.

7Despite the simplicity of its formulation, this exercise is not simple.
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Proof. (i) Let λ = a + ib be a complex number with imaginary part b �= 0. We have
to show that the operator A − λI is invertible. First we show that A − λI is bounded
below. Indeed,

‖(A − λI )x‖2 = ‖(Ax − ax) − ibx‖2
= ‖Ax − ax‖2 − 2Re 〈Ax − ax, ibx〉 + b2‖x‖2.

The quantities 〈Ax, x〉 and 〈x, x〉 are real, and so 2Re 〈Ax − ax, ibx〉 = 0 and
‖(A − λI )x‖2 � b2‖x‖2, i.e., A − λI is bounded below. For the same reason the
operator (A − λI )∗ = A − λI is also bounded below (it has the same form, only
with a different coefficient λ). Hence, by Lemma 1 of Subsection 12.4.2, the opera-
tor A − λI is invertible.

(ii) Notice that the values of the quadratic form of the operator A − α+ I
are non-positive. Indeed, for any x ∈ SH we have 〈(A − α+ I )x, x〉 = 〈Ax, x〉 −
α+ � 0. Now let λ > α+ and ε = λ − α+. Let us show that the operator A − λI =
(A − α+ I ) − ε I is invertible. To this end, since this operator is self-adjoint, it suf-
fices to show that it is bounded below (here we use again Lemma 1 of Subsection
12.4.2). We have

‖(A − λI )x‖2 = ‖(A − α+ I )x‖2 − 2Re 〈(A − α+ I )x, εx〉 + ε2‖x‖2 � ε2‖x‖2.

Hence, the operator A − λI is invertible, so λ does not belong to the spectrum of
A. This proves that σ(A) ⊂ (−∞, α+] for any self-adjoint operator A. Replacing
A by −A, we get that −σ(A) = σ(−A) ⊂ (−∞, α+(−A)] = (−∞,−α−(A)], i.e.,
σ(A) ⊂ [α−(A),+∞).

(iii) Let us show that α− ∈ σ(A), that is, that the operator B = A − α− I is not
invertible. Here comes to help the following obvious property of the quadratic form
of the operator B: inf x∈SH 〈Bx, x〉 = inf x∈SH 〈Ax, x〉 − α− = 0; in particular, B is
positive. Now Theorem 1 of Subsection 12.4.4 yields

inf
x∈SH

‖Bx‖ � ‖B‖1/2 inf
x∈SH

〈Bx, x〉1/2 = 0.

Thus, our operator is not bounded below, and hence is not invertible. The fact that
α+ also belongs to the spectrum is readily obtained upon replacing the operator A
by −A, as we did above. The theorem is proved. �

Let us list several corollaries of the theorem just proved.

Corollary 1. A self-adjoint operator is positive if and only if its spectrum consists
only of non-negative numbers.

Proof. The operator A is positive if and and only if 〈Ax, x〉 � 0 for all x ∈ SH . This
is equivalent to the condition α−(A) � 0. �
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Corollary 2. Let A be a self-adjoint operator. Then

‖A‖ = sup{|t | : t ∈ σ(A)}.

Proof. Indeed,‖A‖ = sup{|〈Ax, x |〉 : x ∈ SH } = max{ |α−(A)|, |α+(A)| } = sup
{|t | : t ∈ σ(A)}. �

Corollary 3. Let A be a self-adjoint operator such that σ(A) = {0}. Then A = 0.

Proof. By Corollary 2, if σ(A) = {0}, then ‖A‖ = 0. �

We remark that for non-self-adjoint operators the corollaries given above may
fail.

Example. In the two-dimensional space, consider the operator given by thematrix(
0 0
1 0

)

. Its spectrum is {0}, but the operator is not equal to zero.

Exercises

1. Let A ∈ L(H) be such that σ(A) = {−2, 1}. Can the norm of A be equal to 3?
Does the answer change if A is self-adjoint?

2. Let A be a self-adjoint operator such that σ(A) = {λ0}. Then A = λ0 I .

3. Let K be an arbitrary closed bounded set of real numbers. Construct a self-adjoint
operator A for which σ(A) = K .

12.4.6 Compact Self-adjoint Operators

In this subsection we will prove that the matrix of any compact self-adjoint oper-
ator can be reduced, by means of an appropriate choice of orthonormal basis, to
diagonal form. In other words, for any compact self-adjoint operator there exists an
orthonormal basis consisting of eigenvectors.

Recall that a subspace X ⊂ H is said to be invariant under the operator A if
A(X) ⊂ X .

Theorem 1. If the subspace X is invariant under the self-adjoint operator A, then
its orthogonal complement X⊥ is also invariant under A.

Proof. Weneed to show that for every element y ∈ X⊥ its image Ay again lies in X⊥.
To this end we need to verify that 〈x, Ay〉 = 0 for all x ∈ X . But 〈x, Ay〉 = 〈Ax, y〉,
and 〈Ax, y〉 = 0, because Ax ∈ X (by the invariance of the subspace X ), and y ∈ X⊥.

�
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Theorem 2. Let X1 = Ker (A − λ1 I ) and X2 = Ker (A − λ2 I ) be eigenspaces of
the self-adjoint operator A corresponding to two distinct eigenvalues λ1 �= λ2. Then
X1 ⊥ X2.

Proof. For any x1 ∈ X1 and x2 ∈ X2, we have

λ1〈x1, x2〉 = 〈Ax1, x2〉 = 〈x1, Ax2〉 = λ2〈x1, x2〉,

which is possible only if 〈x1, x2〉 = 0. �

Lemma 1. Suppose the compact self-adjoint operator A in the Hilbert space Y has
no eigenvectors. Then Y consists only of the element 0.

Proof. Suppose, by contradiction, that Y is not zero-dimensional. By the theorem on
the structure of the spectrum of a compact operator (Subsection 11.3.4), the spectrum
of the operator A consists only of 0 (otherwise A would have eigenvectors). By
Corollary 3 in Subsection 12.4.7, A = 0. But then the whole space Y consists of
eigenvectors with eigenvalue 0. �

Theorem 3. Let H be a separable Hilbert space. Then for any compact self-adjoint
operator A ∈ L(H) there exists an orthonormal basis in H consisting of eigenvectors
of A.

Proof. Choose in each of the eigenspaces of the operator A an orthonormal basis
and write all these bases as one sequence {en}∞n=1. All vectors en are eigenvectors of
A; moreover, by Theorem 2 above, they form an orthonormal system. It remains to
show that the system {en}∞n=1 is complete. Denote Lin{en}∞n=1 by X . The subspace
X is invariant under the operator A and contains all its eigenvectors. Hence, the
subspace X⊥ is also invariant under A, and contains no eigenvectors of A. By the
preceding lemma, this means that the X⊥ = {0}, that is, X = H . �

Remark 1. In the theorem above both the compactness and the self-adjointness of
the operator are essential. Indeed, for a non-self-adjoint operator the system of its
eigenvectors may fail to be complete even in the two-dimensional case (Example at
the end of Subsection12.4.5). Here is an example of a self-adjoint operator that has
no eigenvalues.

Consider the operator A ∈ L(L2[0, 1]) acting by the rule (A f )(t) = t f (t). Sup-
pose f is an eigenvector8 of the operator A with eigenvalue λ, i.e., λ f (t) = t f (t)
almost everywhere. This equality can hold only if f

a.e.= 0. Hence, the operator A has
no eigenvectors.

8Since here the elements of the space are functions, “eigenvectors” are mostly referred to as “eigen-
functions”.
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Finally, let us collect in one theorem all essential properties of the spectrum of
a compact self-adjoint operator that were established in Theorem 1 of Subsection
11.3.4, Theorem 1 of Subsection 12.4.5 and in Theorems 2 and 3 of the present
subsection.

Theorem 4 (Spectral theorem for compact self-adjoint operators). Let H be
a separable infinite-dimensional Hilbert space, and A ∈ L(H) be a compact self-
adjoint operator. Then

(1) The spectrum of A is either a finite set of reals, or is a sequence of real numbers
that converge to 0.

(2) 0 belongs to the spectrum.

(3) If λ �= 0 belongs to the spectrum, then λ is an eigenvalue of A; the eigenspaces
corresponding to the nonzero eigenvalues are finite-dimensional.

(4) Eigenspaces corresponding to distinct eigenvalues are mutually orthogonal.

(5) There exists an orthonormal basis of H consisting of eigenvectors of A. �

Exercises

Fix a function g ∈ L1[0, 1] and for every f ∈ L2[0, 1] define (Ag f )(t) = g(t) f (t).

1. Prove that if the image of the operator Ag again lies in L2[0, 1], then Ag ∈
L(L2[0, 1]). (Hint: the most economical way of proving continuity in similar cases
is to use the closed graph theorem.)

2. In the setting of the preceding exercise, calculate the norm of the operator Ag .
Use the result to prove that Ag ∈ L(L2[0, 1]) if and only if g ∈ L∞[0, 1].
3. Calculate A∗

g . Under what conditions is the operator Ag self-adjoint? Positive?

4. Calculate the spectrum of Ag .

5. Characterize the functions g for which the operator Ag has eigenvalues and eigen-
vectors.

6. Suppose g is not identically a constant. Can the operator Ag have a complete
system of eigenvectors? Consider the same question for a continuous function g.

7. In the setting of Exercise 8 of Subsection 12.4.3, suppose that the kernel K is
jointly continuous. Then the eigenfunctions of the corresponding Hilbert–Schmidt
integral operator that belong to non-zero eigenvalues are continuous.
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Comments on the Exercises

Subsection 12.1.3

Exercise 5. P. Jordan, J. von Neumann, 1935. For a reference to the corresponding
work and a survey of various characterizations of the norm generated by a scalar
product, see [11, Chapter7, §3].

Subsection 12.3.4

Exercise 7. Let H be an infinite-dimensional Hilbert space. Denote by α(H) the
smallest possible cardinality of a dense subset of H . Fix a dense subset G of H with
card(G) = α(H). Let us prove that the cardinality of any orthonormal basis E in H
is equal to α(H). For each element e ∈ E , consider an open ball Ue of radius

√
2/2

and centered at e. Since the distance between any two distinct elements of E is equal
to

√
2, the considered balls are pairwise disjoint. At the same time, every ball Ue

must intersect the dense set G. Pick for each e ∈ E a point f (e) ∈ Ue ∩ G. Then
f : E → G is an injective mapping, and consequently card(E) � card(G) = α(H).
Conversely, consider LinQE , the set of finite linear combinations with rational

coefficients of elements of the basis E . Since LinQE is dense in H , card(LinQE) �
α(H). At the same time, card(LinQE) = card(E).

Subsection 12.4.2

Exercise 2. The solution of the riddle is hidden in Exercise 5 of Subsection 12.2.3.

Exercise 3. If the operator A acts from X to Y , then the operator (A∗)∗ acts from
(X∗)∗ to (Y ∗)∗, i.e., generally speaking, A �= (A∗)∗. Nevertheless, some analogy
with the equality (A∗)∗ = A is preserved. To understand what this analogy amounts
to, one needs to work out the connection between a space and its second dual, which
will be done in Subsection 17.2.2.

Exercise 11. This elegant lemma was proved by W. Banaszczyk in 1990, J. Reine
Angew. Math. 403, 187–200. See also the proof in [21, Lemma 18.3.1].

Subsection 12.4.3

Exercise 4. In complex Hilbert spaces, which are the ones we are dealing with,
this is not possible. Moreover, every operator A satisfies the inequality

sup
x∈SH

|〈Ax, x〉| � 1

2
‖A‖.

In real Hilbert spaces, however, such examples do indeed exist: it suffices to consider
the operator of rotation by 90 degrees inR2. Similar phenomena served as the starting
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point of an interesting direction in the study of operators and Banach algebras — the
theory of the numerical range (see the monographs [8, 9], and also the survey [64]).

Exercise 11. See Lemma 1 in Subsection13.1.2.

Subsection 12.4.4

Exercise 5. By our assumptions, 〈Ax, x〉 + 〈Bx, x〉 = 〈(A + B)x, x〉 = 0 for all
x ∈ H and the quantities 〈Ax, x〉 and 〈Bx, x〉 are nonnegative. Therefore, 〈Ax, x〉 =
〈Bx, x〉 = 0 for all x ∈ H , and to complete the proof it remains to use the formula
for the norm of a self-adjoint operator (Theorem 2 in Subsection 12.4.3).



Chapter 13
Functions of an Operator

One of the most fruitful applications of the aforementioned analogy between opera-
tors and numbers is encountered in the study of differential equations. As it turns out,
the solution of the equation y′ = Ay can be written in the form y = eAt y0 not only
for scalar-valued functions and a numerical parameter A, but also for vector-valued
functions and an operator A, respectively. The apparatus of functions of an operator
was created precisely to enable the free use of such analogies.

13.1 Continuous Functions of an Operator

13.1.1 Polynomials in an Operator

In this subsection we consider operators in an arbitrary complex Banach space X .

Definition 1. Given a polynomial p = a0 + a1t + · · · + antn and an operator
T ∈ L(X), an operator of the form p(T ) = a0 I + a1T + · · · + anT n is called a
polynomial in the operator T .

Let us list some readily verifiable properties of polynomials in operators.

Theorem 1. Let p1, p2 be polynomials, T ∈ L(X), and λ1, λ2 ∈ C. Then

(i) (λ1 p1 + λ2 p2)(T ) = λ1 p1(T ) + λ2 p2(T );

(ii) (p1 p2) (T ) = p1 (T ) p2 (T ).

Further,
(iii) suppose the operators T1, T2 ∈ L(X) commute, and p1, p2 are polynomials.
Then the operators p1(T1) and p2(T2) also commute. �
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Theorem 2. The operator p(T ) is invertible if and only if the polynomial p does
not vanish at any of the points of the spectrum of the operator T .

Proof. Let t1, . . . , tn be the roots of the polynomial p, i.e., p(t) = an(t − t1) · · ·
(t − tn). Then p(T ) = an(T − t1 I ) · · · (T − tn I ). ByLemma1of Subsection 11.1.2,
the invertibility of a product of commuting operators is equivalent to the simulta-
neous invertibility of its factors. Therefore, the invertibility of the operator p(T ) is
equivalent to the simultaneous invertibility of the factors T − ti I , i.e., to the fact that
none of the roots ti of the polynomial p lie in the spectrum of the operator T . �

Theorem 3 (Spectral mapping theorem for polynomials in an operator). The
spectrum of the polynomial p(T ) consists of the values of the polynomial in the
points of the spectrum of the operator T , i.e., σ(p(T )) = p(σ (T )).

Proof. Let us show that λ ∈ σ(p(T )) if and only λ ∈ p(σ (T )). Indeed, the condition
λ ∈ σ(p(T ))means that the operator p(T ) − λI = (p − λ) (T ) is not invertible. By
the preceding theorem, this is equivalent to the polynomial p − λ vanishing at some
point of the spectrum: there exists a t ∈ σ(T ) such that p(t) = λ. This in turn is
equivalent to the requisite condition λ ∈ p(σ (T )). �

Exercises

1. Let p1, p2 be a pair of coprime polynomials and assume that p1 p2(T ) = 0.
Prove that the whole space X decomposes into the direct sum of its subspaces X1 =
Ker p1(T ) and X2 = Ker p2(T ).

2. By analogy with calculus, introduce the concepts of derivative and differentiabil-
ity for functions f : [0, 1] → E , where E is a Banach space. Verify for differentiable
functions f, g : [0, 1] → E , that ( f + g)′ = f ′ + g′.

3. Let f : [0, 1] → L(X) be a differentiable function. Prove that
d

dt

[
f 2(t)

] =
f ′(t) f (t) + f (t) f ′(t).

4. Prove that if all the values of a function f : [0, 1] → L(X) pairwise commute,
then the values of f and f ′ also commute.

5. For any operator A ∈ L(X), define eA by the formula

eA = 1 + A + 1

2! A
2 + 1

3! A
3 + · · · .

Is it true that if f : [0, 1] → L(X) is a differentiable function, then the function
y = e f (t) is a solution of the differential equation y′ = f ′(t)y?Why is the particular
case y = et A of this formula successfully used for equations y′ = Ay with constant
coefficients A ∈ L(X)?
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6. Suppose that in some basis the matrix of the operator A ∈ L(X) is diagonal.
What will the matrix of the operator p(A), where p is a polynomial, look like in this
basis? How about the matrix of the operator eA?

7. By analogy with the above, define polynomials in the elements of a Banach
algebra A. Prove that all properties of polynomials in an operator considered above
carry over to polynomials in elements of a Banach algebra.

The reader interested in the theory of functions of elements of a Banach algebra
in the general case is referred to W. Rudin’s textbook [38].

13.1.2 Polynomials in a Self-adjoint Operator

From here on till the end of the chapter we will consider only operators in a Hilbert
space.

Lemma 1. Let A, B∈ L(H)be commuting self-adjoint operators. Then‖A+ i B‖ =√‖A2 + B2‖.
Proof. Since A and B commute, their product is a self-adjoint operator. Hence,
〈Ax, Bx〉 = 〈BAx, x〉 is a real number for all x ∈ H . Therefore,

‖(A + i B)x‖2 = ‖Ax‖2 + 2Re (−i)〈Ax, Bx〉 + ‖Bx‖2 = ‖Ax‖2 + ‖Bx‖2,

and so
‖A + i B‖2 = sup

x∈SH
‖(A + i B)x‖2 = sup

x∈SH
(‖Ax‖2 + ‖Bx‖2)

= sup
x∈SH

(〈Ax, Ax〉 + 〈Bx, Bx〉) = sup
x∈SH

〈(A2 + B2)x, x〉 = ∥∥A2 + B2
∥∥ . �

Theorem 1. Let A ∈ L(H) be a self-adjoint operator and p = a0 + a1t + · · · +
antn be a polynomial. Then the operator p(A) has the following properties:

(i) (p(A))∗ = p(A), where p = a0 + a1t + · · · + antn. In particular, if all the coef-
ficients of p are real, then p(A) is a self-adjoint operator.

(ii) ‖p(A)‖ = supt∈σ(A) |p(t)|.
Proof.

(i) (p(A))∗ = a0(I )∗ + a1(A)∗ + · · · + an(An)∗ = p(A).
(ii) Consider first the case of a polynomialwith real coefficients. ByCorollary 2 in

Subsection 12.4.5 and the spectral mapping theorem for polynomials in an operator
(Theorem 3 of Subsection 13.1.1),

‖p(A)‖ = sup
τ∈σ(p(A))

|τ | = sup
τ∈p(σ (A))

|τ |.
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To obtain the required formula, it remains to define τ = p(t) and observe that as
t runs through σ(A), τ runs through p(σ (A)).

Now suppose that the coefficients of the polynomial p have the form a j = u j +
iv j , u j , v j ∈ R. Put p1 = u0 + u1t + · · · + untn and p2 = v0 + v1t + · · · + vntn .
Using the lemma and the case of real polynomials treated above, we have

‖p(A)‖ = ‖p1(A) + i p2(A)‖ =
√

‖p1(A)2 + p2(A)2‖

=
√

‖(p21 + p21)(A)‖ =
√

sup
t∈σ(A)

|(p21 + p21)(t)| = sup
t∈σ(A)

|p(t)|. �

Exercises

1. Give an example of a pair of self-adjoint operators A, B ∈ L(H), for which
‖A + i B‖ 	= √‖A2 + B2‖.
2. Give an example of a pair of commuting self-adjoint operators A, B ∈ L(H), for
which ‖A + i B‖ 	= √‖A‖2 + ‖B‖2.
3. Let A ∈ L(H) be a self-adjoint operator and p1, p2 be polynomials such that
p1(t) = p2(t) for all t ∈ σ(A). Then p1(A) = p2(A).

13.1.3 Definition of a Continuous Function of a Self-adjoint
Operator

Lemma 1. Let K ⊂ R be a compact subset, and let [a, b] be the smallest inter-
val containing K . Then every function f ∈ C(K ) can be extended to a continuous
function on [a, b].
Proof. The set [a, b] \ K can be written as a union of open intervals with endpoints
in K . Now redefine the function f on each such interval (c, d) ⊂ [a, b] \ K by linear

interpolation: f (t) = f (c) + (t − c)
f (d) − f (c)

d − c
. �

Lemma 2. Let K ⊂ R be a compact subset. Then for any function f ∈ C(K ) there
exists a sequence of polynomials (pn) which converges to f uniformly on K .

Proof. Let [a, b]be the smallest interval containing K . Thenby the preceding lemma,
we may assume that f is defined on the whole interval [a, b]. By the Weierstrass
theorem, there exists a sequence of polynomials (pn) which converges uniformly to
f on [a, b]. This sequence (pn) will also converge to f on K , a subset of [a, b]. �
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Lemma 3. (a) Let A be a self-adjoint operator, and let (pn) be a sequence of poly-
nomials which converges uniformly on σ(A). Then the sequence of operators pn(A)

converges in norm.
(b) If the sequences of polynomials (pn) and (qn) converge uniformly on σ(A) to

one and the same limit, then pn(A) and qn(A) also converge to one and the same
limit.

Proof. We use assertion (ii) of the theorem proved in the preceding subsection:

‖pn(A) − pm(A)‖ = sup
t∈σ(A)

|(pn − pm)(t)| → 0 as n,m → ∞.

Since the space of operators is complete, this proves assertion (a). Assertion (b) is
proved in exactly the same way:

‖pn(A) − qn(A)‖ = sup
t∈σ(A)

|(pn − qn)(t)| → 0 as n → ∞. �

Definition 1. Let A be a self-adjoint operator, and f ∈ C(σ (A)) be a continuous
function given on the spectrum of the operator A. The function f of the operator A
is defined as

f (A) = lim
n→∞ pn(A),

where (pn) is an arbitrary sequence of polynomials that converges uniformly on
σ(A) to f .

The relevance of this definition is justified by Lemmas 2 and 3 proved above.

Exercises

1. Deduce Lemma 1 from Tietze’s extension theorem (Theorem 3 in Subsection
1.2.3).

2. Consider in C(σ (A)) the subspace P consisting of all polynomials. Define the
operatorU : P → L(H) by the formulaU (p) = p(A). Verify thatU is a continuous
linear operator. What is the norm of U equal to?

3. Applying the theorem of extension by continuity (Subsection 6.5.1) to the oper-
atorU , extend it to the whole space C(σ (A)). Verify that the equalityU (p) = p(A)

holds not only for polynomials, but also for arbitrary continuous functions.1

1We could have used the extension of the operatorU to C(σ (A)) and defined continuous functions
of the operator A by the equality f (A) = U ( f ). However, such a definition would be unnecessarily
abstract and require additional interpretation.
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13.1.4 Properties of Continuous Functions of a Self-adjoint
Operator

First we will present properties that are obtained by direct passage to the limit from
polynomials to continuous functions of a self-adjoint operator.

Theorem 1. Let A be a self-adjoint operator, f1, f2 ∈ C(σ (A)), and λ1, λ2 ∈ C.
Then

(1) (λ1 f1 + λ2 f2)(A) = λ1 f1(A) + λ2 f2(A), and

(2) ( f1 f2)(A) = f1(A) f2(A).

Further, let f ∈ C(σ (A)). Then

(3) ( f (A))∗ = f (A). In particular, if the function f takes only real values on σ(A),
then f (A) is a self-adjoint operator.

(4) ‖ f (A)‖ = supt∈σ(A) | f (t)|.
Finally,

(5) suppose the operators A and B commute, and let f and g be continuous functions
on the spectra of the operators A and B, respectively. Then f (A) and g(B) also
commute. �

The following property already needs justification.

Theorem 2 (Invertibility criterion). Let f be a continuous function defined on the
spectrum of the self-adjoint operator A. Then for the operator f (A) to be invertible
it is necessary and sufficient that the function f has no zeros on the spectrum of A.

Proof. Suppose first that the function f has no zeros on σ(A). Then g := 1/ f is
also a continuous function, g f = 1 and by assertion (2) of the preceding theorem,
the operator g(A) is the inverse of the operator f (A). Now suppose that f vanishes
at some point t0 ∈ σ(A). Pick a sequence of polynomials (pn) which converges
to f uniformly on σ(A). With no loss of generality, we can assume that pn(t0) = 0
(otherwise,we replace pn(t) by p̃n(t) = pn(t) − pn(t0). ByTheorem2of Subsection
13.1.1, the operators pn(A) are not invertible. Hence, since the set of non-invertible
operators is closed (see the corollary to Theorem 1 of Subsection 11.1.2), the operator
f (A) = limn→∞ pn(A) is also non-invertible.

Theorem 3 (Spectral mapping theorem for continuous functions). Let A be a
self-adjoint operator and f ∈ C(σ (A)). Then σ( f (A)) = f (σ (A)).

Proof. We repeat the argument used earlier for polynomials (Theorem 3 of Sub-
section 13.1.1). The condition λ ∈ σ( f (A)) means that the operator f (A) − λI =
( f − λ)(A) is not invertible. By the preceding assertion, this is equivalent to the
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existence of a point t ∈ σ(A) such that f (t) − λ = 0. In turn, this is equivalent to
the required condition λ ∈ f (σ (A)). �

Theorem 4. Under the conditions of the preceding theorem, if f � 0 on the spec-
trum of the operator A, then f (A) � 0.

Proof. By the spectral mapping theorem, σ(p(A)) ⊂ [0,+∞). It remains to use
Corollary 1 in Subsection 12.4.5. �

Exercises

1. Suppose that in some basis the matrix of the operator A is diagonal. What will
the matrix of the operator f (A), where f is a continuous function, look like in that
basis?

2. Does the definition of the operator eA, given above in Exercise 5 of Subsection
13.1.1, agree with the definition as a continuous function of a self-adjoint operator?

3. Suppose A ∈ L(H) is self-adjoint, f ∈ C(σ (A)), f (A) = ( f (A))∗, and the
function g is continuous on the spectrum of the operator f (A). Prove that g( f (A)) =
(g ◦ f )(A).

13.1.5 Applications of Continuous Functions of an Operator

Theorem 1. The product of two commuting positive operators is a positive operator.

Proof. Let A, B ∈ L(H) be a pair of commuting positive operators. Since the spec-
trum of any positive operator lies on the positive half-line, the function

√
t is con-

tinuous on the spectra of both operators A and B and takes positive values there.
Consequently, the operators

√
A and

√
B are self-adjoint, and by property (5) in

Theorem 1 of Subsection 13.1.4,
√
A and

√
B commute. We have

〈ABx, x〉 = 〈(√
A
√
A
)(√

B
√
B

)
x, x

〉 = 〈(√
A
√
B

)(√
A
√
B

)
x, x

〉

= 〈(√
A
√
B

)
x,

(√
A
√
B

)
x
〉 = ∥∥(√

A
√
B

)
x
∥∥2 � 0. �

Lemma 1. Let A ∈ L(H) be a self-adjoint operator, and let f ∈ C(σ (A)) be such
that f (σ (A)) = {0, 1}. Then f (A) is an orthogonal projector onto a non-trivial (i.e.,
different from {0} and the whole H ) subspace.

Proof. Since the function f satisfies the condition f 2 = f , we have f 2(A) = f (A),
and so the operator f (A) is a projector. Since A is self-adjoint, f (A) is an orthogonal
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projector. Finally, since σ( f (A)) = f (σ (A)) = {0, 1}, f (A) cannot coincide with
the zero operator or with the identity operator. That is, the image f (A) is a nontrivial
subspace. �

Definition 1. LetH = H1 ⊕ H2, A1∈ L(H1), A2 ∈ L(H2). Theoperator A ∈ L(H)

that coincides with A j on the space Hj , j = 1, 2, is called the direct sum of the oper-
ators A1 and A2 with respect to the decomposition H = H1 ⊕ H2, and is denoted by
A = A1 ⊕ A2. In other words, if h1 ∈ H1 and h2 ∈ H2, then (A1 ⊕ A2) (h1 + h2) =
A1h1 + A2h2.

The reader is encouraged to verify on his own that the operator A = A1 ⊕ A2 is
invertible if and only if both operators A1 and A2 are invertible. This readily implies
that σ(A1) ∪ σ(A2) = σ(A1 ⊕ A2).

Theorem 2. Let A ∈ L(H) be a self-adjoint operator whose spectrum is the union
of two disjoint closed sets: σ(A) = K1 ∪ K2. Then the space H admits an orthogonal
direct sum decomposition H = H1 ⊕ H2 into two nontrivial A-invariant subspaces,
and the operator A decomposes into the direct sum A = A1 ⊕ A2 of two operators
A1 ∈ L(H1) and A2 ∈ L(H2), such that σ(A1) = K1 and σ(A2) = K2.

Proof. The functions f1 = 1K1 and f2 = 1K2 are continuous on σ(A). Consider
the operators P1 = f1(A) and P2 = f2(A). By Lemma 1, P1 and P2 are othogonal
projectors. Since f1 + f2 ≡ 1 on σ(A), we have P1 + P2 = I . Put H1 = P1(H)

and H2 = Ker P1. Then one has the direct sum decomposition H = H1 ⊕ H2, with
H2 = P2(H) (Theorem 2 of Subsection 10.3.2); moreover, H1 ⊥ H2, because P1 is
an orthogonal projector. Hj is the eigensubspace of the operator Pj corresponding to
the eigenvalue 1. Since a function of an operator commutes with the operator itself
this implies (Theorem 1 of Subsection 11.1.5) that the subspaces Hj are invariant
under A.

We define the sought-for operators A j ∈ L(Hj ), j = 1, 2, as the restrictions of
the operator A to the subspaces Hj . With this definition, we obviously have that
A = A1 ⊕ A2 and σ(A1) ∪ σ(A2) = σ(A) = K1 ∪ K2. To complete the proof, it
remains to verify the inclusions σ(A j ) ⊂ K j , j = 1, 2. By symmetry, it suffices to
consider the case j = 1. Let λ /∈ K1. Consider the function g(t) equal to 1

t−λ
for

t ∈ K1 and to 0 on K2. Then, for every x ∈ H1,

g(A)(A1 − λI )x = g(A)(A − λI )x = f1(A)x = P1x = x .

(Here and below I denotes the identity operator in the whole space, as well as in the
subspaces H1 and H2.)
The subspace H1 is invariant under g(A) (again by Theorem 1 of Subsection 11.1.5);
hence, thanks to commutativity, the last equality means that the restriction of the
operator g(A) to the subspace H1 is the inverse of A1 − λI . Thus, we have shown
thatλ /∈ K1 implies thatλ /∈ σ(A1), which is equivalent to the inclusionσ(A1) ⊂ K1.

�
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Corollary 1. Let λ0 be an isolated point of the spectrum of the self-adjoint operator
A. Then λ0 is an eigenvalue of A.

Proof. Apply the preceding result, taking K1 = {λ0} and K2 = σ(A) \ {λ0}. In this
case σ(A1) = {λ0}, that is (Corollary 3 in Subsection 12.4.5), A1 − λ0 I = 0, and
any element of the subspace H1 provides the required eigenvector. �

Exercises

1. In the last corollary, why can’t the subspace H1 be equal to {0}?
2. The self-adjoint operator A ∈ L(H) is positive if and only if there exists a self-
adjoint operator B ∈ L(H) such that B2 = A.

3. Suppose B � 0 and B2 = A. Then B = √
A.

4. Suppose dim H � 2. Then there exist infinitely many self-adjoint operators B ∈
L(H) such that B2 = I .

13.2 Unitary Operators and the Polar Representation

13.2.1 The Absolute Value of an Operator

Let T ∈ L(H) be an arbitrary operator. Following the analogy with numbers, one
can conjecture that T ∗T will be a positive self-adjoint operator. Let us verify that
this is the case. Since (T ∗T )∗ = T ∗(T ∗)∗ = T ∗T , self-adjointness holds. Positivity
is a consequence of the scalar product axioms: 〈T ∗T x, x〉 = 〈T x, T x〉 � 0. Now
since the operator T ∗T is positive, the function

√
t is continuous on its spectrum,

which enables us to define the absolute value of the operator T as |T | = √
T ∗T .

The absolute value of an operator is a positive operator.

Theorem 1. For any element x ∈ H, ‖|T |x‖ = ‖T x‖. In particular, |T |x = 0 if
and only if T x = 0.

Proof. Indeed,

‖|T |x‖2 = 〈|T |x, |T |x〉 = 〈|T |2x, x〉 = 〈T ∗T x, x〉 = 〈T x, T x〉 = ‖T x‖2. �

For the ensuing material we need the following reformulation.

Theorem 2 (Weak polar representation). Let X be the image of the operator |T |,
and Y the image of the operator T . Then there exists an isometric bijective operator
V ∈ L(X,Y ) such that T = V ◦ |T |. Moreover, the operator V is unique.
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Proof. First, the uniqueness. Let x = |T |(h) be an arbitrary element of the space
X . For the equality T = V ◦ |T | to hold when both terms are evaluated on h, it is
necessary and sufficient that the operator V satisfies the condition V x = Th. Hence,
V is uniquely determined. By the preceding theorem, if the element x admits two
representations x = |T |(h1) = |T |(h2), then ‖Th1 − Th2‖ = 0, i.e., the condition
V x = Th can be taken as the definition of the operator V . As h runs through2 the
entire Hilbert space H , the elements x = |T |(h) and V x = Th run through the entire
spaces X and Y , respectively. Therefore, the operator V is bijective. Finally, V is an
isometry, because ‖V x‖ = ‖Th‖ = ‖ |T |(h) ‖ = ‖x‖. �

Exercises

Calculate the absolute values of the following operators:

1. The multiplication operator Ag ∈ L(H) by a bounded function g: (Ag f )(t) =
g(t) f (t).

2. The right-shift operator Sr ∈ L(�2), acting as Sr (x1, x2, . . .) = (0, x1, x2, . . .);

3. The left-shift operator Sl ∈ L(�2), acting as Sl(x1, x2, . . .) = (x2, x3, . . .).

13.2.2 Definition and Simplest Properties of Unitary
Operators

Acomplex number lying on the unit circle satisfies the equation z · z = 1.Developing
further the analogy between operators and numbers, it is natural to introduce the
corresponding class of operators.

Definition 1. The operator U ∈ L(H) is called unitary if UU ∗ = U ∗U = I . In
other words, the operator U is unitary if it is invertible and U−1 = U ∗.

Theorem 1. Unitary operators preserve the scalar product: 〈Ux,Uy〉 = 〈x, y〉 for
all x, y ∈ H. Consequently, unitary operators preserve orthogonality: if x ⊥ y, then
Ux ⊥Uy.

Proof. Indeed, 〈Ux,Uy〉 = 〈x,U ∗Uy〉 = 〈x, y〉. �

2If one ponders over this generally accepted expression, then one is struck by the disparity with
the picture arising here. Indeed, to “run through” even a domain in the plane, an element requires
considerable effort. It is true that in this case “he” could actually perform this task by moving
along the Peano curve (though in his place I would look for a more interesting activity). As for the
infinite-dimensional case, “running through” the entire space is in fact impossible. Indeed, prove
that a continuous mapping f : [0,+∞) → H cannot be surjective.
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Theorem 2 (Unitarity criterion). An operator is unitary if and only if it is a
bijective isometry.

Proof. LetU be unitary. ThenU is invertible, and hence bijective. Further, ‖Ux‖2 =
〈Ux,Ux〉 = 〈x, x〉 = ‖x‖2, i.e., U is an isometry. Conversely, suppose that U is an
isometry. Then

〈x, x〉 = ‖x‖2 = ‖Ux‖2 = 〈Ux,Ux〉 = 〈x,U ∗Ux〉.

Thus, the quadratic forms of the operators U ∗U and I coincide, hence so do the
operators themselves: I = U ∗U . And since for a bijective operator the notions of
right inverse and left inverse coincide, we conclude that UU ∗ = I , as needed. �

Theorem 3. The spectrum of any unitary operator U lies on the unit circle.

Proof. Since U is isometric, ‖U‖ = ‖U−1‖ = 1. Therefore, if |λ| < 1, then, by the
theorem on small perturbations of an invertible element (Theorem 1 in Subsection
11.1.2), the operator U − λI is invertible, while if |λ| > 1, the invertibility of the
operator U − λI = λ(I − λ−1U ) is guaranteed by the lemma on the invertibility of
small perturbations of the identity element (Lemma 2 in Subsection 11.1.2). There-
fore, U − λI can be non-invertible only if |λ| = 1. �

In Sect. 13.3 we will pursue further the analogy between unitary operators and
numbers of absolute magnitude 1: a chain of exercises culminating in Exercise 23 of
that section will show that every unitary operator U can be represented as U = ei A

with A self-adjoint.

Exercises

1. Under what conditions on the function g will the multiplication operator Ag ∈
L(L2[0, 1]), (Ag f )(t) = g(t) f (t), be unitary?

2. Show that for every closed subset K of the unit circle there exists a unitary
operator U such that σ(U ) = K .

3. Suppose the operator U ∈ L(H) is an isometric embedding (i.e., ‖Ux‖ = ‖x‖
for all x ∈ H ) with dense image. Then U is unitary.

13.2.3 Polar Decomposition

A polar decomposition of the operator T is a representation of the operator as T =
U A, where U is a unitary operator and A is a positive self-adjoint operator. That is,
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the polar decomposition of an operator is the analogue of the polar decomposition
for complex numbers, z = ei arg z · |z|. In contrast to the scalar case, for operators
such a decomposition is not always possible. To find conditions for the existence of
the polar decomposition, we regard it as an equation in the unknown operators U
and A.

So, suppose thatU and A are solutions of the equation T = U A with the required
properties. Then T ∗ = AU ∗ (we used the self-adjointness of A) , and thanks to the
unitarity of U , we have T ∗T = A2. Extracting the square root, we obtain the value
of one of the unknowns:

A = |T |.

To determine the second unknown, we have the equation T = U ◦ |T |. How does
this condition differ from the analogous condition on the operator V in Theorem
2 of Subsection 13.2.1? Only by the fact that the operator U needs to be defined
not merely on the subspace X = |T |(H), but on the whole space H , with preser-
vation of the isometry and bijectivity properties that the operator V enjoyed. Let
us examine when such an extension is possible. To formulate the result, we need
to define more precisely what the dimension of a Hilbert space means. For a finite-
dimensional space, the dimension was defined as the number of elements in a basis
of the space. Generalizing this definition to the infinite-dimensional case, the dimen-
sion of a Hilbert space is the cardinality of an orthonormal basis of the space (see
Exercise 7 in Subsection 12.3.4). Two Hilbert spaces have the same dimension if and
only if they are isomorphic (Exercise 12 in Subsection 12.3.5).

Lemma 1. Let X,Y be linear subspaces of the space H, and V ∈ L(X,Y ) be a
bijective isometry. Then the following conditions are equivalent:

(1) the mapping V can be extended to a unitary operator U ∈ L(H).

(2) dim X⊥ = dim Y⊥, where the dimensions may be finite or infinite.

Proof. (1) =⇒ (2). Since on X the operators U and V coincide, U (X) = Y . By
Theorem 1 of Subsection 13.2.2, a unitary operator preserves orthogonality, and
so U (X⊥) = Y⊥. In view of the injectivity of the operator, this yields the required
equality of the dimensions.

(2) =⇒ (1). With no loss of generality, we can assume that the subspaces
X and Y are closed (otherwise we extend the operator V by continuity to the
closure of the subspace X ). Thanks to the equality of dimensions, there exists a
bijective isometry W : X⊥ → Y⊥. Given an arbitrary x ∈ H , we decompose it as
x = x1 + x2, with x1 ∈ X and x2 ∈ X⊥. Now define the requisite operator U by the
rule Ux = V x1 + Wx2. �
Theorem 1. For the existence of a polar decomposition of the operator T it is
necessary and sufficient that the equality of dimensions

dimKer T = dimKer T ∗

holds.
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Proof. By the last lemma above and the arguments that precede it, the required
necessary and sufficient condition is the equality dim(|T |(H))⊥ = dim(T (H))⊥. To
reduce this condition to the one in the lemma, we observe that (T (H))⊥ = Ker T ∗.
On the other hand, self-adjointness implies that (|T |(H))⊥ = Ker|T |. In turn, by
Theorem 1 of Subsection 13.2.1, Ker|T | = Ker T . �

Let us mention several useful sufficient conditions for the existence of the polar
decomposition.

Corollary 1.

1. For the operator T to admit a polar decomposition it is sufficient that T be
invertible.

2. Let T be a normal operator, i.e., T commutes with T ∗. Then T admits a polar
decomposition.

3. Let T be a scalar+ compact operator. Then T admits a polar decomposition.

Proof.

1. If T in invertible, then so is T ∗. Consequently, dim Ker T = dimKer T ∗ = 0.

2. Ker T = Ker |T | = Ker
√
T ∗T = Ker

√
T T ∗ = Ker |T ∗| = Ker (T ∗).

3. This follows from the Fredholm theorem (see Exercise 2 in Subsection 11.3.3).

Exercises

1. Prove that any operator T ∈ L(H) is representable, and in fact in a unique way,
as T = A + i B, where A and B are self-adjoint operators. Moreover, the operator T
will be normal if and only if A and B commute. The stated representation serves as
the starting point of one of the ways of constructing functions of a normal operator
(see [4]).

2. Show that the operator T is normal if and only if it admits a polar decomposition
T = U A with commuting operators A and U .

3. Show that if an operator T has a non-commuting polar decomposition, then T is
not normal.

4. Describe the operators for which the polar decomposition is unique.

5. Justify the following fact that was already used, without drawing attention to
it, in the present subsection: if two positive operators A and B satisfy the equality
A2 = B2, then A = B. Does this assertion remain true if we discard the positivity
assumption? Where specifically did we use this fact?
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13.3 Borel Functions of an Operator

Using the fact that any continuous function can be approximated by polynomials, we
were able to construct continuous functions of a self-adjoint operator. Belowwe show
that functions of a self-adjoint operator can also be defined in a considerably more
general situation, namely, for any boundedBorel-measurable function. The construc-
tion is based on the possibility of unique extension of linear functionals from the space
of continuous functions to the wider space of bounded Borel-measurable functions.

Let A ∈ L(H) be a fixed self-adjoint operator and K be its spectrum.
Given two arbitrary elements x, y ∈ H , define the linear functional Fx,y ∈ C(K )∗

by the formula Fx,y( f ) = 〈 f (A)x, y〉. Clearly, in addition to the linearity in f , the
following relations, characteristic of bilinear forms, hold: Fa1x1+a2x2,y = a1Fx1,y +
a2Fx2,y and Fy,x = Fx,y . It is also readily verified that ‖Fx,y‖ � ‖x‖ · ‖y‖; indeed,

|Fx,y( f )| = |〈 f (A)x, y〉| � ‖ f (A)‖ · ‖x‖ · ‖y‖ = ‖ f ‖ · ‖x‖ · ‖y‖.

By the theorem on the general form of continuous linear functionals on the space
C(K ), there exists a regular Borel charge σx,y on K such that

Fx,y( f ) =
∫

K

f dσx,y .

Since the indicated correspondence between functionals on C(K ) and charges is
a bijective isometry, the relations for functionals written above remain valid for
charges:

‖σx,y‖ � ‖x‖ · ‖y‖, σa1x1+a2x2,y = a1σx1,y + a2σx2,y, and σy,x = σ x,y .

Definition 1. Let f be a bounded Borel function on K , and σx,y be the Borel charges
defined above. Define the operator f (A) by the equality

〈 f (A)x, y〉 =
∫

K
f dσx,y .

In view of the theorem in Subsection 12.4.1 (with a change in the order of factors)
the above definition is correct: the expression on the right-hand side of the equality
is a continuous bilinear form.

Note that the last definition is consistent with the definition of a continuous func-
tion of an operator (i.e., the two definitions give the same result), and many of the
properties of continuous functions of an operator listed in Subsection 13.1.4 remain
valid in the more general situation.

Theorem 1. For bounded Borel functions on K the following relations hold:

1. (λ1 f1 + λ2 f2)(A) = λ1 f1(A) + λ2 f2(A);
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2. ( f1 f2)(A) = f1(A) f2(A);

3. ( f (A))∗ = f (A). In particular, if on σ(A) the function f takes only real values,
then f (A) is a self-adjoint operator.

Proof. Property 1. follows from the linearity of the integral.
To verify property 3, we use the relation σy,x = σ x,y :

〈( f (A))∗x, y〉 = 〈x, f (A)y〉 = 〈 f (A)y, x〉
=

∫

K

f dσ y,x =
∫

K

f dσx,y = 〈 f (A)x, y〉.

It remains to verify property 2. The equality ( f1 f2)(A) = f1(A) f2(A) is already
known to hold for continuous functions. Threfore, for f1, f2 ∈ C(K ) we have the
equality of bilinear forms

〈( f1 f2)(A)x, y〉 = 〈 f1(A)( f2(A)x), y〉. (1)

Using the definition of the charges σx,y , we recast (1) as
∫

K

f1 f2 dσx,y =
∫

K

f1 dσ f2(A)x,y .

Since the integrals above are equal for any continuous function f1, theywill also be
equal for any bounded Borel-measurable function.3 Going in the opposite direction,
we deduce that the equality (1) again holds not only for a continuous, but also for an
arbitrary bounded Borel function f1. Rewriting (1) in the form

〈( f1 f2) (A)x, y〉 = 〈 f2(A)x, f 1(A)y〉
and using the definition, we conclude that for any bounded Borel function f1 the
equality of integrals

∫

K

f1 f2dσx,y =
∫

K

f2dσx, f 1(A)y (2)

is valid for any continuous function f2. Extending equality (2) to the more general
class of bounded Borel-measurable functions and passing again to bilinear forms, we
see that relation (1) is valid for all bounded Borel-measurable functions f1 and f2.
The coincidence of the bilinear forms implies the coincidence of the corresponding
operators. Thus, the required mutiplicativity relation is proved. �

The remaining properties of continuous functions of operators discussed in Sub-
section 13.1.4 are not fully valid for Borel functions. The main reason for this is that
two different functions, f1, f2, that coincide almost everywhere with respect to all
charges σx,y , generate the same operator: f1(A) = f2(A).

3To prove this, take a measure μ that dominates the variations of both charges figuring in the
equality; represent the Borel function as the limit of a μ-almost everywhere convergent sequence
of uniformly bounded continuous functions and apply the dominated convergence theorem.
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Theorem 2 (Sufficient conditions for invertibility). If the bounded Borel function
f is separated away from 0 on σ(A) (i.e., there exists an ε > 0 such that | f (t)| � ε

for all t ∈ σ(A)), then the operator f (A) is invertible.

Proof. The operator
1

f
(A) is the inverse to f (A). �

Theorem 3 (Spectralmapping theorem for boundedBorel functions of an oper-
ator). The spectrum of a function of an operator is contained in the closure of the
image of the spectrum of the original operator: σ( f (A)) ⊂ f (σ (A)).

Proof. Let λ /∈ f (σ (A)). Then the function f − λ satisfies the conditions of the
preceding theorem. Hence, the operator ( f − λ)(A) = f (A) − λI is invertible, i.e.,
λ /∈ σ( f (A)). The theorem is proved. �

Theorem 4 (Estimate of the norm of a function of an operator). Let f be a
bounded Borel function on K = σ(A). Then

‖ f (A)‖ � sup
t∈σ(A)

| f (t)|.

Proof. We use the condition |σx,y |(K ) = ‖σx,y‖ � ‖x‖ · ‖y‖ and the estimate of the
integral through the variation of the charge (Theorem 4 in Subsection 8.4.5) to obtain

‖ f (A)‖ = sup
x,y∈SH

|〈 f (A)x, y〉| � sup
x,y∈SH

∫

σ(A)

| f | d ∣∣σx,y

∣∣ � sup
t∈σ(A)

| f (t)|. �

Theorem 5. Let ( fn) be a monotonically increasing uniformly bounded sequence of
real-valued Borel functions on K = σ(A) that converges at each point to the function
f . Then the sequence of operators ( fn(A)) converges pointwise to the operator f (A).

Proof. The operators fn(A) form a monotone bounded sequence. By Theorem 2 of
Subsection 12.4.4, there exists the pointwise limit of the sequence fn(A), which we
denote by T . To establish the claimed equality f (A) = T , we compare the bilinear
forms of the operators:

〈T x, y〉 = lim
n→∞〈 fn(A)x, y〉 = lim

n→∞

∫

σ(A)

fn dσx,y =
∫

σ(A)

f dσx,y = 〈 f (A)x, y〉.

Here we used the Lebesgue dominated convergence theorem. �

Discontinuous Borel functions of an operator can be calculated, rather than using
the (quite abstract) definition, by using approximation (in one sense or another) by
continuous functions. For example, if the bounded Borel function f on σ(A) is
representable as the pointwise limit of an increasing sequence ( fn) of continuous
functions,4 the last theorem enables us to calculate f (A) as the pointwise limit of the
sequence ( fn(A)). For more details on such an approach to functions of an operator,
we refer to the exercises below.

4Such a representation is possible only for lower-semicontinuous functions.
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Exercises

1. Suppose the operators A and B commute. Then each of them commutes with the
bounded Borel functions of the other.

2. Suppose the operators A and B commute, and let f and g be Borel functions
on the spectra of the operators A and B, respectively. Then the operators f (A) and
g(B) also commute.

3. Suppose that in some basis the matrix of the self-adjoint operator A is diagonal.
If f is a bounded Borel function, what will the matrix of the operator f (A) look like
in that basis?

4. Describe the functions of the multiplication operator Ag by a bounded function
g: Ag ∈ L(L2[0, 1]), (Ag f )(t) = g(t) f (t).

Definition. We say that the sequence of operators An ∈ L(H) form converges5 to
the operator A ∈ L(H) if the corresponding bilinear forms converge:

〈Anx, y〉 → 〈Ax, y〉 as n → ∞

for all x, y ∈ H . Notation: An
form−−→ A.

5. Pointwise convergence of operators implies form convergence.

6. Let {en}∞1 be an orthormal system in H . Then the operators An , acting by the
formula Anx = 〈x, e1〉en , form converge to 0, but do not converge pointwise.

7. If An
form−−→ A, then ‖A‖ � supn ‖An‖ < ∞.

8. If An
form−−→ A, Bn

form−−→ B, and a, b ∈ C, then aAn + bBn
form−−→ aA + bB.

9. If An
form−−→ A and B ∈ L(H), then AnB

form−−→ AB and BAn
form−−→ BA.

10. If An
form−−→ A, then A∗

n
form−−→ A∗. Does the analogous property hold for pointwise

convergence?

11. Provide an example in which An
form−−→ A and Bn

form−−→ B, but AnBn does not
form converge to AB.

Let A ∈ L(H) be a self-adjoint operator and K be its spectrum.TheBorelmeasure
μ on K is said to be a control measure of the operator A if all the charges σx,y

generated by the operator A are absolutely continuous with respect to μ.

5The generally accepted name for this type of convergence of operators is “weak pointwise con-
vergence”, because in this case Anx weakly converge to Ax for all x ∈ H . The meaning of word
“weakly” here is “when evaluated by every continuous linear functional”. We will speak a lot about
weak convergence and weak topology in Chap.17.
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12. For any self-adjoint operator in a separableHilbert space H there exists a control
measure. Hint: choose a sequence of pairs (xn, yn) that is dense in SH × SH . Define
the control measure by the formula μ = ∑∞

n=1
1
2n

∣∣σxn ,yn

∣∣.

13. Let A ∈ L(H)be a self-adjoint operator and K be its spectrum.Letμbe a control
measure for A, and let ( fn) be a uniformly bounded sequence of Borel functions on

K which converges μ-almost everywhere to f . Then fn(A)
form−−→ f (A).

14. Let A ∈ L(H) be a self-adjoint operator and K be its spectrum. Then for any
bounded Borel function f on K there exists a sequence ( fn) of continuous functions

on K such that fn(A)
form−−→ f (A).

The next chain of exercises will enable the reader to construct on her/his own a
theory of functions of a unitary operator. Throughout this part U will denote a fixed
unitary operator and S the spectrum of U .

The main difference compared to the case of self-adjoint operators is that the
polynomials are not dense in the space of continuous functions on the unit circle: the
closure of the set of polynomials in the uniform metric contains only the boundary
values of functions analytic in the unit disc. For instance, the function 1/z does not
belong to this closure.

15. Find the distance of the function 1/z to the set of polynomials in the space of
continuous functions on the unit circle.

To circumvent this difficulty, we introduce the set of generalized polynomials,
which also include negative powers of the indeterminate:

P∗ = {p ∈ C(S) : p(z) =
n∑

k=−n

akz
k}.

By analogy with the case of ordinary polynomials, we put

p(U ) =
n∑

k=−n

akU
k .

16. Verify that the mapping p �→ p(U ) enjoys the linearity and multiplicativity
properties.

17. Establish an invertibility criterion for the operator p(U ). Prove the spectral
mapping theorem.

A generalized polynomial p(z) = ∑n
k=−n akz

k is said to be symmetric,6 if a−k =
ak for all indices k.

6This term is used by convention and has nothing to do with the symmetric polynomials of several
variables.
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18. Prove that a symmetric polynomial takes only real values on the unit circle.
Conversely, if S is an infinite subset of the unit circle and the polynomial p takes
only real values on S, then p is symmetric.

19. For any generalized polynomial p on the unit circle, the functions Re p and
Im p are symmetric polynomials.

20. Prove that every real-valued continuous function on the unit circle can be arbi-
trarily well approximated in the uniform metric by symmetric polynomials.

21. Prove that a symmetric polynomial of a unitary operator is a self-adjoint oper-
ator. Deduce for this case the formula ‖p(U )‖ = supt∈σ(U ) |p(t)|.
22. From this point on, the entire scheme for constructing functions of a self-adjoint
operator carries over with no modifications to functions of a unitary operator. Verify
this!

23. Prove that every unitary operator U can be represented as U = ei A, where A
is a self-adjoint operator. (Hint: Pick a branch f of the argument on the unit circle.
Take f (U ) for A.) Is this representation unique?

24. Suppose the generalized polynomial p takes on the unit circle T only positive
values. Then there is another generalized polynomial g such that p(z) = |g(z)|2 for
all z ∈ T.

13.4 Functions of a Self-adjoint Operator and the Spectral
Measure

13.4.1 The Integral with Respect to a Vector Measure

Suppose given a set �, an algebra � of subsets of �, and a Banach space X . A map-
pingμ : � → X is called an X -valued measure if it has the finite additivity property:
μ(D1 ∪ D2) = μ(D1) + μ(D2) for all disjoint subsets D1, D2 ∈ �. Measures with
values in Banach spaces are also called vector measures.

The basic case we will be dealing with is that of complex scalars. The real case
is practically identical.

Example. Let X = C
n be the space of rows. Then every X -valued measureμ can

be written as μ(D) = (μ1(D), μ2(D), . . . , μn(D)), where μ j are finitely-additive
complex charges.

We define the integral of a scalar function with respect to a vector measure by
analogy with how we proceeded in Sect. 4.2 for the ordinary integral. The difference
here is not only that we are dealing with a vector measure, but also that the measure
is only finitely — and not countably — additive. For this reason, in all definitions
we will work only with finite partitions of sets into subsets.
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So, letΔ ∈ � and f : Δ → C be a function. Let D = {Δk}nk=1 be a finite partition
of the set Δ into subsets Δk ∈ �, and T = {tk}n1 be a collection of marked points.
The integral sum of the function f on the set Δ with respect to the pair (D, T ) is the
vector

SΔ( f, D, T ) =
n∑

k=1

f (tk)μ(Δk) ∈ X.

The element x ∈ X is called the integral of the function f on the set Δ with
respect to the vector measure μ (notation: x = ∫

Δ
f dμ) if for any ε > 0 there exists

a finite partition Dε of the set Δ such that for any finite partition D refining Dε

and any choice of marked points T for D, it holds that ‖x − SΔ( f, D, T )‖ � ε. The
function f : Δ → C is said to be integrable on the set Δ with respect to the measure
μ, or μ-integrable, if the corresponding integral exists.

In other words, the function f is integrable on Δ if its integral sums have a
limit along the directed set of finite partitions with marked points, analogous to that
described in Subsection 4.1.3.

Let us list, with no proofs, a number of simple properties of the integral.

(1) Linearity in the function: if the functions f and g are integrable on Δ and
a, b are scalars, then the function a f + bg is also integrable, and

∫
Δ

(a f + bg)dμ =
a

∫
Δ
f dμ + b

∫
Δ
g dμ.

(2) Set additivity: if Δ1 ∩ Δ2 = ∅ and f is integrable on both sets Δ1 and Δ2,
then f is integrable on their union, and

∫
Δ1

f dμ + ∫
Δ2

f dμ = ∫
Δ1�Δ2

f dμ.

(3) The characteristic function of any set Δ ∈ � is integrable, and
∫
�
1Δ dμ =

μ(Δ).

(4) For any collection {Δk}n1 of measurable subsets and any collection of
scalars {ak}n1 the step function f = ∑n

k=1 ak1Δk is integrable, and
∫
�
f dμ =∑n

k=1 akμ(Δk).

(5) Let G ∈ L(X,Y ) be a continuous linear operator and μ : � → X be an
X -valued measure. Then the composition G ◦ μ is a Y -valued measure. Every μ-
integrable function f is also (G ◦ μ)-integrable, andG

(∫
Δ
f dμ

) = ∫
Δ
f d(G ◦ μ).

13.4.2 Semivariation and Existence of the Integral

Definition 1. Let μ : � → X be a vector measure. For each Δ ∈ � we define the
semivariation of the measure μ on the set Δ, denoted by ‖μ‖(Δ), as the supremum
of the quantity

∥∥∑n
k=1 akμ(Δk)

∥∥ over all finite partitions {Δk}nk=1 of the set Δ into
measurable subsets and all finite collections of scalars {ak}nk=1 that satisfy the con-
dition |ak | � 1. We define ‖μ‖ = ‖μ‖(�). The measure μ is said to be bounded if
‖μ‖ < ∞. Throughout the remaining part of this subsection the measure μ will be
assumed to be bounded.
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Lemma 1. For any bounded function f on the set Δ ∈ �, any finite partition
D = {Δk}nk=1 of Δ into subsets Δk ∈ �, and any collection T = {tk}n1 of marked
points tk ∈ Δk , one has the estimate

‖SΔ( f, D, T )‖ � ‖μ‖(Δ) · sup
t∈Δ

| f (t)|.

Proof. Denote supt∈Δ| f (t)|byM andak = f (tk)/M . Since |ak |�1, k = 1, 2, . . . , n,
the required estimate follows:

∥∥
∥∥∥

n∑

k=1

f (tk)μ(Δk)

∥∥
∥∥∥

= M

∥∥
∥∥∥

n∑

k=1

akμ(Δk)

∥∥
∥∥∥

� M‖μ‖(Δ) = ‖μ‖(Δ) · sup
t∈Δ

| f (t)|. �

Letting the integral sums converge to the integral, we obtain the following
assertion.

Theorem 1. The inequality
∥∥∥∥

∫

Δ

f dμ

∥∥∥∥ � ‖μ‖(Δ) · sup
t∈Δ

| f (t)|

holds for all bounded integrable functions f on Δ. �
By analogy with Subsection 4.3.2 we prove the following uniform limit theorem.

Theorem 2. Let f and fn be scalar-valued functions on Δ and μ be a bounded
vector measure. Suppose that the functions fn are μ-integrable on Δ and the
sequence ( fn) converges uniformly on Δ to f . Then f is integrable and

∫
Δ
f dμ =

limn→∞
∫
Δ
fn dμ.

Proof. Let xn = ∫
Δ
fndμ. The sequence (xn) is Cauchy: indeed,

‖xn − xm‖ =
∥∥
∥
∥

∫

Δ
( fn − fm)dμ

∥∥
∥
∥ � sup

t∈Δ

‖ fn(t) − fm(t)‖ · ‖μ‖(Δ) → 0 as n,m → ∞.

Denote the limit of the sequence xn by x . Fix ε > 0 and choose an n ∈ N such that
supt∈Δ ‖ fn(t) − f (t)‖ < ε/(3‖μ‖(Δ)) and ‖x − xn‖ < ε/3. Further, let Dε be a
partition such that, starting with Dε, we have ‖xn − SΔ( fn, D, T )‖ � ε. Then for
any partition D � Dε and any collection of marked points T corresponding to D,

‖x − SΔ( f, D, T )‖ � ‖x − xn‖ + ‖xn − SΔ( fn, D, T )‖
+ ‖SΔ( fn − f, D, T )‖ � ε

3
+ ε

3
+ ε

3
= ε.

Therefore, f is integrable and
∫
Δ
f dμ = x . It remains to recall that, by construction,

x = lim
n→∞

∫

Δ

fn dμ. �
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Theorem 3. Let μ : � → X be a bounded vector measure and Δ ∈ �. Then every
bounded measurable function f is integrable on Δ.

Proof. The function f can be represented as the limit of a uniformly convergent
sequence fn of finitely-valued functions (Corollary 1 in Subsection 3.1.4). Since any
finitely-valued measurable function is integrable, it remains to apply Theorem 2 on
uniform limit. �

We have provided the basic definitions and simplest properties of vector measures
that are required for the theory of operators. To simplify the exposition, we did not
aim at maximal generality in definitions and statements. The theory of vector mea-
sures is itself an extensive domain of functional analysis, rich in deep results and
applications. For an introduction to the theory of vector measures we refer to the
monograph of J. Diestel and J.J. Uhl [13].

Exercises

1. Prove that for real-valued charges the semivariation coincides with the variation
of the charge familiar from Definition 1 in Subsection 7.1.1.

2. Verify that the expression ‖μ‖ = ‖μ‖(�) gives a norm on the spaceM(�,�, X)

of all bounded X -valued measures on �. Prove that the normed space M(�,�, X)

is complete.

3. A vector measure is bounded if and only if its range (set of all its values) is
bounded.

4. Prove that if a vector measure is given on a σ -algebra and is countably-additive,
then it is bounded.

5. Let � be a σ -algebra, μ : � → X be a vector measure, and let μ be weakly
countably-additive (i.e., x∗ ◦ μ be a countably-additive charge for every x∗ ∈ X∗),
then μ is also countably-additive in the ordinary sense.

Let (�,�, ν) be a space with (ordinary finite scalar-valued positive) measure.We
say that the vector measure μ : � → X is absolutely continuous with respect to ν if
μ(Δ) = 0 for all sets Δ ∈ � such that ν(Δ) = 0.

6. Prove that if the vector measure μ : � → X is countably-additive on the
σ -algebra � and absolutely continuous with respect to ν, then for any ε > 0 there
exists a δ > 0 such that ‖μ‖(Δ) < ε for all Δ ∈ � with ν(Δ) < δ.

7. Under the conditions of the preceding exercise, the following analogue of the
dominated convergence theorem holds true: If the uniformly bounded sequence ( fn)
of measurable functions converges ν-almost everywhere to the function f , then∫
�
f dμ = limn→∞

∫
�
fn dμ.
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8. Suppose the vector measure μ : � → X is countably-additive on the σ -algebra
�. Then on � there exists a scalar-valued measure ν with respect to which μ is
absolutely continuous.

13.4.3 The Spectral Measure and Spectral Projectors

Let A ∈ L(H) be a fixed self-adjoint operator, and let B be the σ -algebra of Borel
sets on its spectrum σ(A).

Definition 1. The spectralmeasureof theoperator A is the vectormeasureμA : B →
L(H) defined by the rule μA(Δ) = 1Δ(A).

We note that using the term “measure” here is correct, since 1Δ1 + 1Δ2 = 1Δ1∪Δ2

for any pair of disjoint sets Δ1 and Δ2.

Lemma 1. Let f = ∑n
k=1 αk1Δk be a finitely-valued Borel function on σ(A). Then

f (A) = ∫
σ(A)

f dμA.

Proof. Indeed,

∫

σ(A)

f dμA =
n∑

k=1

αkμA(Δk) =
n∑

k=1

αk1Δk (A) = f (A). �

Theorem 1. The spectral measure of any self-adjoint operator A is bounded, and
‖μA‖(Δ) � 1 for all Borel subsets Δ ⊂ σ(A).

Proof. By definition, ‖μA‖(Δ) = sup
∥∥∑n

k=1 akμA(Δk)
∥∥, where the supremum is

taken over all finite partitions {Δk}nk=1 of the set Δ into Borel subsets and all finite
collections of scalars {ak}nk=1 that satisfy the condition |ak | � 1.Consider the function
f = ∑n

k=1 ak1Δk . By Theorem 4 of Sect. 13.3,

∥∥∥∥∥

n∑

k=1

akμA(Δk)

∥∥∥∥∥
= ‖ f (A)‖ � sup

t∈σ(A)

| f (t)| = sup
1�k�n

|ak | � 1. �

Theorem 2 (Main identity for the spectral measure). For every bounded Borel
function f on σ(A),

f (A) =
∫

σ(A)

f dμA.

Proof. For finitely-valued functions the required relation was proved in Lemma 1
above. Now let f be a bounded Borel function and let the sequence ( fn) of finitely-
valued functions converge uniformly to f on σ(A). Then
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‖ fn(A) − f (A)‖ = ‖( fn − f )(A)‖ � sup
t∈σ(A)

|( fn − f )(t)| → 0 as n → ∞,

i.e., fn(A) → f (A). On the other hand, by the uniform limit theorem (Theorem 2
of Subsection 13.4.2),

fn(A) =
∫

σ(A)

fn dμA →
∫

σ(A)

f dμA as n → ∞.

The theorem is proved. �

Corollary 1. A = ∫

σ(A)

t dμA(t). �

If an operator has a complete system of eigenvectors (i.e., the matrix of the oper-
ator is diagonalizable), then the structure of the operator becomes clear once its
eigenvectors are calculated. For operators that are often encountered in various prob-
lems, it proves quite reasonable to carry out this work of calculating the eigenvalues
and eigenvectors, even if not simple, so that subsequently the results of this inves-
tigation could be applied whenever needed. The spectral measure and the integral
decompositions with respect to this measure play for self-adjoint operators the same
role as the eigenvector expansions do for diagonalizable operators.

Exercises: Properties of the Spectral Measure

1. All values of the spectral measure are orthogonal projectors (called spectral
projectors).

2. μA (σ (A)) = I .

3. If the operator T commutes with A, then the spectral projectors of the operator
A commute with T .

4. The image of every spectral projector is an invariant subspace of A.

5.
∫

σ(A)

f1 dμA ·
∫

σ(A)

f2 dμA = f1(A) f2(A) = ( f1 f2)(A) =
∫

σ(A)

( f1 f2) dμA; in

particular, μA(D1)μA(D2) = μA(D1 ∩ D2).

6. Wenote that the last property looks rather unusual: say, for a regular scalar-valued
Borel charge μ on a compact space it can be satisfied (prove this as an exercise) only
if μ is a probability measure concentrated at a single point.

7. Denote by X the image of the operator μA(D). Prove that σ(A|X ) ⊂ D.

8. The point λ ∈ σ(A) is an eigenvalue of the operator A if and only ifμA({λ}) 	= 0.
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9. The spectral measure of an operator with infinite spectrum does not possess the
countable additivity property in the sense of norm convergence. At the same time,
pointwise countable additivity does hold.

10. Let A be a diagonalizable operator. Prove that for any set D ⊂ σ(A) the image
of the projector μA(D) is the closure of the linear span of the set of eigenvectors of
A associated to the eigenvalues that lie in D.

11. Let Abethemultiplicationoperator inL2[0, 1]bythefunctiong(t)= t :(A f )(t)=
t f (t). Show that for any set D ⊂ σ(A) the image of the projectorμA(D) is the set of
all functions from L2[0, 1] that vanish identically in the complement of D.

12. Prove that the operator μA({0}) is the orthogonal projector onto the kernel of
the operator A.

13. Prove that the set of invertible operators in L(H) is connected.

13.4.4 Linear Equations

If T ∈ L(H) is an invertible operator and y ∈ H , then the problem of solving the
equation T x = y is equivalent to the same problem for the equation T ∗T x = T ∗y,
where T ∗T , as we know, is a positive self-adjoint operator. For non-invertible T
possessing a polar decomposition T = U A with A � 0, the equation T x = y is
equivalent to Ax = U ∗b. These are some of the reasons why the most important
linear equations in Hilbert space are of the form Ax = b, where A ∈ L(H) is a given
positive operator, b ∈ H is a given element, and x ∈ H is the unknown. So, in this
subsection we consider linear equations with a positive self-adjoint operator A. As
in the previous subsection, μA denotes the spectral measure of A.

Lemma 1. Denote by P the orthogonal projector μA(σ (A) \ {0}). Then P A = A.

Proof. The equality1σ(A)\{0}(t) · t = t holds everywhere on σ(A). It remains to plug
the operator A in it. �

Corollary 1. For the equation Ax = b to be solvable it is necessary that the ele-
ment b satisfies the condition Pb = b.

Proof. Indeed, if Ax = b for some x ∈ H , then Pb = PAx = Ax = b. �

If one observes that the operator Q = I − P = μA({0}) is the orthogonal pro-
jector onto the kernel of the operator A, the condition Pb = b can be written in the
more familiar form b⊥Ker A.

Lemma 2. Let ( fn) be a non-decreasing sequence of bounded Borel functions which
converge pointwise on the set σ(A) \ {0} to the function 1/t . Then the sequence of
operators (A fn(A)) converges pointwise to the operator P from the preceding lemma.

Proof. Apply Theorem 5 of Sect. 13.3. �
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Theorem 1. Let ( fn) be a non-decreasing sequence of bounded Borel functions that
converges pointwise on σ(A) \ {0} to the function 1/t , and let b ∈ H be an element
which satisfies the condition Pb = b. Then for the solvability of the equation Ax = b
it is necessary and sufficient that the sequence of elements ( fn(A)(b)) converges. In
this case, the limit of the sequence will be one of the solutions of the equation.

Proof. Suppose the equation Ax = b is solvable and let x0 be a solution. Then,
by Lemma 2, fn(A)(b) = fn(A)(Ax0) = A fn(A)x0 → Px0, so the convergence is
proved. Conversely, suppose the sequence fn(A)(b) converges to some element x0.
Then by the same lemma, Ax0 = limn→∞ A fn(A)(b) = Pb = b. �

We note that if the operator A is injective, then P = I and the condition Pb = b
is automatically satisfied. Further, if the operator A is invertible, then 0 does not
lie in the spectrum of A and the function 1/t is continuous on σ(A). Accordingly,
one can take for ( fn) a uniformly convergent sequence of polynomials, and the
rate of convergence of the elements fn(A)(b) to a solution will be estimated by
the rate of convergence of the polynomials fn (in this case no monotonicity of the
sequence ( fn) is required). If the operator is given by an explicit expression, then
the polynomials in this operator can also be written explicitly. Therefore, in the case
of an invertible operator A, Theorem 1 provides a completely feasible method for
solving the equation Ax = b approximately. Needless to say, the lower the degree
of the polynomial, the easier is to compute its value on an operator. Hence, here the
most appropriate approach is to take as fn the best approximation polynomials of
the function 1/t on σ(A).

In the case of an non-invertible operator the problem of finding approximate
solutions to the equation Ax = b is considerablymore difficult. This problembelongs
to the class of so-called ill-posed problems: arbitrarily small perturbations of the
right-hand side can make the problem unsolvable, or strongly modify its solution.
Since in approximate calculations all the initial data are usually also known only
approximately, this issue is quite crucial. Help in solving this problem can come
from exploiting a priori information about the solution which is not contained in
the equation. In so doing, in any case the accuracy of the solution depends on the
magnitude of the error in the right-hand side of the equation, and letting n → ∞ in
the sequence ( fn(A)(b)) does not lead to convergence to the solution. Moreover, as a
rule, the approximating sequence approaches the solution only up to some moment,
after which its behavior is in no way related to the true solution. Using the a priori
information in order to find a reasonable step in the approximation is one of the
available ideas for regularizing an ill-posed problem. For details on this subject one
can consult the monograph by A. Tikhonov and V. Arsenin [41].

Exercises

1. What property of the spectrum of the operator A ensures the existence of a
sequence ( fn) satisfying the conditions of Lemma 2 and Theorem 1?
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2. Using Exercises 7 and 8 of Subsection 13.4.2 and the pointwise countable addi-
tivity of the spectral measure (Exercise 9 in Subsection 13.4.3), replace the mono-
tonicity condition in Theorem 1 by the condition that the sequence t fn(t) is uniformly
bounded on the spectrum of the operator A.

3. Let μ : � → X be a vector measure. The set D ∈ � is said to be negligible with
respect to the measure μ if ‖μ‖(D) = 0. Is the set D being μ-negligible equivalent
to the equality μ(D) = 0? Does the answer change if μ is the spectral measure of a
self-adjoint operator?

4. Prove Theorem 1 when pointwise convergence of the functions fn is replaced by
convergence almost everywhere with respect to the measure μA.

5. Is the set of noninvertible operators in L(H) connected?

Comments on the Exercises

Subsection 13.1.1

Exercise 1. Use the following algebraic result: if p1, p2 is a pair of coprime poly-
nomials, then there are polynomials q1, q2 such that p1q1 + p2q2 = 1. Substituting T
one obtains p1(T )q1(T ) + p2(T )q2(T ) = I . For every x ∈ X one gets the decompo-
sition x = x1 + x2, where x1 = p1(T )q1(T )x and x2 = p2(T )q2(T )x . It remains to
show that x1 ∈ Ker p2(T ), x2 ∈ Ker p1(T ) and that Ker p2(T ) ∩ Ker p1(T ) = {0}.

Exercise 5. For the differentiation formula (e f (t))′ = f ′(t)e f (t) to hold, it is nec-
essary that all values of the function f pairwise commute. In particular, this condition
is satisfied when f (t) = t A, where A ∈ L(X) is a fixed operator. In this case the
differential equation y′ = f ′(t)y becomes the equation with the constant operator
coefficient y′ = Ay.

Subsection 13.1.5

Exercise 3. By assumption, B2 = A, and so B commutes with A. Then B also
commutes with

√
A. We have (B − √

A)(B + √
A) = B2 − A = 0. Define the sub-

space X ⊂ H as the closure of the image of the operator B + √
A. The equality

(B − √
A)(B + √

A) = 0 means that on X the operator B − √
A is equal to zero. It

remains to show that B − √
A is equal to zero on X⊥. Since B + √

A is self-adjoint,
the orthogonal complement of its image is its kernel: X⊥ = Ker(B + √

A). Again
due to the commutativity, Ker(B + √

A) is an invariant subspace for the operators
B and

√
A. Since B and

√
A are positive operators and since on X⊥ the operator

B + √
A vanishes, it follows that B = √

A = 0 on X⊥ (Exercise 5 in Subsection
12.4.4). Therefore, B − √

A is indeed the zero operator on X⊥.
Another way to solve this exercise is to apply Exercise 3 of Subsection 13.1.4 to

the operator B and the functions f (t) = t2 and g(t) = √
t .
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Subsection 13.2.3

Exercise 1. See the related Exercise 10 in Subsection 12.4.3.

Exercise 5. See Exercise 3 in Subsection 13.1.5 and its solution. This fact was
used at the very beginning of the subsection to pass from the equality T ∗T = A2 to
the equality A = |T |.

Section 13.3

Exercise 1. Use the fact that this property has already been established for con-
tinuous functions of an operator.

Exercise 2. By Exercise 1 in this subsection, A also commutes with g(B). Apply-
ing again Exercise 1, but now to the operators g(B) and A, we obtain the required
assertion.

Subsection 13.4.2

Exercise 5. This classical Orlicz–Pettis theorem can be found, for example, in
[13, p. 22].

Exercise 8. See [13, p. 14].

Subsection 13.4.3

Exercise 1. The equality (1Δ)2 = 1Δ means that μA(Δ) is a projector; thanks to
self-adjointness, μA(Δ) is an orthogonal projector.

Exercise 3. Use Exercise 1 of Sect. 13.3.

Exercise 4. Apply Exercise 3 and Theorem 1 of Subsection 11.1.5.

Exercises 7 and 8. Argue as in Theorem 2 of Subsection 13.1.5.

Exercises 9. The pointwise countable additivity follows from Theorem 5 of
Sect. 13.3.

Exercise 13. Let T ∈ L(H) be an invertible operator and T = ei A|T | be its polar
decomposition (see Subsection 13.2.3 and Exercise 24 in Sect. 13.3). Define the con-
tinuous curve F : [0, 1] → L(H) by the formula F(t) = eit A|T |. This curve passes
only through invertible operators and connects the operator |T | to the operator T .
Further, the curve G : [0, 1] → L(H) given by the formula G(t) = (1 − t)|T | + t I
connects |T |with the identity operator. Hence, in the set of invertible operators every
operator can be joined to the identity operator by a continuous curve.



Chapter 14
Operators in L p

In this chapter (�,�,μ) will be a measure space (with μ finite or σ -finite), and
the parameter p will be assumed to satisfy the condition 1 � p � ∞. For the sake
of convenience, in applications to Fourier series and Fourier integrals, L p(�,�,μ)

will be regarded as a space of complex-valued functions. We note that in the majority
of problems in the theory of L p-spaces the differences between the real-valued and
complex-valued cases are insignificant.

14.1 Linear Functionals on L p

Themain problem addressed in this section is the proof of the theorem on the general
form of linear functionals on L p.

14.1.1 The Hölder Inequality

Definition 1. Given any 1 < p < ∞, its conjugate exponent is the number p′ =
p

p−1 . For p = 1 we set p′ = +∞, while for p = +∞ we set p′ = 1.

The exponents p and p′ are connected by the relation 1
p + 1

p′ = 1. Note that
(

p′)′ = p, and if 1 � p � 2, then 2 � p′ � ∞; finally, 2′ = 2.

Lemma 1. For any scalars a, b � 0 and 1 < p < ∞ there holds the inequality

ab � a p

p
+ bp′

p′ . (1)

Proof. The left-hand side of inequality (1) is equal to the area of the parallelo-
gram [0, a] × [0, b], while the terms in the right-hand side are equal to the areas of
the figures S1 = {(x, y) : 0 � x � a, 0 � y � x p−1} and S2 = {(x, y) : 0 � y � b,
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0 � x � y p′−1}, respectively. Since p′ − 1 = 1
p−1 , the boundaries y = x p−1 and

x = y p′−1 of these figures are given by the same curve. It remains to observe that
[0, a] × [0, b] ⊂ S1 ∪ S2 (drawing the corresponding picture is left to the reader). �
Theorem 1. Let f ∈ L p(�,�,μ) and g ∈ L p′(�,�,μ). Then f g ∈ L1(�,�,μ)

and the Hölder inequality ‖ f g‖1 � ‖ f ‖p‖g‖p′ holds. In detailed form:

∫

�

| f g|dμ �

⎛

⎝
∫

�

| f |pdμ

⎞

⎠

1/p⎛

⎝
∫

�

|g|p′
dμ

⎞

⎠

1/p′

.

Proof. Weconsider the case 1 < p < ∞, leaving the simple cases p = 1 and p = ∞
to the reader. If now in inequality (1) we replace a by | f (t)| and b by |g(t)|, we obtain
the estimate

| f (t)g(t)| � | f (t)|p

p
+ |g(t)|p′

p′ . (2)

That is, the measurable function f g has an integrable majorant, and hence is itself
integrable. Further, the Hölder inequality is stable under the multiplication of the
functions f and g by scalars. Hence, it suffices to prove it in the case where ‖ f ‖p =
‖g‖p′ = 1. Now we use inequality (2) and get

‖ f g‖1 =
∫

�

| f g|dμ �
∫

�

(
| f |p

p
+ |g|p′

p′

)

dμ = 1

p
+ 1

p′ = 1 = ‖ f ‖p‖g‖p′ . �

Exercises

1. Deduce from the Hölder inequality the Cauchy–Schwarz inequality in L2.

2. Derive as a particular case of theHölder inequality the followingHölder inequality

for series:
∑∞

k=1 |akbk | �
(∑∞

k=1 |ak |p
)1/p(∑∞

k=1 |bk |p′)1/p′
.

3. Describe the pairs of functions ( f, g) for which the Hölder inequality turns into
an equality.

4. In the proof of the Hölder inequality, the assumption that the measure is σ -finite
was not used, and hence is not essential.

14.1.2 Connections Between the Spaces L p for Different
Values of p

Theorem 1. Let (�,�,μ) be a finite measure space, and let 1 � p1 < p2 � ∞.
Then L p1(�,�,μ) ⊃ L p2(�,�,μ) and
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‖ f ‖p1 � ‖ f ‖p2μ(�)1/p1−1/p2 (3)

for all f ∈ L p2(�,�,μ).

Proof. Let p2 < ∞ and f ∈ L p2(�,�,μ). To estimate the integral
∫
�

| f |p1dμ we
use the Hölder inequality with the exponent p = p2/p1 and, correspondingly, p′ =
p2/(p2 − p1):

∫

�

| f |p1dμ =
∫

�

| f |p1 · 1 dμ �

⎛

⎝
∫

�

| f |p1 pdμ

⎞

⎠

1/p

·
⎛

⎝
∫

�

1 dμ

⎞

⎠

1/p′

=
⎛

⎝
∫

�

| f |p2dμ

⎞

⎠

p1/p2

· (μ(�))(p2−p1)/p2 .

It remains to raise both sides of the inequality to the power 1/p1.
The case p2 = ∞ is easily dealt. Let f ∈ L∞(�,�,μ). Then | f (t)| � ‖ f ‖∞

for almost all t ∈ �. Consequently,
⎛

⎝
∫

�

| f |p1dμ

⎞

⎠

1/p1

� ‖ f ‖∞

⎛

⎝
∫

�

dμ

⎞

⎠

1/p1

= ‖ f ‖∞μ(�)1/p1 . �

We note that the inequality (3) takes its simplest form in the case of probability
spaces (�,�,μ), when μ(�) = 1, and accordingly ‖ f ‖p1 � ‖ f ‖p2 .

Corollary 1. Let (�,�,μ) be a finite measure space, 1 � p1 � p2 � ∞, and
fn, f ∈ L p2(�,�,μ) be such that ‖ fn − f ‖p2 → 0 as n → ∞.

Then ‖ fn − f ‖p1 → 0 as n → ∞. In other words, convergence in L p for some
value of p implies convergence in L p with a smaller value of p. �

Corollary 2. Let (�,�,μ) be a finite measure space, 1 � p1 � p2 � ∞, A ⊂
L p2(�,�,μ), and suppose A is closed in the metric of the space L p1(�,�,μ).
Then A is also closed in the metric of the space L p2(�,�,μ). �

Theorem 2. Let 1 � p1 � p2 � ∞. Then �p1 ⊂ �p2 and

‖x‖p2 � ‖x‖p1 (4)

for all x ∈ �p1 .

Proof. In view of the connection between the unit ball and the norm of a space, we
need to show the inclusion B�p1

⊂ B�p2
. Let x = (xk)k∈N∈ B�p1

. Then
∑∞

k=1 |xk |p1 < 1.
In particular, |xk | < 1 and |xk |p2 � |xk |p1 for all k. Consequently,

∞∑

k=1

|xk |p2 �
∞∑

k=1

|xk |p1 < 1,
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i.e, x ∈ B�p2
. This takes care of the case p2 < ∞. For p2 = ∞ inequality (4) takes the

form supk |xk | �
(∑∞

k=1 |xk |p1
)1/p1 and follows from the fact that a sum of positive

terms is larger than any of the terms. �
Despite the fact that convergence in L p cannot be described in terms of the notions

of convergence used in the theory of measure and integral,1 a connection with those
types of convergence, already familiar to us, nevertheless exists. The next theorem
helps one understand better the structure of the convergence in L p.

Theorem 3 (Vitali’s convergence theorem). Let (�,�,μ) be a measure space
(with μ finite or σ -finite), p ∈ [1,∞), and fn, f ∈ L p(�,�,μ). Then

(i) If fn → f in the L p-metric, it holds that:

(a) fn → f in measure;

(b) there exists a subsequence of the sequence ( fn) that converges to f almost
everywhere on �;

(c) for every ε > 0 there exists a subset A ∈ � of finite measure such that

∫

�\A
| fn|pdμ < ε p (∗)

for all n ∈ N;

(d) for every ε > 0 there exists a δ > 0 such that

∫

D
| fn|pdμ < ε p (∗∗)

for every subset D ∈ � of μ(D) < δ and all n ∈ N.

(ii) The conditions (a), (c) and (d) together imply that fn → f in the L p-metric.

(iii) If fn → f almost everywhere on � and all fn have a common majorant g ∈
L p(�,�,μ), then fn → f in the L p-metric.

Proof Assertion (a) of item (i) follows from the Chebyshev inequality (Lemma1
in Subsection4.3.1). Indeed, for any ε > 0, let Bn,ε = { t ∈ � : | fn(t) − f (t)| > ε}.
Applying the Chebyshev inequality to the function g = | fn − f |p, which is larger
than the number ε p on the set Bn,ε, we obtain the estimate

μ(Bn,ε) � 1

ε p

∫

�

| fn − f |pdμ = 1

ε p
‖ fn − f ‖p → 0 as n → ∞,

which means precisely convergence in measure.

1Except for the space L∞, in which a sequence ( fn) converges if and only if there exists a set of
measure 0 in the complement of which ( fn) converges uniformly.
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Assertion (b) follows from (a) because a sequence converging in measure has a
subsequence which converges almost everywhere (Subsection3.2.3, Theorem2 and
Exercise12).

Let us demonstrate (c). In the case of μ(�) < ∞ take A = � and the job is
done. Now consider the case of (�,�,μ) being a σ -finite measure space. For the
given ε > 0 find such an N ∈ N that ‖ f − fn‖ < ε/2 for all n > N . Write � as a
union of sets�1 ⊂ �2 ⊂ . . .,m = 1, 2, . . ., of finite measure. Since by the Lebesgue
dominated convergence theorem

∫

�

| fn|p1�\�k dμ −−−→
k→∞ 0, and

∫

�

| f |p1�\�k dμ −−−→
k→∞ 0,

there is an n0 such that

∫

�\�n0

| fn|pdμ < ε p, n = 1, . . . , N , and
∫

�\�n0

| f |pdμ <
(ε

2

)p
.

Put A = �n0 . Then for n = 1, . . . , N the condition (*) is evident, and for n > N ,

(∫

�\A
| fn|pdμ

)1/p = ‖ fn1�\A‖ � ‖ fn1�\A − f 1�\A‖ + ‖ f 1�\A‖

� ‖ fn − f ‖ +
(∫

�\A
| f |pdμ

)1/p
<

ε

2
+ ε

2
= ε,

which implies (*).
Assertion (d) of item (i) follows from the absolute continuity of integral (Sub-

section7.1.4, Theorem1 and Exercise5). Namely, again fix an N ∈ N such that
‖ f − fn‖ < ε/2 for all n > N , and pick a δ > 0 in such a way that

∫

D
| fn|pdμ < ε p, n = 1, . . . , N , and

∫

D
| f |pdμ <

(ε

2

)p

for every D ∈ �, which has μ(D) < δ. Then for such a D the condition (**) is
evident when n � N . On the other hand,

(∫

D
| fn|pdμ

)1/p = ‖ fn1D‖ � ‖ fn1D − f 1D‖ + ‖ f 1D‖

� ‖ fn − f ‖ +
(∫

D
| f |pdμ

)1/p
<

ε

2
+ ε

2
= ε,

which implies (**) for n > N .
Let us prove (ii). Assume contrary that ‖ fn − f ‖ does not tend to 0. Then there is

an a > 0 and a subsequence (gn) ⊂ ( fn) such that ‖gn − f ‖ > a for all n. Passing
to a subsequence, we may assume that gn

a.e.−→ f . Applying (c) and (d) with ε = a/8
we obtain the corresponding subset A ∈ � of finite measure and δ > 0 such that
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∫

�\A
|gn|pdμ <

(a

8

)p
, and

∫

D
|gn|pdμ <

(a

8

)p

for every subset D ∈ � of μ(D) < δ and all n ∈ N. The Fatou lemma implies the
same conditions for the limiting function f . According to Egorov’s theorem there is
a subset B ∈ �A with μ(B) < δ such that (gn) converges uniformly to f on A \ B.
Then

a < ‖gn − f ‖ � ‖(gn − f )1A\B‖ + ‖gn1B‖ + ‖ f 1B‖ + ‖gn1�\A‖ + ‖ f 1�\A‖
� ‖(gn − f )1A\B‖ + a

2
−→ a

2
as n → ∞,

which gives us the desired contradiction.
Finally, (iii) is an obvious consequence of the Lebesgue dominated convergence

theorem. �

Exercises

1. Let p0 ∈ [1,∞) be a fixed number, and let x ∈ �p0 . Then ‖x‖p → ‖x‖∞ as
p → ∞. In some sense, this justifies the notations ‖x‖∞ and �∞.

2. Let p0 ∈ [1,∞) be a fixed number, x ∈ �p0 . Then for p ∈ [p0,∞) the quantity
‖x‖p depends continuously on p.

3. Formulate and prove an analogous assertion for the space L p(�,�,μ) in the
case of a finite measure μ.

4. In Theorems1 and 2 we proved that in the case of a finite measure, the space
L p(�,�,μ) decreases as a set as p increases, while the space �p (a particular case
of L p(�,�,μ) with an infinite measure μ) grows as p increases. Show that for
L p[0,∞) no increase and no decrease occurs when p grows.

5. Show that �p1 �= �p2 for p1 �= p2, so that the growth of �p as a set when p grows
is strict.

6. The analogous statement for L p[0, 1].
7. Suppose p0∈(1,∞). Show that L p0 [0, 1] �=⋂p<p0

L p[0, 1] and that L p0 [0, 1] �=⋃
p>p0

L p[0, 1].
8. Show that �p0 �=⋂p>p0

�p and �p0 �=⋃p<p0
�p.

9. Let (�,�,μ) be a finite measure space. Then L∞(�,�,μ) is a dense subset in
any of the spaces L p(�,�,μ).

10. Let (�,�,μ) be a finite measure space. Then the set of finitely-valued measur-
able functions is dense in any of the spaces L p(�,�,μ).
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11. Let (�,�,μ) be a σ -finite measure space. Then the set of finitely-valued
measurable functions with support of finite measure is dense in any of the spaces
L p(�,�,μ)with p ∈ [1,∞). Ifμ(�) = ∞, then in L∞(�,�,μ) this set is already
not dense.

12. The set of piecewise-constant functions f =∑n
k=1 ck1(ak ,bk ) is dense for p ∈

[1,∞) in any of the spaces L p on the interval, as well as in the spaces L p on the real
line.

13. Let (�,�,μ) be a σ -finite measure space, � a countably-generated σ -algebra
(i.e., there exists a countable family of sets that generates � in the sense of Defini-
tion1, Subsection2.1.2), and p ∈ [1,∞). Then L p(�,�,μ) is a separable normed
space.

14. The space L∞[0, 1] is not separable.

14.1.3 Weighted Integration Functionals

Let 1 � p � ∞, g ∈ L p′(�,�,μ). Define on L p(�,�,μ) theweighted integration
functional Wg by the rule Wg( f ) = ∫

�
f g dμ. By Theorem1 of Subsection14.1.1,

for any f ∈ L p(�,�,μ) the product f g is integrable, i.e., the functional Wg is well
defined. The linearity of this functional is obvious.

Theorem 1. For g ∈ L p′ the functional Wg is continuous on L p, and ‖Wg‖ = ‖g‖p′ .

Proof. The inequality |Wg( f )| � ‖ f ‖p‖g‖p′ , and together with it the estimate
‖Wg‖ � ‖g‖p′ , follow from the Hölder inequality. Let us prove the opposite esti-
mate. Thanks to homogeneity, is suffices to consider the case where ‖g‖p′ = 1.

Let 1 < p < ∞. Consider the function f = |g|p′/pe−i arg g . This function lies in
L p(�,�,μ), and ‖ f ‖p = 1. Therefore,

‖Wg‖ � |Wg( f )| =
∫

�

|g|p′/p+1dμ =
∫

�

|g|p′
dμ = 1 = ‖g‖p′ .

If p = ∞, then in the argument above one needs to take for f the function
e−i arg g . The case p = 1 is somewhat more complicated. In this case the functional
Wg , generally speaking, does not attain its supremum on the unit sphere of the
space L p = L1, and to estimate its norm from below it is not enough to use one
successfully chosen function. So let us deal with this last remaining case. Since
p = 1, we have p′ = +∞, and, as we assumed, ‖g‖∞ = 1. Fix ε > 0. The set
|g|>1−ε = { t ∈ � : |g(t)| > 1 − ε} has positive measure (otherwise, ‖g‖∞ would
not exceed 1 − ε). Now pick in the set |g|>1−ε a measurable subset Δ of finite
non-zero measure. Consider the function f = 1

μ(Δ)
1Δe−i arg g ∈ L1(�,�,μ). Since

‖ f ‖1 = 1, we have
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‖Wg‖ � |Wg( f )| = 1

μ(Δ)

∫

�

1Δ|g|dμ � 1 − ε

μ(Δ)

∫

Δ

dμ = 1 − ε = ‖g‖∞ − ε.

It remains to let here ε → 0. �

Exercises

1. Give an example of a function g ∈ L∞[0, 1] such that the corresponding func-
tional Wg does not attain its norm on SL1[0,1].

2. Which property of the measure μ, following from σ -finiteness, was used in the
proof of the above theorem? And where exactly? Which part of the assertion of the
theorem is valid for any countably-additive (including also non-σ -finite) measure?

As we will show below, for 1 � p < ∞ there are no other continuous linear
functionals on L p(�,�,μ) apart from the weighted integration functionals Wg with
weights g ∈ L p′(�,�,μ). As the exercises proposed below will show, for p = ∞
the situation changes drastically: a large proportion of the functionals on L∞ are not
weighted integration functionals.

3. Let ν be a Borel charge (finite, since according to the axioms we adopted, charges
take only finite values) on [0, 1], and let Fν be the functional on C[0, 1] given by
the formula Fν( f ) = ∫K f dν. Using the Hahn–Banach theorem, we extend Fν to a
functional F̃ν on the entire space L∞[0, 1]. Prove that the functional F̃ν can have the
form Wg only if the charge ν is absolutely continuous with respect to the Lebesgue
measure.

On the interval [0, 1] consider the σ -algebra 2[0,1] of all subsets and define the
measureμ as follows: the measure of any finite set is equal to the number of elements
(cardinality) of the set, while the measure of any infinite set is taken to be +∞.
The space L1([0, 1], 2[0,1], μ) is usually denoted by �1[0, 1]. In other words, the
elements of the space �1[0, 1] are those functions with countable support for which
‖ f ‖ =∑t∈[0,1] | f (t)| < ∞. Prove that:

4. The cardinality of the dual space �1[0, 1]∗ is larger than the cardinality of the
continuum.

5. The space �∞ has a subspace isometric to �1[0, 1].
6. The cardinality of the dual space (�∞)∗ is larger than the cardinality of the con-
tinuum.

7. The set of functionals on �∞ of the “weighted integral” (in the present case —
“weighted sum”) form has the cardinality of the continuum.
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AsM. I.Kadets has shown in 1967, any two separable infinite-dimensionalBanach
spaces are homeomorphic as topological spaces2 (donot confusewith isomorphism!).
The next exercise provides an example of hownonlinear homeomorphisms ofBanach
spaces can be constructed.

8. Let 1 � p1 < p2 < ∞. Consider the mapping M : L p1 [0, 1] → L p2 [0, 1] intro-
duced by S. Mazur by the formula M(g) = |g|p1/p2ei arg g . Prove that this mapping
effects a (nonlinear) homeomorphism of the spaces L p1 [0, 1] and L p2 [0, 1], i.e., M
is bijective, and both M and M−1 are continuous.

14.1.4 The General Form of Linear Functionals on L p

Theorem 1. Let 1 � p < ∞. Then every linear functional G ∈ L p(�,�,μ)∗ is
uniquely representable as a weighted integration functional Wg, where the function
g ∈ L p′(�,�,μ). Moreover, ‖G‖ = ‖g‖p′ .

Proof. The formula for the norm of the functional Wg has already been proved in
the preceding subsection. It remains to establish the existence and uniqueness of
the sought-for function g ∈ L p′(�,�,μ). We begin with the uniqueness. Suppose
G = Wg1 = Wg2 . ThenWg1−g2 = Wg1 − Wg2 = 0 and ‖g1 − g2‖p′ = ‖Wg1−g2‖ = 0,
i.e., the elements g1 and g2 of the space L p′(�,�,μ) coincide.

The proof of the existence requires some effort so we break it into several lemmas.
We first treat the particular case of a finite measure. The general case will be reduced
to it by means of a device that we already encountered in Subsection4.6.2.

Lemma 1. Let 1 � p < ∞, G ∈ L p(�,�,μ)∗, and μ(�) < ∞. Then there exists
a function g ∈ L1(�,�,μ) such that

G(1Δ) =
∫

�

1Δg dμ

for all Δ ∈ �.

Proof. As the reader has probably guessed already, the argument relies on theRadon–
Nikodým theorem.

Define a set function ν on the σ -algebra � by the rule ν(Δ) = G(1Δ). Thanks to
the linearity of the functional G and the equality 1Δ1 + 1Δ2 = 1Δ1�Δ2 , which holds
for any disjoint pair Δ1,Δ2 ∈ �, the set function ν is finitely additive. Let us show
that in fact ν is countably additive. To this end, according to Exercise5 in Subsec-
tion7.1.1, we need to show that for any collection of sets Ak ∈ �, k � 1, forming
a decreasing chain with empty intersection, limk→∞ ν(Ak) = 0. Indeed, in this case

2Making this reference, I am glad to use the occasion to pay tribute to my father Mikhail Kadets
(1923–2011, the name is often spelled as Kadec). He was a prominent mathematician and excellent
teacher, who had a great influence not only on me (as a person and as a mathematician), but also
on the development of Banach space theory in general.
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‖1Ak ‖p = (μ(Ak))
1/p → 0 as k → ∞, and so, thanks to the continuity of the func-

tional G, also ν(Ak) = G(1Ak ) → 0 as k → ∞. Therefore, ν is a charge. Further,
the inequality |ν(Δ)| � ‖G‖ · ‖1Δ‖p = ‖G‖ (μ(Δ))1/p means that the charge ν is
absolutely continuous with respect to the measure μ. Now define the sought-for
function g ∈ L1(�,�,μ) as the Radon–Nikodým derivative of the charge ν with
respect to the measure μ. Then

G(1Δ) = ν(Δ) =
∫

Δ

g dμ =
∫

�

1Δ g dμ. �

Lemma 2. Under the assumptions of the preceding lemma,

G( f ) =
∫

�

f g dμ (5)

for all functions f ∈ L∞(�,�,μ).

Proof. Denote by F the linear functional on L∞(�,�,μ) acting by the rule F( f ) =
G( f ) − ∫

�
f g dμ. Since all functions of the form 1Δ with Δ ∈ � lie in Ker F , it

follows that Ker F also contains all functions
∑n

k=1 ak1Δk with Δk ∈ � (all finitely-
valued functions). Therefore (see Exercise10 in Subsection14.1.2), the kernel of the
functional F is dense in L∞(�,�,μ). Further,

|F( f )| � ‖G‖ ‖ f ‖p + ‖ f ‖∞‖g‖1 � ‖G‖ ‖ f ‖∞(μ(�))1/p + ‖ f ‖∞‖g‖1
= (‖G‖ (μ(�))1/p + ‖g‖1

) ‖ f ‖∞,

that is, ‖F‖ � ‖G‖ · (μ(�))1/p + ‖g‖1 < ∞ and the functional F is continuous. A
continuous functional that vanishes on a dense set vanishes on the whole space. �

Lemma 3. The constructed function g lies in L p′(�,�,μ).

Proof. Using the preceding lemma and the continuity of the functional G in the norm
‖ · ‖p, we deduce that every function f ∈ L∞(�,�,μ) obeys the estimate

∣∣∣∣∣∣

∫

�

f g dμ

∣∣∣∣∣∣
= |G( f )| � ‖G‖ · ‖ f ‖p. (6)

We consider first the case p > 1, and so p′ �= ∞. Fix N > 0 and substitute in (6)
the function f = |g|p′−1 1|g|<N · e−i arg g . Then we have

∫

|g|<N

|g|p′
dμ =

∣∣
∣∣∣∣

∫

�

f g dμ

∣∣
∣∣∣∣
� ‖G‖ · ‖ f ‖p

= ‖G‖ ·
⎛

⎜
⎝
∫

|g|<N

|g|(p′−1)pdμ

⎞

⎟
⎠

1/p

= ‖G‖ ·
⎛

⎜
⎝
∫

|g|<N

|g|p′
dμ

⎞

⎟
⎠

1/p

.
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Dividing both sides of this inequality by
(∫

|g|<N
|g|p′

dμ
)1/p

and raising the result

to the power p′, we obtain the inequality
∫
|g|<N

|g|p′
dμ � ‖G‖p′

. Upon letting the

parameter N go to infinity, this last estimate becomes
∫
�

|g|p′
dμ � ‖G‖p′

, which
says, in particular, that g ∈ L p′(�,�,μ).

Let us pass to the case p = 1, p′ = ∞. Suppose that g /∈ L∞(�,�,μ). Then for
any N > 0 the set |g|>N has non-zero measure. Let us substitute in (6) the function
f = 1|g|>N e−i arg g . We obtain

Nμ(|g|>N ) �
∫

|g|>N

|g|dμ =
∣∣∣∣

∫

�

f g dμ

∣∣∣∣ � ‖G‖ · ‖ f ‖1 = ‖G‖ · μ(|g|>N ).

Therefore, N � ‖G‖ for all N > 0, so we have reached a contradiction. �

Completion of the Proof of the Theorem. Thus, in the case of a finite measure μ,
we have established the existence of a function g ∈ L p′(�,�,μ) such that for all
functions f ∈ L∞(�,�,μ) relation (5), which can be written as G( f ) = Wg( f ),
holds. Hence, G and Wg are continuous linear functionals on the space L p(�,�,μ)

that coincide on the dense (Exercise9 in Subsection14.1.2) subset L∞(�,�,μ) ⊂
L p(�,�,μ). Consequently, G( f ) = Wg( f ) for all f ∈ L p(�,�,μ).

Let us address now the case of a σ -finite measure μ. Fix some decomposition
� =⊔∞

n=1 �n , where 0 < μ(�n) < ∞ and �n ∈ �. Introduce the numbers an =
2nμ(�n). Further, introduce on (�,�) a new measure μ1 by the formula μ1(B) =∑∞

n=1 μ(B ∩ �n)/an . With this definition, the triple (�,�,μ1) is a finite measure
space. Now consider on � the function h =∑∞

n=1 an1�n . Recall (Subsection4.6.2)
that a function f isμ-integrable on� if and only if the function f · h isμ1-integrable
on �, and then

∫
�

f dμ = ∫
�

f h dμ1.
Define the linear operator T : L p(�,�,μ1) → L p(�,�,μ) by the formula

T f = f · h−1/p. Then T effects a bijective isometry of the spaces L p(�,�,μ1)

and L p(�,�,μ):

‖T f ‖p =
∫

�

| f |ph−1dμ =
∫

�

| f |pdμ1 =‖ f ‖p.

Next, to the functional G ∈ L p(�,�,μ)∗ we associate the functional T ∗G ∈
L p(�,�,μ1)

∗ by the recipe (T ∗G)( f ) = G(T f ). Since μ1 is a finite measure, the
functional T ∗G falls under the conditions of the already established particular case
of the theorem: there exists a function g1 ∈ L p′(�,�,μ1) such that (T ∗G)( f ) =∫
�

f g1 dμ1 for all functions f ∈ L p(�,�,μ1). Decoded, this condition says that
that for any f ∈ L p(�,�,μ1) we have

G(T f ) =
∫

�

f g1h dμ =
∫

�

(T f ) · g1h1/p′
dμ.
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Re-denote T f by f̃ and g1h1/p′
by g. Then, as required, g ∈ L p′ (�,�,μ), and the

equality G( f̃ ) = ∫
�

f̃ g dμ, as desired, holds for all functions f̃ ∈ L p (�,�,μ). �

Remark 1. Since the correspondence g �→ Wg effects a bijective isometry of the
spaces L p′(�,�,μ) and L p(�,�,μ)∗, the function g is usually identified with
the functional Wg it generates. Under this identification, the theorem on the gen-
eral form of linear functionals on L p, 1 � p < ∞, is expressed by the equality
L p(�,�,μ)∗ = L p′(�,�,μ).

Remark 2. Since the exponents p and p′ play symmetric roles (we have (p′)′ = p),
the equality L p(�,�,μ)∗ = L p′(�,�,μ), 1 � p < ∞, can be recast as
L p′(�,�,μ)∗ = L p(�,�,μ), 1 < p � ∞. Since the dual space of any normed
space is complete, this implies, in particular, that L p(�,�,μ) is complete for all
1 < p � ∞.

Remark 3. For 1 < p < ∞ both relations, L p(�,�,μ)∗ = L p′(�,�,μ) and
L p′(�,�,μ)∗ = L p(�,�,μ), hold. Combining them, we conclude that for 1 <

p < ∞ we have (L p(�,�,μ)∗)∗ = L p(�,�,μ). This property of spaces, called
reflexivity, plays an important role in the theory of Banach spaces, and will be dis-
cussed in the subsequent chapters.

Remark 4. Since the spaces �p constitute particular cases of the spaces L p(�,�,μ),
in which the role of the integral is played by the sum of the terms of a sequence, we
obtain the following theorem on the general form of linear functionals on �p.

Theorem 1. Let 1 � p < ∞. Then for any f = ( f1, f2, . . .) ∈ �p and g =
(g1, g2, . . .) ∈ �p′ , the expression Wg( f ) =∑∞

n=1 fngn is well defined. For fixed
g ∈ �p′ , Wg is a continuous linear functional on �p, and ‖Wg‖ = ‖g‖p′ . Further,
for any linear functional G ∈ �∗

p there exists a unique element g ∈ �p′ , such that
G = Wg.

Under the identification g → Wg , the theorem on the general form of linear func-
tionals on �p for 1 � p < ∞ can be stated as the equality �∗

p = �p′ .

Remark 5. Although the theorem on the general form of linear functionals on the
space L p is no longer true for p = ∞, the first step in the proof, namely the introduc-
tion of the set function ν on the σ -algebra � by the rule ν(Δ) = G(1Δ), also makes
sense for a functional G ∈ L∞(�,�,μ)∗. The main difference compared with the
case p < ∞ is that here ν is only a finitely-additive charge, rather than a countably-
additive one. For this reason, despite the fact that the absolute continuity condi-
tionμ(Δ) = 0 =⇒ ν(Δ) = 0 is satisfied, the Radon–Nikodým theorem is no longer
applicable. Nevertheless, it is not difficult to show that the set function ν has a finite
semivariation and, by Theorem3 of Subsectionnewexlinkssec:13semivariat13.4.213
(where the more general case of a vector measure ν was treated), any function
f ∈ L∞(�,�,μ) will be ν-integrable. Hence, we have the following result.
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Theorem 2 (General form of linear functionals on L∞). For any functional G ∈
L∞(�,�,μ)∗ there exists a unique finitely-additive bounded charge ν : � → C

which vanishes on μ-negligible sets, and generates the functional G by the rule
G( f ) = ∫

�
f dν. Conversely, every such charge defines, via the indicated rule, a

continuous linear functional on L∞(�,�,μ). The norm of the functional G coin-
cides with the semivariation on � of the charge that generates it.

Exercises

1. The theorem on the general form of linear functionals on the space L2 can be
derived as a particular case of the theorem on the general form of linear functionals
on L p. At the same time, L2 is a Hilbert space, so for it the theorem on the general
form of linear functionals on a Hilbert space is valid. Don’t these theorems contradict
one another?

2. For 1 < p < ∞ the condition that the measure is σ -finite in Theorem1 is
redundant.

3. For p = 1, although the condition that the measure is σ -finite in Theorem1, can
in principle be weakened, it cannot be eliminated completely. Show that in the case
where � = [0, 1], � = B, and μ is the counting measure (i.e., the measure of any
finite set is the number of its elements, and the measure of any infinite set is equal
to +∞), L1(�,�,μ)∗ �= L∞(�,�,μ). Specifically, L1 (�,�,μ)∗ consists of all
functionals Wg , where g are arbitrary bounded functions, and not only bounded
Borel-measurable functions on [0, 1].
4. Fill in the details of the theorem on the general form of linear functionals on L∞.

5. Prove the following theorem on the general form of a linear operator on L∞.
Let X be aBanach space. For every continuous linear operatorT : L∞(�,�,μ)→

X there exists a unique finitely-additive bounded vector measure ν : � → X which
vanishes on μ-negligible sets, and which generates the operator T by the rule
T f = ∫

�
f dν. Conversely, every such vector measure generates via the indicated

rule a continuous operator T : L∞(�,�,μ) → X . The norm of the operator T is
equal to the semivariation on � of the measure that generates it.

6. Let K : [0, 1] × [0, 1] → C be a Borel-measurable function of two variables.
Denote by K̃ the function K̃ (t) = ∫ 1

0 |K (t, x)|dx . Show that if ‖K̃‖∞ < ∞, then

the expression (T f (t))(x) = ∫ 1
0 K (t, x) f (t)dt defines a continuous linear operator

T : L1[0, 1] → L1[0, 1], and ‖T ‖ � ‖K̃‖∞. This operator on L1[0, 1] is called the
integration operator with kernel K .

7. Under the assumptions of the preceding exercise, prove that ‖T ‖ = ‖K̃‖∞.
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8. Prove that in the space L1[0, 1] every finite-rank operator is representable as an
integration operator with a kernel.

9. Using the approximation of a compact operator byfinite-rank operators, prove that
any compact operator T ∈ L(L1[0, 1]) can be represented as an integration operator
with a kernel.

10. Let [an, bn] ⊂ [0, 1], n = 1, 2, . . ., be a sequence of pairwise disjoint intervals

of nonzero length. Take as kernel the function K =
∞∑

k=1

1
bk−ak

1[ak ,bk ]×[ak ,bk ]. Then the

integration operatorwith the kernel K in L1 [0, 1] is not a compact operator. Compare
with the Exercises8 in Subsection12.4.3 and 12 in Subsection12.4.2.

11. Suppose that the kernel in Exercise6 above obeys the condition ‖K̃‖∞ < ∞.
Consider the function Kt : [0, 1] → C, Kt (x) = K (t, x). If the family of functions
{Kt }t∈[0,1] forms a precompact set in L1[0, 1], then the integration operator with the
kernel K in L1[0, 1] is a compact operator.

12. Provide an example of a finite-rank operator in C[0, 1] that is not representable
as an integration operator with kernel.

In the light of the theorem on the general form of linear functionals on L p, if
the operator T acts from L p to Lr and p, r ∈ [1,∞), then its adjoint (dual) should
be considered as an operator acting from Lr ′ to L p′ . For the operators listed below,
prove that they are linear and continuous, and calculate the adjoint operator.

13. The identity embedding operator jp,r of the space L p[0, 1] into Lr [0, 1], where
r � p.

14. Any integration operator with kernel acting in L p[0, 1].
15. ThemultiplicationoperatorTg : L p[0, 1] → L1[0, 1]bya function g ∈ L p′ [0, 1]:
Tg( f ) = f · g.

16. The operator Sg : L1[0, 1] → L1[0, 1] of composition with a monotone contin-
uous function g : [0, 1] → [0, 1], i.e., Sg( f ) = f ◦ g. Under what conditions on g
will the operator indeed act from L1[0, 1] to L1[0, 1]?

14.2 The Fourier Transform on the Real Line

Formally, to define an operator T : X → Y we first need to give the spaces X and Y
and only then specify how the operator T act on the elements of the space X . In real
life3 everything goes in the opposite order: first some analytical expression that one
naturally should treat as a linear operator arises, and only afterwards does one fit it

3One wonders to what degree solving mathematical problems can be considered as “real life”?.
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into the formal scheme. In this process, of course, the specification of the operator
by the given analytical expression is not unambiguous, and depending on the choice
of the spaces one obtains operators with different properties.

In this section we treat one such example, where for the analytical expression one
takes the Fourier integral on the real line, well known from calculus.

14.2.1 δ-Sequences and the Dini Theorem

In this subsection we discuss a useful device for proving limit theorems for integral
expressions. In less rigorous terms, this device can be described as follows: if a
sequence of functions (gn) converges in some sense to the δ-measure supported at
the point t0, then for a large number of functions f it holds that

∫

�

f gn dμ → f (t0)

as n → ∞.

Definition 1. Let (�,�,μ) be a spacewith a nonatomicmeasure (finite or σ -finite).
The sequence of functions gn ∈ L∞(�,�,μ) is called a δ-sequence if there exists
an increasing sequence of sets �m ∈ � of finite measure such that

(i) μ(� \⋃∞
m=1 �m) = 0;

(ii)
∫

�m

gn dμ → 1 as m → ∞, for every n ∈ N;

(iii)
∫

�m

hgn dμ → 0 for any function h integrable on �m .

Remark 1. If the functions gn are integrable on the whole space �, then condition
(ii) can be replaced by the simpler condition

∫
�

gndμ = 1.

Definition 2. Let (gn) be a δ-sequence.We call the measurable function g an appro-
priate multiplier if it is almost everywhere different from zero and supn∈N ‖gng‖∞ =
M < ∞.

Theorem 1. Let (gn) be a δ-sequence, f be a function integrable on �, and a be an
arbitrary scalar. Further, suppose there exists an appropriate multiplier g such that
f −a

g ∈ L1(�,�,μ) Then
∫
�

f gn dμ → a as n → ∞.

Proof. Since the function ( f − a)/g is integrable on �, and ‖gng‖∞ < ∞, the
product ( f − a)gn is also integrable on �. By conditions (i) and (ii) of Definition1,

∫

�

f gndμ − a = lim
m→∞

⎛

⎝
∫

�m

f gndμ − a

⎞

⎠

= lim
m→∞

∫

�m

( f − a) gn dμ =
∫

�

f − a

g
ggn dμ. (1)
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Next, by the Lebesgue dominated convergence theorem,

∫

�\�m

∣
∣∣∣

f − a

g

∣
∣∣∣ dμ =

∫

�

∣
∣∣∣

f − a

g

∣
∣∣∣1�\�m dμ → 0 as m → ∞.

Fix ε > 0 and choose a number m such that the estimate
∫
�\�m

∣∣∣ f −a
g

∣∣∣ dμ < ε

holds. Using formula (1) and the fact that, by condition (iii) of Definition1,

limn→∞
∣∣∣
∫
�m

( f − a)gn dμ

∣∣∣ = 0, we have

lim
n→∞

∣
∣∣
∣
∣
∣

∫

�

f gn dμ − a

∣
∣∣
∣
∣
∣
= lim

n→∞

∣
∣∣
∣
∣
∣

∫

�

f − a

g
ggn dμ

∣
∣∣
∣
∣
∣
= lim

n→∞

∣
∣
∣∣
∣
∣
∣

∫

�\�m

f − a

g
ggn dμ

∣
∣
∣∣
∣
∣
∣
� Mε,

which in view of the arbitrariness of ε yields the required limit relation. �

Recall that the function f on the (finite or infinite) interval (a, b) satisfies the Dini
condition at the point x0 ∈ (a, b) if the function ( f (x0 + t) − f (x0))/t is integrable
on some interval of the form [−ε,+ε]. Clearly, if f ∈ L1(−∞,∞) satisfies the
Dini condition at x0, then ( f (x0 + t) − f (x0))/t ∈ L1(−∞,∞). We note that the
Dini condition is not too restrictive. Indeed, say, differentiability at the point x0,
the Lipschitz condition, or the Hölder condition with exponent p > 0 impose more
serious constraints on the behavior of a function.

Theorem 2. Suppose u ∈ L1(−∞,∞) and satisfies the Dini condition at the
point x. Then

lim
N→∞

1

π

∞∫

−∞
u(x + t)

sin Nt

t
dt = u(x).

Proof. We apply Theorem1 to� = Rwith the Lebesgue measure, f (t) = u(x + t),
gN (t) = 1

π
sin Nt

t , �m = {t ∈ R : 1
m � |t | � m}, and the multiplier g(t) = t . For this

choice, condition (i) in the definition of a δ-sequence is obviously satisfied, while
condition (ii) follows from the known formula limm→∞ 1

π

∫ m
−m

sin t
t dt = 1, usually

given in complex analysis courses as a nice example of application of residue theory.4

Let us verify that property (iii) holds for gN . Let h be a function integrable on �m .
Since the function 1/t is bounded on �m , the function h(t)/t is integrable on �m .
To obtain the relation limN→∞

∫
�m

h(t) sin Nt
t dt = 0, it remains to apply Corollary1

of Subsection10.4.3. The remaining conditions of Theorem1 in our case are the
boundedness of the sine function and the Dini condition. �

Applying Theorem1 with �m = � = [−π, π ] to the partial sums of the Fourier
series,

4See, e.g., [42, Subsection3.1.2.2].
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(Sn f )(t) = 1

2π

π∫

−π

f (t + τ)
sin((n + 1/2)τ )

sin(τ/2)
dτ,

one can readily obtain the following result, formulated earlier in Subsection10.4.3,
Exercise4.

Theorem 3. Suppose the function f is Lebesgue integrable on the interval [−π, π ]
and satisfies the Dini condition at the point x0 ∈ [−π, π ]. Then the Fourier series of
f converges at the point x0 to f (x0). �

Exercises

1. Where in the statement or proof of Theorem1 does the condition gn ∈
L∞(�,�,μ) of Definition1 play a role?

2. For each of the conditions (i)–(iii) of Definition1, find its role in Theorem1.

14.2.2 The Fourier Transform in L1 on the Real Line

Let f ∈ L1(−∞,∞). The Fourier transform of the function f is the function f̂ (t)
defined as

f̂ (t) =
∞∫

−∞
f (τ )e−i tτ dτ . (2)

Since |e−i tτ | = 1 for t, τ ∈ R, the integrand in formula (2) is an integrable function,
so the function f̂ is defined for all t ∈ R. Moreover,

| f̂ (t)| �
∞∫

−∞
| f (τ )e−i tτ |dτ =

∞∫

−∞
| f (τ )|dτ = ‖ f ‖1.

Taking the supremum over all t ∈ R, we see that f̂ is a bounded function and

sup
−∞<t<+∞

| f̂ (t)| � ‖ f ‖1 (3)

for all functions f ∈ L1(−∞,∞).
Let us list the Fourier transforms for several concrete functions. The required

calculations are left to the reader as exercises on the subject “methods for computing
integrals”.5

5See [24, Ch. 8, §4].
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Example1. Let f = 1[a,b]. Then f̂ (t) = (e−i ta − e−i tb)/(i t). In particular, if f =
1[−a,a], then f̂ (t) = 2t−1sin at .

Example2. Let f (t) = e−a|t |, where a > 0. Then f̂ (t) = 2a

a2 + t2
.

Example3. Let f (t) = e−at2 , where a > 0. Then f̂ (t) =
√

π

a
· e− t2

4a .

We denote by �∞(−∞,∞) the space of all bounded complex-valued functions
on the line, equipped with the norm ‖ f ‖ = sup−∞<t<+∞ | f (t)|. Convergence in this
space coincideswith the uniform convergence on the line.We denote byC0(−∞,∞)

the subspace of �∞(−∞,∞) consisting of all continuous functions that tend to zero
at infinity. Clearly, the subspace C0(−∞,∞) is closed in �∞(−∞,∞).

Definition 1. The Fourier transform operator in L1(−∞,∞) is the mapping
F : L1(−∞,∞) → �∞(−∞,∞) acting by the rule F( f ) = f̂ . When it is clear
from the context that one is dealing with the operator and not just with an individual
value f̂ , one uses the short name “Fourier transform” also for the Fourier transform
operator.

Theorem 1. The Fourier transform F in L1(−∞,∞) is a linear operator, ‖F‖ = 1,
and for any function f ∈ L1(−∞,∞) its image f̂ is a continuous function that tends
to zero at infinity.

Proof. The inequality ‖F‖ � 1, and together with it the continuity of the operator
F , follow from (3). To obtain the opposite inequality, we apply the transformation
to an arbitrary positive function f ∈ SL1(−∞,∞) and obtain

‖F‖ � ‖F( f )‖ = ‖ f̂ ‖ � | f̂ (0)| =
∞∫

−∞
f (τ )dτ = ‖ f ‖1 = 1.

It remains to show that F(L1(−∞,∞)) ⊂ C0(−∞,∞). By Example1 above,
F( f ) ∈ C0(−∞,∞) for any function of the form f = 1[a,b]. Hence, by linearity,
F1( f ) ∈ C0(−∞,∞) for any piecewise-constant function f on the line (i.e., any
function of the form f =∑n

k=1 ck1[ak ,bk ]). Since the set of piecewise-constant func-
tions is dense in L1(−∞,∞) and the mapping F is continuous, this implies (see
Exercise9 in Subsection1.2.1) that the whole image of the transformation F lies in
the subspace C0(−∞,∞). �

Remark 1. Since C0(−∞,∞) is a subspace not only of �∞(−∞,∞), but also of
L∞(−∞,∞), the mapping F can be regarded, whenever convenient, as acting from
L1(−∞,∞) into L∞(−∞,∞).

Recall that in Subsection4.6.3 we have proved that for any two functions f, g ∈
L1(−∞,∞) their convolution ( f ∗ g)(t) = ∫∞

−∞ f (τ )g(t − τ)dτ is defined almost
everywhere and is integrable on the real line.
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Theorem 2. Let f, g ∈ L1(−∞,∞). Then F( f ∗ g) = F( f ) · F(g). In other
words, the Fourier transform maps the convolution into the ordinary product.

Proof. We have

[F( f ∗ g)](t) =
∞∫

−∞
( f ∗ g)(τ ) · e−i tτ dτ

=
∞∫

−∞

⎛

⎝
∞∫

−∞
f (x)g(τ − x)dx

⎞

⎠ e−i tτ dτ.

Switching the order of integration in the double integral and making the change of
variables τ − x = y, we obtain

[F( f ∗ g)](t) =
∞∫

−∞

⎛

⎝
∞∫

−∞
g(τ − x)e−i tτ dτ

⎞

⎠ f (x)dx

=
∞∫

−∞

⎛

⎝
∞∫

−∞
g(y)e−i t (x+y)dy

⎞

⎠ f (x) dx

=
∞∫

−∞

⎛

⎝
∞∫

−∞
g(y)e−i t ydy

⎞

⎠ e−i t x f (x)dx = f̂ (t)ĝ(t). �

The property just established explains why the Fourier transform is often used in
probability theory, in particular in the study of sums of independent randomvariables,
to prove limit theorems for such sums. The point is that the density of the distribution
of a sum of independent random variables is the convolution of the corresponding
individual densities of distributions, and after taking the Fourier transform the con-
volution becomes themuchmore convenient to handle usualmultiplication operation.

Exercises

1. Carry out the necessary calculations in Examples1–3.

2. Why is the set of piecewise-constant functions dense in L1(−∞,∞)?

3. Taking Subsection4.6.3 as a model, justify the correctness of the switch of order
of integration in the double integral used in the proof of Theorem2.

4. Let g ∈ L1(−∞,∞), a ∈ R, and f (t) = g(t + a). Then f̂ (t) = eita ĝ(t).

5. Let g ∈ L1(−∞,∞), a ∈ R, and f (t) = eitag(t). Then f̂ (t) = ĝ(t − a).

6. Let g ∈ L1(−∞,∞) and f (t) = g(−t). Then f̂ (t) = ĝ(t).
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7. Let f ∈ L1(−∞,∞) be an even real-valued function. Then f̂ is real-valued.

8. The operator F is not bounded below.

14.2.3 Inversion Formulas

In this subsection we study the problem of recovering a function from its Fourier
transform.

Recall that the integral in the sense of principal value of a function f on the line
is defined as

p.v.-

∞∫

−∞
f (t) dt = lim

m→∞

m∫

−m

f (t) dt .

Clearly, if f ∈ L1(−∞,∞), then p.v.-
∫∞
−∞ f (t) dt = ∫∞

−∞ f (t) dt , but the p.v.-
integral can also exist for functions that are not Lebesgue integrable on the line.
For instance, p.v.-

∫∞
−∞ f (t) dt = 0 for any odd locally-integrable (i.e., integrable on

any finite interval) function, but among such functions there are also some that do
not lie in L1(−∞,∞) (for instance, f (t) = t).

Theorem 1. Suppose the function f is integrable on the line and satisfies the Dini
condition at some point x ∈ R. Then the value of f at x is recovered by the following
Fourier formula:

2π f (x) = p.v.-

∞∫

−∞
f̂ (t)eitx dt .

Proof. We transform the quantity am = ∫ m
−m f̂ (t)eitx dt as follows:

am =
m∫

−m

⎛

⎝
∞∫

−∞
f (τ )e−i tτ dτ

⎞

⎠ eitx dt =
∞∫

−∞
f (τ )

m∫

−m

eit (x−τ)dxdτ

= 2

∞∫

−∞
f (τ )

sinm(τ − x)

τ − x
dτ = 2

∞∫

−∞
f (y + τ)

sinmy

y
dτ .

To derive the desired relation 2π f (x) = limm→∞ am it remains to apply Theorem2
of Subsection14.2.1. �

If under the assumptions of the theorem not only the function f is integrable, but
also its Fourier transform f̂ , then the Fourier formula takes on the form

f (x) = 1

2π

∞∫

−∞
f̂ (t)eitx dt . (4)
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Unfortunately, the Fourier formula, despite its simplicity and elegance, is appli-
cable only to relatively “nice" functions. To obtain a formula that recovers a function
from its Fourier transform and works for all functions f ∈ L1(−∞,∞), one resorts
to the following procedure. First, one modifies the function by convolution with a
“nice” function so as to achieve a sufficient degree of smoothness, then to the “so-
corrected” function one applies the Fourier formula, and then one already recovers
the initial function f . Based on this procedure, one can obtain various recovery
formulas. Here we give only one of them.

Theorem 2. For any function f ∈ L1(−∞,∞), the equality

f (x) = lim
n→∞ p.v.-

∞∫

−∞
f̂ (t)

n sin(t/n)

2π t
eitx dt (5)

holds for almost all x ∈ R.

Proof. Fix ε > 0 and consider the auxiliary function gε(x) = 1
2ε

∫ x+ε

x−ε
f (t)dt . Since

gε = 1
2ε1[−ε,ε] ∗ f , we have gε ∈ L1(−∞,∞). Further, the Fourier transform maps

convolution into multiplication, so ĝε = f̂ (t) sin(εt)/(εt) (see also Example1 in
Subsection14.2.2). The function gε(x) satisfies the Dini condition at almost every
point x ∈ R (an integral is almost everywhere differentiable with respect to the upper
integration limit), hence Theorem1 applies to it:

gε(x) = p.v.-

∞∫

−∞
f̂ (t)

sin εt

2πε t
eitx dt a.e. (6)

Further, by the same theorem on the differentiability of an integral with respect to the
upper integration limit, f (x) = limε→0 gε(x) for almost all x ∈ R. Putting ε = 1/n
in (6), we obtain the desired inversion formula (5). �

Corollary 1 (uniqueness theorem for the Fourier transform). If f, g ∈
L1(−∞,∞) and f̂ = ĝ, then f = g a.e. In other words, the Fourier transform
in L1 is an injective operator. �

Exercises

1. The set F(L1(−∞,∞)) is not closed in C0(−∞,∞).

2. Endow the set Z of integers with the counting measure μ: the measure of a
set is equal to the number of its elements. In this case the space L1(Z, μ) can be
identified with �1(Z). For functions f ∈ L1(Z, μ) we define the Fourier transform
f̂ : [0, 2π ] → C by the formula f̂ (t) = ∫

Z
f (x)eitx dμ(x) =∑n∈Z f (n)eint . Prove

that f̂ ∈ C[0, 2π ].
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3. Define the operator FZ : �1(Z) → C[0, 2π ] by the rule FZ( f ) = f̂ . Verify that
FZ is linear, and ‖FZ‖ = 1. What does the analogue of the Fourier formula look like
in this case?

4. Prove that the operator FZ is injective. Is it bounded below?

5. The image of the operator FZ coincides with the set W appearing in Example5
of Subsection11.11. Show that the image of FZ is not closed and is not dense in
C[0, 2π ].
6. The closure in C[0, 2π ] of the image of the operator FZ coincides with C(T).

7. Define the convolution for functions from �1(Z) and prove that the operator FZ

takes convolution into multiplication.

14.2.4 The Fourier Transform and Differentiation

Lemma 1. Let f ∈ L1(−∞,∞) be such that f is absolutely continuous on every
finite interval [a, b] ⊂ R and f ′ ∈ L1(−∞,∞). Then f (x) → 0 as x → ∞.

Proof. By the absolute continuity assumption, f (x) = f (0) + ∫ x
0 f ′(t) dt . Hence,

f has limits both as x → +∞ and x → −∞, namely, f (0) + ∫ +∞
0 f ′(t) dt and

f (0) + ∫ −∞
0 f ′(t) dt , respectively. These limits cannot be different from 0, since

otherwise the function f would not be integrable on the line. �

Theorem 1. Let f ∈ L1(−∞,∞) be such that f is absolutely integrable on every
finite interval [a, b] ⊂ R and f ′ ∈ L1(−∞,∞). Then F( f ′) = itF( f ).

Proof. One applies the integration by parts formula and the preceding lemma to
obtain

∞∫

−∞
f ′(τ )e−i tτ dτ = f (τ )e−i tτ

∣∣
∣
+∞
−∞

+ it

∞∫

−∞
f (τ )e−i tτ dτ = it f̂ (t). �

As already noted, the Fourier transform of an integrable function tends to 0 at
infinity. From the preceding theorem one can readily obtain an estimate of the rate
of convergence of the function f̂ to 0 in terms of the degree of smoothness of the
function f :

Corollary 1. Suppose the function f is n-times continuously differentiable, and f
as well as all its derivatives of order up to and including n are integrable on the real
line. Then f̂ (t) = o(t−n) as n → ∞.

Proof. Applying Theorem1 n times we deduce that F( f (n)) = (it)n F( f ). Accord-
ingly, | f̂ (t) · tn| = |F( f (n))|(t) → 0 as t → ∞. �
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Denote byD2(R) the set of all twice continuously differentiable functions on the
real line with bounded support (i.e, the support of each function f ∈ D2(R) lies in
a finite interval, which depends on f ).

Corollary 2. Let f ∈ D2(R). Then f̂ ∈ L p(−∞,∞) for all p � 1. �

Proof. The function f̂ is continuous, and by Corollary1 above, f̂ (t) = o(t−2). �

Exercises

1. Suppose the functions f (t) and g(t) = t f (t) lie in L1(−∞,∞). Then the func-

tion f̂ is differentiable everywhere and
d

dt
f̂ = −i ĝ.

2. Suppose the functions f (t), t f (t),…, tn f (t) lie in L1(−∞,∞). Then the function

f̂ possesses an n-th derivative and
dn

dtn
f̂ (t) = (−i)n F(tn f (t)).

3. Denote by s(−δ,δ) the horizontal strip in C consisting of all points z for which
−δ < Im z < δ. Suppose f ∈ L1(−∞,∞) and for some δ > 0 the function f (t)eδ|t |
is also integrable. Then

∫∞
−∞ f (τ )e−i zτ dτ exists for all z ∈ s(−δ,δ) and is an analytic

function of the variable z in s(−δ,δ). In other words, under our assumptions, f̂ can be
regarded as an analytic function in s(−δ,δ).

4. Under the assumptions of the preceding exercise, suppose the function f takes
only non-negative real values. Then f̂ obeys the so-called ridge condition: | f̂ (z)| �
f̂ (i Im z) for all z ∈ s(−δ,δ).

5. Fill in the omitted details in the proof of the following result:

Theorem 2. Let (a, b) be a finite or infinite interval of the real line, p ∈ [1,∞), and
f a function that is different from zero almost everywhere on (a, b), and satisfies for
some C, δ > 0 the inequality | f (t)| � Ce−δ|t |. Then the functions fn(t) = tn f (t),
n = 0, 1, 2, . . ., form a complete system in L p(a, b).

Proof. By the completeness criterion given in Subsection9.2.3, we need to show
that any element g ∈ L p′(a, b) that annihilates all functions fn is equal to zero. Here
annihilation means that

∫

(a,b)

fng dλ =
∞∫

−∞
tn f (t)g(t)1(a,b)(t)dt = 0 (7)

for all n = 0, 1, 2, . . . Introducing the auxiliary function h(t) = f (t)g(t)1(a,b)(t),
we rewrite (7) in the form (dn/dtn )̂h(0) = 0, n = 0, 1, 2, . . ., which in view of the
analyticity of the function ĥ means that ĥ(t) ≡ 0. By the uniqueness theorem, this
implies that h = 0, and so g = 0, too. �
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6. Using the preceding theorem, establish the completeness of:

— the set of polynomials in L p[0, 1], 1 � p < ∞;

— the system fn(t) = tne−t2/2, n = 0, 1, 2, . . ., in L p(−∞,∞), 1 � p < ∞;

— the system fn(t) = tne−t , n = 0, 1, 2, . . ., in L p(0,∞), 1 � p < ∞.

7. None of the systems of functions listed in the preceding exercise is complete in
the corresponding space L∞.

14.2.5 The Fourier Transform in L2 on the Real Line

The aim of this subsection is to define the Fourier transforms on functions belonging
to the space L2(−∞,∞). Although the definition itself, proposed by Plancherel in
1910, is more complicated than its analogue in L1(−∞,∞), the Fourier transform
(operator) on L2(−∞,∞) turns out to be considerably simpler and more convenient
as regards its properties than the Fourier transform on L1(−∞,∞). Specifically, up
to a constant factor, it is a unitary operator and has a complete system of eigenvectors.

Definition 1. Let X , Y be normed spaces, the linear operations in which agree on
the intersection X ∩ Y . In this case the set X ∩ Y will be regarded as a normed
space endowed with the norm ‖u‖ = ‖u‖X + ‖u‖Y . It is readily seen that un → u
as n → ∞ in X ∩ Y if and only if un → u as n → ∞ in the metric of the space X ,
as well as in that of the space Y .

Lemma 1. Let X1, X2 be normed spaces and (�,�,μ) be a σ -finite measure space,
1 � p1 � p2 � ∞. Further, let Tj : X j → L p j (�,�,μ), j = 1, 2, be continuous
linear operators which coincide on a dense subset E of the space X1 ∩ X2. Then
T1x = T2x for all x ∈ X1 ∩ X2.

Proof. Let x ∈ X1 ∩ X2, xn ∈ E , such that xn → x as n → ∞ in the metric of the
space X1 ∩ X2. Using the assumption that T1 = T2 on E , we define fn = T1xn =
T2xn . Since xn → x in the metric of each of the spaces X1, X2, it follows that fn =
Tj xn → Tj x , as n → ∞, j = 1, 2, in the metric of the corresponding space L p j . By
assertion (i) of Theorem3 in Subsection14.1.2, this means that T1x and T2x coincide
almost everywhere on �. �

The particular case of intersection of spaces we are interested in here is the space
L1(−∞,∞) ∩ L2(−∞,∞), equipped with the norm ‖ f ‖ = ‖ f ‖1 + ‖ f ‖2.
Theorem 1. The following sets are dense in L1(−∞,∞) ∩ L2(−∞,∞):

(i) the set E1 of functions with supports contained in finite intervals;

(ii) the set E2 of bounded functions with supports contained in finite intervals;

(iii) the set E3 of finite-valued measurable functions with supports contained in
finite intervals;
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(iv) the set E4 of piecewise-constant functions;

(v) the set D2(R) (see Subsection14.2.4).

Proof. (i) Let f ∈ L1(−∞,∞) ∩ L2(−∞,∞). Then fn = 1[−n,n] f lies in E1 and
converges to f .

(ii) Let f ∈ E1. Then put fn = f · 1An , where An = {t ∈ R : | f |(t) < n}.
(iii) Any bounded function f ∈ E2 can be approximated on an interval by finitely-

valued functions, and in fact even uniformly (Theorem3 of Subsection3.1.4).

(iv) By (iii), it suffices to show that the closure of the set E4 includes all the
functions of the form 1A, where A is a measurable subset of some finite interval
[a, b]. Since the Lebesgue measure was constructed via extension from the algebra
of finite unions of subintervals, for any ε > 0 there exists a set B, representable
as the union of a finite disjoint collection of subintervals, such that λ(A � B) < ε.
Accordingly, ‖1A − 1B‖ < ε + ε1/2. It remains to observe that 1B is a piecewise-
constant function.

(v) By (iv), is suffices to show that any characteristic function of the kind1[a,b] can
be approximated by functions fromD2(R). To this end, it in turn suffices to “smooth”
the function 1[a,b] so that the area under its graph will remain almost unchanged.
The unconvinced reader should produce the requisite approximation by himself. �

Lemma 2. The following Plancherel formula holds for all functions f, g ∈ D2(R):

〈 f, g〉 = 1

2π
〈 f̂ , ĝ 〉.

In particular (taking g = f ),

‖ f ‖2 = 1√
2π

‖ f̂ ‖2.

Proof. First, since f, g ∈ D2(R) ⊂ L2(−∞,∞), also f̂ , ĝ ∈ L2(−∞,∞) (Corol-
lary2 in Subsection14.2.4). Therefore, both scalar products 〈 f, g〉 and 〈 f̂ , ĝ〉 arewell
defined. Since the functions considered lie in L1(−∞,∞) and are differentiable, and
since, by the same Corollary2 in Subsection14.2.4, their Fourier transforms are inte-
grable, one can apply to them the Fourier formula (4), Subsection14.2.3, and get

2π〈 f, g〉 = 2π

∞∫

−∞
f (x) g(x) dx =

∞∫

−∞

( ∞∫

−∞
f̂ (t)eitx dt

)
g(x) dx

=
∞∫

−∞
f̂ (t)

( ∞∫

−∞
g(x)e−i t x dx

)
dt = 〈 f̂ , ĝ 〉. �

From this lemma it follows that the mapping f �→ f̂ , regarded as an opera-
tor acting from the subspace D2(R) ⊂ L2(−∞,∞) to L2(−∞,∞), is continuous.
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Further, sinceD2(R) is dense in L2(−∞,∞), Theorem1 of Subsection6.5.1 shows
that thismapping extends uniquely to a continuous operator acting from L2(−∞,∞)

to L2(−∞,∞). This reasoning justifies the correctness of the following definition.

Definition 2. The Fourier transform (operator) in L2(−∞,∞) is the continuous
linear mapping F2 : L2(−∞,∞) → L2(−∞,∞) which acts on any function f ∈
D2(R) by the rule F2( f ) = f̂ .

Theorem 2. The Fourier transform in L2(−∞,∞) has the following properties:

A. F2( f ) = f̂ for any function f ∈ L1(−∞,∞) ∩ L2(−∞,∞).

B. The Plancherel formula 〈 f, g〉 = 1
2π 〈F2( f ), F2(g)〉 holds for all functions f, g ∈

L2(−∞,∞). In particular, ‖ f ‖2 = 1√
2π

‖F2( f )‖2 for all f ∈ L2(−∞,∞).

Proof. Assertion A follow from Lemma1 and the fact that the setD2(R) is dense in
L1(−∞,∞) ∩ L2(−∞,∞). Assertion B is the extension by continuity of Lemma2
to L2(−∞,∞). �

The next theorem provides a more constructive definition of the Fourier transform
in L2.

Theorem 3. Let f ∈ L2(−∞,∞). Define (F2,n f )(t) = ∫ n
−n f (τ )e−i tτ dτ . Then

F2 f = limn→∞ F2,n f , where the limit is understood in the metric of the space
L2(−∞,∞).

Proof. Consider the functions fn = f · 1[−n,n]. Clearly, the sequence fn converges
to f in the L2-metric. Thanks to the continuity of the operator F2, the sequence
F2,n( f ) = F2( fn) converges to F2( f ). �

Remark 1. It is natural to denote the limit of the integrals
∫ n
−n f (τ )e−i tτ dτ asn → ∞

by
∫∞
−∞ f (τ )e−i tτ dτ . Accordingly, for the Fourier transform in L2(−∞,∞) one uses

the same notation f̂ (t) = ∫∞
−∞ f (τ )e−i tτ dτ as in L1(−∞,∞), except that here the

integral is understood not in the sense of Lebesgue, but in the sense of Theorem3,
as the limit in L2(−∞,∞) of the functions

∫ n
−n f (τ )e−i tτ dτ .

To study further the Fourier operator F2, it is reasonable to look at polynomials
in this operator, and the simplest of them is the operator (F2)

2.

Lemma 3. The operator (F2)
2 is self-adjoint.

Proof. By Theorem3 (see also Exercise2 of Subsection10.4.3), the operator (F2)
2

is the pointwise limit of the operators (F2,n)
2. The latter can be easily written as

integration operators with symmetric kernels:

(F2,n ◦ F2,n f )(t) =
n∫

−n

n∫

−n

f (τ )e−i x(t+τ)dxdτ =
n∫

−n

f (τ )
2 sin n(t + τ)

t + τ
dτ .

Therefore, (F2,n)
2 are self-adjoint operators, hence so is their pointwise limit. �
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Theorem 4. The operator F̃2 = 1√
2π

F2 is unitary.

Proof. By assertion B of Theorem2, the operator F̃2 effects an isometric embedding,
and hence, in particular, is bounded below. Therefore (by the preceding lemma),
(F̃2)

2 is a self-adjoint bounded below operator. It follows (see Lemma1 in Sub-
section12.4.2) that (F̃2)

2 is bijective. Then the operator F̃2 itself is also bijective,
and any bijective isometry of a Hilbert space is a unitary operator (Theorem2 of
Subsection13.2.2). �

Now let us discuss the spectral properties of the Fourier transform F2.

Theorem 5. The operator F̃2 = 1√
2π

F2 satisfies the relation (F̃2)
4 = I . Conse-

quently, the spectrum of the operator F2 lies in the set {1, i,−1,−i}, and the space
L2(−∞,∞) decomposes into the orthogonal direct sum of the eigenspaces of the
operator F2.

Proof. By Lemma3 and Theorem4, the operator (F̃2)
2 is both self-adjoint and uni-

tary. Hence, its spectrum lies simultaneously on the real line and on the unit circle.
That is, σ((F̃2)

2) ⊂ {−1, 1}. By the spectral mapping theorem, σ((F̃2)
4) = {1}. In

view of the self-adjointness, thismeans that (F̃2)
4 = I . By the same spectralmapping

theorem, σ(F̃2) ⊂ {1, i,−1,−i}. The last assertion of the theorem can be derived
from Exercise1 of Subsection13.1.1, or alternatively by solving the Exercises1–5
below, which provide an explicit construction of a complete system of eigenvectors
of the operator F2. �

Exercises

Consider the sequence of functions xn(t) = tne−t2/2 and the subspaces Xn =
Lin{xk}n

k=0, n = 0, 1, 2, . . .. In other words, the subspace Xn consists of the functions
Pn(t)et2/2, where Pn is a polynomial of degree at most n.

1. Show that
⋃∞

n=1 Xn is dense in L2(−∞,∞).

2. The subspaces Xn , n = 0, 1, 2, . . . are invariant under the operator F2.

3. X0, X⊥
0 ∩ X1, X⊥

1 ∩ X2, X⊥
2 ∩ X3, . . . is a sequence of one-dimensional invariant

subspaces of the operator F2.

4. If in each of the one-dimensional subspaces from the preceding exercise we
choose one non-zero element hn; then the resulting sequence will be an orthogonal
basis consisting of eigenvectors of the operator F2. (Actually, the contruction of the
system involves the Gram–Schmidt orthogonalization of the system {xn}∞0 .)

5. A concrete example of choice of the required elements hn is provided by the

sequence of Hermite functions hn(x) = dn(e−x2 )

dxn · ex2/2. Verify the inclusion hn ∈
X⊥

n−1 ∩ Xn .
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The Fourier transform in Rn is constructed by analogy with the one-dimensional
case: for f ∈ L1(R

n) we put f̂ (x) = ∫
Rn f (y)e−i〈x,y〉dy.

6. Construct for the Fourier transform in R
n the analogue of the theory developed

above for the one-dimensional case.

7. If the measure μ is σ -finite, then with respect to the norm introduced in Defini-
tion1, L p0(�,�,μ) ∩ L p1(�,�,μ) is a Banach space for all p0, p1 ∈ [1,+∞].
8. Show that there exist Banach spaces X and Y for which X ∩ Y is not a Banach
space.

9. Think of an additional condition that ensures the completeness of the space X ∩ Y ,
and which will be satisfied by the subspaces in Example7 above.

14.3 The Riesz–Thorin Interpolation Theorem
and its Consequences

14.3.1 The Hadamard Three-Lines Theorem

In this subsection we prove a variant of the Phragmén–Lindelöf principle, which
estimates a function analytic in the strip  = {z ∈ C : 0 � Re z � 1} in terms of its
values on the boundary of .

For a function f :  → C, let Mθ = Mθ ( f ) = sup{| f (θ + iy)| : y ∈ R}, where
θ ∈ [0, 1].
Theorem 1 (Hadamard’s theorem). Let f :  → C be a bounded function ana-
lytic in  and continuous up to the boundary. Then for any θ ∈ [0, 1] one has the
estimate Mθ � M1−θ

0 Mθ
1 . In other words, ln Mθ is a convex function.

We break the proof into several auxiliary assertions.

Lemma 1. Under the assumptions of the theorem, suppose that

(i) the function f (θ + iy) tends to zero as y → ∞, uniformly in θ ∈ [0, 1], and

(ii) | f (z)| � 1 on the boundary of the strip .

Then | f (z)| � 1 in the whole strip .

Proof. Using (i), choose r > 0 large enough such that the estimate | f (z)| � 1 holds
on the horizontal segments {z = θ ± ir : θ ∈ [0, 1]}. Then the estimate | f (z)| � 1
holds on the entire boundary of the rectangular domain r = {z ∈  : |Im z| � r}.
Hence, by the maximum principle, | f (z)| � 1 for all z ∈ r . Since as r grows the
domain r captures all the points of the strip , the inequality | f (z)| � 1 holds for
all z ∈ . �
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Lemma 2. Under the assumptions of the theorem, suppose the function f is bounded
in modulus by some number C in the entire strip  and | f (z)| � 1 on the boundary
of . Then | f (z)| � 1 in the entire strip .

Proof. Consider the function gε(z) = 1 + εz, with ε > 0. This function is every-
where in  larger in modulus than 1 and |gε(θ + iy)| � ε|y|. Therefore, the auxil-
iary function f/gε satisfies all the conditions of Lemma1. Applying Lemma1, we

conclude that the estimate
∣∣
∣ f (z)
1+εz

∣∣
∣ � 1 holds for all z ∈ . It remains to let ε go to

zero. �
Proof of the Theorem. Consider the function g(z) = f (z)Mz−1

0 M−z
1 . Since

|g(z)| = | f (z)|MRe z−1
0 M−Re z

1 ,

the function g satisfies the conditions of Lemma2. Hence, | f (θ+iy)|Mθ−1
0 M−θ

1 �1.
As we can assume that M0 and M1 are different from zero (otherwise f ≡ 0), this
yields the desired inequality | f (θ + iy)| � M1−θ

0 Mθ
1 . �

Exercise. Prove the following variant of the Phragmén–Lindelöf principle for an
analytic function f , given in the half-plane D = {z : Re z � 0}: suppose | f (z)| � 1
on the imaginary axis and for some function g such that g(r)/r → 0 as r → ∞, the
estimate | f (z)| � eg(|z|) holds for all z ∈ D. Then | f (z)| � 1 for all z ∈ D.

14.3.2 The Riesz–Thorin Theorem

Throughout this subsection, (�1, �1, μ1) and (�2, �2, μ2) are finite or σ -finitemea-
sure spaces, p0, p1, q0, q1 ∈ [1,+∞], θ ∈ [0, 1]; the exponents pθ , qθ are defined
by the relations 1

pθ
= 1−θ

p0
+ θ

p1
and 1

qθ
= 1−θ

q0
+ θ

q1
. Let E ⊂ L p(�1, �1, μ1) be a

linear subspace. The norm of a linear operator T : (E, ‖·‖p) → Lq(�2, �2, μ2)will
be denoted by ‖T ‖p,q .

Lemma 1. Let E be the space of all finitely-valued measurable functions on �1 with
supports of finite measure, and let T : E →⋂

θ∈[0,1] Lq
θ
(�2, �2, μ2) be a linear

operator. Then for any θ ∈ [0, 1] one has the estimate

‖T ‖pθ ,qθ
�
(‖T ‖p0,q0

)1−θ (‖T ‖p1,q1

)θ
. (1)

Proof. The idea of the proof, proposed by Thorin (1939), is to reduce inequality (1)
to Hadamard’s three-lines theorem. Let us define M0 = ‖T ‖p0,q0 , M1 = ‖T ‖p1,q1 .
We need to show that for any finitely-valued function u =∑n

k=1 uk1Uk ∈ E with
‖u‖pθ

= 1 (uk are scalars, and Uk ∈ �1, k = 1, 2, . . . , n, is a collection of sets of
finite measure) it holds that ‖T u‖qθ

� M1−θ
0 Mθ

1 . Since the norm of the element T u
in Lqθ

(�2, �2, μ2) coincides with the norm of the “weighted integral functional”
that it generates on the space Lq ′

θ
(�2, �2, μ2), the lemma reduces to proving that

the inequality



400 14 Operators in L p

∣∣
∣∣∣∣

∫

�2

w · T u dμ2

∣∣
∣∣∣∣
� M1−θ

0 Mθ
1 (2)

holds for all w ∈ Lq ′
θ
(�2, �2, μ2) with ‖w‖q ′

θ
= 1. Finally, it suffices to verify (2)

for finitely-valued functions w =∑m
k=1 wk1Wk .

Let us redefine the numbers pθ , q ′
θ for complex values of the parameter θ :

1

q ′
z

= 1 − z

q ′
0

+ z

q ′
1

and
1

pz
= 1 − z

p0
+ z

p1
.

For any complex number ξ , put sign ξ = ξ/|ξ |, if ξ �= 0, and sign 0 = 0. For fixed
θ ∈ [0, 1], set

uz =
n∑

k=1

|uk |pθ /pz · sign uk · 1Uk , wz =
n∑

k=1

|wk |q ′
θ /q ′

z · signwk · 1Wk .

By direct substitution in the definition of the L p-norm using the fact that |az| = aRe z

for a > 0, the conditions ‖u‖pθ
= ‖w‖q ′

θ
= 1 yield the equalities

‖uiy‖p0 = ‖u1+iy‖p1 = ‖wiy‖q ′
0
= ‖w1+iy‖q ′

1
= 1. (3)

Now define the function f of a complex variable by the formula

f (z) =
∫

�2

wz · T uz dμ2. (4)

Substituting in (4) the expressions for uz and wz , one can easily verify that f (z) is
a linear combination of functions of the form az with a > 0:

f (z) =
n∑

k=1

m∑

j=1

|uk |pθ /pz · |w j |q ′
θ /q ′

z sign ukw j

∫

�2

T (1Uk )W j
dμ2.

Since each of these power functions is analytic and bounded in the strip  =
{z ∈ C : 0 � Re z � 1}, the same properties are enjoyed by the function f (z).
Further, the Hölder inequality and conditions (3) imply that

| f (iy)| =
∣∣
∣∣∣∣

∫

�2

wiy · T uiy dμ2

∣∣
∣∣∣∣
� ‖T uiy‖q0‖wiy‖q ′

0
� M0‖uiy‖p0‖wiy‖q ′

0
= M0.

In much the same way, | f (1 + iy)| � M1. Applying the Hadamard three-lines
theorem we obtain, in particular, the estimate | f (θ)| � M1−θ

0 Mθ
1 . To obtain the
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required inequality (2) it remains to observe that uθ = u,wθ = w, and hence f (θ) =∫
�2

w · T u dμ2. �

Corollary 1 (Lyapunov’s inequality). Let f ∈ L p0(�,�,μ) ∩ L p1(�,�,μ).
Then for any θ ∈ [0, 1],

‖ f ‖pθ
�
(‖ f ‖p0

)1−θ (‖ f ‖p1

)θ
. (5)

In particular, L p0(�,�,μ) ∩ L p1(�,�,μ) ⊂ L pθ
(�,�,μ).

Proof. A linear functional is also an operator, except it takes values in the field
of scalars C. Since C can be identified with L2(�2, �2, μ2), where for �2 one
takes a single-point set and μ2(�2) = 1, the preceding lemma can be applied with
q0 = q1 = 2 to the linear functional W f of integration with the weight f , acting
on finitely-valued functions. As (�1, �1, μ1) one can take (�,�,μ), and as the
exponents to which one applies the lemma one needs to take not p0, p1, and pθ

themselves, but their conjugates. �

Corollary 2. Let X be a dense subset of the space L p0(�1, �1, μ1)∩L p1(�1, �1, μ1).
Then for any θ ∈ [0, 1] the set X is dense in L pθ

(�1, �1, μ1).

Proof. From(5) it follows that the identity embeddingoperator J : L p0(�1, �1, μ1)∩
L p1(�1, �1, μ1) → L pθ

(�1, �1, μ1), J f = f , is continuous (for example, it takes
sequences that converge to zero into sequences that converge to zero). L p0(�1, �1,

μ1) ∩ L p1(�1, �1, μ1), which is the image of the operator J , is a dense subset of
the space L pθ

(�1, �1, μ1), and hence (Exercise8 of Subsection1.2.1) the operator
J maps the dense subset X ⊂ L p0(�1, �1, μ1) ∩ L p1(�1, �1, μ1) into the dense
subset X ⊂ L pθ

(�1, �1, μ1). �

Theorem 1 (Riesz–Thorin theorem). Let X be a dense linear subspace in L p0(�1,

�1, μ1) ∩ L p1(�1, �1, μ1) and let T : X → Lq0(�2, �2, μ2) ∩ Lq1(�2, �2, μ2) be
a linear operator. Then for every θ ∈ [0, 1] the following estimate holds:

‖T ‖pθ ,qθ
�
(‖T ‖p0,q0

)1−θ (‖T ‖p1,q1

)θ
.

Proof. We need to prove the inequality only when the quantities ‖T ‖p0,q0 and
‖T ‖p1,q1 are finite. In this case the operator T : X → Lq0(�2, �2, μ2) ∩ Lq1(�2, �2,

μ2) is continuous, and so it uniquely extends to a continuous operator

T : L p0(�1, �1, μ1) ∩ L p1(�1, �1, μ1) → Lq0(�2, �2, μ2) ∩ Lq1(�2, �2, μ2).

That is, it suffices to consider the casewhen X = L p0(�1, �1, μ1) ∩ L p1(�1, �1, μ1).
Further, if pθ = +∞, then also p0 = p1 = +∞, and the required estimate follows
from the Lyapunov inequality:

‖T f ‖qθ
�
(‖T f ‖q0

)1−θ(‖T f ‖q1

)θ �
(‖T ‖∞,q0

)1−θ(‖T ‖∞,q1

)θ‖ f ‖∞.
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Thus, we can assume that pθ �= +∞. Denote by T̃ the restriction of the operator T
to the subspace E from Lemma1. By Corollary1,

T (E) ⊂ Lq0
(�2, �2, μ2) ∩ Lq1

(�2, �2, μ2) ⊂
⋂

θ∈[0,1]
Lq

θ
(�2, �2, μ2),

so Lemma1 applies to the operator T̃ :

‖T̃ ‖pθ ,qθ
�
(‖T̃ ‖p0,q0

)1−θ
(‖T̃ ‖p1,q1)

θ �
(‖T ‖p0,q0

)1−θ(‖T ‖p1,q1

)θ
.

It remains to use the fact that the subspace E is dense in L p
θ
(�1, �1, μ1), in view

of which ‖T̃ ‖pθ ,qθ
= ‖T ‖pθ ,qθ

. �

The assertion just proved can be interpreted as follows. Let D ⊂ [0, 1] × [0, 1] be
the set of all pairs (x, y) forwhich X ⊂ L1/x (�1, �1, μ1), T (X)⊂ L1/y (�2, �2, μ2),
and ‖T ‖1/x,1/y < ∞. Define the function F : D → C by the formula F(x, y) =
ln ‖T ‖1/x,1/y . Then D is a convex set, and F is a convex function.

Exercises

1. In Lemma1 and below we work with parameters p, q that are allowed to take
finite, as well as infinite values. Provide a meaning for the relations 1

pθ
= 1−θ

p0
+ θ

p1

and 1
qθ

= 1−θ
q0

+ θ
q1

in the case where one of the parameters takes the value +∞.

2. Using the “multiplication convention” ∞ · 0 = 1, provide a meaning for the
expressions uz and wz in the case when one of the parameters figuring in their
definition takes the value +∞. Verify the correctness of the proof of Lemma1 for
such values of the parameters.

3. Why in the proof of Theorem1 must the case pθ = +∞ be treated separately?

4. Justify the last phrase in the proof of Theorem1: “It remains to use the fact that
the subspace…”.

14.3.3 Applications to Fourier Series and the Fourier
Transform

In this subsection we will prove, in particular, that for 1 < p < ∞ the trigonometric
system {1, eit , e−i t , e2i t , e−2i t , . . . } constitutes a Schauder basis in L p[0, 2π ] (The-
orem2). The proof relies on a very elegant argument proposed by V. Yudin [74].

Definition 1. Define

E[0, 2π ] = Lin{1, eit , e−i t , e2i t , e−2i t , . . .},
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E+[0, 2π ] = Lin{1, eit , e2i t , e3i t , . . .},
E−[0, 2π ] = Lin{ e−i t , e−2i t , e−3i t , . . .}.

The Riesz operator is the mapping R : E[0, 2π ] → E[0, 2π ] that acts by the rule

R

(
n∑

k=−m

akeikt

)

=
n∑

k=0

akeikt .

In other words, the Riesz operator is the projector of the space E[0, 2π ] onto
E+[0, 2π ] parallel to the subspace E−[0, 2π ].
Lemma 1 (Yudin). Let p = 2k, where k ∈ N. Let f, g ∈ L p(�,�,μ) be such that∫
�

f k ḡkdμ = 0. Then the L p-norms of the functions f and g satisfy the inequality

‖ f ‖p + ‖g‖p � k p‖ f − g‖p.

Proof. From the assumption that
∫
�

f k ḡkdμ = 0 it follows that

‖ f ‖p + ‖g‖p =
∫

�

(| f |2k + |g|2k)dμ =
∫

�

| f k − gk |2dμ

=
∫

�

| f − g|2| f k−1 + f k−2g + · · · + gk−1|2dμ

� k2
∫

�

| f − g|2 max{ | f |k−1, |g|k−1} 2dμ.

Applying the Hölder inequality with the exponents k and k ′ = k
k−1 , we obtain

‖ f ‖p + ‖g‖p � k2

⎛

⎝
∫

�

| f − g|2kdμ

⎞

⎠

1/k ⎛

⎝
∫

�

max{ | f |2k |g|2k}dμ

⎞

⎠

(k−1)/k

� k2

⎛

⎝
∫

�

| f − g|2kdμ

⎞

⎠

1/k ⎛

⎝
∫

�

(| f |2k + |g|2k)dμ

⎞

⎠

(k−1)/k

= k2

⎛

⎝
∫

�

| f − g|2kdμ

⎞

⎠

1/k

(‖ f ‖p + ‖g‖p
)(k−1)/k

.

It remains to divide both sides of the last inequality by (‖ f ‖p + ‖g‖p)(k−1)/k and
raise the result to the power k. �

Lemma 2. Let f ∈ E+[0, 2π ], g ∈ E−[0, 2π ], and k ∈ N. Then
2π∫

0
f k(t)gk(t)dt =0.



404 14 Operators in L p

Proof. Since the system of exponentials is orthogonal, the functions E+[0, 2π ]
and E−[0, 2π ] are orthogonal to one another in L2[0, 2π ]. At the same time,
f k ∈ E+[0, 2π ], while gk ∈ E−[0, 2π ]. �

Theorem 1 (M. Riesz). Let 1 < p < ∞. Then the Riesz operator R extends to a
continuous operator acting from L p[0, 2π ] into L p[0, 2π ].
Proof. Since E[0, 2π ] is a subspace dense in L p[0, 2π ], for the existence of the
claimed extension it is necessary and sufficient that ‖R‖p,p < ∞.

We consider first the case p = 2k, where k ∈ N. Let h ∈ E[0, 2π ] be an arbi-
trary element. Consider the functions f = Rh ∈ E+[0, 2π ] and g = Rh − h ∈
E−[0, 2π ]. Then, by Lemma1,

‖Rh‖p = ‖ f ‖p � k p‖ f − g‖p = k p‖h‖p,

i.e., ‖R‖p,p � k < ∞.

Applying theRiesz–Thorin interpolation theorem to intervals of the form [2k, 2k +
2], we deduce that ‖R‖p,p < ∞ for all p � 2. It remains to examine the case
1 < p < 2. In this case p′ ∈ (2,+∞) and, what we already proved, ‖R‖p′,p′ < ∞.
We remark that for any h ∈ E[0, 2π ] we have

‖Rh‖p = sup

⎧
⎨

⎩

∣∣∣∣∣∣

2π∫

0

(Rh)(t)u(t)dt

∣∣∣∣∣∣
: u ∈ E[0, 2π ], ‖u‖p′ � 1

⎫
⎬

⎭
. (6)

Defining f = Rh, g = Rh − h, v = Ru, w = Ru − v, and taking into account that
f, v ∈ E+[0, 2π ], g, w ∈ E−[0, 2π ], we obtain:

2π∫

0

(Rh)(t)u(t)dt =
2π∫

0

f (t)(v(t) − w(t))dt

=
2π∫

0

( f (t) − g(t))v(t)dt =
2π∫

0

h(t)(Ru)(t)dt .

Substituting into (6) and using the Hölder inequality, we conclude that ‖Rh‖p �
‖h‖p‖R‖p′,p′ , and so ‖R‖p,p � ‖R‖p′,p′ < ∞. �

For p ∈ [1,∞) the closure of E+[0, 2π ] in L p[0, 2π ] is the space Hp, well-
known in complex analysis. The closure of E+[0, 2π ] in L∞[0, 2π ] is the space
A(T), already mentioned in Subsection10.4.3. M. Riesz’s theorem means thatHp is
complemented in L p[0, 2π ] for 1 < p < ∞, with the extension of the Riesz operator
R being the corresponding bounded projector. It was shown in the exercises of
Subsection10.4.3 that A(T) is not complemented in C(T) (and consequently is not
complemented in L∞[0, 2π ]). By a duality argument one can show that H1 is not
complemented in L1[0, 2π ].
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The next result fulfills our promise made in Subsection10.5.1: it implies that the
trigonometric system with its natural ordering {1, eit , e−i t , e2i t , e−2i t , . . . } consti-
tutes a basis in L p[0, 2π ] for 1 < p < ∞. Incidentally, it is amazing that the prop-
erty of being a basis depends on the ordering, and except in the case of p = 2, there
are orderings in which the trigonometric system is no longer a basis in L p[0, 2π ].
Theorem 2. Let 1 < p < ∞. Then for any function f ∈ L p[0, 2π ] the partial sums
of its Fourier series Sn f converge to f in the L p-metric.

Proof. Denote by Un the multiplication operator by eint : (Un f )(t) = f (t)eint . The
operators Un ∈ L(L p[0, 2π ]) are bijective isometries. The operator R is related to
the partial sum of Fourier series operator Sn by the identity

Sn = Un+1(I − R)U−(2n+1) RUn

(which is readily verified for the exponentials eimt , and then extended by linearity and
continuity to thewhole space L p[0, 2π ]). Consequently, ‖Sn‖ � ‖I − R‖ · ‖R‖, that
is, the sequence (Sn) of operators is uniformly bounded. Moreover, (Sn) converges
pointwise to the identity operator I on the dense subspace E[0, 2π ] of L p[0, 2π ],
which for a bounded sequence of operators means pointwise convergence on the
whole space. �

The reader will find further applications in the exercises below.

Exercises

1. Let 1 � p � 2. Then the Fourier transform F extends from L1(−∞,∞) ∩
L2(−∞,∞) to a continuous operator acting from L p(−∞,∞) to L p′(−∞,∞).

2. Let 1 < p � 2 and f ∈ L p[0, 2π ]. Then∑∞
n=−∞ | f̂n|p′

< ∞.

3. Let 1 � p � 2, an ∈ C, and
∑∞

n=−∞ |an|p < ∞. Then the series
∑∞

n=−∞ aneint

converges in the metric of L p′ [0, 2π ].
4. Consider theRiesz operator R and partial sums of its Fourier series Sn as operators
acting from L p[0, 2π ] into L p[0, 2π ]. Calculate their adjoints.
5. In Exercises11–14 of Subsection10.4.3 it was proved that for the Riesz operator
(there this operator appeared under the pseudonym P̃) it holds that ‖R‖∞,∞ = ∞.
Based on the duality between L∞ and L1, prove that ‖R‖1,1 = ∞.

6. Analogously to Exercises6–14 of Subsection10.4.3, show that the subspace H1

is not complemented in L1[0, 2π ].
7. Describe the pairs (p, q) for which ‖R‖p,q < ∞.
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Comments on the Exercises

Subsection14.1.2

Exercise9. Follow the proof of Lemma1 in Subsection8.3.3.

Exercise10. Use the preceding exercise and Theorem3 of Subsection3.1.4.

Exercise12. By the definition of the Lebesgue measure through the outer mea-
sure, every measurable set A on the interval can be approximated by an open set
B such that A ⊂ B and λ(B \ A) < ε. In turn, every open set can be approximated
from inside by a finite union of intervals. Moreover, the characteristic functions will
approximate the corresponding characteristic functions in the L p-metric. Passing to
linear combinations, we conclude that any finitely-valued function can be approxi-
mated in L p by piecewise-constant functions.

Exercise14. Consider in L∞[0, 1] the set of functions of the form 1[c,d], where
[c, d] ⊂ [0, 1]. This is an uncountable set, in which the distance between any two
elements is equal to 1. Such “beasts" cannot live in a separable space.

Subsection14.1.4

Exercise6. One proceeds by analogy with the theorem on convolution in L1 (Sub-
section4.6.3).

Exercise7. Consider the space E of kernels K that obey the inequality ‖K̃‖∞ <

∞, endowed with the norm ‖K‖ = ‖K̃‖∞. Each element K ∈ E can be iden-
tified with the corresponding function sK : [0, 1] → L1[0, 1] given by the rule
[sK (t)](x) = K (t, x). Prove that the function sK is Borel measurable. From this,
by analogy with the theorem on the approximation of a measurable function by sim-
ple functions, deduce that kernels of the form K (t, x) =∑∞

k=1 1Ak (t)gk(x), where
Ak are pairwise disjoint sets and (gk) is a bounded sequence of elements of the space
L1[0, 1], form a dense set in E . Next, prove the claimed formula ‖T ‖ = ‖K̃‖∞ for
kernels of the form K (t, x) =∑∞

k=1 1Ak (t)gk(x). Then the general result is obtained
by passing to the limit.

Subsection14.2.5

Exercise1. Use Exercise6 in Subsection14.2.4.

Exercise2. First note that the functions xn(t) are infinitely differentiable and
rapidly decaying at infinity. It follows that these functions and their linear combina-
tions lie in L1(−∞,∞) ∩ L2(−∞,∞), and for the functions we are interested in,
F2 = F . Moreover, to these functions one can apply the formula F( f ′) = it · F( f )

(Theorem1 of Subsection14.2.4).
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The proof is carried out by induction on n. For n = 0 the assertion follows from
the equality F(x0) = √

2π x0 (Example3 is Subsection14.2.2). Now suppose that
F(Xn) ⊂ Xn , and let us prove that F(Xn+1) ⊂ Xn+1. Calculating the derivative
x ′

n = nxn−1 − xn+1 and using the Fourier transform of derivative formula, we have

F(xn+1) = F(nxn−1 − x ′
n) = nF(xn−1) − i t F(xn) ⊂ Xn−1 + t Xn ⊂ Xn+1.

Since by the induction hypothesis the functions F(xk), k = 0, 1, . . . , n, also lie in
Xn+1, this establishes the desired inclusion.

Exercise8. Consider in �2 some non-closed linear subspace E (for instance, take
E = Lin{en}∞1 , where {en}∞1 is the standard basis in �2). Introduce the natural embed-
ding operators Ui : �2 → �2 × �2, acting as U1x = (x, 0) and U2x = (0, x). Now
in the linear space �2 × �2 consider the subspace F = {(x,−x) : x ∈ E} and the
quotient mapping j : �2 × �2 → (�2 × �2)/F . The required subspaces X, Y will be
the following subspaces of the linear space (�2 × �2)/F : X = jU1(�2) and Y =
jU2(�2), endowed with the norms inherited from �2: ‖ jU1(s)‖X = ‖ jU2(s)‖Y =
‖s‖�2 . The norms are well defined and the spaces X and Y are subspaces isomorphic
to �2: the isomorphism are effected by the operators jU1 and jU2. Moreover, on E
the operators jU1 and jU2 coincide andmap E into X ∩ Y . Therefore, X ∩ Y will be
isomorphic to the normed space E and will not be a Banach space. This construction
can be described as follows: take two copies of the space �2 and “glue” them along
the non-complete subspace E .

Exercise9. Such a condition reads a follows: X and Y are linear subspaces of some

linear space G; and on G there is defined a convergence
G−→, with the following

properties:

— if gn, g ∈ X and ‖gn − g‖X → 0 as n → ∞, then for some subsequence of

indices gnk

G−→ g;

— if gn, g ∈ Y and ‖gn − g‖Y → 0 (n → ∞), then for some subsequence of

indices gn j

G−→ g;

— if gn, g, h ∈ G, gn
G−→ g, and gn

G−→ h as n → ∞, then g = h.

In Exercise7 the role of such a space G can be played by the space L0(�,�,μ)

of (equivalence classes of) measurable functions, equipped with almost everywhere
convergence.

Subsection14.3.2

Exercise4. Use Lemma1 of Subsection14.2.5.



Chapter 15
Fixed Point Theorems and Applications

Suppose that on the set X there is given a mapping f : X → X . An element x ∈ X
is called a fixed point of the mapping f if f (x) = x . Many problems, looking rather
dissimilar at a first glance, from various domains of mathematics, can be reduced
to the search for fixed points of appropriate mappings. For this reason each of the
theorems on existence of fixed points discussed in the present chapter has numerous
and often very elegant applications.

15.1 Some Classical Theorems

15.1.1 Contractive Mappings

Let X be a metric space. A mapping f : X → X is called contractive if there exists
a constant C ∈ [0, 1) such that for any x1, x2 ∈ X ,

ρ( f (x1), f (x2)) � Cρ(x1, x2) . (1)

Theorem 1 (S. Banach). Let X be a complete metric space and f : X → X a
contractive mapping. Then f has a unique fixed point x0 ∈ X. Moreover, for any
point y0 ∈ X, the sequence (yn) of its iterates, defined by the recursion formula
yn = f (yn−1), converges to x0.

Proof. First, the uniqueness. Let x0, x1 ∈ X be fixed points of the mapping f . Then

ρ(x0, x1) = ρ( f (x0), f (x1)) � Cρ(x0, x1),

whereC < 1 is the constant figuring in the definition of contractivity. But the inequal-
ity ρ(x0, x1) � Cρ(x0, x1) can hold only if ρ(x0, x1) = 0.

© Springer International Publishing AG, part of Springer Nature 2018
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Now let us examine the properties of the sequence yn . Let d = ρ(y0, y1). Tak-
ing successively n = 1, 2, . . . in the estimate ρ(yn, yn+1) = ρ ( f (yn−1), f (yn)) �
Cρ(yn−1, yn),we conclude thatρ(y1, y2) � Cd,ρ(y2, y3) � C2d,…,ρ(yn, yn+1) �
Cnd. It follows that for any n < m we have

ρ(yn, ym) � ρ(yn, yn+1) + ρ(yn+1, yn+2) + · · · + ρ(ym−1, ym)

�
(
Cn + Cn+1 + · · · ) d = Cnd

1 − C
→ 0 as n,m → ∞.

Since the space X is complete, this means that the sequence (yn) converges. Denote
its limit by x0. It remains to prove that x0 is a fixed point of f . Indeed,

ρ(x0, f (x0)) � ρ(x0, f (yn) + ρ( f (yn), f (x0))

� ρ(x0, yn+1) + Cρ(yn, x0) → 0 as n → ∞,

that is, ρ(x0, f (x0)) = 0, and x0 = f (x0). �

Exercises

1. Every contractive mapping is continuous.

2. Let X be a normed space. For a linear operator T : X → X to be a contractive
mapping it is necessary and sufficient that ‖T ‖ < 1. What is the fixed point in this
case?

3. Banach’s theorem not only establishes the existence of the fixed point, but also
provides a way to compute it approximately. Prove the following estimate of the
rate of convergence of the approximations yn to the fixed point x0: ρ(yn, x0) �
Cnd/(1 − C), where C is the constant figuring in (1), and d = ρ(y0, y1). Provide
an example of a contractive mapping on the real line for which this estimate is sharp
(i.e., cannot be improved).

4. Give an example of a mapping f : R → R that has no fixed points and obeys the
following weaker variant of condition (1): for every x1, x2 ∈ X such that x1 �= x2,
one has ρ( f (x1), f (x2)) < ρ(x1, x2).

5. The contractivity property of a map in a normed space can be invalidated by
changing the original norm to an equivalent one. Provide an example.

6. Describe the mappings f : R2 → R
2 that are contractive in all the norms on R2.

7. Let X be a complete metric space, K a compact space, and F : K × X → X
a continuous function that is uniformly contractive in the second variable: there
exists a constant C ∈ [0, 1) such that for any x1, x2 ∈ X and any t ∈ K , it holds
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that ρ(F(t, x1), F(t, x2)) � Cρ(x1, x2). Show that for every t ∈ K there exists a
unique solution x of the equation F(t, x) = x ; moreover, this solution x(t) depends
continuously on t .

8. Prove the following implicit function theorem: Suppose that the function �(t, x)
is defined and continuous in the strip � = {(t, x) : t ∈ [a, b], x ∈ R}, and also that
� is continuously differentiable in the second variable and the derivative �′

x obeys
in the whole strip the inequality m � �′

x � M , where m, M ∈ (0,+∞). Then for
every t ∈ [a, b] there exists a unique solution of the equation�(t, x) = 0; moreover,
this solution depends continuously on t .

9. Recall that the invertibility of an operator U ∈ L(X) can be interpreted as the
existence and uniqueness of a solution to the equation Ux = b for every right-hand
side b ∈ X . Deduce the theorem on small perturbations of the unit operator (asserting
that if T ∈ L(X) and ‖T ‖ < 1, then the operator I − T is invertible) from the fixed
point theorem.

15.1.2 The Fixed Point Property. Brouwer’s Theorem

Definition 1. A topological space X is said to have the fixed point property if every
continuous mapping f : X → X has at least one fixed point.

Example 1. The interval [0, 1] has the fixed point property.
Indeed, let f : [0, 1] → [0, 1] be a continuous function. Consider the two sets

A = { t ∈ [0, 1] : f (t) � t} and B = { t ∈ [0, 1] : f (t) � t}. These sets are closed
and A ∪ B = [0, 1]. Hence, since the interval is connected, A and B must intersect.
Any point of the set A ∩ B provides the required fixed point.

Example 2. Acircle in the plane does not have the fixed point property. As amapping
with no fixed points one can take, say, a central symmetry of the circle.

An important class of examples is provided by the following theorem of Brouwer.

Theorem 1. Every convex compact set in a finite-dimensional normed space has
the fixed point property.

A relatively elementary proof of this theorem in terms of combinatorial properties
of simplices, which does not resort to complicated topological properties, can be
found in the textbook by Kuratowski [25, V. 1, §28.1]1

Let us give an example of application of Brouwer’s theorem.

1The proof mentioned here was proposed by B. Knaster, S. Mazurkiewicz, and K. Kuratowski, so
that the treatment in [25] belongs to one of these authors. Generally, we find it very useful to refer
beginners to textbooks written not simply by pedagogues who are familiar with and know well
how to treat the material, but by people who contributed in an essential manner to the creation and
development of the corresponding fields of mathematics. In such texts the reader has the opportunity
to make acquaintance not only with the results, but also— even more importantly —with the ways
people who demonstrated the fruitfulness of their approach to mathematical research think.
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Theorem 2. Let A : Rn → R
n be a linear operator givenbyamatrixwhose elements

ai, j are all positive. Then A has an eigenvector with non-negative components.

Proof. Let R
n+ = {x = (x1, . . . , xn) : xk � 0, k = 1, . . . , n}. If R

n+ contains a
nonzero vector x such that Ax = 0, then x will already provide the required eigen-
vector (with eigenvalue 0). Hence, one can assume that Ax �= 0 for all x ∈ R

n+ \ {0}.
By assumption, A(Rn+) ⊂ R

n+. Consider the sum of coordinates functional s(x) =∑n
k=1 xk and the compact set K = { x ∈ R

n+ : s(x) = 1}. By Brouwer’s theorem, the
mapping f : K → K given by the formula f (x) = Ax/s(Ax) must have a fixed
point x0 ∈ K . For this point, Ax0/s(Ax0) = x0, i.e., x0 is an eigenvector with eigen-
value s(Ax0). �

Exercises

1. If the topological space X is not connected (i.e., it can be decomposed into the
union of two disjoint closed sets), then X does not have the fixed point property.

2. If X is homeomorphic to a space with the fixed point property, then X itself has
this property.

In the theory of topological spaces, an analogue of the notion of a complemented
subspace is the notion of a retract. A subspace Y of a topological space X is called a
retract if there exists a continuous mapping P : X → Y (called a retraction) such
that Py = y for all y ∈ Y .

3. Any retract of a topological space with the fixed point property itself has the fixed
point property.

4. Based on the preceding exercise, give an example of a compact set in R2 that has
the fixed point property, but is not homeomorphic with a convex compact set.

5. The unit sphere in a finite-dimensional normed space is not a retract of the closed
unit ball.

6. Construct a retraction of the closed unit ball of the space �2 to the unit sphere of
�2.

7. The closed unit ball in the space �2 does not have the fixed point property.

15.1.3 Partitions of Unity and Approximation of Continuous
Mappings by Finite-Dimensional Mappings

Definition 1. Let K be a nonempty subset of the metric space X and Uj ,
j = 1, 2, . . . , n, be open sets such that

⋃n
j=1Uj ⊃ K . A family of continuous func-

tions ϕ j : K → R, j = 1, 2, . . . , n, is called a partition of unity on K subordinate
to the cover {Uj }n1 if

∑n
j=1 ϕ j ≡ 1, ϕ j � 0, and suppϕ j ⊂ Uj for all j .
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Theorem 1. Under the conditions listed above, there exists a partition of unity on
K subordinate to the cover

{
Uj

}n
1 .

Proof. The sets U c
j = X \Uj are closed. If at least one of the U c

j ’s is empty, then
Uj = X ⊃ K and the problem is trivially solved: for this index j , put ϕ j ≡ 1, and for
k �= j put ϕk ≡ 0. Hence, we can assume that all sets U c

j are non-empty. Consider
on K the functions g j (x) = ρ(x,U c

j ). These functions are nonnegative, continuous
(Proposition 1 of Subsection 1.3.2), and have the following property: x ∈ Uj if
and only g j (x) �= 0. Since each point x ∈ K lies in at least one of the sets Uj ,
the function g = ∑n

j=1 g j is different from zero everywhere on K . Now as the
sought-for functions ϕ j one can take ϕ j = g j/g. These functions are continuous (the
denominators do not vanish), non-negative, and satisfy suppϕ j = supp g j = Uj and∑n

j=1 ϕ j = (1/g)
∑n

j=1 g j = 1. �

The next definition generalizes to the nonlinear case the notion of a finite-rank
operator.

Definition 2. A mapping g of the set X into a linear space Y is said to be finite-
dimensional, if dim Lin(g(X)) < ∞.

Theorem 2. Let K be a precompact set in the normed space Y . Then for any ε > 0
there exists a continuous finite-dimensional mapping gε : K → Y with gε(K ) ⊂
conv K such that g approximates on K the unit operator towithin ε: supx∈K ‖gε(x) −
x‖ � ε.

Proof. Pick a finite ε-net y1, y2, . . . , yn in K . Then the open balls Uk = B(yk, ε)
form a cover of the set K . Let ϕ j : K → R, j = 1, 2, . . . , n, be a partition of unity
on K subordinate to the cover

{
Uj

}n
1. Put gε(x) = ∑n

j=1 ϕ j (x)y j . The continuity
of the mapping gε(x) so defined follows from the continuity of all ϕ j . Further,
gε(K ) ⊂ conv K , since the sums

∑n
j=1 ϕ j (x)y j are convex combinations of points

y j ∈ K . It remains to verify that supx∈K ‖gε(x) − x‖ � ε.
Now let x ∈ K be an arbitrary element. Denote by N the set of indices 1 � j � n

for which ϕ j (x) �= 0. By the definition of a partition of unity, for j ∈ N one has the
inclusion x ∈ B(yk, ε), i.e., ‖x − y j‖ < ε. Therefore,

‖gε(x) − x‖ =
∥
∥∥∥

n∑

j=1

ϕ j (x)y j −
n∑

j=1

ϕ j (x) · x
∥
∥∥∥ =

∥
∥∥∥

n∑

j=1

ϕ j (x)(y j − x)

∥
∥∥∥

�
∑

j∈N
ϕ j (x)‖y j − x‖ < ε. �

Theorem 3. Let K be a convex compact set in a normed space Y . Then every
continuous mapping f : K → K can be arbitrarily well uniformly approximated by
finite-dimensional continuous mappings of the set K into itself.
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Proof. Let gε be the function provided by Theorem2. In view of the convexity,
gε(K ) ⊂ K. It is readily seen that the composition gε ◦ f : K → K is a finite-
dimensionalmapping that approximates f towithin ε: supx∈K ‖gε( f (x)) − f (x)‖ �
supy∈K ‖gε(y) − y‖ � ε. �

Exercises

Although Theorem2 talks about the approximation of the unit (hence a linear)
operator, the mapping gε cannot be always taken to be a linear operator (more pre-
cisely, the restriction of a linear operator to K ).

1. If under the assumptions of Theorem2 the space Y has the pointwise approxima-
tion property (Subsection 11.2.2), then for themapping gε one can take the restriction
to K of a linear operator.

2. If for any precompact set K ⊂ Y the function gε figuring in Theorem2 can be
taken to be a continuous linear operator of finite rank, then for such a Y the following
analogue of Theorem2 of Subsection 11.3.2 holds true: for any normed space X and
any compact operator T ∈ L(X,Y ) there exists a sequence of finite-dimensional
operators Tn ∈ L (X,Y ) which converges in norm to T .

15.1.4 The Schauder’s Principle

In this subsection Brouwer’s fixed point theorem will be extended from the finite-
dimensional case to the infinite-dimensional one.

Definition 1. Let X be a metric space. An element x ∈ X is called an ε-fixed point
of the mapping f : X → X if ρ( f (x), x) < ε.

Lemma 1. Let X be a compact metric space. Then for a continuous mapping
f : X → X to have a fixed point it suffices that for every ε > 0 the mapping
f has an ε-fixed point.

Proof. Using the existence of an ε-fixed point for ε = 1
n , n ∈ N, we obtain a

sequence xn ∈ X such that ρ( f (xn), xn) → 0 as n → ∞. With no loss of gen-
erality we may assume that the sequence (xn) converges (otherwise, we replace
(xn) by a subsequence). Denote limn→∞ xn by x . Then f (x) = limn→∞ f (xn) and
ρ( f (x), x) = limn→∞ ρ( f (xn), xn) = 0. That is, f (x) = x , and x is the required
fixed point. �

Lemma 2. Let Y be a normed space, K ⊂ Y a convex compact set, and f : K → K
a continuous finite-dimensional mapping. Then f has a fixed point.
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Proof. Let X = Lin( f (K )), and K̃ = X ∩ K . Then X is afinite-dimensional normed
space, K̃ ⊂ X is a convex compact set, and f (K̃ ) ⊂ f (K ) ⊂ X ∩ K = K̃ . By
Brouwer’s theorem, the mapping f has a fixed point in K̃ . Of course, this fixed
point also lies in K . �

Theorem 1 (Schauder’s principle). Every convex compact set in a normed space
has the fixed point property.

Proof. Let Y be a normed space, K ⊂ Y a convex compact subset, and f : K → K
a continuous mapping. By Lemma 1, it suffices to show that for any ε > 0, f has an
ε-fixed point. Applying Theorem3 of Subsection 15.1.3, we find a finite-dimensional
continuous mapping fε : K → K such that ρ( f (x), fε(x)) < ε for all x ∈ K . By
Lemma 2, fε has a fixed point xε. This fixed point xε is an ε-fixed point for the
mapping f ; indeed, ρ(xε, f (xε)) = ρ( fε(xε), f (xε)) < ε. �

Let us give a reformulation of Schauder’s principle that proves convenient in
applications.

Theorem 2. Let V be a convex, closed, and bounded subset of a Banach space, and
F : V → V a continuous mapping such that F(V ) is precompact. Then F has a
fixed point.

Proof. Let K denote the closure of the convex hull of the set F(V ). By assumption,
K is a convex compact set and F(K ) ⊂ F(V ) ⊂ K , hence F can be regarded as a
mapping of the compact set K into itself. It remains to apply Theorem1. �

Let us mention here that Schauder’s principle (discovered in 1927) is valid for
convex compact sets not only in normed spaces, but also in locally convex topolog-
ical vector spaces (Leray, Schauder, 1934). It was also extended to multi-valued
mappings (Kakutani, 1941, see the textbook by L. Kantorovich and G. Akilov [22,
Chap.16, §5], where applications to mathematical economics are also given).

Exercises

A set V in a linear space X is called a convex cone if it is stable under addi-
tion of elements and multiplication by positive scalars. Let F : X → R be a lin-
ear functional with the property that F(v) > 0 for all v ∈ V \ {0}. Then the set
VF = { v ∈ V : F(v) = 1} is called the base of the cone V .

1. Convex cones and their bases are convex sets.

2. (Abstract version of Theorem2 of Subsection 15.1.2). Suppose V is a convex
cone in the Banach space X which has a compact base, T ∈ L(X), and T (V ) ⊂ V .
Then the operator T has an eigenvector that lies in V .
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3. Suppose V is a closed convex cone in the Banach space X , T : X → X is
a compact operator, and T (V ) ⊂ V . Further, suppose F ∈ X∗ is a functional
such that F(v) > 0 for all v ∈ V \ {0}. Then if the base VF is bounded and
inf{ x∗(T v) : v ∈ VF } > 0, the operator T has an eigenvector that lies in V .

4. Does the cone of all non-negative functions from L1[0, 1] have a bounded closed
base? Does this cone have a compact base?

5. Consider the same questions for the cone of all non-negative functions in L2[0, 1].
6. Consider the integral operator T : L1[0, 1] → L1[0, 1], (T f )(x) = ∫ x

0 f (t)dt ,
which has no eigenfunctions (see Example 1 in Subsection 11.1.5). Doesn’t this
example contradict Exercise 3 if one takes as V the cone of all nonnegative functions
and as F the integration functional over the interval, i.e., F( f ) = ∫ 1

0 f (t)dt?

15.2 Applications to Differential Equations and Operator
Theory

15.2.1 The Picard and Peano Theorems on the Existence
of a Solution to the Cauchy Problem for Differential
Equations

Recall that the Cauchy problem for the differential equation y′ = f (t, y) is the
problem of finding a continuously differentiable function y(t) which is defined in a
neighborhood of the point t0, and which satisfies the equation as well as the initial
condition y(t0) = y0. In the casewhere the function f (t, y) is continuous, theCauchy
problem is equivalent to the integral equation

y(t) = y0 +
t∫

t0

f (s, y(s))ds. (1)

Theorem 1 (Picard’s theorem). Assume the function f : [t0, T ] × [y0 − θ, y0 +
θ ] → [−M, M] is measurable and satisfies the Lipschitz condition in the second
variable with a constant γ > 0 that does not depend on the first variable. Then there
exists a τ > 0 such that on the interval t ∈ [t0, t0 + τ ] equation (1) has a solution,
and this solution is unique. Moreover, for τ one can take any number smaller than
τ0 = min{θ/M, 1/γ, T − t0}.
Proof. Consider the Banach space C[t0, t0 + τ ] and its subset U consisting of all
functions y that satisfy on [t0, t0 + τ ] the condition |y(t) − y0| � θ . Define the map-
ping F : U → C[t0, t0 + τ ] by the rule

(F(y))(t) = y0 +
t∫

t0

f (s, y(s))ds.
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Then the solutions of equation (1) are the fixed points of the mapping F .

Let us verify that F is a contractive mapping of the setU into itself. First, for any
y ∈ U we have that

|(F(y))(t) − y0| =
∣∣∣∣

t∫

t0

f (s, y(s))ds

∣∣∣∣ � Mτ � θ,

i.e., F(y) ∈ U . Consequently, F(U ) ⊂ U . Further, for any y1, y2 ∈ U we have

‖F(y1) − F(y2)‖ = max
t∈[t0,t0+τ ]

∣∣∣
∣

t∫

t0

[ f (s, y1(s)) − f (s, y2(s))] ds

∣∣∣
∣ � γ τ‖y1 − y2‖,

and, by construction, γ τ < 1. Hence, F is a contractive mapping. Finally, the set U
is closed in C[t0, t0 + τ ], and so U is a complete metric space with respect to the
metric under consideration. It follows that Banach’s contractive mapping theorem
applies, which establishes the existence and uniqueness of a fixed point. �

Theorem 2 (Peano’s theorem). Suppose the function f : [t0, T ] × [y0 − θ, y0 +
θ ] → [−M, M] is measurable and is continuous in the second variable, uniformly
in the first variable. In other words, for every ε > 0 there exists a δ = δ(ε) > 0, such
that for any t ∈ [t0, T ] and any points y1, y2 ∈ [y0 − θ, y0 + θ ], if |y1 − y2| � δ,
then | f (t, y1) − f (t, y2)| � ε. Then equation (1) has a solution on the segment
t ∈ [t0, t0 + τ ], where for τ one can take min{θ/M, T − t0}.
Proof. Consider the same setU andmapping F as in the preceding proof. In contrast
to Theorem1, here the existence of a fixed point is deduced not from the contractive
mapping theorem, but from the Schauder’s principle in the formulation of Theorem2
of Subsection 15.1.4. In particular, this is the reason why the theorem asserts the
existence of a solution, but not its uniqueness.

Let us verify that the conditions of Theorem2 of Subsection 15.1.4 are satisfied
in the present case. The set U is a closed ball in the space C[t0, t0 + τ ], of radius θ

and centered at the function identically equal to y0. Hence, U is a convex, closed,
and bounded subset of C[t0, t0 + τ ]. The proof of the inclusion F(U ) ⊂ U given for
Picard’s theorem remains in force. Let us verify that the mapping F is continuous.
For every ε > 0, take the δ(ε) from the condition of uniform continuity in y of
the function f (t, y). Then for any functions y1, y2 ∈ U with ‖y1 − y2‖ < δ(ε/τ) it
holds that | f (s, y1(s)) − f (s, y2(s))| � ε/τ , and so

‖F(y1) − F(y2)‖ = max
t∈[t0,t0+τ ]

∣∣∣∣

t∫

t0

[ f (s, y1(s)) − f (s, y2(s))] ds

∣∣∣∣ � ε.

Finally, let us verify that the set F(U ) is precompact. Since F(U ) ⊂ U andU is a
ball, F(U ) is a bounded set. By Arzelà’s theorem, it remains to show that the family
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of functions F(U ) is equicontinuous. For every function g ∈ F(U ) there exists a
function y ∈ U such that F(y) = g. Therefore, for any t1, t2 ∈ [t0, t0 + τ ] it holds
that

|g(t1) − g(t2)| = |(F(y))(t1) − (F(y))(t1)| =
∣∣∣∣

t2∫

t1

f (s, y(s))ds

∣∣∣∣ � M |t1 − t2|.

Hence, the family F(U ) is not just uniformly continuous, but obeys the Lipschitz
condition with the common constant M .

Therefore, all conditions of Theorem2 of Subsection 15.1.4 are verified, which
establishes the existence of the fixed point. �

Exercises

1. On the example of the Cauchy problem y′ = 2
√|y|, y(0) = 0, convince yourself

that, indeed, the assumptions of Peano’s theorem don’t guarantee the uniqueness of
the solution.

2. Based on Exercise 7 of Subsection 15.1.1, prove that in Picard’s theorem the
solution of the Cauchy problem depends continuously on the initial condition y0.

3. Provide some solvability conditions in C[a, b] for the integral equation y(t) =∫ b
a f (s, t, y(s))ds by following the recipe: If the kernel f is small and nice, then the
equation has a solution in a given ball centered at zero.

15.2.2 The Lomonosov Invariant Subspace Theorem

Recall that a closed subspace Y of the space X is called an invariant subspace for
the operator A ∈ L(X) if A(Y ) ⊂ Y . The subspace Y ⊂ X is called non-trivial if
it is different from zero and from the whole space X . Knowledge of the invariant
subspaces helps one understand the structure of the operator. Thus, for example,
in linear algebra, to construct the Jordan form one exhibits the root subspaces; the
decomposition of the space into a direct sum of invariant subspaces allows one to
reduce the problem of solving the equation Ax = b to equations in the corresponding
subspaces. Very likely, currently the most important unsolved problem in operator
theory is the invariant subspace problem: does every bounded operator in a Hilbert
space have a nontrivial invariant subspace?

A large number of works are devoted to the invariant subspace problem (see, e.g.,
the monograph [2] and the surveys [45, 71]). Examples of continuous operators with
no nontrivial invariant subspaces are known in variousBanach spaces (for example, in
�1). There are also positive results, the first of which was the von Neumann theorem,
asserting that every compact operator in a Hilbert space has a non-trivial invariant
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subspace. Von Neumann’s theorem was proved in the 1930s, but was first published
20 years later by Aronszajn and Smith, who extended the result to the case of Banach
spaces. Below we prove a theorem on the existence of an invariant subspace due to
the former Kharkiv mathematician Victor Lomonosov [68] (Feb 7, 1946 – Mar 29,
2018. From 1990 to his death, V. Lomonosov worked at Kent State University, Ohio).
Lomonosov’s theorem is distinguished by the generality and elegance of both its
formulation and proof.

Remarks

(i) Let G be a subset of X such that A(G) ⊂ G. Then A(LinG) ⊂ LinG.

(ii) Let E be a linear subspace of the space X such that A(E) ⊂ E . Then the closure
of the subspace E is also invariant under A.

(iii) The kernel of an operator and the closure of its image are invariant subspaces.

(iv) For any element x ∈ X \ {0}, the set G = {Anx}∞n=1 satisfies the condition of
Remark (i). Hence, the closure of the linear span of the set G is an invariant
subspace of the operator A.

(v) A more general example. Let M be a subalgebra of the algebra L(X) (i.e., a
subspace that together with any two of its elements also contains their product),
and let x ∈ X \ {0}. Define the orbit of the element x as the set M(x) = {T x :
T ∈ M}. Then the closure of the orbit M(x) is an invariant subspace for every
operator from the subalgebra M .

N.B. Verify this! We will use this example.

Theorem 1 (Lomonosov’s theorem).Let A ∈ L(X) \ {0} be a compact operator in
an infinite-dimensional complex Banach space X. Then all operators that commute
with A have a common nontrivial invariant subspace.

Proof. We will argue by contradiction. Thus, let us assume that there is no such
invariant subspace. Fix an open ball U in the space X such that the closure of
the set A(U ) does not contain zero. Denote the closure of A(U ) by K . Then K
is a compact set and 0 /∈ K . Let M ⊂ L(X) be the subalgebra consisting of all
operators that commute with A. Note that the orbit M(x) of any non-zero element
is dense in X : otherwise, by Remark (v), the closure of the orbit will be a non-trivial
invariant subspace for the operators from M . Hence, for every point s ∈ K one can
find an operator Ts ∈ M such that Ts(s) ∈ U . Then the operator Ts also maps some
neighborhood Vs of the element s into U . As s runs through K , the neighborhoods
Vs form a cover of the compact set K . Hence, we can extract from it a finite subcover,
i.e., there exists a finite subset J ⊂ K such that

⋃
s∈J Vs ⊃ K .

Let ϕs ∈ C(K ), s ∈ J , be a partition of unity subordinate to the cover
⋃

s∈J Vs of
K .2 Now consider the mapping F : K → X defined by the rule

2That is, ϕs � 0,
∑

s∈J ϕs ≡ 1, and the support of the function ϕs lies in the corresponding set Vs ,
see Subsection 15.1.3.
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F(x) = A

(
∑

s∈J

ϕs(x) · Ts(x)
)

.

For each point x ∈ K in the last sum only the terms for which ϕs(x) �= 0 are
different from zero, i.e., only those for which Vs contains the element x . If x ∈ Vs ,
then, by construction, Ts(x) ∈ U , and so F(x) ∈ K . Thus, F(K ) ⊂ K , and we are
under the conditions of Schauder’s principle. Denote the resulting fixed point of the
mapping F by x0. Then x0 will also be a fixed point for the compact operator T ∈ M
defined by

T = A

(
∑

s∈J

ϕs(x0)Ts

)

.

Now consider the eigenspace Y = Ker(T − I ). By the theorem in Subsection
11.1.5, the subspace Y is invariant for the operator A. Thanks to the compactness of
the operator T , the subspace Y is finite-dimensional. Since any operator in a finite-
dimensional space has eigenvalues, the restriction of the operator A to the subspace
Y also has an eigenvalue μ. Denote by E the eigenspace of A corresponding to the
eigenvalueμ. By the same theorem of Subsection 11.1.5, the subspace E is invariant
for all operators that commute with A. �

Corollary 1. If the operator T commutes with at least one compact operator, then
T has a non-trivial invariant subspace.

Exercises

1. Let A ∈ L(X) and let Y be an invariant subspace of the operator A. Define
the operators A1 ∈ L(Y ) and A2 ∈ L(X/Y ) as the restriction and quotient of A,
respectively: A1(y) = A(y) and A1([x]) = [Ax]. Can the operator A be recovered
from the operators A1 and A2? Are the spectra of these operators connected in some
way or another? Does the answer depend on the dimensions of the three subspaces
involved?

Verify that:

2. The shift operator U (a1, a2, . . . ) = (0, a1, a2, . . .) in �2 does not commute with
any compact operator, yet it has non-trivial invariant subspaces.

3. Show that the subset M of the algebra L(X) that was introduced in the proof of
Lomonosov’s theorem is indeed a subalgebra of L(X).

4. The set M is closed in the sense of pointwise convergence of operators. Is it also
closed in norm?

Fill in the omitted details in the proof of Lomonosov’s theorem:
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5. Why is the required choice of the ball U possible?

6. Will F be a linear operator?

7. Why is Schauder’s principle applicable?

8. Where was the infinite-dimensionality of the space used? (In finite-dimensional
spaces the theorem is not true. Counterexample: A = I .)

15.3 Common Fixed Points of a Family of Mappings

15.3.1 Kakutani’s Theorem

Recall that the diameter of a set V in a metric space X is defined as the number
diam(V ) = sup{ρ(x, y) : x, y ∈ V }.
Definition 1. The radius of the set V at the point x ∈ V is the smallest radius rx (V )

of a closed ball centered at x that contains the whole set V . Equivalent definition:
rx (V ) = sup{ρ(x, y) : y ∈ V }. Obviously,

diam(V ) = sup
x∈V

rx (V ). (∗)

The point x ∈ V is called a diametral point (or element) of the set V if rx (V ) =
diam(V ).

Lemma 1. Let V be a convex compact set in the normed space X such that V
consists of more that one point. Then the set V contains a non-diametral point, i.e.,
there exists an x ∈ V for which rx (V ) < diam(V ).

Proof. Fix a positive number ε < diam(V ) and choose in V an ε-net x1, x2, . . . , xn .
For the required non-diametral point x we take the arithmetic mean of the points of
the ε-net: x = 1

n (x1 + x2 + · · · + xn). Consider an arbitrary y ∈ V . Then

‖x − y‖ = 1

n

∥∥∥∥

n∑

k=1

(xk − y)

∥∥∥∥ � 1

n

n∑

k=1

‖xk − y‖.

At least one of the terms in the last sum does not exceed ε, and all the rest are
bounded above by diam(V ). Therefore, ‖x − y‖ � n−1

n diam(V ) + 1
n ε. Taking here

the supremum over y ∈ V , we obtain

rx (V ) � n − 1

n
diam(V ) + 1

n
ε < diam(V ). �

Lemma 2. Let V be a convex compact set in the normed space X such that V consists
ofmore than one point. Then there exists a non-empty convex compact subset V0 ⊂ V ,



422 15 Fixed Point Theorems and Applications

V0 �= V , that is invariant under all bijective isometries of the compact set V into
itself.

Proof. Using the preceding lemma, pick x0 ∈ V with rx0(V ) < diam(V ). Let r0 =
rx0(V ) and take for the required V0 the set of all points x ∈ V for which rx (V ) � r0.
By construction, x0 ∈ V0, so that V0 is not empty. Further, by (∗), V contains a
point for which rx (V ) > r0 (indeed, thanks to the compactness of V , even such that
rx (V ) = diam(V )). Therefore, V0 �= V .

Notice that a point x ∈ V lies in V0 if and only if the distance from x to all
y ∈ V is not larger than r0. That is, V0 can be written as an intersection V0 = V ∩(⋂

y∈V B̄(y, r0)
)
of convex closed sets, hence V0 is itself convex and closed. It

remains to verify the invariance under all bijective isometries T : V → V . Let x ∈ V ;
we need to prove that T (x) ∈ V , that is, that ‖T (x) − y‖ � r0 for all y ∈ V . Indeed,
since T is bijective, the point y has the form y = T (z) for some z ∈ V . Therefore,
‖T (x) − y‖ = ‖T (x) − T (z)‖ = ‖x − y‖ � r0. �
Theorem 1 (Kakutani’s theorem). Let K be a nonempty convex compact subset
of the normed space X. Then all bijective isometries of the compact set K into itself
have a common fixed point.

Proof. Consider the family W of all nonempty convex closed subsets V of the
compact set K with the property that

T (V ) ⊂ V for any bijective isometry T : K → K . (∗∗)

Since T−1 is a bijective isometry of K whenever T is, property (∗∗) means that
T (V ) = V for every bijective isometry of K , i.e., that T is also a bijective isometry
of V . We equip the family W with the decreasing order of sets. We leave it to the
reader to verify that the intersection of any chain of elements of the family W is
again an element of W , i.e., that W is inductively ordered (that the intersection of
the elements of a chain is not empty is guaranteed by the compactness of K ). By
Zorn’s lemma,W contains a minimal element with respect to inclusion, V . It follows
from Lemma 2 that this minimal set V cannot contain more than one point. Hence,
V consists of a single point x0 ∈ K , and the condition (∗∗) means that x0 is a fixed
point for all bijective isometries T : K → K . �

Exercises

1. Let K be a compact metric space. Then every isometric embedding T : K → K
is bijective, that is the word “bijective” in the statements of Lemma2 and Theorem2
can be omitted.

2. Let V be some ball in a normed space. Then (a) the center of V is a common
fixed point for all bijective isometries T : V → V ; (b) there are no other common
fixed points of all bijective isometries T : V → V .
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3. Give an example of a ball in a metric space in which assertion (a) of the preceding
exercise is not true. Do the same for (b). Give an example in which both (a) and (b)
are not true.

By definition, a Banach space X has normal structure if for any convex, closed,
bounded subset V ⊂ X which consists of more than one point there exists a non-
diametral element.

4. Every finite-dimensional Banach space has normal structure.

5. Every Hilbert space has normal structure.

6. The space �1 does not have normal structure.A set all points ofwhich are diametral
is

V = {x = (x1, x2, . . .) ∈ �1 :
∞∑

k=1

xk = 1, xk � 0 ∀k ∈ N}.

7. The space c0 does not have normal structure. Indeed, consider the set V = {x =
(x1, x2, . . .) ∈ c0 : 1 � x1 � x2 � · · ·}.

8. The spaces C[0, 1], L∞[0, 1], and L1[0, 1] do not have normal structure.

15.3.2 Topological Groups

Definition 1. A group G endowed with a Hausdorff topology τ is called a topo-
logical group if the topology is compatible with the group structure in the following
sense:

1) the multiplication operation (x, y) �→ x · y, x, y ∈ G, is jointly continuous in
its variables;

2) the inversion operation x �→ x−1 is continuous.

Examples of topological groups are the normed spaceswith the addition operation,
the unit circle T inCwith the multiplication operation, the set of all unitary matrices
of order n with the multiplication of matrices as operation and equipped with the
metric inherited from the space of operators, the group of invertible elements of any
Banach algebra, and many other groups that arise naturally in problems of analysis.

For groups one can perform operations on subsets, analogous to those introduced
in Subsection 5.1.4 for linear spaces:

A1A2 = {a1a2 : a1 ∈ A1, a2 ∈ A2} and A−1 = { a−1 : a ∈ A}.

We denote by e the unit element of the topological group G, and by Ne the family
of all neighborhoods of e. We leave to the reader the verification of the following
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properties of topological groups. The proof of quite similar results will be given in
Subsection 16.2.1 below under the theme “Topological vector spaces”.

(i) For any x ∈ G, the sets xU with U ∈ Ne form a neighborhood basis of the
element x .

(ii) The family of sets U · x with U ∈ Ne enjoys the same property.

(iii) For any neighborhood W ∈ Ne there exists a neighborhood U ∈ Ne such that
U ·U ⊂ W .

(iv) For any neighborhood W ∈ Ne there exists a neighborhood U ∈ Ne such that
U−1 ⊂ W .

(v) For any neighborhood W ∈ Ne there exists a neighborhood U ∈ Ne such that
U ·U−1 ⊂ W , U−1U ⊂ W , and U ·U ⊂ W .

Properties (i) and (ii) mean that the degree of closeness of the elements of the
group can be “measured” bymeans of neighborhoods of the unit element. IfU ∈ Ne,
then the condition x−1y ∈ U can be treated as saying that “x approximates y towithin
U”.

Definition 2. Let G be a topological group and Z a metric space. A mapping
f : G → Z is said to be uniformly continuous if for every ε > 0 there exists a
neighborhood U ∈ Ne such that the images of any U -close points x, y ∈ G are
close to within ε: x−1y ∈ U =⇒ ρ( f (x), f (y)) < ε.

Theorem 1. Let G be a compact topological group and Z a metric space. Then any
continuous mapping f : G → Z is uniformly continuous.

Proof. Fix ε > 0. Using the continuity of the mapping f , pick for each x ∈ G a
neighborhood Wx ∈ Ne such that for every y ∈ G satisfying y ∈ xWx it holds that
ρ( f (x), f (y)) < ε/2. Further, by property (iii) of topological groups, for any x ∈ G
one can choose an open neighborhood Ux ∈ Ne such that UxUx ⊂ Wx . Since the
sets xUx , x ∈ G, form an open cover of the compact set G, one can extract from
it a finite subcover. That is, there exists a finite set A ⊂ X such that

⋃
x∈A xUx ⊃

G. Set U = ⋂
x∈A Ux . Let us verify that U is the neighborhood required in the

definition of uniform continuity. Let x, y ∈ G and x−1y ∈ U . Pick an x0 ∈ A such
that x ∈ x0Ux0 . In particular, x ∈ x0Wx0 , i.e., ρ( f (x), f (x0)) < ε/2. Further, y ∈
xU ⊂ x0Ux0Ux0 ⊂ x0Wx0 , i.e.,ρ( f (y), f (x0)) < ε/2, and by the triangle inequality,
ρ( f (y), f (x)) < ε. �

We leave it to the reader to verify that the following analogue of Arzelà’s theorem
(Subsection 1.4.2) holds.

Theorem 2. Let G be a compact topological group. In order for the familyF of con-
tinuous scalar-valued functions on G to be precompact in C(G), it is necessary and
sufficient that (a) F is uniformly bounded, and (b) F obeys the following equiconti-
nuity condition: for any ε > 0 there exists a neighborhood U ∈ Ne such that for any
function f ∈ F and any two points x, y ∈ G, if x−1y ∈ U, then ρ( f (x), f (y)) < ε.

�
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15.3.3 Haar Measure

Definition 1. AHaarmeasure on the topological groupG is a nonzero regular Borel
measure μ on G that is invariant under translations and symmetry (inversion), i.e.,
μ(sΔ) = μ(Δs) = μ(Δ−1) = μ(Δ) for any Borel subset Δ ⊂ G and any s ∈ G.
A nonzero regular Borel measure on G that is invariant under left (resp., right)
translations is called a left (resp., right) Haar measure.

From this point on till the end of this subsection, G will be a compact topological
group. Our main goal is to establish the existence of a Haar measure on such a group.
The proof relies on Kakutani’s theorem.

Let us consider the Banach spaceC(G) of continuous real-valued functions onG,
equipped, as usual with the max-norm. For each s ∈ G we define the left and right
translations operators Ls, Rs : C(G) → C(G) by the rules (Ls f )(x) = f (sx) and
(Rs f )(x) = f (xs). We also introduce the symmetry operator  : C(G) → C(G)

by the formula ( f )(x) = f (x−1).

Lemma 1. The translation operators have the following obvious properties:

I. Le = I , Ls Lt = Lts; in particular, (Ls)
−1 = Ls−1 .

II. Re = I , Rs Rt = Rst ; in particular, (Rs)
−1 = Rs−1 .

III. Ls Rt = Rt Ls.

IV. The operators Ls, Rs and  are bijective isometries of the space C(G).

V. Ls−1 = Rs. �

Further, for any function f ∈ C(G) we introduce the sets cL( f ) and cR( f ) as the
closures of the convex hulls of all left, respectively right, translates of f :

cL( f ) = conv{Ls f : s ∈ G} and cR( f ) = conv{Rs f : s ∈ G}.

Finally, we use the symbol 1 to denote the function 1G identically equal to 1 on G.

Lemma 2. Let G be a compact topological group. Then

A. For every function f ∈ C(G) the set cL( f ) is compact in C(G).

B. The set cL( f ) is invariant under all left translation operators, and these operators
act bijectively on cL( f ).

C. If g ∈ cL( f ), then cL(g) ⊂ cL( f ).

D. For every function f ∈ C(G) there exists a scalar a such that a · 1 ∈ cL( f ).

The set cR( f ) enjoys analogous properties:

A’. For every function f ∈ C(G) the set cR( f ) is compact in C(G).

B’. The set cR( f ) is invariant under all right translation operators, and these oper-
ators act bijectively on cR( f ).
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C’. If g ∈ cR( f ), then cR(g) ⊂ cR( f ).

D’. For every function f ∈ C(G) there exists a scalar b such that b · 1 ∈ cR( f ).

Proof. A. In order to prove compactness of cL( f ) we need to establish the
precompactness of the set conv{Ls f : s ∈ G}. Consider the family of functions
H := {Ls f : s ∈ G} as a subset of the normed space C(G). Since translations are
isometries, all elements Ls f with s ∈ G have the same norm, equal to ‖ f ‖. This
establishes the boundedness of the set H .

Using the uniform continuity of the function f (Theorem1 of the preceding sub-
section), given any ε > 0 we choose a neighborhoodU ∈ 1e such that for any x, y ∈
G with x−1y ∈ U we have the estimate | f (x) − f (y)| � ε. Since for any s ∈ G the
elements sx and sy are also close (indeed, (sx)−1(sy) = x−1s−1sy = x−1y ∈ U ), the
last estimate also holds for the function Ls f : |(Ls f )(x) − (Ls f )(y)| = | f (sx) −
f (sy)| � ε. This establishes the equicontinuity of the family H , and by Theorem2
of the preceding subsection, the precompactness of H . Since the operation of tak-
ing the convex hull preserves precompactness (Theorem3 of Subsection 11.2.1), the
precompactness of convH and, consequently, the compactness of cL( f ), are estab-
lished.

B. The family H = {Ls f : s ∈ G} is invariant under the left translation operator
Lt : Lt H = {Lt Ls f : s ∈ G} = {Lst f : s ∈ G} ⊂ H . In view of the linearity and
continuity of the operator Lt , taking the convex hull and the closure does not spoil
the invariance. The bijectivity of Lt on the set cL( f ) follows from the existence of
the inverse operator Lt−1 , which also leaves cL( f ) invariant.

C. If g ∈ cL( f ), then according to item B, Lsg ∈ cL( f ) for any s ∈ G. That is,
{Lsg : s ∈ G} ⊂ cL( f ). It remains to use the fact that the set cL( f ) is convex and
closed.

D. Applying Kakutani’s theorem of Subsection 15.3.1 to the convex compact set
cL( f ), we see that there exists an element g ∈ cL( f ) that is fixed under all isometries
of the compact set cL( f ). In particular, g is a fixed point of all left translation
operators. Defining a = g(e), we claim that a · 1 = g, i.e., that g is the sought-for
identically constant function belonging to cL( f ). Indeed, for any s ∈ G we have
g(s) = (Lsg)(e) = g(e) = a.

The properties A′ – D′ of the set cR( f ) can be proved in much the same
manner, or by reducing them to the properties A–D by means of the relation
cR( f ) = (cL( f )). �

Let us strengthen the assertions D and D′ of the last lemma.

Lemma 3. For any function f ∈ C(G) there exists only one scalar a for which
a · 1 ∈ cL( f ), and only one scalar b for which b · 1 ∈ cR( f ); moreover, a = b.

Proof. Let us denote the set of all scalars a (respectively, b) for which a · 1 ∈ cL( f )
(respectively, b · 1 ∈ cR( f )) by A f (respectively, B f ). We will prove that a = b for
all a ∈ A f and all b ∈ B f . This will establish that A f = B f and both these sets
consist of a single point.
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To this end we fix an ε > 0 and pick convex combinations of translates of the
function f which approximate a · 1 and b · 1 to within ε:

∥∥∥
∥a · 1 −

n∑

k=1

λk Lsk f

∥∥∥
∥ < ε (1)

and ∥∥∥∥b · 1 −
m∑

j=1

μ j Rt j f

∥∥∥∥ < ε. (2)

Applying the operator μ j Rt j to the function a · 1 − ∑n
k=1 λk Lsk f , summing the

result over j , and taking into account that Rt j1 = 1, μ j � 0, and
∑m

j=1 μ j = 1, we
deduce from (1) that

∥∥∥∥a · 1 −
n∑

k=1

m∑

j=1

λkμ j Rt j Lsk f

∥∥∥∥ < ε.

Similarly, (2) implies that

∥∥∥∥b · 1 −
n∑

k=1

m∑

j=1

λkμ j Rt j Lsk f

∥∥∥∥ < ε

(don’t forget that the left and right translations operators commute!). Therefore,
‖a · 1 − b · 1‖ < 2ε, which in view of the arbitrariness of ε means that a = b, as
we needed to show. �

Theorem 1 (A.Haar 1933, J. vonNeumann, 1934).Onevery compact topological
group G there exists a unique Borel probability measure μ which is a left Haar
measure. This measure is simultaneously a Haar measure on G.

Proof. By the theorem on the general form of an elementary integral (Subsection
8.3.2.), there exists a bijective correspondence between regular Borel measures on G
and elementary integrals. Let us reformulate the problem of searching for a left Haar
measure in terms of an elementary integral. Specifically, we need to find a linear
functional I on C(G), called a left-invariant mean, such that

(i) if f � 0, then I( f ) � 0.
(ii) I(1) = 1.
(iii) I(Ls f ) = I( f ) for all s ∈ G and all functions f ∈ C(G).

We have already encountered such a functional in Subsection 5.5.1, where we
established its existence for a commutative (semi)group G; in fact, the functional
was defined not only on C(G), but also on �∞(G). Here this earlier result does not
work: the group can be non-commutative, and moreover, we need not only existence,
but also uniqueness.
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We begin with the uniqueness. Suppose that a functional with the requisite prop-
erties exists. Then for any function f ∈ C(G) and any g ∈ cL( f ) we have, in
view of (iii), that I(g) = I( f ). Hence, I( f ) is equal to that constant a for which
a · 1 ∈ cL( f ). This argument not only proves the uniqueness of the functional I, but
also suggests how to construct it.

So, let us establish the existence of the required functional. For each f ∈ C(G)we
choose the number I( f ) such that I( f ) · 1 ∈ cL( f ). By the preceding two lemmas,
such a choice is indeed possible and is unique.

Let f � 0. Then cL( f ) consists only of non-negative functions. In particular,
I( f ) · 1 � 0, and so I( f ) � 0. This proves condition (i) in the definition of a
left-invariant mean. Further, 1 ∈ cL(1), i.e., I(1) = 1, which proves condition (ii).
Finally, from item C of Lemma2 and the uniqueness of the choice of I( f ) it follows
that I(g) = I( f ) for all g ∈ cL( f ). In particular, this ensures that condition (iii) in
the definition of a left-invariant mean is satisfied.

Now let us prove the linearity of the functional I. The homogeneity is obvious, so
let us prove the additivity. Let f, g ∈ C(G). By construction, there exists a convex
combination of left translates of the function f which approximates I( f ) · 1 to
within ε: ∥∥∥∥I( f ) · 1 −

n∑

k=1

λk Lsk f

∥∥∥∥ < ε. (3)

Consider the auxiliary function g̃ = ∑n
k=1 λk Lsk g. Since g̃ ∈ cL(g), we have I(g̃) =

I(g). Therefore, there exists a function of the form
∑m

j=1 μ j Lt j g̃, i.e., a convex
combination of left translates of the function g̃, which approximates I(g) · 1:

∥
∥∥∥I(g) · 1 −

n∑

k=1

m∑

j=1

λkμ j Lt j Lsk g

∥
∥∥∥ < ε. (4)

But from (3) one can readily deduce, as we did above in the proof of Lemma3, that

∥
∥∥∥I( f ) · 1 −

n∑

k=1

m∑

j=1

λkμ j Lt j Lsk f

∥
∥∥∥ < ε. (5)

Combining (4) and (5), we get

∥∥∥∥(I( f ) + I(g)) · 1 −
n∑

k=1

m∑

j=1

λkμ j Lt j sk ( f + g)

∥∥∥∥ < 2ε.

Since
∑n

k=1

∑m
j=1 λkμ j Lt j sk ( f + g) is a convex combination of translates of the

function f + g, and in view of the arbitrariness of ε, the last condition means that
(I( f ) + I(g)) · 1 ∈ cL( f + g), i.e., I( f + g) = I( f ) + I(g).
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Thus, we established the existence and uniqueness of a left-invariant mean, and
hence the existence and uniqueness of a left Haar measure. Now we observe that, by
Lemma3, for any f ∈ C(G) the function I( f ) · 1 lies not only in cL( f ), but also in
cR( f ). Therefore, I(Rt f ) · 1 ∈ cR(Rt f ) ⊂ cR( f ). By the same Lemma3, in cR( f )
there is only one function of the form a · 1. Hence, I(Rt f ) = I( f ). This completes
the proof of the right-invariance of the mean and of the measure it generates. Finally,
the functional Ĩ( f ) = I( f ) is also a left-invariant mean, so that in view of the
uniqueness of the left-invariant mean, I( f ) = I( f ). This implies the invariance
of the Haar measure under the symmetry mapping s �→ s−1. �

Remark 1. The left and right Haar measures exist not only on compact, but also on
locally compact groups (see [19, Chap.4]), but in the latter case the left and right Haar
measures may not coincide, or even may not be finite measures, and the existence
proof is more complicated than in the compact case.

Exercises

1. In the proof of the last theorem we treated as obvious the following fact: let
u : G → G be a homeomorphismof the compact spaceG, and letU : C(G) → C(G)

be the composition operator acting by the rule (U f )(s) = f (u(s)). Suppose the
elementary integral I is invariant underU , that is, I(U f ) = I( f ) for all f ∈ C(G).
Then the measureμI generated by the integral I is u-invariant:μI(u(Δ)) = μI(Δ)

for any Borel set Δ ⊂ G. Prove this fact using the change of variable formula for
the Lebesgue integral (Exercise 9 of Subsection 7.2.7) and the bijectivity of the
correspondence I �→ μI between the set of all elementary integrals and the set of
all regular Borel measures on the compact space G.

2. Let G be a finite group. What is its Haar measure?

3. Let G be the unit circle T ⊂ C with the operation of multiplication of complex
numbers. What is the Haar measure in this case?

4. Let K be a compact metric space. Then any isometric mapping u : K → K is
bijective.

5. Let K be a compact metric space. Denote by �(K ) the set of all isometries
u : K → K , equipped with the operation of composition. Prove that with respect to
the uniform metric Θ(K ) is a compact topological group.

6. Let K be a compact metric space with the following properties: for any two points
x, y ∈ K there exists an isometry u : K → K that maps x into y. Then on K there
exists a unique regular Borel measure ν that is invariant under all isometries of K .
For any point x0 ∈ K , this measure is connected with the Haar measure μ on �(K )

by the relation ν(A) = μ{u ∈ �(K ) : u(x0) ∈ A}.
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7. Let S2 be the unit sphere in the three-dimensional Euclidean space, λ the standard
Lebesgue measure on S2, and A a measurable set with λ(A) < λ(S2)/n. Then for
any collection x1, . . . , xn ∈ S2 of n points one can find an isometry u : S2 → S2 with
the property that none of the points x1, . . . , xn will lie in u(A).

Comments on the Exercises

Subsection 15.1.1

Exercise 7. The existence and uniqueness of the solution follow from Banach’s
theorem. The continuity can be deduced from the same theorem by means of the fol-
lowing device. Consider the space C(K , X) of continuous X -valued functions on K
with the uniform metric. Define the contractive mapping G : C(K , X) → C(K , X)

by the formula [G( f )](t) = F(t, f (t)). The fixed point f of this mapping will be a
continuous function satisfying the condition F(t, f (t)) = f (t).

Exercise 8. Reduce to the preceding exercise by taking K = [a, b], X = R, and

F(t, x) = x − 2

m + M
�(t, x).

Subsection 15.1.2

Exercises 5 and 7. Let P : BX → SX be a retraction. Then the mapping Q = −P
has no fixed points.

Exercise6. It ismore convenient to construct the requested retraction in L2[0,+∞)

instead of �2. The problems are equivalent because these two Hilbert spaces
are isometric. For every f in the unit ball of L2[0,+∞) define f̃ (t) = 0 for
t ∈ [0, 1 − ‖ f ‖) and f̃ (t) = f (t − 1 + ‖ f ‖) for t � 1 − ‖ f ‖. The mapping f �→√
1 + ‖ f ‖ · 1[0,1−‖ f ‖) + f̃ will be the requested retraction.

Subsection 15.1.4

Exercises 4 and 5. The functional F from Exercise 6 generates a bounded closed
base in the case L1[0, 1]. In the case L2[0, 1], this cone has no bounded closed base.
The lack of existence of a compact base follows indirectly from Exercises 2 and 6.

Subsection 15.3.1

Exercise1.AssumeT (K ) �=K . Take an x0 ∈ K \ T (K ) and consider the sequence
(xk) of iterations: xk+1 = T (xk). Since for k � 1 all xk belong to T (K ), and T (K )

is compact, there is an ε > 0 such that all the distances ρ(x0, xk) > ε, k = 1, 2, . . ..
Then ρ(xn, xn+k) = ρ(T n(x0), T n(xk)) = ρ(x0, xk) > ε for all n, k ∈ N, so the
sequence (xk) does not contain convergent subsequences.



Chapter 16
Topological Vector Spaces

16.1 Supplementary Material from Topology

We have already encountered a very general type of convergence — convergence
along a directed set. We now turn to yet another type, convergence along a filter, and
apply this new technique to the study of compact topological spaces. Throughout this
chapter we will have to frequently deal, within one and the same argument, with sets
as well as some families of subsets. To make it easier to distinguish these objects,
we will denote sets by upper case Roman italic letters A, B, X, Y , and so on, and
use for families Gothic letters A, C, D, F. Of course, the difference here is rather
conventional, since any family of sets is itself a set.

16.1.1 Filters and Filter Bases

Definition 1. A family F of subsets of a set X is called a filter on X if it satisfies the
following axioms:

(i) F is not empty;

(ii) ∅ /∈ F;

(iii) if A, B ∈ F, then A ∩ B ∈ F;

(iv) if A ∈ F and A ⊂ B ⊂ X , then B ∈ F.
Let us note several consequences of the filter axioms:

(v) X ∈ F (follows from (i) and (iv));

(vi) in view of (iii), the intersection of any finite number of elements of a filter is
again an element of that filter; from (ii) we deduce that

(vii) the intersection of any finite number of elements of a filter is not empty.
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An example of a filter is provided by the family Nx of all neighborhoods of a
point x in a topological space X .

Definition 2. A non-empty family D of subsets of a set X is called a filter basis
(also base in the literature) if

(a) ∅ /∈ D, and

(b) for any sets A, B ∈ D there exists a set C ∈ D such that C ⊂ A ∩ B.

Let D be a filter basis. The filter generated by the basis D is the family F of all
sets A ⊂ X such that A contains as a subset at least one element of D.

We leave to the reader to verify that this definition is correct, i.e., that what we
call the filter F generated by the basis D is indeed a filter.

If X is a topological space and x0 ∈ X , and as a basis D we take the family of
all open sets that contain x0, then the filter generated by the basisD is precisely the
filter Nx0 of all neighborhoods of the point x0.

Let us give one more example. Let (xn)∞n=1 be a sequence of elements of the set
X . Then the familyD(xn) of “tails” of the sequence (xn) (i.e., the family of sets of the
form {xn}∞n=N , N ∈ N) is a filter basis. The filter F(xn) generated by the basis D(xn)

is called the filter associated with the sequence (xn).

Theorem 1. Let X, Y be sets, f : X → Y a mapping, and D a filter basis in X.
Then the family f (D) of all images f (A) with A ∈ D is a filter basis in Y .

Proof. Axiom (a) in the definition of a filter basis is obvious. Further, let f (A) and
f (B) be arbitrary elements of f (D), A, B ∈ D. By axiom (b), there exists a C ∈ D,
such that C ⊂ A ∩ B. Then f (C) ⊂ f (A) ∩ f (B), which proves (b) for f (D). �

In particular, if F is a filter on X , then f (F) is a filter basis in Y .

Definition 3. The image of the filter F under the mapping f is the filter f [F] gen-
erated by the filter basis f (F). Equivalently, A ∈ f [F] if and only if f −1(A) ∈ F.

Recall (see Subsection1.2.3) that a family of sets C is said to be centered if the
intersection of any finite collection of members of C is not empty.

Theorem 2. Let C ⊂ 2X be a non-empty family of sets. For the existence of a filter
F such that F ⊃ C (i.e., such that all elements of C are also elements of the filter F)
it is necessary and sufficient that C be a centered family.

Proof. If F is a filter and F ⊃ C, then any finite collection A1, . . . , An of elements of
the family C will consist of elements of the filter F. Hence (property (vii) of filters),⋂n

k=1 Ak 	= ∅. Necessity is thus proved. Conversely, suppose C is a centered family.
Then the familyD of all sets of the form

⋂n
k=1 Ak , where n ∈ N and A1, . . . , An ∈ C,

is a filter basis. Now for F one needs to take the filter generated by the basis D. �
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Definition 4. Let F be a filter on X . A family D of subsets is said to be a basis of
the filter F if D is a filter basis and the filter generated by D coincides with F.

Theorem 3. For the familyD to be a basis of the filterF, it is necessary and sufficient
that the following two conditions be satisfied:

— D ⊂ F;

— for any A ∈ F there exists a B ∈ D such that B ⊂ A.

Definition 5. Let F be a filter on X and A ⊂ X . The trace of the filter F on A is the
family of subsets FA = {A ∩ B : B ∈ F}.
Theorem 4. For the family FA to be a filter on A, it is necessary and sufficient that
all intersections A ∩ B with B ∈ F are non-empty. In particular, FA will be a filter
whenever A ∈ F.

Exercises

1. Prove Theorems3 and 4.

Below we give examples of filters and filter bases. Many of these examples will
be used in the sequel. The reader is invited to verify the corresponding axioms.

2. The Fréchet filter on N: the elements of this filter are the complements of the
finite sets of natural numbers. A basis of the Fréchet filter is provided by the sets
A1 = {1, 2, 3, . . .}, A2 = {2, 3, 4, . . .}, . . . , An = {n, n + 1, n + 2, . . .}, . . ..
3. The neighborhood filter of infinity in a normed space X : the set A ⊂ X lies in
this filter if the set X \ A is bounded.

4. The filter N0
x of deleted (or punctured) neighborhoods of a given point x in a

topolgical space X : a basis of this filter consists of the sets of the formU \ {x}, where
U is a neighborhood of x . For this definition to be correct, it is necessary that the
point x is not isolated.

5. The neighborhood filters of the point +∞ in R: a basis of the filter consists of
the intervals (a,+∞) with a ∈ R.

6. The filter of deleted neighborhoods of the “point” a + 0 inR: a basis of this filter
consists of the sets (a, b) with b ∈ (a,+∞).

7. The statistical filter Fs on N: A ∈ Fs if limn→∞ |A ∩ {1, 2, . . . , n}|/n = 1. Here
|B| denotes the cardinality of the set B.
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8. Let (G,
) be a directed set. The section filter on G is the filter F
, a basis of
which consists of all sets of the form {x ∈ G : x 
 a} with a ∈ G.

Prove that

9. The set of all filters on N is not countable. In fact, the cardinality of this set is
bigger than the cardinality of the continuum.

10. The filters in Execises 3, 5, and 6 have countable bases.

11. The statistical filter (Exercise7) does not have a countable basis.

12. Let (xn)∞n=1 be a sequence in X , and let the function f : N → X act by the rule
f (n) = xn . Then the image of the Fréchet filter from Exercise2 under f is the filter
F(xn) associated with the sequence (xn).

16.1.2 Limits, Limit Points, and Comparison of Filters

Definition 1. Suppose given two filters F1 and F2 on the topological space X . We
say that F1 majorizes F2 if F1 ⊃ F2; in other words, if every element of the filter F2

is also an element of the filter F1.

Example 1. Let (xn)n∈N be a sequence in X , and (xnk )k∈N be a subsequence of
(xn)n∈N. Then the filter F(xnk )

associated with the subsequence majorizes the filter
F(xn) associated with the sequence itself. Indeed, let A ∈ F(xn). Then there exists an
N ∈ N such that {xn}∞n=N ⊂ A. But then also {xnk }∞k=N ⊂ A, that is, A ∈ F(xnk )

.

Definition 2. Let X be a topological space, and F a filter on X . The point x ∈ X is
called the limit of the filter F (denoted x = lim F) if F majorizes the neighborhood
filter of the point x . In other words, x = lim F if every neighborhood of the point x
belongs to the filter F.

The point x ∈ X is said to be a limit point of the filter F if every neighborhood
of x intersects all elements of the filter F. The set of all limit points of the filter F is
denoted by LIM(F).

Example 2. Let (xn)n∈N be a sequence in the topological space X . Then lim F(xn) =
limn→∞ xn , and LIM(F(xn)) coincides with the set of limit points of the sequence
(xn)n∈N.

Theorem 1. Let F be a filter on the topological space X, and D be a basis for the
filter F. Then

(a) x = lim F if and only if for any neighborhood U of the point x there exists an
element A ∈ D such that A ⊂ U.
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(b) If x = lim F, then x is a limit point of the filter F. If, in addition, X is a Hausdorff
space, then the filter F has no other limit points. In particular, if a filter in a
Hausdorff space has a limit, then this limit is unique.

(c) The set LIM(F) coincides with the intersection of the closures of all elements of
the filter F.

Proof. (a) By definition, x = lim F if any neighborhoodU of the point x belongs to
the filter F. In its turn, U ∈ F if and only if U contains some set A ∈ D.

(b) Let x = lim F, and let U be a neighborhood of x . Then U ∈ F, hence any set
A ∈ F intersects U . That is, x ∈ LIM(F).

Further, let x = lim F, y ∈ LIM(F), and let U and V be arbitrary neighborhoods
of the points x and y, respectively. Then U ∈ F, and since any neighborhood of
a limit point intersects all elements of the filter F, U ∩ V 	= ∅. Since the space is
Hausdorff, this is possible only if x = y.

(c) By definition, x ∈ LIM(F) if and only if every element A ∈ F intersects all
neighborhoods of the point x . This is equivalent to x belonging to the closure of
every element A ∈ F. �

Theorem 2. Suppose F1, F2 are filters in the topological space X, and F1 ⊂ F2.
Then:

(i) if x = lim F1, then x = lim F2;

(ii) if x ∈ LIM(F2), then x ∈ LIM(F1). In particular,

(iii) if x = lim F2, then x ∈ LIM(F1).

Proof. (i) F1 majorizes the neighborhood filter Nx of the point x and F1 ⊂ F2,
therefore Nx ⊂ F2.

(ii) Since as the collection of sets increases their intersection decreases, we have
LIM(F2) = ⋂

A∈F2
A ⊂ ⋂

A∈F1
A = LIM(F1). �

Definition 3. Let X be a set, Y a topological space, and F a filter in X . The point y ∈
Y is called the limit of the mapping f : X → Y with respect to the filter F (denoted
y = lim

F
f ), if x = lim f [F]. In other words, y = lim

F
f if for any neighborhood U

of the point y there exists an element A ∈ F such that f (A) ⊂ U .
The point y ∈ Y is called a limit point of the mapping f : X → Y with respect to

the filter F if y ∈ LIM( f [F]), i.e., if any neighborhood of the point y intersects the
images of all elements of the filter F under f .

Example 3. Let X be a topological space, f : N → X , and F be the Fréchet filter
on N (see Exercise2 in Subsection16.1.1). Then lim

F
f = lim

n→∞ f (n).

Theorem 3. Let X,Y be topological spaces, F a filter in X, x = lim F, and f :
X → Y a continuous mapping. Then f (x) = lim

F
f .
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Proof. Let U be an arbitrary neighborhood of the point f (x). Then there exists a
neighborhood V of the point x such that f (V ) ⊂ U . The condition x = lim Fmeans
that V ∈ F. That is, for any neighborhood U of the point f (x) we have found the
required element V ∈ F for which f (V ) ⊂ U . �

Exercises

To avoid complicating the formulations connected with the possible non-uniqueness
of the limit, in the exercises below all the topological spaces are assumed to be
Hausdorff.

1. Let (G,
) be a directed set, X a topological space, f : G → X a mapping, and
F
 the section filter onG (see Exercise8 in Subsection16.1.1). Then lim

F

f = lim

(G,
)
f .

Thus, the limit with respect to a directed set is a particular case of a limit with respect
to a filter.

2. Suppose the subspace A of the topological space X intersects all the elements
of the filter F. Let FA = {A ∩ B : B ∈ F} be the trace of the filter F on A. Then
LIM(FA) ⊂ LIM(F).

3. Let A ∈ F. Then the existence of lim FA in the topology induced on A implies
the existence of lim F and lim FA = lim F.

4. Let lim F = a ∈ A. Then lim FA = a.

5. Let X and Y be topological spaces, andNx be the neighborhood filter of the point
x ∈ X . A mapping f : X → Y is continuous at the point x if and only if the limit
lim
Nx

f exists. If this limit exists, then it is equal to f (x).

6. Let X and Y be topological spaces, andN0
x be the filter of deleted neighborhoods

of the point x ∈ X (see Exercise4 in Subsection16.1.1), and suppose x is not an
isolated point. Then the continuity of the mapping f : X → Y at the point x is
equivalent to the condition lim

N0
x

f = f (x).

7. In the topological space X , consider the filter F consisting of all sets that contain
a fixed set A ⊂ X . Then LIM(F) coincides with the closure of the set A.

8. Based on Exercises5 and 6 of Subsection16.1.1, write for a function f of a real
variable the expressions lim

x→+∞ f (x) and lim
x→a+0

f (x) as the limits of the function

with respect to appropriately chosen filters on R.

9. For a function f of a real variable, write the expressions lim
x→∞ f (x), lim

x→a
f (x),

lim
x→a−0

f (x), and lim
x→−∞ f (x) as limits with respect to a filter.
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10. Let F be a filter on the set X . A sequence xn ∈ X is said to be cofinal for the
filter F if F{xn} ⊃ F. If the filter F has a countable basis, then there exists a cofinal
sequence for F.

11. For the statistical filterFs (Exercise7 in Subsection16.1.1) there exists no cofinal
sequence.

12. On the interval [0, 1] consider the filter consisting of all the sets with finite
complement. This filter does not have a countable basis, yet it possesses a cofinal
sequence. (More precisely, any sequence xn ∈ [0, 1] of pairwise distinct numbers is
cofinal for this filter.)

13. Let X be a set, Y a topological space, f : X → Y a mapping, and y = lim
F

f .

If the sequence xn ∈ X is cofinal for the filter F, then f (xn) → y as n → ∞. In
particular, if the filter F on the set X has a countable basis, then there exists a
sequence xn ∈ X such that f (xn) → y as n → ∞.

14. If the filter F on the set X does not possess a cofinal sequence, then there exist
a topological space Y and a mapping f : X → Y , which has a limit y with respect
to F, such that no sequence of the form ( f (xn)), with xn ∈ X , converges to y.

16.1.3 Ultrafilters. Compactness Criteria

In the preceding subsection, we introduced the order relation ⊃ on the family of
filters given on a set X . The next lemma justifies the application of Zorn’s lemma to
the family of filters.

Lemma 1. LetM be a linearly ordered non-empty family of filters given on the set
X, i.e., for any F1,F2 ∈ M, either F1 ⊃ F2, or F2 ⊃ F1. Then the union F of all
filters in the family M is again a filter on X.

Proof. We need to verify that the family of sets F satisfies the filter axioms. The
axioms (i) and (ii) are obvious here, so let us establish that the remaining two are
satisfied.

(iii) Let A, B ∈ F. Then there exist filters F1,F2 ∈ M, such that A ∈ F1 and
B ∈ F2. By hypothesis, one of the filters F1, F2 majorizes the other. Suppose, for
instance, that F2 ⊃ F1. Then both sets A, B lie inF2, and sinceF2 is a filter, it follows
that A ∩ B ∈ F2 ⊂ F.

(iv) Let A ∈ F and A ⊂ B ⊂ X . Then there exists a filter F1 ∈ M such that A ∈
F1. Since F1 is a filter, also B ∈ F1 ⊂ F. �

Definition 1. An ultrafilter on X is a filter on X that is maximal with respect to
inclusion. In detail, the filter A on X is called an ultrafilter if any filter F on X that
majorizes A necessarily coincides with A.
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Zorn’s lemma yields the following existence theorem.

Theorem 1. For any filter F on X there exists an ultrafilter that majorizes it. �

Lemma 2. Suppose A is an ultrafilter, A ⊂ X, and all elements of A intersect A.
Then A ∈ A.

Proof. It is readily seen that when one adds to the family of setsA the set A as a new
element one obtains a centered family of sets. By Theorem2 in Subsection16.1.1,
there exists a filter F which contains all elements of this centered family. We have
that F ⊃ A, andA is an ultrafilter, that is, F = A. On the other hand, by construction,
A ∈ F. Hence, A ∈ A. �

Theorem 2 (ultrafilter criterion). For the filter A on X to be an ultrafilter it is
necessary and sufficient that for any set A ⊂ X, either A itself or X \ A belongs to
A.

Proof. Necessity. Suppose A is an ultrafilter and X \ A /∈ A. Then no set B ∈ A
is entirely contained in X \ A, i.e., every B ∈ A intersects A. Hence, by Lemma2,
A ∈ A.

Sufficiency. Suppose that A is not an ultrafilter. Then there exist a filter F ⊃ A
and a set A ∈ F \ A. By construction, A /∈ A. On the other hand, X \ A does not
intersect A, A ∈ F, and consequently X \ A cannot belong to the filter F, and the
more so not to the filter A, which is smaller than F. �

Corollary 1. The image of any ultrafilter is an ultrafilter.

Proof. Let f : X → Y and let A be an ultrafilter on X . Consider an arbitrary set
A ⊂ Y . Then either f −1(A), or f −1(Y \ A) = X \ f −1(A) belongs to A. It follows
that either A or Y \ A belongs to f [A]. �

Lemma 3. Let A be an ultrafilter on the Hausdorff topological space X and x ∈
LIM(A). Then x = limA. In particular, an ultrafilter can have at most one limit
point.

Proof. LetU be an arbitrary neighborhood of the point x . Then, by the definition of
a limit point, U intersects all elements of A. By Lemma2, U ∈ A. �

Theorem 3 (compactness criteria in terms of filters).For aHausdorff topological
space X, the following conditions are equivalent:

(1) X is compact;

(2) every filter on X has a limit point;

(3) every ultrafilter on X has a limit.

Proof. We will successively establish the equivalence of the listed conditions.
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(1) =⇒ (2). The filter F is a centered family of sets. All the more the family of
closures of the elements of the filter is also centered. Consequently (Theorem1 of
Subsection1.2.3), the intersection LIM(F) of these closures is not empty.

(2) =⇒ (1). Let C be an arbitrary centered family of closed subsets of the space
X . By Theorem2 of Subsection16.1.1, there exists a filter F ⊃ C. Then

⋂
A∈C A ⊃

⋂
A∈F A = LIM(F) 	= ∅.
(2) =⇒ (3). By condition (2), every ultrafilter has a limit point, and by Lemma3

this point is the limit of the ultrafilter.

(3) =⇒ (2). Consider an arbitrary filter F on X and choose (Theorem1) an ultra-
filterA ⊃ F. By (3), the ultrafilterA has a limit x ∈ X . By assertion (iii) of Theorem2
in Subsection16.1.2, x is a limit point of the filter F. �

Corollary 2. SupposeA is an ultrafilter on E, X a topological space, and the image
of the mapping f : E → X lies in a compact subset K ⊂ X. Then there exists the
limit lim

A
f .

Proof. Consider f as a mapping acting from E into K . Since (Corollary 1) f [A]
is an ultrafilter on the compact space K , there exists the limit lim f [A]. But, by
definition, lim

A
f = lim f [A]. �

Exercises

1. Let E be a set and e be an element of E . Verify that the family Ae ⊂ 2E of all
sets containing e constitutes an ultrafilter on E . Ultrafilters of this form are called
trivial ultrafilters.

2. Let E be a set, X a topological space, and e ∈ E . Then f (e) = lim
Ae

f for any

mapping f : E → X .

3. Prove that on any infinite set there exist non-trivial ultrafilters. It is interesting that
to construct an explicit example of a non-trivial ultrafilter is in principle impossible:
such a construction necessarily relies on the Axiom of Choice or on Zorn’s lemma.

4. Let A be an ultrafilter on E . Use induction on n to show that if an element A ∈ A
is covered a finite number of sets: A ⊂ ⋃n

k=1 Ak , then at least one of the sets Ak

belongs to A.

5. Every ultrafilter on a finite set E is trivial.

6. Let A be an ultrafilter on N. Then either A is trivial, or A majorizes the Fréchet
filter.
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7. Let A be an ultrafilter on N which majorizes the Fréchet filter. Then f �→ lim
A

f

is a continuous linear functional on �∞ (recall that sequences f = ( f1, f2, . . .), i.e.,
elements of the space �∞, can be regarded as bounded functions on N with values
in the corresponding field of scalars R or C). Based on this example, show that
(�∞)∗ 	= �1.

8. Let A1, A2 be ultrafilters on N, A1 	= A2. Then there exists an f ∈ �∞ for which
lim
A1

f 	= lim
A2

f .

9. For each set A ⊂ N we denote by UA the family of all ultrafilters on N that have
A as an element. We equip the set βN of all ultrafilters on N with the following
topology: the neighborhoods of the ultrafilter A are all sets UA with A ∈ A, as well
as all the larger sets.More formally: the topology on βN is specified by neighborhood
bases (see Subsection1.2.1); as a neighborhood basis of the element A ∈ βN one
takes the family UA = {UA : A ∈ A}.1 Verify the axioms given in Subsection1.2.1,
the satisfaction of which is necessary for the specification of a topology by means of
neighborhoods.

10. Identify the trivial ultrafilter An , generated by the point n ∈ N, with the point
n itself. Under this identification, N ⊂ βN. Prove that N is a dense subset of the
topological space βN, i.e., βN is separable.

11. Let A be an ultrafilter on N which majorizes the Fréchet filter. For each x =
(x1, x2, . . .) ∈ �∞ define F(x) as the limit with respect to A of the function f given
by f (n) = (x1 + x2 + · · · + xn)/n. Verify that the functional F is invariant under
translations. By this construction you will obtain a proof of the existence of the
generalized Banach limit (see the exercises in Subsection5.5.2) that does not resort
to the Hahn–Banach theorem.

16.1.4 The Topology Generated by a Family of Mappings.
The Tikhonov Product

Suppose that on the set X there is given a family of mappingsF , where the mappings
f ∈ F act in respective (possibly different) topological spaces f (X). For any point
x ∈ X , any finite family of mappings { fk}nk=1 ⊂ F , and any open neighborhoods Vk

of the points fk(x) in the spaces fk(X), respectively, we introduce the sets

Un,{ fk }nk=1,{Vk }nk=1
(x) =

n⋂

k=1

f −1
k (Vk).

1What a splendid thing is the modern system of notations: UA is a familiy of neighborhoods. Each
neighborhood is a set of ultrafilters. Each ultrafilter is a family of sets of natural numbers. Thus,
with one symbol UA we managed to denote a set of sets of sets of sets of natural numbers!
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Recall (Subsection1.2.1) the following fact: Suppose that for each point x ∈ X
there is given a non-empty family Ux of subsets with the following properties:

— if U ∈ Ux , then x ∈ U ;

— if U1,U2 ∈ Ux , then there exists a U3 ∈ Ux such that U3 ⊂ U1 ∩U2;

— if U ∈ Ux and y ∈ U , then there exists a set V ∈ Uy such that V ⊂ U .

Then there exists a topology τ on X for which the families Ux are neighborhood
bases of the corresponding points.

Consequently, on X there exist a topology (possibly not separated) in which the
setsUn,{ fk }nk=1,{Vk }nk=1

(x) constitute a neighborhood basis of the point x , for any x ∈ X .
We denote this topology by σ(X,F). In particular, among the neighborhoods of the
point x ∈ X in the topology σ(X,F) there are all the sets f −1(V ), where f ∈ F
and V is a neighborhood of the point f (x) in the topological space f (X). Therefore,
all the mappings in the family F are continuous in σ(X,F).

Theorem 1. σ(X,F) is the weakest topology on X in which all the mappings
belonging to the family F are continuous.

Proof. Let τ be some topology in which all the mappings in the familyF are contin-
uous. Let us show that any set of the formUn,{ fk }nk=1,{Vk }nk=1

(x) will be a neighborhood
of the point x in the topology τ . This will prove that τ 
 σ(X,F). By hypothe-
sis, all mappings fk : X → fk(X) are continuous in the topology τ . Hence, the sets
f −1
k (Vk) are open neighborhoods of the point x in τ . Therefore, the intersection

Un,{ fk }nk=1,{Vk }nk=1
(x) of such sets is also an open neighborhood of x . �

Definition 1. The topology σ(X,F) is called the topology generated by the family
of mappings F . Another term (justified by the preceding theorem) is that of the
weakest topology in which all the mappings in the family F are continuous.

Definition 2. A family of mappings F is said to separate the points of the set X if
for any x1, x2 ∈ X , x1 	= x2, there exists a mapping f ∈ F such that f (x1) 	= f (x2).

Theorem 2. Suppose all the spaces f (X), f ∈ F , are Hausdorff. For the topology
σ(X,F) to be Hausdorff it is necessary and sufficient that the family F separates
the points of the set X.

Proof. Sufficiency. Suppose F separates the points of the set X . Then for any
x1, x2 ∈ X , x1 	= x2, there exists an f ∈ F such that f (x1) 	= f (x2). Since f (X) is
a Hausdorff space, there exist disjoint neighborhoods V1 and V2 of the points f (x1)
and f (x2), respectively. The sets f −1(V1) and f −1(V2) are the required σ(X,F)-
neighborhoods that separate the points x1 and x2.

Necessity. Suppose F does not separate the points of X . Then there exist points
x1, x2 ∈ X , x1 	= x2, such that f (x1) = f (x2) for all f ∈ F . Pick an arbitrary
σ(X,F)-neighborhood Un,{ fk }nk=1,{Vk }nk=1

(x1) of the point x1. Since fk(x1) = fk(x2)
for all k = 1, 2, . . . , n, the point x2 will also lie in Un,{ fk }nk=1,{Vk }nk=1

(x1). Thus, in the
described situation σ(X,F) not only is not Hausdorff, it even fails the first separation
axiom. �
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Theorem 3. For the filter F on X to converge in the topology σ(X,F) to some
x ∈ X, it is necessary and sufficient that lim

F
f = f (x) for all f ∈ F .

Proof. In view of the continuity in the topology σ(X,F) of all mappings f ∈ F , the
necessity follows from Theorem3 of Subsection16.1.2. Let us prove the sufficiency.
Suppose lim

F
f = f (x) for all f ∈ F . We need to show that every neighborhood of

the formUn,{ fk }nk=1,{Vk }nk=1
(x)will be an element of the filterF. By assumption, lim

F
fk =

fk(x), and so f −1
k (Vk) ∈ F for all k = 1, 2, . . . , n. Since a filter is stable under taking

finite intersections of elements, Un,{ fk }nk=1,{Vk }nk=1
(x) = ⋂n

k=1 f −1
k (Vk) ∈ F. �

Let � be an index set (i.e., a set whose elements will henceforth referred to as
indices). Suppose that to each index γ ∈ � there is assigned a set Xγ . The Cartesian
product of the sets Xγ with respect to γ ∈ � is defined to be the set

∏
γ∈� Xγ

consisting of all mappings x : � → ⋃
γ∈� Xγ with the property that x(γ ) ∈ Xγ for

any γ ∈ �. In the particular case when all sets Xγ are equal to one and the same
set X , the product consists of all functions x : � → X ; then the Cartesian product is
called the Cartesian power and is denoted by X� .

For the values of a function x ∈ ∏
γ∈� Xγ , instead of x(γ ) one uses the notation

xγ . In this notation the element x ∈ ∏
γ∈� Xγ itself is usually written in the form

x = {xγ }γ∈� of an indexed set of values.
For anyα ∈ �, themapping Pα : ∏

γ∈� Xγ → Xα , acting by the rule Pα(x) = xα ,
is called a coordinate projection.

Definition 3. Suppose all Xγ , γ ∈ �, are topological spaces. The Tikhonov topol-
ogy on

∏
γ∈� Xγ is the weakest topology in which all coordinate projections Pα ,

α ∈ �, are continuous. The Cartesian product
∏

γ∈� Xγ , equippedwith the Tikhonov
topology, is called the Tikhonov product.

We note that, obviously, the coordinate projections separate the points of the
product, and so, by Theorem2, a Tikhonov product of Hausdorff spaces is again a
Hausdorff space. Further, Theorem3 yields the following assertion:

Convergence Criterion in a Tikhonov Product. A filter F on
∏

γ∈� Xγ converges
in the Tikhonov topology to an element x = {xγ }γ∈� if and only if xγ = lim

F
Pγ for

all γ ∈ �.
Let us describe the Tikhonov topology explicitly, i.e., describe in more detail the

form that the neighborhoods of the topology generated by a family of maps take
in this particular case. Let x ∈ ∏

γ∈� Xγ ; let N ⊂ � be a finite set of indices, and
Vγ ⊂ Xγ , γ ∈ N , be open neighborhoods of the corresponding points xγ . Define

UN ,{Vγ }γ∈N (x) =
{

y ∈
∏

γ∈�

Xγ : yα ∈ Vα for all α ∈ N

}

.

Theorem 4. The sets of the formUN ,{Vγ }γ∈N (x) form a basis of neighborhoods of the
point x ∈ ∏

γ∈� Xγ in the Tikhonov topology. �
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Theorem 5 (Tikhonov’s theorem on products of compact spaces). Let Xγ , γ ∈ �

be compact topological spaces. Then the Tikhonov product
∏

γ∈� Xγ is also compact.

Proof. We use criterion (3) of Theorem3 in Subsection16.1.3. LetA be an ultrafilter
on

∏
γ∈� Xγ . Since all the spaces Xγ are compact, for each γ ∈ � the coordinate

projection Pγ has a limit. Denote it by yγ = lim
A

Pγ . Then the element y = {yγ }γ∈�

is the limit of the ultrafilter A. �

Exercises

1. In the case where � = {1, 2}, the definition of the Tikhonov product
∏

γ∈� Xγ

coincideswith the definition of the product X1 × X2 of topological spaces introduced
earlier in Subsection1.2.2.

2. A particular case of the Tikhonov product — the Tikhonov power X� of the
topological space X — is the space of all functions f : � → X . Write in explicit
form the neighborhoods of a function f in the Tikhonov topology.

3. Prove that a sequence of functions fn ∈ X� converges in the Tikhonov topology
to a function f if and only if fn(x) → f (x) for all x ∈ X . This justifies yet another
name used for the Tikhonov topology — topology of pointwise convergence.

4. For a particular case of the Tikhonov power— the space [0, 1][0,1] of all functions
f : [0, 1] → [0, 1] —write explicitly the neighborhoods of a function f . Prove that
the set of all polynomialswith rational coefficients is dense in [0, 1][0,1], i.e., [0, 1][0,1]
is a separable space.

A topological space X is said to be sequentially compact if from any sequence of
elements in X one can extract a convergent subsequence.

5. The space [0, 1][0,1], despite being compact, is not sequentially compact (see
Exercise10 in Subsection3.2.2).

A subset A of a topological space X is said to be sequentially dense if for any
x ∈ X there exists a sequence an ∈ A that converges to x . A topological space X is
said to be sequentially separable, if X contains a countable sequentially dense set.

6. A sequentially separable Hausdorff topological space cannot have cardinality
larger than the cardinality of the continuum.

7. The space [0, 1][0,1], despite its separability, is not sequentially separable.
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8. Let Gγ be a topological group. Equip the Tikhonov product
∏

γ∈� Gγ with the
operation {xγ }γ∈� · {yγ }γ∈� = {xγ · yγ }γ∈� . Verify that

∏
γ∈� Gγ is a topological

group.

9. Equip the two-point set {0, 1}with the discrete topology. Prove that the Tikhonov
power {0, 1}N is homeomorphic to the Cantor perfect set.

10. Let X be a fixed set. Identifying each subset A ⊂ X with its characteristic
function 1A, we obtain a natural identification of the family 2X of all subsets of
the space X with the space {0, 1}X of all functions f : X → {0, 1}. Since the two-
point set is a (discrete) compact space, the space {0, 1}X = 2X is compact in the
Tikhonov topology. Describe explicitly the neighborhoods of the set A ⊂ X in the
Tikhonov topology on 2X .

11. The topological space βN defined in Exercise9 of Subsection16.1.3 is a closed
subset of the compact space 22

N

. Hence, βN is compact as well. The space βN is
called the Stone–Čech compactification of the natural numbers.

12. Define the operator T : C(βN) → �∞ by the rule: T ( f ) is the sequence with
coordinates xn = f (An), where An denotes the trivial ultrafilter generated by the
point n ∈ N. Prove that T is a linear bijective isometry. Therefore, the space �∞ is
isometric to the space of continuous functions on a (admittedly rather exotic) compact
space.

16.2 Background Material on Topological Vector Spaces

We have already encountered topologies and the corresponding types of conver-
gence on linear spaces of functions with the feature that the convergence cannot be
described as convergence with respect to a norm. These were, for instance, point-
wise convergence and convergence in measure. Such types of convergence will, with
rare exceptions, be the weak and weak∗ convergence in Banach spaces — the main
objects of study in Chap.17. An adequate language for describing such topologies
and convergences is that of topological vector spaces.

16.2.1 Axiomatics and Terminology

Definition 1. A linear space X (real or complex) endowed with a topology τ is
called a topological vector space if the topology τ is compatible with the linear
structure, in the sense that the operations of addition of elements and multiplication
of an element by a scalar are jointly continuous in their variables.

To avoid treating the real and complex cases separately each time, we will assume
that all spaces are complex, leaving the simpler case of real spaces to the reader for
independent study.
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Let us explain Definition 1 in more detail. Let X be a topological vector space.
Consider the mappings F : X × X → X and G : C × X → X , acting by the rules
F(x1, x2) = x1 + x2 and G(λ, x) = λx . The compatibility of the topology with the
linear structure means that each of the mappings F and G is jointly continuous in its
variables. We will use this continuity step by step to deduce geometric properties of
neighborhoods in the topology compatible with the linear structure.

Theorem 1. Let U be an open set in X. Then

— for any x ∈ X, the set U + x is open;

— for any λ ∈ C \ {0}, the set λU is open.

Proof. Fix x2 = −x and use the continuity of the mapping F(x1, x2) = x1 + x2 in
the first variable when the second variable is fixed. The mapping f (x1) = x1 − x is
continuous in x1, andU + x is the preimage of the open setU under f . Consequently,
U + x is open. The second property is deduced in exactly the same way, using the
continuity of the mapping g(x) = 1

λ
x . �

It follows from Theorem1 that the neighborhoods of an arbitrary element x ∈ X
are the sets U + x with U a neighborhood of zero. Accordingly, the topology τ is
uniquely determined by the family N0 of neighborhoods of zero. For this reason,
further properties of the topology τ will be formulated in the language of neigh-
borhoods of zero. Below Cr will denote the disc of radius r in C centered at zero:
Cr = {λ ∈ C : |λ| � r}.

Let us recall several definitions fromSubsection5.4.2. A subset A of a linear space
X is said to be absorbing if for any x ∈ X there exists an n ∈ N such that x ∈ t A
for all t > n. A subset A ⊂ X is said to be balanced if for any scalar λ ∈ C1 it holds
that λA ⊂ A.

Theorem 2. The family N0 of neighborhoods of zero in the linear space X has the
following properties:

(i) Any neighborhood of zero is an absorbing set.

(ii) Any neighborhood of zero contains a balanced neighborhood of zero.

(iii) For any neighborhood U ∈ N0 there exists a balanced neighborhood V ∈ N0

such that V + V ⊂ U.

Proof. (i) Fix x ∈ X and use the continuity of themapping f (λ) = λx . Since f (0) =
0, continuity at the point λ = 0 means that for anyU ∈ N0 there exists an ε > 0 such
that λx ∈ U for all λ ∈ Cε. Defining t = 1/λ, we see that x ∈ tU for all t > 1/ε.

(ii) Let U ∈ N0. Thanks to the continuity of the mapping G(λ, x) = λx at the
point (0, 0), there exist an ε > 0 and a neighborhood W ∈ N0 such that λx ∈ U
for all λ ∈ Cε and all x ∈ W . Set V = ⋃

λ∈Cε
λW . Let us show that the set V ⊂ U

provides the requisite balanced neighborhood of zero. On one hand, V ⊃ W , whence
V ∈ N0. On the other hand, for any λ0 ∈ C1 we have λ0Cε ⊂ Cε, and so
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λ0V =
⋃

λ∈Cε

λ0λW =
⋃

μ∈λ0Cε

μW ⊂
⋃

μ∈Cε

μW = V ;

this proves that the neighborhood V is balanced.

(iii) Thanks to the continuity of the mapping F (x1, x2) = x1 + x2 at (0, 0), for
any neighborhood U ∈ N0 there exist neighborhoods V1, V2 ∈ N0 such that V1 +
V2 ⊂ U . Then based on item (ii) we choose the requisite balanced neighborhood V
of zero so that V is contained in the neighborhood V1 ∩ V2. �

We invite the reader to prove the converse result:

Theorem 3. Suppose the systemN0 of neighborhoods of zero in a topology τ on the
linear space X satisfies the conditions (i)–(iii) in Theorem2, and for every point x ∈
X the system Nx of neighborhoods of x is obtained from N0 by parallel translation
by the vector x. Then the topology τ is compatible with the linear structure. �

Remark 1. In view of the balancedness property, the condition V + V ⊂ U of item
(iii) of Theorem2 can be rewritten as V − V ⊂ U .

Theorem 4. For a topological vector space X to be Hausdorff it is necessary and
sufficient that the system N0 of neighborhoods of zero satisfies the following condi-
tion: for any x 	= 0 there exists a U ∈ N0 such that x /∈ U.

Proof. Suppose x 	= y. Then x − y 	= 0 and there exists a neighborhood U ∈ N0

which does not contain x − y. Pick a neighborhood V ∈ N0 such that V − V ⊂ U .
Then the neighborhoods x + V and y + V are disjoint: assuming the contrary, i.e.,
that there exists a point zwhichbelongs to both x + V and y + V ,wehave z − x ∈ V ,
z − y ∈ V , and so x − y = (z − y) − (z − x) ∈ V − V ⊂ U . �

Exercises

1. A balanced set in C is either the whole set C, or a disc (open or closed) centered
at zero, or, finally, consists only of zero.

2. Replacing λ ∈ C1 by λ ∈ [−1, 1], formulate the analogue of being a balanced set
for real spaces. Prove for real spaces the analogue of Theorem2.

3. Describe the balanced sets in R.

4. Suppose the topology τ on the linear space X is compatible with the linear struc-
ture and satisfies the first separation axiom: every point is a closed set. Then the
topology τ is Hausdorff.
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5. Every topological vector space is also a topological groupwith respect to addition.

6. Prove that the discrete topology (namely, all sets are open) on C is compatible
with the additive group structure, but not with the linear structure.

Verify that the spaces listed below are topological vector spaces.

7. The space L0(�,�,μ) of measurable functions on a finite measure space,
equipped with the topology of convergence in measure (Subsection3.2.2). The stan-
dard neighborhood basis of the function f is provided by the sets of functions
{g ∈ L0(�,�,μ) : μ{t : |g(t) − f (t)| > δ} < ε}, δ, ε > 0. In this space, as usual,
functions that coincide almost everywhere are identified: without this convention,
the space would not be separated.

8. Any normed space with the topology defined by its norm.

9. Any Tikhonov product
∏

γ∈� Xγ of topological vector spaces Xγ , with the linear
operations defined coordinatewise: a{xγ }γ∈� + b{yγ }γ∈� = {axγ + byγ }γ∈� .

10. Any linear subspace of a topological vector space, equipped with the induced
topology.

Other natural examples will be given in Subsection16.3.2. Prove that in a topo-
logical vector space:

11. The interior and closure of a convex set are convex.

12. The closure of any linear subspace is a linear subspace.

13. Any neighborhood of zero contains a balanced open neighborhood of zero.

14. Any neighborhood of zero contains a balanced closed neighborhood of zero.

Any metrizable topological vector space satisfies the first countability axiom:
every point has a countable neighborhood basis. For Hausdorff topological vector
spaces the converse is also true. The reader will obtain the proof by solving the
following chain of exercises.

Suppose X is a Hausdorff topological vector space and the family of neighbor-
hoods of zero of the space X has a countable basis. Then:

15. There exists a neighborhoods basis {Vn} of zero consisting of balanced open sets
that satisfy the condition Vn+1 + Vn+1 ⊂ Vn , n = 1, 2, . . . .

16. Denote by D the set of dyadic rational numbers in the segment (0, 1]. For
each r ∈ D, r < 1, write its dyadic fraction expansion: r = ∑n(r)

k=1 ck(r)2
−k , where

ck(r) ∈ {0, 1}, and n(r) can be arbitrarily large, and define U (r) = ∑n(r)
k=1 ck(r)Vk .

For r � 1, put U (r) = X . Then all the sets U (r) are balanced, open, and satisfy
U (1/2n) = Vn , n = 1, 2, . . ., and U (r) +U (s) ⊂ U (r + s) for all r, s ∈ D.
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17. For each x ∈ X , put θ(x) = inf{r ∈ D : x ∈ U (r)}. Then the quantity θ is sym-
metric: θ(−x) = θ(x), and satisfies the triangle inequality θ(x + y) � θ(x) + θ(y)
for all x, y ∈ X .

18. The function ρ(x, y) = θ(x − y) is a metric on X . The topology defined by the
metric ρ coincides with the original topology of the space.

16.2.2 Completeness, Precompactness, Compactness

To work successfully with topological vector spaces, we need to define analogues
of the basic notions that are used in the setting of normed spaces. Since in general
a topological vector space is not metrizable, we need to renounce the language of
sequences and use instead the language of neighborhoods and filters befitting our
general situation.

Definition 1. A filter F on X is called a Cauchy filter if for any neighborhood U of
zero there exists an element A ∈ F such that A − A ⊂ U . Such an element A is said
to be small of order U .

Theorem 1. If the filter F has a limit, then F is a Cauchy filter.

Proof. Suppose lim F = x and U ∈ N0. Pick a V ∈ N0 such that V − V ⊂ U . By
the definition of the limit, there exists an A ∈ F such that A ⊂ x + V . Then A − A ⊂
(x + V ) − (x + V ) ⊂ V − V ⊂ U . �
Theorem 2. Let F be a Cauchy filter on a topological vector space X and x a limit
point of F. Then lim F = x.

Proof. Let x +U be an arbitrary neighborhood of the point x , with U ∈ N0. Pick a
neighborhood V ∈ N0 with V + V ⊂ U and a set A ∈ F, small of order V : A − A ⊂
V . By the definition of a limit point, the sets A and x + V intersect, i.e., there exists
a point y ∈ A ∩ (x + V ). Then

x +U ⊃ x + V + V ⊃ y + V ⊃ y + A − A ⊃ y + A − y = A.

Hence, the neighborhood x +U contains an element of F, and so x +U ∈ F. �
Definition 2. A set A in a topological vector space X is said to be complete2 if any
Cauchy filter on X that contains A as an element has a limit which belongs to A. In
particular, a topological vector space X is said to be complete if every Cauchy filter
on X has a limit.

2Here again the already mentioned terminological confusion is widespread. The current term is
introduced to generalize the notion of complete metric space. Equally successfully one could have
called complete a set whose linear span coincides with the space X (a term used in the theory of
linear spaces) or, by analogy with the theory of normed spaces, call a set complete if its linear span
is dense in X . We thus obtain identically named notions which however have nothing in common.
The relevant meaning must be figured out from the context.
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Theorem 3. Let X be a subspace of a topological vector space E and A ⊂ X a
complete subset of X. Then A is also complete as a subset of the space E.

Proof. Let F be a Cauchy filter in E which contains A as an element. Then, in
particular, X ∈ F, i.e., the trace FX on X of the filterF is a filter. Next, FX is a Cauchy
filter on X which contains A as an element. Hence, in view of the completeness of
A in X , the filter FX has in X a limit a ∈ A. The same point a is the limit of the filter
F in E . �

Theorem 4. Every complete subset A of a Hausdorff topological vector space X
is closed. In particular, if a subspace of a Hausdorff topological vector space is
complete in the induced topology, then this subspace is closed.

Proof. Suppose the point x ∈ X belongs to the closure of the set A. We need to show
that x ∈ A. Consider the familyD of all intersections (x +U ) ∩ A, whereU ∈ N0.
All such intersections are non-empty, and D obeys all axioms of a filter basis. The
filter F generated by the basis D majorizes the filter Nx of all neighborhoods of the
point x , and so lim F = x . In particular, F is a Cauchy filter. By construction, our
complete set A is an element of the filter F. Hence, by Definition 2, F must have a
limit in A. Since the limit is unique, x ∈ A, as we needed to prove. �

Definition 3. A set A in a topological vector space X is called precompact if for
any neighborhood U of zero there exists a finite set B ⊂ X such that A ⊂ B +U .
Such a set B is called, by analogy with an ε-net, a U-net of the set A.

Theorem 5. For a set A of a Hausdorff topological vector space X to be compact
it is necessary and sufficient that A be simultaneously precompact and a complete
set in X.

Proof. Necessity. Let A be a compact set andU be an arbitrary open neighborhood of
zero in X . The neighborhoods of the form x +U with x ∈ A form an open cover of
the compact set A, hence there exists a finite subcover x1 +U, x2 +U , …, xn +U ,
with xk ∈ A. The set B = {x1, x2, . . . , xn} is aU -net of the set A. This establishes the
precompactness of the compact set A. Now let us prove the completeness. Suppose
F is a Cauchy filter in X which contains A as an element. Then the trace FA on A
of the filter F is a filter in the compact topological space A, so FA has a limit point
a ∈ A. The same point is then a limit point for F. But a limit point of a Cauchy filter
is the limit of that filter. Therefore, F has a limit, and lim F = a ∈ A.

Necessity. Let A be a complete precompact set in X . Let us prove that every
ultrafilterA on A has a limit. Consider the filter Ã, given already not on A, but on the
entire space X , forwhichA is a filter basis: B ∈ Ã if and only if B ∩ A ∈ A. Using the
ultrafilter criterion (Theorem2 in Subsection16.1.3), it is readily verified that Ã is an
ultrafilter.We claim that Ã is aCauchyfilter. Indeed, letU ∈ N0. Pick a neighborhood
V ∈ N0 such that V − V ⊂ U . Let B = {x1, x2, ..., xn} be the corresponding V -net
of the precompact set A. Since the sets x1 + V , x2 + V , …, xn + V form a finite
open cover of the element A of the ultrafilter Ã, one of these sets, say, x j + V , will be
an element of Ã (Exercise4 of Subsection16.1.3). But x j + V is small of order U :
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(x j + V ) − (x j + V ) = V − V ⊂ U.

Thus, Ã is a Cauchy filter, A ∈ Ã, and A is a complete set in X . Therefore, there
exists lim Ã ∈ A. The same element will also be the limit in A of the filter A, the
trace of the filter Ã on A (Exercise4 of Subsection16.1.2). �

Definition 4. Let X be a topological vector space. We say that the neighborhood
U ∈ N0 of zero absorbs the set A ⊂ X if there exists a number t > 0 such that
A ⊂ tU . The set A ⊂ X is said to be bounded if it is absorbed by every neighborhood
of zero.

Theorem 6. The family of bounded subsets of a topological vector space X enjoys
the following properties:

(a) If A ⊂ X is bounded, then for any neighborhood U ∈ N0 there exists a number
N > 0 such that A ⊂ tU for all t � N.

(b) The union of any finite collection of bounded sets is a bounded set.

(c) Every finite set is bounded.

(d) Every precompact set in X is bounded.

Proof. (a) Let V ∈ N0 be a balanced neighborhood which is contained in U . Pick
N > 0 such that A ⊂ NV . Then for every t � N we have A ⊂ NV = t ((N/t)V ) ⊂
tV ⊂ tU .

(b) Let A1, A2, . . . , An be bounded sets, and U be a neighborhood of zero. By
(a), for each of the sets Ak there exists a number Nk ∈ N such that Ak ⊂ tU for all
t > Nk . Put N = max1�k�n Nk . Then for any t � N all inclusions Ak ⊂ tU hold
simultaneously, that is,

⋃n
k=1 Ak ⊂ tU .

(c)Any single-point set is bounded, since every neighborhood of zero is an absorb-
ing set. It remains to use assertion (b).

(d) Let A be precompact in X and U be a neighborhood of zero. Pick a balanced
neighborhood V ∈ N0 such that V + V ⊂ U . By the definition of precompactness,
there exists a finite set B ⊂ X such that A ⊂ B + V . By (c), one can find a number
N > 1 such that B ⊂ NV . Then A ⊂ B + V ⊂ NV + V ⊂ N (V + V ) ⊂ NU . �

Exercises

1. Let F be a Cauchy filter in a topological vector space X . Suppose the filter F1

majorizes F and x = lim F1. Show that x = lim F.

A sequence (xn) of elements of a topological vector space X is called a Cauchy
sequence if the filter F(xn) generated by the sequence (xn) is a Cauchy filter. Prove
that:
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2. (xn) is a Cauchy sequence if and only if for any U ∈ N0 there exists a number
N ∈ N such that xn − xm ∈ U for all n,m ≥ N .

3. (xn) is a Cauchy sequence if and only if for every U ∈ N0 there exists a number
N ∈ N, such that xn − xN ∈ U for all n ≥ N .

4. Suppose the topological vector space X has a countable basis of neighborhoods
of zero, and every Cauchy sequence in X has a limit. Then X is a complete space.

5. Suppose the complete topological vector space X has a countable basis of
neighborhoods of zero Un , n ∈ N, and the neighborhoods Un are chosen so that
Un+1 +Un+1 ⊂ Un . Pick in each set Un one element xn ∈ Un . Then show that the
series

∑∞
n=1 xn converges.

6. Extend Banach’s theorem on the inverse operator (if T : X → Y is linear, bijec-
tive, and continuous, then T−1 is continuous) to the case where X and Y are complete
metrizable topological vector spaces.

7. Prove the completeness of the space L0(�,�,μ) of all measurable functions on
a finite measure space, equipped with the topology of convergence in measure.

A metric ρ on a linear space X is said to be invariant if ρ(x, y) = ρ(x − y, 0)
for any x, y ∈ X . Suppose the topology τ of the topological vector space X is given
by an invariant metric ρ. Then:

8. The sequence (xn) ⊂ X is Cauchy in the topology τ if and only if it is Cauchy in
the metric ρ.

9. The completeness of the topological vector space (X, τ ) is equivalent with the
completeness of the metric space (X, ρ).

10. The precompactness of a set A in (X, τ ) is equivalent to the precompactness of
A in the metric ρ.

11. Warning: the boundedness of a set A in (X, τ ) is not equivalent to the bound-
edness of A in the metric ρ. More precisely, boundedness in (X, τ ) implies ρ-
boundedness, but the converse is not true. As an example consider X = R with
the natural topology, and introduce an invariant metric by the formula ρ(x, y) =
arctan|x − y|. Then A = R is a ρ-bounded set, but obviously A is not a bounded
subset of the topological vector space R.

Let Xγ , γ ∈ � be topological vector spaces. We equip the space X = ∏
γ∈� Xγ

with the Tikhonov topology and the coordinatewise-defined linear operations. As
usual, denote by Pγ : X → Xγ , γ ∈ �, the coordinate projectors. Prove that

12. The set A ⊂ X is bounded if and only if all images Pγ (A) ⊂ Xγ are bounded.

13. The set A ⊂ X is precompact if and only if all the images Pγ (A) ⊂ Xγ are
precompact.
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14. For the closedness and compactness of a set A in the Tikhonov product the
analogous criteria are no longer valid. Give examples showing this in the space
X = R × R.

15. A filter F in X = ∏
γ∈� Xγ is a Cauchy filter if and only if Pγ (F) are Cauchy

filters in the corresponding spaces Xγ .

16. If all Xγ , γ ∈ �, are complete spaces, then the space X = ∏
γ∈� Xγ is also

complete.

Consider the space RN, equipped with the Tikhonov product topology. RN can be
regarded as the space of all infinite numerical sequences x = (x1, x2, . . .). A neigh-
borhood basis of zero is provided by the setsUn,ε = {x ∈ R

N : max1�k�n |xk | < ε}.
Prove that:

17. InRN there exists a countable neighborhood basis of zero, i.e.,RN is metrizable.

18. A metrization of the space RN (under another commonly used name Rω) was
proposed in Exercise11 of Subsection1.3.1. Verify that the metric from that exercise
generates the Tikhonov product topology on R

N.

19. Convergence inRN is equivalent to coordinatewise (or componentwise) conver-
gence.

20. R
N is a complete topological vector space.

21. Aset A ⊂ R
N is bounded if andonly if there exists an elementb = (b1, b2, . . .) ∈

(R+)N that majorizes all elements of A: for any a = (a1, a2, . . .) ∈ A, the estimate
|an| � bn holds for all n ∈ N.

22. In RN the classes of bounded sets and precompact sets coincide.

23. Regard the sets Bc0
and B�1

, i.e., the closed unit balls in the spaces c0 and �1, as
subsets of the space RN. Are these sets bounded in R

N? Closed in R
N? Precompact

in RN? Compact in RN?

16.2.3 Linear Operators and Functionals

Throughout this subsection X and E will be topological vector spaces.

Theorem 1. A linear operator T : X → E is continuous if and only if it is contin-
uous at the point x = 0.

Proof. A continuous operator is continuous at all points, in particular, at zero.
Conversely, suppose the operator T is continuous at zero. Let us show that T
is continuous at any point x0 ∈ X . Let V be an arbitrary neighborhood of the
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point T x0 in E . Then V − T x0 is a neighborhood of zero in E . By assumption,
T−1(V − T x0) is a neighborhood of zero in X . Thanks to the linearity of the opera-
tor, T−1(V ) ⊃ T−1(V − T x0) + x0, i.e., T−1(V ) is a neighborhood of x0. �

Definition 1. The linear operator T : X → E is said to be bounded if the image
under T of any bounded subset of the space X is bounded in E .

Theorem 2. Any continuous linear operator T : X → E is bounded.

Proof. Let A be a bounded subset of X . We need to prove that the set T (A) is
bounded. Let V be an arbitrary neighborhood of zero in E andU a neighborhood of
zero in X such that T (U ) ⊂ V . Using the boundedness of A, pick an N > 0 such
that A ⊂ tU for all t > N . Then T (A) ⊂ tT (U ) ⊂ tV for all t > N . �

As we will show below, it is quite possible that two different topologies τ1 
 τ2
on X (for instance, the strong and weak topologies of a normed space) generate one
and the same system of bounded sets. In this case the identity operator, regarded as
acting from (X, τ2) into (X, τ1), will be bounded, but discontinuous.

Theorem 3. Suppose the operator T : X → E takes some neighborhood U of zero
in the space X into a bounded set. Then T is continuous.

Proof. Suppose T (U ) is a bounded set. For any neighborhood V of zero in E ,

there exists a t > 0 such that T (U ) ⊂ tV . Then
1

t
U ⊂ T−1(V ), i.e., T−1(V ) is a

neighborhood of zero in X . �

Next, we consider continuity conditions for linear functionals.

Theorem 4. For a non-zero linear functional f on a topological vector space X,
the following conditions are equivalent:

(i) f is continuous;

(ii) the kernel of the functional f is closed;

(iii) the kernel of the functional f is not dense in X;

(iv) there exists a neighborhood U of zero for which f (U ) is a bounded set.

Proof.
(i) =⇒ (ii). The preimage of any closed set is closed; in particular, Ker f = f −1(0)
is a closed set.

(ii) =⇒ (iii). If the kernel is closed and dense in X , then Ker f = X , i.e., f ≡ 0.

(iii) =⇒ (iv). Suppose Ker f is not dense. Then there exist a point x ∈ X and a
balanced neighborhood U of zero such that (U + x) ∩ Ker f = ∅. This means that
the functional cannot take the value − f (x) at any point y ∈ U . Therefore, f (U ) is a
balanced set of complex numbers which does not coincide with the whole complex
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plane ((− f (x) /∈ f (U )). It follows that f (U ) is a disc centered at zero (in the real
case it would be an interval in R symmetric with respect to zero).

(iv) =⇒ (i). This implication was already established in Theorem3. �

As in the case of normed spaces, for a topological vector space X we denote by
X∗ the set of all continuous linear functionals on X .3 The geometric form of the
Hahn–Banach theorem admits a generalization to topological vector spaces.

Theorem 5 (Hahn–Banach separation theorem for topological vector spaces).
Let A and B be disjoint non-empty convex subsets of a real topological vector space
X and let A be open. Then there exist a functional f ∈ X∗ \ {0} and a scalar θ ∈ R

such that f (a) < θ for all a ∈ A and f (b) � θ for all b ∈ B.

Using the connection between a linear functional and its real part (Subsec-
tion9.1.1), one can obtain a version of the theorem for a complex space, replacing
the conditions above by Re f (a) < θ for all a ∈ A and Re f (b) � θ for all b ∈ B.

Proof. As in the case of normed spaces (Subsection9.3.2), the theorem reduces to
the following particular case: Let A ⊂ X be an open convex neighborhood of zero
in X , and let x0 ∈ X \ A. Then there exists a functional f ∈ X∗ \ {0} such that
f (a) � f (x0) for all a ∈ A.
In this last case the Minkowski functional ϕA of the set A is a convex functional

(Subsection5.4.2). Consider the subspaceY = Lin{x0} and a linear functional f onY
with the property that f (x0) = ϕA(x0). Then onY the linear functional f ismajorized
by the convex functional ϕA (see the proof of the lemma in Subsection9.3.2).

Now using the analytic form of the Hahn–Banach theorem (Subsection5.4.3) we
extend f to the entire space X with preservation of the linearity and the majorization
condition f (x) � ϕA(x). By the definition of the Minkowski functional, ϕA(a) � 1
for alla ∈ A, whence f (a) � ϕA(a) � 1on A. Since x0 /∈ A,ϕA(x0) � 1.Therefore,
f (a) � 1 � ϕA(x0) = f (x0) for all a ∈ A.
Further, since f (x0) � 1, f is not identically equal to zero. By Lemma5 in Sub-

section9.3.1, which generalizes with no difficulty to topological vector spaces, the
strict inequality f (a) < f (x0) holds for all a ∈ A. This means that the kernel Ker f
does not intersect the non-empty open set A − x0. Hence, Ker f cannot be dense,
and the functional f is continuous. �

Finally, let us generalize to finite-dimensional topological vector spaces properties
of finite-dimensional normed spaces already known to us.

Theorem 6. Let X be aHausdorff topological vectors space, with dim X = n. Then:

(a) Every linear functional on X is continuous.

3Often, in textbooks on topological vector spaces, the symbol X∗ is used to denote the set of all
linear functionals on X , while the set of continuous linear functionals is denoted by X ′. We will
do exactly the opposite, in order to preserve the compatibility with the notations from the theory of
normed spaces the reader is already familiar with.



16.2 Background Material on Topological Vector Spaces 455

(b) For any topological vector space E, every linear operator T : X → E is con-
tinuous.

(c) X is isomorphic to the n-dimensional Hilbert space �n2 .

(d) X is complete.

Proof. First note that for fixed n the implications (a) =⇒ (b) =⇒ (c) =⇒ (d) hold
true. Indeed, (a)=⇒ (b), because ifwe choose in X a basis {xk}nk=1 with the coordinate
functionals { fk}nk=1, the operator T can be represented in the form

T (x) = T

( n∑

k=1

fk(x)xk

)

=
n∑

k=1

fk(x)T xk .

Thus, the calculation of T (x) reduces to calculating the scalars fk(x) (this action is
continuous due to assumption (a)), multiplying by them the constant vectors T xk ,
and summing the resulting products. But by the axioms of a topological vector space,
multiplication by a scalar and taking the sum are continuous operations.

(b) =⇒ (c). Both spaces X and �n2 have the same dimension n, and so there exists
a linear bijection T : X → �n2. Both T and T−1 are continuous by condition (b).

Finally, (c) =⇒ (d) thanks to the completeness of the space �n2.

The main assertion (a) is proved by induction on n. For n = 0 the space X reduces
to {0}, and so the assertion is trivial. Let us perform the step n → n + 1. Suppose
dim X = n + 1 and f is a non-zero linear functional on X . Then Ker f is an n-
dimensional space. By the induction hypothesis, and using the already established
implications (a)=⇒ (b)=⇒ (c)=⇒ (d), we conclude that Ker f is a complete space.
Therefore, Ker f is closed in X , and, by Theorem4, the functional f is continuous.

�

Exercises

1. Suppose the space X has a countable neighborhood basis of zero. Then every
bounded linear operator T : X → E is continuous.

2. Let X be a topological vector space, Y ⊂ X a subspace, and q : X → X/Y the
quotient mapping. Define a topology τ on X/Y as follows: the set U ⊂ X/Y is
declared to be open if q−1(U ) is an open set. Verify that:

— the topology τ is compatible with the linear structure;

— τ is the strongest among all topologies on X/Y in which the quotient mapping
q is continuous;
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— if the subspace Y is closed, then the space X/Y is separated, even when the
initial space X is not separated;

— in the case of normed spaces, the topology τ coincides with the topology given
by the quotient norm.

3. Prove the following generalization of Theorem5 from Subsection11.2.1: if in a
Hausdorff topological vector space X there exists a precompact neighborhood of
zero, then X is finite-dimensional.

4. On the example of the identity operator in RN, show that the sufficient condition
for continuity proved in Theorem3 is not necessary.

5. Where in the proof of Theorem6 of Subsection16.2.3 was the assumption that the
space is separated used? Will the theorem remain valid if the separation assumption
is discarded?

16.3 Locally Convex Spaces

16.3.1 Seminorms and Topology

Definition 1. A topological vector space X is said to be locally convex if for any
neighborhood U of zero there exists a convex neighborhood V of zero such that
V ⊂ U . In other words, the space X is locally convex if the neighborhood system
N0 of zero has a basis consisting of convex sets.

Theorem 1. Every convex neighborhood U of zero contains a convex balanced
open neighborhood of zero. In particular, in a locally convex space there exists a
neighborhood basis of zero consisting of convex balanced open sets.

Proof. Let V ⊂ U be an open and balanced neighborhood of zero. Then conv V ⊂
U . Let us show that conv V is a convex balanced and open neighborhood of zero.
Convexity is obvious. Further, conv V ⊃ V , and hence conv V is a neighborhood of
zero. Let us verify that conv V is balanced. Take λ ∈ C1, i.e., |λ| � 1. Then λV ⊂ V
(since V is balanced), and λ conv V = conv(λV ) ⊂ conv V . Finally, let us verify
that conv V is open. Since V is an open set and the operations of multiplication by
non-zero scalars and taking the sum of sets leave the class of open sets invariant,
all sets of the form

∑n
k=1 λkV with n ∈ N, λk > 0, and

∑n
k=1 λk = 1, are open. The

conclusion follows from the fact that conv V is a union of sets of the form
∑n

k=1 λkV .
�

Recall (Definition2 in Subsection6.1.1) that a function p : X → R is called a
seminorm if p(x) � 0, p(λx) = |λ|p(x) for any x ∈ X and any scalar λ, and p(x +
y) � p(x) + p(y) for all x, y ∈ X . A seminorm differs from a norm by the fact that
p(x)may be equal to zero for some non-zero elements x ∈ X . See also Exercises10–
13 in Subsection6.1.3.
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As in the case of a norm, the unit ball of the seminorm p is the set Bp = {x ∈
X : p(x) < 1}. The set Bp is convex and balanced. The seminorm p can be recov-
ered from its unit ball by means of the Minkowski functional: p(x) = ϕBp (x) (see
Subsection5.4.2).

Theorem 2. A seminorm p on a topological vector space X is continuous if and
only if Bp is a neighborhood of zero.

Proof. Bp = p−1(−1, 1) is the preimage of an open set. If p is continuous, then this
preimage is open. Conversely, suppose that Bp is a neighborhood of zero, and let us
show that the seminorm p is continuous. Thus, given any x ∈ X and any ε > 0, we
need to find a neighborhoodU of the point x such that p(U ) ⊂ (p(x) − ε, p(x) + ε).
Such a neighborhood is provided byU = x + εBp. Indeed, any point y ∈ U has the
form y = x + εz, where p(z) < 1. Hence, by the triangle inequality, p(x) − ε <

p(y) < p(x) + ε. �

Definition 2. Let G be a family of seminorms on a linear space X . Denote by DG

the collection of all finite intersections of sets r Bp, where p ∈ G and r > 0. The
locally convex topology generated by the family of seminorms G is the topology τG
on X , in which a neighborhood basis of zero is DG , and a neighborhood basis of a
point x ∈ X is, correspondingly, the collection of sets x +U with U ∈ DG .

A familyG of seminorms is said to be non-degenerate if for any x ∈ X \ {0} there
exists a p ∈ G such that p(x) 	= 0.

Theorem 3. I.LetG bea family of seminormsona linear space X. Then the topology
τG generated by the family G is compatible with the linear structure and is locally
convex.
II. The topology τG is separated if and only if the family of seminorms G is non-
degenerate.
III. The topological vector space X is locally convex if and only if its topology is
generated by a family of seminorms.

Proof. I. Since a ball of a seminorm is a convex balanced and absorbing set and
these properties are inherited by finite intersections, a neighborhood basis of zero
DG consists of convex balanced absorbing sets. Further, for any U ∈ DG we have
V = (1/2)U ∈ DG , and thanks to convexity, V + V ⊂ U . Thus, we have verified
conditions (i)–(iii) of Theorem3 in Subsection16.2.1. The proof of the fact that
the conditions ensuring the existence of the topology given by families of open
neighborhoods are satisfied is left to the reader. The compatibility of the topology
with the linear structure follows from Theorem4 of Subsection16.2.1.

II. The characterization of the separation property follows from Theorem4 of
Subsection16.2.1.

III. Let X be a locally convex space. By Theorem1, X has a neighborhood basisD
of zero that consists of convex balanced open sets. Then as the elements of the sought-
for family of seminorms one takes the seminorms whose unit balls are precisely the
elements of the basis D. �
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Theorem 4. Let X be a topological vector space and f be a linear functional on
X. Then for f to be continuous it is necessary and sufficient that there exists a
continuous seminorm p on X such that | f (x)| � p(x) for all x ∈ X.

Proof. Suppose f is continuous. Then p(x) = | f (x)| is the required seminorm.
Conversely, suppose that | f (x)| � p(x), and p is a continuous seminorm. Then f
is bounded on the neighborhood Bp of zero. �

Theorem 5 (Hahn–Banach extension theorem in locally convex spaces). Let f
be a continuous linear functional given on a subspace Y of a locally convex space
X. Then f can be extended to the entire space X with preservation of linearity and
continuity.

Proof. By assumption, the set U = {y ∈ Y : | f (y)| < 1} is an open neighborhood
of zero in Y . By the definition of the topology induced on a subspace, there exists
a neighborhood V of zero in X such that U ⊃ V ∩ Y . Since the space X is locally
convex, one can take for the neighborhood V the unit ball of some continuous semi-
norm p given on X . By construction, for any y ∈ Y , if p(y) < 1, then y ∈ U and
| f (y)| < 1. That is, | f (y)| � p(y) everywhere on Y .

Now, like for normed spaces, one needs to argue separately for the real and
complex cases. If f is a real functional, then by the analytic form of the Hahn–
Banach theorem, f can be extended to the entire space X with preservation of the
inequality f (x) � p(x). Replacing x by−x , we also obtain the inequality− f (x) �
p(x). Therefore, | f (x)| � p(x), and the extended functional f is continuous. In the
complex case, the extension can be performed so that the condition Re f (x) � p(x)
is preserved on the entire space X . Taking for x the element e−iarg f (x)x , we arrive
again at the inequality | f (x)| � p(x), which establishes the continuity on X of the
functional f . �

Remark 1. A set of linear functionals E ⊂ X ′ will separate the points if and only
if for every x 	= 0 there exists an f ∈ E such that f (x) 	= 0. Indeed, if the set E
separates the points, then, in particular, E separates x from 0. Conversely, if x 	= y
are arbitrary points, then x − y 	= 0. A functional f ∈ E for which f (x − y) 	= 0
will separate the points x and y.

Corollary 1. The set X∗ of all continuous linear functionals on a Hausdorff locally
convex space X separates the points of X.

Proof. For any x 	= 0 there exists a linear functional f onLin {x} such that f (x) 	= 0.
It remains to extend f to X by means of the Hahn–Banach theorem. �

Exercises

1. On the example of the family of seminorms G consisting of a single norm, ver-
ify that the locally convex topology τG generated by the family of seminorms G
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(Definition 2) does not coincide with the topology σ(X,G) generated by the family
of mappings G (Subsection16.1.4). Moreover, σ(X,G) is not compatible with the
linear structure.

2. Let G be a family of seminorms, and F be the family of all functions of the form
fx (y) = p(x + y), with p ∈ G and x ∈ X . Then τG = σ(X, F).

3. A sequence xn ∈ X converges to x ∈ X in the topology τG if and only if p(xn −
x) → 0 as n → ∞ for all p ∈ G.

4. Verify that the spaces listed below are indeed separated locally convex spaces,
and describe the convergence of sequences in them. Prove the completeness and
metrizability of the spaces in the first three examples. Is the fourth space metrizable?
Complete?

— The space H(D) of holomorphic functions in a domain (i.e., connected open
subset) D ⊂ C, equipped with the locally convex topology generated by the
family of all seminorms of pK ( f ) = maxz∈K | f (z)|, where K is a compact
subset of D.

— The space C∞[0, 1] of all infinitely differentiable functions on [0, 1], equipped
with the locally convex topology generated by the family of seminorms pn( f ) =
maxt∈[0,1] | f (n)(t)|, n = 0, 1, 2, . . ..

— The space C∞(0,+∞) of all infinitely differentiable functions on (0,+∞),
equipped with the topology generated by the family of seminorms pn( f ) =
maxt∈(n−1,n) | f (n−1)(t)|, n ∈ N.

— An infinite-dimensional linear space X , equipped with the strongest locally con-
vex topology, i.e., the topology generated by the family of all seminorms on X .

5. Any Tikhonov product of locally convex spaces is locally convex.

6. Any subspace of a locally convex space is locally convex.

7. Any quotient space of a locally convex space (see Exercise2 in Subsection16.2.3)
is locally convex.

8. Show that ifU is a balanced set and f is a linear functional such that Re f (x) � a
for all x ∈ U , then also | f (x)| � a on U .

9. Applying the geometric form of the Hahn–Banach theorem to a set U and an
open neighborhood V of the point x0, prove the following corollary: Let U be a
closed, balanced, and convex subset of a Hausdorff locally convex space X and let
x0 ∈ X \U . Then there exists a continuous linear functional f such that | f (y)| � 1
for all y ∈ U and | f (x0)| > 1.

10. A series
∑∞

k=1 xk in a locally convex space X is said to be absolutely convergent
if

∑∞
k=1 p(xk) < ∞ for any continuous seminorm p on X . Prove that in a complete

locally convex space every absolutely convergent series converges.
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11. The space L0[0, 1] with the topology of convergence in measure is not a locally
convex space. Moreover, any convex closed neighborhood of zero in L0[0, 1] coin-
cides with the entire space. In particular, the only continuous linear functional on
L0[0, 1] is the functional identically equal to zero.

16.3.2 Weak Topologies

Definition 1. Let X be a linear space, X ′ its algebraic dual (i.e., the space of all
linear functionals on X ), and E ⊂ X ′ a subset. The weak topology on X generated
by the set of functionals E is the weakest topology in which all functionals from E
are continuous. This topology is a particular case of the topology defined by a family
of mappings (Subsection16.1.4). Accordingly, we denote it by the same symbol
σ(X, E).

Let us explain this definition inmore detail. For any finite collection of functionals
G = {g1, g2, . . . , gn} and any ε > 0, define

UG,ε =
⋂

g∈G
{x ∈ X : |g(x)| < ε} =

{

x ∈ X : max
g∈G |g(x)| < ε

}

.

The family of sets UG,ε with G = {g1, g2, . . . , gn} ⊂ E and ε > 0 constitutes a
neighborhood basis of zero in the topologyσ(X, E). For an arbitrary element x0 ∈ X ,
a neighborhood basis is provided by the sets of the form

⋂

g∈G
{x ∈ X : |g(x − x0)| < ε} = x0 +UG,ε.

This shows that σ(X, E) is the locally convex topology generated by the family of
seminorms pG(x) = maxg∈G |g(x)|, where G runs over all finite subsets of the set
E . For this topology to be separated it is necessary and sufficient that the set of
functionals E separates the points of the space X .

As we already remarked in Subsection16.1.4, a filter F on X converges in the
topology σ(X, E) to the element x if and only if lim

F
f = f (x) for all f ∈ E . In par-

ticular, this convergence criterion is also valid for sequences: xn → x in the topology
σ(X, E) if f (xn) → f (x) for all f ∈ E .

We begin our more detailed study of weak topologies with a lemma that was
proposed earlier as an exercise on the subject “functionals and codimension” (Sub-
section5.3.3, Exercise16). Here, for the reader’s convenience, we provide a direct
proof.

Lemma 1. Let f and { fk}nk=1 be linear functionals on X such that Ker f ⊃⋂n
k=1 Ker fk . Then f ∈ Lin{ fk}nk=1.
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Proof. We use induction on n. The induction base is n = 1. If f1 = 0, then Ker f ⊃
Ker f1 = X , i.e., f = 0. Now let f1 be a non-zero functional. Then Y = Ker f1 is a
subspace in X . Therefore, there exists a vector e ∈ X \ Y , such that Lin{e,Y } = X .
Let a = f (e) and b = f1(e). The functional f − (a/b) f1 vanishes on Y as well as
at the point e. Hence, f − (a/b) f1 vanishes on the whole space X = Lin{e,Y }, i.e.,
f ∈ Lin{ f1}.
Step n → n + 1. We introduce the subspace Y = ⋂n

k=1 Ker fk . The condition
Ker f ⊃ ⋂n+1

k=1 Ker fk may be interpreted as saying that the kernel of the restriction
of the functional f to Y contains the kernel of the restriction of the functional fn+1 to
Y . Therefore (by the case n = 1), there exists a scalar α such that f − α fn+1 vanishes
on the whole space Y = ⋂n

k=1 Ker fk . That is, Ker( f − α fn+1) ⊃ ⋂n
k=1 Ker fk . By

the induction hypothesis, f − α fn+1 ∈ Lin { fk}nk=1, i.e., f ∈ Lin { fk}n+1
k=1. �

Lemma 2. Let Y be a subspace of the linear space X, let f ∈ X ′, and suppose there
exists an a > 0 such that | f (y)| � a for all Y . Then f (y) = 0 for all y ∈ Y .

Proof. Suppose that there exists an y0 ∈ Y such that f (y0) 	= 0. Then for the element
y = (2a/ f (y0))y0 ∈ Y one has | f (y)| = 2a > a, a contradiction. �

We are now ready to describe the functionals that are continuous in a weak
topology.

Theorem 1. A functional f ∈ X ′ is continuous in the topology σ(X, E) if and only
if f ∈ Lin E. In particular, if E ⊂ X ′ is a linear subspace, then the set (X, σ (X, E))∗
of all σ(X, E)-continuous functionals on X coincides with E.

Proof. By the definition of the topology σ(X, E), all elements of the set E are
σ(X, E)-continuous functionals. Hence, linear combinations of such functionals
are also continuous. Conversely, suppose the functional f ∈ X ′ is continuous in the
topology σ(X, E). Then there exist a finite set of functionalsG = {g1, g2, . . . , gn} ⊂
E and an ε > 0 such that on the neighborhoodUG,ε = {x ∈ X : maxg∈G |g(x)| < ε}
all values of the functional f are bounded in modulus by some number a > 0. The
same number will also bound the values of f on the subspace Y = ⋂n

k=1 Ker gk ⊂
UG,ε. By Lemma2, the functional f vanishes on Y , which in turn means (Lemma1)
that f ∈ Lin{gk}nk=1 ⊂ Lin E . �

Exercises

1. Prove the equality of topologies σ(X,Lin E) = σ(X, E).

2. The Tikhonov topology (topology of coordinatewise convergence) on R
N coin-

cides with the weak topology generated by the family E = {e∗
n}n∈N of coordinate

functionals. What is
(
R

N
)∗

equal to?
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3. Let E ⊂ X ′ be a subspace. Then the topology σ(X, E) has a countable neighbor-
hood basis of zero if and only if the linear space E has an at most countable Hamel
basis.

4. Suppose that on X there exists a norm that is continuous in the topology σ(X, E).
Then the space X is finite-dimensional.

5. Every set that is bounded in the topology σ(X, E) is precompact in this topology.

6. Kolmogorov’s theorem: If in the topological vector space X there exists a
bounded neighborhood U of zero, then the system of neighborhoods of zero has
the countable basis {(1/n)U }n∈N. In particular, if this bounded neighborhood U is
convex, then the topology of the space can be given by a single seminorm (a single
norm, if the space is assumed to be separated).

7. Let X be an infinite-dimensional linear space and let the family of functionals E ⊂
X ′ separate points. Then none of the σ(X, E)-neighborhoods of zero is a σ(X, E)-
bounded set.

8. The space X = c0 is not complete in the topology σ(X, X∗).

9. General result: no infinite-dimensional Banach space X is complete in the topol-
ogy σ(X, X∗).

16.3.3 Eidelheit’s Interpolation Theorem

Lemma 1. Let X be a topological vector space and Y ⊂ X a closed subspace of
finite codimension. If the functional f ∈ X ′ is discontinuous, then the restriction of
f to Y is also discontinuous.

Proof. We use the properties of quotient spaces of topological vector spaces given in
Exercise2 of Subsection16.2.3. Suppose, by contradiction, that the restriction of the
functional f to Y is continuous. Then Ỹ = Y ∩ Ker f is a closed subspace of finite
codimension. By the definition of the codimension, the quotient space X/Ỹ is finite-
dimensional. Define the functional f̃ on X/Ỹ by the rule f̃ (q(x)) = f (x), where
q : X → X/Ỹ is the quotient mapping. Since the space X/Ỹ is finite-dimensional, f̃
is continuous on X/Ỹ . Therefore, f is continuous, being the composition of f̃ and
the quotient mapping q. �

Lemma 2. Let X be a topological vector space, and f ∈ X ′ a discontinuous func-
tional. Then for any scalar a the hyperplane f=a = {x ∈ X : f (x) = a} is dense
in X.

Proof. The fact that the kernel of f is dense is guaranteed by Theorem4 of Sub-
section16.2.3. The hyperplane f=a is obtained from Ker f by parallel translation by
any fixed vector y ∈ f=a . �
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Theorem 1. (M. Eidelheit [52]). Let X be a complete locally convex subspace,
the topology of which is given by a sequence of seminorms p1 � p2 � p3 � · · · .
Suppose that the sequence of linear functionals fn ∈ X∗ has the following property:
for any n ∈ N, the functional fn is discontinuouswith respect to the seminorm pn (i.e.,
discontinuous in the topology generated by the single seminorm pn), but is continuous
with respect to pn+1, and so also continuous with respect to all seminorms pk with
k > n. Then for any sequence of scalars an there exists an element x ∈ X such that
fn(x) = an, n = 1, 2, . . . .

Proof. We construct the required element x ∈ X as the sum of a series
∑∞

k=1 xk , the
elements of which satisfy the following conditions:

(a) pn(xn) � 1

2n
;

(b) fn
(∑n

k=1 xk
) = an;

(c) fn(xk) = 0 for k > n.

Condition (a) guarantees the absolute convergence of the series
∑∞

k=1 xk (seeExer-
cise10 in Subsection16.3.1). Indeed, if p is a continuous seminorm, then its unit ball
contains one of the balls of the seminorms pn . Hence, starting with somem, the esti-
mate p � Cpn holds for alln � m. Consequently,

∑∞
k=m p(xk) < C

∑∞
k=m pk(xk) <

∞. This shows that the element x = ∑∞
k=1 xk exists. The conditions (b) and (c) ensure

that fn(x) = an .
Hence, all we need (if not in general in life, at least in the setting of this proof)

is to construct a sequence (xn) with the properties (a)–(c). The construction will be
carried out recursively.

The functional f1 is discontinuous with respect to the seminorm p1; hence, the
hyperplane X1 = {y ∈ X : f1(y) = a1} is p1-dense in X . In particular, X1 intersects
the ball B1 = {y ∈ X : p1(y) < 1/2}. Now as x1 we take any element of the set
X1 ∩ B1.

Next, suppose the vectors x1, . . . , xn−1 are already constructed; let us construct xn .
Consider the finite-codimensional subspace Y = ⋂n−1

k=1 Ker fk . Since the functionals
fk are pn-continuous for k < n, Y is a pn-closed subspace. By Lemma1, the restric-
tion of the functional fn toY is discontinuouswith respect to the seminorm pn . There-
fore, the hyperplane Xn = {y ∈ Y : fn(y) = an − ∑n−1

k=1 fn(xk)} is dense in Y with
respect to the seminorm pn+1. It follows that the ball Bn = {y ∈ Y : pn(y) < 2−n}
intersects the hyperplane Xn . For xn we take an arbitrary element of Xn ∩ Bn . The
fact that the vector xn belongs to Bn , Xn , andY guarantees the fulfillment of condition
(a), (b), and (c), respectively. �

Let us give a couple of exampleswhich demonstrate how the interpolation theorem
just proved applies in problems of mathematical analysis.

Theorem 2. For any sequence of scalars an, n = 0, 1, 2, . . ., there exists an infinitely
differentiable function x(t) on the interval [0, 1] such that x(0) = a0, x ′(0) = a1,…,
x (n)(0) = an,… .
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Proof. Observe that the natural approach to give the solution in the form of a Taylor

series x(t) = ∑∞
n=0

an
n ! t

n fails: if an tends rapidly to infinity, then the radius of

convergence of the Taylor series will be equal to zero. The interpolation theorem,
however, provides a very economical solution to the problem.

In the space C∞[0, 1] of infinitely differentiable functions on [0, 1], consider the
sequence of seminorms p0 � p1 � p2 � · · · given by

p0 = 0, p1(x) = max
t∈[0,1]|x(t)|, p2(x) = max{p1(x), p1(x ′)}, . . . ,

pn(x) = max{p1(x), p1(x ′), . . . , p1(x (n−1))}, . . . ,

and the sequence of functionals

f0(x) = x(0), f1(x) = x ′(0), . . . , fn(x) = x (n)(0), . . . .

The chosen sequence of seminorms gives on C∞[0, 1] the topology of uniform
convergence of functions and all their derivatives. In this topology the spaceC∞[0, 1]
is complete. Further, | fn(x)| � pn+1(x), i.e., the functional fn is continuous with
respect to pn+1.However, there is no constantC such that the inequality | fn| � Cpn is
satisfied, as one can readily verify by substituting into the inequality, say, the sequence
of functions xm(t) = sin(πmt). All the conditions of Theorem1 are satisfied, so it
remains only to apply it. �
Theorem 3. For any sequence of scalars (an), n = 1, 2, . . ., there exists a function
x(z) such that x(n) = an for all n.

Proof. In the space H(C) of entire functions consider the sequence of seminorms
p1 ≤ p2 ≤ · · · , pn(x) = max|z|�n−1 |x(z)|, and the functionals fn(x) = x(n). This
sequence of seminorms gives the topology of uniform convergence on compact sets,
in which the spaceH(C) is complete. Again, as in the preceding theorem, | fn(x)| �
pn+1(x),whereas there is noC such that | fn| � Cpn (substitute the functions xm(z) =
zm). And again, the sought-for function x(z) is obtained by applying Theorem1. �

A slightly more general variant of the interpolation theorem above and its appli-
cation to the moment problem can be found in B. M. Makarov’s work [70].

Exercises

1. Verify the correctness of the definition of the functional f̃ in the proof of Lemma1,
namely, that if q(x) = q(y), then f (x) = f (y). That is, that f̃ (qx) = f (x) depends
on qx , but not on x .

2. Let t1, . . . , t j be a finite collection of distinct points of the interval [0, 1], and
{an,k}n∈N∪{0},k∈{1,..., j} be numbers. Show that there exists a function x ∈ C∞[0, 1]
such that x (n)(tk) = an,k for all n ∈ N ∪ {0} and k ∈ {1, . . . , j}.
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3. Let zn ∈ C be an arbitrary collection of points (“interpolation nodes”). The fol-
lowing conditions are equivalent:

— for any sequence of scalars an , n = 1, 2, . . ., there exists an entire function x(z)
such that x(zn) = an for all n;

— zn 	= zm for n 	= m, and |zn| → ∞ as n → ∞.

4. For any sequence of scalars an , n = 1, 2, . . ., and any sequence of indices m1 <

m2 < m3 < . . . , there exists a “lacunary" entire function x(z) of the form x(z) =∑∞
k=1 bkz

mk such that x(n) = an for all n ∈ N.

A sequence xn of elements of a topological vector space X is said to be ω-linearly
independent if for any sequence of scalars bn , the equality

∑∞
k=1 bkxk = 0 implies

that all bn are equal to zero. The Erdős–Straus theorem (P. Erdős, E.G. Straus, 1953)4

asserts that in a normed space from any linearly independent sequence one can extract
an ω-linearly independent subsequence.

5. Suppose that the topological vector space X carries a continuous norm. Then from
any linearly independent sequence in X one can extract an ω-linearly independent
subsequence.

6. Consider the vectors x1 = (1, 2, 3, . . . , n, . . .), x2 = (12, 22, 32, . . . , n2, . . .),
x3 = (13, 23, 33, . . . , n3, . . .),…in the space RN. This sequence is linearly indepen-
dent, but it contains no ω-linearly independent subsequence. (Use Exercise4 above.)

7. The Bessaga–Pełczyński theorem (C. Bessaga, A. Pełczyński, 1957). If a com-
plete metrizable locally convex space X admits no continuous norm, then X contains
a real subspace isomorphic to R

N.

8. Deduce from the three preceding exercises that for a complete metrizable locally
convex space X the following conditions are equivalent:

— from any linearly independent sequence in X one can extract an ω-linearly
independent subsequence;

— there exists a continuous norm on X .

4During the preparation for publication of the second volume of his monograph [40], I. Singer
discovered a gap in the original proof of Erdős and Straus. He distributed a letter to other specialists
in the theory of bases, asking for an alternative proof of the result. Such proofs were obtained
by P. Terenzi and at about the same time by V.I. Gurariı̆, who back then, in 1980, was an active
participant in our Kharkiv seminar on the theory of Banach spaces. I have nostalgic memories about
those times: in the spring of 1980 I was a third-year student, and this was the first “mature” problem
to which I devoted serious thought. The example in Exercise6 — the fruit of this pondering — was
later mentioned by Singer in his monograph. One can imagine how proud I was for discovering this
example …It is amusing that I published this observation only after 10 years and a bit [56].
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16.3.4 Precompactness and Boundedness

Definition 1. A topological vector space space X is said to belong to the Montel
class (or to be a Montel space) if any closed bounded set in X is compact.

By Riesz’s theorem, a normed space is Montel only if it is finite-dimensional. At
the same time, many of the topological vector spaces arising naturally in problems of
analysis are Montel, despite being infinite-dimensional. In this subsection we shall
give examples of Montel space. The name “Montel class” comes fromMontel’s the-
orem, which establishes a compactness criterion in the spaceH(D) of holomorphic
functions. In modern complex analysis courses this theorem serves as the basis for
the proof of Riemann’s theorem on the existence of conformal maps (the Riemann
mapping theorem).

Definition 2. Let A, B be subsets of the linear space X . We say that the set A is
B-precompact (and write A ≺c B) if for any ε > 0 there exists a finite set Q such
that A ⊂ εB + Q.

If X is a normed space, then a subset A ⊂ X is precompact if and only if A ≺c BX .
A subset A of the topological vector space X is precompact if and only if A ≺c U
for all neighborhoods U of zero in the space X .

Theorem 1. The relation ≺c between subsets of a linear space X has the following
properties:

(a) if A ≺c B and A1 ⊂ A, then A1 ≺c B;

(b) if A ≺c B and B ⊂ B1, then A ≺c B1;

(c) if A ≺c B and t > 0, then A ≺c t B;

(d) if A1 ≺c B and A2 ≺c B, then A1 ∪ A2 ≺c B;

(e) if A ≺c B, Y is a linear subspace, and T : X → Y is a linear operator, then
T (A) ≺c T (B);

(f) if A1 ≺c B, A2 ≺c B, and B is a convex set, then A1 + A2 ≺c B;

(g) if A ≺c B and B − B ⊂ U, then A ≺c U; moreover, for any ε > 0 there exists
a finite set Q such that Q ⊂ A and A ⊂ εU + Q;

(h) let A ≺c B, B a convex balanced set, Y a linear space, T : Y → X a linear
operator, and A ⊂ T (Y ). Then T−1(A) ≺c T−1(B).

Proof. Properties (a)–(e) are obvious. Let us prove the remaining properties.

(f) Fix ε > 0. Let Q1, Q2 ⊂ X be finite sets for which A1 ⊂ (ε/2)B + Q1,
and A2 ⊂ (ε/2)B + Q2. Then A1 + A2 ⊂ (ε/2)B + (ε/2)B + Q1 + Q2. Thanks to
convexity, (1/2)B + (1/2)B ⊂ B, and hence A1 + A2 ⊂ εB + Q1 + Q2. It remains
to note that the set Q1 + Q2 is finite.

(g) By hypothesis, there exists a finite set Q1 ⊂ X such that A ⊂ εB + Q1. Let us
introduce a mapping f : Q1 → A with the property that for any q ∈ Q1, if q + εB
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intersects A, then f (q) ∈ (q + εB) ∩ A. We claim that A ⊂ εU + f (Q1), i.e., that
f (Q1) can be taken as the required set Q. Indeed, for every a0 ∈ A there exists a
q ∈ Q1 such that a0 ∈ q + εB. For this vector q the sets q + εB and A intersect (a0
is one of the intersection points), and so f (q) ∈ (q + εB) ∩ A. We have

a0 ∈ q + εB = f (q) + εB + (q − f (q)) ⊂ f (q) + εB − εB ⊂ f (q) + εU.

(h) Since, by property (c), A ≺c (1/2)B and (1/2)B − (1/2)B ⊂ B, the property
(g) proved above says that for any ε > 0 there exists a finite set Q ⊂ A such that A ⊂
εB + Q. Then Q ⊂ T (Y ), and we can construct a mapping f : Q → Y such that
T ( f (q)) = q for all q ∈ Q. Let us show that T−1(A) ⊂ εT−1(B) + f (Q). Let y ∈
T−1(A). Then T (y) ∈ A, and there exist a b ∈ B and a q ∈ Q such that T (y) = q +
εb. Since T ( f (q)) = q, we have T (y − f (q)) = εb, i.e., (y − f (q))/ε ∈ T−1(B).
Consequently, y = ε(y − f (q))/ε + f (q) ∈ εT−1(B) + f (Q). �
Theorem 2. Suppose X is a complete topological vector space and for every neigh-
borhood U of zero there exists a neighborhood V of zero such that V ≺c U. Then X
belongs to the Montel class.

Proof. In view of the completeness of the space X , it suffices to prove that every
bounded subset A ⊂ X is precompact (Theorem5 in Subsection16.2.2). So, let A
be bounded andU be an arbitrary neighborhood of zero. By hypothesis, there exists
a neighborhood of zero V with V ≺c U . By the definition of boundedness, A ⊂ nV
for n large enough. By items (a) and (c) in the preceding theorems, A ⊂ nV ≺c nU ,
that is, A ≺c U . �
Example 1. The spaceH(D) of holomorphic functions on a domain D ⊂ C belongs
to the Montel class.

To verify this, we use Theorem2. Let U be an arbitrary neighborhood of zero
in H(D). Recalling the definition of the topology on H(D) (Exercise4 in Sub-
section16.3.1), we may assume that U is the unit ball of the seminorm pK ( f ) =
maxz∈K | f (z)|, where K is a compact subset of D, and without loss of generality we
may assume that K is a finite union of closed disks. Consider a rectifiable contour
� ⊂ D which includes K in its interior; denote by K1 the compact set which includes
K and has � as its boundary, and by V the unit ball of the seminorm pK1 . We show
that V ≺c U . Let δ = min{|z − ζ | : z ∈ K , ζ ∈ �}, and l be the length of the contour
�. By the Cauchy integral formula for the derivative, for any function f ∈ V and
any z ∈ K we have

| f ′(z)| � 1

2π

∣
∣
∣
∣

∫

�

f (ζ )dζ

(z − ζ )2

∣
∣
∣
∣ � 1

2π

pK1( f )

δ2
l � l

2πδ2
.

Thus, the first derivatives of the functions in the family V are uniformly bounded on
K . Further, the family V itself is bounded in modulus on K (and even on the larger
compact set K1) by 1. By Arzelà’s theorem, V is precompact if regarded as a subset
of C(K ).
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Now consider the operator T : H(D) → C(K ) which maps each function into
the restriction of the function to K . The fact that we just proved can be formulated
as follows: the set T (V ) is precompact in C(K ). In other words, T (V ) ≺c BC(K ).
Since T−1(BC(K )) = U , item (h) of Theorem1 shows that V ≺c U . �

Example 2. The space C∞[0, 1] belongs to the Montel class.
Recall that the topology of the spaceC∞[0, 1] is given by the family of seminorms

pn( f ) = maxt∈[0,1] | f (n)(t)|, n = 0, 1, 2, . . .. Denote the unit ball of the seminorm
pn by Bn . A neighborhood basis of zero is provided by the sets rUn , where r >

0, and Un = ⋂n
k=0 Bk = { f ∈ C∞[0, 1] : maxk=0,1,...,n maxt∈[0,1]| f (k)(t)| < 1}. By

Theorem2, to justify our example it suffices to show that Un+1 ≺c Un for all n =
0, 1, 2, . . .. We proceed by induction on n.

n = 0. Consider the identity embedding operator T : C∞[0, 1] → C[0, 1]. The
set T (U1) (which coincides with U1) consists of infinitely differentiable functions
that obey the conditions | f (t)| < 1 and | f ′(t)| < 1 for all t ∈ [0, 1]. By Arzelà’s
theorem, T (U1) is precompact in C[0, 1], i.e., T (U1) ≺c BC[0,1]. According to item
(h) of Theorem 1, U1 ≺c T−1(BC[0,1]) = U0.

n→n+1. SupposeUn+1≺cUn . Consider the integrationoperatorG : C∞[0, 1] →
C∞[0, 1], (G f )(t) = ∫ t

0 f (τ )dτ . By item (e) of Theorem1, G(Un+1) ≺c G(Un).
Since G(Un) ⊂ Un+1, we deduce that

G(Un+1) ≺c Un+1. (1)

On the other hand, since every function f ∈ Un+2 can be represented as f (t) =
f (0)+∫ t

0 f ′(τ )dτ ,where f ′ ∈Un+1, and | f (0)| < 1,wehaveUn+2 ⊂ A + G(Un+1),
where A consists of constants smaller than 1 in modulus. Condition (1) combined
with the obvious condition A ≺c Un+1 (A is a one-dimensional bounded set) allows
us to apply assertion (f) of Theorem2:Un+2 ⊂ A + G(Un+1) ≺c Un+1, as we needed
to prove.

Exercises

1. Show that C∞(0,+∞) is a Montel space.

2. Every linear space X equipped with the strongest locally convex topology is a
Montel space. Moreover, in such a space every bounded set is finite-dimensional.

3. Any Tikhonov product of Montel spaces is a Montel space.

4. Any closed subspace of a Montel space is itself a Montel space.



Chapter 17
Elements of Duality Theory

17.1 Duality in Locally Convex Spaces

17.1.1 The General Notion of Duality. Polars

Definition 1. Let X , Y be linear spaces over the same fieldK = R orC. A mapping
that to each pair of elements (x, y) ∈ X × Y assigns a number 〈x, y〉 ∈ K is called
a duality pairing (or duality mapping, or simply a duality) if:

(a) 〈x, y〉 is a bilinear form:

〈a1x1 + a2x2, y〉 = a1〈x1, y〉 + a2〈x2, y〉;
〈x, a1y1 + a2y2〉 = a1〈x, y1〉 + a2〈x, y2〉;

(b) 〈x, y〉 satisfies the non-degeneracy condition:

— for every x ∈ X \ {0} there exists an y ∈ Y such that 〈x, y〉 �= 0, and

— for every y ∈ Y \ {0} there exists an x ∈ X such that 〈x, y〉 �= 0.

A pair of spaces X , Y with a duality pairing given on them is called a dual pair,
or a pair of spaces in duality.

As in the previous chapter, in order to avoid treating separately the real and
complex cases, we will tacitly assume that K = C. The simpler case of real spaces
differs from the complex one only by absence of the symbol Re when one applies
the Hahn–Banach separation theorem.

For us the most important example of a dual pair will consist of a locally convex
space X and its dual space Y = X∗, with the duality pairing given by the evaluation
of functionals on elements: 〈x, y〉 = y(x). To a certain extent this example describes
the general situation.

Definition 2. Let (X,Y ) be a dual pair. For each element y ∈ Y we define its action
on the elements of the space X by the rule y(x) = 〈x, y〉. With this definition every
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element y ∈ Y becomes a linear functional on X , i.e., Y ⊂ X ′. The weak topology
on X is defined as the topology σ(X,Y ) introduced in Definition 1 of Subsection
16.3.2. That is, a neighborhood basis of zero in the topology σ(X,Y ) is given by
the family of sets

{
x ∈ X : maxy∈G |〈x, y〉| < ε

}
, where ε > 0 and G runs over all

finite subsets of the space Y .

Axiom (b) of a dual pair guarantees that the weak topology is separated. By
Theorem 1 of Subsection 16.3.2, (X, σ (X,Y ))∗ = Y , so that any dual pair can be
regarded as a pair of the form (X, X∗). Nevertheless, the general definition of a
dual pair has its own merit: in that definition, the spaces X and Y play completely
equivalent roles. In particular, we could equally successfully regard the elements of
the space X as functionals on Y and consider the weak topology σ(Y, X) already on
the space Y . This equivalence of the roles played by the two spaces allows one to
transfer, by symmetry, the properties of one of the spaces in a dual pair to the other
space.

Recall that σ(X,Y ) is theweakest topology inwhich all functionals y ∈ Y , i.e., all
functionals of the form y(x) = 〈x, y〉, are continuous. In particular, if X is a locally
convex space and Y = X∗, then σ(X,Y ) is weaker (possibly not strictly) than the
initial topology of the space X . This remark can be taken as a justification of the
term “weak topology”.

Let us mention yet another important connection between the original topology
of a locally convex space X and the weak topology σ(X, X∗).

Theorem 1. Any convex closed subset of a locally convex space X is also closed in
the weak topology σ(X, X∗). In particular, every closed linear subspace of a locally
convex space X is σ(X, X∗)-closed.

Proof. Let A ⊂ X be a convex closed subset. Let us pick an arbitrary point x ∈ X \ A
and show that x is not a σ(X, X∗)-limit point of the set A. Since A is closed, there
exists an open neighborhood U of the point x such that U ∩ A = ∅. Since the space
X is locally convex, we may assume that the neighborhood U is convex. By the
geometric form of the Hahn–Banach theorem, there exist a functional f ∈ X∗ \ {0}
and a scalar θ ∈ R such that Re f (u) < θ for all u ∈ U and Re f (a) � θ for all
a ∈ A. In particular, Re f (x) < θ . Since f , and together with it Re f are σ(X, X∗)-
continuous functions, the point x , at which Re f (x) < θ , cannot be a σ(X, X∗)-limit
point for the set A, on which Re f (a) � θ . �

Definition 3. Let (X,Y ) be a dual pair. The polar of the set A ⊂ X is the set A◦ ⊂ Y ,
defined by the following rule: y ∈ A◦ if |〈x, y〉| � 1 for all x ∈ A. The polar A◦ ⊂ X
of a set A ⊂ Y is defined by symmetry.

The annihilator of the set A ⊂ X is the set A⊥ ⊂ Y consisting of all elements
y ∈ Y such that 〈x, y〉 = 0 for all x ∈ A. Obviously, A⊥ ⊂ A◦, and, by Lemma 2
of Subsection 16.3.2, if A is a linear subspace, then A⊥ = A◦. Moreover, A⊥ =
(Lin A)⊥.

Example 1. Consider the pair (X, X∗), where X is a Banach space. Then (BX )◦ =
BX∗ . Indeed,
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f ∈ BX∗ ⇐⇒ ‖ f ‖ � 1 ⇐⇒ sup
x∈BX

| f (x)| � 1 ⇐⇒ f ∈ (BX )◦.

Theorem 2. Polars possess the following properties:

(i) If A ⊂ B, then A◦ ⊃ B◦.
(ii) {0X }◦ = Y and X◦ = {0Y }, where 0X and 0Y are the zero elements of the spaces

X and Y , respectively.

(iii) (λA)◦ = 1
λ
A◦ for any λ �= 0.

(iv)
(⋃

A∈E A
)◦ = ⋂

A∈E A◦ for any family E of subsets of the space X. In partic-
ular, (A1 ∪ A2)

◦ = A◦
1 ∩ A◦

2.

(v) For any point x ∈ X, the set {x}◦ is a convex balanced σ(Y, X)-closed neigh-
borhood of zero.

(vi) The polar of any set is a convex balanced σ(Y, X)-closed set.

(vii) The sets of the form A◦, where A runs over all finite subsets of the space X,
constitute a neighborhood basis of zero in the topology σ(Y, X).

Proof. Properties (i)–(iv) are obvious. The fact that the set

{x}0 = {y ∈ Y : |〈x, y〉| � 1} = {y ∈ Y : |x(y)| � 1}
= x−1 ({λ ∈ C : |λ| � 1}) (1)

is convex and balanced is a consequence of the linearity of x as a functional on
Y . Since C1 = {λ ∈ C : |λ| � 1} is a closed neighborhood of zero in C, and the
functional x is continuous in the σ(Y, X)-topology, relation (1) means that {x}◦
is a σ(Y, X)-closed neighborhood of zero. This establishes property (v). Property
(vi) follows from (v) thanks to property (iv): A◦ = ⋂

x∈A {x}◦, and the intersection
operation does not destroy the properties of convexity, closedness, and balancedness.

Now let us turn to property (vii). If the subset A ⊂ X is finite, then A◦ =⋂
x∈A {x}◦ is a finite intersection of σ(Y, X)-neighborhoods. Hence, the polar

of a finite set is a weak neighborhood. Further, by definition, every σ(Y, X)-
neighborhoodcontains a set of the formUG,ε = {

y ∈ Y : maxg∈G |g(x)| < ε
}
,where

G = {g1, g2, . . . , gn} ⊂ X and ε > 0. For A = 1
2εG we have UG,ε ⊃ A◦. That is,

every σ(Y, X)-neighborhood contains a set of the form A◦, with A ⊂ X finite. �
Corollary 1. The annihilator of any set A ⊂ X is a σ(Y, X)-closed linear subspace.

Proof. The linearity is verified directly, while σ(Y, X)-closedness follows, for exam-
ple, from property (vi) above and the relations A⊥ = (Lin A)⊥ = (Lin A)◦. �

Similarly to how with a convex sets one associates its convex hull, and with a
subspace its linear hull (span), convex balanced sets lead to the absolute convex hull
construction.

Definition 4. Let X be a linear space. An absolutely convex combination of a finite
collection of elements {xk}nk=1 ⊂ X is any sum

∑n
k=1 λk xk , where λk are scalars with
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∑n
k=1 |λk | � 1. The absolutely convex hull of the set A in the linear space X is the

set aconvA consisting of all absolutely convex combinations of elements of A. The
closure of the set aconv A in the topology τ is denoted by τ -aconvA or, if the context
makes it clear, simply by aconvA.

Exercises

1. Consider the real dual pair (R2,R2)with the scalar product as the duality pairing.
Construct in the plane the polars of the following sets:

— {(0, 1)};
— {(1, 1)};
— {(1, 1), (0, 1)};
— {(x1, x2) : |x1| + |x2| � 1};
— {(x1, x2) : |x1|2 + |x2|2 � 1}.
2. Consider the pair (X,Y ), where X = Y = C[0, 1]. Which of the expressions
listed below give a duality on this pair?

— 〈 f, g〉 = ∫ 1
0 f (t)g(t)dt ;

— 〈 f, g〉 = ∫ 1/2
0 f (t)g(t)dt ;

— 〈 f, g〉 = ∫ 1/2
0 f (t)g(t)dt − ∫ 1

1/2 f (t)g(t)dt ;

— 〈 f, g〉 = ∫ 1
0 f 2(t)g(t)dt ;

— 〈 f, g〉 = ∫ 1
0 f (t2)g(t)dt ;

— 〈 f, g〉 = f (0)g(0);

— 〈 f, g〉 = ∫ 1
0 f (t)g(t)dt + f (0)g(0).

3. Let A be a subset of a linear space X . Then aconv A is a convex balanced set.

4. Any convex balanced set containing the set A also contains aconvA.

5. aconvA is equal to the intersection of all convex balanced sets containing A.

6. Let A be a subspace of the linear space X . Then aconvA = A.

7. Let A be a subset of a topological space X . Then aconvA is the smallest, with
respect to inclusion, closed convex balanced set containing A.
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8. Let (X,Y ) be a dual pair, A ⊂ X . Then (aconvA)◦ = A◦.

9. Consider on X the weak topology σ(X,Y ). Then the polar of any set coincides
with the polar of its closure. Further, (aconvA)◦ = A◦ for any set A ⊂ X .

10. For any dual pair (X, X∗), where X is a Banach space, describe explicitly the
neighborhoods of zero in the topologies σ(X, X∗) and σ(X∗, X).

11. Is the open unit ball in a Banach space X a σ(X, X∗)-open set?

12. Is the closed unit ball in a Banach space X a σ(X, X∗)-closed set?

Note that the number of elements in an absolutely convex combination can be
arbitrarily large. Consequently, even for a compact set A the absolutely convex hull
is not necessarily closed: aconvA will contain, in particular, the infinite sums of the
form

∑∞
k=1 λk xk with

∑∞
k=1 |λk | � 1.

13. On the following example, convince yourself that aconvA is not exhausted by
the sums

∑∞
k=1 λk xk with

∑∞
k=1 |λk | � 1. Let A = {xn = e1 + en+1 : n ∈ N}, where

en is an orthonormal system in theHilbert space H . Then the vector e1 lies in aconvA,
but cannot be written as

∑∞
k=1 λk xk .

14. In a finite-dimensional space the absolutely convex hull of any closed bounded
set is closed.

17.1.2 The Bipolar Theorem

Let (X,Y ) be a dual pair, A ⊂ X . Then A◦ ⊂ Y , and now one can consider the polar
of A◦.

Definition 1. The set (A◦)◦ ⊂ X is called the bipolar A ⊂ X and is denoted by A◦◦.

Theorem 1. The bipolar A◦◦ of a set A ⊂ X coincides with the σ(X,Y )-closed
absolutely convex hull of A.

Proof. First, we note that A◦◦ ⊃ A. Indeed, if x ∈ A, then by the definition of the
set A◦, |〈x, y〉| � 1 for any y ∈ A◦. But this means precisely that x belongs to the
polar A◦.

Further, the bipolar is a particular case of a polar. Therefore, by assertion (vi) in
Theorem2of Subsection 17.1.1, A◦◦ is a convex balancedσ(X,Y )-closed set.Hence,
A◦◦ ⊃ aconv A. To prove the opposite inclusion, pick an arbitrary point x0 ∈ X \
aconvA, and let us show that x0 /∈ A◦◦. Indeed, since x0 /∈ aconvA and aconvA is a
convex balancedσ(X,Y )-closed set, theHahn–Banach theorem in the form indicated
in Exercise 9 in Subsection 16.3.1 says that there exists a σ(X,Y )-continuous linear
functional y on X such that
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I. |y(x)| � 1 for all x ∈ aconvA, and

II. |y(x0)| > 1.

But every σ(X,Y )-continuous linear functional is an element of the space Y .
Condition I means that y ∈ (aconvA)◦ ⊂ A◦. But then condition II means that x0 /∈
A◦◦, as we needed to show. �

Corollary 1. If A ⊂ X is a σ(X,Y )-closed convex and balanced set, then A◦◦ = A.
In particular, B◦◦◦ = B◦ for any set B ⊂ Y .

Corollary 2. A⊥⊥ = Lin A for any set A ⊂ X. If A is a linear subspace, then A⊥⊥ =
A. Finally, B⊥⊥⊥ = B⊥ for any B ⊂ Y .

Proof. A⊥⊥ = (A⊥)⊥ = ((Lin A)⊥)⊥ = (Lin A)◦◦ = Lin A. �

Corollary 3. If A1, A2 ⊂ X are σ(X,Y )-closed convex and balanced sets, then the
equality A1 = A2 is equivalent to the equality A◦

1 = A◦
2. Moreover, if A1, A2 are

subspaces, then the equality A1 = A2 is equivalent to the equality A⊥
1 = A⊥

2 .

Proof. If two sets are equal, then their polars are also equal, so the implication
A1 = A2 =⇒ A◦

1 = A◦
2 is obvious with no supplementary restrictions on the sets.

Conversely, if A◦
1 = A◦

2, then A◦◦
1 = A◦◦

2 , and it remains to use the bipolar theorem.
�

Recall that the spaces figuring in a dual pair (X,Y ) play equivalent roles, and all
assertions concerning the polars and bipolars of subsets of the space X are valid, upon
exchanging the roles of the spaces in the dual pair, for the subsets of the space Y .

Theorem 2. Let (X,Y ) be a dual pair and A be a subset of Y . Then the following
conditions are equivalent:

(i) the set of functionals A ⊂ Y separates the points of the space X;

(ii) A⊥ = {0};
(iii) A⊥⊥ = Y ;

(iv) the linear span of the set A is σ(Y, X)-dense in Y .

Proof. (i) =⇒ (ii). The inclusion A⊥ ⊃ {0} holds always. If now x ∈ X \ {0}, then
according to (i), there exists an y ∈ A such that 〈x, y〉 �= 0. Consequently, x /∈ A⊥.

(ii) =⇒ (i). Let x ∈ X \ {0}. Then x /∈ A⊥, and so there exists an y ∈ A such that
〈x, y〉 �= 0.

(ii)⇐⇒ (iii). Since A⊥ and {0} areσ(X,Y )-closed subspaces, Corollary 3 applies.

(iii) ⇐⇒ (iv). By Corollary 2, A⊥⊥ = Lin A.
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Exercises

1. Construct in the plane the bipolars of the sets from Exercise 1 of Subsection
17.1.1.

2. Consider the real dual pair (X,Y ), where X = Y = R
2, with the duality pairing

〈x, y〉 = x1y2 − 2x2y1. Construct the polars and bipolars of the following subsets of
the space X :

— {(0, 1)};
— {(1, 1)};
— {(1, 1), (0, 1)};
— {(x1, x2) : |x1| + |x2| � 1};
— {(x1, x2) : |x1|2 + |x2|2 � 1}.
3. Do the polars of the above sets change if they are regarded as subsets of Y ? Do
the bipolars change?

4. Consider the real dual pair (X,Y ), where X = C[0, 1] and Y = L1[0, 1], with
the duality pairing 〈 f, g〉 = ∫ 1

0 f (t)g(t)dt . Construct the polars and bipolars of the
following subsets of the space X :

— { f ∈ C[0, 1] : f (t) > 0 for all t ∈ [0, 1]};
— { f ∈ C[0, 1] : 0 � f (t) � 1 for all t ∈ [0, 1]};
— { f ∈ C[0, 1] : f (t) = 0 for all t ∈ [0, 1/2]}.

5. Consider the same sets of continuous functions as subsets of the space Y =
L1[0, 1]. Construct their polars and bipolars with respect to the duality from the
preceding exercise.

17.1.3 The Adjoint Operator

Definition 1. Let X1, X2 be linear spaces, and let T : X1 → X2 be a linear operator.
The algebraic adjoint (or algebraic conjugate, or algebraic dual) of the operator T
is the operator T ′ : Y ′ → X ′ acting as T ′ f = f ◦ T .

Further, let (X1,Y1), (X2,Y2) be dual pairs, and T : X1 → X2 a linear operator.
We say that an adjoint operator T ∗ : Y2 → Y1 exists for T if for any y ∈ Y2 there
exists an element T ∗y ∈ Y1, such that 〈T x, y〉 = 〈x, T ∗y〉 for all x ∈ X1.

Treating the elements of the spaces Y1 and Y2 as functionals on the space X1 and
X2, respectively, we see that T ∗y = y ◦ T , which explains the correctness of the
definition and the linearity of the operator T ∗. Clearly, an adjoint operator exists for
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the operator T if and only if T ′(Y2) ⊂ Y1, and in this case T ∗ is the restriction of
the algebraic adjoint T ′ to Y2. For dual pairs (X1, X∗

1), (X2, X∗
2), where X1 and X2

are Banach spaces, the new definition of adjoint (conjugate, or dual) operator agrees
with the already familiar definition of the adjoint (conjugate, or dual) of an operator
in Banach spaces.

Let us mention a few simple facts.

Theorem 1. Let X1, X2 be locally convex spaces, and let T : X1 → X2 be a
continuous linear operator. Then there exists the adjoint operator T ∗ : X∗

2 → X∗
1

for T .

Proof. Let f ∈ X∗
2 . Then the functional T

′ f = f ◦ T is continuous, as the compo-
sition of two continuous mappings. Therefore, T ′(X∗

2) ⊂ X∗
1 . �

Theorem 2. Let (X1,Y1), (X2,Y2) be dual pairs, and let T : X1 → X2 be a linear
operator, and T ∗ : Y2 → Y1 its adjoint. Then for any set A ⊂ Y2,

T−1(A◦) = (T ∗A)◦. (2)

Proof. We have

x ∈ T−1(A◦) ⇐⇒ T x ∈ A◦ ⇐⇒ ∀y ∈ A, |〈T x, y〉| � 1

⇐⇒ ∀y ∈ A, |〈x, T ∗y〉| � 1 ⇐⇒ ∀z ∈ T ∗A, |〈x, z〉| � 1 ⇐⇒ x ∈ (T ∗A)◦.
�

Theorem 3. Let (X1,Y1), (X2,Y2) be dual pairs, and let T : X1 → X2 be a linear
operator. Then the following conditions are equivalent:

(a) the operator T has an adjoint;

(b) T is weakly continuous, i.e., continuous as an operator acting
from (X1, σ (X1,Y1)) to (X2, σ (X2,Y2)).

Proof. (a) =⇒ (b). In view of the linearity, it suffices to verify the continuity of the
operator at zero. Recall (item (vii) Theorem 2 in Subsection 17.1.1) that a neighbor-
hood basis of zero in the topology σ(X2,Y2) is provided by the polars of the finite
subsets A ⊂ Y2. By relation (2), the preimage T−1(A◦) of the neighborhood A◦ is
itself the polar (T ∗A)◦ of the finite set T ∗A ⊂ Y1. That is, T−1(A◦) is a neighborhood
of zero in σ(X1,Y1).

By Theorem 1 of Subsection 16.3.2, which describes the dual space of a space
equipped with the weak topology, the implication (b) =⇒ (a) is a particular case of
Theorem 1. �

Theorems 1 and 3 admit the following consequence.

Corollary 1. Let X1, X2 be locally convex spaces, and let T : X1 → X2 be a con-
tinuous linear operator. Then T is weakly continuous, i.e., it is continuous in the
topologies σ(X1, X∗

1) and σ(X2, X∗
2).
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Switching the roles of spaces in dual pairs, we obtain the following statement.

Theorem 4. (I) Let (X1,Y1), (X2,Y2) be dual pairs, and let T : X1 → X2 be a
weakly continuous linear operator. Then the adjoint operator T ∗ : Y2 → Y1 is con-
tinuous in the weak topologies σ(Y2, X2), σ(Y1, X1).

(II) For the operator R : Y2 → Y1 to be the adjoint of some weakly continuous
operator acting from X1 to X2 it is necessary and sufficient that R is continuous in
the topologies σ(Y2, X2), σ(Y1, X1).

Proof. (I) The formula 〈T x, y〉 = 〈x, T ∗y〉 says that the operator T ∗ has an adjoint:
(T ∗)∗ = T . By Theorem 3, applied to T ∗ instead of T , the operator T ∗ is weakly
continuous.

(II) The necessity of the condition follows from assertion (I). Now suppose R
is continuous in the topologies σ(Y2, X2) and σ(Y1, X1). Then R has an adjoint
R∗ : X1 → X2. By (I), the operator R∗ is weakly continuous. Hence, there exists
the adjoint (R∗)∗ : Y2 → Y1. Since 〈x, (R∗)∗y〉 = 〈R∗x, y〉 = 〈x, Ry〉, we see that
R = (R∗)∗, and so we have proved that R is an adjoint operator, more precisely, the
adjoint of R∗. �

Recall that in Subsection 9.4.1 we established the following result. Let X1, X2 be
Banach spaces, and T : X1 → X2 a continuous operator. Then T ∗(X∗

2) ⊂ (Ker T )⊥.
In particular, if the operator T ∗ is surjective, then T is injective. We are now ready
to make this result more precise.

Theorem 5. Let X1, X2 be locally convex spaces, and let T : X1 → X2 be a con-
tinuous linear operator. Then:

(a)
(
T ∗(X∗

2)
)⊥ = Ker T .

(b) (Ker T )⊥ coincides with the σ(X∗
1, X1)-closure of the subspace T ∗(X∗

2).

(c) The operator T is injective if and only if the image of the operator T ∗ is
σ(X∗

1, X1)-dense in X∗
1 .

Proof. (a) Using Theorem 2 and the equality of the polars and annihilators of sub-
spaces, we have

(T ∗(X∗
2))

⊥ = (T ∗(X∗
2))

◦ = T−1((X∗
2)

◦) = T−1(0) = Ker T .

(b) follows from (a) via a direct application of Corollary 2 of the bipolar theorem.

Finally, to prove (c), we remark that injectivitymeans thatKer T = {0}. Both sides
of this equality are closed (and hence, byTheorem1of Subsection 17.1.1, alsoweakly
closed) subspaces of X1. By Corollary 3, Ker T = {0} if and only if (Ker T )⊥ = X∗

1 ,
which in view of (b) is equivalent to T ∗(X∗

2) being σ(X∗
1, X1)-dense in X∗

1 . �
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Exercises

1. Apply Theorem 2 of Subsection 17.1.2 to prove Theorem 5.

2. Under the assumptions of Theorem 5, the operator T is injective if and only if
the image of the operator T ∗ separates the points of X1.

3. Consider the pair of spaces (X,Y ), where X is the space of infinitely differentiable
functions f on the interval [0, 1] that obey the conditions f (0) = f (1) = 0, and
Y = C∞[0, 1]. Equip this pair with the duality pairing 〈 f, g〉 = ∫ 1

0 f (t)g(t)dt . Let
T : X → X be the differentiation operator: T f = d f /dt . Does T admit an adjoint
operator T ∗ : Y → Y ? Is T a weakly continuous operator?

4. In the preceding exercise, replace Y by C[0, 1]. Do the conclusions change?
5. Endow the pair (X,Y ) considered in Exercise 3 above with an another duality
pairing, given by 〈 f, g〉 = ∫ 1

0 f (t)g(t2)dt . What is T ∗ equal to in this case?

17.1.4 Alaoglu’s Theorem

Let X be a linear space. The Cartesian power CX is the linear space of all complex-
valued functions on X , and X ′ is the space of linear functionals on X . Every functional
is a complex-valued function, so X ′ can be regarded as a subspace of CX . Equip
C

X with the Tikhonov product topology. Then C
X becomes a locally convex space

with the topology given by the neighborhood basis of zero consisting of the sets
UG,ε = { f ∈ C

X : maxx∈G | f (x)| < ε}, where G runs over all finite subsets of the
space X and ε > 0.

Theorem 1.
(
X ′, σ (X ′, X)

)
is a closed subspace of the topological vector space

C
X . In other words,

(i) X ′ is closed in CX , and

(ii) the topology induced by CX on X ′ coincides with the weak topology σ(X ′, X).

Proof. (i) For any x1, x2 ∈ X and a1, a2 ∈ C, define the function Fx1,x2,a1,a2 : CX →
C by the formula

Fx1,x2,a1,a2( f ) = f (a1x1 + a2x2) − a1 f (x1) − a2 f (x2).

An element f ∈ C
X is a linear functional if and only if Fx1,x2,a1,a2( f ) = 0 for all

x1, x2 ∈ X and all a1, a2 ∈ C. In other words,

X ′ =
⋂

x1,x2,a1,a2

Ker Fx1,x2,a1,a2 .
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All the functionals Fx1,x2,a1,a2 are continuous, being linear combinations of coordinate
projectors. Hence, their kernels are closed, and so their intersection X ′ is also closed.

(ii) It suffices to recall that the neighborhoods of zero in the topology σ(X ′, X)

are defined by means of the duality pairing 〈 f, x〉 = f (x) on the dual pair (X ′, X).
In other words, a neighborhood basis of zero in the topology σ(X ′, X) is given by
the sets { f ∈ X ′ : maxx∈G | 〈 f, x〉 | < ε} = UG,ε ∩ X ′. �

Theorem 2. Let U be an absorbing subset of the linear space X. Then the polar
U ◦ ⊂ X ′ is σ(X ′, X)-compact.

Proof. By Theorem 1, it suffices to establish the compactness of U ◦ as a subset
of the Tikhonov power CX . First, note that the polar U ◦ is σ(X ′, X)-closed in X ′,
and X ′, in turn, is closed in C

X by Theorem 1. Hence, U ◦ is closed as a subset of
the Tikhonov product CX . Next, for any x ∈ X denote by n(x) the smallest number
n ∈ N for which x ∈ nU . Then for any x ∈ X and any f ∈ U ◦ one has the estimate
| f (x)| � n(x). This means that U ◦ ⊂ ∏

x∈X Cn(x), where Cn(x) denotes the closed
disc in C centered at zero and of radius n(x). By Tikhonov’s theorem on products
of compact sets,

∏
x∈X Cn(x) is compact CX . Therefore, U ◦ is a closed subset of a

compact set, and as such is compact. �

Corollary 1. Let U be a neighborhood of zero in the locally convex space X. Then
U ◦ ⊂ X∗ is σ(X∗, X)-compact.

Proof. Consider first the dual pair (X, X ′). The polar of the set U in X ′ consists of
functionals that are bounded on the neighborhoodU , i.e., of continuous functionals.
Therefore, one can equally well consider the polar U ◦ in the dual pair (X, X ′) or
in the dual pair (X, X∗) — we obtain the same set U ◦ ⊂ X∗. By Theorem 2, U ◦
is σ(X ′, X)-compact. It remains to remark that on X∗ the topologies σ(X ′, X) and
σ(X∗, X) coincide. �

Corollary 2 (L. Alaoglu, 1940).1 Let X be a Banach space. Then the closed unit
ball of the dual Banach space X∗ is σ(X∗, X)-compact.

Proof. Indeed, BX∗ = (BX )◦. �

Recall that in an infinite-dimensional Banach space with the norm topology balls
cannot be compact (Riesz’s theorem, Subsection 11.2.1). This restricts considerably
the applicability of geometric intuition in the infinite-dimensional case: as it turns out,
all arguments relying on the extraction of a convergent subsequence from a bounded
sequence are prohibited. However, Alaoglu’s theorem gives rise to the hope that this

1Alaoglu proved this assertion by generalizing results of Banach obtained earlier in the language
of pointwise convergent sequences and transfinite sequences of functionals. For this reason, the
theorem is often referred to as the Banach–Alaoglu theorem. For locally convex spaces (Corollary 1)
the theoremwas first obtained byBourbaki (NicolasBourbaki is the collective pseudonymof a group
of mainly French mathematicians). Note, however, that this formulation, like Theorem 2, differs
only slightly in content and proof from the original variant of Alaoglu’s theorem.
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prohibition can be partially lifted, at least in dual spaces, and not for the convergence
in norm, but in the weaker, σ(X∗, X)-convergence. A difficulty we still need to face
is that Alaoglu’s theorem deals with compactness, not sequential compactness; that
is, the possibility of extracting convergent subsequences remains under question at
this point. This issue will be studied in detail in Sect. 17.2. For the moment, before
taking leave from the general theory of duality and passing to the Banach spaces so
dear to the author, we will formulate in a series of exercises several additional results,
in particular, an important theorem of Mackey and Arens which describes, for a dual
pair (X,Y ), those topologies on X for which X∗ = Y . For a detailed exposition the
reader is referred to the textbook [37].

Exercises: Topology of Uniform Convergence

Let (X,Y ) be a dual pair.

1. For a set A ⊂ Y to be σ(Y, X)-bounded it is necessary and sufficient that its polar
A◦ ⊂ X is absorbing.

2. Let τ be a locally convex topology on X . Then for a functional y ∈ Y to be τ -
continuous it is necessary and sufficient that the set {y}◦ is a neighborhood of zero
in the topology τ .

A family C of subsets of the space Y is said to be admissible if it obeys the
following conditions:

— {y} ∈ C for any y ∈ Y ;

— for any A ∈ C and any scalar λ, the set λA also belongs to C;

— if A, B ∈ C, then there exists a C ∈ C such that A ∪ B ⊂ C ;

— any element A ∈ C is bounded in the topology σ(Y, X).

3. Show that the following families of subsets of a space Y are admissible:

— the family Fin(Y ) of all finite subsets;

— the family Comp(Y ) of all absolutely convex σ(Y, X)-compact subsets;

— the family Bound(Y ) of all σ(Y, X)-bounded subsets.

4. Any admissible family C satisfies the condition Fin(Y ) ⊂C⊂Bound(Y ).

5. Let τ be a locally convex topology on X with the property that X∗ ⊃ Y . Then the
family τ ◦ of sets of the form A◦, where A runs over all neighborhoods of zero in the
topology τ , is admissible.
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6. If C is an admissible family of subsets of the space Y , then the family of sets A◦
with A ∈ C constitutes a neighborhood basis of zero in a separated locally convex
topology on X .

7. A sequence xn ∈ X converges in the topology of the preceding exercise to a point
x ∈ X if and only if supy∈A|〈xn − x, y〉| → 0 as n → ∞ for all A ∈ C.

Let C be an admissible family of subsets of the space Y . The topology in which a
neighborhood basis of zero is formed by all sets A◦ with A ∈ C is called the topology
of uniform convergence on the sets of the family C.

A locally convex topology τ on the space X is said to be compatible with duality,
if (X, τ )∗ = Y .

8. Suppose the topology τ on X is compatible with duality. Then the topology of
uniform convergence on the sets of the family τ ◦ from Exercise 5 above coincides
with τ .

9. The topology σ(X,Y ) coincides with the topology of uniform convergence on
the sets of the family Fin(Y ).

The topology of uniform convergence on the sets of family Comp(Y ) is called the
Mackey topology, and is denoted by τ(X,Y ).

10. Mackey–Arens theorem. The topology τ on X is compatible with duality if and
only if σ(X,Y ) ≺ τ ≺ τ(X,Y ).

11. Every σ(X,Y )-bounded set is also τ(X,Y )-bounded, i.e., all topologies com-
patible with duality have the same supply of bounded sets.

12. For the dual pair (c0, �1) with the duality pairing 〈x, y〉 = ∑∞
k=1 xk yk , the

Mackey topology τ(c0, �1) coincides with the norm topology on the space c0.

13. The identity operator I , regarded as anoperator acting from the space c0 endowed
with the topologyσ(c0, �1) into c0 with the norm topology, is an example of a bounded
discontinuous linear operator.

The topology of uniform convergence on the sets of the familyBound(Y ) is called
the strong topology, and is denoted by β(X,Y ).

14. β(�1, c0) coincides with the topology of the normed space �1. On this exam-
ple convince yourself that the strong topology is not always compatible with
duality.

15. Describe the topology β(c0, �1). Prove that β(c0, �1) is compatible with
duality.
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17.2 Duality in Banach Spaces

In Banach spaces the convergence in norm is called strong convergence. In this
section we dwell in detail on two weaker forms of convergence: weak and weak∗
(weak star) convergence.

17.2.1 w∗-Convergence

Throughout this subsectionwewill consider a dual pair (X, X∗), where X is a Banach
space.

Definition 1. The topology σ(X∗, X) is called thew∗-topology or, in words, weak-
star topology on the Banach space X∗. A sequence of functionals x∗

n ∈ X∗ is said to
w∗-converge to a functional x∗ ∈ X∗ (and one writes x∗

n
w∗−→ x∗; the notation x∗

n
∗

⇀

x∗ is also frequently used) if it converges in the w∗-topology. In detail: x∗
n

w∗−→ x∗ if
x∗
n (x) → x∗(x) as n → ∞ for all x ∈ X .

As the notation indicates, w∗-convergence is a particular case of the pointwise
convergence we are familiar with even for operators, not only for functionals. In
particular, the following assertions (Theorems 1 and 2 of Subsection 10.4.2) hold
true for w∗-convergence.

Banach–Steinhaus theorem. If x∗
n

w∗−→ x∗, then supn∈N ‖x∗
n‖ < ∞. �

w∗-convergence criterion. Let A ⊂ X be a dense subset, and x∗
n , x

∗ ∈ X∗. Then
the following conditions are equivalent:

— x∗
n

w∗−→ x∗;
— supn∈N ‖x∗

n‖ < ∞ and x∗
n (x) → x∗(x) as n → ∞, for all x ∈ A. �

Since pointwise convergence on A implies pointwise convergence on Lin A, in
the last criterion it suffices to require that, instead of the set A itself, its linear span
is a dense set.

Based on this general criterion, we next derive w∗-convergence criteria in the
sequence spaces we are familiar with.

Theorem 1. Let X be the sequence space c0 or �p with 1 � p < ∞, and X∗ be
the space �1 or �p′ with 1 < p′ � ∞, respectively. Then for a sequence of elements
xn = (xn, j ) j∈N ∈ X∗, n = 1, 2, . . ., tow∗-converge to an element y = (y j ) j∈N ∈ X∗,
it is necessary and sufficient that this sequence is bounded in norm and converges to
y componentwise (coordinatewise): xn, j → y j as n → ∞, for all j ∈ N.

Proof. Consider the standard basis of the sequence space X : e1 = (1, 0, 0, . . .), e2 =
(0, 1, 0, 0, . . .), . . . . Since 〈 f, e j 〉 = f j for any f = (

f j
)
j∈N ∈ X∗, componentwise
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(coordinatewise) convergence is the convergence on the elements e j of the standard
basis. It remains to use the fact that the set Lin{e j } j∈N is dense in X and apply the
criterion obtained above. �

Since componentwise convergence in �p does not imply convergence in norm
(the sequence of e j from the proof of Theorem 1 is a typical example), the w∗-
convergence in these spaces does not coincide with the norm convergence. This is
the case not only in �p, but also in all infinite-dimensional normed spaces (Josefson
[55], Nissenzweig [72]).

In Subsection 6.4.3 (Theorem 2 and Exercise 4) it was shown that the norm on the

space X∗ is lower semi-continuous with respect to weak∗ convergence: if x∗
n

w∗−→ x∗,
then ‖x∗‖ � limn→∞‖x∗

n‖. In fact, the following stronger property holds.

Theorem 2. The norm on the dual space X∗ is lower semi-continuous with respect
to the w∗-topology.

Proof. Recall (Subsection 1.2.4) that a function f : E → R, defined on a topological
space E , is said to be lower semi-continuous if for any a ∈ R the set f −1((a,+∞))

is open. In our case E is the dual space X∗, equipped with the topology σ(X∗, X),
and the function of interest is f (x∗) = ‖x∗‖. Hence, f −1((a,+∞)) is either the
entire space X∗ (when a < 0), which is indeed open, or the set X∗ \ aBX∗ . Since the
ball BX∗ of the space X∗ is σ(X∗, X)-closed (and even σ(X∗, X)-compact, thanks
to Alaoglu’s theorem), X∗ \ aBX∗ is a w∗-open set. �

Exercises

1. Let X be a Banach space with a basis {en}∞1 . Then, as observed in Subsec-
tion 10.5.3, every functional f ∈ X∗ can be identified with the numerical sequence
( f (e1), f (e2), . . . , f (en), . . .), and accordingly the space X∗ can be identified with
the set of all such sequences. Extend Theorem 1 to this case.

2. Let X be a Banach space with a basis {en}∞1 . Then the linear span of the set {e∗
n}∞1

of coordinate functionals is w∗-dense in X∗.

3. On the example of the space X = �1 with the standard basis e1 = (1, 0, 0, . . .),
e2 = (0, 1, 0, 0, . . .),…, show that the linear span of the set of coordinate functionals
is not necessarily norm-dense in X∗.

4. Using the w∗-convergence criterion and the diagonal method, show that from
any bounded sequence of functionals x∗

n ∈ X∗ on a separable Banach space X one
can extract a w∗-convergent subsequence. Below we shall deduce this result from
Alaoglu’s theorem and metrizability considerations.
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5. Suppose the Banach space E is the dual of some Banach space F , i.e., E = F∗.
Suppose any finite linked system of closed balls in E has non-empty intersection.
Then E has the linked balls property (see the exercises in Subsection 9.3.3 for the
definition).

6. The real spaces L∞(
,�,μ) have the linked balls property, and consequently
are 1-injective. This extends the result of Exercise 4 in Subsection 9.3.3.

Recall (see Exercises 2–4 in Subsection 8.4.6 and the comments to them) that
any function of bounded variation F : [0, 1] → R can be regarded as a continuous
linear functional on C[0, 1] if one defines its action on elements f ∈ C[0, 1] by the
formula 〈F, f 〉 = ∫ 1

0 f dF . Prove the following theorem of Helly.

7. Helly’s theorem. Suppose Fn : [0, 1] → R is a sequence of functions which con-
verges pointwise to a function F , and the variations of the functions Fn are jointly
bounded. Then F also has finite variation, and the functionals on C[0, 1] generated
by the functions Fn w∗-converge to the functional generated by the function F .

Helly’s theorem admits the following partial converse.

8. Suppose the functions Fn, F : [0, 1] → R of bounded variation are right-
continuous everywhere, except possibly at zero, and vanish at zero. Further,
suppose that the sequence of functionals on C[0, 1] generated by the functions Fn

w∗-converge to the functional generated by the function F . Then the variations of
the functions Fn are jointly bounded, and Fn(t) → F(t) as n → ∞ in each point of
continuity t of the function F .

9. Helly’s second theorem. From any uniformly bounded sequence of functions
Fn : [0, 1] → R with jointly bounded variation one can extract a subsequence that
converges pointwise on [0, 1].

17.2.2 The Second Dual

Let X be a Banach space. Then X∗ is also a Banach space, and so one can in turn
consider the dual of X∗. This dual space, (X∗)∗, is called the second dual of X , and is
denoted by X∗∗. The elements of the space X∗∗ are, by definition, continuous linear
functionals on X∗. We are already familiar with a wide class of such functionals
from the general duality theory: namely, they are the elements of the initial space X ,
regarded as functionals on X∗.

Recall that an element x ∈ X acts on an element x∗ ∈ X∗ by the rule x(x∗) =
x∗(x). Thus, x can be regarded as a linear functional on X∗, and in this way X
becomes a linear subspace of the second dual X∗∗. Furthermore, the formula ‖x‖X =
sup f ∈SX∗ | f (x)| (Lemma in Subsection 9.4.1), recast as ‖x‖X = sup f ∈SX∗ |x( f )|,
acquires a new meaning: the norm of the element x in the space X is equal to the
norm of x as a linear functional on X∗. Accordingly, X can be treated as subspace
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of the Banach space X∗∗. Of individual interest is the question of when this inclu-
sion becomes an equality. Spaces with this property are called reflexive and will be
considered in Subsection 17.2.6.

The next theorem, due toGoldstine, is an easy consequence of the bipolar theorem.
However, one should note that Goldstine’s theorem appeared earlier and was the
original result from which, properly speaking, the bipolar theorem was molded.

Theorem 1 (Goldstine). The closed unit ball of a Banach space X isw∗-dense (i.e.,
dense in the topology σ(X∗∗, X∗)) in the closed unit ball of the space X∗∗. The space
X is w∗-dense in its second dual X∗∗.

Proof. Consider the dual pair (X∗∗, X∗). The ball BX is a convex balanced subset
of the space X∗∗. By the bipolar theorem, BX is σ(X∗∗, X∗)-dense in (BX )◦◦. But
(BX )◦ = BX∗ and (BX )◦◦ = BX∗∗ . Therefore, BX is w∗-dense in BX∗∗ .

The fact that X is w∗-dense in X∗∗ can be alternatively deduced again from the
bipolar theorem in the dual pair (X∗∗, X∗): X⊥ = {0}, X⊥⊥ = X∗∗, or by using the
fact that the space X∗∗ is the union of the balls nBX∗∗ , and each ball nBX∗∗ contains
as a w∗-dense subset the corresponding ball of the space X . �

Exercises

1. A model example of a triple X, X∗, X∗∗ is provided by the spaces c0, �1, �∞.
Based on the w∗-convergence criterion in �∞, prove that the unit ball of c0 is dense
in the σ(�∞, �1)-topology in the unit ball of �∞. That is, prove Goldstine’s theorem
in this particular case.

2. c0 is a Banach space, and so, being complete, it must be closed in any ambient
space. In particular, c0 is closed in �∞. On the other hand, c0 does not coincide with
�∞, hence it cannot be dense in �∞. Doesn’t this contradict Goldstine’s theorem?

3. X∗ is also a Banach space, and so one can consider the canonical embedding
X∗ ⊂ X∗∗∗. For every element x∗∗∗ ∈ X∗∗∗, define the element P(x∗∗∗) ∈ X∗ as the
restriction of the functional x∗∗∗ to the subspace X ⊂ X∗∗. Prove that P is a projector
and ‖P‖ = 1. That is, for any Banach space the first dual is complemented in the
third dual.

4. If X = X∗∗, the projector P introduced in the preceding exercise is bijective, i.e.,
in the present case X∗ = X∗∗∗.

5. Theball BX is a complete set in the topologyσ(X∗∗, X∗) if andonly if BX = BX∗∗ ,
i.e., X = X∗∗.

6. The space X is a complete set in the topology σ (X∗∗, X∗) if and only if X is
finite-dimensional (this fact is connected with the existence of discontinuous linear
functionals on X∗ in the infinite-dimensional case).



486 17 Elements of Duality Theory

7. Let A ∈ L(X,Y ). Then one can define the second adjoint operator: A∗∗ = (A∗)∗,
A∗∗ ∈ L(X∗∗,Y ∗∗). Prove that the restriction of the operator A∗∗ to X coincides with
the original operator A.

8. Using the preceding exercise, prove the converse to Schauder’s theorem on the
compactness of the adjoint operator (Theorem 3 of Subsection 11.3.2). Namely, show
that if the adjoint operator is compact, then so is the original operator.

17.2.3 Weak Convergence in Banach Spaces

Definition 1. The topology σ(X, X∗) is called the weak topology of the Banach
space X . A sequence of elements xn ∈ X is said to converge weakly to the element

x ∈ X (notation: xn
w−→ x , also frequently x∗

n
w
⇀ x∗ or simply x∗

n ⇀ x∗) if f (xn) →
f (x) as n → ∞ for any f ∈ X∗ (one says that (xn) is aweakly convergent sequence).

Note that σ(X, X∗) is the restriction to X of the topology σ (X∗∗, X∗), and the
weak convergence of a sequence xn ∈ X to the elements x ∈ X is simultaneously the
w∗-convergence of the same sequence in the space X∗∗. Accordingly, the simplest
properties of the w∗-convergence mentioned in Subsection 17.2.1 carry over to the
weak convergence:

— if xn
w−→ x , then supn∈N ‖xn‖ < ∞;

— if xn
w−→ x , then ‖x ‖ � limn→∞‖xn‖.

The convergence criterion is also preserved, with the roles of the spaces X and X∗
switched. More precisely, let A ⊂ X∗ be a subset whose linear span is dense in X∗
in the strong topology; let xn, x ∈ X . Then the following conditions are equivalent:

A. xn
w−→ x ;

B. sup
n∈N

‖xn‖ < ∞ and x∗(xn) → x∗ for all x∗ ∈ A.

From this fact one can readily deduce a weak convergence criterion analogous to
Theorem 1 of Subsection 17.2.1 for the class of spaces defined below.

Definition 2. Let X be a Banach space with a basis {en}∞1 , and {e∗
n}∞1 be the corre-

sponding coordinate (evaluation) functionals. The basis {en}∞1 is called a shrinking
basis if the linear span of the set {e∗

n}∞1 is dense (in norm) in X∗.

Theorem 1. Let X be a Banach space with a shrinking basis {en}∞1 , and let xn, x ∈
X, xn = ∑∞

j=1 an, j e j , x = ∑∞
j=1 a j e j . Then for the sequence (xn) to convergeweakly

to an element x, it is necessary and sufficient that this sequence is bounded in norm
and converges componentwise to x: an, j → a j as n → ∞, for all j ∈ N.
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In particular, “boundedness plus coordinatewise convergence” is a weak conver-
gence criterion in such sequence spaces as c0 or �p with 1 < p < ∞, in which the
standard basis is shrinking.

Caution! The standard basis is not a basis in the space �∞, while in the space �1
it is a basis, but it is not shrinking (Exercise 3 of Subsection 17.2.1). Consequently,
in �1 and �∞ boundedness plus componentwise convergence are not sufficient for
weak convergence. In �1 the weak convergence criterion is rather unusual: in this
space, according to a theorem of Schur,2 the weak and strong convergence coincide.
In �∞ there is no conveniently verifiable criterion for weak convergence.

Theorem 2 (weak convergence criterion in C(K )). Let K be a compact topolog-
ical space. For functions xn, x ∈ C(K ) the following conditions are equivalent:

(i) xn
w−→ x;

(ii) supn∈N ‖xn‖ < ∞ and xn(t) → x(t) as n → ∞ in all points t ∈ K.

Proof. (i) =⇒ (ii). The boundendness of a weakly convergent sequence is a gen-
eral result. The condition xn(t) → x(t) as n → ∞ is simply convergence on the
evaluation functional δt ∈ C(K )∗, acting by the rule δt ( f ) = f (t).

(ii)=⇒ (i). We have to show that F(xn) → F(x) as n → ∞ for any F ∈ C(K )∗.
Taking into account the general form of a linear functional on C(K ), we need to
show that

∫
K xndν → ∫

K x dν for any regular Borel charge ν on K . By hypothesis,
we are given a sequence of functions xn that are uniformly bounded and converge
pointwise to the function x . It remains to apply the Lebesgue dominated convergence
theorem. �

The results stated below point to a closer connection between weak and strong
convergence than the one observed betweenw∗-convergence and strong convergence.

Theorem 3. Let A be a convex subset of the Banach space X. Then the following
conditions are equivalent:

(a) A is weakly closed;

(b) A is weakly sequentially closed, i.e., if xn
w−→ x and xn ∈ A, then x ∈ A;

(c) A is closed in the strong topology.

Proof. The implication (a)=⇒ (b) is obvious (closedness implies sequential closed-
ness in any topology, not only in the weak one).

(b)=⇒ (c). Let xn ∈ A and ‖xn − x‖ → 0. Then xn
w−→ x and, by condition (b),

x ∈ A.

(c) =⇒ (a). This implication was proved in Theorem 1 of Subsection 17.1.1 not
only for Banach spaces, but also for arbitrary locally convex ones. �

2See, e.g., [22, p. 293].



488 17 Elements of Duality Theory

Theorem 4 (Mazur). Suppose the sequence (xn) of elements of the Banach space X
converges weakly to an element x ∈ X. Then x lies in the strong closure of the convex
hull of the sequence (xn). Moreover, there exists a sequence (yn) of convex combi-
nations of the elements xn that converges strongly to x, such that yn ∈ conv{xk}∞k=n,
n = 1, 2, . . ..

Proof. Let us show that for each n ∈ N there exists an element yn ∈ conv{xk}∞k=n
such that ‖yn − x‖ < 1/n. Then (yn)will be the sought-for sequence. Indeed, let An

denote the strong closure of the set conv{xk}∞k=n . By the preceding theorem, An is
also a weakly closed set. Since An contains all xk with k � n, An also contains the
weak limit x . Therefore, x lies in the strong closure of the set conv{xk}∞k=n , and x
can be arbitrarily well approximated by elements of this convex hull. �

Theorem 5. Let X, Y be Banach spaces. Then for a linear operator T : X → Y the
following conditions are equivalent:

(A) T is continuous in the weak topologies of the spaces X and Y ;

(B) T maps any sequence that converges weakly to zero again into one that con-
verges weakly to zero;

(C) T is continuous in the strong topologies of the spaces X and Y .

Proof. The implication (A) =⇒ (B) is obvious.

(B) =⇒ (C). We apply assertion (3) of Theorem 1 of Subsection 6.4.1: T is
continuous if and only if it maps sequences that converge to zero into bounded
sequences. Suppose ‖xn‖ → 0 as n → ∞. Then xn

w−→ 0. By condition (B), this
means that T xn

w−→ 0. But then supn∈N ‖T xn‖ < ∞.

(C) =⇒ (A). Here it suffices to use Corollary 1 in Subsection 17.1.3.

Exercises

1. Let Y be a subspace of the Banach space X . Then the restriction of the topology
σ(X, X∗) to Y coincides with the topology σ(Y,Y ∗). In particular, any sequence
that converges weakly in Y also converges weakly in X , and any weakly compact
subset of Y is also weakly compact in X . Henceforth these facts will be used without
further clarifications.

2. On the example of the standard basis verify that the weak convergence criterion
established in �p, 1 < p < ∞, (boundedness plus componentwise convergence) fails
in �1.

3. Consider the sequence x1 = (1, 0, 0, . . .), x2 = (1, 1, 0, 0, . . .), x3 = (1, 1, 1,
0, . . .), . . . in �∞. Verify that this sequence is bounded and converges component-
wise to x = (1, 1, 1, . . . , 1, . . .). However, Mazur’s theorem does not hold for the
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sequence (xn) , i.e., (xn) does not converge weakly to x . Thus, the weak convergence
criterion “bounded plus componentwise convergence” is not valid in �∞.

4. Prove the following weak convergence criterion in the space L p[0, 1], 1 < p <

∞: fn
w−→ f if and only if supn∈N ‖ fn‖ < ∞ and

∫ b
a fn(t) dt → ∫ b

a f (t) dt for any
subinterval [a, b] ⊂ [0, 1].
5. Using the example of the sequence fn = 2n

(
1[0,2−(n+1)] − 1[2−(n+1),2−n ]

)
convince

yourself that in L1[0, 1] the criterion established in Exercise 4 fails.

6. Prove the following weak convergence criterion in the space L1[0, 1]: fn w−→ f
if and only if supn∈N ‖ fn‖ < ∞ and

∫
A fn(t) dt → ∫

A f (t) dt for any measurable
subset A ⊂ [0, 1].
7. Let K be a convex weakly compact set in a Banach space that possesses a normal
structure (see the exercises in Subsection 15.3.1 for the definition). Show that the
Kakutani fixed point theorem remains valid for mappings of the set K .

Let D be a metric space. A mapping f : D → D is said to be non-expansive if
for any x1, x2 ∈ D one has ρ( f (x1), f (x2)) � ρ(x1, x2).

8. In the setting of Exercise 7, show that every non-expansive mapping f : K → K
has a fixed point.

9. Does there exists a common fixed point for all non-expansive mappings
f : [0, 1] → [0, 1]?

17.2.4 Total and Norming Sets. Metrizability Conditions

Definition 1. Let X be a linear space and Y ⊂ X be a subspace. A set F ⊂ X ′ is
called a total set over Y , if it separates the points of the subspace Y . In detail, F is
total over Y if for any y ∈ Y \ {0} there exists an f ∈ F such that f (y) �= 0.

Definition 2. Let X be a Banach space, Y ⊂ X a linear subspace, and θ ∈ (0, 1]. A
set F ⊂ X∗ is said to be θ -norming over Y if

sup
f ∈F\{0}

| f (y)|
‖ f ‖ � θ‖y‖ (1)

for all y ∈ Y . The set F ⊂ X∗ is said to be norming over Y if there exists a θ ∈ (0, 1)
such that F is θ -norming over Y .

Obviously, every norming set is total: if y �= 0, then condition (1) means that, in
any case, there exists an f ∈ F such that f (y) �= 0.

In the case when F lies on the unit sphere of the space X∗, condition (1) reads
sup f ∈F | f (y)| � θ‖y‖. In view of the homogeneity in y of this inequality, it suffices
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to verify it for y ∈ SY . Therefore, for F ⊂ SX∗ Definition 2 can be restated as follows:
the set F is θ -norming over Y if the inequality

sup
f ∈F

| f (y)| � θ (2)

holds for all y ∈ SY .

Theorem 1. Let X be a Banach space, Y ⊂ X a linear subspace, and G ⊂ SX∗ a
set that is 1-norming over Y . Further, let ε ∈ (0, 1) and suppose that on the unit
sphere of the subspace Y there is given an ε-net D. For each element x ∈ D fix a
functional fx ∈ G such that fx (x) > 1 − ε. Then the set F = { fx }x∈D is θ -norming
over Y , with θ = 1 − 2ε.

Proof. Fix a y ∈ SY and let us show that estimate (2) holds for y. By the definition
of an ε-net, there exists an element x0 ∈ D such that ‖y − x0‖ < ε. We have:

sup
f ∈F

| f (y)| = sup
x∈D

| fx (y)| � | fx0 (y)| = | fx0 (x0) − fx0 (y − x0)|

� 1 − ε − ‖y − x0‖ > 1 − 2ε = θ. �

From this theorem, recalling that in a finite-dimensional space the unit sphere
contains a finite ε-net, one derives the following

Corollary 1. Let X be a Banach space, and let Y ⊂ X be a finite-dimensional
subspace. Then for any θ ∈ (0, 1) there exists a finite θ -norming set over Y .

Here is a slightly more complex variant that will prove suitable in the next sub-
section.

Corollary 1′. Let E be a Banach space, and let Y ⊂ E∗∗ be a finite-dimensional
subspace. Then for any θ ∈ (0, 1) there exists a finite θ -norming set over Y consisting
of elements of the unit sphere of the space E∗.

Proof. Apply Theorem 1 with X = E∗∗ and G = SE∗ . �

For infinite-dimensional separable spaces we obtain the following result.

Corollary 2. Let X be a Banach space, and Y ⊂ X a separable subspace. Then
there exists a countable 1-norming set over Y .

Proof. Take as the set D figuring in Theorem 1 a countable dense subset of the
unit sphere in the subspace Y and put G = SX∗ . The set D forms an ε-net in SY
for all ε > 0. Therefore, the set F = { fx }x∈D consisting of the support functionals
(‖ fx‖ = 1 = fx (X)) is θ -normingoverY for all θ < 1.But if condition (2) is satisfied
for all θ < 1, then it is also satisfied for θ = 1. �
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Recall (Exercises 15–18 in Subsection 16.2.1) that a Hausdorff topological vector
space is metrizable if and only if it has a countable neighborhood basis of zero.
Further, according to Exercise 3 in Subsection 16.3.2, the topology σ(X, X∗) has
a countable neighborhood basis of zero if and only if the space X∗ has an at most
countable Hamel basis. Since a Hamel basis of an infinite-dimensional Banach space
is necessarily uncountable (Exercise 4 of Subsection 6.3.2), the weak topology of
an infinite-dimensional space, if regarded on the whole space, is not metrizable. The
situation changes drastically when insteadwe consider theweak topology on subsets.

Theorem 2. Let (X, E) a dual pair, let B ⊂ X be compact in the topology σ(X, E),
and let Y = Lin B. Denote by σB(X, E) the topology induced on B by the weak
topology σ(X, E). Further, suppose there exists a countable total set over Y , F =
{ f1, f2, . . .} ⊂ E. Then there exists a norm p on Y such that the norm topology
generated on B by p coincides with σB(X, E). In particular, on B the weak topology
is metrizable.

Proof. Since B is a weakly compact set and the functionals fn are continuous in the
weak topologyσ(X, E), each of the fn’s is boundedon B inmodulus by somenumber
an . With no loss of generality, we may assume that an � 1 (otherwise, we multiply
fn by the factor 1/an , without affecting the totalness of the sequence of functionals
on Y ). For each y ∈ Y we put p(y) = ∑∞

n=1 2
−n| fn(y)|. Let us show that p is the

requisite norm. Each of the terms 2−n| fn(y)| is non-negative and satisfies the triangle
inequality and the positive homogeneity condition. Therefore, p inherits the same
properties. The non-degeneracy (p(y) = 0 =⇒ y = 0) follows from the fact that the
set F is total.

Now let us compare the topologies involved. Let x ∈ B, r > 0. Consider the
set U (x, r) = {y ∈ B : p(x − y) < r}, i.e., the ball in B of radius r and center x
generated by the norm p. Pick an N ∈ N such that 2−N < r/2, and consider the
following weak neighborhood of the point x in the set B:

V =
{
y ∈ B : max

1�k�N
| fk(x − y)| < r/4

}
.

If y ∈ V , then

p(x − y) =
∞∑

n=1

| fn(x − y)|
2n

�
N∑

n=1

| fn(x − y)|
2n

+ 1

2N

< 2 max
1�k�N

| fk(x − y)| + r

2
< r

and y ∈ U (x, r). That is, V ⊂ U (x, r). This establishes that on B the topology
generated by the norm p is weaker than the topology σB(X, E). Since it is not
possible to strictly weaken the topology of a compact set so that it remains separated
(see Subsection 1.2.3, second paragraph), we conclude that σ(X, E) and p induce
on B one and the same topology. �
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Corollary 3. Let X be a Banach space. Then on any separable weakly compact
subset B of X the weak topology σ(X, X∗) is metrizable.

Proof. It suffices to apply Theorem 2 to the dual pair (X, X∗). Here the existence of
a countable total set follows from Corollary 2. �

Corollary 4. Let X be a separable Banach space. Then the w∗-topology σ(X∗, X)

is metrizable on the bounded subsets of the space X∗.

Proof. Consider the dual pair (X∗, X) and take B = BX∗ . By Alaoglu’s theorem, B
is compact in the σ(X∗, X)-topology. By assumption, X contains a countable dense
set F . This set F is total over X∗. Theorem 2 shows that the w∗-topology on the unit
ball of the space X∗ is metrizable. To complete the proof, it remains to observe that
any bounded subset of X∗ lies in some ball of the form r BX∗ . �

Corollary 5. Let X be a separable Banach space. Then from any bounded sequence
of functionals x∗

n ∈ X∗ one can extract a convergent subsequence.

Proof. With no loss of generality we can assume that x∗
n ∈ BX∗ (otherwise we mul-

tiply all x∗
n by the factor (supn ‖x∗

n‖)−1). By Alaoglu’s theorem, BX∗ is w∗-compact,
and by Corollary 4, this compact set is metrizable. It remains to recall that from
any sequence of elements of a compact metric space one can extract a convergent
subsequence. �

Exercises

1. Let X be a linear space, and Y ⊂ X a subspace. Then there exists a finite total set
over Y if and only Y is finite-dimensional.

2. Let X be a Banach space, and θ ∈ (0, 1). A set F ⊂ X∗ is θ -norming for X if
and only if the w∗-closure of the absolute convex hull of F contains θBX∗ .

3. For a Banach space X the following conditions are equivalent:

— there exists a countable total set over X ;

— there exists an injective continuous linear operator mapping X into �2.

4. For a Banach space X the following conditions are equivalent:

— there exists a countable norming set over X ;

— there exists a bounded below continuous linear operator mapping X into �∞.

5. For a Banach space X the following conditions are equivalent:

— there exists a countable 1-norming set over X ;

— there exists a linear isometric embedding of the space X into �∞.
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6. In particular, every separable Banach space admits an isometric embedding into
the space �∞.

A separable Banach space E is called universal if among its subspaces are iso-
metric copies of all separable Banach spaces. The following two exercises give a
sketch of the proof of the famous Banach–Mazur theorem on the universality of the
space C[0, 1].
7. Let X be a separable Banach space and K be the Cantor set. Equip the closed
ball BX∗ with the w∗-topology. By Exercise 6 of Subsection 1.4.4 and Alaoglu’s
theorem, there exists a surjective continuous mapping F : K → BX∗ . Define the
operator T : X → C(K) by the formula (T x)(t) = 〈F(t), x〉. Prove that the operator
T effects a linear isometric embedding of the space X into C(K). This will establish
that the space C(K) of continuous functions on the Cantor set is universal.

8. Prove that C(K), where K is the Cantor set, admits an isometric embedding into
C[0, 1]. Deduce from this the universality of the space C[0, 1].

Since X ⊂ X∗∗, one can talk about subsets of the Banach space X that are total
or norming over X∗.

9. For a linear subspace Y of a Banach space X the following conditions are equiv-
alent:

— Y is total over X∗;
— Y is a norming set over X∗;
— Y is dense in X .

10. Denote by e∗
n the functional on�∞ which assigns to each element x = (x1, x2, . . .)

of the space �∞ itsn-th coordinate: e∗
n(x) = xn . On the example of the sequence (e∗

n)
∞
1

convince yourself that on non-separable spaces there exists bounded sequences of
functionals which contain no w∗-convergent subsequences. In particular, this exam-
ple shows that, despite Alaoglu’s theorem, the unit ball of the dual space is not
necessarily w∗-sequentially compact.

17.2.5 The Eberlein–Smulian Theorem

The last exercise in the preceding subsection reminds us that in non-metrizable
topological spaces compactness and sequential compactness are, generally speaking,
distinct properties. The weak topology of an infinite-dimensional Banach space is
not metrizable. It is therefore even more surprising that the weak compactness of a
set in a Banach space is equivalent to its weak sequential compactness. This theorem
of Eberlein and Smulian consists of two parts, the first of which was proved by V.L.
Smulian (in the literature one encounters also the spelling Šmulian or Shmulian) in
1940, and the second by W.F. Eberlein in 1947.
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Theorem 1 (Smulian). Let K be a weakly compact set in a Banach space X. Then
from every sequence xn ∈ K, n = 1, 2, . . ., one can extract a weakly convergent
subsequence.

Proof. Consider the closed linear spanY of the sequence (xn)∞n=1 and let K̃ = K ∩ Y .
Since Y is separable, K̃ is a separable set. Further, any closed linear subspace is a
weakly closed set (Theorem 3 of Subsection 17.2.3), hence K̃ , being the intersection
of a weakly compact set with a weakly closed set, is a weakly compact set. By
Corollary 3 of Subsection 17.2.4, the weak topology σ(X, X∗) is metrizable on K̃ .
Finally, xn ∈ K̃ by construction, and we know that from any sequence of elements
of a metrizable compact set one can extract a convergent (in the present case, weakly
convergent, since we are dealing with the weak topology) subsequence. �

Theorem 2 (Eberlein). Let K be a weakly sequentially compact subset of a Banach
space, i.e., such that from every sequence xn ∈ K, n = 1, 2, . . ., one can extract a
weakly convergent subsequence, and the limit of the subsequence again lies in K .
Then K is weakly compact.

Proof. To begin with, note that K is a bounded set. Indeed, assuming that K is not
bounded, there would exist a sequence xn ∈ K such that ‖xn‖ → ∞. But such a
sequence cannot contain bounded subsequences, and hence it cannot contain weakly
convergent subsequences.

Since any bounded set can be transformed into a subset of the unit ball bymultiply-
ing it by a small positive number, we can assume for simplicity that K ⊂ BX . Further,
using the embedding BX ⊂ BX∗∗ , K can be regarded as a subset of the ball BX∗∗ . Since
on the space X , and hence also on the set K , the topologies σ(X, X∗) and σ(X∗∗, X∗)
coincide, it suffices to show that K is σ(X∗∗, X∗)-compact. By Alaoglu’s theorem,
BX∗∗ is σ(X∗∗, X∗)-compact. Hence, to prove that K is σ(X∗∗, X∗)-compact, it in
turn suffices to show that K is σ(X∗∗, X∗)-closed in BX∗∗ .

So, let x∗∗ ∈ BX∗∗ be an arbitrary σ(X∗∗, X∗)-limit point of the set K . We need
to verify that x∗∗ ∈ K . Recalling the form of the neighborhoods in the topology
σ(X∗∗, X∗), we see that the condition that x∗∗ is a σ(X∗∗, X∗)-limit point can be
expressed as follows:

(A) for any finite set of functionals D ⊂ X∗ and any ε > 0, there exists an element
x ∈ K such that maxy∗∈D |y∗(x∗∗ − x)| < ε.

The main idea of the proof is to construct a sequence xn ∈ K such that none of its
subsequences can convergeweakly to a point different from x∗∗. Since by assumption
any sequence xn ∈ K contains a subsequence that converges to some point of K , this
will establish that x∗∗ ∈ K .

The requisite sequence xn ∈ K will be constructed recursively, using at each
step property (A) and Corollary 1′ of Subsection 17.2.4. Fix some θ ∈ (0, 1)
and a sequence εn → 0. Consider Y0 = Lin {x∗∗}. By Corollary 1′ of Subsec-
tion 17.2.4, there exists a finite θ -norming set D0 ⊂ SX∗ over Y0. Using property
(A), choose a point x1 ∈ K such that maxy∗∈D0 |y∗(x∗∗ − x1)| < ε1. Next, consider
Y1 = Lin {x∗∗, x1}. Again, by the sameCorollary 1′ of Subsection 17.2.4, there exists
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a θ -norming set D1 ⊂ SX∗ over Y1. With no loss of generality we may assume that
D0 ⊂ D1: otherwise, we can replace D1 by the union D0 ∪ D1. Using again prop-
erty (A), we choose x2 ∈ K such that maxy∗∈D1 |y∗(x∗∗ − x2)| < ε2. Continuing this
construction, we obtain a sequence of elements xn ∈ K , a sequence of subspaces
Yn = Lin {x∗∗, x1, x2, . . . , xn}, and a sequence of finite subsets D0 ⊂ D1 ⊂ D2 ⊂
· · · of the unit sphere of the space X∗, such that Dn is a θ -norming set over Yn and

max
y∗∈Dn−1

|y∗(x∗∗ − xn)| < εn. (3)

Denote
⋃∞

n=0 Dn by D, and the norm-closure of the subspace Lin{x∗∗, x1, x2, . . .}
by Y . Suppose that some subsequence (xn j ) of the sequence (xn) converges weakly to
a point x ∈ K . Let us prove that x = x∗∗: as we explained above, this will complete
the proof of the entire theorem. First we note that, by Mazur’s theorem (Theorem 4
in Subsection 17.2.3), x ∈ Y . Hence, x − x∗∗ ∈ Y , too. By construction, the set D is
θ -norming over all subspaces Yn . Consequently, D is θ -norming over

⋃∞
n=1 Yn , and

hence also over Y , the strong closure of this union. It follows that

‖x − x∗∗‖ � 1

θ
sup
y∗∈D

|y∗(x∗∗ − x)|.

We claim that the right-hand side of the last inequality is equal to zero. Indeed,
for every y∗ ∈ D there exists a number N ∈ N such that y∗ ∈ Dm for allm � N . By
condition (3), this means that |y∗(x∗∗ − xm)| < εm for all m > N . Since x is a weak
limit point of the sequence (xn), this allows us to conclude that |y∗(x∗∗ − x)| = 0.

�

Exercises

Prove the following two assertions, treated as obvious above:

1. Let Y0 ⊂ Y1 ⊂ Y2 ⊂ · · · be an increasing chain of subspaces, and D be a θ -
norming set over all Yn’s. Then D is also θ -norming over

⋃∞
n=1 Yn .

2. Let D be a θ -norming set over the linear subspace E . Then D is also θ -norming
over the strong closure of the subspace E .

The Eberlein–Smulian theorem may create the illusion that in the weak topology
of a Banach space all topological properties may be adequately expressed in the
language of sequences. The exercises below will help to dispel this illusion.

3. In the space �2 consider the standard basis {en}. Set xn = n1/4en . Prove that:

— 0 is a limit point of the sequence (xn) in the weak topology;
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— the sequence (xn) contains no bounded subsequence, and hence no weakly con-
vergent subsequence.

The weak sequential closure of the set A in the Banach space X is defined to be
the set of weak limits of all weakly convergent sequences of elements of A.

4. von Neumann’s example. In the space �2 consider the set A of the vectors
xn,m = en + nem , n, m ∈ N,m > n (where en is, as above, the standard basis). Verify
that

— for m → ∞ and fixed n, the sequence (xn,m) converges weakly to en . That is to
say, all the vectors en lie in the weak sequential closure of the set A.

— 0 does not belong to the weak sequential closure of A.

— The weak sequential closure of the set A is not a weakly sequentially closed set.

17.2.6 Reflexive Spaces

A Banach space X is said to be reflexive if X = X∗∗. In a reflexive space, thanks to
the equality X = X∗∗, the weak topology σ(X, X∗) coincides with σ(X∗∗, X∗), and
together with the usual properties of a weak topology (equivalence of closedness and
weak closedness of convex sets, equivalence of continuity and weak continuity of
linear operators), it also enjoys the main nice feature of the weak∗ topology, namely,
the compactness of the unit ball. This combination of properties makes reflexive
spaces far more convenient in applications.

Theorem 1. For a Banach space X the following conditions are equivalent:

(i) X is reflexive;

(ii) the closed ball BX is weakly compact;

(iii) from any bounded sequence xn ∈ X one can extract a weakly convergent sub-
sequence.

Proof. (i) =⇒ (ii). If X = X∗∗, then BX = BX∗∗ ; and, by Alaoglu’s theorem, BX∗∗

is σ(X∗∗, X∗)-compact.

(ii) =⇒ (i). Since the restriction of the topology σ(X∗∗, X∗) to X coincides with
the weak topology σ(X, X∗), (ii) implies that BX is a σ(X∗∗, X∗)-compact subset
of the space X∗∗. In particular, BX ⊂ BX∗∗ is a w∗-closed subset. By Goldstine’s
theorem (Theorem 1 of Subsection 17.2.2), BX is w∗-dense in BX∗∗ , and hence
BX = BX∗∗ . Passing to linear spans, we obtain the needed equality X = X∗∗.

Finally, the equivalence (ii)⇐⇒ (iii) follows from theEberlein–Smulian theorem.
�

Theorem 2. If the Banach space X is reflexive, then its subspaces and quotient
spaces are reflexive.
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Proof. Let Y be a subspace of the Banach space X . By our convention, Y is a closed
linear subspace. Therefore, Y is weakly closed in X . Since BX is weakly compact,
the set BY = Y ∩ BX will also be weakly compact. This establishes the reflexivity
of the space Y .

Now let us consider the quotient space X/Y . Recall that the quotient mapping
q : X → X/Y , which sends each element of the space X into its equivalence class, is
a continuous linear operator. Hence, q is a weakly continuous operator. In particular,
q(BX ), being the image of a weakly compact set under a weakly continuous map, is
a weakly compact subset of the space X/Y . Further, for any [x] ∈ BX/Y there exists
a representative x̃ ∈ [x] such that ‖x̃‖ � ‖[x]‖ + 1 � 2. That is, BX/Y ⊂ 2q(BX ).
Therefore, the set BX/Y is weakly compact, as a weakly closed subset of a weakly
compact set. �

Theorem 3. The Banach space X is reflexive if and only if its dual X∗ is reflexive.

Proof. Suppose X = X∗∗. Passing to dual spaces, we have that X∗ = X∗∗∗ (see also
Exercises 3 and 4 of Subsection 17.2.2). Thus, the reflexivity of the original space
implies the reflexivity of its dual. Conversely, suppose that the space X∗ is reflexive.
Then, as we have just seen, its dual X∗∗ is also reflexive. But X is a subspace of X∗∗,
and as such X must be reflexive. �

Let us list several properties of reflexive spaceswhich find application in problems
of approximation theory and variational calculus.

Theorem 4. Let A �= ∅ be a convex closed subset of a reflexive Banach space X.
Then for any x ∈ X, the set A contains a closest point to x.

Proof. Denote ρ(x, A) by r and consider the sets

An = {a ∈ A : ‖a − x‖ � r + (1/n)} = A ∩ (
x + (r + (1/n))BX

)
.

Since A is a weakly closed and BX is weakly compact, each of the sets An is weakly
compact. Any decreasing chain of compact sets (in fact, even any centered family of
compact sets) has a non-empty intersection. Every element y ∈ ⋂

n An lies in A and
lies at distance r from x . Thus, y is the sought-for point of A that is closest to x . �

We suggest to the reader to compare Theorem 4 with the theorem on best approxi-
mation in a Hilbert space and Exercises 4–6 in Subsection 12.2.1. In particular, under
the assumptions of Theorem 4, the uniqueness of the closest point is not guaranteed
even in the finite-dimensional case (see Exercise 6 below).

Theorem 5. For any continuous linear functional f on a reflexive Banach space
X there exists an element x ∈ SX such that f (x) = ‖ f ‖. Therefore, in a reflexive
Banach space every linear functional attains the maximum of its modulus on the unit
sphere.
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Proof. By Theorem 1 of Subsection 9.2.1, for any point f ∈ X∗ there exists a sup-
porting functional x ∈ SX∗∗ at the point f . For this element one has f (x) = ‖ f ‖. It
remains to recall that X = X∗∗, i.e., x does not just lie somewhere in the second dual
space, but, as required, it lies on the unit sphere of the original space X . �

Let us note that the converse to Theorem 5 also holds: if the Banach space X is
not reflexive, then there exists a functional f ∈ X∗ which does not attain on SX its
supremum. The proof of this by far not simple theorem of R.C. James can be found
in the first chapter of J. Diestel’s monograph [12].

To conclude, let us record which of the spaces known to us are reflexive, and
which are not.

— All finite-dimensional spaces are reflexive.

— All spaces L p and �p with 1 < p < ∞ are reflexive (this follows from the
theorem on the general form of linear functionals on L p).

— The space c0 is not reflexive, since (c0)∗∗ = �∞ �= c0.

— The space �1 is not reflexive, since it is the dual of the non-reflexive space c0.

— The space �∞ is not reflexive, since it is the dual of the non-reflexive space �1.

— The space C(K ), where K is an infinite compact space, is not reflexive, since it
contains a non-reflexive subspace isomorphic to c0. The reader is invited to verify
that for any sequence of functions fn ∈ SC(K ) with disjoint supports, Lin{ fn} is a
subspace ofC(K ) isometric to c0. In particular, the spaceC[0, 1] is not reflexive.

— The space L1(
,�,μ), where 
 cannot be decomposed into a finite union
of atoms of the measure μ, is not reflexive; indeed, it contains a non-reflexive
subspace isomorphic to �1. (For any sequence of functions fn ∈ SL1(
,�,μ) with
disjoint supports, Lin{ fn} is a subspace of L1(
,�,μ) isometric to �1). In
particular, the space L1[0, 1] is not reflexive.

Remark 1. The definitions of the spaces L p and �p look more complicated and
less natural than those of the spaces C[0, 1], L1[0, 1], or c0. The list given above
sheds light on the reason for the wide utilization of the spaces L p: their relatively
complicated definition is more than compensated by their pleasant features, first and
foremost, by their reflexivity.

Exercises

1. In each of the examples of non-reflexive spaces listed above construct explicitly
a bounded sequence that contains no weakly convergent subsequence. This will lead
to another way of establishing that the spaces in question are not reflexive.
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Using the weak compactness of the unit ball, prove the following generalization
of Theorem 5.

2. Let T ∈ L(X,Y ), with X reflexive and Y finite-dimensional. Then there exists
an element x ∈ SX such that ‖T (x)‖ = ‖T ‖.
3. Provide an example of a continuous linear functional on c0 which does not attain
its supremum on the unit sphere. Give a complete description of such functionals.

4. Solve the analogues of the preceding exercise for the spaces �1, L1[0, 1], and
C[0, 1].
5. Let A be a weakly compact subset of a Banach space X . Then for any x ∈ X in
A there exists a point closest to x .

6. In the space R
2 equipped with the norm ‖(x1, x2)‖ = max{|x1|, |x2|}, consider

the set A = {(1, a) : a ∈ [−1, 1]}. Verify that for x = 0 the point in A closest to x
is not unique.

7. An operator A ∈ L(X,Y ) is called a Dunford–Pettis operator if it maps weakly
convergent sequences into norm-convergent sequences. Show that any compact oper-
ator is a Dunford–Pettis operator. If the space X is reflexive, then every Dunford–
Pettis operator is compact. In non-reflexive spaces (say, in C[0, 1]) there exist non-
compact Dunford–Pettis operators.

Comments on the Exercises

Subsection 17.2.1

Exercise 7. Denote by A the set of all points where at least one of the functions
Fn , F is discontinuous. Consider the space X of all bounded functions on [0, 1]
that have a left and a right limit at every point, are continuous at all the points of
the set A, and have at most finitely many discontinuity points. Equip X with the
norm ‖ f ‖ = sup[0,1] | f (t)|. The required relation

∫ 1
0 f dFn → ∫ 1

0 f dF is simpler
to prove not for f ∈ C[0, 1], but for the wider class of f ∈ X . To this end we need
to show the relation

∫ 1
0 f dFn → ∫ 1

0 f dF for f = 1[a,b], then extend it by linearity
to the set of all piecewise-constant functions, and use the pointwise convergence
criterion for operators (convergence on a dense subset + boundedness in norm).

Exercise8. Pass to theBorel charges νn , forwhich Fn(t) = νn([0, t]) for t ∈ (0, 1].
First deal with the case where νn are measures.

Exercise 9.Use the fact that the set of discontinuity points of a function of bounded
variation is at most countable, and Exercises 4 and 8. For another argument, see the
textbook by A. Kolomogorov and S. Fomin, Chap. VI, § 6.
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Subsection 17.2.5

Exercise 3. The example is taken from the paper [51]. The indicated sequence (xn)
will converge to zero with respect to the statistical filter Fs (Exercise 7 in Subsection
16.1.1). The following general result holds true [59]: for a sequence of numbers
an > 0 the following conditions are equivalent: (1) there exists a sequence xn ∈ �2
with ‖xn‖ = an , for which 0 is a weak limit point, and (2)

∑
a−2
n = ∞.



Chapter 18
The Krein–Milman Theorem and Its
Applications

18.1 Extreme Points of Convex Sets

As we remarked earlier, one of the main merits of the functional analysis-based
approach to problems of classical analysis is that it reduces problems formulated
analytically to problems of a geometric character. The geometric objects that arise
in this way lie in infinite-dimensional spaces, but they can be manipulated by using
analogies with figures in the plane or in three-dimensional space. To exploit this anal-
ogy more freely, to understand when it helps, rather than mislead us, we have studied
above many properties of spaces, subspaces, convex sets, compact and weakly com-
pact sets, linear operators, emphasizing each time the coincidences and differences
with the finite-dimensional versions of those objects and properties. In the present
chapter we add to the already built arsenal of geometric tools yet another one: the
study of convex sets by means of their extreme points. Although extreme points are
a direct generalization of the vertices of a polygon or polyhedron, in the framework
of classical geometry this purely geometric concept was not used for general figures.
The study and application of extreme points to problems of geometry (including
finite-dimensional ones), functional analysis, mathematical economics, is one of the
achievements of the bygone 20th century.

18.1.1 Definitions and Examples

Let A be a convex subset of a linear space X . A point x ∈ A is called an extreme
point of the set A if it is not the midpoint of any non-degenerate segment whose
endpoints lie in A. The set of extreme points of the set A is denoted by ext A. That
is, x ∈ ext A if and only if for any x1, x2 ∈ A, if (x1 + x2)/2 = x , then x1 = x2 (and
hence both vectors x1 and x2 coincide with x).

Theorem 1. Let A be a convex subset of a topological vector space X. Then none
of the interior points of the set A is an extreme point of A.
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Proof. Let x ∈ A be an interior point. Then there exists a balanced neighborhoodU
of zero such that x +U ⊂ A. Let y ∈ U \ {0}. Set x1 = x + y, x2 = x − y. Then
x1, x2 ∈ A, (x1 + x2)/2 = x , but x1 �= x2. �

Thus, all extreme points of a set lie on its boundary. Needless to say, this provides
rather incomplete information on the positioning of extreme points. Note that ext A
depends only on the convex geometry of the set A, but does not depend on the ambient
linear space in which A is considered, or on which topology is given on A.

Theorem 2 (examples).

(a) If A is a convex polygon in the plane, then ext A is the set of vertices of A.

(b) If A is a disc, then ext A is its bounding circle.

(c) The set of extreme points of the closed unit ball BH of the Hilbert space H is
the unit sphere SH .

(d) The closed unit ball Bc0 of the space c0 has no extreme points.

Proof. Assertions (a) and (b) are obvious. Let us address (c). By Theorem 1,
ext BH ⊂ SH . Let us establish the opposite inclusion. Let x, x1, x2 ∈ SH and put
(x1 + x2)/2 = x . This means that ‖x1‖ = ‖x2‖ = 1 and ‖x1 + x2‖ = 2. But then,
by the parallelogram equality,

‖x1 − x2‖2 = ‖x1 + x2‖2 − 2‖x1‖2 − 2‖x2‖2 = 4 − 2 − 2 = 0,

and so x1 = x2.

(d) Let us show that no point of Bc0 is an extreme point. Let a = (a1, a2, . . .) ∈
Bc0

. This means that all the coordinates a j are not larger in modulus than 1 and a j →
0 as j → ∞. From the last fact it follows that there exists an n such that |an| < 1/2.
Consider the following vectors x1 and x2, all coordinates of which coincide with
those of a, except for the nth one, where they differ from a by ±1/2:

x1 = (a1, a2, . . . , an−1, an + 1/2, an+1, . . .)

and
x2 = (a1, a2, . . . , an−1, an − 1/2, an+1, . . .).

Then x1 and x2 lie in Bc0
, (x1 + x2)/2 = a, but x1 �= x2. �

The extreme points of a Cartesian product of convex sets admit a simple descrip-
tion.

Theorem 3. Let � be an index set, Xγ , γ ∈ �, be linear spaces, and Aγ ⊂ Xγ be

convex sets. Then ext
(∏

γ∈� Aγ

)
= ∏

γ∈� ext Aγ .

Proof. Let x = (xγ )γ∈� ∈ ∏
γ∈� ext Aγ , i.e., xγ ∈ ext Aγ for all γ ∈ �. Let us

show that x ∈ ext
(∏

γ∈� Aγ

)
. Consider elements y = (yγ )γ∈� and z = (zγ )γ∈� in
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∏
γ∈� Aγ such that (y + z)/2 = x . Then (yγ + zγ )/2 = xγ and yγ , zγ ∈ Aγ . Since

xγ ∈ ext Aγ , it follows that yγ = zγ for all γ ∈ �, and so y = z. This establishes the

inclusion ext
(∏

γ∈� Aγ

)
⊃ ∏

γ∈� ext Aγ .

Now let us establish the opposite inclusion ext
(∏

γ∈� Aγ

)
⊂ ∏

γ∈� ext Aγ .

Let x = (
xγ

)
γ∈�

∈
(∏

γ∈� Aγ

)
\

(∏
γ∈� ext Aγ

)
. Then there is an index γ0 ∈ �

for which xγ0 ∈ Aγ0 \ ext Aγ0 . By definition, this means that there exists elements
yγ0 , zγ0 ∈ Aγ0 , yγ0 �= zγ0 , such that (yγ0 + zγ0)/2 = xγ0 . Now define the elements
y, z ∈ ∏

γ∈� Aγ as follows: for γ �= γ0 put yγ = zγ = xγ , while for the index γ0
take as coordinates precisely the elements yγ0 and zγ0 , respectively. Then y �= z (they

differ in the γ0 coordinate), but (y + z)/2 = x . Therefore, x /∈ ext
(∏

γ∈� Aγ

)
. �

An obvious consequence of this theorem is the following descriptions of the
extreme points of two important n-dimensional bodies.

Corollary 1. The extreme points of the n-dimensional cube [−1, 1]n are precisely
the vectors with all coordinates equal to ±1. �

Let us recall the notationsC1 = {λ ∈ C : |λ| � 1} andT = {λ ∈ C : |λ| = 1} for
the unit disc and the unit circle.

Corollary 2. The set of extreme points of the n-dimensional polydisc (C1)
n is the

skeleton of the polydisc, i.e., the set Tn. �

Exercises

1. In the real space C[0, 1] the closed unit ball has only two extreme points, the
functions f = 1 and g = −1.

2. In the space L1[0, 1] the closed unit ball has no extreme points.

3. For 1 < p < ∞ every element of the unit sphere in the space L p[0, 1] is an
extreme point of the closed unit ball. In other words, L p[0, 1] is a strictly convex
space (see Exercise6 in Subsection12.2.1).

4. Using the preceding exercise and the reflexivity, prove the following result: Let
1 < p < ∞, and let A ⊂ L p[0, 1] be a convex closed subset. Then for any x ∈ X in
A there is a unique closest point to x .

5. Let X , Y be linear spaces and T : X → Y be an injective linear operator. Then
for any convex subset A ⊂ X it holds that T (ext A) = ext T (A).

6. Give an example showing that in the preceding exercise the injectivity assumption
cannot be discarded.
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7. For any convex compact subset A ⊂ R
2, the set ext A is closed.

8. Give an example of a convex compact subset A ⊂ R
3 whose set of extreme points

is not closed.

18.1.2 The Krein–Milman Theorem

In this subsection we shall prove themain result of this chapter, namely, the existence
of extreme points for any convex compact set.

Definition 1. Let A be a convex subset of a linear space X . The set B ⊂ A is said
to be an extreme subset of the set A if it meets the following requirements:

— B is not empty;

— B is convex;

— for any two points x1, x2 ∈ A, if (x1 + x2)/2 ∈ B, then x1, x2 ∈ B.

Obviously, a subset consisting of a single point x will be extreme if and only if
x is an extreme point. If A is a triangle in the plane, then an example of an extreme
subset B is provided by any side of the triangle.

Lemma 1. Let X,Y be linear spaces, T : X → Y be a linear operator, and A ⊂ X
be a convex subset. Then for any extreme subset B of the set T (A), the set T−1(B) ∩ A
(the complete preimage in A of the set B) is an extreme subset of the original set A.
In particular, the complete preimage in A of any extreme point of the set T (A) is an
extreme subset of A.

Proof. Suppose x1, x2 ∈ A and (x1 + x2)/2 ∈ T−1(B). Then T x1, T x2 ∈ T (A)

and (T x1 + T x2)/2 ∈ B. Since B is an extreme subset of T (A), this means that
T x1, T x2 ∈ B, and so x1, x2 ∈ T−1(B). �

Lemma 2. Suppose A is a convex set, B is an extreme subset of A, and C is an
extreme subset of B. Then C is an extreme subset of A. In particular, an extreme
point of an extreme subset of a set A is an extreme point of A.

Proof. Suppose x1, x2 ∈ A and (x1 + x2)/2 ∈ C . Then, in particular, (x1 + x2)/2 ∈
B. Since B is an extreme subset of A, this implies that x1, x2 ∈ B. But now recalling
that (x1 + x2)/2 ∈ C and C is an extreme subset of B, we conclude that x1, x2 ∈ C ,
as needed. �

Now let us change the setting from arbitrary linear spaces to locally convex topo-
logical vector spaces, and from arbitrary convex sets to convex compact sets.

Lemma 3. Let A be a convex compact set in a topological vector space X, f
a continuous real linear functional on X, and b = maxx∈A f (x). Then the set
M( f, A) = {x ∈ A : f (x) = b} of points x in which f attains its maximum on A is
an extreme subset of A.
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Proof. The set f (A) is an interval [a, b] joining the minimal and maximal values on
A of the functional f . Hence, b is an extreme point of the set f (A). By Lemma 1,
M( f, A) = f −1(b) ∩ A is an extreme subset. �

Lemma 4. Let A be a convex compact subset of a topological vector space X and
M be a centered family of closed extreme subsets of A. Then the intersection D =⋂

B∈M B of all the elements of the familyM is also a closed extreme subset of A.

Proof. The compactness of A ensures that the set D is not empty. Convexity and
closedness are inherited by intersections of sets, so D is convex and closed. Now
let x1, x2 ∈ A and (x1 + x2)/2 ∈ D. Then, in particular, (x1 + x2)/2 ∈ B for any
B ∈ M. Therefore, x1, x2 ∈ B for all B ∈ M, whence x1, x2 ∈ ⋂

B∈M B = D. �

Lemma 5. Let A be a convex compact subset of a separated locally convex topolog-
ical vector space, and suppose A consists of more than one point. Then A contains
a closed extreme subset B such that B �= A.

Proof. Suppose x1, x2 ∈ A and x1 �= x2. Since the dual of a separated locally convex
space separates points, there exists a real continuous linear functional f such that
f (x1) �= f (x2). Hence, f is not identically constant on A, and for the required set
B we can take the set M( f, A) from Lemma 3. �

Theorem 1 (weak formulation of the Krein–Milman theorem).1 Every convex
compact set K in a separated locally convex space has extreme points.

Proof. Consider the family Ext(K ) of all closed extreme subsets of the compact set
K . We equip Ext(K ) with the decreasing order of sets. By Lemma 4, Ext(K ) is
an inductively ordered set. By Zorn’s lemma, there exists a minimal with respect to
inclusion closed extreme subset A of the compact set K . By Lemma 5, A consists
of exactly one point, which is the sought-for extreme point of K . �

Remark 1. For a convex compact set in a non-locally convex separated topological
vector space the assertion of Theorem 1 may fail. A corresponding counterexample
was constructed by Roberts [73].

The next result has numerous applications in linear optimization problems and,
in particular, in problems of mathematical economics.

Theorem 2. Let K be a convex compact set in a separated locally convex space
X, f a continuous real linear functional on X, and b = maxx∈K f (x). Then there
exists a point x ∈ ext K in which f (x) = b. In other words, when searching for the
maximum of a linear functional on a convex compact set, it suffices to consider the
values in the extreme points of the compact set under consideration.

1Mark Krein and David Milman were Odessa mathematicians. For this reason, in contrast to the
theorems of the Lviv school led by Stefan Banach, which became “Ukrainian” only as a result of
post-war geopolitical changes, a Ukrainian patriot like me can be proud that the Krein–Milman
theorem is “genuinely Ukrainian”.
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Proof. By Lemma 3, M( f, K ) = {x ∈ K : f (x) = b} is an extreme subset of the
compact set K , and is closed thanks to the continuity of the functional f . Since the
set M( f, K ) is convex and compact, it has an extreme point x0, and in view of the
definition of M( f, K ), f (x0) = b. It remains to apply Lemma 2: an extreme point
of an extreme subset is an extreme point of the original set. �

The application of Theorem 2 becomes especially effective in the case when the
set K is a finite-dimensional polyhedron. In this case ext K is a finite set, and the
task of calculating the maximum of a linear functional reduces to a finite (admittedly
possibly large) item-by-item examination. This examination can be carried out, in
particular, by means of the famous simplex method of Kantorovich, which these days
is presented in every linear programming textbook.

Lemma 6. Let A and B be convex closed subsets of a locally convex space X. Then
the following conditions are equivalent:

(i) A = B;

(ii) supx∈A f (x) = supx∈B f (x) for any real linear functional f ∈ X∗.

Proof. The implication (i) =⇒ (ii) is obvious. Let us prove the converse implication
(ii)=⇒ (i). Since the sets A and B play symmetric roles, it suffices to prove that A ⊂
B. Suppose this inclusions does not hold. Then there exists a point x0 ∈ A \ B. Since
B is closed, x0 has a neighborhood U such that U ∩ B = ∅. By the geometric form
of the Hahn–Banach theorem, applied to the sets U and B, there exist a continuous
real linear functional on X and a constant a ∈ R such that f (x) � a for x ∈ B
and f (x0) > a. Then supx∈A f (x) � f (x0) > a � supx∈B f (x), which contradicts
condition (ii). �

Theorem 3 (Krein–Milman theorem: complete formulation). Any convex com-
pact set K in a separated locally convex space coincides with the closure of the
convex hull of its extreme points.

Proof. Let K̃ = conv (ext K ) and consider an arbitrary continuous real linear func-
tional f on X . Then K̃ ⊂ K , and so supx∈K f (x) � supx∈K̃ f (x). By Theorem 2,
supx∈K f (x) � supx∈ext K f (x) � supx∈K̃ f (x). It remains to apply Lemma 6. �

Thus, we can state that a convex compact set not only has extreme points, but there
are “many” such points. For example, if the compact set K is infinite-dimensional,
then the set ext K is infinite. Let us give several corollaries.

Corollary 1. Every convex closed bounded subset of a reflexive space and, in par-
ticular, the closed unit ball, has extreme points. If the space is infinite-dimensional,
then its closed unit ball has infinitely many extreme points.

Proof. It suffices to recall that any convex closed bounded subset of a reflexive space
is weakly compact. �
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This provides another proof of the non-reflexivity of the spaces c0, L1[0, 1], and
C[0, 1]: as we already remarked, in the first two of these spaces the unit ball even
has no extreme points, while the unit ball in C[0, 1] has only two extreme points.

If instead of the weak topology we consider the w∗-topology, we obtain another
corollary.

Corollary 2. Let X be a Banach space. Then any convex w∗-closed bounded subset
of the space X∗ and, in particular, the closed unit ball in X∗, has extreme points.
If the space X is infinite-dimensional, then the closed unit ball in the space X∗ has
infinitely many extreme points. �

For this reason, the spaces c0, L1[0, 1] and C[0, 1] are not just non-reflexive, they
actually are not dual to any Banach space (i.e., they are not isometric to any space
of the form X∗ with X a Banach space).

Exercises

1. Let A = conv B. Then ext A ⊂ B.

2. Let A ⊂ B and x ∈ (ext B) ∩ A. Then x ∈ ext A.

3. Let K be a convex compact subset of a strictly convex Banach space. Then a
farthest from zero point of the compact set K is an extreme point of K .

4. Let X,Y be Banach spaces, T ∈ L(X,Y ), and K a convex compact set in X .
Suppose that ‖T x‖ � C for all x ∈ ext K . Then ‖T x‖ � C for all x ∈ K .

Using the preceding exercise and the description of the extreme points of the
n-dimensional cube, prove the following result:

5. Suppose x1, . . . , xn are elements of the Banach space X and the estimate∥∥∑n
k=1 akxk

∥∥ � C holds for all ak = ±1. Then the same estimate holds for all
ak ∈ [−1, 1].
6. Lindenstrauss–Phelps theorem. In an infinite-dimensional reflexive Banach
space the set of extreme points of the closed unit ball is uncountable.

The closed unit ball of the space c0, regarded as a subset of the space �∞ = �∗
1, is

an example of a closed convex and bounded set in a dual space which has no extreme
points. Therefore, in Corollary 2 the w∗-closedness assumption cannot be replaced
by ordinary closedness. This makes the next result all the more interesting:

7. Let X be a Banach space whose dual X∗ is separable. Then any convex closed
(in norm) bounded subset of the space X∗ has extreme points.
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8. None of the spaces c0, L1[0, 1] and C[0, 1] can be isomorphically embedded in
a separable dual space. In particular, none of these spaces is isomorphic to a dual
space.

9. The set of extreme points of a convex metrizable compact subset of a locally
convex space is a Gδ-set.

10. For every Banach space X , the identity operator I ∈ L(X) is an extreme point
of the ball BL(X).

11. The unit element of any Banach algebra A is an extreme point of the ball BA.

18.1.3 Weak Integrals and the Krein–Milman Theorem
in Integral Form

Let (�,�,μ) be a finite measure space and X be a locally convex space. A function
f : � → X is said to beweakly integrable if for any x∗ ∈ X∗ the composition x∗ ◦ f
is an integrable scalar function and there exists an element x ∈ X such that

∫

�

x∗ ◦ f dμ = x∗(x) (1)

for all x∗ ∈ X∗. In this case the element x is called the weak integral of the function
f , and is denoted by the symbol

∫
�
f dμ. With this notation formula (1) takes on

the form

x∗
(∫

�

f dμ

)
=

∫

�

x∗ ◦ f dμ

and can be interpreted as saying that a continuous linear functional can be brought
under the integral sign.

The weak integral inherits the simplest properties of the ordinary integral:

—
∫
�

a f1 + b f2 dμ = a
∫
�

f1 dμ + b
∫
�

f2 dμ (linearitywith respect to the function);

—
∫
�

f d (aμ1 + bμ2) = a
∫
�

f dμ1 + b
∫
�

f dμ2 (linearitywith respect to themea-

sure);
—

∫
�1��2

f dμ = ∫
�1

f dμ + ∫
�2

f dμ for any disjoint sets �1,�2 ∈ � (additivity

with respect to the integration domain);

Here, in all the three properties, if the integrals on the right-hand side exist, then so
does the integral on the left-hand side.

Let us mention that one of the important properties of the Lebesgue integral,
namely, that integrability on a set implies integrability on all its measurable subsets,
does not hold for the weak integral (see Exercise1 below). The root of this unpleasant
feature is that the weak topology of a space is not necessarily complete. Let us
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examine on some examples how one calculates the weak integral of a vector-valued
function.

Example 1. Let X be the sequence space �p or c0, and e∗
n ∈ X∗ be the coor-

dinate (evaluation) functionals. Let f : � → X be a weakly integrable function.
For each t ∈ � denote by fn(t) the n-th component of the vector f (t): f (t) =
( f1(t), f2(t), . . .). Then, by the definition of the weak integral,

e∗
n

( ∫

�

f dμ

)
=

∫

�

e∗
n ◦ f dμ =

∫

�

fn dμ,

i.e.,
∫
�
f dμ is the vector with the components

(∫
�
fn dμ

)∞
n=1.

Example 2. Let F : � → C[0, 1] be a weakly integrable function. For each t ∈
[0, 1] and each τ ∈ �,wedefine f (t, τ ) = (F(τ ))(t).Using instead of the coordinate
functionals the point evaluation functionals, we obtain the following rule for the
calculation of the function

∫
�
F dμ ∈ C[0, 1]:

(∫

�

F dμ

)
(t) =

∫

�

f (t, τ ) dμ(τ).

As in the scalar case, a function f : � → X is said to bemeasurable if f −1(A) ∈
� for any Borel subset A of the space X . Let us mention one useful sufficient
condition for weak integrability.

Theorem 1. Let (�,�,μ) be a probability space, K a convex compact subset of a
separated locally convex space X, and f : � → K a measurable function. Then the
function f is weakly integrable and

∫
�
f dμ ∈ K.

Proof. Consider the dual pair ((X∗)′, X∗). Since K ⊂ X ⊂ (X∗)′, the compact set
K can be regarded as a subset of the space (X∗)′. Then K will also be compact in
the weaker topology σ((X∗)′, X∗), and so K is a convex σ((X∗)′, X∗)-compact set
in (X∗)′.

Next, we remark that every functional x∗ ∈ X∗ is bounded on K . Consequently,
the composition x∗ ◦ f is a bounded measurable function on �, and hence x∗ ◦ f is
an integrable scalar function. Define a linear functional F : X∗ → C by the formula
F(x∗) = ∫

�
x∗ ◦ f dμ. We claim that F ∈ K . Assuming the contrary, there exists

an element x∗ ∈ X∗ such that Re x∗(s) � 1 for all s ∈ K and Re x∗(F) > 1. Then
Re x∗ ◦ f � 1 everywhere on �, and so

Re x∗(F) = Re F(x∗) =
∫

�

Re x∗ ◦ f dμ � 1.

The contradiction we reached means that F ∈ K . By construction, x∗(F) =∫
�
x∗ ◦ f dμ for all x∗ ∈ X∗, i.e., F is the weak integral of the function f . �
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Theorem 2 (Krein–Milman theorem: integral form). Let K be a convex compact
subset of a separated locally convex space X and x ∈ K. Then there exists a regular
Borel probability measure μ on ext K, the closure of the set of extreme points of K ,
such that ∫

ext K
I dμ = x;

here I denotes, as usual, the identity mapping and the integral is understood in the
weak sense.

Proof. Recalling the theorem on the general form of linear functionals on the space
of continuous functions, we see that the set M( ext K ) of all regular Borel proba-
bility measures on the compact set ext K can be regarded as a subset of the space
C( ext K )∗. Moreover, M( ext K ) is the intersection of the closed unit ball of the
space C(ext K )∗ (i.e., of a convex w∗-compact set) with the w∗-closed set {F ∈
C(ext K )∗ : F(1) = 1}. As such, M( ext K ) is a convex w∗-compact subset of
C(ext K )∗.

By the preceding theorem, for each measure μ ∈ M(ext K ) there exists the weak
integral

∫
ext K I dμ. Consider the operator T : X∗ → C(ext K )∗ which sends each

functional x∗ ∈ X∗ into its restriction to ext K . Let us calculate the action of the
adjoint operator T ∗ : C(ext K )∗ → X∗∗ on the elements of the set M( ext K ). For
any measure μ ∈ M(ext K ) and any x∗ ∈ X∗ we have

〈T ∗μ, x∗〉 = 〈μ, T x∗〉 =
∫

ext K

x∗ dμ = x∗
⎛
⎝

∫

ext K

I dμ

⎞
⎠ ,

i.e.,

T ∗μ =
∫

ext K

I dμ.

Therefore, now our task is reduced to proving the equality

T ∗(M( ext K )) = K .

The inclusion T ∗(M( ext K )) ⊂ K was proved in the preceding theorem. Let
us prove the opposite inclusion T ∗ (

M(ext K )
) ⊃ K . Denote by δx the probability

measure supported at the point x . Then for any x ∈ ext K we have

T ∗δx =
∫

ext K

I dδx = x,

i.e., T ∗(M(ext K )) ⊃ ext K . Further, T ∗ (
M( ext K )

)
is a convex closed set, being the

image of the convexw∗-compact setM( ext K ) under thew∗-continuous operator T ∗.
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Therefore, T ∗(M( ext K )) ⊃ conv(ext K ); but, by Theorem3 of Subsection18.1.2,
conv(ext K ) = K . �

Let us remark that in the metrizable case the measure μ that represents the ele-
ment x can be selected so that it is supported on the set of extreme points itself,
rather than on its closure. Then the integral representation of the element x takes
the form x = ∫

ext K I dμ. The proof of this theorem due to G. Choquet and various
generalizations thereof can be found in Phelps’ monograph [34].

Another, quite fruitful research direction is connected with the consideration of
a narrower set than ext K , namely, the set of strongly exposed points. In terms of
such points it was possible to characterize the spaces in which the Radon–Nikodým
theorem is valid. Results on this theme, as well as many other interesting branches
of the geometry of Banach spaces, can be found in the monographs [3, 12].

Exercises

1. On the interval [0, 1] pick a sequence (Δn), n ∈ N, of pairwise disjoint subin-
tervals. Let en , n ∈ N, denote the standard basis of the space c0. Define the func-
tion f : [0, 1] → c0 as follows: if the point t lies in none of the intervals Δn , put
f (t) = 0; if t lies in an odd-indexed interval Δ2n−1, put f (t) = (1/|Δ2n−1|)en;
finally, if t lies in an even-indexed interval Δ2n , put f (t) = −(1/|Δ2n|)en . Ver-
ify that the function f is weakly integrable on [0, 1] with respect to the Lebesgue
measure λ and

∫
[0,1] f dλ = 0. At the same time, on the subset Δ = ⋃∞

n=1 Δ2n−1

the function f is not weakly integrable: otherwise, we would have the equality∫
Δ
f dλ = (1, 1, 1, . . .), but there is no such element in c0.

2. Prove the following theorem of Carathéodory: If K ⊂ R
n is a convex compact

set, then every element x ∈ K admits a representation x = ∑n+1
j=1 a j x j , where x j ∈

ext K , a j � 0, and
∑n+1

j=1 a j = 1.

3. BasedonChoquet’s theorem formulated above, prove that if the convexmetrizable
compact set K in a locally convex space has a countable number of extreme points,
then every element x ∈ K admits a series expansion x = ∑∞

n=1 anxn , where xn ∈
ext K , an � 0, and

∑∞
n=1 an = 1.

4. If one removes the requirement that the set of extreme points in countable, the
assertion of the preceding exercise may fail. Provide a counterexample.

18.2 Applications

18.2.1 The Connection Between the Properties
of the Compact Space K and Those of the Space C(K )

The space C(K ) is more convenient to study than the compact space K , because the
elements of a function space can be manipulated more freely than the points of a



512 18 The Krein–Milman Theorem and Its Applications

topological space. Indeed, in contrast to the points of the compact space K , functions
on K can be added and multiplied by scalars; the topology on C(K ) is given by a
norm, and so one can speak about Cauchy sequences, completeness, convergence of
series, and so on. However, all these advantages would depreciate if in the passage
from K to C(K ) part of the information about the original compact space is lost.
Below we will show that actually no such loss occurs and all the properties of the
compact space K can be recovered from the properties of the space C(K ).

As usual, we will identify the continuous functionals on C(K ) with the regular
Borel charges that generate them. In particular, δx (the probability measure supported
at x) can be regarded as the functional on C(K ) which acts as 〈δx , f 〉 = ∫

K f dδx =
f (x), i.e., as the evaluation functional at the point x .
A bit more terminology. The support of the regular Borel charge σ is defined to be

the support of the measure |σ | (see Subsection8.1.2). As in the case of measures, the
support of a charge σ is denoted by supp σ . Clearly, supp δx = {x}, and if supp σ =
{x}, then σ = λδx , where λ is a non-zero scalar.

For any Borel-measurable bounded function g on K and any Borel charge σ , we
denote by g × σ the Borel charge given by

(g × σ)(A) =
∫

A
g dσ .

The functional defined by the charge g × σ acts by the rule

〈g × σ, f 〉 =
∫

K
f g dσ .

The operation thus introduced enjoys the natural properties of a product:

— 1 × σ = σ ;

— (g + h) × σ = g × σ + h × σ ;

— (gh) × σ = (hg) × σ = h × (g × σ);

— g × (ν + σ) = g × ν + g × σ .

— Finally, the norm of the charge g × σ is calculated by the formula

‖g × σ‖ =
∫

K
|g| d|σ |.

Theorem 1. The set of extreme points of the closed unit ball of the space C(K )∗
coincides with the set of charges of the form λδx , where x ∈ K and |λ| = 1.

Proof. First let us show that charges of the form δx are extreme points of the set
BC(K )∗ . Since the ball is balanced, this will imply that also λδx ∈ ext BC(K )∗ when-
ever |λ| = 1. So, assume ν1, ν2 ∈ BC(K )∗ and (ν1 + ν2)/2 = δx . Then (ν1({x}) +
ν2({x}))/2 = δx ({x}) = 1. Since both numbers |ν1({x})|, |ν2({x})| are not larger
than 1, this means that ν1({x}) = ν2({x}) = 1. This in turn means that beyond the
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point x the charges ν1 and ν2 vanish, since otherwise their norms would be strictly
larger than 1. That is, ν1 = ν2 = δx .

Now let us show that if the charge σ ∈ BC(K )∗ is not concentrated at a single point
of the compact space K , then it cannot be an extreme point of the unit ball. Indeed,
suppose supp σ contains two distinct points x �= y. Surround these points by disjoint
neighborhoods U and V . By the definition of the support, the numbers |σ |(U ) and
|σ |(V ) are different from zero. Let ε = min{|σ |(U ), |σ |(V )}. Consider the function

g = ε

|σ |(U )
1U − ε

|σ |(V )
1V

and the charges

σ1 = (1 − g) × σ and σ2 = (1 + g) × σ.

Since |g| � 1, we have |1 ± g| = 1 ± g. Further, by construction,
∫
K g d|σ | = 0.

Consequently,∫

K
|1 ± g|d|σ | =

∫

K
d|σ | ±

∫

K
g d|σ | =

∫

K
d|σ | = ‖σ‖ � 1.

Hence, σ1, σ2 ∈ BC(K )∗ . At the same time,

σ1 + σ2

2
= σ

and

‖σ1 − σ2‖ = 2
∫

K
|g|d|σ | = 4ε �= 0;

therefore, the charge σ cannot be an extreme point of the unit ball. �

Suppose we are given a Banach space X and we are told that X = C(K ) for some
compact space K , but not what this compact space is. Can we recover K from the
space X? By the preceding theorem, to this end we need to look at the extreme points
of the ball BX∗ .

Let us introduce several definitions and notations. The set ext BX∗ will be regarded
as a subspace of the topological space (X∗, σ (X∗, X)), i.e., we equip ext BX∗ with the
w∗-topology. Further, we introduce on ext BX∗ the following equivalence relation:
x∗ ∼ y∗ if x∗ = λy∗ for some scalar λ with |λ| = 1. The equivalence class of the
element x∗ ∈ ext BX∗ is the pair of points±x∗ in the real case, and the circle passing
through x∗, i.e., [x∗] = {λx∗ : |λ| = 1}, in the complex case. We denote the set
of equivalence classes into which ext BX∗ decomposes by K̃ (X), and denote by q
the quotient mapping q : ext BC(K )∗ → K̃ (X). We equip K̃ (X) with the strongest
topology with respect to which q is w∗-continuous. That is to say, a set A ⊂ K̃ (X)

is declared to be open in K̃ (X) if q−1(A) is w∗-open in ext BX∗ . Note that K̃ (X) is
a Hausdorff topological space. Indeed, if x∗, y∗ ∈ ext BX∗ and [x∗] �= [y∗], then the
functionals x∗ and y∗ are linearly independent. Hence, the kernel of any of them is not
included in the kernel of the other, and so there exists an element x ∈ Ker y∗ \ Ker x∗.
Multiplying x by a scalar, one can ensure that x∗(x) = 1. Then the points [x∗], [y∗] ∈
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K̃ (X) are separated by the neighborhoodsU = {[s∗] ∈ K̃ : |s∗(x)| > 1/2} and V =
{[s∗] ∈ K̃ : |s∗(x)| < 1/2}.
Theorem 2. Let X = C(K ) for some compact space K . Then K is homeomorphic
with the topological space K̃ (X) constructed above.

Proof. Define the mapping δ : K → ext BX∗ by the formula δ(t) = δt . For any func-
tion f ∈ C(K ) we have 〈δ(t), f 〉 = f (t), which depends continuously on t . Since
ext BX∗ is equipped with the w∗-topology, this means that the mapping δ is continu-
ous. Then, as a composition of continuous mappings, the mapping j : K → K̃ (X),
j = q ◦ δ, is also continuous. Since j (t) = [δt ], Theorem 1 guarantees that the map-
ping j is bijective. But any bijective continuous mapping of a compact space onto a
Hausdorff space is a homeomorphism. �

Corollary 1. If for two compact spaces K1 and K2 the spaces C(K1) and C(K2)

are isometric, then the spaces K1 and K2 are homeomorphic. �

Theorem 3. The space C(K ) is separable if and only if the compact space K is
metrizable.

Proof. Suppose C(K ) is separable. Then (Corollary4 in Subsection17.2.4) the w∗-
topology is metrizable on the ball BC(K )∗ . The compact space K is homeomorphic
to the subset {δt : t ∈ K } of the ball BC(K )∗ , equipped with the w∗-topology (the
homeomorphism is provided by the mapping t �→ δt ). Hence, K is metrizable.

Conversely, suppose K is a compact metric space. Then for each n ∈ N there
exists a cover of the compact space K by balls Un,1,Un,2, . . . ,Un,m(n) of radius
1/n. Denote by ϕn,1, ϕn,2, . . . , ϕn,m(n) a partition of unity subordinate to the cover
Un,1,Un,2, . . .Un,m(n) (see Subsection15.1.3). Let us prove that the system of ele-
ments {ϕn, j : n = 1, . . . ,∞, j = 1, . . . ,m(n)} is complete in C(K ). This in turn
will establish the desired separability of the space C(K ).

Thus, let f ∈ C(K ). For each ε > 0, pick an n ∈ N such that for any t1, t2 ∈ K ,
if ρ(t1, t2) < 1/n, then | f (t1) − f (t2)| < ε. Next, in each set Un, j pick one point
tn, j and consider the following linear combination fε of the functions ϕn, j :

fε = f (tn,1)ϕn,1 + f (tn,2)ϕn,2 + · · · + f (tn,m(n))ϕn,m(n).

Weclaim that‖ f − fε‖<ε. Indeed, for any t ∈K wehave f (t) = ∑m(n)
j=1 f (t)ϕn, j (t).

Consequently,

| f (t) − fε(t)| �
m(n)∑
j=1

| f (t) − f (tn, j )|ϕn, j (t).

In the last sum, if ϕn, j (t) �= 0, then t ∈ Un, j , and so | f (t) − f (tn, j )| < ε. Continuing
the estimate, we conclude that

| f (t) − fε(t)| <

m(n)∑
j=1

εϕn, j (t) = ε. �
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Remark 1. Jumping ahead, we observe that in the last part of the proof of Theorem 3,
the separability of the space C(K ) is an easy consequence of the Stone–Weierstrass
theorem. But in our opinion the explicit procedure of approximating a function by a
partition of unity is instructive in itself.

Exercises

1. Verify that for any Borel-measurable bounded function g on K and any regular
Borel charge σ , the charge g × σ is regular (hint: consider first the case g = 1A, then
the case of finitely-valued functions, and finally use the approximation of a bounded
function by finitely-valued functions).

2. Verify all the properties, listed at the beginning of the subsection, of the operation
g × σ of multiplying a regular Borel charge by a bounded Borel function.

3. The fact that the spaces C(K1) and C(K2) are isomorphic does not necessarily
imply that the compact spaces K1 and K2 are homeomorphic. Example: K1 = [0, 1]
and K2 = [0, 1] ∪ {2}.

18.2.2 The Stone–Weierstrass Theorem

In this subsection we make acquaintance with an exceptionally beautiful, and at the
same time, very useful generalization of Weierstrass’ theorem on the approximation
of functions by polynomials. This generalization, devised by M.H. Stone, is appli-
cable to functions defined not only on an interval, but also on an arbitrary compact
space. The proof given below is due to de Branges (L. de Branges, 1959). The appli-
cation of the same idea of proof to an even more general result, namely Bishop’s
theorem, can be found in the book [38].

Theorem 1. Suppose the linear subspace X of the space C(K ) has the following
properties:

(a) 1 ∈ X;

(b) if f, g ∈ X, then f g ∈ X (in other words, X is a subalgebra of the algebra
C(K ));

(c) for any function f ∈ X, its complex conjugate f also belongs to X;

(d) for any t1, t2 ∈ K, t1 �= t2, there exists a function f ∈ X such that f (t1) �= f (t2)
(i.e., X separates the points of the compact space K ).

Then the subspace X is dense in C(K ).

Proof. Suppose the assertion of the theorem is false, i.e., the subspace X is not
dense in C(K ). Then the annihilator X⊥ ⊂ C(K )∗ does not reduce to 0. Recall that
X⊥ is a w∗-closed subspace in C(K )∗ and hence, by Alaoglu’s theorem, BX⊥ =
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BC(K )∗ ∩ X⊥ is a w∗-compact set. By the Krein–Milman theorem, the ball BX⊥ has
an extremepoint ν. Obviously, ν ∈ SX⊥ , that is, ‖ν‖ = 1.Wenext study the properties
of this regular Borel charge ν and show that they are intrinsically contradictory.

We begin with several useful remarks on the properties of the sets X and X⊥:

(i) If f ∈ X , then Re f ∈ X and Im f ∈ X (this follows from condition (c) and
the formulas Re f = ( f + f̄ )/2 and Im f = ( f − f̄ )/(2i)).

(ii) If f ∈ X and η ∈ X⊥, then f × η ∈ X⊥, where × is the operation introduced
in the preceding subsection. Indeed, for any g ∈ X the product f g also lies in X ,
and hence is annihilated by the charge η. We have 〈 f × η, g〉 = 〈η, f g〉 = 0, and
so f × η ∈ X⊥.

(iii) Ifη ∈ X⊥, then supp η contains at least two distinct points. Indeed, if supp η =
{t}, then η = aδt with a ∈ C \ {0}. But then 〈η,1〉 = a �= 0, i.e., η /∈ X⊥.

Now let us return to the charge ν ∈ SX⊥ , a candidate for the role of an extreme
point of the ball BX⊥ . We use property (iii) above. Let t1, t2 ∈ supp ν and t1 �= t2. By
condition (d), there exists an f ∈ X such that f (t1) �= f (t2). Then either Re f (t1) �=
Re f (t2), or Im f (t1) �= Im f (t2). By property (i), Re f, Im f ∈ X . Therefore, f can
be assumed to be a real-valued function: otherwise one can replace it by Re f or by
Im f . Further, adding to f a large positive constant one can ensure that that f is
positive, and then multiplying by a small positive factor we obtain a function whose
values lie in the interval (0, 1). Thus, we proved that there exists a function f ∈ X
such that f (t1) �= f (t2) and 0 < f (t) < 1 for all t ∈ K .

Let us introduce the auxiliary charges ν1 = f × ν and ν2 = (1 − f ) × ν. Then

‖ν1‖ =
∫

K
f d|ν|, ‖ν2‖ =

∫

K
(1 − f )d|ν|,

and both numbers are different from zero because, by construction, the functions f
and 1 − f do not take the value 0. Further,

‖ν1‖ + ‖ν2‖ =
∫

K
d|ν| = 1.

We have the obvious equality

‖ν1‖ ν1

‖ν1‖ + ‖ν2‖ ν2

‖ν2‖ = ν,

the geometric meaning of which is as follows: the vector ν ∈ BX⊥ is an interior
point of the segment that joins the vectors ν1

‖ν1‖ ∈ BX⊥ and ν2
‖ν2‖ ∈ BX⊥ (the fact that

the charges ν1 and ν2 lie in the subspace X⊥ follows from property (ii)). Since by
our assumption ν is an extreme point of the ball BX⊥ , the endpoints of the segment
must coincide with ν: ν1

‖ν1‖ = ν2
‖ν2‖ = ν. In particular, ν1 = ‖ν1‖ ν, i.e., ( f − ‖ν1‖) ×

ν = 0. Recalling the formula for the norm of a charge, we get that
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∫

K

∣∣ f − ‖ν1‖
∣∣ d|ν| = 0.

In view of the continuity of the function f, the last equality means that f (t) = ‖ν1‖
for all t ∈ supp ν (Theorem2 of Subsection8.1.2). We arrived at a contradiction with
the condition f (t1) �= f (t2). �

Exercises

Deduce from the Stone–Weierstrass theorem that:

1. The set of polynomials is dense in C(K ), for any compact subset K of R (in
particular, when K = [a, b]). Recall that this fact was used in Subsection13.1.3 to
construct functions of a self-adjoint operator.

2. The set of polynomials in n variables is dense in C(K ), where K is any compact
subset of Rn .

3. The set of “two-sided” polynomials of the form
∑n

k=−n akz
k , n ∈ N, is dense in

the spaceC(T) of continuous functions on the unit circleT = {z ∈ C : |z | = 1} (we
used this fact earlier to construct functions of an unitary operator).

Consider the half-line [0,+∞], i.e., the one-point compactification of the half-
line [0,+∞). The neighborhoods of finite points of [0,+∞] are defined as usual;
the neighborhoods of +∞ are the complements of the bounded sets. Show that:

4. In the described topology [0,+∞] is compact.

5. The space C[0,+∞] coincides with the space of continuous functions f (t) on
[0,+∞) that have a limit as t → +∞.

6. The set of exponential functions e−at with a ∈ [0,+∞) is a complete system of
elements in C[0,+∞].

18.2.3 Completely Monotone Functions

An infinitely differentiable function f on [0,+∞) is said to be completely mono-
tone if (−1)n f (n)(t) � 0 for all n = 0, 1, 2, . . . and all t ∈ [0,+∞). In particular,
to be completely monotone the function f must be non-negative ( f (t) � 0), non-
increasing ((−1) f ′(t) � 0), and convex ( f ′′(t) � 0). A typical example of a com-
pletely monotone function is f (t) = e−t . A well-known theorem of S.N. Bernstein2

2Kharkiv is a city that hosted many famous mathematicians. Sergei Natanovich Bernstein not only
worked for a period of time in Kharkiv, he spent a major part of his life there, exerting an invaluable
influence on the formation of the Kharkiv mathematical school.
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asserts that any completely monotone function can be uniquely represented in the
form

f (x) =
∞∫

0

e−t xdμ(t), (1)

where μ is a finite regular Borel measure on the half-line. In other words, every
completely monotone function is in a sense a combination of exponentials. Dif-
ferentiating under the integral sign one can readily verify that any function of the
form (1) is completely monotone, and thus Bernstein’s theorem provides a complete
description of the class of completely monotone functions.

The representation (1) calls forth a natural association with the Krein–Milman
theorem in integral form. The first proof of Bernstein’s theorem based on this analogy
was proposed by Choquet. Below we provide a sufficiently detailed sketch of this
proof, leaving its implementation to the reader. A detailed exposition can be found
in the short book [34, Chapter2].

Theorem 1. If the function f : [0,+∞) → R admits a representation (1), where μ

is a finite regular Borel measure, then this representation is unique.

Proof. Consider μ as a functional on C[0,+∞]. Formula (1) says that we are given
the values of this functional on the exponentials e−at : 〈μ, e−at 〉 = f (a). By Exer-
cise6 of Subsection 18.2.2, the set of exponentials e−at witha ∈ [0,+∞) is complete
in C[0,+∞]. Hence, a continuous functional is uniquely determined by its values
on this set. �

In the space C∞(0,+∞) of infinitely differentiable functions on the open half-
line, equipped with the standard topology generated by the seminorms pn( f ) =
maxt∈(n−1,n) | f (n−1)(t)|, n ∈ N, consider the set K of all completely monotone func-
tions bounded above by 1. Note that the functions f ∈ K are defined on the open
half-line, but thanks to their monotonicity and boundedness they have limits at 0 and
∞, and consequently can be considered to be defined also at these two points.

Theorem 2. The set K is convex and compact in C∞(0,+∞).

Proof. The convexity and closedness are verified directly. Since C∞(0,+∞) is a
Montel space (Subsection 16.3.4), to establish the compactness of K it suffices to
verify that K is bounded. Now boundedness follows from the following estimate
of the n-th derivative of f ∈ K , the proof of which by induction on n is left to the
reader:

sup
a�t<∞

| f (n)(t)| � a−n2n(n+1)/2

for any a ∈ (0, 1) and any n = 0, 1, 2, . . . . �

Theorem 3. Suppose the continuous function f : (0,+∞) → R satisfies for all
x, y ∈ (0,+∞) the functional equation
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f (x + y) = f (x) f (y). (2)

Then f is an exponential function of the form f (x) = ax .

Proof. Take for a the value f (1). Substituting into (2) x = 1 and y = 1, we obtain
f (2) = a2. Further, if we fix x = 1 and take successively y = 2, 3, . . ., we obtain the
equality f (n) = an . Taking in (2) x = y = n/2, we conclude that f (n/2) = an/2.
Now taking successively x = y = n2−k , we obtain the formula f (x) = ax for all
dyadic-rational numbers. To all the remaining positive real values x the equality
f (x) = ax is extended by continuity. �
Theorem 4. The set of extremepoints of the compact set K introducedabove consists
of the functions e−at , a ∈ [0,+∞), and the null function.

Proof. Let f ∈ ext K . Then fix y > 0 and consider the auxiliary function u(x) =
f (x + y) − f (x) f (y). The reader will be able to verify that the two functions
f1 = f + u and f2 = f − u lie in K . Since the extreme point f can be written
as f = ( f1 + f2)/2, it follows that u = 0. This establishes that f satisfies the func-
tional equation (2), and hence that f is an exponential function. But any exponential
function that lies in the set K is either 0, or a function of the form e−at .

Now let us show that indeed all the functions indicated in the statement of the
theorem lie in ext K . The fact that the functions 0 and 1 lie in ext K follows from
the condition 0 � f (t) � 1 that we imposed on all f ∈ K . Further, at least one of
the functions e−a0t with 0 < a0 < ∞ is an extreme point. Otherwise, the set ext K
would consist only of the functions 0 and 1 and, by the Krein–Milman theorem, the
compact set K = conv ext K would consist only of constants. Now for any b ∈ (0, 1)
the linear operator T which sends each function f (x) into the function f (bx) maps
K bijectively onto K . Therefore, the operator T maps extreme points into extreme
ones; in particular, the function e−a0bt is an extreme point. Since b is arbitrary, this
shows that e−at ∈ ext K for all 0 < a < ∞. �

To complete the proof of Bernstein’s theorem, consider the bijective mapping
F : [0,+∞] → ext K defined by the rule F(0) = 1, F(+∞) = 0, and F(a) = e−at

for 0 < a < ∞. The reader will readily verify that the mapping F is continuous.
Hence, ext K , being the image of a compact set under a continuous mapping, is a
closed set. To conclude, F is a continuous bijective mapping of a compact set into a
compact set, and hence a homeomorphism.

Let f : [0,+∞) → R be a completely monotone function. With no loss of gen-
erality, one can assume that f ∈ K : this is readily achieved via multiplication by a
factor. By the Krein–Milman theorem in integral form, there exists a regular Borel
probability measure ν on ext K such that

f =
∫

ext K

I dν. (3)

Define the measure μ on [0,+∞] to be the preimage of ν under the mapping F :
μ(A) = ν(F(A)). Changing the variables in (3) yields
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f =
∫

[0,+∞]
F(t) dμ(t).

Since F(+∞) = 0, the point +∞ can be removed from the integration domain:

f =
∫

[0,+∞)

F(t) dμ(t).

Finally, applying to both sides of this equality the evaluation functional δx at the
point x , we obtain the requisite representation (1):

f (x) = 〈δx , f 〉 =
∫

[0,+∞)

〈δx , F(t)〉 dμ(t) =
∫

[0,+∞)

e−t x dμ(t). �

18.2.4 Lyapunov’s Theorem on Vector Measures

We begin this subsection with the “children’s” cake-cutting problem. Bart and Todd
want to divide a cake in a fair way. The problem is that different parts of the cake
have different gastronomical and aesthetical values: some part has marzipan, another
candied peel, one carries a chocolate figurine, and so on. An ever bigger issue is the
individuality of the children: theymay estimate differently the desirability of one and
the same piece of the cake. The standard approach to solving this cutting problem
goes as follows: Bart cuts the cake into two pieces that from his point of view are
equal, and Todd chooses for himself the part that appeals more to him. In this way
Bart is convinced that he received exactly one half of the cake, and Todd thinks
he received no less than a half. This approach is completely satisfactory as long as
Todd does not start bragging that he got a much better part, and Bart is not envious
and starts a fight. To avoid such troubles and keep the peace between friends, it is
desirable to cut the cakes into two parts such that the parts will be exactly equal from
the point of view of Bart, as well as that of Todd. Is this possible? To answer this
question, we need a “mature” formulation.3

Thus, let � be a set (our cake), � a σ -algebra of subsets of � (the pieces into
which one can cut the cake), and μ1, μ2 finite countably-additive measures (for each
A ∈ � the quantityμ1(A) (respectively,μ2(A)) is the “value” that Bart (respectively,
Todd) assigns to the cake piece A).4 Now the problem reads: is there a set A ∈ �

such that μ1(A) = 1
2μ1(�) and also μ2(A) = 1

2μ2(�)? These measures μ1 and μ2

must also be required to be non-atomic: if some part of the cake cannot be cut into

3Here simply replacing Bart by Dr. Bartholomew Simpson and Todd by Prof. Todd Flanders is not
sufficient to make the formulation “mature”.
4In principle, μ1 and μ2 could also be charges, if some pieces of the cake do not seem appealing to
one of the two friends, i.e., have negative value for him.
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smaller pieces and both children like very much precisely that part, then the problem
is not solvable.

The following theorem of A.A. Lyapunov (1940) shows that the problem has a
solution, and in fact not only for two, but also for any finite number of cake lovers.
The importance of the theorem is of course not restricted to the fact that it allows
a fair cake cutting, regardless of the great importance and applied character of the
cake problem. The proof provided below, which uses extreme points, was proposed
by Lindenstrauss in 1966.

Theorem 1. Let μ1, . . . , μn be countably-additive non-atomic real charges on the
σ -algebra �. Define the vector measure μ : � → R

n by the formula μ(A) =
(μ1(A), . . . , μn(A)). Then the set μ(�) of all values of the measure μ is convex
and compact in Rn.

Proof. Consider the scalar-valued measure ν = |μ1| + · · · + |μn|, with respect to
which all charges μk are absolutely continuous. We use the Radon–Nikodým
theorem and denote the derivative dμk/dν by gk . Then gk ∈ L1(�,�, ν) and
μk(A) = ∫

A gk dν for all A ∈ �. Consider the operator T : L∞(�,�, ν) → R
n ,

acting by the rule

T f =
(∫

�

f g1 dν, . . . ,

∫

�

f gn dν

)
.

The set μ(�) of all values of the vector measure μ we are interested in coincides
with the image under the operator T of the set of functions 1A with A ∈ �.

The space L∞(�,�, ν) will be regarded as the dual to L1(�,�, ν). Then each
of the expressions

∫
�
f gk dν is a w∗-continuous with respect to f functional on

L∞(�,�, ν), and therefore the operator T is w∗-continuous. Now in L∞(�,�, ν)

consider the setW of functions f that satisfy the condition 0 � f � 1 ν-a.e. ThenW
coincides with the closed ball centered at f = 1/2 and of radius 1/2. By Alaoglu’s
theorem, the set W is w∗-compact. Moreover, W is convex. Thus, T (W ) is a convex
compact subset ofRn . Let us show that T (W ) = μ(�). This will complete the proof
of the entire theorem.

Since the functions 1A with A ∈ � lie in W , and the values of the measure μ are
vectors of the form T (1A), we have μ(�) ⊂ T (W ). Let us establish the opposite
inclusion. Let x ∈ T (W ) be an arbitrary element; T−1(x) is a w∗-closed subset,
hence T−1(x) ∩ W is a w∗-compact set. Let f ∈ ext (T−1(x) ∩ W ). We claim that
f takes a.e. the value 0 or 1, i.e., f = 1A for some set A ∈ �. Because of the equality
x = T ( f ) = T (1A), this will establish the requisite inclusion T (W ) ⊂ μ(�).

Consider the set A = {t ∈ � : 0 < f (t) < 1}. We need to show that ν(A) = 0.
Suppose this is not the case. Define

An =
{
t ∈ � : 1

n
< f (t) < 1 − 1

n

}
.
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By our assumption, the union of the sets An is not negligible, so ν(An) �= 0 for some
n ∈ N. Then the subspace L∞(An) ⊂ L∞(�,�, ν) of functions with support in An

is infinite-dimensional (here in all arguments we use the fact that the measure ν is
non-atomic). Since T is a finite-dimensional operator, it cannot be injective on an
infinite-dimensional space. Hence, there exists a non-zero element g ∈ SL∞(An) such
that Tg = 0. Then both elements f ± 1

n g lie in T−1(x) ∩ W , which is impossible
because f is an extreme point. �

As the next example will show, the direct extension of Lyapunov’s theorem to
measures with values in an infinite-dimensional space fails.

Example 1. On the interval [0, 1] define the measure μ with values in L2[0, 1] by
the formula μ(A) = 1A. This measure is non-atomic and countably additive. At the
same time, the set μ(B) of all values (the range) of the vector measure μ is not
convex: 0, 1 ∈ μ(B), but the function identically equal to 1/2 does not belong to
μ(B).

Using the fact that for any infinite-dimensional Banach space X there exists an
injective operator T : L2[0, 1] → X , one can readily establish the existence of an
X -valued non-atomic Borel measure on [0, 1] with non-convex range. Such a mea-
sure can be given by the formula μ(A) = T (1A). Nonetheless, infinite-dimensional
analogues of the Laypunov theorem do exist, albeit in a weakened form: such gener-
alizations state that the closure μ(�) of the set of values, rather than the range μ(�)

itself, is convex.

Definition 1. The Banach space X is said to have the Lyapunov property if for
any set �, any σ -algebra � on �, and any non-atomic countably-additive measure
μ : � → X , the set μ(�) is convex.

The same Example 1 above shows that Hilbert spaces do not have the Lyapunov
property. At the same time (see [61]), the spacesc0 and �p with p ∈ [1, 2) ∪ (2,+∞)

enjoy the Lyapunov property. Thus, with the Lyapunov property we run into a para-
doxical situation: with respect to this property, Hilbert spaces are worse than the
(rather badly behaved for other problems and, in particular, non-reflexive) space c0.

Under additional restrictions on the measure, the community of spaces to which
the weaker analogue of the Lyapunov theorem extends widens. For instance, if one
considers only measures of bounded variation, then according to a theorem of Uhl
(see the last chapter of the book [13], and also the paper [60]), the convexity of the
set μ(�) will hold for non-atomic measures taking values in any space with the
Radon–Nikodým property (a class of Banach spaces that includes, in particular, all
the reflexive spaces).
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Comments on the Exercises

Section18.1.2

Exercise6. See [66]. As shown in [48], the set of extreme points of the closed unit
ball of a reflexive space is not just uncountable, it cannot even have the “small balls
property” (concerning this property, see the exercises of Subsection11.2.1).

Exercise7. See [3, Corollary5.12 and Proposition5.13].

Exercise9. See [34, P. 15].

Exercise10.The solutiongivenherewas communicated to us byDirkWerner. Sup-
pose that for some operator T ∈ L(X) it holds that ‖I ± T ‖�1. Then ‖I ∗ ± T ∗‖�1,
and for any x∗ ∈ ext BX∗ we have ‖x∗ ± T ∗x∗‖ � 1. By the definition of an extreme
point, this means that T ∗x∗ = 0. Thus, we have proved that T ∗ maps into 0 all
extreme points of the ball BX∗ , and so T ∗ = 0. Consequently, T = 0, too.

Exercise11. Use the previous exercise and Exercise6 of Subsection11.1.1.

Section18.2.1

Exercise3. By Milyutin’s theorem (see the monograph [33]), if K1 and K2 are
uncountable metrizable compact spaces, then the spaces C(K1) and C(K2) are iso-
morphic. For the concrete case K1 = [0, 1] and K2 = [0, 1] ∪ {2} the corresponding
isomorphism ofC[0, 1] andC(K2) can be given without appealing to the highly non-
trivial Milutin’s construction. Namely, one finds in C[0, 1] a subspace X isomorphic
to c0 (for any sequence of functions fn ∈ SC[0,1] with disjoint supports, X = Lin{ fn}
is a subspace of C[0, 1] isometric to c0), then one represents C[0, 1] as a direct sum
of the form X ⊕ Y , writingC(K2) = Lin{1{2}} ⊕ C[0, 1] = Lin{1{2}} ⊕ X ⊕ Y , and
finally one proves (using the shift operator) that Lin{1{2}} ⊕ X is isomorphic to c0,
and thus is isomorphic to X .
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Erdős, P., 465
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