
William Fornaciari · Dimitrios Soudris
 Editors

Harnessing
Performance Variability
in Embedded and High-
performance Many/
Multi-core Platforms
A Cross-layer Approach

Harnessing Performance Variability in Embedded
and High-performance Many/Multi-core Platforms

William Fornaciari • Dimitrios Soudris
Editors

Harnessing Performance
Variability in Embedded and
High-performance
Many/Multi-core Platforms
A Cross-layer Approach

123

Editors
William Fornaciari
DEIB – Dipartimento di Elettronica
Informazione e Bioingegneria
Politecnico di Milano
Milano, Italy

Dimitrios Soudris
School of Electrical & Comp. Engineering
Natl. Technical Univ. of Athens
Athens, Greece

ISBN 978-3-319-91961-4 ISBN 978-3-319-91962-1 (eBook)
https://doi.org/10.1007/978-3-319-91962-1

Library of Congress Control Number: 2018960208

© Springer International Publishing AG, part of Springer Nature 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-91962-1

Introduction

This book aims at providing a comprehensive view of the possible solutions to the
problem of ensuring dependable performance, by collecting the best practices from
the embedded and high-performance worlds.There exists a broad range of possible
sources of performance variability, spanning from the hardware (silicon) aspects up
to the design of the applications and the management of the resources. To worsen
the scenario, it is no longer possible to underestimate the impact of power and
thermal management and of process variation, especially in the perspective to deal
with reliability and aging issues. The goal of this book is to share the experience
maturated during the HARPA project and to complement such information with
background concepts and chapters, to create a scientific reference for both academic
and leading-edge companies.

The HARPA project’s goal has been to enable next-generation embedded and
high-performance heterogeneous many-core processors to cost-effectively confront
variations and yet provide dependable performance: correct functionality and timing
guarantees throughout the expected lifetime of a platform under thermal, power,
and energy constraints. The HARPA team is composed of industry and academic
partners across Europe specialized in fields covering all the abstraction layers, from
hardware to application level. One of the primary objectives of HARPA project
is accomplished by means of an accurate yet efficient modeling of performance
variability in scaled technologies. Capturing and simulating variability threats is an
important step toward providing solutions in mitigating them.

The HARPA solution revolves around a cross-layer approach encompassing all
pertinent actors in the system stack. At the core of HARPA, a middleware imple-
ments an innovative control engine that steers software/hardware knobs based on
information from monitors strategically dispersed in the system. We have explored
a large range of such knobs and monitors across different abstraction levels. This
engine relies on technology models to identify and exploit various types of platform
slack—such as performance, power, energy, temperature, lifetime, and structural
(i.e., hardware)—to restore the timing guarantees and ensure expected lifetime in the
presence of time-dependent variations. The challenge of dependable performance

v

vi Introduction

is to ensure timing correctness, whereas for high-performance applications it is
paramount to ensure load balancing during parallel phases and fast execution. Both
are achieved with a combination of a fast control engine with reaction times in the
range of a few msec and an OS-level engine reacting slower. These concepts have
been demonstrated in three different representative application case studies from the
wireless, flood monitoring, and rockfall monitoring domains.

Among different variability phenomena, attention is given to the BTI effects,
since they are expected to be the dominant ones. For this purpose, a proper
estimation flow that models the dependence of variability at circuit and block level
on the operating conditions (temperature and voltage), workload, and technology
parameters has been designed and developed. Experimental results have shown
running different application benchmarks of interest. The flow is based on com-
mercial ASIC tools and in-house scripts: from the transistor-level representation of
the circuit, and the transistor-level (real) workload, BTI variation based on defect-
centric models is quantified, and its impact on the critical path delay of the reference
circuit is then analyzed through standard STA run.

Although the impact on BTI is driven by the trends in current technology, the
system-level perspective is a joint result of different failure mechanisms. To close
the gap with system-level analysis, an experimental setup to measure the impacts
of stress-induced variability at the system level, from a functional perspective, has
been designed and deployed. The proposed setup allows us to directly measure
from the hardware the time between successive faults. While modeling and deeply
understanding variability impact is an important part of the work, a fundamental
objective of the project is to provide solutions to mitigate reliability threats and
ensure dependable system performance. Toward this direction, the HARPA engine
has been developed, implementing various control frameworks across the system
stack. The goal is to exploit different manifestations of platform slack (i.e., slack in
performance, power, energy, temperature, lifetime, and structures/components), in
order to ascertain timing guarantees throughout the lifetime of the device.

The reader is steered into the concept developed during the project passing
through three main stages: background concepts, design methodologies, and analy-
sis of use cases. To simplify the navigation of the book to the reader, the discussion
is further split into 6 parts and finally 13 agile chapters.

The beginning of the first part is an introductory chapter providing an overview
of the target problems and of the approach to their mitigation developed during the
HARPA project, which is a sort of reference guide to move into the book concepts
and chapters. The other two chapters of the first part provide a background on
the evolution of the computing platforms, with a particular focus on the processor
architectures and some foundations on the aging effects from the physics of the
phenomenon up to the CAD aspects.

The second part starts entering into the run-time management technologies with
two chapters explaining first of all the solutions working at the operating systems
level and then how to cope with the problem to achieve a fast and low overhead
thermal control of multi-many core processors.

Introduction vii

The following two chapters, constituting the third part, move into a finer grain of
the design considering the RT level and how to design an ad hoc run-time engine
to deal with real-time performance requirements. A comprehensive view of the
monitors and knobs is the objective of the fourth part of the book, focusing on both
the system-level solutions and on a specific new brick of the emerging platforms,
namely, the Network-on-Chip. A coordinated application of the background and
concepts presented so far is carried out in the two chapters composing the fifth part
of the book. The first of them is affording the problem of properly modeling and
simulating BTI-induced degradation in the computing platform and its impact on
the timing performance, while the second is the description of a proof of concept
performed on a real platform.

The final part of the book figures out how the methodologies and techniques here
presented can be effectively applied on real-size problems. To this purpose, two use
cases out of the three developed during the HARPA project are presented: Floreon+
to show the possible benefits achievable on application and architectures belonging
to the high-performance computing domain and Beesper, which is a typical low-
end embedded system submitted to severe reliability and energy management
constraints.

This book is probably the first one trying to cover all the critical aspects of the
computing continuum and, as we said, is well suited both for engineers working in
leading-edge companies and for courses at the master’s and PhD level.

Special thanks to Antonio Gonzalez and Jörg Henkel for their availability to
cooperate with us in this project, writing two excellent chapters of the book and
with the hope to extend in the future the scientific cooperation on new challenges.

We hope you will enjoy reading the book, as the authors enthusiastically worked
together for 4 years.

Milano, Italy William Fornaciari
Athens, Greece Dimitrios Soudris

Contents

1 The HARPA Approach to Ensure Dependable Performance 1
Nikolaos Zompakis, Michail Noltsis, Panagiota Nikolaou,
Panayiotis Englezakis, Zacharias Hadjilambrou, Lorena Ndreu,
Giuseppe Massari, Simone Libutti, Antoni Portero, Federico Sassi,
Alessandro Bacchini, Chrysostomos Nicopoulos, Yiannakis Sazeides,
Radim Vavrik, Martin Golasowski, Jiri Sevcik, Stepan Kuchar,
Vit Vondrak, Fritsch Agnes, Hans Cappelle, Francky Catthoor,
William Fornaciari, and Dimitrios Soudris

Part I

2 Trends in Processor Architecture . 23
Antonio González

3 Aging Effects: From Physics to CAD . 43
Hussam Amrouch, Heba Khdr, and Jörg Henkel

Part II OS Layer

4 The HARPA-OS . 73
Simone Libutti, Giuseppe Massari, and William Fornaciari

5 Event-Based Thermal Control for High Power Density
Microprocessors . 107
Federico Terraneo, Alberto Leva, and William Fornaciari

Part III HARPA-RT Layer

6 HARPA RT . 131
Dimitrios Rodopoulos, Nikolaos Zompakis, Michail Noltsis,
Francky Catthoor, and Dimitrios Soudris

ix

x Contents

7 Improving Robustness of a Real-Time Spectrum Sensing
Application with the HARPA Run-Time Engine . 151
Hans Cappelle, Michail Noltsis, Simone Corbetta,
and Francky Catthoor

Part IV Knobs and Monitors

8 Evaluating System-Level Monitors and Knobs on Real Hardware . . . 167
Panagiota Nikolaou, Zacharias Hadjilambrou, Panayiotis Englezakis,
Lorena Ndreu, Chrysostomos Nicopoulos, Yiannakis Sazeides,
Antoni Portero, Radim Vavrik, and Vit Vondrak

9 Monitor and Knob Techniques in Network-on-Chip Architectures . . 187
Davide Zoni, Panayiotis Englezakis, Kypros Chrysanthou,
Andrea Canidio, Andreas Prodromou, Andreas Panteli,
Chrysostomos Nicopoulos, Giorgos Dimitrakopoulos,
Yiannakis Sazeides, and William Fornaciari

Part V Technology Related Reliability Approach

10 Time-Efficient Modeling and Simulation of True Workload
Dependency for BTI-Induced Degradation in Processor-Level
Platform Specifications . 217
Simone Corbetta, Pieter Weckx, Dimitrios Rodopoulos,
Dimitrios Stamoulis, and Francky Catthoor

11 Proof-of-Concept HARPA Measurement-Based Platform
Modelling Framework . 237
Simone Corbetta, Wim Meeus, Etienne Cappe, Francky Catthoor,
and Agnes Fritsch

Part VI Applications

12 Floreon+ Modules: A Real-World HARPA Application in the
High-End HPC System Domain . 265
Antoni Portero, Radim Vavrik, Martin Golasowski, Jiri Sevcik,
Giuseppe Massari, Simone Libutti, William Fornaciari,
Stepan Kuchar, and Vit Vondrak

13 Beesper SmartBridge: A Real-World HARPA Application in
the Low-End Embedded System Domain . 295
Federico Sassi, Alessandro Bacchini, and Giuseppe Massari

Index . 319

Chapter 1
The HARPA Approach to Ensure
Dependable Performance

Nikolaos Zompakis, Michail Noltsis, Panagiota Nikolaou,
Panayiotis Englezakis, Zacharias Hadjilambrou, Lorena Ndreu,
Giuseppe Massari, Simone Libutti, Antoni Portero, Federico Sassi,
Alessandro Bacchini, Chrysostomos Nicopoulos, Yiannakis Sazeides,
Radim Vavrik, Martin Golasowski, Jiri Sevcik, Stepan Kuchar, Vit Vondrak,
Fritsch Agnes, Hans Cappelle, Francky Catthoor, William Fornaciari,
and Dimitrios Soudris

1.1 Introduction

The evolution towards processors with heterogeneous many-cores is impeded by
variability related challenges. This is primarily due to increasing susceptibility to
static [3] and dynamic [4] variations in the performance and leakage energy of
the silicon devices and wires. Static variations are due to imperfections in the
fabrication process, such as line-edge roughness and random dopant fluctuations,
whereas dynamic ones are due to time-dependent variations, such as aging, ambient

N. Zompakis · M. Noltsis · D. Soudris
MicroLab-ECE-NTUA, Athens, Greece
e-mail: nzompaki@microlab.ntua.gr; mnoltsis@microlab.ntua.gr; dsoudris@microlab.ntua.gr

P. Nikolaou · P. Englezakis (�) · Z. Hadjilambrou · L. Ndreu · C. Nicopoulos · Y. Sazeides
University of Cyprus, Nicosia, Cyprus
e-mail: panagiota.nikolaou@cs.ucy.ac.cy; englezakis.panayiotis@ucy.ac.cy;
zhadji01@cs.ucy.ac.cy; lndreu01@cs.ucy.ac.cy; nicopoulos@ucy.ac.cy; yanos@cs.ucy.ac.cy

G. Massari · S. Libutti · W. Fornaciari
DEIB Politecnico di Milano, Milano, Italy
e-mail: giuseppe.massari@polimi.it; simone.libutti@polimi.it; william.fornaciari@polimi.it

A. Portero · R. Vavrik · M. Golasowski · J. Sevcik · S. Kuchar · V. Vondrak
IT4Innovations, Ostrava - Poruba, The Czech Republic
e-mail: antonio.portero@vsb.cz; radim.vavrik@vsb.cz; martin.golasowski@vsb.cz;
jiri.sevcik@vsb.cz; stepan.kuchar@vsb.cz; vit.vondrak@vsb.cz

F. Sassi · A. Bacchini
Camlin Italy s.r.l., Parma, PR, Italy
e-mail: f.sassi@camlintechnologies.com; a.bacchini@camlintechnologies.com

© Springer International Publishing AG, part of Springer Nature 2019
W. Fornaciari, D. Soudris (eds.), Harnessing Performance Variability
in Embedded and High-performance Many/Multi-core Platforms,
https://doi.org/10.1007/978-3-319-91962-1_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91962-1_1&domain=pdf
mailto:nzompaki@microlab.ntua.gr
mailto:mnoltsis@microlab.ntua.gr
mailto:dsoudris@microlab.ntua.gr
mailto:panagiota.nikolaou@cs.ucy.ac.cy
mailto:englezakis.panayiotis@ucy.ac.cy
mailto:zhadji01@cs.ucy.ac.cy
mailto:lndreu01@cs.ucy.ac.cy
mailto:nicopoulos@ucy.ac.cy
mailto:yanos@cs.ucy.ac.cy
mailto:giuseppe.massari@polimi.it
mailto:simone.libutti@polimi.it
mailto:william.fornaciari@polimi.it
mailto:antonio.portero@vsb.cz
mailto:radim.vavrik@vsb.cz
mailto:martin.golasowski@vsb.cz
mailto:jiri.sevcik@vsb.cz
mailto:stepan.kuchar@vsb.cz
mailto:vit.vondrak@vsb.cz
mailto:f.sassi@camlintechnologies.com
mailto:a.bacchini@camlintechnologies.com
https://doi.org/10.1007/978-3-319-91962-1_1

2 N. Zompakis et al.

conditions, and dynamic workload properties [7]. Variations, therefore, introduce an
unintended heterogeneity, as compared to design time heterogeneity, that needs to
be dealt with.

Application requirements, as well as power and technological constraints, are
driving the architectural convergence of future processors towards heterogeneous
many-cores. This development is confronted with variability challenges, mainly the
growing susceptibility to time-dependent variations in silicon devices and wires.
A variety of well-known mitigation approaches, such as tuning manufacturing
process, column/row sparing [9], frequency binning and body biasing [3],dynamic
sparing [10], variation tolerant circuits [8], and lifetime guard-bands [1], have been
adopted to provide chips a number of solutions for mitigation techniques for such
variability issues. The aforementioned solutions provide a basic but key expectation
for a reliable processor that throughout its lifetime performs correctly under any
nominal operating condition. The goal of the deployed HARPA methodology is
to enable next-generation embedded and high-performance heterogeneous many-
core processors to cost-effectively confront variations and yet provide dependable
performance: correct functionality and timing guarantees throughout the expected
lifetime of a platform under thermal, power, and energy constraints. The proposed
HARPA solution revolves around a cross-layer approach encompassing all perti-
nent actors in the system stack. A middleware implements an innovative control
engine that steers software/hardware knobs based on information from monitors
strategically dispersed in the system. This engine relies on technology models
to identify and exploit various types of platform slack—such as performance,
power, energy, temperature, lifetime, and structural (i.e., hardware)—to restore the
timing guarantees and ensure expected lifetime in the presence of time-dependent
variations. The challenge of dependable performance is critical for embedded appli-
cations to provide timing correctness, whereas for high-performance applications
it is paramount to ensure load balancing during parallel phases and fast execution
during sequential phases. The lifetime requirement of dependable performance is
crucial, with ramifications on the cost of tuning manufacturing process and the
number of field returns (products returned to the manufacturer due to faults). The
novelty lies in the seeking of synergies in techniques that have been considered
virtually exclusively either in the embedded or high-performance domains (e.g.,
worst-case guaranteed partly proactive techniques in embedded and dynamic best-
effort reactive techniques in high performance). This chapter outlines the merging
concepts from the two domains of embedded and high-performance platforms by
highlighting the key issues from both segments.

F. Agnes
Thales Communications & Security, Gennevilliers Cedex, France
e-mail: fritsch.agnes@thalesgroup.com

H. Cappelle · F. Catthoor
Imec, Leuven, Belgium
e-mail: hans.cappelle@imec.be; catthoor@imec.be

mailto:fritsch.agnes@thalesgroup.com
mailto:hans.cappelle@imec.be
mailto:catthoor@imec.be

1 The HARPA Approach to Ensure Dependable Performance 3

A comprehensive framework (along with its associated methodology and sup-
porting tools) ensures performance dependability in the many-core systems of the
near future. Specifically, the Engine—the core of the proposed framework—has
direct applicability in the existing systems, and provides extensive architectural
support for future SoC platforms. The deployed components have been validated
using various important use cases, which have been selected due to their significance
in emerging application trends.

1.2 Dependable Performance Through Guaranteed Quality
of Service

The means to achieve dependable performance is to enrich future processor architec-
tures with capabilities that provide nonfunctional guarantees, such as timing, power,
lifetime, etc., in the presence of time-dependent variations. In other words, we want
to provide a quality of service (QoS) for specified nonfunctional requirements while
transistors and wires delay and leakage is changing with time as presented in the
example of Fig. 1.1.

Some primitive notions of HARPA principles are present in the existing systems
(such as load balancing and dynamic voltage scaling, etc.) but are not perva-
sive enough and not orchestrated or meant to provide dependable performance.
Another unique aspect of HARPA is in seeking synergies in techniques that have

Fig. 1.1 Effects of PV execution of a periodic application with four tasks each on a different
accelerator (above) Free of PV (below) PV due to the Accelerator 3 results in missing deadlines

4 N. Zompakis et al.

Performance Degradation

Load Imbalance

Deterministic
Performance

PV in Parallel Phase PV in Sequential Phase
T

im
e

Slowdown Sequential Accelerator

Fig. 1.2 Execution modes and performance degradation—Execution of a program with parallel
and sequential phases: (left) PV free, (middle) PV in one of the cores used for parallel execution
results in load imbalance and degradation, and (right) PV in the core used for sequential execution
results in degradation

been considered virtually exclusively either in the embedded or high-performance
domains, such as proactive techniques in embedded and reactive techniques in high
performance.

Overall, the aim is to deploy the necessary architectural and micro-architectural,
middleware and system support as well as the cross-layer interfaces to express
and efficiently provide the following guarantees: timing, power (peak and energy),
lifetime, and temperature in the presence of time-dependent variations.

While instances of such concepts have been widely adopted in the network
community, surprisingly they are only now becoming a serious issue also in the
converging domains of high-performance and embedded computing systems. Due
to the different characteristics, the earlier solutions cannot just be copied: significant
adaptations and extensions are required. The dependable-performance concepts
are becoming more than ever relevant because of the increasing complexity and
dynamism that is present in the application workloads, where several tasks with
highly diverse requirements are running concurrently on the systems, as well as
the dynamicity of the hardware due to time-dependent variations. This is clearly
articulated in the HiPEAC roadmap as a need for dependable timing and predictable
performance [5] as presented in the example of Fig. 1.2.

The aim is therefore to augment embedded and high-performance platforms with
mechanisms to:

• Provide dependable performance depending on the specific nonfunctional
requirements and actual load of the system.

• Expose nonfunctional time-dependent hardware state (such as delay, power,
temperature, and lifetime) across compute layers to enable proactive and reactive
control of a platform.

1 The HARPA Approach to Ensure Dependable Performance 5

• Shave unnecessary margins to avoid over-provisioning or underutilizing the
architecture.

1.3 Concept and Principles

Designing either embedded systems or high-performance, general-purpose pro-
cessors with the innate capability to provide dependable-performance guarantees
requires a clear separation of control policies and mechanisms. Policies provide
solutions; for flexibility, we strive for policies implemented in software, and, in
particular, in the system software layer so that the application designer does not
need to worry about them. Mechanisms provide the primitives for constructing
policies. Examples of such mechanisms in systems are task migration, dynamic
voltage and frequency scaling, power gating, component disabling, etc. Because
primitives are universal, system designers can implement mechanisms in both
hardware and software. In general, mechanisms that interact directly with fine-
grain hardware resources should be implemented in hardware; to reduce hardware
cost, mechanisms that manage coarse-grain resources should be implemented in
software. The key issue is to provide integrated policies and mechanisms in a cross-
layer implementation that holistically aims to provide dependable performance in
the presence of time-dependent variations and aging.

Fig. 1.3 HARPA framework. (a) HARPA high-level view. (b) Conceptual view

6 N. Zompakis et al.

Figure 1.3 below shows the main concepts of the proposed architecture and the
main components that can provide performance-dependability guarantees. Note that
this generic framework applies to both embedded systems and high-performance
general-purpose systems. We outline below the three main elements that distinguish:
Monitors and knobs to implement mechanisms that can provide and maintain
performance-dependability guarantees, and the HARPA Engine.

Conceptually, the latter mainly consists of a feedback loop (See Fig. 1.3b),
where the different metrics (performance, timing, power, temperature, errors and
manifestations of time-dependent variations, etc.) of the system are continuously
monitored. The HARPA engine actuates the knobs to bias the execution flow as
desired, based on the state of the system and the performance (timing/throughput)
requirements of the application. It is the HARPA engine that will implement
the various control strategies aiming to provide dependable performance in the
presence of (highly) unreliable time-dependent variations. The goal is to exploit
different manifestations of what we term as platform slack (i.e., slack in perfor-
mance, power, energy, temperature, lifetime, and structures/components), in order
to ascertain timing guarantees throughout the lifetime of the device (in spite of
time-dependent variability) and maintain the expected lifetime of the system. By
combining performance dependability techniques from both the embedded systems
and high-performance worlds, HARPA has enabled cross-fertilization of techniques
and mechanisms from these two converging domains and transfer methodologies
from one to the other. The underlying architecture is a heterogeneous multicore
architecture, which consists of a single-ISA multicore environment, where cores
have different performance and power characteristics (low-power slower cores,
high-performance fast cores, and application-specific accelerators).

1.4 User Requirements

Because performance-dependability guarantees are often application specific, the
HARPA approach provides an efficient and general interface that can satisfy
performance-dependability objectives over a range of applications. In this chapter,
we will investigate several different application domains of the HARPA engine,
and define the necessary API and language support to express the requirements.
The applications to be analyzed cover both the embedded systems domain and
the high-performance computing (HPC) domain. A common factor for all type of
applications is that the application requirements provided to the HARPA architec-
ture have to be architecture-independent. This removes the need for the application
programmer to provide different sets of metrics for different target architectures,
and this attribute will guarantee performance and requirements portability. In
particular, the HARPA engine will be able to handle the disparate, yet converging,
demands of embedded systems and HPC for timing predictability and performance
determinism. In the case of some mission-critical embedded applications, one needs
much stronger guarantees and a pure best-effort approach is not sufficient. In that
case, an extended analysis phase is required to ensure that the HARPA engine

1 The HARPA Approach to Ensure Dependable Performance 7

will be able to provide such strict guarantees. On the HPC side, lack of precise
knowledge of the applications (due to the fact that high-performance systems are
expected to run a variety of applications whose control flow can be data sensitive)
necessitates dynamic profiling and a combination of proactive and reactive (post-
failure) corrective measures.

1.5 HARPA Engine

The HARPA engine is the heart of the proposed methodology. Its role is to
proactively and reactively control the system resources, in order to guarantee the
performance requirements of the various applications running on the heterogeneous
architecture, establish the necessary service-level agreements (SLA) with the
system, periodically monitor its state, and select and steer the appropriate knobs to
provide the necessary performance guarantees throughout the lifetime of the system
and in the presence of time-dependent variations and aging. It should be noted
that the notion of SLA is somewhat different for embedded systems as opposed
to HPC systems. In the former case, SLA primarily focuses on satisfying certain
constraints (meeting deadlines), while in the latter case, it implies the elimination
or minimization of any deviations from the manufacturer’s nominal specifications
(e.g., cache capacity, core performance, and availability, etc.). With this subtle
difference in mind, we address both challenges through the HARPA engine, which is
a middleware split between the Operating System (HARPA-OS) and the Run-Time
system (HARPA-RT), as shown in Fig. 1.4.

This division is done with a two-fold objective: obtain better semantic infor-
mation from the application, and enable high dynamicity. The run-time layer
(HARPA-RT) sits at a low level in the system stack and it is in direct con-
tact with the various monitors and knobs. It is an application-independent layer
(even though it adapts to application-specific semantics during execution) that
has direct and responsive control on hardware resources. Its low-level nature

Fig. 1.4 HARPA engines layers and types

8 N. Zompakis et al.

(directly controlling/actuating hardware resources) allows the run-time engine to
respond at a millisecond time granularity, thus enabling extremely fast adaptation
to system behavior, which is ideal for providing guarantees for the hard real-time
specifications of an application. Essentially, the HARPA-RT layer is a type of
“firmware” running on top of (or beside) the actual computational resources and
is under the overall control of the other major component of the HARPA engine,
which operates at the overall Operating System level. The HARPA-RT alone is not
enough, because when multiple applications are running concurrently, each active
run-time application cannot have a holistic, global view of the system. To ensure
system-level performance dependability, a component of the HARPA engine must
operate at the Operating System level. This will allow for system-wide guarantees.
The OS is expected to maintain a piece of software (e.g., a library) linked with
each active application, which provides a set of common services to support its run-
time optimization. Note that this OS library is “by construction” semantically closer
to the running applications, which allows it to obtain salient semantic information
about the run-time applications (such as the phases of the application and its
behavior). Thus, this library supports the smooth and proper integration of a run-
time application with the HARPA-OS. Naturally, the HARPA-OS component is
slower to react than the run-time component (HARPA-RT), as the OS’s operation
involves the invocation of system calls to/from the active run-time applications, or
similar mechanisms that require changing from user to kernel modes. This implies
that the OS reacts/adapts to system changes at the second time granularity. However,
this is perfectly adequate for less-critical, best-effort performance requirements, and
nonfunctional requirements that evolve at coarser time granularity, such as aging and
overall power/energy and thermal management. By splitting the HARPA engine into
both layers (millisecond-scale run-time and second-scale OS), we can get the best of
both worlds. The fast HARPA-RT layer cooperates with the coarse-time granularity
of the HARPA-OS layer to achieve system-wide optimization goals by still granting
a prompt low-level control on hardware resources. Two different HARPA Run-
Time approaches are investigated: (1) System Scenario control, and (2) Dynamic
Scenario control. Both are complementary and most applicable for different types
of applications and system context.

HARPA is tasked with the responsibility of ensuring that performance variability
remains bounded, in order to guarantee certain predefined performance dependabil-
ity levels. The amount of performance variability that can be afforded in a system
depends on the scenario: in an embedded system, PV may be tolerated up to the
point where timing constraints are no longer met (deadlines are lost), whereas in an
HPC setup, the system may only tolerate performance degradation up to a specified
level within a given amount of time. Thus, HARPA must ensure that the combined
monitor/control/knob reaction latency is never exposed to the application, or it is
only exposed within a given bound.

The operation of the HARPA engine is summarized as follows:

• Application setup and characterization: As mentioned earlier, the application is
first augmented with the user requirements. At installation, the run-time engine
is configured with the characteristics of the hardware (e.g., the sizes of the

1 The HARPA Approach to Ensure Dependable Performance 9

caches and the processor core functionality, but also the symbolic models of
the expected degradation mechanisms). Additionally, in the case of application-
specific embedded systems, the run-time engine may also be configured with
the application characteristics (e.g., the nature of the operations and control
flow that will be executed in the started application task set, the type of data
access patterns, etc.). Application characteristics are obtained by profiling, or by
any other available means of application analysis. This will not require internal
information of the application, but it will suffice to have access to executable
code, or a hardware emulation board that can be supplied by the application
architect or the application designers. This will heavily reduce the design-time
overhead and it will remain one of the main objectives to keep it small. On the
other hand, in the case of high-performance systems, the applications may not be
precisely known a priori.

• HARPA Engine: The role of the HARPA engine is to observe the application
behavior at run time (dynamically), in order to extract insight as to the applica-
tion’s characteristics. If multiple different applications are running concurrently,
then the HARPA engine will observe the combined/aggregate behavior. In
such a situation, where not enough information is available for the HARPA-
OS to manage resources, the architecture is required to remain in an optimal
state with respect to high-level objectives that may be provided as directives
from the HARPA-OS. In this particular scenario, the hardware can see all the
running applications as a generic workload on top of the resources, since no
user/application requirements have been provided. Moreover, these hardware
optimizations are required to avoid fine-grain and hardware-dependent focus
for the HARPA-OS. In particular, there are at least three possible scenarios.
First, a non-profiled set of applications can run on the HPC platform. To
this extent, while the HARPA-OS collects behavior information it can steer
the low-level optimization layer (eventually hardware based) to a particular
power-performance trade-off configuration. After a while, the HARPA-OS can
smoothly start taking control of the resource management, while it has acquired
enough information on the application behaviors. Second, the low-level/hardware
optimization layer is required to manage exceeding resources not required by
the HARPA-OS following the policy stated above, i.e., high-level directive to
optimize towards a specific power-performance or reliability-performance trade-
off. Last, it is possible to have applications with a very fast dynamic or with
operating modes that changes too fast, thus they cannot be efficiently managed
by the HARPA-OS. In that case, the RT engine should still be able to deal with
this part of the dynamics (up to msec-level updates). Only when the dynamics
are even faster, an averaging effect will have to be allowed and this will reduce
the cost efficiency. Still, even then the dynamic scenario approach will still allow
to guarantee the hard real-time constraints, albeit with a higher cost due to the
“gas pedal” concept it requires to maintain that guarantee.

• Service-Level Agreement (SLA): Before any new application task set starts,
the HARPA engine verifies whether the performance requirements can be met
with the current hardware and middleware status (e.g., are enough memory

10 N. Zompakis et al.

and processor resources available given the other tasks that are already active
and committed). The SLA is then validated. If not, the HARPA engine will
report the SLA invalidation to the system-level controller. On top of this, in the
proactive mode with the System and Dynamic run-time approaches, the HARPA
engine also analyzes whether the expected evolution (including degradation
and dynamic behavior) of the hardware and system software allows for the
satisfaction of the desired performance requirements. This analysis will be based
on predicted-but-safe bounds that are produced and updated at run time. How
this is achieved will depend on the nature of the HARPA engine mechanisms at
the run-time system and OS layers. If this check is positive, the task can start
and the performance requirements will be met until the task’s predefined ending
time: the SLA is then guaranteed and, hence, fully validated. If the check fails,
then the HARPA engine will report this to the system-level controller, which has
to initialize a backup plan for the task. For instance, in a wireless system, the
data transmission of a particular user can be postponed till later, or another route
can be employed to deliver it. In a mission-critical airplane take-off or car/train
ride, the pilot or driver will decide not to start and will proceed to the appropriate
recovery procedures, rather than risk a failure during the flight/ride. This is fully
compatible with the current procedures for such applications. In the case of
HPC setups, compliance with the SLA is monitored and assessed dynamically
to ensure that all running applications experience the expected performance
determinism and the system’s expected lifetime guarantee is not jeopardized.
Any deviation from these conditions that cannot be corrected by the HARPA
engine will be reported to the user/administrator layer.

• Execution-time behavior of the HARPA engine: At execution time, the HARPA
engine will adapt to the prevailing run-time conditions, and “based on the
difference between the predicted bounds and the actually required resources”
it will compute the available slack. That slack will be used to shave over-
provisioning margins as much as possible. When the SLA cannot be strictly
met at task set start-up (see above), we will perform a best-effort approach
(e.g., a 90% guarantee instead of 100%), once the user has been notified and
has accepted this downgrade in performance guarantees. When the assumptions
are fulfilled, the HARPA engine will meet the performance guarantees during
the task execution and it will also account for application tasks with irregular
and data-dependent control flow (including conditions and while loops). In
this way, we will be able to reduce the cost much more than any worst-
case bounding that happens at design time. Moreover, in contrast to best-effort
approaches, we will continuously adjust the HARPA knob control to meet the
performance requirements, once the initial check at task start-up has given the
go-ahead (in embedded systems), and maintain performance determinism and
lifetime guarantees (in HPC systems). The ability to identify the impact of time-
dependent variations and aging at run-time, and to dynamically adjust system
behavior to account for such attrition, is one of our main differentiators. The
HARPA engine will proactively strive to maintain performance dependability,
and it will reactively address any permanent failures that happen as a result

1 The HARPA Approach to Ensure Dependable Performance 11

of aging, with the ultimate goal being that the user still receives the promised
performance guarantees.

1.5.1 HARPA Run-Time Engine Implementations
(HARPA-RT)

The run-time system is the low-level component of the HARPA engine and it
directly controls the hardware monitors and knobs. By directly actuating the
hardware resources, the HARPA-RT can provide extremely fast adaptation to appli-
cation behavior at the millisecond time granularity. Even though the HARPA-RT
layer itself is application-independent, during execution it receives application-
specific semantics from the HARPA-OS (through the application-linked library
previously described). This interface with the OS allows the HARPA-RT to be
semantically in direct contact with the application during execution. Two key
aspects in this interaction are (1) how dynamic is the behavior of the application,
and (2) the required information by the run-time mechanism to track/predict the
future resources required by the application to meet its performance requirements.
In this chapter, two different run-time technologies will be investigated: the “System
Scenario” and the “Dynamic Scenario” approaches. The characteristics and use of
each technology are mainly steered by the dynamicity on the application. Note
here that even though different platforms will inevitably feature different degrees of
observability and controllability, the interface definitions that have been developed
(between the platform’s hardware and the HARPA-RT) will be agnostic to the
specifics of the underlying platform, in order to enable widespread applicability.
Hence, even though the values of the parameters passing through the interface will
be platform specific, the interface definition itself will be platform-independent.

1.5.1.1 System Scenario Run-Time Engine

The System Scenario [6] approach may be defined as an approach where the
characteristics of the scenario in which a system operates are exploited in a
specific way to reduce margins. The System Scenario approach is typically suitable
for mildly dynamic applications (due to conditions and while loops) or static
applications. Based on a specific grouping of the possible application behaviors that
can occur at run time, a clustering is made into the so called system scenarios. For
example, in the case of an MPEG4 video codec, the code and note can be profiled,
while all of the frames of a given type have similar E(nergy)–T(ime) relation, so
they have a stable behavior that can be tracked/predicted safely by the run-time
mechanism to meet all performance requirements of the application. However, other
frames of a given type P internally may have a too wide distribution for the E–T
curves. In that case, P frames could be further broken down into sub-frames, whose

12 N. Zompakis et al.

behavior should remain relatively stable across the active lifetime of the application.
Obviously, this class of applications includes also the purely static applications
where no data-dependent behavior is present, such as in pure streaming applications.
To carry out this clustering/splitting of the application into sub-tasks, the run-time
engine needs profiling/semantic information about the frequency of occurrence and
the distance between sub-tasks. These will be carefully characterized at design time
(Application Setup phase) in terms of their spatial and temporal requirements on the
platform. In the HPC case, such static analysis may not always be feasible (or may
only be partial), which transfers the burden to the dynamic run-time engine.

The main advantage of the System Scenario approach is that if the different
System scenarios are fully characterized and bounded, and if the OS layer honors the
SLA agreement (availability of resources), then a strict guarantee can be provided
on critical requirements, such as timing, for example. This is very useful in mission-
critical applications with hard real-time constraints. In addition, unlike conventional
techniques where the WCET of the application has to be fully determined upfront,
the engine is able to adapt to systems change (detected by the monitors), and yet
provide strict guarantees as long as the assumption of each System scenario is fully
characterized. More details on how the System Scenario approach is operating can
be found in [6].

1.5.1.2 Dynamic Scenario Run-Time Engine

The Dynamic Scenario approach, initially conceptualized in [11], mainly extends
System Scenario techniques for highly dynamic applications (such as 5G wire-
less radio paradigms, scalable multimedia codecs, or smart adaptive closed-loop
biomedical algorithms) and takes into account the presence of strong nonlinearities
that are present in the system, such as the mapping between the data and the
hardware memory organization, or the relation between the temperature and the
delay and energy that are required to execute the application tasks. The HARPA
run-time system has to proactively deal with the expected changes in the near
future and the nonlinearity makes these predictions highly complex. To achieve
this, the dynamic scenario approach exploits correlations which are present in
the run-time events of any realistic application context. That is one of the most
demanding issues that has been addressed in the current approach. The challenge
is how the design goals can be achieved reducing cost (further shaving of margins)
while guaranteeing all constraints. That will definitely require pushing more of the
analysis and decision-making to the execution phase of the application. Moreover,
it is needed to increase the look-ahead capability by introducing safe bounds that
are not based on upfront design-time bounding. This aspect is even more relevant in
HPC setups, where inherent dynamism in the application set necessitates dynamic
profiling and run-time observations in order to actuate proactive and reactive
mechanisms. If the proactive efforts fail to avoid a permanent failure (occurring
due to aging and time-dependent variations), the HARPA run-time engine will
resort to reactive techniques that will aim to maintain performance guarantees (e.g.,

1 The HARPA Approach to Ensure Dependable Performance 13

Table 1.1 HARPA run-time engine summary

Examples of applications

Approach Characteristics HPC context ES context

System scenario Static or mildly
dynamic applications

Graphics rendering MPEG video

Assume predictable
resource availability

Requires upfront
characterization of the
application by profiling
(gray box)

Reduced number of
executable paths

Observability of
application control flow
(i.e., I or P frame types)

Can provide strict
guarantees under certain
conditions

Dynamic scenario Highly dynamic
application

Infrastructure as a
service (IaaS)

5G wireless services

Subject to nonlinear
dynamic system Behav-
ior

Requires some
characterization of the
application behavior
(gray box)]

Stochastic resource
requests and
virtualization overheads

Exploding the number
of possible execution
paths; reduced scenario
detection overhead

Can provide strict
guarantees under certain
conditions

through some reconfiguration, component deactivation, remapping, etc.) despite the
decommissioning of some elements. Table 1.1 summarizes both HARPA engine
approaches.

1.6 HARPA Operating System (HARPA-OS)

The Operating System is the second layer of the HARPA engine, as previously
depicted in Fig. 1.3a. For its implementation, we started from the works introduced
in [2] and [13]. The OS offers the advantage of a global view of all system requests
and resources, which enables system-wide performance-dependability guarantees.
Its main limitation is that it is slower to react than the HARPA-RT component,
providing services at the time granularity of a second. Regardless, such granularity
is adequate for global system-level coordination, and performance-dependability
guarantees in the presence of multiple concurrently running applications. Following
the HARPA philosophy of seamlessly ensuring dependable performance, our aim is
to enable a mainstream operating system (OS) with such system-level capabilities.

The OS has to offer some guarantees in the access to system resources to the
different run-time applications running on top of it, so that the HARPA-RT layer

14 N. Zompakis et al.

can offer guarantees in accomplishing user requirements. The OS also has to take
into account the constraints imposed by the system administrator, such as a thermal
threshold or a power cap. One objective of the HARPA engine at the OS level,
HARPA-OS, is that it does not deny too quickly (or conservatively) the SLAs and
that it makes all the optimizations necessary to grant the SLA upfront.

The HARPA approach is that the HARPA-OS will provide a set of virtualized
resources to each run-time application, making each of them think as if they are
alone in the machine. At run time, when each application starts, it sets an SLA
with the OS in which it specifies the resources needed. At that moment, the OS
maps the virtualized resources into actual resources by spatially and timely splitting
actual resources. At low level, The HARPA-OS guides the HARPA-RT’s direct
interaction with the different hardware/monitors provided by the architecture, as
described below.

1.6.1 Resource Virtualization

In a traditional multiprogrammed system, the OS assigns each application a portion
of the physical resources for example, physical memory and processor time slices.
From the application’s perspective, each application has its own private machine
with a corresponding amount of physical memory and processing capabilities. With
multicore systems containing shared micro-architecture level resources, however, an
application’s machine is no longer private: the resource usage of other independent
applications can affect its resources. The HARPA engine virtualizes the hardware
resources to the applications/run-time system. At run time, these virtual resources
will be mapped to actual hardware resources. This provides the user with a single
interface, regardless of the underlying hardware, removing the need of adapting the
application to different target architectures. This virtualization provides flexibility
to the HARPA engine when dealing with different applications. During the SLA
establishment, the run-time system will negotiate the necessary resources it needs
to satisfy the performance guarantees. Accordingly, the OS will grant (or not) to the
run-time system the necessary resources it needs. Such a virtualization mechanism is
very much in line with current integrated computing systems in embedded systems
and server consolidation environments in the high-performance domain. In avionic
systems, the integrated modular architecture (IMA) executes and manages several
subsystems and each of these subsystems must run in isolation without being
affected by the other subsystems, while the same philosophy is also followed in
large clusters that are virtually decomposed into multiple independent systems.

1.6.2 Spatial and Temporal Component

Mapping virtual to actual resources is decomposed into a temporal and a spatial
component. The spatial component specifies the fractions of the system’s physical
resources that are dedicated during the run time(s). For example, consider a baseline

1 The HARPA Approach to Ensure Dependable Performance 15

system containing four processors, each with a private L1 cache. The processors
share an L2 cache, main memory, and supporting interconnection structures. Let us
assume that the HARPA-RT distributes these resources among three applications
with their corresponding run times (RT1, RT2, and RT3). After negotiating the
SLAs, two cores are assigned to RT1, while RT1 and RT2 are assigned to a
single core. The HARPA-OS engine assigns RT1 a significant fraction (50%) of the
virtualized resources to support a demanding multithreaded application, and assigns
the other two applications only 10% of the resources. These assignments leave
30% of the cache and memory resources unallocated. The HARPA-OS engine will
distribute unallocated resources to improve overall resource utilization and optimize
secondary performance requirements. The spatial component of the virtualized
resources might contain multiple processors. These configurations are a natural
extension of gang scheduling and support hierarchical resource management. For
example, schedulers and resource management policies running within a run time
can schedule and manage the run time’s assigned resources as if the run time were a
real multiprocessor machine. That is, the HARPA-OS engine can support recursive
virtualization.

The temporal component is based on the well-established concept of ideal pro-
portional sharing. It specifies the fraction of processor time (processor time slices)
and the spatial component of the virtualized resources dedicates to each run-time
system. As with spatial virtualized resources, the temporal component of virtualized
resources naturally lends itself to recursive virtualization and hierarchical resources
management, and excess temporal service might exist.

This spatiotemporal mapping of virtual to actual resources needs to accom-
modate the time-dependent changes to the system performance as a result of
aging and variations. The HARPA-OS component is expected to reappropriate
resources accordingly, in order to guarantee performance dependability throughout
the system’s lifetime and regardless of any failures that may occur as a result of
aging prior to the nominal lifetime of the system. Once again, the marriage of
proactive and reactive measures is key in ensuring performance dependability in
either embedded, or HPC settings.

1.7 Interfaces with the Hardware: Monitors, Knobs, and
Technology Models

Several interfaces have to be defined to provide appropriate monitors to (1) track
application behavior against the target metrics and (2) define a feedback control
algorithm that can predict the resources needed by the application to reach the
performance-dependability requirements.

Note that one interesting aspect that will be studied in the book is how the
low-level monitors relate to higher-level monitors. For example, a typical wireless
application will require guarantees on the data throughput to ensure real-time

16 N. Zompakis et al.

processing. The data throughput is a coarse-grain performance requirement set
by the application (or the user). Other peripheral requirements (directly affecting
performance), such as power consumption, energy, or transient errors are typical
coarse-grain requirements. However, monitors in the systems are more subtle and
do not always directly map to the user requirements. Examples of such hardware
monitors are cache misses, TLB misses, temperature sensors, cache coherence
conflicts, and other monitors that are directly given by the system. In addition, we
will have many software-related monitors that allow us to detect which application
tasks are active, which are their main parameters, or which memory blocks or
address ranges are activated. Relating such fine-grain monitors with the global
behavior of the application and the system is a key research issue.

1.7.1 Monitors and Knobs

An important challenge facing HARPA is the choice of the right monitors and
knobs and their correct implementation at the right level (circuit, architecture, OS,
or language level), keeping the respecting overhead low. This is essential for an
implementation in mainstream architectures. Therefore, the implemented monitors
and knobs should be lightweight and should have no or negligible impact on the
chip. The goal is to employ a cross-layer approach, whereby monitors and knobs
throughout the system stack facilitate a comprehensive control strategy aimed at
ensuring performance dependability throughout the system’s lifetime. The objective
in a hardware-level design is to develop a set of monitors that will allow the
identification of the main sources of performance unpredictability in the system
(e.g., power/energy envelope, wear-out, time-dependent variations, etc.) and the
primarily affected hardware structures (core, caches, NoCs, etc.). Starting from the
work in [15, 16], we developed a set of knobs that will allow the control of the
execution of applications, hence providing dependable performance guarantees. The
hardware overhead of monitors/knobs should be less than 10% in terms of hardware
area and energy consumption, with respect to the chip. Respectively in software-
level the target is to complement the set of the aforementioned monitors/knobs in the
hardware level so that the complete hardware/software monitoring system can track
the resources that lead to at least 90% of the unpredictability observed within the
system. The hardware/software knob system will achieve the required performance
guarantees (in both embedded systems and HPC systems) with a deviation of less
than 10%. The performance overhead of the software monitors/knobs should be
less than 10%, and this overhead should not jeopardize the performance guarantees
required by the running applications, i.e., the additional latency should not be
exposed to the user. Chapter 8 extensively discusses a set of novel monitors and
knobs for energy-efficient and reliable NoCs [12, 14].

1 The HARPA Approach to Ensure Dependable Performance 17

1.8 HARPA Applications

The applications that are exploited within the HARPA context address equally
both the HPC and ES domains. Performance-dependability challenges are faced in
both domains with different implications for each one. The methodologies that are
created in the HARPA context (HARPA-OS, HARPA-RT, Knobs, and Monitors)
have conformed to both HPC and ES contexts. The industrial partners of HARPA
provided on-the-field applications and platforms, where the concepts developed.

1.8.1 Embedded Systems (ES) Domain

The first ES application is a spectrum sensing application that aims to explore the
frequency spectrum to get information about free or unused frequency bands, in
order, for instance, to perform radio-frequencies allocation. The application gathers
samples for a large frequency band, performs filtering, and splits the signal in
different frequency bands for further analysis. Then, for each frequency band,
provision of statistical information is given, together with view of signals carriers
and spectral footprint. Chapter 6 presents how HARPA-RT engine is exploited to
ensure the performance dependability in such an application.

A second ES application brings “intelligence” to the field of landslide and
rockwall monitoring by creating a smart-bridge for a network able to process data
remotely, using machine learning and artificial intelligence techniques, collected
using a wireless sensor network and on-site cameras. Landslides represent a major
threat to human life, property and constructed facilities, infrastructure, and natural
environment in most mountainous and hilly regions of the world. An innovative
approach to the monitoring of landslides exploits multiple sensor sources like
accelerometer data from distributed sensors and images from on-site camera to
be processed in an on-site embedded device using machine learning techniques
to create a specific model of the landslide in order to be able to understand the
movements. Then, the system will send to a central server only the result enabling
a faster response time, a more frequent analysis, and the deployment in area where
network coverage is limited. The application behavior will change accordingly to
the solar power and battery life available to the system in order to keep the system
running with the core monitoring features to guarantee at least basic monitoring
capabilities. This system is a good candidate to test the reliability and real-time
capabilities of the HARPA OS with its deployment in a real-world test case. Detailed
description of the application HARPA OS results can be found in Chap. 11.

18 N. Zompakis et al.

1.8.2 High-Performance Computing Domain

In HPC domain, one application developed on an HPC platform is the FLOREON+
system (FLOods REcognition On the Net), which is a modular web-based system
for environmental risk modeling and simulation in the Moravian-Silesian region
of the Czech Republic. The application is used to simplify the process of disaster
management and increase its operability and effectiveness. More details about the
application can be also found in Chap. 11. The incorporation of the HARPA engine
into the FLOREON+ disaster and flood management system nicely illustrates
the synergistic behavior of the Operating System (OS) and how the proposed
solution leverages monitors and knobs to provide performance dependability. It
also demonstrates the reuse in the HPC domain of the OS engine concept, which
is originally derived from the embedded systems domain. That way, the objectives
of HARPA have been addressed through test cases that incorporate all technical
effects of full system realization.

1.9 Conclusion

HARPA’s dependable-performance objective enables performance, energy, lifetime,
and cost improvements of platforms used both in embedded and HPC setups, includ-
ing data centers. These improvements are direct ramifications of the mitigation and
tolerance of the HARPA approach to time-dependent variations. With increasing
prevalence of time-dependent variations, HARPA provides a cost-effective approach
to ensure timing guarantees under various constraints for embedded platforms
when running applications with mixed criticalities. The HARPA engine can be
augmented to prioritize the resource allocation according to user-defined parameters
per application. The HARPA approach is aiming to improve how to monitor and
manage characteristics, which correspond to nonfunctional constraints, such as
timing, power, and lifetime. Finally, HARPA aims to provide the abstraction that
the hardware performance is invariant, i.e., it is dependable. This permits the
application developers to remain agnostic of complex hardware peculiarities due
to time-dependent variations.

References

1. Austin, T. (2006). Razor: A low-power pipeline based on circuit-level timing speculation. In
Proceedings of the 19th Annual Symposium on Integrated Circuits and Systems Design (pp.
13–13). New York: ACM.

2. Bellasi, P., Massari, G., & Fornaciari, W. (2015). Effective runtime resource management using
Linux control groups with the BarbequeRTRM framework. ACM Transactions on Embedded
Computing Systems, 14(2), 39:1–39:17.

1 The HARPA Approach to Ensure Dependable Performance 19

3. Borkar, S., Karnik, T., Narendra, S., Tschanz, J., Keshavarzi, A., & De, V. (2003). Parameter
variations and impact on circuits and microarchitecture. In Proceedings of the 40th Annual
Design Automation Conference (pp. 338–342). New York: ACM.

4. Bowman, K., Tschanz, J., Wilkerson, V., Lu, S.-L., Karnik, T., De, V., et al. (2009). Circuit
techniques for dynamic variation tolerance. In Proceedings of the 46th Annual Design
Automation Conference (pp. 4–7). New York: ACM.

5. Duranton, M., Black-Schaffer, D., Yehia, S., & De Bosschere, K. (2011). Computing systems:
Research challenges ahead: The HiPEAC vision 2011/2012.

6. Gheorghita, S. V., Palkovic, M., Hamers, J., Vandecappelle, A., Mamagkakis, S., Basten, T.,
et al. (2009). System-scenario-based design of dynamic embedded systems. ACM Transactions
on Design Automation of Electronic Systems, 14(1), 3.

7. Henkel, J., Bauer, L., Dutt, N., Gupta, P., Nassif, S., Shafique, M., et al. (2013). Reliable on-
chip systems in the nano-era: Lessons learnt and future trends. In Proceedings of the 50th
Annual Design Automation Conference (p. 99). New York: ACM.

8. Kulkarni, J. P., Kim, K., & Roy, K. (2007). A 160 mv, fully differential, robust schmitt trigger
based sub-threshold SRAM. In Proceedings of the 2007 International Symposium on Low
Power Electronics and Design (pp. 171–176). New York: ACM.

9. Le, H. Q., Starke, W. J., Fields, J. S., O’Connell, F. P., Nguyen, D. Q., Ronchetti, B. J., et al.
(2007). IBM power6 microarchitecture. IBM Journal of Research and Development, 51(6),
639–662.

10. McNairy, C., & Bhatia, R. (2005). Montecito: A dual-core, dual-thread itanium processor.
IEEE Micro, 25(2), 10–20.

11. Munaga, S., & Catthoor, F. (2012). Reliability-aware proactive energy management in hard
real-time systems: A motivational case study. In Technological Innovations in Adaptive and
Dependable Systems: Advancing Models and Concepts (pp. 215–225). Hershey: IGI Global.

12. Prodromou, A., Panteli, A., Nicopoulos, C., & Sazeides, Y. (2012). Nocalert: An on-line and
real-time fault detection mechanism for network-on-chip architectures. In Proceedings of the
2012 45th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-45 (pp.
60–71). Washington: IEEE Computer Society.

13. Simone Libutti, W., & Massari, G. (2016). Co-scheduling tasks on multi-core heterogeneous
systems: An energy-aware perspective. IET Computers and Digital Techniques, 10, 77–84(7).

14. Zoni, D., Canidio, A., Fornaciari, W., Englezakis, P., Nicopoulos, C., & Sazeides, Y. (2017).
Blackout. Journal of Parallel and Distributed Computing, 104(C):130–145.

15. Zoni, D., Colombo, L., & Fornaciari, W. (2018). Darkcache: Energy-performance optimization
of tiled multi-cores by adaptively power-gating LLC banks. ACM Transactions on Architecture
Code Optimization, 15(2), 21:1–21:26.

16. Zoni, D., Flich, J., & Fornaciari, W. (2016). Cutbuf: Buffer management and router design for
traffic mixing in VNET-based NoCs. IEEE Transactions on Parallel and Distributed Systems,
27(6), 1603–1616.

Part I

Chapter 2
Trends in Processor Architecture

Antonio González

2.1 Past Trends

Processors have undergone a tremendous evolution throughout their history. A key
milestone in this evolution was the introduction of the microprocessor, term that
refers to a processor that is implemented in a single chip. The first microprocessor
was introduced by Intel under the name of Intel 4004 in 1971. It contained about
2300 transistors, was clocked at 740 kHz, and delivered 92,000 instructions per
second while dissipating around 0.5 W.

Since then, practically every year we have witnessed the launch of a new
microprocessor, delivering significant performance improvements over previous
ones. Some studies have estimated this growth to be exponential, in the order of
about 50% per year, which results in a cumulative growth of over three orders of
magnitude in a time span of two decades [12]. These improvements have been fueled
by advances in the manufacturing process and innovations in processor architecture.
According to several studies [4, 6], both aspects contributed in a similar amount to
the global gains.

The manufacturing process technology has tried to follow the scaling recipe
laid down by Robert N. Dennard in the early 1970s [7]. The basics of this
technology scaling consists of reducing transistor dimensions by a factor of 30%
every generation (typically 2 years) while keeping electric fields constant. The
30% scaling in the dimensions results in doubling the transistor density (doubling
transistor density every 2 years was predicted in 1975 by Gordon Moore and is
normally referred to as Moore’s Law [21, 22]). To keep the electric field constant,
supply voltage should also be reduced by 30%. All together would result in a 30%

A. González (�)
Universitat Politècnica de Catalunya, Barcelona, Spain
e-mail: antonio@ac.upc.edu

© Springer International Publishing AG, part of Springer Nature 2019
W. Fornaciari, D. Soudris (eds.), Harnessing Performance Variability
in Embedded and High-performance Many/Multi-core Platforms,
https://doi.org/10.1007/978-3-319-91962-1_2

23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91962-1_2&domain=pdf
mailto:antonio@ac.upc.edu
https://doi.org/10.1007/978-3-319-91962-1_2

24 A. González

reduction in delay and no variation in power density. If total area of the chip is kept
constant, the net result is twice the number of transistors that are 43% faster, and the
same total power dissipation.

More transistors can be used to increase the processor throughput. Theoretically,
doubling the number of transistors in a chip provides it with the capability of
performing twice the number of functions in the same time, and increasing its
storage by a factor of two. In practice, however, performance gains are significantly
lower. Fred Pollack made the observation long time ago that processor performance
was approximately proportional to the square root of its area, which is normally
referred to as Pollack’s rule of thumb [24]. This is mainly due to the following
two reasons. First, the internal microarchitecture of processors: the performance
of many of its key components such as the issue logic and cache memories does
not scale linearly with area. Second, even if transistors are smaller by a factor of
two, this has not resulted in twice the number of transistors per unit of area due
to the increasing impact of wires. Having more functional blocks often requires an
increase in the number of wires that is superlinear, which increases the percentage
of area that must be devoted to them. An example of this is the bypass logic. Having
a full bypass among all functional units requires the number of wires that grows
quadratically with the number of units.

On the other hand, the 30% reduction in transistor delay has the potential to make
circuits 43% faster. However, benefits in practice are lower, due to the fact that wire
delays do not scale at the same pace [13], and because of that, they have become the
main bottleneck for microprocessor performance. Besides, as processor structures
become more complex, a larger percentage of the area must be devoted to wires,
as outlined above, so the impact of wire delays become even more severe. As a
result, the time spent in moving data around is the main component of the activity
performed by current microprocessors.

Putting it all together, the increased transistor density allows architects to include
more compute and storage units and/or more complex units in the microprocessors,
which used to provide an increase in performance of about 40% per process
generation (i.e., Pollack’s rule of thumb). The 30% reduction in delay can provide
an additional improvement, as high as 40% but normally is lower due to the impact
of wire delays. Finally, additional performance improvements come from microar-
chitecture innovation. These innovations include deeper pipelines, more effective
cache memory organizations, more accurate branch predictors, new instruction set
architecture (ISA) features, out-of-order execution, larger instruction windows, and
multicore architectures just to name some of the most relevant. This resulted in a
total performance improvement rate of 52% per year during the period 1986–2003
[12] as measured by SPEC benchmarks. However, this growth rate has dropped to
about 22% since 2003 [12].

Multiple reasons have contributed to the slowdown in performance improvement.
First, supply voltage has not scaled as dictated by Dennard’s recipe; in fact, its
decrease has been much lower, in the order of 8% per year (15% every process
generation, assuming a 2-year process technology cadence), as shown in Fig. 2.1.

2 Trends in Processor Architecture 25

Fig. 2.1 Minimum supply voltage of microprocessors

The main direct consequence of scaling supply voltage by less than dictated
by Dennard’s guidelines is an increase in power density and total power of
microprocessors. As can be seen in Fig. 2.2, during 1980s and 1990s microprocessor
power increased in an exponential manner, by about two orders of magnitude in
two decades. An obvious consequence of power increase is an increase in energy
consumption and thus in the operating cost of computing systems. More impor-
tantly, this also implied a similar increase in power density since microprocessor
area has not changed much over the years. As pointed out by some authors [3],
microprocessors in 0.6-µm technology (in the early 1990s) surpassed the power
density of a kitchen hot plate’s heating coil, and the trend continued increasing
by about ten more years, reaching unsustainable levels. Increased power density
requires a more powerful cooling solution since power density is a proxy of heat
dissipation. Temperature has an important impact on reliability and leakage currents
so silicon operating temperature must be kept below a certain limit (in the order
of 100 ◦C), which may be unaffordable in some systems due to either its cost or
physical characteristics (volume, weight, noise, etc.).

Microprocessor’s power growth resulted unsustainable in the early 2000s, and
the trend changed towards flat or decreasing power budgets. This explains in part
the inflexion point in the performance growth curve which coincides in time with
this change in power budget. To keep power density constant when supply voltage
scales less than transistors dimensions, the only way is to have a lower percentage
of transistors switching at any given time. This motivated the aggressive use of
power-aware techniques such as clock gating [34] and power gating [15], which
are extensively used by today’s microprocessors. Despite the great benefits of these

26 A. González

Fig. 2.2 Power (TDP) of microprocessors

techniques, they have not been able to provide the exponential benefits that would be
needed to compensate for the difference between desired and actual supply voltage
scaling (30% vs 15%). This has led architects to include techniques to avoid all
blocks to be active at the same time, which sometimes is referred to as “dark silicon”
[8], or to avoid all blocks to operate at maximum supply voltage through extensive
use of dynamic voltage scaling techniques. For instance, in some contemporary
processors with multiple cores, when all cores are active supply voltage cannot reach
the same level as when only one of the cores is active.

On the other hand, the second important reason that explains the performance
inflexion point observed in the early 2000s is due to a slowdown in improvements
coming from architecture. During the 1980s and 1990s, there were many innova-
tions in processor architecture, including deep pipelining, out-of-order execution,
branch prediction, data prefetching, superscalar, and memory hierarchy improve-
ments, among others. All these techniques provided significant improvements in
performance by either reducing the latency of main functions (especially memory
operations) or increasing the degree of instruction-level parallelism (ILP). After
two decades of continuous improvements in these areas, they reached a point of
diminishing returns. This prompted the inclusion of techniques to exploit thread-
level parallelism (TLP) at the processor level, and gave birth to multicore and
multithreaded processors, which are extensively used nowadays. TLP techniques
have proved to be very effective to increase processor throughput when the workload
consists of independent applications. However, they are often less effective when it
comes to decompose a single application into a number of parallel threads. Serial

2 Trends in Processor Architecture 27

parts of the application limit the benefits of TLP, as stated in 1967 by Gene Amdahl
[1]. Besides, other important aspects such as workload balance, synchronization,
and communication cost also pose significant hurdles to the benefits of TLP.

2.2 Current Microprocessors

Figure 2.3 shows a high-level block diagram of a typical contemporary microproces-
sor. The main components are a number of general-purpose cores (4 in the figure),
a graphics processing unit (GPU), a shared last-level cache, a memory, and I/O
interface, and an on-chip fabric to interconnect all these components. Below, we
briefly describe the architecture of these modules.

2.2.1 General-Purpose Cores

The architecture of general-purpose cores has significantly evolved throughout its
history. From the very early processors, pipelining and cache memories have been
the two key microarchitectural techniques used to improve performance.

ILLIAC II [5] and IBM Stretch [2] computers were pioneers in the use of
pipelining. Pipelining is an extremely cost-effective technique to exploit ILP, and
has been used by practically all microprocessors. A pipeline with N stages can
potentially overlap the execution of N instructions and, thus, provide an increase
in throughput by a factor of N . In practice, benefits are lower due mainly to
instruction dependences, which introduce bubbles in the pipeline. Initial processors
had just a few pipeline stages but the introduction of RISC architectures in the early
1980s made pipelining to be more cost-effective and facilitated the use of deeper

Fig. 2.3 High-level block diagram of a contemporary microprocessor

28 A. González

pipelines. Innovations in microarchitecture techniques to avoid pipeline bubbles due
to dependences, such as out-of-order execution, data dependence speculation, and
branch prediction, allowed a continuous increase in pipeline depth, during the 1980s
and 1990s. Some studies in the early 2000s suggested that the optimal pipeline depth
for performance could be in the order of 50 stages [14, 28], but some later studies
[10, 29] showed that when power is taken into account, the optimal pipeline depth
is much shallower, and in practice, pipeline depth increase stopped at around 20
stages. Energy efficiency favors shallow pipelines since deeper pipelines consume
more energy due to extra latching, more complex control, and energy waste due
to speculative execution techniques. As a result, current microprocessor pipelines
normally have between 10 and 20 stages and the forecast for the future is that
pipeline depths will keep around this range.

Microprocessors require many accesses to memory to execute a program. Since
instructions and data are stored in memory, a typical instruction requires four
memory accesses, one to fetch the instruction, two to read its two source operands,
and one to write its result. While processor performance has increased at a rate
ranging from 22% to 52% per year, as commented above, memory latency has
improved at a much lower rate of about 7% per year. In a period of 40 years,
this resulted in a gap of four orders of magnitude [12] . This trend motivated the
organization of memory in a hierarchical way. A hierarchical organization exploits
a core feature of the technology: smaller blocks are normally faster. This applies to
all kind of logic blocks, and in particular to memories: a small memory is faster than
a larger one. This is basically due to the fact that latency of read and write operations
is dominated by wire delays of the word and bit lines. The smaller the memory, the
shorter the word lines and bit lines are.

A hierarchical organization of memory was used as early as the mainframes of
the 1960s, which used a hierarchy of physical memory composed of modules built
with different technologies: semiconductor, magnetic core, drum, and disk. Data
caches were used for the first time in the IBM 360 Model 85 computers [16]. Most
computers nowadays have a memory hierarchy organized in six levels: a register
file, three levels of cache memory, main memory, and disk.

Another important microarchitecture technique used since the very early proces-
sors has been branch prediction. When a branch is fetched, the next instructions to
be executed depend on the branch outcome, which is not available until the branch
is executed some cycles later. Stalling the fetch until the outcome of the branch
is known would cause a significant penalty in pipelined processors since branches
are very common in many programs (in the order of one out of ten instructions
for nonnumerical codes). Predicting the outcome of the branch and speculatively
executing the instructions of the predicted path can alleviate this penalty provided
that the predictor is highly accurate. This technique is known as branch prediction
and was used as early as the late 1950s in the IBM Stretch computer [2].

Branch predictors based on a table of two-bit saturating counters were introduced
by James Smith in the late 1970s [26] and have been used in practically all
microprocessors since then. Since the penalty of a branch misprediction grows
linearly with the pipeline depth, deeper pipelines prompted research on more

2 Trends in Processor Architecture 29

sophisticated predictors such as the two-level branch predictor proposed by Yeh
and Patt in the early 1990s [35], variants of which have been used by many
modern microprocessors. These predictors are based on two-bit saturating counters,
but the particular counter used in each case depends not only on the particular
branch being predicted but also on the outcome of recent past branches. Another
important innovation in the area of branch prediction that has been used by many
microprocessors is the concept of hybrid predictors, first introduced by Scott
McFarling in 1993 [20]. The key idea is based on two observations: first, the most
cost-effective branch predictor is different for different types of codes; second, more
sophisticated predictors tend to have a longer warm-up time, so at the beginning
of each context-switch interval simple predictors tend to be more accurate than
complex ones, whereas this trend is inverted once the complex predictor has been
warmed-up. Based on these observations, he proposed a mechanism to combine
multiple predictors and dynamically choose which one is more likely to be the most
accurate.

The ISA is another important feature of a processor architecture. The ISA has
evolved over the years to include new instructions that can better support common
code constructs in mainstream application domains. An important change in the
design of ISA was introduced in the early 1980s, mainly driven by independent
projects at UC Berkeley [23], IBM [25], and Stanford University [11]. This trend
was coined as RISC (reduced instruction set computer) by the team in UC Berkeley,
term that was later adopted by everyone else. Up until then, the trend in ISA design
was to increase its complexity. It was believed that by closing the semantic gap
between high-level languages and machine languages, computer could be made
to be more efficient. These projects demonstrated that a much simpler ISA could
be competitive, or even outperform, a more complex one, and at the same time
offer additional advantages such as a much lower cost of design and verification of
the processor. The maturity of compiler technology combined with the benefits of
circuit simplicity in terms of delay, cost, and energy consumption were some of the
key aspects that favored the success of RISC ISAs.

Enhancements in pipelining, amplified by the simplicity introduced by RISC
ISAs, caching, and branch prediction were the main driving forces behind microar-
chitecture innovation during the 1980s. These processors aimed to achieve a
throughput of one instruction per cycle, which they approached after several gener-
ations of improvements. During the 1990s, a new microarchitecture organization to
exploit further ILP became common use, which was coined superscalar processors.
A superscalar processor is a processor that can process multiple instructions in all
its pipeline stages. That is, it can fetch, decode, rename, issue, execute, and commit
multiple instructions at the same time. How many instructions can be processed in
parallel in each pipeline stage is referred to as the width of the superscalar processor.
In practice, not all pipeline stages may have the width, so we define the width of
the processor as the minimum width of its pipeline stages. An N-wide superscalar
processor can potentially achieve a performance of N instructions per cycle.

A superscalar processor requires to replicate hardware resources, normally by the
same factor as its width, but in some parts of the processor, the hardware cost may

30 A. González

grow superlinearly with the width. An example of this superlinear cost is the bypass
logic, which grows quadratically with the number of functional units. Another not
so obvious example is the issue logic. In this case, the reason is that to find more
independent instructions to be issued every cycle, the hardware has to search in a
larger instruction window, so if we double the issue width, we need twice the number
of issue ports, but each port has to search in a much larger window. Superscalar
width grew during the 1990s, but due to this superlinear cost, and the difficulties to
find enough ILP, it flattened out to around 4, and practically all current processors
have a superscalar width between 2 and 8.

Another key microarchitecture technique that became common use during the
1990s was out-of-order execution, also known as dynamic scheduling. The main
idea is to allow the hardware to execute the instructions in an order different to
the one that they appear in the binary, with the constraint that the semantics of
the program must not be changed. The goal is to find more ILP by reordering the
instructions. For instance, the consumer of a load that misses in cache may be stalled
during many cycles. Instead of stalling all instructions younger than this consumer,
as in-order processors do, out-of-order processors can execute younger instructions,
provided that they do not depend on the load. Out-of-order execution provides
important benefits in performance but has also an important cost, mainly due to
a much more complex issue logic, including the issue logic of memory instructions,
which normally is separated from the issue logic of the rest of instructions, and is
quite costly since memory dependences are more difficult to check than register
dependences. This is due to the fact that register dependences are known at decode
time and can easily be identified as instructions are decoded/renamed in program
order whereas memory dependences need to be identified later in the back end of
the pipeline, once the effective addresses of loads and stores are computed, and this
computation is performed out of program order.

Out-of-order execution became popular in the 1990s and is used by the vast
majority of current microprocessors. However, the main ideas behind this technique
date back to the 1960s. In fact, out-of-order execution was first introduced by the
CDC 6600 computer [31] in 1964 and was later improved by the IBM System/360
Model 91 [32]. IBM approach is usually referred to as Tomasulo’s algorithm, and
is the bases for the schemes used nowadays. The main innovation introduced by
IBM over the CDC scheme was the use of register renaming. By renaming register
operands, the processor has more options to reorder the code, since it only needs to
respect data dependences (a.k.a. read-after-write dependences). Name dependences
(a.k.a. write-after-write and write-after-read dependences) are removed and do not
impose any ordering constraint. Register renaming provides huge benefits in terms
of ILP and, thus, is used by all current out-of-order processors to the best of our
knowledge.

During the 2000s, the main architectural innovation introduced at the micropro-
cessor core level is called multithreading. There are different variants of the concept
of multithreading, but the most commonly adopted by current microprocessors is
known as simultaneous multithreading [33] and it was first used by commercial
processors in the Intel’s Pentium 4, under the name of hyperthreading [17]. The

2 Trends in Processor Architecture 31

key idea behind this technique is to provide a microprocessor core with the
capabilities to execute multiple threads simultaneously sharing the majority of
hardware resources. At any given cycle and any given pipeline stage, the processor
can potentially execute multiple instructions belonging to different threads. In this
way, the processor can remove some pipeline bubbles and the multiple slots of
a superscalar processor in each pipeline stage can be more frequently filled with
useful work. In other words, multithreading increases the utilization of the resources
already present in a pipelined, superscalar processor.

This technique is highly efficient from the hardware cost point of view, since
it requires small extensions to a conventional superscalar processor. Its main cost
is an increase in register file storage, since the processor has to keep the state
of multiple threads simultaneously. On the other hand, for this same reason, its
scalability is limited. Since practically all processor core resources are shared among
the simultaneously running threads, there are frequent structural hazards that prevent
each thread to run at the same speed as it would if it run alone.

The benefits of increasing the degree of multithreading diminish quickly for
general-purpose cores. With two to four threads, resources get highly utilized, and
adding more threads would bring minimal benefits in many cases. Because of that,
the typical multithreading degree of general-purpose cores is in the range of two
to four, although for server processor it may be a bit higher, such as the recently
announced IBM Power9 [30] that supports up to eight simultaneous threads. Server
workloads are sometimes highly memory intensive, and the utilization of the
CPU resources is low, which allows the possibility to exploit a larger number of
simultaneous threads.

Another type of processing unit that is highly multithreaded is the GPU. In this
case, GPUs are designed to support a very large number of threads since graphics
applications exhibit a huge degree of TLP (e.g., most of the operations needed
to compute the color of each pixel are performed by independent threads). GPUs
rely on a high degree of multithreading to hide memory latencies rather than on
a complex memory hierarchy. Even if threads are frequently stalled due to long
latency memory accesses, there are normally other threads ready that can use the
hardware resources to make progress and keep the hardware highly utilized.

To conclude this section, Fig. 2.4 shows a high-level overview of the typical
microarchitecture of modern general-purpose cores.

Instructions are fetched from an on-chip instruction cache, which normally has a
few tens of kilobytes. The main component of the instruction fetch logic is a branch
predictor. Multiple instructions can be fetched in the same cycle by using a single,
wide cache memory port that can provide multiple consecutive bytes in a single
access. Branch prediction is performed in parallel with the instruction cache access
(or even before in some processors) to avoid bubbles in the pipeline (otherwise, in
the next cycle the processor would not know which are the next set of instructions
to fetch). Multiple fetched instructions can potentially be branches, so the branch
predictor needs to predict multiple branches in parallel. However, depending on
the branch predictor being used this may not be that easy. In particular, if the
branch predictor uses global history, when predicting a branch the outcome of the

32 A. González

Fig. 2.4 Microarchitecture of a contemporary general-purpose core

previous branches must be known. This is typically solved by assuming that the
previous branches being predicted in parallel are not taken. In case any of the branch
predictions turns out to be taken, all the following branch predictions are discarded.
Since all instructions fetched in parallel are consecutive, all instructions after the
predicted taken branch are discarded too, since they are not in the predicted path.
Thus, the branch predictor can normally predict multiple branches per cycle but only
up to one taken branch.

After being fetched, instructions are processed by the decode logic, which
identifies their type, which operands are required, and other relevant fields of the
instruction. Decoding multiple instructions in parallel does not pose any challenge
and simply requires to replicate hardware since each instruction can be decoded
independently of the others. Some processors perform a dynamic translation at
this stage. This is common in processors using old ISAs such as x86, in order
to translate the compiler-generated instructions to an internal ISA which is more
amenable for pipelining and other microarchitectural optimizations. This translation
is relatively simple since it is done for each instruction individually; optimizing
blocks of instructions would be more effective but also much more complex and is
normally not used.

Afterwards, instructions rename their register operands. As outlined above, this
step is used by out-of-order processors to remove name dependences and increase

2 Trends in Processor Architecture 33

in this way the amount of ILP. In-order processors normally do not make use
of it. Renaming is done basically through a table that keeps track of the latest
storage location (a.k.a. physical register) assigned to each logical register. Source
operands are translated to physical registers by reading the corresponding entries
in the renaming table. The destination register of each given instruction is assigned
to a free physical register (if there are no physical registers available, renaming
is stalled). Superscalar processors rename multiple instructions per cycle. This
requires a rename table with multiple read/write ports, and some additional logic
to take into account the data dependences among instructions being renamed in
parallel. In particular, each source operand must be checked with all previous
destination operands, and in case of a match, the physical register identifier used
by this source operand is not the one coming from the renaming table but the
one assigned to the closest matching destination operand. Next, instructions are
dispatched to the issue queue and the reorder buffer, and memory instructions are
also dispatched to the load/store queue.

All the above operations are performed in program order in all processors,
including out-of-order processors. This part of the pipeline is normally referred
to as the front end. An in-order front end simplifies the detection of register data
dependences among instructions, but on the other hand, exacerbates the penalty of
any potential stall. Most harmful stalls in the front-end pipeline are due to instruction
cache misses.

Instructions remain in the issue queue until they are selected to be executed. The
process to select the instructions to be executed every cycle is called instruction
issue. For in-order processors, this logic is relatively simple. To issue N instructions
per cycle, it just needs to check the N oldest instructions in the issue queue. Each
of these instructions is issued if its source operands are ready and the required
resources for its execution are available (e.g., functional units, register file ports,
etc.).

Most processors nowadays can issue instructions out-of-order. This is much more
complex since it requires to check all instructions in the issue queue, since all of
them are candidates to be issued. To this end, the issue queue stores the renamed
source operands of each instruction and a ready bit for each of them. Every time
an instruction is executed, its destination register id is checked against all source
operands in all entries, and for every match, the corresponding ready bit is set
(this action is normally referred to as wake-up). Instructions that have all source
operands ready, and the required resources are available are selected to be executed
at every cycle. If there are more candidate instructions than available resources,
a heuristic is applied to prioritize the candidate instructions. Given priority to the
oldest instructions is quite common, and sometimes this is combined with other
simple heuristics such as prioritizing long latency instructions.

Each issued instruction reads first its source operands, then is executed in a
functional unit, and finally writes its result in the register file. The register file
is therefore highly multi-ported, to support multiple reads and writes per cycle.
For instance, a four-way issue processor may typically have eight read ports and
four write ports. Processors have multiple functional units to execute multiple

34 A. González

operations in parallel, including integer ALUs and floating-point ALUs. Besides,
practically all processors include a rich set of SIMD (single-instruction, multiple-
data) instructions in their ISA. These are instructions that operate on vector operands
stored in registers and are usually known as multimedia extensions, since they are
very effective for multimedia applications. To support these instructions, processors
also include SIMD units, which can process all the elements of a vector operation
in parallel. Since there are three different types of register operands, i.e., integer,
floating-point, and vector, some processors have three separate register files, one for
each type, whereas others have only two, one for integer and another for floating-
point and vector.

Instructions wait in the reorder buffer until they commit. The reorder buffer stores
some bookkeeping data for each in-flight instruction plus the information required in
case the instruction needs to be squashed. An in-flight instruction may be squashed
for a variety of reasons such as an older branch being mispredicted, or an older
instruction generating an exception. Instructions commit in program order, even if
the processor is out-of-order, since an easy way to guarantee that an instruction will
not need to be squashed is waiting for the commit of all older instructions. At this
point, no older instruction may cause an exception, branch misprediction, nor any
other type of event.

Memory instructions deserve special attention. To be issued, they must go
through a similar process as other instructions. However, the actions to be performed
are a bit more complex since dependences are more difficult to identify because they
involve memory locations rather than registers. Register operands’ ids, and therefore
register dependences, are known during renaming, but memory addresses, and thus
memory dependences, are not. The address of the memory location read or written
by a memory instruction is normally computed at run time by adding an offset to the
content of a register. Until this register operand is not ready, the address cannot be
known. The logic associated with the load/store queue is responsible for computing
these addresses, checking for potential dependences and deciding when memory
reads can be issued.

Store instructions do not write into memory until they commit. This is because
a write to memory cannot be undone, unlike writes to registers, since they may be
visible to other processes. Once a write is visible to another process, it may trigger
some activity in this process (e.g., entering a critical region), which could not be
undone if the store turned out to be squashed.

A load instruction can safely read from memory as soon as its effective address
has been computed and there are no dependences with older stores. Checking for
dependences requires to compare memory addresses, which are much longer than
register ids, and besides the check has to take into account the potential different
data widths of loads and stores.

To guarantee that a load does not depend on any older store, it must wait until the
effective addresses of all older stores are computed. This may significantly delay a
load, and most of the times this delay is unnecessary since memory dependences
with instructions close enough to be in the instruction window at the same time are
not common. To avoid this delay, some processors use some kind of mechanism

2 Trends in Processor Architecture 35

to predict memory dependences and just stall loads that are likely to have a
dependence. This family of mechanisms is called data dependence speculation
[9, 19], and it requires a recovery scheme for mispredicted loads, similar to the
one used for branch mispredictions.

Store-to-load forwarding is commonly used when a memory dependence is
encountered/predicted between a load and a not committed store. Rather than
waiting for the store to write to memory, the load gets the data directly from the
store.

2.2.2 Multicore Processors

The vast majority of current microprocessors have multiple general-purpose cores
based on the architecture described in the previous section. Figure 2.5 depicts the
main components of a multicore processor. There are a number of cores, each one
with private L1 caches (separate caches for instructions and data) and a private
second-level cache (some processors do not have a private L2 cache), a shared last-

Fig. 2.5 Block diagram of a multicore processor

36 A. González

level cache, and an interconnection network that allows all the cores to communicate
through the memory hierarchy. The lower levels of the memory hierarchy are
normally a main memory and a disk storage, and they are located off-chip. A
multicore processor can run multiple threads simultaneously in different cores with
no resource contention among them except for the shared resources, which are
basically the memory hierarchy and the interconnection network. The architecture
of these two components is key for the performance of multicore processors and is
described in more detail below. The architecture of each one of the individual cores
is basically the same as in a single-core processor, and has been described in the
previous section.

2.2.2.1 Memory Hierarchy

Parallel threads running in different cores can share the memory address space,
which is a very desirable feature for programmability. However, this introduces two
important challenges: how to keep data coherent when it is used by multiple threads
in different cores, and how to make memory operations visible to the other threads
running simultaneously in other cores. The former challenge is solved by a new
mechanism that is called cache coherence. The latter is handled by what is called
the memory consistency model. We briefly describe these two components below.

Private caches are great to improve the performance of each individual core,
but they introduce some problems when accessing variables that are shared among
multiple cores. The problem arises when multiple threads running in different cores
access the same variable and at least one of them performs a write operation. Since
variables are normally copied in the private caches, a write performed by a given
core would not be visible to the other cores, since they would keep seeing the value
stored in their respective private caches. If the cores did not have private caches
and all read and write operations were performed in a completely shared memory
hierarchy, this problem would not exist. Cache coherence is a microarchitecture
mechanism that solves this problem by making private caches transparent to the
programmers. In other words, with cache coherence, a processor with private caches
produces exactly the same results as the same processor with all private caches
removed.

Cache coherence is implemented through a coherence protocol. The basic idea of
a coherence protocol is to make sure that writes from a given core are propagated to
all potential copies of the same variable in the memory hierarchy, including private
caches of other cores. There are two main families of protocols which are called
write-invalidate and write-update protocols, respectively, the former being the more
common solution. In a write-invalidate protocol, when a core has to perform a write
operation, all copies of the same data elsewhere are invalidated before performing
the write. If other cores are using this variable and have a private copy, they will have
to request it again after being invalidated, and will get the updated value from the
core that performed the write. In write-update protocols, a write operation updates

2 Trends in Processor Architecture 37

all copies of the variable in the system. They are more complex than write-invalidate
protocols, and consume more network bandwidth, thus they are rarely used.

The implementation of a cache coherence protocol is complex, and requires
a careful design and a thorough validation to guarantee that it is correct. The
complexity comes from the fact that a transaction (e.g., an invalidation request)
generated by one core has to be propagated to the other cores and this cannot be
done instantaneously. In the meantime, while a transaction is being processed, other
request to the same variable may occur in the system, and the system has to deal with
them and guarantee correct semantics and no deadlocks. This is normally solved by
having a number of stable states that represent the state of a memory block after a
transaction has been completed plus a number of transient states that represent the
state in different phases of an ongoing transaction. The memory block granularity
normally used to keep state information is a cache memory block. The most typical
stable states used are the following:

• Invalid: the block is not present or is stale.
• Shared: The block can be read but not modified.
• Exclusive: The block can be read, and it is the only valid copy.
• Modified: The block can be read and written.

There are two main families of protocols regarding how the state information is
stored and how transactions are processed. In a snoopy-based protocol, a transaction
generated by a cache controller is broadcast to all other controllers. The system
relies on the network to guarantee that all messages arrive to all cores in a consistent
order. For instance, most protocols assume that they arrive in the same order to all
cores, and use a shared bus to guarantee this order. The other family of protocols
is called directory-based. In this case, there is a directory that holds the state of
each memory block and normally sits next to the LLC. A transaction generated
by a cache controller is sent to the directory, and based on the information in the
directory, the request is served by the LLC or it is forwarded to the corresponding
private cache(s). In general, snoopy-based protocols are simpler but directory-based
protocols are more scalable and, thus, more effective for a large number of cores.

The memory consistency model is a formal definition of which potential
executions (i.e., outcomes) of a parallel program are allowed and which ones are
not. Note that multiple different outcomes for a given program may be allowed
since many parallel programs are nondeterministic. In other words, the memory
consistency model specifies what values load instructions may return and what is
the final state of the memory for a given input data. This information is needed by
the programmers in order to write programs that do what they expect, so it is part of
the ISA.

For instance, assume a code in which two threads modify a different variable
each, and later they read the variable modified by the other thread. If there are no
synchronization operations in between, multiple outcomes are possible. The thread
that executes ahead of the other will get the old value, whereas the other thread will
get the updated one. Alternatively, both threads can end up reading the updated value
if the two threads perform the two writes before the two reads. All systems allow

38 A. González

these three alternative outcomes but some systems also allow a less intuitive one,
which is that the two threads read the old value. The memory consistency model
precisely defines which of these four outcomes is allowed, so that the programmer
knows what to expect when the code is executed.

Different memory consistency models represent a different trade-off between
programmability and performance. The most intuitive consistency model for pro-
grammers is called sequential consistency and was introduced by Lamport in 1979
[18]. A system is sequentially consistent if “the result of any execution is the same
as if the operations of all processors (cores) were executed in some sequential order,
and the operations of each individual processor (core) appear in this sequence in
the order specified by its program.” This memory model is the most intuitive for
programmers but is also the one that imposes more constraints to the hardware in
terms of when memory accesses can be performed.

Another widely used memory model nowadays is called total store ordering,
which is used by SPARC and x86 processors [27]. For most program idioms, it
behaves like sequential consistency, but it allows some new executions not permitted
by sequential consistency. For instance, for the code example above, total store
ordering allows both threads to read the old value, whereas sequential consistency
does not. More precisely, total store ordering imposes the same ordering constraints
as sequential consistency with one exception: loads can be moved above older
non-conflicting (to different addresses) stores. The motivation for removing this
constraint is performance. By removing it, the processor can use a write buffer to
hold committed stores until they get read–write permissions. This buffer is very
effective to hide the memory latency for store misses, so it results in significant
performance improvements and is widely used by microprocessors.

2.2.2.2 Interconnection Network

As illustrated in Fig. 2.5, a multicore processor consists of a number of cores and
a last-level cache that need to communicate among them. This communication is
carried out through an interconnection network. In general, each core and its private
caches are a node in this network, and the last-level cache is another node of the
network. It is also common that the last-level cache is split into multiple modules,
each one being a different node of the network. Each one of these nodes is connected
to a switch through a network interface. Each switch has a number of links that
connect it to other switches as shown in Fig. 2.6.

The different switches are interconnected following a particular topology. For
instance, Fig. 2.7 shows a mesh topology, which is one of the most commonly used
topologies for multicore processors. A line is another common topology, which is
basically a mesh with just one node in one of the two dimensions. If the two nodes
at the end of the line are interconnected, then we have a ring for the one-dimensional
case or a torus for a two-dimensional case, which are also commonly used.

2 Trends in Processor Architecture 39

Fig. 2.6 Block diagram of
network node

Fig. 2.7 A mesh network
topology

2.3 Going Forward: Specialized Units

We are witnessing a slowdown in process technology improvements. Supply voltage
has not scaled as much as Dennard’s guidelines [7] for years and Moore’s Law
scaling [21, 22] has slowed down in recent years and is approaching a limit
unless some breakthrough in process technology appears in the coming years. Chip
manufacturing technology has been based on silicon for decades. Current process
technology uses a 10-nm fabrication process and the minimum feature size of circuit
components is approaching atomic dimensions. Taking into account that silicon
lattice spacing is around 0.5 nm, the current 10 nm feature size is equivalent to
around 20 atoms. Further miniaturization is going to be very difficult to achieve
and dimension scaling will very likely stop in a few more generations.

On the other hand, increasing energy efficiency will keep being a main driving
force for innovation in computing systems. This is easily explained by observing
that the power dissipation of a system is equal to the average energy consumed
per task multiplied by the number of tasks that the system can perform by unit of
time. Note that the latter term is the performance of the system whereas the former
is what we call energy efficiency. If power cannot be increased due to the various

40 A. González

reasons explained in Sect. 2.1 of this chapter, any increase in performance requires
a reduction in energy per task of the same magnitude. In other words, the challenge
for future computing systems is not only how to make them run faster, but at the
same time, this increase in performance has to come with a similar decrease in
energy consumption (i.e., a similar improvement in energy efficiency). This is really
challenging, since normally higher throughput implies higher energy. For instance,
a faster addition requires to increase the supply voltage of the adder or to use a more
sophisticated adder. In both cases, the energy to perform an addition increases.

Since process technology is unlikely to provide significant additional benefits
in the future, the improvements in energy efficiency have to come from other
areas such as microarchitecture. However, the microarchitecture of general-purpose
cores has been optimized for several decades, and there is little headroom for
further improvements. Perhaps the most promising approach is “specialization.” It
is well known that a specialized unit can provide dramatic improvements in energy
efficiency when compared to a general-purpose unit. Specialized units are already
a reality in most processors. For instance, practically all current processors include
a GPU, which is a unit specialized on image rendering. Most processors for smart
phones include specialized units for image and audio processing.

In the future, we are likely to see an explosion in the use of specialized units. The
drawback of specialization is its higher cost in comparison with general-purpose
units, since their cost needs to be amortized over a smaller number applications.
However, the flip side of the death of Moore’s Law will be a significant decrease in
cost of chip fabrication, since manufacturing industries will not need to replace their
equipment so often, and their investments in process technology will be drastically
reduced. Under this scenario, transistors will be very chip, much chipper than they
already are, and this will open the door for many new opportunities to use them in
specialized units.

References

1. Amdahl, G. M. (1967). Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of the Spring Joint Computer Conference AFIPS
(pp. 483–485).

2. Bloch, E. (1959). The engineering design of the stretch computer. In Proceedings of the
Eastern Joint IRE-AIEE-ACM Computer Conference (pp. 48–58).

3. Borkar, S. (1999). Design challenges of technology scaling. IEEE Micro, 19(4), 23–29.
4. Borkar, S., & Chien, A. A. (2011). The future of microprocessors. Communications of the

ACM, 54(5), 67–77.
5. Brearley, H. (1965). ILLIAC II-A short description and annotated bibliography. IEEE

Transactions on Electronic Computers, EC-14(3), 399–403.
6. Danowitz, A., Kelley, K., Mao, J., Stevenson, J. P., & Horowitz, M. (2012). CPU DB:

Recording microprocessor history. Communications of the ACM, 55(4):55–63.
7. Dennard, R. H., Gaensslen, F. H., Rideout, V. L., Bassous, E., & LeBlanc, A. R. (1974). Design

of ion-implanted MOSFET’s with very small physical dimensions. IEEE Journal of Solid-State
Circuits, 9(5):256–268.

2 Trends in Processor Architecture 41

8. Esmaeilzadeh, H., Blem, E., Amant, R. S., Sankaralingam, K., & Burger, D. (2011). Dark
silicon and the end of multicore scaling. In Proceedings of the International Symposium on
Computer Architecture (pp. 365–376).

9. González, J., & González, A. (1997). Speculative execution via address prediction and data
prefetching. In Proceedings of the International Conference on Supercomputing (pp. 196–203).

10. Hartstein, A., & Puzak, T. R. (2003). Optimum power/performance pipeline depth. In Proceed-
ings of the Annual IEEE/ACM International Symposium on Microarchitecture (pp. 117–125).

11. Hennessy, J., Jouppi, N., Przybylski, S., Rowen, C., Gross, T., Baskett, F., et al. (1982). MIPS:
A microprocessor architecture. In Proceedings of the Annual Workshop on Microprogramming
(pp. 17–22).

12. Hennessy, J. L., & Patterson, D. A. (2012). Computer architecture: A quantitative approach,
5th ed. Cambridge: Morgan Kaufmann.

13. Ho, R., Mai, K. W., & Horowitz, M. A. (2001). The future of wires. Proceedings of the IEEE,
89(4), 490–504.

14. Hrishikesh, M. S., Burger, D., Jouppi, N. P., Keckler, S. W., Farkas, K. I., & Shivakumar, P.
(2002). The optimal logic depth per pipeline stage is 6 to 8 fo4 inverter delays. In Proceedings
of the International Symposium on Computer Architecture (pp. 14–24).

15. Hu, Z., Buyuktosunoglu, A., Srinivasan, V., Zyuban, V., Jacobson, H., & Bose, P. (2004).
Microarchitectural techniques for power gating of execution units. In Proceedings of the
International Symposium on Low Power Electronics and Design (pp. 32–37).

16. IBM. (1968). IBM System/360 Model 85 Functional Characteristics. Technical report, IBM
Systems Reference Library. Second edition. Form A22-6916-1.

17. Koufaty, D., & Marr, D. T. (2003). Hyperthreading technology in the netburst microarchitec-
ture. IEEE Micro, 23(2), 56–65.

18. Lamport, L. (1979). How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Transactions on Computers, 28(9), 690–691.

19. Marcuello, P., González, A., & Tubella, J. (1998). Speculative multithreaded processors. In
Proceedings of the International Conference on Supercomputing (pp. 77–84).

20. McFarling, S. (1993). Combining branch predictors. Technical Report TN-36, Digital Western
Research Laboratory.

21. Moore, G. (1965). Cramming more components onto integrated circuits. Electronics, 38(8),
114–117.

22. Moore, G. E. (1975). Progress in digital integrated electronics. Technical Digest of the
International Electron Devices Meeting, 13, 11–12.

23. Patterson, D. A., & Sequin, C. H. (1981). RISC I: A reduced instruction set VLSI computer.
In Proceedings of the International Symposium on Computer Architecture (pp. 443–457).

24. Pollack, F. Pollack’s rule of thumb for microprocessor performance and area. http://en.
wikipedia.org/wiki/Pollacks_Rule.

25. Radin, G. (1982). The 801 minicomputer. In Proceedings of the International Symposium on
Architectural Support for Programming Languages and Operating Systems (pp. 39–47).

26. Smith, J. E. (1980). Branch predictor using random access memory. US Patent 4370711.
27. Sorin, D. J., Hill, M. D., & Wood, D. A. (2011). A primer on memory consistency and cache

coherence. Synthesis lectures on computer architecture. San Rafael: Morgan & Claypool
Publishers.

28. Sprangle, E., & Carmean, D. (2002). Increasing processor performance by implementing
deeper pipelines. In Proceedings of the International Symposium on Computer Architecture
(pp. 25–34).

29. Srinivasan, V., Brooks, D., Gschwind, M., Bose, P., Zyuban, V., Strenski, P. N., et al. (2002).
Optimizing pipelines for power and performance. In Proceedings of the Annual ACM/IEEE
International Symposium on Microarchitecture (pp. 333–344).

30. Thompto, B. (2016). Power9: Processor for the cognitive era. In Hot Chips Symposium.
31. Thornton, J. E. (1970). Design of a computer: The Control Data 6600. Glenview: Scott,

Foresman and Company.

http://en.wikipedia.org/wiki/Pollacks_Rule
http://en.wikipedia.org/wiki/Pollacks_Rule

42 A. González

32. Tomasulo, R. M. (1967). An efficient algorithm for exploiting multiple arithmetic units. IBM
Journal of Research and Development, 11(1), 25–33.

33. Tullsen, D. M., Eggers, S. J., & Levy, H. M. (1995). Simultaneous multithreading: Maximizing
on-chip parallelism. In Proceedings of the International Symposium on Computer Architecture
(pp. 392–403).

34. Wu, Q., Pedram, M., & Wu, X. (2000). Clock-gating and its application to low power design
of sequential circuits. IEEE Transactions on Circuits and Systems, 47(3), 415–420.

35. Yeh, T.-Y., & Patt, Y. N. (1991). Two-level adaptive training branch prediction. In Proceedings
of the Annual International Symposium on Microarchitecture (pp. 51–61).

Chapter 3
Aging Effects: From Physics to CAD

Hussam Amrouch, Heba Khdr, and Jörg Henkel

3.1 Introduction

Since the invention of integrated circuits, on-chip systems remarkably followed a
continued trend of becoming denser every new generation towards gaining more
advances in several aspects like performance, area, etc. However, this trend along
with the relentless demand for reducing costs caused a noticeable decrease in
the reliability due to various degradation effects. Even though the majority of
degradation effects had been investigated for a long time, their impact had not
reached a crucial point in which it would jeopardize the reliability of an entire
on-chip system. In fact, an inflection point occurred when entering the nano-
CMOS era. Technology roadmaps at that time provided several evidences that the
aggressive scaling of technology nodes (i.e., ≤45 nm) would considerably increase
the susceptibility of chips to varied kinds of failures [29]. This is because a transistor
in such deep scaling reaches its limits and therefore the available design margins
become insufficient to tolerate most of degradation effects. This, in particular,
what makes current and upcoming on-chip systems constrained by reliability as
maintaining the correct functionality of circuits during the entire projected lifetime
cannot be easily compromised.

Download Software: This work is publicly available at [46] http://ces.itec.kit.edu/dependable-
hardware.php.

H. Amrouch · H. Khdr · J. Henkel (�)
Chair for Embedded Systems (CES), Karlsruhe Institute of Technology (KIT), Karlsruhe,
Germany
e-mail: amrouch@kit.edu; heba.khdr@kit.edu; henkel@kit.edu

© Springer International Publishing AG, part of Springer Nature 2019
W. Fornaciari, D. Soudris (eds.), Harnessing Performance Variability
in Embedded and High-performance Many/Multi-core Platforms,
https://doi.org/10.1007/978-3-319-91962-1_3

43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91962-1_3&domain=pdf
http://ces.itec.kit.edu/dependable-hardware.php
http://ces.itec.kit.edu/dependable-hardware.php
mailto:amrouch@kit.edu
mailto:heba.khdr@kit.edu
mailto:henkel@kit.edu
https://doi.org/10.1007/978-3-319-91962-1_3

44 H. Amrouch et al.

Degradation effects can be caused due to varied reasons either from the beginning
during the design time or later during the operation time of circuits. To summarize,
degradation effects can be divided into two main categories as follows [11]:

• Time-Dependent Degradations: These degradations are dependent on the chip’s
lifetime and they are mainly caused by aging phenomena. In practice, they slow
down the switching speed of transistors, which makes circuits no longer reliably
operate due to the increase in the likelihood of errors due to timing violations.
Aging phenomena such as bias temperature instability (BTI) [25, 42, 55] and hot
carrier-induced degradation (HCID) [41] are able to alter the key electrical char-
acteristics of nMOS and pMOS transistors during runtime. The most observed
ones are threshold voltage (Vth) and carrier mobility (μ) shifts.

• Time-Independent Degradations: They are independent of the chip’s lifetime and
mainly because of manufacturing variability at the design time as well as noise at
the runtime. Manufacturing variability makes transistors with identical specifica-
tions have different electrical characteristics. Hence, they may unreliably operate
at runtime. In addition, intrinsic noise such as random telegraph noise (RTN)
and extrinsic noise such as energetic particles can randomly cause unpredictable
fluctuations in the electrical characteristics of transistors. Based on the time and
location (i.e., when and where such sudden changes occur), the reliability of
circuit can be temporarily or permanently degraded.

Contrary to how they would appear at the first glance, the aforementioned
degradation effects are actually interrelated with each other due to the existing
interdependencies between them [4, 10, 11, 27]. As an example of such interde-
pendencies is the relation between aging and the susceptibility to extrinsic noise
(i.e., soft errors). While on the one hand aging degrades the electrical characteristics
of transistors increasing the susceptibility of them to extrinsic noise [10], manufac-
turing variability, on the other hand, randomly influences the transistors and thus it
makes them nonuniformly age over time.

In addition, BTI and HCID have strong interdependencies between each other
because they share the same physical origin, which is interface traps. Similarly, BTI
and RTN also have strong interdependencies between each other because they share
the same physical origin, which is oxide traps. In Sect. 3.3, the interdependencies
between degradation effects will be explained in detail.

3.1.1 Impact of Technology Scaling on Degradation Effects

Before reaching the 90-nm technology node, the same scaling factor for both supply
voltage (SV) and transistor length (SL) was mainly used. This ensured that the
electric fields remained almost constant [17] after scaling from a technology node
to another, as shown in Eq. (3.1). This is widely known as Dennard’s scaling [22].
However, reducing the geometry of transistors to integrate more and more transistors
within a chip run counter to the need of maintaining a similar scaling factor. This

3 Aging Effects: From Physics to CAD 45

Fig. 3.1 Technology scaling results in constant electric fields when both area and voltage scale
with the same factor. However, scaling within the nano-CMOS era results in higher fields as area
and voltage are not scaled anymore with the same factor. Hence, more induced defects by aging
and higher degradations will be caused due to the higher electric fields

is because Vdd scaling has almost reached its limit and since around a decade
Vdd remained the same or has been reduced slightly with every new generation.
In practice, this has changed the rule of scaling from (SL = SV) to (SL < SV),
which made the electric fields across transistors become much stronger/higher (see
Eq. (3.1) and Fig. 3.1 [2]). Similar to the electric field across the channel, the electric
field over the gate has been also increased in smaller technology nodes. In fact,
higher electric fields accelerate aging phenomena leading to higher degradations.

Enew(Channel) = Vdd · SV

L · SL

(3.1)

SL = SV ⇒ Enew(Channel) = Eold(Channel)

SL < SV ⇒ Enew(Channel) > Eold(Channel)

In addition, as technology nodes were being reduced to below 45 nm, the insulat-
ing quality of the gate dielectric became severely bad and thus leakage currents due
to tunneling significantly increased. To cope this problem, manufactures replaced
silicon dioxide, that has been for long time employed to form the gate dielectric,
with other materials that have a higher dielectric constant such as hafnium-based
dielectric layer from Intel [32], as shown in Fig. 3.2b. While the employment of such
new materials was inevitable to enable the scaling of transistors, the susceptibility of
transistors to aging effects became higher [18, 30] (e.g., HfO2 exhibits less resiliency
to aging effects than SiO2). This is mainly because the new materials came with
additional preexisting defects, which can be later activated during the operation
of transistor. In short, scaling along with the high-K material has made both BTI
and HCID become noticeable in both nMOS and pMOS transistors. This is against
the traditional assumption of considering BTI in nMOS and HICD in pMOS to be
negligible.

46 H. Amrouch et al.

Fig. 3.2 Impact of scaling on a transistor. (a) An NMOS MOSFET without a high-K material. (b)
The introduction of a high-K material

Finally, the discontinuation of Dennard’s scaling has, additionally, led to increas-
ing on-chip power densities and thus temperatures. Importantly, most of the
underlying mechanisms of reliability degradations like BTI and HCID phenomena
are stimulated by the operating temperature. This is because higher temperatures
provide sufficient activation energy for defect generation at the physical level.
Therefore, thermal management techniques at the system level (e.g., [23, 24]) are
indispensable when it comes to reliability optimization. Such techniques are, in fact,
needed to ensure that the thermal constraints are always fulfilled during runtime and
thus reliability will be sustained during the entire projected lifetime. In general, in
order to understand reliability we need to start the investigation from the physical
level (where degradation effects originate) all the way up to the system level, where
degradation effects finally take place (see Fig. 3.3).

The continuation of Moore’s law along with the discontinuation of Dennard’s
scaling has steadily increased the electric fields within transistors, which, in
turn, has led to higher degradations.

3.2 Aging Effects at the Physical Level

Even though understanding the physical processes behind degradation effects is
not entirely required at the circuit and system levels, there is a substantial need to
analyze how they ultimately degrade the reliability [3, 5, 8]—this holds even more
when multiple degradation effects may interact with each other during the operation
time of transistors. As a matter of fact, degradation effects jointly occur within the
gate dielectric of a transistor. Therefore, estimating correctly the overall impact of
degradation effects on the electrical characteristics of transistors (e.g., Vth, μ, etc.)
necessitates investigating them jointly and separately.

3 Aging Effects: From Physics to CAD 47

Fig. 3.3 The abstraction levels, which are necessary to be involved to estimate the effects of aging

In the following, we will briefly explain the physical origins of the key
degradation effects and then demonstrate the existing interdependencies between
them.

(1) Bias Temperature Instability (BTI): It is the defect generation due to the
vertical electric field when it is applied over the gate dielectric of a pMOS/nMOS
transistor to form the conducting channel, as Fig. 3.4a [2] shows. The resulting
defects are, according to the reaction-diffusion theory, mainly interface traps and
oxide traps. In practice, the interface traps are formed when Si−H bonds break at
the Si−SiO2 interface and oxide traps are formed when charges are captured in
the oxide vacancies within the dielectric [25]. During the operation of MOSFET
and over time, these generated defects (i.e., interface/oxide traps) accumulate inside
the transistor, manifesting themselves as degradations in its electrical characteristics
(Vth, μ, etc.). Hence, aged transistors switch slower, which increases the likelihood
of timing violations in circuits due to the operation at unsustainable clock frequen-
cies. Further details are presented in Sect. 3.3.

In the following, we briefly summarize the process of interface trap generation
due to BTI on a pMOS transistor that has H2 as a diffusion medium [25].

• Due to the vertical electric field, a channel forms directly beneath the gate
dielectric. In MOSFETs, the channel consists of minority charges, i.e., in a pMOS
transistor, holes will be gathered near the gate dielectric.

48 H. Amrouch et al.

n+n+

metal

source
S

drain
D

body
B

SiO2

gate
G

HfO2 High-K

channel

El
ec

tri
c

Fi
le

d

El
ec

tri
c

Fi
le

d

Si

GND X

VDD

Defects-
BTIP-substrate

GND

n+n+

metal

source
S

drain
D

body
B

SiO2

gate
G

P-substrate

HfO2 High-K

Si

GND VDD

VDD

II

Electric Filed

channel

Defects-
HCID

Defects-
BTI

GND

Fig. 3.4 Impact of scaling on a transistor. (a) Vertical electric field over the gate stimulates the
BTI phenomenon leading to evenly distributed defects across the Si−SiO2 interface. (b) Lateral
electric field across the channel stimulates the HCID phenomenon leading to concentrated defects
near to the drain

• Some of the carriers from the channel may recombine with electrons in the Si−H
bond. In such a case, the Si−H bond, which had originally two electrons, has now
only one electron left. This, in turn, weakens the bond and reduces the activation
energy of both bonding partners.

• Through thermal activation, the H atom obtains sufficient kinetic energy to reach
its activation energy. It bonds the remaining valence electron to its nucleus.

• The Si−H bond is broken and the remaining Si becomes positively charged, as
its valence electron was taken by the H atom.

• The neutral H atom diffuses slowly through the SiO2 grid within the gate
dielectric through random hopping.

• If two neutral diffusing H atoms meet together, they bond into a molecular
H2, which is less reactive and thus it relatively diffuses faster through random
hopping.

• The H2 concentration increases, due to limited H2 diffusion and therefore the
H + H −−⇀↽−− H2 reaction reaches an equilibrium state.

• Since the H concentration increases as the Si−H + h+ −−⇀↽−− Si···H reaction
saturates, the H2 diffusion front moves through the gate dielectric. As soon as
the H2 diffusion front reaches the poly-crystalline Si, H2 diffuses away deep into
the system (i.e., almost lost forever).

• H2 concentration reaches an equilibrium as diffusion out of the system and H2
generation finds a steady state.

Interface traps:

Si−H + h+ −−⇀↽−− Si+ + H

Molecular hydrogen:

H + H −−⇀↽−− H2

3 Aging Effects: From Physics to CAD 49

Interface trap generation:

Si−H
h+−→ Si···H

Si···H −→ Si+ + H

Interface trap recovery:

Si+ + H −→ Si···H
Si···H −→ Si−H + h+

It is noteworthy that recent studies [54, 56] demonstrated that the BTI-induced
degradation (ΔVth) can be observed within a short time domain (e.g., 1µs) in the
advanced technology nodes. The reason of why this has not been observed before is
the lack of advanced equipments to conduct ultra-fast BTI measurements [56]. This,
in fact, is a paradigm shift in aging from a sole long-term reliability degradation, as
in the traditional view, to short reliability degradation.

(2) Hot Carrier-Induced Degradation (HCID): It is the defect generation near
the drain terminal of transistor due to hot carriers whose high kinetic energies are
sufficiently significant to form electron–hole pairs through ionization. Unlike BTI,
which is caused by the vertical electric field over the gate, HCID is caused by the
lateral electric field across the channel of a transistor [33]. It is noteworthy that
“hot” does not refer here to the temperature of transistor but, instead, to the ability
of carriers to tunnel out of the semiconductor material and then get injected in
undesirable areas of the transistor. Similar to BTI, HCID, over time, also causes
charge buildup near the drain of a transistor (see Fig. 3.4b). Thus, it results in
degrading the electrical characteristics of transistors (similar to BTI) [40].

In the following, we briefly summarize the process of interface trap generation
due to BTI on a pMOS transistor that has H2 as a diffusion medium.

• HCID occurs when both vertical and later electric fields are applied. The first
one is in charge of forming the transistor’s channel and the latter is in charge of
moving the carriers within the channel from the source to the drain.

• During the movement of carriers within the channel (i.e., holes in the case of
pMOS), some of them may gain sufficient kinetic energy through the acceleration
in which the activation energy of the H atom in the Si−H bond is reached.

• Due to the vertical electric field and Rutherford scattering, the holes are hitting
the interface between the channel and the gate dielectric. In practice, if a “hot”
hole, i.e., a hole with a high kinetic energy, hits an H atom, it is activated due to
the deposition of the kinetic energy upon the H atom.

• The Si−H bond is broken due to the kinetic activation and the remaining Si
becomes positively charged as its electron recombines with the remaining hole.
The neutral H atom diffuses into the gate dielectric. Then, similar to the BTI
mechanism, the H may diffuse away from the system.

50 H. Amrouch et al.

Aging Recovery Mechanism: Healing the broken Si−H bonds is the reverse
process to the breaking of the Si−H bonds. Breaking and healing are exact opposites
and the damage due to breaking of the bonds can be almost entirely recovered by the
healing process, if sufficient relaxation time is given. A full recovery is impossible
due to the irreversible nature of the removal of H2 from the system (according to the
reaction–diffusion theory of aging). Once H2 reaches the poly-crystalline gate, it is
forever lost and the corresponding interface traps cannot be healed, due to the lack
of a bonding partner.

Healing follows this reaction equation:

2 Si+ + H2 −→ 2 (Si−H) + 2 h+

Recovery of Si−H bonds is independent of how the bonds were broken and thus
exactly the same for BTI and HCID. In the following, we give a brief explanation
on how the recovery can happen in a pMOS transistor.

1. Reaction of H2 −→ H + H.
2. Diffusion of atomic H through random hopping.
3. An atomic H atom finds a reactive Si with an unsatisfied bond, i.e., a missing

electron.
4. Both partners form a bond with the reaction: Si+ + H −→ Si−H + h+.
5. Holes tunnel through gate dielectric either towards the channel or more likely

(due to the vertical electric field) through the gate dielectric towards the poly-
crystalline gate electrode.

Most broken bonds might heal almost immediately, as the atomic H is still near
the unsatisfied Si+. It is also worthy to note that the healing process reduces the
H-concentration, which will accelerate the degradation at other places due to the
Si+ + H −−⇀↽−− Si−H + h+ equilibrium.

(3) Random Telegraph Noise (RTN) It is probabilistic capturing/emitting of
carriers in oxide traps [53], which is partially due to quantum effects that cause
carriers to tunnel from the channel deep into the gate dielectric charging an
oxide trap. Such captured carriers within the dielectric lead to undesirable charges
which, in practice, interact with the vertical electric field. Therefore, they manifest
themselves as an increase in Vth [50].

(4) Random Dopant Fluctuation (RDF) It is because of randomness in the
dopant concentration during the fabrication process of MOSFET. RDF directly
leads to fluctuations in the channel’s formation of MOSFETs during the operation.
Hence, RDF influences the Vth of MOSFETs [14] and makes it follow a statistical
distribution. In the deep nanoscale (e.g., 22 nm), RDF effects become more severe
as the dopant concentrations increase, narrowing the tolerance for the doping
process or increasing the variation for a fixed tolerance. At the same time, smaller
geometries reduce the number of dopants despite higher concentrations resulting in
a significant impact on the transistor Vth even for a slight change in the absolute
number of dopants [14].

3 Aging Effects: From Physics to CAD 51

(5) Process Variation (PV) It is due to the fluctuations in the geometry of transistor
such as in its length (L) and width (W) during the fabrication process. Such
geometric variance results in fluctuations in MOSFET’s electrical characteristics
during its operation because the drain current of MOSFET, which mainly determines
its switching speed, depends on both W and L. To demonstrate that Eq. (3.2) shows
the first order of approximation of the ID equation in MOSFET transistors. Note
that the following equation represents an abstracted and simplified expression for
the drain current in transistor and in current technology nodes (where short channel
effects are important) the drain current equation is significantly more complex.

Delay = 1

ID

; ID ≈ μ

2
· Cox · W

L
· (Vdd − Vth)

2 (3.2)

3.2.1 Interdependencies of Degradation Effects

On the one hand, when operating a MOSFET transistor both of vertical and
lateral electric fields may be generated (see Fig. 3.4b). Thus, both BTI and HCID
phenomena will be jointly occurring. As explained earlier, both BTI and HCID share
the same kind of defects which is interface traps. Hence, it cannot be excluded that
they may amplify or cancel each other during operation time. Hence, modeling BTI
and HCID needs to be done jointly and not separately. Otherwise, the overall impact
is either over- or underestimated [10, 11].

On the other hand, manufacturing variability through PV and RDF results in
random variations of the electrical properties of transistors. While PV varies the
length (L) and width (W) of transistors, RDF varies the dopant concentration in
the substrate near the channel of MOSFETs. Due to the inherent interdependencies
between the key parameters of MOSFET, the aforementioned fluctuations in Vth,
W , and L lead to other fluctuations in the, for example, ID , transconductance (gm),
etc. [11].

In [10], we studied the interdependencies of BTI and HCID and showed how the
overall degradation of Vth and μ is a function of the total number of defects present
as follows:

ΔVth(t + 1) = q

Cox
· (ΔNIT(t) + ΔNOT(t))

Δμ(t + 1) = μ(t0)

1 + α · ΔNIT(t)

ΔNIT(t + 1) = ΔNIT.BTI(t) + ΔNIT.HCID(t)

Here, ΔNIT.BTI(t) and ΔNIT.HCID(t) are the number of induced interface traps at
time t due to BTI and HICD, respectively. ΔNOT(t) is the number of oxide traps due
to BTI. Over time, this leads to an interdependency between BTI and HCID since
the amount of induced defects by each is recursively dependent on the current Vth, as

52 H. Amrouch et al.

Fig. 3.5 The shared interface
traps between both BTI and
HCID creates an
interdependency between
both phenomena over
time [11]. Similarly, the
shared oxide traps create also
an interdependency between
both RTN and BTI over time.
In addition, the effects of
process variation cannot be
excluded from the existing
interdependencies

BTI: Bias Temperature Instability, HCID: Hot Carrier-
induced Degradation, Vth: Voltage Threshold, μ:
Carrier Mobility, Cox: oxide capacitance, Vdd: voltage
ID: Drain Current, PV: Process Variation, RDF: Random
Dopant Fluctuation, RTN: Random Telegraph Noise

BTI HCID

Vth μ

ID

Interface
Trap

Oxide
Trap

RTN

recursive

recursive

Variability
(PV, RDF)

interdependency

Time-Independent
Degradation Effects

Time-dependent
Degradation Effects

it can be observed in Fig. 3.5. For a full description of the defect modeling of NIT,
NHT, and NOT, please refer to the original work [10]. In this work, we employed
physics-based aging models based on [1, 31].

Importantly, the initial values of parameters at the beginning (i.e., Vth(t0) and
μ(t0)) vary from a transistor to another due to manufacturing variability (RDF
and PV). In other words, aging-induced degradations depend on the manufacturing
variability as the latter randomly alters the initial state of the electrical properties of
transistors.

To model the impact of PV effects, a normal distribution can be typically
employed:

f (x,μ, σ) = 1

σ
√

2π
· e

− (x−μ)2

2σ2 (3.3)

with μ as the mean and σ as the standard deviation for the transistor’s geometries
(i.e., L and W). Regarding RDF, we model the Vth distribution according to [14] as
follows:

σVth = q · tox

εox
·
√

NA · Wd

4 · Leff · Weff
(3.4)

3 Aging Effects: From Physics to CAD 53

Then, the properties of each transistor in the circuit exhibit probabilistic dis-
tributions. The changes in Vth and μ influence other parameters due to the
interdependencies between them. The latter is intrinsically inside the MOSFET
compact modeling [49]. In our work, we employ Berkeley short-channel IGFET
model (BSIM), which is the industrial compact model of MOSFET [49].

Last but not least, the other kind of defects caused by BTI, which is oxide traps,
is shared between RTN. This also creates interdependencies between the BTI and
RTN phenomena, similar to the interdependencies between the BTI and HCID
phenomena, as it is demonstrated in Fig. 3.5. However, it is noteworthy that RTN
exhibits a random behavior due to the inherent nature of carrier tunneling, while
BTI deterministically behaves as it is driven by the applied electric field over the gate
dielectric. In general, the overall degradation induced by RTN is, typically, defined
by the total number of currently activated traps and the sum of induced ΔVth by
each of these traps. This necessitates employing two distributions in order to model
the total impact of RTN on the ΔVth. The first distribution, obtained from [45],
describes the distribution of traps due to RTN in current technologies. Whereas, the
second distribution is based on the analysis in [50] that describes the induced ΔVth
per trap. As a result, based on these two employed distributions, we can model the
random impact of RTN on Vth as follows:

ΔVth(RT N) = X · Y : where

X ∈ f (X,μtraps, σtraps) = 1

σtraps
√

2π
· e− (X−μtraps)

2

2·σtraps2

Y ∈ f (Y,μVth, σVth) = 1

σVth

√
2π

· e
− (Y−μVth

)2

2·σVth
2

Because of the shown analysis of RTN [45], which we rely on in our modeling,
has been performed for transistors of Lref = 25 nm and Wref = 45 nm, we augment
the RTN modeling in Eq. (3.5) with scaling factors to allow proper modeling in
which other transistors’ sizes are taken into consideration. To achieve that, we
include in Eq. (3.5) the factor S = Lref·Wref

Leff·Weff
, because RTN depends on 1

Leff·Weff
[51].

Thus, RTN can be modeled as:

ΔVth(RT N) = X · Y · Lref · Wref

Leff · Weff
(3.5)

The Induced Interdependency between BTI and RTN As BTI generates more
oxide traps over time, the distribution of X gets shifted towards higher numbers and
therefore RTN gains more strength. [20] demonstrated that the ΔVth due to RTN
doubles after BTI stress, so over a typical lifetime of, e.g., 10 years, the μtraps can
be shifted to twice its value following the typical power law of 1

6 of BTI [31].

54 H. Amrouch et al.

0

10

20

30

40

50

60
egatloV

dlohserhT
VΔ(

esaercnI
th

]V
m [)

Time [s]

Individual Aging Modeling

BTI modulated by HCID

BTI + HCID modulated by RDF + RTN + PV 81%

Fig. 3.6 Impact of considering the existing interdependencies between different degradation
effects on estimating the overall impact quantified by the threshold voltage increase (ΔVth)

In Fig. 3.6, we show a comparison with respect to the estimated ΔVth when
degradation effects are separated and jointly considered. As shown, neglecting
the existing interdependencies leads to higher estimations. As a result, a more
conservative (i.e., inefficient) guardband, i.e., employing larger guardbands than
what is actually needed, needs to be later employed to protect against aging
effects. As shown in Fig. 3.6, the consideration of HCID jointly with BTI leads
to a smaller guardband (8%) compared to the consideration of BTI alone. In
addition, considering other degradation effects leads to further reduction to 81%.
As explained, this is because that degradation effects can influence each other.
This shows why it is indispensable to consider degradation effects jointly and not
separately in order to estimate the overall impact of aging correctly.

3.3 Aging Effects at the Device Level

Generated interface traps due to BTI and HCID as well as generated oxide traps
due to BTI results in different shifts in the key parameters of MOSFETs. The most
observable one is an increase in the threshold voltage of transistor (Vth). However,
aging-induced defects also degrade other electrical characteristics of MOSFETs
like carrier mobility (μ), subthreshold slope (SS), and gate–drain capacitance
(Cgd) [9].

(1) Threshold Voltage Increase (Vth): As charge builds up at the SiO2−Si
interface due to interface traps, the electric field becomes weaker and weaker
due to the interactions with the accumulated positively charged Si+ atoms.
The weaker the electric field, the less minority carriers will be attacked when
forming the transistor’s channel. This manifests itself as an increase in the
threshold voltage (Vth) of transistor and, in fact, a higher gate voltage (VG) is

3 Aging Effects: From Physics to CAD 55

necessary to obtain the same electric field and maintain the original (i.e., before
aging) threshold voltage (Vth0).

(2) Carrier Mobility Decrease (μ): Due to the positive charge buildup at the
SiO2−Si interface, the moving carriers within the transistor’s channel encounter
more resiliency when flowing from the source to the drain of transistor. This
is mainly because these carriers and the generated interface traps, which are
positive charges, will be repelling each other due to Coulomb scattering. In
other words, the positively charged Si+-ions act as an obstacle and carrier
mobility sinks due to the higher resistance against movement.

It is noteworthy that the activated oxide traps also build up positive charges
within the gate dielectric. However, in contrast to the previously discussed
defects (i.e., interface traps), these charges are not near the SiO2−Si interface
but are located deep within the gate dielectric. Therefore, they are not able to
hinder the mobility of carriers in the channel, but only affect the electric field
over the gate dielectric. Similar to the interface traps, oxide traps also weaken
the formation of the transistor’s channel and thus they also manifest themselves
as an increase in the threshold voltage (Vth) of transistor.

(3) Subthreshold slope Degradation (SS): Analogous to μ, only interface traps
(NIT) contributes to SS degradation. This is because NIT are donor type traps
at the Si/IL interface which are positively charged when empty of electrons
(or filled with holes) and neutral when filled with electrons [9]. This nature of
the traps being filled or emptied in response to the gate voltage gives rise to
an interface trap capacitance (CIT) which comes in parallel with the depletion
capacitance and hence it contributes to SS degradation. Note that oxide traps
also have a negligible contribution to SS degradations because such traps are
not close to the interface and thus they cannot interact with the carriers inside
the transistor’s channel.

(4) Gate–Drain Capacitance Increase (Cgd): As discussed, generated interface
trap will perform an intrinsic capacitance which will result in a distortion in the
capacitance voltage (CV) characteristics of the transistor [37]. Among all the
capacitances of MOSFETs, gate–drain capacitance (Cgd) change plays the most
important role because the resulting impact is magnified due to Miller effect at
the output drain node [9]. Hence, both the delay and the dynamic power are
directly influenced as the transistor will face a larger capacitance to charge.

3.4 Aging Effects at the Circuit Level

In our work [5], we studied the impact that ΔVth has on the delay of logic gates.
We demonstrated that the same amount of degradation disproportionally alters
the delay of gates within a standard cell library. In addition, we also showed
that aging-induced ΔVth may even improve (instead of degrade) the delay of
some gates under specific operating conditions OPCs (i.e., input signal slew and
output load capacitance). Based on the aforementioned observations, we proposed

56 H. Amrouch et al.

0%

20%

40%

60%

80%noitcuder
dnabdraug

gni
miT

Circuits

Fig. 3.7 Impact of employing our degradation-aware cell libraries during circuit synthesis on
containing timing guardbands

to provide the synthesis tools with our so-called degradation-aware cell library.
Such a library contains the detailed delay information of every gate but under the
effects that worst-case aging degradations (e.g., the maximum ΔVth) have. When
employing such a degradation-aware cell library during circuit synthesis, the mature
algorithms in synthesis tool flows—evolved over decades in commercial EDA
software like Synopsys and Cadence—will automatically select gates which exhibit
less degradation under aging (i.e., gates with smaller delay). Hence, aging can be
proactively at the design time considered and circuits with a better performance can
be obtained. To illustrate the impact of aging-aware synthesis, we show in Fig. 3.7
the saving in timing guardband for different complex circuits. In this analysis, we
used the Synopsys Processor Designer Tool to generate the RTL for different kinds
of processor designs such as VLIW and RISC processors. As it can be observed, our
aging-aware logic synthesis leads to 51% smaller guardbands on average and up to
∼75%. Analogously, we have also employed the idea of performing logic synthesis
in the scope of temperature, instead of aging effects. Our analysis showed an 18%,
on average, and up to 24% saving in temperature guardbands [7] for different
processors. This demonstrates the efficiency of bringing awareness of degradation
effects to the existing logic synthesis tool flows to employ their mature optimization
algorithms towards containing timing guardbands.

Our degradation-aware cell libraries are publicly available at [46] allowing
other researchers to employ them. They are ready to use with existing tool flows
(e.g., Synopsys) without requiring any modifications.

We also applied the concept of degradation-aware cell libraries in order to
evaluate the final impact of considering the existing interdependencies between
degradation effects. As demonstrated earlier in the previous section (see Fig. 3.6),
neglecting the interdependencies leads to overestimating the overall degradation
w.r.t ΔVth. To evaluate further and to translate the results from ΔVth into the
resulting delay increase of circuits, we created the corresponding cell libraries
under the different estimated ΔVth cases. We summarize the results of the impact

3 Aging Effects: From Physics to CAD 57

0

10

20

30

40

50

60

70

RISC-V32bit RISC-V32bit BOOM Average

[
dnabdrau

G
gni

miT
ps

]

Without Interdependencies With Interdependencies

65%

Fig. 3.8 Comparison between considering interdependencies (i.e., BTI, HCID, RTN, RDF and,
PV jointly) and neglecting interdependencies (i.e., BTI alone) on the resulting timing guardbands
of different processors. Considering interdependencies allows reducing the guardbands by 65% on
average

of considering the interdependencies on guardbands in Fig. 3.8. In this evaluation,
we studied two different kinds of in-order processors, namely: 32-bit and 64-bit.
Both of them are based on the open-source instruction set architecture RISC-
V [13]. In addition, we also studied the Berkeley Out-of-Order Machine (BOOM)
which is state-of-the-art industry-competitive RISC-V processor [19]. The RTL
descriptions of the three processors were generated using the so-called Rocket
Chip Generator [12]. As it can be seen in Fig. 3.8, considering the existing
interdependencies between degradation effects leads to 64% smaller guardbands on
average.

3.5 Aging-Induced Approximation

As discussed earlier, aging effects increase the delay of gates within circuits and
hence the delay of critical paths prolong during the lifetime. This, in turn, will
lead to timing violations if no sufficient timing guardbands is included. However,
timing guardbands mean, in practice, operating the circuits at lower frequency than
its potential and therefore a considerable efficiency loss will be incurred. In this
section, we demonstrate first whether we really need to include timing guardbands
even for circuits that can inherently tolerate errors like image processing. This is
necessary to explore how much aging effects can degrade the quality of service in
such fault-tolerant circuits.

To achieve that, we study the discrete cosine transform (DCT) and inverse dis-
crete cosine transform (IDCT) circuits as they are typically employed in multimedia
designs to encode and decode images, respectively. We used our degradation-aware
cell libraries (detailed in Sect. 3.4) in order to extract the precise delay information
of every gate within the netlists of DCT-IDCT circuits. Then, we perform gate-

58 H. Amrouch et al.

Fig. 3.9 Analyzing the impact of aging-induced timing errors on the quality of image. Aging
effects, when no timing guardbands in included, lead to a quality loss even after merely 1 year [5]

level simulations using Mentor ModelSim in which the DCT-IDCT chain encodes
and then decodes an input image. Then, by computing the peak signal-to-noise
ratio(PSNR) of the output image, we quantify how the aging degrades the quality of
image. Note that in the gate-level simulations, the baseline clock of the DCT-IDCT
chain, which is the clock of the circuit in the absence of aging, is used. Hence, errors
will occur due to timing violations as no timing guardband is included. This enables
us to evaluate whether we really need to include a timing guardband in circuits that
can tolerate errors like image processing circuits. Note that the PSNR is a typical
metric used to represent image quality and for human the value 30 is considered the
minimum accepted quality [52].

In Fig. 3.9 [5], we show the original image before aging and the resulting image
after 1 year of aging stress as well as after 10 years lifetime. As can be noticed, even
in image processing circuits, which can tolerate errors, aging effects can lead to a
severe quality loss which is not accepted even after merely 1 year of operation. This
clearly demonstrates the necessity of including timing guardbands.

In order to completely remove timing guardbands while still maintaining quality,
we proposed in [6], for the first time, the concept of aging-induced approximation.
Because aging effects lead to timing violations, which are stochastic and uncon-
trolled, we explored how approximate computing principles can be employed in
order to translate aging effects into deterministic and controlled approximations.
In Fig. 3.10, we demonstrate an example of our characterization of a 32×32 bit
adder. In this analysis, we consider both worst- and actual-case aging. For the
latter, we use stimuli from a normal distribution as well as inputs extracted from
an IDCT decoding a sample input image. As shown, reducing the precision of the
adder enables us to compensate the aging-induced delay increase. For instance,
reducing the precision by merely 2 bits allows us to narrow the required guardband
by 31%. Importantly, reducing the precision further down to 24 bits will be sufficient
to completely remove the guardband until 1 year of worst-case aging. Precision
needs to be further reduced down to 22 bits for a reliable operation (i.e., without
any aging-induced timing errors) over 10 years without adding any guardband.
However, considering actual-case (instead of worst-case) aging provides us with a

3 Aging Effects: From Physics to CAD 59

Fig. 3.10 Characterization of a 32×32 bit adder to translate aging-induced timing errors into an
equivalent precision reduction. Here, WC: worst-case aging. (AC, ND): actual-case aging under
inputs from a normal distribution. (AC, IDCT): actual-case aging under IDCT inputs of an input
sample image [6]

Fig. 3.11 Examples of images when applying our aging-induced approximations. The lifetime of
10 years under the worst-case aging has been considered in this analysis [6]

less conservative precision reduction of only 8 bits. Note, however, that considering
actual case of aging will not provide a guarantee that timing errors will never occur
during the projected lifetime.

To examine how translating stochastic timing errors caused by aging into
deterministic and controlled approximations can impact the image quality, we
show in Fig. 3.11 some examples of the output images obtained from the IDCT
circuit. The examined images for this analysis were extracted from the “video trace
library” [57], which is a standard benchmark for multimedia analysis. A lifetime of
10 years under worst-case aging was used to determine approximations and hence
presents the lower boundary of PSNR. As can be noticed, PSNR on average merely
drops by 8db and it is above 30db in all images except one (“mobile”), where it is
slightly below. Examples of obtained images are presented in Fig. 3.11. As shown,
even for the image in the case of “mobile” with 28db PSNR, the quality is still very
good and noise is hardly observable.

60 H. Amrouch et al.

3.6 Aging at the System Level

As discussed in the previous sections, aging effects have become a major reliability
concern. Although they originate at physical level, aging effects have interdepen-
dency with system-level parameters [34–36].

Figure 3.12 illustrates this interdependency between physical- and system-level
parameters. In particular, system level means like increasing number of parallel
threads of the applications and upscaling the voltage and frequency level of the
cores lead to increase the number of active cores and the application performance,
and that, in turn, elevates the temperature on the chip. Increasing the temperature and
the supply voltage (Vdd) induce and accelerate aging mechanisms, which manifest
themselves as increase in the key transistor’s parameters like threshold voltage
(ΔVth), as discussed earlier. Such degradations in the electrical characteristics of
transistors prolong the critical path delay of the processor, and eventually timing
errors might occur, which of course degrade the system reliability.

This interdependency between system-level parameters and physical-level
parameters motivates us to investigate the possibility of tackling aging concern
at the system level. Since the ultimate goal of system-level resource management is
performance optimization, we highlight in the following subsections two system-
level potentials to optimize the performance while considering aging.

3.6.1 Aging-Aware Performance Optimization

As illustrated in Fig. 3.12, the shift in the threshold voltage, i.e., ΔVth, is increased
by increasing temperature and Vdd [25]. Figure 3.13 illustrates the resulting increase
in Vth along with Vdd and temperature. These values are obtained using a physics-
based aging model. As mentioned above, these two factors are resulting from the
decisions taken at the system level.

Active Cores

Temperature

Performance

Aging i.e. ΔVth

System Level
Parameters

Physical Level
Parameters

Supply Voltage (Vdd) Reliability

Voltage/Frequency
(up)-scaling

Increasing
parallel threads

System-Level
Means

“positive” impact “negative” impact

Fig. 3.12 The interdependency between system-level parameters and physical-level parameters

3 Aging Effects: From Physics to CAD 61

Supply Voltage (Vdd[V])Temperature[°C]

T
hr

es
ho

ld
V

ot
la

ge
In

cr
ea

se
∆
V t

h[
V

]

1.41.31.21.11.00.90.80.70.60
20

40
60

80

0.01

0.05

0.07

0.08

0.06

0.04

0.03

0.02

100

Fig. 3.13 The resulting increase in the threshold voltage along with temperature and voltage [34]

To sustain reliability regardless of system-level decisions, chip designers add
to the clock delay a timing guardband that compensates the worst-case increase
in the threshold voltage ΔV worst

th , as seen in Fig. 3.14. ΔV worst
th is determined

through measuring the processor delay increase after exposing a prototyping chip
to accelerated aging conditions [32]. This is, however, pessimistic and hinders
the system from using the existing capabilities of the hardware. Instead of that,
employing a guardband based on more realistic aging constraint (e.g., ΔV max

th in
Fig. 3.14) would be more efficient. However, in this case, the aging constraint
ΔV max

th must be enforced at the system level. In practice, ΔV max
th indicates the

maximum expected degradation in the threshold voltage for the entire targeted
lifetime in the processor. Thus, resource management must make its decisions for
performance optimization under aging constraint ΔV max

th [34].
The majority of the state-of-the-art works that consider aging at the system

level do not aim at maximizing the performance under an aging constraint,
but instead they aim at minimizing or balancing aging to increase the lifetime
(e.g., [21, 44, 47, 48]). Few recent works have proposed resource management
techniques that aim at maximizing the performance under aging constraint. In [26],
a resource management technique is proposed to enforce the aging constraint at
runtime. Namely, when the aging constraint is violated, the voltage and frequency
(v/f) levels of the cores are downscaled in order to decrease temperatures and thus
aging. The drawback of this technique is that it does not consider the positive impact
of reducing the Vdd on aging [25], i.e., the lower the Vdd, the less aging is induced.
That means, unnecessary v/f level downscaling is applied leading to unnecessary
performance losses. Contrarily, in [43] the impact of both, the temperature and
Vdd, on aging is considered. To meet the aging constraint, the proposed resource

62 H. Amrouch et al.

>

GB

Aging Impact:

Timing
violation

Applying Guardband (GB):

Timing violation!

1/(−)
1/ (− − Δ)

1/(− − Δ)

cp 1/(− − Δ)

<

(full speed)

(reduced speed)

The delay of the processor’s critical path at runtime
The nominal delay of the processor’s clock at design time

Δ The actual increase in the threshold voltage induced by aging mechanisms
The worst-case increase in the threshold voltage induced by aging mechanisms
An upper-bound for the increase the threshold voltage induced by aging mechanisms

GB‘Applying Guardband (GB’):
1/ (− − Δ)

1/(− − Δ)

≤

(reduced speed)

Δ Δ

Δ ≤ Δ

Aging
Constraint

must be
enforced at
the system

level

Fig. 3.14 Applying the necessary guardbands to compensate aging-induced delay

management in [43] employs conservative voltage and the temperature bounds
within its decision-making process. However, this approach is conservative, because
it does not exploit the full available design space for performance optimization, as
will be discussed later on.

To achieve the goal of maximizing performance under aging constraint, there is
a need to explore the design space that satisfies the predetermined aging constraint
for the targeted lifetime. For example, Fig. 3.15 quantifies ΔVth after 1 year. The
three cutoff lines represent specific aging constraints for the targeted lifetime. The
design space of temperature and Vdd below each of these cutoff lines represents
feasible options. Figure 3.16 shows the feasible design space considering one of
these constraints, i.e., ΔVth = 0.03V . The first observation is that this (red) cutoff
line can be translated into a set of temperature constraints, each corresponds to a
specific Vdd such that the aging constraint is satisfied. For instance, if Vdd is set
to 1.25 V, the temperature constraint will be equal to 52 ◦C. However, if a lower
Vdd is selected, e.g., 1.15 V, the temperature can reach 86 ◦C without violating the
aging constraint. As mentioned above, the state-of-the-art technique [43] enforces
one pair of temperature and Vdd bounds. For instance, if the temperature constraint
is 60 ◦C, the maximum allowed Vdd is 1.225 V. The two dashed lines in Fig. 3.16
represent an exemplary pair of temperature and Vdd bounds employed by the state

3 Aging Effects: From Physics to CAD 63

1.41.31.21.1

Vdd[V]
1.00.90.80.70.60

20
Temperature[°C]

40
60

80

0.02

0.03

0.04

0.05

0.06

0.07

0.01

100

Δ
V t

h[
V

]

ΔVth=0.05V

ΔVth=0.03V

ΔVth=0.01V

Fig. 3.15 Aging-aware design space: accurate (based on physical models) inter-dependencies
between amount of aging (i.e., ΔVth), temperature, and voltage Vdd [34]

Vdd[V]
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Te
m

pe
ra

tu
re

[°
C

]

0

20

40

60

80

100

The desgin space
that is un-exploited
by state-of-the-art

A

B, C

ΔV
th

>0.03VΔV
th

5 0.03V

B

A C

The limited
design space
 that can be utilized
by state-of-the-art

Fig. 3.16 The entire design space that satisfies the aging constraint and the limited design space
resulting from applying conservative temperature and Vdd bounds (dashed area) by state-of-the-art
[34]

of the art. Therefore, the resource management of the state of the art cannot, by
principle, select temperature and Vdd outside this limited space, while considering
the entire aging-aware design space enables new optimization potential.

It is indispensable to fully exploit the entire aging-aware design space by
resource management techniques in order to optimize for performance under
aging constraint.

64 H. Amrouch et al.

3.6.2 Guardband-Aware Performance Optimization

As aforementioned, sustaining reliability necessitates employing a guardband to
compensate the slowdown that arises as transistors age. The reason of this slow-
down is the reduction in the drain current (Id) as it is seen from the first-order
approximation of Id in Eq. (3.6).

After aging: Id ≈ (Vdd − Vth − ΔVth) (3.6)

Before aging: Id ≈ (Vdd − Vth)

Transistor (delay) ∝ 1

Id

⇒ aged transistors are slower

There are two main guardband types that can be used to compensate this aging-
induced delay, they are frequency guardband and voltage guardband [36]:

(1) Frequency Guardband (F_GB): To prevent timing violations, the frequency
needs to be reduced by a certain amount such that the clock delay becomes
always longer than the critical path delay. In practice, an additional time slack
(tguardband), corresponding to the maximum aging-induced delay for the targeted
lifetime must be added to the nominal critical path delay (tnom), as Eq. (3.7)
shows. Hence, the resulting frequency fguardband will be lower than the nominal
frequency fnom.

fguardband = 1

tnom + tguardband
< fnom = 1

tnom
(3.7)

(2) Voltage Guardband (V _GB): As shown in Eq. (3.6), the drain current of the
transistor Id will be reduced due to aging. To compensate this reduction in the
Id , a guardband can be added to the nominal voltage (Vnom), as Eq. (3.8) shows.
Hence, the processor can still be clocked with the nominal frequency without
exhibiting timing errors even though aging effects may occur during its lifetime.
However, the new voltage Vguardband will be higher than the nominal voltage
Vnom.

Vguardband = Vnom + ΔVth > Vnom (3.8)

Typically, either frequency guardband (F_GB) or voltage guardband (V _GB)
is selected at design time of the processor (circuit level) and adopted throughout
its lifetime. The guardband type is selected based on system requirements. In
particular, V _GB enables using the nominal frequency without any reduction.
Therefore, it is selected when the performance of the targeted system cannot
be scarified. V _GB, however, increases the power consumption. Therefore,
F_GB is selected for low-power systems, because it does not increase the power.
However, F_GB decreases the performance.

3 Aging Effects: From Physics to CAD 65

Our investigation in the following case study shows that the ultimate impact of
a guardband type cannot be accurately estimated at the circuit level irrespective
from the workload at the system level.

Motivational Case Study This case study shows the impact of the guardband type
on the power consumption and the performance for two different applications, i.e.,
“canneal” and “x264,” from the PARSEC benchmark suite [15], running on 64-core
chip simulated by Gem5 [16] and McPAT [39]. We run two experiments for each
application to test V _GB and F_GB. In each experiment, eight instances of the
application are executed on the cores, with 8 parallel threads for each. The nominal
voltage Vnom and the nominal frequency fnom are 1.4 V and 4 GHz, respectively.
The estimated Vguardband and fguardband according to the employed physics-based
aging model are 1.491 V and 3.42 GHz, respectively. We assume that the targeted
multicore system employs a thermal management unit (TMU), that is responsible
to avoid thermal violations by power-gating the cores that exceed the predefined
critical temperature (Tcrit = 100 ◦C) of the chip.

The power consumption will increase when applying V _GB, since it leads to
increasing the supply voltage as seen in Eq. (3.8), and thereby increasing the power
consumption of the core (see Eq. (3.9)).

P = α · Ceff · V 2
dd · f + Pleak (Vdd, T) (3.9)

where α indicates the activity factor of the core and Ceff indicates the effective
switching capacitance of the core. Pleak is the leakage power, which depends on
the supply voltage and the core’s temperature. According to our simulation using
McPAT and considering the worst-case temperature on the chip (Tcrit), Pleak is
equal to 3.5 W and 4.2 W for Vnom and Vguardband, respectively. As an example,
in the case of “x264,” α and Ceff are equal to 0.3 and 2.2, respectively. We use
Eq. (3.9) for (Vnom, fguardband) and for (Vguardband, fnom) to calculate the resulting
power consumptions of applying F_GB and V _GB, respectively. That results in
total power consumptions of 8 W and 10 W, as shown in Fig. 3.17. As expected,
V _GB results in higher power consumption compared to F_GB.

The resulting performance when applying V _GB is increased compared to
F_GB in the case of “canneal,” which is expected because F_GB leads to lower
frequency (see Eq. (3.7)) and thereby lower processor speed. However, in the
case of “x264,” applying V _GB reduces the performance with 24% compared to
F_GB. The reason is that the higher increase in the power consumption in the
case of “x264,” when V _GB is employed, triggers the TMU which power-gates
additional 14 cores whose estimated temperatures exceed Tcrit. Consequently, the
system performance is degraded in this case. This is unlike the case of “canneal”
in which the increase in the power consumption due to employing V _GB does not
lead to thermal violations. As a result, V _GB is not always able to provide better
performance than F_GB despite the higher operating frequency [36].

66 H. Amrouch et al.

0.6

0.7

0.8

0.9

1

1.1

1.2

canneal x264
0

2

4

6

8

10

12

canneal x264

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

]
W [re

w oP
eroC

12%

32%

26%

20%

(a) (b)

V_GBF_GB

Fig. 3.17 Even though V _GB allows operating at a higher frequency compared to F _GB, it does
not always provide a better performance in a thermally constrained system. For x264, employing
V _GB leads to less performance, due to the incurred thermal violations [36]. (a) shows the total
consumed power. (b) shows the normalized performance when applying frequency and voltage
guardbands

Therefore, traversing from the circuit level to the system level is necessary
to be capable of considering the workload-induced temperatures and thereby
accurately estimating the impact of the guardband type on performance. That
enables selecting the best fitting guardband type w.r.t. the workload, with the
goal to maximize the performance while sustaining reliability.

Acknowledgements This work is supported in part by the German Research Foundation
(DFG) as part of the priority program “Dependable Embedded Systems” [28] (SPP 1500—
spp1500.itec.kit.edu). Authors would like to thank Victor van Santen from CES, KIT for his very
valuable work and contribution as well as our research partners; Souvik Mahapatra, Subrat Mishra
from IIT Bombay, Andreas Gerstlauer from University of Texas at Austin, and Montserrat Nafria
and Javier Martin-Martinez from Universitat Autonoma de Barcelona.

References

1. Alam, M., Roy, K., & Augustine, C. (2011). Reliability- and process-variation aware design
of integrated circuits. IEEE International Reliability Physics Symposium (IRPS) (pp. 4A.1.1–
4A.1.11).

2. Amrouch, H. (2015). Techniques for aging, soft errors and temperature to increase the
reliability of embedded on-chip systems. PhD thesis, Dissertation, Karlsruhe Institute of
Technology (KIT).

3. Amrouch, H., Ebi, T., & Henkel, J. (2013). Stress balancing to mitigate NBTI effects in register
files. In 2013 43rd Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN) (pp. 1–10).

4. Amrouch, H., & Henke, J. (2017). Containing guardbands. In 2017 22nd Asia and South
Pacific Design Automation Conference (ASP-DAC) (pp. 537–542).

3 Aging Effects: From Physics to CAD 67

5. Amrouch, H., Khaleghi, B., Gerstlauerz, A., & Henkel, J. (2016). Reliability-aware design to
suppress aging. In Proceedings of the 53rd Annual Design Automation Conference (p. 12).

6. Amrouch, H., Khaleghi, B., Gerstlauer, A., & Henkel, J. (2017, June). Towards aging-induced
approximations. In 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC) (pp. 1–
6).

7. Amrouch, H., Khaleghi, B., & Henkel, J. (2017). Optimizing temperature guardbands. In
Design, Automation & Test in Europe Conference & Exhibition (DATE).

8. Amrouch, H., Martin-Martinez, J., van Santen, V., Moras, M., Nafria, M., Rodriguez, R., et
al. (April 2015). Connecting the physical and application level towards grasping aging effects.
In 2015 IEEE International Conference on Reliability Physics Symposium (IRPS) (pp. 3D. 1.1–
3D. 1.8).

9. Amrouch, H., Mishra, S., van Santen, V., Mahapatra, S., & Henkel, J. (2017). Impact of BTI
on dynamic and static power: From the physical to circuit level. In 2017 IEEE International
Reliability Physics Symposium (IRPS) (pp. CR–3). New York: IEEE.

10. Amrouch, H., van Santen, V., Ebi, T., Wenzel, V., & Henkel, J. (2014, November). Towards
interdependencies of aging mechanisms. In 2014 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD) (pp. 478–485).

11. Amrouch, H., van Santen, V. M., & Henkel, J. (2016). Interdependencies of degradation effects
and their impact on computing. IEEE Design & Test.

12. Asanovi, K., Avizienis, R., Bachrach, J., Beamer, S., Biancolin, D., Celio, C., et al. (2016). The
rocket chip generator. Technical Report No. UCB/EECS-2016-17.

13. Asanovi, K., & Patterson, D. A. (2014, August). Instruction sets should be free: The case for
RISC-v. Technical Report UCB/EECS-2014-146, EECS Department, University of California,
Berkeley.

14. Asenov, A. (1998). Random dopant induced threshold voltage lowering and fluctuations in
sub-0.1 μm MOSFET’s: A 3-D ldquo;atomistic rdquo; simulation study. IEEE Transactions
on Electron Devices, 45, 2505–2513.

15. Bienia, C., Kumar, S., Singh, J. P., & Li, K. (2008). The PARSEC benchmark suite:
Characterization and architectural implications. In Proceedings of the 17th International
Conference on Parallel Architectures and Compilation Techniques (PACT) (pp. 72–81).

16. Binkert, N., Beckmann, B., Black, G., Reinhardt, S. K., Saidi, A., Basu, A., et al. (2011). The
gem5 simulator. ACM SIGARCH Computer Architecture News, 39(2), 1–7.

17. Borkar, S. (1999). Design challenges of technology scaling. IEEE Micro, 19(4), 23–29.
18. Cartier, E., Kerber, A., Ando, T., Frank, M., Choi, K., Krishnan, S., et al. (2011, December).

Fundamental aspects of HfO2-based high-k metal gate stack reliability and implications on tinv-
scaling. In 2011 IEEE International Electron Devices Meeting (IEDM) (pp. 18.4.1–18.4.4).

19. Celio, C., Patterson, D. A., & Asanovic, K. (2015). The Berkeley out-of-order machine
(boom): An industry-competitive, synthesizable, parameterized risc-v processor. Technical
Report UCB/EECS-2015-167, EECS Department, University of California, Berkeley.

20. Chiu, J., Chung, Y., Wang, T., Chen, M.-C., Lu, C., & Yu, K. (2012). A comparative study
of NBTI and RTN amplitude distributions in high gate dielectric pMOSFETs. IEEE Electron
Device Letters, 33(2), 176–178.

21. Das, A., Shafik, R. A., Merrett, G. V., Al-Hashimi, B. M., Kumar, A., & Veeravalli, B. (2014).
Reinforcement learning-based inter- and intra-application thermal optimization for lifetime
improvement of multicore systems. In Proceedings of the 51st Annual Design Automation
Conference, DAC ‘14 (pp. 170:1–170:6). New York: ACM.

22. Dennard, R., Rideout, V., Bassous, E., & LeBlanc, A. (1974). Design of ion-implanted
MOSFET’s with very small physical dimensions. IEEE Journal of Solid-State Circuits, 9(5),
256–268.

23. Ebi, T., Al Faruque, M. A., & Henkel, J. (2009). Tape: Thermal-aware agent-based power
economy for multi/many-core architectures. In Proceedings of the 2009 International
Conference on Computer-Aided Design, ICCAD ‘09 (pp. 302–309).

68 H. Amrouch et al.

24. Ebi, T., Kramer, D., Karl, W., & Henkel, J. (2011, October). Economic learning for
thermal-aware power budgeting in many-core architectures. In 2011 Proceedings of the
Ninth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS) (pp. 189–196).

25. Goel, N., Naphade, T., & Mahapatra, S. (2015). Combined trap generation and transient trap
occupancy model for time evolution of NBTI during DC multi-cycle and AC stress. In 2015
IEEE International Reliability Physics Symposium (IRPS) (pp. 4A.3.1–4A.3.7).

26. Haghbayan, M. H., Miele, A., Rahmani, A. M., Liljeberg, P., & Tenhunen, H. (2017).
Performance/reliability-aware resource management for many-cores in dark silicon era. IEEE
Transactions on Computers, 66(9), 1599–1612.

27. Henkel, J., & Amrouch, H. (2016). Designing reliable, yet energy-efficient guardbands. In
2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS) (pp. 540–
543). New York: IEEE.

28. Henkel, J., Bauer, L., Becker, J., Bringmann, O., Brinkschulte, U., Chakraborty, S., et al.
(2011). Design and architectures for dependable embedded systems. In CODES+ISSS (pp. 69–
78).

29. International technology roadmap for semiconductors (ITRS). http://www.itrs.net.
30. Joshi, K., Hung, S., Mukhopadhyay, S., Chaudhary, V., Nanaware, N., Rajamohnan, B., et

al., (2013, April). HKMG process impact on N, P BTI: Role of thermal IL scaling, IL/HK
integration and post HK nitridation. In 2013 IEEE International Reliability Physics Symposium
(IRPS) (pp. 4C.2.1–4C.2.10).

31. Joshi, K., Mukhopadhyay, S., Goel, N., & Mahapatra, S. (2012). A consistent physical
framework for N and P BTI in HKMG MOSFETs. In 2012 IEEE International Reliability
Physics Symposium (IRPS) (pp. 5A.3.1–5A.3.10).

32. Keane, J., & Kim, C. H. (2011). Transistor aging. IEEE Spectrum, 48(5), 28–33.
33. Khan, S., & Hamdioui, S. (2010). Trends and challenges of SRAM reliability in the nano-

scale era. In 5th International Conference on Design and Technology of Integrated Systems in
Nanoscale Era (pp. 1–6).

34. Khdr, H., Amrouch, H., & Henkel, J. (2018). Aging-constrained performance optimization for
multi cores. In Proceedings of the 55th Annual Design Automation Conference (p. 63). New
York: ACM.

35. Khdr, H., Amrouch, H., & Henkel, J. (2018). Aging-aware boosting. IEEE Transactions on
Computers.

36. Khdr, H., Amrouch, H., & Henkel, J. (2018). Dynamic guardband selection: Thermal-aware
optimization for unreliable multi-core systems. IEEE Transactions on Computers.

37. Krishnan, A. T., Reddy, V., Chakravarthi, S., Rodriguez, J., John, S., & Krishnan, S. (2003).
NBTI impact on transistor and circuit: models, mechanisms and scaling effects [MOSFETs]. In
IEEE International Electron Devices Meeting, 2003. IEDM’03 Technical Digest (pp. 14–15).

38. Latex plotting code. https://github.com/MartinThoma/LaTeX-examples/
39. Li, S., Ahn, J.-H., Strong, R., Brockman, J., Tullsen, D., & Jouppi, N. (2009). McPAT:

An integrated power, area, and timing modeling framework for multicore and manycore
architectures. In 42nd IEEE/ACM International Symposium on Microarchitecture (MICRO)
(pp. 469–480).

40. Mahapatra, S., Saha, D., Varghese, D., & Kumar, P. B. (2006). On the generation and recovery
of interface traps in MOSFETs subjected to NBTI, FN, and HCI stress. IEEE Transactions on
Electron Devices, 53(7), 1583–1592.

41. Maricau, E., & Gielen, G. (2011). Computer-aided analog circuit design for reliability in
nanometer CMOS. IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
1(1), 50–58.

42. Martin-Martinez, J., Kaczer, B., Toledano-Luque, M., Rodriguez, R., Nafria, M., Aymerich,
X., et al. (2011, April). Probabilistic defect occupancy model for NBTI. In 2011 IEEE
International Reliability Physics Symposium (IRPS) (pp. XT.4.1–XT.4.6).

http://www.itrs.net
https://github.com/MartinThoma/LaTeX-examples/

3 Aging Effects: From Physics to CAD 69

43. Mercati, P., Paterna, F., Bartolini, A., Benini, L., & Rosing, T. (2017, September). Warm:
Workload-aware reliability management in Linux/Android. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 36(9), 1557–1570.

44. Mück, T. R., Ghaderi, Z., Dutt, N. D., & Bozorgzadeh, E. (2017). Exploiting heterogeneity for
aging-aware load balancing in mobile platforms. IEEE Transactions on Multi-Scale Computing
Systems, 3(1), 25–35.

45. Nagumo, T., Takeuchi, K., Yokogawa, S., Imai, K., & Hayashi, Y. (2009). New
analysis methods for comprehensive understanding of random telegraph noise. In 2009 IEEE
International Electron Devices Meeting (IEDM) (pp. 1–4). New York: IEEE.

46. Our released models, tools and degradation-aware cell libraries. http://ces.itec.kit.edu/
dependable-hardware.php

47. Raparti, V. Y., Kapadia, N., & Pasricha, S. (2017, April). ARTEMIS: An aging-aware runtime
application mapping framework for 3D NoC-based chip multiprocessors. IEEE Transactions
on Multi-Scale Computing Systems, 3(2), 72–85.

48. Rathore, V., Chaturvedi, V., & Srikanthan, T. (2016). Performance constraint-aware task
mapping to optimize lifetime reliability of manycore systems. In Proceedings of the 26th
Edition on Great Lakes Symposium on VLSI, GLSVLSI ‘16 (pp. 377–380). New York: ACM.

49. Singh Chauhan, Y., Venugopalan, S., Paydavosi, N., Kushwaha, P., Jandhyala, S. Duarte, J. P.,
et al. (2013). BSIM Compact MOSFET Models for SPICE Simulation. In 2013 Proceedings of
the 20th International Conference Mixed Design of Integrated Circuits and Systems (MIXDES)
(pp. 23–28).

50. Tega, N., Miki, H., & Pagette, F., et. al. (2009). Increasing threshold voltage variation due to
random telegraph noise in FETs as gate lengths scale to 20 nm. In VLSIT.

51. Tega, N., Miki, H., Yamaoka, M., Kume, H., Mine, T., Ishida, T., et al. (2008). Impact of
threshold voltage fluctuation due to random telegraph noise on scaled-down SRAM. In IEEE
International Reliability Physics Symposium, 2008. IRPS 2008 (pp. 541–546).

52. Thomos, N., Boulgouris, N., & Strintzis, M. (2006). Optimized transmission of JPEG2000
streams over wireless channels. IEEE Transactions on Image Processing, 15(1), 54–67.

53. Tsukamoto, Y., Toh, S. O., Shin, C., Mairena, A., Liu, T.-J. K., & Nikolic, B. (2010). Analysis
of the relationship between random telegraph signal and negative bias temperature instability.
In IRPS (pp. 1117–1121).

54. van Santen, V. M., Amrouch, H., Martin-Martinez, J., Nafria, M., & Henkel, J. (2016).
Designing guardbands for instantaneous aging effects. In Proceedings of the 53rd Annual
Design Automation Conference (p. 69).

55. van Santen, V. M., Amrouch, H., Parihar, N., Mahapatra, S., et al. (2016). Aging-aware voltage
scaling. In Design, Automation & Test in Europe Conference & Exhibition (DATE) (pp. 576–
581).

56. van Santen, V. M., Martin-Martinez, J., Amrouch, H., Nafria, M. M., & Henkel, J. (2018).
Reliability in super-and near-threshold computing: A unified model of RTN, BTI, and PV.
IEEE Transactions on Circuits and Systems I: Regular Papers, 65(1), 293–306.

57. Video trace library. http://trace.eas.asu.edu/yuv/index.html

http://ces.itec.kit.edu/dependable-hardware.php
http://ces.itec.kit.edu/dependable-hardware.php
http://trace.eas.asu.edu/yuv/index.html

Part II
OS Layer

Chapter 4
The HARPA-OS

Simone Libutti, Giuseppe Massari, and William Fornaciari

4.1 Reliability-Aware Run-Time Resource Management

The HARPA-OS acts at software level. In fact, it employs task scheduling—hence
the mapping of computing resources—as a software knob to tackle faults, aging,
and performance variability.

Indeed, this kind of approach has already been proved to be effective. Huang
et al. [7], for instance, propose a task scheduling policy that is based on a reliability
model, and whose objective is to maximize the system lifetime. The policy requires
a power model of the computing resources; however, such model is rarely available.
Most importantly, the policy does not take into account the entity of the degradation
that is currently experienced by the hardware.

The approach presented by Chou and Marculescu [4] addresses the latter
shortcoming. In fact, they take into account permanent, transient, and intermittent
faults of the computing cores. Their resource management strategy specifically
targets NoC-based platforms, and the approach is based on the presence of spare
cores that can be employed when those that are currently being used experience
faults.

Sun et al. [11] propose an approach that also targets NoC-based platforms. It is
based on a negative-bias temperature instability (NBTI) [10] model. In this case,
the resource mapping policy is based on linear programming, which is known to
be poorly performing at runtime. Similar considerations can be done for the work
presented in [6].

Haghbayan et al. [5] present a more structured approach where a reliability
management unit provides a prediction about the current aging status of the

S. Libutti (�) · G. Massari · W. Fornaciari
Politecnico di Milano, Milano, Italy
e-mail: simone.libutti@polimi.it; giuseppe.massari@polimi.it; william.fornaciari@polimi.it

© Springer International Publishing AG, part of Springer Nature 2019
W. Fornaciari, D. Soudris (eds.), Harnessing Performance Variability
in Embedded and High-performance Many/Multi-core Platforms,
https://doi.org/10.1007/978-3-319-91962-1_4

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91962-1_4&domain=pdf
mailto:simone.libutti@polimi.it
mailto:giuseppe.massari@polimi.it
mailto:william.fornaciari@polimi.it
https://doi.org/10.1007/978-3-319-91962-1_4

74 S. Libutti et al.

hardware resources. A mapping unit is in charge of allocating tasks considering
the boundaries defined by the reliability management unit and some geometrical
constraints.

The most complete solution is probably the WARM framework presented by
Marcati et al. [9]. The framework relies on a reliability model [2] and on multiple
controllers that act at different time granularity to set the reference temperature,
perform task allocation, and set voltage/frequency points for each core. The
framework has been implemented on an Android-based mobile platform. Although
we consider WARM an interesting solution, our approach is based on the idea
of optimizing resource usage by monitoring the runtime behavior of applications.
Moreover, our approach targets a very wide range of architectures from high-tier
embedded to HPC; therefore, our needs are best addressed by a more scalable
approach.

4.2 Managing Resources from User-Space

A resource manager is a software layer that orchestrates configuration and allocation
of computational resources while taking into account system-wide and user-specific
goals. Relying on a resource manager instead of distributing the management logic
throughout the entire software stack is a very convenient approach for both operating
systems and applications developers, since it allows them to move most of the
management complexity in a black box that is easily portable and maintainable.
That is why, during the last years, there was a strong push towards migrating the
resource management logic into user-space processes [13].

Figure 4.1 shows a typical example of user-space-managed environment.
Unmanaged applications run, as usual, on top of the operating system, and they are
allowed to use a predefined set of general purpose resources. Managed applications
run instead on top of the resource manager, which, according to some optimization
policy, computes which is the best set of resources that must be allocated to each
application. In order to monitor the system and to enforce the allocation choices,
the resource manager relies, respectively, on the monitors and the knobs that are
exposed by the operating system.

It is worth noticing that some resource managers move the enforcement complex-
ity to the applications side. That is, the resource manager monitors the resources and
computes allocations, while applications are in charge of enforcing the allocation,
e.g., by using thread affinity to pin their threads on the allocated cores.

The HARPA-OS is a user-space daemon that dynamically allocates computing
resources to managed applications (from now on, only “applications”). With
“dynamic allocation,” we refer to the ability of changing the resource allocation
during runtime in order to address changes in system status, resource availability, or
applications’ Quality of Service (QoS) requirements. One of the most interesting
features of the HARPA-OS is that, conversely to the typical job schedulers, it
provides applications with an explicitly resource-aware and quality-aware execution

4 The HARPA-OS 75

HARDWARE
OS (KERNEL-SPACE)monitors knobs

RESOURCE MANAGER

unmanaged
applications

managed
applications

Fig. 4.1 A user-space-managed environment. Unmanaged applications run on top of the operating
system, while managed applications run on top of the resource manager, which exploits the
monitors and knobs exposed by the operating system for management purposes

HARDWARE
OS (KERNEL-SPACE)sysfs, cpufreq, cgroups ...

THE HARPA-OS

unmanaged
applications

managed
application

RTLIB

Fig. 4.2 A HARPA-OS-managed environment. Unmanaged applications run on top of the
operating system, while managed applications rely on the HARPA-OS Runtime Library, which
transparently negotiates resource allocation with the HARPA-OS

flow: the processing of applications is in fact divided into bursts whose quality
and resource demand are individually monitored. The allocation may change only
between processing bursts; in that case, applications are notified about the new
allocation so that they are able to reconfigure their own software parameters (e.g.,
number of threads) accordingly before the upcoming burst.

Figure 4.2 shows a typical example of HARPA-OS-managed environment.
Applications do not directly communicate with the resource manager: they instead
rely on the HARPA-OS Runtime Library (RTLib), which transparently negotiates
resource allocation with the HARPA-OS. In order to monitor the system and to
enforce resource allocation, the HARPA-OS in turn relies on the available monitors
and knobs exposed by the operating system, e.g., sysfs, cpufreq, and the Linux
Control Groups.

4.3 The Abstract Execution Model

To synchronize their processing with the dynamical resource allocation, the
HARPA-OS requires applications to relinquish the control of their execution flow
to the RTLib. That is, the RTLib drives the execution of running applications by
choosing when to execute processing bursts and reconfiguration routines. To benefit

76 S. Libutti et al.

from such support, the applications’ code must be moved into a C++ class that
exposes the following methods:

setup Setting up the processing, e.g., spawning threads and performing
mallocs;

configure (re) Configuring the application software parameters according to the
current allocation;

run Process the next chunk of data;
monitor Monitor the current QoS. If needed, ask for a higher or lower one;
release Terminate the application, e.g., join threads and free mallocs.

During runtime, the aforementioned methods will be invoked by the RTLib
according to the HARPA-OS resource and quality-aware execution flow shown
in Fig. 4.3. When the application has started, the RTLib asks for resources to the
HARPA-OS (yellow arrow) and, while waiting for the allocation to be computed,

start

SETUP

CONFIGURE

RUN

RELEASEY N

Y

N

The BarbequeRTRM
RunTime Library

allocation
changed?

stop

Managed Application

still work
to do?

Allocation needed New allocation
informationQoS goal not met

MONITOR

TO RESOURCE MANAGER FROM RESOURCE MANAGER

Fig. 4.3 The HARPA-OS: execution flow of a managed application. The runtime library drives
the execution and transparently synchronizes it with the runtime-variable resource allocation. Bold
arrows indicate the most common execution flow, i.e., a continuous burst of run and monitor
invocations under a constant resource allocation

4 The HARPA-OS 77

it invokes the application setup method, which will take place in a predefined
set of generic (shared) resources. While the application performs the setup, the
HARPA-OS allocates it some resources and notifies the decision to the RTLib
(green arrow). After the setup, the RTLib can therefore invoke the configure method,
where the application, being aware of the current allocation, is able to configure
itself accordingly. After that, the RTLib lets the application fall into the common
execution flow (bold pattern), which consists bursts of run and monitor methods
that are executed under a constant resource allocation. An allocation change can be
triggered either by external events (e.g., some resources become unavailable) or in
case of an unsatisfactory QoS. In the latter case, the RTLib notifies the problem to
the HARPA-OS (orange arrow), which will correct the allocation as soon as possible
while letting the application continue its execution bursts.

4.4 Integrating Applications

In this subsection, we provide an example of application integration. Listing 4.1
shows the simplified code of a multimedia unmanaged application that processes a
stream of video frames. Once started, the application performs an initialization and
selects a parallelism level equal to the number of online cores (lines 3–7). Then, it
processes the frames in bursts of one frame per active thread (lines 12–21). Finally,
it checks the result and terminates (lines 23–24).

Listing 4.2 shows the main function of the corresponding integrated application.
The original code is moved to a class, i.e., ManagedTask, that links with the
RTLib. As a consequence, the main function is simplified: it just initializes the
RTLib and the ManagedTask class (lines 4–5), then it starts the processing and
waits for it to terminate (lines 8–9).

Listing 4.3, instead, shows the implementation of the C++ class that encapsulates
the application code by defining the Setup, Configure, Run, Monitor, and Release
methods. Apart from the logic that was added to perform runtime reconfiguration
and to check if the current QoS is satisfactory, the resulting code is the same to that
of the original application.

4.5 Defining Resource Allocations

Given that the execution flow of managed applications is based on the concepts
of QoS compliance and software parameters reconfiguration, applications are
supposed to be profiled at design time in order to compute a set of static allocations,
each of which leads to a known QoS level and needs a known set of software
parameters to be appropriately exploited. Accordingly, the HARPA-OS scheduling
policies base their allocation choices on a static set of applications’ configurations,
which are called application working modes (AWMs).

78 S. Libutti et al.

Listing 4.1 Simplified example of a frame processing application in its nonintegrated version.
The application parses the arguments, initializes some data structure, and selects a parallelism
level. Then, it processes the frames in “threads_number”-sized bursts. Finally, it checks the results,
joins the threads, and terminates

1 void main(int argc, char *argv[])
2 {
3 ParseCommandLine(argc, argv);
4 // Load data, initialize structures, ...
5 Initialize();
6 // Using one thread per core (constant!)
7 SetThreadsNumber(sysconf(_SC_NPROCESSORS_ONLN));
8
9 int result;

10 int current_frame = 0;
11
12 while(HaveWorkToDo(current_frame)) {
13 // Process one frame per thread and update frame count
14 result = ProcessFrames(current_frame);
15
16 // Handle processing errors, if any
17 if (result) {
18 HandleError(result);
19 break;
20 }
21 }
22
23 CheckResult();
24 JoinThreads();
25 }

Listing 4.2 Main file of the integrated version of the application from Listing 4.1. The application
initializes the RTLib and uses it to instantiate the class whose methods encapsulate the processing
code. Then, it launches the processing and waits for it to terminate

1 void main(int argc, char *argv[])
2 {
3 // Initialize the RTLib
4 rtlib rtlib_services;
5 ManagedTask t(rtlib_services, argc, argv);
6
7 // Start the application
8 t->StartExecution();
9 t->WaitTermination();

10 }

Relying on a static set of configurations is a reasonable choice, since, in order
to be managed by the HARPA-OS, applications must be nonetheless refactored.
This, in turn, means that the typical managed workload is entirely composed of
applications that are known and can therefore profiled at design time. However,
relying on static configurations also leads to complex issues:

• Profiles that are obtained at design time may be inaccurate at runtime, e.g.,
due to different frequencies, temperature variation, aging-induced performance
variability, data variability, or presence of concurrently running applications;

4 The HARPA-OS 79

Listing 4.3 Simplified code of the integrated version of the application from Listing 4.1.
Underlined functions are calls to the RTLib APIs

1 /////// DEFINITION OF THE MANAGEABLE CLASS ///////
2 class ManagedTask: public ManagedApplication
3 {
4 public:
5 ManagedTask(rtlib rtlib_services, int argc, char *argv[]) {
6 ParseCommandLine(argc, argv);
7 };
8
9 int Setup() override;

10 int Configure() override;
11 int Run() override;
12 int Monitor() override;
13 int Release() override;
14
15 int result;
16 int current_frame = 0;
17 };
18
19 /////// IMPLEMENTATION OF THE MANAGEABLE CLASS ///////
20 int ManagedTask::Setup() {
21 Initialize();
22 return RTLIB_OK;
23 }
24
25 int ManagedTask::Configure() {
26 // Using one thread per allocated core (runtime-variable!)
27 SetThreadsNumber(get_alloc_cores());
28 return RTLIB_OK;
29 }
30
31 int ManagedTask::Run() {
32 if (! HaveWorkToDo(current_frame))
33 return RTLIB_WORKLOAD_NONE;
34
35 // Process one frame per thread and update frame count
36 result = ProcessFrames(current_frame);
37
38 if (result) {
39 HandleError(result);
40 return RTLIB_ERROR;
41 }
42 return RTLIB_OK;
43 }
44
45 int ManagedTask::Monitor() {
46 if (DontLike(get_throughput())) complain();
47 return RTLIB_OK;
48 }
49
50 int ManagedTask::Release() {
51 CheckResult();
52 JoinThreads();
53 return RTLIB_OK;
54 }

• An exhaustive application profiling (i.e., profiling the application for each
software and parameter combination and for each possible resource allocation)
is complex and time wasting. Moreover, it must be carried out once for each
different architecture;

80 S. Libutti et al.

Listing 4.4 Example of application recipe. A recipe is an XML file that contains a static
list of application working modes (AWMs). When computing the resource allocation for an
application, the scheduling policy chooses an AWM between those that are listed in its recipe

1 <?xml version="1.0"?>
2 <HARPA-OS recipe_version="0.8">
3 <!-- Priority with respect to other managed applications.
4 The lower, the better (minimum 1). -->
5 <application priority="1">
6 <!-- Known allocations for any Linux/CGroups-based multi-core -->
7 <platform id="org.linux.cgroup">
8 <awms>
9 <!-- AWM 0: low quality (since it got the lowest value) -->

10 <awm id="0" name="only_one_cpu" value="10">
11 <resources>
12 <!-- Allocation: a whole core -->
13 <!-- Note: resource IDs do not matter, they are
14 used internally for registration purposes -->
15 <cpu id="0">
16 <pe qty="100"/>
17 </cpu>
18 </resources>
19 </awm>
20 <!-- AWM 1: high quality (x10 with respect to AWM 0) -->
21 <awm id="1" name="cpu_and_gpu" value="100">
22 <resources>
23 <!-- Allocation: 20% of a core -->
24 <cpu id="0">
25 <pe qty="20"/>
26 </cpu>
27 <!-- Allocation: a GPU -->
28 <gpu id="0">
29 <pe qty="100"/>
30 </gpu>
31 </resources>
32 </awm>
33 </awms>
34 </platform>
35 </application>
36 </HARPA-OS>

• Discrete allocations may lead to instability. For instance, if the current resource
demand of an application is three cores but the profiled configurations feature two
or four cores, the allocation will periodically switch between the two available
allocations.

It is worth noticing that HARPA-OS also supports scheduling policies that
compute allocations in the continuous space. That is, resource allocations are
computed on-the-fly with disregard of the profiled configurations. We will deal with
continuous allocation later in this chapter.

Listing 4.4 shows an example of application recipe, which is an XML file that
contains the static list of AWMs. When computing how many and which resources
will be allocated to an application, the scheduling policy chooses an AWM between
those that are listed in the corresponding recipe and tries to wisely mapping it on
the available resources. The recipe can contain multiple platform sections, each of

4 The HARPA-OS 81

whom lists the AWMs for a particular architecture. Each AWM is identified by an
ID, a human-readable description, a Quality of Service level (expressed as an integer
value), and the list of resources that must be allocated to the application in order to
make it reach (ideally) that QoS level.

4.6 HARPA-OS Scheduling Policies

The HARPA-OS features a modular structure that allows it to be easily adapted
to the user needs. Regarding the hardware, HARPA-OS runs on any Linux-based
systems; moreover, it can be integrated with the runtime of hardware bare-metal
accelerators. Regarding system-wide management, HARPA-OS bases resource
allocation choices on scheduling policies, which are implemented as plug-ins
and make use of the HARPA-OS internal APIs to assess the current system and
applications’ status and to actuate scheduling decisions.

The structure of HARPA-OS is shown in Fig. 4.4. Yellow boxes indicate compo-
nents that are implemented as plug-ins and can therefore be easily swapped to adapt
the HARPA-OS behavior to the user needs. The resource manager interacts with
hardware and applications through an application and a platform proxy, respectively.
Communication with applications is based on a communication channel, whose
default implementation is based on remote procedure calls (RPC). The heart of the
resource manager is the scheduling policy, which is also implemented as a plug-in.

In the context of the HARPA project, we implemented two HARPA-OS policies.
The first one is TEMPURA, which targets the minimization of power consumption
in embedded systems. TEMPURA addresses the problem of bounding the system
power consumption according to a given budget, as required by the two embedded
system (ES) HARPA use cases. For instance, in the high-end ES use case (Spectrum
Sensing application on Freescale I.MX6Q platform by THALES) we need to set a
power budget to enable the deployment of such a class of applications on mobile
devices. In the low-end ES use case (Beesper system based on the ODROID-XU3
platform by HENESIS), instead, we must guarantee the system operation under
conditions of energy budget variability, and we must prevent the overheating of the
processing resources that would turn the system off. TEMPURA allows HARPA-OS
to pursue a twofold objective: it strives in keeping the temperature of the processor
below a critical threshold, while guaranteeing a target uptime given the current
energy budget.

The second scheduling policy is PerDeTemp, which instead counteracts perfor-
mance variability and minimizes temperature in HPC systems. PerDeTemp aims
at consolidating the computing resources utilization, and it can be used in both
embedded and HPC scenarios. It was developed as a more powerful version of
YaMS, which is the default scheduling policy in HARPA-OS and is based on the
already mentioned applications’ recipes.

82 S. Libutti et al.

Linux kernel-spaceRuntime / DriversCPUfreq

Resource Manager

daemon
Platform Proxy

Power
Manager

Application Proxy

Scheduler
Manager

Application
Manager

Resource
Accounter

Scheduler
Policy

Synchronization
Policy

Application

C++ / OpenCL

Control Groups

Recipe

Runtime library

Application

C++ / OpenCL

Application

C++ / OpenCL

Recipe

Runtime library

Recipe

Runtime library

Synchronization
Manager

RPC Channel

Fig. 4.4 Structure of the HARPA-OS. Yellow boxes indicate components that are implemented as
plug-ins and can therefore be easily swapped to adapt the HARPA-OS behavior to the user needs.
The resource manager (red layer) interacts with hardware and applications through an application
and a platform proxy, respectively. The heart of the resource manager is the scheduling policy,
which is also implemented as a plug-in

Conversely to YaMS, PerDeTemp is recipe-less, i.e., resource allocations are
computed on-the-fly with disregard of the profiled configurations. Recipe-less
scheduling enables two main benefits: a) the scheduling policy can handle also com-
pletely unknown applications and is robust to changes of datasets or architecture; b)
allocations are not in the discrete space anymore, and this allows the scheduling
policy to converge to optimal allocations instead of continuously switching between
near-optimal ones. PerDeTemp features another interesting characteristic: after
having selected an optimal amount of resources for an application, it maps the
allocation on the hardware by taking into account Performance, aging and fault-
induced performance Degradation, and Temperature of the available cores.

4.6.1 The Tempura Scheduling Policy

The resource policy that targets the ES use cases is called “TEMPURA.” The
name stands for Thermal and Energy Management through Power bUdget Resource

4 The HARPA-OS 83

Allocation. The main idea underlying TEMPURA is sketched in Fig. 4.5. Basing
on system temperature and battery discharge rate, TEMPURA computes a power
budget for the system. The budget is then translated to resource constraints.

TEMPURA specifically targets outdoors, battery-based embedded systems, i.e.,
systems that, in order to stay online, must limit battery usage and try not to reach
critical temperatures.

To better understand the overall picture, we can consider the low-end ES use
case (more on that in the next chapters). In that scenario, the system is supplied
by a solar panel and a battery. Whenever the solar panel cannot provide enough
power to recharge the battery (e.g., in case of bad weather), the HARPA-OS must
perform resource allocation in a battery-aware fashion, so that the systems stay up
all over the day. To do that, the system monitor can specify to the HARPA-OS
a target lifetime (e.g., “must stay on at least for other 5 h”). This time constraint,
along with the current charge level of the battery, is used by TEMPURA to compute
a power budget for the system.

On the other side, reaching critical CPU temperatures would trigger the Linux
OS thermal safety action (system switch-off), which would also prevent the system
from staying online. To do that, TEMPURA tries to correlate temperature with the
system power consumption, and this results in a second power budget for the system.

Obviously, TEMPURA merges the battery- and temperature-related power bud-
gets by selecting the strictest one. At this point, thanks to a power consumption
characterization that is performed at design time on the target architecture, TEM-
PURA is able to translate the power budget into a resource budget. That is, the
maximum amount of resources that can be allocated to application gets limited in
order to force the system to meet the selected power budget.

Fig. 4.5 The TEMPURA resource allocation policy block diagram

84 S. Libutti et al.

Fig. 4.6 ODROID XU-3 development board featuring the Samsung Exynos 5422 SoC

4.6.1.1 Design-Time Characterization

We carried out the experimental analysis on one of the HARPA project reference
platforms, namely the ODROID XU-3 development board, which is based on the
Samsung Exynos 5422 System-on-Chip. The interesting characteristic of this board
is that it features an ARM big.LITTLE 8-core CPU (Fig. 4.6).

The processor is made by a high-performance cluster (4 Cortex A15 cores
at 2 GHz maximum frequency), and a low-power one (4 Cortex A7 cores at
1.4 GHz max frequency), and it works in a heterogeneous multiprocessing (HMP)
configuration. This enables the simultaneous execution of threads on both clusters
at the same time. We sampled power consumption information by using the on-
chip sensors, which reported the power consumption of the big (4 Cortex A15) and
the LITTLE (4 Cortex A7) CPU clusters, the embedded GPU, and the memory.
Furthermore, an external power meter with a sampling rate of 10 Hz allowed us to
monitor the overall power consumption.

We stressed the system by executing a subset of multi-threaded OpenMP appli-
cations from the RODINIA benchmark suite, version 3.0 [3]: heartwall, hotspot,
leukocyte, lavaMD, and srad.

Figure 4.7 shows the overall system power consumption and the contribution of
each computing resource during the execution of the “heartwall” benchmark, which
is a CPU-bound application. The total power consumption of the board fluctuates in
the 12–14 W range, the average consumption observed for the big cluster is around
5 W, while the LITTLE cluster stays far below the 1 W.

As expected, the Cortex A15 quad-core, which is the most performing cluster,
dominates the Cortex A7 quad-core in terms of power consumption. Therefore,
it represents the most critical resource from the thermal management perspective.
This is confirmed by the temperature measures shown in Fig. 4.8. We repeated the
execution of the benchmark by comparing the case of CPU frequency governor set
to “performance” (all the cores set to maximum frequency) to the case of governor

4 The HARPA-OS 85

0 5 10 15 20 25 30
Time [s]

0

2

4

6

8

10

12

14

16

18
P

ow
er

 [W
]

[heartwall] 400 CPU power consumption

A7
A15
MEM
SYS

Fig. 4.7 Power consumption contributions during the execution of the “heartwall” RODINIA
benchmark, running eight threads

Fig. 4.8 ARM Cortex A15 quad-core (“big” cluster) temperature during the execution of the
“heartwall” RODINIA benchmark, running eight threads

86 S. Libutti et al.

Fig. 4.9 Power consumption and temperature sampling of the ARM Cortex A15 big cluster.
Double-circled dots belong to the Pareto frontier, which we also plotted (black line)

set to “on-demand” (frequency scaled up or down according to the load). In both
cases, the processor temperature easily goes over 90 ◦C, reaching peaks of 96 ◦C
after few seconds, despite the presence of a heat sink and a fan on top of the chip.

We performed a characterization of the ODROID XU-3 platform. In particular,
we studied the power and thermal profile of the Cortex A15 “big” cluster, and the
relationship between the total power consumption of the board and the sum of the
power consumption contributions of each computing resource.

The scatterplot from Fig. 4.9 reports the temperature and power consumption of
the big CPU cluster while running each benchmark for 1 min with a number of
threads big enough to fully load all the available CPU cores.

Any given power consumption level can be translated to a small temperature
range. However, since we aimed at guaranteeing a thermal safety threshold,
we focused on the points that belonged to the Pareto frontier (such points are
highlighted with double circles). We computed the analytic model of the frontier
by performing a regression test. The result, which is also plotted in the figure, is
shown in Eq. (4.1).

PA15 = −0.005 × T 2
A15 + 0.187 × T 2

A15 − 7.413 (4.1)

Basically, we bound the power consumption of the Cortex A15 quad-core cluster
(PA15) to the temperature value of the Pareto frontier (TA15). Then, we investigated
the relationship between the power consumption and the CPU usage of the big

4 The HARPA-OS 87

Fig. 4.10 CPU bandwidth allocation and power consumption sampling for the ARM Cortex A15
big cluster. Double-circled dots belong to the Pareto frontier, which we also plotted (black line)

cluster. To this purpose, we repeated the same regression analysis on the data set
plotted in Fig. 4.10, where the power consumption of the CPU cluster has been put
in relationship with the amount allocated CPU time (expressed in terms of CPU
bandwidth: 100% means a whole core at full usage).

The resulting model is presented in Eq. (4.2).

CA15 = 2.20 × P 3
A15 − 23.81 × P 2

A15 + 120.31 × PA15 − 117.62 (4.2)

Given a power budget PA15 for the big CPU cluster, we can translate it to an upper
bound for the allocable CPU bandwidth quota. Unfortunately, as evident from the
picture, this model does not accurately fit with the data set. In particular, the model
results to be too conservative. Therefore, we considered the possibility to extract a
specific model for each application. This is a feasible approach: applications that
are managed by the HARPA-OS are known and are usually profiled at design time.
In particular, each application can list its model in its recipe file. We therefore used
the model from Eq. (4.3).

CA15 = p3 × P 3
A15 + p2 × P 2

A15 + p1 × PA15 + p0 (4.3)

The parameters are specific for each benchmark. They are listed in Table 4.1.
Let us now focus on the power consumption of the whole system. The on-chip

power consumption monitors allow us to retrieve the power consumption of the

88 S. Libutti et al.

Table 4.1 CPU
usage—power consumption:
application-specific model
parameters (see Eq. (4.3))

Benchmark p3 p2 p1 p0

heartwall 2.3 −23.3 110.3 −104.0

hotspot 3.6 −34.2 170.2 −158.5

lavaMD 0.9 −8.7 75.9 −78.1

leukocyte 0.4 −2.2 49.0 −53.9

srad 1.9 −18.2 115.1 −112.8

Fig. 4.11 System power consumption sampling and related sum of power consumption contribu-
tion of each resource

processor and the memory. However, in order to drive the battery lifetime, we must
be able to compute the total board power consumption. In the following set of tests,
we will therefore try to understand the relationship between power consumption of
processor and memory and overall board power consumption.

Figure 4.11 shows the total system power consumption measured with an
external power meter during the execution of each of the aforementioned benchmark
applications, along with the sum of the power consumption contributions coming
from the big cluster (4 x A15), the LITTLE cluster (4 x A7), and the memory. As the
reader can guess by viewing the picture, this dataset can be accurately modeled. The
result is shown in Eq. (4.4), where Pres is the power consumption of the computing
resources (memory and CPU cores), and Psys is the power consumption of the whole
board.

Pres = −0.005 × P 3
res + 0.137 × P 2

res + 0.49Pres + 1.656 (4.4)

4 The HARPA-OS 89

4.6.1.2 The Scheduling Algorithm

The pseudo-code of the policy is shown in Algorithm 1. First of all, the policy
configures the number of allocation slots, which are a way to allocate to applications
an amount of resources that is proportional to their priority (lines 1–4). Then,
the policy computes which is the maximum power budget that allows the active
applications to run on the available computing resources without causing the system
temperature to reach the user-defined threshold (lines 5–20). As already stated, the
temperature-related power budget is computed by using a thermal model that must
be extracted from each application during an off-line phase. If an application does
not provide it, the policy exploits the global model as defined in Eq. (4.1). If the
system is running on batteries, the policy also computes the maximum power budget

Algorithm 1 Pseudo-code of the TEMPURA resource allocation policy
1: numSlots ← 0
2: for all application ∈ ActiveApplications do
3: numSlots ← numSlots + application.Priority()
4: end for
5: boundResource ← NULL
6: powerBoundMax ← 0
7: for all resource ∈ ManagedResources do
8: powerBound[resource] ← MAXVALUE
9: for all application ∈ ActiveApplications do

10: power ← GetPowerFromTemp(application,resource,TEMP_THRS)
11: if power < powerBound[resource] then
12: powerBound[resource] ← power

13: boundApp ← application
14: end if
15: end for
16: if powerBound[resource] ≥ powerBoundMax then
17: boundResource ←resource
18: powerBoundMax ← powerBound[resource]
19: end if
20: end for
21: powerBudgetF romT ← powerBound[boundResource]
22: powerBudgetF romE ← GetPowerFromEnergy(TIME)
23: powerBudget ← min(powerBudgetF romT , powerBudgetF romE)
24: budget ← ∅
25: for all resource ∈ ManagedResources do
26: budget[resource] ← GetResourceBudget(resource,powerBudget ,boundApp)
27: end for
28: for all application ∈ ActiveApplications do
29: allocated ← ∅
30: for all resource ∈ ManagedResources do
31: resourceSlotSize ← budget[resource]/numSlots

32: allocated[resource] ← resourceSlotSize ∗ application.Priority()
33: end for
34: Schedule(application,allocated)
35: end for

90 S. Libutti et al.

that would allow the system to stay on until the user-defined time instant (line 22).
At this point, the policy computes the system power budget as the strictest of the
two aforementioned budgets (line 23).

Once the power budget is known, the policy translates it to a resource budget
for each managed resource (lines 24–27). The LITTLE cluster is entirely allocated
as a shared resource, as well as the system memory, since their contribution on the
system power consumption is much lower than the big cluster contribution. Finally,
the policy iterates over the active applications and computes the amount of resources
to reserve them (lines 28–35).

4.6.1.3 Thermal Management Experimental Results

To validate the TEMPURA policy, we performed several tests, first focusing on the
thermal management side, then on the energy side.

The first set of tests aimed at demonstrating that the TEMPURA policy could
guarantee that the processor temperature would not surpass a user-defined threshold.
We executed each benchmark separately under a thermal threshold of 75, 80, 85, and
90 ◦C. We stopped their execution after 40 s, since it is long enough to raise the CPU
temperature up to the steady state [12].

The results are shown in Figs. 4.12 and 4.13. The efficacy of the policy is quite
evident, since the temperature of the big CPU cluster remains below the specified
threshold during the entire execution of the benchmarks. In the most critical scenario
(threshold = 90 ◦C), the temperature goes slightly above the threshold for 3 s, but it
stays otherwise under the threshold.

We repeated this set of tests in a multi-application scenario. More in detail, we
co-run couples of benchmarks under the aforementioned temperature thresholds.
Even this time, temperature results to be lower than the threshold most of the time.

Overall, TEMPURA is very effective at constraining the system temperature.
Indeed, in most cases, TEMPURA results to be exceedingly conservative; however,
it is worth remarking that these results have been obtained by using simple models
and in a completely proactive fashion. This approach does not require to perform a
continuous online monitoring of the temperature.

4.6.1.4 Energy Management Experimental Results

We executed a second series of experiments to assess the effectiveness of TEM-
PURA in guaranteeing a required system uptime, i.e., a given system power budget.

We considered a realistic scenario: the system was supplied by a Li-on battery
(3500 mAh, 3.70 V). We tested three lifetime goals: 2.5, 2, and 1.5 h, from which
derives a system power budget of 5.18 W, 6.48 W, and 8.63 W, respectively. The
results are shown in Figs. 4.14 and 4.15. Each plot reports the system power budget
that we aim to fulfill in order to guarantee the system lifetime goal (dotted line), and
the observed system power consumption (continuous line). The filled area represents

4 The HARPA-OS 91

0 5 10 15 20 25 30 35 40
Time [s]

40

50

60

70

80

90

100

Te
m

pe
ra

tu
re

 [C
]

big CPU cluster temperature [T=75]
heartwall
hotspot
lavaMD
leukocyte
srad

Critical temperature

(a)

0 5 10 15 20 25 30 35 40
Time [s]

40

50

60

70

80

90

100

Te
m

pe
ra

tu
re

 [C
]

big CPU cluster temperature [T=80]
heartwall
hotspot
lavaMD
leukocyte
srad

Critical temperature

(b)

0 5 10 15 20 25 30 35 40
Time [s]

40

50

60

70

80

90

100

Te
m

pe
ra

tu
re

 [C
]

big CPU cluster temperature [T=85]

heartwall
hotspot
lavaMD
leukocyte
srad

Critical temperature

(c)

0 5 10 15 20 25 30 35 40
Time [s]

40

50

60

70

80

90

100
Te

m
pe

ra
tu

re
 [C

]
big CPU cluster temperature [T=90]

heartwall
hotspot
lavaMD
leukocyte
srad

Critical temperature

(d)

Fig. 4.12 TEMPURA: thermal management in single application scenarios (application-specific
characterizations). (a) Threshold: 75 ◦C. (b) Threshold: 80 ◦C. (c) Threshold: 85 ◦C. (d) Threshold:
90 ◦C

the energy consumption, and the labels in overlay summarize energy budget and
energy consumption, considering an execution time window of 30 s. Despite the
presence of a few small system power budget violations, the results show that the
TEMPURA approach is quite effective in guaranteeing a system lifetime goal. We
can observe that in all the testing scenarios, the consumed energy is less than (but
close to) the overall energy budget. In fact, the amount of estimated remaining
energy is included in the 9–18% range, which is already a very good result,
considering that the energy management strategy is performed in a completely
proactive fashion.

Finally, we repeated the tests in a multi-application scenario. We executed
couples of benchmarks under a system life expectancy of 1.5, 2.0, and 2.5 h. The
results are summarized by Fig. 4.16, which shows the percentage of energy budget
consumed for each scenario. Even in this case, even if TEMPURA results to be
exceedingly conservative in some cases, the power budget is never exceeded.

92 S. Libutti et al.

Fig. 4.13 TEMPURA: thermal management in multi-application scenarios (application-specific
characterizations). (a) Threshold: 75 ◦C. (b) Threshold: 80 ◦C. (c) Threshold: 85 ◦C. (d) Threshold:
90 ◦C

4.6.2 The PerDeTemp Scheduling Policy

As already mentioned, HARPA-OS employs pluggable schedule policies. For the
HPC scenario, the employed policies are two: YaMS, which is the HARPA-OS
default scheduling policy and was used during the early stages of the project; and
PerDeTemp, which is a new scheduling policy that is suitable for both HPC and
homogeneous embedded scenarios and was used in the later stages of the project.

The difference between the two policies consists in how they compute the amount
of resources to be allocated to applications. YaMS allocates discrete amounts of
resources based on a limited set of known “golden” configurations. This means that,
at any given time, the chosen allocation is one of those profiled at design time and
inserted in the application recipe. This approach has two main disadvantages: first
of all, it does not take into account the runtime status of the system, i.e., number
of running applications, contention on shared resources, performance variability
due to aging and faults, and the effect of different datasets on the behavior of
applications; second, depending on the performance goal of applications, which

4 The HARPA-OS 93

Fig. 4.14 TEMPURA: energy management in single-application scenarios. We computed the
power budget in order to let the system stay up for 1.5, 2.0, and 2.5 h. (a) heartwall (1.5 h). (b)
heartwall (2.0 h). (c) heartwall (2.5 h). (d) hotspot (2.5 h). (e) hotspot (2.5 h). (f) hotspot (2.5 h). (g)
lavaMD (2.5 h). (h) lavaMD (2.5 h). (i) lavaMD (2.5 h)

is runtime-variable, the profiled configurations may cease to be “golden,” and this
often forces applications to run in sub-optimal configurations.

Conversely, PerDeTemp employs a continuous allocation: instead of relying on
the applications’ design-time profiling; it entirely bases allocation choices on the
applications’ runtime behavior. Each application, in fact, dynamically sends runtime
feedbacks to the HARPA-OS in order to express its satisfaction with the current
allocation, and PerDeTemp uses this information to compute which is the ideal
amount of resources that must be allocated to applications. Another interesting
feature of PerDeTemp, whose name stands for “Performance, Degradation and
Temperature,” is that resource mapping takes into account performance, faults-
induced degradation, and temperature of the CPU cores. In particular, PerDeTemp
strives in minimizing the resource consumption of applications while evenly spread-
ing heat throughout the chip and mitigating the effects of performance degradation.

94 S. Libutti et al.

Fig. 4.15 TEMPURA: energy management in single-application scenarios (cont.). (a–c) leuko-
cyte (2.5 h). (d–f) srad (2.5 h)

Both policies exploit the concept of Goal Gap, which is the percent distance
between the current and the required throughput applications. The application
notifies this information to the HARPA-OS at runtime, making it capable of reacting
to allocation inefficiencies.

4.6.2.1 YaMS: A Multi-Objective Scheduling Policy

YaMS is a resource allocation policy that employs a multi-objective optimization
algorithm and runtime feedbacks to dynamically compute which AWM is the best
suited to comply with the declared performance goal. As already said, YaMS
performs a discrete allocation: it chooses the best allocation out of the existing
AWMs. Each AWM represents a “golden configuration” for the application, that is, a
configuration that complies with a given QoS level that, in HPC scenarios, is usually
the desired throughput; thus, the application recipe (the collection of AWMs) has to
be carefully crafted using off-line design space exploration techniques. Figure 4.17
shows throughput and number of threads of Bodytrack application from PARSEC
benchmark [1] running on a 16-core NUMA architecture. We express throughput
in terms of execution Cycles Per Second (CPS), where “execution cycle” refers
to the processing of a single chunk of data, i.e., an application Run phase (see
Sect. 4.3). We ran Bodytrack with three different throughput goals: 1, 2, and 3
CPS. We intentionally removed the AWMs that complied with the 2-CPS and 3-
CPS goals to show that YaMS is poorly able to deal with goals that have not been
profiled during the off-line phase. The 1-CPS goal is met without problems because
one of the AWMs contained in the recipe exactly complied with the goal. The other

4 The HARPA-OS 95

Fig. 4.16 TEMPURA: energy management in multi-application scenarios. (a) lifetime = 1.5 h. (b)
lifetime = 2.5 h. (c) lifetime = 2.5 h

goals are only met on average, since there are not AWMs that comply with the
goal; therefore, the policy continuously swaps between “too fast” and “too slow”
configurations, thus becoming unstable. Note that this scenario is quite common:
profiling information could be spoiled by the presence of co-runners (although that
is not so common in HPC scenarios), frequency variations, and faults.

Early during the project, we performed some tests to evaluate the benefits
that can be achieved by taking into account the runtime behavior of applications
while computing resource allocation. Given that this approach resulted to be very
effective, we extended the YaMS scheduling policy with the concept of “Goal Gap,”
which expresses the satisfaction of each application with its resource allocation.
In YaMS, the Goal Gap information is used to understand whether an application
is really reaching the performance value that has been measured during the off-line
application characterization. If the observed performance is lower than expected, the
allocation is temporarily switched to the next (hence more performing) allocation,
so that the average observed performance gets closer to the expected one.

96 S. Libutti et al.

Fig. 4.17 Bodytrack application (from PARSEC benchmark) running on a 16-core NUMA
architecture with a throughput goal equal to 1, 2, and 3 execution Cycles Per Second (CPS)
(tolerance: 10%). We report the throughput [CPS] (upper figure) and the employed number of
threads (lower figure). The oscillatory behavior is due to the fact that the application recipe does
not contain AWMs that are specifically designed to achieve some of the throughput goals

Fig. 4.18 Throughput (continuous line) and number of allocated CPU cores (dashed lines) of 4
Floreon+ Uncertainty instances running on a 48-core based system

Figure 4.18 shows the results of the execution of four instances of the Flo-
reon+ Uncertainty application [8] on a 48-core NUMA system (8 six-core AMD
Opteron 8425HE at 2.1 GHz). In this experimental scenario, each instance simulates
the monitoring of a specific geographical area, receiving input from a dataset
representing extremely variable forecast data and catchments levels, and carrying

4 The HARPA-OS 97

Fig. 4.19 System power consumption of 4 Floreon+ Uncertainty instances running on a 16-core
multiprocessor NUMA system

out predictions about possible flooding. Depending on the input information, the
application may need to increase or decrease the prediction rate, i.e., its throughput
goal. This variability is managed by notifying the Goal Gap of each instance to the
HARPA-OS. As previously discussed, HARPA-OS (through “YaMS”) manages this
information by balancing the resource allocation among the applications accord-
ingly. The figure clearly shows the aforementioned instability effects: although
the average throughput of applications is acceptable (all the instances are able
to terminate before the deadline), the Goal Gap goes up and down depending
on variability of the input data, and the “YaMS” capability of matching the
applications’ performance requirements with a suitable AWM.

The main goal of this experiment was to minimize power consumption by
constraining resource usage of applications so that they terminated very close
to—but never after—their deadline. The experiment resulted to be quite effective.
Moreover, as shown in Fig. 4.19, the HARPA-OS and YaMS do not induce energy
inefficiency: in fact, the energy consumption with and without resource manager are
roughly characterized by the same energy consumption.

4.6.2.2 The PerDeTemp Scheduling Policy

Conversely to TEMPURA and YaMS, the PerDeTemp scheduling policy does not
rely on a design-time characterization of application. On the contrary, it can manage
even completely unknown applications by analyzing their behavior at runtime.

98 S. Libutti et al.

Fig. 4.20 Runtime profiling performed by the HARPA-OS Application Run-Time Library
(RTLib)

As shown in Fig. 4.20, the HARPA-OS Application Run-time Library (RTLib)
provides services to forward data from the application to the HARPA-OS daemon
and vice versa. This data includes performance goal and runtime statistics from
application side, amount of allocated resources from the HARPA-OS side. This
process allows the HARPA-OS to understand whether (and to what extent) the
application is satisfied with its current resource allocation.

Once started, applications can notify their performance goals to the HARPA-
OS. A performance goal is again expressed in terms of CPS, where (as in YaMS)
each cycle is the execution of a single Run phase. After each execution cycle,
the RTLib updates a set of statistics that is called application runtime profile and
contains the values of performance goal, current performance, cycle time, and CPU
usage. The runtime profile is then forwarded to the HARPA-OS periodically or only
when needed, depending on the application preferences. Upon forwarding a runtime
profile, the RTLib computes the current Goal Gap, which is the percent distance
between current and desired performance. The Goal Gap is computed as defined
in Eq. (4.5), where CPSaverage and CPSideal are the observed (average) and required
throughput, respectively.

gap = CPSaverage − CPSideal

CPSideal
(4.5)

As shown in the equation, a negative Goal Gap means that the current perfor-
mance is lower than the desired one and, conversely, a positive Goal Gap means
that the current performance is higher than the desired one. The HARPA-OS
clearly benefits from knowing the runtime profiles of applications; furthermore,

4 The HARPA-OS 99

the communication between applications and the HARPA-OS is bidirectional:
each time the HARPA-OS changes a resource allocation, it also sends a detailed
description of the new allocation to the involved application. Knowing the amount
of resources they have at their disposal allows applications to reconfigure their
software parameters and thus to suitably adapt to the new allocation. For instance,
an application can dynamically change the number of running threads according to
the available number of cores. Each time the HARPA-OS notifies an application
about a new allocation, the application automatically enters into a Configure phase;
during this phase, the application can use the RTLib API to query the amount of
allocated resources and reconfigure accordingly.

The PerDeTemp policy employs learning techniques to dynamically compute
the ideal amount of CPU bandwidth to allocate to each application. The entire
process starts from the applications’ runtime profiles. Upon receiving a runtime
profile, the policy computes the amount of resources that are really needed by the
application. Such amount is computed as shown in Eq. (4.6). Please note that this
equation assumes a linear relationship between CPS and CPU quota allocation. This
is not strictly true, hence the presence of learning techniques to adjust the allocation
according to current hardware and workload.

IdealBandwithCPU = CurrentBandwidthCPU

1 + Gap
(4.6)

As shown in Fig. 4.21, PerDeTemp allocates resources to applications trying
to achieve an optimal performance, i.e., a Goal Gap equal to zero. This is done
by learning at runtime which are the maximum and minimum allocations that
cause the performance of the application to stick with the desired one. Such
allocations are called boundaries, and each boundary is tagged with a resource
amount, a goal gap, and an age. In the example, the boundaries are initially
unknown. At second 1, the application forwards its runtime profile to the HARPA-
OS, stating a Goal Gap of 1, 5 for an actual CPU bandwidth of 4, 97 CPUs.
The resulting boundary is tagged as <ConstraintType, bandwidth, gap, age> =
<′UpperBound′, 4.97, 1.5, 0>, where age = 0 means that the boundary has just been
created. The lower bound, conversely, is inferred from the upper bound and is equal
to <ConstraintType, bandwidth, gap, age> = <′LowerBound′, 1.99, 0.0,−1>.
Each time a boundary is updated, the other one gets older. Once the age of a
boundary reaches a customizable threshold, it is tagged as outdated and discarded.

Regarding resource mapping, as already mentioned, the set of cores that is
allocated to each application is selected so that the cores feature a minimum or
at least homogeneous degradation. During the process of selection, cool cores are
preferred to hot ones, and the resource allocation is periodically recomputed to level
the heat over the whole chip. To allocate resources in a performance-, degradation-,
and temperature-aware fashion, PerDeTemp needs information about the status of
both applications (current performance and current resource usage) and hardware
(current degradation and temperature of each core). As shown in Fig. 4.22, this

100 S. Libutti et al.

Fig. 4.21 PerDeTemp resource allocation policy: dynamical allocation boundaries

is possible due to the HARPA-OS, which gathers this information from multiple
sources:

• The runtime library that is linked by applications automatically notifies the
BarbequeRTRM about applications’ statistics such as current CPU usage and
satisfaction with the current CPU bandwidth budget;

• The fault prediction framework notifies the BarbequeRTRM about the presence
and entity of degradation for each CPU core;

• The on-chip sensors (if available) are used by the BarbequeRTRM to periodically
retrieve temperature values for each core.

The resulting thermal and degradation maps are used to compute an ideal
resource mapping for the running applications.

4 The HARPA-OS 101

maxThermal map

Running applications list
Application A2

Application A1

- pid
- performance goal

On-chip
sensors

Fault
predictor

Applications
runtime
profile

Performance info
Application A2

Application A1
- pid
- performance goal
- CPU usage
- satisfaction
- throughput

CPU cores topology
C0 C1 C2 C3 C4

C5 C6 C7 C8 C9

C10C11 C12C13 C14

C15C16 C17C18 C19

Degradation map max

min

Resource Allocation

min

CPU
bandwidth
budget

Application A2

Application A1
- pid
- bandwidth budget

good

bad

Multi-objective
cores ranking

A1

A1 A1

A1

A1

A1

A1

A2

A2

A2

A2

A2 A2

A2

Allocation
history

Fig. 4.22 The PerDeTemp allocation policy. The CPU cores’ topology is annotated with the
information coming from temperature sensors and fault prediction modules. This results in a multi-
objective cores’ ranking that will be used to compute the resource mapping. CPU bandwidth
budget is instead computed by exploiting the information that comes with the runtime profiles.
In particular, runtime profiles contain a satisfaction metric that is used by the runtime library to
express whether the current CPU budget is under- or over-provisioned. Resource allocation is the
union of bandwidth allocation (i.e., how many resources) and CPU mapping (i.e., which resources)

102 S. Libutti et al.

Fig. 4.23 Bodytrack application (from PARSEC benchmark) running on a 16-core NUMA
architecture with CPS goal equal to 1, 2, and 3 CPS (tolerance: 10%, runtime profile sent every
five cycles)

4.6.2.3 Experimental Results

Whereas we will validate the PerDeTemp resource mapping policy when presenting
the HPC use cases, in this subsection we will validate the policy from the
applications’ throughput side.

AWM-less resource allocation policies converge to optimal solutions more easily
than recipe-based ones. The reason is simple: in the case of AWM-less policies,
resource allocation is continuous (i.e., the policy can allocate any amount of
resources to applications); conversely, in the case of recipe-based policies, the
allocation is discrete (i.e., the policy allocates resources according to existing
configurations).

Figure 4.23 shows throughput and number of threads of the Bodytrack applica-
tion under three different performance goals: 1, 2, and 3 CPS. Conversely to YaMS,
which continuously swaps between configurations to reach an average null Goal
Gap, PerDeTemp computes configurations on the fly, trying to continuously stick
with the goal. Even if applications’ reconfiguration (in this case, number of threads
reconfiguration) introduces some noise on the cycle time, PerDeTemp succeeds in
making the application comply with its declared throughput goal.

Another example of performance-aware resource allocation is shown in Fig. 4.24,
where the policy is tested against a dynamic CPS goal. This scenario is realistic:
an application could react to external events by updating its desired performance
at runtime, e.g., to put itself in a low-power mode or to temporarily augment the
quality of its output when needed. Even in this case, PerDeTemp succeeds in making
the application comply with its goals even if, particularly in this case, application

4 The HARPA-OS 103

Fig. 4.24 Bodytrack application (from PARSEC benchmark) running on a 16-core NUMA
architecture with dynamic CPS goal (tolerance: 10%, runtime profile sent every five cycles)

reconfiguration introduces some noise on the measured throughput (phases marked
in red). Such a phase happens at second five, where the application runs ten
threads—resulting in a negative Goal Gap—and then eleven threads—resulting in
a positive Goal Gap. Indeed, this problem is quite similar to the one of relying on
discrete allocations instead of continuous ones. This time, however, the problem
cannot be solved, since the number of threads is inherently discrete. Having learned
the behavior of the application, PerDeTemp finally allocates to the application an
amount of resources such that the application is able to stick with the desired
throughput while running ten threads.

It is worth to notice that the reaction time of the policy depends on how
often runtime profiles are sent to the HARPA-OS (in this case, five execution
cycles). Higher forward frequencies result in faster reaction times but also in higher
communication frequency (and thus synchronization overheads). There is not an
ideal value for the window size: it actually depends on the desired CPS. For
example, in the case of a video encoder, the typical goal could be 25 frames per
second, which is 25 CPS if the encoder processes a single frame per execution
cycle. In this case, the forward frequency could easily be quite higher than that of an
application like Bodytrack, whose goal is 1–3 CPS. Please note that the HARPA-OS
defines a standard forward frequency, but each application can explicitly declare its
own one.

104 S. Libutti et al.

4.7 Conclusions

In this chapter, we introduced the structure and the main features of the HARPA-OS.
This framework, which acts at software level, employs task scheduling—hence the
mapping of computing resources—as a software knob to tackle faults, aging, and
performance variability.

After having introduced the concept of recipe, i.e., a set of golden resource
allocation configurations for an application, we explained the motivations that drove
us to move from a pure off-line profile-based task scheduling to more dynamical
approaches.

We introduced two HARPA-OS scheduling policies: TEMPURA, which targets
the Embedded Systems use case; and PerDeTemp, which was used both in the
Embedded Systems (in a stripped version) and in the High-Performance Computing
use cases (more will follow in the next chapters).

TEMPURA, whose allocation choices are partially based on an off-line profile
of applications, tries to maximize performance while: (a) keeping the temperature
of the processor below a critical threshold; and (b) guaranteeing the target system
uptime by complying with an energy budget.

PerDeTemp, which is instead completely recipe-less and is hence able to handle
completely unknown applications, aims at guaranteeing that applications comply
with their expected QoS level, while: (a) counteracting performance variability; and
(b) minimizing and evenly spreading temperature.

References

1. Bienia, C., Kumar, S., Singh, J., & Li, K. (2008) The parsec benchmark suite: Characterization
and architectural implications. In Proceedings of the 17th International Conference on Parallel
Architectures and Compilation Techniques (pp. 72–81). New York: ACM.

2. Bolchini, C., Carminati, M., Gribaudo, M., & Miele, A. (2015) Task scheduling strategies to
mitigate hardware variability in embedded shared memory clusters. In DAC.

3. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., Lee, S.-H., et al. (2009). Rodinia: A
benchmark suite for heterogeneous computing. In IISWC 2009. IEEE International Symposium
on Workload Characterization, 2009 (pp. 44–54).

4. Chou, C. L., & Marculescu, R. (2011, March). Farm: Fault-aware resource management in
NoC-based multiprocessor platforms. In 2011 Design, Automation Test in Europe (pp. 1–6).

5. Haghbayan, M. H., Miele, A., Rahmani, A. M., Liljeberg, P., & Tenhunen, H. (2016, March).
A lifetime-aware runtime mapping approach for many-core systems in the dark silicon era. In
2016 Design, Automation Test in Europe Conference Exhibition (DATE) (pp. 854–857).

6. Hartman, A. S., & Thomas, D. E. (2012). Lifetime improvement through runtime wear-based
task mapping. In Proceedings of the Eighth IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis. CODES+ISSS 2018 (pp. 13–22). New
York: ACM. Available: http://doi.acm.org/10.1145/2380445.2380455

7. Huang, L., Yuan, F., & Xu, Q. (2009, April). Lifetime reliability-aware task allocation and
scheduling for MPSoC platforms. In 2009 Design, Automation Test in Europe Conference
Exhibition (pp. 51–56).

http://doi.acm.org/10.1145/2380445.2380455

4 The HARPA-OS 105

8. Massari, G., Libutti, S., Portero, A., Vavrik, R., Kuchar, S., Vondrak, V., et al. (2015, August).
Harnessing performance variability: A HPC-oriented application scenario. In 2015 Euromicro
Conference on Digital System Design (DSD) (pp. 111–116).

9. Mercati, P., Paterna, F., Bartolini, A., Benini, L., & Rosing, T. (2016). Warm: Workload-aware
reliability management in Linux/Android. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, PP(99), 1.

10. Stathis, J. H., & Zafar, S. (2006). The negative bias temperature instability in MOS devices: A
review. Microelectronics Reliability, 46(2), 270–286.

11. Sun, J., Lysecky, R., Shankar, K., Kodi, A., Louri, A., & Roveda, J. (2014). Workload assign-
ment considering NBTI degradation in multicore systems. Journal on Emerging Technologies
in Computing Systems, 10(1), 4:1–4:22. Available: http://doi.acm.org/10.1145/2539124.

12. Wang, Z., & Ranka, S. (2010). Thermal constrained workload distribution for maximizing
throughput on multi-core processors. In 2010 International Green Computing Conference
(pp. 291–298).

13. Zhuravlev, S., Saez, J. C., Blagodurov, S., Fedorova, A., & Prieto, M. (2012). Survey
of scheduling techniques for addressing shared resources in multicore processors. ACM
Computing Surveys (CSUR), 45(1), 4.

http://doi.acm.org/10.1145/2539124

Chapter 5
Event-Based Thermal Control for High
Power Density Microprocessors

Federico Terraneo, Alberto Leva, and William Fornaciari

5.1 Introduction

The semiconductor industry is currently facing significant roadblocks to deliver
improvements in microprocessor performance. One of these is efficient dissipation
of the produced power. The failure of Dennard scaling [2] in deep nanometre
architectures has resulted in an ever-worsening power density increase, but heat
dissipation strategies have not kept the pace. This fact has led to the well-known
dark silicon problem [3, 9], where power and thermal constraints limit the number
of transistors that can be operated to an ever-decreasing fraction.

Research to overcome this limitation is divided in two complementary directions.
One aims at increasing the power dissipation capability of integrated circuits
through improved thermal design and heatsinking; the other one addresses the
development of microarchitectural improvements and run-time policies that can
increase the power efficiency.

In such a scenario, thermal management is a fundamental design challenge that
plays a key role in counteracting the variability encountered in current hardware
and software architectures. Thus, effective dynamic (or, in other words, run-time)
thermal management solutions can push a many-core platform to its maximum
performance subject to the constraint imposed by the need to remain within safe
operating temperatures.

As part of the HARPA project, thermal management has been addressed both
from a high-level perspective, through the TEMPURA policy at the HARPA-
OS level, and at the firmware level of HARPA-RT, with the event-based thermal
controller presented in this chapter. Thermal management at the HARPA-OS level is

F. Terraneo (�) · A. Leva · W. Fornaciari
POLIMI, Milan, Italy
e-mail: federico.terraneo@polimi.it; alberto.leva@polimi.it; william.fornaciari@polimi.it

© Springer International Publishing AG, part of Springer Nature 2019
W. Fornaciari, D. Soudris (eds.), Harnessing Performance Variability
in Embedded and High-performance Many/Multi-core Platforms,
https://doi.org/10.1007/978-3-319-91962-1_5

107

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91962-1_5&domain=pdf
mailto:federico.terraneo@polimi.it
mailto:alberto.leva@polimi.it
mailto:william.fornaciari@polimi.it
https://doi.org/10.1007/978-3-319-91962-1_5

108 F. Terraneo et al.

targeted at use cases where the platform is thermally intrinsically safe, for example
because it is already endowed with a hardware thermal protection, and the only
goal is to enhance reliability through an added coarse-grained management layer.
Thermal management at the HARPA-RT level, conversely, is dedicated to perform
fine-grained thermal control at the timescale required by the existing hardware and
software variability.

5.2 A Brief Overview of the Thermal Issue
in Microprocessors

Microprocessors and in general CMOS integrated circuits consume electrical power
through several mechanisms.

First and foremost, switching power is dissipated when individual transistors
close causing a current flow to charge the gate capacitance of the transistors to
which they are connected. This power contribution depends on four main factors
which are related by the well-known formula:

P = 1

2
αCV 2

ddf. (5.1)

Of these four terms, the load capacitances C are subject to manufacturing process
variability, but most importantly the switching activity α is subject to large run-time
variability due to the workload experienced by the microprocessor. For example,
during a cache miss the functional units of a core may be mostly idle, thus causing an
abrupt drop in the current consumption. The other two terms, voltage and frequency,
provide instead a knob, the well-known DVFS through which it is possible to control
the system behaviour.

Leakage power is instead caused by deep nanometre transistors deviating from
the behaviour of ideal switches, and causing a significant current flow even in the
open state. Leakage power depends on the physical conditions of the transistors,
which include process variability and, remarkably, temperature. Thus, although
leakage power does not directly depend on the workload being executed by the
microprocessor, it depends indirectly from it through the temperature rise caused by
the switching power.

Other mechanisms that cause power dissipation include resistive losses in the on-
chip metal interconnection, which again depend on the current flowing due to the
other dissipation mechanisms.

One important fact to notice is that the power consumption of microprocessors is
not constant. Active power causes current consumption variations at the timescale of
the individual clock edges and the switching activity is heavily influenced by factors
including microarchitectural variability induced by cache misses, code patterns
exercising the functional units in different ways (think floating point intensive vs.

5 Event-Based Thermal Control for High Power Density Microprocessors 109

control flow intensive code fragments), inter-core communication and, at a higher
level, OS task scheduling and time-varying workload.

All these factors add up and contribute to induce significant power variations
ranging from the nanoseconds to the seconds timescale. Although smoothed by the
decoupling capacitors always present in a microprocessor design, power dissipation
has significant frequency content in a very broad range, and as we will see, this
impacts the design of thermal control policies.

5.2.1 The Thermal Dissipation Problem in a Nutshell

The electrical power consumed by integrated circuits is converted into thermal
power, and has to be efficiently dissipated. From a physical perspective, most of
the power consumed by an integrated circuit is dissipated in the active silicon layer,
whose height is only a fraction of the total chip thickness, and the chip thickness is
already a small dimension, usually in the range of a few hundred micrometres. This
localised heating causes the two main challenges of thermal control: high power
density and fast thermal dynamics.

The first issue is mainly of concern to the research lines trying to design better
thermal dissipation solutions, while the second is what shapes the requirements of
thermal control policies.

Using the well-known electrical equivalent of thermal circuits, it is possible to
sketch a simplified thermal model for a generic microprocessor (Fig. 5.1). This
model is too simplistic for simulation, but its abstract nature is well suited to aid
the reader in gaining a quick understanding of the involved phenomena.

The power generated by the processor (here assumed spatially uniform for
simplicity) is modelled as a current generator Pgen. This power is first quickly
absorbed by the thermal capacitance of the silicon chip Csilicon, and dissipated
through the thermal resistance from the chip to the heatsink Rsilicon. This in turn
slowly heats up the heatsink thermal capacitance Csink, which finally exchanges heat
convectively with the ambient.

The key aspect that can be gained from this model is in the two highlighted
adjectives of the previous sentence. The thermal dissipation stack can be seen,
as a first approximation, as a two-stage RC filter over the microprocessor power
consumption. Since the microprocessor chip has such a small volume, its thermal

Fig. 5.1 A simplistic model
of the heat dissipation stack
for a microprocessor Pgen

Rsilicon

Csilicon Csink

Rconvec

Tambient

110 F. Terraneo et al.

capacitance is quite low, and thus the chip temperature can change quite rapidly. The
heatsink, on the other hand, is a large block of metal and its temperature changes
much more slowly.

As we have seen before, the power of a microprocessor exhibits significant
variations in a wide range of timescales, thus we are sure that, in real-world
workloads, both thermal dynamics will be exercised, and since the objective of
thermal control is that of controlling the chip temperature, not the heatsink one,
control policies need to act at a faster timescale than the fastest involved dynamic to
be of any effectiveness.

But, how fast can on-chip temperature vary? The best way to answer this question
is through an experiment. To model a dynamic system, in the sense given to this term
by control theory, it is possible to feed it with some reference signal and measure
the output. Of the many possibilities, the step and impulse response are two of the
most suitable ones. Their main advantage is the easy interpretation of the result
as well as the possibility to reproduce the behaviour of the system when subject to
arbitrarily complex signals by suitable convolutions. Thus, although real-world CPU
workloads are far more complex, we have chosen a step response for the presented
experiment.

The experiment was performed on an Intel Core-i5 6600K running Linux, and
to produce the step in power consumption the program cpuburn [8] was used. The
result is shown in Fig. 5.2.

The cpuburn program was started 5 s after temperature logging was enabled. In
addition, it was briefly stopped for 500 ms at t = 23 s and t = 41.5 s to show an
important point that will be discussed shortly.

Due to the small thermal capacitance of the silicon Csilicon and the non-negligible
thermal resistance towards the heatsink Rsilicon, the processor temperature rises from
54 to 70 ◦C in 50 ms, a 16 ◦C increase, and reaches 80 ◦C after only 600 ms since
cpuburn was started. After that, the heat produced by the processor starts heating
up the heatsink, which in turn drags the chip temperature even higher, although
more slowly. Since this second part of the thermal transient is driven by the heatsink
thermal dynamics, it takes roughly 55 s, two orders of magnitude more time for the

Fig. 5.2 Step response of the heat dissipation stack for an Intel processor

5 Event-Based Thermal Control for High Power Density Microprocessors 111

chip temperature to rise from 80 to 99 ◦C, when the experiment was stopped not to
risk damaging the processor.

Summarising, this experiment evidences the existence of two well separate
thermal dynamics. When the power is increased stepwise, the temperature will
increase at a fast rate at first, and then continue increasing more slowly.

There is just one final remark to be made before considering the effect of these
considerations on the design of thermal policies. By observing the behaviour of the
system when cpuburn is first started, it can be noticed that although temperature
rises at a fast rate, it does so when temperature is low, and when temperature
is high, which is where thermal control policies should act, temperature increase
is much slower. This is a common objection to the need for fast thermal control
policies. Consider a hypothetical policy trying to keep the processor temperature
below 85 ◦C. Since cpuburn is started at t = 5 s but the temperature first reaches
85 ◦C at t = 10 s, it appears that the policy has 5 s to react.

This is not true, as the fast temperature rise occurs at low temperatures only
when the heatsink is cold. Consider again Fig. 5.2 and concentrate on what happens
at t = 23.5 s. Here, cpuburn has been stopped, but since the heatsink takes a
significant time also to cool down, when the power consumed by the processor is
increased again, the core temperature reaches 85 ◦C in just 110 ms, and when the
same operation is performed at t = 42 s when the heatsink temperature is even
higher, only 54 ms are needed to reach 85 ◦C.

This clearly shows that thermal policies, to be effective, have to respond at most
in a few tens of milliseconds.

5.2.2 Thermal Control Policies

We hope that by now we have convinced the reader that one of the most challenging
tasks in designing a thermal control policy is that the policy sensing, decision and
actuation loop needs to be run at the millisecond timescale due to the need to control
the microprocessors’ fast thermal dynamics.

A policy can be implemented entirely in hardware, with a dedicated data path
and state machine implementing the policy algorithm, or can be implemented in
software, where only the temperature sensor and DVFS actuator are hardware
components. The main advantage of a hardware implementation is that it frees
the microprocessor from the overhead of executing the thermal control algorithm,
which given that it needs to be executed every few milliseconds can reduce the
performance of applications noticeably. However, the main drawback of a hardware
implementation is its inflexibility, as it prevents fine tuning that can be needed to
overcome the software and hardware variability.

The proposed event-based thermal controller takes a mixed hardware–software
approach to achieve the benefits of both a hardware and a software implementation.
An ordinary PID control algorithm has to be executed at a fixed rate, even when
temperature is not changing. In the HARPA project, we have explored the powerful

112 F. Terraneo et al.

framework of event-based control theory, to design a small hardware state machine
which generates events only when temperature is changing. These events cause
interrupts which in turn execute the software control algorithm. By doing so, the
flexibility of a software implementation is preserved, while significantly reducing
its overhead.

5.3 A Modelica Thermal Simulation Library

To perform the simulation studies required by the presented research, we used
Modelica, which is an object-oriented modelling language.

Two are the main reasons for the choice of object-oriented modelling, and
in particular the Modelica language: multi-physics modelling, and the possibility
of co-simulating equation-based and algorithmic components. Multi-physics is
important for the addressed domain, since achieving a sound validation of a thermal
management policy requires to account for the many and diverse installation
conditions that a microprocessor can encounter. It is thus necessary to model the
chip, the heat sink, possibly the casing and the cooling system, be this just an air
mover or a liquid cooler or anything else, and sometimes even the power supply
electronics. The co-simulation of components described through equations and
through algorithms allows to model the processor and its heat dissipation stack as
well as the controller in their most natural representation, and also for the generation
of stimuli to replicate the behaviour of the various computational loads to which the
microprocessor can be subjected. Quite intuitively, a modelling paradigm that allows
to do all of the above with a single tool is of great help for the presented research.

The thermal simulation and control has been implemented as a Modelica library,
which is composed of three sections briefly described below:

1. Components. This section contains the building blocks used by the rest of
the library, such as a solid control volume with heat capacity and boundary
conductances, well-assessed empirical correlations for convective heat exchange
and domain-specific elements like a cooling fan. The same section contains
aggregate components, including a three-dimensional array of solid volumes,
which is typically used to simulate the temperature distribution into a chip or
a heat spreader. One-dimensional elements are also available, being suited to
model elements such as heat pipes. The components of this section are directly
modelled in the continuous time with differential equations. The separation of
the modelling equations from the differential equation solver is in fact another
important advantage of adopting an object-oriented paradigm, as this allows to
take profit of newly developed solvers with no effort on the part of the analyst.

2. Controllers. The main element of this section is the event-based controller
presented in Sect. 5.5; the section also contains the models of the aggregate
blocks used to compose the devised control architectures, so as to obtain the
results of Sect. 5.6. For the reasons explained above, all these models are

5 Event-Based Thermal Control for High Power Density Microprocessors 113

algorithmic. In addition, this section includes continuous-time controllers, that
are functionally equivalent to the event-based ones just mentioned, and can be
used as a baseline for comparison in simulations targeted to control quality
assessment.

3. Stimuli sources. This section includes ad hoc power signal generators, useful to
produce realistic profiles based on conveniently specified characteristics—such
as the use over time of arithmetic units, pipelines, cache and so forth—of the
possible applications running on the simulated microprocessor.

In developing the library, care was taken to design physical connectors (electric
pins, heat ports and so on) compatible with the Modelica Standard Library, and with
other libraries that can be usefully coupled to this in a view to widening the set of
simulated physics—for example, the ThermoPower library [1] to represent thermal
and hydraulic phenomena in cooling systems, including both those comprised in
the typical CPU rack as well as for large-scale simulations of data centre air
conditioners.

To briefly show the library in action, Fig. 5.3 shows the Modelica scheme of
the model of a microprocessor, including the heat spreader which is part of the
package, connected to a heat sink, exchanging with air at a prescribed ambient
temperature, subjected to a time-varying (in this case, multi-harmonic) profile of
generated powers in the absence of any thermal management.

Fig. 5.3 Chip subjected to exogenous powers, open loop—Modelica scheme

114 F. Terraneo et al.

300250200150

time (s)

T
em

pe
ra

tu
re

s(
°C

)

100500
20

30

40

50

60

70

80

90

Fig. 5.4 Chip subjected to exogenous powers, open loop—ten simulated temperatures from the
grid

Figure 5.4 shows an example of the obtained results, showing the behaviour
of selected temperatures in the chip for clarity. Note the large and fast swings,
furthermore testifying the criticality of the control problem and the usefulness of
the event-based approach.

The simulation of Fig. 5.4, that was done with a 10 × 10 grid and three layers
to represent the silicon, package and heat sink, took 23.5 s on a 64-bit i5-based
machine. This is about 25 times faster than real time, allowing for extensive test
campaigns with an acceptable effort, as well as giving the possibility to test corner
cases in the silicon power consumption difficult to exercise using benchmarks on a
real machine. As for the spatial discretisation, based on experience we can say that
the adopted one is adequate for most control-oriented—i.e. system level—studies.
At present, research is nonetheless ongoing towards the use of sparse solvers,
in order to allow for significantly more fine-grained simulations, should this be
necessary, e.g. for the final validation of a strategy. We would like to stress once
again, however, that the tool is already well suitable for control-centred studies, as
testified by the experimental results of Sect. 5.6, where the used control system has
been assessed by means of the library just described.

5.4 Event-Based Thermal: The Hardware Event Generator

In [7], it is shown and motivated that a decentralised control architecture, devoting
one event-based PI controller to each core, can provide efficient enough temperature
control. In this and the following section, we describe how the preliminary results
of that paper were turned into a fully functional system working on real hardware.

As anticipated in Sect. 5.2.2, hardware–software partition is the proposed solu-
tion to achieve the fast response required by the thermal control problem at an
acceptable overhead. Specifically, and given the decentralised nature of the overall
scheme, each core is equipped with a hardware event generator, to interact with the
thermal sensors, and a software controller.

5 Event-Based Thermal Control for High Power Density Microprocessors 115

This section deals with the hardware event generator, the following with the
software control policy.

The purpose of the hardware event generator is to generate interrupts to run
the software control policy only when needed. The design combines a send-on-
delta and a timeout policy as follows. The temperature sensor is sampled at a fixed
interval qs , typically in the range from 500µs to 10 ms. A temperature threshold
Δ and a timeout are selected. Every qs , a new temperature value is read, and if
it differs in magnitude from the value when the controller was last run by more
than Δ, a threshold event is generated and the controller is run again. If instead the
timeout expires, a timeout event is generated and the controller is run. The software
controller is informed whether the event is due to a threshold or timeout through a
flag bit in a register exposed by the event generator.

The timeout value is dynamically adapted (in software) to satisfy the opposing
constraints of control quality and low overhead. The decision to increase or decrease
the timeout depends on the reason why the controller was called. In the case of a
timeout event, the timeout is increased exponentially, up to a maximum value that
in the proposed implementation is 0.5 s. If instead the controller was called due to a
threshold event, the timeout is immediately reduced down to the minimum value qs ,
forcing the controller to be run again when the next temperature sample is available.

The event generation policy is expected to be implemented in hardware, as a
simple state machine connected to a data path to compare the absolute value of the
current temperature reading with the one when the controller was last run, hence
deciding if an interrupt has to be generated. The timeout can be easily implemented
using a hardware counter incremented at a frequency equal to 1/qs . Figure 5.5 shows
a high-level diagram of the proposed event generator, detailing the registers used for
the required communication with the software interrupt routine.

To have an estimate of the area and power consumption of the proposed
hardware event generator, we implemented and simulated it in RTL Verilog, and
then synthesised it in Cadence Encounter using the NAND Gate Liberty standard
cell library. Synthesis results were obtained considering an operating voltage of
1.1 V and a clock frequency of 667 MHz, which yielded a per-core area and power

Fig. 5.5 High-level logic scheme of the hardware event generator

116 F. Terraneo et al.

overheads of 159µm2, 471µW, respectively. The proposed solution has thus a
negligible impact compared to the area and power consumption of modern CPU
cores.

5.5 Event-Based Thermal: The Software Control Policy

In this section we describe the software part of the proposed solution, that is, the
configurable control policy.

5.5.1 Control Structure and Closed-Loop System

As discussed in [7], control events are generated by the temperature sensor with a
send-on-delta policy, that now needs to be described more in detail. It is not the
purpose of this section to describe the internals of the sensor, suffice in this respect
to say that it has an internal “fast” sampling mechanism acting at period q , based
on which an event is possibly triggered. We thus introduce an index h to count the
mentioned fast sensor samplings.

As anticipated, we adopt a PI control law. In state space representation, this takes
the form of two multiply-and-accumulate operations, that is,

{
xR(k) = xR(k − 1) + bR(w(k − 1) − y(k − 1))

u(k) = xR(k) + dR(w(k) − y(k))
(5.2)

where w, y, u and xR are the set point, the controlled variable, the control signal and
the PI state variable, while k is the control discrete-time index—i.e. it counts the
interventions of the controller, not the samplings of the sensor. To keep the notation
as light as possible, in the following when we need to locate the k-th event in the
fast sampling, we shall indicate its index with h(k), while when this is not needed
we shall write for the generic signal v(k) to mean v(h(k)).

Based again on [7], we describe the controlled system with a first-order, SISO,
strictly proper model. Also, we make the assumption that the fast sampling period
q is small enough for a discrete-time model at step q to be practically equivalent to
a continuous-time one. This said, we write

{
xP (h) = aP xP (h − 1) + bP u(h − 1)

y(h) = cP xP (h)
(5.3)

where xP is the state of the controlled system. The controller (5.2) is realised in
event-based form as follows. At the k-th event, the sensor provides the current and
also the previous sample of the controlled variable, i.e. y(h(k)) and y(h(k) − 1).

5 Event-Based Thermal Control for High Power Density Microprocessors 117

The controller then computes u(k) and keeps it constant till the last event, that is,

u(l) = u(h(k − 1)) = u(k − 1), l = h(k − 1) . . . h(k) − 1. (5.4)

In accordance with the hold operation above, prior to computing u(k), the state
xR is made consistent with y(h(k)−1). Assuming that the set point is modified—or
sensed—only at events, which is sensible as it is seldom (if ever) modified, from the
controller’s viewpoint we have

w(l) = w(h(k − 1)) = w(k − 1), l = h(k − 1) . . . h(k) − 1. (5.5)

Given the above, the controller state at time h(k) − 1 is

xR(h(k) − 1) = u(h(k) − 1)

−dR(w(h(k) − 1) − cP xP (h(k) − 1))

= u(k − 1) − dR(w(k − 1) − cP xP (h(k) − 1)),

(5.6)

and therefore the same state at the k-th event is

xR(k) = xR(h(k) − 1) + bR(w(k − 1) − cP xP (h(k) − 1))

= u(k − 1) − dR(w(k − 1) − cP xP (h(k) − 1))

+bR(w(k − 1) − cP xP (h(k) − 1))

= u(k − 1) + (bR − dR)(w(k − 1) − cP xP (h(k) − 1)).

(5.7)

Now, since

u(k − 1) = xR(k − 1) + dR(w(k − 1) − cP xP (k − 1)) (5.8)

we get

xR(k) = xR(k − 1) + dR(w(k − 1) − cP xP (k − 1))

+(bR − dR)w(k − 1)

−(bR − dR)cP xP (h(k) − 1)

= . . .

= xR(k − 1) + bRw(k − 1) − dRcP xP (k − 1)

+(bR − dR)cP xP (h(k) − 1)).

(5.9)

If we evidence the variation of xP from the (k − 1)-th event till “immediately”
(i.e., q) before the k-th as

xP (h(k) − 1) = xP (k − 1) + δxP (k − 1), (5.10)

118 F. Terraneo et al.

where the index attributed to δxP is k − 1 as that quantity is known before the k-th
event, we obtain

xR(k) = xR(k − 1) − bRcP xP (k − 1) + bRw(k − 1)

+(dR − bR)cP δxP (k − 1).
(5.11)

Reasoning in an analogous way for the state of the controlled system, we have

xP (k) = aP xP (h(k) − 1) + bP u(h(k) − 1)

aP xP (h(k) − 1) + bP u(k − 1)

aP (xP (k − 1) + δxP (k − 1)) + bP u(k − 1)

= . . .

= (aP − bP dRcP)xP (k − 1) + bP xR(k − 1)

+bRw(k − 1) + (dR − bR)cP δxP (k − 1).

(5.12)

Thanks to the holding mechanism described above, and to the pre-update of
the xR in accordance with the (additional) past value of the controlled variable
transmitted by the sensor, we can represent the closed-loop system in the k index—
i.e. counting the events independently of their distance in the constant-rate sampling
at step q—by writing

{
x(k) = Ax(k − 1) + bw(k − 1) + f δxP (k − 1)

o(k) = Cx(k) + dw(k)
(5.13)

where x(k) := [xP (k) xR(k)]′, o(k) := [y(k) u(k)]′ and

A =
[
aP − bP dRcP bP

−bRcP 1

]
, b =

[
bP dR

bR

]
,

f =
[

aP

(dR − bR)cP

]
C =

[
cP 0

−dRcP 1

]
, d =

[
0
dR

] (5.14)

Finally, and again in accordance with [7], we endow the event triggering
mechanism with a timeout, i.e. a time span after which the sensor performs a new
transmission unconditionally. This is useful as a keep-alive measure, and in no sense
impairs our results.

5.5.2 Tuning, Stability, Robustness and Performance

The synthesis of (5.2) is done in the discrete-time domain. Doing so, a natural way
to tune the PI controller is to prescribe the eigenvalues of matrix A in (5.14). For
example, setting

5 Event-Based Thermal Control for High Power Density Microprocessors 119

bR = 1 + e2
1 − 2e1 − e2

bP cP

, dR = 1 − 2e1 + aP

bP cP

(5.15)

makes those eigenvalues e1 ∓ √
e2. It is therefore straightforward to make the

closed-loop system asymptotically stable, while having the integral action in
the controller structurally guarantee zero steady-state error, which also implies
complete asymptotic rejection of constant disturbances.

Given the simplicity of the controlled system model described above, evaluating
its stability degree, hence its robustness, is straightforward. More difficult is an
assessment of its performance, however: it is easy to compute how many k steps—
i.e. events—the free motion of (5.13) needs to converge to zero within a given
tolerance, but this gives no information about the time duration of that transient,
since (5.13) disregards for the interval between two adjacent events. This aspect
deserves a few more comments.

First, denoting by Nc the number of steps taken by the free motion of (5.13)
to converge to zero, a worst-case estimation of the closed-loop settling time
(an adequate performance indicator for our purposes) is readily obtained as Nc

multiplied by the prescribed timeout. This is inherently very pessimistic, however,
because if most of the events during a transient are timeouts, then either the PI is
poorly tuned or the send-on-delta threshold is not adequate.

An inherently optimistic settling time estimate, conversely, is obtained by
supposing that the number of h steps between every two subsequent events equals
the send-on-delta threshold divided by the one-step variation of y taken at the h step
corresponding to the first of the two, of course rounded to the nearest greater integer.
The settling time estimate is then the sum of so approximated inter-event periods up
to the Nc-th.

We omit further details on this matter because research is still underway, and in
any case the results obtained to date are satisfactory, generally outperforming state-
of-the-art alternatives.

In practice, then, to calibrate the control system, one can obtain the required
model by subjecting the processor to a load and a DVFS step; from the so-gathered
response data, and given the fast sampling time, model (5.3) is parameterised
straightforwardly with any of the numerous methods available in the literature.

5.5.3 Implementation and Simulation-Based Assessment

When the proposed solution is implemented in a multi-core or many-core processor,
the sensor and hardware event generator are conceived to be implemented in
hardware (although for the tests of Sect. 5.6 we had to emulate this). The event-
based controller, conversely, is expected to be realised in software. As anticipated,
events are triggered when the present temperature differs in magnitude more than
Δ from that at the last event, or when a configurable timeout T has elapsed since

120 F. Terraneo et al.

that event. If an event is caused by a timeout, the software controller increases the
value of T up to a prescribed maximum. If on the contrary the event is caused by
a temperature variation, T is brought back down to a prescribed minimum. This
is substantially the same event triggering mechanism of [7], thus we omit further
details if not for noticing that the conjectures made therein are now confirmed on
real hardware.

The used knob is the DVFS mechanism present in any modern processor. More
precisely, the event-based controller produces as output a frequency value. This
value is decided based on the current temperature, the state of the controller and
the desired set point, which is set to a value slightly lower than the acceptable
maximum temperature. Since the controller produces a frequency value, the setting
of the corresponding voltage is left to the installed electronics.

Modern operating systems also have power-performance controllers which
measure the system load and use a “governor” to act on DVFS to increase the
frequency when the load is high and decrease it in the opposite case, to save energy
and useless heating while keeping the system responsive.

The presented thermal management scheme can seamlessly integrate with the
power/performance system via an override configuration: the lower frequency is
selected and applied between the one requested (based on the load) by the pow-
er/performance governor, and the one computed by the temperature PI controller,
the state of which is updated accordingly. This configuration naturally makes
power/performance prevail when the temperature is well below the limit, and
thermal control takes action and rules in the opposite case.

To give an example of the assessment activities carried out by means of the
presented Modelica simulation library, we show a test for the event-based controller,
completed with all the features just listed, subjected to a suddenly variable
computational system load. Figure 5.6 shows the controlled core temperature and
the maximum admissible one Tthr , while Fig. 5.7 reports the frequency output from
the controller, normalised in the (0,1) range, which corresponds to the available
frequency span. The set point given to the event-based PI is computed as the
maximum admissible temperature minus twice the send-on-delta threshold—an
empirical rule of thumb that proved successful in practice.

As can be seen, despite the large and abrupt load variations, the objective of
operating at the maximum speed required by the load, while not violating (if not in
a practically negligible manner, which is admissible) the temperature limit, is met.
In fact, given the typically low resolution of the temperature sensors embedded in
microprocessors, one could even use the maximum admissible temperature as set
point directly, and the benefits of the proposed control for the device would still be
obtained in full.

To weigh the overhead of the proposed control scheme, Fig. 5.8 reports the inter-
event times along the test. As can be seen, the fast reaction time of the proposed
controller has been obtained by using a fast controller activation interval only when
needed, i.e. when rapid temperature changes occur. The inter-event period is instead
increased up to 100 ms for a significant part of the simulation. Thus, the remarkable

5 Event-Based Thermal Control for High Power Density Microprocessors 121

302520151050
20

30

40

50

60

70

80

90

100

Fig. 5.6 Example of control assessment simulation—processor temperature (blue) versus the
maximum admissible one (red) and the set point provided to the event-based controller (green)

302520151050
0

0.2

0.4

0.6

0.8

1

Fig. 5.7 Example of control assessment simulation—DVFS command normalised into the (0, 1)

range

control performance of Fig. 5.6 is obtained with just 809 events in the 30 simulated
seconds—i.e., about 27 events per second on average. This fact, confirmed in
practice as in the performed experiments we could get even lower events/second
ratios, indicates that also the objective of a low system overhead is achieved.

5.6 Experimental Results

The system we used for experimental tests is a PC with an ASUS Z170K
motherboard equipped with an Intel i5-6600K microprocessor and a Cooler Master
finned heat-pipe sink. The fan was removed from the heatsink during the tests, to

122 F. Terraneo et al.

302520151050
0

0.2

0.4

0.6

0.8

0.1

Fig. 5.8 Example of control assessment simulation—inter-event time

Fig. 5.9 Experimental setup

simulate an underdimensioned heatsink as well as to better assess the controller
under extreme heat exchange conditions. A photo of the experimental setup is shown
in Fig. 5.9.

The experiments were performed using Ubuntu Linux version 15.10. The kernel
modules devoted to thermal and power/performance management were removed,
and the userspace governor was selected, so as to avoid any operating system

5 Event-Based Thermal Control for High Power Density Microprocessors 123

interference in the tests. Also, for a meaningful assessment, we disabled the Turbo
Boost feature of the microprocessor, as it is based on internal hardware that is not
required by our solution, and could unpredictably alter the results. As disabling
Turbo Boost limits the maximum CPU frequency, we overclocked it to operate
up to 4.2 GHz. The processor has internal thermal protections, named TM1 and
TM2, that engage when the critical temperature (in the used processor, 100 ◦C) is
reached. These protections were left in place, as they have no role if not in a thermal
emergency, that however with the proposed controller never happened. Under this
configuration, the processor DVFS is not controlled by any policy other than the
proposed controller, thus allowing to collect repeatable results.

To complement the thermal controller with a power-performance one in order
to perform more representative experiments, we implemented a simple power-
performance policy setting the DVFS to a filtered value of the load. The actuation
values of the thermal and power-performance policies are combined as described in
Sect. 5.5.3.

The event-based controller has been implemented as a userspace C++ program,
reading the temperature and performing the DVFS actuation via the MSR [6]
interface offered by Intel processors. The choice of using the MSR interface allows
fast and low-jitter sensing and actuation. The choice of designing the controller
in userspace conversely allows to conveniently log the operation of the controller,
including the events, temperatures and DVFS actuations, although at the price of
a higher overhead. As it is not possible to implement the event generation state
machine in hardware on a commercial processor, it has been emulated in software.
Every 5 ms, the temperature sensors are read, and a software state machine decides
whether or not to call the controller. Finally, though the processor has a per-core
temperature sensor, there is only one DVFS actuator for all cores. For this reason, a
single loop is used, using the instantaneous maximum among all four temperatures
as the controlled one.

5.6.1 Control Quality and Overhead

The first test is aimed at assessing the ability of the proposed controller to keep
the temperature at or below the prescribed set point. For this test, the cpuburn
application [8] is launched on all cores. This application is specifically designed
to maximise the processor current consumption. To test the response to fast power
transients and provide a more diverse load profile than a constant power, cpuburn
is periodically stopped and restarted. Of course, such a load is not representative of
the normal operation of a processor, but step-like stimuli are well suited to compare
controllers by transient examination.

In this test, the temperature set point has been set to 90 ◦C, and Fig. 5.10 reports
the results. The top plot shows the controlled temperature, the centre plot the
DVFS actuation and the bottom one the CPU load. When the measured temperature
is lower than the limit, the power-performance policy prevails, and frequency

124 F. Terraneo et al.

Fig. 5.10 Experimental test 1—controlled temperature and threshold (top), DVFS command
(centre) and computational load (bottom)

follows the load pattern, saving power in idle periods. When the cpuburn
applications are started and stopped, fast temperature transients, up to 30 ◦C/100 ms,
are observed, while the slow rising trend is due to the heat sink warming up. Once
the temperature reaches the prescribed set point, the thermal controller starts to
reduce the frequency, and its action becomes stronger over time to compensate for
the heat sink temperature trend. The controller successfully keeps the temperature
at or below the prescribed limit, with an average of only 14 events per second.

5.6.2 Comparison with the State of the Art

The proposed controller has been compared against thermald [5], a service for
the Linux operating system to control the CPU temperature, recently developed by
Intel; thermald is configured through a file where it is possible to set the limit
temperature. Internally, it uses a PID controller calibrated at start-up not to require
control knowledge on the part of the user.

The first benchmark used for comparison is based on cpuburn as the previous
test. In this case, cpuburn is run continuously for 260 s, to obtain a constant
CPU power. After that, it is periodically stopped and restarted to introduce power
transients.

Figure 5.11 shows the results. Both controllers perform acceptably, although
thermald causes temperature fluctuations with an amplitude of 10 ◦C, even when
the CPU power is almost constant. The proposed controller limits such fluctuations
to +2/−3 ◦C and is limited mainly by the sensor noise. The proposed controller can
achieve this level of performance in controlling the temperature at just 22 events/s.
When power transients are introduced, both controllers can prevent temperature
peaks.

The second benchmark used is taken from the Intel optimised LINPACK parallel
suite [4]. The chosen benchmark consists in solving a system of linear equations,

5 Event-Based Thermal Control for High Power Density Microprocessors 125

Fig. 5.11 Experimental test 2—comparison between the proposed controller and thermald
when running cpuburn. Controlled temperature and threshold (top) and DVFS command
(bottom)

Fig. 5.12 Experimental test 3—comparison between the proposed controller and thermald
when running LINPACK. Controlled temperature and threshold (top) and DVFS command
(bottom)

and stresses the CPU floating point pipeline considerably. This test is relevant
because LINPACK alternates execution phases that cause very different cache miss
rates; thus, the CPU is never idle, which means 100% load throughout the test, but
power varies significantly.

As a consequence, see Fig. 5.12, the two controllers yield significantly different
results. The event-based one successfully keeps the temperature set point. The only
adverse effect of the mentioned power bursts is an increase in the number of thermal
events, on average 61 per second. thermald is instead simply not capable of
keeping the temperature below the limit, due to its slow actuation. It succeeds
in the first two iterations, when the heat sink is warming up, but when the slow
temperature trend has raised near enough to the limit, it fails to react timely, and the
CPU temperature reaches 100 ◦C between 96 and 98 s from the experiment start, and

126 F. Terraneo et al.

again between 121 and 131 s. In those time frames, the hardware thermal protection
is engaged, as shown by the evident high-frequency content of the DVFS command.

As a final comment, while cpuburn executes its task in an endless loop until
terminated, the LINPACK benchmark performs a finite amount of work, and thus
the completion time can be used as a metric of the CPU performance. During the
first and second iteration, when both controllers succeed in keeping the temperature
limit, the event-based controller results in an increased computational speed,
finishing the second iteration after 53.5 s compared to 58 s with thermald—a
7.8% improvement. During the following iterations, the execution is slightly faster
with thermald, but this is because it exceeds the selected temperature limit, and
not negligibly.

Summarising, the proposed event-based scheme is capable of controlling tem-
perature at the speed required to counteract fast transients, with all the advantages
of software configurability and openness to new control laws, with full power/per-
formance integration, and with a very low overhead.

5.7 Conclusions

In this chapter, we presented the event-based digital controller for the thermal
management of microprocessors that has been developed as part of the HARPA
project. Peculiar of our proposal is the integration into a unitary scheme of
temperature control and power/performance trade-off. We carried out a stability
analysis, and set preliminaries for a performance one. The proposed controller
was tested and assessed by means of a comprehensive Modelica library, that we
created by extending previous works, and can serve as a solid benchmark, open to
multi-physics settings, for control studies on the matter addressed herein. We also
showed some experimental results obtained on a modern processor architecture and
compared our solution to the state of the art, in the form of a recently proposed oper-
ating system thermal daemon to be used jointly with classical power/performance
governors.

Our proposal behaves significantly better than the available alternatives and
is easy to set up, calibrate and maintain. We can thus state that the presented
control system acts as a technology enabler by allowing the safe operation of high-
density processor, also for what concerns their fastest thermal dynamics. As a final
note, concerning the proposed control solution, a PCT (Patent Cooperation Treaty)
application has been filed.

5 Event-Based Thermal Control for High Power Density Microprocessors 127

References

1. Casella, F., & Leva, A. (2006). Modelling of thermo-hydraulic power generation processes using
Modelica. Mathematical and Computer Modelling of Dynamical Systems, 12(1), 19–33.

2. Dennard, R., Gaensslen, F., Rideout, V., Bassous, E., & LeBlanc, A. (1974). Design of ion-
implanted MOSFET’s with very small physical dimensions. IEEE Journal of Solid-State
Circuits, 9(5), 256–268.

3. Esmaeilzadeh, H., Blem, E., Amant, R. S., Sankaralingam, K., & Burger, D. (2012). Dark silicon
and the end of multicore scaling. IEEE Micro, 32, 122–134.

4. Intel Corporation. Intel optimized LINPACK benchmark. https://software.intel.com/en-us/
articles/intel-math-kernel-library-linpack-download

5. Intel Corporation. Linux thermal daemon. https://01.org/linux-thermal-daemon
6. Intel 64 and IA-32 Architectures Software Developers Manual. http://www.intel.com/content/

www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-
programming-manual-325384.html

7. Leva, A., Terraneo, F., & Fornaciari, W. (2015). Event-based thermal control for high-
density processors. In Proceedings of 1st International Conference on Event-based Control,
Communication, and Signal Processing, Krakow (pp. 1–8).

8. Redelmeier, R. The cpuburn CPU stress tester. http://manpages.ubuntu.com/manpages/
precise/man1/cpuburn.1.html

9. Taylor, M. (2013). A landscape of the new dark silicon design regime. IEEE Micro, 33(5), 8–19.

https://software.intel.com/en-us/articles/intel-math-kernel-library-linpack-download
https://software.intel.com/en-us/articles/intel-math-kernel-library-linpack-download
https://01.org/linux-thermal-daemon
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
http://manpages.ubuntu.com/manpages/precise/man1/cpuburn.1.html
http://manpages.ubuntu.com/manpages/precise/man1/cpuburn.1.html

Part III
HARPA-RT Layer

Chapter 6
HARPA RT

Dimitrios Rodopoulos, Nikolaos Zompakis, Michail Noltsis,
Francky Catthoor, and Dimitrios Soudris

6.1 HARPA RT

6.1.1 Primitives

As technology nodes approach deca-nanometer dimensions, a variety of reliability
violations threaten the binary correctness of processor execution. Computer archi-
tects typically enhance their designs with mechanisms that correct such errors,
possibly at the cost of extra clock cycles. However, this clock cycle overhead
increases the performance vulnerability factor (PVF) of the processor. The goal is
to minimize the aforementioned cost using dynamic voltage and frequency scaling
(DVFS), which is typically featured in the state-of-the-art processors. Towards this
direction, the concepts of deadline vulnerability factor (DVF), cycle noise, and slack
are introduced. A closed-loop implementation is proposed, which configures the
clock frequency based on the observed slack value. Thus, the temporal overhead
of error mitigation is absorbed and performance dependability is improved. We
evaluate the transient and steady-state behavior of our approach, proving its
responsiveness within less than 1 ms for a wide variety of error rates.

Before presenting the details of the HARPA RT, we will establish a common
theoretical background, introducing all key terms. Then, the two components of
the HARPA RT with System Scenarios are presented: (1) a PID Controller, which
ensures stable control of the performance dependability scheme and (2) a System

D. Rodopoulos (�) · F. Catthoor
Imec, Leuven, Belgium
e-mail: drodo@microlab.ntua.gr; catthoor@imec.be

N. Zompakis · M. Noltsis · D. Soudris
MicroLab-ECE-NTUA, Athens, Greece
e-mail: nzompakis@microlab.ntua.gr; mnoltsis@microlab.ntua.gr; dsoudris@microlab.ntua.gr

© Springer International Publishing AG, part of Springer Nature 2019
W. Fornaciari, D. Soudris (eds.), Harnessing Performance Variability
in Embedded and High-performance Many/Multi-core Platforms,
https://doi.org/10.1007/978-3-319-91962-1_6

131

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91962-1_6&domain=pdf
mailto:drodo@microlab.ntua.gr
mailto:catthoor@imec.be
mailto:nzompakis@microlab.ntua.gr
mailto:mnoltsis@microlab.ntua.gr
mailto:dsoudris@microlab.ntua.gr
https://doi.org/10.1007/978-3-319-91962-1_6

132 D. Rodopoulos et al.

Scenario component, which detects the applicable performance dependability tar-
get at all times. The latter is very important, since it indirectly provides information
to the HARPA RT about the extent of performance variability that needs to be
mitigated.

Error mitigation inflates the number of clock cycles that is required to complete
portions of the instruction stream (corresponding to TNs), which pass through the
processor. In order to guarantee dependable performance, this overhead should be
quantified and absorbed. We formulate this problem using the following definitions.
From prior art, we repeat that the concept of the PVF is the per unit increase in
the number of clock cycles required for a specific instruction stream, as a result of
temporal error mitigation overheads [2].

Definition 1 Cycle budget (N) is the number of clock cycles (cc) of relevant
computation assigned to each TN. This can be determined at design time or at
runtime according to the following equation, based on a specification for the cycles
per instruction (CPI) of the processor, the number of instructions (L) in a TN, and a
user-defined PVF tolerance (PVFlimit) :

N = (1 + PVFlimit) × CPI × L (6.1)

Definition 2 Cycle noise (x) is the sum of clock cycles (cc) that are inevitably
wasted by mechanisms like ECC, shadow latches, etc. In general, it comes across as
a result of error mitigation, which consequently leads to PVF degradation.

Definition 3 Frequency multiplier (x) is a positive real number by which the
default clock frequency (f) is multiplied, reflecting possible DVFS configurations.

Definition 4 Deadline vulnerability factor (DVF) is the per unit difference
between the real execution time (Treal with an mreal frequency multiplier), including
cycle noise, and a reference execution time (Tref with a frequency multiplier mref),
where no cycle noise occurs:

DVF = 1 − Tref

Treal
= 1 −

N
mref×f

N+x
mreal×f

= 1 − mrealN

mref(N + x)
(6.2)

Let us assume that a stream of TNs is executed by a processor. For each TN,
a frequency multiplier can be selected (m[n]). A cycle noise value (x[n]) is also
associated with each TN. A recursive formulation of DVF at the end of each TN is
possible. An expression is derivable from the DVF definition, by expressing Treal[n]
using Treal[n − 1]. In that sense, we can write:

DVF = 1− Tref[n]
Treal[n] = 1− Tref[n]

Treal[n − 1] + N[n]+x[n]
m[n]f

= 1− Tref[n]
T ref[n−1]

1−DVF[n−1] + N[n]+x[n]
m[n]f

(6.3)

6 HARPA RT 133

2

1 2 3 4 5
x (cc)

D
V

F
 (

p.
u)

N
 (

cc
)

6 7 8 9

1

0.8

0.6

0.4

0.2

0
10

4

6

8

10× 1014

× 1014

Fig. 6.1 Deadline vulnerability factor (DVF) converges to zero, by definition, when x << N

Understandably, this formulation is complicated and has increased computational
requirements to derive (many math operations). Even if compatible to the state-of-
the-art formulation (e.g., PVF), its complexity is prohibitive for a run-time engine
that is supposed to configure a platform and guarantee performance dependability
within roughly 1 ms. As a result, we need a recursive metric that requires few math
operations, thus enabling hardware integration of a DVF degradation monitor.

It is also very interesting to observe the long-term trends of DVF according to
the above definition, assuming that no DVFS-like countermeasure has yet been
engaged. In Fig. 6.1, we present various values of DVF for a sweep of N and x

and identify certain regions of interest:

• When x >> N , DVF converges to 1, reflecting processing entirely dominated
by cycle noise.

• Another region is where x ≈ N , where we observe intermediate values for DVF.
• The upper-left side of Fig. 6.1 corresponds to x << N and reflects realistic

cases, since cycle noise is not expected to exceed cycle budget. We see that
as N increases (e.g., when useful processing follows a cycle noise burst), DVF
converges to zero. It is to be expected that, as long as no cycle noise occurs, DVF
will asymptotically converge to 0. Thus, deadline vulnerability is restricted to a
significant portion of the execution, right after cycle noise has manifested itself.

In Fig. 6.2, we see a pseudo-transient evolution of DVF, assuming impulse cycle
noise occurrences. Again, we observe that DVF asymptotically converges to zero,
immediately after an impulse of cycle noise has been injected. This makes DVF very
suboptimal for on-the-fly performance variability depiction, since it always requires
calculations from the initial point of execution. The situation is made even worse,
given the math operation requirements of DVF. Hence, a new term is needed to
provide at all times the proximity of the system to a deadline violation.

Definition 5 Rate Divergence Slack (s) expresses the divergence of the processor
from a default clock budget that is assigned to a TN (N[n]) assuming the default

134 D. Rodopoulos et al.

0.002 0.004
Execution Time (s)

0.006 0.0080
0

1000

x
(c

c)

D
V

F
 (

p.
u.

)

2

0

10-4x
42000

0.01

Fig. 6.2 Transient view of DVF, for impulse injections of cycle noise

Table 6.1 Operations required for performance variability indicators

Divisions Multiplications Additions Subtractions

Deadline vulnerability factor 3 1 2 2

Rate divergence slack 0 0 1 2

(mref) and current (mreal) frequency multipliers. It is given, by the following
Equation, whereas for the sake of brevity, we will refer to this term simply as slack
for the rest of the current document:

s[n] = N[n]
mref

− N[n] + x[n]
mref

+ s[n − 1] (6.4)

It appears that, by definition (see Table 6.1), slack is a simpler metric when
compared to DVF, in terms of required math operations. Considering the slack eval-
uation, we have reduced the cost significantly because the variable multiplications
and divisions are simplified and only a few shifts and add/subs are left. If we are
looking at a HW or firmware implementation of the HARPA RT, it is very important
to consider such overheads.

It is also important to show that iff slack is equal to zero, then DVF is also equal
to zero [9]. For the sake of brevity, we do not elaborate on the proof of the above
material equivalence. However, given the above recursive definitions, the proof can
be easily derived using mathematical induction and assuming that s[0] = DVF[0] =
0, which can be expected at the beginning of a TN series execution. Having provided
an illustration of the proof, we can conclude that aiming at s[n] = 0 is equivalent
with aiming at DVF[n] = 0, which is that ultimate goal of mitigating performance
variability. That way, it is consistent to design the HARPA RT in such a way that
processor slack is forced to converge to zero.

6 HARPA RT 135

6.1.2 Performance Variability Model

In this subsection, we will illustrate how performance variability is perceived in the
context of the HARPA RT. Cycle noise is the key term for the defined model, given
that it quantifies the intervention of error correcting mechanisms with the processor
performance. We define the rate at which cycle noise occurs and its peak amplitude.
If a detected and corrected error [4] occurs, the correction mechanisms add cycle
noise (x) to the TN cycle budget (N). Hence, the rate of cycle noise is described
by an MTTF estimation [4]. The probability of cycle noise occurrence after wall-
clock time is given by the following equation, which is equivalent to the (MTTF,1)
distribution [8]:

P = 1 − exp

(−ΔT

MTTF

)
(6.5)

In a simulation environment, a random number r can be created and compared to
P . If we assume that cycle noise is injected at that point of the execution and that it is
equal to, as shown in Fig. 6.3. The parameters μ and σ depend on the PVF impact of
error correction and reflect the amplitude of cycle noise. As a result, in a simulation
environment, we can assume the injection of cycle noise bursts, which generally
follow the above model. Through the rate and amplitude parameters, one can adjust
the aggressiveness of performance variability. Also, such a model is linkable to
reliability models, if one assumes the error rates of architectural components, as
well as the error correction coverage that is applied to the processor.

The aforementioned model definition further defines the interface of the HARPA
RT with the greater HARPA workpackage on performance variability modeling.
In that sense, the outcome should be compatible to the above formulation. That
way, in order to verify the HARPA RT in a prototype or a simulation environment
(regardless of the underlying scenario methodology), the injected cycle noise should

Fig. 6.3 Modeling of cycle noise during TN execution

136 D. Rodopoulos et al.

come about as a result of processor variability that is corrected by specific circuitry,
which in turn adds temporal overheads (causing the PVF to increase).

6.1.3 HARPA RT System Scenarios

The HARPA RT utilizes a PID controller to mitigate the performance degradation
effects due to RAS interventions. The PID controller operates on cycle budgets that
a scenario detector provides. Thus, the definition of the system scenarios is critical
for the optimal responses of the HARPA RT. Figure 6.4 depicts the functionality
of the proposed PID controller. Table 6.2 explains the variables of the proposed
instantiation.

The proposed control scheme (for the case of constant cycle budget) is shown
in Fig. 6.4. The idea is to create an error signal (e[n]) that indicates the currently
experienced slack and adjust the frequency of the processor accordingly. This
error signal is amplified in traditional discrete-time PID fashion, by adjusting the
respective gains, according to the following equation:

m̂[n] = e[n]kp︸ ︷︷ ︸
proportional component

+ m̂i[n − 1] + e[n]ki︸ ︷︷ ︸
integral component

+ (e[n] − e[n − 1])kd︸ ︷︷ ︸
differential component

(6.6)

Fig. 6.4 Block diagram of the proposed performance dependability scheme

Table 6.2 Variables of the proposed HARPA-RT instantiation

sref[n]
Target slack specification x[n] Timing noise interfering

(0 unless else specified) with RTS
s[n − 1] Slack at the end of the C[n] Actual budget of

previous RTS current RTS
e[n] Error signal s[n] Slack at the end of

sref[n − 1] − s[n − 1] the current RTS
m̂[n] Proposed frequency R̂[n] Default timing budget

multiplier for current RTS
m[n] Applied frequency p[n] System RTS

multiplier parameters

6 HARPA RT 137

RTS 1

TN1

TN4 TN5 TN6

TN5 TN3TN1
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24

TN2 TN3 Cycle Budget : 24

Cycle Budget : 21

Cycle Budget : 23

RTS 2

RTS 3

Fig. 6.5 Thread nodes sequences into run-time situations (RTSs)

The PID controller reacts at each RTS consisting of thread nodes (TNs). The
entire program code is divided up into TNs. Each TN is a sequence of instructions
with deterministic behavior (e.g., the body of a loop) that is executed in an atomic
way. Run-time situation (RTS) is a term that is assigned to a TN or a sequence of
TNs (see Fig. 6.5), in terms of the TNs timing (latency) or energy budget. Resolution
of this label assignment is based on parameters of the TN, which are called RTS
parameters. Due to the existence of multiple TNs in applications that are executed
with several combinations (see Fig. 6.5), the RTS with multiple TNs allows the PID
controller to respond to a more coarse granularity.

For dependable performance to be realized, each RTS needs to respect a timing
deadline as indicted by its default cycle budget and the applicable reference
frequency (mref). Due to the variety of RTSs that appear in real applications,
it is rather suboptimal to store their respective cycle budgets, let alone detect
them at runtime. In other words, the number of RTSs that are encountered in the
instruction stream of a processor is quite complex to handle. Apart from storing the
cycle budgets per RTS, it is additionally complex to detect the RTSs. The system
scenario approach [1] overcomes this issue by clustering RTSs into cumulatively
representative cases called system scenarios (or simply, scenarios). Assigning a
cycle budget that is disproportionately high to an RTS may lead to degradation
of the system performance, due to the relaxation of the timing deadline that is
assigned. Conversely, an underestimated cycle budget for an RTS may create a false
impression of negative slack, thus pushing the PID controller to an over-boosting
that will increase energy consumption. System scenarios aim [10] to balance the
above trade-off by clustering RTSs to scenarios ensuring the worst-case RTS for
each scenario without losing significantly in terms of accuracy (achieved precision
around 90%) Assuming a workload that is composed of A different RTSs, each with
cycle budget Ni, where i = 0, 1, A, the goal of this methodology is to narrow down
to B scenarios, each with cycle budget estimators (or simply, scenarios) N̂j where
j = 0, 1, B and A >> B. The reduced number of scenarios to be considered (in
comparison to RTSs) facilitates their storage in the system and their less complex
utilization at runtime. Additionally, clustering from cycle budgets Ni to estimators
N̂j should be such that no cycle budget is excessively under- or overestimated.

138 D. Rodopoulos et al.

Fig. 6.6 RTS clustering to scenarios on a representative spectrum sensing application —Energy is
calculated using the square law for dynamic power, i.e., Pdyn∞fV 2

dd and numbers are normalized
to the smallest RTS at Vdd = 1.2 V and f = 2.588 GHz

To achieve this, the difference between Ni and N̂j has to be minimized for every
clustering. We illustrate the above concepts with an example: Fig. 6.6 illustrates an
example of a significant number of RTSs of a real spectrum sensing application that
have been clustered to scenarios. Each RTS represents a certain cycle budget. Given
a number of OPP points on any processor that supports DVFS, we can draw an
energy vs. delay line, similar to the solid lines of Fig. 6.6. For these very lines to be
produced, we are using the OPP points of a well-documented processor [6] which
have also been used in the previous work [7]. The multitude of solid lines in Fig. 6.6
corresponds to a spectrum sensing application and already represents the complexity
of handling TNs using the RTS abstraction. Clearly, this amount of information
needs to be abstracted further. System scenarios can replace the many RTSs with a
more manageable set of scenarios, to be used as cycle budget estimators. The idea
is to bin RTSs, based on similarity of their cycle budgets as they are projected on
the multidimensional Pareto metric space (e.g., Energy Delay). In that sense, RTSs
that require a similar number of cycles to execute are binned to the same scenario.
The scenario is uniquely identified with its cycle budget estimator N̂k , which is the
minimum cycle budget of the RTSs that have been binned therein. By extension,
TNs that belong to similar RTSs are also falling under the same scenario when
perceived at runtime. More specifically, in Fig. 6.6, we see an artist’s illustration
of the clustering process. The assigned cycle budget is that of the fastest RTS in
the scenario. As we move away from the origin of the axis, new scenarios are
defined and certain RTSs are mapped to them. The assigned cycle budget is that
of the fastest RTS in the scenario. Eventually, the wealth of RTSs is produced by
all possible combinations of application configuration such as accuracy settings and

6 HARPA RT 139

input size. The system scenario methodology reduces this huge set of RTSs to a
more manageable set of scenarios. Given that the fastest RTS is dictating the budget
estimator of each scenario, it is clear that the complexity reduction detailed above
is introducing an accuracy overhead, which is typically called clustering overhead.
There lies a trade-off between the accuracy and the number of the derived scenarios.

A fine grain clustering decreases the gap between the budget estimators of the
same scenario but increases the number of the scenarios and vice versa. Assigning
the minimum cycle budget from the RTSs that belong to a scenario cluster forces
the rest included RTSs due to their distance from the worst case to be more
restricted, compared to their actual timing deadlines. This trend is proportional to the
clustering overhead that leads the PID controller to act more aggressively, boosting
the operation frequency. This effect is not necessarily undesirable for the purpose of
our design. The mission of the PID controller is to absorb the interfering cycle noise
of the RAS interventions. The extra frequency boosting operates preventively to the
extra delays imposed by cycle noise. The clustering overhead acts as an offset that
permits to partially eliminate the introducing noise without increasing slack. This
permits less PID controller interventions preventing the repeated frequency DVFS
switches. As a result, the inevitable clustering overhead is not undesirable, provided
that it does not force the PID controller to “worst-case behavior” (i.e., forcing it to
suggest the maximum operating frequency). Without the loss of generality in our
claims, a simple linear binning scheme, which results in the cycle budget estimator,
is shown in Fig. 6.6. Prior art already features many ways to cluster scenarios at
design time and detect them at runtime from the RTSs encountered during TN
execution (Fig. 6.14).

6.1.4 Different Classes of Scenarios

The PID controller as refereed previously absorbs the interfering cycles of the RAS
interventions. The controller adjusts the processor frequency, actuating suitable
DVFS schemes. The incoming RTSs are valued at a certain cycle budget that is used
as reference for the expected operation cycles. Cycle noise being superimposed on
cycle budget introduces negative slack that pushes the PID controller to a new DVFS
boosting. The open issue is how the PID controller can act proactively. Due to the
RAS intervention randomness, the deployment of prediction mechanisms that fully
forecast the interfering noise at runtime is neither realistic nor cost effective. The
key point is how to encapsulate in the reference cycle budget the gradual and partly

140 D. Rodopoulos et al.

predictable performance of the platform. The goal is to provide a low-cost run-
time cycle budget mechanism that will provide opportunities for less slack without
eliminating it.

The existing slack reclaiming mechanism exploits a system scenario detector.
The system scenarios provide the default cycle budget of the running RTSs. System
Scenarios are clusters of RTSs with similar cycle budgets as shown previously in
Fig. 6.6. The hierarchy and the structure of the RTSs in the System Scenarios is
the key for an efficient PID implementation. The effects of hardware degradation
increase RAS interventions so a static definition of system scenarios and an equally
static cycle noise formulation is not expected to yield dependable performance in
an efficient way. The dynamic adjustment of the system scenario concept to the new
requirements is an intermediate step towards the ultimate introduction of dynamic
scenarios.

Outlining the system scenario primitives, RTSs are discrete executions of TN
sequences, with a default cycle budget while the most restricted deadline into a
scenario represents the fixed cycle budget for the entire RTSs. Due to variability of
the RTSs into the same scenario, overestimated constraints push the PID controller
to a frequency multiplier higher from what is required, thus partially mitigating
noise cycles and paying a price at energy consumption. A noise shift higher than
a limit creates negative slack and the PID controller is called to force to zero
with a frequency increase. On condition that the RTS positions into scenarios can
be updated at runtime, the scenario detector can modify the RTS hierarchy by
re-clustering the existing scenario distribution. This process provides a run-time
adjustment of the RTS cycle budget estimations [1]. This leads the PID controller
to act partially proactively (see Fig. 6.7a) considering RAS events that are gradually
becoming a norm on the target processor. To ensure a fully proactive operation [5]
in a complete dynamic scenario approach, a predictor has to provide a runtime trend
of the incoming noise. Redistributing the predicted slack across a future scheduling
period in a globally optimized way as pictured in Fig. 6.7b we will achieve an even
better trade-off between delay and energy. In the context of the current chapter, we
focus on the scenario adaptivity through re-clustering defining the conditions of the

Fig. 6.7 Flow charts adaptive vs dynamic scenarios. (a) Adaptive scenarios. (b) Dynamic
scenarios

6 HARPA RT 141

scenario modifications at runtime. The incorporation of a predictor is not part of
the current work and represents an individual challenging issue that needs more
elaborate research that will be part of the future work.

6.1.5 Adaptive Scenarios

In this subsection, we explain how an adaptive re-clustering mechanism is built
from scratch. The objective is to keep the operation cost of such a mechanism low,
adapting at runtime modifications that keep our system updated. The key issue is the
splitting of the processes that take place at design time and at runtime. The concern
is to build a light consuming flexible mechanism that reacts quickly ensuring the
respecting deadlines. Thus, the heavy computation parts are pushed to the design
time, keeping at run-time decisions with short response time. This presupposes a
design time analysis that builds scenario metadata without requiring repeating the
whole calculations at runtime.

In this direction, the involved TNs of the targeted application are analyzed at
design time. The targeted application is split into TNs based on specific criteria
[3]. The combination of TN execution creates the exploration space of the involved
RTSs. To identify the operation cost of each RTS, we analyze the several trade-
offs for the available DVFS knobs. This information is critical to define which
knobs deal with the application requirements. The depicture of the RTS on a Pareto
space provides a good representation of the RTSs behavior and a comparison of
the interested design points presents the cost impact of each RTS. This comparison
creates a hierarchy of the RTSs based on their position in the metric space (see
Fig. 6.8). Based on this hierarchy, cluster domains define the enclosed RTSs into
scenarios. Thus, a splitting of the metric space into domains is a first approach that
provides an abstraction view of the operation cost hiding the details of the individual
RTSs. The split point is defined as the upper bound (see in Fig. 6.8 RTS1 red

Fig. 6.8 RTS Pareto curve
hierarchy into scenarios

142 D. Rodopoulos et al.

curve) of each scenario that distinguishes it from the other scenarios. Two criteria
specify these points. The first criterion is that the chosen upper bound has to have
the minimum distance from the included RTS Pareto curves (see in Fig. 6.8 D1,
D2). The second criterion that cannot be visualized is the clustering of the suitable
combinations of RTSs that minimizes during the operation of switching between
the scenarios. Thus, in the first case an algorithm has to solve a trivial distance
minimization problem and a second algorithm solves a probability distribution issue.
Both algorithms tend to be competitive in respect to the targeted improvements.
More precisely, the first algorithm aims to reduce the clustering overhead by
increasing the switching overhead and vice versa. The achievement of the minimum
total overhead is a balance between them, and more details can be found in [10].
Both algorithms can be highly computation consuming due to the involved number
of RTSs and the derived scenarios so they take place at design time and provide the
necessary information for the run-time stages. In particular, the final clustering is
based on providing information (metadata) about the cycle budget of each scenario
based on the most time-consuming RTS that will be exploited at runtime.

At runtime, a re-clustering mechanism identifies the running RTS and the
correlated slack. If the same RTSs present cycle noise repeatedly, this means that
these RTSs require a regrouping adjustment. For this reason, we use a sliding
window that traces the history of the RTS running. The re-clustering starts by
priority from RTSs with the most significant slacks at more frequent times. The
RTS slacks are watched on fixed time windows. The result of the extra cycle
noise is to increase the overhead of the effected RTS pushing it in a more costly
position at the metric space (delay-energy). The possible transitions of an RTS due
to the added cycle noise are outlined in Fig. 6.9a–e. RTS1 represents the shifted-
RTS. For each repositioning, an individual re-clustering decision (each decision
will be described at the following subsection) is taken to equalize the performance
degradation. The scenario metadata that were initialized at design time are updated
after a re-clustering. Apart from the scenario budget, information is included about
the distance from the neighboring scenarios. This information permits the rapid
recognition of the optimal re-clustering decision updating only the scenario data
that are changed. Each re-clustering decision is taken based on the new position
of the RTS at the metric space after a reviewing of the updated data, ensuring that
the RTS deadlines will be respected with the minimum cost. The re-clustering is a
parallel process that does not interrupt the operation of the PID controller. In any
case, the re-clustering time can be easily kept a fraction of the RTS operation time,
due to the simplicity of the algorithm to find the new shifted RTS position without
reordering the whole RTSs by scratch. At the end of each re-clustering, the PID
controller has updated information about the suitable DVFS scheme that minimizes
the generated slack paying a price in energy. A trade-off between the produced slack
and energy exists that will be explored in the last section with experimental results.

6 HARPA RT 143

Fig. 6.9 RTS-Shifting cases due to RAS interventions. (a) Shifted-RTS1 remains at the scenario
bounds. (b) Shifted-RTS1 remains at the scenario changing the bounds. (c) ShiftedRTS1 is
merged by another neighboring scenario. (d) ShiftedRTS1 is creates an individual scenario. (e)
ShiftedRTS1is merged by another scenario changing the new scenario bound

144 D. Rodopoulos et al.

6.1.5.1 Adaptive Scenarios Instantiated for the Cycle Noise Reduction in
the PID Controller

Concentrating on the re-clustering decisions, the key point, as referred previously,
is to distinguish transient from (quasi-)permanent cycle noise events. For example,
a very brief cycle noise burst that is never reoccurring should not be triggering
the re-clustering phase. On the other hand, when cycle noise bursts appear to
have a more predictable behavior, re-clustering RTSs may be required in order to
increase the efficiency of our PID-controlled performance dependability scheme.
The hardware degradation effects occur during the operation life and cannot be
predicted in advance. Thus, an updated trace history of the budget and noise per
RTS is needed to consider their fluctuation with time. Identifying a new trend in
cycle noise manifestation is important for the changes/reformulation of the system
scenarios through RTS re-clustering.

The RAS interventions change the RTS hierarchy into scenarios by removing
from the default cycle budgets the noise cycles and shifting the position of the RTSs
in the scenarios. Thus, more restricted deadlines trigger more aggressive DVFS
schemes that absolve the extra cycles. As the noise is impossible to be accurately
defined at runtime, the negative slack is identified as noise. Examining the re-
clustering decisions that have to be considered at runtime, we outline the following
cases:

1. In the first case, despite the added cycle noise, the scenario budget is restricted
enough and no slack exists, hence there is no need for scenario change. This
case is visualized by cost perspective in Fig. 6.9a. The slack absence is visible
from the fact that the added noise does not exceed the distance between the RTS
and the scenario budget, exploiting the clustering overhead as an offset. Thus,
clustering overhead can be utilized as a proxy of cycle noise tolerance. A high
clustering overhead permits wide RTS shifting without slack but with negative
effects at the usage of overestimated DVFS schemes. The next four cases cover
situations where the negative slack cannot be avoided.

2. In the second case, the noise pushes an RTS to a more restricted budget than the
entire scenario budget. The new RTS position forces the revision of the existing
scenario budget (see Fig. 6.9b). The new budget is decreased per equal cycles to
negative slack.

3. The differentiation at the third case is that another existing scenario merges the
shifted RTS (see Fig. 6.9c). The new position of the RTS fits better to another
existing scenario so an updated list changes the distribution of RTS into scenario.

4. The fourth case is when the shifted RTS represents a new distinct scenario (see
Fig. 6.9d). Two reasons lead to such a decision: (1) none of the existing scenario
cycle budgets cover the new RTS constraint so a new worst-case scenario is
needed or (2) the creation of a different scenario is more efficient from clustering
overhead perspective, than to be merged by an existing scenario due to the
distance between the scenarios.

6 HARPA RT 145

5. The fifth case is a combination of the second and the third case. The RTS is
merged to another existing scenario changing its upper bound (see Fig. 6.9e).

6.1.6 Experimental Results

Having applied static system scenarios and adaptive system scenarios to the RTSs of
a representative application [9] (starting up with roughly 30 scenarios), we submit
this workload to a simple RTS-level simulator [7], to compare the efficiency of the
new concept with the existing system scenario approach. The targeted application
is a real spectrum sensing application that consists of 25 TNs that constitute an
exploration space of about 800 RTSs (see Fig. 6.10). For the sake of completeness,
we repeat the basic functionality of the simulator here. As illustrated in Fig. 6.4,
the simulator operates at RTS granularity. For each RTS, the scenario clustering
provides the cycle budget estimator R̂n.

Additionally, cycle noise is injected based on the values of Λ and that represent
the rate and amplitude of RAS events, respectively. We assume that cycle noise
follows a bivariate Gaussian distribution with mean Λ and M values (λ and μ)
and sigmas (σ {Λ},σ {M}). The timing and power models of the simulator create
traces from which DVF and total energy can be deduced. Given the definition of
cycle budget estimators and their derivation, DVF expresses the per unit increase in
execution time required for an instruction stream, following the temporal overhead
of invoked RAS mechanisms and is formulated by Eq. (6.7). Respectively, PVF
expresses the per unit increase in number of clock cycles required for a specific
workload, as a result of RAS technique invocation and is formulated by Eq. (6.8). It
is noteworthy that all overheads of DVFS actuation are included in both the timing
and power models [7]. Finally, at the end of each RTS, the PID controller selects the
frequency multiplier of the next iteration, as detailed in Fig. 6.4.

Fig. 6.10 Statistical representations of the simulation conditions. (a) Histogram of the cycle noise
injected in one RTS steam. (b) PVF average values of 100 identical iterations

146 D. Rodopoulos et al.

DVF[n] = 1 −
∑n

i=0
Ni

mref∑n
i=0

Ni+xi

mi

(6.7)

PVF[n] = 1 −
∑n

i=0 Ni∑n
i=0 Ni + xi

(6.8)

The simulation results presented herein correspond to a set of random streams
of RTSs, drawn from the scenarios of Fig. 6.6. The simulated workload assumes
equally probable RTSs. Cycle noise is injected by sweeping μ and λ and assuming
σ {M} = 50 and σ {Λ} = 10. The noise histogram for one stream of RTSs is shown
in Fig. 6.10a. In fact, each measurement corresponds to a stream of 105 RTSs and,
when enabled, PID controller gains are kp = 1.5 × 10−7 , ki = 5 × 10−8, and
kd = 4 × 10−8. For each combination of μ and λ, we present the average over
100 random measurements to provide insight into the statistical variability of our
simulation results.

A first conclusion of our experiments is that apart from the extreme cases
of noise (high μ and low λ), the PID controller manages to enable dependable
performance, especially considering the increment in PVF (see Fig. 6.10b) that cycle
noise injection is causing. In addition, for the average values of Fig. 6.11a, b, we
observe that DVFDynscen ≤ DVFSysscen. Except from an area (μ > 9 × 1014)

Fig. 6.11 DVF comparison system vs dynamic (adaptive) scenarios. (a) DVF system scenarios.
(b) Dynamic (adaptive) scenarios. (c) DVF system scenarios less dynamic (adaptive) scenarios

6 HARPA RT 147

Fig. 6.12 DVFS switches comparison system vs dynamic (adaptive) scenario. (a) DVFS switches
system scenarios. (b) DVFS switches dynamic (adaptive) scenarios. (c) DVFS switches compari-
son system less adaptive scenario

that the mitigation of the cycle noise is not possible due to the limitation at
the frequency boosting, adaptive scenarios are evident more effective in terms of
eliminating negative slack meeting the deadlines (DVFDynscen) compared to the
system scenarios. Another important remark is the deviation in the total number of
DVFS switches as shown in Fig. 6.11. It is clear that the adaptive scenarios for the
same amount of cycle noise cause significantly less DVFS switches. The scenario
adaptiveness seems to counteract the slack fluctuation so the PID controller does not
need to overreact (Fig. 6.12).

Finally, total energy (see Fig. 6.13) is increasing as the injected cycle noise profile
becomes more aggressive (high μ and low λ). This is to be expected, given that the
PID controller needs to work overtime in these cases. The remarkable conclusion
is that the deviation between the system and adaptive scenario energy consumption
is minor (see Fig. 6.13a, b) and do not exceed the 3.5% at the worst cases (see
Fig. 6.13c). This occurs due to the fact that the more energy consuming frequency
boosting of the adaptive scenarios is partially equalized by the less DVFS switches
(see Fig. 6.12c). Nevertheless, a fundamental trade-off exists between the achieved
performance as expressed by the DVF and the energy impact. Figure 6.14 presents
this trade-off between static and adaptive scenarios. However, this will also be the

148 D. Rodopoulos et al.

Fig. 6.13 Energy comparison system vs dynamic (adaptive) scenarios. (a) Energy system scenar-
ios. (b) Energy adaptive scenarios. (c) Percentage energy deviation system less adaptive scenarios

Fig. 6.14 Static—adaptive scenarios performance (DVF) vs energy trade-offs

6 HARPA RT 149

Fig. 6.15 Simulation instantiation (M : μ = 30,000σ = 50, L : μ = 10,000σ = 100) of dynamic
(adaptive) scenarios applicability on the proposed DVFS scheme for dependable performance

case for all applications where enough DVFS switching options are available to
trade-off spending more energy with more slack creation.

The Pareto curves of the two approaches (adaptive vs system scenarios) seem
to be very close, presenting similar cost trade-offs (delay-energy). The adaptive
scenario appears just a little worse trend (longer distance from the start of the metric
axes) due to the extra implementation cost that they require. The gain is their ability
to achieve better performance results (DVF close and under zero).

More precisely, Fig. 6.15 highlights how the adaptive scenarios clearly improve
the performance dependability at a representative simulation instantiation (M: μ =
30,000 σ = 50, L : μ = 10,000 σ = 10). While system scenario DVF seems to
balance to a static value (0.05), adaptive scenarios adjust DVF close to zero. For a
transition period (0–2000 ms), the number of the adaptive scenarios is fluctuating to
become to a stable state. During this time, the re-clustering process generates new
scenarios increasing gradually their number up to 38 (1000 ms) and after this point
some of the existing scenarios are merged to reach the 33 scenarios (2000 ms). Thus,
the adaptive process creates and merges scenarios applying the aforementioned re-
clustering decisions to find the optimum scenario hierarchy. When this is achieved
(after 2000 ms), the scenarios remain stable and the DVF comes close to zero
without applying an over-boosting policy (negative DVF) that will consume energy
without reason. Thus, Dynamic (adaptive) scenarios seem to improve performance
dependability without remarkable energy price.

150 D. Rodopoulos et al.

6.1.7 Conclusion

In the context of the current chapter, we deployed the theoretical background and
the operation specifications of the HARPA-RT engine. We presented both a system
scenario-based PID mechanism and a partially proactive scenario configuration
that adjust the responses of the controller at the presence of RAS interventions
ensuring performance dependability. The key point in the adaptive approach is the
re-clustering of the existing system scenarios with a flexible way, absorbing the
cycle noise that is gradually becoming a norm during the observed application
operation. The simulation results prove the efficiency of this approach, ensuring
the system dependability constraints while achieving an energy gain up to 15%
compared to a guardbanding implementation and exploiting in average 83.9% of
the maximally available potential energy gain margins.

References

1. Gheorghita, S. V., Palkovic, M., Hamers, J., Vandecappelle, A., Mamagkakis, S., Basten, T.,
et al. (2009). System-scenario-based design of dynamic embedded systems. ACM Transactions
on Design Automation of Electronic Systems (TODAES), 14(1), 3

2. Hardy, D., Sideris, I., Ladas, N., & Sazeides, Y. (2012). The performance vulnerability of
architectural and non-architectural arrays to permanent faults. In 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO) (pp. 48–59). New York: IEEE.

3. Ma, Z., Marchal, P., Scarpazza, D. P., Yang, P., Wong, C., Gómez, J. I., et al. (2007). Systematic
methodology for real-time cost-effective mapping of dynamic concurrent task-based systems on
heterogenous platforms. Berlin: Springer Science & Business Media.

4. Mukherjee, S. (2011). Architecture design for soft errors. San Francisco: Morgan Kaufmann.
5. Munaga, S., & Catthoor, F. (2013). Systematic design principles for cost-effective hard

constraint management in dynamic nonlinear systems. In Innovations and Approaches for
Resilient and Adaptive Systems (pp. 1–28). Hershey: IGI Global.

6. Park, S., Park, J., Shin, D., Wang, Y., Xie, Q., Pedram, M., et al. (2013). Accurate modeling
of the delay and energy overhead of dynamic voltage and frequency scaling in modern
microprocessors. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 32(5), 695–708.

7. Rodopoulos, D., Catthoor, F., & Soudris, D. (2015). Tackling performance variability due to
RAS mechanisms with PID-controlled DVFS. IEEE Computer Architecture Letters, 14(2),
156–159.

8. Xie, M., & Lai, C. D. (1996). Reliability analysis using an additive Weibull model with bathtub-
shaped failure rate function. Reliability Engineering & System Safety, 52(1), 87–93.

9. Zompakis, N., Noltsis, M., Rodopoulos, D., Catthoor, F., & Soudris, D. (2017). Energy efficient
adaptive approach for dependable performance in the presence of timing interference. In
Proceedings of the on Great Lakes Symposium on VLSI 2017 (pp. 209–214). New York: ACM.

10. Zompakis, N., Papanikolaou, A., Raghavan, P., Soudris, D., & Catthoor, F. (2013). Enabling
efficient system configurations for dynamic wireless applications using system scenarios.
International Journal of Wireless Information Networks, 20(2), 140–156.

Chapter 7
Improving Robustness of a Real-Time
Spectrum Sensing Application with the
HARPA Run-Time Engine

Hans Cappelle, Michail Noltsis, Simone Corbetta, and Francky Catthoor

7.1 Introduction and Motivation

Bit level corruption of digital data is a major reliability concern in microprocessor
design. Unfortunately, device downscaling to deca-nanometer dimensions intensi-
fies bit errors through transistor variability [1]. To detect and correct transient or
permanent errors in modern microprocessors, designers use reliability, availability,
and serviceability (RAS) techniques. A side effect of most RAS mechanisms
is a temporary cycle time overhead, resulting in performance variability. In the
embedded domain, such variability reduces the dependability for systems with
hard quality of service (QoS) constraints. Therefore, in HARPA a cross-layer run-
time engine (RTE) mechanism was proposed [2]. The main principle is to absorb
performance variability by using knobs such as dynamic voltage and frequency
scaling (DVFS). For this purpose, a closed-loop proportional–integral–derivative
(PID) controller adapts the processor frequency. Simultaneously, the processor
voltage is adjusted to restrict energy use. To validate the HARPA RTE approach,
a real-time spectrum sensing application from Thales was selected. This application
is elaborated in Sect. 7.2.2 and runs on a quad core ARM R© processor platform.
In order to induce temperature stress errors, a heat source is used. This chapter is
organized as follows:

H. Cappelle (�) · S. Corbetta · F. Catthoor
Imec, Leuven, Belgium
e-mail: hans.cappelle@imec.be; simone.corbetta@polimi.it; catthoor@imec.be

M. Noltsis
MicroLab-ECE-NTUA, Athens, Greece
e-mail: mnoltsis@microlab.ntua.gr

© Springer International Publishing AG, part of Springer Nature 2019
W. Fornaciari, D. Soudris (eds.), Harnessing Performance Variability
in Embedded and High-performance Many/Multi-core Platforms,
https://doi.org/10.1007/978-3-319-91962-1_7

151

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91962-1_7&domain=pdf
mailto:hans.cappelle@imec.be
mailto:simone.corbetta@polimi.it
mailto:catthoor@imec.be
mailto:mnoltsis@microlab.ntua.gr
https://doi.org/10.1007/978-3-319-91962-1_7

152 H. Cappelle et al.

• Section 7.2 describes the experimental setup, covering:

– the measurement setup
– the sensing application extended with RAS support
– the implementation choices of the PID controller and the DVFS control

strategy
– the graphical user interface (GUI) to manage and visualize the experiment

• Section 7.3 discusses the measurement results. This consists out of three parts:

– heat stress-induced errors
– handling of reliability stress
– handling of workload stress

• Section 7.4 presents the conclusions of the performed experiments.

7.2 Experimental Setup

The next sections discuss the experimental setup. First, an overview of the selected
hardware is shown in Sect. 7.2.1. Generation of temperature stress is supported by
means of a hot air source. This can result in functional errors that are not captured
by a RAS mechanism on the selected application platform. Therefore, a rollback-
based mitigation is emulated in software. This code is combined with the spectrum
sensing application, and detailed in Sect. 7.2.2. The implementation of the HARPA
RTE PID controller together with selection of DVFS points is detailed in Sect. 7.2.3.
Finally, the GUI of the measurement setup is detailed in Sect. 7.2.4. This part also
contains the decision logic to detect if a functional error occurred and signals the
RAS logic on the platform if such an error was detected.

7.2.1 Measurement Setup

Three main stress factors impact the generation of faults: workload (i.e., instruction
and data stream), temperature, and operating voltage [3]. Therefore, the measure-
ment setup should be programmable, and support voltage scaling and temperature
variation. Additionally, we need a knob for the parametric mitigation technique of
[2]. We selected frequency and voltage scaling to support the HARPA RTE for
embedded applications.

Figure 7.1 shows a schematic overview of the selected platform, and Fig. 7.2
shows pictures of the measurement setup parts, which consist out of the following
components:

• The FreescaleTM IMX6Q board is chosen as a representative embedded appli-
cation platform. This choice was decided in agreement with Thales. This board

7 Improving Robustness of Real-Time Sensing with the HARPA Run Time Engine 153

Fig. 7.1 Schematic overview of the measurement setup

Analog voltage
amplifiers

Lid adhesive traces

Lid

FCBGA die
(back)

Thermocouple
amplifiers

Arduino UNO
w/MAXIM shields

Temptronic
Thermostream Freescale board

Decapped
chip

Fig. 7.2 Overview of the measurement setup components

supports DVFS and provides a quad core ARM R© cortex R© A9 processor core
supporting clock speeds up to 1 GHz. As operating system the Linux R© LinaroTM

is used, extended with a DVFS software driver.
• A laptop running the Linux R© Ubuntu R© 14.04, connected to the IMX6Q board

over Ethernet. The laptop hosts the LinaroTM Network File System (NFS) for
the IMX6Q board and runs a GUI to control and visualize the experimental data,
obtained over the Ethernet connection.

• To vary temperature, a Temptronix R© ThermoStream R© hot air source is used.
The temperature of this heat source is configurable, and directed at the ARM R©

154 H. Cappelle et al.

processor. The packaging lid of the processor die is removed to increase the
temperature impact on the processor, and to enable direct measurement of the
processor temperature.

• To measure temperature, an Arduino UNO extended with a MAXIM shield,
supporting four K temperature sensors, is used. The platform reads analog
voltages from the thermocouples and from onboard resistor, performs digital
to analog conversion, and sends digital traces to the laptop via standard USB
interface. Additionally, this board also measures the voltage of the processor
core, to estimate its power consumption.

The IMX6Q board offers no visible RAS features to deal with heat stress, and
hence these are emulated together with the application.

7.2.2 Spectrum Sensing Application and Functional
Reliability, Availability, and Serviceability Emulation

To validate the HARPA RTE for an embedded application, a real-time spectrum
sensing application is used. This application has been decided in agreement with our
colleagues from Thales TCT, which provided the initial C source code. Spectrum
sensing is relevant for software defined radio (SDR), cognitive radios (CR), oppor-
tunistic radio access technologies (RAT) dedicated to Frequency White Spaces, and
for spectrum monitoring products. Figure 7.3 shows the system context of spectrum
sensing. Specifically, the spectrum sensing functionality analyzes a wide spectrum
band to detect unused sub-bands. These can be used to allocate frequency bands to
a radio protocol, which is achieved by modifying the physical (PHY) and medium

Fig. 7.3 Spectrum sensing
system context

7 Improving Robustness of Real-Time Sensing with the HARPA Run Time Engine 155

Step 1

Fe real = 102.4 MHz

Wide band Filtering
+ Transposition
: up to 10 Gops

Transposition +
Narrow band Filtering:
Up to than 64 Gops/s Measurement

≤ 300 Gops
Less than 200 ˙ 1.5 Gops

Global Flux ≤ 11×3,47 =38 Gbit/sGlobal Flux ≤ 3,47 Gbit/sGlobal Flux ≤ 1,64 Gbit/s

~16 bits

Rx

CAN
WB filtering
Base Band
Transpo.

Signal
channellisation
= multiple
NB filter + BB
transpo.

Parameter
estimation

(power
spectrum,

density carrer,
symbol reate)

and Signal
detection

Fe comples = 51.2 MHz Up to 200 x
Fe complex
= 0.5417 MHz
~ 16 bits

~16 bits

Step 2 Step 3

Fig. 7.4 Spectrum sensing complexity

access control (MAC) communication layers. Repetitive sensing of the spectrum is
required to gather statistics on the availability of a sub-band.

To evaluate the HARPA RTE, a GSM use case is selected. The workload of this
use case exceeds 100 Giga operations per second (Gops/s) and hence is not able to
run real time on the selected IMX6Q application board. More powerful platforms
were not accessible to us at the time of these experiments, and since optimization
of this application was not the objective, the application is run at a lower speed than
real time, using stored data as stimuli for the algorithm. Figure 7.4 shows the three
main parts of the sensing algorithm:

• Wide band filtering, corresponding to a workload of 10 Gops/s
• Signal channelization with a narrow band filter, corresponding to 64 Gops/s
• Parameter estimation, with a workload up to 300 Gops/s

The reference code of the spectrum sensing application has the following
characteristics:

• Three user scenarios with respect to input bandwidth are supported:

1. Full band, corresponding to an input bandwidth of 102.4 MHz
2. Half band—51.2 MHz
3. Quarter band—25.6 MHz

• A sensing resolution bandwidth of 200 kHz is supported in all scenarios, meaning
that the input bandwidth is divided into sub-channels with a bandwidth of
200 kHz each for analysis by the sensing algorithm.

156 H. Cappelle et al.

Table 7.1 Summary of sensing application parameters

Parameter Description Unit Default value Min value Max value

Fs Sampling frequency MHz 102.4 25.6 102.4

BW Input bandwidth MHz 40 10 40

TBuffer Buffered signal duration s 0.1 0.01 1

Nc Number of filtered samples 200 50 200

• The application is coded in ANSI C, to support ease of porting the solution to
different processor architectures.1

• To ease hardware requirements, the input and output processing is replaced by
file input and output.

• In order to validate functional correctness, a set of reference inputs and outputs
is available for each scenario of the GSM spectrum sensing use case.

Table 7.1 summarizes the main parameters of the algorithm. Of particular interest
is the buffer size of the algorithm, which corresponds to a duration between 0.01 and
1 s. Since the IMX6Q application board does not contain a RAS mechanism to deal
with significant heat stress, it was decided to emulate a functional error mitigation in
software. Specifically, a monitor was added which computes as checksum signature
to detect function errors, since the input stimuli of the algorithm are known and
replayed. If a signature check fails, the application is rolled back to a previous stable
point. Data from the application buffer is consumed in fixed steps, and returning to
the starting point of the impacted segment allows a safe replay of the segment that
was corrupted by a functional error. This procedure leads to extra cycles, or put
otherwise a bigger delay. It is the task of the HARPA RTE to compensate this delay
by modifying the DVFS setting of the application board. While the implemented
RAS mechanism can deal with transient errors, permanent recurring errors result in
a system failure. Such failures should be handled by inserting exception handlers at
the boot and operating system level and are not covered in the scope of this chapter.
To avoid that the reference signature is corrupted, the comparison is done on the
laptop, which issues a rollback command if a functional error is detected. This is
elaborated in Sect. 7.2.4, which details the GUI.

The sensing application is configured to run on a single ARM R© core of
the IMX6Q board, so that a single RAS implementation is sufficient for the
experiments. The principles of our experiments are however readily transferable
to a homogeneous multi-core mapping. Heterogeneous multi-core platforms will
require some extensions, especially to handle nonuniform communication between
such cores.

1Which proved to be beneficial when processor architecture change was proposed during the
HARPA project.

7 Improving Robustness of Real-Time Sensing with the HARPA Run Time Engine 157

sref [n] e [n]

s [n – 1]

m [n]
Controller Knob Processor

Monitor

m [n]
x [n]

s [n]ˆ

–

Fig. 7.5 Proportional–integral–derivative (PID) controller block diagram

7.2.3 PID Controller Implementation and DVFS Control
Strategy

To control performance, the PID principle is to switch frequency and voltage of the
processor based on a reactive response to monitored timing delays (Fig. 7.5). To this
end, we have introduced the definition of slack as the timing difference for specific
code chunks with deterministic behavior, named as system scenarios [4], between
their execution with nominal frequency in the absence of RAS interventions and
their execution under fault manifestation. Therefore, negative slack is monitored
when errors manifest and RAS events needed to ensure functional correctness
are provoked. In this case, the PID controller should decide to boost frequency
and voltage in order to ensure performance dependability and convergence of the
slack to zero. On the contrary, positive slack is observed when frequency is over-
boosted, translating into unnecessary energy losses. Then, the PID should slow
down the processor allowing it to operate on lower frequencies. Another important
aspect is how intervention of RAS mechanisms is perceived by the PID controller.
A distinction should be made between functional correctness and performance
variability. After a functional error is detected, the system’s RAS mechanisms are
responsible for correcting error and ensuring correct operation. The extra clock
cycles of such mechanisms are translated into timing delay or, in the context of the
controller monitored delay and timing noise, forcing the systems slack to fluctuate. It
is important to note that the controller cannot guarantee correct functional operation
but rather focuses in performance variability. To ensure that slack convergence to
zero, the controller monitors slack at specific time intervals and decides to switch
frequency and the associated supply voltage, choosing from a number of available
operating points. In fact, in a spin-off experiment, we have verified that the number
of DVFS points and therefore the granularity of the DVFS space is closely related to
the settling time of slack, that is the time elapsed from the manifestation of a system
disorder (in our case a RAS event) to the time at which the slack has entered and
remained within a specified error band. Hence, based on the monitored slack and
from the combination of the proportional, integral, and differential components,
the new DVFS point is decided. The architecture of the PID controller has been
elaborated in detail in [2] and is briefly shown in the next graph while the table
summarizes what has been discussed so far.

After summarizing the basis of the PID concept, we will now focus on its
implementation on top of a realistic embedded application which is the Spectrum

158 H. Cappelle et al.

Sensing application. The core of the PID implementation is the monitor used to
measure timing delay and estimate slack and the knobs used to switch to other
DVFS points. For monitoring purposes, we use the C clock_gettime() function that
allows measuring time intervals between code chunks with a millisecond accuracy.
To switch to different operating points, we used a DVFS software driver that enables
the effective exploitation of as many as 50 different points in the frequency range of
396–1050 MHz. The matching voltage levels have shown a linear relation between
frequency and voltage. It should be stressed that the DVFS timing overhead is
measured to be approximately 750 s. The main contribution to this is given by the
time the protocol requires to set up a new voltage point (through I2C interface); this
time can be reduced when using designs with on-chip regulators. Despite being able
to use up to 50 DVFS points and have a fine-grain granularity of the DVFS space,
we selected only 14 points for our implementation, since adding more frequency
points does not reduce the settling time significantly. Specifically, the settling time
is limited already to less than 2% with 14 DVFS points. This restriction of DVFS
points is consistent with what is observed in state-of-the-art 22-nm processors, as
measured on hosts running the Ubuntu R© operating system, as shown in Fig. 7.6.

Lastly, after estimating the slack at a specific time interval (s[n]), the decision
for the DVFS switch is based on the proportional, integral, and differential parts of
the PID controller. The proportional component Kp produces an output value that
is proportional to the current error value. The integral term Ki is proportional to

Fig. 7.6 Selected sensing dynamic voltage and frequency scaling (DVFS) points on the 40 nm
ARM R© core, compared with Intel R© 22 nm processor cores

7 Improving Robustness of Real-Time Sensing with the HARPA Run Time Engine 159

both the magnitude of the error and its duration therefore the integral part represents
the memory of the controller. Lastly, the derivative part Kp is depending on the
slope of the error. The gains of the three components are manually tuned during
the experimentation process so as to achieve the minimum settling time. Tuning
methods such as the Ziegler–Nichols can also be used, though not yet incorporated
in our current implementation. With respect to computational complexity, the
implemented scheme has a negligible impact. Specifically, the adjustment of speed
and voltage happens at a rate of 100 Hz when the implementation is running real
time. Per iteration six operations are needed for the PID controller, complemented
with a search in an array of 14 elements. We can safely conclude that the
computation load of the HARPA RTE stays below 10k instructions per second for a
rate of 100 Hz.

7.2.4 GUI Support

The GUI of the sensing application runs on the laptop of the measurement setup.
It allows to visualize the hardware and software status of the experiments with the
HARPA RTE. Also, a check of the RAS signatures is done to detect functional
errors, and if such an error is detected a rollback command is sent to the RAS
code on the application platform. Additionally, the GUI implementation supports
the following controls:

• An option to enable or disable the HARPA RTE PID controller
• An option to inject random errors
• An option to manually force an error
• An option to enable application logging for debugging the application

The GUI supports two tabs with graphical feedback as well as measurement
data:

• A summary tab, shown in Fig. 7.7, keeping track of the following measurements
over time: temperature, selected frequency/voltage combination, a buffer counter
for the functional RAS mechanism, and a counter of the built-up processing
slack. On the application platform, the slack is used for parametric mitigation
in the PID controller.

• A detailed tab, shown in Fig. 7.8, keeping track of the following measurements
over time: voltage, frequency, power, and energy consumption. The individual
power measurements characterize the power consumption of the application
processor, derived from a voltage measurement with the Arduino board.

• Measurement data on the present temperature, frequency, and voltage is updated
continuously in the upper part of the GUI.

Since the application is not running real time, the measured wall clock time is
translated to a real-time value, corresponding to the buffer interval duration. This is
done to obtain a realistic view on the reaction speed of the HARPA RTE. The buffer

160 H. Cappelle et al.

Fig. 7.7 Graphical user interface (GUI) in summary mode

Fig. 7.8 GUI in detailed mode

count counts the number of completed buffer reads and prints a red dot if an incident
occurred, requiring a RAS rollback. To compute the signatures, a reference run is
done to compute reference signatures. During the reference run, the PID controller
is disabled, and all measurement parameters are recorded as a reference. These
reference values are plotted in green, while experimental data is plotted in blue.
Such a reference run should be done before actual experiments.

7 Improving Robustness of Real-Time Sensing with the HARPA Run Time Engine 161

7.3 Measurement Results

Three sets of experiments were performed on the measurement platform:

• Heat stress experiments to test if functional errors can be generated in an
accelerated way, discussed in Sect. 7.3.1

• Reliability stress experiments with the HARPA RTE, shown in Sect. 7.3.2
• Workload stress experiments with the HARPA RTE, detailed in Sect. 7.3.3

7.3.1 Heat Stress Functional Error Rates

To measure the effect of heat stress on the experimental platform, the mean time
before failure (MTBF) was monitored for an increasing temperature, and in function
of frequency and voltage. At 40 nm, the CPU of the IMX6Q application board
proved to be more robust to heat stress than expected. Specifically, heat alone was
not sufficient to generate functional errors, and even at maximum frequency no
errors were found. Only by increasing the voltage, we succeeded in generating mea-
surable functional errors, and when they occurred these errors occurred frequently.
So, this clearly substantiates the heavy overdimensioning of platforms fabricated in
the current scaled technology nodes. We expect this overdimensioning to increase
significantly for more advanced nodes.

Figure 7.9 shows the MTBF result for the following operating point:

• A temperature of 130 ◦C
• A clock speed of 996 MHz
• A voltage of 1.45 V

Two test cases were evaluated. In the first case, the application processor was
kept idle for 5 s, and then spectrum sensing application code was run, together
with the RAS monitor. At the laptop, the Mean Time before a failure was detected
and logged. This was repeated during a time span of 5 h. In the second time, the
experiment was repeated, but with an idle time of 220 s instead of 5 s. To smoothen
the measurement data, a moving average filter was applied, resulting in the upper red
curve for the second test case, and the lower blue curve for the first test case. This
is as expected, since a lower idle interval results in a shorter recorded time before a
failure. Hence, a lower processor load should result in less functional errors.

Since the applied heat and voltage stress was significant, the application board
degraded after running a few test runs, resulting in irreparable functional errors.
Two boards died while testing, and hence it was decided to emulate functional error
injection for tests of the HARPA RTE.

162 H. Cappelle et al.

Fig. 7.9 Measured mean time before failure (MTBF) evolution over time

Fig. 7.10 Reliability stress response

7.3.2 Reliability Stress Compensation

To show the HARPA RTE reaction to reliability stress, a functional error is injected
while the spectrum sensing application is running, and the response is illustrated
in Fig. 7.10. In this test case, the base load is assumed to be running real time at
a clock speed of 400 MHz. Since the platform is not running real time, measured
time is translated to expected time at which the HARPA PID controller reacts in
real time. A consequence of this approach is that the PID controller overhead is not
accurately represented compared to the application load. As shown in Sect. 7.2.3,

7 Improving Robustness of Real-Time Sensing with the HARPA Run Time Engine 163

the computational load of the PID controller is below 10k instructions per second,
and hence negligible.

In the shown example, a functional error is triggered at 300 ms, and the resulting
effect can be observed in the lower-right subplot, which represents the observed
slack. As a consequence, the RAS mechanism detects an error and initiates a
rollback. This results in performance variability, specifically the slack increases with
10 ms. This period corresponds to the spectrum sensing internal buffer memory,
selected for a rollback, and is hence not arbitrary. To compensate the slack, the PID
controller increases the clock, and subsequently the slack turns positive after 50 ms.
Given the higher clock speed, the slack turns further positive, and the PID controller
corrects this by lowering the clock speed back to its nominal setting to handle the
workload.

With respect to processor temperature, a slight increase of temperature is
observed when the PID controller reacts to the functional error, as shown in the
upper-left subplot.

In summary, we observe that the PID controller of the HARPA RTE fully
succeeds in compensating the performance variability, caused by reliability stress.
So, the strict QoS requirements for the sensing application are fully met after the
introduction of our parametric mitigation approach.

7.3.3 Workload Stress Compensation

To show the HARPA RTE reaction to workload stress, the application load is
doubled on a single core, and the response is illustrated in Fig. 7.11. At 250 ms,
the extra load is generated, and at 600 ms this load is removed. As a reaction, we see
that the real-time performance is not met anymore, resulting in a negative slack. The
HARPA RTE PID controller detects this and reacts by increasing the clock speed.
When the extra load is removed, a positive slack is detected, and the PID controller
relaxes the clock frequency.

With respect to processor temperature, we observe an increase from 32 to 35 ◦C
during the period that the extra processor load is present.

In summary, we conclude that though the cause of the processor variability
is different than in the previous section, the HARPA RTE can again effectively
compensate it with the same mechanism.

7.4 Conclusion

To deal with performance variability, expected to increase in deep submicron
technology nodes, the HARPA RTE was evaluated on the spectral sensing on
the FreescaleTM IMX6Q embedded platform. First, we showed that functional
errors can be invoked by inducing temperature stress to the platform. We found

164 H. Cappelle et al.

Fig. 7.11 Workload stress response

that for a 40-nm implementation the error behavior is abrupt, moving from the
not detectable stage to frequent functional errors. This quickly results in non-
correctable errors after a number of test runs. Hence, it was decided to opt for a
software-emulated error rate to validate the HARPA RTE. It was shown that the
HARPA RTE mechanism can effectively tackle both reliability and performance
stress by adding a closed-loop PID controller that controls the DVFS settings of
the embedded processor, and that reacts to performance variation. With respect to
future studies, it is recommended to also cover communication between multiple
processor cores, and specifically the effect on performance variation between
different heterogeneous cores.

References

1. Mack, C. A. (2013). Keynote: Moore’s Law 3.0. In Proceedings of IEEE Workshop Microelec-
tronics Devices (p. 18).

2. Rodopoulos, D., Catthoor, F., & Soudris, D. (2015). Tackling performance variability due to
RAS mechanisms with PID-controlled DVFS. https://doi.org/10.1109/LCA.2014.2385713

3. Stamoulis, D., Corbetta, S., Rodopoulos, D., Weckz, P., Debacker, P., Meyer, B. H., et al.
(2016). Capturing true workload dependency of BTI-induced degradation in CPU components.
In GLSVLSI. https://doi.org/10.1145/2902961.2902992

4. Rodopoulos, D., Zompakis, N., & Soudris, D. (2015). System scenarios HARPA RTE: Instanti-
ation. HARPA deliverable 2.3.

https://doi.org/10.1109/LCA.2014.2385713
https://doi.org/10.1145/2902961.2902992

Part IV
Knobs and Monitors

Chapter 8
Evaluating System-Level Monitors
and Knobs on Real Hardware

Panagiota Nikolaou, Zacharias Hadjilambrou, Panayiotis Englezakis,
Lorena Ndreu, Chrysostomos Nicopoulos, Yiannakis Sazeides,
Antoni Portero, Radim Vavrik, and Vit Vondrak

8.1 Introduction

High-Performance Computing (HPC) infrastructures run a diverse set of applica-
tions with different Quality-of-Service (QoS) requirements [7]. These requirements
come in various forms, such as operational power, performance, energy, cost, and
availability. Naturally, HPC systems need to be configured in a way to satisfy
those application requirements [15]. To configure a system, all the different system
hardware and software knobs are set at specific settings, with many remaining
at a default setting, and then, while the application runs, various monitors are
observed to determine whether the various requirements are satisfied. Hardware and
software knobs like Simultaneous Multithreading, DVFS, prefetching must be set
to correct settings to achieve optimal energy and cost efficiency. Unsurprisingly, the
configuration space is extremely large and such configuration search efforts are in
practice ad hoc and nonoptimal.

One way to reduce the configuration search dimensionality and complexity is
to reduce the requirements that need to be satisfied, as well as the monitors and
knobs that need to be evaluated. Reduction of a problem’s dimensionality is not a

P. Nikolaou (�) · Z. Hadjilambrou · P. Englezakis · L. Ndreu · C. Nicopoulos · Y. Sazeides
University of Cyprus, Nicosia, Cyprus
e-mail: panagiota.nikolaou@cs.ucy.ac.cy; zhadji01@cs.ucy.ac.cy;
englezakis.panayiotis@ucy.ac.cy; lndreu01@cs.ucy.ac.cy; nicopoulos@ucy.ac.cy;
yanos@cs.ucy.ac.cy

A. Portero · R. Vavrik · V. Vondrak
VS̆B - Technical University of Ostrava, IT4Innovations National Supercomputing Center,
Ostrava, Czech Republic
e-mail: antonio.portero@vsb.cz; radim.vavrik@vsb.cz; vit.vondrak@vsb.cz

© Springer International Publishing AG, part of Springer Nature 2019
W. Fornaciari, D. Soudris (eds.), Harnessing Performance Variability
in Embedded and High-performance Many/Multi-core Platforms,
https://doi.org/10.1007/978-3-319-91962-1_8

167

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91962-1_8&domain=pdf
mailto:panagiota.nikolaou@cs.ucy.ac.cy
mailto:zhadji01@cs.ucy.ac.cy
mailto:englezakis.panayiotis@ucy.ac.cy
mailto:lndreu01@cs.ucy.ac.cy
mailto:nicopoulos@ucy.ac.cy
mailto:yanos@cs.ucy.ac.cy
mailto:antonio.portero@vsb.cz
mailto:radim.vavrik@vsb.cz
mailto:vit.vondrak@vsb.cz
https://doi.org/10.1007/978-3-319-91962-1_8

168 P. Nikolaou et al.

new problem for computing system analysis [4, 9–11]. Such reduction, typically,
relies on some form of statistical correlation, for example, principal component
analysis [1, 17].

In this chapter, we explore the potential benefits of a methodology that would
identify the minimum set of monitors and knobs needed to configure an HPC for
optimal performance, availability, energy, and cost efficiency. To accomplish this,
we use a correlation methodology that relies on data obtained from a detailed
exploration of a configuration space. Even though a detailed exploration is what
a practical search methodology should avoid, the analysis in this chapter is useful to
assess the potential benefits that can come from a future methodology that reduces
the search space.

Specifically, for this investigation, we use Floreon+ application, a flood pre-
diction and management application, running on an HPC platform. The analysis
considers data obtained using eleven system monitors when exploring many settings
for six knobs. This analysis is performed for individual and combinations of the fol-
lowing requirements: performance, power, availability, energy, and cost. The results
reveal that the configuration space can be reduced considerably. Additionally, the
results show non-obvious correlations between requirements, monitors, and knobs.
This motivates the need for further research to determine a practical configuration
space reduction methodology for HPC systems. Additionally, with the exploration
of the potential benefits of methodology that would identify the minimum set of
monitors and knobs needed to configure an HPC system, we provided an exhaustive
characterization of all the monitors and knobs. The characterization reveals the
following insights: (a) Floreon+ is CPU bound (not memory intensive) and the
performance scales linearly with CPU frequency and (b) Floreon+ performance
requirements are satisfied with a CPU frequency lower than the servers nominal
CPU frequency. This implies that there is a power headroom that can be exploited
for dealing with performance variability caused by faulty hardware.

The rest of the chapter is organized as follows: Sect. 8.2 covers background
related to the Floreon+ [23] application and HPC organization. Section 8.3 describes
the characterization and experimental framework and correlation analysis, and
Sect. 8.4 presents and discusses experimental results. This chapter concludes in
Sect. 8.5.

8.2 Background

8.2.1 HPC Application (Floreon+)

We use Floreon+ (FLOod REcognition On the Net) [23], an HPC application with
high QoS requirements. Floreon+ is an online system for monitoring, modeling,
prediction, and support disaster flood management [18]. The system focuses on

8 Evaluating System-Level Monitors and Knobs on Real Hardware 169

acquiring and analyzing relevant data in near-real time. The data are used to provide
short-term flood prediction by running hydrologic simulations.

The main processes of Floreon+ application are organized as follows:

1. Get information about actual river and reservoir situation.
2. Rainfall-runoff (RR) modeling: simulation of surface runoff.
3. Hydrodynamic (HD) modeling: flood lake simulations, flood maps, simulations

of water elevation and water velocity, a real-time hydrological model for flood
prediction, water quality analysis, etc.

4. Erosion modeling: simulation of water erosion.
5. Collection and archiving of flood data that can be used to estimate the magnitude

of a flood based on historical evidence.

In this work, we are investigating the uncertainty of the Rainfall-runoff (RR)
modeling which is the most computationally intensive part [18, 23].

The application framework for the uncertainty of RR model provides an envi-
ronment for running multiple simulations every repetition, when new data arrives
on an HPC system. The uncertainty contains information about how accurate is
the solution that RR model provides. RR model is a dynamic mathematical model,
which transforms rainfall to flow at the catchment outlet.

The uncertainty is computed as Monte Carlo samples. The Monte Carlo method
gives a straightforward way of massive parallelism by increasing the number
of random values working concurrently to obtain numerical results. Previous
experiments [18] exhibit a good scalability of the Monte Carlo method in an HPC
cluster with 64 nodes of 16 cores each. Consequently, the proposed methodology
may be appropriated in any other HPC framework where the Monte Carlo method
is employed.

Figure 8.1 shows the normal operation of Floreon+. As Fig. 8.1 shows, a batch of
Monte Carlo iterations is running in a number of nodes (Server 1–Server n) in such
a way that application’s QoS requirements are satisfied. Each interval indicates the
execution of a different simulation. For example, the first interval refers to the first
simulation. After the execution of all the Monte Carlo iterations, the results send
to a master server for processing. The total simulation time includes the execution
time of Monte Carlo iterations and the time needed to process the results. When
a simulation ends, the servers remain idle for a set of period. The duration of this
period is determined by the availability of the new batch of data. Under normal
operation (fault-free), the simulation always finishes within the time constraint.
There are some cases where a fault on a component can delay the execution of the
simulation, as shown in Fig. 8.2. These cases can be categorized in the following:

1. Delay the execution of the simulation but still the simulation finishes within the
time constraint. The availability of the system does not decrease.

2. Delay the execution and violate the timing constraint with the same number of
servers. Thus the results of this simulation are useless and the availability of the
system decreases.

170 P. Nikolaou et al.

Fig. 8.1 Floreon+ normal operation

Fig. 8.2 Floreon+ operation with faults

3. Delay the execution and violate the timing constraint with less servers. In this
case, the faulty server needs to be taken offline until it is repaired or replaced. In
this case, the results are lost and the availability decreases.

8 Evaluating System-Level Monitors and Knobs on Real Hardware 171

Figure 8.2 illustrates the last case where the server needs to be taken offline until
it is repaired or replaced. As shown in the figure, the number of servers in the third
interval is decreased and the job is assigned to the remaining servers until the faulty
server is repaired or replaced.

Next the various requirements presented for this application.

8.2.1.1 Application Requirements

Floreon+ has two running operation modes, the standard operation mode and the
emergency operation mode. Both have different requirements. Standard operation
mode is the default operation of the system. In this operation, the weather is
favorable and the flood warning level is below the critical threshold.

On the other hand, on the emergency operation mode the water in the rivers rises
due to continuous rain or free-flowing streams that are created due to heavy rainfall
on small areas. During this operation mode much more accurate and frequent
simulation computations are needed and the results should be provided as soon
as possible. In this work, we focus on the emergency operation which has tighter
timing requirements.

8.2.1.2 Availability and Quality of Service Requirements

The reliability and availability target of Floreon+ running on emergency operation
is accomplished through a combination of hardware/software mechanisms and
policies. This also aims at satisfying the QoS requirements even in the presence
of errors and offline servers. These mechanisms typically rely on hardware and
software monitors and knobs.

In general, when a server fails and if its repair time is expected to be long, the
system software migrates the failed job to another server. The failure of the server
is detected by a hardware or software monitor. The migration is possible because
of QoS and availability reasons. HPC systems are over-provisioned with spares for
dealing with errors and offline servers. Server over-provisioning is determined by
the availability of a system. The less available system, the more servers needed [22].

Because of its significance, emergency operation requires responsiveness in
10 min for each simulation. Also it must provide high levels of availability, two
nines (0.99), which may require over-provisioning with extra servers to deal with
various hardware failures.

Floreon+ and other offline services can run together (collocated) to improve
utilization [21, 31]. Specifically, when Floreon+ satisfies the QoS requirements
without using all the available cores in a server, the remaining cores can run other
services. This must be done without affecting the QoS of Floreon+ and violating its
requirements. Since we are going to explore the emergency operation, Floreon+ is
running in isolation, utilizing all the available resources without any other service
concurrently runs on the same server.

172 P. Nikolaou et al.

Table 8.1 Floreon+
requirements

Performance Simulation ≤ 10 min

Accuracy ≥104 MC iterations

Availability ≥0.99

Power ≤81 W

Energy ≤48,600 J

8.2.1.3 Accuracy on Monte Carlo Iterations

It is of utmost importance that the results are as precise as they can. The precision
of the simulated results is based on the number of Monte Carlo iterations [24]. It
has been shown in [24] that the number of iterations has to be in the order of 104 to
105 to obtain a satisfying precision. In this work, we assume 20,000 Monte Carlo
iterations that have to be computed before the deadline (i.e. 10 min, since new input
data arrives from weather stations) as the baseline configuration.

Table 8.1 summarizes the specific values for the requirements of the Floreon+
application.

8.2.2 Available Monitors and Knobs in HPC Systems

The incessant shrinking of technology feature sizes comes with a whole new set
of challenges for CPU designers. The diminutive transistors are increasingly more
prone to process variability accelerated aging artifacts. In fact, the lifetime of near-
future chips is expected to be affected, as new technologies exacerbate reliability
issues. As a result, the nature of chip design has changed, since it has to tackle a lot
of probabilistic phenomena. This shift in design practices has forced the designers to
spend additional resources, in order to maintain functional correctness and Quality-
of-Service (QoS) requirements (e.g., energy/power, performance, etc.).

There is an abundance of phenomena that cause the lifetime to shrink and
introduce variability to the behavior of a CPU. Some of them are present at time
zero, i.e., right after a chip is manufactured. This is known as time-zero variability.
Time-zero variability is created by the chip manufacturing process itself. This
can be attributed to phenomena like random dopant fluctuations and line-edge
roughness, among others. On the other hand, the chip’s behavior also changes
during its lifetime. This is known as time-dependent variability. Time-dependent
variability is intertwined with the operating conditions of the chip, like the workload,
temperature, frequency, and voltage. The effects of both variability types on a chip
can be estimated by designers, in an attempt to mitigate their impact.

To deal with the effects of variability, CPU designers introduce guard bands on
voltage and frequency, based on accurate models. Guard bands make sure that—
irrespective of the severity of the variability (time-zero or time-dependent)—the
chip’s correctness and QoS behavior will be maintained.

8 Evaluating System-Level Monitors and Knobs on Real Hardware 173

Since errors and/or QoS violations may now occur in the system, the use
of system-wide, strategically located monitors and knobs becomes mandatory.
Monitors supervise the system and make sure that metrics such as QoS are satisfied.
If a metric is violated, then the knobs take action to compensate for the deviation.
Knobs are, essentially, actuators that try to restore the nominal value of a violated
metric. There are two approaches in the use of monitors and knobs. They can be
used proactively, or reactively. In the first case, the monitors observe the evolution
of certain operating parameters. They try to mitigate any deviation n in these
parameters, in order to delay (as much as possible) any violation. In the second case,
the monitors and knobs wait for a violation to happen, and then they take action to
correct the deviation. Monitors and knobs can be implemented in hardware and/or
software.

A large number of monitors and knobs exist in HPC systems. Monitors and knobs
in real systems can be categorized into the following categories depending on what
metric they influence: performance, power, temperature, and reliability.

Table 8.2 shows the requirements, monitors, and knobs that are going to be
explored in this work. This subset is by no means comprehensive and future work
should consider a larger set.

Monitors that are going to be investigated are execution time, Instructions per
Cycle (IPC), Misses per kilo Instructions (MPKI), DRAM, CPU and peak power,
and CPU temperature. Also, Mean Time Between Failures (MTBF) per server
and for the whole system is used through analytical models and Failures In Time
(FIT) rates [25]. Finally, capital (CAPEX) and operational (OPEX) expenses are
going to be estimated based on publicly available info, e.g., list prices, and runtime
measurements. CAPEX expenses include infrastructure, server and networking
equipment costs, whereas OPEX expenses include power and maintenance costs.

Table 8.2 also shows the different knobs that we are going to experiment with.
As the table shows, we use Simultaneous Multi-Threading (SMT) [28], Dynamic
Voltage and Frequency Scaling (DVFS) [30], data prefetchers [27], and Intel’s Turbo
Mode [14]. Also, this work provides results with and without redundant cores.

Table 8.2 Application
requirements, monitors, and
knobs

Requirements Monitors Knobs

Performance Execution time DVFS

Power IPC SMT

Energy DRAM power DRAM protection

Availability CPU power Turbo mode

Cost Peak power Prefetchers

CPU temperature Redundancy

MPKI

Server MTBF

System MTBF

Capex expenses

Opex expenses

174 P. Nikolaou et al.

Redundant cores are used to improve the reliability of the system by migrating the
running thread of a faulty core to a spare [13]. For the redundancy scenario, it is
assumed that half of the cores remain idle to provide higher availability. On the
other hand, in the scenario without redundancy all the available physical resources
are utilized. Furthermore, this study explores the implication of using two different
DRAM Protection Techniques (No Protection or ChipkillDC).

DRAM is protected from errors by using extra devices per DIMM to store Error
Correction Code (ECC) bits. Modern processors usually support Chipkill with 16
ECC bits to protect 128 data bits that are interleaved across two DIMMs placed
in two channels [3, 5, 6]. This is referred to as ChipkillDC or Lockstep where
it can correct all the errors in a single device and detects all the errors in two
devices [5]. Chipkill can waste bandwidth, hurt performance, and increase energy
consumption [2, 16, 29]. On the other hand, No Protection does not provide any
protection on DRAM.

8.3 Experimental Framework and Correlation Analysis

8.3.1 Experimental Framework

For evaluation, we use an HPC cluster with dual socket Intel Xeon E5-2640 v3
system configuration, as shown in Table 8.3. We run each experiment five times,
and each time we observed execution time, instructions per cycle (IPC), misses
per kilo instructions (MPKI), CPU, DRAM power, and CPU temperature. The
results presented are calculated by removing minimum and maximum values and
calculating the average.

Prefetchers and DRAM protection techniques changed by accessing BIOS,
through a BIOS Serial Command Console interface (CLI) [12].

Our evaluation used Floreon+, an HPC application with a dataset of 44KB (Tiny
dataset). This is a representative dataset size for the application purposes because it
uses 5 days observations to provide predictions for the next 2 days. All the power
numbers are collected using the Likwid-powermeter [19] which allows monitoring
the power consumption of CPU and DRAM at any given time. The results are used
to calculate total power and peak power numbers.

Table 8.3 Server
configuration

Number of CPUs 2

CPU Intel Xeon E5-2640 v3

Number of cores per CPU 8

Number of threads per core 2

Channels per CPU 4

DIMMs/channel 2

DIMM capacity 16 GB

8 Evaluating System-Level Monitors and Knobs on Real Hardware 175

Table 8.4 Values of knobs Knobs Value

DVFS 1.2, 1.7, 2.2, 2.6 (GHz)

SMT Disable, enable

DRAM protection No protection, ChikillDC

Turbo mode Disable, enable

Prefetchers Disable, enable

Redundancy Disable, enable

To track CPU temperature, we use lm-sensors [20]. To estimate Server MTBF
and System MTBF monitoring values, as well as availability values, we use different
analytical models based on binomial probabilities.

Also, to estimate CAPEX, OPEX expenses as well as total cost, we use COST-ET
and AMPRA tools proposed in [8, 22].

For each experiment, an initial population of 2 server modules is used. The num-
ber f servers can change depending on availability and performance requirements.

For a baseline configuration, we select the one that is currently used to run
this application and includes the following values for each parameter: SMT: OFF,
Frequency: 2.6 GHz, DRAM Protection: No Protection, Turbo Mode: Enable,
Redundancy: 0 (No), Prefetchers: ON.

The data used for correlation analysis are obtained by exploring the 128
combinations of knobs presented in Table 8.4. For each configuration combination,
eleven monitor values are recorded. These eleven values are then used to determine
the values of five metrics each corresponding to a specific requirement.

The values of the requirements for a given configuration are obtained as follows:
performance from execution time, power from CPU and DRAM power, energy
product of execution time and power, availability from server MTBF, server MTTR,
and number of servers, and cost using monitors for power, performance, availability
using the COST-ET tool [8]. The total data set used for this analysis is, therefore,
a 128 × 11 × 5 data matrix, where 128 are the combinations of knobs, 11 are the
monitors values, and 5 are the requirements.

In this section, we describe the methodology used for correlation analysis to
reduce the number of requirements, monitors, and knobs used to configure an HPC
system. The data that drive this analysis are obtained as discussed in Sect. 8.3.1.
The value obtained for each requirement for a given experiment is normalized to
give each requirement equal weight. The normalization is done by computing the
mean and standard deviation for each requirement and then by subtracting the mean
and dividing the standard deviation by each value of requirements as in [10]. A
configuration is considered to be successful if it satisfies each individual application
requirement. To rank successful configurations, we determine an overall score for
a configuration by multiplying each normalized requirement value with an equal
weight. In this case, since we have five requirements, we multiply each value with
0.2. The correlation analysis is done using the R statistical language [26].

176 P. Nikolaou et al.

8.3.1.1 Heuristic Correlation Analysis

This analysis explores the correlation between requirements, monitors, and knobs.
The methodology used is as follows:

1. For a given requirement, we compute the correlation coefficient (using Pearson
correlation analysis) with all the other requirements. For each pair (xi ,xj) of
requirements i and j , where i �= j , that exhibit significant correlation coefficient
(above a 90% threshold1), we check which of the two requirements can be
removed. The requirement that shows smaller correlation coefficient with all
the other requirements is removed from the list. This process is iterated over
all remaining requirements. The same process is repeated for the monitors.

2. For the remaining requirements and monitors, we compute the correlation
coefficient between each requirement and all remaining monitors and select the
monitor with the highest correlation.

3. For all the remaining monitors and all the available knobs, we compute the
correlation coefficient between them and knobs that have a correlation coefficient
above a 40% threshold (see footnote 1) are kept.

This correlation analysis aims to reduce the number of configurations that need
to be explored to determine the configuration that provides the highest satisfaction
of the requirements according to the ranking in Sect. 8.3.1. Specifically, the analysis
returns a subset of the monitors and knobs. All possible configuration combinations
are then evaluated for the selected knobs. For the knobs that are not selected, we
used the baseline configuration values (we have confirmed that it does not really
matter which value you use for them). Afterward, the selected configurations are
sorted according to the selected monitor(s) value(s) (if there is more than one
monitor, equal weighting is used to combine them). The top ranked configuration
using the selected knobs and monitors is then compared with the configuration that
considers all. Their difference is measured as the maximum negative % difference
for any of the requirements (if it is 0 for all, it means it matches the best possible
configuration).

8.4 Results

8.4.1 Implications of Different Combinations of Knobs in
Performance

Before showing the results of the proposed methodology, we show the results of
different analysis that we provided.

The first case study investigates how performance is affected by each combina-
tion of knobs. For this analysis, we are using as metrics for the performance the

1The specific thresholds are picked on empirical analysis not shown here.

8 Evaluating System-Level Monitors and Knobs on Real Hardware 177

Fig. 8.3 Misses per Kilo Instructions (MPKI) for L3 and L2 cache memories and Instructions per
Cycle (IPC) (a) without redundant cores (b) with redundant cores

Misses per kilo Instructions (MPKI) for L3 cache and L2 cache, the Instructions per
Cycle (IPC), and the execution time. In the end, we are going to isolate which of the
three are representative for this application. The results of the MPKI and IPC are
shown in Fig. 8.3.

The x-axis presents different combinations of knobs while the y1-axis (left)
shows the MPKI values and the y2-axis (right) shows the IPC values. Each
combination of the knobs is encoded with the following structure:

[frequency_DRAMProtection_SMT_TurboMode_Redundancy_Prefetchers]
Figure 8.3a shows how the different knobs affect the IPC and MPKI without

any redundant cores while Fig. 8.3b shows how the different knobs affect the IPC
and MPKI including redundant cores. The redundant cores are used as spares to
increase the availability of the system in case of a failure. The dotted line shows the
configuration currently used in the servers.

In both cases (Fig. 8.3a, b), no meaningful results can be extracted about the
correlation of different combinations of knobs with performance. The only outcome
concerns SMT. In the case SMT is ON, the IPC decreases and MPKI increases due
to L2 memory coherency of the extra thread running on the same core. On the other
hand, when SMT is OFF the IPC increases and the L2 MPKI shows the reversed
behavior. Since the application is not memory intensive, L3 MPKI is very low.

The results clearly suggest that IPC and MPKI are not the representative metrics
for this application since, except SMT, they are not affected by a combination of
knobs.

178 P. Nikolaou et al.

Fig. 8.4 Execution time results for the different combinations of knobs (a) without redundant
cores (b) with redundant cores

In Fig. 8.4a, b, we show the sorted execution time in seconds for the different
combinations of knobs. The time constraint was set to 600 s (10 min), as discussed
earlier.

As shown in both figures, different combinations of knobs have different effects
on the execution time. The steps shown in Fig. 8.4 show a trend. The labels above
of each step show the knobs that remain unchanged for that plateau. We observe the
same trend in the results with and without redundant cores. The main difference is
that Fig. 8.4b (with redundant cores) is moved higher in the y-axis.

Our analysis shows that without redundancy all the combinations of knobs
satisfy the time constraint. At the same time, this does not happen when the same
experiments are run with redundant cores. Moreover, there are a lot of scenarios that
can provide better execution time than the baseline in each configuration.

Next, we explore the trade-off between power, reliability, and cost using only the
combination of knobs that do not violate the time constraint in both cases (with and
without redundancy).

8.4.2 Implications of Different Combinations of Knobs
on Reliability

This case study investigates how the Mean Time Between Failures (MTBF) is
affected by each combination of knobs that do not violate the time constraint.

Figure 8.5a, b show the effects of different combinations of knobs in the
system’s MTBF without and with redundancy, respectively. The y-axis represents

8 Evaluating System-Level Monitors and Knobs on Real Hardware 179

Fig. 8.5 Mean Time Between Failures (MTBF) on a logarithmic scale for each combination of
knobs (a) without redundant cores (b) with redundant cores

the system’s MTBF on a logarithmic scale. The target reliability in this experiment
is shown with the red line, whereas the calculated reliability is shown with green
line.

As shown in both cases (Fig. 8.5a, b), estimated MTBF is above the threshold.
It is clear though that the configuration with the redundant cores provides better
reliability.

These results can be changed in a larger server farm, where MTBF becomes
lower. Especially, without redundancy (in cores) it can become even lower than
the target MTBF. Furthermore, having redundant, idle resources can provide higher
reliability because it is less likely for errors to manifest in idle resources. On the
other hand, it is very important to have as much resources as needed but not increase
the cost estimation. The above analysis indicates that the combination of knobs with
redundant cores provides better resiliency.

8.4.3 Implications of Different Combinations of Knobs
on Power

The peak and average power for CPU and DRAM per combination of knobs is
presented in Fig. 8.6a, b. The peak (pink line) and average (bars) power results are
presented in watts on the primary y1-axis. The execution time is presented on the
secondary axis (y2-axis). Shown in the figure, peak power is similar for all the

180 P. Nikolaou et al.

Fig. 8.6 Power results for each combination of knobs (a) without redundant cores (b) with
redundant cores

scenarios (with and without redundancy). Also, taking into account only peak power
will result in suboptimal observations. On the other hand, average power results
(bars) show that the power consumption on the scenario with redundancy is lower
that the scenario without redundancy. This is reasonable due to the cores that are
remaining idle in the scenario with redundancy to improve the reliability of the
system.

The combinations of knobs selected for the following case studies have power
consumption less than the baseline configuration in both scenarios (with and without
redundancy).

8.4.4 Implications of Different Combinations of Knobs on
Energy and Cost

Now we are going to investigate how the different combinations of knobs perform,
using monitors that encapsulate more than one metric. Firstly, we are going to
explore the product of Power and Delay (Energy) for those combinations of knobs
that satisfy the constraints of performance and power. In this case, we are going
to find which combination of knobs can provide the best configuration to improve
energy and cost.

8 Evaluating System-Level Monitors and Knobs on Real Hardware 181

Fig. 8.7 Energy (Power X Delay in Joules) results for each combination of knobs (a) without
redundant cores (b) with redundant cores

Figure 8.7 presents the Energy results of the different combinations of knobs. As
we can see from the figure, there is one combination of knobs in the scenario with
redundant cores (highlighted in red) that consumes more energy than the baseline.
This combination of knobs was removed from both scenarios (with and without
redundancy). The exploration for the cost continued with the remaining combination
of knobs.

Figure 8.8a, b present the TCO of the different combinations of knobs and
the number of total servers that are needed for each combination to match the
performance of the baseline configuration in each scenario (with and without redun-
dancy). TCO results include all the parameters (power, performance, temperature,
reliability, etc.) that are investigated in this analysis.

An important observation from Fig. 8.8a, b is that infrastructure cost and network
cost have a negligible impact on the total cost, whereas power, maintenance, and
server costs consume a significant portion of the total cost. Finally, from the Figure
we can conclude that the best scenarios in both cases can reach TCO savings in the
range of 19–30%.

Overall, the best configuration in terms of all the metrics that we investigated
in this analysis to run Floreon+ for the best (without redundancy) and the worst
scenarios (with redundancy) is the following:

1. SMT:ON
2. Frequency: 2.2 GHz
3. DRAM Protection: Non

182 P. Nikolaou et al.

Fig. 8.8 Cost results for each combination of knobs (a) without redundant cores (b) with
redundant cores

Table 8.5 Correlation
between monitors and
requirements

Requirements Monitors

Performance Execution time

Availability Capex cost

Power CPU power

Cost Capex cost

All Execution time, CPU power, Capex cost

Intel’s Turbo mode and cache prefetchers can be either enabled or disabled. Based
on our findings, these two parameters do not seem to affect any of the metrics
monitored in this analysis. The findings of this analysis call for IT4I owners and
researchers to select the above configuration that maximizes the TCO savings.

8.4.5 Results of the Heuristic Correlation Analysis

Our analysis reveals that energy is strictly correlated with performance, and thus we
removed energy from the list of requirements and the presented results.

Table 8.5 shows the results of correlation analysis between requirements and
monitors.

As we can see from the Table, Performance requirement can be monitored by
Execution Time. Availability can be monitored by Capex expenses. This correlation
is not obvious because Capex cost has an indirect relation with Availability. The

8 Evaluating System-Level Monitors and Knobs on Real Hardware 183

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

CAPEX

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Execution.Time

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
CPU.power

co
rr

el
at

io
n

co
ef

fic
ie

nt

co
rr

el
at

io
n

co
ef

fic
ie

nt

DVFS

DVFS

DVFSSMT SMT

SMT

Redundancy

Redundancy

Redundancy

Fig. 8.9 Correlation analysis presenting the correlation coefficient between monitors and knobs

correlation of Capex expenses and availability comes from the extra servers that are
needed for over-provisioning. The more the servers needed for over-provisioning,
the more Capex expenses are incurred. Moreover, the more the servers needed for
over-provisioning, the less the System MTBF due to the higher probability of errors.
So, this leads to a smaller availability for this system. As the table, also, shows,
CPU power is the appropriate metric for the total power. This happens because
Floreon+ is not a memory-intensive application, so it has a negligible impact on
DRAM power. For the total cost and overall combination of requirements, Capex is
the correlated monitoring value.

Finally, Fig. 8.9 shows the correlation between knobs and monitors. X-axis
presents the remaining list of knobs for each monitor, whereas the y-axis presents
the correlation coefficient between knobs and monitors. The correlation coefficient
ranges from −1 to +1. A value closer to +1 means that this knob has almost a linear
relation with the monitor. A value closer to −1 means that this knob has an inverse
relation with the monitor. A value closer to 0 means that there is no correlation
between the knob and the monitor.

As we can see from the figure, DVFS, SMT, and Redundancy are the selected
knobs. On the other hand, DRAM Protection, Turbo Mode, and Data prefetching
can be reduced from the search space. This is due to the low cache and low memory
pressure of the Floreon+ application (L3MPKI: 0.0034, L2MPKI: 0.013).

184 P. Nikolaou et al.

Fig. 8.10 Improvement between the default configuration, correlation analysis predicted configu-
ration, and the best configuration for different requirements

8.4.6 Validation of Heuristic Methodology

Figure 8.10 validates the heuristic analysis by evaluating the best configuration
for each requirement using the subset of monitors and knobs revealed from the
correlation analysis.

In this graph, we show the normalized with the default configuration, improve-
ment for each individual requirement and all requirements between the best
configuration using the selected monitors and knobs and the best configuration using
all monitors and knobs. As can be seen from Fig. 8.10, all the requirements can
be improved by changing the system configuration. For example, performance can
be improved by 1.5× and cost by 2.4× related to the default configuration. Also,
the combination of all the requirements can be improved by 1.7×. Moreover, the
figure shows that the configurations based on the correlation analysis are very close
to the results with the best configuration. We measure the error between the two
configurations, and we found a maximum value of 5%.

8.5 Conclusions and Future Work

This chapter describes an oracle methodology that investigates combinations of
different knobs and the effects they have on the various monitored values. This aims
to explore the potential benefits from a yet to be determined, realistic methodology
that can reduce the number of monitors and knobs that configure an HPC system
that runs a specific application while satisfying the application requirements. To

8 Evaluating System-Level Monitors and Knobs on Real Hardware 185

this end, this analysis reduces an eleven space of system monitors to three and six-
system space knobs to three. Also, a characterization analysis of the application
reveals that Floreon+ performance requirements are satisfied with a CPU frequency
lower than the servers nominal CPU frequency.

Findings of this work motivate future research. One direction is to find a realistic
methodology probably based on correlation analysis that will be generic for many
applications. Another direction is to minimize the data sample used.

References

1. Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary
Reviews: Computational Statistics, 2(4), 433–459.

2. Ahn, J. H., Jouppi, N. P., Kozyrakis, C., Leverich, J., & Schreiber, R. S. (2009). Future scaling
of processor-memory interfaces. In Conference on High Performance Computing Networking,
Storage and Analysis (pp. 42:1–42:12).

3. Ankireddi, S., & Chen, T. (2014, February). Configuring and using DDR3 memory with
HP ProLiant Gen8 Servers, Best Practice Guidelines for ProLiant servers with Intel Xeon
processors.

4. Annavaram, M., Rakvic, R., Polito, M., Bouguet, J.-Y., Hankins, R. A., & Davies, B. (2004).
The fuzzy correlation between code and performance predictability. In Proceedings of the 37th
annual IEEE/ACM International Symposium on Microarchitecture (pp. 93–104). New York:
IEEE Computer Society.

5. BIOS and Kernel Developers Guide (BKDG) for AMD Family 10h. (2010, April).
6. BIOS and Kernel Developers Guide (BKDG) for AMD Family 15h. February (2014).
7. Brewer, E. (2001). Lessons from giant-scale services. Internet Computing, 5(4), 46–55.
8. Hardy, D., Kleanthous, M., Sideris, I., Saidi, A., Ozer, E., & Sazeides, Y. (2013). An analytical

framework for estimating TCO and exploring data center design space. In International
Symposium on Performance Analysis of Systems and Software (pp. 54–63).

9. Hoste, K., & Eeckhout, L. (2006). Comparing benchmarks using key microarchitecture-
independent characteristics. In 2006 IEEE International Symposium on Workload Charac-
terization (pp. 83–92). New York: IEEE.

10. Hoste, K., & Eeckhout, L. (2007). Microarchitecture-independent workload characterization.
IEEE Micro, 27(3), 63–72.

11. Hoste, K., Phansalkar, A., Eeckhout, L., Georges, A., John, L. K., & De Bosschere, K.
(2006). Performance prediction based on inherent program similarity. In Proceedings of
the 15th International Conference on Parallel Architectures and Compilation Techniques (pp.
114–122). New York: ACM.

12. Hp rom-based setup utility user guide. February HP TR (2014).
13. Huang, L., & Xu, Q. (2010). Characterizing the lifetime reliability of many core processors

with core-level redundancy. In 2010 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD) (pp. 680–685). New York: IEEE.

14. Intel. (2008). Intel Turbo Boost Technology in Intel Core microarchitecture (Nehalem) Based
Processors. White paper. Technical report, November 2008.

15. Iordache, A., Buyukkaya, E., & Pierre, G. (2015). Heterogeneous resource selection for
arbitrary HPC applications in the cloud. In IFIP International Conference on Distributed
Applications and Interoperable Systems (pp. 108–123). Berlin: Springer.

16. Jian, X., Duwe, H., Sartori, J., Sridharan, V., & Kumar, R. (2013). Low-power, low-storage-
overhead Chipkill correct via multi-line error correction. In International Conference on High
Performance Computing, Networking, Storage and Analysis (pp. 24:1–24:12).

186 P. Nikolaou et al.

17. Jolliffe, I. (2002). Principal component analysis. Wiley Online Library.
18. Kuchar, S., Golasowski, M., Vavrik, R., Podhoranyi, M., Sir, B., & Martinovic, J. (2015). Using

high performance computing for online flood monitoring and prediction. International Journal
of Environmental, Ecological, Geological and Geophysical Engineering, 9(5), 267–272.

19. likwid-powermeter. Tool for accessing RAPL counters on Intel processor. https://github.com/
RRZE-HPC/likwid/wiki/Likwid-Powermeter

20. lm-sensors. http://www.lm-sensors.org/wiki/man/sensors-detect
21. Mars, J., Tang, L., Hundt, R., Skadron, K., & Soffa, M. L. (2011). Bubble-up: Increasing

utilization in modern warehouse scale computers via sensible co-locations. In 44th Annual
International Symposium on Microarchitecture (pp. 248–259).

22. Nikolaou, P., Sazeides, Y., Ndreu, L., & Kleanthous, M. (2015). Modeling the implications
of dram failures and protection techniques on datacenter TCO. In Proceedings of the 48th
International Symposium on Microarchitecture, MICRO-48 (pp. 572–584). New York: ACM.

23. Portero, A., Kuchař, Š., Vavřík, R., Golasowski, M., & Vondrá, V. (2014). System and
application scenarios for disaster management processes, the rainfall-runoff model case
study. In IFIP International Conference on Computer Information Systems and Industrial
Management (pp. 315–326). Berlin: Springer.

24. Portero, A., Vavrik, R., Kuchar, S., Golasowski, M., Vondrak, V., Libutti, S., et al. (2015). Flood
prediction model simulation with heterogeneous trade-offs in high performance computing
framework. In 29th EUROPEAN Conference on Modelling and Simulation ECMS.

25. Sridharan, V., Stearley, J., DeBardeleben, N., Blanchard, S., & Gurumurthi, S. (2013). Feng
Shui of supercomputer memory: Positional effects in dram and SRAM faults. In International
Conference on High Performance Computing, Networking, Storage and Analysis (pp. 22:1–
22:11).

26. Team, R. C. et al. (2013). R: A language and environment for statistical computing, Citeseer.
27. Tendler, J. M., Dodson, J. S., Fields, J., Le, H., & Sinharoy, B. (2002). Power4 system

microarchitecture. IBM Journal of Research and Development, 46(1), 5–25.
28. Tullsen, D. M., Eggers, S. J., & Levy, H. M. (1995). Simultaneous multithreading: Maximizing

on-chip parallelism. SIGARCH Computer Architecture News, 23(2), 392–403.
29. Udipi, A. N., Muralimanohar, N., Balsubramonian, R., Davis, A., & Jouppi, N. P. (2012). LOT-

ECC: Localized and tiered reliability mechanisms for commodity memory systems. In 39th
Annual International Symposium on Computer Architecture (pp. 285–296).

30. Weiser, M., Welch, B., Demers, A., & Shenker, S. (1994). Scheduling for reduced cpu
energy. In Proceedings of the 1st USENIX Conference on Operating Systems Design and
Implementation, OSDI ’94. Berkeley: USENIX Association.

31. Yang, H., Breslow, A., Mars, J., & Tang, L. (2013). Bubble-flux: Precise online QoS man-
agement for increased utilization in warehouse scale computers. In 40th Annual International
Symposium on Computer Architecture (pp. 607–618).

https://github.com/RRZE-HPC/likwid/wiki/Likwid-Powermeter
https://github.com/RRZE-HPC/likwid/wiki/Likwid-Powermeter
http://www.lm-sensors.org/wiki/man/sensors-detect

Chapter 9
Monitor and Knob Techniques in
Network-on-Chip Architectures

Davide Zoni, Panayiotis Englezakis, Kypros Chrysanthou, Andrea Canidio,
Andreas Prodromou, Andreas Panteli, Chrysostomos Nicopoulos,
Giorgos Dimitrakopoulos, Yiannakis Sazeides, and William Fornaciari

9.1 Introduction

The everlasting demand for more processing power has rendered the multi-/many-
core paradigm the de facto implementation choice in modern CPU architectures.
Specifically, multi-core designs are now employed in both embedded and high-
performance general-purpose systems, due to their flexibility, performance prowess,
and fine-grain control over the chip’s power envelope. At the same time, multi-
core systems have accentuated the criticality of the on-chip interconnect backbone;
traditional bus-based solutions suffer from limited bandwidth capabilities, which
cannot cope with increasing numbers of processing cores. Hence, Networks-on-
Chip (NoCs) have emerged as the standard interconnect fabric for current and future
multi-/many-core implementations. However, the NoC has been shown to consume
a significant fraction of the processor’s power budget, up to 30% [11]. Hence, proper
NoC power containment methodologies have to be considered.

Moreover, the march towards many-core microprocessors has been marred by
the emergence of an ominous threat: waning reliability [19]. Transistors are more

D. Zoni (�) · A. Canidio · W. Fornaciari
Politecnico di Milano, Milan, Italy
e-mail: davide.zoni@polimi.it; andrea.canidio@polimi.it; william.fornaciari@polimi.it

P. Englezakis · K. Chrysanthou · A. Prodromou · A. Panteli · C. Nicopoulos · Y. Sazeides
University of Cyprus, Nicosia, Cyprus
e-mail: englezakis.panayiotis@ucy.ac.cy; chrysanthou.kypros@ucy.ac.cy;
prodromou.andreas@ucy.ac.cy; panteli.andreas@ucy.ac.cy; nicopoulos@ucy.ac.cy;
yanos@cs.ucy.ac.cy

G. Dimitrakopoulos
Democritus University of Thrace, Xanthi, Greece
e-mail: dimitrak@ee.duth.gr

© Springer International Publishing AG, part of Springer Nature 2019
W. Fornaciari, D. Soudris (eds.), Harnessing Performance Variability
in Embedded and High-performance Many/Multi-core Platforms,
https://doi.org/10.1007/978-3-319-91962-1_9

187

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91962-1_9&domain=pdf
mailto:davide.zoni@polimi.it
mailto:andrea.canidio@polimi.it
mailto:william.fornaciari@polimi.it
mailto:englezakis.panayiotis@ucy.ac.cy
mailto:chrysanthou.kypros@ucy.ac.cy
mailto:prodromou.andreas@ucy.ac.cy
mailto:panteli.andreas@ucy.ac.cy
mailto:nicopoulos@ucy.ac.cy
mailto:yanos@cs.ucy.ac.cy
mailto:dimitrak@ee.duth.gr
https://doi.org/10.1007/978-3-319-91962-1_9

188 D. Zoni et al.

susceptible to both permanent and transient faults. In addition to manufacturing and
early life failures, future designs are anticipated to be increasingly vulnerable to
aging and wear-out artifacts. Just like any on-chip component, the interconnection
backbone is also affected by decreasing reliability [20]. A multitude of approaches
to increase the fault tolerance and reliability of the NoC have been proposed.
However, the vast majority of these approaches concentrate on fault prevention
[7] and/or recovery [9, 14]. The equally important aspect of fault detection and
localization has not been adequately addressed.

This chapter examines hardware-based monitors and knobs to tackle static
power consumption, as well as to detect and localize faults occurring within the
NoC. Specifically, two distinct solutions are proposed: the first—called BlackOut
[27]—tackles static power consumption, and the second—called NoCAlert [6]—
detects and localizes faults in the control logic of the router. Both solutions are
autonomous, hardware-based mechanisms that operate at the micro-architectural
level. The primary reason behind the decision to implement both techniques as
autonomous monitor-and-knob mechanisms is the imperative need for swift action
(operating at the granularity of only a few cycles), in order to minimize the impact on
performance. Since the performance of the NoC is critical to the overall performance
of the microprocessor, NoC routers operate with extremely low latencies (e.g., there
are various state-of-the-art single-cycle NoC routers). Consequently, autonomous
monitor-and-knob mechanisms that can operate at such ultralow latencies are highly
desirable.

9.1.1 The BlackOut Architecture

The way conventional NoCs decide on the buffer depth is based on the “worst-case”
scenario of all traffic going through a single virtual channel (VC). Specifically, the
buffer depth of each individual virtual channel buffer is chosen as to cover the so-
called credit round-trip time (RTT). Thus, each individual VC buffer is provisioned
with this “worst-case” depth, which leads to overall over-provisioning from the
perspective of the entire router. Since real traffic is spread among multiple virtual
channels, most buffers are almost never filled up.

Furthermore, the amount of different virtual channel buffers that must be present
in the NoC is typically dictated by the upper-layer cache-coherence protocol,
which requires the different message classes (e.g., request and reply classes) to be
separated, to ensure protocol-level deadlock freedom.

Since the NoC faces low traffic for the majority of the time, the overdesigned
resources remain idle, or underutilized, thereby wasting energy due to leakage
power consumption. The latter is swiftly emerging as a dominant power consump-
tion component in current and future technology nodes.

Extensive prior research has attempted to tackle leakage power consumption
in NoCs by exploiting the efficacy of power gating to dynamically switch off
unused resources within the NoC [5, 15] or by carefully reducing its implemented

9 Monitor and Knob Techniques in Network-on-Chip Architectures 189

hardware resources [17, 18, 28]. However, power gating introduces a non-negligible
delay overhead to wake up the power-gated resources, thus posing a serious
threat to overall system performance. Moreover, the traffic traversing the NoC
cannot easily be predicted at run time, which makes predictive wake-up strategies
ineffective. The design of effective power-gating methodologies for NoCs—aiming
to aggressively reduce leakage power consumption—is usually achieved by means
of complex and custom-designed mechanisms. Such architectures exploit additional
gather networks to steer information to a centralized power-gating module [8], or
they implement complex forwarding networks to timely provide prevailing traffic
information to distributed power-gating modules [5].

BlackOut is a control-theory inspired power-gating methodology that dynam-
ically switches off and on individual NoC buffers. Most importantly, the power
savings are reaped with a negligible impact on overall system performance. The
focus of BlackOut is on NoC architectures employing a fixed number of statically
allocated VC buffer depths. A more detailed and in-depth description of this work
can be found in [27].

9.1.2 The NoCAlert Architecture

Traditionally, fault detection is undertaken by built-in self-test (BIST) mechanisms.
The BIST process may be executed by the manufacturer prior to shipment, or it may
constitute part of system boot-up [12, 24]. Runtime BIST is also possible, but system
operation is (partially) halted while the module-under-test is examined [9, 13].

Near-instantaneous fault detection may be achieved in the data path of the
interconnect through the use of error detecting codes. While this methodology
guarantees protection of the message contents, faults within the control logic of
the NoC may still wreak havoc with the operation of the entire CMP. Hence, what
is needed to guarantee functional correctness within the NoC is to protect the NoC’s
control logic (assuming that the flit contents are protected by error-detecting/error-
correcting codes).

We hereby propose a comprehensive online fault-detection and localization
mechanism, aptly called NoCAlert, which provides full fault coverage for all on-
chip network control logic components and achieves instantaneous detection of
any erroneous behavior caused by single-bit, single-event faults. More specifically,
NoCAlert can detect (a) single stuck-at (permanent) faults, and (b) single-event tran-
sient faults. Moreover, the proposed mechanism is also able to pinpoint (localize)
the fault with extremely high accuracy. The NoCAlert mechanism is based on the
notion of invariance checking, whereby the system is continuously checked for
illegal outputs as a result of upsets. An illegal output is defined here as an operational
decision that violates the functional correctness rule(s) of a particular component.
The underlying principle of this technique is inspired by prior efforts to protect
the microprocessor by using invariances [16]. NoCAlert comprises several checker
micromodules distributed throughout the NoC router. The checkers never interfere

190 D. Zoni et al.

with—or interrupt—the operation of the NoC and they provide real-time online
fault detection. In essence, NoCAlert implements extremely lightweight real-time
hardware assertions that can detect illegal outputs within the NoC’s control logic.
Upon detection of a fault, NoCAlert can analyze the pattern of raised assertions to
determine the fault location. A more detailed and in-depth description of this work
can be found in [6].

9.2 BlackOut: Enabling Fine-Grained Power Gating of
Buffers in Network-on-Chip Routers

Section 9.2 describes the BlackOut architecture in detail. Specifically, Sect. 9.2.1
details the assumed baseline router, which only represents a use case in this work.
Note that BlackOut is applicable to any routing algorithm, NoC topology, and
router pipeline depth. Section 9.2.2 concisely articulates the novel contributions
of this technique. Section 9.2.3 describes related work in this field. The BlackOut
architecture is described in Sect. 9.2.4, while Sect. 9.2.5 presents evaluation results
and analysis.

9.2.1 The Assumed Baseline Network-on-Chip Router

This work focuses on a wormhole router that supports both virtual channels (VCs)
and virtual networks (VNETs). A generic four-stage pipelined implementation is
assumed with the following stages: (1) buffer write/route computation (BW/RC),
(2) virtual channel allocation (VA), (3) switch allocation (SA), and (4) switch
traversal (ST). A single additional cycle for link traversal (LT) is also assumed. As
previously mentioned, the proposed BlackOut methodology is not constrained to a
specific pipeline depth/micro-architecture; it can be used with any pipeline depth.
The proposed solution accounts for the support of VNETs, which are required to
enable coherence-protocol support at the NoC level. Traffic within one VNET is
isolated from other VNETs, and packets traversing one VNET are not allowed to
change VNET in-flight. A packet is split into multiple atomic transmission units,
called flits. The first flit of each packet is the head flit, which opens up the wormhole.
A body flit represents an intermediate flit of the original packet, while the tail flit
is unique for each packet and it “closes” the packet and its wormhole. This work
assumes the use of look-ahead RC (LRC) [10], i.e., the destined output port in the
downstream router is pre-computed in the upstream router.

9 Monitor and Knob Techniques in Network-on-Chip Architectures 191

9.2.2 Novel Contributions

The BlackOut mechanism relies on efficient and fine-grained power gating of
individual VC buffers within the router’s input ports, in order to aggressively reduce
leakage power consumption within the NoC. The VC buffers are dynamically
switched off and on, based on prevailing traffic conditions, without impacting
network (and thereby system) performance. The proposed architecture makes three
major contributions to the state of the art:

• Simple design—BlackOut does not require complex and custom-designed for-
warding networks to collect power-gating information.

• Operational versatility—BlackOut is not constrained to any particular NoC
topology, nor to a specific routing algorithm, or a particular micro-architecture.
It outperforms (in terms of energy savings) the current state-of-the-art method-
ologies under all traffic injection rates, by 35%, and it can reap energy savings of
up to 70%, on a per-router basis.

• Optimized micro-architecture—BlackOut relies on a duet of key micro-
architectural concepts (discussed in depth in Sect. 9.2.4) that operate
synergistically and in unison: (a) late binding, and (b) flow balancing. The
late binding technique allows the router to assign a particular buffer to a packet
when the packet’s head flit arrives at the downstream input port. The flow
balancing concept is derived from the observation that traffic variations over
short periods of time tend to be small. This implies that the buffer occupancy
experiences slight changes over time, thereby allowing for a very effective fine-
grained power-gating strategy. Overall, BlackOut operates on a sliding window
concept, whereby the window includes all the active (switched on) buffers, and
the window may wax and wane by switching on and off additional buffers,
respectively.

9.2.3 Related State-of-the-Art Power-Gating Solutions

The BlackOut technique is compared against two state-of-the-art power-gating
solutions. We characterize these solutions based on their operational granularity,
either at the router-level, or at the buffer-level.

9.2.3.1 Power Gating at a Router-Level Granularity

The Power Punch [5] methodology promises non-blocking power gating in NoC
routers. It tries to completely hide the router’s wake-up latency of eight cycles by
sending wake-up signals up to three hops in advance, adding the capability of hiding
a variable number of cycles depending on the router’s pipeline. However, it is quite
costly to have a wire from every router to every router three hops away dedicated

192 D. Zoni et al.

to signal wake-ups. Therefore, Power Punch proposes a way to encode wake-up
signals to minimize this complexity. The encoding wires are additional to the router-
to-router link wires. Power Punch is the current state of the art in terms of router-
level power-gating granularity. As a result, it is one of the two techniques that will
be compared against BlackOut later on in Sect. 9.2.5.

9.2.3.2 Fine-Grained Power Gating

Ultrafine-grained runtime power gating [15] discusses a power-gating methodology
considering an NoC with only a single VC per VNET. Different parts of the same
router can be dynamically power-gated to reduce leakage power. It organizes the
router in micro-power domains that can be independently power-gated: buffers,
VA, crossbar, and output latches. A critical contribution of [15] is the complete
RTL design at 65 nm. In particular, the wake-up time for a 128-bit 4-slot buffer
is estimated to be 2.8 ns. This result is aligned with [29], where a 4-slot 32-bit
buffer is woken up in 1 ns. The wake-up policy relies on look-ahead signals between
routers to hide the VC wake-up latency. This work is the most suitable candidate for
a comparison against BlackOut. It is the state of the art in buffer-level power
gating, and it is directly comparable to BlackOut. Hence, a detailed comparison
between the two techniques will be provided in Sect. 9.2.5. The proposed BlackOut
mechanism relies on a novel flow balancing concept, which can dynamically predict
the upcoming demand for buffer space. Thus, BlackOut can proactively switch
on buffers, thereby minimizing the impact on performance. Additionally, the new
mechanism uses a dynamic virtual channel buffer remapping technique, which
minimizes the number of switch-on and switch-off events.

9.2.4 The BlackOut Methodology

This section describes the details and key attributes of the proposed BlackOut
mechanism, which is a control-theory inspired methodology that power-gates
individual input VC buffers in NoC routers to reduce the static power consumption.
Said methodology is able to aggressively power off the majority of the input buffers
in a router, while incurring negligible overhead to the overall system performance.

BlackOut is implemented on top of credit-based flow control, with two main
design constraints. First, the changes are minimal and the design is very lightweight.
Second, BlackOut directly exploits the flow control mechanism, so that it is
guaranteed not to steer the system into a deadlock, as long as the baseline system is
guaranteed to be deadlock-free.

The BlackOut design methodology is split into two parts and encompasses a
generic pair of actors: the upstream and the downstream modules. The physical
actuation is performed by the downstream module, i.e., the router input port where
the buffers are situated. Conversely, the upstream module is in charge of the control-

9 Monitor and Knob Techniques in Network-on-Chip Architectures 193

and-command dispatches, namely signaling to the downstream module to switch
off or on a particular buffer. This action is performed by the router’s output port,
or by the network interface controller (NIC). Therefore, each router implements
one instance of the upstream module policy per output port, and one instance of
the downstream module policy per input port. Instead, the NIC only requires an
implementation of the upstream module policy in its output port, since the NIC is
never considered to be a downstream module.

BlackOut manages the on/off state of buffers by employing a sliding window.
At any point in time, a subset of the available buffers in the input port are idle,
and they can potentially be switched off. Depending on the traffic conditions, the
sliding window is incremented, or decremented, by switching on or off a new buffer,
respectively. Thus, a window can be fully closed (when all buffers are switched off),
or completely open (when all buffers are switched on). BlackOut is founded on
two different operational pillars, which provide flexibility and great power-saving
capabilities with negligible performance overhead: (a) flow balancing and (b) late
binding.

Without loss of generality, the rest of this section considers an upstream router
output port (OP) and a downstream router input port (IP) pair. The flow balancing
concept applies to the upstream router output port and is linked to the inherent
balance between the current buffer occupancy in the downstream input port and the
one in the near future. In particular, the SA requests in the upstream router—that are
routed to the OP—represent the buffers currently in use in the downstream router IP.
They passed the VA stage, so a buffer is allocated in the downstream router for each
of them. Conversely, the portion of requests in the upstream router that are routed
to the OP and are in the VA stage represent the future buffer requirements. The VA
requests directed to the OP can be more than the SA requests, thereby implying that
the number of active buffers cannot cope with the packet flow. On the other hand,
if the VA requests are lower than the SA requests for the considered OP, then the
number of active buffers can manage the VA requests in the future without the need
to switch on other buffers. In other words, the flow balancing concept defines the
OP state as the current state, i.e., the active buffers or SA requests, and the current
VA requests as the future state. This basic information is used to develop a policy
to increase, or decrease, the number of active (on) buffers in the corresponding
downstream IP.

The late binding technique optimizes the physical allocation of a packet to a
buffer in the downstream IP. In an NoC, the virtual and physical allocation of a
buffer to a packet happens at different times, since the VA in the upstream router
takes place several cycles before the BW in the downstream one. Late binding is
a mechanism to decouple virtual allocation of the channel from physical binding,
eventually remapping a virtual channel onto a different physical buffer. This means
that the upstream VA exploits the baseline flow control policy, while the head flit of
the packet is linked to a particular physical buffer only when it actually arrives at
the IP of the downstream router. A buffer is then assigned, depending on the current
availability and state (on/off) of the buffers in the IP. It is worth noting that a packet
arrives at the downstream IP if the VA in the upstream node is successful. Hence,

194 D. Zoni et al.

no deadlock or lack of resources can result from late binding, since no speculation
is involved. Only a buffer mapping occurs at the moment of arrival.

The depth of the router’s pipeline can mask a number of the cycles needed to
wake up buffers in the downstream router. A four-stage pipeline (as the one used
in our simulations) can mask up to two cycles of wakeup latency. If the wakeup
latency of a buffer is more than that, then the upstream router would need to stall its
pipeline. As the pipeline depth shortens, this phenomenon intensifies. For example,
a two-stage router can mask no wakeup latency.

9.2.5 Evaluation and Results

The assessment of the BlackOut methodology of Sect. 9.2.4 considers performance
and energy savings. This evaluation is distributed over the following four sub-
sections. Section 9.2.5.1 describes the simulation setup. Performance and energy
simulations considering both synthetic traffic and real applications are then pre-
sented in Sects. 9.2.5.2 and 9.2.5.3, respectively.

9.2.5.1 Experimental Setup

BlackOut has been fully implemented and integrated into an enhanced version [30,
31] of the gem5 cycle-accurate simulator [2], extended in [30, 31] to also include
a cycle-accurate model of power gating in the NoC. DSENT [25] is used to extract
power data of the simulated NoC architectures. BlackOut is compared against two
state-of-the-art solutions at two different granularities. The coarse-grained solution
is Power Punch [5], while the fine-grained technique is UFG [15]. Both mechanisms
were discussed extensively in Sect. 9.2.3.

Two different synthetic traffic patterns are considered, i.e., uniform random
and tornado, as well as nine SPLASH-2 [26] benchmarks configured to allow a
maximum of 64 parallel threads. Detailed parameters of the simulations are reported
in Table 9.1.

The latency to wake up a single buffer (Ton) is a critical parameter that can
outweigh any benefit of the methodology. BlackOut is evaluated considering three
different latencies to wake up a single buffer (Ton), i.e., 1, 2, and 4 cycles. The same
parameters are also used when evaluating the state-of-the-art fine-grained power-
gating methodology presented in [15]. For Power Punch [5], the Ton latency is
constant at eight cycles.

9.2.5.2 Results Using Synthetic Traffic

This section discusses the latency, saturation point, and energy profile of the Black-
Out proposal, considering two different synthetic traffic patterns: uniform random

9 Monitor and Knob Techniques in Network-on-Chip Architectures 195

Table 9.1 Experimental
setup: salient parameters
pertaining to the processor,
router micro-architecture,
assumed technology, and
employed traffic patterns

Processor core 1 GHz, Out-of-order Alpha core

L1I cache 2-way, 32 kB

L1D cache 2-way, 32 kB

L2 cache 8-way, 256 kB per bank

Coherence prot. MOESI (3-VNET protocol)

Router 4-stage wormhole

32-bit link width

Buffer depth four flits

Two virtual channels (VCs) per VNET

Three VNETS (Garnet network [1])

Topology 2D-mesh/8×8 (1 core/tile)

Routing Alg. Deterministic XY

Technology 45 nm at 1.0 V

Synthetic Uniform random, tornado

traffic patterns

Real traffic SPLASH-2 benchmarks [26]

and tornado. The BlackOut framework is compared against (a) the current state-
of-the-art buffer-level (i.e., fine grain) power-gating methodology presented in [15]
(henceforth identified as the Ultrafine-Grain, UFG, power-gating scheme); (b) the
current state-of-the-art router-level (i.e., coarse grain) power-gating methodology of
Power Punch [5]. The energy savings reported are normalized to the baseline NoC
that has no switching-off capabilities, and, therefore, no performance penalties are
introduced.

The aim of this subsection is two-fold: (1) to demonstrate that router-level
(coarse-grain) power-gating proposals lack flexibility, since even in the presence
of a single traffic flow from one input–output port pair, the router has to be kept
switched on; (2) to demonstrate that BlackOut can provide fine-grained control over
the switched off resources, thereby extracting better performance under all injection
rates up to the network’s saturation point.

Realistic traffic comprises two different packet sizes: (1) single-flit packets
used for control/coherence messages and cache/memory requests, and (2) multi-
flit packets used for cache/memory reply messages (i.e., the packets that contain
the actual cache line requested). In our evaluation, the size of the multi-flit packets
was explored further, providing results with 1-flit, 3-flit, 5-flit, and 9-flit data packet
sizes (in separate simulations).

Each simulated scenario considers three distinct VNETs to better resemble the
setup required by a realistic cache-coherence protocol in multi-core environments.
Two VNETs are always considered to inject single-flit packets, while the third
one can inject multi-flit packets (as described above), depending on the selected
configuration.

All the figures in the rest of this section share the same format, showing the
injection rate in flits/node/cycle on the x-axis. The total latency (i.e., network latency

196 D. Zoni et al.

Fig. 9.1 Latency/throughput and energy results using uniform random traffic in an 8×8 2D mesh,
with four different data-packet sizes (1, 3, 5, and 9 flits). Three architectures are compared:
BlackOut, Ultrafine-Grain (UFG) [15], and Power Punch [5]. (a) Uniform random, data-packet
size = 1 flit. (b) Uniform random, data-packet size =3 flits. (c) Uniform random, data-packet size
= 5 flits. (d) Uniform random, data-packet size = 9 flits

plus queuing latency) and the normalized energy consumption are depicted on the
left and right y-axes, respectively.

Figure 9.1 reports the obtained results under uniform random traffic. All three
techniques investigated (BlackOut, UFG, and Power Punch) show a saturation
point almost identical to the baseline NoC, regardless of the data-packet size,
thus highlighting the negligible impact of the power-gating actuator. However,
Power Punch’s energy profile saturates at 100% (i.e., no energy savings) from
very low traffic injection rates, whereas BlackOut has an energy profile that grows
linearly with the injection rate. This implies that Power Punch can obtain the same
performance as the baseline NoC, but without any energy savings, except when the
injection rate is extremely low, i.e., below 0.04 flits/cycle/node. On the other hand,
BlackOut provides better performance per consumed energy, since it can accurately
maintain the minimum amount of active (switched on) buffers, without incurring
any noticeable performance overhead. Note that even at the network’s saturation
point, BlackOut is still slightly below 100% of the normalized energy consumption
for multi-flit data packet sizes of 3, 5, and 9. This is due to the fact that the depicted
results are averaged over the 64 routers, and even if the input port of the traffic
generator saturates, the internal NoC router ports are still able to keep some buffers
switched off (albeit for a short period of time).

9 Monitor and Knob Techniques in Network-on-Chip Architectures 197

When all traffic consists of single-flit packets, both BlackOut and UFG consume
more energy than the baseline NoC. This is due to elevated numbers of switch-
on events. Since switch-on events consume extra energy, an increased number of
such events lead to overall energy consumption that is higher than the baseline
NoC. When the size of the multi-flit data packets increases to three and five flits,
BlackOut outperforms UFG by up to 8%. Close to saturation, the two techniques
behave similarly, yielding approximately the same amount of energy savings (with
UFG performing marginally better at saturation). However, the NoC is typically
never operated at (and beyond) its saturation point, since performance deteriorates
to unusable levels. When the size of the multi-flit data packets increases to nine flits,
BlackOut yields 15% more energy savings, on average, than UFG.

In terms of performance, BlackOut and UFG behave similarly, incurring a
negligible increase in network latency. Overall, BlackOut yields 29% higher energy
savings, on average, than Power Punch, and 8% than UFG, while incurring a near-
negligible performance overhead of 2%.

Note that Power Punch can save more energy than BlackOut (due to the former’s
ability to completely switch off a router, instead of individual buffers) only at
extremely low injection rates, i.e., below 0.01.

The results obtained using tornado synthetic traffic are reported in Fig. 9.2.
All three mechanisms—BlackOut, UFG, and Power Punch—achieve the same

Fig. 9.2 Latency/throughput and energy results using tornado traffic in an 8×8 2D mesh, with
four different data-packet sizes (1, 3, 5, and 9 flits). Three architectures are compared: BlackOut,
UFG [15], and Power Punch [5]. (a) Tornado, Data-packet size = 1 flit. (b) Tornado, Data-packet
size = 3 flits. (c) Tornado, Data-packet size = 5 flits. (d) Tornado, Data-packet size = 9 flits

198 D. Zoni et al.

saturation point as the baseline NoC. Once again, for injection rates higher than
0.06 flits/node/cycle, Power Punch provides no energy-saving benefits. On the
other hand, BlackOut is flexible enough to exploit the traffic characteristics and
reap energy savings of around 40%, even at the saturation point. In other words,
at the saturation point, BlackOut consumes only 60% of the energy consumed
by the baseline NoC. This substantial energy saving is attributed to the tornado
traffic pattern, which mainly stresses horizontal (East/West) inter-router links in
a 2D mesh, thereby allowing BlackOut to switch off the buffers in the vertical
(North/South) input/output ports. Similar to the uniform random traffic results,
BlackOut again shows better flexibility than Power Punch, irrespective of the data
packet size. As a result, BlackOut achieves almost the same performance as the
baseline NoC, but with massive energy savings (under all injection rates up to
the saturation point). Note that UFG can sometimes reap even higher—albeit not
by much—energy savings than BlackOut under tornado traffic. In summary, under
tornado traffic, BlackOut yields 28% higher energy savings, on average, than Power
Punch, while containing the performance overhead to merely 3%.

9.2.5.3 Results Using SPLASH-2 Benchmark Applications

This section evaluates the performance and energy-saving attributes of BlackOut
when using real application workloads from the SPLASH-2 benchmark suite [26].
We still consider an 8×8 2D mesh multi-core setup. Similarly to the previous
subsection, the BlackOut framework is compared against all state-of-the-art power-
gating methodologies, i.e., UFG [15] and Power Punch [5].

The goal of this section is to demonstrate that BlackOut can outperform state-
of-the-art buffer-level power-gating techniques, due to its sophisticated, yet simple,
micro-architectural design features, as described in Sect. 9.2.4. Performance results
are not provided here, since—as it will be mentioned later on—the performance
impact is minimal.

We compare the three competing mechanisms using real applications. Regarding
these experiments, the Ton latencies used are the same as before. The simulations
revealed that the performance overhead observed with the BlackOut and UFG
techniques is limited to within 3%. Also, as the Ton latency is increased from 1
to 4 cycles, only a negligible increase in the performance overhead is observed.
Power Punch behaves as expected, i.e., it does not suffer from any performance
degradation, as described in [5].

Figure 9.3 presents the energy consumption results, normalized to the baseline
NoC. BlackOut achieves, on average, 36% lower energy consumption than UFG.
On the other hand, Power Punch exhibits very high variability in its energy-
saving effectiveness, based on the application’s traffic behavior (see Fig. 9.3).
More importantly, BlackOut’s behavior is very consistent (with minimal variance)
throughout all benchmarks (energy savings ranging from 70% to 73%), while Power
Punch yields widely varying energy savings, ranging from 39% all the way to 94%.
This variability is based on the variability of the injection rates observed in the

9 Monitor and Knob Techniques in Network-on-Chip Architectures 199

(a)

(b)

(c)

Fig. 9.3 Energy consumption results of BlackOut, UFG, and Power Punch when using
SPLASH-2 benchmark applications [26]. The results are normalized to the baseline NoC. Three
different Ton latencies (i.e., the number of cycles required to switch on a buffer) are considered for
the BlackOut and UFG methodologies: 1, 2, and 4 cycles. Power Punch is only simulated with a
Ton latency of eight cycles. (a) Ton = 1 cycle (for BlackOut and UFG). (b) Ton = 2 cycles (for
BlackOut and UFG). (c) Ton = 4 cycles (for BlackOut and UFG)

200 D. Zoni et al.

SPLASH-2 benchmark suite. Applications on the lower end of the injection rate
spectrum favor Power Punch. However, BlackOut is generally more consistent.

9.3 An Online and Real-time Fault-Detection and
Localization Mechanism for Network-on-Chip
Architectures

Section 9.3 describes the NoCAlert architecture in detail. Specifically, Sect. 9.3.1
describes the concept of invariance checking within the NoC. Section 9.3.2
describes the NoCAlert framework. Section 9.3.3 describes the employed experi-
mental/evaluation methodology, while Sect. 9.3.4 presents and analyzes the evalua-
tion results.

9.3.1 Invariance Checking Within the Network-on-Chip

The NoCAlert mechanism is based on the concept of invariance checking. The
system is continuously examined for illegal outputs as a result of some kind of fault.
The term illegal output is defined here as an operational output that is impossible
to occur, based on the set of functional correctness rules of a given component. The
assertions are implemented in hardware to provide fast detection of anomalies. The
pattern of raised assertions is then used to pinpoint the location of the detected fault.

The salient characteristic of invariance checking is the fact that only functionally
illegal outputs are flagged as violations. A fault that causes the generation of
an erroneous, yet functionally legal, output will not be identified as a breach of
correctness. What we aim to explore in this work—among others—is how often,
and under what conditions, such non-invariant faults could potentially lead to
compromised network-level correctness.

The router architecture used is the same as the one used in Sect. 9.2.1, with the
only differences being that atomic buffers are used here, and no look-ahead routing
is employed. In this work, invariances were constructed by observing the operation
and behavior of each functional module. The completeness of invariances depends
on the completeness of the functional analysis of the design itself. If the invariance
checkers cover all functional rules, NoCAlert will detect any illegal behavior. In the
case of the baseline NoC router micro-architecture, a total of 32 invariance types
(categories) were identified and documented in [23] to detect transient faults, with
3 more added here to detect permanent faults.

In total, the 35 invariance categories translate to 35 extremely lightweight
checker modules. The checker modules’ outputs are not registered (i.e., stored);
they are fed directly to the localization logic of NoCAlert, as will be explained later
on.

9 Monitor and Knob Techniques in Network-on-Chip Architectures 201

9.3.2 NoCAlert: An Online, Hardware Assertion-Based
Fault-Detection and Localization Mechanism for
Networks-on-Chip

The proposed NoCAlert framework utilizes the principle of invariance checking and
implements it in the form of real-time hardware-based assertions. The key idea is
to have a simple hardware checker module for every NoC component. This checker
module will take as inputs the inputs and outputs of the protected component and it
will check whether any functional rule is broken during the component’s operation.

Two single-bit, single-event fault models are employed in this work: (a) transient
and (b) permanent stuck-at faults (stuck-at-0 and stuck-at-1).

9.3.2.1 Ensuring Network Correctness Using Invariances

Prior research [3, 22] has identified four main conditions that ensure functional
correctness within the network: (1) no packets are dropped, (2) delivery time
is bounded, (3) no data corruption occurs, and (4) no new packet is generated
within the network. These four conditions guarantee functional correctness [3, 22].
The 32 identified invariances were categorized according to the aforementioned
four general requirements, as described in [23]. The three new invariances target
the second requirement, i.e., bounded delivery, since they mainly monitor for
packets/flits that may get stuck in some router due to a fault.

9.3.2.2 Hardware Complexity of the NoCAlert Checkers

The NoCAlert fault-detection mechanism consists of an array of distributed hard-
ware checkers, which constantly monitor the modules comprising the control logic
of the router. Each checker is a simple combinational circuit performing a specific
check, according to the rules of the module being monitored. The NoCAlert
framework is not bound to any specific router micro-architecture. Any alterations to
key router components, or the addition of new modules within the router will simply
generate new invariances, based on the modified/new functional specifications.

9.3.2.3 Faults That Do Not Cause Invariance Violations

As previously mentioned, invariance checking only detects illegal outputs, not
necessarily incorrect ones. Faults that give rise to functionally legal outputs will
not be detected. The two elemental questions here are the following:

202 D. Zoni et al.

• If such non-invariant upsets cause some other functional/invariance violation
later on in the network, will the fault be caught by one/some subsequent
NoCAlert checkers?

• If these non-invariant upsets do not cause any other functional/invariance
violation later on in the network (i.e., they are never caught by any NoCAlert
checker), do they end up affecting the overall network correctness (as defined in
Sect. 9.3.2.1 and [3, 22])?

The extensive simulations of Sect. 9.3.3 will answer these two important ques-
tions. It turns out (empirically) that all the non-invariant faults that end up causing a
functional error later on are, indeed, successfully captured by subsequent NoCAlert
checkers, whereas the non-invariant faults that do not cause any other invariance
violation later on turn out to be benign, as far as overall network correctness is
concerned.

9.3.2.4 Enabling Fault Localization

To minimize the impact on performance and the disruption in the system’s operation,
two NoCAlert delay elements must be minimized: (a) the delay between the
manifestation of a fault and its detection, and (b) the delay between detection and
localization. Most importantly, ambiguous (imprecise) fault localization leads to
overly pessimistic/conservative solutions. For example, the inability to pinpoint
a single permanently faulty component within an NoC router may lead to the
disconnection of the entire router from the network. Given a quick and accurate
fault-localization unit, recovery mechanisms can be fine-tuned accordingly to yield
a near-optimal—with respect to performance degradation and service disruption—
fault-tolerant system.

To enable fault localization, NoCAlert utilizes the output of its detection
checkers. The outputs of all checker modules within a router may be grouped into
a single vector, whereby each bit corresponds to the output of a single invariance
checker. Whenever a checker detects a fault, this bit vector is updated to reflect the
disturbance. Essentially, the fault-detection vector can be viewed as a fault detection
trace, which, according to the generated vector pattern, could potentially yield the
location of the fault.

The Localization Unit introduced here—one per router—tries to tackle the
issue of identifying (i.e., localizing) the fault-afflicted NoC router component, by
analyzing the assertions of the NoCAlert checkers that have detected the fault. The
output bits of all NoCAlert checker modules within each router are fed directly
into the router’s Localization Unit and are not latched at the end of each cycle. As
soon as an assertion is raised by any one of the checker modules within a router,
the Localization Unit of said router is triggered into action; that is, it generates a
so-called Assertion Vector, which includes the status (asserted/de-asserted) of all
checkers in the local router at the instant of the first raised assertion (i.e., the instant

9 Monitor and Knob Techniques in Network-on-Chip Architectures 203

of first detection). The size of the Assertion Vector for the 5-port baseline router is
300 bits. This Assertion Vector is then used by the Localization Unit to identify the
fault’s location within the router.

Each Localization Unit operates using only the assertions of a single router. Thus,
the localization process is distributed across routers, and each one of the localization
units is independent, i.e., does not need to communicate with other routers’ units to
identify the fault location. This valuable attribute is a direct consequence of the
instantaneous fault-detection capability of NoCAlert, which implies that the detec-
tion assertions are spatially close to the fault location. Experimental evaluations later
on will validate this NoCAlert property. In general, fault localization is the process
of arbitrarily dividing a module, e.g., the NoC router, into multiple sectors and then
pinpointing the fault location to within a particular sector. The size and granularity
of these sectors will be discussed later on. The Localization Unit consists of a
combinational circuit, which calculates whether one of the aforementioned sectors
could be the faulty one. This circuit is empirically created, based on a large number
of fault-injection simulations. For each simulation, a pair is created, which correlates
the specific Assertion Vector created at the instant of detection (henceforth termed
the first-detection cycle) with the location where the fault was injected. Each distinct
assertion vector is given a unique Assertion Vector ID for identification purposes;
that is, the ID is used to refer to a specific Assertion Vector, which is matched
to a specific fault location. All these pairs are then analyzed to deduce signatures
that could identify whether a fault happened at a specific location. The process of
building and optimizing these pairs/correlations is heuristic-based and makes use
of the Espresso logic minimizer tool [4]. Initially, all fault-injection simulations are
inspected. For every simulation that results in a fault detection (i.e., at least one
checker module is asserted), a pair is generated. The pair consists of (1) the location
of the fault (as injected in that specific simulation), and (2) the corresponding
Assertion Vector created in the first-detection cycle of that simulation.

Based on these generated pairs, when the Localization Unit receives one of these
Assertion Vectors as input, it will output the respective fault location. The size (in
bits) of the Localization Unit’s output depends on the localization granularity, as
will be explained later on. This output is registered, so that it can be subsequently
used for diagnostic and/or recovery purposes by another mechanism (if it exists), or
a higher level in the system stack.

The complexity of the localization unit is a trade-off between localization
ambiguity (imprecision) and granularity. Ambiguous localization occurs when the
localization unit yields more than one possible fault locations, i.e., the fault may
have occurred in any one of two (or more) locations. The reason for such ambiguity
in the localization unit’s output is the nonuniqueness of the Assertion Vector itself.
Localization granularity refers to the size of the reported fault location. This is
related to the size of the “sectors” described previously. NoCAlert framework
supports three different localization granularities. The coarsest granularity (router-
level) localizes faults that occurred in a specific router. The second granularity
(pipeline-stage-level) tries to identify the pipeline stage that experienced a fault.
The finest granularity (port-level) tries to localize the faults down to a single input
port of the router.

204 D. Zoni et al.

The size (in bits) of the output of each Localization Unit depends on the
chosen localization granularity, and it varies from 5 (coarsest) to 44 (finest). In the
absence of localization ambiguity, the output is a one-hot bit vector, which uniquely
identifies the fault location (at the supported granularity level). On the other hand,
an ambiguous output is a bit vector that is not one-hot, with each “1” indicating a
unique (and separate) possible fault location.

The Localization Unit relies on the analysis of the Assertion Vector, which is
generated from the outputs of the hardware checkers (i.e., the detectors). However,
not all bits in the Assertion Vector are always necessary to yield a fault location. This
fact allows us to perform several optimizations, in order to minimize the information
processed by the Localization Unit. This, in turn, simplifies the entire localization
logic. Specifically, we employ two optimizations: (a) compacting the Assertion
Vector, and (b) discarding portions (i.e., pruning) of the Assertion Vector for each
localization granularity level.

When localization happens at the router- or pipeline-stage-level granularities, the
specific instance of the asserted hardware checker is not significant. In many cases,
the only required information is the specific invariance type (category) to which the
asserted checker output bit belongs. Thus, the Assertion Vector can be reduced to
include only one “summary” bit for some invariance types.

Moreover, since the Localization Unit is created based on a set of empirically
generated pairs of Assertion Vectors and corresponding fault locations, portions of
the Assertion Vector might, in fact, be redundant. For example, several checkers
have the same value for all faults injected in a particular location (i.e., some checkers
are either always asserted or always de-asserted). The employed pruning process
carefully analyzed the contribution of every single entry in the Assertion Vector
to identify the “utility” of each checker with respect to the localization process.
Pruning also took care of situations where two (or more) checkers were always
simultaneously asserted. Thus, using only one of those checkers would be enough
for localization. Eventually, the pruning process yielded a smaller Assertion Vector
that only included the checkers that were responsible for correct and accurate
fault localization. Specifically, the original 300 bits of the Assertion Vector were
pruned to 170 bits (for the router-level localization granularity), or 225 bits (for the
pipeline-stage-level and input/output-port-level localization granularities).

9.3.3 Experimental Methodology

9.3.3.1 Experimental Setup

The goal of the experimental evaluation is to thoroughly assess the efficacy and
efficiency of the NoCAlert mechanism in a realistic environment. Our evaluation
approach is double-faceted, covering two abstraction levels: (a) C++ NoC simula-
tions at the network level, and (b) simulations at the RTL netlist-level.

9 Monitor and Knob Techniques in Network-on-Chip Architectures 205

For the network-level evaluation, the cycle-accurate GARNET NoC simulator
[1] is employed. Synthetic traffic patterns were used to thoroughly test the 8×8
mesh and accurately capture the salient characteristics of the design. The NoCAlert
framework is also compared to ForEVeR [21, 22]. The ForEVeR framework
[21, 22] complements the use of formal methods and runtime verification to ensure
functional correctness in NoCs. While ForEVeR’s goal is to protect against escaped
design-time verification errors with a runtime technique, the scheme may also be
used to provide robustness against runtime faults. ForEVeR relies on time epochs
and counters, which—if needed—trigger a recovery mechanism, which delivers
the in-flight data to the intended destination via an additional lightweight checker
network that is assumed to be 100% reliable.

The router is five-stage pipelined (4 intra-router stages + 1 link traversal stage),
with four 5-flit deep VCs per input port, and 128-bit inter-router links. Atomic VC
buffers, wormhole switching, and credit-based flow control are also assumed. The
routing algorithm used is deterministic XY.

For the hardware evaluation and RTL simulation parts, we implemented the
baseline NoC router augmented with the NoCAlert detection and localization
mechanisms in Verilog Hardware Description Language (HDL). The resulting
design was synthesized using Synopsys Design Compiler and 65-nm commercial
TSMC libraries at 1-V operating voltage and 1-GHz clock frequency.

9.3.3.2 Evaluation Framework

For the network-level evaluations, faults were injected within the NoC routers at
the fine granularity of individual sub-components (VA and SA arbiters, RC unit,
etc.). Our model has the capability of injecting single-bit faults at the inputs and the
outputs of each individual module. One simulation run at a single traffic injection
rate and one network state consists of 35,424 different simulations (to exhaustively
inject faults in all 11,808 possible locations of an 8×8 mesh, assuming the specific
fault models used in this work, i.e., transient bit-flips, and permanent stuck-at-0 and
stuck-at-1 faults). The traffic injection rate was varied from low to high (0.1–0.4
flits/node/cycle) in steps of 0.05 flits/node/cycle. Moreover, three different scenarios
of fault-injection instances were studied (fault injection at cycle 0, 32,000, and
64,000). Hence, 21 different scenarios were investigated (7 injection rates × 3
injection times), for a total of 21×35,424≈744,000 fault-injection simulations.

The exact same experiments were also run in a fault-free environment and
detailed flit ejection logs were collected and compiled in a so-called Golden
Reference (GR) report. The GR is then used to ensure that no violations of the
four network correctness rules of Sect. 9.3.2.1 and [3, 22] occur. Furthermore, the
GR also detects any changes in the intra-packet flit order (such order violations
constitute erroneous behavior). Since NoCAlert only captures faults that cause
invariance violations, the GR is used to facilitate the investigation of the two
key questions posed in Sect. 9.3.2.3. Moreover, by comparing the GR with the
equivalent under-fault log report, we can study the effects of any fault occurrence on

206 D. Zoni et al.

overall network correctness. This allows us to assess the false positive (assertions
that prove benign) and false negative (undetected network correctness violations)
performances of both NoCAlert and ForEVeR [21, 22].

For the RTL netlist-level evaluations, faults were injected within the logic of
each sub-module, and not just at their inputs and outputs. Note that the purpose of
the RTL netlist-level analysis is the following: any internal fault (i.e., a fault injected
within a module, not only at its inputs/outputs) should manifest as one of two cases:
(1) masked fault (by internal logic), which would yield no error; or (2) error at a
module’s output, which would be captured by the checker (i.e., the case covered
by the input/output approach of the network-level evaluation). The number of fault-
injection locations at the RTL netlist-level was about 22,000, as compared to the
205 locations available in our GARNET-based (network-level) simulator.

9.3.4 Evaluation Results

9.3.4.1 Network-Level Simulation Results

As discussed in Sect. 9.3.3.1, simulation experiments were performed in an 8×8
2D mesh network using synthetic traffic patterns. In this subsection, we present a
quantitative analysis of NoCAlert’s efficacy and efficiency, as well as a comparison
with the ForEVeR [21, 22] framework.

It is important at this point to differentiate the injected faults from the actual
errors manifesting themselves at the network-level (as defined in Sect. 9.3.2.1
and [3, 22]). NoCAlert’s ultimate goal is to ensure that no actual error at the
network-level escapes detection. Therefore, injected faults that do NOT cause a real
functional error within the network are viewed as benign. Based on this crucial
differentiation, we classify each of NoCAlert’s detection outcomes into one of the
four main categories:

• True Positive: Event detected by NoCAlert when the injected fault causes an
actual error at the network level (network correctness violation).

• False Positive: Event detected by NoCAlert when the injected fault turns out to
be benign.

• True Negative: Nothing detected by NoCAlert when the injected fault turns out
to be benign.

• False Negative: Nothing detected by NoCAlert when the injected fault causes an
actual error at the network level (network correctness violation).

The simulation results under both examined fault models are summarized in
Figs. 9.4 and 9.5. Specifically, Fig. 9.4 presents a breakdown of the fault-detection
performance at two different fault-injection instances: cycle 0 (empty NoC), and
cycle 32K (warmed-up NoC). The results at cycles 32 K and 64 K are very similar,
so the 64 K results are omitted for brevity. Figure 9.5 shows the cumulative fault-
detection delay distribution for True Positive faults. Overall, the evaluation of the

9 Monitor and Knob Techniques in Network-on-Chip Architectures 207

Fig. 9.4 Fault coverage breakdown (over all injected faults) using synthetic (uniform random)
traffic in an 8×8 mesh at two different fault-injection instances (cycle 0 and cycle 32 K). The
“NoCAlert Cautious” bars refer to a system where low-risk invariances are not immediately flagged
as errors. Instead, the error is flagged only if further evidence indicates a problem [23]

a b

Fig. 9.5 Cumulative fault-detection delay distribution for True Positive faults under (a) transient
and (b) permanent faults. The epoch duration in ForEVeR was set to 1500 cycles

detection capabilities of the two architectures under comparison yields five key
observations:

1. NoCAlert registered zero false negatives, under both fault models as did ForEVeR
[21, 22].

2. Transient and permanent faults exhibit the same trends, with the difference being
that permanent stuck-at faults give rise to a higher percentage of True Positives,
since the persistence of permanent stuck-at faults is much more likely to lead to
an error.

3. As can be seen in Fig. 9.4, the true positive percentages are identical for
both NoCAlert and ForEVeR, since they both detected all network correctness
violations. There is a notable difference in the False Positives. ForEVeR’s epoch-
based approach allows for some benign faults to be masked.

4. NoCAlert provides near-instantaneous fault detection, with 97% of all true
positive transient faults and 90% of all true positive permanent faults captured at
the instant of manifestation (same cycle), as depicted in Fig. 9.5, several orders
of magnitude lower fault-detection latency than ForEVeR [21, 22].

5. Injected faults that do not cause any invariance violation in the network
are always benign (i.e., they never cause any network correctness violation).

208 D. Zoni et al.

Moreover, non-invariant upsets that cause a subsequent invariance violation are
always successfully captured by NoCAlert. These fundamental results answer
the two key questions posed in Sect. 9.3.2.3.

9.3.4.2 Fault-Localization Evaluation

NoCAlert’s Localization Units only utilize the Assertion Vector generated at the
instant of detection. Further, by looking only at the first-detection cycle, localization
can exploit the fast detection times and ascertain that the fault has not had the
time to cause widespread system malfunction. As illustrated in Fig. 9.6, which
combines the results of both transient and permanent fault models, over 99% of
the assertions raised during the first-detection cycle are within the affected router,
and all assertions are at most one hop away. The following analysis is based on all
the simulation results from both examined fault models (permanent and transient).

Figure 9.7 summarizes the localization capabilities of each NoCAlert hardware
checker module. The x-axis lists the 35 NoCAlert invariance types, while the y-
axis indicates the fault locations that each checker can help identify, based on
all conducted experiments. It is evident in Fig. 9.7 that some checkers can, by
themselves, determine the fault location, with no need to inspect other checker
outputs.

NoCAlert’s Assertion Vector allows for a fast and highly accurate localization
solution. As discussed in Sect. 9.3.2.4, localization is achieved by identifying
“signatures” (patterns) inside the Assertion Vectors that uniquely correspond to
a specific fault location. When operating at the coarsest localization granularity
(router-level), the output of the Localization Unit is unambiguous and 100%
accurate. The output is also unambiguous and 100% accurate when operating
at the pipeline-stage-level localization granularity. Ambiguity (aliasing) in the
Localization Unit’s output appears only at the finest localization granularity, the
port-level. Figure 9.8 presents the probability of ambiguity in the output of the

Fig. 9.6 Distance
distribution of raised
assertions from the faulty
router at the moment of
detection

99.43% 0.57% 0.00%
0.00%

10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0

Pe
rc

en
ta

ge
 o

f R
ai

se
d

A
ss

er
ti

on
s

Hop Distance
1 2

9 Monitor and Knob Techniques in Network-on-Chip Architectures 209

Fig. 9.7 Localization capabilities of each NoCAlert invariance checker module. The fault loca-
tions that each invariance type’s checkers can help identify are indicated. There are invariance
checker modules capable of localizing faults on their own. Invariance checker module 27 is
missing, since it is only applicable to nonatomic VC buffers

Fig. 9.8 Probability of
ambiguity in the output of the
Localization Unit, when
faults are localized at the
port-level granularity

90.30%

0.00%
2.00%
4.00%
6.00%
8.00%

10.00%
12.00%
14.00%
16.00%
18.00%
20.00%

Pe
rc

en
ta

ge
 O

ve
r A

ll
Ru

ns

Number of Possible Locations
Un-aliased 2 3 4 5

Localization Unit, when faults are localized at the port-level granularity. When the
output is ambiguous (10%), the Localization Unit reports more than one (up to 5)
possible faulty ports in the affected router, as shown in Fig. 9.8, with the faulty port
always being reported.

9.3.4.3 RTL Netlist-Level Evaluation

As described in Sect. 9.3.3.1, a baseline NoC router augmented with the NoCAlert
detection mechanism was implemented in Verilog HDL and synthesized using 65-
nm commercial standard-cell libraries. The obtained netlist was used to evaluate
NoCAlert’s detection performance at the RTL netlist-level. The evaluation process
at this level was kept the same as the corresponding high-level (network-level)
methodology. Experiments were performed under a fault-free scenario to generate
a Golden Reference, which was later compared with the output logs of the fault-
injected simulation runs.

Similar to Fig. 9.4, Fig. 9.9 presents a breakdown of the RTL netlist-level fault-
detection performance over two different fault-injection time periods: cycles 10–39
(empty NoC), and cycles 100–129 (warmed-up NoC). Note that the RTL netlist-
level evaluation was conducted using only the transient fault model. Thus, we

210 D. Zoni et al.

Fig. 9.9 Breakdown of the
RTL netlist-level
fault-detection performance
over two different
fault-injection time periods

15.90

5.75

15.77

7.08

78.36 77.15

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Cycles 10-39 Cycles 100-129

Pe
rc

en
ta

ge
 O

ve
r A

ll
Ru

ns

Fault Injection Cycle Period

True Positive False Positive True Negative

Fig. 9.10 Cumulative
fault-detection delay
distribution for True Positive
faults, when simulating at the
RTL netlist-level

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 32

Fa
ul

ts
 D

et
ec

te
d

(%
)

Detection Delay (Cycles)

compare the RTL results of Fig. 9.9 with the corresponding “Transient” bars in
Fig. 9.4. The first major observation is that even under this extremely detailed
evaluation, NoCAlert yields 0% False Negatives, thereby demonstrating full fault
coverage.

Finally, Fig. 9.10 shows the cumulative fault-detection delay distribution for True
Positive faults, and it is the RTL netlist-level equivalent of Fig. 9.5. The RTL delay
trend is very similar to the network-level behavior, while the worst-case fault-
detection latency is almost identical to the one reported at the network-level.

9.4 Conclusions

The advent of the multi-/many-core paradigm has elevated the criticality of the NoC.
Being an integral part of the system, the NoC consumes non-negligible amounts of
power. Additionally, the NoC’s criticality—in the sense that it can become a single
point of failure—increases the need for detecting and localizing possible faults.

9 Monitor and Knob Techniques in Network-on-Chip Architectures 211

The first work presented in this chapter has proposed a novel fine-grained power-
gating methodology, aptly called BlackOut, which can operate at the granularity of
individual VC buffers within each input port. The new mechanism entails minimal
changes to the router architecture, and it is generally applicable to any pipeline
micro-architecture, any topology, and any routing algorithm. The new methodology
is fully distributed, and—unlike competing approaches—it only requires minimal
information exchange between adjacent router pairs. The BlackOut technique relies
on a brace of elemental micro-architectural concepts that operate in tandem: late
binding, and flow balancing. Flow balancing enables smooth reactions within the
power-gating actuator, which minimize the impact on performance. Late binding
remaps new incoming packets to already-on buffers, thereby avoiding unnecessary
wake-ups of “sleeping” buffers.

Extensive evaluations using both synthetic traffic and real application workloads
validate the effectiveness of the BlackOut methodology. Compared to a baseline
NoC, BlackOut can achieve energy savings of up to 70%, with a minimal 2%
performance overhead. Most importantly, the new mechanism is compared to two
state-of-the-art techniques, which represent the leading solutions in router- and
buffer-level power-gating granularities. BlackOut is demonstrated to significantly
outperform both techniques, by 35%, on average, in terms of energy savings.

The second work presented in this chapter proposes NoCAlert, a comprehensive
online and real-time fault detection and localization mechanism that ensures
0% false negatives within the NoC, under both transient and permanent faults.
NoCAlert is based on the concept of invariance checking, whereby the outputs of
the control logic modules of the on-chip network are constantly checked for illegal
outputs, based on current inputs. A collection of such micro-checker modules is
used to implement real-time hardware assertions. The checkers operate concurrently
with normal NoC operation, thus obviating the need for periodic, or trigger-based,
self-testing. Upon fault detection, the status of the checkers within each router is
analyzed by a Localization Unit, which can accurately pinpoint the fault location at
three different supported granularity levels.

Extensive simulation results—both at the network-level and at the RTL netlist-
level—validate the efficacy of the NoCAlert mechanism and yield important insight
as to the behavior of the network when non-invariant faults (that evade the
checkers) occur. Specifically, non-invariant faults either cause some subsequent
invariance violation (and are captured), or they prove benign at the network/system
level. Furthermore, a detailed comparison with a state-of-the-art framework [22]
highlights higher than 100× improvements in detection latency, with no loss in
detection accuracy and with much lower overall complexity.

In summary, NoCAlert demonstrates the potential for near-instantaneous fault
detection and swift, single-cycle fault localization within the NoC. This feat is
achieved using fully distributed fault-localization units.

212 D. Zoni et al.

References

1. Agarwal, N., Krishna, T., Peh, L.-S., & Jha, N.K. (2009). GARNET: A detailed on-chip
network model inside a full-system simulator. In ISPASS. https://doi.org/10.1109/ISPASS.
2009.4919636.

2. Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A., et al. (2011). The
Gem5 simulator. SIGARCH Computer Architecture News. https://doi.org/10.1145/2024716.
2024718.

3. Borrione, D., Helmy, A., Pierre, L., & Schmaltz, J. (2007). A generic model for formally
verifying NoC communication architectures: A case study. In NOCS. https://doi.org/10.1109/
NOCS.2007.1.

4. Brayton, R. K., Sangiovanni-Vincentelli, A. L., McMullen, C. T., & Hachtel, G. D. (1984).
Logic minimization algorithms for VLSI synthesis. Norwell: Kluwer Academic Publishers.

5. Chen, L., Zhu, D., Pedram, M., & Pinkston, T. M. (2015). Power punch: Towards non-blocking
power-gating of NoC routers. In HPCA. https://doi.org/10.1109/HPCA.2015.7056048.

6. Chrysanthou, K., Englezakis, P., Prodromou, A., Panteli, A., Nicopoulos, C., Sazeides, Y.,
(2016). An online and real-time fault detection and localization mechanism for network-on-
chip architectures. In TACO. https://doi.org/10.1145/2930670.

7. Constantinides, K., Plaza, S., Blome, J., Zhang, B., Bertacco, V., Mahlke, S., et al. (2006).
BulletProof: A defect-tolerant CMP switch architecture. In HPCA. https://doi.org/10.1109/
HPCA.2006.1598108.

8. Das, R., Narayanasamy, S., Satpathy, S. K., & Dreslinski, R. G. (2013). Catnap: Energy
proportional multiple network-on-chip. In ISCA. https://doi.org/10.1145/2485922.2485950.

9. Fick, D., DeOrio, A., Hu, J., Bertacco, V., Blaauw, D., & Sylvester, D. (2009). Vicis: A reliable
network for unreliable silicon. In DAC (pp. 812–817).

10. Galles, M. (1997). Spider: A high-speed network interconnect. IEEE Micro, 17, 34–39.
11. Hoskote, Y., Vangal, S., Singh, A., Borkar, N., & Borkar, S. (2007). A 5-GHz mesh interconnect

for a teraflops processor. IEEE Micro. https://doi.org/10.1109/MM.2007.4378783.
12. Hosseinabady, M., Dalirsani, A., & Navabi, Z. (2007). Using the inter- and intra-switch

regularity in NoC switch testing. In DATE. https://doi.org/10.1109/DATE.2007.364618.
13. Kakoee, M. R., Bertacco, V., Benini, L. (2011). A distributed and topology-agnostic approach

for on-line NoC. In International Symposium on NoCs. https://doi.org/10.1145/1999946.
1999965.

14. Kakoee, M. R., Bertacco, V., Benini, L. (2011). ReliNoC: A reliable network for priority-based
on-chip communication. In DATE (pp. 1–6).

15. Matsutani, H., Koibuchi, M., Ikebuchi, D., Usami, K. Nakamura, H. & Amano, H. (2011).
Performance, area, and power evaluations of ultrafine-grained run-time power-gating routers
for CMPs. In TCAD. https://doi.org/10.1109/TCAD.2011.2110470.

16. Meixner, A., Bauer, M. E., & Sorin, D. (2007). Argus: Low-cost, comprehensive error detection
in simple cores. In International Symposium on Microarchitecture. https://doi.org/10.1109/
MICRO.2007.8.

17. Mishra, A., Vijaykrishnan, N., & Das, C. (2011). A case for heterogeneous on-chip intercon-
nects for CMPs. In ISCA 2011 (pp. 389–399).

18. Moscibroda, T., & Mutlu, O. (2009). A case for bufferless routing in on-chip networks. In ISCA
’09 (pp. 196–207).

19. Nassif, S. R., Mehta, N., & Yu, C. (2010). A resilience roadmap. In DATE (pp. 1011–1016).
20. Nicopoulos, C., Srinivasan, S., Yanamandra, A., Dongkook, P., Narayanan, V., Das, C. R., et al.

(2010). On the effects of process variation in network-on-chip architectures. IEEE Transactions
on Dependable and Secure Computing. https://doi.org/10.1109/TDSC.2008.59.

21. Parikh, R., & Bertacco, V. (2014). ForEVeR: A complementary formal and runtime verification
approach to correct NoC functionality. ACM Transactions on Embedded Computing Systems.
https://doi.org/10.1145/2514871.

https://doi.org/10.1109/ISPASS.2009.4919636
https://doi.org/10.1109/ISPASS.2009.4919636
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/NOCS.2007.1
https://doi.org/10.1109/NOCS.2007.1
https://doi.org/10.1109/HPCA.2015.7056048
https://doi.org/10.1145/2930670
https://doi.org/10.1109/HPCA.2006.1598108
https://doi.org/10.1109/HPCA.2006.1598108
https://doi.org/10.1145/2485922.2485950
https://doi.org/10.1109/MM.2007.4378783
https://doi.org/10.1109/DATE.2007.364618
https://doi.org/10.1145/1999946.1999965
https://doi.org/10.1145/1999946.1999965
https://doi.org/10.1109/TCAD.2011.2110470
https://doi.org/10.1109/MICRO.2007.8
https://doi.org/10.1109/MICRO.2007.8
https://doi.org/10.1109/TDSC.2008.59
https://doi.org/10.1145/2514871

9 Monitor and Knob Techniques in Network-on-Chip Architectures 213

22. Parikh, R. & Bertacco, V. (2011). Formally enhanced runtime verification to ensure NoC
functional correctness. In MICRO. https://doi.org/10.1145/2155620.2155668.

23. Prodromou, A., Panteli, A., Nicopoulos, C., & Sazeides, Y. (2012). NoCAlert: An on-line and
real-time fault detection mechanism for network-on-chip architectures. In MICRO. https://doi.
org/10.1109/MICRO.2012.15.

24. Strano, A., Gómez, C., Ludovici, D., & Favalli, M., Gómez, M. E., & Bertozzi, D. (2011).
Exploiting network-on-chip structural redundancy for a cooperative and scalable built-in self-
test architecture. In DATE (pp. 1–6).

25. Sun, C., Chen, C. H. O., Kurian, G., Wei, L., Miller, J., Agarwal, A., et al. (2012). DSENT -
A tool connecting emerging photonics with electronics for opto-electronic networks-on-chip
modeling. In NoCS. https://doi.org/10.1109/NOCS.2012.31.

26. Woo, S. C., Ohara, M., Torrie, E., Singh, J. P., & Gupta, A. (1995). The SPLASH-2 programs:
Characterization and methodological considerations. In ISCA (pp. 24–36).

27. Zoni, D., Canidio, A., Fornaciari, W., Englezakis, P., Nicopoulos, C., & Sazeides, Y. (2017).
BlackOut: Enabling fine-grained power gating of buffers in network-on-chip routers. Journal
of Parallel and Distributed Computing. https://doi.org/10.1016/j.jpdc.2017.01.016.

28. Zoni, D., Flich, J., & Fornaciari, W. (2016). CUTBUF: Buffer management and router design
for traffic mixing in VNET-based NoCs. IEEE Transactions on Parallel and Distributed
Systems, 27(6), 1603–1616. https://doi.org/10.1109/TPDS.2015.2468716.

29. Zoni, D., & Fornaciari, W. (2013). Sensor-wise methodology to face NBTI stress of NoC
buffers. In DATE. https://doi.org/10.7873/DATE.2013.216.

30. Zoni, D., & Fornaciari, W. (2015). Modeling DVFS and power-gating actuators for cycle-
accurate NoC-based simulators. ACM Journal on Emerging Technologies in Computing
Systems, 12, 1–15. https://doi.org/10.1145/2751561.

31. Zoni, D., Terraneo, F., & Fornaciari, W. (2015). A DVFS cycle accurate simulation framework
with asynchronous NoC design for power-performance optimizations. Journal of Signal
Processing Systems. https://doi.org/10.1007/s11265-015-0989-1.

https://doi.org/10.1145/2155620.2155668
https://doi.org/10.1109/MICRO.2012.15
https://doi.org/10.1109/MICRO.2012.15
https://doi.org/10.1109/NOCS.2012.31
https://doi.org/10.1016/j.jpdc.2017.01.016
https://doi.org/10.1109/TPDS.2015.2468716
https://doi.org/10.7873/DATE.2013.216
https://doi.org/10.1145/2751561
https://doi.org/10.1007/s11265-015-0989-1

Part V
Technology Related Reliability Approach

Chapter 10
Time-Efficient Modeling and Simulation
of True Workload Dependency for
BTI-Induced Degradation in
Processor-Level Platform Specifications

Simone Corbetta, Pieter Weckx, Dimitrios Rodopoulos, Dimitrios Stamoulis,
and Francky Catthoor

10.1 Workload-Dependent Platform/Processor-Level
Analysis of Bias Temperature Instability-Induced
Degradation: Goal and Motivation

Bias temperature instability (BTI) is important for digital system reliability, and
EDA techniques have been proposed to model and mitigate the BTI-induced
variability [14]. However, the aggressive scaling toward deca-nanometer nodes has
significantly changed the modeling perception of BTI and the underlying simulation
requirements. Recent literature shows that older models inherently fail to capture
BTI phenomena at deeply scaled technology nodes [7]. Previously, an atomistic
approach has been proposed which concentrates on the charge-level activity of gate-
stack defects [9]. It attributes the manifestation of BTI to a variable number of
defects, each one with a specific temporal behavior (modeled using time constants)
and a certain contribution to the overall Vth degradation of a transistor. Recent EDA
literature supports a paradigm shift to defect-centric modeling [7] and a variety of
atomistic implementations already capture BTI-induced degradation over arbitrary
circuit lifetime intervals [23], or in a transient way. More recent approaches are
based on the analytical modeling of defect activity using capture/emission time
(CET) maps [6]. CET maps describe the probability density function of defect
capture and emission times as well as their correlations at high and low digital

S. Corbetta (�) · P. Weckx · D. Stamoulis · F. Catthoor
Imec, Leuven, Belgium
e-mail: simone.corbetta@polimi.it; pieter.weckx@imec.be; dimitrios.stamoulis@mail.mcgill.ca;
francky.catthoor@imec.be

D. Rodopoulos
MicroLab-ECE-NTUA, Athens, Greece
e-mail: drodo@microlab.ntua.gr

© Springer International Publishing AG, part of Springer Nature 2019
W. Fornaciari, D. Soudris (eds.), Harnessing Performance Variability
in Embedded and High-performance Many/Multi-core Platforms,
https://doi.org/10.1007/978-3-319-91962-1_10

217

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91962-1_10&domain=pdf
mailto:simone.corbetta@polimi.it
mailto:pieter.weckx@imec.be
mailto:dimitrios.stamoulis@mail.mcgill.ca
mailto:francky.catthoor@imec.be
mailto:drodo@microlab.ntua.gr
https://doi.org/10.1007/978-3-319-91962-1_10

218 S. Corbetta et al.

operating voltages [17]. However, monitoring the activity of several defects per
transistor throughout the design lifetime poses severe restrictions on the circuit size,
the amount of time samples (and hence the granularity of the workload stimuli),
and simulation time. Consequently, existing works limit their exploration to simple
gates [10, 12], SRAM cells [23, 24], and simple logic blocks [13, 21].

Our goal is to employ the atomistic CET-based models for variability analysis
along with the efficiency of compact digital waveform (CDW) approximation to
efficiently capture the time-varying BTI-induced path delay degradation on the true
workload, i.e., without assuming distributed or constant profiles of the stress load.
In this chapter, we adapt the analytical CET map modeling method to the platform
level, in such a way that we are able to achieve accurate yet efficient atomistic
workload-dependent variability analysis for potentially any reference design and
desired workload. We then provide examples which demonstrate this simulation
capability on realistic CPU components and benchmark applications.

10.2 Technology-Based Modeling of Platform Performance
Degradation

Performance degradation is the combined effect of different physical mechanisms
that result in the divergence of sensible quantities (electrical metrics for devices and
performance metrics for circuits) from their nominal expected boundaries. The very
source of such phenomena is out of the scope of this discussion, and the interested
reader can refer to previous deliverables [18] and [11]. This section will instead
briefly report the interconnection between the low-level models and the high-level
perspective in HARPA, specifying the course of action required to feed upper levels
of the computing stack.

10.2.1 Workload Dependency

It is well known that the induced aging is a function of electrical parameters
(supply voltage), environmental variables (temperature), performance requirements
(frequency), and workload [2]. This can be captured in a variety of ways, depending
on the focus of the analysis, and on the information that is available about the
reference circuit. In general, system-level analysis is required to estimate the impact
of reliability phenomena to the user. However, the necessary information is not
always readily available for the purpose: in case of complex commercial processors,
indeed, the design database is of typically not publicly accessible, while the use
of real hardware poses severe constraints due to the black box approach required
to gather low-level information. In either case, in the HARPA approach we have
addressed the workload dependency issue, as discussed next.

10 Time-Efficient Modeling and Simulation of True Workload Dependency. . . 219

10.2.2 Black Box Approach for System-Level Analysis

As soon as the design is closed and no precise information can be gathered, the
design is basically a black box: only inputs and outputs are known. It is however
important to cope with these situations, as many commercial platforms fall under
this category. The amount of information that can potentially be retrieved here is still
relatively high, but the abstraction level is also high. Within HARPA a methodology
has been developed to analyze these systems, and this is reported in Chap. 11.

10.2.3 White Box Approach for Partitioned Processor-Level
Analysis

When the internals of the target design are known, and a detailed platform netlist is
hence available, a white box approach can be adopted. For our purposes, the design
and verification database contains then all the information which is required. In this
best case scenario, all the constituents of the system can be efficiently and accurately
analyzed.

Let us assume for a moment the high-level block diagram of a generic processor
as illustrated in Fig. 10.1. All main blocks are reported here, including digital,
memory, and analogue components. Each of these types of components requires
a separate methodology. For memory blocks (as present in the caches, for example),
we have developed a specific way of workload-dependent modeling and analysis
which is summarized in [1, 24]. That work is not the focus of this chapter. And,
for analogue components, the devices are typically quite large which implies that
the strong BTI effects due to scaling are largely avoided there. So, that is also
not our focus here. Instead, we are dealing with the digital logic processor cores.
And also, these can be largely analyzed as separate pipeline stages when focusing
on parametric performance degradation. The register files or register clusters and

Fig. 10.1 Partitioning of the
reference design into large
isolated blocks with different
characteristics

220 S. Corbetta et al.

the neighboring logic components like ALUs, multipliers, and FPUs (floating-point
units) will then still be combined in a full pipeline stage.

The processor-level analysis can thus be designed to efficiently provide perfor-
mance degradation breakdown on a per-module basis. In general, to cope with the
complexity of the circuit and to filter out non-digital logic modules (e.g., caches
and analogue plane), the design is tore down into smaller components; these are
isolated at first hand, dependencies (i.e., connection information) are solved and
maintained up-front and analysis can then be performed efficiently. It is worthwhile
to notice that it is up to the design engineer at this point to select the most appropriate
partitioning scheme, bearing in mind that this is context-dependent and a fine-versus
coarse-grain partitioning study should be conducted. This decision directly impacts
the way performance degradation metrics are computed.

With this approach, all the inputs and outputs are known, but all the internal nodes
are known as well. This approach gives lots of flexibility, but usually at higher costs
in terms of design time to be spent. It will be further detailed in the rest of this
chapter.

First, in Sect. 10.1 the goal will be defined, followed by the related work in
Sect. 10.3. Next, we will outline the different steps of our approach in Sect. 10.4.
And then, we will show the main results obtained in Sect. 10.5.

10.3 Related Work at the Component or Platform Level

To the best of our knowledge, this is the first scalable approach that employs
complete atomistic variability analysis of realistic CPU subsystems, while retaining
the true workload dependency under different reference applications. A large body
of previous works has focused on either simple CMOS logic gates [10, 12],
SRAMs [20, 23, 24], or larger netlists of repetitive blocks with reduced functional
complexity [4, 21]. Rodopoulos et al. have implemented atomistic models on top
of transient SPICE simulators [19, 21]. Although significant accuracy is achieved,
the use of SPICE-based solvers is not scalable to larger circuits, resulting in
prolonged execution times up to 100 h even for a simple circuit with few gates.
Weckx et al. have enabled atomistic analysis for SRAM cells with numerical
methods [23, 24]. Nonetheless, the formulation is bound to the given six-transistor
topology and may be complicated to extend to arbitrary topologies with more
transistors. Consequently, these approaches are not applicable to larger digital logic
netlists due to scalability issues. Moreover, only two existing works enable atomistic
BTI analysis at the subsystem level, similarly to our approach. Kukner et al. have
applied CET map modeling methodologies to enable workload-dependent analysis
for several logic blocks [13]. Nonetheless, the evaluation is limited to only restricted
synthetic workloads. Relatively short varying patterns are randomly assigned to the
input pins of each block and such activity information is propagated to the inner
nodes. This does not enable true workload-dependent reliability analysis. Instead, in
this chapter we demonstrate the usability of our approach for several large realistic

10 Time-Efficient Modeling and Simulation of True Workload Dependency. . . 221

test cases with realistic deterministic workloads. Stamoulis et al. have recently
enabled pseudo-transient atomistic simulations for an entire CPU datapath [22].
Nevertheless, the impact of workload dependence is completely neglected and the
same stress pattern is assumed for all the transistors, regardless of their relative
position in the netlist and the activity factors of the inner nodes. Such an assumption
is questionable, since these signal attributes are not constant in modern complex
circuits, and poses a limitation to the desired BTI estimation. In Sect. 10.5, we
show that such assumption leads to fundamental estimation errors that cannot be
neglected in future design for reliability in scaled technology nodes. In [5], the
authors proposed a statistical analysis framework to obtain the combined effect
of process variation and NBTI on the delay distribution; however, they did not
consider the intrinsic variability of NBTI. The proposed gate-level simulation flow
in [23] uses a look-up table (LUT)-based approach where each cell is characterized
for different combination of threshold voltage shift (Vth) of its transistors and the
timing information is stored in LUTs in an extended library. Stochastic samples
are interpolated from the LUTs used by timing analysis tool to obtain the timing
information of the gates.

In addition, industrially oriented commercial EDA flows exist. Accurately assess-
ing the full impact of the stochastic behavior of BTI is typically only performed at
the device level as the circuit-level timing analysis poses severe restrictions on the
circuit size and/or the simulation time. In order to reduce the complexity, some flows
have been developed which exploit circuit-level statistical timing analysis on the
delay distribution (STA). These frameworks currently consider only a single critical
path [3] or the analysis is only performed at the +3σ corner [20].

10.4 Bias Temperature Instability-Induced Degradation
Analysis Flow

The EDA flow to fulfill the white box approach objectives introduced in Sect. 10.2.3
is now presented in more detail. The proposed approach enables variability analysis
that retains both the atomistic property [23] and workload memory [20].

As shown in Fig. 10.2, the flow is meant to be employed at an early stage
of the design process, facilitating BTI-aware design of digital circuits. Design
engineers will be able to perform early analysis of performance variability to foster
eventual design choices. As soon as the gate-level netlist from synthesis is available,
iterations are possible, and design updates can be performed. In case parts of it are
missing, as in the HARPA case, alternative strategies to retrieve estimates can be
adopted, as already explained in Sect. 10.2.2. The flow is designed to help digital
and integration engineers in revealing potential reliability flows in their design,
considering the target workload and reference operating conditions. This happens
early at the design stage, so that design refinement can happen before even entering
the implementation phase, at which point any change would be really costly.

222 S. Corbetta et al.

Fig. 10.2 High-level representation of the proposed flow, and its integration within standard ASIC
digital design flow

The proposed flow is based on standard and commercial ASIC design tools
integrated with in-house control ones; however, implementation details are out of the
scope of this document. The very last outcome is the set of critical paths in the design
before and after the aging analysis has been applied. This gives information about
those portions of the design that are subject the most to aging (as a consequence
of the applied workload). They represent the most important contributions to the
performance degradation, and such information can be used to define a protection
strategy at the digital or RTL design level. As soon as aging meets the expectations,
the implementation phase can then take place. Notice that more accurate information
from the back-end phase could be used to drive the aging analysis, but this would
increase the turnaround time, thus failing in providing early reliability insights.

The main steps in our analysis methodology for performance degradation
estimation will be presented in more detail in the next subsections.

10.4.1 Netlist Flattening

The BTI analysis has to be performed at the transistor level, since the atomistic
and probabilistic properties of the BTI theory [5, 6, 23] are based on the profile of
the stressing Vgs voltage. For this purpose, the gate-level circuit description (from
the synthesis phase) is translated into transistor-level using the gates description
available in the technology library database. A renaming script is used to derive

10 Time-Efficient Modeling and Simulation of True Workload Dependency. . . 223

consistently connected network of transistors that describe the reference circuit (this
step is called transistor topology in Fig. 10.2). Notice that this process causes the
number of primitives to analyze to explode, since (at least) a factor of 4 has to be
assumed while moving from CMOS gates to transistors count. This phase is also
important to determine the list of all net names that need to be taken care of in the
subsequent phases.

10.4.2 Workload Approximation

Monitoring the occupancy of several defects per transistor in a transient fashion
imposes severe restrictions on scalability [10]. We employ an accurate yet efficient
method to capture the evolution of stress patterns throughout the circuit lifetime. In
previous work, a novel signal waveform representation has been proposed, namely
CDW [20]. The analysis of the reference workload is reduced to a set of hyphenated
CDW points; they represent the regions of a signal in which the impact of the
workload on the BTI-induced variation will be computed. For each region with
duration Δt , the CDW point is expressed by means of the frequency f and duty
factor α of the stress signal across the region.

The user is able to determine the way the waveform is approximated in either one
of two ways: by specifying the number of final events (associated with CDW points)
or by specifying the duty cycle and frequency margins that the approximation
algorithm will use. In the former case, the use is basically dividing the waveform
into a number of intervals with uniform length. In the latter case, on the other hand,
an enhanced version of the algorithm presented in [20] is employed.

In general, the choice of the number and position of these points can play an
important role, since it determines the accuracy of the estimation and the simulation
overhead. In general, a higher number of CDW points make the analysis more
accurate at the cost of simulation time, while a more crude analysis suffers from
averaging out the signal activity. This trade-off analysis is beyond the scope of
the current chapter, and the interested reader is referred to the literature [20].
Nevertheless, we can exploit the proposed flow to estimate the relative divergence
of the BTI estimation as a function of the number of selected CDW points.

In practice, the reference workload is described through the VCD (Value Change
Dump) standard file format, a convenient way to describe digital waveforms in text
format (easy to parse and process). The VCD file is a list of time/value pairs for a
generic signal: an entry represents an event with the absolute time at which a signal
changes and its new value. For its structure, VCD files can contain several millions
of events for longer workloads. For complex circuits with many signals, this file
becomes huge, and the number of events are not manageable. We then exploit the
already explained CDW concept. In this way, the original sequence is approximated
with a much shorter number of events that describe the former workload with a

224 S. Corbetta et al.

similar one. The resulting waveform will have on average the same characteristics of
the original one; the number of events in the final sequence determines the similarity
of the two waveforms.

10.4.3 Workload Propagation

In order to retain the realistic workload dependency across all the nodes of the
circuit, the stress activity patters need to be propagated throughout all the transistors
of the digital block in terms of the tuples containing the duty factor α, the frequency
f , and the duration Δt . Furthermore, we need to cope with the space requirements
for complex circuits and large waveforms; tracing activity factors for all the internal
nodes from RTL simulation would be unmanageable.

For this reason, we collect complete waveforms at the primary inputs of the
desired circuit abstraction, and flatten the standard cells of the gate-level design
to their equivalent transistor topology (based on their SPICE-level descriptions
from the reference technology library). We then automatically translate it to a
second Verilog circuit description that is topologically equivalent to the SPICE-
level one, but that can be still simulated using digital simulation tools. The process is
illustrated in Fig. 10.3. Based on this, we then perform switch-level simulation over
consecutive CDW points using Cadence NCSIM, and compute the signal activities
at each transistor from activity TCF data instead of keeping complete VCD waves.
Switch-level simulation is configured so that the top-level stimuli are propagated to
the transistor-level topology description, and TCF (toggle count format) information
is generated for the Vgs of each transistor. Based on the resulting activity files for
each region with duration Δt , we can easily compute the α and f values at each
transistor. The resulting CDW representation captures the Vgs stress voltage at the
transistor level for all the nodes of the netlist under test, as required by the CET
maps model. Notice that Vgs is the BTI stress waveform, and it differs conceptually
from the digital waveform.

Fig. 10.3 Propagation flow based on switch-level simulation

10 Time-Efficient Modeling and Simulation of True Workload Dependency. . . 225

10.4.4 Workload-Dependent Aging Computation

Once the stress patterns of each transistor are known, we employ atomistic BTI
modeling over all the CDW points to accurately evaluate the BTI-induced degrada-
tion of each transistor in terms of threshold voltage shift ΔVth. By combining the
features of both the CDW and CET-map methodologies for representative workloads
on full processor components, we then formulate our BTI evaluation based on the
model presented in [23]. For each trap of each transistor, the occupancy probability
is evaluated, depending on the applied stress waveform specified by the current
CDW point, to compute the contribution to the overall ΔVth shift.

We repeat this process over all the CDW points to account for workload and time
dependency. Notice that each transistor has to be analyzed in a separate way due
to the stochastic nature of the problem [23]. In this way, we derive the workload-
dependent ΔVth per transistor. Finally, by employing a transistor-level STA tool,
namely Synopsys NanoTime, we compute the BTI-aware delay values, keeping
track of its evolution throughout the duration of the reference application.

10.4.5 Circuit-Level Aging Analysis

The last step is to translate the per-transistor threshold voltage shift into a circuit-
level degradation metric in order for the aging impact to be of any use and meaning.
Transistor-level static timing analysis is then performed. During the analysis, each
transistor in the circuit has a threshold voltage value that is the result of the aging
stress computed during the previous phase. The output of the STA process is
an ordered list of critical (and the so-called near-critical) paths that result from
the workload-induced aging. Comparison of this list with the non-aged one (i.e.,
transistors with their nominal threshold voltage) will reveal the aging effects on the
paths timing and, ultimately, on the circuit performance.

It is important to notice here that the analysis can be performed in two ways:
expansive, based on Monte Carlo sampling, or worst case based on n − σ

analysis. In the former case, a Monte Carlo is added on top of the aging process
reported in Sect. 10.4.4, where the stochastic process is the traps emission/capture
probability determined by theoretical model equations [23]. This sampling will give
a distribution of the path delays, while the n − σ will give a single value. Usually,
we use 3 − σ analysis, but 6 − σ analysis can be performed as well, if worst case
has to be pushed further, as expected for lower technology nodes.

226 S. Corbetta et al.

10.5 Representative Results

The purpose of this section is to show representative results while performing BTI
analysis with the overall HARPA methodology explained so far. We substantiate the
validity of our ow as a useful aid for early stage BTI analysis and BTI-aware design
techniques, by capturing the workload-dependent delay degradation for selected
CPU modules. We provide an analysis of a few reference circuits taken from a
representative commercial design. During our evaluation, the workload is generated
through RTL simulation using simple, but real-world applications. An extensive
experimental campaign has been conducted to capture workload dependency of
BTI-induced aging in an accurate way and reasonable turnaround time.

In the following subsections, the integer add/sub component will be used as
main test vehicle to discuss on results, and few additional results will be shown
for other components as well. The electrical and physical parameters employed
in the transistor-level analysis are then taken directly from the model card of
bulk CMOS nodes of TSMC technology. Calibration has been performed against
available silicon measurements [16].

10.5.1 Experimental Setup

10.5.1.1 Target Technology

We have employed the standard-cell library and device models from the TSMC
40 nm technology; the calibration of the flow technology-dependent parameters
has been conducted using a simple inverter gate, and considering a reference
degradation at reference operating conditions. However, the flow is designed in such
a way that any technology library can be used, provided that the model-card file and
the subcircuits file are provided. Thus, calibration can be performed as well, even
for different operating conditions (subject to the availability of published silicon
technology data).

10.5.1.2 Reference Circuits

For our experiments, we selected a number of digital subcircuits from the
OpenSPARC T1 processor, whose design and verification environment is freely
available [15]. This processor is representative of a complex and commercial full-
chip design. We have focused our analysis on selected modules from the integer
and floating-point (IEEE- 754 2008 double-precision standard compliant) datapath,
ranging from 6k equivalent gates (or 22k transistors) of the integer ALU to 36k
equivalent gates (or 143k transistors) of the floating-point multiplier. These are
reported in Table 10.1. For each of them, the number of equivalent gates and
the grand total number of transistors is listed. The number of equivalent gates is

10 Time-Efficient Modeling and Simulation of True Workload Dependency. . . 227

Table 10.1 Selected circuits from the OpenSPARC T1 design

Module Number of equivalent gates Number of transistors

Integer ALU 6k 22k

Integer multiplier 34k 135k

Floating-point ALU 29k 115

Floating-point multiplier 36k 143k

Floating-point divider 11k 44k

ad
pc

m bs cn
t

co
mpr

es
s
co

ve
r

crcdu
ff

ed
n
ex

pln
t
fac fdc

t
fft1

fib
ca

ll fir

Ins
er

tso
rt

Ja
nn

e_
co

mlex

Jfd
cti

nt

Icd
nu

m Im
s

Iud
cm

p

matm
ult

minv
er
nd

es

ns
lch

ne
u
pr

im
e

qs
or

t-e
xa

m
qu

rt

re
cu

rsi
on
se

lec
t

sta
tem

ate udns
0

20

In
st

ru
ct

io
n

m
ix

40

60

80

100

lnt FP Mem Other

Fig. 10.4 WCET instructions breakdown

computed using the simplest 2-input NAND gate available in the TSMC 40 nm
technology library. The circuits have been isolated during synthesis, so that a top
level with no hierarchy for each of them is available.

10.5.1.3 Reference Applications

A number of applications from the WCET benchmark suite [8] have been selected
to cover a wide range of application characteristics. The breakdown of instructions
from the WCET suite is given in Fig. 10.4.

Unless otherwise noted, the waveforms from the above applications are expanded
to years of operation: instead of extending the inputs to cover longer simulation
times, the original short waveforms are expanded (across CDW points) in such a
way that the sum of the simulated time is years. This is expressed in the example of
Fig. 10.5. Let us assume that a single waveform that lasts for 300 ms is available, and
let us assume that the user imposed 6 CDW points, such that each BTI simulation
accounts for 50 ms of the total time. The expansion process takes these CDW
intervals and expand them in such a way that (for a total simulated time of 6 months)
they will account for 1 month each. The example reports just one single CDW

228 S. Corbetta et al.

CDW CDWpoint #1 point #2 CDW point #2

CDW expansion from 50 ms to 1 month

< α,ƒ,Δt1 >

< α,ƒ,Δt2 >

50ms

1 month

t1

t1 t2

t0 t2 tfCDW interval

CDW interval

Fig. 10.5 Compact digital waveform (CDW) expansion

interval, but the same process is repeated for the others as well. It is the duration
time parameter Δt of the tuples that changes, while the duty cycle and frequency do
not, retaining the waveform characteristics and mimicking long stress waveforms.

10.5.2 Constant Versus Realistic Activity Factors

In this subsection, we demonstrate that an invalid assumption about the stress
load profile to PMOS and NMOS transistors can lead to an erroneous degradation
estimation. We compare our results that retain workload-dependent attribute against
the results with the state-of-the-art proposal in [22], in which the authors assumed
a constant activity factor and frequency across all transistors. We then adapted our
flow to resemble this experimental setup, assuming a 50% duty factor and 1 GHz
frequency at each transistor and one single CDW point (that is placed exactly at the
end of the workload). In this way, each transistor will be subject to the same exact
stress, irrespective of the application generating the workload.

We perform variability analysis for an overall stress duration of 3 years, as
in [22]. To perform this analysis, we started from the CDW points computed by
the ow for a number of applications, and we then scaled the duration of each CDW
interval in such a way that the sum of all of them equals the desired wall-clock
time. In each case, we maintained the original ratio among each CDW intervals.
For the integer add/sub circuit, we compare the ΔVth at each transistor, computed
based on the constant duty-factor case and the simulated one in Fig. 10.6. It shows

10 Time-Efficient Modeling and Simulation of True Workload Dependency. . . 229

Fig. 10.6 Dispersion plot comparing data samples from constant duty-factor case and simulated
cases

the dispersion plot of the ΔVth values in two different applications: each point
represents the threshold voltage shift at the end of the workload of each single
transistor. The scatterplots highlight the mismatch of homonym transistors in the
two scenarios. Two clouds are evident. First of all, the topmost cloud expresses a
mismatch due to the assumed workload even for alternate stresses. On the other
hand, the bottom cloud highlights the presence of idle transistors in the circuit.
These transistors will be however computed as degrading assuming a constant factor
as in [22], thus providing a fundamental estimation error. Samples are just reported
for two different applications (ns and expint), but similar results have been obtained
for the other applications as well.

The importance of the mismatch can also be evaluated by comparing the
empirical cumulative distribution function (CDF) of the real stress case with
constant stress case (i.e., 10 and 90%) and a wider time range (i.e., 1, 3, and 5
years of operation), for three different applications matmult, fir, and compress. The
empirical CDF F(x) of the collected samples ΔVth are shown in Fig. 10.7. Lines are
grouped according to the scenario, either of a constant workload or of a simulated
one. The analyzed wall-clock time values are denoted by the curves shifting toward
the right. The results show that the low (10%) and the high (90%) constant duty-
factor (unchanged frequency) assumptions enclose the real aging evolution up to
a certain degree. Beyond a certain interval, the estimation is basically erroneous.
Also, the shape of the functions differs from the real case. It is worth observing
that a higher stress time moves the curves toward the right-end side of the axis.
For instance, assuming a ΔVth degradation equal to 80 mV, the 10% assumption
would over-constrain the design, since the cumulative probability at this point has
already reached 1; for the 90% case, on the other hand, the design would be under-
constrained, even for 12 months reference time. It is therefore evident that we cannot
avoid the workload dependency analysis if we are to deliver cost-effective design
solutions.

230 S. Corbetta et al.

Fig. 10.7 Empirical CDF shows divergence between constant and real workload

Fig. 10.8 Workload/circuit pairs comparison

10.5.3 Impact of Workload

Figure 10.8 reports the relative degradation (in percentage with respect to the base
case with no aging) of different circuits, considering different common workloads.
The results are given after a simulated time (expanded as expressed in Sect. 10.5.1)
of 3 years at 125 ◦C and nominal voltage of 1.0 V. The chosen applications are
floating-point intensive ones, meaning that they contain a number of floating-point
operations for which the floating-point hardware unit is used. However, it is shown
that also the integer ALU is subject to a degradation that is comparable to the one for
the FPU. This is because integer operations are always in place in the application,
even when it is a floating-point intensive one. These results show that there exists a

10 Time-Efficient Modeling and Simulation of True Workload Dependency. . . 231

Stress time [s]

int_addsub fpu_add fpu_div fpu_mul

13
106 107 108

14

15

16

17

18

19

20

M
ax

 d
el

ay
 d

eg
ra

da
tio

n
[%

]

Fig. 10.9 Maximum degradation comparison

small degradation difference in the same circuit due to different applications. These
results are in line with what is shown in the literature [4], namely that variability is
reduced from device to circuit level, due to averaging effects in subsequent stages.
This will be however investigated further by looking at specific test cases.

However, workload dependency is visible if we plot the maximum relative
degradation against stress time for different cases, as in Fig. 10.9.

The time on the horizontal axis is the time required to reach the maximum
degradation on the vertical axis. Different colors identify different circuits. The
distribution of the sample points demonstrates that different workload/circuit pairs
have a different aging profile. Orders of magnitude of difference in the stress time
show the importance of workload on aging.

Figure 10.10 compares the time-dependent degradation of different workload/-
circuit pairs over a period of 5 years. The time-dependent degradation shows the
impact of workload phases on the delay degradation of the most critical path.

10.5.4 Simulation Time Discussion

The time required to provide the BTI estimate depends on a number of factors, such
as the number of transistors in the reference circuit, the topology of the circuit, and
the length of the waveform (in number of events).

Figure 10.11 reports the cumulative estimation time for different workload/cir-
cuit pairs. The simulation time is divided into a number of phases, whose main
contribution is specified in Table 10.2.

232 S. Corbetta et al.

Stress time [s]

int_addsub fpu_add fpu_div fpu_mul

107 108

16

14

12

10

8

18

20

R
el

at
iv

e
de

gr
ad

at
io

n
[%

]

Fig. 10.10 Time-dependent degradation comparison

Init.
10-6

10-4

10-2

100

102

104

Netlist
translation

C
um

ul
at

iv
e

pr
oc

es
si

ng
 ti

m
e

[h
]

Waveform
processing

Waveform
approximation

(CDW)

Workload
propagation computation

Δ Vth STA

int_add
fpu_mul
fpu_add
fpu_div

Fig. 10.11 Execution time comparison

10.5.5 Compact Digital Waveform-Based Approximation

For the flow presented in Sect. 10.4, the choice of the number of CDW points
will have an impact on the final estimation. As a matter of fact, depending on the
circuit and workload characteristics (that cannot be foreseen), the final BTI-induced
degradation can give different results, especially in cases when the time-varying
profile is of interest to the user. We provide a simple example in Fig. 10.12.

A simple test has been conducted using the integer ALU circuit with a fixed
workload; the number of CDW points has been varied from 1 (a single BTI
estimation covering the entire simulation time) and 100. The time-varying BTI-
induced aging of different cases has then been overlapped in the figure. For the

10 Time-Efficient Modeling and Simulation of True Workload Dependency. . . 233

Table 10.2 Phase contributions

Phase Role Main contributions

Netlist translation Translates gate-level – Netlist size

description to (nr of gate instances)

transistor-level – Standard-cell library size

description (nr of available gates)

Waveform processing Generates bit-level – Circuit complexity

signals from (nr and width of signals)

port-wide signals – Size of the waveform

of VCD file (nr of events in each signal)

Waveform approximation Computes the CDW – Size of the waveforms

(CDW) approximation (nr of events in each signal)

Workload propagation Propagates the workload – Netlist size

to gate level (nr of transistors)

– Size of the waveform

(nr of events in each signal)

ΔVth computation Computes BTI-induced – Netlist size

threshold voltage shift (nr of transistors)

Static timing analysis Performs STA – Circuit complexity

(STA) at transistor level (nr of paths and topology)

– Netlist size

(nr of transistors)

Time [s]

P
er

ce
nt

ag
e

de
gr

ad
at

io
n

100CDW
30CDW
10CDW
1CDW

105
12

13

14

15

16

17

18

19

106 107 108

Fig. 10.12 Impact of number of CDW points on the BTI analysis

presented case, the last CDW point is comparable in all the different cases, but it is
important to note that the time-varying profile is very different. Thus, the number of
CDW points determines both the observability (in time) of the BTI profile. When the
initial BTI impact has to be determined, it is important to choose a larger number of
CDW points, and for cases in which the time-varying profile is of interest as well.
For faster cases, on the other hand, a lower number of CDW points are enough.

234 S. Corbetta et al.

However, the error introduced by using a lower number of CDW points can amplify
with different circuit/workload pairs.

10.6 Conclusion and Future Work

In this chapter, we have proposed a comprehensive system-level reliability analysis
flow that exploits the accuracy of CET maps with the efficiency of the CDW signal
representation. Prior art on atomistic BTI modeling exhibits reduced scalability or
accuracy issues, by either limiting the models to the circuit level or by assuming
constant stress patterns at the system level. To the best of our knowledge, this is the
first automated approach that retains both the atomistic property and true workload-
dependent aging attribute.

That way, we enable variability analysis for several CPU subsystems, showing
the importance of workload in BTI-induced aging analysis. First, we prove that
worst-case margin-based proposals assuming constant workload (i.e., activity factor
and frequency of the stress signal independent of the application) lead to over- or
under-constrained designs. Moreover, we assess the impact of true workload depen-
dency on different circuits, since the same applications result in clearly distinct
overall degradation among different CPU modules. Thus, we fully demonstrate the
usability of our tool flow for efficiently capturing the workload-dependent BTI-
induced degradation of CPU components under realistic conditions for real-life
applications.

So far, results have been presented for representative but still relatively limited
use cases. However, our research work will continue toward considering even more
complex scenarios. We are currently active in two main topics: flow optimization
and gate-level analysis flow where the details of the transistor circuit inside complex
gates can be abstracted away.

References

1. Agbo, I., Taouil, M., Kraak, D., Hamdioui, S., Kukner, H., Weckx, P., et al. (2017). Integral
impact of BTI, PVT-variation and workload on SRAM sense amplifier. IEEE Transactions on
VLSI Systems, 25(4), 1444–1454 (Online Jan 2017).

2. Catthoor, F., & Corbetta, S. (2014). Harpa project deliverable D4.1: Report on high-level
reliability model requirement specifications. http://www.harpa-project.eu/index.php?option=
com_content&view=article&id=10&Itemid=111&download=D41.pdf

3. Catthoor, F., Corbetta, S., & Meeus, W. (2015). Harpa project deliverable D4.3: Proof-
of-concept of HARPA modelling framework. http://www.harpa-project.eu/index.php?option=
com_content&view=article&id=10&Itemid=111&download=D43.pdf

4. Fang, J., & Sapatnekar, S. (2012, April). Understanding the impact of transistor-level BTI
variability. In IEEE IRPS Conference (pp. CR.2.1–CR.2.6).

5. Grasser, T. (2014). The capture/emission time map approach to the bias temperature instability.
In Bias temperature instability for devices and circuits. New York: Springer.

http://www.harpa-project.eu/index.php?option=com_content&view=article&id=10&Itemid=111&download=D41.pdf
http://www.harpa-project.eu/index.php?option=com_content&view=article&id=10&Itemid=111&download=D41.pdf
http://www.harpa-project.eu/index.php?option=com_content&view=article&id=10&Itemid=111&download=D43.pdf
http://www.harpa-project.eu/index.php?option=com_content&view=article&id=10&Itemid=111&download=D43.pdf

10 Time-Efficient Modeling and Simulation of True Workload Dependency. . . 235

6. Grasser, T., Wagner, P. J., Reisinger, H., Aichinger, T., Pobegen, G., Nelhiebel, M., et al. (2011,
December). Analytic modeling of the bias temperature instability using capture/emission time
maps. In IEEE IEDM Conference (pp. 27.4.1–27.4.4).

7. Grasser, T., Kaczer, B., Goes, W., Reisinger, H., Aichinger, T., Hehenberger, P., et al. (2011).
The paradigm shift in understanding the bias temperature instability: From reaction-diffusion
to witching oxide traps. IEEE Transactions on Electron Devices, 58(11), 3652–3666.

8. Gustafsson, J., et al. (2010). The malardalen WCET benchmarks: Past, present and future. In
WCET 2010, Brussels (pp. 136–146).

9. Kaczer, B., et al. (2010, May). Origin of NBTI variability in deeply scaled pFETs. In IEEE
IRPS Conference (pp. 26–32).

10. Kaczer, B., et al. (2011, April). Atomistic approach to variability of bias-temperature instability
in circuit simulations. In IEEE IRPS Conference (pp. XT.3.1–XT.3.5).

11. Kleanthous, M., Klokkaris, G., Nikolau, P., Chrysanthou, K., Hadjilambrou, Z., Englezakis,
P., et al. (2014). Harpa project deliverable D3.1 - Technological Context and State-of-
the-Art. http://www.harpa-project.eu/index.php?option=com_content&view=article&id=10&
Itemid=111&download=D31.pdf

12. Kukner, H., et al. (2014). Comparison of reaction-diffusion and atomistic trap-based BTI
models for logic gates. IEEE Transaction on Device and Materials Reliability, 14(1), 182–193.

13. Kukner, H., et al. (2014, March). Degradation analysis of datapath logic subblocks under NBTI
aging in FinFET technology. In 15th ISQED Conference (pp. 473–479).

14. Kuuoglu, H., & Alam, M. (2007). A generalized reaction-diffusion model with explicit h-h2
dynamics for negative-bias temperature-instability (NBTI) degradation. IEEE Transaction on
Electron Devices, 54(5), 1101–1107.

15. OpenSPARC, Oracle. http://www.oracle.com
16. Reis, R., Cao, Y., & Wirth, G. (Eds.). (2015). Circuit design for reliability. New York: Springer.
17. Reisinger, H., et al. (2010, May). The statistical analysis of individual defects constituting

NBIT and its implications for modeling DC- and AC-stress. In IEEE IRPS Conference (pp. 7–
15).

18. Rodopoulos, D., & Soudris, D. (2014). Harpa project deliverable D2.1 - State-of-the-art RT
Mitigation of Performance Variability. http://www.harpa-project.eu/index.php?option=com_
content&view=article&id=10&Itemid=111&download=D21.pdf

19. Rodopoulos, D., et al. (2011, May) Time and workload dependent device variability in circuit
simulations. In IEEE ICICDT Conference (pp. 1–4).

20. Rodopoulos, D., Weckx, P., Noltsis, M., Catthoor, F., & Soudris, D. (2014). Atomistic pseudo-
transient BTI simulation with inherent workload memory. IEEE Transaction on Device and
Materials Reliability, 14(2), 704–714.

21. Rodopoulos, D., et al. (2014, May). Understanding timing impact of BTI/RTN with massively
threaded atomistic transient simulations. In IEEE ICICDT Conference (pp. 1–4).

22. Stamoulis, D., et al. (2015, May). Efficient reliability analysis of processor datapath using
atomistic BTI variability models. In 25th ACM GLSVLSI Conference.

23. Weckx, P., Kaczer, B., Toledano-Loque, M., Grasser, T., Roussel, P. J., Kukner, H. (2013, April)
Defect-based methodology for workload-dependent circuit lifetime projections - Application
to SRAM. In IEEE IRPS Conference (pp. 3A.4.1–3A.4.7).

24. Weckx, P., et al. (2014) Non-Monte-Carlo methodology for high-sigma simulations of circuits
under workload-dependent BTI degradation - Application to 6T SRAM. In IEEE IRPS
Conference (pp. 5D.2.1–5D.2.6).

http://www.harpa-project.eu/index.php?option=com_content&view=article&id=10&Itemid=111&download=D31.pdf
http://www.harpa-project.eu/index.php?option=com_content&view=article&id=10&Itemid=111&download=D31.pdf
http://www.oracle.com
http://www.harpa-project.eu/index.php?option=com_content&view=article&id=10&Itemid=111&download=D21.pdf
http://www.harpa-project.eu/index.php?option=com_content&view=article&id=10&Itemid=111&download=D21.pdf

Chapter 11
Proof-of-Concept HARPA
Measurement-Based Platform Modelling
Framework

Simone Corbetta, Wim Meeus, Etienne Cappe, Francky Catthoor,
and Agnes Fritsch

11.1 Motivation and Context

This chapter describes the proposed measurement-based modelling methodology to
analyse the workload-dependent reliability of complex systems, and the implemen-
tation of this methodology in the HARPA context. The following relevant aspects
will be addressed:

1. Workload dependency: The HARPA objectives are expressed in terms of well-
known workloads specified by industrial partners and represented by their
reference applications. Workload-dependency is required for accurate and real-
istic reliability model design [28, 38]. Nevertheless, for generalisation purposes,
additional applications will be selected.

2. Temperature dependency: Harsh operating conditions will be taken into account
since failure mechanisms (as NBTI) are exacerbated at high temperature (and
voltage).

3. System-level: HARPA deals with parametric variation, but due to the sense/react
nature of the project objectives, we will focus on a system-level perspective,
in which the local effects (due to aging) are translated into functional failures
at the processor boundaries, i.e. visible failures at the higher levels of the
hardware/software stack.

S. Corbetta (�) · W. Meeus · F. Catthoor
Imec, Leuven, Belgium
e-mail: simone.corbetta@polimi.it; wim.meeus@imec.be; francky.catthoor@imec.be

E. Cappe · A. Fritsch
Thales Commun. and Security (TCS), Gennevilliers, France
e-mail: etienne.cappe@thalesgroup.com; agnes.fritsch@thalesgroup.com

© Springer International Publishing AG, part of Springer Nature 2019
W. Fornaciari, D. Soudris (eds.), Harnessing Performance Variability
in Embedded and High-performance Many/Multi-core Platforms,
https://doi.org/10.1007/978-3-319-91962-1_11

237

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91962-1_11&domain=pdf
mailto:simone.corbetta@polimi.it
mailto:wim.meeus@imec.be
mailto:francky.catthoor@imec.be
mailto:etienne.cappe@thalesgroup.com
mailto:agnes.fritsch@thalesgroup.com
https://doi.org/10.1007/978-3-319-91962-1_11

238 S. Corbetta et al.

To be able to adapt the proposed methodology to the HARPA context, a strong
experimental phase is required, analysing how the reference platform reacts to high-
temperature operation. Notice that the choice of the reference hardware is driven by
interest from industrial partners, while the need for a virtual platform overcomes the
inadequate observability of internal nodes of the processor.

Finally, the methodology presented in this chapter addresses the scientific and
technical outcomes of the HARPA project by means of

1. Definition of a general methodology to estimate the workload-dependent relia-
bility from a black-box design, based on measurements in the field

2. Application of such methodology to the Freescale i.MX 6Quad SoC case [13]
(one of our main reference platforms)

3. Characterisation of the impact of DVFS steps and policies on system-level
reliability

The rest of this chapter is organised as follows. First, we will discuss related work
in Sect. 11.2. Next, we will outline the different steps of our approach in Sect. 11.3.
And then we will show the main results obtained in Sect. 11.4.

11.2 Related Work

11.2.1 Aging and NBTI

Reliability is a very important aspect of most practical systems [24]. An important
category of hardware-induced mechanisms which strongly impact the reliability of
modern microelectronic systems is aging of the nanoscale devices and intercon-
nects [8, 9, 19]. Aging is a time-dependent process, after which characteristics of a
device will deviate from nominal values [19]. We talk about parametric variation
when referring to the (time-varying) variation of electrical characteristics of a
device, such as gate delay or threshold voltage. This variation can then cause a
functional failure in case the fault is not masked by the circuit. In scaled technolo-
gies, aging is getting worse [5] and experimental results have demonstrated that it
is no longer feasible to constrain a circuit lifetime a priori, since device parameters
are described by time-dependent distributions: Threshold voltage drifting ΔVth is a
stochastic process and, as such, it is not possible to determine a priori the lifetime of
a device. Time-zero variability after the manufacturing process makes things even
worse [33].

Different degradation mechanisms exist, such as negative-bias temperature
instability (NBTI) [15, 18, 22], random telegraph noise (RTN) [25] and hot carrier
injection (HCI) [30]. Their importance depends on the technology node (shrinking
technology makes them worse) and operational parameters (temperature and supply
voltage are acceleration factors).

11 Measurement-Based Platform Modelling Framework 239

NBTI in pMOS devices is known to be typically the dominant one [15, 18, 41].
The magnitude of degradation depends on a series of factors, both functional
(frequency f and workload related) and non-functional (temperature T and supply
voltage Vdd). Also analytical models and simulation approaches have been devel-
oped for NBTI [29]. It has been shown that atomistic models [15, 16, 18] not based
on reaction-diffusion mechanisms are important to accurately capture the workload
dependence [21]. Earlier models did not achieve this yet [2]. And the device level
models have also been extended to larger datapath modules [20].

Next to devices also interconnects are prone to aging. In that case, electro-
migration is the main mechanism [6].

11.2.2 Approaches to Deal with Aging and NBTI

Several groups have recognised the need to deal with this aging not only at
technology/device level but also at the architecture or system level, and this already
for more than a decade [1]. Because of the strong temperature dependence of the
aging mechanisms [6, 23, 39], thermal-aware design approaches abound [31, 34, 35].

But this is not sufficient on its own and also the workload-dependenteffect should
be exploited, as our own work has substantiated [27, 38]. This also involves so-called
scenario-aware techniques [14, 32, 42]. These mitigation techniques are however
not the focus of this chapter. They are reported in other parts of this book, especially
Chaps. 4 and 6.

11.3 Measurement-Based Workload-Dependent
Methodology

This section presents the methodology designed to fulfil the HARPA objectives
related to the reliability model development. The HARPA methodology is based on
strong experimental validation with the actual hardware platform (see Sect. 11.3.1)
and the simulation framework (see later subsections). The need for a virtual platform
accompanying the real hardware comes from the fact that the latter on its own
doesn’t allow observability of internal nodes of the processor, making it impractical
to derive information with sufficient detail. Furthermore, the importance to maintain
the real hardware as the reference architecture is dictated by the will to drive the
research from real measurements and to meet the industrial interest in this direction.
However, a mismatch in the simulated architecture and the real one is present (and
known), and adds challenges to our research goal. Ultimately, the methodology
presented in this chapter allows us to fulfil the following technical and scientific
outcomes:

240 S. Corbetta et al.

1. Definition of a general methodology to analyse the temperature- and workload-
dependent reliability of a complex SoC, using a black-box approach, i.e. without
requiring sensible and non-disclosed information from the SoC vendor

2. Definition of a general methodology to provide a system-level temperature- and
workload-dependent reliability model (focusing on NBTI)

3. Application of the above methodology to a real commercial case, of industrial
relevance: the Freescale i.MX 6Quad platform [13]

11.3.1 Freescale i.MX 6Quad SoC Platform

The Freescale i.MX 6Quad is a complex SoC that integrates many functionalities
and IPs. A simplified block diagram taken from the reference manual [13] gives an
idea of the complexity of the design, as shown in Fig. 11.1. The SoC hosts an ARM

Fig. 11.1 Freescale i.MX 6Quad block diagram [13]. The ARM Cortex-A9 multiprocessor is
highlighted in red

11 Measurement-Based Platform Modelling Framework 241

Cortex-A9 quad-core processor (the red-coloured box), implementing the ARMv7-
A architecture. Data crunching applications can benefit from the on-chip presence
of 3 GPUs and a video processing unit. Lots of peripherals support the flexibility of
the device, and connect it to the external world.
Among others, the following SoC features are important to highlight [11, 12]:

• ARM A9-Core complex:

– Symmetric CPU configuration.
– Each core has a private 32kB L1 Icache and 32kB L1 Dcache.
– Each core has a private NEON Media Processing Engine co-processor for

SIMD, dual and single floating-point numbers arithmetic.
– Unified 1MB L2 cache.

• Video Processing Unit and Image Processing Unit
• 2D/3D GPUs
• On-chip fast ROM and RAM memories
• Power management circuit
• Lots of peripherals

11.3.2 General Approach

The development of an accurate reliability model requires precise low-level infor-
mation about the design, the architecture, microarchitecture and circuit of the
target processor. Also, precise workload characteristics and waveforms must be
available to provide an accurate workload profile. However, the Freescale chip
design database is not available to customers and, even if we had the RTL design
at hand, it would be simply impractical to simulate it in its entirety, due to the
complexity of the design (in the order of a few million gates) and of the software
application (execution time in the order of tens of minutes). For these reasons,
the problem has been decomposed, and the proposed methodology to prevent this
complexity is organised into three phases, as shown in Fig. 11.2.

11.3.3 Methodology Phases

The three phases are defined as follows:

1. Accurate modelling—this phase aims at determining precise timed workload
from a selected subset of functional blocks. This is based on a simplified RTL
design and an auxiliary simulation environments, as described in Sect. 11.3.3.1.

2. Approximation—this phase is used to generate precise gate-level waveforms
starting from higher-level workload, as specified in Sect. 11.3.3.2.

242 S. Corbetta et al.

Fig. 11.2 Logical view of the HARPA estimation flow

3. BTI simulation—this phase computes the workload-dependent and temperature-
dependent reliability metrics of the reference design, as specified in
Sect. 11.3.3.3.

Each phase will be discussed in detail in the following sections.

11.3.3.1 Accurate Modelling

The purpose of this step is to generate workload (timed traces) at specified blocks
of the processor, while running the reference application. Due to the complexity
of the target processor and the application, timed traces are generated using a
high-level model of the reference processor. This allows simulating the application
and focusing on selected portions of the processor. We selected GEM5 as the
architecture simulator [3] (freely available from www.gem5.org), for its ability
to accurately model the ARMv7-A architecture and the ARM Cortex-A9 multi-
processor. GEM5 is highly configurable, and comparison with the real hardware is
performed to fine-tune the simulated platform configuration. Then we simulate the
reference application, and keep track of the operands of predetermined instruction
types (e.g. integer additions); they will represent the timed trace of data inputs to
those functional blocks that support the execution of those instructions (e.g. the
adder for the add/sub instructions). Figure 11.3 reports the flow to generate those
traces.

The simulator has been modified to generate the timed list of operands and some
additional access statistics about the execution time, the number of clock cycles,
the IPC and the memory accesses for fine-tuning the simulation configuration. For
the HARPA project objectives, the GEM5 simulator guarantees equivalence with
the Freescale core, thanks to the presence of the ARMv7-A accurate model and the
configurability of the simulator. The timing accuracy of the simulator also fits the
project needs, since it remains below 7% absolute error [4].

www.gem5.org

11 Measurement-Based Platform Modelling Framework 243

Fig. 11.3 GEM5 trace generation

Fig. 11.4 OpenSPARC T1 block diagram and SPARC core microarchitecture

11.3.3.2 Approximation

A synthesizable RTL database is then required to generate low-level waveforms,
synthesize the design and analyse the mapped netlist. However, very few freely
available RTL designs exist, and the OpenSPARCT1 is the most complete one [37].
The OpenSPARCT1 is the open-source version of the Sun UltraSPARC processor,
a complex SoC featuring 8 SPARCv9 cores, on-chip L2 banked cache and shared
floating-point unit; the simplified block diagram is reported in Fig. 11.4, derived
from [36]. The OpenSPARCT1 processor implements the SPARCv9 architecture.
The block diagram of the processor and the microarchitecture of the cores is given
in Fig. 11.4. It is composed of 8 cores with private L1 caches and a shared, banked
L2 cache. It features classical pipelined cores with 6 stages [36]. The processor
design and verification environment (RTL code, test-benches, scripts and ISA
documentation) is freely available at http://www.oracle.com.

The SPARCv9 architecture [36] is different from the ARMv7-A archi-
tecture (http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c/
index.html). However, the arithmetic and logic operations make use of
combinational or sequential circuits that we can assume being reasonably recurrent

http://www.oracle.com
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c/index.html

244 S. Corbetta et al.

Fig. 11.5 Test bench example and timed stimuli

in the ASIC standard flow (e.g. think to the DesignWare library of components
from Synopsys and how circuits are described in HDLs). This means that we
can still use the RTL design of the SPARCv9 architecture, provided that we
focus on isolated blocks of the data-path; this, in any case, is the portion of
the processor where we expect to gain most from a reliability viewpoint, so the
assumption fits very well with the objectives. Furthermore, this fits with the way
we generate traces from high-level simulation (Sect. 11.3.3.1). Indeed, the HARPA
methodology does not consider the entire core, but a number of key modules,
focussing on the main floating-point and fixed-point arithmetic units. They have
been chosen after engineering considerations about the design and analysing the
final project objectives, reaching consensus with the industrial partners. Synthesis
and simulation are performed on these modules in isolation, focusing on portions
of the code that are more relevant to our purposes. With the OpenSPARCT1
design/verification environment available, it is now possible to simulate the desired
application (represented by the collected traces) and generate low-level waveforms.
An ad-hoc test-bench is created that instantiates the block under test and a vector-
based stimuli specification. The inputs will be forced to known values, namely
those from the collected traces. Control inputs are indirectly retrieved by analysing
their role within the circuit. Then, the simulation will force the input values with
appropriate timing information, and will let the internal nodes of the circuit settle to
get node-level waveforms and output ports results. The overall picture is shown in
Fig. 11.5.

11 Measurement-Based Platform Modelling Framework 245

11.3.3.3 BTI Simulation

The previous step aims at generating waveforms at internal nodes. These waveforms
are now employed to gate-level BTI simulation and analysis. The collected traces
are used as input to the transistor-level flow that computes workload-dependent
reliability metrics of the circuit. Being dependent on the technology and the circuit,
some calibration parameters will be required to drive the model development. The
collection of points that will be later used for calibration is done through a first
reliability experiments setup, discussed in more detail in Sect. 11.4.

11.3.4 Fault Detection and Analysis

Faults in a complex circuit can happen everywhere and they are potentially
translated into failures, if they are not masked. The detection process is not trivial in
the case of the HARPA project for a combination of reasons:

• Complexity is high and faults might be masked anywhere in the circuit: the
observability is low in this case, and we might not even realize that a fault just
occurred.

• The application deals with a large amount of data and faults are required to be
detected within 1 ms from their occurrence, while the total execution time is in
the order of minutes or even hours; this means that fault detection has to happen
millions or billions of times during the execution of the application.

Thus, a lightweight fault checking mechanism is required to minimize the impact
of error checking on the application behaviour: The more frequently we collect data
the more the application will be influenced, but also the more likely a fault will be
detected. In any case, faults can be detected by comparing the expected outputs to
the real outputs of the system under test. This is accomplished using signatures
to generate traces, a recurrent habit in the functional safety domain, e.g. in the
automotive industry. This section describes how we detect faults that occur on the
i.MX6 processor.

11.3.4.1 Offline Golden Trace Collection

The first step is then to generate (once) the trace of correct signatures. Different
options exist to generate reference data: on the processor under test itself, on a
different processor of the same type (e.g. on a second test board) or on a different
processor (e.g. an x86_64). The first solution is not possible in practice because
the cores on the device under test share the same DVFS settings which make them
equally (un)reliable. Using a host computer is problematic too, as it turns out that
minimal errors occur between the i.MX6 and the x86_64 architectures (e.g. floating-
point rounding mismatch), while the outputs and the intermediate results need to

246 S. Corbetta et al.

be bit-wise identical for accurate comparison. Finally, generating the golden trace
once offline on the same board, under nominal conditions (i.e. ambient temperature,
default DVFS settings and default power supplier), is the most plausible solution.
The golden trace is then stored for later comparison. Notice that the golden trace
collection can be safely performed offline since it will not change with operational
conditions (e.g. temperature or DVFS settings) that we may find in the run-time
scenario.

11.3.4.2 Online Faults Identification

When the test and reference executions are in the same state, they can be compared
for faults. Fault identification has to occur at run-time since we want to be able to
detect faults within 1 ms from their occurrence. With the offline trace at our disposal,
the setup in Fig. 11.6 is employed for online faults detection: The board will run a
modified version of the code (to include signatures computation and sending), and
the laptop will act as comparator.

The system under test and the laptop communicate through a TCP/IP network:
The laptop waits for incoming data generated by the DUT board; signatures are
buffered locally on the board and sent to the comparator by TCP/IP periodically.
The reference application has been modified for this purpose:

• It computes signatures at specific configurable points (the period can be tuned
such that it is in the 1µs to 1 ms range) and sends these signatures to the
comparator for storage (when recording a golden trace) or comparison (when
running under stress).

Fig. 11.6 Online fault detection setup

11 Measurement-Based Platform Modelling Framework 247

• It supports heap memory shadowing, i.e. memory allocation requests by the
software (calloc()) are wrapped by code that uses ping-pong buffers, ensuring
that internal application data are preserved for fault analysis if a fault is detected.

• It listens for a “mismatch detected” message from the comparator. If such
message is received, the application is terminated and the internal data of the
application is dumped to a file for further analysis.

As long as there is no mismatch, the application runs as before. As soon as the
comparator detects a mismatch, a stop message is sent to the board. The application
under test dumps its internal data to a file for the next debugging step, aimed at
determining the causes of the failure.

11.3.4.3 Signature Accumulation

Signatures are 32-bit data computed through a simple accumulation algorithm
that embeds the intermediate results computed by the processor. The simple
accumulation algorithm performs the following steps:

1. Right rotate the current signature by 1 bit
2. Bitwise XOR the (rotated) signature with the new data

Signatures are initialised to a known value (e.g. 0xa5a5a5a5) and the accumula-
tion procedure is applied periodically at specific points in the code.

11.4 Experimental Results

The purpose of the high-stress experiments is to measure the workload- and
temperature-dependent reliability of the Freescale SoC, while running the desired
application under harsh conditions. Data from these experiments will be used to
calibrate the reliability model. Reliability in this context is measured by means of
high-level metrics such as time-to-failure, where the first fault triggers the failure.
Also, execution time variability plays an important role in real-time applications,
and as such we keep track of the timing of the application under high-temperature
conditions. Harsh conditions will both accelerate the faults process and increase
the timing variability: The ambient temperature will be forced to a stable known
value with the aid of a thermostream machine, while high voltage will be forced by
modifying the DVFS kernel driver (this driver has been provided by Thales TCS).

248 S. Corbetta et al.

Table 11.1 Selected
modules from the
OpenSPARC T1 design

Module Number of equivalent gates

Integer ALU 6k

Integer multiplier 34k

Integer shifter 3k

Integer divider 13k

Floating-point ALU 29k

Floating-point multiplier 46k

Floating-point divider 11k

Correction factor (-s parameter)

10-1

0.08

0.1

0.12O
ve

rh
ea

d

0.14

0.16

0.18

0.2 q=Low
q=High

100 101 102 103 104

Fig. 11.7 Application overhead

11.4.1 Synthesis Results

The most important modules of the reference RTL design are present in Table 11.1.
System clock frequency has been constrained to 900 MHz and only simple gates are
employed (no 4-input gates, no special cells such as complex half- or full-adders) to
fit with the BTI estimation back-end flow.

11.4.2 Signatures Accumulation Overhead

Signatures are first stored into a local buffer, which in turn waits for the maximum
payload of a TCP packet to be reached. Signatures, however, are not sent to the
buffer every time they are computed; they are instead sent once every number of
iterations. This number is configurable, and the higher the number of signatures sent,
the faster faults will be detected but the higher will be the overhead. Figure 11.7
reports the overhead as a function of the parameter that controls the signature
sending period; this plot can be used to select the appropriate correction factor given
the desired overhead maximum. The overhead is defined as the relative increase of
execution time of the modified version from the original one.

11 Measurement-Based Platform Modelling Framework 249

Fig. 11.8 Reliability setup

The overhead results are reported for both the low- and high-quality scenarios,
for the Imec profile, considering performance DVFS governor. In general, the low-
quality scenario accounts for a higher-performance overhead, namely 10% more on
the average. This is due to the fact that the number of iterations per loop in the Low
scenario is lower than in the High case, thus the total number of computed signatures
is lower and the overhead is relatively higher. Also, the relative weight changes
with DVFS settings. With the performance governor there is no actual dynamic
adaptation, since the processor is then all the time kept at maximum frequency.

11.4.3 General Setup

The experiment setup is depicted in Fig. 11.8. Unless otherwise noted, this is the
setup that is used during the following high-temperature experiments. The following
components are visible:

• A Thermostream machine—to generate and blow hot air onto the chip’s surface
• The i.MX 6Q chip mounted on the Freescale board [11]—running the reference

workload

250 S. Corbetta et al.

• The Amplification and ADC circuits—for thermocouples readings, and supply
voltage trace analysis

• A Laptop—to collect raw data and control the board

11.4.3.1 Accurate Operating Temperature Control

The thermostream machine is pumped air operated, and the air temperature can
be set using the knobs on the front panel. The desired temperature is stabilised by
using a thermocouple at the end of the pipe, and the sensed value is sent back to the
central unit for closed-loop adjustment. Thermocouples are also placed on the chip’s
surface at predefined positions to overcome the limitations of the digital sensor and
to keep trace of the time-dependent evolution of temperature. Thermocouples are
indeed able to identify gradients and trace temperature above 125 ◦C, while the
thermal sensor can be used for absolute measurement below 125 degrees (i.e. the
qualification and calibration point of the reference chip).

11.4.3.2 Voltage Stability Checks

Voltage supply to the ARM Cores is also traced. A voltmeter has been designed
using the Arduino Uno platform, to trace VDD voltage. The VDD pin is taken
from resistor R27 [10], while ground is taken from the board’s ground pads. The
analogue voltages are sent to the analogue input pins of the Arduino that is in
charge of the digital conversion through a 10-bit ADC that guarantees 49 mV
resolution. This allows to check whether the supply voltage is stable or not during
the high-temperature experiments. This is of paramount importance to remove all
the possible sources of noise that are not related to the NBTI phenomenon.

11.4.3.3 Sweeping Parameters

The detailed list of operating parameters that are set during the reliability experiment
is as follows:

• Operating temperature: [125,170] ◦C. Motivation: The Freescale SoC is qualified
for 125 degrees for the automotive industry [12]. Above this value, no guarantee
remains that the chip will continue to work properly. The reference temperature
is measured on the chip’s surface.

• Supply voltage: [1.3,1.875]V in steps of 250 mV. Motivation: The Freescale SoC
is qualified for 1.3 V [12]; 1.875 V is the maximum voltage we can have from the
on-board power management IC, and 1.875 V is still in the NBTI range without
causing hard breakdown.

11 Measurement-Based Platform Modelling Framework 251

• Running frequency: 996 MHz. Motivation: The maximum allowed by the plat-
form, and the one for which the circuit has been designed for. This stresses the
clock margins.

11.4.3.4 Temperature Sweep Procedure

During reliability experiments, the platform will be stressed at high temperature; the
objective is to measure its reliability at multiple runs at steady-state temperature and
without focusing on aging across multiple runs. The platform will then be stressed
according to the following procedure:

1. At (relative) low temperature, power up the board and perform necessary
platform initialisation

2. Power up the thermostream (refer to the setup from Fig. 11.9) and set the target
temperature to the desired one

3. While performing the transition, run the synchronizer script. Notice that it will
take a while to reach the steady-state point

4. Once the synchronizer script ends, run the application on the Freescale board and
start collecting temperature values from the thermocouples.

The aforementioned procedure allows to focus on the steady-state operation
point, and avoids running experiments during the temperature transient. The
synchronizer is used to detect the steady-state temperature on the chip’s surface;
it is designed to end once this condition is reached. In Fig. 11.9, this is t0 and it
defines the reference time for fault time analysis. Indeed, at t0 the application is
finally started and t1 determines the desired time to failure (if any). The steady-
state detection is reached considering the fluctuation of the temperature values in
a given window, considering a predetermined threshold value (in this case 0.250
degrees). Notice that a single iteration runs at most (i.e. in case of no faults)
for a predetermined amount of time. Furthermore, the platform is reset between
successive transitions, no matter whether a fault occurred or not.

11.4.4 Reference Application

For our experiments, we have used a representative reliability-sensitive application
with real-time constraints from Thales TCS, namely the core of a spectrum sensing
kernel [7] which is an important component of cognitive and opportunistic radio
access technologies [40]. It sweeps the relevant frequency spectrum to obtain infor-
mation about unused frequency bands. Based on this radio frequency, allocation
can be performed. An embedded real-time application context has been developed
for this experiment. The application relies heavily on computation-intensive signal
processing in order to perform the sensing operations. It gathers samples from a
large frequency range, performing filtering and splitting into frequency bands for

252 S. Corbetta et al.

Fig. 11.9 Synchronizer example

further analysis. In our context, the sensing consists of three consecutive steps:
wideband filtering for the signal operations, signal channelisation and parameter
estimations. A 256-point Fast Fourier Transform (FFT) with data in complex long
format is mainly used as the computation kernel.

11.4.5 Temperature-Dependent Execution Time

The NBTI-induced aging of devices makes the threshold voltage Vth increase
temporarily whenever a trap captures a charge it becomes activated, and the net
effect is a deterioration of the performance parameters of the PMOS transistor.
When the trap emits its charge, the threshold voltage Vth returns (mostly) to its
initial state. For instance, the gate delay increases as the temperature exceeds the
specified operating boundaries. This is usually 125 degrees for automotive and
industrial electronics. The increased gate delay may translate into either a fault
or an increase in system delay. In the former case, if the delay exceeds the clock
margins, the synchronous circuit can sample a wrong value and then eventually
propagate it through the system. In the latter case, local delays might sum up and

11 Measurement-Based Platform Modelling Framework 253

Fig. 11.10 Execution time comparison

lead to a system-wide increase in execution time. The purpose of these experiments
is to measure this eventual delay at high temperature. We have run the reference
application under constant temperature (set through the thermostream) and supply
voltage (set through the DVFS governor) for 300 times, and collected the execution
time of each iteration. For this experiment, we did not send signatures through
the Ethernet connection, but instead stored the signature trace directly on the
SDCard to avoid any unpredictable delay due to the TCP/IP stack. The comparison
from Fig. 11.10 shows that there is no noticeable change in the distribution of
the execution times at high temperature. Each plot reports the histogram (20 bins
grouping) of 300 different measured samples, and the fitted distribution assuming
population is Normal. The standard deviation is very small, and execution time
samples are located within a ±100 ms range, i.e. ±0.1% with respect to the average.
Nothing robust can be said about the slight shift of the high temperature average
towards the left of the axis. Indeed, this is a negligible difference (less than 50 ms,
0.05% from the average).

In any case, another interesting result has been found comparing the signature
traces of the previous runs. It has been found that a fault occurred in the processor,
since a signature mismatch has been observed. Figure 11.11 reports the signed
numerical difference between homonym signatures collected during the reference
run (at 40 degrees) and during the stress run (at 160 degrees). It is clear that any
positive or negative difference underlies a signature mismatch. The top-most part
of the figure shows that there are mismatches in the first 60 iterations (∼90 min of

254 S. Corbetta et al.

200

-3

-2

-1

0

1

2

3

-3

Iteration number

Difference

-2

-1

0

1

2

3

10 20 30 40 50 60 70 80 90 100110120130140150160170180190200210220230240250260270280290300

Iteration#1 ×109

 ×109

Iteration#30 ×109 Iteration#55 ×109

400 600 200

-3

-2

-1

0

1

2

3

400 600 200

-3

-2

-1

0

1

2

3

400 600

Fig. 11.11 Recurrent fault analysis

operation), and it shows also that the mismatch disappears at iteration #62. First
of all, an in-depth analysis of the mismatches at different iterations has shown that
these are recurrent at specific points in time, across successive iterations. Notice
that each iteration re-reads the input data and re-computes the result. This means
that the fault is localised at a precise point in the circuitry, and as soon as the
application stresses that part, the computed result is impacted. However, it is not
yet clear where exactly this fault has occurred, since the chosen signature sampling
rate is too coarse-grained during this experiment. The very first fault occurred after
56 s of operation, so not immediately. This implies some “warming-up” period is
present also.

Also, notice that the temperature is constant, the supply voltage did not expe-
rience flaws (see Fig. 11.12) and the frequency is constant too (execution time is
constant). Thus, the conditions are good to match the results with the NTBI-induced
aging assumption. Indeed, the only other changing parameter is temperature, and the
fault expiration is perfectly reasonable in the context of the capture/emission theory.

Previous results suggest that a more detailed reliability campaign is worthwhile
to be explored, as discussed in the next subsection.

11 Measurement-Based Platform Modelling Framework 255

Fig. 11.12 Temperature and voltage traces

11.4.6 BTI Aging Experiments

NBTI is expected to play an important role at high temperatures. Early experiments
(see Sect. 11.4.5) have shown that there are chances that a fault translates into
functional failure. Further experiments are then required to analyze the system-
level sensitivity to temperature of the entire Freescale chip, running the Thales
spectrum sensing reference application (for workload-dependency). The purpose of
this section is to provide initial results regarding the reliability of the Freescale chip
as a function of increasing temperature, assuming the setup from Sect. 11.4.3.
The following results will be shown:

1. System-level temperature dependency of failure time
2. Types of faults experienced in the Freescale platform
3. Analysis of the most sensitive (i.e. unreliable) portion of the reference application

to high temperatures
4. Plans for next experiments

Note that due to the limited number of samples that can be obtained in a
reasonable amount of time, any statistical projection of the reported data is actually

256 S. Corbetta et al.

not robust. In any case, the results show a clear trend, and can be used by industrial
partners to focus on the most critical part of their application, for reliable products.

The time required to provide the BTI estimate depends on a number of factors,
such as the number of transistors in the reference circuit, the topology of the circuit
and the length of the waveform (in number of events).

11.4.6.1 System-Level Perspective

The setup presented in Sect. 11.3.4 allows to detect a system-level failure, for which
an underlying failure mechanism holds. This section reports the measured time-to-
failure at high temperatures on the Freescale device, while running the Thales TCS
application. Figure 11.13 reports the measured time-to-failure against temperature.

On the left-hand side, one sample is reported from each run as a circle; crosses
denote cases in which no fault has been detected. These are conventionally placed
on the TTF axis at the maximum execution time, but they actually lie in the region
above the striped line. We cannot safely assume their position, thus we do not
consider them in our analysis. From this plot, it is clear that the probability of having
faults increases with temperature (crosses overlap at relatively low temperature),
and still dispersion is present, spanning almost two orders of magnitude. This result
is expected, since it is known that NBTI-induced faults are widely spread along
the time axis [17]. Still, there are cases in which the processor experienced no fault,
despite the high temperature, to further demonstrate the variability of the underlying
phenomenon. The right-hand side of Fig. 11.13 zooms in into the 168–172 degrees
region, where the measured data has been grouped and analyzed. Box plots are
used to determine the degree of dispersion of the data at different temperatures. The
low samples count makes it harder to draw robust conclusions about any statistical

Fig. 11.13 Time-to-failure against temperature

11 Measurement-Based Platform Modelling Framework 257

Fig. 11.14 Empirical cumulative distribution function and histogram

distribution, and also the range is not enough to make predictions. Furthermore,
outliers are present, and this makes the fitting process even harder. In any case,
it is evident that the temperature plays an important role in causing a fault in the
processor. The empirical cumulative distribution function is given then in Fig. 11.14,
along with the computed histogram. Notice that we experienced 21/34 (∼62%)
faulty cases against 12/32 (∼38%) non-faulty cases as a summary.

11.4.6.2 Types of Faults

The adopted method guarantees the analysis of the failure time at system level, i.e.
considering a functional fault as the point in which a fault manifests itself. Notice
that the use of signatures (see Sect. 11.3.4.3) is capable of capturing the exact point
in which a fault occurs, but this at the price of overhead. Instead, to minimize the
impact on the workload, a smaller number of signatures is currently used, as also
indicated in Sect. 11.3.4.3). Hence, now it is not possible to distinguish between the
types of faults.

The following types of failures have been observed:

1. Functional failure—any mismatch in the signature that does not cause the
platform to be reset (see next types) is considered a functional failure: somewhere
in the circuit, the processor computed the wrong result.

258 S. Corbetta et al.

2. Vdd failure—this group contains all those faults that cause the platform to be
reset. The root cause of such faults is unknown since as soon as the platform is
automatically reset, we lose the memory contents.

3. No failure—either no faults at all or masked faults fall in this group. We cannot
distinguish them.

In the experiments reported here, most of the time the failure is actually a
functional failure: In rare cases, we experienced a Vdd fault, and in only very few
cases we were able to find the root cause. Indeed, it is known that the Freescale
SABRE board has a voltage protection circuit that is placed close to the DC
voltage plug [11]. The voltage protection circuit is composed of a diode that,
when conducting, asserts a reset signal to the system and lights red; the circuit is
designed so that the diode starts conducting when the input DC voltage is greater
than 5.6 V [11]. However, we noticed that in some cases the diode starts conducting
even when there is no major voltage peak, and it does so gradually (being a LED is
easy to check whether it is conducting or not, and the intensity of the emitted light
is an index of its bias). A thermocouple placed close to the diode has also shown
that it starts conducting at high temperature, meaning that the reset signal is actually
a spurious one, induced by the temperature increase through PCB and air from the
main SoC. Note that the temperature at the diode is not found to be systematically
high but depends on a number of factors including the direction of the pipe on the
chip surface. For these types of faults, we do not provide quantitative values, since
we are mostly interested in the functional ones in the HARPA context, but they are
as important as the others from a system perspective.

11.4.6.3 Application Reliability Analysis

Another important analysis that can be conducted with the experimental setup
proposed in this document relates to the most sensitive portion of the application to
temperature, from a reliability standpoint. Indeed, it is expected that the application
contains parts with different execution profiles, e.g. some of them may be integer
intensive, while other floating-point intensive. This translates to a different impact
on the system-level failures. The signatures contain also additional information of
when in the code a fault occurred, by reporting an identifier representing the overall
progress of the computation. This number is called the idBuffer, and will be used to
perform post-process analysis for the back-end part of the flow (see Sect. 11.3.3.2).
Figure 11.15 shows that there are actually portions that are more critical than the
others, i.e. when a fault occurred they were more likely contributed to the signature
mismatch.

Although each idBuffer covers a sequence of a number of instructions (dependent
on the number of signatures selected) and not a single instruction, this is a useful
tool to drive the post-processing phase. It also gives the partners an insight into
where to focus their attention to increase the reliability of the final product.

11 Measurement-Based Platform Modelling Framework 259

Fig. 11.15 idBuffer distribution during faulty runs

11.5 Conclusion and Future Work

This chapter has discussed the HARPA measurement-based modelling methodology
for NBTI estimation, and has also introduced the way this has been adopted for
the analysis of the reference platform. It has been shown that the accurate NTBI
estimation requires calibration of the models against the reference design and the
used technology. The experimental phase has been also successfully conducted, with
the following noticeable outputs:

• Analysis of the temperature profile of the application/processor pair of choice
• Early analysis results of the reliability of the Freescale SoC as a function of

temperature

The measured samples count is not enough to infer distributions in a statistically
sound way, but they provide a deeper understanding of the processor and technology
characteristics of the reference platform. They also provide a direction to follow for
more elaborate future experiments.

References

1. Alam, M., Kang, K., Paul, B. C., & Roy, K. (2007). Reliability- and process-variation aware
design of VLSI circuits. In International Conference on Physics of Failure Analysis.

2. Alam, M. A., & Mahapatra, S. (2004). A comprehensive model of PMOS NBTI degradation.
Microelectronics Reliability, 47(6), 71–81.

3. Beckmann, B., Binkert, N., Saidi, A., Hestness, J., Black, G., Sewell, K., et al. (2011). The
gem5 simulator. Tutorial at ISCA.

4. Beckmann, B., Binkert, N., Saidi, A., Hestness, J., Black, G., Sewell, K., et al. (2011). The
gem5 simulator. Tutorial at ISCA 2011.

260 S. Corbetta et al.

5. Borkar, S. (2005). Designing reliable systems from unreliable components: The challenges of
transistor variability and degradation. In IEEE Micro.

6. Cheng, Y.-K., Tsai, C.-H., Teng, C.-C., & Kang, S.-M. S. (2002). Temperature-dependent
Electromigration reliability. In Electrothermal Analysis of VLSI Systems (pp. 121–155).

7. Corbetta, S., Meeus, W., Rodopoulos, D., Cappe, E., Catthoor, F., & Fritsch, A. (2016, March).
System-wide reliability analysis on real processor and application under Vdd and T stress. In
Proceedings of SELSE Conference, Austin.

8. Deleonibus, S. (2009). Electronic device architectures for the Nano-CMOS era. Singapore: Pan
Stanford Publishing.

9. Deleonibus, S. (2012). Prospects for nanoelectronics CMOS scaling and functional diversifi-
cation. ECS Transactions, 44(1), 41–47.

10. Freescale Semiconductor. (2012). AN4509: i.MX 6Dual/6Quad Power Consumption Measure-
ment.

11. Freescale Semiconductors. (2013). MCIMX6Q - Smart Device Board and Schematics.
12. Freescale Semiconductor. (2014). i.MX 6Dual/6Quad Automotive and Infotainment Applica-

tions Processors datasheet (IMX6DQAEC).
13. Freescale Semiconductors, Inc. (2014). i.MX 6Dual/6Quad Applications Processor Reference

Manual (IMx6DQRM Rev 2).
14. Gheorghita, S. V., Palkovic, M., Hamers, J., Vandecappelle, A., Mamagkakis, S., Basten, T., et

al. (2009). System-scenario-based design of dynamic embedded systems. ACM Transactions
on Design and Automation of Embedded Systems, 14(1), 1–45.

15. Grasser, T., Kaczer, B., Goes, W., Reisinger, H., Aichinger, T., Hehenberger, P., et al. (2010).
Recent advances in understanding the bias temperature instability. In International Electronic
Devices Meeting (IEDM) Conference.

16. Grasser, T., Kaczer, B., Goes, W., Reisinger, H., Aichinger, T., Hehenberger, P., et al. (2011).
The paradigm shift in understanding the bias temperature instability: From reaction/diffusion
to switching oxide traps. IEEE Transactions on Electron Devices, 58(11), 3652–3266.

17. Grasser, T., Wagner, P. J., Reisinger, H., Aichinger, T., Pobegen, G., Nelhiebel, M., et al. (2011).
Analytic modelling of the bias temperature instability using capture/emission time maps. In
International Electron Devices Modeling (IEDM) Conference.

18. Kaczer, B., Grasser, T., Roussel, P. J., Franco, J., Degraeve, R., Ragnarsson, L. A., et al. (2010).
Origin of NBTI variability in deeply scaled pFETs. In IEEE International Reliability Physics
Symposium (IRPS).

19. Kiamehr, S., Weckx, P., Tahoori, M., Kaczer, B., Kukner, H., Raghavan, P., et al. (2016,
April). Impact of process variation and stochastic aging in nanoscale VLSI. In Proceedings
International Reliability Physics Symposium (IRPS), Pasadena.

20. Kukner, H., Khatib, M., Morrison, S., Weckx, P., Raghavan, P., & Kaczer, B., et al. (2014).
Degradation analysis of datapath logic subblocks under NBTI aging in FinFET technology. In
International Symposium on Quality Electronics Design (ISQED).

21. Kükner, H., Khan, S., Weckx, P., Raghavan, P., Hamdioui, S., Kaczer, B., et al. (2014).
Comparison of reaction-diffusion and atomistic trap-based BTI models for logic gates. IEEE
Transactions on Device and Materials Reliability, 14(1), 182–193.

22. Kumar, S. V., Kim, C. H., & Sapatnekar, S. S. (2006). An analytical model for negative bias
temperature instability. In IEEE ICCAD Conference.

23. Luo, H., Wang, Y., He, K., Luo, R., Yang, H., & Xie, Y. (2007). Modeling of PMOS NBTI
effect considering temperature variation. In International Symposium on Quality Electronic
Design (ISQED).

24. O’Connor, P., & Kleyner, A. (2012). Practical reliability engineering (5th ed.). New York:
Wiley.

25. Realov, S., & Shepard, K. L. (2013) Analysis of random telegraph noise in 45-nm CMOS using
on-chip characterization system. IEEE Transactions on Electron Devices, 60(5), 1716–1722.

26. Reisinger, H., Grasser, T., & Schlunder, W. G. C. (2010). The statistical analysis of individual
defects constituting NBTI and its implications for modeling DC- and AC-stress. In IEEE
International Reliability Physics Symposium (IRPS).

11 Measurement-Based Platform Modelling Framework 261

27. Rodopoulos, D., Catthoor, F., & Soudris, D. (2015). Tackling performance variability due to
RAS mechanisms with PID-controlled DVFS. IEEE Computer Architecture Letters, 14(2),
156–159.

28. Rodopoulos, D., Mahato, S. B., Camargo, V. V. A., Kaczer, B., Catthoor, F., Cosemans, S., et al.
(2011). Time and workload dependent device variability in circuit simulations. In International
Conference on IC and Design Technology (ICICDT) Conference.

29. Rodopoulos, D., Weckx, P., Noltsis, M., Catthoor, F., & Soudris, D. (2014). Atomistic pseudo-
transient BTI simulation with inherent workload memory. IEEE Transactions on Device and
Materials Reliability, 14(2), 704–714.

30. Rosenbaum, E., Rofan, R., & Hu, C. (1991). Effect of hot-carrier injection on n- and pMOSFET
gate oxide integrity. IEEE Electron Device Letters, 12(11), 599–601.

31. Sankaranarayanan, K., Velusamy, S., Stan, M., & Skadron, K. (2005). A case for thermal-aware
floorplanning at the microarchitectural level. Journal on Instruction-Level Parallelism, 8, 1–16.

32. Sanz, C., Prieto, M., Gomez, J. I., Papanikolau, A., Miranda, M., & Catthoor, F. (2008).
Combining system scenarios and configurable memories to tolerate unpredictability. ACM
Transactions on Design Automation of Electronic Systems, 13(3), Article Number 49.

33. Sarangi, S. R., Greskamp, B., Teodorescu, R., Nakano, J., Tiwari, A., & Torrellas, J. (2008).
VARIUS: A model of process variation and resulting timing errors for microarchitects. IEEE
Transactions on Semiconductor Manufacturing, 21(1), 3–13.

34. Skadron, K., Stan, M. R., Huang, W., Velusamy, S., Sankaranarayanan, K., & Tarjan, D. (2003).
Temperature-aware microarchitecture. In International Symposium on Computer Architecture
(ISCA).

35. Skadron, K., Stan, M. R., Sankaranarayanan, K., Huang, W., Velusamy, S., & Tarjan, D. (2004).
Temperature-aware microarchitecture: Modeling and implementation. ACM Transactions on
Architecture Code Optimization, 1(1), 94–125.

36. Tremblay, M., & Chaudhry, S. (2008, February). A third-generation 65nm 16-Core 32-thread
plus 32-Scout-Thread CMT SPARC(R) processor. OpenSPARC, Sun Microsystems.

37. Weaver, D. L., & Germond, T. (Eds.). (1994). The SPARC architecture manual, Version 9.
Englewood Cliffs: SPARC International, Inc., Prentice Hall. ISBN 0-13-825001-4.

38. Weckz, P., Kaczer, B., Toledano-Loque, M., Grasser, T., Roussel, P. J., Kukner, H., et al. (2013).
Defect-based methodology fork workload-dependent circuit lifetime projections - Application
to SRAM. In International Reliability Physics Symposium (IRPS).

39. Wu, E., Suñé, J., Lai, W., Nowak, E., McKenna, J., Vayshenker, A., et al. (2002). Interplay of
voltage and temperature acceleration of oxide breakdown for ultra-thin gate oxides. Solid-State
Electronics, 46(11), 1787–1798.

40. Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio
applications. IEEE Communications Surveys Tutorials, 11(1), 116–130.

41. Zafar, S., Kim, Y. H., Narayanan, V., Cabral, C., Paruchuri, V., Doris, B., et al. (2006). A
comparative study of NBTI and PBTI (charge trapping) in SiO2/HfO2 stacks with FUSI, TiN,
Re Gates. In Symposium on VLSI Technology.

42. Zompakis, N., Bartzas, A., Soudris, D., & Catthoor, F. (2013). System scenarios-based archi-
tecture level exploration of SDR application using a network-on-chip simulation framework.
Microprocessors and Microsystems, 37(6–7), 544–553.

Part VI
Applications

Chapter 12
Floreon+ Modules: A Real-World
HARPA Application in the High-End
HPC System Domain

Antoni Portero, Radim Vavrik, Martin Golasowski, Jiri Sevcik,
Giuseppe Massari, Simone Libutti, William Fornaciari, Stepan Kuchar,
and Vit Vondrak

12.1 Floreon+: HPC Domain Application

There are many types of natural disasters in the world, and many of them depend
on the geographical location of the observed area. Floods are one of the worst and
most recurrent types of natural disasters in Central and Eastern Europe. Floods [17]
occur when discharges and water levels exceed their bank-full discharge values and
overflow. Floods kill millions of people, more than any other natural disaster, and
they are also the world’s most expensive type of natural disaster.

Floods frequently affect the population and are therefore studied by numerous
scientific research institutes. Almost all large rivers in Central and Eastern Europe
have experienced catastrophic flood events, e.g., the 1993 and 1995 flooding of
the river Rhine, the rivers Danube and Theiss in 1999 and 2002, the river Odra
in 1997, the river Visla in 2001, and the river Labe in 2002. Floods, however, affect
not only Central and Eastern Europe, but they represent a significant problem in
many regions all around the world. The growing number of losses caused by floods
in countries around the world suggests that global mitigation of disasters is not a
simple matter, but rather a complex issue in which science and technology can play
a significant role. Therefore, the issue of flood prediction and simulation has been
selected as a case of choice for innovative development.

A. Portero (�) · R. Vavrik · M. Golasowski · J. Sevcik · S. Kuchar · V. Vondrak
IT4Innovations, Ostrava - Poruba, The Czech Republic
e-mail: antonio.portero@vsb.cz; radim.vavrik@vsb.cz; martin.golasowski@vsb.cz;
jiri.sevcik@vsb.cz; stepan.kuchar@vsb.cz; vit.vondrak@vsb.cz

G. Massari · S. Libutti · W. Fornaciari
Politecnico di Milano, Milano, Italy
e-mail: giuseppe.massari@polimi.it; simone.libutti@polimi.it; william.fornaciari@polimi.it

© Springer International Publishing AG, part of Springer Nature 2019
W. Fornaciari, D. Soudris (eds.), Harnessing Performance Variability
in Embedded and High-performance Many/Multi-core Platforms,
https://doi.org/10.1007/978-3-319-91962-1_12

265

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91962-1_12&domain=pdf
mailto:antonio.portero@vsb.cz
mailto:radim.vavrik@vsb.cz
mailto:martin.golasowski@vsb.cz
mailto:jiri.sevcik@vsb.cz
mailto:stepan.kuchar@vsb.cz
mailto:vit.vondrak@vsb.cz
mailto:giuseppe.massari@polimi.it
mailto:simone.libutti@polimi.it
mailto:william.fornaciari@polimi.it
https://doi.org/10.1007/978-3-319-91962-1_12

266 A. Portero et al.

The project FLOREON+ [15] started in 2006 as a research project funded by the
regional government of the Moravian-Silesian region of the Czech Republic that
required reliable models for flood simulations and predictions to minimise costs
of post-flood repairs in areas impacted by severe floods. The principal goal of the
research project FLOREON+ (FLOods REcognition On the Net) is the development
of a prototype modular system of environmental risks modelling and simulations.
FLOREON+ is based on modern Internet technologies with platform independence.

The FLOREON+ project results help to simplify the process of disaster manage-
ment and increase its operability and effectiveness. The main scopes of modelling
and simulation are flood risk, traffic modelling during critical situations, water and
air pollution risks, and other environmental hazards. Another efficient utilisation of
the computing power could be computing What-If scenarios for decision support
and to plan preventive actions. Part of the research employs the modelling of land
cover, and land use changes based on thematic data collection (aerial photographs,
satellite imagery), and application of the prediction tools brings attractive advan-
tages to land use planning. Modelling the catchment response to severe flood events
generates the opportunity to improve the set-up and dimensions of new channel
systems, within the scope of hydrology and water management.

12.2 Experimental Application

The central thematic area of the project is hydrologic modelling and prediction. The
system focuses on acquisition and analysis of relevant data in near-real time and
uses this data to run hydrologic simulations with a short-term forecast. The results
are then used for decision support in disaster management processes by providing
predicted discharges on river gauges and prediction and visualisation of inundated
areas in the landscape (Fig. 12.1).

In the simulation phase (Adaptivity in Simulations [2]) of the prediction cycle,
adaptivity in the spatial resolution is essential to improve the accuracy of the result.
Specifically, more computational resources are introduced when the weather looks
more attractive (i.e. after hours or days of heavy rain). These may be used for
computations that are triggered by stimulating activities detected in the forecast
simulation. Or they may be part of the same simulation process execution if it has
been re-engineered to use automatic adaptive accuracy refinement. In any case, the
most accurate computation has to track the evolution of the predicted and actual
weather in real time. The location and extent of finer results should evolve and move
across the simulated landscape in the same way the actual weather is constantly
moving.

The model used in this study is a rainfall–run-off model (RR) developed as part
of the Floreon+ project. Rainfall–run-off models [14] are dynamic mathematical
models which transform rainfall to flow at the catchment outlet. The primary
purpose of the model is to describe rainfall–run-off relations of a catchment area.
Standard inputs of the model are precipitation measured by meteorological gauges,

12 Floreon+: A Real-World HARPA Application in the High-End HPC. . . 267

Fig. 12.1 Inundation area for the Ostravice river

and spatial and physical properties of the river catchment area. Common outputs
are surface run-off hydrographs which depict relations between discharge (Q) and
time (t). Catchment areas for the model used for experiments in this chapter
are parameterised by Manning’s roughness coefficient (N), which approximates
physical properties of the river basin, and CN curve values (CN), which approximate
geological properties of the river catchment area.

The confidence intervals are constructed using the Monte Carlo (M-C) method
where input data sets are sampled from probability distributions extracted from
historical results and used as input for a large number of simulations. The modelling
precision of the model uncertainty can be positively affected by increasing the
number of M-C samples and can be determined by estimating the Nash–Sutcliffe
model efficiency coefficient [18] between the original simulation output and one of
the percentiles selected from the Monte Carlo results.

Only selected percentiles are extracted from all M-C simulation results and saved
on the platform. These percentile simulations describe a possible development of
the situation taking possible inaccuracies into account along with its probability.
For example, 80th percentile specifies that there is an 80th probability that the real
river discharge will be lower or equal to the simulated discharge based on historical
data. These results can then be propagated further into the flood prediction process,
for example, used as input for hydrodynamic modelling. Figure 12.2 shows the
visualisation of simulated inundated areas based on RR uncertainty results.

The confidence intervals’ accuracy can be positively affected by increasing the
number of MC simulations (also referred to as samples), and can be determined by
estimating the Nash–Sutcliffe model efficiency coefficient [18] between the original
simulation output and one of the percentiles selected from the Monte Carlo results.
The percentile simulations describe a possible development of the situation taking
possible inaccuracies (along with their probability) into account.

268 A. Portero et al.

Fig. 12.2 Inundated area for percentile

12.2.1 Flood Warning Process

The flood warning process [24] can have two distinct stages: flood warning and
response. The flood warning stage starts with a detection of the potential flooding
threat. This activity should be done periodically based on river and precipitation
monitoring and meteorology forecast. When a threat is detected, the flood warning
committee is informed, and it issues a request for more detailed forecasts to the
Institute of Hydrometeorology and local catchment area offices. These organisations
provide

• Information about the actual river and reservoir situation
• Rainfall–run-off (RR) modelling simulation of surface run-off
• Hydrodynamic (HD) modelling flood lake simulations, flood maps, simulations

of water elevation and water velocity, a real-time hydrological model for flood
prediction using GIS, sediment transport, water quality analysis, etc.

• Erosion modelling simulation of water erosion
• Collection and archiving of flood data that can be used for estimating the

magnitude of the flood based on historical evidence

If these predictions identify possible emergency situations, the flood warning
committee alerts relevant agencies, and the process moves to the response stage.
In this stage, countermeasures are implemented based on the forecast simulations
from the flood warning stage. Also, flood predictions are still provided even

12 Floreon+: A Real-World HARPA Application in the High-End HPC. . . 269

in the response stage to support the decision processes related to performed
countermeasures and actions. During the response stage, additional areas can be
affected by the flood emergency, and these predictions should be able to identify
these areas in advance.

We have integrated the most computationally demanding module of the Floreon+

platform with HARPA-OS to examine how HARPA-OS will influence its execution.
The selected module provides uncertainty modelling of rainfall–run-off (RR)
models. One of the inputs of such models is the precipitation forecast computed by
numerical weather prediction models that can be affected by particular inaccuracies.

12.2.2 The Flood Forecasting Model

The RR models transform precipitation to water discharge levels by modelling
individual parts of the rainfall–run-off process. Common inputs of these models
are an approximation of physical properties of modelled river catchment and a
time series of precipitations. Outputs of these models are represented by a time
series of water discharge levels (i.e. the relation between water discharge (Q) and
time (t)) for modelled parts of the river course. Our RR model uses the SCS-CN
method [5] for transforming rainfall to run off with the main parameter curve value
(CN) approximated from the hydrological soil group, land use, and hydrological
conditions of the modelled catchments. The contribution from river segments to a
sub-basin outlet is computed using the kinematic wave approximation parameterised
by Manning’s roughness coefficient (N), which approximates physical properties of
the river channel using Manning’s roughness coefficient (N).

E = 1 −
∑T

t=1(Q
t
m − Qt

s)
2∑T

t=1(Q
t
m − Qt

s)
2

(12.1)

Where:

Qm is the measured discharge in a specific time-step.
Qs is the simulated discharge in a specific time-step.
E is the Nash–Sutcliffe model efficiency coefficient.
E = 1 means that the simulation matches observed data perfectly.
E = 0 means that the simulation matches median of the observed data.
E < 0 means that the simulation is less precise than the median of the observed

data.

270 A. Portero et al.

Fig. 12.3 Comparison of the precision provided by standard deviation of Nash–Sutcliffe coef-
ficient and the number of Monte Carlo samples for different model parameters and their
combinations

12.2.2.1 Uncertainties of the Rainfall–Run-off Model

The input precipitation data for short-term prediction are provided by numerical
weather prediction models and can be affected by certain inaccuracies. Such inac-
curacies can be projected into the output of the model by constructing confidence
intervals. These intervals provide additional information about possible uncertainty
of the model output and are constructed using the Monte Carlo (M-C) method.
Data sets are sampled from the model input space and used as input for a large
number of simulations. Precision of uncertainty simulations can be affected by
changing the number of provided M-C samples. The precision of the simulations can
be determined by computing the Nash–Sutcliffe (NS) model efficiency coefficient
between the original simulation output and one of the percentiles selected from the
Monte Carlo results. The NS coefficient is often used for estimating the precision
of a given model by comparing its output with the observed data, but it can also be
used for comparison between any two model outputs.

Figure 12.3 shows the precision of the simulated uncertainty results based on the
number of Monte Carlo samples and different combinations of modelled parameters
in the experimental model. P shows the standard deviation of uncertainty results
where the only uncertainty of input precipitations was taken into account, N
stands for the uncertainty model of the Manning’s coefficient, CN for the CN

12 Floreon+: A Real-World HARPA Application in the High-End HPC. . . 271

uncertainty model, N + CN describes the combination of Manning’s coefficient and
CN uncertainty models, and so on. These results show that the standard deviation
is unstable for low numbers of M-C samples but starts to decrease steadily from
around 5–8 samples. Precipitation uncertainty models and their combinations also
show much higher standard deviations than CN and N based models. To obtain
a sufficient precision for the simulation (i.e. minimise standard deviation of the
result), the number of Monte Carlo samples for uncertainty simulation of the used
Rainfall–Run-off model has to be in the order of 10,000 to 100,000. The sample
count depends on the number of simulated model parameters and complexity of
the model. Uncertainty simulation of CN and N could be executed for a much
smaller sample count while maintaining sufficient levels of precision. This was
mainly due to the lower sensitivity of the CN and N parameters when compared
to the precipitation parameter, and also to the fact that precipitation uncertainty was
sampled for each time-step of the simulation and each observed gauge, while CN
and N did not depend on time.

12.2.2.2 On-Demand Simulations

Under the on-demand hydrologic simulations, a framework for running on-demand
What-If Analysis (WIA) is created to simulate crisis situations. This also includes
What-If hydrologic simulations. Through the web interface, users can create their
own hydrologic What-If simulation running on this framework. They must choose
the basic settings from the menu having the option to select river basin, schema-
tisation, and rainfall–run-off model, for which the rainfall–run-off simulation and
hydrodynamic model will be calculated. The framework allows the user to specify
precipitation in selected precipitation stations and at selected times. This type of
simulation also allows the user to edit the default parameters of sub-basins and
channels. The next step is to run the simulation execution. Execution of What-If
simulations is processed on an HPC cluster. Because the rainfall–run-off model
is used as an input for the hydrodynamic model, the system allows the users to
view hydrographs as soon as they are available, independently of the hydrodynamic
computation. As soon as the hydrodynamic model computation is completed and
the result values are stored within the spatial-temporal database, the users can view
the simulated flood layer within the map interface together with the hydrographs.

12.2.3 Catchments Simulation

The proposed scenario monitors at runtime the behaviour of four concurrent
instances of the uncertainty module. Each of these instances models the RR
uncertainty for a different catchment of the Moravian-Silesian region: the Opava,
Odra, Ostravice and Olza catchments (see Fig. 12.4). The watersheds are ordered

272 A. Portero et al.

Fig. 12.4 The four main catchments (left) and outlet hydrographs (right) (the black line shows
the measured discharge, the orange line shows the simulated discharge, X-axis: time in hours t(h),
Y -axis: discharge, cubic meters per hour, Q(m3/h))

according to the impact in case of flooding (the lower the index, the higher the
importance):

• C1: Ostravice—Functional urban areas with high population density and indus-
trial areas in floodplain zones.

• C2: Olza—Flood-sensitive zones in urban areas.
• C3: Odra—Mountains in the upper part of the catchment can cause significant

run-off. Less exposed urban areas.
• C4: Opava—Soils with low infiltration capacity.

Each catchment is simulated independently, and individual instances do not interact
with each other.

12.2.4 Application Scenarios

Based on the weather, FLOREON+ can be subject to different service-level
requirements. Indeed, the requirements can be translated to the parameters of
the uncertainty modelling: A shorter response time in critical situations can, for
example, be acquired by decreasing the number of MC samples—which, however,
means reducing the precision of the results—or by allocating more computational
resources to the application. Depending on the flood emergency situation, we

12 Floreon+: A Real-World HARPA Application in the High-End HPC. . . 273

identified three application scenarios that have different requirements. According to
their criticality level, we tagged the scenarios as standard, intermediate, and critical.

12.2.4.1 Standard Operation

In this scenario, the weather is favourable, and the flood warning level is below the
critical threshold. In this case, the computation can be relaxed, and some errors
and deviations can be allowed. The system should only use as much power as
needed for standard operation. Only one batch of Rainfall–Run-off simulations with
uncertainty modelling has to be finished before the next batch starts. The results do
not have to be available as soon as possible, so no excessive use of resources is
needed. In this case, the estimated accuracy can be reduced.

12.2.4.2 Intermediate Operation

Due to the presence of limited precipitations, the forecast of discharge exceeds a
warning threshold. In this case, in order to decrease the uncertainty of the model,
the number of MC samples that must be performed by the simulation increases.

12.2.4.3 Critical Operation

Several days of continuous rain raise the water in rivers or a very heavy rainfall on
a small area creates new free-flowing streams. These conditions are signalled by the
river water level exceeding the flood emergency thresholds or precipitation amount
exceeding the flash flood emergency thresholds. Much more accurate and frequent
computations are needed in this scenario, and results should be provided as soon as
possible. The number of MC samples increases, to decrease the uncertainty of the
model.

12.3 HARPA-OS for HPC Environments

The HARPA-OS is a runtime resource manager (as presented in Chap. 4). Its
role is to manage system resource allocation, taking into account both the status
of the system resources and application requirements, combining pro-active and
reactive strategies. For applications, performance requirements can vary not only
among different applications but also during the execution of the same application.
Aforementioned is a common scenario for HPC systems, where scientific applica-
tions make up most of the workload. It is a matter of fact that the performance
requirements of this class of applications are often bound to the input data. This
is due to the volume and type of data. For instance, monitoring systems acting

274 A. Portero et al.

at preventing natural disasters need to execute applications implementing mathe-
matical models steadily, to analyse input data, detect possible criticality and notify
the needs of operating accordingly. To guarantee to the applications the required-
level performance, a conventional approach to HPC systems is to statically reserve
computational resources, isolating the execution environment through virtualisation
techniques. However, to reserve a fixed amount of resources (e.g. processors or
entire nodes) can be ineffective, with the applications owning resources that are
not fully exploited, all the time. Scaling the problem to the dimensions of an HPC
centre, with several applications to host, we can face an overall under-utilisation of
the system resources, leading to two issues: (1) the fragmentation of the available
resources, and thus less space for further applications; (2) the loss of efficacy
of power management techniques. The latter is due to the fact without a proper
consolidation of the computational resources to allocate, we can have processors, or
single cores, which are not fully exploited, but use enough time to avoid them to go
into a deep-sleep state, wasting power saving opportunities.

12.3.1 The Runtime Resource Manager

In the context of this work, we employed the HARPA-OS runtime resource manager
[12, 16] (Chap. 4). HARPA-OS enables the management of multiple applications
that compete for the usage of multiple many-core computation devices [8]. It
also proposes a runtime library [3, 21] that is in charge of (a) synchronising
the execution of applications with runtime-variable resource allocations, and (b)
notifying the resource manager of the runtime-variable Quality of Service goals
(QoS) of applications. So that the HARPA-OS scheduling policy, which can be
either chosen from a set of predefined ones or implemented from scratch, can
take into account the feedback coming from applications when computing resource
allocations.

We designed and implemented PerDeTemp (PERformance DEgradation TEM-
Perature) Chap. 4, Sect. 4.6.2, a HARPA-OS scheduling policy that tries to meet the
application performance requirements while minimising resource allocation [20].
When multiple computing resources are available, PerDeTemp employs a multi-
objective heuristic to assign to applications only the healthiest and coolest cores.
Such allocation aims at levelling the power flux over the whole chip, thus mitigating
the ageing process and avoiding thermal hotspots [10].

Our framework is based on the idea of making the application terminate its
execution just before the deadline (just-in-time, jit). This way, the amount of
allocated processing elements is minimised. This, in turn, allows the resource
manager to evenly level power consumption throughout the chip and to migrate
the application to the coolest cores dynamically, thus evenly spreading heat and
increasing the reliability of the silicon.

Figure 12.5 shows a comparison between the best-effort (maximises throughput
and minimises execution time) of an application and our relaxed, deadline-aware

12 Floreon+: A Real-World HARPA Application in the High-End HPC. . . 275

Fig. 12.5 Best-effort vs. jit scheduling

execution. Standard application execution is based on the idea of running the
code as fast as possible (best-effort, be) using one thread per available processing
element. This way, the results are available sooner; however, power consumption
is maximised, and all the processing elements are stressed. Conversely, our just-
in-time execution approach has works with the idea that, since applications can
send feedback to the resource manager dynamically, resource allocation can be
made more elastic: It is adjusted over time so that the runtime-variable performance
demand of applications is always complied with, but the execution time of applica-
tions is still the maximum allowed one (i.e. applications terminate just before their
deadline). The resource manager exploits the now-unused resources as a resource
pool that can be used in multiple ways, e.g., to provide cool cores when the next
resource allocation is computed.

The HARPA-OS runtime, which is linked, manages applications, and transpar-
ently monitors application execution statistics. Amongst these, one of the most
important ones is the average throughput. It is worth noticing that each time
HARPA-OS changes the resource allocation of an application, the runtime re-sets
the throughput statistics; hence, the average throughput computed by the runtime
always refers to the current resource allocation. It follows, then, that the average
throughput is a very accurate predictor of how the application will behave (i.e.
whether the application will terminate or not before the deadline) if the resource
allocation remains constant until the application termination.

The current resource allocation provides the scheduling policy with feedback;
applications use the HARPA-OS runtime library API to retrieve their current execu-
tion time and their average throughput. Basing on those values, the applications can
compare their current performance, i.e. the average throughput under the current

276 A. Portero et al.

resource allocation, and the ideal throughput, i.e. the throughput that is needed by
the application to terminate just before the deadline. This information is periodically
sent back to the HARPA-OS as a performance gap:

gapperformance = throughputcurrent − throughputideal

throughputideal
(12.2)

While positive performance gaps mean that the application is executing too
fast, which in turn indicates that the HARPA-OS may seize some of the allocated
processing elements and insert them into the pool of empty resources, in contrast,
negative performance gaps indicate that the application needs more resources. In
this case, the HARPA-OS takes some of the less stressed (i.e. healthier—cooler)
processing elements (i.e. cores) from the unused resources pool and adds them to the
set of resources that can be exploited by the application. Finally, performance gaps
equal to 0 mean that the application is likely going to terminate just in time. Even
in this case, however, the HARPA-OS may decide to change resource allocation,
usually to swap the currently allocated set of processing elements with healthier
and cooler ones.

12.3.2 HARPA Integration

To fully exploit HARPA-OS, we implemented the application in a way that allows
its reconfiguration during runtime. From the HARPA-OS side, the features of the
application are a set of resource requirements. Fig. 4.3, from Chap. 4, Sect. 4.3,
where it is described summarizes the manageable execution model and shows the
different methods that have to be supported by the application:

• onSetup: Setting up the application (initialize variables and structures, starting
threads, performance goal, etc.).

• onConfigure: Configuration/re-configuration code (adjusting parameters, paral-
lelism, resources, number of active threads, etc.).

• onRun: Single cycle of computation (e.g. computing a single rainfall–run-off
simulation for one Monte Carlo sample).

• onMonitor: Performance and QoS monitoring. Check the current performance
with respect to the goal.

• onRelease: Code termination and clean-up.

12.3.3 Hardware Infrastructure

After integrating the HARPA methods into our flood forecasting models, we
deployed the enabled applications to a part of a supercomputer. The supercom-

12 Floreon+: A Real-World HARPA Application in the High-End HPC. . . 277

MEMORY DDR3

MEMORY DDR3

Air cooling
gradient

Intel
Xeon

E5-2600

Intel
Xeon

E5-2600
FAN

HDD/SSD
2.5”

Socket 0 Socket 1
Core 0. .7 Core 8. .15

Fig. 12.6 The fan is on the right-hand side of the blade, creating an air cooling gradient between
socket 0 and socket 1. (a) A photo of two Anselm Bullx B510 compute blades. (b) Schema of the
blade

puter named Anselm (https://docs.it4i.cz/anselm-cluster-documentation/hardware-
overview, June 2013) is an HPC cluster operated by IT4Innovations, the Czech
national supercomputing centre, which contains 180 computational nodes without
accelerators (i.e. GPU, Xeon Phi, FPGA). All these nodes have an interlink of high-
speed fully non-blocking fat tree InfiniBand and Ethernet networks.

In our experiments, we used a chassis of 18 blades; the nodes are connected
through InfiniBand. Each Anselm node is an Intel Corporation Xeon E5/Core i7.
Each node of the system consists of 16 cores—2 Intel(R) Sandy Bridge E5-2665
@ 2.4 GHz CPU sockets each with eight cores and 20480 KB L2 cache. All nodes
equip at least 64 GB DRAM.

The blades in the cluster are the B510 model; Fig. 12.6 shows a simplified
representation of their air cooling system. Given that the fan is not equally distant
from the two sockets, one socket is cooler than the other one. When the system is
idle, the temperature difference between the two sockets is approximately 10 ◦C.
The system has several monitoring tools installed such as power meters, ganglia
[25] and likwid [26].

Figure 12.6 shows the temperature of one blade when it is idle; there is nothing
more than the operating system running on it. This fact is important because, during
the temperature experiments, we observed differences of 10◦ between the best and
the worst cooled areas, the worst being furthest from the fan. For these experiments
presented in Sect. 12.3.4, we defined three working temperature zones. When the
temperature is low, it is represented on the heat map in blue. When the temperature
is average, at the proper level, it is labelled with green. And when the temperature
starts to be high it is represented with yellow, and then when quite high with red.
All the temperatures are always under the limit that the vendor (Intel) recommends.
Figure 12.7 presents the heat map of an Intel socket with 16 cores. The X-axis
represents time and the Y -axis the cores. The temperature is in Celsius degrees. The
Diff. Per time step is the range of temperature between the coldest and hottest core
in a specific time. The Median is the average temperature of the cores of the socket

https://docs.it4i.cz/anselm-cluster-documentation/hardware-overview
https://docs.it4i.cz/anselm-cluster-documentation/hardware-overview

278 A. Portero et al.

Fig. 12.7 Heat map of the two sockets of the blade in idle mode

in a specific time. The Diff. per Node is the maximum range of temperatures of a
core during all the simulation.

12.3.4 Performance Analysis

The following experiments show the HPC solution to enforce runtime resource
management decisions based on the standard control groups framework. A burst
and a mixed workload analysis, performed on a multicore-based NUMA platform,
reports some promising results both regarding performance, power saving, and
ageing.

12.4 HARPA Testing in One Node

The following paragraph explains the execution of the models with HARPA-OS
vs. non-HARPA-OS resource allocation. We run the models in the system with
different governors. Governors that have a GNU/Linux Operating System (i.e.
performance and powersave) by default set the frequency statically. The CPUfreq
governor powersafe sets the lowest frequency from the scaling_min_freq border,
and conversely the CPUfreq governor “performance” sets the highest frequency

12 Floreon+: A Real-World HARPA Application in the High-End HPC. . . 279

from the scaling_max_freq border. These two governors give the power/energy
consumption range from a maximum of the system to minimum power consump-
tion. Other GNU/Linux governors exist such as userspace and ondemand that
provide intermediate solutions. These governors are developed to give the best-
effort solution (minimum execution time) for the given range concerning power and
frequency. But what would happen if our constraint is the execution time?

12.4.1 Execution of the Models with Constraints

To answer the above question, we performed two experiments. The first one involved
execution of uncertainties of the rainfall–run-off model in the HPC system. The
implementation simulated a real case of 12K MC samples in 10 min. The QoS with
HARPA-OS must minimise the thermal footprint of the scheme. Reduction of the
power consumption and execution of the model had to be under the time constraints.
The non-QoS execution had no information about power, temperature or execution
time. The implementation of the design was achieved in three ways, two non-QoS
(a and b), and another with QoS constraints (c):

(a) Uncertainties of RR model in a non-managed HARPA-OS mode, only
governed by the “performance” GNU/Linux governor. (b) Similar to (a) but with the
“powersave” GNU/Linux governor. (c) Finally, uncertainties of RR model running
in HARPA-OS [4] managed mode with the on-demand governor.

Fig. 12.8 Above: Number of resources allocated for performance, powersave and HARPA
runtime with GNU/Linux ondemand governors during the execution of uncertainty models (Uncer)
and Uncertainty and WIA concurrently (Uncer+WIA). Below: Goal gap during execution time for
Uncertainty model vs. Uncertainty more WIA using the three governors (per, pow, HARPA)

280 A. Portero et al.

The second part of the experiment is similar to the previous one. However, the
second application, the WIA, starts running a delta time equal to 100 s and evaluates
20 possible (What-If) positions. During this period, δ the WIA is requesting all cores
of the system. So, it is producing resource allocation constraints to the execution of
the uncertainty model. Figure 12.8 presents the number of cores allocated by the
different governors. In the case of GNU/Linux governors, this value is always 32,
the maximum number of virtual cores that the system has. In the case of Harpa
governor, this value changes dynamically trying the goal gap to be zero. Figure 12.8
shows the δ time when WIA is also executed in the system. During this period,
the resources (cores allocated) to perform the uncertainty model in the system have
increased. Figure 12.8 shows the goal gap. There are three cases:

(a) Performance: The execution of the uncertainty model Uncer(per) ends long
before the 10 min limit. Hence, the goal gap curve increases very quickly, even
when the uncertainty and WIA run concurrentlyWIA+Uncer(per). Then, during
the δ time execution, there are some oscillations, which, however, go rapidly up
since the model uses more resources than strictly necessary.

(b) Powersave: In this case, there are two situations which are different to when
there is the execution of uncertainty model alone, and when the uncertainty
and WIA operate concurrently. In the first instance, it is possible to observe
that the goal gap is quite near-zero for the first period of the simulation (first
300 s). Later, step by step, the goal gap starts to increase, which means that
again the resources are more than enough to execute the model in a shorter
time than 10 min. However, in the second case WIA+Uncer(pow), the goal gap
became negative in the last fifty seconds of the simulation, which means that
the resources given to this governor are not enough to execute both models in
10 min as requested. So, the execution missed the time deadline.

(c) Harpa ondemand: In this case, the runtime is minimising the goal gap as
presented in section IV. The resources allocated (core #s are from 8 to 15,
shown in Fig. 12.8) by the runtime are minimised as opposed to case (a)
above, and the goal gap is oscillating around zero. In both cases, uncertainty
(Uncer (harpa.ond)) and uncertainty more WIA (Uncer+WIA (harpa.ond)) are
concurrently operating, and present similar behavior. The models finalise in the
specified 10 min.

The curves presented in Fig. 12.8 show the different trade-offs of the monitors.
In our case, the controls studied are power, energy consumption and temperature
of the CPU sockets. Figure 12.9 presents the results related to the monitors. The
monitoring of the system is performed adopting several GNU/Linux tools such
as ganglia, the power meter likwid, and a per-core temperature driver with an
installation of the GNU/Linux sensor library lm-sensors.

There is a trade-off concerning power consumption and heat. A middle QoS
point exists between the non-QoS performance and power save points. Regarding
relative values to QoS execution, the power consumption is reduced by 21% for one
application and 24 % for two applications concerning the performance execution.

12 Floreon+: A Real-World HARPA Application in the High-End HPC. . . 281

Fig. 12.9 Top-left: Total energy in joules for the six situations (3 governors with the two models
(uncertainty model alone and uncertainty with WIA)), the energy can be divided in energy of the
socket packages more the energy of the two modules DRAM. Top-right: Presents similar situations
but power results in Watts. Bottom-left: Presents the execution time for the six situations, Bottom-
right: The mean temperature of the 16th cores just before the end of the execution

Concerning temperature are 7 ◦C lower for both configurations than performance
and 7 and 4 ◦C higher for one and two applications than power save execution.
Because the execution time in performance execution takes 222 and 283 s, and there
is no QoS monitoring, an overhead in resource utilisation is created. Therefore, the
energy consumption of the system is lower than with QoS (HARPA-OS) execution.

12.4.2 Time Predictability with HARPA-OS

The main aim of the presented experiments is to show the reliability improvement in
terms of time predictability [13]. The first experiment presented is only one example
of possible execution of the model alone and with constraints (i.e. WIA model). But
what can happen in terms of a reliable QoS for several running iterations, monitoring
the power, energy and temperature of one system?

12.4.2.1 Power and Energy Monitors

Figure 12.10 presents the results of running the model one thousand iterations
for 1 min and 1.2K MC samples. The figure presents results of running only the

282 A. Portero et al.

Fig. 12.10 Power and energy consumption vs. execution time in package (PKG) and memories
(DRAM). Execution of 1K iterations of uncertainty model and uncertainty+WIA models. The
iterations runs in three modes, two non-QoS named performance per and powersave pow, and one
with QoS named HARPA

uncertainty model (uncer) and also running both models (uncer+WIA). The WIA
starts execution of a random δ0 from 0 to 15 s and performs two iterations (δ time).

Figure 12.10 shows the execution time vs. energy and power consumption in the
chip package and DRAMs memories. The figure also reveals that all the iterations
provide the results before or on the deadline of 1 min. Only the uncertainty with the
WIA as a constraint in power save (uncer+WIA with pow) finalises after the term.
The experiment reinforces the idea that there is a middle point regarding power
consumption between the two GNU/Linux governors. The figure shows that with
HARPA-OS activated the system has an overhead of 9–28% (J) with respect to the
performance governor.

12.4.3 Execution of the Application Scenarios on the Platform

In this subsection, we run the uncertainty module on 16 nodes of an HPC
cluster. The cluster presented has 18 blades. From all possible resources, we use
16 for our experiments, leaving two blades as a backup, log file system. The
uncertainty module uses a hybrid OpenMP and MPI approach [22] to distribute
the computations to multiple nodes.

Given that the performance requirements of the application are time-variable
(e.g. low when sunny, intermediate/critical when rainy), the HPC centre may only
allocate some computing nodes to the application and use the remaining ones

12 Floreon+: A Real-World HARPA Application in the High-End HPC. . . 283

Table 12.1 For each
experiment, number of Monte
Carlo samples to be
performed by the instance
that models each catchment

Thousand of MC samples to perform

Experiment C1 C2 C3 C4

α1 1.5 1.5 1.5 1.5

α2 1.5 3.5 5.0 7.0

α3 7.0 7.0 7.0 7.0

β1 3.5 3.5 3.5 3.5

β2 7.0 7.0 7.0 7.0

β3 3.5 7.0 12.0 15.0

γ 80.0 between all catchments

Fig. 12.11 Standard operation: light or no precipitation, low water level, (α experiments)

to execute other applications. Therefore, we performed our experiments in three
different configurations: in the first one, we used only one node (i.e. standard
operation). In the second, we used two nodes (i.e. intermediate operation). In the
third, we used 16 blades of the cluster (i.e. critical operation).

Table 12.1 presents the set of experiments performed in the cluster. The
experiments tagged α refer to the single-node scenario, while those tagged with
β and γ respectively refer to the dual-node and 16 nodes are used from the entire
cluster scenarios.

12.4.3.1 One-Node Configurations

Figures 12.11a.1, 12.11b.1, 12.11c.1 and 12.11d.1 show the number of
cores allocated during the 10 min execution for each catchment, while
Figs. 12.11a.2, 12.11b.2, 12.11c.2 and 12.11d.2 show the monitored performance

284 A. Portero et al.

Fig. 12.12 Thermal map per core for a 10 min execution in one node. (a) Shows best-effort
performance GNU/Linux governor (12K in total). (b) Shows the heat map in the case of HARPA
PerDeTemp runtime with GNU/Linux performance governor (12K in total)

gap (gp equations (12.2)) (as presented in Eq. (12.3), similar to (12.2), but in this
case, the closer to 100% the gap is, the better the performance).

gapperformance = throughputcurrent

throughputideal
(%) (12.3)

As shown by the experimental results, the number of allocated resources gets
higher as the number of samples of MC to be performed increases. The allocation
of resources is satisfactory for α1 and α2 scenarios, but not for α3. In Fig. 12.11a.2,
we can observe that the performance gap is below 100%, meaning that the resources
required for this experiment are not enough. In this situation, a second node should
be allocated.

Figure 12.12 presents the heat map of a single node when running an uncertainty
module instance (12K MC samples) using a best-effort and just-in-time configura-
tion, respectively. We obtained the heat maps by using the ganglia monitoring tool.
In both figures, the X-axis represents time and the Y -axis represents the cores IDs.

• The Diff per Core (see the left part of the figures) is the difference in temperature
per core ci (0 ≤ i <16) during a period of time. In our case, the maximum
difference of temperature of a core for a period of 10 min. Given a core ci , and
its maximum t

ci
max and minimum t

ci

min temparature, the Diff per Core i is T
ci

D =
t
ci
max − t

ci

min.
• The Diff per Timestep (the lower part of the figures) is the difference in

temperature among all cores given a timestep. Given a time t and temperature
T, the Diff per Timestep is T t

D = t tmax − t tmin.
• The Median (the upper part of the figures) provides the median temperature per

timestep. Given a time t, n equals the number of cores, and temperature T, the

Median is Tmed = Σc=n−1
c=0 = T t

c

n
.

As can be seen in Fig. 12.12a (best-effort execution with CPUfreq performance
governor) there is a hotspot in socket 0 [cores 0..7], which, as already shown in

12 Floreon+: A Real-World HARPA Application in the High-End HPC. . . 285

Fig. 12.6, is the socket that is further from the fan. Conversely, Fig. 12.12b shows
the execution with HARPA-OS-PerDeTemp. In this case, there are no hotspots
and, thanks to the temperature-aware task migration performed by PerDeTemp, the
temperature is perfectly distributed throughout all the available processing elements.

12.4.3.2 Two Nodes

Similarly, Fig. 12.13 shows the results for the dual-node configurations. In this case,
β2 has an equal number of samples to operate as α3, and, since in this case, we have
two computing nodes at our disposal, the computation is performed without issues.
But the limit of 10 min is exceeded according to Fig. 12.13. Hence, in this case, the
resources are again not enough for all the scenarios: Fig. 12.13b.2 shows that the
performance gap of β3 is below 100%.

12.4.3.3 Multi-Node Results

In this section, we show and discuss the results of the execution of the multi-
nodes scenarios. On the application side, we used an MPI implementation of
the Uncertainty model to enable the possibility of launching the application on
multiple nodes. Moreover, for each node an instance of HARPA-OS was running,
to manage the resource assignment locally. Again, we compared the HARPA-OS
distributed execution of the workload against the unmanagedİ configuration with

Fig. 12.13 Intermediate operation: intermediate execution, medium precipitation or water level
warning threshold exceeded (β experiments) in two node execution

286 A. Portero et al.

Fig. 12.14 Thermal map per core for 10 min execution of the two node scenario. Case (a)
shows unmanaged execution (performance CPUfreq governor). Case (b) Shows HARPA-OS
(PerDeTemp) runtime management (performance CPUfreq governor)

the Linux Completely Fair Scheduler (CFS) scheduler in charge of managing the
CPU resource allocation, and the CPUfreq governor statically set (performance or
power save). As we have done for the previous scenarios, the comparison includes
considerations regarding performance, temperature of the CPU cores, power end
energy consumption. In the last experiment of this set, we executed the γ scenario
on 18 nodes (execution is performed in nodes 1 to 16 with MPI n = 16, nodes
17 and 18 remain idle) with a requirement of 80K MC samples. This time, all the
instances terminated just-in-time, i.e., exactly at the deadline (Figs. 12.14, 12.15,
and 12.16). Using the likwid power monitor, we monitored the power consumption
in both the jit and the be configurations. Whereas just-in-time execution leads to a
maximum consumption of 100 W, the best-effort execution leads to a peak of 160 W
per node (presented in Fig. 12.17). Therefore, we saved around 44% in maximum
power consumption, while nevertheless complying with the deadline.

12.5 Evaluating HARPA Impact on Hardware Reliability

The Mean Time Between Failure (MTBF) is a well-known reliability metric,
expressing the average time it takes for a failure to occur. It is calculated using the
following formula: MTBF = (Total device hours)/(Total number of failures). The
Failure Rate (FR) is the reciprocal of the MTBF:

FR = 1

MTBF
(12.4)

Acceleration Factors
The increase of the temperature of the test environment to which the devices
are subjected can accelerate most failure mechanisms. It is, therefore, possible to

12 Floreon+: A Real-World HARPA Application in the High-End HPC. . . 287

Fig. 12.15 HARPA-OS with PerDeTemp policy in 16 blades

Fig. 12.16 Figures present hotspots (temperature peaks) even using the more conservative
governor (power-save) in terms of power consumption. (a) Performance GNU/Linux governor in
16 blades. (b) Power-save GNU/Linux governor in 16 blades

perform relatively short tests which simulate many years of device stressing under
more normal conditions. Obviously, it is necessary to have some measures of how
greatly the failure mechanisms are accelerated. Suppose a device is stressed at a

288 A. Portero et al.

Fig. 12.17 Different behaviour in power consumption per blade. Performance governor presents
peak consumption while PerDeTemp presents a decrease in peak performance. (a) Power con-
sumption for 20K MC samples per blade. (b) Power consumption for 80K MC samples per blade

high temperature T2, for time t2. It is required to find the equivalent, t1, which would
cause the device the same level of stress at a lower temperature T1. To this purpose,
it is noted that if T2 > T1 then t2 > t1, we need to introduce an acceleration factor
defined as follows:

A = t1

t2
(12.5)

hence, the ratio of the time at the lower temperature to that at the higher. Since the
acceleration factor is a dimensionless ratio, it will be equal to the ratio of any other
parameters proportional to the stress times. The most useful ratio is that of failure
rates, which are inversely proportional to stress times if FR1 is the failure rate at T1,
and FR2 the failure at T2 then:

T2 > T1; FR2 > FR1; A = t1

t2
(12.6)

So if FR2 is known, FR1 is found simply as FR1 = A × FR2 All that is now
required is to find the value of the acceleration factor.

Temperature Acceleration
The High-Temperature-Bias (HTRB) test is an example of a temperature-
accelerated test. It is usually found that the rates of the reactions causing device
failure are accelerated with temperature according to the Arrhenius equation:

Accelerationfactor = e

Et

k(1
T1

− 1
T2

)
(12.7)

12 Floreon+: A Real-World HARPA Application in the High-End HPC. . . 289

where EA = activation energy of the failure mechanism, k (Boltzmann constant =
8.6E−5 eV/K), A, T1, T2 are as defined above. The activation energy EA is found
experimentally, and is usually in the order of 1.0 eV, depending on the predominant
failure mechanism. For the failure mechanisms for small silicon technologies, a
value of 0.3 eV has been determined.

Mean Time Between Failures (MTBF)
The example is given for two sockets of 8 cores each in ANSELM. According to
Sect. 12.3.2, both sockets have a difference of several ◦C when the chip is idle.
We estimated the MTBF for 14K MC samples goal per 10 min. This situation
can be the standard usage of the system. From the set of temperatures, we
take the per core average minimum temperature T1 and maximum temperature
T2 for the two execution models, the HARPA PerDeTemp policy and the best-
effort performance GNU/Linux. The difference between socket 0 and socket 1 is
illustrated in Sect. 12.3.3. The position of the fan on one side of the blade produces
a gradient in temperature of around 10 (◦C) degrees between sockets (Table 12.2).

Relativeacceleration factor = Accelerationfactor(best-effort)

Accelerationfactor(PerDeTemp)
(12.8)

According to Eq. (12.7), we have used a range of EA values from 0.3 to 0.9 eV, the
values which are taken as lower and upper limits, and the real value is in the range.
Therefore, we computed the AF and the MTBF for the two sockets 0, 1 and the two
policies. The results are exhibited in Table 12.3.

Table 12.2 Temperatures in
Kelvin (T(K) = T(◦C) +
273.15)

Socket 0 Socket 1

Best-effort

Tmax 340.525 324.525

Tmin 328.4 313.025

PerDeTemp

Tmax 327.525 318.65

Tmin 321.775 310.775

Table 12.3 Acceleration
factor (AF) and MTBF for
two different cooling systems
and two possible EA

0.3 eV 0.9 eV

AF best-effort, socket 0 1.46 3.11

AF best-effort, socket 1 1.48 3.27

AF PerDeTemp, socket 0 1.21 1.77

AF PerDeTemp, socket 1 1.32 2.30

MTBF best-effort, socket 0 0.69 0.32

MTBF best-effort, socket 1 0.67 0.31

MTBF PerDeTemp, socket 0 0.83 0.56

MTBF PerDeTemp, socket 1 0.76 0.44

290 A. Portero et al.

Table 12.4 Relative MTBF
best-effort vs. PerDeTemp

MTBF best-effort/PerDeTemp, socket 0 0.83 0.57

MTBF best-effort/PerDeTemp, socket 1 0.89 0.70

Reliability Trade-Offs
The presence of hotspots is known to have adverse effects on the Mean Time
Between Failures of the system (MTBF) [19], and can be mitigated [23] through the
migration of tasks from one processor to a different in a Chip MultiProcessor (CMP)
system, if the processor heats up to a threshold value. The ageing acceleration factor
depends on the difference (Δ) of temperature.

According to the MTBF (Table 12.4) estimation presented in [9], running the
application in a HARPA-OS runtime with a PerDeTemp configuration improves the
reliability of the system from 17% (1 − MTBF best-effort

PerDeTemp
= 1 − 0.83, eV = 0.3),

Table 12.4) to 43% ((1 − MTBF best-effort
PerDeTemp

= 1 − 0.57, eV = 0.9)) in the case of poor

cooling (socket 0). With a better cooled (socket 1), the MTBF for the best-effort
relatively grows, but it is still 11% (1 − MTBF best-effort

PerDeTemp
= 1 − 0.89, eV = 0.3) to

30% (1 − MTBF best-effort
PerDeTemp

= 1 − 0.7, eV = 0.9) better if we manage the system with

PerDeTemp (jit) instead of using the best-effort (be) policy.

12.5.1 Discussion of Applicability and Quality of the Results

The model used for the project is based on the Monte Carlo simulation. The
Monte Carlo simulation is extensively used by the HPC community because it
can be employed to generate massively parallel programs [6, 7]. The Monte Carlo
simulation and its uncertainty are de facto fault tolerant since the algorithm can
provide an answer even if some samples are lost. The rainfall–run-off model, its
calibration [1, 27], and uncertainty must be executed every period that new data
arrives from weather stations to provide as accurate results as possible. Hence, the
QoS/time constraints allow relaxing of the execution requirements.

Since critical (alarm) situations are sporadic, instead of executing the model in
best-effort, minimising the time but maximising the power consumption, running
it with the QoS/time constraints is possible, as the results of the models must be
provided before the deadline, otherwise it is too late. Our HPC models fall into
the taxonomy of algorithms for urgent computing [28]. Therefore, the methodology
can be reused for any program that falls under this classification. Thus, when the
constraints are not very tight, it is possible to run the models allocating minimum
resources and in the less degraded (healthier) parts of the system. HPC systems for
urgent computing need very high availability and reliability. We have shown in this
document the trade-offs between running the algorithm on the system in best-effort
versus the Harpa-OS runtime. The balanced allocation of threads in the cores is
taking into account which cores are more degraded, improving the reliability and
hence expanding the lifetime of the system.

12 Floreon+: A Real-World HARPA Application in the High-End HPC. . . 291

12.5.2 Conclusions

The chapter describes extensive testing and evaluation of representative applications
of the HPC domain running with HARPA runtime support. The evaluation of
the case studies has demonstrated the suitability of the techniques and methods
developed in the HARPA project to both targeted compute domains (embedded and
HPC). Benchmarking activities are performed as well, with reference platforms used
to host these applications without HARPA framework. Validation of the HARPA
environment verifies the fulfilment of our objectives concerning the HARPA envi-
ronments functionality by monitoring and evaluating the performance, scalability
and availability of adapted applications with a focus on efficiency in providing
specified QoS levels in the presence of severe process variations. QoS levels are
evaluated before and after the integration to enable the exact comparison of provided
benefits. During the HARPA project, we have tried to assess the validation of the
HARPA environment on HPC systems.

We have illustrated the advantages of running the HPC applications regarding
availability and reliability. We have presented experiments that demonstrate the
efficiency of providing specified QoS level even in the presence of degradation in
the system (i.e. bubble). Yet still more work can be done concerning energy benefits.
The current HPC systems are memory dominated. The power measurements are
performed at the level of the socket, and inside the socket with the CPU, there are
different layers of memory (L3, L2, L1 and LLC). According to our measurements,
decreasing the Integrated Circuit (IC) power-supply pin Vdd with Dynamic Voltage
and Frequency Scaling (DVFS) provides benefits regarding lowering the power,
but not in reducing the global energy consumed during execution. This could be
because the leakage power (static power) is dominant or has a high percentage of the
consumption of the global system. Current monitors cannot provide us information
about power consumption in the cores, only at the level of the socket. So, we think
more experimentation is needed to ascertain what percentage of power consumption
is due to the memory layer (mainly main memory) versus the CPUs in the socket.
These tests could help us to disable or decrease the power consumption in memory
parts that are underused, and in this way observe real energy savings.

In this chapter, we presented a framework that, based on the runtime-variable
computational resources demand of applications, strives to minimize the resource
usage of applications while making them comply with their deadlines. We call this
practice just-in-time execution since the termination of the application is always as
near as possible to the deadline. The framework can use the pool of unused [11]
resources in multiple fashions, e.g., to swap allocated faulty processing elements
with healthier ones, or to periodically assign to applications cool processing
elements, hence evenly levelling the generated heat throughout the chip even in
cases of asymmetrical cooling.

Acknowledgements This work was supported by The Ministry of Education, Youth and Sports
from the National Programme of Sustainability (NPU II) project “IT4Innovations excellence in
science—LQ1602” and by the IT4Innovations infrastructure which is supported from the Large

292 A. Portero et al.

Infrastructures for Research, Experimental Development and Innovations project “IT4Innovations
National Supercomputing Center LM2015070”. The work was also supported by the European
Union FP-7 program through the HARPA project (grant no. 612069).

References

1. Abulohom, M. S., Shah, M. S., & Ghumman, A. R. (2001). Development of a rainfall-runoff
model, its calibration and validation. Water Resources Management, 15(3), 149163.

2. Bahremand, A., & De Smedt, F. (2008). Distributed hydrological modeling and sensitivity
analysis in Torysa watershed, Slovakia. Water Resources Management, 22(3), 293408.

3. Bellas, P., Massari, G., & Fornaciari, W. (2012). A RTMR proposal for multi/many-core
platforms and reconfigurable applications. In ReCoSoC.

4. Bellasi P., Massari, G., & Fornaciari, W. (2015). Effective runtime resource management
using linux control groups with the barbequertrm framework. ACM Transactions on Embedded
Computing Systems, 14(2), 39:139:17.

5. Beven, K. (2012). Rainfall-runoff modelling. New York: John Wiley & Sons.
6. Billinton, R., Allan, R.N., IEEE Power Engineering Society. Power Engineering Education

Committee, & IEEE Power Engineering Society. Power system Engineering Committee
(1989). Reliability assessment of composite generation and transmission systems. IEEE Power
Engineering Society Tutorial, 90EH0311-1-PWR.

7. Billinton, R., & Li, W. (1994). Reliability assessment of electric power systems using Monte
Carlo methods. New York: Plenum Press.

8. Bolchini, C., Carminati, M., Gribaudo, M., & Miele, A. (2014). A lightweight and open-
source framework for the lifetime estimation of multicore systems. In IEEE 32nd International
Conference on Computer Design (ICCD).

9. Ellerman, P. (2012). Calculating reliability using FIT & MTTF: Arrhenius HTOL model. In
MICROSEMI, Technical Report.

10. Ganeshpure, K., & Kundu, S. (2014). Performance-driven dynamic thermal management of
mpsoc based on task rescheduling. ACM Transactions on Design Automation of Electronic
Systems, 19(2), 11:1–11:33.

11. Hardy, D., Sideris, I., Ladas, N., & Sazeides, Y. (2012). The performance vulnerability of
architectural and non-architectural arrays to permanent faults. In MICRO (pp. 48–59).

12. Harpa harnessing performance variability fp7 project (2013). http://www.harpa-project.eu
13. Hartman, A. S., & Thomas, D. E. (2012). Lifetime improvement through runtime wear-based

task mapping. In Proceedings of the Eighth IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, CODES+ISSS’12 (pp. 13–22). New York:
ACM.

14. Golasowski, M., Litschmannova, M., Kuchar, M., Podhoranyi, M., & Martinovic, J. (2015).
Uncertainty modelling in rainfall-runoff simulations based on parallel Monte Carlo method.
International Journal on Non-standard Computing and Artificial Intelligence NNW, 25(3),
267–286.

15. Martinovic, J., Kuchar, S., Vondrak, I., Vondrak, V., Sir, B., & Unucka, J. (2010). Multiple
scenarios computing in the flood prediction system FLOREON. In European Conference on
Modelling and Simulation (pp. 182–188).

16. Massari, G., Libutti, S., Portero, A., Vavrik, R., Vondrak, V., & Fornaciari, W. (2015).
Harnessing performance variability: A HPC-oriented application scenario. In Euromicro
Conference on Digital System Design (DSD), Funchal, Madeira, Portugal.

17. Meesuka, V., Vojinovica, Z., Mynetta, A. E., & Abdullahd, A. F. (2015). Urban flood modelling
combining top-view LiDAR data with ground-view SfM observations. Advances in Water
Resources, 75, 105–117.

http://www.harpa-project.eu

12 Floreon+: A Real-World HARPA Application in the High-End HPC. . . 293

18. Nash, J., & Sutcliffe, J. (1970). River flow forecasting through conceptual models part I. A
discussion of principles. Journal of Hydrology, 10(3), 282290. https://www.doi.org/10.1016/
0022-1694(70)90255-6. Procedia Computer Science

19. National Semiconductor. (2000). Understanding integrated circuit package power capabilities.
Available: www.national.com

20. Oh, D., Kim, N. S., Chen, C. C. P., Davoodi, A., & Hu, Y. H. (2010). Runtime
temperature-based power estimation for optimizing throughput of thermal-constrained multi-
core processors. In Proceedings of the 2010 Asia and South Pacific Design Automation
Conference, ASPDAC‘10, Piscataway (pp. 593–599). New York: IEEE Press.

21. Portero, A., Kuchar, S., Vavrik, R., Golasowski, M., & Vondrak, V. (2014). System and
application scenarios for disaster management processes, the rainfall-runoff model case study.
In CISIM (pp. 315–326).

22. Portero, A., Sevcík, J., Golasowski, M., Vavrík, R., Libutti, S., Massari, G., et al. (2016). Using
an adaptive and time predictable runtime system for power-aware HPC-oriented applications.
In IGSC 2016 (pp. 1–6).

23. Powell, M. D., Gomaa, M., & Vijaykumar, T. N. (2004). Heat-and-run: leveraging SMT and
CMP to manage power density through the operating system. In ASPLOS.

24. Qiua, L., Dua, Z., Zhua, Q., & Fane, Y. (2017). An integrated flood management system
based on linking environmental models and disaster-related data. Environmental Modelling
& Software, 91, 111–126.

25. Sacerdoti, F. D., Katz, M. J., & Massie, M. L. & Culler, D. E. (2003). Wide area cluster
monitoring with Ganglia. In CLUSTER (Vol. 3, pp. 289–289).

26. Treibig, J., Hager, G., & Wellein, G. (2010). Likwid: A lightweight performance-oriented tool
suite for x86 multicore environments. In Proceedings of the 39th International Conference on
Parallel Processing Workshops (ICPPW) (pp. 207–216). New York: IEEE.

27. Vavrik, R., Theuer, M., Golasowski, M., Kuchar, S., Podhoranyi, M., & Vondrak, V. (2015).
Automatic calibration of rainfall-runoff models and its parallelization strategies. AIP Confer-
ence Proceedings, 1648, 830014. https://aip.scitation.org/doi/abs/10.1063/1.4913040

28. Yoshimoto, K. K., Choi, D. J., Moore, R. L., Majumdar, A., & Hocks, E. (2012). Imple-
mentations of urgent computing on production HPC systems. Procedia Computer Science, 9,
1687–1693.

https://www.doi.org/10.1016/0022-1694(70)90255-6
https://www.doi.org/10.1016/0022-1694(70)90255-6
www.national.com
https://aip.scitation.org/doi/abs/10.1063/1.4913040

Chapter 13
Beesper SmartBridge: A Real-World
HARPA Application in the Low-End
Embedded System Domain

Federico Sassi, Alessandro Bacchini, and Giuseppe Massari

13.1 Beesper SmartBridge

Beesper is a flexible system for wireless distributed data collection, which allows
to measure, visualize and analyse environmental parameters of various types,
including: ambient temperature, pressure, humidity, light intensity, noise, air quality,
vibrations and crack size, amongst others. In particular, a Beesper system is
composed by a network of low-power wireless sensor nodes and one, or more,
bridge node that collects the data and sends it to a remote server for further analysis.
In order to be deployable in any environment, all components of a Beesper system
are battery operated and guarantee multi-year monitoring activity. This requirement
limits the computational power of the Beesper Bridge and the type of analysis on the
collected data. In order to overcome this limitation, a new battery-operated “smart
bridge” is being developed to process high complexity data, like stream of images,
and low complexity data, like temperature, on site. These features allow real-time
monitoring and reduce the need of constant communication with a remote server,
which may be accessible only with limited bandwidth due to the physical location
of the monitoring system (e.g. mountains).

The Beesper SmartBridge system is a solar-powered and battery-operated intel-
ligent monitoring device that acts as a Beesper bridge and is also able to perform
advanced processing on site. The system must also be able to optimize power

F. Sassi (�) · A. Bacchini
Camlin Italy s.r.l., Parma, PR, Italy
e-mail: f.sassi@camlintechnologies.com; a.bacchini@camlintechnologies.com

G. Massari
Politecnico di Milano, Milano, Italy
e-mail: giuseppe.massari@polimi.it

© Springer International Publishing AG, part of Springer Nature 2019
W. Fornaciari, D. Soudris (eds.), Harnessing Performance Variability
in Embedded and High-performance Many/Multi-core Platforms,
https://doi.org/10.1007/978-3-319-91962-1_13

295

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91962-1_13&domain=pdf
mailto:f.sassi@camlintechnologies.com
mailto:a.bacchini@camlintechnologies.com
mailto:giuseppe.massari@polimi.it
https://doi.org/10.1007/978-3-319-91962-1_13

296 F. Sassi et al.

consumption, in order to be deployed in remote areas with power supply provided
by only solar power and battery.

The main applications developed are:

• Target-based landslide movements monitoring, using frequent images from
cameras, and feature extraction, using machine vision and particle swarm
optimization;

• Markerless rockfall and rockwall composition identification, using frequent
images from cameras, through machine vision feature extraction and machine
learning classification;

• Dilatation of a rockwall analysis, through machine learning using data from a
wireless sensor network (WSN);

and two support applications as

• Network traffic manager
• Power monitor and board monitor logger

A specific installation of the system may be composed by only a subset of those
applications, depending on the monitoring requirements; in particular, this chapter
will focus on the latter two main applications.

The artificial intelligence system will be able to adapt itself to each landslide or
rockwall condition, by performing the training of the system on the specific location,
thus adapting the internal memory. This process will lead to better performance, plus
lowering the cost of the solution and the time to market, with respect to a custom
made system for each scenario.

The HARPA methodology allows to dynamically adjust the system power
consumption, by changing applications’ set of resource requirement (else said
Application Working Mode or AWM), thus enabling to an improved quality of
service, extended battery life and higher reliability.

13.1.1 Hardware Prototype

The Beesper SmartBridge system is composed by a solar panel, a solar charger, a
DC/DC converter and a battery which provides power to a multicore ARM board.
Internet connection can be provided by various means like UMTS/LTE, Ethernet,
WiMAX or point-to-point radio connections.

Connection to the Beesper WSN is provided by a standard Beesper Bridge
directly connected to the Beesper SmartBridge. The custom radio interface will be
integrated in the Beesper SmartBridge in the final hardware version.

The system has been assembled in a weatherproof box with filtered air vents and
it has been installed on a pole at about 3 m height to avoid tampering.

Details of the hardware components may be found in Table 13.1 and a picture
can be found in the left part of Fig. 13.1.

13 Beesper SmartBridge: A Real-World HARPA Application in the Low-End. . . 297

Table 13.1 Beesper SmartBridge prototype hardware components

ARM board Odroid-XU3

multicore ARM platform based on the Samsung Exynos5422 with a
Cortex A15 2.0 GHz quad core and a Cortex A7 quad core CPUs

Camera USB uEye 4.92 Mpix colour

(2560 × 1920 pixels) in an IP 30 casing

Battery YUASA NP24-12I

lead acid rechargeable battery (VRLA), 12 V, 24 Ah

DC/DC converter Mean Well SD-50A-5 DC/DC

Vin 12 V—Vout 5 V—Power 50 W

Solar panels 2 modules Photon PM020

Max power 2 × 20 W = total 40 W

Solar charger EPsolar Tracer1215BN

12–24 V auto work—Max PV input power 130 W@12 V—RS485
communication

Fig. 13.1 Left: Beesper SmartBridge prototype. Right: Beesper SmartBridge prototype installed
on a pole

13.1.2 Applications

The two core applications of the Beesper SmartBridge provide the main monitoring
capabilities of the system and are developed to provide the state-of-the-art perfor-
mance.

298 F. Sassi et al.

Fig. 13.2 Video Rockfall detection application. Left: Original image. Centre: Classification of
vegetation, rock and sky. Right: Rockwall modification detection

13.1.2.1 Video Rockfall Detection

The aim of this application is to check if any rockfall, or major modification, has
happened on the whole rock wall monitored using a high-resolution camera.

It is possible to identity four major processing steps:

1. Once the application is started, it will power up the camera and acquire a set
of images in fast sequence and will evaluate the quality to select the best one
for further processing. A sample image is shown in the left part of Fig. 13.2. In
case of insufficient image quality (e.g. low light, heavy rain, . . .), the system may
inhibit further application executions for a period of time.

2. Second step is to perform the actual computation by classifying the target
image and tracking the relevant part of the image to detect rockfalls as shown
in Fig. 13.2.

3. Third step is to save selected image and results to a temporary local drive
storage, to queue for remote transmission. During the current test deploy phase,
an additional local copy for long-term storage is written to a local flash memory.

After these three steps, the application waits to be rescheduled by HARPA-OS.

13.1.2.2 Extensometer Analysis

The aim of this application is to model, classify, and predict the behaviour of the
rockwall boulders, monitored using a set of extensometers and temperature wireless
sensors, to detect anomalies and dangerous events. The proprietary extensometers
sensors used in this application are able to measure submillimetre rock displacement
highlighting very subtle variation that may be correlated with the temperature of
the rock. The site selected to host the HARPA application deployment is already
monitored using a standard Beesper Wireless Sensor Network, thus a dataset
composed of about 300 days is already available. The data is retrieved from the
Beesper server using a set of API via the Internet. During the development phase,
the whole historical dataset of the extensometers data has been downloaded and
processed in order to train the machine learning system based on a proprietary

13 Beesper SmartBridge: A Real-World HARPA Application in the Low-End. . . 299

framework based on hierarchical temporal-aware neural networks [1]. The historical
data is classified by experts (geologists) between normal and not normal behaviour
and then a model is trained for each extensometer. During run time, the updated data
for each extensometer is retrieved from the Beesper server and is processed by the
corresponding model. The model outputs the probability that the current situation
represents a “not normal” behaviour or an anomaly.

13.1.3 Application Testing

The Video Rockfall detection application and the Fessurimeter analysis application
have been tested to identify the power consumption sources on the ARM board,
without the other hardware components of the Beesper SmartBridge, like solar
charger or DC/DC converter. The test has been performed using the ODROID
Smart Power device1 which collects voltage, current and power of the system load.
Moreover, this device, by cooperating with the on-board electronics, is able to
measure the energy consumption for the USB, SoC, Ethernet and board. The values
for the camera and other devices are derived from laboratory experiments.

Table 13.2 reports the time and energy needed for each applications’ execution,
while Table 13.3 reports the energy consumption per board component for each
application execution computed in a controlled environment.

The two applications have a quite different power consumption profile and time
requirements due to the specific processing performed, as it is possible to observe
in Fig. 13.3.

Table 13.2 Time and energy comparison of the two main applications

Video Rockfall detection Fessurimeter analysis

application application

Time

Acquisition time (s) 11.4 (22%) 341.2 (90%)

Processing time (s) 39.8 (73 %) 38.7 (10%)

Total time (s) 51.2 379.9

Energy

Acquisition energy (Wh) 0.0117 (13%) 0.2758 (79%)

Processing energy (Wh) 0.0752 (87%) 0.0727 (21%)

Total energy (Wh) 0.0869 0.3485

1The ODROID Smart Power is an easily deployable power supply that collects voltage, current
and power of the system load to enable developers to optimize energy consumption. http://www.
hardkernel.com/main/products/prdt_info.php?g_code=G137361754360.

http://www.hardkernel.com/main/products/prdt_info.php?g_code=G137361754360
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G137361754360

300 F. Sassi et al.

Table 13.3 Energy
consumption per board
component for each
application execution
computed in a controlled
environment of the two main
applications

Video Rockfall detection Fessurimeter analysis

Camera 5.46% 0.0047 Wh 6.06% 0.0211 Wh

USB 6.55% 0.0056 Wh 12.11% 0.0422 Wh

Board 32.73% 0.0284 Wh 60.55% 0.2110 Wh

SoC 33.55% 0.0291 Wh 7.76% 0.0270 Wh

Ethernet 4.91% 0.0042 Wh 9.08% 0.0316 Wh

Fan 12.72% 0.0110 Wh 3.08% 0.0107 Wh

Other 4.08% 0.0035 Wh 1.35% 0.0047 Wh

750000700000

Power usage (W)
SOC
Board

650000600000550000
0

1

2

3

4

5

6

7

8

850000800000

40000

Power usage (W)
SOC
Board

300002000010000
0

1

2

3

4

5

6

7

8

60000
+1.47705547e12

50000

Fig. 13.3 Power usage of the two main applications. Top: Video Rockfall detection. Bottom:
Fessurimeter analysis

13 Beesper SmartBridge: A Real-World HARPA Application in the Low-End. . . 301

The Video Rockfall detection application has a quicker acquisition phase where
the connected camera captures a set of pictures and then the ARM board computes
the results. Between different application executions, the system is idle.

The Fessurimeter analysis application has a much longer acquisition phase where
the systems query and wait for the WSN data from a remote server via the Internet,
thus the system is actually idle and the actual power consumption is not directly
affected by this activity. This behaviour may lead to consider the second applica-
tion more expensive in terms of total energy consumption per cycle (0.3438 Wh
vs. 0.0834 Wh) while considering only the processing part it is less expensive
(0.0685 Wh vs. 0.0718 Wh) than the camera-based one. In particular, analysing the
distribution of the energy consumption per component it is possible to understand
that most of the consumption in the Fessurimeter analysis application is due to the
idle consumption of the board itself and not the SoC during the active processing of
the data since it accounts about 20% of the overall energy consumption.

13.1.4 HARPA Integration

HARPA-OS provides a managed environment where to run the applications.
HARPA-OS allocates resources to the applications depending on a set of policies,
like temperature of the system, available energy, system load and data from the
system monitors. The allocation is done by reconfiguring the application to a
specific AWM (Application Working Mode) defined and profiled offline. The dif-
ferent AWM represent different application modality with different computational
requirements. For instance, the application may reduce the accuracy of the algorithm
or the duty cycle. Once the computational unit has finished, the applications must
return the control to HARPA-OS in order to be, eventually, reconfigured. This
interval should be in the seconds range. Given this workflow, the applications better
suited to exploit HARPA-OS are the ones that analyse streaming data.

In the Beesper SmartBridge system, a specific logger reads current energy
status, and associated resources from the memory, and provides the information
to HARPA-OS. These “monitors” used by HARPA-OS are:

• Current battery level and
• Current power provided by the solar panels.

The “knob” used by HARPA-OS to tune the system behaviour is the applications
duty cycle, in particular the different AWM are defined in Table 13.4. The duty
cycle for the different applications depends also on the physical phenomena to be
monitored and on the sensors used; for instance, the wireless extensometers provide
a new value every 15 min.

HARPA-OS will reconfigure the applications to different AWM depending on
the monitors values according to Table 13.5 in order to maximize the uptime of the
system, by selecting a less-power hungry configuration when the energy is scarce,
and to improve the quality of service, by selecting a higher monitoring frequency
when energy is abundant.

302 F. Sassi et al.

Table 13.4 Application
Working Mode (AWM) duty
cycle

Video Rockfall detection
Fessurimeter
analysis

AWM 0 30 min 60 min

AWM 1 10 min 45 min

AWM 2 1 min 30 min

AWM 3 No delay and no waiting time
in case of acquisition error

15 min

Table 13.5 AWM selection

Selected AWM

Power from solar panels (W)

W <= 3 3 < W <= 20 20 < W <= 30 W > 30

Battery
charge
status (%)

% <= 10 0 0 1 1

10 < % <= 40 1 1 1 2

40 < % <= 60 1 1 2 3

60 < % <= 80 2 2 3 3

% > 80 3 3 3 3

13.2 Real-World HARPA Testing

The selected location to test the HARPA system is Pietra di Bismantova, a famous
touristic location for climbers and excursionists in the district of Castelnovo ne’
Monti (Reggio Emilia, Italy). This location is already monitored using a standard
Beesper system, comprising cameras and WSN since January 2015. This system
provides the internet connectivity via Ethernet to the Beesper SmartBridge only
for installation convenience. The mains power is not connected to the Beesper
SmartBridge.

The HARPA-based system has been installed in Bismantova from 13th Novem-
ber 2015 to 18th September 2016 and it is shown in Fig. 13.1. Due to development
constraints, the system was initially deployed with only the Video Rockfall detec-
tion application while the Fessurimeter analysis application was deployed on
20th April 2016.

The total energy generated (and used) by the whole system during the whole
testing period of 310 days is 25.89 kWh as calculated by the solar charger. After
taking in account battery inefficiencies and solar charger’s energy consumption, the
energy spent by the computation system (including the camera) for the whole period
is 19.6 kWh.

The idle energy required by the system is computed by considering all the logged
data when no active process is running; the resulting average idle power is 6.0784 W.

The target is to reach the maximum uptime of the system with the higher quality
of service possible. The system shuts off during night time since there would be no
light to perform image-based analysis.

13 Beesper SmartBridge: A Real-World HARPA Application in the Low-End. . . 303

13.2.1 Collected Data Analysis for Each Application Working
Mode

During the testing period, the system experienced all weather and illumination
conditions which allowed to test system performance when the available energy
was scarce or abundant; in particular, all the different AWM were selected during
the test, thus it is possible to compute aggregate statistics over all the system AWM.

13.2.1.1 Load Power Analysis

Left part of Fig. 13.4 shows the aggregate load power statistics over the whole
testing period. The height of the bin reflects the time spent by the system within
the specific load power. Since the system is idle most of the time, it is possible to
observe a peak around 6 W, which is the idle power consumption of the system.
The right part of Fig. 13.4 shows a detail of the right tail of the previous plot. In this
case, it is possible to observe a difference in the load power of the system in different
AWM; in particular, AWM 2 and 3 highlight a considerable amount of time spent at
high load power.

13.2.1.2 Solar Panel Power and Battery Level Analysis

Figure 13.5 shows the battery level and solar panel power distributions in the various
AWM. It is possible to observe how the logged battery level and power generated
from the panel correlates with the selected AWM of the system as expected. In

Fig. 13.4 Left: Power used by the system in each Application Working Mode (AWM). Right:
Detailed view of the distribution “tail”

304 F. Sassi et al.

Fig. 13.5 Solar panel and battery percentage statistics in each AWM

particular, where the battery level and generated power are low the selected AWM
is lower, while with high battery level or high generated power the selected AWM
is higher.

It has been observed that the battery level is not reliable during active charging
by the solar panels. In particular, it reaches 100% in a very short amount of time
and the actual energy accumulated is not represented by the battery value. The
current solution is a custom filtering to ignore non-realistic values while a more
appropriate solution would require dedicated hardware components to evaluate the
effective amount of charge flowing in the battery.

13.2.1.3 Application Working Mode Power Consumption Analysis

By further analysing the logged data, it is possible to calculate average energy for
each run of each application AWM. Table 13.6 shows that the influence of the
AWM can impact the energy requirement of the system up to an increase of 35%. A
dynamic resource allocation system like HARPA-OS should be able to exploit this
property.

As previously discussed, the average energy for the Fessurimeter analysis
application is affected by the length of the acquisition phase where the system is
idle; this behaviour shifts the average application energy to the idle one. Moreover,
the very high consumption of the Video Rockfall detection in AWM 3 is also due to
the removal of a wait period in case of low-quality image (e.g. low light, heavy rain,
fog, bad camera initialization, . . .).

13 Beesper SmartBridge: A Real-World HARPA Application in the Low-End. . . 305

Table 13.6 AWM average power consumption

AWM Average power (W) Increase from idle power 6.0784 W

Video Rockfall detection
Execution time: 51.2 s

0 6.22 +2.3%

1 6.23 +2.4%

2 7.08 +16.5%

3 8.23 +35.3%

Fessurimeter analysis
Execution time:
38.8 s/379.9 s

0 6.05 –

1 6.10 –

2 6.14 +9.8%

3 6.69 +10.0%

13.2.1.4 System Temperature Analysis

HARPA-OS provides an innovative scheduler, Tempura, able to allocate the avail-
able resources to the different applications, assuring that the thermal behaviour of
the system is kept under control and the system performance is guaranteed.

During the testing period, the system has not reached critical temperatures
leading to an emergency shutdown.

By further analysing the logged data, it is possible to compute a histogram
representing the temperature distribution logged in the various AWM. Figure 13.6
highlights how the current AWM is directly linked to CPU temperature. In
particular, it is possible to observe a maximum temperature reached by the system
in all AWM; this behaviour will be analysed in Sect. 13.2.1.5.

Moreover, during the testing period the box temperature has never surpassed
30 ◦C and the CPU temperature in AWM 2 and 3 is not able to reach down to
the enclosure box temperature since the duration of the Video Rockwall detection
application is (or is very close to) the scheduling cycle, thus the system is always
under active load.

13.2.1.5 Execution Time Analysis

The Tempura scheduler allocates the available resources in order to guarantee con-
stant execution time. Figure 13.7 shows the correlation between CPU temperature
(on the horizontal axis) and execution time (on the vertical axis) of the Video
Rockwall detection application where the colour is the frequency of the event. It
is possible to observe how the execution time clusters around two different values
independently from the temperature value. This condition is generated by different
exit conditions of the Video Rockfall detection application. If the image quality
is not sufficient, the last stage of processing is skipped, thus resulting in a lower
execution time.

This result indicates the benefits achieved with the HARPA-OS controlling the
application scheduling with the Tempura resource allocation policy:

306 F. Sassi et al.

Fig. 13.6 System temperature statistics in each AWM

Fig. 13.7 Correlation between CPU temperature and execution time

13 Beesper SmartBridge: A Real-World HARPA Application in the Low-End. . . 307

• Execution time is independent from the temperature of the system;
• The maximum temperature of the system is under control and does not lead to

safety shutdowns (thus no QoS issues): the hard threshold of 95 ◦C has never
been reached even under heavy load of the two applications running at the same
time in the highest AWM during summer time;

• When two applications are running, the resources are reallocated to guarantee a
predictable performance level.

13.2.2 Performance Analysis

The main target of the Beesper SmartBridge system is to ensure a constant
monitoring service of the rockwall, thus the main performance measure of is the
uptime of the system. The uptime of the system in Table 13.7 has been computed
by analysing the logs and by considering when the system was able to perform a
successful operation (data acquisition, data processing and result communication)
during a day.

Nevertheless, this coarse measure is not sufficient to evaluate the true perfor-
mance of a monitoring system. To address this, two new measures of the quality
of service of the system are introduced and will be described in the following
sections:

• Uptime Quality of Service (UQoS)
• Performance Quality of Service (PQoS)

13.2.2.1 Uptime Quality of Service Analysis

The Uptime Quality of Service (UQoS) has been defined based on the percentage
of time the system is active over 1 day. This index is directly correlated with the
reliability of a monitoring system as can be defined as in Table 13.8. The colour

Table 13.7 Beesper
SmartBridge uptime

Number of total days 310

Number of active days 286

Ratio 92%

Table 13.8 Uptime Quality
of Service (UQoS) definition

Uptime percentage Status Colour

UQoS-0 <10% Insufficient UQoS Red

UQoS-10 10% <> 50% Minimum UQoS Orange

UQoS-50 50% <> 90% Good UQoS Yellow

UQoS-90 >90% Optimal UQoS Green

308 F. Sassi et al.

Fig. 13.8 Daily Uptime Quality of Service (UQoS) of the HARPA system over the calendar
months

indicated in the table will be used in the figures containing the Beesper SmartBridge
UQoS results.

Figure 13.8 shows this index as a colour-coded scale on a calendar in order to
highlight the time of the year with respect to the performance of the system. The
colour of the days represents the UQoS that the system achieved on the specific day.

To perform this analysis, the applications’ current AWM has not been considered
since all applications AWM assure a minimum level of service.

It is possible to observe in Fig. 13.8 how during spring and summertime the
system is active with the best possible UQoS almost the whole time thanks to the
available increased solar power. The only red day in May 2016 is due to a software
bug that prevented the system to boot up, condition that was automatically solved
the day after without requiring an on-site intervention.

Table 13.9 and Fig. 13.9 show the percentage of time at which the system reached
each UQoS month by month. It is possible to observe that the system can reach
the minimum UQoS-10 for most of the time during the whole year and the optimal
UQoS-90 during late spring, summer and early autumn. From an application point of
view, these results indicate the suitability of these performances to create a battery-
powered monitoring system able to provide consistent performance for most part of
the year.

These results will be compared in Sect. 13.3.2.2 with the one obtained simulating
the system performance without HARPA-OS.

13 Beesper SmartBridge: A Real-World HARPA Application in the Low-End. . . 309

Table 13.9 Percentage of
time the system reached each
UQoS month by month

Month UQoS-10 UQoS-50 UQoS-90

11/15 76% 65% 59%

12/15 68% 29% 23%

1/16 77% 48% 45%

2/16 76% 52% 52%

3/16 97% 77% 65%

4/16 100% 100% 97%
5/16 97% 94% 90%
6/16 100% 100% 100%
7/16 100% 97% 97%
8/16 100% 100% 100%
9/16 100% 100% 100%

In bold, during winter months the system
reached sufficient UQoS for the majority of the
time while in spring and summer the system
reached optimal UQoS for the majority of the
time.

Fig. 13.9 Percentage of time the system reached each UQoS month by month

13.2.2.2 Performance Quality of Service Analysis

The Performance Quality of Service (PQoS) measures how often the Beesper
SmartBridge monitors the environment; thus, it is able to provide a measure of the
system performance in assessing the rockwall condition.

310 F. Sassi et al.

Fig. 13.10 PQoS of the system: percentage of time for each month for each AWM

This index is directly correlated with the active AWM of the system as:

• AWM 0 = very low PQoS
• AWM 1 = sufficient PQoS
• AWM 2 = good PQoS
• AWM 3 = best PQoS

A further analysis of the log files allows to understand the AWM distribution over
the different months in order to understand the impact of the HARPA-OS scheduler.
In particular, Fig. 13.10 shows how the AWM 0 was more present when less solar
power was available while AWM 2 and 3, that allow a higher quality of service,
can be safely scheduled when there is no risk to reduce the battery life. Table 13.10
contains the detailed data of Fig. 13.10 and highlights how the AWM 0 and AWM 2
are active for a consistent amount of time during the months when power available
was, respectively, scarce or plentiful. The data in these plots and table are computed
on the overall time of the month, not on a day basis as the UQoS.

These results are consistent with the data presented in Fig. 13.4, where the
various AWM show different power requirements.

These strong results and the one from the UQoS analysis show the effectiveness
of the HARPA methodology to increase the monitoring performance of the Beesper
SmartBridge without impacting the uptime of the system when a greater amount of
energy is available.

In order to understand the impact on the system uptime also during the other
periods, a comparison with a simulated system is presented in Sect. 13.3.

13 Beesper SmartBridge: A Real-World HARPA Application in the Low-End. . . 311

Table 13.10 PQoS of the system: percentage of time for each month for each AWM

AWM 0 AWM 1 AWM 2 AWM 3 On total Off + Err

Nov15 22% 40% 5% 0% 66% 34%

Dec15 15% 15% 0% 0% 30% 70%

Jan16 24% 26% 0% 0% 50% 50%

Feb16 8% 49% 0% 0% 57% 43%

Mar16 10% 60% 3% 0% 73% 27%

Apr16 7% 78% 8% 0% 93% 7%

May16 6% 74% 8% 0% 88% 12%

June16 3% 75% 16% 0% 95% 5%

July16 3% 54% 33% 1% 91% 9%

Aug16 1% 73% 21% 1% 95% 5%

Sept16 2% 83% 13% 1% 100% 0%

In bold the months where the impact of dynamic AWM scheduling is more relevant

13.3 Evaluating HARPA Impact: A Simulation Approach

HARPA-OS provides a dynamic resource allocation system thus a variable level
of performance and power consumption. A simulated system with standard static
resource allocation is used to evaluate HARPA-OS impact on the Beesper Smart-
Bridge uptime.

The simulated system exploits the data logged by the Beesper SmartBridge
during the testing period, in particular the actual power consumption and available
solar radiation in the installation site. To further increase the accuracy of the
simulation, a set of laboratory tests were performed to determine the efficiency of
the various Beesper SmartBridge components, in particular the battery, the DC–DC
converter and the solar charger. All these information have been used to create a
custom energy simulator of the Beesper SmartBridge.

13.3.1 Available Energy Simulation

The total solar power generated is autonomously logged by the solar charger device,
to which the system queries every 30 s to save the current value. Since the system
was not active the whole time, thus after a period of time when the system was off,
the first value read from the solar charger corresponds to the total amount of energy
generated since the last query.

To obtain a reliable simulation model, it is important to have realistic solar
radiation data during each hour, and not only the total amount. Thus, it is necessary
to perform an interpolation process to estimate the energy generated while the
system was off while keeping the total energy generated consistent.

312 F. Sassi et al.

The total amount of energy generated by the Beesper SmartBridge during the
testing period has been measured as 25.89 kWh; while the total amount of energy
available to the simulated system has been computed as 25.48 kWh exposing a
difference of −1.58% which allows to compare the simulated values with the real
system. These values do not account for the solar charger power consumption thus
have been scaled accordingly before the usage in the simulator.

13.3.2 Application Working Mode Simulation

Two different simulation tests are performed considering the system running always
in AWM 1 (sufficient PQoS) and AWM 3 (best PQoS), as defined in Sect. 13.2.2.2.

Moreover, as seen in Fig. 13.10, AWM 1 is the most active AWM; thus, it is likely
to expect similar results regarding the uptime to the HARPA-based system, beside
the exploitation of AWM 0 to save power. Instead, the simulation results with AWM
3 are likely to be quite different given the much higher power requirements.

The simulation is performed by creating a model of the system that receives as
input the simulated available energy and simulates application executions, battery
and solar panel status hour-by-hour. The simulated test has the same temporal
duration as the real-world test in order to compare them. The required energy for
each application execution is computed using the data collected during system
testing depending on the selected AWM.

In order to have a fair comparison between the real system and the simulated one,
it has been considered only the power consumption related to the Video Rockwall
detection application since it is the only application that was active during the whole
recording period.

13.3.2.1 Uptime Days Comparison

Table 13.11 reports the uptime results of the simulated systems compared to the
real HARPA-based system and the energy requirements for AWM 1 and AWM 3.
The uptime is computed, as in Sect. 13.2.2, considering when the system performs
a successful operation (data acquisition, data processing and result communication)
during a single day. From this table, it is possible to observe how the HARPA
system achieves higher uptime values, even accounting for the energy error of 1.58%
previously reported. Moreover, the small difference between the HARPA system
and the simulated systems is consistent with the expectation, considering how the
uptime is computed.

Nevertheless, this very high-level comparison is not able to highlight short-term
differences between the different approaches, thus a more fine-grained measure, like
the UQoS of the simulated systems, should be computed.

13 Beesper SmartBridge: A Real-World HARPA Application in the Low-End. . . 313

Table 13.11 Uptime comparison between the simulated and HARPA-based systems

Energy req. Uptime days/310 Days Uptime %

HARPA Variable 286 92.26%

AWM 1 6.2250 Wh 267 86.13% −19 −6.13%

AWM 3 8.2251 Wh 246 79.35% −40 −12.90%

Table 13.12 UQoS results of the simulated systems compared to the HARPA-based system

Colour HARPA AWM 1 AWM 3

UQoS-0 Red 30 48 60.00% 79 163.00%

Insufficient

UQoS-10 Orange 38 20 −47.00% 43 13.00%

Minimum

UQoS-50 Yellow 10 10 0.00% 49
390.00%

Good

UQoS-90 Green
232 232

0.00%
139 −40.00%

Optimal

13.3.2.2 Uptime Quality of Service Comparison

In Sect. 13.2.2.1, the Uptime Quality of Service (UQoS) has been defined as the
percentage of time the system is active over 1 day and the results over the HARPA-
based system were presented. This index is directly correlated with the reliability of
a monitoring system as can be defined as in Table 13.8. The colour indicated in the
table will be used in the figures containing the Beesper SmartBridge UQoS results.

Table 13.12 reports a quantitative analysis and it is possible to observe the
HARPA system compared to the simulated systems.

With respect to the AWM 1 simulated system, the HARPA system has a reduced
number of UQoS-0 days, where the minimum UQoS is not reached, by increasing
the number of UQoS-10 days thanks to its dynamic scheduling of AWMs. This
is a strong evidence of the effectiveness of a dynamic approach, such as the one
presented in HARPA-OS, that allows to reach a minimum level of quality of service
by enforcing dynamic energy saving measures.

The comparison with the simulated AWM 3 system shows, as expected, a greatly
reduced UQoS; in particular, it is not able to reach very good UQoS-90 level
consistently.

As a qualitative comparison between the HARPA system and the simulated
systems, it is possible to analyse the UQoS in a calendar plot as shown in Fig. 13.11.
The colour of the days represents the UQoS that the system achieved on the specific
day. A similar plot was presented for the HARPA system in Fig. 13.8.

The comparison between the HARPA system and the AWM 1 simulated system
shows a great similarity of UQoS level, as expected, during most of the year.
Nevertheless, it is important to remember that the HARPA system provides a higher

314 F. Sassi et al.

Fig. 13.11 UQoS comparison between the real and simulated systems in a calendar plot

13 Beesper SmartBridge: A Real-World HARPA Application in the Low-End. . . 315

Table 13.13 UQoS comparison between the real and simulated systems month by month

AWM 1 UQoS AWM 3 UQoS HARPA UQoS

(%) (%) (%)

Month #Days 10 50 90 10 50 90 10 50 90

11 17 88 75 69 65 65 35 76 65 59

12 31 52 35 29 42 32 13 68 29 23

1 31 68 55 52 61 48 29 77 48 45

2 29 72 62 55 62 48 31 76 52 52

3 31 87 81 74 81 68 55 97 77 65

4 30 100 100 100 83 70 57 100 100 97
5 31 90 90 87 84 71 58 97 94 90
6 30 100 100 100 93 63 57 100 100 100
7 31 97 90 87 90 74 52 100 97 97
8 31 97 90 90 81 68 55 100 100 100
9 18 83 83 83 72 61 50 100 100 100

level of performance, through AWM 2 and AWM 3, in particular during the months
with more solar power available as demonstrated in Sect. 13.2.2.2.

Moreover, even during summer time, when the solar power is greatly available,
a dynamic approach like HARPA has an impact on the UQoS of the system. The
simulated AWM 3 system is not able to reach constant high UQoS while the AWM
1 system shows more UQoS-0 and UQoS-10 days than the HARPA system.

Table 13.13 reports the analytical data of Fig. 13.11 and highlights in bold how
the simulated AWM 1 and HARPA systems show consistent results while the
simulated AWM 3 system is not able to reach similar performance levels.

Figure 13.12 shows a qualitative comparison of the simulated systems and the
HARPA system over the UQoS level reached during each month.

13.4 Conclusions

The Beesper SmartBridge prototype presented in this chapter is the demonstrator in
the low-end of embedded system domain for HARPA.

The Beesper SmartBridge is a HARPA-based solar-powered and battery-
operated intelligent monitoring device able to autonomously perform markerless
rockfall and rockwall composition identification (using frequent images from
cameras analysed through machine vision feature extraction and machine learning
classification) and dilatation of a rockwall analysis (through machine learning using
data from a WSN) as detailed in Sect. 13.1. Since the monitoring system is battery
operated, the main target is to provide consistent monitoring performance while
maximizing the system uptime.

316 F. Sassi et al.

Fig. 13.12 UQoS comparison between the real and simulated systems month by month

13 Beesper SmartBridge: A Real-World HARPA Application in the Low-End. . . 317

The Beesper SmartBridge has been successfully installed at Pietra di Bismantova
(Reggio Emilia, Italy) from 13th November 2015 to 18th September 2016 for a total
of 310 days as reported in Sect. 13.2.

The laboratory testing of the system and applications, reported in Sect. 13.1.4,
shows the suitability of the Beesper SmartBridge to the HARPA approach given
that the various applications run concurrently with tunable power consumption.

The system was able to log accurate information during the whole test duration
and Sect. 13.2.1 presents an analysis about the load power, battery percentage
and power generated from the solar panel with respect to the various AWM that
highlights how the AWM selection process based on external factors is successful.

Finally, the average energy required by each application AWM is computed
from the logged data giving a real-world estimation of the energy need of this
system. These results, reported in Table 13.6, show that the selection of an AWM
has a significant impact on the total energy requirements (up to 35% more than
the idle power), thus a dynamic resource allocation approach like HARPA-OS is
appropriate.

HARPA-OS provides a temperature and energy aware scheduler, Tempura,
and Sect. 13.2.1.5 reports its impact during the whole test period. It has been
demonstrated how the Tempura scheduler allocates resources to the two applications
in order to provide consistent execution time, while keeping under control the
temperature of the system. It is worth remarking how the system could operate
correctly both during winter time, with low temperatures, and summer time, with
higher environmental temperature.

The Beesper SmartBridge is a monitoring system where the various applications
duty cycle directly influence the quality of the performance of the system; thus,
the duty cycle is the main “knob” to tune system performance. The various
Application Working Mode (AWM) are defined with different “wait intervals”
between execution, thus exhibit different level of average power consumption. The
main system “monitors” are the battery level, available solar power and system
temperature.

To evaluate the performance of the system, three different measures of the quality
of service have been defined in Sect. 13.2.2 and two simulated systems with static
AWM definition have been created.

The simulated system exploits the data logged by the Beesper SmartBridge
during the testing period, in particular the actual power consumption and available
solar radiation in the installation site. To increase further the accuracy of the
simulation, a set of laboratory tests were performed to determine the efficiency of
the various Beesper SmartBridge components, in particular the battery, the DC–DC
converter and the solar charger. All these information have been used to create a
custom simulator.

The Uptime days performance evaluation resulted in the HARPA-OS-based
system with an uptime of 286 over 310 days (92.26%) while the simulated systems
in AWM 1 and AWM 3 scored, respectively, 267 (86.13%) and 246 (79.35%) days of
uptime. The small difference between the HARPA system and the simulated systems

318 F. Sassi et al.

is consistent with the uptime definition and the fact that AWM 1 is the most selected
AWM by HARPA-OS as reported in Table 13.10.

The Performance Quality of Service (PQoS) focuses on the distribution of the
application AWM during each month, from AWM 0 (very low PQoS) to AWM 3
(best PQoS) and shows in Sect. 13.2.2.2 the impact of the HARPA-OS dynamic
scheduler. In particular, the AWM 0 is more present (up to 23.90% in January) when
less solar power was available, while AWM 2 can be safely scheduled when there is
no risk to reduce the battery life (up to 33.15% in July).

The results are confirmed when comparing the Uptime Quality of Service (UQoS)
performance index as reported in Table 13.12 where it is possible to observe how the
HARPA system, compared to the simulated AWM 1 system, can reduce the number
of days with insufficient UQoS-0 of 60% by increasing the number of days with
sufficient UQoS-10 of 47% thanks to its dynamic scheduling of resources.

From Table 13.13, it is possible to observe that HARPA-OS has also a strong
impact during the months with more solar power available. For instance, the
simulated AWM 3 system reaches only 58% of the time the UQoS-90, while the
HARPA system can reach the same UQoS-90 almost 100% of the time during
summer months.

It is not possible to compare the Performance Quality of Service PQoS perfor-
mance index since the AWM is fixed in the simulated systems.

These important results demonstrate how HARPA-OS is able to allow a greater
PQoS when possible, while keeping a minimum PQoS and consistent UQOS during
the rest of the time.

All these results provide strong evidence of the effectiveness of a dynamic
approach, such as the one presented in HARPA-OS, in increasing the overall quality
of the service provided by a real-world system equipped with such functionality.
Moreover, the Beesper SmartBridge, with HARPA-OS, has been installed for almost
1 year outdoor, without any need of maintenance, demonstrating the stability and
reliability of the hardware and software solutions and providing a good level of
performance. Finally, the system has collected an extremely valuable dataset of
high-quality pictures, temperatures and rock dilatations during almost one full year
that will be used to greatly improve the quality of the computation results in the next
development phase.

Reference

1. WO2017012677 - system and computer-based method for simulating a human-like control
behaviour in an environmental context. Application number: WO2015EP66952, Filing date:
2015-07-23

Index

A
Adaptive re-clustering mechanism, HARPA

RT
cycle noise reduction in PID controller,

144–145
objectives, 141
RTS Pareto curve hierarchy, 141
RTS-Shifting, 142, 143
targeted application, 141

Aging-aware performance optimization
aging-aware design space, 63
increase in Vth along with temperature and

Vdd, 61
interdependency between system-and

physical-level parameters, 60
resource management technique, 61

Aging recovery mechanism, 50
Application working modes (AWMs), 77
ARM big.LITTLE 8-core CPU, 84

B
Beesper SmartBridge

energy simulation, 311–312
extensometers, 298–299
hardware prototype, 296–297
HARPA integration, 301–302
HARPA testing

AWM power consumption, 304–305
battery level analysis, 303–304
execution time analysis, 305–307
load power analysis, 303
PQoS, 309–311
solar panel power, 303–304

system temperature analysis, 305
UQoS, 307–309

testing, 299–301
video rockfall detection, 298
work mode simulation

uptime days comparison, 312–313
UQoS, 313–315

Berkeley Out-of-Order Machine (BOOM), 57
Bias temperature instability (BTI), 44, 47–49,

217
CDW points, 232–234
constant vs realistic activity factors,

228–2229
impact of workload, 230–231
induced degradation

ASIC digital design flow, 222
circuit level aging, 225
dependent aging computation, 225
EDA flow, 221
netlist flattening, 222–223
workload approximation, 223–224
workload propagation, 224

measurement-based platform modelling
fault types, 257–258
reliability analysis, 258–259
system-level perspective, 256–257

performance degradation
black box approach, 219
SRAM cells, 220–221
white box approach, 219–220
workload dependency, 218

phase contributions, 233
reference applications, 227–228
reference circuits, 226–227

© Springer International Publishing AG, part of Springer Nature 2019
W. Fornaciari, D. Soudris (eds.), Harnessing Performance Variability
in Embedded and High-performance Many/Multi-core Platforms,
https://doi.org/10.1007/978-3-319-91962-1

319

https://doi.org/10.1007/978-3-319-91962-1

320 Index

Bias temperature instability (BTI) (Cont.)
simulation time, 231–232
target technology, 226

BlackOut architecture, NoCs
baseline router, 190
control and command dispatches, 192–193
description, 188–189
experimental setup, 194
fine-grained power gating, 192
flow balancing, 193
late binding technique, 193
operational versatility, 191
optimized micro-architecture, 191
physical actuation, 192
power gating, 191–192
simple design, 191
sliding window, 193
using SPLASH-2 benchmark, 198–200
using synthetic traffic, 194–198

C
Cache coherence, 36
Capture/emission time (CET) maps, 217
Circuit level aging effects

aging-aware logic synthesis, 56
degradation-aware cell library, 56
induced degradation analysis flow, BTI,

225
Rocket Chip Generator, 57

Combination of knobs, HPC
on energy and cost, 180–182
on power, 179–180
on reliability, 176–178

Cycle budget, 132
Cycle noise, 132

D
Deadline vulnerability factor (DVF), 132–133
Degradation-aware cell library, 56
Degradation effects

aging-induced timing errors, 57–59
circuit level

aging-aware logic synthesis, 56
degradation-aware cell library, 56
Rocket Chip Generator, 57

device level
carrier mobility decrease, 55
gate–drain capacitance increase, 55
subthreshold slope degradation, 55
threshold voltage increase, 54–55

interdependencies, 44
BTI and HCID, 51–52

BTI and RTN, 53–54
physical processes

aging recovery mechanism, 50
bias temperature instability (BTI),

47–49
hot carrier-induced degradation

(HCID), 49
process variation (PV), 51
random dopant fluctuation (RDF), 50
random telegraph noise (RTN), 50

reliability, 43, 46
system level

aging-aware performance optimization,
60–63

guardband-aware performance
optimization, 64–66

technology scaling
Dennard’s scaling, 44
thermal management techniques, 46
on a transistor, 45, 46

time-dependent degradations, 44
time-independent degradations, 44

Dennard’s scaling, 44
Dependable performance

challenges, 2
data throughput, 15–16
HARPA engine, 6 (see also HARPA

engine)
application setup and characterization,

8–9
embedded systems (ES) domain, 17
execution-time behavior, 10–11
HARPA-OS, 8
HARPA-RT, 8
high-performance computing domain,

18
layers and types, 7
millisecond time granularity, 8
role, 9
second time granularity, 8
service-level agreements (SLA), 7,

9–10
lifetime requirement, 2
monitors and knobs, 6, 16
policies and mechanisms, 5
quality of service (QoS), 3–5
user requirements, 6–7

Device level aging effects
carrier mobility decrease, 55
gate–drain capacitance increase, 55
subthreshold slope degradation, 55
threshold voltage increase, 54–55

Dynamic Scenario Run-Time Engine, 12–13
Dynamic scheduling, 30

Index 321

Dynamic variations, 1
Dynamic voltage and frequency scaling

(DVFS), 131, 151

E
Embedded systems (ES) domain, 17
Event-based thermal control

experimental setup
control quality and overhead, 123–124
proposed controller vs. thermald,

124–126
schematic representation, 122

hardware event generator
area and power consumption, 115–116
event generation policy, 115
high-level logic scheme, 115
purpose, 115

in microprocessors
leakage power, 108
power consumption, 108
power dissipation, 108–111
thermal control policies, 111–112

Modelica thermal simulation library
components, 112
controllers, 112–113
Modelica scheme, 113
multi-physics modelling, 112
spatial discretisation, 114
stimuli sources, 113

software control policy
closed-loop system, 118
control structure, 116–117
implementation and simulation-based

assessment, 119–121
robustness and performance, 119
tuning and stability, 118–119

F
Fault detection and analysis

offline golden trace collection, 245–246
online faults identification, 246–247
signature accumulation, 247

FLOods REcognition On the Net
(FLOREON+) system, 18

application requirements, 171
catchment simulations, 271–272
critical operation, 273
with faults, 169, 170
flood forecasting model, 269–270
flood warning process, 268–269
HPC domain application, 265–266
intermediate operation, 273

inundated area for percentile, 267, 268
inundation area for the Ostravice river, 267
Monte Carlo iterations, 172
normal operation, 169, 170
on-demand simulations, 271
QoS requirements, 171–172
rainfall–run-off model, 270–271
reliability and availability target, 171
standard operation, 273

Frequency multiplier, 132

G
General-purpose cores

architecture, 27
branch prediction, 28–29, 31–32
data caches, 28
data dependence speculation, 35
GPU, 31
hybrid predictors, 29
instruction issue, 33
instruction set architecture (ISA), 29, 32
memory access, 28
microarchitecture, 31, 32
multimedia extensions, 34
multithreading, 30–31
out-of-order execution, 30
pipelining, 27–28
renaming, 33, 34
RISC architectures, 27
store-to-load forwarding, 35
superscalar processor, 29–30

Guardband-aware performance optimization
case study, 65–66
frequency guardband, 64
voltage guardband, 64–65

H
HARPA engine, 6

application setup and characterization, 8–9
embedded systems (ES) domain, 17
execution-time behavior, 10–11
framework, 5
HARPA-OS, 8 (see also HARPA-OS)

advantages, 13
objectives, 14
resource virtualization, 14
spatial and temporal component, 14–15

HARPA-RT, 8 (see also HARPA-RT)
Dynamic Scenario approach, 12–13
interface definitions, 11
key aspects, 11
System Scenario approach, 11–12

322 Index

HARPA engine (Cont.)
high-performance computing domain, 18
layers and types, 7
millisecond time granularity, 8
performance-dependability challenges, 17
roles, 9
second time granularity, 8
service-level agreements (SLA), 7, 9–10

HARPA-OS, 8
abstract execution model, 75–77
advantages, 13
applicability and quality, 290
application integration, 77
HPC environments

hardware infrastructure, 276–277
HARPA integration, 276
performance analysis, 278
runtime resource manager, 274–276

model execution with constraints, 279–281
multiple-node configurations, 285–286
objectives, 14
one-node configurations, 283–285
OpenMP and MPI approach, 281–282
power and energy monitors, 281–282
resource allocations, 77–81
resource virtualization, 14
run-time resource management, 73–74
scheduling policies

PerDeTemp, 81 (see also PerDeTemp
scheduling policy)

TEMPURA, 81 (see also Tempura
scheduling policy)

spatial and temporal component, 14–15
structure, 81, 82
two-node configurations, 285
user-space-managed environment, 74–75

HARPA-RT
adaptive re-clustering mechanism

cycle noise reduction in PID controller,
144–145

objectives, 141
RTS Pareto curve hierarchy, 141
RTS-Shifting, 142, 143
targeted application, 141

cycle budget, 132
cycle noise, 132
deadline vulnerability factor (DVF),

132–133
experimental results, 145–149
frequency multiplier, 132
performance variability model, 135–136
PID Controller, 131
rate divergence slack, 133–134
real-time spectrum sensing application

ARM R© core, 156
components, 153
DVFS control strategy, 157–159
FreescaleTM IMX6Q board, 152
GUI implementation, 159–160
heat stress functional error rates,

161–162
IMX6Q board, 154–156
MAC communication, 155
MTBF result, 161, 162
PID controller, 157–159
reliability stress, 162–163
schematic overview, 153
spectrum sensing application, 154–156
workload stress, 163, 164

slack reclaiming mechanism, 140
system scenarios

clustering overhead, 139
clustering process, 138
components, 132
proposed instantiation variables, 136
proposed performance dependability

scheme, 136
run-time situation (RTS), 137
thread nodes (TNs), 137

HARPA testing
AWM power consumption, 304–305
battery level analysis, 303–304
execution time analysis, 305–307
load power analysis, 303
in one node

application scenarios on the platform,
282–286

model execution with constraints,
279–281

time predictability, 281–282
PQoS, 309–311
solar panel power, 303–304
system temperature analysis, 305
UQoS, 307–309

Heuristic correlation analysis, 176, 182–183
High-performance computing (HPC) domain,

18
combination of knobs

on energy and cost, 180–182
on power, 179–180
on reliability, 176–178

COST-ET tool, 175
DRAM, 174
experimental framework, 174–176
Floreon+

application requirements, 171
with faults, 169, 170
Monte Carlo iterations, 172

Index 323

normal operation, 169, 170
QoS requirements, 171–172
reliability and availability target, 171

heuristic correlation analysis, 176, 182–183
monitors and knobs, 172–174
MTBF, 178, 179
time-dependent variability, 172
time-zero variability, 172
validation, 184–185

High-Temperature-Bias (HTRB) test, 289
Hot carrier-induced degradation (HCID), 44,

49

I
IMX6Q board, 154–156
Induced degradation analysis flow, BTI

ASIC digital design flow, 222
circuit level aging, 225
dependent aging computation, 225
EDA flow, 221
netlist flattening, 222–223
workload approximation, 223–224
workload propagation, 224

Instruction-level parallelism (ILP) techniques,
26

Instruction set architecture (ISA), 29, 32
Intel 4004 microprocessor, 23

L
Late binding technique, 193

M
Mean Time Between Failures (MTBF), 178,

179
acceleration factors, 286–288
relative accelearation, 289–290
reliability trade-offs, 290
temperature accelearation, 288–289

Measurement-based platform modelling
accurate operating temperature control, 250
aging and NBTI approach, 238–239
BTI aging experiments

fault types, 257–258
reliability analysis, 258–259
system-level perspective, 256–257

fault detection and analysis
offline golden trace collection, 245–246
online faults identification, 246–247
signature accumulation, 247

motivation and concept, 237–238
reference application, 251–252

signatures accumulation overhead, 248–249
sweeping parameters, 250–251
synthesis results, 248
temperature-dependent execution time,

252–254
temperature sweep procedure, 251
voltage stability checks, 250
workload-dependent

accurate modelling, 242–243
approximation, 243–244
BTI simulation, 245
Freescale i.MX 6Quad, 240–241
general approach, 241
SoC platform, 240–241

Medium access control (MAC)
communication, 155

Memory consistency model, 36
Microprocessor

event-based thermal control
leakage power, 108
power consumption, 108
power dissipation, 108–111
thermal control policies, 111–112

general-purpose cores
architecture, 27
branch prediction, 28–29, 31–32
data caches, 28
data dependence speculation, 35
GPU, 31
hybrid predictors, 29
instruction issue, 33
instruction set architecture (ISA), 29, 32
memory access, 28
microarchitecture, 31, 32
multimedia extensions, 34
multithreading, 30–31
out-of-order execution, 30
pipelining, 27–28
renaming, 33, 34
RISC architecture, 27
store-to-load forwarding, 35
superscalar processor, 29–30

high-level block diagram, 27
multicore processors

components, 35
interconnection network, 38–39
memory hierarchy, 36–38

past trends
bottlenecks, 24
clock gating and power gating, 25
dark silicon, 26
evolution, 23
history, 23
ILP techniques, 26

324 Index

Microprocessor (Cont.)
increased power density, 25
Moore’s Law, 23
performance improvements, 23, 24
performance inflexion point, 26
Pollack’s rule of thumb, 24
supply voltage, 24, 25
technology scaling, 23
TLP techniques, 26

specialized units, 39–40
Modelica thermal simulation library

components, 112
controllers, 112–113
Modelica scheme, 113
multi-physics modelling, 112
spatial discretisation, 114
stimuli sources, 113

Moore’s Law, 23
Multicore processors

components, 35
interconnection network, 38–39
memory hierarchy, 36–38

Multi-objective scheduling policy, 94–97

N
Networks-on-Chip (NoCs)

BlackOut architecture
baseline router, 190
control and command dispatches,

192–193
description, 188–189
experimental setup, 194
fine-grained power gating, 192
flow balancing, 193
late binding technique, 193
operational versatility, 191
optimized micro-architecture, 191
physical actuation, 192
power gating, 191–192
simple design, 191
sliding window, 193
using SPLASH-2 benchmark, 198–200
using synthetic traffic, 194–198

NoCAlert architecture
BIST mechanisms, 189
description, 189–190
ensure functional correctness, 201
evaluation framework, 205–206
experimental setup, 204–205
fault localization, 202–204, 208–209
hardware complexity, 201
invariance checking, 200
network-level evaluation, 205

non-invariant upsets, 201–202
RTL netlist-level, 209–210
simulation results, 206–208

O
Object-oriented modelling language, 112
Out-of-order execution, 30

P
PerDeTemp scheduling policy, 81

boundaries, 99
continuous allocation, 93
disadvantages, 92
experimental results, 102–103
features, 93
HARPA-OS Application Run-time Library

(RTLib), 98
learning techniques, 99
resource mapping, 99–100
YaMS

Goal Gap information, 95
power consumption, 97
throughput goals, 94

Performance Quality of Service (PQoS),
309–311

Pipelining, 27
Pollack’s rule of thumb, 24
Private caches, 36
Processor architecture, 23, 26
Process variation (PV), 51
Proportional–integral–derivative (PID)

controller, 151, 157–159

R
Random dopant fluctuation (RDF), 50
Random telegraph noise (RTN), 50
Rate divergence slack, 133–134
Rocket Chip Generator, 57
Round-trip time (RTT), 188

S
Sequential consistency model, 38
Static variations, 1
Superscalar processor, 29–30
Synopsys Processor Designer Tool, 56
System level aging effects

aging-aware performance optimization,
60–63

guardband-aware performance
optimization, 64–66

System Scenario Run-Time Engine, 11–12

Index 325

T
Tempura scheduling policy

design-time characterization, 84–88
energy management experimental results,

90–92
power consumption in embedded system,

81
resource allocation policy, 83
scheduling algorithm, 89–90
thermal management experimental results,

90
Thread-level parallelism (TLP) techniques, 26
Time-dependent degradations, 44
Time-dependent variability, 172
Time-independent degradations, 44

Time-zero variability, 172
Tomasulo’s algorithm, 30
Total store ordering, 38

U
Uptime Quality of Service (UQoS), 307–309,

313–315

W
WARM framework, 74
What-If Analysis (WIA) simulations, 271
What-If hydrologic simulations, 271

	Introduction
	Contents
	1 The HARPA Approach to Ensure Dependable Performance
	1.1 Introduction
	1.2 Dependable Performance Through Guaranteed Quality of Service
	1.3 Concept and Principles
	1.4 User Requirements
	1.5 HARPA Engine
	1.5.1 HARPA Run-Time Engine Implementations (HARPA-RT)
	1.5.1.1 System Scenario Run-Time Engine
	1.5.1.2 Dynamic Scenario Run-Time Engine

	1.6 HARPA Operating System (HARPA-OS)
	1.6.1 Resource Virtualization
	1.6.2 Spatial and Temporal Component

	1.7 Interfaces with the Hardware: Monitors, Knobs, and Technology Models
	1.7.1 Monitors and Knobs

	1.8 HARPA Applications
	1.8.1 Embedded Systems (ES) Domain
	1.8.2 High-Performance Computing Domain

	1.9 Conclusion
	References

	Part I
	2 Trends in Processor Architecture
	2.1 Past Trends
	2.2 Current Microprocessors
	2.2.1 General-Purpose Cores
	2.2.2 Multicore Processors
	2.2.2.1 Memory Hierarchy
	2.2.2.2 Interconnection Network

	2.3 Going Forward: Specialized Units
	References

	3 Aging Effects: From Physics to CAD
	3.1 Introduction
	3.1.1 Impact of Technology Scaling on Degradation Effects

	3.2 Aging Effects at the Physical Level
	3.2.1 Interdependencies of Degradation Effects

	3.3 Aging Effects at the Device Level
	3.4 Aging Effects at the Circuit Level
	3.5 Aging-Induced Approximation
	3.6 Aging at the System Level
	3.6.1 Aging-Aware Performance Optimization
	3.6.2 Guardband-Aware Performance Optimization

	References

	Part II OS Layer
	4 The HARPA-OS
	4.1 Reliability-Aware Run-Time Resource Management
	4.2 Managing Resources from User-Space
	4.3 The Abstract Execution Model
	4.4 Integrating Applications
	4.5 Defining Resource Allocations
	4.6 HARPA-OS Scheduling Policies
	4.6.1 The Tempura Scheduling Policy
	4.6.1.1 Design-Time Characterization
	4.6.1.2 The Scheduling Algorithm
	4.6.1.3 Thermal Management Experimental Results
	4.6.1.4 Energy Management Experimental Results

	4.6.2 The PerDeTemp Scheduling Policy
	4.6.2.1 YaMS: A Multi-Objective Scheduling Policy
	4.6.2.2 The PerDeTemp Scheduling Policy
	4.6.2.3 Experimental Results

	4.7 Conclusions
	References

	5 Event-Based Thermal Control for High Power Density Microprocessors
	5.1 Introduction
	5.2 A Brief Overview of the Thermal Issue in Microprocessors
	5.2.1 The Thermal Dissipation Problem in a Nutshell
	5.2.2 Thermal Control Policies

	5.3 A Modelica Thermal Simulation Library
	5.4 Event-Based Thermal: The Hardware Event Generator
	5.5 Event-Based Thermal: The Software Control Policy
	5.5.1 Control Structure and Closed-Loop System
	5.5.2 Tuning, Stability, Robustness and Performance
	5.5.3 Implementation and Simulation-Based Assessment

	5.6 Experimental Results
	5.6.1 Control Quality and Overhead
	5.6.2 Comparison with the State of the Art

	5.7 Conclusions
	References

	Part III HARPA-RT Layer
	6 HARPA RT
	6.1 HARPA RT
	6.1.1 Primitives
	6.1.2 Performance Variability Model
	6.1.3 HARPA RT System Scenarios
	6.1.4 Different Classes of Scenarios
	6.1.5 Adaptive Scenarios
	6.1.5.1 Adaptive Scenarios Instantiated for the Cycle Noise Reduction in the PID Controller

	6.1.6 Experimental Results
	6.1.7 Conclusion

	References

	7 Improving Robustness of a Real-Time Spectrum Sensing Application with the HARPA Run-Time Engine
	7.1 Introduction and Motivation
	7.2 Experimental Setup
	7.2.1 Measurement Setup
	7.2.2 Spectrum Sensing Application and Functional Reliability, Availability, and Serviceability Emulation
	7.2.3 PID Controller Implementation and DVFS Control Strategy
	7.2.4 GUI Support

	7.3 Measurement Results
	7.3.1 Heat Stress Functional Error Rates
	7.3.2 Reliability Stress Compensation
	7.3.3 Workload Stress Compensation

	7.4 Conclusion
	References

	Part IV Knobs and Monitors
	8 Evaluating System-Level Monitors and Knobs on Real Hardware
	8.1 Introduction
	8.2 Background
	8.2.1 HPC Application (Floreon+)
	8.2.1.1 Application Requirements
	8.2.1.2 Availability and Quality of Service Requirements
	8.2.1.3 Accuracy on Monte Carlo Iterations

	8.2.2 Available Monitors and Knobs in HPC Systems

	8.3 Experimental Framework and Correlation Analysis
	8.3.1 Experimental Framework
	8.3.1.1 Heuristic Correlation Analysis

	8.4 Results
	8.4.1 Implications of Different Combinations of Knobs in Performance
	8.4.2 Implications of Different Combinations of Knobs on Reliability
	8.4.3 Implications of Different Combinations of Knobs on Power
	8.4.4 Implications of Different Combinations of Knobs on Energy and Cost
	8.4.5 Results of the Heuristic Correlation Analysis
	8.4.6 Validation of Heuristic Methodology

	8.5 Conclusions and Future Work
	References

	9 Monitor and Knob Techniques in Network-on-Chip Architectures
	9.1 Introduction
	9.1.1 The BlackOut Architecture
	9.1.2 The NoCAlert Architecture

	9.2 BlackOut: Enabling Fine-Grained Power Gating of Buffers in Network-on-Chip Routers
	9.2.1 The Assumed Baseline Network-on-Chip Router
	9.2.2 Novel Contributions
	9.2.3 Related State-of-the-Art Power-Gating Solutions
	9.2.3.1 Power Gating at a Router-Level Granularity
	9.2.3.2 Fine-Grained Power Gating

	9.2.4 The BlackOut Methodology
	9.2.5 Evaluation and Results
	9.2.5.1 Experimental Setup
	9.2.5.2 Results Using Synthetic Traffic
	9.2.5.3 Results Using SPLASH-2 Benchmark Applications

	9.3 An Online and Real-time Fault-Detection and Localization Mechanism for Network-on-Chip Architectures
	9.3.1 Invariance Checking Within the Network-on-Chip
	9.3.2 NoCAlert: An Online, Hardware Assertion-Based Fault-Detection and Localization Mechanism for Networks-on-Chip
	9.3.2.1 Ensuring Network Correctness Using Invariances
	9.3.2.2 Hardware Complexity of the NoCAlert Checkers
	9.3.2.3 Faults That Do Not Cause Invariance Violations
	9.3.2.4 Enabling Fault Localization

	9.3.3 Experimental Methodology
	9.3.3.1 Experimental Setup
	9.3.3.2 Evaluation Framework

	9.3.4 Evaluation Results
	9.3.4.1 Network-Level Simulation Results
	9.3.4.2 Fault-Localization Evaluation
	9.3.4.3 RTL Netlist-Level Evaluation

	9.4 Conclusions
	References

	Part V Technology Related Reliability Approach
	10 Time-Efficient Modeling and Simulation of True Workload Dependency for BTI-Induced Degradation in Processor-Level Platform Specifications
	10.1 Workload-Dependent Platform/Processor-Level Analysis of Bias Temperature Instability-Induced Degradation: Goal and Motivation
	10.2 Technology-Based Modeling of Platform Performance Degradation
	10.2.1 Workload Dependency
	10.2.2 Black Box Approach for System-Level Analysis
	10.2.3 White Box Approach for Partitioned Processor-Level Analysis

	10.3 Related Work at the Component or Platform Level
	10.4 Bias Temperature Instability-Induced Degradation Analysis Flow
	10.4.1 Netlist Flattening
	10.4.2 Workload Approximation
	10.4.3 Workload Propagation
	10.4.4 Workload-Dependent Aging Computation
	10.4.5 Circuit-Level Aging Analysis

	10.5 Representative Results
	10.5.1 Experimental Setup
	10.5.1.1 Target Technology
	10.5.1.2 Reference Circuits
	10.5.1.3 Reference Applications

	10.5.2 Constant Versus Realistic Activity Factors
	10.5.3 Impact of Workload
	10.5.4 Simulation Time Discussion
	10.5.5 Compact Digital Waveform-Based Approximation

	10.6 Conclusion and Future Work
	References

	11 Proof-of-Concept HARPA Measurement-Based Platform Modelling Framework
	11.1 Motivation and Context
	11.2 Related Work
	11.2.1 Aging and NBTI
	11.2.2 Approaches to Deal with Aging and NBTI

	11.3 Measurement-Based Workload-Dependent Methodology
	11.3.1 Freescale i.MX 6Quad SoC Platform
	11.3.2 General Approach
	11.3.3 Methodology Phases
	11.3.3.1 Accurate Modelling
	11.3.3.2 Approximation
	11.3.3.3 BTI Simulation

	11.3.4 Fault Detection and Analysis
	11.3.4.1 Offline Golden Trace Collection
	11.3.4.2 Online Faults Identification
	11.3.4.3 Signature Accumulation

	11.4 Experimental Results
	11.4.1 Synthesis Results
	11.4.2 Signatures Accumulation Overhead
	11.4.3 General Setup
	11.4.3.1 Accurate Operating Temperature Control
	11.4.3.2 Voltage Stability Checks
	11.4.3.3 Sweeping Parameters
	11.4.3.4 Temperature Sweep Procedure

	11.4.4 Reference Application
	11.4.5 Temperature-Dependent Execution Time
	11.4.6 BTI Aging Experiments
	11.4.6.1 System-Level Perspective
	11.4.6.2 Types of Faults
	11.4.6.3 Application Reliability Analysis

	11.5 Conclusion and Future Work
	References

	Part VI Applications
	12 Floreon+ Modules: A Real-World HARPA Application in the High-End HPC System Domain
	12.1 Floreon+: HPC Domain Application
	12.2 Experimental Application
	12.2.1 Flood Warning Process
	12.2.2 The Flood Forecasting Model
	12.2.2.1 Uncertainties of the Rainfall–Run-off Model
	12.2.2.2 On-Demand Simulations

	12.2.3 Catchments Simulation
	12.2.4 Application Scenarios
	12.2.4.1 Standard Operation
	12.2.4.2 Intermediate Operation
	12.2.4.3 Critical Operation

	12.3 HARPA-OS for HPC Environments
	12.3.1 The Runtime Resource Manager
	12.3.2 HARPA Integration
	12.3.3 Hardware Infrastructure
	12.3.4 Performance Analysis

	12.4 HARPA Testing in One Node
	12.4.1 Execution of the Models with Constraints
	12.4.2 Time Predictability with HARPA-OS
	12.4.2.1 Power and Energy Monitors

	12.4.3 Execution of the Application Scenarios on the Platform
	12.4.3.1 One-Node Configurations
	12.4.3.2 Two Nodes
	12.4.3.3 Multi-Node Results

	12.5 Evaluating HARPA Impact on Hardware Reliability
	12.5.1 Discussion of Applicability and Quality of the Results
	12.5.2 Conclusions

	References

	13 Beesper SmartBridge: A Real-World HARPA Application in the Low-End Embedded System Domain
	13.1 Beesper SmartBridge
	13.1.1 Hardware Prototype
	13.1.2 Applications
	13.1.2.1 Video Rockfall Detection
	13.1.2.2 Extensometer Analysis

	13.1.3 Application Testing
	13.1.4 HARPA Integration

	13.2 Real-World HARPA Testing
	13.2.1 Collected Data Analysis for Each Application Working Mode
	13.2.1.1 Load Power Analysis
	13.2.1.2 Solar Panel Power and Battery Level Analysis
	13.2.1.3 Application Working Mode Power Consumption Analysis
	13.2.1.4 System Temperature Analysis
	13.2.1.5 Execution Time Analysis

	13.2.2 Performance Analysis
	13.2.2.1 Uptime Quality of Service Analysis
	13.2.2.2 Performance Quality of Service Analysis

	13.3 Evaluating HARPA Impact: A Simulation Approach
	13.3.1 Available Energy Simulation
	13.3.2 Application Working Mode Simulation
	13.3.2.1 Uptime Days Comparison
	13.3.2.2 Uptime Quality of Service Comparison

	13.4 Conclusions
	Reference

	Index

