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12.1 Floreon+: HPC Domain Application

There are many types of natural disasters in the world, and many of them depend
on the geographical location of the observed area. Floods are one of the worst and
most recurrent types of natural disasters in Central and Eastern Europe. Floods [17]
occur when discharges and water levels exceed their bank-full discharge values and
overflow. Floods kill millions of people, more than any other natural disaster, and
they are also the world’s most expensive type of natural disaster.

Floods frequently affect the population and are therefore studied by numerous
scientific research institutes. Almost all large rivers in Central and Eastern Europe
have experienced catastrophic flood events, e.g., the 1993 and 1995 flooding of
the river Rhine, the rivers Danube and Theiss in 1999 and 2002, the river Odra
in 1997, the river Visla in 2001, and the river Labe in 2002. Floods, however, affect
not only Central and Eastern Europe, but they represent a significant problem in
many regions all around the world. The growing number of losses caused by floods
in countries around the world suggests that global mitigation of disasters is not a
simple matter, but rather a complex issue in which science and technology can play
a significant role. Therefore, the issue of flood prediction and simulation has been
selected as a case of choice for innovative development.
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The project FLOREON+ [15] started in 2006 as a research project funded by the
regional government of the Moravian-Silesian region of the Czech Republic that
required reliable models for flood simulations and predictions to minimise costs
of post-flood repairs in areas impacted by severe floods. The principal goal of the
research project FLOREON+ (FLOods REcognition On the Net) is the development
of a prototype modular system of environmental risks modelling and simulations.
FLOREON+ is based on modern Internet technologies with platform independence.

The FLOREON+ project results help to simplify the process of disaster manage-
ment and increase its operability and effectiveness. The main scopes of modelling
and simulation are flood risk, traffic modelling during critical situations, water and
air pollution risks, and other environmental hazards. Another efficient utilisation of
the computing power could be computing What-If scenarios for decision support
and to plan preventive actions. Part of the research employs the modelling of land
cover, and land use changes based on thematic data collection (aerial photographs,
satellite imagery), and application of the prediction tools brings attractive advan-
tages to land use planning. Modelling the catchment response to severe flood events
generates the opportunity to improve the set-up and dimensions of new channel
systems, within the scope of hydrology and water management.

12.2 Experimental Application

The central thematic area of the project is hydrologic modelling and prediction. The
system focuses on acquisition and analysis of relevant data in near-real time and
uses this data to run hydrologic simulations with a short-term forecast. The results
are then used for decision support in disaster management processes by providing
predicted discharges on river gauges and prediction and visualisation of inundated
areas in the landscape (Fig. 12.1).

In the simulation phase (Adaptivity in Simulations [2]) of the prediction cycle,
adaptivity in the spatial resolution is essential to improve the accuracy of the result.
Specifically, more computational resources are introduced when the weather looks
more attractive (i.e. after hours or days of heavy rain). These may be used for
computations that are triggered by stimulating activities detected in the forecast
simulation. Or they may be part of the same simulation process execution if it has
been re-engineered to use automatic adaptive accuracy refinement. In any case, the
most accurate computation has to track the evolution of the predicted and actual
weather in real time. The location and extent of finer results should evolve and move
across the simulated landscape in the same way the actual weather is constantly
moving.

The model used in this study is a rainfall–run-off model (RR) developed as part
of the Floreon+ project. Rainfall–run-off models [14] are dynamic mathematical
models which transform rainfall to flow at the catchment outlet. The primary
purpose of the model is to describe rainfall–run-off relations of a catchment area.
Standard inputs of the model are precipitation measured by meteorological gauges,
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Fig. 12.1 Inundation area for the Ostravice river

and spatial and physical properties of the river catchment area. Common outputs
are surface run-off hydrographs which depict relations between discharge (Q) and
time (t). Catchment areas for the model used for experiments in this chapter
are parameterised by Manning’s roughness coefficient (N), which approximates
physical properties of the river basin, and CN curve values (CN), which approximate
geological properties of the river catchment area.

The confidence intervals are constructed using the Monte Carlo (M-C) method
where input data sets are sampled from probability distributions extracted from
historical results and used as input for a large number of simulations. The modelling
precision of the model uncertainty can be positively affected by increasing the
number of M-C samples and can be determined by estimating the Nash–Sutcliffe
model efficiency coefficient [18] between the original simulation output and one of
the percentiles selected from the Monte Carlo results.

Only selected percentiles are extracted from all M-C simulation results and saved
on the platform. These percentile simulations describe a possible development of
the situation taking possible inaccuracies into account along with its probability.
For example, 80th percentile specifies that there is an 80th probability that the real
river discharge will be lower or equal to the simulated discharge based on historical
data. These results can then be propagated further into the flood prediction process,
for example, used as input for hydrodynamic modelling. Figure 12.2 shows the
visualisation of simulated inundated areas based on RR uncertainty results.

The confidence intervals’ accuracy can be positively affected by increasing the
number of MC simulations (also referred to as samples), and can be determined by
estimating the Nash–Sutcliffe model efficiency coefficient [18] between the original
simulation output and one of the percentiles selected from the Monte Carlo results.
The percentile simulations describe a possible development of the situation taking
possible inaccuracies (along with their probability) into account.
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Fig. 12.2 Inundated area for percentile

12.2.1 Flood Warning Process

The flood warning process [24] can have two distinct stages: flood warning and
response. The flood warning stage starts with a detection of the potential flooding
threat. This activity should be done periodically based on river and precipitation
monitoring and meteorology forecast. When a threat is detected, the flood warning
committee is informed, and it issues a request for more detailed forecasts to the
Institute of Hydrometeorology and local catchment area offices. These organisations
provide

• Information about the actual river and reservoir situation
• Rainfall–run-off (RR) modelling simulation of surface run-off
• Hydrodynamic (HD) modelling flood lake simulations, flood maps, simulations

of water elevation and water velocity, a real-time hydrological model for flood
prediction using GIS, sediment transport, water quality analysis, etc.

• Erosion modelling simulation of water erosion
• Collection and archiving of flood data that can be used for estimating the

magnitude of the flood based on historical evidence

If these predictions identify possible emergency situations, the flood warning
committee alerts relevant agencies, and the process moves to the response stage.
In this stage, countermeasures are implemented based on the forecast simulations
from the flood warning stage. Also, flood predictions are still provided even
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in the response stage to support the decision processes related to performed
countermeasures and actions. During the response stage, additional areas can be
affected by the flood emergency, and these predictions should be able to identify
these areas in advance.

We have integrated the most computationally demanding module of the Floreon+

platform with HARPA-OS to examine how HARPA-OS will influence its execution.
The selected module provides uncertainty modelling of rainfall–run-off (RR)
models. One of the inputs of such models is the precipitation forecast computed by
numerical weather prediction models that can be affected by particular inaccuracies.

12.2.2 The Flood Forecasting Model

The RR models transform precipitation to water discharge levels by modelling
individual parts of the rainfall–run-off process. Common inputs of these models
are an approximation of physical properties of modelled river catchment and a
time series of precipitations. Outputs of these models are represented by a time
series of water discharge levels (i.e. the relation between water discharge (Q) and
time (t)) for modelled parts of the river course. Our RR model uses the SCS-CN
method [5] for transforming rainfall to run off with the main parameter curve value
(CN) approximated from the hydrological soil group, land use, and hydrological
conditions of the modelled catchments. The contribution from river segments to a
sub-basin outlet is computed using the kinematic wave approximation parameterised
by Manning’s roughness coefficient (N), which approximates physical properties of
the river channel using Manning’s roughness coefficient (N).
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2

(12.1)

Where:

Qm is the measured discharge in a specific time-step.
Qs is the simulated discharge in a specific time-step.
E is the Nash–Sutcliffe model efficiency coefficient.
E = 1 means that the simulation matches observed data perfectly.
E = 0 means that the simulation matches median of the observed data.
E < 0 means that the simulation is less precise than the median of the observed

data.
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Fig. 12.3 Comparison of the precision provided by standard deviation of Nash–Sutcliffe coef-
ficient and the number of Monte Carlo samples for different model parameters and their
combinations

12.2.2.1 Uncertainties of the Rainfall–Run-off Model

The input precipitation data for short-term prediction are provided by numerical
weather prediction models and can be affected by certain inaccuracies. Such inac-
curacies can be projected into the output of the model by constructing confidence
intervals. These intervals provide additional information about possible uncertainty
of the model output and are constructed using the Monte Carlo (M-C) method.
Data sets are sampled from the model input space and used as input for a large
number of simulations. Precision of uncertainty simulations can be affected by
changing the number of provided M-C samples. The precision of the simulations can
be determined by computing the Nash–Sutcliffe (NS) model efficiency coefficient
between the original simulation output and one of the percentiles selected from the
Monte Carlo results. The NS coefficient is often used for estimating the precision
of a given model by comparing its output with the observed data, but it can also be
used for comparison between any two model outputs.

Figure 12.3 shows the precision of the simulated uncertainty results based on the
number of Monte Carlo samples and different combinations of modelled parameters
in the experimental model. P shows the standard deviation of uncertainty results
where the only uncertainty of input precipitations was taken into account, N
stands for the uncertainty model of the Manning’s coefficient, CN for the CN
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uncertainty model, N + CN describes the combination of Manning’s coefficient and
CN uncertainty models, and so on. These results show that the standard deviation
is unstable for low numbers of M-C samples but starts to decrease steadily from
around 5–8 samples. Precipitation uncertainty models and their combinations also
show much higher standard deviations than CN and N based models. To obtain
a sufficient precision for the simulation (i.e. minimise standard deviation of the
result), the number of Monte Carlo samples for uncertainty simulation of the used
Rainfall–Run-off model has to be in the order of 10,000 to 100,000. The sample
count depends on the number of simulated model parameters and complexity of
the model. Uncertainty simulation of CN and N could be executed for a much
smaller sample count while maintaining sufficient levels of precision. This was
mainly due to the lower sensitivity of the CN and N parameters when compared
to the precipitation parameter, and also to the fact that precipitation uncertainty was
sampled for each time-step of the simulation and each observed gauge, while CN
and N did not depend on time.

12.2.2.2 On-Demand Simulations

Under the on-demand hydrologic simulations, a framework for running on-demand
What-If Analysis (WIA) is created to simulate crisis situations. This also includes
What-If hydrologic simulations. Through the web interface, users can create their
own hydrologic What-If simulation running on this framework. They must choose
the basic settings from the menu having the option to select river basin, schema-
tisation, and rainfall–run-off model, for which the rainfall–run-off simulation and
hydrodynamic model will be calculated. The framework allows the user to specify
precipitation in selected precipitation stations and at selected times. This type of
simulation also allows the user to edit the default parameters of sub-basins and
channels. The next step is to run the simulation execution. Execution of What-If
simulations is processed on an HPC cluster. Because the rainfall–run-off model
is used as an input for the hydrodynamic model, the system allows the users to
view hydrographs as soon as they are available, independently of the hydrodynamic
computation. As soon as the hydrodynamic model computation is completed and
the result values are stored within the spatial-temporal database, the users can view
the simulated flood layer within the map interface together with the hydrographs.

12.2.3 Catchments Simulation

The proposed scenario monitors at runtime the behaviour of four concurrent
instances of the uncertainty module. Each of these instances models the RR
uncertainty for a different catchment of the Moravian-Silesian region: the Opava,
Odra, Ostravice and Olza catchments (see Fig. 12.4). The watersheds are ordered
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Fig. 12.4 The four main catchments (left) and outlet hydrographs (right) (the black line shows
the measured discharge, the orange line shows the simulated discharge, X-axis: time in hours t(h),
Y -axis: discharge, cubic meters per hour, Q(m3/h))

according to the impact in case of flooding (the lower the index, the higher the
importance):

• C1: Ostravice—Functional urban areas with high population density and indus-
trial areas in floodplain zones.

• C2: Olza—Flood-sensitive zones in urban areas.
• C3: Odra—Mountains in the upper part of the catchment can cause significant

run-off. Less exposed urban areas.
• C4: Opava—Soils with low infiltration capacity.

Each catchment is simulated independently, and individual instances do not interact
with each other.

12.2.4 Application Scenarios

Based on the weather, FLOREON+ can be subject to different service-level
requirements. Indeed, the requirements can be translated to the parameters of
the uncertainty modelling: A shorter response time in critical situations can, for
example, be acquired by decreasing the number of MC samples—which, however,
means reducing the precision of the results—or by allocating more computational
resources to the application. Depending on the flood emergency situation, we
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identified three application scenarios that have different requirements. According to
their criticality level, we tagged the scenarios as standard, intermediate, and critical.

12.2.4.1 Standard Operation

In this scenario, the weather is favourable, and the flood warning level is below the
critical threshold. In this case, the computation can be relaxed, and some errors
and deviations can be allowed. The system should only use as much power as
needed for standard operation. Only one batch of Rainfall–Run-off simulations with
uncertainty modelling has to be finished before the next batch starts. The results do
not have to be available as soon as possible, so no excessive use of resources is
needed. In this case, the estimated accuracy can be reduced.

12.2.4.2 Intermediate Operation

Due to the presence of limited precipitations, the forecast of discharge exceeds a
warning threshold. In this case, in order to decrease the uncertainty of the model,
the number of MC samples that must be performed by the simulation increases.

12.2.4.3 Critical Operation

Several days of continuous rain raise the water in rivers or a very heavy rainfall on
a small area creates new free-flowing streams. These conditions are signalled by the
river water level exceeding the flood emergency thresholds or precipitation amount
exceeding the flash flood emergency thresholds. Much more accurate and frequent
computations are needed in this scenario, and results should be provided as soon as
possible. The number of MC samples increases, to decrease the uncertainty of the
model.

12.3 HARPA-OS for HPC Environments

The HARPA-OS is a runtime resource manager (as presented in Chap. 4). Its
role is to manage system resource allocation, taking into account both the status
of the system resources and application requirements, combining pro-active and
reactive strategies. For applications, performance requirements can vary not only
among different applications but also during the execution of the same application.
Aforementioned is a common scenario for HPC systems, where scientific applica-
tions make up most of the workload. It is a matter of fact that the performance
requirements of this class of applications are often bound to the input data. This
is due to the volume and type of data. For instance, monitoring systems acting
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at preventing natural disasters need to execute applications implementing mathe-
matical models steadily, to analyse input data, detect possible criticality and notify
the needs of operating accordingly. To guarantee to the applications the required-
level performance, a conventional approach to HPC systems is to statically reserve
computational resources, isolating the execution environment through virtualisation
techniques. However, to reserve a fixed amount of resources (e.g. processors or
entire nodes) can be ineffective, with the applications owning resources that are
not fully exploited, all the time. Scaling the problem to the dimensions of an HPC
centre, with several applications to host, we can face an overall under-utilisation of
the system resources, leading to two issues: (1) the fragmentation of the available
resources, and thus less space for further applications; (2) the loss of efficacy
of power management techniques. The latter is due to the fact without a proper
consolidation of the computational resources to allocate, we can have processors, or
single cores, which are not fully exploited, but use enough time to avoid them to go
into a deep-sleep state, wasting power saving opportunities.

12.3.1 The Runtime Resource Manager

In the context of this work, we employed the HARPA-OS runtime resource manager
[12, 16] (Chap. 4). HARPA-OS enables the management of multiple applications
that compete for the usage of multiple many-core computation devices [8]. It
also proposes a runtime library [3, 21] that is in charge of (a) synchronising
the execution of applications with runtime-variable resource allocations, and (b)
notifying the resource manager of the runtime-variable Quality of Service goals
(QoS) of applications. So that the HARPA-OS scheduling policy, which can be
either chosen from a set of predefined ones or implemented from scratch, can
take into account the feedback coming from applications when computing resource
allocations.

We designed and implemented PerDeTemp (PERformance DEgradation TEM-
Perature) Chap. 4, Sect. 4.6.2, a HARPA-OS scheduling policy that tries to meet the
application performance requirements while minimising resource allocation [20].
When multiple computing resources are available, PerDeTemp employs a multi-
objective heuristic to assign to applications only the healthiest and coolest cores.
Such allocation aims at levelling the power flux over the whole chip, thus mitigating
the ageing process and avoiding thermal hotspots [10].

Our framework is based on the idea of making the application terminate its
execution just before the deadline (just-in-time, jit). This way, the amount of
allocated processing elements is minimised. This, in turn, allows the resource
manager to evenly level power consumption throughout the chip and to migrate
the application to the coolest cores dynamically, thus evenly spreading heat and
increasing the reliability of the silicon.

Figure 12.5 shows a comparison between the best-effort (maximises throughput
and minimises execution time) of an application and our relaxed, deadline-aware
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Fig. 12.5 Best-effort vs. jit scheduling

execution. Standard application execution is based on the idea of running the
code as fast as possible (best-effort, be) using one thread per available processing
element. This way, the results are available sooner; however, power consumption
is maximised, and all the processing elements are stressed. Conversely, our just-
in-time execution approach has works with the idea that, since applications can
send feedback to the resource manager dynamically, resource allocation can be
made more elastic: It is adjusted over time so that the runtime-variable performance
demand of applications is always complied with, but the execution time of applica-
tions is still the maximum allowed one (i.e. applications terminate just before their
deadline). The resource manager exploits the now-unused resources as a resource
pool that can be used in multiple ways, e.g., to provide cool cores when the next
resource allocation is computed.

The HARPA-OS runtime, which is linked, manages applications, and transpar-
ently monitors application execution statistics. Amongst these, one of the most
important ones is the average throughput. It is worth noticing that each time
HARPA-OS changes the resource allocation of an application, the runtime re-sets
the throughput statistics; hence, the average throughput computed by the runtime
always refers to the current resource allocation. It follows, then, that the average
throughput is a very accurate predictor of how the application will behave (i.e.
whether the application will terminate or not before the deadline) if the resource
allocation remains constant until the application termination.

The current resource allocation provides the scheduling policy with feedback;
applications use the HARPA-OS runtime library API to retrieve their current execu-
tion time and their average throughput. Basing on those values, the applications can
compare their current performance, i.e. the average throughput under the current
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resource allocation, and the ideal throughput, i.e. the throughput that is needed by
the application to terminate just before the deadline. This information is periodically
sent back to the HARPA-OS as a performance gap:

gapperformance = throughputcurrent − throughputideal

throughputideal
(12.2)

While positive performance gaps mean that the application is executing too
fast, which in turn indicates that the HARPA-OS may seize some of the allocated
processing elements and insert them into the pool of empty resources, in contrast,
negative performance gaps indicate that the application needs more resources. In
this case, the HARPA-OS takes some of the less stressed (i.e. healthier—cooler)
processing elements (i.e. cores) from the unused resources pool and adds them to the
set of resources that can be exploited by the application. Finally, performance gaps
equal to 0 mean that the application is likely going to terminate just in time. Even
in this case, however, the HARPA-OS may decide to change resource allocation,
usually to swap the currently allocated set of processing elements with healthier
and cooler ones.

12.3.2 HARPA Integration

To fully exploit HARPA-OS, we implemented the application in a way that allows
its reconfiguration during runtime. From the HARPA-OS side, the features of the
application are a set of resource requirements. Fig. 4.3, from Chap. 4, Sect. 4.3,
where it is described summarizes the manageable execution model and shows the
different methods that have to be supported by the application:

• onSetup: Setting up the application (initialize variables and structures, starting
threads, performance goal, etc.).

• onConfigure: Configuration/re-configuration code (adjusting parameters, paral-
lelism, resources, number of active threads, etc.).

• onRun: Single cycle of computation (e.g. computing a single rainfall–run-off
simulation for one Monte Carlo sample).

• onMonitor: Performance and QoS monitoring. Check the current performance
with respect to the goal.

• onRelease: Code termination and clean-up.

12.3.3 Hardware Infrastructure

After integrating the HARPA methods into our flood forecasting models, we
deployed the enabled applications to a part of a supercomputer. The supercom-
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Fig. 12.6 The fan is on the right-hand side of the blade, creating an air cooling gradient between
socket 0 and socket 1. (a) A photo of two Anselm Bullx B510 compute blades. (b) Schema of the
blade

puter named Anselm (https://docs.it4i.cz/anselm-cluster-documentation/hardware-
overview, June 2013) is an HPC cluster operated by IT4Innovations, the Czech
national supercomputing centre, which contains 180 computational nodes without
accelerators (i.e. GPU, Xeon Phi, FPGA). All these nodes have an interlink of high-
speed fully non-blocking fat tree InfiniBand and Ethernet networks.

In our experiments, we used a chassis of 18 blades; the nodes are connected
through InfiniBand. Each Anselm node is an Intel Corporation Xeon E5/Core i7.
Each node of the system consists of 16 cores—2 Intel(R) Sandy Bridge E5-2665
@ 2.4 GHz CPU sockets each with eight cores and 20480 KB L2 cache. All nodes
equip at least 64 GB DRAM.

The blades in the cluster are the B510 model; Fig. 12.6 shows a simplified
representation of their air cooling system. Given that the fan is not equally distant
from the two sockets, one socket is cooler than the other one. When the system is
idle, the temperature difference between the two sockets is approximately 10 ◦C.
The system has several monitoring tools installed such as power meters, ganglia
[25] and likwid [26].

Figure 12.6 shows the temperature of one blade when it is idle; there is nothing
more than the operating system running on it. This fact is important because, during
the temperature experiments, we observed differences of 10◦ between the best and
the worst cooled areas, the worst being furthest from the fan. For these experiments
presented in Sect. 12.3.4, we defined three working temperature zones. When the
temperature is low, it is represented on the heat map in blue. When the temperature
is average, at the proper level, it is labelled with green. And when the temperature
starts to be high it is represented with yellow, and then when quite high with red.
All the temperatures are always under the limit that the vendor (Intel) recommends.
Figure 12.7 presents the heat map of an Intel socket with 16 cores. The X-axis
represents time and the Y -axis the cores. The temperature is in Celsius degrees. The
Diff. Per time step is the range of temperature between the coldest and hottest core
in a specific time. The Median is the average temperature of the cores of the socket

https://docs.it4i.cz/anselm-cluster-documentation/hardware-overview
https://docs.it4i.cz/anselm-cluster-documentation/hardware-overview
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Fig. 12.7 Heat map of the two sockets of the blade in idle mode

in a specific time. The Diff. per Node is the maximum range of temperatures of a
core during all the simulation.

12.3.4 Performance Analysis

The following experiments show the HPC solution to enforce runtime resource
management decisions based on the standard control groups framework. A burst
and a mixed workload analysis, performed on a multicore-based NUMA platform,
reports some promising results both regarding performance, power saving, and
ageing.

12.4 HARPA Testing in One Node

The following paragraph explains the execution of the models with HARPA-OS
vs. non-HARPA-OS resource allocation. We run the models in the system with
different governors. Governors that have a GNU/Linux Operating System (i.e.
performance and powersave) by default set the frequency statically. The CPUfreq
governor powersafe sets the lowest frequency from the scaling_min_freq border,
and conversely the CPUfreq governor “performance” sets the highest frequency
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from the scaling_max_freq border. These two governors give the power/energy
consumption range from a maximum of the system to minimum power consump-
tion. Other GNU/Linux governors exist such as userspace and ondemand that
provide intermediate solutions. These governors are developed to give the best-
effort solution (minimum execution time) for the given range concerning power and
frequency. But what would happen if our constraint is the execution time?

12.4.1 Execution of the Models with Constraints

To answer the above question, we performed two experiments. The first one involved
execution of uncertainties of the rainfall–run-off model in the HPC system. The
implementation simulated a real case of 12K MC samples in 10 min. The QoS with
HARPA-OS must minimise the thermal footprint of the scheme. Reduction of the
power consumption and execution of the model had to be under the time constraints.
The non-QoS execution had no information about power, temperature or execution
time. The implementation of the design was achieved in three ways, two non-QoS
(a and b), and another with QoS constraints (c):

(a) Uncertainties of RR model in a non-managed HARPA-OS mode, only
governed by the “performance” GNU/Linux governor. (b) Similar to (a) but with the
“powersave” GNU/Linux governor. (c) Finally, uncertainties of RR model running
in HARPA-OS [4] managed mode with the on-demand governor.

Fig. 12.8 Above: Number of resources allocated for performance, powersave and HARPA
runtime with GNU/Linux ondemand governors during the execution of uncertainty models (Uncer)
and Uncertainty and WIA concurrently (Uncer+WIA). Below: Goal gap during execution time for
Uncertainty model vs. Uncertainty more WIA using the three governors (per, pow, HARPA)
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The second part of the experiment is similar to the previous one. However, the
second application, the WIA, starts running a delta time equal to 100 s and evaluates
20 possible (What-If) positions. During this period, δ the WIA is requesting all cores
of the system. So, it is producing resource allocation constraints to the execution of
the uncertainty model. Figure 12.8 presents the number of cores allocated by the
different governors. In the case of GNU/Linux governors, this value is always 32,
the maximum number of virtual cores that the system has. In the case of Harpa
governor, this value changes dynamically trying the goal gap to be zero. Figure 12.8
shows the δ time when WIA is also executed in the system. During this period,
the resources (cores allocated) to perform the uncertainty model in the system have
increased. Figure 12.8 shows the goal gap. There are three cases:

(a) Performance: The execution of the uncertainty model Uncer(per) ends long
before the 10 min limit. Hence, the goal gap curve increases very quickly, even
when the uncertainty and WIA run concurrentlyWIA+Uncer(per). Then, during
the δ time execution, there are some oscillations, which, however, go rapidly up
since the model uses more resources than strictly necessary.

(b) Powersave: In this case, there are two situations which are different to when
there is the execution of uncertainty model alone, and when the uncertainty
and WIA operate concurrently. In the first instance, it is possible to observe
that the goal gap is quite near-zero for the first period of the simulation (first
300 s). Later, step by step, the goal gap starts to increase, which means that
again the resources are more than enough to execute the model in a shorter
time than 10 min. However, in the second case WIA+Uncer(pow), the goal gap
became negative in the last fifty seconds of the simulation, which means that
the resources given to this governor are not enough to execute both models in
10 min as requested. So, the execution missed the time deadline.

(c) Harpa ondemand: In this case, the runtime is minimising the goal gap as
presented in section IV. The resources allocated (core #s are from 8 to 15,
shown in Fig. 12.8) by the runtime are minimised as opposed to case (a)
above, and the goal gap is oscillating around zero. In both cases, uncertainty
(Uncer (harpa.ond)) and uncertainty more WIA (Uncer+WIA (harpa.ond)) are
concurrently operating, and present similar behavior. The models finalise in the
specified 10 min.

The curves presented in Fig. 12.8 show the different trade-offs of the monitors.
In our case, the controls studied are power, energy consumption and temperature
of the CPU sockets. Figure 12.9 presents the results related to the monitors. The
monitoring of the system is performed adopting several GNU/Linux tools such
as ganglia, the power meter likwid, and a per-core temperature driver with an
installation of the GNU/Linux sensor library lm-sensors.

There is a trade-off concerning power consumption and heat. A middle QoS
point exists between the non-QoS performance and power save points. Regarding
relative values to QoS execution, the power consumption is reduced by 21% for one
application and 24 % for two applications concerning the performance execution.
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Fig. 12.9 Top-left: Total energy in joules for the six situations (3 governors with the two models
(uncertainty model alone and uncertainty with WIA)), the energy can be divided in energy of the
socket packages more the energy of the two modules DRAM. Top-right: Presents similar situations
but power results in Watts. Bottom-left: Presents the execution time for the six situations, Bottom-
right: The mean temperature of the 16th cores just before the end of the execution

Concerning temperature are 7 ◦C lower for both configurations than performance
and 7 and 4 ◦C higher for one and two applications than power save execution.
Because the execution time in performance execution takes 222 and 283 s, and there
is no QoS monitoring, an overhead in resource utilisation is created. Therefore, the
energy consumption of the system is lower than with QoS (HARPA-OS) execution.

12.4.2 Time Predictability with HARPA-OS

The main aim of the presented experiments is to show the reliability improvement in
terms of time predictability [13]. The first experiment presented is only one example
of possible execution of the model alone and with constraints (i.e. WIA model). But
what can happen in terms of a reliable QoS for several running iterations, monitoring
the power, energy and temperature of one system?

12.4.2.1 Power and Energy Monitors

Figure 12.10 presents the results of running the model one thousand iterations
for 1 min and 1.2K MC samples. The figure presents results of running only the
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Fig. 12.10 Power and energy consumption vs. execution time in package (PKG) and memories
(DRAM). Execution of 1K iterations of uncertainty model and uncertainty+WIA models. The
iterations runs in three modes, two non-QoS named performance per and powersave pow, and one
with QoS named HARPA

uncertainty model (uncer) and also running both models (uncer+WIA). The WIA
starts execution of a random δ0 from 0 to 15 s and performs two iterations (δ time).

Figure 12.10 shows the execution time vs. energy and power consumption in the
chip package and DRAMs memories. The figure also reveals that all the iterations
provide the results before or on the deadline of 1 min. Only the uncertainty with the
WIA as a constraint in power save (uncer+WIA with pow) finalises after the term.
The experiment reinforces the idea that there is a middle point regarding power
consumption between the two GNU/Linux governors. The figure shows that with
HARPA-OS activated the system has an overhead of 9–28% (J) with respect to the
performance governor.

12.4.3 Execution of the Application Scenarios on the Platform

In this subsection, we run the uncertainty module on 16 nodes of an HPC
cluster. The cluster presented has 18 blades. From all possible resources, we use
16 for our experiments, leaving two blades as a backup, log file system. The
uncertainty module uses a hybrid OpenMP and MPI approach [22] to distribute
the computations to multiple nodes.

Given that the performance requirements of the application are time-variable
(e.g. low when sunny, intermediate/critical when rainy), the HPC centre may only
allocate some computing nodes to the application and use the remaining ones
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Table 12.1 For each
experiment, number of Monte
Carlo samples to be
performed by the instance
that models each catchment

Thousand of MC samples to perform

Experiment C1 C2 C3 C4

α1 1.5 1.5 1.5 1.5

α2 1.5 3.5 5.0 7.0

α3 7.0 7.0 7.0 7.0

β1 3.5 3.5 3.5 3.5

β2 7.0 7.0 7.0 7.0

β3 3.5 7.0 12.0 15.0

γ 80.0 between all catchments

Fig. 12.11 Standard operation: light or no precipitation, low water level, (α experiments)

to execute other applications. Therefore, we performed our experiments in three
different configurations: in the first one, we used only one node (i.e. standard
operation). In the second, we used two nodes (i.e. intermediate operation). In the
third, we used 16 blades of the cluster (i.e. critical operation).

Table 12.1 presents the set of experiments performed in the cluster. The
experiments tagged α refer to the single-node scenario, while those tagged with
β and γ respectively refer to the dual-node and 16 nodes are used from the entire
cluster scenarios.

12.4.3.1 One-Node Configurations

Figures 12.11a.1, 12.11b.1, 12.11c.1 and 12.11d.1 show the number of
cores allocated during the 10 min execution for each catchment, while
Figs. 12.11a.2, 12.11b.2, 12.11c.2 and 12.11d.2 show the monitored performance
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Fig. 12.12 Thermal map per core for a 10 min execution in one node. (a) Shows best-effort
performance GNU/Linux governor (12K in total). (b) Shows the heat map in the case of HARPA
PerDeTemp runtime with GNU/Linux performance governor (12K in total)

gap (gp equations (12.2)) (as presented in Eq. (12.3), similar to (12.2), but in this
case, the closer to 100% the gap is, the better the performance).

gapperformance = throughputcurrent

throughputideal
(%) (12.3)

As shown by the experimental results, the number of allocated resources gets
higher as the number of samples of MC to be performed increases. The allocation
of resources is satisfactory for α1 and α2 scenarios, but not for α3. In Fig. 12.11a.2,
we can observe that the performance gap is below 100%, meaning that the resources
required for this experiment are not enough. In this situation, a second node should
be allocated.

Figure 12.12 presents the heat map of a single node when running an uncertainty
module instance (12K MC samples) using a best-effort and just-in-time configura-
tion, respectively. We obtained the heat maps by using the ganglia monitoring tool.
In both figures, the X-axis represents time and the Y -axis represents the cores IDs.

• The Diff per Core (see the left part of the figures) is the difference in temperature
per core ci (0 ≤ i <16) during a period of time. In our case, the maximum
difference of temperature of a core for a period of 10 min. Given a core ci , and
its maximum t

ci
max and minimum t

ci

min temparature, the Diff per Core i is T
ci

D =
t
ci
max − t

ci

min.
• The Diff per Timestep (the lower part of the figures) is the difference in

temperature among all cores given a timestep. Given a time t and temperature
T, the Diff per Timestep is T t

D = t tmax − t tmin.
• The Median (the upper part of the figures) provides the median temperature per

timestep. Given a time t, n equals the number of cores, and temperature T, the

Median is Tmed = Σc=n−1
c=0 = T t

c

n
.

As can be seen in Fig. 12.12a (best-effort execution with CPUfreq performance
governor) there is a hotspot in socket 0 [cores 0..7], which, as already shown in
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Fig. 12.6, is the socket that is further from the fan. Conversely, Fig. 12.12b shows
the execution with HARPA-OS-PerDeTemp. In this case, there are no hotspots
and, thanks to the temperature-aware task migration performed by PerDeTemp, the
temperature is perfectly distributed throughout all the available processing elements.

12.4.3.2 Two Nodes

Similarly, Fig. 12.13 shows the results for the dual-node configurations. In this case,
β2 has an equal number of samples to operate as α3, and, since in this case, we have
two computing nodes at our disposal, the computation is performed without issues.
But the limit of 10 min is exceeded according to Fig. 12.13. Hence, in this case, the
resources are again not enough for all the scenarios: Fig. 12.13b.2 shows that the
performance gap of β3 is below 100%.

12.4.3.3 Multi-Node Results

In this section, we show and discuss the results of the execution of the multi-
nodes scenarios. On the application side, we used an MPI implementation of
the Uncertainty model to enable the possibility of launching the application on
multiple nodes. Moreover, for each node an instance of HARPA-OS was running,
to manage the resource assignment locally. Again, we compared the HARPA-OS
distributed execution of the workload against the unmanagedİ configuration with

Fig. 12.13 Intermediate operation: intermediate execution, medium precipitation or water level
warning threshold exceeded (β experiments) in two node execution
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Fig. 12.14 Thermal map per core for 10 min execution of the two node scenario. Case (a)
shows unmanaged execution (performance CPUfreq governor). Case (b) Shows HARPA-OS
(PerDeTemp) runtime management (performance CPUfreq governor)

the Linux Completely Fair Scheduler (CFS) scheduler in charge of managing the
CPU resource allocation, and the CPUfreq governor statically set (performance or
power save). As we have done for the previous scenarios, the comparison includes
considerations regarding performance, temperature of the CPU cores, power end
energy consumption. In the last experiment of this set, we executed the γ scenario
on 18 nodes (execution is performed in nodes 1 to 16 with MPI n = 16, nodes
17 and 18 remain idle) with a requirement of 80K MC samples. This time, all the
instances terminated just-in-time, i.e., exactly at the deadline (Figs. 12.14, 12.15,
and 12.16). Using the likwid power monitor, we monitored the power consumption
in both the jit and the be configurations. Whereas just-in-time execution leads to a
maximum consumption of 100 W, the best-effort execution leads to a peak of 160 W
per node (presented in Fig. 12.17). Therefore, we saved around 44% in maximum
power consumption, while nevertheless complying with the deadline.

12.5 Evaluating HARPA Impact on Hardware Reliability

The Mean Time Between Failure (MTBF) is a well-known reliability metric,
expressing the average time it takes for a failure to occur. It is calculated using the
following formula: MTBF = (Total device hours)/(Total number of failures). The
Failure Rate (FR) is the reciprocal of the MTBF:

FR = 1

MTBF
(12.4)

Acceleration Factors
The increase of the temperature of the test environment to which the devices
are subjected can accelerate most failure mechanisms. It is, therefore, possible to
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Fig. 12.15 HARPA-OS with PerDeTemp policy in 16 blades

Fig. 12.16 Figures present hotspots (temperature peaks) even using the more conservative
governor (power-save) in terms of power consumption. (a) Performance GNU/Linux governor in
16 blades. (b) Power-save GNU/Linux governor in 16 blades

perform relatively short tests which simulate many years of device stressing under
more normal conditions. Obviously, it is necessary to have some measures of how
greatly the failure mechanisms are accelerated. Suppose a device is stressed at a
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Fig. 12.17 Different behaviour in power consumption per blade. Performance governor presents
peak consumption while PerDeTemp presents a decrease in peak performance. (a) Power con-
sumption for 20K MC samples per blade. (b) Power consumption for 80K MC samples per blade

high temperature T2, for time t2. It is required to find the equivalent, t1, which would
cause the device the same level of stress at a lower temperature T1. To this purpose,
it is noted that if T2 > T1 then t2 > t1, we need to introduce an acceleration factor
defined as follows:

A = t1

t2
(12.5)

hence, the ratio of the time at the lower temperature to that at the higher. Since the
acceleration factor is a dimensionless ratio, it will be equal to the ratio of any other
parameters proportional to the stress times. The most useful ratio is that of failure
rates, which are inversely proportional to stress times if FR1 is the failure rate at T1,
and FR2 the failure at T2 then:

T2 > T1; FR2 > FR1;A = t1

t2
(12.6)

So if FR2 is known, FR1 is found simply as FR1 = A × FR2 All that is now
required is to find the value of the acceleration factor.

Temperature Acceleration
The High-Temperature-Bias (HTRB) test is an example of a temperature-
accelerated test. It is usually found that the rates of the reactions causing device
failure are accelerated with temperature according to the Arrhenius equation:

Accelerationfactor = e

Et

k( 1
T1

− 1
T2

)
(12.7)
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where EA = activation energy of the failure mechanism, k (Boltzmann constant =
8.6E−5 eV/K), A, T1, T2 are as defined above. The activation energy EA is found
experimentally, and is usually in the order of 1.0 eV, depending on the predominant
failure mechanism. For the failure mechanisms for small silicon technologies, a
value of 0.3 eV has been determined.

Mean Time Between Failures (MTBF)
The example is given for two sockets of 8 cores each in ANSELM. According to
Sect. 12.3.2, both sockets have a difference of several ◦C when the chip is idle.
We estimated the MTBF for 14K MC samples goal per 10 min. This situation
can be the standard usage of the system. From the set of temperatures, we
take the per core average minimum temperature T1 and maximum temperature
T2 for the two execution models, the HARPA PerDeTemp policy and the best-
effort performance GNU/Linux. The difference between socket 0 and socket 1 is
illustrated in Sect. 12.3.3. The position of the fan on one side of the blade produces
a gradient in temperature of around 10 (◦C) degrees between sockets (Table 12.2).

Relativeacceleration factor = Accelerationfactor(best-effort)

Accelerationfactor(PerDeTemp)

(12.8)

According to Eq. (12.7), we have used a range of EA values from 0.3 to 0.9 eV, the
values which are taken as lower and upper limits, and the real value is in the range.
Therefore, we computed the AF and the MTBF for the two sockets 0, 1 and the two
policies. The results are exhibited in Table 12.3.

Table 12.2 Temperatures in
Kelvin (T(K) = T(◦C) +
273.15)

Socket 0 Socket 1

Best-effort

Tmax 340.525 324.525

Tmin 328.4 313.025

PerDeTemp

Tmax 327.525 318.65

Tmin 321.775 310.775

Table 12.3 Acceleration
factor (AF) and MTBF for
two different cooling systems
and two possible EA

0.3 eV 0.9 eV

AF best-effort, socket 0 1.46 3.11

AF best-effort, socket 1 1.48 3.27

AF PerDeTemp, socket 0 1.21 1.77

AF PerDeTemp, socket 1 1.32 2.30

MTBF best-effort, socket 0 0.69 0.32

MTBF best-effort, socket 1 0.67 0.31

MTBF PerDeTemp, socket 0 0.83 0.56

MTBF PerDeTemp, socket 1 0.76 0.44
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Table 12.4 Relative MTBF
best-effort vs. PerDeTemp

MTBF best-effort/PerDeTemp, socket 0 0.83 0.57

MTBF best-effort/PerDeTemp, socket 1 0.89 0.70

Reliability Trade-Offs
The presence of hotspots is known to have adverse effects on the Mean Time
Between Failures of the system (MTBF) [19], and can be mitigated [23] through the
migration of tasks from one processor to a different in a Chip MultiProcessor (CMP)
system, if the processor heats up to a threshold value. The ageing acceleration factor
depends on the difference (Δ) of temperature.

According to the MTBF (Table 12.4) estimation presented in [9], running the
application in a HARPA-OS runtime with a PerDeTemp configuration improves the
reliability of the system from 17% (1 − MTBF best-effort

PerDeTemp
= 1 − 0.83, eV = 0.3),

Table 12.4) to 43% ((1 − MTBF best-effort
PerDeTemp

= 1 − 0.57, eV = 0.9)) in the case of poor

cooling (socket 0). With a better cooled (socket 1), the MTBF for the best-effort
relatively grows, but it is still 11% (1 − MTBF best-effort

PerDeTemp
= 1 − 0.89, eV = 0.3) to

30% (1 − MTBF best-effort
PerDeTemp

= 1 − 0.7, eV = 0.9) better if we manage the system with

PerDeTemp (jit) instead of using the best-effort (be) policy.

12.5.1 Discussion of Applicability and Quality of the Results

The model used for the project is based on the Monte Carlo simulation. The
Monte Carlo simulation is extensively used by the HPC community because it
can be employed to generate massively parallel programs [6, 7]. The Monte Carlo
simulation and its uncertainty are de facto fault tolerant since the algorithm can
provide an answer even if some samples are lost. The rainfall–run-off model, its
calibration [1, 27], and uncertainty must be executed every period that new data
arrives from weather stations to provide as accurate results as possible. Hence, the
QoS/time constraints allow relaxing of the execution requirements.

Since critical (alarm) situations are sporadic, instead of executing the model in
best-effort, minimising the time but maximising the power consumption, running
it with the QoS/time constraints is possible, as the results of the models must be
provided before the deadline, otherwise it is too late. Our HPC models fall into
the taxonomy of algorithms for urgent computing [28]. Therefore, the methodology
can be reused for any program that falls under this classification. Thus, when the
constraints are not very tight, it is possible to run the models allocating minimum
resources and in the less degraded (healthier) parts of the system. HPC systems for
urgent computing need very high availability and reliability. We have shown in this
document the trade-offs between running the algorithm on the system in best-effort
versus the Harpa-OS runtime. The balanced allocation of threads in the cores is
taking into account which cores are more degraded, improving the reliability and
hence expanding the lifetime of the system.
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12.5.2 Conclusions

The chapter describes extensive testing and evaluation of representative applications
of the HPC domain running with HARPA runtime support. The evaluation of
the case studies has demonstrated the suitability of the techniques and methods
developed in the HARPA project to both targeted compute domains (embedded and
HPC). Benchmarking activities are performed as well, with reference platforms used
to host these applications without HARPA framework. Validation of the HARPA
environment verifies the fulfilment of our objectives concerning the HARPA envi-
ronments functionality by monitoring and evaluating the performance, scalability
and availability of adapted applications with a focus on efficiency in providing
specified QoS levels in the presence of severe process variations. QoS levels are
evaluated before and after the integration to enable the exact comparison of provided
benefits. During the HARPA project, we have tried to assess the validation of the
HARPA environment on HPC systems.

We have illustrated the advantages of running the HPC applications regarding
availability and reliability. We have presented experiments that demonstrate the
efficiency of providing specified QoS level even in the presence of degradation in
the system (i.e. bubble). Yet still more work can be done concerning energy benefits.
The current HPC systems are memory dominated. The power measurements are
performed at the level of the socket, and inside the socket with the CPU, there are
different layers of memory (L3, L2, L1 and LLC). According to our measurements,
decreasing the Integrated Circuit (IC) power-supply pin Vdd with Dynamic Voltage
and Frequency Scaling (DVFS) provides benefits regarding lowering the power,
but not in reducing the global energy consumed during execution. This could be
because the leakage power (static power) is dominant or has a high percentage of the
consumption of the global system. Current monitors cannot provide us information
about power consumption in the cores, only at the level of the socket. So, we think
more experimentation is needed to ascertain what percentage of power consumption
is due to the memory layer (mainly main memory) versus the CPUs in the socket.
These tests could help us to disable or decrease the power consumption in memory
parts that are underused, and in this way observe real energy savings.

In this chapter, we presented a framework that, based on the runtime-variable
computational resources demand of applications, strives to minimize the resource
usage of applications while making them comply with their deadlines. We call this
practice just-in-time execution since the termination of the application is always as
near as possible to the deadline. The framework can use the pool of unused [11]
resources in multiple fashions, e.g., to swap allocated faulty processing elements
with healthier ones, or to periodically assign to applications cool processing
elements, hence evenly levelling the generated heat throughout the chip even in
cases of asymmetrical cooling.
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