
Chapter 2
Trends in Processor Architecture

Antonio González

2.1 Past Trends

Processors have undergone a tremendous evolution throughout their history. A key
milestone in this evolution was the introduction of the microprocessor, term that
refers to a processor that is implemented in a single chip. The first microprocessor
was introduced by Intel under the name of Intel 4004 in 1971. It contained about
2300 transistors, was clocked at 740 kHz, and delivered 92,000 instructions per
second while dissipating around 0.5 W.

Since then, practically every year we have witnessed the launch of a new
microprocessor, delivering significant performance improvements over previous
ones. Some studies have estimated this growth to be exponential, in the order of
about 50% per year, which results in a cumulative growth of over three orders of
magnitude in a time span of two decades [12]. These improvements have been fueled
by advances in the manufacturing process and innovations in processor architecture.
According to several studies [4, 6], both aspects contributed in a similar amount to
the global gains.

The manufacturing process technology has tried to follow the scaling recipe
laid down by Robert N. Dennard in the early 1970s [7]. The basics of this
technology scaling consists of reducing transistor dimensions by a factor of 30%
every generation (typically 2 years) while keeping electric fields constant. The
30% scaling in the dimensions results in doubling the transistor density (doubling
transistor density every 2 years was predicted in 1975 by Gordon Moore and is
normally referred to as Moore’s Law [21, 22]). To keep the electric field constant,
supply voltage should also be reduced by 30%. All together would result in a 30%
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reduction in delay and no variation in power density. If total area of the chip is kept
constant, the net result is twice the number of transistors that are 43% faster, and the
same total power dissipation.

More transistors can be used to increase the processor throughput. Theoretically,
doubling the number of transistors in a chip provides it with the capability of
performing twice the number of functions in the same time, and increasing its
storage by a factor of two. In practice, however, performance gains are significantly
lower. Fred Pollack made the observation long time ago that processor performance
was approximately proportional to the square root of its area, which is normally
referred to as Pollack’s rule of thumb [24]. This is mainly due to the following
two reasons. First, the internal microarchitecture of processors: the performance
of many of its key components such as the issue logic and cache memories does
not scale linearly with area. Second, even if transistors are smaller by a factor of
two, this has not resulted in twice the number of transistors per unit of area due
to the increasing impact of wires. Having more functional blocks often requires an
increase in the number of wires that is superlinear, which increases the percentage
of area that must be devoted to them. An example of this is the bypass logic. Having
a full bypass among all functional units requires the number of wires that grows
quadratically with the number of units.

On the other hand, the 30% reduction in transistor delay has the potential to make
circuits 43% faster. However, benefits in practice are lower, due to the fact that wire
delays do not scale at the same pace [13], and because of that, they have become the
main bottleneck for microprocessor performance. Besides, as processor structures
become more complex, a larger percentage of the area must be devoted to wires,
as outlined above, so the impact of wire delays become even more severe. As a
result, the time spent in moving data around is the main component of the activity
performed by current microprocessors.

Putting it all together, the increased transistor density allows architects to include
more compute and storage units and/or more complex units in the microprocessors,
which used to provide an increase in performance of about 40% per process
generation (i.e., Pollack’s rule of thumb). The 30% reduction in delay can provide
an additional improvement, as high as 40% but normally is lower due to the impact
of wire delays. Finally, additional performance improvements come from microar-
chitecture innovation. These innovations include deeper pipelines, more effective
cache memory organizations, more accurate branch predictors, new instruction set
architecture (ISA) features, out-of-order execution, larger instruction windows, and
multicore architectures just to name some of the most relevant. This resulted in a
total performance improvement rate of 52% per year during the period 1986–2003
[12] as measured by SPEC benchmarks. However, this growth rate has dropped to
about 22% since 2003 [12].

Multiple reasons have contributed to the slowdown in performance improvement.
First, supply voltage has not scaled as dictated by Dennard’s recipe; in fact, its
decrease has been much lower, in the order of 8% per year (15% every process
generation, assuming a 2-year process technology cadence), as shown in Fig. 2.1.
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Fig. 2.1 Minimum supply voltage of microprocessors

The main direct consequence of scaling supply voltage by less than dictated
by Dennard’s guidelines is an increase in power density and total power of
microprocessors. As can be seen in Fig. 2.2, during 1980s and 1990s microprocessor
power increased in an exponential manner, by about two orders of magnitude in
two decades. An obvious consequence of power increase is an increase in energy
consumption and thus in the operating cost of computing systems. More impor-
tantly, this also implied a similar increase in power density since microprocessor
area has not changed much over the years. As pointed out by some authors [3],
microprocessors in 0.6-µm technology (in the early 1990s) surpassed the power
density of a kitchen hot plate’s heating coil, and the trend continued increasing
by about ten more years, reaching unsustainable levels. Increased power density
requires a more powerful cooling solution since power density is a proxy of heat
dissipation. Temperature has an important impact on reliability and leakage currents
so silicon operating temperature must be kept below a certain limit (in the order
of 100 ◦C), which may be unaffordable in some systems due to either its cost or
physical characteristics (volume, weight, noise, etc.).

Microprocessor’s power growth resulted unsustainable in the early 2000s, and
the trend changed towards flat or decreasing power budgets. This explains in part
the inflexion point in the performance growth curve which coincides in time with
this change in power budget. To keep power density constant when supply voltage
scales less than transistors dimensions, the only way is to have a lower percentage
of transistors switching at any given time. This motivated the aggressive use of
power-aware techniques such as clock gating [34] and power gating [15], which
are extensively used by today’s microprocessors. Despite the great benefits of these
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Fig. 2.2 Power (TDP) of microprocessors

techniques, they have not been able to provide the exponential benefits that would be
needed to compensate for the difference between desired and actual supply voltage
scaling (30% vs 15%). This has led architects to include techniques to avoid all
blocks to be active at the same time, which sometimes is referred to as “dark silicon”
[8], or to avoid all blocks to operate at maximum supply voltage through extensive
use of dynamic voltage scaling techniques. For instance, in some contemporary
processors with multiple cores, when all cores are active supply voltage cannot reach
the same level as when only one of the cores is active.

On the other hand, the second important reason that explains the performance
inflexion point observed in the early 2000s is due to a slowdown in improvements
coming from architecture. During the 1980s and 1990s, there were many innova-
tions in processor architecture, including deep pipelining, out-of-order execution,
branch prediction, data prefetching, superscalar, and memory hierarchy improve-
ments, among others. All these techniques provided significant improvements in
performance by either reducing the latency of main functions (especially memory
operations) or increasing the degree of instruction-level parallelism (ILP). After
two decades of continuous improvements in these areas, they reached a point of
diminishing returns. This prompted the inclusion of techniques to exploit thread-
level parallelism (TLP) at the processor level, and gave birth to multicore and
multithreaded processors, which are extensively used nowadays. TLP techniques
have proved to be very effective to increase processor throughput when the workload
consists of independent applications. However, they are often less effective when it
comes to decompose a single application into a number of parallel threads. Serial
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parts of the application limit the benefits of TLP, as stated in 1967 by Gene Amdahl
[1]. Besides, other important aspects such as workload balance, synchronization,
and communication cost also pose significant hurdles to the benefits of TLP.

2.2 Current Microprocessors

Figure 2.3 shows a high-level block diagram of a typical contemporary microproces-
sor. The main components are a number of general-purpose cores (4 in the figure),
a graphics processing unit (GPU), a shared last-level cache, a memory, and I/O
interface, and an on-chip fabric to interconnect all these components. Below, we
briefly describe the architecture of these modules.

2.2.1 General-Purpose Cores

The architecture of general-purpose cores has significantly evolved throughout its
history. From the very early processors, pipelining and cache memories have been
the two key microarchitectural techniques used to improve performance.

ILLIAC II [5] and IBM Stretch [2] computers were pioneers in the use of
pipelining. Pipelining is an extremely cost-effective technique to exploit ILP, and
has been used by practically all microprocessors. A pipeline with N stages can
potentially overlap the execution of N instructions and, thus, provide an increase
in throughput by a factor of N . In practice, benefits are lower due mainly to
instruction dependences, which introduce bubbles in the pipeline. Initial processors
had just a few pipeline stages but the introduction of RISC architectures in the early
1980s made pipelining to be more cost-effective and facilitated the use of deeper

Fig. 2.3 High-level block diagram of a contemporary microprocessor
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pipelines. Innovations in microarchitecture techniques to avoid pipeline bubbles due
to dependences, such as out-of-order execution, data dependence speculation, and
branch prediction, allowed a continuous increase in pipeline depth, during the 1980s
and 1990s. Some studies in the early 2000s suggested that the optimal pipeline depth
for performance could be in the order of 50 stages [14, 28], but some later studies
[10, 29] showed that when power is taken into account, the optimal pipeline depth
is much shallower, and in practice, pipeline depth increase stopped at around 20
stages. Energy efficiency favors shallow pipelines since deeper pipelines consume
more energy due to extra latching, more complex control, and energy waste due
to speculative execution techniques. As a result, current microprocessor pipelines
normally have between 10 and 20 stages and the forecast for the future is that
pipeline depths will keep around this range.

Microprocessors require many accesses to memory to execute a program. Since
instructions and data are stored in memory, a typical instruction requires four
memory accesses, one to fetch the instruction, two to read its two source operands,
and one to write its result. While processor performance has increased at a rate
ranging from 22% to 52% per year, as commented above, memory latency has
improved at a much lower rate of about 7% per year. In a period of 40 years,
this resulted in a gap of four orders of magnitude [12] . This trend motivated the
organization of memory in a hierarchical way. A hierarchical organization exploits
a core feature of the technology: smaller blocks are normally faster. This applies to
all kind of logic blocks, and in particular to memories: a small memory is faster than
a larger one. This is basically due to the fact that latency of read and write operations
is dominated by wire delays of the word and bit lines. The smaller the memory, the
shorter the word lines and bit lines are.

A hierarchical organization of memory was used as early as the mainframes of
the 1960s, which used a hierarchy of physical memory composed of modules built
with different technologies: semiconductor, magnetic core, drum, and disk. Data
caches were used for the first time in the IBM 360 Model 85 computers [16]. Most
computers nowadays have a memory hierarchy organized in six levels: a register
file, three levels of cache memory, main memory, and disk.

Another important microarchitecture technique used since the very early proces-
sors has been branch prediction. When a branch is fetched, the next instructions to
be executed depend on the branch outcome, which is not available until the branch
is executed some cycles later. Stalling the fetch until the outcome of the branch
is known would cause a significant penalty in pipelined processors since branches
are very common in many programs (in the order of one out of ten instructions
for nonnumerical codes). Predicting the outcome of the branch and speculatively
executing the instructions of the predicted path can alleviate this penalty provided
that the predictor is highly accurate. This technique is known as branch prediction
and was used as early as the late 1950s in the IBM Stretch computer [2].

Branch predictors based on a table of two-bit saturating counters were introduced
by James Smith in the late 1970s [26] and have been used in practically all
microprocessors since then. Since the penalty of a branch misprediction grows
linearly with the pipeline depth, deeper pipelines prompted research on more
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sophisticated predictors such as the two-level branch predictor proposed by Yeh
and Patt in the early 1990s [35], variants of which have been used by many
modern microprocessors. These predictors are based on two-bit saturating counters,
but the particular counter used in each case depends not only on the particular
branch being predicted but also on the outcome of recent past branches. Another
important innovation in the area of branch prediction that has been used by many
microprocessors is the concept of hybrid predictors, first introduced by Scott
McFarling in 1993 [20]. The key idea is based on two observations: first, the most
cost-effective branch predictor is different for different types of codes; second, more
sophisticated predictors tend to have a longer warm-up time, so at the beginning
of each context-switch interval simple predictors tend to be more accurate than
complex ones, whereas this trend is inverted once the complex predictor has been
warmed-up. Based on these observations, he proposed a mechanism to combine
multiple predictors and dynamically choose which one is more likely to be the most
accurate.

The ISA is another important feature of a processor architecture. The ISA has
evolved over the years to include new instructions that can better support common
code constructs in mainstream application domains. An important change in the
design of ISA was introduced in the early 1980s, mainly driven by independent
projects at UC Berkeley [23], IBM [25], and Stanford University [11]. This trend
was coined as RISC (reduced instruction set computer) by the team in UC Berkeley,
term that was later adopted by everyone else. Up until then, the trend in ISA design
was to increase its complexity. It was believed that by closing the semantic gap
between high-level languages and machine languages, computer could be made
to be more efficient. These projects demonstrated that a much simpler ISA could
be competitive, or even outperform, a more complex one, and at the same time
offer additional advantages such as a much lower cost of design and verification of
the processor. The maturity of compiler technology combined with the benefits of
circuit simplicity in terms of delay, cost, and energy consumption were some of the
key aspects that favored the success of RISC ISAs.

Enhancements in pipelining, amplified by the simplicity introduced by RISC
ISAs, caching, and branch prediction were the main driving forces behind microar-
chitecture innovation during the 1980s. These processors aimed to achieve a
throughput of one instruction per cycle, which they approached after several gener-
ations of improvements. During the 1990s, a new microarchitecture organization to
exploit further ILP became common use, which was coined superscalar processors.
A superscalar processor is a processor that can process multiple instructions in all
its pipeline stages. That is, it can fetch, decode, rename, issue, execute, and commit
multiple instructions at the same time. How many instructions can be processed in
parallel in each pipeline stage is referred to as the width of the superscalar processor.
In practice, not all pipeline stages may have the width, so we define the width of
the processor as the minimum width of its pipeline stages. An N -wide superscalar
processor can potentially achieve a performance of N instructions per cycle.

A superscalar processor requires to replicate hardware resources, normally by the
same factor as its width, but in some parts of the processor, the hardware cost may
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grow superlinearly with the width. An example of this superlinear cost is the bypass
logic, which grows quadratically with the number of functional units. Another not
so obvious example is the issue logic. In this case, the reason is that to find more
independent instructions to be issued every cycle, the hardware has to search in a
larger instruction window, so if we double the issue width, we need twice the number
of issue ports, but each port has to search in a much larger window. Superscalar
width grew during the 1990s, but due to this superlinear cost, and the difficulties to
find enough ILP, it flattened out to around 4, and practically all current processors
have a superscalar width between 2 and 8.

Another key microarchitecture technique that became common use during the
1990s was out-of-order execution, also known as dynamic scheduling. The main
idea is to allow the hardware to execute the instructions in an order different to
the one that they appear in the binary, with the constraint that the semantics of
the program must not be changed. The goal is to find more ILP by reordering the
instructions. For instance, the consumer of a load that misses in cache may be stalled
during many cycles. Instead of stalling all instructions younger than this consumer,
as in-order processors do, out-of-order processors can execute younger instructions,
provided that they do not depend on the load. Out-of-order execution provides
important benefits in performance but has also an important cost, mainly due to
a much more complex issue logic, including the issue logic of memory instructions,
which normally is separated from the issue logic of the rest of instructions, and is
quite costly since memory dependences are more difficult to check than register
dependences. This is due to the fact that register dependences are known at decode
time and can easily be identified as instructions are decoded/renamed in program
order whereas memory dependences need to be identified later in the back end of
the pipeline, once the effective addresses of loads and stores are computed, and this
computation is performed out of program order.

Out-of-order execution became popular in the 1990s and is used by the vast
majority of current microprocessors. However, the main ideas behind this technique
date back to the 1960s. In fact, out-of-order execution was first introduced by the
CDC 6600 computer [31] in 1964 and was later improved by the IBM System/360
Model 91 [32]. IBM approach is usually referred to as Tomasulo’s algorithm, and
is the bases for the schemes used nowadays. The main innovation introduced by
IBM over the CDC scheme was the use of register renaming. By renaming register
operands, the processor has more options to reorder the code, since it only needs to
respect data dependences (a.k.a. read-after-write dependences). Name dependences
(a.k.a. write-after-write and write-after-read dependences) are removed and do not
impose any ordering constraint. Register renaming provides huge benefits in terms
of ILP and, thus, is used by all current out-of-order processors to the best of our
knowledge.

During the 2000s, the main architectural innovation introduced at the micropro-
cessor core level is called multithreading. There are different variants of the concept
of multithreading, but the most commonly adopted by current microprocessors is
known as simultaneous multithreading [33] and it was first used by commercial
processors in the Intel’s Pentium 4, under the name of hyperthreading [17]. The
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key idea behind this technique is to provide a microprocessor core with the
capabilities to execute multiple threads simultaneously sharing the majority of
hardware resources. At any given cycle and any given pipeline stage, the processor
can potentially execute multiple instructions belonging to different threads. In this
way, the processor can remove some pipeline bubbles and the multiple slots of
a superscalar processor in each pipeline stage can be more frequently filled with
useful work. In other words, multithreading increases the utilization of the resources
already present in a pipelined, superscalar processor.

This technique is highly efficient from the hardware cost point of view, since
it requires small extensions to a conventional superscalar processor. Its main cost
is an increase in register file storage, since the processor has to keep the state
of multiple threads simultaneously. On the other hand, for this same reason, its
scalability is limited. Since practically all processor core resources are shared among
the simultaneously running threads, there are frequent structural hazards that prevent
each thread to run at the same speed as it would if it run alone.

The benefits of increasing the degree of multithreading diminish quickly for
general-purpose cores. With two to four threads, resources get highly utilized, and
adding more threads would bring minimal benefits in many cases. Because of that,
the typical multithreading degree of general-purpose cores is in the range of two
to four, although for server processor it may be a bit higher, such as the recently
announced IBM Power9 [30] that supports up to eight simultaneous threads. Server
workloads are sometimes highly memory intensive, and the utilization of the
CPU resources is low, which allows the possibility to exploit a larger number of
simultaneous threads.

Another type of processing unit that is highly multithreaded is the GPU. In this
case, GPUs are designed to support a very large number of threads since graphics
applications exhibit a huge degree of TLP (e.g., most of the operations needed
to compute the color of each pixel are performed by independent threads). GPUs
rely on a high degree of multithreading to hide memory latencies rather than on
a complex memory hierarchy. Even if threads are frequently stalled due to long
latency memory accesses, there are normally other threads ready that can use the
hardware resources to make progress and keep the hardware highly utilized.

To conclude this section, Fig. 2.4 shows a high-level overview of the typical
microarchitecture of modern general-purpose cores.

Instructions are fetched from an on-chip instruction cache, which normally has a
few tens of kilobytes. The main component of the instruction fetch logic is a branch
predictor. Multiple instructions can be fetched in the same cycle by using a single,
wide cache memory port that can provide multiple consecutive bytes in a single
access. Branch prediction is performed in parallel with the instruction cache access
(or even before in some processors) to avoid bubbles in the pipeline (otherwise, in
the next cycle the processor would not know which are the next set of instructions
to fetch). Multiple fetched instructions can potentially be branches, so the branch
predictor needs to predict multiple branches in parallel. However, depending on
the branch predictor being used this may not be that easy. In particular, if the
branch predictor uses global history, when predicting a branch the outcome of the
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Fig. 2.4 Microarchitecture of a contemporary general-purpose core

previous branches must be known. This is typically solved by assuming that the
previous branches being predicted in parallel are not taken. In case any of the branch
predictions turns out to be taken, all the following branch predictions are discarded.
Since all instructions fetched in parallel are consecutive, all instructions after the
predicted taken branch are discarded too, since they are not in the predicted path.
Thus, the branch predictor can normally predict multiple branches per cycle but only
up to one taken branch.

After being fetched, instructions are processed by the decode logic, which
identifies their type, which operands are required, and other relevant fields of the
instruction. Decoding multiple instructions in parallel does not pose any challenge
and simply requires to replicate hardware since each instruction can be decoded
independently of the others. Some processors perform a dynamic translation at
this stage. This is common in processors using old ISAs such as x86, in order
to translate the compiler-generated instructions to an internal ISA which is more
amenable for pipelining and other microarchitectural optimizations. This translation
is relatively simple since it is done for each instruction individually; optimizing
blocks of instructions would be more effective but also much more complex and is
normally not used.

Afterwards, instructions rename their register operands. As outlined above, this
step is used by out-of-order processors to remove name dependences and increase
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in this way the amount of ILP. In-order processors normally do not make use
of it. Renaming is done basically through a table that keeps track of the latest
storage location (a.k.a. physical register) assigned to each logical register. Source
operands are translated to physical registers by reading the corresponding entries
in the renaming table. The destination register of each given instruction is assigned
to a free physical register (if there are no physical registers available, renaming
is stalled). Superscalar processors rename multiple instructions per cycle. This
requires a rename table with multiple read/write ports, and some additional logic
to take into account the data dependences among instructions being renamed in
parallel. In particular, each source operand must be checked with all previous
destination operands, and in case of a match, the physical register identifier used
by this source operand is not the one coming from the renaming table but the
one assigned to the closest matching destination operand. Next, instructions are
dispatched to the issue queue and the reorder buffer, and memory instructions are
also dispatched to the load/store queue.

All the above operations are performed in program order in all processors,
including out-of-order processors. This part of the pipeline is normally referred
to as the front end. An in-order front end simplifies the detection of register data
dependences among instructions, but on the other hand, exacerbates the penalty of
any potential stall. Most harmful stalls in the front-end pipeline are due to instruction
cache misses.

Instructions remain in the issue queue until they are selected to be executed. The
process to select the instructions to be executed every cycle is called instruction
issue. For in-order processors, this logic is relatively simple. To issue N instructions
per cycle, it just needs to check the N oldest instructions in the issue queue. Each
of these instructions is issued if its source operands are ready and the required
resources for its execution are available (e.g., functional units, register file ports,
etc.).

Most processors nowadays can issue instructions out-of-order. This is much more
complex since it requires to check all instructions in the issue queue, since all of
them are candidates to be issued. To this end, the issue queue stores the renamed
source operands of each instruction and a ready bit for each of them. Every time
an instruction is executed, its destination register id is checked against all source
operands in all entries, and for every match, the corresponding ready bit is set
(this action is normally referred to as wake-up). Instructions that have all source
operands ready, and the required resources are available are selected to be executed
at every cycle. If there are more candidate instructions than available resources,
a heuristic is applied to prioritize the candidate instructions. Given priority to the
oldest instructions is quite common, and sometimes this is combined with other
simple heuristics such as prioritizing long latency instructions.

Each issued instruction reads first its source operands, then is executed in a
functional unit, and finally writes its result in the register file. The register file
is therefore highly multi-ported, to support multiple reads and writes per cycle.
For instance, a four-way issue processor may typically have eight read ports and
four write ports. Processors have multiple functional units to execute multiple
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operations in parallel, including integer ALUs and floating-point ALUs. Besides,
practically all processors include a rich set of SIMD (single-instruction, multiple-
data) instructions in their ISA. These are instructions that operate on vector operands
stored in registers and are usually known as multimedia extensions, since they are
very effective for multimedia applications. To support these instructions, processors
also include SIMD units, which can process all the elements of a vector operation
in parallel. Since there are three different types of register operands, i.e., integer,
floating-point, and vector, some processors have three separate register files, one for
each type, whereas others have only two, one for integer and another for floating-
point and vector.

Instructions wait in the reorder buffer until they commit. The reorder buffer stores
some bookkeeping data for each in-flight instruction plus the information required in
case the instruction needs to be squashed. An in-flight instruction may be squashed
for a variety of reasons such as an older branch being mispredicted, or an older
instruction generating an exception. Instructions commit in program order, even if
the processor is out-of-order, since an easy way to guarantee that an instruction will
not need to be squashed is waiting for the commit of all older instructions. At this
point, no older instruction may cause an exception, branch misprediction, nor any
other type of event.

Memory instructions deserve special attention. To be issued, they must go
through a similar process as other instructions. However, the actions to be performed
are a bit more complex since dependences are more difficult to identify because they
involve memory locations rather than registers. Register operands’ ids, and therefore
register dependences, are known during renaming, but memory addresses, and thus
memory dependences, are not. The address of the memory location read or written
by a memory instruction is normally computed at run time by adding an offset to the
content of a register. Until this register operand is not ready, the address cannot be
known. The logic associated with the load/store queue is responsible for computing
these addresses, checking for potential dependences and deciding when memory
reads can be issued.

Store instructions do not write into memory until they commit. This is because
a write to memory cannot be undone, unlike writes to registers, since they may be
visible to other processes. Once a write is visible to another process, it may trigger
some activity in this process (e.g., entering a critical region), which could not be
undone if the store turned out to be squashed.

A load instruction can safely read from memory as soon as its effective address
has been computed and there are no dependences with older stores. Checking for
dependences requires to compare memory addresses, which are much longer than
register ids, and besides the check has to take into account the potential different
data widths of loads and stores.

To guarantee that a load does not depend on any older store, it must wait until the
effective addresses of all older stores are computed. This may significantly delay a
load, and most of the times this delay is unnecessary since memory dependences
with instructions close enough to be in the instruction window at the same time are
not common. To avoid this delay, some processors use some kind of mechanism
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to predict memory dependences and just stall loads that are likely to have a
dependence. This family of mechanisms is called data dependence speculation
[9, 19], and it requires a recovery scheme for mispredicted loads, similar to the
one used for branch mispredictions.

Store-to-load forwarding is commonly used when a memory dependence is
encountered/predicted between a load and a not committed store. Rather than
waiting for the store to write to memory, the load gets the data directly from the
store.

2.2.2 Multicore Processors

The vast majority of current microprocessors have multiple general-purpose cores
based on the architecture described in the previous section. Figure 2.5 depicts the
main components of a multicore processor. There are a number of cores, each one
with private L1 caches (separate caches for instructions and data) and a private
second-level cache (some processors do not have a private L2 cache), a shared last-

Fig. 2.5 Block diagram of a multicore processor
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level cache, and an interconnection network that allows all the cores to communicate
through the memory hierarchy. The lower levels of the memory hierarchy are
normally a main memory and a disk storage, and they are located off-chip. A
multicore processor can run multiple threads simultaneously in different cores with
no resource contention among them except for the shared resources, which are
basically the memory hierarchy and the interconnection network. The architecture
of these two components is key for the performance of multicore processors and is
described in more detail below. The architecture of each one of the individual cores
is basically the same as in a single-core processor, and has been described in the
previous section.

2.2.2.1 Memory Hierarchy

Parallel threads running in different cores can share the memory address space,
which is a very desirable feature for programmability. However, this introduces two
important challenges: how to keep data coherent when it is used by multiple threads
in different cores, and how to make memory operations visible to the other threads
running simultaneously in other cores. The former challenge is solved by a new
mechanism that is called cache coherence. The latter is handled by what is called
the memory consistency model. We briefly describe these two components below.

Private caches are great to improve the performance of each individual core,
but they introduce some problems when accessing variables that are shared among
multiple cores. The problem arises when multiple threads running in different cores
access the same variable and at least one of them performs a write operation. Since
variables are normally copied in the private caches, a write performed by a given
core would not be visible to the other cores, since they would keep seeing the value
stored in their respective private caches. If the cores did not have private caches
and all read and write operations were performed in a completely shared memory
hierarchy, this problem would not exist. Cache coherence is a microarchitecture
mechanism that solves this problem by making private caches transparent to the
programmers. In other words, with cache coherence, a processor with private caches
produces exactly the same results as the same processor with all private caches
removed.

Cache coherence is implemented through a coherence protocol. The basic idea of
a coherence protocol is to make sure that writes from a given core are propagated to
all potential copies of the same variable in the memory hierarchy, including private
caches of other cores. There are two main families of protocols which are called
write-invalidate and write-update protocols, respectively, the former being the more
common solution. In a write-invalidate protocol, when a core has to perform a write
operation, all copies of the same data elsewhere are invalidated before performing
the write. If other cores are using this variable and have a private copy, they will have
to request it again after being invalidated, and will get the updated value from the
core that performed the write. In write-update protocols, a write operation updates
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all copies of the variable in the system. They are more complex than write-invalidate
protocols, and consume more network bandwidth, thus they are rarely used.

The implementation of a cache coherence protocol is complex, and requires
a careful design and a thorough validation to guarantee that it is correct. The
complexity comes from the fact that a transaction (e.g., an invalidation request)
generated by one core has to be propagated to the other cores and this cannot be
done instantaneously. In the meantime, while a transaction is being processed, other
request to the same variable may occur in the system, and the system has to deal with
them and guarantee correct semantics and no deadlocks. This is normally solved by
having a number of stable states that represent the state of a memory block after a
transaction has been completed plus a number of transient states that represent the
state in different phases of an ongoing transaction. The memory block granularity
normally used to keep state information is a cache memory block. The most typical
stable states used are the following:

• Invalid: the block is not present or is stale.
• Shared: The block can be read but not modified.
• Exclusive: The block can be read, and it is the only valid copy.
• Modified: The block can be read and written.

There are two main families of protocols regarding how the state information is
stored and how transactions are processed. In a snoopy-based protocol, a transaction
generated by a cache controller is broadcast to all other controllers. The system
relies on the network to guarantee that all messages arrive to all cores in a consistent
order. For instance, most protocols assume that they arrive in the same order to all
cores, and use a shared bus to guarantee this order. The other family of protocols
is called directory-based. In this case, there is a directory that holds the state of
each memory block and normally sits next to the LLC. A transaction generated
by a cache controller is sent to the directory, and based on the information in the
directory, the request is served by the LLC or it is forwarded to the corresponding
private cache(s). In general, snoopy-based protocols are simpler but directory-based
protocols are more scalable and, thus, more effective for a large number of cores.

The memory consistency model is a formal definition of which potential
executions (i.e., outcomes) of a parallel program are allowed and which ones are
not. Note that multiple different outcomes for a given program may be allowed
since many parallel programs are nondeterministic. In other words, the memory
consistency model specifies what values load instructions may return and what is
the final state of the memory for a given input data. This information is needed by
the programmers in order to write programs that do what they expect, so it is part of
the ISA.

For instance, assume a code in which two threads modify a different variable
each, and later they read the variable modified by the other thread. If there are no
synchronization operations in between, multiple outcomes are possible. The thread
that executes ahead of the other will get the old value, whereas the other thread will
get the updated one. Alternatively, both threads can end up reading the updated value
if the two threads perform the two writes before the two reads. All systems allow
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these three alternative outcomes but some systems also allow a less intuitive one,
which is that the two threads read the old value. The memory consistency model
precisely defines which of these four outcomes is allowed, so that the programmer
knows what to expect when the code is executed.

Different memory consistency models represent a different trade-off between
programmability and performance. The most intuitive consistency model for pro-
grammers is called sequential consistency and was introduced by Lamport in 1979
[18]. A system is sequentially consistent if “the result of any execution is the same
as if the operations of all processors (cores) were executed in some sequential order,
and the operations of each individual processor (core) appear in this sequence in
the order specified by its program.” This memory model is the most intuitive for
programmers but is also the one that imposes more constraints to the hardware in
terms of when memory accesses can be performed.

Another widely used memory model nowadays is called total store ordering,
which is used by SPARC and x86 processors [27]. For most program idioms, it
behaves like sequential consistency, but it allows some new executions not permitted
by sequential consistency. For instance, for the code example above, total store
ordering allows both threads to read the old value, whereas sequential consistency
does not. More precisely, total store ordering imposes the same ordering constraints
as sequential consistency with one exception: loads can be moved above older
non-conflicting (to different addresses) stores. The motivation for removing this
constraint is performance. By removing it, the processor can use a write buffer to
hold committed stores until they get read–write permissions. This buffer is very
effective to hide the memory latency for store misses, so it results in significant
performance improvements and is widely used by microprocessors.

2.2.2.2 Interconnection Network

As illustrated in Fig. 2.5, a multicore processor consists of a number of cores and
a last-level cache that need to communicate among them. This communication is
carried out through an interconnection network. In general, each core and its private
caches are a node in this network, and the last-level cache is another node of the
network. It is also common that the last-level cache is split into multiple modules,
each one being a different node of the network. Each one of these nodes is connected
to a switch through a network interface. Each switch has a number of links that
connect it to other switches as shown in Fig. 2.6.

The different switches are interconnected following a particular topology. For
instance, Fig. 2.7 shows a mesh topology, which is one of the most commonly used
topologies for multicore processors. A line is another common topology, which is
basically a mesh with just one node in one of the two dimensions. If the two nodes
at the end of the line are interconnected, then we have a ring for the one-dimensional
case or a torus for a two-dimensional case, which are also commonly used.
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Fig. 2.6 Block diagram of
network node

Fig. 2.7 A mesh network
topology

2.3 Going Forward: Specialized Units

We are witnessing a slowdown in process technology improvements. Supply voltage
has not scaled as much as Dennard’s guidelines [7] for years and Moore’s Law
scaling [21, 22] has slowed down in recent years and is approaching a limit
unless some breakthrough in process technology appears in the coming years. Chip
manufacturing technology has been based on silicon for decades. Current process
technology uses a 10-nm fabrication process and the minimum feature size of circuit
components is approaching atomic dimensions. Taking into account that silicon
lattice spacing is around 0.5 nm, the current 10 nm feature size is equivalent to
around 20 atoms. Further miniaturization is going to be very difficult to achieve
and dimension scaling will very likely stop in a few more generations.

On the other hand, increasing energy efficiency will keep being a main driving
force for innovation in computing systems. This is easily explained by observing
that the power dissipation of a system is equal to the average energy consumed
per task multiplied by the number of tasks that the system can perform by unit of
time. Note that the latter term is the performance of the system whereas the former
is what we call energy efficiency. If power cannot be increased due to the various
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reasons explained in Sect. 2.1 of this chapter, any increase in performance requires
a reduction in energy per task of the same magnitude. In other words, the challenge
for future computing systems is not only how to make them run faster, but at the
same time, this increase in performance has to come with a similar decrease in
energy consumption (i.e., a similar improvement in energy efficiency). This is really
challenging, since normally higher throughput implies higher energy. For instance,
a faster addition requires to increase the supply voltage of the adder or to use a more
sophisticated adder. In both cases, the energy to perform an addition increases.

Since process technology is unlikely to provide significant additional benefits
in the future, the improvements in energy efficiency have to come from other
areas such as microarchitecture. However, the microarchitecture of general-purpose
cores has been optimized for several decades, and there is little headroom for
further improvements. Perhaps the most promising approach is “specialization.” It
is well known that a specialized unit can provide dramatic improvements in energy
efficiency when compared to a general-purpose unit. Specialized units are already
a reality in most processors. For instance, practically all current processors include
a GPU, which is a unit specialized on image rendering. Most processors for smart
phones include specialized units for image and audio processing.

In the future, we are likely to see an explosion in the use of specialized units. The
drawback of specialization is its higher cost in comparison with general-purpose
units, since their cost needs to be amortized over a smaller number applications.
However, the flip side of the death of Moore’s Law will be a significant decrease in
cost of chip fabrication, since manufacturing industries will not need to replace their
equipment so often, and their investments in process technology will be drastically
reduced. Under this scenario, transistors will be very chip, much chipper than they
already are, and this will open the door for many new opportunities to use them in
specialized units.
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