
Chapter 5
Event-Based Thermal Control for High
Power Density Microprocessors

Federico Terraneo, Alberto Leva, and William Fornaciari

5.1 Introduction

The semiconductor industry is currently facing significant roadblocks to deliver
improvements in microprocessor performance. One of these is efficient dissipation
of the produced power. The failure of Dennard scaling [2] in deep nanometre
architectures has resulted in an ever-worsening power density increase, but heat
dissipation strategies have not kept the pace. This fact has led to the well-known
dark silicon problem [3, 9], where power and thermal constraints limit the number
of transistors that can be operated to an ever-decreasing fraction.

Research to overcome this limitation is divided in two complementary directions.
One aims at increasing the power dissipation capability of integrated circuits
through improved thermal design and heatsinking; the other one addresses the
development of microarchitectural improvements and run-time policies that can
increase the power efficiency.

In such a scenario, thermal management is a fundamental design challenge that
plays a key role in counteracting the variability encountered in current hardware
and software architectures. Thus, effective dynamic (or, in other words, run-time)
thermal management solutions can push a many-core platform to its maximum
performance subject to the constraint imposed by the need to remain within safe
operating temperatures.

As part of the HARPA project, thermal management has been addressed both
from a high-level perspective, through the TEMPURA policy at the HARPA-
OS level, and at the firmware level of HARPA-RT, with the event-based thermal
controller presented in this chapter. Thermal management at the HARPA-OS level is
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targeted at use cases where the platform is thermally intrinsically safe, for example
because it is already endowed with a hardware thermal protection, and the only
goal is to enhance reliability through an added coarse-grained management layer.
Thermal management at the HARPA-RT level, conversely, is dedicated to perform
fine-grained thermal control at the timescale required by the existing hardware and
software variability.

5.2 A Brief Overview of the Thermal Issue
in Microprocessors

Microprocessors and in general CMOS integrated circuits consume electrical power
through several mechanisms.

First and foremost, switching power is dissipated when individual transistors
close causing a current flow to charge the gate capacitance of the transistors to
which they are connected. This power contribution depends on four main factors
which are related by the well-known formula:

P = 1

2
αCV 2

ddf. (5.1)

Of these four terms, the load capacitances C are subject to manufacturing process
variability, but most importantly the switching activity α is subject to large run-time
variability due to the workload experienced by the microprocessor. For example,
during a cache miss the functional units of a core may be mostly idle, thus causing an
abrupt drop in the current consumption. The other two terms, voltage and frequency,
provide instead a knob, the well-known DVFS through which it is possible to control
the system behaviour.

Leakage power is instead caused by deep nanometre transistors deviating from
the behaviour of ideal switches, and causing a significant current flow even in the
open state. Leakage power depends on the physical conditions of the transistors,
which include process variability and, remarkably, temperature. Thus, although
leakage power does not directly depend on the workload being executed by the
microprocessor, it depends indirectly from it through the temperature rise caused by
the switching power.

Other mechanisms that cause power dissipation include resistive losses in the on-
chip metal interconnection, which again depend on the current flowing due to the
other dissipation mechanisms.

One important fact to notice is that the power consumption of microprocessors is
not constant. Active power causes current consumption variations at the timescale of
the individual clock edges and the switching activity is heavily influenced by factors
including microarchitectural variability induced by cache misses, code patterns
exercising the functional units in different ways (think floating point intensive vs.
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control flow intensive code fragments), inter-core communication and, at a higher
level, OS task scheduling and time-varying workload.

All these factors add up and contribute to induce significant power variations
ranging from the nanoseconds to the seconds timescale. Although smoothed by the
decoupling capacitors always present in a microprocessor design, power dissipation
has significant frequency content in a very broad range, and as we will see, this
impacts the design of thermal control policies.

5.2.1 The Thermal Dissipation Problem in a Nutshell

The electrical power consumed by integrated circuits is converted into thermal
power, and has to be efficiently dissipated. From a physical perspective, most of
the power consumed by an integrated circuit is dissipated in the active silicon layer,
whose height is only a fraction of the total chip thickness, and the chip thickness is
already a small dimension, usually in the range of a few hundred micrometres. This
localised heating causes the two main challenges of thermal control: high power
density and fast thermal dynamics.

The first issue is mainly of concern to the research lines trying to design better
thermal dissipation solutions, while the second is what shapes the requirements of
thermal control policies.

Using the well-known electrical equivalent of thermal circuits, it is possible to
sketch a simplified thermal model for a generic microprocessor (Fig. 5.1). This
model is too simplistic for simulation, but its abstract nature is well suited to aid
the reader in gaining a quick understanding of the involved phenomena.

The power generated by the processor (here assumed spatially uniform for
simplicity) is modelled as a current generator Pgen. This power is first quickly
absorbed by the thermal capacitance of the silicon chip Csilicon, and dissipated
through the thermal resistance from the chip to the heatsink Rsilicon. This in turn
slowly heats up the heatsink thermal capacitance Csink, which finally exchanges heat
convectively with the ambient.

The key aspect that can be gained from this model is in the two highlighted
adjectives of the previous sentence. The thermal dissipation stack can be seen,
as a first approximation, as a two-stage RC filter over the microprocessor power
consumption. Since the microprocessor chip has such a small volume, its thermal

Fig. 5.1 A simplistic model
of the heat dissipation stack
for a microprocessor Pgen
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capacitance is quite low, and thus the chip temperature can change quite rapidly. The
heatsink, on the other hand, is a large block of metal and its temperature changes
much more slowly.

As we have seen before, the power of a microprocessor exhibits significant
variations in a wide range of timescales, thus we are sure that, in real-world
workloads, both thermal dynamics will be exercised, and since the objective of
thermal control is that of controlling the chip temperature, not the heatsink one,
control policies need to act at a faster timescale than the fastest involved dynamic to
be of any effectiveness.

But, how fast can on-chip temperature vary? The best way to answer this question
is through an experiment. To model a dynamic system, in the sense given to this term
by control theory, it is possible to feed it with some reference signal and measure
the output. Of the many possibilities, the step and impulse response are two of the
most suitable ones. Their main advantage is the easy interpretation of the result
as well as the possibility to reproduce the behaviour of the system when subject to
arbitrarily complex signals by suitable convolutions. Thus, although real-world CPU
workloads are far more complex, we have chosen a step response for the presented
experiment.

The experiment was performed on an Intel Core-i5 6600K running Linux, and
to produce the step in power consumption the program cpuburn [8] was used. The
result is shown in Fig. 5.2.

The cpuburn program was started 5 s after temperature logging was enabled. In
addition, it was briefly stopped for 500 ms at t = 23 s and t = 41.5 s to show an
important point that will be discussed shortly.

Due to the small thermal capacitance of the silicon Csilicon and the non-negligible
thermal resistance towards the heatsink Rsilicon, the processor temperature rises from
54 to 70 ◦C in 50 ms, a 16 ◦C increase, and reaches 80 ◦C after only 600 ms since
cpuburn was started. After that, the heat produced by the processor starts heating
up the heatsink, which in turn drags the chip temperature even higher, although
more slowly. Since this second part of the thermal transient is driven by the heatsink
thermal dynamics, it takes roughly 55 s, two orders of magnitude more time for the

Fig. 5.2 Step response of the heat dissipation stack for an Intel processor
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chip temperature to rise from 80 to 99 ◦C, when the experiment was stopped not to
risk damaging the processor.

Summarising, this experiment evidences the existence of two well separate
thermal dynamics. When the power is increased stepwise, the temperature will
increase at a fast rate at first, and then continue increasing more slowly.

There is just one final remark to be made before considering the effect of these
considerations on the design of thermal policies. By observing the behaviour of the
system when cpuburn is first started, it can be noticed that although temperature
rises at a fast rate, it does so when temperature is low, and when temperature
is high, which is where thermal control policies should act, temperature increase
is much slower. This is a common objection to the need for fast thermal control
policies. Consider a hypothetical policy trying to keep the processor temperature
below 85 ◦C. Since cpuburn is started at t = 5 s but the temperature first reaches
85 ◦C at t = 10 s, it appears that the policy has 5 s to react.

This is not true, as the fast temperature rise occurs at low temperatures only
when the heatsink is cold. Consider again Fig. 5.2 and concentrate on what happens
at t = 23.5 s. Here, cpuburn has been stopped, but since the heatsink takes a
significant time also to cool down, when the power consumed by the processor is
increased again, the core temperature reaches 85 ◦C in just 110 ms, and when the
same operation is performed at t = 42 s when the heatsink temperature is even
higher, only 54 ms are needed to reach 85 ◦C.

This clearly shows that thermal policies, to be effective, have to respond at most
in a few tens of milliseconds.

5.2.2 Thermal Control Policies

We hope that by now we have convinced the reader that one of the most challenging
tasks in designing a thermal control policy is that the policy sensing, decision and
actuation loop needs to be run at the millisecond timescale due to the need to control
the microprocessors’ fast thermal dynamics.

A policy can be implemented entirely in hardware, with a dedicated data path
and state machine implementing the policy algorithm, or can be implemented in
software, where only the temperature sensor and DVFS actuator are hardware
components. The main advantage of a hardware implementation is that it frees
the microprocessor from the overhead of executing the thermal control algorithm,
which given that it needs to be executed every few milliseconds can reduce the
performance of applications noticeably. However, the main drawback of a hardware
implementation is its inflexibility, as it prevents fine tuning that can be needed to
overcome the software and hardware variability.

The proposed event-based thermal controller takes a mixed hardware–software
approach to achieve the benefits of both a hardware and a software implementation.
An ordinary PID control algorithm has to be executed at a fixed rate, even when
temperature is not changing. In the HARPA project, we have explored the powerful
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framework of event-based control theory, to design a small hardware state machine
which generates events only when temperature is changing. These events cause
interrupts which in turn execute the software control algorithm. By doing so, the
flexibility of a software implementation is preserved, while significantly reducing
its overhead.

5.3 A Modelica Thermal Simulation Library

To perform the simulation studies required by the presented research, we used
Modelica, which is an object-oriented modelling language.

Two are the main reasons for the choice of object-oriented modelling, and
in particular the Modelica language: multi-physics modelling, and the possibility
of co-simulating equation-based and algorithmic components. Multi-physics is
important for the addressed domain, since achieving a sound validation of a thermal
management policy requires to account for the many and diverse installation
conditions that a microprocessor can encounter. It is thus necessary to model the
chip, the heat sink, possibly the casing and the cooling system, be this just an air
mover or a liquid cooler or anything else, and sometimes even the power supply
electronics. The co-simulation of components described through equations and
through algorithms allows to model the processor and its heat dissipation stack as
well as the controller in their most natural representation, and also for the generation
of stimuli to replicate the behaviour of the various computational loads to which the
microprocessor can be subjected. Quite intuitively, a modelling paradigm that allows
to do all of the above with a single tool is of great help for the presented research.

The thermal simulation and control has been implemented as a Modelica library,
which is composed of three sections briefly described below:

1. Components. This section contains the building blocks used by the rest of
the library, such as a solid control volume with heat capacity and boundary
conductances, well-assessed empirical correlations for convective heat exchange
and domain-specific elements like a cooling fan. The same section contains
aggregate components, including a three-dimensional array of solid volumes,
which is typically used to simulate the temperature distribution into a chip or
a heat spreader. One-dimensional elements are also available, being suited to
model elements such as heat pipes. The components of this section are directly
modelled in the continuous time with differential equations. The separation of
the modelling equations from the differential equation solver is in fact another
important advantage of adopting an object-oriented paradigm, as this allows to
take profit of newly developed solvers with no effort on the part of the analyst.

2. Controllers. The main element of this section is the event-based controller
presented in Sect. 5.5; the section also contains the models of the aggregate
blocks used to compose the devised control architectures, so as to obtain the
results of Sect. 5.6. For the reasons explained above, all these models are
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algorithmic. In addition, this section includes continuous-time controllers, that
are functionally equivalent to the event-based ones just mentioned, and can be
used as a baseline for comparison in simulations targeted to control quality
assessment.

3. Stimuli sources. This section includes ad hoc power signal generators, useful to
produce realistic profiles based on conveniently specified characteristics—such
as the use over time of arithmetic units, pipelines, cache and so forth—of the
possible applications running on the simulated microprocessor.

In developing the library, care was taken to design physical connectors (electric
pins, heat ports and so on) compatible with the Modelica Standard Library, and with
other libraries that can be usefully coupled to this in a view to widening the set of
simulated physics—for example, the ThermoPower library [1] to represent thermal
and hydraulic phenomena in cooling systems, including both those comprised in
the typical CPU rack as well as for large-scale simulations of data centre air
conditioners.

To briefly show the library in action, Fig. 5.3 shows the Modelica scheme of
the model of a microprocessor, including the heat spreader which is part of the
package, connected to a heat sink, exchanging with air at a prescribed ambient
temperature, subjected to a time-varying (in this case, multi-harmonic) profile of
generated powers in the absence of any thermal management.

Fig. 5.3 Chip subjected to exogenous powers, open loop—Modelica scheme
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Fig. 5.4 Chip subjected to exogenous powers, open loop—ten simulated temperatures from the
grid

Figure 5.4 shows an example of the obtained results, showing the behaviour
of selected temperatures in the chip for clarity. Note the large and fast swings,
furthermore testifying the criticality of the control problem and the usefulness of
the event-based approach.

The simulation of Fig. 5.4, that was done with a 10 × 10 grid and three layers
to represent the silicon, package and heat sink, took 23.5 s on a 64-bit i5-based
machine. This is about 25 times faster than real time, allowing for extensive test
campaigns with an acceptable effort, as well as giving the possibility to test corner
cases in the silicon power consumption difficult to exercise using benchmarks on a
real machine. As for the spatial discretisation, based on experience we can say that
the adopted one is adequate for most control-oriented—i.e. system level—studies.
At present, research is nonetheless ongoing towards the use of sparse solvers,
in order to allow for significantly more fine-grained simulations, should this be
necessary, e.g. for the final validation of a strategy. We would like to stress once
again, however, that the tool is already well suitable for control-centred studies, as
testified by the experimental results of Sect. 5.6, where the used control system has
been assessed by means of the library just described.

5.4 Event-Based Thermal: The Hardware Event Generator

In [7], it is shown and motivated that a decentralised control architecture, devoting
one event-based PI controller to each core, can provide efficient enough temperature
control. In this and the following section, we describe how the preliminary results
of that paper were turned into a fully functional system working on real hardware.

As anticipated in Sect. 5.2.2, hardware–software partition is the proposed solu-
tion to achieve the fast response required by the thermal control problem at an
acceptable overhead. Specifically, and given the decentralised nature of the overall
scheme, each core is equipped with a hardware event generator, to interact with the
thermal sensors, and a software controller.
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This section deals with the hardware event generator, the following with the
software control policy.

The purpose of the hardware event generator is to generate interrupts to run
the software control policy only when needed. The design combines a send-on-
delta and a timeout policy as follows. The temperature sensor is sampled at a fixed
interval qs , typically in the range from 500µs to 10 ms. A temperature threshold
Δ and a timeout are selected. Every qs , a new temperature value is read, and if
it differs in magnitude from the value when the controller was last run by more
than Δ, a threshold event is generated and the controller is run again. If instead the
timeout expires, a timeout event is generated and the controller is run. The software
controller is informed whether the event is due to a threshold or timeout through a
flag bit in a register exposed by the event generator.

The timeout value is dynamically adapted (in software) to satisfy the opposing
constraints of control quality and low overhead. The decision to increase or decrease
the timeout depends on the reason why the controller was called. In the case of a
timeout event, the timeout is increased exponentially, up to a maximum value that
in the proposed implementation is 0.5 s. If instead the controller was called due to a
threshold event, the timeout is immediately reduced down to the minimum value qs ,
forcing the controller to be run again when the next temperature sample is available.

The event generation policy is expected to be implemented in hardware, as a
simple state machine connected to a data path to compare the absolute value of the
current temperature reading with the one when the controller was last run, hence
deciding if an interrupt has to be generated. The timeout can be easily implemented
using a hardware counter incremented at a frequency equal to 1/qs . Figure 5.5 shows
a high-level diagram of the proposed event generator, detailing the registers used for
the required communication with the software interrupt routine.

To have an estimate of the area and power consumption of the proposed
hardware event generator, we implemented and simulated it in RTL Verilog, and
then synthesised it in Cadence Encounter using the NAND Gate Liberty standard
cell library. Synthesis results were obtained considering an operating voltage of
1.1 V and a clock frequency of 667 MHz, which yielded a per-core area and power

Fig. 5.5 High-level logic scheme of the hardware event generator
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overheads of 159µm2, 471µW, respectively. The proposed solution has thus a
negligible impact compared to the area and power consumption of modern CPU
cores.

5.5 Event-Based Thermal: The Software Control Policy

In this section we describe the software part of the proposed solution, that is, the
configurable control policy.

5.5.1 Control Structure and Closed-Loop System

As discussed in [7], control events are generated by the temperature sensor with a
send-on-delta policy, that now needs to be described more in detail. It is not the
purpose of this section to describe the internals of the sensor, suffice in this respect
to say that it has an internal “fast” sampling mechanism acting at period q, based
on which an event is possibly triggered. We thus introduce an index h to count the
mentioned fast sensor samplings.

As anticipated, we adopt a PI control law. In state space representation, this takes
the form of two multiply-and-accumulate operations, that is,

{
xR(k) = xR(k − 1) + bR(w(k − 1) − y(k − 1))

u(k) = xR(k) + dR(w(k) − y(k))
(5.2)

where w, y, u and xR are the set point, the controlled variable, the control signal and
the PI state variable, while k is the control discrete-time index—i.e. it counts the
interventions of the controller, not the samplings of the sensor. To keep the notation
as light as possible, in the following when we need to locate the k-th event in the
fast sampling, we shall indicate its index with h(k), while when this is not needed
we shall write for the generic signal v(k) to mean v(h(k)).

Based again on [7], we describe the controlled system with a first-order, SISO,
strictly proper model. Also, we make the assumption that the fast sampling period
q is small enough for a discrete-time model at step q to be practically equivalent to
a continuous-time one. This said, we write

{
xP (h) = aP xP (h − 1) + bP u(h − 1)

y(h) = cP xP (h)
(5.3)

where xP is the state of the controlled system. The controller (5.2) is realised in
event-based form as follows. At the k-th event, the sensor provides the current and
also the previous sample of the controlled variable, i.e. y(h(k)) and y(h(k) − 1).
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The controller then computes u(k) and keeps it constant till the last event, that is,

u(l) = u(h(k − 1)) = u(k − 1), l = h(k − 1) . . . h(k) − 1. (5.4)

In accordance with the hold operation above, prior to computing u(k), the state
xR is made consistent with y(h(k)−1). Assuming that the set point is modified—or
sensed—only at events, which is sensible as it is seldom (if ever) modified, from the
controller’s viewpoint we have

w(l) = w(h(k − 1)) = w(k − 1), l = h(k − 1) . . . h(k) − 1. (5.5)

Given the above, the controller state at time h(k) − 1 is

xR(h(k) − 1) = u(h(k) − 1)

−dR(w(h(k) − 1) − cP xP (h(k) − 1))

= u(k − 1) − dR(w(k − 1) − cP xP (h(k) − 1)),

(5.6)

and therefore the same state at the k-th event is

xR(k) = xR(h(k) − 1) + bR(w(k − 1) − cP xP (h(k) − 1))

= u(k − 1) − dR(w(k − 1) − cP xP (h(k) − 1))

+bR(w(k − 1) − cP xP (h(k) − 1))

= u(k − 1) + (bR − dR)(w(k − 1) − cP xP (h(k) − 1)).

(5.7)

Now, since

u(k − 1) = xR(k − 1) + dR(w(k − 1) − cP xP (k − 1)) (5.8)

we get

xR(k) = xR(k − 1) + dR(w(k − 1) − cP xP (k − 1))

+(bR − dR)w(k − 1)

−(bR − dR)cP xP (h(k) − 1)

= . . .

= xR(k − 1) + bRw(k − 1) − dRcP xP (k − 1)

+(bR − dR)cP xP (h(k) − 1)).

(5.9)

If we evidence the variation of xP from the (k − 1)-th event till “immediately”
(i.e., q) before the k-th as

xP (h(k) − 1) = xP (k − 1) + δxP (k − 1), (5.10)
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where the index attributed to δxP is k − 1 as that quantity is known before the k-th
event, we obtain

xR(k) = xR(k − 1) − bRcP xP (k − 1) + bRw(k − 1)

+(dR − bR)cP δxP (k − 1).
(5.11)

Reasoning in an analogous way for the state of the controlled system, we have

xP (k) = aP xP (h(k) − 1) + bP u(h(k) − 1)

aP xP (h(k) − 1) + bP u(k − 1)

aP (xP (k − 1) + δxP (k − 1)) + bP u(k − 1)

= . . .

= (aP − bP dRcP )xP (k − 1) + bP xR(k − 1)

+bRw(k − 1) + (dR − bR)cP δxP (k − 1).

(5.12)

Thanks to the holding mechanism described above, and to the pre-update of
the xR in accordance with the (additional) past value of the controlled variable
transmitted by the sensor, we can represent the closed-loop system in the k index—
i.e. counting the events independently of their distance in the constant-rate sampling
at step q—by writing

{
x(k) = Ax(k − 1) + bw(k − 1) + f δxP (k − 1)

o(k) = Cx(k) + dw(k)
(5.13)

where x(k) := [xP (k) xR(k)]′, o(k) := [y(k) u(k)]′ and

A =
[
aP − bP dRcP bP

−bRcP 1

]
, b =

[
bP dR

bR

]
,

f =
[

aP

(dR − bR)cP

]
C =

[
cP 0

−dRcP 1

]
, d =

[
0
dR

] (5.14)

Finally, and again in accordance with [7], we endow the event triggering
mechanism with a timeout, i.e. a time span after which the sensor performs a new
transmission unconditionally. This is useful as a keep-alive measure, and in no sense
impairs our results.

5.5.2 Tuning, Stability, Robustness and Performance

The synthesis of (5.2) is done in the discrete-time domain. Doing so, a natural way
to tune the PI controller is to prescribe the eigenvalues of matrix A in (5.14). For
example, setting
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bR = 1 + e2
1 − 2e1 − e2

bP cP

, dR = 1 − 2e1 + aP

bP cP

(5.15)

makes those eigenvalues e1 ∓ √
e2. It is therefore straightforward to make the

closed-loop system asymptotically stable, while having the integral action in
the controller structurally guarantee zero steady-state error, which also implies
complete asymptotic rejection of constant disturbances.

Given the simplicity of the controlled system model described above, evaluating
its stability degree, hence its robustness, is straightforward. More difficult is an
assessment of its performance, however: it is easy to compute how many k steps—
i.e. events—the free motion of (5.13) needs to converge to zero within a given
tolerance, but this gives no information about the time duration of that transient,
since (5.13) disregards for the interval between two adjacent events. This aspect
deserves a few more comments.

First, denoting by Nc the number of steps taken by the free motion of (5.13)
to converge to zero, a worst-case estimation of the closed-loop settling time
(an adequate performance indicator for our purposes) is readily obtained as Nc

multiplied by the prescribed timeout. This is inherently very pessimistic, however,
because if most of the events during a transient are timeouts, then either the PI is
poorly tuned or the send-on-delta threshold is not adequate.

An inherently optimistic settling time estimate, conversely, is obtained by
supposing that the number of h steps between every two subsequent events equals
the send-on-delta threshold divided by the one-step variation of y taken at the h step
corresponding to the first of the two, of course rounded to the nearest greater integer.
The settling time estimate is then the sum of so approximated inter-event periods up
to the Nc-th.

We omit further details on this matter because research is still underway, and in
any case the results obtained to date are satisfactory, generally outperforming state-
of-the-art alternatives.

In practice, then, to calibrate the control system, one can obtain the required
model by subjecting the processor to a load and a DVFS step; from the so-gathered
response data, and given the fast sampling time, model (5.3) is parameterised
straightforwardly with any of the numerous methods available in the literature.

5.5.3 Implementation and Simulation-Based Assessment

When the proposed solution is implemented in a multi-core or many-core processor,
the sensor and hardware event generator are conceived to be implemented in
hardware (although for the tests of Sect. 5.6 we had to emulate this). The event-
based controller, conversely, is expected to be realised in software. As anticipated,
events are triggered when the present temperature differs in magnitude more than
Δ from that at the last event, or when a configurable timeout T has elapsed since
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that event. If an event is caused by a timeout, the software controller increases the
value of T up to a prescribed maximum. If on the contrary the event is caused by
a temperature variation, T is brought back down to a prescribed minimum. This
is substantially the same event triggering mechanism of [7], thus we omit further
details if not for noticing that the conjectures made therein are now confirmed on
real hardware.

The used knob is the DVFS mechanism present in any modern processor. More
precisely, the event-based controller produces as output a frequency value. This
value is decided based on the current temperature, the state of the controller and
the desired set point, which is set to a value slightly lower than the acceptable
maximum temperature. Since the controller produces a frequency value, the setting
of the corresponding voltage is left to the installed electronics.

Modern operating systems also have power-performance controllers which
measure the system load and use a “governor” to act on DVFS to increase the
frequency when the load is high and decrease it in the opposite case, to save energy
and useless heating while keeping the system responsive.

The presented thermal management scheme can seamlessly integrate with the
power/performance system via an override configuration: the lower frequency is
selected and applied between the one requested (based on the load) by the pow-
er/performance governor, and the one computed by the temperature PI controller,
the state of which is updated accordingly. This configuration naturally makes
power/performance prevail when the temperature is well below the limit, and
thermal control takes action and rules in the opposite case.

To give an example of the assessment activities carried out by means of the
presented Modelica simulation library, we show a test for the event-based controller,
completed with all the features just listed, subjected to a suddenly variable
computational system load. Figure 5.6 shows the controlled core temperature and
the maximum admissible one Tthr , while Fig. 5.7 reports the frequency output from
the controller, normalised in the (0,1) range, which corresponds to the available
frequency span. The set point given to the event-based PI is computed as the
maximum admissible temperature minus twice the send-on-delta threshold—an
empirical rule of thumb that proved successful in practice.

As can be seen, despite the large and abrupt load variations, the objective of
operating at the maximum speed required by the load, while not violating (if not in
a practically negligible manner, which is admissible) the temperature limit, is met.
In fact, given the typically low resolution of the temperature sensors embedded in
microprocessors, one could even use the maximum admissible temperature as set
point directly, and the benefits of the proposed control for the device would still be
obtained in full.

To weigh the overhead of the proposed control scheme, Fig. 5.8 reports the inter-
event times along the test. As can be seen, the fast reaction time of the proposed
controller has been obtained by using a fast controller activation interval only when
needed, i.e. when rapid temperature changes occur. The inter-event period is instead
increased up to 100 ms for a significant part of the simulation. Thus, the remarkable
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Fig. 5.6 Example of control assessment simulation—processor temperature (blue) versus the
maximum admissible one (red) and the set point provided to the event-based controller (green)
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Fig. 5.7 Example of control assessment simulation—DVFS command normalised into the (0, 1)

range

control performance of Fig. 5.6 is obtained with just 809 events in the 30 simulated
seconds—i.e., about 27 events per second on average. This fact, confirmed in
practice as in the performed experiments we could get even lower events/second
ratios, indicates that also the objective of a low system overhead is achieved.

5.6 Experimental Results

The system we used for experimental tests is a PC with an ASUS Z170K
motherboard equipped with an Intel i5-6600K microprocessor and a Cooler Master
finned heat-pipe sink. The fan was removed from the heatsink during the tests, to
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Fig. 5.8 Example of control assessment simulation—inter-event time

Fig. 5.9 Experimental setup

simulate an underdimensioned heatsink as well as to better assess the controller
under extreme heat exchange conditions. A photo of the experimental setup is shown
in Fig. 5.9.

The experiments were performed using Ubuntu Linux version 15.10. The kernel
modules devoted to thermal and power/performance management were removed,
and the userspace governor was selected, so as to avoid any operating system
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interference in the tests. Also, for a meaningful assessment, we disabled the Turbo
Boost feature of the microprocessor, as it is based on internal hardware that is not
required by our solution, and could unpredictably alter the results. As disabling
Turbo Boost limits the maximum CPU frequency, we overclocked it to operate
up to 4.2 GHz. The processor has internal thermal protections, named TM1 and
TM2, that engage when the critical temperature (in the used processor, 100 ◦C) is
reached. These protections were left in place, as they have no role if not in a thermal
emergency, that however with the proposed controller never happened. Under this
configuration, the processor DVFS is not controlled by any policy other than the
proposed controller, thus allowing to collect repeatable results.

To complement the thermal controller with a power-performance one in order
to perform more representative experiments, we implemented a simple power-
performance policy setting the DVFS to a filtered value of the load. The actuation
values of the thermal and power-performance policies are combined as described in
Sect. 5.5.3.

The event-based controller has been implemented as a userspace C++ program,
reading the temperature and performing the DVFS actuation via the MSR [6]
interface offered by Intel processors. The choice of using the MSR interface allows
fast and low-jitter sensing and actuation. The choice of designing the controller
in userspace conversely allows to conveniently log the operation of the controller,
including the events, temperatures and DVFS actuations, although at the price of
a higher overhead. As it is not possible to implement the event generation state
machine in hardware on a commercial processor, it has been emulated in software.
Every 5 ms, the temperature sensors are read, and a software state machine decides
whether or not to call the controller. Finally, though the processor has a per-core
temperature sensor, there is only one DVFS actuator for all cores. For this reason, a
single loop is used, using the instantaneous maximum among all four temperatures
as the controlled one.

5.6.1 Control Quality and Overhead

The first test is aimed at assessing the ability of the proposed controller to keep
the temperature at or below the prescribed set point. For this test, the cpuburn
application [8] is launched on all cores. This application is specifically designed
to maximise the processor current consumption. To test the response to fast power
transients and provide a more diverse load profile than a constant power, cpuburn
is periodically stopped and restarted. Of course, such a load is not representative of
the normal operation of a processor, but step-like stimuli are well suited to compare
controllers by transient examination.

In this test, the temperature set point has been set to 90 ◦C, and Fig. 5.10 reports
the results. The top plot shows the controlled temperature, the centre plot the
DVFS actuation and the bottom one the CPU load. When the measured temperature
is lower than the limit, the power-performance policy prevails, and frequency



124 F. Terraneo et al.

Fig. 5.10 Experimental test 1—controlled temperature and threshold (top), DVFS command
(centre) and computational load (bottom)

follows the load pattern, saving power in idle periods. When the cpuburn
applications are started and stopped, fast temperature transients, up to 30 ◦C/100 ms,
are observed, while the slow rising trend is due to the heat sink warming up. Once
the temperature reaches the prescribed set point, the thermal controller starts to
reduce the frequency, and its action becomes stronger over time to compensate for
the heat sink temperature trend. The controller successfully keeps the temperature
at or below the prescribed limit, with an average of only 14 events per second.

5.6.2 Comparison with the State of the Art

The proposed controller has been compared against thermald [5], a service for
the Linux operating system to control the CPU temperature, recently developed by
Intel; thermald is configured through a file where it is possible to set the limit
temperature. Internally, it uses a PID controller calibrated at start-up not to require
control knowledge on the part of the user.

The first benchmark used for comparison is based on cpuburn as the previous
test. In this case, cpuburn is run continuously for 260 s, to obtain a constant
CPU power. After that, it is periodically stopped and restarted to introduce power
transients.

Figure 5.11 shows the results. Both controllers perform acceptably, although
thermald causes temperature fluctuations with an amplitude of 10 ◦C, even when
the CPU power is almost constant. The proposed controller limits such fluctuations
to +2/−3 ◦C and is limited mainly by the sensor noise. The proposed controller can
achieve this level of performance in controlling the temperature at just 22 events/s.
When power transients are introduced, both controllers can prevent temperature
peaks.

The second benchmark used is taken from the Intel optimised LINPACK parallel
suite [4]. The chosen benchmark consists in solving a system of linear equations,
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Fig. 5.11 Experimental test 2—comparison between the proposed controller and thermald
when running cpuburn. Controlled temperature and threshold (top) and DVFS command
(bottom)

Fig. 5.12 Experimental test 3—comparison between the proposed controller and thermald
when running LINPACK. Controlled temperature and threshold (top) and DVFS command
(bottom)

and stresses the CPU floating point pipeline considerably. This test is relevant
because LINPACK alternates execution phases that cause very different cache miss
rates; thus, the CPU is never idle, which means 100% load throughout the test, but
power varies significantly.

As a consequence, see Fig. 5.12, the two controllers yield significantly different
results. The event-based one successfully keeps the temperature set point. The only
adverse effect of the mentioned power bursts is an increase in the number of thermal
events, on average 61 per second. thermald is instead simply not capable of
keeping the temperature below the limit, due to its slow actuation. It succeeds
in the first two iterations, when the heat sink is warming up, but when the slow
temperature trend has raised near enough to the limit, it fails to react timely, and the
CPU temperature reaches 100 ◦C between 96 and 98 s from the experiment start, and
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again between 121 and 131 s. In those time frames, the hardware thermal protection
is engaged, as shown by the evident high-frequency content of the DVFS command.

As a final comment, while cpuburn executes its task in an endless loop until
terminated, the LINPACK benchmark performs a finite amount of work, and thus
the completion time can be used as a metric of the CPU performance. During the
first and second iteration, when both controllers succeed in keeping the temperature
limit, the event-based controller results in an increased computational speed,
finishing the second iteration after 53.5 s compared to 58 s with thermald—a
7.8% improvement. During the following iterations, the execution is slightly faster
with thermald, but this is because it exceeds the selected temperature limit, and
not negligibly.

Summarising, the proposed event-based scheme is capable of controlling tem-
perature at the speed required to counteract fast transients, with all the advantages
of software configurability and openness to new control laws, with full power/per-
formance integration, and with a very low overhead.

5.7 Conclusions

In this chapter, we presented the event-based digital controller for the thermal
management of microprocessors that has been developed as part of the HARPA
project. Peculiar of our proposal is the integration into a unitary scheme of
temperature control and power/performance trade-off. We carried out a stability
analysis, and set preliminaries for a performance one. The proposed controller
was tested and assessed by means of a comprehensive Modelica library, that we
created by extending previous works, and can serve as a solid benchmark, open to
multi-physics settings, for control studies on the matter addressed herein. We also
showed some experimental results obtained on a modern processor architecture and
compared our solution to the state of the art, in the form of a recently proposed oper-
ating system thermal daemon to be used jointly with classical power/performance
governors.

Our proposal behaves significantly better than the available alternatives and
is easy to set up, calibrate and maintain. We can thus state that the presented
control system acts as a technology enabler by allowing the safe operation of high-
density processor, also for what concerns their fastest thermal dynamics. As a final
note, concerning the proposed control solution, a PCT (Patent Cooperation Treaty)
application has been filed.
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