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Preface: Volume I

The changing climate change scenarios have gripped humanity for a long time and
are expected to worsen in the coming decades. Agriculture is already feeling the
effects of climate change by reduced crop productivity, heavy yield losses, scarcity
of water for farming, reduced rate of precipitation, and the list goes on. In staple
crops, particularly wheat, rice, maize, soybean, barley, and sorghum, research has
shown about 30% of the yearly variation in agricultural yields due to changes in
rainfall and temperature.

Of all the threats that agriculture is exposed to due to climate change, abiotic
stresses such as drought (water deficit), extreme temperatures (cold, frost, and heat),
and/or salinity (sodicity) are the most devastating ones, causing more than 50% of
crop yield losses. Mineral (metal and metalloid) toxicity is an additional abiotic
factor, which is becoming a big threat for both major and minor crops. Thus,
improving tolerance to these abiotic stresses is a global plant breeding target. A lot
of research has been conducted to investigate plants’ responses to these stresses at
the structural, physiological, transcriptional, and molecular level and on the resis-
tance mechanisms allowing them to adapt and survive these stressful events.
A major research target has also been cross talk among various mechanisms, in case
of multiple stresses faced by plants.

Precise analysis of proteome and metabolome is essential for understanding the
fundamentals of stress physiology and biochemistry. Scientists have utilized
‘omics’ platforms to unravel the influence of abiotic stresses on levels of different
protein groups and metabolite classes and to pinpoint candidate genes underneath.
In addition, chromatin modifications, nucleosome positioning, and DNA methyla-
tion have been recognized as important components in plants’ adaptations to
stresses. The potential of improving stress tolerance in crops by enhancing the stress
memory through the activation of priming responses or the targeted modification
of the epigenome has been a burning research topic.

This book provides a consolidated and an updated account of the research being
conducted in above-mentioned areas by plant scientists all over the world. It is an
invaluable resource for researchers and educators in the areas of tools and tech-
nologies to unravel plant’s responses to abiotic stresses. The outcomes presented on
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staple crops will be useful to a broad community of scientists working in similar
areas and can provide useful leads to build strategies to generate abiotic stress
tolerant varieties. Students will find this book handy to clear their concepts and to
get an update on the research conducted in various crops at one place.

New Delhi, India Vijay Rani Rajpal
El Batán, Mexico Deepmala Sehgal
Hazaribag, India Avinash Kumar
Noida, India S. N. Raina

The original version of the book was revised: Book editor’s affiliation has
been updated in Copyright page. The correction to the book is available at
https://doi.org/10.1007/978-3-319-91956-0_12
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Chapter 1
Functional Genomics Approach
Towards Dissecting Out Abiotic Stress
Tolerance Trait in Plants

Rohit Joshi, Brijesh K. Gupta, Ashwani Pareek, Mohan B. Singh
and Sneh L. Singla-Pareek

Abstract Plant functional genomics has revolutionized not only the methodologies
for identification and elucidation of key genes’ function but also in designing
strategies for improving tolerance towards abiotic stresses. Leveraging various
approaches has demonstrated the robustness and versatility in their application to
study gene/genome function and engineering abiotic stress tolerance in plants. With
the emergence of novel high throughput technologies in this area, functional
genomics can contribute immensely in understanding the gene regulatory networks
operating under stress, thereby benefiting crop improvement programs. This chapter
provides recent findings in the field of functional genomics, thus offering several
efficacious methodologies such as next generation sequencing, genome-wide
hybridization, gene-inactivation and genome-editing-based strategies in addition to
metabolite analysis for discovery as well as validation of the candidate genes.
Further, methodologies such as gene expression microarrays, insertional mutage-
nesis, map-based cloning and various genomic-assisted methods are evaluated
critically and discussed in the light of integration of the information obtained
through functional genomics with practical application in crop breeding.

Keywords Functional genomics � Mutants � Crops � Transcriptomics
Gene-inactivation � Genome-wide hybridization � Genome-editing
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1.1 Introduction

Abiotic stresses such as cold, heat, waterlogging, drought, metal toxicity, salinity
and sodicity reduce plants’ growth and yield by as much as 50% in both natural and
agricultural systems (Nakabayashi and Saito 2015). Improving tolerance to abiotic
stresses, therefore, has become a major objective in plant breeding programs
globally (Pareek et al. 2010). It has been estimated that a global increase in food
production of 44 metric tons will be required each year to fulfill the food demand of
rapidly increasing population, which will reach close to 10 billion by 2050 (Bohra
et al. 2015; Wang et al. 2016). Plant’s responses towards simultaneous occurrence
of abiotic stresses, such as drought, heat and salinity, have gathered attention in
various genomics studies (Singh et al. 2015a; Joshi et al. 2015b; Kushwaha et al.
2016). However, multigenic nature of abiotic-stress-tolerance trait(s) along with the
lack of proficient selection techniques primarily hampers effective breeding
strategies for abiotic stress tolerance (Ford et al. 2015). Furthermore, several reports
have indicated differences between quantitative trait loci (QTL), some being linked
to tolerance at one stage of plant’s development while other linked to tolerance
during some other stages (Yang et al. 2013). Dissection of the genetic basis of
intra-specific variation in traits conferring abiotic stress tolerance will be useful for
selecting and creating positive variations within the species. However, limited
success has been achieved through traditional approaches such as inter- or intra-
generic hybridizations, induced mutations and/or somaclonal variations
(Chinnusamy et al. 2004; Bhullar and Gruissem 2013).

Recent advances in genomics and molecular biology have contributed signifi-
cantly to the breeding programs by rapid identification and characterization of
genes and genomic regions conferring abiotic stress tolerance. In this direction, one
of the powerful approaches for gene discovery could be the exploration of naturally
occurring genetic diversity between landraces and their wild relatives (Dwivedi
et al. 2016). Thus, understanding the molecular basis of genetic diversity may help
in identifying the key differences, which regulate the differential expression of same
set of genes in contrasting genotypes. This may aid in unraveling the novel
mechanisms underpinning abiotic stress tolerance in crops (Mickelbart et al. 2015).

Recent genomics-based approaches combined with high throughput tools have
led to a revolution in crop improvement approaches. These advanced technologies
directly affect the applicability of crop improvement methods by translating the
entire genomic regions deciphering molecular responses of plants (Bohra and Singh
2015; Edwards 2016; Gupta et al. 2015). Forward and reverse genetics approaches
together elucidate the genes and their products involved in expression, signal
transduction and stress tolerance (Urano et al. 2010). Since 1980s, functional
genomics leapt from being hypothetical or innovative concept to a widely accepted
part of science in the year 2000. In the post genomic era, extensive utilization of
functional genomics tools has increased our knowledge of the complex networks
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operating during stress tolerance and adaptation. These functional genomics
strategies combined with phenomics will improve our understanding towards gene
complementation, transcript regulation, protein complex formation and their evo-
lutionary pathways regulating abiotic stress tolerance traits. After the initiation of
whole genome sequencing programs in 1990s, astonishing advancements in DNA
sequencing technologies have brought breakthroughs in this area (Wheeler and
Wang 2013). Already completed genome sequences of various model organisms
including protists (Armbrust et al. 2004), fungi (Wood et al. 2002; Galagan et al.
2003) and eukaryotic plants (Li et al. 2014a, b; Hirakawa et al. 2014; Varshney
et al. 2017) have confirmed the feasibility and efficacy of sequencing large gen-
omes. Further, functional genomics provides the next step towards the biological
revolution assigning the function to previously identified genes at organizational
level that can control the genetic pathways defining the physiology of an organism
(Rahman et al. 2016).

Several interrelated strategies enable the survival of tolerant genotypes under
abiotic stresses. However, these strategies are less evolved in agricultural crop
species, perhaps due to crop domestication. Abiotic stress tolerance in these plants
can be achieved at the molecular level by engineering genes regulating chaperone
production, osmoprotectant accumulation, reactive oxygen species
(ROS) scavenging mechanisms and/or efficient transporter systems for exclusion or
compartmentation of ions (Jan et al. 2013; Gupta and Huang 2014). In addition,
several genes and their products act simultaneously at transcriptional and transla-
tional levels (Joshi et al. 2015b; Gupta et al. 2015; Guo et al. 2016). Functional
validation of these genes can help in untangling the stress tolerance network and
also in designing various functional markers for marker-assisted breeding.

Genetic transformation approaches offer a rapid way to improve plant stress
tolerance. With the advent of high throughput techniques, functional genomics
strategies went through a paradigm shift from single gene discovery to many
thousands. Development of expressed sequence tags (ESTs) from cDNA libraries of
abiotic stress-treated seedlings of plants as well as their complete genome sequence
information provides an additional resource for gene discovery. In addition,
strategies including promoter trapping, mutagenesis and gene complementation
have led to the identification of key gene pools and hence, have provided valuable
inputs towards the functional characterization of stress responsive genes and their
underlying mechanisms (Hasanuzzaman et al. 2015). In this chapter we discussed
current strategies in the field of functional genomics for improving abiotic stress
tolerance in plants. Further, we discuss the role of model species and mutant
populations in molecular mapping of abiotic stress tolerance determinants for crop
improvement.

1 Functional Genomics Approach Towards Dissecting … 3



1.2 Stress Networks and Signaling Pathways Operative
Under Abiotic Stresses in Plants

Stress perception as well as its signaling are the two critical components deter-
mining the adaptive response of the plant under unfavorable environmental con-
ditions (Muthurajan and Balasubramanian 2009; Gupta et al. 2015). Osmotic and
oxidative stresses induced in plants are a common consequence of abiotic stresses
sharing many intermediate components of their signaling cascades (Rejeb et al.
2014). Thus, signaling sensors are now becoming main targets for genetic engi-
neering, as they are the principle transducing elements right from the perception of
the signal. One of the important stress sensors in higher plants is the Two
Component System (TCS) which consists of histidine kinase (HK) sensor and
response regulator (RR) (Pareek et al. 2006; Singh et al. 2015b). The investigations
on different plant species such as maize and rice confirmed the role of TCS
members in response to abiotic stresses (Liu et al. 2014a; Sharan et al. 2017).
During abiotic stress, few of the members of TCS family show up-regulation i.e.,
AHK1, OsHK3, GmHK7, GmHP3, GmHP6, GmRR1, while others are down reg-
ulated i.e., AHK2, AHK3, AHK4, AHP1, AHP3, AHP5, ARR8, ARR9, OsHK4,
GmHK10, GmHK12 and GmPHP2 (Le et al. 2011; Nishiyama et al. 2013; Gahlaut
et al. 2014).

Through yeast-two-hybrid assay, it was revealed that under cold and salt stress,
Mitogen Activated Protein Kinase (MAPK) pathway involves MAPK/ERK kinase
kinase-1 (MEKK1) which acts upstream to MAP kinase kinase-1 (MKK1), MAP
kinase kinase-2 (MKK2), MAP kinase-4 (MPK4) and Mitogen-activated protein
kinase-6 (MPK6) (Sinha et al. 2011). In Arabidopsis, the signals received by 80
MAPKKKs are transduced downstream from 10 MAPKKs to 20 MAPKs providing
an opportunity for crosstalk at different points (Sinha et al. 2011). Similarly, under
drought stress, it was reported that AtMEKK1 and AtMPK3 in Arabidopsis and
OsMSRMK2 and OsMAPK5 in rice show higher expression (Sinha et al. 2011; Ara
and Sinha 2014). Pitzschke et al. (2014) revealed MYB44 transcription factor as the
interacting partner of MKK4, which in turn interacts with another MPK3-regulated
transcription factor VIP1. These results further confirm that MAPK cascade is
playing a central point of crosstalk during stress signaling (Pitzschke 2015; Wen
et al. 2015). In addition, another important component during osmotic stress sig-
naling pathway is the calcium-dependent protein kinase (CDPK). Overexpression
of rice OsCDPK7 gene was found to confer tolerance against salt, drought and
chilling stress (Boudsocq and Sheen 2013).

Various stresses can occur individually, or in combination with others, at any
developmental stage of plant and these vary by location and time, which can
negatively affect photosynthetic efficiency and alter the source-sink
relationship. Further, it can affect the remobilization of solutes, which is a limit-
ing factor for grain weight and yield. Combinations of various traits contribute
towards overall plant tolerance against abiotic stresses (Roy et al. 2011). However,
it is still unknown how certain plants maintain yield under abiotic stress conditions
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(Tripathi et al. 2012). Identifying key regulatory elements playing roles during
multiple stress interactions through gene expression profiling is an important aspect
of functional genomics. A number of transcription factors (TFs) differentially
regulated during environmental stresses have already been analyzed using genome-
wide transcriptome analysis (Hoang et al. 2014; Joshi et al. 2016a). These TFs show
a very complex expression pattern, which suggests that stress resistance and tol-
erance are regulated by an extremely intricate gene regulatory network at tran-
scriptional level. Amongst all, bZIP (Basic Leucine Zipper), MBF1 (Multiprotein
bridging factor 1), WRKY, MYB (myeloblastosis) and NAC (NAM, ATAF1,2 and
CUC2) transcription factors are the largest transcriptional regulators controlling
growth, development, physiological processes, and abiotic stress responses in plants
(Sahoo et al. 2013; Baloglu et al. 2014).

Rasmussen et al. (2013) employed microarray analysis to detect plant responses
to multiple stress exposures, in combination, or individually and found that 25% of
transcripts showed similar responses during individual stresses, but act differentially
under stress combinations. Twenty-three transcripts were found to be specifically
upregulated in the transcriptome analysis of Arabidopsis plants using triple com-
bination of heat stress, drought and virus infection (Prasch and Sonnewald 2013).
Of these, DREB2A (Dehydration-responsive element-binding protein 2A) and
GBF3 (G-box-binding factor 3) were upregulated, whereas Rap2-9 (Related to
APETALA2-9) was strongly down regulated. Transcript profiling of Arabidopsis
plants revealed 43 drought, cold and salinity stress-inducible transcription factor
genes including DREB, ERF (Ethylene Responsive Factor), zinc finger containing
factors, MYBs, bHLHs (basic helix-loop-helix), bZIPs, NAC and WRKY
(Umezawa et al. 2006). Similarly, transcript expression of whole WRKY family of
rice showed 17 WRKY genes to be highly induced in both leaf and root under
drought stress (Tripathi et al. 2014). Yang et al. (2011) showed that ABI5-Like1
(ABL1) gene regulates ABA and auxin responses by altering ABRE-containing
WRKY genes’ response in rice. In addition, it was reported recently that among the
9 members of AREB/ABFs in Arabidopsis, AREB1/ABF2, AREB2/ABF4 and
ABF3 (Abscisic acid responsive elements-binding factor 3) are highly upregulated
by osmotic stress and ABA treatments in vegetative tissues (Yoshida et al. 2014).
Similarly, through 24K Affymetrix Genechip array, a total of 514 CBF2
(Centromere-binding factor 2) genes were identified under cold stress in
Arabidopsis, including co-regulated genes like zinc finger proteins (CZF1 and
CZF2), MYB73, RAV1 (related to ABI3/VP1 1), ZAT10 and ZAT12 (Vogel et al.
2005; Park et al. 2015). A genome-wide analysis of paper mulberry in response to
cold stress showed that 794 TFs, belonging to 47 families were involved in the cold
stress response (Peng et al. 2015). Among the differentially expressed TFs, one
bHLH, two ERFs and three CAMTAs were involved in signal transduction at early
stages followed by 5 bHLH, 14 ERFs, one HSF, 4 MYBs, 3 NACs, and 11 WRKYs
in providing cold resistance. The late responsive group consisted of 3 ARR-B,
C3H, 6 CO-like, 2 G2-like, 2 HSFs, 2 NACs and TCP. These results indicated
towards a much greater cross-talk among different stresses during signaling
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processes. The key regulators among this complex network are bHLH, bZIP, MYB
and AP2 transcription factor families (Peng et al. 2015).

1.3 Functional Genomics Approaches

In the present scenario, direct introduction of genes through genetic engineering is
coming up as a more rapid and reliable technique for improving stress tolerance in
plants, in comparison to traditional breeding and marker-assisted selection
approaches (Bohra et al. 2015). Current engineering strategies aim to functionally
characterize the critical genes participating in either signaling or biochemical
pathway to understand their distinctive roles in plant development and physiology
(Teotia et al. 2016). The products of these genes are either stress-induced proteins
or enzymes for osmoprotectant or scavengers of ROS that directly or indirectly
provide tolerance against different environmental stresses (Joshi and Chinnusamy
2014; Khan et al. 2015). In addition, various transcription factor genes controlling
the expression of different stress regulatory proteins are also unveiled (Wang et al.
2016). It is now necessary to study the abiotic stress tolerance in a collective
manner on a genome-wide scale, which can be further utilized for elucidation of
abiotic stress networks. With the availability of various omics tools including ge-
nomics, transcriptomics, and proteomics, major progress has been made for
understanding the interaction and complexity of the stress adaptive mechanisms and
their respective signaling pathways (Liu et al. 2014b). By using transcript profiling
and allocation of small responsive elements in promoter regions, the determination
of regulatory regions in chromatin structure, and the distribution of cis-regulatory
elements and transcription factors can be predicted computationally.

One of the major challenges in the post-genomic era is to understand the
function of genes. Recent high throughput biotechnological advances have facili-
tated the discovery of new genes and their functions. Unraveling gene functions and
their interactions with other regulatory networks have long been exploited for
generation of improved varieties (Akpınar et al. 2013). While the functions of
several genes are still unknown, their function can often be correlated in association
with other known genes, which provide even better understanding for the whole
signaling network. We are now able to obtain a complete overview at the cellular
level through transcript, protein and metabolite profiling. These approaches allow a
deeper understanding of the complex cellular functioning during different physio-
logical processes (Cramer et al. 2011).

Reconstruction of complex networks at whole genome level is achieved by
characterizing and quantifying from genotype to phenotype (Feist and Palsson
2008). Understanding only the basic function of the gene in an organism does not
provide an insight to its specific role under stress conditions. Sequence analysis of
Arabidopsis showed that 13 and 20% of the genes are implicated either in signal
transduction or in stress/defense responses, respectively (Mahalingam et al. 2003).
Another exhaustive screening of more than 1,500 TFs revealed that almost 40 TFs
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were involved in improving stress tolerance in Arabidopsis (Nelson et al. 2007).
The major outcome of the current plant genome research is the functional char-
acterization of almost 54% of higher plant genes by comparing them with other
known sequences (Sofi and Trag 2006). Parallel studies on the functional genomics
in other organisms will also contribute significantly to understand their gene
functions in coming years. Functional genomics strategies mainly utilize method-
ologies, which are sequence-based, hybridization-based, gene inactivation-based or
genome-editing based (Fig. 1.1) as discussed below.

1.3.1 Sequencing-Based Approaches

One of the major approaches used to discover abiotic stress expressed gene cata-
logue is based on ESTs generated from various cDNA libraries expressing tran-
scripts from several stresses in different tissues and developmental stages (Rahman
et al. 2016). These libraries have been successfully developed to identify several
specific and stress-responsive transcripts, but they under-represent rare transcripts
or unexpressed transcripts under certain conditions. EST libraries are major focus of
functional studies because they provide easier strategies for gene discovery and

Fig. 1.1 Flow chart of the overview of functional genomics approach for plant improvement
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genome annotation (Varshney et al. 2006). However, to get more information on
polymorphism, EST sequences must be cautiously overlapped onto similar contigs
to gather detailed information on the configuration of parental cDNA as in poly-
ploid species like wheat (Rudd 2003). Despite all these factors, EST sequencing is a
convincing strategy with already reported potential in gene discovery by aligning
with collinear genotypes exposed to control and stress conditions (Ergen and Budak
2009).

Several attempts have been made using model plant species to characterize
stress-specific transcripts using EST sequencing in higher glycophytes under
salinity stress. National Center for Biotechnology Information (NCBI) dbEST
database indexes rapidly growing libraries containing several ESTs generated from
various crops and other plant species. However, large-scale cDNA sequencing
programs from stress-treated plants of various species at different growth stages are
still essential to enrich plant EST datasets. Additionally, the information on gene
number as well as number of gene families playing significant roles in abiotic stress
responses can be established by clustering the sequences of ESTs obtained through
respective stress-treated cDNA libraries (Li et al. 2014a, b). Similar gene-indexing
database Swissprot provides important information associated with
stress-responsive genes among different plants and is frequently used to assign
putative functions to stress-responsive genes (Sreenivasulu et al. 2007). In addition,
data clustering produces consensus contigs, which is a more reliable approach than
ESTs. Extensive attempts have been made in glycophytes, such as Arabidopsis, rice
and halophytes to compare the abundance of expressed ESTs in their respective
cDNA libraries (Wang et al. 2004; Baisakh et al. 2008; Li et al. 2014a, b).
Extensive EST sequencing is still in progress for developmental stage-specific,
tissue-specific and stress-specific cDNA libraries obtained from Arabidopsis and
rice. Analyzing these EST databases will pave our way to specify stress regulated
genes that can assist further to unravel the underlying regulatory metabolic path-
ways (Rahman et al. 2016).

Another approach which enables simultaneous quantitation of thousands of
transcripts is SAGE (Serial Analysis of Gene Expression), in which mRNA is oligo
(dT)-trapped and reverse transcribed to form cDNA, then small sequence tags are
extracted and ligated to form long concatemeric chain and sequenced, leading to
complete quantification of gene expression (Vega-Sánchez et al. 2007). Due to the
recent advancements in next-generation DNA sequencing technologies, SAGE
analysis has emerged as a high throughput, sensitive and cost-effective approach in
comparison to Sanger sequencing approaches (Cheng et al. 2013). During the past
several years, SAGE has been extensively used in plants with the availability of
extensive EST databases of different species (Breyne and Zabeau 2001).
Additionally, by combining 5′ RACE (Rapid amplification of cDNA ends) and
SAGE (Serial analysis of gene expression) analysis, transcription start sites were
also identified (Wei et al. 2004). Later on, several modifications such as
SuperSAGE and DeepSAGE became available, in which the tag size is expanded
providing greater efficiency to the annotation (Nielsen et al. 2006; Matsumura et al.
2012). Previous studies using SAGE in plants not only revealed new expressed
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regions in the plant genome but also implied their novel functions including stress
response in crops (Cheng et al. 2013).

Massively Parallel Signature Sequencing (MPSS) is also a powerful method
enabling the parallel analysis of millions of transcripts on a genome-wide scale
(Akpınar et al. 2013). In MPSS, transcription profiling is done using similar
tag-based approach, where tagged PCR products obtained from cDNA are ampli-
fied so that each mRNA molecule produce *100,000 of PCR products with a
unique tag that are ligated to microbeads and sequenced (Kudapa et al. 2013). After
several rounds of ligation-based sequencing, a 16–20 bp sequence signature is
identified from each bead resulting into *1 million sequence signatures. Because
of high throughput analysis and longer tags, MPSS can detect novel transcripts
particularly in species lacking whole genome sequence, in addition to identifying
genes efficiently (Hamilton and Buell 2012). MPSS has also been utilized in small
RNA expression studies (Nobuta et al. 2007) along with mRNA transcription
studies in plants which are much correlated with abiotic stress responses (Sunkar
et al. 2007). Publicly available plant MPSS database (http://mpss.udel.edu/) con-
tains expression data for several genotypes, including economically important crops
such as soybean, maize and rice (Nakano et al. 2006). In addition, NGS platforms
have expanded genome-wide sequence expression analysis, in which sequencing of
RNA populations and quantification of transcripts can be achieved through
RNA-seq (Sánchez-León et al. 2012). The efficiency of Illumina-based digital gene
expression system for high-throughput transcriptome sequencing has been
demonstrated in crops under abiotic stress conditions in different tissues (Tao et al.
2012; Pandey et al. 2014).

1.3.2 Hybridization-Based Approaches

In response to abiotic stress, plants respond and adapt by altering physiological and
biochemical processes resulting in altering responses of thousands of genes.
Transcriptome analysis using gene chips and microarray technology provides an
important experimental opportunity to unravel key biological processes and to
provide information about unknown functional genes conferring abiotic stress
tolerance (Gul et al. 2016). In principle, DNA sequences of complete genes of an
organism are placed on microchips and used as substrates for hybridization for
quantifying expression of different genes in a sample (Joshi et al. 2012). This gives
the complete quantitative information about the relative expression of genes cor-
responding to their response towards various abiotic stresses along with the fold
change in different developmental processes like germination, vegetative and
flowering stages (Wu et al. 2015). In contrast to sequence-based approaches,
array-based technique is a targeted approach where sequence is required to design
probes (Rahman et al. 2016). Extensive microarray expression data already exists in
public domain (www.genevestigator.com/gv/plant.jsp) with complete genome
sequences of several model species including Arabidopsis and rice (Hruz et al.
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2008; Urano et al. 2010). These gene expression databases provide deeper insight
of the complex gene regulatory pathways under various stress responses.
Furthermore, genes encoding several regulatory and functional proteins are now
known, and the complex mechanisms of multi-gene regulation under abiotic stress
response are partly deciphered. Several technical limitations including
cross-hybridization and background noise etc. affect microarray analysis investi-
gating stress responsive genes. Through oligo microarray, several model plants and
economic crops have been analyzed, including Arabidopsis (Richards et al. 2012),
rice (Jung et al. 2013), wheat (Quijano et al. 2015), corn (Allardyce et al. 2013),
soybean (Le et al. 2012) and tomato (Martínez-Andújar et al. 2012).

Another strategy for RNA hybridization and comparative gene expression in
tissues/genotypes is the GeneChip Genome Array. Several studies in model crops
have employed these GeneChip Genome Arrays to detect expression of several
genes at the same time in the whole genome (Verdier et al. 2013; Wu et al. 2015).
In contrast to microarrays, gene chips are created by synthesizing several hundred
thousand oligonucleotides on a miniature support using photolithography (Joshi
et al. 2012). Further, by using this technique, it is feasible to visualize gene chips
that represent an entire plant genome. For example, in soybean, gene chip array
characterized genome-wide expression pattern, and identified drought-responsive
candidate genes (Saxena et al. 2011). During recent years, a large amount of
genome data has been obtained in rice using various chips with different specifi-
cations, including BGI/Yale 60K chip (Ma et al. 2005), Agilent 44K chip (Ghaffar
et al. 2016), NSF45K chip (Jung et al. 2008), Affymetrix 57K chip (Russell et al.
2012) and NimbleGen (Fenart et al. 2013).

1.3.3 Gene Inactivation Based Approaches

Though the reports pertaining to genome-wide expression analysis in diverse plants
are increasing on an exponential rate, only a few studies have focused on over-
expression or suppression of these differentially expressed genes for their functional
characterization. Currently, two main approaches are being utilized to knockout the
desired genes, namely T-DNA insertion mutation and TILLING (Targeted Induced
Local Lesions In Genomes). TILLING enables high-throughput genome-wide
analysis of point mutations in target genomes to generate novel mutant alleles for
crop improvement (Lee et al. 2014). It is applicable to the genomes of almost all
species of plants including diploids and allohexaploids (Chen et al. 2014). The
TILLING populations can be traditionally screened for phenotypic or genotypic
variations under abiotic stresses (de Lorenzo et al. 2009).

Another modified method, called EcoTILLING, is also high-throughput,
time-saving and cost-effective technique, developed to identify SNPs and small
indels (Bajaj et al. 2016). EcoTILLING is applicable in polyploid species for
differentiating among alleles of paralogous and homologous genes (Akpınar et al.
2013). It not only provides information on allelic variants for various genes but also
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helps in unravelling the complexity of abiotic stress tolerance pathways. Recently,
it has been used to detect SNPs involved in salt stress response in domestic rice
genotypes (Negrão et al. 2011). Naredo et al. (2009) detected several SNPs in both
lowland and upland rice cultivars involved in drought stress tolerance. Similarly, 46
INDELs (insertions/deletions) and 185 SNPs (single nucleotide polymorphisms)
were identified using EcoTILLING while conducting allele mining for drought
related genes in 96 barley genotypes (Cseri et al. 2011). Similarly, using
EcoTILLING approach 1133 novel SNP allelic variants were discovered from
diverse coding and regulatory sequence components of 1133 transcription factor
genes by genotyping 192 diverse desi and kabuli chickpea genotypes (Bajaj et al.
2016).

T-DNA insertional mutagenesis can be utilized as a tool to study functional
genomics in Arabidopsis and other higher plants (Jung and An 2013).
Agrobacterium-mediated T-DNA transformation can also provide an efficient
opportunity to target candidate genes into plant cells. Random insertion of T-DNA
fragments in either exon or intron results in the target gene inactivation. During
Arabidopsis functional genomics initiative, huge number of sequence-indexed
T-DNA insertion lines was obtained, which are available currently in the public
domain libraries (https://www.arabidopsis.org/portals/mutants/stockcenters.jsp) of
Arabidopsis (Alonso et al. 2003). Similarly, during International Rice Genome
Sequencing project 172,500 flanking sequence tags (FSTs) were submitted in Rice
Functional Genomic Express database (RiceGE, http://signal.salk.edu/cgi-bin/
RiceGE), which are also available from Rice Tos17 Insertional Mutant Database
(https://tos.nias.affrc.go.jp/). These T-DNA insertion mutants are a rich source for
elucidating metabolic/signaling pathways and for functional analysis of genes in
plants (Gao and Zhao 2012). In addition, gene inactivation can also be done by
using RNAi technology. Using knockdown approach it was confirmed that SOS2
(a serine/threonine type protein kinase) and SOS3 (a calcium binding protein) loci
are present in Arabidopsis, rice, wheat and Brassica (Kumar et al. 2009; Yang et al.
2009; Kushwaha et al. 2011; Feki et al. 2014). Now it is well documented that
SOS3 interacts with SOS2 after receiving cytoplasmic calcium signals produced
under high Na+ concentrations. The SOS3-SOS2 complex further activates SOS1, a
Na+/H+ antiporter gene to maintain homeostasis (Sharma et al. 2015).

1.3.4 Genome Editing Based Approaches

Currently available tools for genome editing provide intriguing possibilities for
introducing targeted mutation, INDEL and sequence modifications to a predeter-
mined location within the genome to functionally characterize plant genes and for
improvement of abiotic stress tolerance in plants (Strange and Petolino 2012). Due
to low homologous recombination frequency in plants, successful gene targeting is
very difficult and inefficient (Xie and Yang 2013). Most commonly used genome
editing tools are Zinc finger nucleases (ZFNs), transcriptional activator-like effector
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nucleases (TALENs) and clustered regularly interspaced short palindromic repeat
(CRISPR)-Cas9 (CRISPR-associated nuclease9) (Kumar and Jain 2015). TALENs
have emerged as an alternative to ZFNs for genome editing and for introducing
targeted double-strand breaks. TALENs have showed a very high success rate, but
their large size may limit their delivery by recombinant adeno-associated viruses
(AAV) (Gaj et al. 2013).

ZFNs are designed nucleases that induce targeted double strand breaks at
specific genomic loci, thereby, allowing successful targeted mutagenesis and
transgene integration in plants (Petolino et al. 2010). They are fusions of the
nonspecific cleavage domain from the FokI restriction endonuclease with
custom-designed Cys2-His2 zinc-finger proteins. These chimeric nucleases produce
sequence-specific DNA double-strand breaks that are repaired by error-prone
non-homologous end joining to induce small alterations at targeted genomic loci
(Gaj et al. 2012). They can be designed to cleave any DNA sequence and thus offer
a wide range of sequences to be deleted. Using ZFNs, majority of targeted genome
modifications have been performed including point mutations, deletions, insertions,
inversions, duplications and translocations in several organisms and cell types
(Joung and Sander 2013). The latest ground-breaking technology for genome
editing is the type II clustered regularly interspaced short palindromic repeat
(CRISPR)/Cas9 system from Streptococcus pyogenes (Bortesi and Fischer 2015).
The CRISPR/Cas9 system is composed of Cas9 nuclease and customizable sgRNA
which guides Cas9 to recognize target DNA and creates double strand breaks to
initiate non-homologous end joining and homologous recombination repair path-
ways, resulting in genome modifications (Zhang et al. 2016). Since its discovery,
CRISPR-Cas9 system has shown robustness and versatility in applications for
genome editing in various biological contexts and has opened a new door to plant
functional genomics research. This technology can be utilized for analysis of
loss-of-function, gain-of-function and gene expression, along with modifications in
spatio-temporal gene expression. It can also contribute in understanding gene
function, gene regulatory networks and engineering abiotic stress tolerance in a
variety of plants (Liu et al. 2016; Khatodia et al. 2016).

1.3.5 Metabolite Analysis

Metabolomics has now emerged as a relatively new area of functional genomics
that contributes to our understanding of the complex molecular interactions in
biological systems (Bino et al. 2004). Several reviews published earlier have
described the role of metabolomics in functional genomics research (Hall et al.
2002; Sumner et al. 2003; Schauer and Fernie 2006; Saito and Matsuda 2010).
Several reports are available on its applicability for abiotic stress tolerance in plants
(Jorge et al. 2015; Nakabayashi and Saito 2015; Okazaki and Saito 2016; Sun et al.
2016). Integrated metabolomics and transcriptomics studies in model plants have
significantly increased our knowledge on signal transduction pathways in different
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crops under stress. Recently, a report on metabolite profiling in two contrasting rice
genotypes i.e., FL478 (salt-tolerant) and IR64 (salt-sensitive) found 92 primary
metabolites in the leaves and roots under control and salt stress conditions (Zhao
et al. 2014). In general, 6 metabolites (phenylalanine, threonine, citric acid, raffi-
nose, melicitose and galactinol) were induced in the leaves or roots, while 11
metabolites i.e., lysine, threonine, isoleucine, proline, valine, isocitric, sucrose,
lactose, sorbitol, mannitol and galactopyranoside were increased specifically in
leaves or roots under stress conditions. These compounds regulating sugar and
amino acid metabolism pathways will increase our understanding of the physio-
logical mechanisms underpinning salt tolerance. Similarly, comparative proteomic
analysis in the shoots of IR64 and its mutant lines resulted in identification of 34
unique proteins expressed during salt stress exposure (Ghaffari et al. 2014).
Similarly, Liu et al. (2014b) detected 83 proteins in roots and 61 proteins in leaves
to be differentially expressed and reported of having their significant contributions
against salinity stress in rice. Protein alterations upon external stimuli are vital, and
thus proteomic analysis provides deep knowledge on key aspects of plant metabolic
and regulatory pathways against abiotic stress (Kim et al. 2014). These differen-
tially expressed proteins can act as an abiotic stress tolerance marker for plants
(Zhang 2014). Our understanding of metabolite adaptation to abiotic stress in plants
is still incomplete. Thus, it is necessary to deepen our knowledge further with
targeted comprehensive metabolomics studies with more emphasis on primary and
secondary metabolic pathways.

1.4 Role of Model Species and Mutant Populations

Although functional adaptation mechanisms are highly conserved among stress
susceptible genotypes, the tolerant genotypes, however, evolved additional regu-
latory mechanisms that enhance their ability to cope with severe abiotic stresses
(Joshi et al. 2016b). Whole genome sequencing of rice and Arabidopsis has
increased our understanding of the genes playing a crucial role in providing mul-
tiple abiotic stress tolerance (Mustafiz et al. 2011; Kumar et al. 2012; Singh et al.
2012; Tripathy et al. 2012; Kaur et al. 2014). For example, in Arabidopsis early
stages of heat stress triggers decay of 25% of the transcriptome and is catalyzed by
the 5′-3′ exonuclease XRN4. cDNA libraries prepared from 21 days old heat
stressed seedlings shows 19,804 distinct loci accounting for 76% of the total
Arabidopsis genes. Out of these, only 801 (4%) were found to be upregulated,
which represents proteins involved in heat and abiotic stress response, and 4,745
(25%) were found to be down-regulated (Merret et al. 2013). Similarly, RNA-Seq
and digital gene expression (DGE) analysis in Bryum argenteum, a
desiccation-tolerant moss found in largest cold desert (Gurbantunggut desert) of
China, showed 4,081 and 6,709 differentially expressed genes after 2h and 24h
rehydration, respectively. Further, upon rehydration, 142 TF transcripts were found
to be up-regulated, including 23 members of ERF family (Gao et al. 2015).
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By using modern genomics and genetic approaches, full-length cDNA popula-
tions and BAC sequences have been transferred from stress-tolerant genotypes to
stress-sensitive ones to generate stress tolerant varieties with better growth and
yield (Mir et al. 2012; Akpınar et al. 2013). As wheat, barley and rye are close
relatives; their syntenic relationship can be utilized for positional cloning of
important stress tolerant genes (Joshi et al. 2015a; Kole et al. 2015).

Mutant phenotype selection through mutational breeding is an old technique,
which has successfully contributed in generating several important varieties of
cereals. Using single base mismatches, several barley and wheat mutant populations
have been developed for mutation studies and several projects are running
throughout the globe for developing mutant populations of their diploid progenitors
(Sikora et al. 2011; Dhakarey et al. 2016). Several sets of insertion mutants are
already accessible for petunia, maize, snapdragon, rice and Arabidopsis. However,
high degree of gene duplication and tight linkage between genes act as a major
limiting factor to study gene function and genetic recombination in plants (Glover
et al. 2015). One possible approach is to use either homologous recombination to
eliminate tandem duplications by gene replacements or to introduce point mutations
using RNA-DNA hybrids (Reams et al. 2012). This can also be achieved through
inserting mutated sequences to generate stop codons within the conserved regions
to produce null mutations in a multigene family. However, high throughput gene
silencing on double-stranded RNA through bidirectional transcription of genes is
broadly accepted, as it is easy to generate transgenic plants with drastic transcrip-
tomic alterations (Zhang et al. 2015). Recently, CRISPR/Cas9 has emerged as a
powerful tool to generate knock-in mutants or knock-out mutants with frameshift
mutations in plants (Liu et al. 2016).

1.5 Mapping and Map-Based Cloning

Breeding programs of important crop species like rice and wheat functioning from
several decades have broadened our knowledge in the mapping of several traits
related to abiotic stress tolerance. Introduction of molecular marker techniques in
conventional breeding gave further extension to mapping studies and in assessment
of cultivated, land race and wild genotypes (Varshney et al. 2012). These studies led
to identification of germplasm rich genotypes showing extensive variation at
structural and expression levels under stress conditions. These variations are useful
to confirm candidate genes for stress tolerance as well as for discovering alleles for
further breeding programs (Ma et al. 2012). Majority of the known abiotic stress loci
have been discovered as QTL, so a particular trait mapping in different genotypes
using multiple populations can locate the common loci such as drought tolerance
(Jaganathan et al. 2015). More than hundred abiotic stress related traits have already
been mapped only in soybean in past years (Xia et al. 2013). Similarly, availability
of whole genome sequence in rice, and its strong similarity with wheat and barley
genomes makes rice a potential crop for marker generation from candidate loci.
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Further strategy is positional cloning of functionally correlated genes for specific
trait using forward genetics approach. Positional cloning may or may not identify
target gene(s) associated with a particular phenotype directly. However, through
complementation analysis, the target gene can be identified (Langridge and Fleury
2011). Another variant of positional cloning is map-based cloning, where chro-
mosomal location of a gene is identified through genetic mapping using molecular
markers (Kudapa et al. 2013). With faster and more accurate next-generation
sequencing (NGS) technologies as well as advanced DNA polymorphism detection
techniques, map based cloning and physical mapping using BAC libraries have
now become more handy for different crops such as rice (Vij and Tyagi 2007),
barley (Schulte et al. 2011), soybean (Fang et al. 2013; Song et al. 2016), Brassica
(Mun et al. 2015) and wheat (Wang et al. 2015). High-density genetic linkage maps
have been integrated with sequence-based physical map, thus resulting in improved
resolution and accuracy of trait-specific genes/QTLs identification (Agarwal et al.
2016).

1.6 Conclusion

Functional genomics studies have played a central role in not only providing
solutions to generate new varieties through genetic transformation but also have
increased our understanding of cellular metabolism operating under abiotic stress.
Several functionally characterized genes when inserted into crop plants have shown
increased tolerance against various environmental stresses in comparison to wild
type plants. These genetically engineered plants show higher osmolyte and protein
accumulation and are generally more productive in terms of agricultural yield.
Further, using genomic tools, stress- and organ-specific promoters have been
identified and tested thoroughly for their specificity. Also, comparative genomics
studies have identified genes that throw light upon conserved evolutionary mech-
anisms in plants

Huge wealth of data is now available for plant signaling in response to various
abiotic stresses. Additionally, several transcription and signaling factors along with
their interconnections and crosstalk mechanisms have increased our understanding
of the intricate network that operates under stress. Despite this, full understanding
of the genes controlling signaling pathways is lacking. The filtering of the huge data
using bioinformatics tools and validation of the genes using advanced genomics
tools like proteomics and metabolomics can alleviate this deficit. Mining of the data
systematically for functional analysis by using mutants and overexpression analysis
followed by microarray analyses can reveal interactions between signaling com-
ponents and downstream targeted genes. Recent technological developments in
functional genomics such as RNAi technology, gene editing and next generation
genomics can help us uncover the variations integrated across diverse plant gen-
omes. This can further be applied to manipulate crop species for enhanced defense
strategies using conventional, marker assisted or transgenic approaches.
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Chapter 2
Plant miRNAome: Cross Talk in Abiotic
Stressful Times

Prashanti Patel, Karuna Yadav, T. R. Ganapathi
and Suprasanna Penna

Abstract The “small RNA world” discovered by plant biologists has acquired a
central, regulatory role in diverse and fundamental processes including genome
stability, gene expression and defense. The microRNAs (miRNAs) are a group of
small noncoding RNAs found in both animals and plants. Since their discovery in
Arabidopsis thaliana, plant miRNAs have been identified and their target genes are
characterized in various plant species. While some miRNAs are functionally con-
served across plant species, studies have also shown that miRNAs respond to
environmental stresses in a stress-, tissue-, and genotype-dependent manner. During
abiotic stress, miRNAs function by regulating target genes within the miRNA–
target gene network and by controlling signaling pathways. Both stress-induced and
stress-inhibited miRNAs constitute a controlling mechanism for fine tuning the
positive or negative regulators of different stress-regulated pathways. These prop-
erties suggest that miRNA-based genetic modifications have the potential to
enhance abiotic stress tolerance in crops. Furthermore, consequent to stress per-
ception, epigenetic changes facilitate miRNA regulation of several transcription
factors, which are common to drought, salt and heavy metal stress. With the rapid
advancement in methods of whole genome sequencing, several new and novel
miRNAs are being identified and research efforts are underway to decipher the
“microRNAome”—a comprehensive view of miRNA-mediated gene regulatory
networks in plants. The horizon of ‘regulatory RNA’ field is expanding, and new
developments will certainly enhance our understanding of microRNA interactome
under stress conditions. In this article, we discuss the perspective of microRNA
regulation of salt, drought and heavy metal stress with an emphasis on shared
mechanisms and provide an understanding of their potential roles in plant adap-
tation to abiotic stress conditions.

Keywords Abiotic stress � Epigenetics � microRNA � miRNAome
Phytohormones signaling

P. Patel � K. Yadav � T. R. Ganapathi � S. Penna (&)
Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre,
Mumbai 400085, India
e-mail: penna888@yahoo.com

© Springer Nature Switzerland AG 2019
V. R. Rajpal et al. (eds.), Genetic Enhancement of Crops for Tolerance to Abiotic
Stress: Mechanisms and Approaches, Vol. I, Sustainable Development and
Biodiversity 20, https://doi.org/10.1007/978-3-319-91956-0_2

25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91956-0_2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91956-0_2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91956-0_2&amp;domain=pdf


2.1 Introduction

The sessile nature of plants renders them especially vulnerable to attack by
pathogens and abiotic stresses of varying kinds. There is an increased concern that
unpredictable weather conditions are becoming more frequent and have an impact
on agriculture (Abberton et al. 2016). This is exacerbated by the increase in human
population and dwindling natural resources, thus creating an increased pressure on
finding alternate and integrating technologies across different tenets of science and
technology. Integral to this is the need to understand how crop plants respond to
adverse environmental conditions and perform better to sustain productivity.
Additionally, under natural conditions plants are rarely challenged by single stress
at a time. Instead, they are exposed to multiple stresses, which elicit different
responses depending upon the developmental stage, timing and type of stress and
severity of individual stresses (Pandey et al. 2015). Drought, salinity, high or low
temperatures and heavy metals are some of the environmental stresses which
individually or together cause severe damaging effect on plant growth and yield
(Ahuja et al. 2010; Zhang et al. 2011).

Under stress, plants have to carefully allocate precious resources and energy
towards fending off the stress and protect themselves from opportunistic stresses that
may co-occur. The ensuing remodeling of the transcriptome, proteome and meta-
bolome is extensive and complex (Wu et al. 2003; Bonnecarrère et al. 2011; Gong
et al. 2015). Plants have amassed an arsenal of counteractive strategies at all levels of
physiological and molecular complexity (Choudhary et al. 2017; Suprasanna et al.
2018) (Fig. 2.1). Stress-induced gene expression can include genes encoding pro-
teins with known structural or enzymatic functions, regulatory proteins and proteins
with yet unknown functions (Bhatnagar-Mathur et al. 2008). At the genome level,
dynamic epigenetic modifications control the level of expression of different regions
of the chromatin in response to stress. The transcripts so produced may be subjected
to alternative splicing to produce stress relevant mRNA isoform signatures.
Non-coding RNA also plays a role in modifying the activity of these transcripts
through silencing by cleavage or promoter methylation. Protein folding and activity
can be manipulated by an array of covalent post-translational modifications and
targeting to various organelles wherein they are functional. Enzymatic regulation of
metabolite pathways channels flux into production of biomolecules to cope with
stress. All these mechanisms ensure that the cell is altered to withstand stress
structurally and physiologically (Lu and Huang 2008).

Different stresses (cold, high salt, drought, heavy metals) elicit response in
plants, which share varying specificities in mode of action. Some exhibit conver-
gence at a particular point, while at other levels specific responses are seen (Knight
and Knight 2001). Generally, all stresses are first perceived, and then relayed
through secondary messengers to regulators and finally to effectors, which exert
protective function. For instance, both freezing and drought lead to dehydration.
Consequently, cold acclimation can also be achieved by drought or ABA
application (Mantyla et al. 1995). Not only ionic and osmotic imbalances but also
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Fig. 2.1 Plant responses to abiotic stress factors. Plants exposed to various abiotic stresses
(salinity, drought, extreme temperatures, toxic metals, etc.) initiate a cascade of changes in plants’
functioning such as imbalanced water and nutrient uptake, stomatal closure, altered gaseous
exchange, improper functioning of photosynthetic system and generation of reactive oxygen
species (ROS). The ensuing effect of these induce oxidative damage to functional and structural
molecules (DNA, proteins, lipids, and carbohydrates) making changes in the redox, osmotic, ionic,
and energetic homeostasis of the plant. The stress signals also trigger the downstream signaling
processes and gene activation through transcription factors. Defense mechanisms involve
antioxidant machinery for detoxification of ROS, osmolytes production for osmotic balance and
protection to structural molecules, ionic homeostasis and maintenance of redox and energetics.
Source: Lokhande and Suprasanna (2012).
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several metabolic and molecular disturbances are perceived under multiple abiotic
stresses (Golldack et al. 2014; Nakashima et al. 2014). Principle players in these
pathways are reactive oxygen species (ROS) and sugar signaling (Couée et al.
2006; Keunen et al. 2013), calcium signatures (Albrecht et al. 2003), production of
protective effectors such as Late Embryogenesis Abundant (LEA) proteins,
glycine-betaine, antifreeze proteins, proteinase inhibitors and chaperones (Goyal
et al. 2005; Ashraf and Foolad 2007; Szalai et al. 2009) and phytohormone net-
works (Kohli et al. 2013) (Fig. 2.2).

MicroRNAs (miRNAs) are highly conserved naturally occurring transcripts
generally undersized (20–24 nt), single-stranded and non-coding. A number of
miRNAs are either up- or down-regulated by abiotic stresses, suggesting that they
may be involved in gene expression during stress and variation (Sunkar and Zhu
2004; Shriram et al. 2016). miRNAs regulate all the stress-related processes through
their activities of cleavage or translational inhibition of diverse gene targets, most
comprising transcription factors (TF) (Sunkar et al. 2012). With the ever-increasing
influx of sequencing data, newer species-specific miRNAs are being uncovered;
some of whose targets are convergent with the known ones. On the other hand,
some highly conserved miRNAs have been shown to have non-classical targets in
different species, thus adding to the repertoire of strategies available to the plant.
Additionally, regulation is fine-tuned through the deployment of bistable, coherent
and incoherent loops (Flynt and Lai 2008; Meng et al. 2011; Jeong and Green
2013). Induction of specific miRNAs under different stress conditions varies
between plant species and hence there is no general “medicine-for-all-ailments”
approach when trying to use miRNAs as targets for genetic improvement of plant
tolerance to abiotic stress (Djami-Tchatchou et al. 2017; Song et al. 2019). Also, it
has been observed that there are overlapping responses to combined stress such as
heat and drought, salt and drought, abiotic stress and pathogen attack, which further
add to the complexity. Hence, genetic engineering experiments for improved tol-
erance may suffer setbacks and should be interpreted with caution.

In this chapter, we begin with a brief overview on miRNAs in epigenetic control
of stress in plants. We move onto attempting to provide a portal into this complexity
by integrating the known findings in miRNA regulation of salt, drought and heavy
metal stress with an emphasis on shared mechanisms. In particular SnRKs, (Sucrose
non-fermenting Related Kinases), TCPs (Teosinte-branched/Cycloidea/Pcf) and
ABI (Abscissic Acid Insensitive) proteins are recurrent themes in the four cardinal
responses to the above mentioned stressors namely, signaling by phytohormones,
ROS, sugar and calcium. Majorly, the miRNAs that feature in developmental
processes such as miRNAs 156, 159, 160/161, 162, 164, 165/166, 167, 168, 169,
170/171, 172, 319, 390, 393, 395, 396, 397, 398, 399 and 400 have also been found
to have stress-related expression (Patel et al. 2017). The major abiotic stresses
affecting plant and crop growth and development are drought, salinity, temperature
(heat, cold, chilling and freezing), nutrient, high light intensity, anaerobic stress and
ozone. In general, stress-responsive miRNAs are miR319a/b, miR319b.2 and
miR400 (Barciszewska-Pacak et al. 2015). Interestingly, miR168 can be considered
top in the hierarchy of miRNA regulation as it targets AGO1 (Argonaute), a key
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player in the miRNA biogenesis pathway; thus its activity modulates the funda-
mental originating pathway for miRNAs under stress. In Arabidopsis, induction of
miR168, miR171, miR393 and miR396 was common to salt, drought and cold (Liu
et al. 2008). The promoter regions of miRNAs contain abiotic stress response
elements. These include CCAAAT (heat shock responsive element), MYB, MYC
binding elements, ERD (early response to dehydration), CuREs (copper responsive
elements), ERE [ethylene (ET) responsive elements] and GARE (gibberellic acid
responsive elements). Through the binding of various TFs to these elements with
different temporal and spatial specificities along with combinations of binding
partners, the expression of the effector genes are controlled. For instance, Niu et al.
(2016) observed that the freezing-induced Psu-miR475b and its targets as well as
Psu-miR475b promoter activity are modulated by freezing stress and exogenous
MeJA, SA or GA, suggesting cross talk between stress signaling and hormonal
pathways. In a recent study, TaeMiR408 was found to be involved in the cross talk
between phosphorus starvation and salinity stress through modulation of ABA
signalling genes which play a role in physiological processes of osmolyte and
photosynthetic processes (Bai et al. 2018).

2.2 Micro RNAs Controlling Stress-Induced Epigenetic
Changes

Information on epigenetic regulation of abiotic stress response in plants is still
nascent. It is known that a high salt environment hypomethylates histones in natural
mangroves while histones of drought-responsive genes are differentially acetylated
and trimethylated (Golldack et al. 2011). Micro RNAs (miRNAs) regulating
chromatin modifications are only just emerging. miRNA 820 is a rice specific
miRNA down regulated by drought and targets DRM2 (DNA (cytosine-5)-
methyltransferase). However, when miR820 is downregulated, the cognate target is
also surprisingly downregulated. In addition, two different isoforms of miR820,
which are 21- and 24-nucleotide forms, are known to exist (Wu et al. 2010; Jeong
et al. 2011). Two siRNAs 441 and 446 are upregulated under drought stress and
upregulate their target MAIF1, an F-box protein (Jeong and Green 2013). MAIF1 is
the specificity factor in SCF E3 ubiquitin ligases and is strongly induced by abiotic
stress, sucrose and the hormones abscisic acid (ABA), cytokinins (CKs) and auxin
(AUX). However, it is proposed to negatively regulate tolerance to stress as its
overexpression (OE) decreases ABA response and promotes root growth, both of
which decrease tolerance to stress (Yan et al. 2011). miRNA 402 is predicted to
target Demeter-Like 3 (DML3), a DNA glycosylase domain demethylase. This
enzyme is responsible for activating the maternal allele of MEDEA (MEA), a
Polycomb gene required for endosperm development (Choi et al. 2002). MEA
represses transcription through chromatin modeling to prevent untimely develop-
ment of the endosperm before fertilization (Kiyosue et al. 1999).
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ABA and abiotic stress induce miR402 and downregulation of DML3 (Kim et al.
2010). Overexpression of miR402 encouraged seed germination under cold,
drought and salt stress, but additional seed growth only in salt stress, pointing to its
unknown differential interactions with the three stressors. The positive effect of
miR402 on germination could occur due to the decrease in methylation-induced
silencing of germination-related genes under stress. The rice TCP19, a Class I TCP
TF, is induced by several abiotic stresses especially in tolerant varieties. It directly
interacts with ULT1 (Ultra Trithorax 1), a trithorax group (trxG) factor that recruits
ATX1 (Arabidopsis homolog of TRITHORAX 1), a histone methyltransferase and
inhibits the Polycomb group of gene repression complexes. Thus, it is involved in
chromatin modification under stress (Mukhopadhyay and Tyagi 2015). Such epi-
genetic changes upon perception of stress facilitate miRNA regulation of several
effector TFs (MYBs, SPLs, NAC, AP2/ERF, HD-ZIPs, TCP, GRAS and NFYA),
many of which are common to drought, salt and heavy metal stresses. Further,
metabolic pathways targeted by these TFs are those involving sugar and starch
synthesis and breakdown, cellulose synthesis and cell wall modeling, stress
response, hormonal signal transduction and plant development as explained in the
following sections.

2.3 Phytohormone Signaling

ABA is a hormone central to the cross talk among several abiotic stresses, e.g. cold,
drought, salinity and heavy metal. In the signaling pathway for ABA, the ABI
proteins ABI1 and ABI2 are homologs of type 2 phosphatases, which negatively
regulate ABA response (Rubio et al. 2009; Lee and Luan 2012), while ABI 3, 4 and
5 are TFs positively regulating ABA response. These are very likely points of
convergence among different abiotic stresses since they participate as signaling
nodes integrating multiple pathways. For example, ABI5 combines sugar and ABA
response (Brocard et al. 2002) and tobacco protein phosphatase 2C (PP2C) is up
regulated in drought but downregulated in heat and oxidative stress (Vranová et al.
2000). The phenotypic changes associated with abiotic stress are a product of ABA
interaction with other hormonal pathways in an intricate network with differential
outcomes (Rowe et al. 2016; Lian et al. 2018).

The antagonistic interaction between auxin and ABA is particularly well studied
in case of root architecture modeling (Rock and Sun 2005; Fukaki and Tasaka
2009). Under drought stress, normal auxin-promoted cell multiplication and lateral
root (LR) meristem activation is repressed by ABA through the differential and
tissue-specific induction of the transcription factor MYB86 by both hormones.
Intriguingly, MYB96 too targets different genes in root and shoot: RD22 in shoot
but Gretchen Hagen 3 (GH3) in the roots (Seo et al. 2009). GH3 genes negatively
regulate lateral root formation by inactivating excess auxin by conjugation (Fu et al.
2011); thus, the indirect induction of GH3 by ABA and auxin in roots leads to
lesser lateral root initiation. GH3 genes are also stress-responsive as exemplified by
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rice GH3-2, which is induced by drought but repressed by cold. Overexpression of
GH3-2 reduced ABA levels (by reducing free auxin levels) and thus increased
drought sensitivity, as ABA-activated protective mechanisms such as stomatal
closure could not occur. However, this loss of free auxin also led to better ROS
scavenging and increased cold responsive gene transcription, thus providing tol-
erance to cold (Du et al. 2012).

The auxin signaling miRNAs, miR164, 167, 160, 393 and 394 are also
responsive to ABA treatment via their action on auxin responsive factors (ARFs),
which control levels of free auxin and therefore lateral root development. ABI3, a
B3 domain containing TF and a positive regulator of ABA signaling (Reeves et al.
2011) is induced by ARF 10/16, which are in turn targets of miR160 and are
required to maintain ABA-induced seed dormancy (Liu et al. 2013).
Overexpression of miR160 promoted germination through repression of ARF10
and ARF16 (Liu et al. 2007). Auxin is involved in root modeling and organ polarity
both of which change under abiotic stress. Downregulation of miR167 under
drought (Liu et al. 2008) de-represses the hydrolase IAA-Alanine Resistant 3 (IAR3)
and liberates free auxin, which induces lateral root growth for efficient water uptake
(Kinoshita et al. 2012). This miRNA also targets ARF6/8 in Arabidopsis and
thereby regulates auxin-mediated gynoecium and anther development (Wu et al.
2006). miRNA 167 is also downregulated by ABA leading to upregulation of its
targets, thereby permitting auxin activity. The miR160-ABA-miR167 regulatory
axis thus controls seed germination and lateral root elongation. Considering that
ABI factors are important hubs of cross talk, it would not be surprising if they are
miRNA targets. Recently, a degradome study in Physcomitrella patens revealed
that the plant-specific miR536 could target the moss ABI3 (Xia et al. 2016).
However, in higher plants the miR165/166–PHABULOSA (PHB) module indi-
rectly regulates ABA signaling. PHB, a HOMEODOMAIN ZIP III (HD-ZIP III) TF
directly upregulates ABI4 and a b-glucosidase (BG1). ABI4 activates downstream
ABA signaling genes while BG1 generates active ABA from inactive conjugates
(Yan et al. 2016). Thus, through concomitant induction of the target PHB, reduced
miR165/166 levels promoted cold and drought tolerance in Arabidopsis. miRNA
165/166 is responsive to ROS, salt, cold, and heat, thus linking its targets, the
HD-ZIP III factors to alterations in plant development and patterning under stress
(Sun et al. 2015).

miRNAs 846 and 842 are alternatively spliced forms with related functions.
Their levels are regulated by ABA. This hormone when exogenously applied,
lowers the levels of miR846 but increases miR842 (Jia and Rock 2013a). The lectin
jacalin is a target of miR846 and is induced upon exogenous application of ABA
suggesting its involvement in different abiotic and biotic stresses (Jia and Rock
2013b), though its function is currently unknown. Heat stress downregulates
miR400 by manipulating the processing of this miRNA from the intron of a
protein-coding gene. However, the primary miRNA levels remain unchanged,
indicating possible post-transcriptional regulation (Barciszewska-Pacak et al. 2015).

Gibberellic acid (GA) is a growth-promoting hormone, while ABA inhibits
growth and maintains seed dormancy (Achard et al. 2006). GA binding to its
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receptor removes DELLA repression of downstream GAMYB TFs, thereby acti-
vating a multitude of plant development programs such as flowering and anther
development (Achard et al. 2004). DELLA positively regulates XERICO, a
RING-H2 zinc finger TF involved in tolerance to drought and ABA biosynthesis
(Ko et al. 2006; Ariizumi et al. 2013). Thus, GA-mediated degradation of DELLA
ultimately leads to repression of ABA signaling. ABA induces ABI3 ultimately
leading to an increase in miR159. This miRNA in turn targets MYB TFs (MYB33
and MYB101), which positively regulate ABA response and osmotic stress toler-
ance (Reyes and Chua 2007). The antagonistic effects of ABA and GA on
post-germination growth converge at ABI4 through its contrasting stabilization by
both hormones. This TF also binds to the promoters of NCED6 (a key ABA
biosynthetic gene) as well as that of GA2ox7 (a GA catabolic gene) and induces
both genes due to which ABA signaling is potentiated while GA levels decrease.
ABA promotes GA degradation by GA2ox7 or conversely GA represses ABA
synthesis. Thus, ABA, ABI and GA interact at multiple levels (Shu et al. 2016).

Stress alters the membrane lipid profile as well as induces lipid-stimulated sig-
naling through generation of lipid secondary messengers (Welti et al. 2002;
Testerink and Munnik 2005). In rice, phosphatidylinositol 4, 5-bisphosphate (PIP2),
phosphatidic acid (PA) and diacylglycerol pyrophosphate (DGPP) are upregulated
in salt stress (Darwish et al. 2009). ABA interacts with lipid metabolism to maintain
membrane integrity under stress (Golldack et al. 2014). Jasmonic acid (JA) is a
small lipid-derived hormone serving as an indicator of membrane changes in stress.
It responds to biotic and abiotic stress through different pathways and induces
antioxidant production as well as metabolites tailored for the particular stress, such
as Pathogenesis-Related (PR) proteins, proteinase inhibitors and others (Dar et al.
2015; Kazan 2015). One component of JA signaling is Jasmonate Zim-domain
(JAZ), an inhibitory protein. JA induces DELLA (RGL3) through the COI1 and
JIN1/MYC2 pathway. The accumulation of this DELLA inhibits JAZ and relieves
repression of JA-responsive downstream genes. The maize JAZ14 protein connects
JA, ABA and GA pathways and positively regulates ABA-promoted stress toler-
ance when overexpressed in Arabidopsis (Zhou et al. 2015). Recently, a study by
Aleman et al. (2016) described ABA-mediated interaction of the ABA receptor
PYL6 and transcription factor MYC2 ultimately altering interaction of the latter
with JAZ gene promoters. Further, under pathogen attack, ABA is crucial for the
activation of JA-mediated defense (Adie et al. 2007). The ANAC019 and
ANAC055 TFs were postulated to connect JA and ABA signaling since both
hormones induced them. Both TFs interact with RHA2a, a RING E3 ligase, which
promotes tolerance to salt and abiotic stress in early stages of germination (Bu et al.
2009; Jiang et al. 2009). miRNA 319 targets TCP2 involved in jasmonate
biosynthesis (Schommer et al. 2008). This miRNA is upregulated in a wide variety
of abiotic stresses, especially arsenic and its overexpression leads to tolerance to salt
and drought in creeping bentgrass (Liu and Zhang 2012; Zhou et al. 2013). Besides
TCP2, it also regulates other TCP family members, which are repressors of cell
division at the leaf surface (Koyama et al. 2007; Schommer et al. 2014). JA also
interacts with GA and ABA in that its induction increases the former but reduces
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sensitivity to the latter under maternal herbivory stress in Arabidopsis (Singh et al.
2017).

Brassinosteroids (BR) are a class of growth-promoting plant hormones, with
multifarious roles in cell elongation, photomorphogenesis, flowering, ageing,
photosynthesis, defense and abiotic stress tolerance (Kagale et al. 2007). They are
usually more active in young germinated shoots and regulate cell wall composition
and cellular transport (Zhu et al. 2013). Thus, perturbations in cell wall integrity
induce BR signaling and response to stress via modulating pectin, lignin and cel-
lulose deposition, loosening of cell wall, and phenolic cross-linking (Rao and
Dixon 2017). Exogenous application of BR-induced stress-responsive genes, ROS
detoxification, protein synthesis maintenance and greater photosynthetic efficiency
(Divi and Krishna 2009). One of the mechanisms by which BR induces stress
tolerance is through activation of NADPH oxidase-mediated production of H2O2 as
was shown in cold-stressed cucumber (Xia et al. 2009), which signals via the
MAPK pathway to induce heat shock proteins (HSPs) and antioxidant enzymes. In
rice, exogenous BR mitigated salinity-induced inhibition of germination by
restoring nucleic acid and protein synthesis (Anuradha and Rao 2001). In addition,
in case of cadmium (Hayat et al. 2007) and aluminum (Ali et al. 2008) toxicity,
stress was considerably alleviated through BR-enhanced antioxidant production.
Elucidation of the players in the BR signaling pathway is still incomplete. More
recently, Arabidopsis WRKY46, WRKY54 and WRKY70 were shown to negatively
affect drought tolerance and positively influence BR signaling genes (Chen et al.
2017). Also, the NAC TF RD26, a positive regulator of drought tolerance was
found to negatively affect BR signaling by interaction with BRI1 EMS
SUPPRESSOR1 (BES1), a downstream BR signaling TF, which in turn inhibits
RD26 transcription. Thus under drought, this feedback loop operates to conserve
energy by downregulating BR-induced growth, while under normal conditions
RD26 is inhibited and plant growth resumes (Ye et al. 2017). However, in light of
the contrasting reports of BR-induced drought tolerance, this negative feedback
loop may not be operational under all conditions (Divi et al. 2010).

A number of miRNAs orchestrate BR action. miRNA 1,848 targets the
obtusifoliol 14a-demethylase gene OsCYP51G3, involved in demethylating pre-
cursors during phytosterol and brassinosteroid biosynthesis (Xia et al. 2015).
Overexpression of miR1848 reduced OsCYP51G3 levels and consequently BR
concentration. These plants had symptoms typical of BR deficiency such as
dwarfism, sterility and altered leaf morphology, as well as heightened sensitivity to
salt stress. A mutant disrupted in BR signaling was rescued by overexpression of
this miRNA172 (Kim et al. 2014), thus suggesting its role in inducing plant growth
and transition from vegetative to reproductive stage. Similarly, overexpression of
rice miR397 increased grain size and panicle branching due to downregulation of its
target rice laccase. The miRNA overexpressing lines had elevated levels of BR and
hence better growth, while OsLAC overexpression displayed symptoms character-
istic of BR deficiency. Laccases are known to catalyze monolignol polymerization
and lignin biosynthesis along with a host of other redox activities on different
substrates, not all yet elucidated (Gavnholt and Larsen 2002). Thus, in conjunction
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with the known effects of BR on cell wall modification, laccase is a plausible
downstream component of BR signaling (Oh et al. 2011; Zhang et al. 2013).
Besides these, miRNAs 156, 159, 160 and 824 were also responsive to exogenous
epibrassinolide application, concomitant with the role of BRs in plant growth and
patterning, phase transition (miR156), root morphology and auxin signaling
(miR160), GA signaling (miR159), stomatal number and flowering time (miR824)
(Lin et al. 2013). Interestingly BIN2 kinase, a negative regulator of BR signaling,
phosphorylates and stabilizes ABI5, thus mediating the antagonistic interaction
between ABA and BR during seed germination and growth (Hu and Yu 2014).

OsTCP19, described above, also regulates several hormonal interactions i.e.
auxin, ABA and jasmonate signaling under stress. Accordingly, Lipooxygenase 2
(LOX2) (jasmonate biosynthesis) was downregulated, while ABI3 and ABI4
(positive regulators of ABA signaling) as well as IAA3 (Auxin- conjugate hydro-
lase) were induced in TCP19 overexpressing rice plants. It was found to directly
regulate ABI4, which increases triacylglycerol (TAG) deposition for improved
stress tolerance (Mukhopadhyay and Tyagi 2015). ABI4 is a potent regulator of
diverse processes, activating some (seed maturation, ABA signaling) and repressing
others (photosynthesis, fatty acid biosynthesis, pigment and wax metabolism, ROS
formation, plastid-nuclear signaling), through competitive binding to the overlap-
ping CE1 and G-box promoter elements (Wind et al. 2013). Plastid-to-nuclear
retrograde signaling (PNRS) is crucial to coordination of chloroplast development
and functioning and import of nuclear-encoded machinery, to ensure homeostasis,
especially under stress (Nott et al. 2006). It involves several essential GUN
(Genomes Uncoupled) proteins whose mutants show deranged crosstalk. Part of
this cross-organelle talk is negatively regulated by ABI4-mediated repression of
Photosynthesis-Associated Nuclear Gene expression (PhANG) downstream of
GUN1 (Wind et al. 2013).

A novel function for Arabidopsis miR395a was proposed wherein it targets
GUN5, the H-subunit of Mg-chelatase required for PNRS and chlorophyll syn-
thesis, in a BR-dependent manner. Exogenous BR induced miR395a, which in turn
repressed GUN5. GUN5 is postulated to act with the downstream player ABI4,
which in itself is downregulated by BR (Lin et al. 2013). Thus, BR-treated plants
showed lower veinal chlorophyll levels and increased LR formation consistent with
the role of ABI4 in repressing lateral root formation through activation of cytokinin
and ABA signaling pathways and repression of polar auxin transport
(Shkolnik-Inbar and Bar-Zvi 2010). A positive role has been ascribed to GUN5 and
ABI4 in preventing oxidative damage to the photosynthetic apparatus during water
stress. In addition, miR395 is responsive to sulfur (S) deprivation by targeting ATP
Sulfurylase (APS) and Sulphate Transporter 2; 1 (SULTR2; 1) to conserve the
plant’s S reserves (Kawashima et al. 2009). Sulfur, a key component of primary and
secondary metabolites, is required for brassinosteroid and jasmonate-sulfation by
Sulfotransferase (SOT) enzymes (Kopriva et al. 2012), to fine-tune their activity.
The dual regulation of S allocation between primary metabolism and
sulfation-mediated regulation of hormonal activity is thus, elegantly controlled by
miR395, especially under stress. Though indirect, regulation of cellular gene
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expression and hormonal signaling by TCP19 as well as organellar crosstalk and
metabolic regulation by ABI4, are intricately orchestrated by miR395a, represent-
ing the crossroad between hormonal pathways and nutrient metabolism.

Roots are the first plant tissue to sense and respond to heavy metal stress. Under
copper deficiency/excess and cadmium excess, levels of miR319a/b increase as
expected as the promoter of this miRNA contains 8 CuREs. This miRNA targets
TBL10 (Trichome Birefringence-Like 10), a DUF domain protein of unknown
function. It is expected therefore that levels of TBL10 mRNA would decrease under
copper deficiency; instead, the levels did not change in comparison to control.
A probable reason for this constant expression is the post-transcriptional cleavage
of excess TBL10 by miR319b.2 thereby stabilizing gene expression levels. miRNA
319b.2 does not, however, cleave TBL10 in adult plants but cleaves RAP2.12 in
adult Arabidopsis (Barciszewska-Pacak et al. 2015). Conversely, in Arabidopsis
seedlings, miR319b.2 cleaves TBL10 and not RAP2.12 (Sobkowiak et al. 2012).
RAP2.12 is an ethylene responsive factor involved in tolerance to multiple stresses
(Papdi et al. 2015), thus pointing to the involvement of ethylene in the gamut of
hormone crosstalk. Levels of miR319a/b increase under salinity stress whereas
miR319 b.2-derived from the same precursor as that of miR319b decreases under
high salt (Barciszewska-Pacak et al. 2015). They target TCP transcription factors
and hence most likely are involved in leaf development, floral organ identity and
flowering time.

miRNA 171 targets the Scarecrow-Like (SCL) family of Gibberellic-Acid
Insensitive (GAI), Repressor of GAI (RGA) and Scarecrow (SCR) (GRAS) domain
containing TFs which regulate varied aspects of plant growth, root hair differenti-
ation, light signaling, GA signaling and vegetative to floral transition (Llave et al.
2002; Wang et al. 2010; Ma et al. 2014; Fan et al. 2015). Overexpression of
miR171 delays flowering; its induction under stress could therefore represent a
temporal block on energy consuming processes until the stress is alleviated (Zhang
and Sonnewald 2017). miRNA 393 targets a TIR1/AFB2 auxin receptor. It was
found that overexpressing a cleavage resistant form of TIR1 led to increased salt
tolerance in Arabidopsis (Chen et al. 2014). Growth Regulating Factors (GRFs)
targeted by miR396 are cell cycle regulators, which control plant growth and
differentiation (Liu et al. 2009). Interestingly, miR396 itself is induced by TCP4,
which is in turn a target of miR319 (Schommer et al. 2014). TCP3 in the cotyledons
induces miR164 which in turn targets the NAM-ATAF-CUC (NAC) TFs which
control leaf boundary shape, organ separation and cell multiplication (Mallory et al.
2004; Koyama et al. 2010); these miRNAs contribute to control of leaf and flower
shape and axillary meristem maintenance as they balance differentiation and pro-
liferation of cell masses and hence morphogenesis. Stress induction of miR396
likely represses cell multiplication under unfavorable conditions.
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2.4 Calcium Signaling

Calcium (Ca) is well known as a prominent secondary messenger in a variety of
plant stress responses (Dodd et al. 2010; Kudla et al. 2010). Different stressors
generate different ‘Ca signatures’ (Quiles-Pando et al. 2013), manifesting as unique
spatio-temporal patterns of Ca concentration in the cell. Consequently, a host of Ca
sensors (calmodulins, CDPKs, Ca-regulated phosphatase) as well as pumps,
channels, and transporters (Batistič and Kudla 2012) work in synchrony to ensure
efficacious transmission of the stress signal to the nucleus. Differential localization
of Ca sensors in subcellular spaces may contribute to the specificity of calcium
‘signatures’ to a particular stress. Under drought and arsenic stress, inhibition of
barley miR1432 led to accumulation of its target, a calmodulin-related calcium
sensor protein (Ferdous et al. 2017). In citrus, miR482 targets a Calcineurin-like
phosphoesterase, while a novel citrus miRNA miR049 targeted calcium dependent
protein kinase 6 (Xie et al. 2017). The former miRNA is downregulated in salt but
induced in drought, whereas its target is highly induced under both stresses.
However, miR049 and its target are both downregulated. This is probably evidence
of the existence of coherent and non-coherent miRNA-target relationships occur-
ring in plants. The monocot-conserved miR444 family member miR444d, which is
inhibited by drought but induced by powdery mildew infection, is also predicted to
target a calmodulin protein (Sunkar et al. 2008).

Calcium is also essential for somatic embryogenesis through exogenous appli-
cation of cytokinin. Spruce miRNAs 1160, 5638, 1315 and 5225 were downreg-
ulated while their targets, which were predicted to be CDPKs and CBLs, were
induced proving the necessity of Ca signaling during callus differentiation (Li et al.
2017a, b). Interestingly, Calcineurin Binding Like 10 (CNBL10) has evolved to be
a target of miR167 in apple. Though the sequence of mature miR167 is conserved
among higher plants, evolutionary changes have brought about sequence variation
in both apple miR167 and CNBL10, such that the two now form miRNA and
cognate target (Kumar and Sarkar 2017). CNBL10 is an SOS3 (Salt Over-Sensitive
3) homolog well known for its positive role in the signaling pathways of salt and
drought stress. The interaction of CNBL10 and CBL-interacting protein kinase 27
(CIPK27) leads to sequestration of Na+ in the vacuole. In Brassica rapa, miRX7
was also predicted to target CNBL10 (Srivastava et al. 2017) which is upregulated
by combined thiourea and NaCl treatment. Heavy metal (arsenic) stress downreg-
ulated miR1318 and upregulated its target, a Ca++-ATPase. Manganese toxicity
strongly induced miR1508 in nodules of Phaseolus vulgaris but down regulated it
in roots. miRNA 1508 was predicted to target a calcium dependent protein kinase
(Valdés‐López et al. 2010).
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2.5 Sugar Signaling

Response to abiotic stress in plants is heavily dependent on signaling by sugars and
their polymers (Rosa et al. 2009; Radomiljac et al. 2013), which integrate hormonal
signaling to respond to stress. For instance, starch is remobilized in a tissue-specific
and differential manner under various abiotic stresses to provide sustenance as
carbon and energy and thus increase plant fitness. A host of starch metabolizing
enzymes with stress-specific signatures; b-amylase (BAM1), chloroplastic
a-amylase (AMY3) and plastidial starch phosphorylase (PHS1) in drought and
glucan water dikinase (GWD) and b-amylase (BAM3) in cold, are employed.
Starch catabolism intersects with ABA signaling through the SnRK2 and ABA
response element-binding factor (AREB/ABF) mediated induction of BAM1 and
AMY3, in drought (Thalmann and Santelia 2017). Sugar catalytic enzymes are also
involved in signaling. The tea plant hexokinases CsHXK3 and CsHXK 4 are
induced by cold, while CsHXK1 is induced under salt and drought in roots (Li et al.
2017a). Arabidopsis hexokinases have been shown to act as sugar sensors apart
from their catalytic role and influence on glucose-mediated photosynthetic repres-
sion and hormonal pathways (Granot et al. 2013), thus serving as metabolic status
indicators. Transportation of sugar is altered under stress. A class of sugar trans-
porters SWEET (Sugar Will Eventually be Exported), were found to be expressed
differentially in two cultivars of banana under cold, drought, salt and fungal attack
(Miao et al. 2017), whereby they facilitate sugar transport and signaling for fruit
development under stress.

SnRK1 is a serine/threonine protein kinase functioning as a critical sensor for
energy and carbon in plant cells. Under stress, both metabolic pathways are com-
promised, leading to a reduction in the plant’s ability to set seed. Starvation recruits
SnRK1 to activate catabolic processes and inhibit anabolism, to liberate carbon and
energy for survival. Thus, it phosphorylates and inactivates sucrose phosphate
synthase, nitrate reductase and HMG-coA synthase (Halford et al. 2003). It is also a
hub for phytohormone-dependent stress responses. ABA, a general growth inhi-
bitor, mediates the interaction between SnRK1A and SKIN2 (SnRK interacting
negative regulator) to prevent movement of SnRK1A to the nucleus, thus repressing
SnRK1 function (Lin et al. 2014). SnRK1 overexpressing Arabidopsis is hyper-
sensitive to ABA (Jossier et al. 2009). Under drought stress therefore, ABA sig-
naling prevents activation of hydrolases needed for nutrient mobilization from seed
endosperm and arrests seed germination (Zhang and Sonnewald 2017). SnRK1 is
also connected to auxin and cytokinin signaling as well as represses GA and
brassinosteroid metabolism (Sharma et al. 2013). This kinase acts through both
downstream bZIP TFs and miRNAs. SnRK1 activates miR319, a well-known
general stress-responsive miRNA, which in turn downregulates its target TCP
factors TCP2 and TCP4. The latter are repressors of cell division at leaf margins
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and are also stress- responsive as they regulate organelle primary metabolism and
ATP generation as already described. SnRK1 induction also decreases miRNAs
159b, 161, 775 and 824a. Under starvation, the miRNA processing mutant dcl-9
showed aberrant expression of 831 SnRK1-regulated “starvation-genes” compared
to wild type, with repression of translation, organelle function, ROS signaling,
protein trafficking and folding, nucleic acid metabolism, and activation of catabolic
processes and chromatin remodeling (Confraria et al. 2013). This indicates that
miRNAs are involved in the SnRK1-mediated signaling under stress.

Sugar signaling requires epigenetic control as the histone acetyltransferase
(hac1) mutant) has impaired sensitivity to sugar and the GA synthesis inhibitor
paclobutrazol (Heisel et al. 2013). Histone acetyltransferase 1 (HAC1) positively
regulates transcription by acetylation of histones. Glucose and fructose inhibit early
germination stages in seedlings, through repression of HAC1. However, hac1
mutant plants are insensitive to sugar because of decreased levels of the SnRK1
complex proteins AtPV42a and AtPV42b, which act as the central sensor for energy
and carbon status in the cell. Additionally, transcripts of genes for gibberellin
biosynthesis, anthocyanin production and seed dormancy were downregulated in
mutant lines along with reduced fertility, thus pointing to the essentiality of chro-
matin modification in sugar signaling.

The ABA-Hypersensitive Germination 1 (AHG1) locus encodes a protein
phosphatase 2C (PP2C), which is a negative regulator in the ABA signaling
pathway. The mutant ahg1 is hypersensitive to ABA, glucose, sucrose, NaCl, KCl
and mannitol, reflecting its importance in stress response during germination and
post germination. Mutant seeds had longer dormancy periods and higher accu-
mulation of ABA (Nishimura et al. 2007). As described earlier, protein phos-
phatases are also involved in crosstalk with calcium signaling in abiotic stress.
PP2Cs are therefore versatile integrators of sugar, calcium and hormonal signaling.
Also, though they are biochemically similar in action, they interact with different
protein partners in various compartments, as well as express at different times, all of
which confer specificity (Nishimura et al. 2007). For instance, ABI4 and ABI5
together confer sugar sensitivity during early germination. Furthermore, a link
between sugar, ABA and ethylene signaling exists, as ethylene inhibits the
sucrose-mediated induction of ABA during the sensitive seed germination stage
(Gazzarrini and McCourt 2001). This antagonistic interaction between ABA and ET
was recently shown to occur through the repression of the ET biosynthesis genes 1-
Aminocyclopropane-1-Carboxylic Acid synthase (ACS) by ABA (Dong et al. 2016).
The PhANG RBCS small subunit of ribulose 1,5-bisphosphate carboxylase in
addition to being light-controlled, is also sugar- and ABA-responsive. ABI4 binds
to the S-box element closely associated with the light-responsive G-box of its
promoter and mediates both sugar- and ABA-dependent inhibition of this gene
(Acevedo‐Hernández et al. 2005).

Other sucrose responsive miRNAs included miR398 and miR408. The former
targets the copper-zinc superoxide dismutase CSD1 and CSD2 (Sunkar et al. 2006),
a copper chaperone CCS (Beauclair et al. 2010), and in an infrequently encountered
example of binding leniency, a subunit of cytochrome oxidase (COX) (Yamasaki

38 P. Patel et al.



et al. 2007). miRNA 408 targets plantacyanin and some members of the laccase
family (Abdel-Ghany and Pilon 2008). Both these miRNAs are induced under
copper deficiency. Negative regulation of these copper enzyme and protein targets
frees up precious copper reserves for sustaining photosynthesis (Yamasaki et al.
2007). However, the sucrose induction of miR398 is both copper dependent and
independent (Dugas and Bartel 2008; Ren and Tang 2012), suggesting links
between copper nutritional status and sugar signaling as well as enigmatic
non-canonical targets of miR398. Additionally miR319 and 160, with established
functions in hormonal signaling (jasmonate and auxin response), are also induced
by sucrose, thus revealing the highly connected nature of ROS, sugar and phyto-
hormone signaling (Ren and Tang 2012).

2.6 Reactive Oxygen Species

The reactive forms of oxygen namely, superoxide anions, hydroxyl radicals, per-
oxyl ions and hydrogen peroxide, are essential signaling molecules for survival and
defense but at the same time capable of playing havoc with the delicate machinery
of the cell. The balance between the ability of plants to utilize ROS positively and
its deleterious effects is dependent on the amount of ROS generated, its subcellular
localization and the activity of detoxifying enzymes (Choudhary et al. 2017).
A number of biotic and abiotic stressors generate “signaling ROS” commonly
through sensor-mediated activation of RBOHs (Respiratory Burst Oxidase
Homologs) such as apoplastic NADPH oxidase, some amine oxidases and perox-
idases as well as organellar specific oxidases (Miller et al. 2008; Choudhary et al.
2017). These are activated by calcium signaling and kinase-mediated phosphory-
lation (Pei et al. 2000; Kobayashi et al. 2007) accompanied by organellar mor-
phological changes wherein they connect physically to the nuclear membrane
(Noctor and Foyer 2016). Redox homeostasis as one of core regulators of cellular
processes has been shown to play crucial roles in mediating miRNA and hormone
based regulation through possible mechanisms of post-transcriptional gene regu-
lation or decoupling miRNA:mRNA inverse relationship (Srivastava et al. 2017).
Abiotic stress-produced ROS induces glutamate dehydrogenase expression for
effective channeling of excess ammonia (the by-product of proteolysis) into glu-
tamate and further synthesis of protectants like proline (Skopelitis et al. 2006). In
concordance with the role of SODs in detoxifying ROS, miR398 is downregulated
by ozone, Pseudomonas syringae infection (Jagadeeswaran et al. 2009) and/or cold
(Chen et al. 2013) but upregulated by heat where it plays a protective role (Guan
et al. 2013). Regulation of miR398 targets themselves is an example of the intricate
connection with other physiological processes; for instance, the diurnal, salt and
ABA treatment-induced oscillation of miR398 expression (Jia et al. 2009; Siré et al.
2009), which is also species specific. Both miRNAs 398 and 408 have been
reported to play conflicting roles under drought stress in M. truncatula and pea
(Trindade et al. 2010; Jovanović et al. 2014), again probably acting in a genotype-
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and stress intensity-dependent manner. Recently, miRNA ghr-414C was shown to
target the expression of the first antioxidant defense gene, iron-superoxide dismu-
tase (GhFSD1) in cotton plants subjected to salt stress (Wang et al. 2019) implying
miRNA mediated regulation of salt stress through ROS.

Heavy metal (aluminium, cadmium, iron, copper, mercury and arsenic) stress is
a predominant generator of ROS. The legume Medicago truncatula is known to
cope with heavy metal stress considerably better than other plants (Zhou et al.
2008). In this plant, heavy metal-responsive miRNAs were categorized into two
groups. The miRNAs 171, 319, 393 and 529 comprised the first group, which was
generally upregulated under heavy metal stress. Of these, miR319 (slightly induced
by Cd and Hg) and miR393 (induced by Cd and Al) are also responsive to drought,
salinity, ABA and cold as mentioned earlier. The miR529 is evolutionarily related
to miR156 and likely targets Squamosa promoter binding Protein-Like (SPLs)
(Morea et al. 2016), though its exact function is not elucidated. The second group of
miRNAs comprising miR166 and miR398 was downregulated under heavy metal
stress. miRNA 166 targets the HD-ZIPIII family of TFs, which determine leaf
polarity while miR398 targets Cu/Zn SODs, which scavenge free radicals as
described earlier. Thus, inhibition of these miRNAs reflects the plants’ attempts to
rectify leaf developmental abnormalities and mitigate oxidative stress, which are
products of heavy metal stress. Heavy metals like Al bind to carboxylate and
phosphate groups in the soil and reduce mineral uptake and physiological pro-
cesses. Cytoplasmic calcium imbalance leads to generation of ROS. Soybean
treated with Al showed upregulation of miR171, miR319, miR393, miR519
miR390, miR396, unlike in M. truncatula where these were downregulated, hinting
at species specificity (Chen et al. 2012; Zeng et al. 2012).

Challenging Brassica spp with arsenic elicited widespread changes in metabo-
lism. Photosynthesis and nitrate assimilation were impaired while ROS and lipid
peroxidation increased (Jha and Dubey 2004; Requejo and Tena 2005). In rice, 36
new arsenic-responsive miRNAs were discovered with predominant roles in

JFig. 2.2 A plant miRNA-target interaction network depicting the cross-talk between the four
cardinal players ROS, sugar, hormones and calcium in response to stress. The network is
controlled fundamentally by chromatin modifications shown as a backdrop to the plant presented
in the image. Anatomical features affected are shown as insets at appropriate places in the diagram.
Single red cross bars and green arrows depict inhibition and activation respectively. Double red
cross bars indicate mutual inhibitory action of hormones, and green arrows indicate either
molecule-receptor binding or interaction between proteins. Simple black lines indicate signaling
between different components. Black curves designate interaction between different players while
single black arrows show the action of transcription factors on plant morphology. The double
headed black arrow in the stomatal guard cell depicts plastid-to-nuclear retrograde signaling.

Key: m : Methylated histone, m : Methylated DNA, Poy C : Polycomb repressor complex,

: Repression, : hormone, : Double repression, : Protein stabilization, : Protein
destabilization, CaM: calmodulin, CBL: Calcineurin B-like, Ca-ATPase: Calcium ATPase,

CPPE: Calcineurin like phosphoesterase, Ca : Calcium ions, : Plantacyanin, : Copper ion

2 Plant miRNAome: Cross Talk in Abiotic Stressful Times 41



jasmonate and lipid biosynthesis, for the synthesis of triacylglyceride oil droplets
and for epicuticular wax deposition. miRNAs 156, 166, 168, 171, 319 and 396,
which are responsive to salt, drought and other abiotic stresses, were also strongly
affected by arsenic (Yu et al. 2012). In rice roots, miR408, 528, 397b were
upregulated, while 1316 and 390 were downregulated (Srivastava et al. 2012). In
addition, miR319 was found to be responsive to arsenic toxicity. As is the case with
other heavy metals, arsenic too perturbs sulfur metabolism. The miRNAs 395, 838
and 854 are predicted to target the sulfate assimilating enzymes APS and Serine
Acetyltransferase (SAT) and transporter SULTR2;1. miRNAs 319 and 838 target
TCP4 and a lipase leading to enhance production of jasmonates. miRNAs 164, 167
and 390 target auxin responsive factors (ARF) and NAC TFs leading to increased
auxin metabolism and lateral root growth. miRNAs 159 targets GAMYB and ACC
synthase altering biosynthesis of GA, ethylene and ABA, which leads to heightened
defense response and changes in root architecture. Other miRNAs such as miRNAs
156, 162, 165, 169, 172, 426, 535 and 1436 target a plethora of TFs and down-
stream genes, leading to morphological changes and defense response. All this
leads to increased SO4

2− uptake imparting tolerance towards arsenic (Srivastava
et al. 2012).

Under Manganese stress in P. vulgaris, various miRNAs were induced or
inhibited, of which miR1515 (targeting HSP), miR1510/2110 (targeting NBS-LRR
like proteins), miR1532 (targeting RLKs) were responsive (Valdés‐López et al.
2010). Under 80 µM Cd exposure, strong upregulation of miR395 in roots, miR393
in leaf, miR156a and 167a/c in roots and leaves was observed in Brassica napus
(Huang et al. 2010). Also levels of miR164b, which targets the NAC TF in leaves,
and miR160 targeting an ARF responsive to auxin decreased under conditions of
Cd exposure whereas miR394a/b/c increased in all tissues (Huang et al. 2010).
miRNAs 394a targets an F-box protein and confers drought tolerance. Enhanced Cd
accumulation or reduced Cd tolerance is mediated by miR390, which targets the
stigma specific S-locus Receptor Kinase (SRK) (Ding et al. 2016). Interestingly, Cd
excess mimics S deficiency in that miR395 is induced under both stresses.
Transgenic lines overexpressing miR395 in Arabidopsis showed a reduction in APS
(ATP Sulfurylase) activity, which catalyzes the first step of S assimilation.
Micro RNA 395 also targets SULTR2;1, a leaf sulfate transporter through spatial
compartmentalization. As a result, SO4

2− accumulates in the leaves due to increased
root translocation. This is expected as S-derived secondary metabolites such as
metal chelating compounds ameliorate heavy metal toxicity (Yadav 2010;
Matraszek et al. 2016).

2.7 Conclusions

Drought, salinity, high or low temperatures and heavy metals are some of the
environmental stresses, which singly or together affect plant growth and produc-
tivity. Stress induced modulations include metabolic pathways of ROS and sugar
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signaling, calcium signatures, production of protective effector molecules and
phytohormones. Studies have also shown that small RNAs (miRNAs) respond to
environmental stresses in a stress-, tissue-, and genotype-dependent manner. During
abiotic stress, miRNAs function by regulating target genes within the miRNA–
target gene network and by controlling signaling pathways. It is of great interest in
finding out the nature and integration of different signals into plant responses under
a given stress condition. Hence, ‘microRNA interactome’ is becoming a research
topic of contemporary interest. Studies are unfolding novel microRNAs, their mode
of action and the targets in drought, salt and heavy metal stresses and this infor-
mation has attracted the attention of plant scientists for their use in genetic engi-
neering for higher stress tolerance. Successful examples include miR397
overexpression leading to enhanced overall grain yield in rice up to 25% and
overexpression of miR156 significantly increasing the number of plant biomass by
300% in Arabidopsis (Zhang and Wang 2016).

The role of microRNAs in molecular cross talk across different abiotic stresses
and identification of abiotic stress response elements needs further study.
Characterization of novel and specific miRNAs from plants with exceptional stress
tolerance can be useful to elucidate their distinctive mechanisms. Being important
regulators of plant developmental pathways, miRNAs can be integrated into reca-
pitulating stress memory. To summarize, understanding the way microRNAs reg-
ulate plant responses to abiotic stresses through different layers of associated
pathways should enable manipulation of miRNA-guided gene regulation to engi-
neer plants with improved stress tolerance.
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Chapter 3
Epigenetic Response of Plants to Abiotic
Stress: Nature, Consequences
and Applications in Breeding

Manoj K. Dhar, Rahul Sharma, Parivartan Vishal and Sanjana Kaul

Abstract Stress is inevitable in the life cycle of living organisms, including plants.
Being sessile, plants are more prone to the deleterious effects of environmental
stress. Therefore, plants have developed complex mechanisms to survive under
these challenging conditions. Tolerance, avoidance, and resistance are the three
major strategies followed by plants to counter the recurring biotic and abiotic
stresses. These mechanisms involve genes associated with several interconnected
pathways, which lead them towards better stress tolerance. Plants resort to various
modifications in their morphological traits, physiology, and so forth in response to
stress. Modulations in various regulatory mechanisms, including epigenetic modi-
fications, play a pivotal role in developing stress tolerance in plants. These involve
changes in either the plant homeostasis or heritable changes in gene expression
pattern. The trans-generational changes are brought about, more often, by dynamic
changes in epigenetic marks rather than development of stress resistant alleles via
gene mutation. A large number of stress resistant transgenics have been developed
over the years all over the world. However, the traditional breeding has remained
indispensable. Much emphasis has been laid on identification and characterization
of stress resistance genes and developing transgenic crop varieties, while the
epigenomic aspects have been given less importance. The present chapter focuses
on the essential components of epigenetic machinery, different epigenetic alter-
ations involved in conversion of active euchromatin to silent heterochromatin and
vice versa during stress, and integration of epigenetic data with breeding programs
to devise better strategies towards development of stress resistant crops.
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3.1 Introduction

The environment is a dynamic entity and is thus under a continuous state of change.
Unlike animals, plants being sessile are not able to escape from the environmental
vagaries. However, they have developed various mechanisms to resist the changes
and survive under harsh conditions. Environmental stress can be biotic (pathogen,
pest) or abiotic (heat, salinity or drought), but both limit the plant productivity.
Among different types of stresses, water scarcity is the most prominent stress
responsible for huge losses in crop yield worldwide. Temperature fluctuation due to
global warming have already led to increased episodes of drought in many drought
prone areas. Global increase in desertification, decrease in total agricultural land
and drought like conditions due to water scarcity and salinity pose an urgency to
develop high yielding drought tolerant varieties of crops.

Water acts as the most important component of plant transport system playing a
pivotal role in the transport of metabolites from one part of the plant to the other.
Water acts as universal solvent helping in general metabolism of the plant.
However, water scarcity poses many threats to normal growth and development of
the plant. Drought can be defined as a type of abiotic stress where the plant does not
receive adequate quantity of water required for optimal growth and productivity
(Diekman et al. 2012). Drought affects plants by reducing their leaf size, disturbing
plant water equilibrium and reducing water use efficiency. Overall, drought has
negative effect on the growth, development and yield of the plants. Water scarcity is
a complex stress affecting many interrelated biochemical and molecular pathways
and thus making it very difficult to pinpoint the exact mechanism. One of the major
issues is the silencing of genes involved in cell division and protein synthesis
during drought. This leads to cell dormancy and/or slow cell division, resulting in
impaired growth and low yield. Water scarcity further leads to osmotic imbalances
resulting in decreased turgor pressure affecting cell elongation along with various
physiological and morphological impairments (Fig. 3.1).

The impact and intensity of the stress are the major factors prompting response
from the living organisms. When the effect exceeds the tolerance limit, the
organisms exhibit direct and indirect response to stress. Plants have evolved various
strategies to overcome the effect of drought stress. These include but are not limited
to; escapism, avoidance and tolerance. Many plants under drought stress show early
germination and early flowering to escape the harsh effects of drought stress. Some
plants lessen the effect of stress by avoidance strategies, such as; plants develop
deep roots to increase root zone effect, show leaf rolling to decrease total surface
area, leading to stomatal closure to reduce water loss by transpiration. Plants can
also show resistance or tolerance to the stress condition, which involves
up-regulation and down-regulation of various stress responsive genes (Fig. 3.2).
Drought tolerance is a quantitative trait involving many genes and linkage of these
genes with other desirable and undesirable genes makes it difficult for the crop
breeders to develop efficient drought tolerant varieties with high yield potential
(Varshney et al. 2011; Bhardwaj et al. 2015). Effect of and response to stress is
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further dependent on the time of stress induction during the life span of the plant.
The stress response of the plant, at morphological and molecular levels, differs
during germination and flowering. These temporal and spatial regulation strategies
employed by the plants further make stress response a complex process to under-
stand. A vast number of drought stress responsive genes have been identified in
plants. Many studies amply describe their expression levels, however, the factors
controlling the expression of these genes have not received due attention. These
genes are involved in cross-talk with one another and function in a well-knit net-
work. Breeding, mass screening, marker-assisted selection, transgene transfer or
engineering for drought resistance are the few strategies, which have been com-
monly employed to identify, characterize and deploy these genes for developing
stress tolerant varieties.

The environmental stress is responsible for generation of many genomic, tran-
scriptional and proteomic variants, ultimately leading to phenotypic variants. Apart
from genomic variants, environmental stress is also responsible for generating new
epimutants via epigenetic changes, which show modulated gene expression to
produce phenotypic variants beneficial for the plant including conferring protection
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Fig. 3.1 Effect of water scarcity on the growth and yield

3 Epigenetic Response of Plants to Abiotic Stress … 55



against adverse environmental cues. The chapter reviews epigenetic changes in
plants under stress mainly via DNA methylation and histone post-translational
modifications. Available tools to study and quantify epigenetic changes are high-
lighted. The potential of integrating epigenetic data with breeding programs to
devise better strategies towards development of stress resistant crops is also
discussed.

3.2 Epigenetic Changes

Very often the variation observed in different individuals of a population is due to
various genetic factors, however, sometimes the variation is epigenetic i.e. it does
not result from DNA sequence polymorphism. The term epigenetics was coined by
Waddington (1953), who described it as the role of gene interactions and envi-
ronmental factors in introducing a particular phenotype. However, presently epi-
genetics refers to heritable/non-inheritable changes, meiotic or mitotic in terms of
chromatin structure, cytosine methylation of DNA and modifications in histone
proteins, thereby generating various global and locus-specific epialleles (Manning
et al. 2006). Post-translational modifications and accessibility of chromatin also
affect the gene expression, which leads to variant phenotypes. The study encom-
passing the above factors/phenomena, affecting the phenotype of an organism is
called as epigenomics (Lane et al. 2014). Despite being epigenetic marks, many
chromatin modifications are not heritable (Springer 2013). Therefore, epigenetic
variation stems from various chromatin marks such as methylation of cytosine
residues in the DNA, histone tail modifications and small RNAs, etc. There is
voluminous literature available on DNA methylation as it constitutes the most
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studied chromatin modification, particularly with regard to its stability and heri-
tability. Many studies have shown suppression of individual genes, repetitive DNA
sequences and transposable elements due to methylation. However, in some cases
there are occasional changes in the methylation status indicating the semistable
heritability of methylation. In recent years, more emphasis has been laid in
exploring the epigenetic modifications since they are potential source of hitherto
un-assessed heritable variations, which can be exploited for predicting phenotypic
variations and devising newer strategies for efficient breeding. In this direction,
many studies have been conducted not only for characterization of epigenetic
variation but also to understand the association between epigenetic and genetic
changes at specific loci.

Epigenetic marks, present on the genome of any organism such as plant, animal
or microbe, define that organism by regulating its gene expression. Merely
observing epigenetic marks may not be of much use; therefore, it would be
meaningful if the factors responsible for relative modification of epigenetic marks
were studied in detail.

First reported case of epigenetic mutation was occurrence of asymmetric flowers
showing peloric variation in Linaria (Jeggo and Holliday 1986). Later, methylation
mediated Lcyc gene silencing was suggested as the possible reason for generation of
flower variants. Cubas et al. (1999) confirmed the inheritance of Lcyc gene
methylation to next generation. Thus, methylation marks were the first and most
important epimarks to be studied.

As discussed above, epigenetic machinery involves DNA methylation, histone
post-translational modifications and smRNA. Apart from stress response, epigenetic
modifications are also involved in maintaining genome stability, suppressing
transposon activity and controlling gene expression by manipulations at
post-transcriptional and post-translational levels. A variety of epigenetic marks
present on amino terminal of histone tails due to post-translational modifications
along with other histone variants, constitute highly complex histone code
(Chinnusamy and Zhu 2009). Methylation, acetylation, phosphorylation, sumoy-
lation, biotinylation, ubiquitination, carbonylation, glycosylation and ADP ribosy-
lation are the various types of post-translational modifications that occur on histone
tails (Zentner and Henikoff 2013). Apart from these, chromatin remodeling is
another area of interest for studying epigenetic modifications though, these marks
show short-term transgenerational inheritance, which in turn affects the DNA
accessibility of transcriptional factors (Bonasio et al. 2010).

3.3 Stress Perception and Epigenetic Response

Both genetic and epigenetic changes are responsible for producing phenotypic
variants but mutation rates are generally much lower than spontaneous DNA
methylation events; thus, epialleles play a very important role in phenotypic
diversity (Schmitz et al. 2011). Genetic variations along with heritable or
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metastable epigenetic variations have the potential to drive natural variation. An
epiallele can be termed as a heritable modification without a change in the DNA
sequence. Epialleles have been classified as obligatory, facilitated or pure (Richards
2006) based on the relative influence of genetics and epigenetics upon chromatin
state. Epialleles are considered obligatory when the chromatin state is directly
correlated with a genetic change. Facilitated epialleles represent a condition when a
genetic change results in a poised allelic state, which can exist in an active or
silenced form. In pure epialleles, no genetic changes influence the chromatin state.
All these types of epialleles have been reported to exist in plant populations.

Biotic and abiotic stresses affect the plants in term of health, yield and quality;
however, accumulation of transgenerational epigenetic changes can help them to
tolerate the stress in future (Slaughter et al. 2012). Epigenetic factors act as a link
between stress perceptions and implementation of appropriate response. Plants react
to abiotic stresses such as high temperature, high salinity and drought by modifying
their growth and developmental processes to lessen the extent of damage caused by
these stresses. Although, most of the modifications are transient but the extent of
induction depends upon the severity of the stress exposure. Many modifications
reverse with the onset of favorable conditions, however, plants have the capability
of memorizing certain changes at transcriptional and post-transcriptional levels and
transmit them faithfully to next generation. All these modifications occur at epi-
genetic level without disturbing the sequence of the genome. In Populus tri-
chocarpa, drought-induced genome wide increase in cytosine methylation helps to
cope with harsh effects of abiotic stress (Liang et al. 2014). Post-translational
modifications of histone acting primarily as a response to stress perception may not
be truly epigenetic in nature as its transgenerational transference is obscure.

3.4 DNA Methylation and Machinery

DNA methylation was discovered in early twentieth century (Johnson and Coghill
1925) and has emerged as one of the most important heritable and reversible
epigenetic marks responsible for modification of cytosine residue at C-5 position in
all viable organisms. DNA methylation studies require prior sequence information
for developing methylation maps of different plants. The studies have identified
methylation as an important epimark, being present on every genome (Lane et al.
2014) though the pattern of methylation differs among genomes (West et al. 2014).

DNA methylation is one of the important epigenetic modifications that has been
widely studied in plants (Niederhuth and Schmitz 2014). Arabidopsis thaliana
being the model organism for studies in plants has been greatly exploited for
genetic and epigenetic studies. The answer to mystery of phenotypic variations
arising from similar DNA sequences lies in the pattern of heritable epimarks, which
are responsible for altered gene expression resulting into characteristic phenotype.
DNA methylation has distinct pattern in plants as compared to animals. The
methylation is known to occur at CG along with CHG and CHH residues. In case of
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mammals, it occurs on symmetric dinucleotides-CG, whereas in plants, both
symmetric (CG, CHG) and asymmetric CHH residues are involved; H stands for
either of adenine, cytosine, or thymine nucleotides. DNA methylation can occur
without any preference for genic or intergenic region.

The complete pattern of arrangement of nucleotide methylation in an organism’s
genome is called as methylome. Methylome studies carried out in different plants
have brought to light the role of methylation. Arabidopsis thaliana genome shows
24% CG methylation (Cokus et al. 2008), Glycine max has 51% (Schmitz et al.
2013) and Oryza sativa genome has 59% CG methylation (Feng et al. 2010).
Methylome analysis of Brassica oleracea revealed that 54.9% of whole genome
CGs are methylated, whereas symmetric CHGs count 9.4% and asymmetric CHHs
count 2.4% only (Parkin et al. 2014). CG methylation has usually negative effects
on gene expression and hence is considered as a repressive epigenetic mark (Suzuki
and Bird 2008).The establishment of methylation at these residues occurs through
different modes. All three types of methylation marks are known to produce
silencing effects at the target region, but many a times can show position effect,
silencing the neighboring sequences (Law and Jacobsen 2010). CG methylation
plays a very important role in maintaining the genome stability, by silencing
repetitive elements. The centromeric regions of the chromosomes are rich in
repetitive elements and hence show high CG methylation, which ultimately leads to
heterochromatinization of the region. However, with regard to promoters, methy-
lation is negatively correlated with transcriptional activity of the genes.

DNA methylation can be spontaneous or induced. Environmental changes are
known to induce significant changes in DNA methylation leading to new variations.
Methyltransferase1 (MET1) is considered responsible for maintaining methylation
marks at CG residues in A. thaliana (Lister et al. 2008). Histone specific
post-translational modifications also influence the methylation status of DNA
sequences. H3K9 methylation controls DNA methylation at CHG and CHH resi-
dues but a group of different methyltransferases known as chloromethyltransferases
(CMT) namely, CMT2 and CMT3 are known to maintain the methylation at these
residues (Stroud et al. 2014).

Compared to higher plant DNA, which is up to 50% methylated, mammalian
DNA is methylated from 2 to 8% only (Zhu 2009). Domains Rearranged Methylase
1 and 2 (DRM1 & DRM2) help in asymmetric DNA methylation in plants, fol-
lowing RNA-dependent DNA methylation pathway (RdDM), whereas symmetrical
DNA sequences CpG and CpHpG maintain their methylation status by MET1 and
CMT3. DNA Methyltransferase 1 (DNMT1) found in metazoans maintains the
5mC status along with DRM1 performing de novo CG sites methylation. MET1
produces methylation patterns that are transmitted through mitosis as well as
meiosis (Saze 2008).

Chromatin remodeling is another method of indirectly maintaining the methy-
lation status. Decrease in DNA Methylation 1 (DDM1) is a chromatin remodeling
factor maintaining the CG and CHG methylation status in Arabidopsis (Brzeski and
Jerzmanowski 2003). Fujimoto et al. (2008) induced whole genome hypomethy-
lation by inserting DDM1 RNAi construct in B. oleracea.
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DNA demethylases also manipulate DNA methylation status of plants by
removing methylation marks. DNA glycosylases family includes several enzymes
such as Demeter (DME), Repressor of Silencing1 (ROS1) and Demeter-Like
(DML) proteins. DML2 and DML3 are responsible for localized as well as global
demethylation (Saze et al. 2012). ROS1, a DNA demethylase, interacts with ROS3,
which possesses a motif capable of recognizing and binding small RNA, which in
turn guides ROS1 and ROS3 to specific loci on genome for demethylation (Zheng
et al. 2008). It is hypothesized that this pathway can be used to demethylate specific
gene loci by targeting loci-specific small RNA to ROS3, which in turn can act as a
link between Sm RNA and ROS1 for site-specific demethylation.

Massively parallel sequencing of mononucleosomes for genome-wide nucleo-
some position analysis suggested that nucleosome positioning influences genome-
wide methylation patterns. DNA methyltranferases targeting the nucleosome-bound
DNA suggest that nucleosome and DNA methyltranferases share a conserved
relationship. Of many studies conducted on various plant species, the distribution of
compact methylation of cytosine was found at repeats and transposons with an
average of 90% sequence methylation, creating a transcriptionally repressed chro-
matin state (Wang et al. 2009). Comparative studies of methylome and transcrip-
tome in Arabidopsis revealed that coding region exhibited high methylation
whereas high and low expressed genes showed a significantly lower methylation
level (Lister et al. 2008). RNA pol II processivity has been dependent on nucleo-
some positioning as RNA pol II has been found relatively more on exons than
introns suggesting that methylation has an important role in defining and evolving
the exons. Exons possess more methylation marks than introns and this pattern can
be used to define intron-exon boundary, moreover linker region of the nucleosome
possesses less methylation as compared to sequence wrapping histone octamer
(Chodavarapu et al. 2010).

Increase in methylation of coding regions of genes, due to activity of small
interfering RNA (siRNA), is responsible for repression inside promoters (Lauria
and Rossi 2011). Whereas the methylation of flanking regions of the gene body i.e.
promoter, 5’ UTR and 3’ UTR and nearby coding region has negative effect on
gene expression and can play a significant role in tissue-specific expression and
biotic stress response (Dowen et al. 2012). Plants have shown alternate splicing in
response to stress (Ali and Reddy 2008).

It can be concluded that CG methylation is the most important type of methy-
lation having varied effects on the expression of the gene depending upon the
localization of CG. CG methylation of promoter region has been negatively cor-
related with gene expression, however, CG methylation when present in gene body
has positive effects on transcription levels of the gene, indicating the complex
nature of methylation in the context of its localization (Ball et al. 2009). In
Arabidopsis thaliana, levels of gene body methylation have been found as a factor
for maintaining transcriptional elongation. In other words, proper transcription
requires hypermethylation at gene body (Zilberman et al. 2007). However, a
comparative transcriptome and methylome study in Brassica oleracea showed
certain exceptions, where highly methylated genes showed transcription and low
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methylated genes were non-expressing. However, a general trend of moderate level
of conserved gene body methylation was associated with expression (Parkin et al.
2014).

Epialleles providing stability have been documented in Brassica napus as well
as many plant systems (Long et al. 2011). Epialleles are mostly mitotically stable;
however, many instances of meiotically stable epialleles have also been docu-
mented. Epigenetic recombinant inbred lines (epiRILs) are derived from two par-
ents having negligible difference in DNA sequences but contrasting DNA
methylation profile. epiRILs have been found associated with stability and heri-
tability of some traits such as flowering time and plant height over eight generations
in Arabidopsis (Johannes et al. 2009).

3.5 Methodologies for Studying Methylation

DNA methylation patterns in the genome of an organism play important role in
regulation of gene expression. Over the last many years, different methods have
been used to understand the methylation patterns. Primarily, restriction digestion
methods using restriction enzymes, differing in the tendencies to distinguish the
recognition site on the basis of methylation sensitivities, have been used to profile
genome-wide distribution of DNA methylation (Schmitz and Zhang 2011). The
drawback of this method is the limitation of number of isoschizomers differing in
their methylation sensitivities so that they could be efficiently used in the process.
Moreover, the efficacy of the restriction digestion is also variable. The distribution
of the methylated marks in the genome of an organism determines the size of
generated fragments. The terminal sequences explain the methylation sensitive
restriction of the fragment but the target sites, which may have escaped from the
restriction, present in the fragment, make it difficult to estimate exact quantification
of methylation, leading to a poor resolution (Laird 2010).

Methylation-sensitive amplification polymorphism (MSAP) is a modification of
Amplified Fragment Length Polymorphism (AFLP) technique, which was used for
the first time to detect the differential methylation pattern of fungi during dimorphic
transition (Reyna-Lopez et al. 1997). Later, isoschizomers, MspI and HpaII have
been used commonly; however, MseI was used in original protocol. MspI and
HpaII recognize the sequence CCGG but HpaII is sensitive to methylation at any
cytosine residue, whether internal or external, and cleaves hemimethylated
sequences only. MspI on the other hand is sensitive to external methylation irre-
spective of its semi or full methylation status. Thus, MSAP can be used to assay full
methylation of internal cytosines and hemi methylation of external cytosines.
Earlier, radiolabeled primers were used to carry out MSAP, but now the technique
has been modified with the introduction of fluorescently tagged primers (Yang et al.
2011).

Sodium bisulphite conversion is yet another technique to identify methylated
residues after sequencing. In this technique, unmethylated cytosines are converted
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into uracils, which are further converted into thymine during the PCR amplification
process but methylated cytosines remain unchanged. Therefore, one can distinguish
between modified and unmodified cytosine residues after sequencing the PCR
amplicons. The converted sequences are compared to reference amplicon sequences
to identify the cytosines, which have modified during the process. Methylation
specific primers are designed for the process to amplify the epigenetically modified
stretch of DNA (Ji et al. 2014).

Combining the sodium bisulphite conversion with high throughput sequencing,
one can go up to single base resolution. Now-a-days, whole-genome bisulfite
sequencing (WGBS) is employed to check the methylation status at whole genome
level and understand the utilization of methylation by the genome to regulate its
activities. The converted cytosines can be determined only after comparing the
sequences with reference genome in case of WGBS process (Lister et al. 2008).

CpG islands are the regulatory sequences which are mostly present upstream of
the genes and act as the site of methylation. Antibody specific for 5-Methylcytosine
(5mC) is used to precipitate methylated cytosines and the process is called as
immunoprecipitation. Coupling immunoprecipitated methylated DNA with gene
microarray has laid the foundation of a high throughput technique called as
MeDIP-chip (Zhang et al. 2006). Various steps involved in the process include;
(i) isolation of DNA, which is further, purified and sonicated into fragments of 300–
1000 base pairs, (ii) denaturation of DNA fragments and (iii) treatment with the
antibodies raised specifically to detect immunoprecipitated 5-methylcytidine. The
methylated DNA is separated from antibody, digested with endopeptidase K fol-
lowed by phenol/chloroform extraction to purify the DNA. This methylated DNA
can then be used with microarray.This technique has better resolution than
methylation-sensitive restriction digestion methods.

To obtain the whole methylome, affinity enrichment of methylated regions of the
genome is achieved by immunoprecipitation with antibodies specific to methylated
loci followed by hybridization to a microarray (ChIP-chip) or sequencing (ChIP-
seq). Affinity enrichment approach suffers from the drawback of detecting only CG
region methylation, which is otherwise considered as most important. Although
single base pair resolution is possible with bisulphite conversion, methylome
studies are still benefited by exploring differentially methylated regions, which scale
from a few to several hundred base pairs (Bock 2012). Methylation dependent
immunoprecipitation forms the basis of ChIP-chip and ChIP-seq techniques, which
are simple, efficient and cost-effective, however, they suffer from a few drawbacks;
the heavy dependence of the approaches on distribution of 5mC in the genome, and
the antibody’s specificity.

Polymorphic epimutation at a single base level has not been found as effective as
single nucleotide polymorphism in affecting the phenotype of the organism.
However, larger regions of DNA methylation have been shown to result in phe-
notypic variations. Several differential methylation sites (DMS) constitute a dif-
ferential methylated region (DMR) and identifying them is a challenging task. It
requires a lot of time, if done manually. Many statistical tools like Bayesian
statistics employing hidden Markov’s model have been used to convert many DMS
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into one DMR. Once identified, these DMRs can be used to identify the regions of
the genome directly responsible for variations, as DMRs are associated with phe-
notypic changes (Robinson et al. 2014). Studies in maize have shown that differ-
entially methylated regions in the genome contain spontaneous epimutations, which
produce phenotypic variations while associated with DMRs. Although, sponta-
neous methylation changes are associated with DMRs, however, specific epimu-
tation conferring a phenotypic change has not been yet reported (Eichten et al.
2013). WGBS techniques are adding several novel epimutation marks. Studies of
heritability, stability and expressibility of these epimarks can provide new insights
in epigenetics.

3.6 Histone Modifications and Machinery

Histones are the important nucleoproteins in eukaryotes and are involved in DNA
packaging and gene regulation. Histones belong to a conserved family of small
basic proteins ranging from 11 to 21.5 kDa (McGhee and Felsenfeld 1980). Tightly
packaged region of the DNA forms heterochromatin and loosely packaged regions
form euchromatin. The packaging is based on the post-translational modifications
on amino- and carboxy- terminals of histones, thereby, influencing gene activity
(Rando 2012). The post-translational modifications present on the histone proteins
are in the form of epimarks and a specific pattern of these epimarks on histone
proteins constitutes the histone code. Understanding histone code can solve many
mysteries of regulation of gene expression. Of the many post-translational modi-
fications, methylation and acetylation of lysine residues of the histone H3 play very
important roles in regulating various gene activities (Margueron et al. 2005).
Histone acetylation levels, known to regulate the gene expression in case of biotic
and abiotic stresses, are dependent on activity of histone acetyltransferases and
histone deacetylases. Histone acetyltransferases are known to transfer acetyl group
to lysine residues of the N terminal of histone tails and show positive correlation
with gene activity (Zentner and Henikoff 2013).

Lysine residues carry positive charge, which can be neutralized by the trans-
ferred acetyl group, thereby relaxing the chromatin as it reduces the affinity between
oppositely charged components of nucleosomal complex. Thus, acetylation marks
are associated with active transcription. Histone deacetylases are known to remove
the acetyl group from the histone lysine residues, thereby creating a strong affinity
between components of nucleosomal complex. Deacetylation helps in the con-
densation of the chromatin; therefore, it is generally associated with gene silencing.
Jasmonic acid (JA) regulates activity of two histone deacetylases; HDA6 and
HDA19 in Arabidopsis in response to abiotic and biotic stress, respectively
(Keqiang et al. 2008). JA-regulated pathogenesis-related genes, respond to biotic
stress through HDA19 activity (Wu et al. 2008). Acetylation marks have been
positively correlated with gene expression. Acetylation marks on H3K9 in the
promoter region of stress responsive genes positively correlate with gene expression
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(Misook et al. 2011) Similar studies in Arabidopsis have revealed association of
H3K23 and K3K27 acetylation with coding regions of stress responsive genes (Kim
et al. 2008). An overall increased acetylation has been observed in histone H3 and
H4 of tobacco and Arabidopsis. This increase in acetylation has been correlated
with upregulation of abiotic stress related genes (Sokol et al. 2007).

Methylation is one of the most important epigenetic marks on histone residues
governing the heterochromatinization and expression of genes. Lysine residues are
vulnerable to methylation and can get mono-, di- or tri- methylated. Each
post-translational modification has its specific effect. Genome annotations of reg-
ulatory element, intron-exon border, cell type specific region and specific functional
regions can be performed with the help of chromatin signatures. Histone methyl-
transferases (HMT) and histone demethylases (HDM) are the enzymes known to
methylate and demethylate the N terminal region of the histone tails, respectively.
Apart from DDM, histone methyltransferases SUVH4/KYP (SU (VAR) 3-9
HOMOLOG 4/KRYPTONITE) and SUVH5/6, or SRA-domain
methylcytosine-binding protein Variant In Methylation 1/2/3(VIM1/2/3) are also
involved in the maintenance of DNA methylation (Dhar et al. 2014; Saze 2008).

Histone H3K9 methylation has been known for the heterochromatinization
(Gendrel et al. 2002). In Arabidopsis, vernalization leads to suppression of
Flowering Locus C (FLC) gene activity by heavy accumulation of silencing
markers; H3K9me2 and H3K27me3 marks in the promoter of FLC gene (Kim and
Sung 2012). H3K4 and H3K36 trimethylation has been found associated with genes
suggesting active transcription whereas H3K9 and H3K27 methylation marks are
associated with repressed genes and are also regarded as heterochromatin marks
(Dhar et al. 2009; Zentner and Henikoff 2013).

Aurora and NIMA (Never in mitosis gene A) kinase catalyze phosphorylation of
histone H3 at serine 10 residue and a haspin like protein is known to phosphorylate
histone H3 at threonine 3 residue (Houben et al. 2007). Histone H3 (ser)10ph/(ser)
28ph and H2B(K)143 mono ubiquitinization has been positively correlated with
transcription (Khorasanizadeh 2004). In Arabidopsis, H2B mono-ubiquitinization
led to elevated plant tolerance against necrotic fungal attack (Dhawan et al. 2009).

For mapping global histone modifications and determining transcription factor
binding, ChIP followed by sequencing has been a standard procedure (Mikkelsen
et al. 2007). New variants of ChIP namely, Nano-ChIP-seq and ChIP-exo are
now-a-days used for better resolution and sensitivity (Terooatea et al. 2016). Some
modifications like acetylation and in some cases phosphorylation and ubiqui-
tinization are associated with gene upregulation (Zhang et al. 2007a) whereas bi-
otinylation and sumoylation are associated with down regulation of genes (Chen
et al. 2010). Depending upon the position, amino acid residue and number of
methyl groups attached, methylation has different effects on gene expression.
Contrary to H3K27me3 and H3K9me2, which act as main gene silencing markers,
H3K4me3 and H3K36me2/me3 have been found in actively transcribing regions
(Wang et al. 2009). H3K27me1/me2 and H4K20me1 have been found enriched in
constitutively heterochromatinized and transposon regions (Roudier et al. 2011).
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Gene expression can be altered in response to stress by ATP-dependent chromatin
remodeling dynamics while altering the binding interaction between histone and
DNA sequences (Gutzat and Scheid 2012). SWI/SNF ATPase, a type of chromatin
remodeling protein finds its immense role in development processes and regulation
of a variety of stress-related genes (Bezhani et al. 2007; Walley et al. 2008; Narlikar
et al. 2013). Prolonged heat stress reversibly reduces nucleosome loading to a sig-
nificant extent at Transposable element (TE) loci (Pecinka et al. 2010). Studies in
Arabidopsis have revealed stress-responsive growth arrest due to activity of a
chromatin remodeling gene named as AtCHR12 (Mlynarova et al. 2007).

3.7 Role of Small RNAs

Small RNAs (smRNA) play a major role in gene silencing at transcriptional level
by DNA methylation and at post-transcriptional levels by RNA degradation. They
belong to a non-coding class of RNA, ranging in size from 20 to 27 nucleotides.
They play an important role in the regulation of gene expression by employing
epigenetic mechanism during gametogenesis, fertilization and zygote development
(Slotkin et al. 2009; Bourchis and Voinnet 2010).

siRNAs are the short interfering RNAs which are derived from the transcripts
generated by a plant specific polymerase known as Pol IV. In Arabidopsis thaliana,
a 24-nucleotide siRNA guides the most important pathway of non-CG methylation
called as RNA-directed DNA methylation pathway (RdDM) (Zhang et al. 2007b).
siRNA finds its role in maintenance of heterochromatic loci at repetitive sequences
and controlling the activity of transposons by silencing those (Tran et al. 2005).
Activity of RNAi has been negatively associated with gene expression (Volpe et al.
2002). The RdDM is a primary and most utilized mode of non-CG methylation but
it requires the activity of a distinct group of methyltransferase family DRM1/DRM2
(Law and Jacobsen 2010).

3.8 Epigenetics and Development of New Varieties

As stated earlier, the epigenetic response of a plant occurs at varied levels. The
response could range from methylation of a single nucleotide to a differential
methylated region, from a stress responsive gene to whole genome methylation,
from histone H3 post-translational modification to change in the histone code. The
response to abiotic stress is a complex phenomenon involving many cross-talking
pathways. Though plants simultaneously upregulate and downregulate many genes
in response to stress, analysis of the overall results can reveal whether the plant opts
an avoidance or tolerance mechanism against stress response.

Global demethylation is the most common and instant strategy employed by
plants in response to stress. Abiotic stress has been found to globally demethylating
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the genome in maize (Steward et al. 2002) and rice (Wang et al. 2011). In contrast,
Mesembryanthemum crystallinum plants on exposure to salt stress, showed a
two-fold increase in CpHpG methylation (Dyachenko et al. 2006). According to
Tsaftaris and Dickinson (2000), many plants show increasing methylation in
response to biotic or abiotic stress leading to overall degeneration of genome
activity, however, with the onset of favourable conditions the genome shows hy-
pomethylation for optimum expression. However, Suji and Joel (2010) showed that
drought stress resulted in hypomethylation of drought susceptible varieties whereas
drought tolerant rice varieties were marked with genome hypermethylation. Hence,
it can be concluded that different plants employ different strategies to survive under
stress conditions. Studies in Brassica juncea revealed that drought stress led to
hypomethylation of drought responsive genes, however, hypermethylated regions
increased in number in case of genes involved in basic cellular activities. It follows
that the plant shuts basic activities to a certain extent and activates the defense
mechanism to survive under abiotic stress condition (Sharma et al. 2017).

Tissue culture-induced stress response has been studied in maize by MeDIP chip
technique. The analysis revealed that 67% of the total 479 differential methylated
regions were hypomethylated. In comparison to 75% of the hypomethylated
regions, just 47% of the hypermethylated regions were observed in multiple tissue
culture regenerants confirming the stability of the hypomethylated DMRs (Ji et al.
2015). Comparison of DMR variation under natural conditions and under tissue
culture stress-induced DMR changes suggested that many loci were common.
Therefore, it can be concluded that certain loci are more prone to stress-mediated
methylation. Studies have confirmed the correlation between promoter
hypomethylated changes and expression of certain genes (Stelpflug et al. 2014).

Spatial epigenetic studies in Arabidopsis by immunolocalization revealed
increase in the level of transcriptionally active marks like H3K9ac and H3K4me3
with increasing occupancy of RNA pol II under drought stress, however, rehy-
dration led to decrease in the level of these marks. H3K4me3 marks were decreased
but maintained at low levels on the genome indicating their role in epigenetic stress
memory (Kim et al. 2012). Similar results were obtained during abiotic stress
studies in Zea mays, which revealed a rise in total acetylation levels in the roots of
maize seedlings as compared to control seedlings. H3K9 acetylation marks were
evenly distributed in the nucleus (Zhao et al. 2014a, b). The elevation in the levels
of acetylation positively correlates with increased transcription levels of drought-
responsive genes.

Stress-responsive genes include functional, structural and regulatory genes
(Osakabe et al. 2014). Stress shows a global effect on regulation of gene expression
but stress-responsive genes are affected the most and contribute to stress tolerance
(Fig. 3.3). Stress-responsive genes can express as transcription factors, members of
signal transduction pathways, transporters etc., playing important roles in stress
response. Genes expressing after stress stimuli can be categorized as early
responsive (expressing instantly after stress stimuli) and responsive (expressing at
any point of time during stress).
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Epigenetic response to drought has been studied in detail in case of Brassica
juncea revealing differential hypomethylation of several genes (Kosuke et al. 2017).
These include, genes encoding hydroxyproline rich glycoprotein (HPRG) involved
in lignin deposition to reduce transpiration rates, Acyl CoA binding protein3
(ACBP3) involved in maintaining cuticle and stomatal closure, Serine hydrox-
ymethyltransferase (SHMT) involved in photorespiration, Oxidative stress3 (OS-3)
involved in chromatin remodelling and Chloroplastic drought-induced stress pro-
tein 32 (CDSP-32) involved in oxidative stress response. Activation of all these
genes contributes as a response to drought stress by avoidism (Fig. 3.4). However,
another strategy employed by the plant was upregulation of anti-apoptotic genes by
differentially hypomethylating the promoter regions of these genes, resulting in
delayed programmed death and hence providing an opportunity to the plant, to
withstand such harsh abiotic stress (Sharma et al. 2017).

Since transgenic plants have not so far gained general acceptability due to
various issues, therefore, there is an urgent need to improve the agronomically
important traits of the plants, especially crops using other strategies. Epigenetics
being a source of heritable variation can be of tremendous value for the plant
breeders to select novel phenotypes.
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Chapter 4
Effect of Drought Stress and Utility
of Transcriptomics in Identification
of Drought Tolerance Mechanisms
in Maize

Nidhi Singh, Shikha Mittal and Nepolean Thirunavukkarasu

Abstract Maize crop encounters a number of abiotic and biotic stresses which
reduce the production and the productivity. Abiotic stresses such as drought are
unpredicted environmental disturbances during the crop growth which often lead to
reduced crop yield or complete crop loss in some cases. Drought occurring at
flowering leads to greater yield losses than when it occurs at other developmental
stages. Plant responses at various levels such as morphological, physiological,
biochemical and molecular changes to cope up with the stress. It is very important
to understand the genes involved in drought tolerance as well and their interactions
to breed tolerant hybrids in maize. Transcriptome profiling is useful to understand
the whole spectrum of genes expressed under drought condition. The assay will be
useful to decipher the genes involved in specific pathways and with the help of in
silico analyses, interactions of target genes can be studied. Several transcriptome
studies have been carried out in maize in different stages and in tissues under
drought stress. Genes involved in detoxification, stomatal regulation, photosyn-
thesis, hormone signaling, root architecture and sugar metabolism pathways are
considered as important to achieve drought tolerance. The genes identified through
gene expression assays could be used as candidate genes in selection programmes
to develop drought tolerant hybrids in maize.
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4.1 Introduction

The changing trends in environmental temperature, precipitation and sea levels are
adversely affecting the crops’ production worldwide. Though various biotic and
abiotic stresses affect agricultural crops; drought, cold, flood and heat have been the
most devastating leading to huge yield losses. Drought is an important stress that
relentlessly affects the agricultural output worldwide, especially in arid and
semi-arid regions (Farooq et al. 2012). Drought is a climatic glitch, represented by
deprived moisture as a consequence of sub-normal rainfall, unreliable rainfall cir-
culation, higher water need or an array of all three factors.

Present challenge for researchers is to overcome the problem of water scarcity. It
is the biggest threat our agriculture is now tackling, which needs continuous efforts
of scientists. It is estimated that more than one third of the arable land of the world
is facing the problem of water scarcity. Other types of abiotic stresses often
accompany drought stress, thus making it more complex to study (Barnabás et al.
2008; Farooq et al. 2009; Zlatev and Lidon 2012).

Though plants can tolerate drought up to some extent, however, the degree of
tolerance varies from species to species (Rampino et al. 2006). They cope up with
drought by adopting any of the three strategies; drought escape, drought endurance
and drought avoidance to complete their life cycle. Different levels of complex
interactions among stress factors and integration of morphological, physiological,
biochemical and molecular processes influence plant developmental stages (Farooq
et al. 2009; Zlatev and Lidon 2012). To understand the mechanism of drought
tolerance, it is important to understand the changes in plants that occur in response to
drought stress. The primary responses in plants against drought include reduced leaf
water potential and turgor loss, stomatal closure, cessation of cell enlargement and
growth, and reduction in water content (Farooq et al. 2009). The changes in gaseous
exchange occur as a result in reduction in photosynthetic process and organic solute
synthesis. This ultimately affects photosynthesis, respiration, translocation, ion
uptake, growth factors, carbohydrate and nutrient metabolism, plant growth and cell
elongation. Further, hyped intensity results in photosynthetic arrest, metabolic
imbalance and eventually the death of the plant (Farooq et al. 2009; Jaleel et al.
2008). Drought also modifies CO2 conductance and thus adds to photosynthetic
imbalance by histological and leaf anatomical changes. In the following sections, we
have reviewed the morphological, physiological and biochemical responses of plant
to drought stress followed by responses at molecular and transcriptome levels.

4.2 Morphological Response

Plant responses vary with growth stage, exposure period, stress intensity and level
of tolerance (Jaleel et al. 2008). In the subsequent subsections, the morphological
changes adapted by plants in response to drought as well as to withstand drought
stress conditions have been discussed.
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4.2.1 Plant Growth

Growth is defined as an irreversible proliferation in plant mass resulting from both
cell division (especially in meristems) and cell extension. As a result of complexity
in cell growth and differentiation under drought stress, the morphological transition
occurs that leads to poor growth in plants. The reduced growth is considered as an
adaptive modification in plants to help them avoid energy loss under unfavorable
conditions. Hydrostatic pressure is very essential for cell growth and expansion.
This is the reason that cell expansion is very sensitive to water stress, which directly
or physically reduces growth as a result of low hydrostatic pressure. Weak pho-
tosynthetic activity affects the plant growth, which in turn is controlled by water
supply. Therefore, plant suffers a reduction in photosynthesis under poor water
supply. Limitation posed in by reduced photosynthesis components results in
reduced growth of the plant to conserve the stored energy.

A. Effect on vegetative growth: The early phase is one of the most susceptible
phases in the life cycle of plants under limited moisture conditions as drought
affects both elongation and expansion of cells due to low hydrostatic pressure
(Kusaka et al. 2005; Shao et al. 2008). In maize, for example, elongation of
stem gets reduced under drought stress during vegetative stage. The water stress
condition also affects the rate of tiller appearance that in turn reduces the plant
grain yield. Limited supply of moisture reduces leaf expansion rate. Constricted
moisture during vegetative growth shrinks the leaf area of the plant consider-
ably and therefore carbon usage gets reduced throughout the growing season.
Denmead and Shaw (1960) reported that extended drought during vegetative
stage affects the length of the internodes by affecting cell size development and
assimilate storage.

B. Effect on reproductive growth: Flowering, silking, pollination and grain
formation are the important stages of plant development. Among cereal grasses,
maize is most sensitive crop to drought stress at flowering stage. The flowering
interval in maize is very short and pollen remains viable for a very short time
period. It has been reported that per day delay between pollen shed and silk
emergence reduces sexual fertilization and increases bareness and yield loss
(Sangoi and Salvador 1997). The delicate period lies from one week before
silking to two weeks after silking with probable chances of ovules, kernels and
ears abortion (Uhart and Andrade 1995). There is a delayed silking under
moisture stress so pollen is shed much before the stigmas are formed (Herrero
and Johnson 1981). In maize, the anthesis-silking interval (ASI) increases in
response to the drought condition. Extended dry conditions reduce ear growth
and silk appearance thus escalating ASI. Increased ASI is thought to be a cause
of yield loss as it is highly correlated with kernel set (Byrne et al. 1995).
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4.2.2 Root

One of the important components of water potential is the matrix potential, which is
defined as the energy required by the plant to extract soil water. In low moisture
conditions, this force is greatly enhanced and shows a high matrix potential while in
dry conditions, it increases further which ultimately results in stress of plant. Another
difficulty faced under drought stress is accumulation of solutes in the interior cells of
the roots, which leads to reverse cell osmosis. The probable outcome of reverse
osmosis is membrane collapse and finally the death of the root cells, which adversely
affects the water intake capacity of the plant. Roots being the first to sense the drought
conditions are highly influenced by drought than any other aerial part of the plant.
Early stages of plant development are highly controlled by a well-developed shallow
root system (Johansen et al. 1994). An increase in fresh weight of the roots under
drought stress has been reported probably due to better water utilization than shoots.
The best symptom for morphological identification of drought tolerant crop is max-
imum root fresh weight. In many experiments, the reduction of shoot to root ratio as a
result of dehydration stress is very well documented. Under water limited conditions,
there is a high root to shoot ratio (Wu and Cosgrove 2000) due to better availability of
food assimilates to roots. In maize, drought at seedling stage increases the root growth
and thus adapting plant to drought stress by making the apical cell walls of the root
expansible. Sacks et al. (1997) reported that meristematic cells elongate with reduced
cell division per unit length of tissues and cell under drought stress condition.

4.2.3 Leaf Area

Leaf area is a typical trait for plant photosynthesis and transpiration. Photosynthesis
along with cell-growth are among the primary processes affected by drought stress
(Chaves and Chaves 1991). These processes help plant to attain optimum leaf area
for photosynthesis and dry matter establishment. Drought considerably reduces the
number of leaves per plant, leaf size and longevity. Restricted photosynthetic area
may suppress the leaf expansion due to reduced leaf region (Rucker et al. 1995).

4.2.4 Fresh and Dry Mass

Unpleasant drought conditions may slow the rate of fresh and dry biomass for-
mation (Farooq et al. 2009). Plant yield under drought stress is strongly associated
with the processes of dry mass partitioning and biomass distribution (Kage et al.
2004). Process of dry mass accumulation is affected by the water stress at different
stages of plant growth. The allocation of dry matter between root and shoot and
further partitioning of above ground dry matter into vegetative and reproductive
organ are vital for crop yield under stress condition.
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4.2.5 Yield

The stage and the duration of stress drastically influences the grain yield. Stress
during the early vegetative state has little impact on yield reduction while greatest
harm is done when drought stress continues until post vegetative or the reproductive
stage of plant growth. Rolling of leaf is most immediate response of plant to
drought stress condition at the early vegetative growth. Leaf rolling reduces the rate
of photosynthesis hence negatively influencing the yield. If stress progresses to the
reproductive stage of the plant, it affects the silk extension and ultimately viability
of the pollen grains. If the stress continues further to post-flowering stages, yield is
reduced due to reduction in kernel rows and kernel numbers. Another factor
affecting the grain yield is evapotranspiration. Evapotranspiration is the loss of
water from soil by evaporation as well as loss of water through transpiration. This
inadequate availability of water affects the nutrient availability, uptake and trans-
port. In maize, most sensitive stage affecting crop yield is the three-week period of
silking, and drought stress at this stage results in kernel abortion, and further
continuation of drought stress reduces the seed size.

4.3 Physiological Responses

4.3.1 Photosynthesis

Photosynthesis is one of the main physiological responses of plant negatively
affected by drought stress. Drought badly affects photosystem-II than
photosystem-I. Photosynthetic rate gets adversely influenced by limited CO2 supply
and metabolic processes under stress. Leaf potential becomes low under water
stress and in response to reduced leaf turgor stoma closes. Enzymatic activities slow
down under drought stress due to diminished supply of CO2 to RUBisco that
dissipates the energy in photosynthetic apparatus causing down regulation of
photosynthesis. Photosynthesis promptly depends on relative water content and leaf
potential both of which at low concentration slows the rate of photosynthesis. The
major effect of drought is decreased CO2 availability through limited diffusion
through stomata and mesophyll (Flexas et al. 2004, 2007). This decrease in mes-
ophyll conductance is linked to physical interaction or alterations in the structure of
the intercellular spaces due to leaf shrinkage (Lawlor and Cornic 2002) or to
alterations in the biochemistry (bicarbonate to CO2 conversion) and/or membrane
permeability (aquaporins). This pattern of metabolic changes supports the assertion
by (Cornic 2000) that stomatal closing is the principle cause of decrease in pho-
tosynthetic rate under mild drought.
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4.3.2 Respiration

During respiration process, plants catabolize food for ATP production and other
useful metabolites. Enormous research has been conducted with relevance to
photosynthesis but very less work has been done to find the effect of stress on
respiration. Under drought stress, some studies reported a significant reduction in
respiration rate, some showed no changes at all while some reports concluded to
have increased respiratory rate under water stress condition. Hence, a unanimous
conclusion has not been reached.

4.3.3 Transpiration

Transpiration is a process of evaporation of water from the aerial parts of the plants.
It occurs largely when the stomata remains open for gaseous exchange. Thus, the
degree of stomatal opening regulates the rate of transpiration. Other factors
affecting rate of transpiration are linked to hydration level, humidity, temperature,
leaf number and leaf moisture. Roots withdraw water from the soil and draw it up to
stomatal openings. As water moves all the way through the system, vital nutrients
are transported to different areas of the plant. The stoma releases waste products
such as oxygen into the environment and brings in carbon dioxide. In addition,
transpiration maintains turgor in plants leading to maintenance of water in cells.
Drought often limits the growth of root and shoots, which makes the plant stunted
under plant stress. Reduction in growth is followed by complete or partial stomatal
closure resulting in reductions in transpiration and CO2 uptake for photosynthesis.
Therefore, stomatal closure under severe drought condition influences the photo-
synthesis as well as transpiration rate. The water loss by a plant depends on plant
dimensions and the quantity of water absorbed in the roots. Transpiration cannot
persist if its water uptake efficiency is not in equilibrium with soil water. When
roots are unsuccessful in absorbing water to keep up with the rate of transpiration,
turgor pressure drops and due to reduction in turgor, stomata close to minimize
further water loss. If the loss in hydrostatic pressure stretched through the plant, the
plant wilts and dies from lack of nutrients.

4.3.4 Pigments

Photosynthetic pigments are present in chloroplasts and are mainly involved in the
process of photosynthesis by trapping sunlight and reducing power production in
plants. Soil dryness mainly affects chlorophyll ‘a’ and ‘b’ activity (Farooq et al.
2009) whilst carotenoids still help plants to survive under drought condition. Ratio
of chlorophyll ‘a’ and ‘b’ to carotenoids changes in response to drought stress
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(Anjum et al. 2003; Farooq et al. 2009). Drought induced photosynthesis limitation
has been reported in many studies (Anjum et al. 2003; Lawson et al. 2003) because
of stomatal and non-stomatal limitations (Farooq et al. 2009). Carotenoids act as
antioxidant defense system that helps to overcome the oxidative damage generated
by increased drought stress. b-carotene of all green plants is absolutely bound to the
core complexes of PS-I and PS-II. It plays a unique role in protecting photo-
chemical processes and sustaining them (Havaux 1998). Drought has the ability to
decrease the concentration of chlorophylls and carotenoids (Havaux 1998;
Poormohammad Kiani et al. 2008), mainly with the generation of reactive oxygen
species (ROS) in the thylakoids (Ramachandra Reddy et al. 2004).

4.4 Biochemical Responses

4.4.1 ROS and Antioxidative Enzymes

The production of ROS is one of the earliest responses in any type of abiotic stress.
Decreased metabolic machinery has been known to trigger the accumulation of free
radicals under desiccation. A drop in rate of photosynthesis and limited CO2 fix-
ation give rise to a number of ROS such as H2O2, O2 and OH−. These ROS are
essential when present in minimal amount but can become deterrent when present
in large amounts causing oxidative damage to the plants under water stress (Arora
et al. 2002). Many studies on maize have reported increased ROS under drought
stress condition. Photorespiration being a wasteful process is the main source of
ROS accumulation accounting for approximately 70% of the total hydrogen per-
oxide production. To minimize the ROS level and fight the oxidative stress caused
by them, plants express antioxidative enzymes to strengthen their antioxidative
defense system. The antioxidant defense system is comprised of various enzymes
such as catalase, superoxide dismutase, ascorbate peroxidase, peroxidase and helps
the plant to eradicate excess ROS and minimize the damage caused by them
(Li et al. 2013). The equilibrium between ROS production and antioxidative
defense system decides the stress responsive pathway of the plant and thus the
ability of antioxidative defense system of the plant is directly correlated with the
drought resistance of the plant (Anjum et al. 2011). Chugh et al. (2011) reported
increased activities of catalase, peroxidase and ascorbate peroxidase in a drought
tolerant variety of maize. Polyethylene glycol (PEG)-induced water stress is thought
to be relieved by increased ROS, (abscisic acid) ABA accumulation and antiox-
idative enzymatic activity. In plant cells, different mechanisms are available to
prevent the production of toxic molecules but oxidative damage remains an
expected problem as it causes perturbations in metabolism (Ramachandra Reddy
et al. 2004). In maize, glutathione reductase (GR) and dehydroascorbate reductase
(DHAR) were solely located in mesophyll cells whereas most of the superoxide
dismutase (SOD) and ascorbate peroxidase (APX) were located in mesophyll and
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bundle sheath cells. Kingston-Smith and Foyer (2000) suggested that the oxidative
damage under stressful conditions in C4 plants remain confined to bundle sheath
cells because of inadequate antioxidant protection in this tissue.

4.4.2 Lipid Peroxidation

Lipids are chief components of the membrane system and thus maintain the
integrity of the system. Increased ROS production in water stress condition
damages the membrane integrity of the cell by the lipid oxidation (Liljenberg 1992).
The concentration of malondialdehyde (MDA) content increases which is respon-
sible for damages in the membrane system by altering its fluidity, protein
cross-linking, transport etc. (Sharma et al. 2012). Ge et al. (2006) conducted a
systematic study to know the effect of drought on antioxidative and lipid peroxi-
dation system of maize plant. He found a significant increase in ROS scavenging
enzymes with increase in stress severity along with increased MDA content.
Increased MDA, indicator of lipid peroxidation, was also reported by Yin et al.
(2012) in two different types of maize plant along with other biochemical changes.
The alteration in membrane lipids has become a major biomarker of plant under the
stress condition.

4.4.3 Osmolytes Accumulation

Regulating water potential in water stressed condition can be a rescue mechanism
for plants facing stress. Presence of water ion/channel proteins and osmolytes has
been reported to regulate the osmotic adjustments under drought stress (Ingram and
Bartels 1996). Osmolyte accumulations result in reduction of osmotic potential and
thus maintain cell turgor pressure and water uptaking capacity to sustain the plant’s
physiological processes. In support of this, accumulation of sugars such as raffinose
family oligosaccharides (RFO), fructose and trehalose have been reported in
drought stressed condition (Wanek and Richter 1997). Trehalose, a non-reducing
saccharide when present in definite amount acts as a stabilizer of protein and cell
membranes (Paul et al. 2008). Proline has been considered as one of the most
important osmolytes that accumulates in plants in response to different environ-
mental stresses including water stress. An investigation on importance of osmolytes
accumulation under drought stress concluded that osmolytes are beneficial for plant
when occur in root tips as they allow deeper root development and increased access
to the water deep inside the soil (Serraj and Sinclair 2002).
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4.4.4 Carbohydrates Biosynthesis

Association of soluble sugars with drought tolerance is highly reported. Alteration
in carbohydrate content is particularly important because of their proximal asso-
ciation with plant’s physiological processes. Sugar accumulation upon drought
exposure results in osmoregulation as well as induction of sugar-related signaling
pathways including mitogen-activated protein kinase (MAPK), Ca2+ and calmod-
ulins in plants (Kaur et al. 2007). Trehalose is the minimally needed simplest sugar
which acts as an osmoprotectant while other soluble sugars, chiefly sucrose, have
shown to increase in drought stressed condition. Sucrose being a compatible solute
acts as an osmolyte and maintains plant’s water potential. Sugar accumulation is
also important in maintaining other processes. Phosphofructokinase, an important
enzyme for glycolytic pathway usually degrades in dehydration condition. In vitro
studies have shown the involvement of sucrose, maltose and trehalose in enzymatic
stabilization under dehydration (Carpenter et al. 1987).

4.5 Molecular Responses

4.5.1 Transcriptional Factors (TFs)

Under abiotic stress, plants often influence the expression of numerous transcrip-
tional regulators (TFs) which in turn up-regulate an array of downstream genes for
survival and stress adaptation. Several families of TFs and cis-elements have shown
to play significant roles in promoter region of stress-related genes and thus control
the expression or suppression of these genes. So far, at molecular level, studies
focused on identifying plant response to the drought stress condition involving
initiation of stress-responsive and stress tolerating genes. ABA stimulation in plant
controls stomatal closure to regulate transpiration and stress responsive transcrip-
tional factors under drought conditions (Cutler et al. 2010). Till date, more than 7%
of the coding sequences regulating plant responses to environment have been
explained (Udvardi et al. 2007). Probably these TFs are thought to regulate the plant
late phase under dehydration stress while some may regulate other drought
responsive signaling pathways for activating drought responsive genes for tolerance
(Kilian et al. 2012).

Nuclear factor Y is a ubiquitous ABA-dependent TF that has been reported to be
strongly expressed under drought in maize crop at both transcriptional and post
transcriptional level (Nelson et al. 2007; Li et al. 2008a, b). In maize, TF
ZmNF-YB2 is shown to have an equal role as AtNF-YB1 in Arabidopsis in con-
ferring improved performance under drought conditions (Nelson et al. 2007). A TF
belonging to Abscisic acid Stress Ripening protein (ASR) family, ZmASR-1 pro-
tein influences branched chain amino-acid biosynthesis and maintains kernel
yield in maize under water deficit conditions (Virlouvet et al. 2011). An another
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group of TF family, bZIP plays a vital role in ABA signaling along with other
functions in plant growth and abiotic stresses. ZmbZIP72, a bZIP transcription
factor gene in maize was found to be over-expressed in various organs by drought,
salinity and ABA in seedling stages. Similarly, AP2, ERF, dehydration-responsive
element-binding protein (DREB), Cys2His2 Zinc Finger (C2H2 ZF) TFs, MYB,
bHLH are important plant stress-responsive TFs which have been shown to express
or hold an important role in plant stress tolerance mechanism (Ying et al. 2012).

4.5.2 Hormonal Regulation and Signaling

Phytohormones regulate the very aspect of plant growth and development and
enable plants to cope with various environmental conditions. They initiate specific
signaling pathways to induce responsive gene expressions in stress condition. ABA
is the key phytohormone governing plant responses in drought and other abiotic
stress conditions. Importance of other phytohormones such as, cytokinins, brassi-
nosteroids, auxins, jasmonate etc., in abiotic stress tolerance is also discovered.

ABA accumulation is very rapid in any stress condition and triggers downstream
stress-responsive signaling that helps the plant to survive the stressed condition.
Most of the TFs work in an ABA-dependent manner while studies suggested the
presence of both ABA-dependent and ABA-independent regulatory systems
(Shinozaki and Yamaguchi-Shinozaki 1996). In drought stress condition, ABA
accumulation in the shoot induces stomatal closure to reduce water loss from the
plant. Equilibrium between ABA biosynthesis and ABA catabolism is critical for
plant survival.

Cytokinins, known for their role in cell division, growth and differentiation,
decrease under drought stress, which makes shoots more responsive to ABA and
ultimately resulting in stomatal closure (Goicoechea et al. 1997). Though little
research has been done on the role of auxins in drought condition but a drop in
indole-3-acetic acid (IAA) content under drought stress and changes in other genes
of IAA biosynthesis pathway and signaling in rice implied its role in drought
condition (Du et al. 2013). IAA functions antagonistic to ethylene in ABA regu-
lation and so shut down the ethylene-initiated ABA signaling in plants (Sakamoto
et al. 2008). Under drought stress, low level of auxin and increased production of
ABA appears to provide drought tolerance in plants.

Salicylic acid is a hormone-like substance, which is important in improving
drought tolerance ability in plants. Okuma et al. (2014) investigated salicylic acid
accumulating Arabidopsis mutant and confirmed that these mutants were more
tolerant to drought stress than the wild type by inhibiting light-induced stomatal
opening. Jasmonic acid (JA) is also a signaling molecule affecting plants response
at molecular level. It imparts drought tolerance by lowering oxidative stress and by
enhancing expression of antioxidative enzymes. JA and ABA cross talks in sig-
naling pathways and their interaction helps to regulate the plant signaling cascades
in drought conditions.
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4.6 Transcriptomes

Nearly, every cell of every organism is composed entirely of the same genome and
has same set of genes. Thus, disparity in response of plant in different environ-
mental conditions is entirely because of the differential expression of genes in
different stages of cell development. The transcriptome consists of all RNA,
including, rRNA, tRNA, mRNA, and non-coding RNAs expressed in one or a
population of cells at a given moment. Decoding different transcriptomes associated
with different cells at different times gives a more clear view and deeper insights
into specific responses of cells. With the comparative analysis of transcripts of an
organism in a particular condition, researchers can determine when genes express or
switch off.

4.6.1 Role of Transcriptome in Maize for Drought
Stress Tolerance

Accessibility of transcriptome and whole-genome sequences in public databases
and with the upgradation of bioinformatics tools, detection of genetic variation in
genotypes and within genotypes has become easier and more cost-effective. Maize
(Zea mays spp. mays L.) is very sensitive to water constraints, particularly during
flowering, pollination and embryo development. Therefore, it is important to locate
candidate genes and unravel molecular mechanisms in response to drought in maize
to accelerate its genetic improvement through marker-assisted selection. A general
idea of identification and exploitation of gene for crop improvement has been
explained in Fig. 4.1.

The progress in transcriptome analysis techniques, sequencing and bioinfor-
matics, the genetic basis of drought tolerance in maize has been further improved.
Gene expression studies in maize in response to water stress have been investigated
in roots (Poroyko et al. 2007), seedlings (Zheng et al. 2004), and developing ear
and tassel (Zhuang et al. 2007). Different types of transcriptomic techniques are
now available such as array-based, whole-genome-based and candidate-based to
understand the gene expression.

4.6.1.1 Array-Based Transcriptome

In mid 1970s, the base for the development of the novel techniques of microarray
was formulated when it became possible to monitor the level of expression of
nucleic acid by fluorescent labeling. Microarray technology exploits the basic
fundamental characteristic of nucleic acid to anneal with its complementary nucleic
acid sequence by hydrogen bonds formation. In this technique, spotted samples
(cDNA, DNA and oligosaccharides) with known identities are arrested on a solid

4 Effect of Drought Stress and Utility of Transcriptomics … 83



support like glass, silicon, and/or nylon membranes. Each spot represents a single
gene, and thus a parallel gene expression for thousands of genes becomes possible
at the same time.

Microarray has been successfully employed to maize crop under a range of
abiotic stresses for locating potential candidate genes. A cost effective oligonu-
cleotide microarray was developed for the maize community for gene expression
analysis in maize. It consists of a total of 5,745,270 mer oligonucleotides repre-
senting 25,969 ESTs assemblies, 20,206 singleton ESTs (detected only in a single
cDNA library), 9,707 assembled maize sequences, 804 non-redundant repeat ele-
ments, 467 organelle sequences, 288 maize community favorites and 11 transgenes.
Replicated baseline expression profiles have been generated for 18 tissues and
deposited in a database (www.maizearray.org). Advanced and commercial alterna-
tive to the public 70-mer array was developed by affymetrix known as the GeneChip
Maize Genome Array. This array contains 17,555 probe sets, spanning 14,850 maize
transcripts representing 13,339 maize genes. These arrays have 25-mer probes.

Germplasm

Preliminary phenotyping
Field

Greenhouse

Seedling stage
Flowering stage

Post-flowering stage

Selec on of genotypes

Comprehensive drought treatments

Gene expression assay

Differen ally expressed genes

Func onal annota on
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drought-responsive 

genes
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of expressed genes 

Selec on of target genes

Deployment of genes

Drought tolerance

Quality check
Trimming
Mapping

qRT-PCR

Root
Shoot

Other ssues

Tissue-specific
Stage-specific

Expression in other experiments
QTL mapping

Associa on mapping 

Marker assisted selec on
Recombinant breeding

Cloning
Transgenics

Gene edi ng

Fig. 4.1 Identification of drought tolerant genes through transcriptome approach
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A recent advance includes whole genome transcript profiling with a 100 K Maize
Affymetrix Gene Chip Array, which contains 100,000 probe sets to detect transcripts
from Zea mays (Xu et al. 2009). Using microarray chip experiments, gene expres-
sion profile under drought stress have been studied in different maize parts including
roots, leaves and kernels (Zheng et al. 2004; Hayano-Kanashiro et al. 2009; Marino
et al. 2009; Luo et al. 2010; Humbert et al. 2013).

4.6.1.2 Whole Genome Transcriptome

Though microarray studies are relatively inexpensive and the data can be easily
generated and analyzed but the detection is limited only to the sequences and
homologues on the array. Next generation sequencing (NGS) of RNA (known as
RNA-seq) has revolutionized transcriptomic studies by providing scope of multi-
dimensional examination of whole cellular transcriptome much more efficiently,
allowing identification of novel transcripts (Wang et al. 2009).

High-throughput RNA sequencing (RNA-seq) identifies the abundance of RNA
and promises a comprehensive picture of the transcriptome, allowing for the full
annotation and quantification of all genes and their isoforms across samples. This
technology is extensively applied to identify novel transcripts, study gene expres-
sion differences, gene fusion events, alternative splicing and RNA editing.

Several studies have exploited RNA-seq to study transcriptome of many plant
species including sorghum (Johnson et al. 2014), tea plant (Liu et al. 2016), maize
(Song et al. 2017), lentil (Singh et al. 2017), Arabidopsis (Filichkin et al. 2010) and
rice (Lu et al. 2010; Zhang et al. 2010). Recently, RNA-seq has become popular to
study maize transcriptome and thus so a detailed transcriptome of leaf, root,
reproductive leaf meristem and inflorescence has been developed in maize using
RNA-seq (Li et al. 2010; Eveland et al. 2010; Opitz et al. 2016; Song et al. 2017).
Many comparative studies have been made to test the effectiveness of microarray
and RNA-seq in providing the genome-wide expressions in maize (Sekhon et al.
2013). RNA-seq provided extended coverage of the genome along with clarity in
expression patterns among paralogs. In yet another study by Hansey et al. (2012),
whole seedlings of 21 maize inbred lines were sequenced from diverse North
American and exotic germplasm. Kakumanu et al. (2012) used RNA-seq to analyze
drought-stressed and well-watered fertilized ovary and basal leaf meristem tissue of
maize. The study showed more number of drought responsive genes in ovary
(1500) than leaf meristem.

4.6.1.3 Candidate Gene-Based Transcriptome Analysis

Candidate gene is a gene governing a particular trait in an organism at any said
environment or condition. Candidate gene approach is based on three successive
steps. First is to identify a potential candidate gene based on the physiological,
biological and functional importance of the gene in question to that condition or
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environment or based on linkage data of the locus under study. This is limited to
existing knowledge of genes. In the second step, a molecular polymorphism or
genetic variant is revealed to calculate statistical co-relation between candidate gene
polymorphism and phenotypic variation or the candidate gene can be co-localized
on a genetic linkage map to look for the linkage between candidate gene and loci
being characterized. Detecting polymorphism in laboratory often involves
sequencing of the case and control ones. The third step tests the validity of asso-
ciation and segregation from correlative experiments (Kwon and Goate 2000).

There exist a number of ways to detect candidate genes such as prior knowledge
of the biological pathways, linkage studies, expression studies, and quantitative
trait locus (QTL) analysis and genome wide association studies (GWAS). Genome
wide association mapping and QTL mapping are the genomic tools, which identify
a region that may be on or near to a potential candidate gene. As the identified
suspected potential candidate gene is believed to have a role in the said biological
pathway of the desired trait, finding an association by GWAS studies confirms its
role in that pathway (Korte and Farlow 2013).

4.6.2 Important Gene Families Identified Using
Transcriptomes and Their Role in Stress Tolerance

Harb et al. (2010) made comparisons between moderate and progressive microarray
data that showed specific association of cell wall expansion genes under moderate
stress while same genes were shown to be down-regulated in the progressive
drought condition. The quantification of expansin genes i.e., EXPA3, EXPA4,
EXPA8, EXPA10, and EXPANSIN-LIKE B1 was done where most of the genes
were found to be expressed in moderate drought stress.

DREB TFs belongs to AP2/ERF superfamily and has have been identified to be
one of the main transcription factors to be involved in improving drought tolerance.
DREB binds to dehydration responsive element (DRE) in the promoter region of
many drought and/or cold stress-inducible genes (Liu et al. 1998). Over-expression
of isoforms of DREB, (DREB2A-CA) protein in transgenic plant imparts signifi-
cant drought and heat tolerance (Sakuma et al. 2006). Liu et al. (2013) cloned 18
ZmDREB genes of maize B73 genome and analyzed phylogenetic relationships and
synteny with rice, maize and sorghum. They explored a significant link between
genetic variation between ZmDREB2.7 and drought tolerance at seedling stage.
Further analysis revealed that the DNA polymorphisms in the promoter region of
ZmDREB2.7 was associated with different levels of drought tolerance among maize
varieties.

Humbert et al. (2013) reported molecular responses in maize to drought and
nitrogen stresses individually as well as in combination by customized Affymetrix
maize microarray. Their study concluded effects of mild and severe drought stress
on plant’s photosynthetic machinery, Calvin cycle, sucrose and starch metabolism.
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The genes involved in photosynthesis and Calvin cycle were severely
down-regulated while that of later two (sucrose and starch metabolism) were found
to be up-regulated. Genes involved in amino acid biosynthesis mainly for
asparagines and proline were also over-expressed in this study.

NGS provides more lucid view into the DNA variation, polymorphism detection,
marker development and gene expression analysis (Barabaschi et al. 2011;
Mastrangelo et al. 2012). Xu et al. (2014) studied transcriptome of maize reference
genome B73 by RNA-seq and compared gene expression in fertilized ovaries and
basal leaf meristem tissues collected under drought-treated and well-watered con-
ditions. The study identified 6,385,011 SNPs from 15 maize inbreds and B73
reference genome. Several genes such as ADP-glucose pyrophosphorylase
(GRMZM2G163437), glucosyltransferase (GRMZM2G179063), putative
calmodulin-binding protein (GRMZM2G466563), leucine-rich repeat receptor-like
protein kinase family protein (GRMZM2G428554) were identified to involve in
drought tolerance (Table 4.1) (Xu et al. 2014).

4.7 Conclusions

Drought stress is one of the major abiotic stresses that affects the crop growth of
maize and leads to low yield. Drought affects all developmental stages and plants
respond at different levels; morphological, physiological, biochemical and molec-
ular. At morphological level, drought stress responses include reduced plant
growth, high root to shoot ratio, reduced number of leaves per plant, reduced leaf
size and longevity, low grain yield etc. Physiological responses include decrease in
respiratory rate, photosynthetic rate as well as transpiration rate due to stomatal
closure. At biochemical level, ROS production, osmolyte accumulation and
biosynthesis of carbohydrates are the major responses. At molecular stage, tran-
scription factors and phytohormones play major role in regulation of drought tol-
erance. The progress in transcriptomic approaches for understanding the gene
expression identified various drought-related transcription factor gene families from
both ABA-dependent and ABA-independent pathways. These genes and pathways
would be helpful for the development of drought tolerant maize hybrids.
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Chapter 5
Physiological and Molecular Basis
of Abiotic Stress Tolerance in Wheat

H. M. Mamrutha, Rajender Singh, Davinder Sharma,
Karnam Venkatesh, Girish Chandra Pandey, Rakesh Kumar,
Ratan Tiwari and Indu Sharma

Abstract Wheat is the second most important cereal crop of the world occupying
about 220 million hectares area (mha) with a production of 716 million tons and
accounts for 20% dietary protein of the people across world. Due to its significant
contribution to global food security, it is very much essential to maintain the steady state
in its production. Most wheat growing regions are affected by multiple abiotic stresses
like drought, heat, salinity and water logging, either alone or in combination. It has been
predicted that the yield of wheat will be lowered by 22% in the coming years due to
significant changes in temperature and rainfall. An estimated 65 mha of wheat area
worldwide would be affected by drought. Hence, having the comprehensive knowledge
on existing information on major abiotic stresses of wheat and their physiological and
molecular basis would help us to address in future research gaps. A compilation of
different abiotic stress adaptive mechanisms, associated physiological traits, molecular
markers, a cascade of gene networks involved in the development of transgenic wheat
for drought and heat stress tolerance has been presented. This inclusive information will
be useful to wheat researchers for further wheat improvement.

Keywords Wheat � Heat stress � Drought stress � Phenotyping
Molecular markers � Transgenics

5.1 Introduction

Wheat is the most widely grown crop in the world, with over more than 220 million
hectares of cropland producing 715 million tons of food grain with a productivity of
3.2 tons per hectare (FAO 2015). Recent projected global demand indicates that
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world will need around 1090 million tons wheat by 2050 from its current pro-
duction level. This production target has to be achieved with an annual production
growth of 1.6% in the changing climate scenario (Paroda et al. 2013). According to
the fifth assessment report of the Intergovernmental Panel on Climate Change
(IPCC 2014), the globally averaged combined land and ocean surface temperature
data shows a warming of 0.85°C (0.65–1.06) over the period from 1880 to 2012.
For the three main staple crops i.e. wheat, rice and maize in tropical and temperate
regions, climate change will negatively impact production and with increasing food
demand, would pose large risks to food security globally. Half of the wheat-
growing areas of the Indo-Gangetic Plains in India would likely become heat
stressed by 2050 (Ortiz et al. 2008).

Heat and drought adversely affect various physiological processes like plant water
status, electrolyte conductance, dissipation of excess heat, assimilate partitioning,
accelerated senescence and finally reduced yield (Wahid et al. 2007; Hasanuzzaman
et al. 2013). High temperature alters the integrity and functions of biological mem-
branes by deforming the tertiary and quaternary structures of membrane proteins
(Hemantaranjan et al. 2014). Tolerance to heat and drought stress is a complex
phenomenon and wheat exhibits different tolerance mechanisms to adapt to maintain
its yield. For example, it can minimize the exposure to heat stress by shortening its
grain filling duration with an accelerated rate of dry weight accumulation or can
exhibit the stay green behavior to prolong its grain filling to sustain its yield.
Although there is considerable variation among genotypes in response to heat and
drought stress, relatively little is known about the critical genes or quantitative trait
loci (QTL) controlling heat and drought tolerance due to its quantitative nature.
Often, consistent high-temperature and perfect drought conditions cannot be guar-
anteed in field and lack of various natural factors in controlled experiments makes it
impossible to provide an effective solution. Further, tolerance at one growth stage
may not be correlated with tolerance at other growth stages, which further compli-
cates the situation. Hence, direct selection for these tolerances become extremely
difficult by traditional breeding because of large genotype � environment interaction,
lack of effective tolerance genes in different genetic backgrounds and different
expression of tolerance depending on trials. In addition, there is no reliable selection
criterion for thermo- and/or drought-tolerance that may be used over the years and
generations. Consequently, the genetic dissection of the quantitative nature of com-
plex traits is a prerequisite to allow cost-effective applications of genomics-based
approaches (Collins et al. 2008). A detailed understanding of the wheat crops’
responses to heat and drought stress, especially the physiological and molecular basis
of yield loss and adaption mechanisms would assist not only in identifying future
areas of research gaps but also will help in prioritizing the future roadmap to mitigate
the effect of these stresses. Here, we have compiled the information on different
abiotic stress adaptive mechanisms, associated physiological traits and cascade of
gene networks operating in wheat under abiotic stresses. An update is also provided
on molecular markers reported to be associated with different traits associated with
abiotic stresses. This inclusive information will be useful to wheat researchers in
developing climate-smart-improved wheat cultivars.
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5.2 Heat and Drought Adaptive Mechanisms in Plants

Plants adapt to abiotic stresses mainly by three important mechanisms; stress
escape, stress tolerance and stress avoidance. These mechanisms are in turn gov-
erned by many associated traits (Fig. 5.1). In escape mechanism, the plant senses
the future occurrence of stress and adjusts its phenology in such a way that the
critical stages (such as grain filling) of plant do not experience stress. In tolerance
mechanism, the plant experiences the stress and withstands the stress condition by
activation of different stress responsive genes, osmolytes and other pathways. Stay
green behaviour involves tolerance to low water potential, cooler canopies, active
photosynthetic state to sustain supply of current assimilates, better radiation use
efficiency, and long grain filling period to maintain grain filling in elevated tem-
peratures. Avoidance is the maintenance of an optimum plant water status by
reducing water loss (by stomatal closure, development of trichomes or wax on
stems and leaves, leaf rolling, better leaf angle to avoid direct sun exposure,
senescence of older leaves, etc.) or maximizing water uptake (by better root
architecture and growth).

5.3 Heat and Drought Stress Phenotyping
Under Field Conditions

The phenotyping for heat stress under field condition is routinely done by com-
paring different traits under timely sowing (mid-November) and late sowing con-
ditions (mid-December), whereas for drought stress, the phenotyping is done
mainly by comparing the traits under irrigated and drought/rain fed conditions in
the field. The different category of traits for comparison includes phenological,
agronomical and physiological traits.

STRESS AVOIDANCE

Reduction in leaf area
Increased pubescence
Leaf rolling
Leaf reflectance
Epicuticular wax accumulation
Deep rooting system

STRESS ESCAPE

Plants complete their
critical stages of life cycle
before the onset of stress

STRESS TOLERANCE

Osmotic adjustment
Maintenance of
membrane integrity
Increased expression of 
stress genes

Fig. 5.1 Abiotic stress adaptive mechanisms and their associated traits in plants
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5.3.1 Phenological Traits

In wheat, days to heading (DH), days to anthesis (DA), days to maturity (DM) and
grain filling duration (GFD) are recorded under control and stress conditions for
comparison. DH is calculated as days taken from sowing to the emergence of 75%
of ears (spikes) in a plot. DA is days taken from sowing to the emergence of anthers
in 75% of plants in a plot. DM is the total days taken from sowing to maturity when
all plants in a plot show natural senescence and the grains become hard and fit for
harvesting. GFD is the days between the date of anthesis and physiological
maturity. It has been observed that under drought/heat stress conditions, the
heading/anthesis/maturity occurs early compared to control conditions.

5.3.2 Agronomic Traits

Agronomic traits like plant height (PH), productive tillers (PT), biomass (BM),
spike length (SL) and thousand grain weight (TGW) are known to be affected under
drought/heat stress conditions. PH is measured at the time of maturity from the
ground level up to the terminal spikelet, excluding the awns. Before harvesting,
productive tillers per plant or per plot are counted. Biomass per plant is the weight
of the whole plant with spikes and foliage after harvesting. Spike length is mea-
sured from the base to the tip of the spike excluding awns from uniform plants in a
plot.

5.3.3 Physiological Traits

Various physiological traits are measured to quantify the extent of stress effects on
wheat plants. The physiological traits and available methods for their measurements
are listed in Table 5.1 (Tiwari and Mamrutha 2014).

5.4 Heat/Drought Susceptibility Index (HSI/DSI)

The HSI and DSI are routinely used for identifying heat/drought tolerant wheat
genotypes. The HSI/DSI is calculated by the method suggested by Fischer and
Maurer (1978) with the following formula: HSI/DSI = (1 − Xh/X)/(1 − Yh/Y),
Where, Xh and X are the phenotypic means for each genotype under stress and
control conditions, respectively, and Yh and Y are the phenotypic means for all
genotypes under stress and control conditions, respectively. The genotypes with
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HSI/DSI score of 1 and below 1 fall under the tolerant category and those with
values greater than 1 fall under the susceptible category.

5.4.1 Novel and Precision Field Phenotyping for Heat Stress
Tolerance Studies

Several efforts have been made to decipher traits/genes responsible for imparting
high temperature tolerance in wheat. Both controlled as well as field-based studies
have been undertaken in this regard. Lack of sufficient precision in simulating the
ambient temperature dynamics and micro-environments prevailing in the field or
repeatability of results in the field have been the severe bottlenecks. Hence, at
ICAR-IIWBR, Karnal, India, a phenotyping method for screening wheat genotypes
under high temperature using state-of- the-art Temperature Controlled Phenotyping
Facility (TCPF) was developed, which ensures uniform crop stand. This allows
screening of several wheat genotypes in a large plot size (simulating the fields) at a
desired temperature at any stage of crop growth, while allowing plants to grow in
the natural environment during rest of the period. To maintain the diurnal cycle
during temperature stress treatment, temperature regulation in TCPF is manipulated
based on the ambient temperature so that the desired difference between the tem-
perature inside and outside the structure is maintained. A boiler-based heating
system is utilized for increasing temperature in which the warm water runs through
a network of pipelines hanging from the roof with several inlets and outlets that
avoids formation of temperature gradient from one end to another in the structure.
Integrated and automatically governed split air conditioners run through a control
panel for cooling purposes. To maintain required humidity levels, a mist system
provides fine-water droplets and the drip system provides irrigation (Fig. 5.2). Once
the required temperature for stress treatment is over, the structure gets open and the
crop again gets natural environment.

Lack of uniformity of plant stand while conducting a field experiment can
substantially contribute to errors in the prediction of association between plant

Fig. 5.2 Temperature controlled phenotyping facility at ICAR-IIWBR, Karnal, India
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phenotype and genotype. Among the several factors that contribute to experimental
errors, inconsistent seeding depth and plant spacing are the important ones. This
often occurs when seeds are sown by hand or seed drills. Hence, an improved
planting method was devised for field experiments. The method involves a tool
designed for dibbling seeds and a protocol to place seeds uniformly in the soil. The
advantage of the new methods over conventional methods of sowing is that the new
method improves the consistency in plant spacing and depth of seeding substan-
tially. The reduction in error and the low coefficient of variation (CV) for the plant
traits measured with the new method indicates enhanced precision in measured
phenotypes under field condition relative to other methods. There is a clear
advantage of this integrated method in differentiating high temperature response of
a large number of genotypes of wheat with greater precision. The novel tool
developed for ensuring uniform crop establishment and TCPF together can enhance
the precision in field phenotyping for various abiotic stresses, in addition to heat
stress (Sharma et al. 2016, 2018).

5.5 Generation of Genomic Resources and Their
Utilization Under Heat and Drought Stress Tolerance

Breeding efforts to improve drought and heat tolerance have been hindered due to
quantitative genetic basis of these traits. Marker-assisted selection (MAS) could be
a great asset for plant breeders to attain this goal. Therefore, genomics-assisted
improvement of abiotic stress tolerance of crops will increasingly rely on the
quantitative trait locus (QTL) mapping approach (Collins et al. 2008). There are
basic requirements for the genetic mapping of QTL: mapping population showing
segregation for trait values, and genotypic data for the population.

Different types of mapping populations may be used for mapping depending on
the genetics of the trait of interest. F2 populations and back cross populations are
the simplest type of mapping populations for self-pollinated species like wheat. The
main advantages of these populations are that they are easy to develop and can be
obtained in a short time. These populations are used for mapping traits having
Mendelian inheritance, but are unsuitable for quantitative traits. Recombinant
inbred lines (RILs) and doubled haploid (DH) lines represent permanent and
immortal mapping populations as their genotypes are stable over generations.
Selfing of individual F2 plants derived from F1 hybrids allow the development of
RILs, which are near homozygous lines. Haploid production followed by chro-
mosome doubling results in creation of genetically pure DH lines within a relatively
short period of time. The major advantage of RILs and DH population are that they
are true breeding lines. This allows replicated trials across different locations and
years, which is a major requirement for phenotyping a quantitative trait influenced
by environment.
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The availability of molecular markers in the 1980s opened a new realm for
quantitative genetics and breeding. In the last two decades, DNA-based molecular
markers have become the dominant marker system for genetic analysis. These
molecular markers are especially useful to breeders for selecting QTL and genetic
linkage map construction. A genetic linkage map of a species or experimental
population shows the position of its genetic markers relative to each other in terms
of recombination frequency along a chromosome (Collard et al. 2005). The most
commonly used recent molecular markers for construction of the physical and
genetic linkage maps are Simple Sequence Repeat (SSR), Single Nucleotide
Ploymorphism (SNP), Diversity Array Technology (DART) (Litt and Luty 1989;
Tautz et al. 1986) and others include Restriction Fragment Length Polymorphisms
(RFLPs) (Botstein et al. 1980), Amplified Fragment Length Polymorphisms
(AFLPs) (Vos et al. 1995) and Random Amplified Polymorphic DNA (RAPD)
(Williams et al. 1990). Detailed genetic linkage maps (Van Deynze et al. 1995;
Nelson et al. 1995a, b; Marino et al. 1996) and physical maps (Delaney et al.1995;
Mickelson-Young et al. 1995) using RFLP markers have been published for all
seven homeologous chromosomes in wheat.

5.5.1 Chromosomal Regions Associated with Heat
and Drought Stress Tolerance

Significant genetic variation for traits associated with drought and heat tolerance
exist in wheat germplasm. Therefore, several QTL mapping studies related to heat
and drought stress tolerance have been conducted in wheat (Quarrie et al. 1994;
Morgan and Tan 1996; Byrne et al. 2002; Yang et al. 2002; Kuchel et al. 2007;
Mathews et al. 2008; Rebetzke et al. 2008; Peleg et al. 2009; McIntyre et al. 2010;
Pinto et al. 2010; Vijayalakshmi et al. 2010; Golabadi et al. 2010; Maccaferri et al.
2011; Alexander et al. 2012; Bennett et al. 2012; Kumar et al. 2012; Nezhad et al.
2012; Paliwal et al. 2012; Christopher et al. 2013; Tiwari et al. 2013; Mason et al.
2010, 2011, 2013; Acuna et al. 2014; Talukder et al. 2014; Mondal et al. 2015;
Sharma et al. 2016). Kumar et al. (2012) identified three major and consistent QTLs
for chlorophyll fluorescence, chlorophyll content and leaf temperature associated
with drought tolerance on chromosome 2B, 3B and 4D. These QTLs explained up
to 35% of the mean phenotypic variation with a LOD value of 6.3. QTLs for
chlorophyll fluorescence were also reported on chromosomes 1B, 2A and 4A
(Czyczyło-Mysza et al. 2011), whereas QTLs for chlorophyll content were iden-
tified on chromosomes 1A, 4A, 5A, 6A, 7A, 1B, 2B and 5B in Durum and wild
Emmer wheat by (Peleg et al. 2009). Nezhad et al. (2012) detected six QTLs for
thousand grain weight on chromosomes 7A and 7D under drought condition, which
explained phenotypic variation ranged from 8.9 to 21.0%.

Morgan and Tan (1996) constructed RFLP linkage groups using an F2 bread
wheat mapping population and reported a single QTL for osmotic adjustment on the
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short arm of chromosome 7A. Meta-QTL analysis by Acuna et al. (2014) identified
736 QTLs associated with heat and drought tolerance in wheat. Yang et al. (2002)
found two marker loci (Xgwm11-1B and Xgwm293-5A) for grain-filling duration
under heat stress, which contributed 23% of the phenotypic variation. Kuchel et al.
(2007) also found the association of gwm11 on chromosome 1B with yield under
high temperature stress. Mason et al. (2010) investigated the effect of heat shock on
plant yield and yield components during early grain-filling and reported five stable
QTL for HSI of single grain weight (1A and 2A), grain weight (3B), and grain
number (2B and 3B) explaining up to 22% of phenotypic variation under short term
heat stress in controlled conditions. In an analysis of spring wheat populations for
heat tolerance, loci on chromosomes 2B and 5B were most important (Byrne et al.
2002). Few QTLs for the stay-green trait were found under heat stress (Kumar et al.
2010; Vijayalakshmi et al. 2010). Pinto et al. (2010) identified a QTL on chromo-
some 4A for canopy temperature under heat stress. Seven loci were found to
co-localize for both HSI of main spike yield components and temperature depression
indicating a strong genetic link between cooler organ temperature and heat tolerance
(Mason et al. 2011). Paliwal et al. (2012) reported significant genomic regions on 2B,
7B and 7D to be associated with HSI of grain weight and grain filling duration and
with the expression of canopy temperature depression under late sown condition in
field experiment explaining more than 15% of phenotypic variation for these traits.
Four QTLs were identified, located on linkage groups 1B, 1D, 4A, and 7A, asso-
ciated with grain quality and quality stability (Beecher et al. 2012). Seven stable QTL
were identified related to HSI of grain filling duration, thousand grain weight, grain
yield and canopy temperature, mapping to chromosomes 1D, 6B, 2D and 7A (Tiwari
et al. 2013). Talukder et al. (2014) identified five QTL regions significantly associated
with plasma membrane damage, thylakoid membrane damage and chlorophyll con-
tent in a greenhouse experiment on chromosomes 1B, 1D, 2B, 6A and 7A explained
up to 33.5% of the phenotypic variation. Mondal et al. (2015) reported stable QTL for
leaf wax content and leaf temperature depression in controlled conditions on chro-
mosomes 1B and 5A, explaining 8–12% of the phenotypic variation. Sharma et al.
(2016) identified stable QTLs associated with grain filling duration, grain number and
productive tillers on chromosomes 1B, 2B, 3B, 5A and 6B in field experiment
explaining up to 22% phenotypic variation (Table 5.2).

5.6 Transcriptomics and Proteomics Studies for Heat
and Drought Stress Tolerance

To cope with abiotic stresses, plants execute a number of physiological and
metabolic responses which are regulated mostly at the gene expression level. In
recent years, transcriptomics and proteomics have been applied to identify
stress-responsive genes and proteins that are regulated by elevated temperatures and
drought stress in several crops including wheat.
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Table 5.2 A summary of major and stable QTLs for heat and drought tolerance reported in wheat

Chromosome Marker R2 Trait Condition Germplasm References

1A cfa2129 27.4,
22.6

HSIGN,
HSISGW

H 64 RILS,
Halberd/
Cutter

Mason et al.
(2010)

1A wPt-9757 13.5 DSICID D 152 RILs,
Langdon/
G18-16

Peleg et al.
(2009)

1A wmc469 38 TGW D 189 durum
wheat elite
accessions

Maccaferri
et al. (2011)

1B gwm190 13.1 SSIGW H 144 RILs
Kauz/
MTRWA116

Mohammadi
et al. (2008)

1B acg/cta-2 14.1 PT D 194 RILs,
SeriM82/
Babax

McIntyre et al.
(2010)

1B wmc419 36.6 PH D 189 durum
wheat elite
accessions

Maccaferri
et al. (2011)

1B 2249474|
F|0

15 HSIGFD H 92 RILs, K
7903/RAJ
4014

Sharma et al.
(2016)

1B agg/cat-4 24.2 NDVI H 167 RILs,
SeriM82/
Babax

Pinto et al.
(2010)

1D wmc216 16.84 HSIYD H DH 138,
Berkut/cv.
Krichauff

Tiwari et al.
(2013)

1D wPt9664 12.43 HSICT H DH 138,
Berkut/cv.
Krichauff

Tiwari et al.
(2013)

2A gwm294 17.8 HSISGW H 64 RILs,
Halberd/
Cutter

Mason et al.
(2010)

2A gwm356 21 HSISGW H 64 RILs,
Halberd/
Cutter

Mason et al.
(2010)

2A wmc407 15 HSIGFD H 64 RILs,
Halberd/
Cutter

Mason et al.
(2010)

2A wPt-4855 13 DSIYD D 152 RILs,
Langdon/
G18-16

Peleg et al.
(2009)

2A cgt.tgcg-
349

26 SEN H 101 RILs
Ventnor/Karl
92

Vijayalakshmi
et al. (2010)

(continued)
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Table 5.2 (continued)

Chromosome Marker R2 Trait Condition Germplasm References

2A gwm356 17 SEN H 101 RILs
Ventnor/Karl
92

Vijayalakshmi
et al. (2010)

2B barc200 21.6,
25.9

HSIGN,
FLW

H 64 RILs,
Halberd/
Cutter

Mason et al.
(2010)

2B gwm111 24.8 HSIGW,
HSIGN

H 64 RILs,
Halberd/
Cutter

Mason et al.
(2010)

2B gwm374 13.1 YD D 152 RILs,
Langdon/
G18-16

Peleg et al.
(2009)

2B gwm410 17.4 CL D 152 RILs,
Langdon/
G18-16

Peleg et al.
(2009)

2B wPt-0694 23.6,
13.1

DM, YD D 152 RILs,
Langdon/
G18-16

Peleg et al.
(2009)

2B Xcfa175 46.5 Fv/Fm D 104 RILs
C306/
HUW206

Kumar et al.
(2012)

2B Xgwm356 50.1 CHL D 104 RILs
C306/
HUW206

Kumar et al.
(2012)

2B 1161184|
F|0

15 HSIGN H 92 RILs, K
7903/RAJ
4014

Sharma et al.
(2016)

2D cfd56 23.5 DH H 121 RILs,
Halberd/
Karl92

Mason et al.
(2011)

2D gwm261 19.3 HSISGW H 121 RILs,
Halberd/
Karl92

Mason et al.
(2011)

2D gwm484 15.2,
32.8

DM,FLL H 121 RILs,
Halberd/
Karl92

Mason et al.
(2011)

2D cfd233 20.53 HSIGFD H DH 138,
Berkut/cv.
Krichauff

Tiwari et al.
(2013)

3B wmc326 21.2 HSIGW H 64 RILs,
Halberd/
Cutter

Mason et al.
(2010)

3B wmc527 19 HSIGW H 64 RILs,
Halberd/
Cutter

Mason et al.
(2010)

(continued)
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Table 5.2 (continued)

Chromosome Marker R2 Trait Condition Germplasm References

3B barc101 45.19 TGW D 151 RILs,
Oste-Gata/
Massara

Golabadi et al.
(2010)

3B gtg.agct-
205

18 SEN H 101 RILs
Ventnor/Karl
92

Vijayalakshmi
et al. (2010)

3B P3622-
400

17.8 Fv/Fm D 150 DHs,
Hanxuan10/
Lumai 14

Yang et al.
(2007)

3B gwm284 13.75 Fv/Fm D 150 DHs,
Hanxuan10/
Lumai 14

Yang et al.
(2007)

3B barc68 59.1 CHL D 104 RILs
C306/
HUW206

Kumar et al.
(2012)

3B 1145590|
F|0

18 PT H 92 RILs, K
7903/RAJ
4014

Sharma et al.
(2016)

3B wPt-1804 15.1 YD D 167 RILs,
SeriM82/
Babax

Pinto et al.
(2010)

4A wmc89 13.5 HSISGW H 64 RILs,
Halberd/
Cutter

Mason et al.
(2010)

4A barc170 15.5 HSIGN H 64 RILs,
Halberd/
Cutter

Mason et al.
(2010)

4A wPt-
11573

19.1 SDM D 152 RILs,
Langdon/
G18-16

Peleg et al.
(2009)

4A gwm0160 21 TGW D 100 Bread
wheat elite
accessions

Nezhad et al.
(2012)

4A act/cag-5 23.9 YD D 167 RILs,
SeriM82/
Babax

Pinto et al.
(2010)

4B gwm368 17 LA H 101 RILs
Ventnor/Karl
92

Vijayalakshmi
et al. (2010)

4D cfa285 46.4 CHL D 104 RILs
C306/
HUW206

Kumar et al.
(2012)

5A barc197 13.8 HSIGN H 64 RILs,
Halberd/
Cutter

Mason et al.
(2010)

(continued)
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Table 5.2 (continued)

Chromosome Marker R2 Trait Condition Germplasm References

5A gwm126 32.1 HSIGN H 64 RILs,
Halberd/
Cutter

Mason et al.
(2010)

5A gwm291 21.9 HSIGW H 64 RILs,
Halberd/
Cutter

Mason et al.
(2010)

5A wmc150 16.4 VLW H 64 RILs,
Halberd/
Cutter

Mason et al.
(2010)

5A gwm126 14.6 CTD H 121 RILs,
Halberd/
Karl92

Mason et al.
(2011)

5A gwm293 13 TDM D 152 RILs,
Langdon/
G18-16

Peleg et al.
(2009)

5A ksum024 17.2 CID D 152 RILs,
Langdon/
G18-16

Peleg et al.
(2009)

5A gwm156 30 LA H 101 RILs
Ventnor/Karl
92

Vijayalakshmi
et al. (2010)

5A 1079678|
F|0

22 HSIGFD H 92 RILs, K
7903/RAJ
4014

Sharma et al.
(2016)

5B gwm213 24.6 HSIGN H 64 RILs,
Halberd/
Cutter

Mason et al.
(2010)

5B wmc160 13 FLL, DH H 64 RILs,
Halberd/
Cutter

Mason et al.
(2010)

5B gwm408 13.4 HSIGN H 121 RILs,
Halberd/
Karl92

Mason et al.
(2011)

5B gwm133 29.5 SSIGW H 144 RILs
Kauz/
MTRWA116

Mohammadi
et al. (2008)

5B wPt-
11579

27.4 CID D 152 RILs,
Langdon/
G18-16

Peleg et al.
(2009)

5B wPt-6910 27.4 CID D 152 RILs,
Langdon/
G18-16

Peleg et al.
(2009)

5D fbb238b 37.54 SRM D 114 RILs,
W7984/
Opata85

Salem et al.
(2007)

(continued)
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Table 5.2 (continued)

Chromosome Marker R2 Trait Condition Germplasm References

6A CAG.
AGC-101

26 SEN H 101 RILs
Ventnor/Karl
92

Vijayalakshmi
et al. (2010)

6A CGT.
GTG-343

30 SEN H 101 RILs
Ventnor/Karl
92

Vijayalakshmi
et al. (2010)

6A wmc417 13.28 Fv/Fm D 150 DHs,
Hanxuan10/
Lumai 14

Yang et al.
(2007)

6B 1109194|
F|0

20 PT H 92 RILs, K
7903/RAJ
4014

Sharma et al.
(2016)

6B 2280984|
F|0

12 HSIYD H 92 RILs, K
7903/RAJ
4014

Sharma et al.
(2016)

6D gwm325 38.6,
13.1

HSIGW,
HSIGFD

H 64 RILs,
Halberd/
Cutter

Mason et al.
(2010)

6D cfd42 32.1 CTD H 121 RILs,
Halberd/
Karl92

Mason et al.
(2011)

6D cfd49 14.7 HSISGW H 121 RILs,
Halberd/
Karl92

Mason et al.
(2011)

7A gwm282 31.6 HSISGW H 64 RILs,
Halberd/
Cutter

Mason et al.
(2010)

7A gwm60 19 FLW H 64 RILs,
Halberd/
Cutter

Mason et al.
(2010)

7A wmc422 26.58 Fm D 150 DHs,
Hanxuan10/
Lumai 14

Yang et al.
(2007)

7B gwm263 15.6 DSIDH D 152 RILs,
Langdon/
G18-16

Peleg et al.
(2009)

7B gwm263 29.3,
42.4,
30.1,
22.4

DSIDM,
DH, DM,
HI

D 152 RILs,
Langdon/
G18-16

Peleg et al.
(2009)

7B gwm577 21 LA H 101 RILs
Ventnor/Karl
92

Vijayalakshmi
et al. (2010)

(continued)
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5.6.1 Heat Stress

Microarray analysis of gene expression has been used to investigate transcriptome
changes in response to heat stress as well as combined stresses in wheat. A total of
6,560 probe sets displayed 2-fold or more changes in expression in the transcriptome
of heat susceptible (Chinese Spring) and tolerant wheat (TAM107) genotypes by
using a wheat genome array (Qin et al. 2008). The putative heat stress-responsive
genes included those encoding heat shock proteins (HSPs), heat shock factors
(HSFs), transcription factors and proteins involved in phytohormones biosynthesis/
signaling, calcium and sugar signal pathways, RNA metabolism, ribosomal proteins
and primary and secondary metabolisms. A set of 313 probes were differentially
expressed between the two genotypes, which could be responsible for the difference
in heat tolerance of the two genotypes. Chauhan et al. (2011) identified
heat-responsive genes through PCR-select subtraction technology. A total of 3,516
high quality expressed sequence tags (ESTs) were generated from three different
developmental stages. Transcripts of many genes such as HSPs, transporters, protein
modifiers, lipid transfer protein, L-myo-inositol-1-phosphate synthase, calcium
binding proteins, membrane binding proteins, signaling molecules, helicase-like
protein, alanine amino transferase, stress-induced protein Sti-1, activator of HSP90,
peptidyl prolyl isomerase, heat shock factor and unknown functions were highly
inducible by high temperature and remained stable at both temperature regimes.

Table 5.2 (continued)

Chromosome Marker R2 Trait Condition Germplasm References

7D gdm88 17.39 Fv/Fm D 150 DHs,
Hanxuan10/
Lumai 14

Yang et al.
(2007)

7D fbb189b 21.01 SRM D 114 RILs,
W7984/
Opata85

Salem et al.
(2007)

BM—biomass, CHL—chlorophyll content, CID—carbon isotope discrimination, CL—culm
length, CTD—canopy temperature depression, DH—days to heading, DM—days to maturity,
DSICID—drought susceptibility index for carbon isotope discrimination, DSIDH—drought
susceptibility index for days to heading, DSIYD—drought susceptibility index for yield, FLL—
flag leaf length, FLW—flag leaf width, Fm—maximal chlorophyll fluorescence, FO—open
chlorophyll fluorescence, Fv/Fm—chlorophyll fluorescence, GFR—grain filling rate, GW—grain
weight, HSICT—heat susceptibility index for canopy temperature, HSIGFD—heat susceptibility
index for grain filling duration, HSIGN—heat susceptibility index for grain number, HSIGW—
heat susceptibility index for grain weight, HSISGW—heat susceptibility index for single grain
weight, HSIYD—heat susceptibility index for yield, HT—plant height, LA—leaf area, NDVI—
normalized difference vegetation index, PH—plant height, PT—productive tillers, SDM—spike
dry matter, SEN—senescence, SRM—stem reserve mobilization, SSIGW—stress susceptibility
index for grain weight, TDM—total dry matter, TGW—thousand grain weight, VLW—visual leaf
wax, YD—yield

114 H. M. Mamrutha et al.



A total of 148 transcripts of developing seed reverse subtracted library were checked
for down-regulation by heat stress. Down-regulated genes were involved in carbo-
hydrate metabolism, encoding components like sucrose synthase, amylase inhibitor,
triose phosphate isomerase and soluble starch synthase. A number of genes encoding
seed storage proteins (gliadins and glutenins) were also affected by high temperature.
The proteome analysis in response to heat stress during grain filling in contrasting
wheat cultivars revealed that proteins related to signal transduction (BRI1-KD
interacting protein 114), heat shock (Hsp70), photosynthesis (Rubisco activase,
sedoheptulose bisphosphatase and fructose-bisphosphate aldolase involved in RuBP
generation, OEE1 involved in regulation of PSII, Peptidyl-prolyl-cis-trans isomerase
required for the assembly and stabilization of PSII) and antioxidants (2-Cys perox-
iredoxin BAS1) increased, while those related to nitrogen metabolism (Glutamine
synthetase) decreased in the tolerant cultivar under heat stress (Wang et al. 2015). In
heat tolerant genotype C306, expression level of HSP101 showed up regulation
during long term heat stress compared to heat susceptible genotype PBW343 which
showed considerable reduction in HSP101 transcripts (Almeselmani et al. 2012).
Several discrete isoforms of the low molecular weight HSPs were observed as dif-
ferentially expressed between the two cultivars; heat-susceptible (cv. Wyuna) and
heat-tolerant (cv. Fang) of wheat (Skylas et al. 2002). Majoul et al. (2004) while
working on proteomics of wheat seed development under heat stress found the
constitutive accumulation of small HSPs, belonging to the family of 20 kDa small
HSPs, but increased expression under heat stress treatment. In addition, three heat
upregulated proteins showed similarities to elongation factors (EF) or eukaryotic
translation initiation factors (eIF) indicating that translational activity was involved in
the stress response. The wheat chloroplast HSP (HSP26) was highly inducible by heat
stress in almost all the vegetative and generative tissues in wheat (Chauhan et al.
2012). TaHsfA6f, a member of the A6 subclass of heat shock transcription factors,
expressed constitutively in green organs but markedly up-regulated during heat stress.
Overexpression of TaHsfA6f in transgenic wheat resulted in up-regulation of HSPs
and a number of other heat stress protection genes such as Golgi Anti-Apoptotic
Protein (GAAP) and the large isoform of Rubisco activase. TaHsfA6f acts as tran-
scriptional activator that directly regulates TaHSP, TaGAAP, and TaRof1 genes in
wheat and its gene regulatory network has a positive impact on thermotolerance (Xue
et al. 2015).

MicroRNAs (miRNAs) are a class of small non-coding regulatory RNAs with
large-scale regulatory effects on development and stress response in plants. Solexa
high-throughput sequencing of wheat small RNAs revealed 9 putatively
heat-responsive miRNA. The expression of miR172 was significantly decreased
and 8 miRNAs, including miR156, miR159, miR160, miR166, miR168, miR169,
miR827 and miR2005, were up-regulated after heat treatment (Xin et al. 2010).
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5.6.2 Drought Stress

High-throughput transcriptome sequencing of wheat seedlings under normal con-
dition and subjected to drought stress (DS), heat stress (HS) and their combination
(HD) revealed that 1,328 transcription factors were responsive to stress treatments.
The regulatory network analysis of HSFs and DREBs implicated that both are
involved in the regulation of DS, HS and HD response and indicated a cross-talk
between heat and drought stress. A large proportion (68.4%) of homeologous genes
were found to exhibit expression partitioning in response to DS, HS or HD (Liu
et al. 2015). The genome-wide comparison of transcript changes upon dehydration
in the tolerant and sensitive wild emmer wheat (T. turgidum ssp. diccocoides
(Korn.) Thell.) genotypes using the Affymetrix GeneChip® Wheat Genome Array
revealed several unique genes or expression patterns such as phospholipase C gene,
involved in 1,4,5-triphosphate (IP3)-dependent signal transduction pathways,
ethylene- and abscisic acid (ABA)-dependent signaling. The preferential or faster
induction of ABA-dependent transcription factors by the tolerant genotype as
compared to the sensitive genotype indicated distinctive stress response pathways
(Ergen et al. 2009). Two hundred and twenty-one uniquely expressed or highly
abundant transcripts in the drought resistant wild emmer wheat revealed that 26%
of them are involved in multilevel regulation such as transcriptional regulation,
RNA binding, kinase activity and calcium and abscisic acid signaling implicated in
stomatal closure (Krugman et al. 2010). Differential expression patterns were also
identified in genes known to be involved in drought adaptation pathways, such as
cell wall adjustment, cuticular wax deposition, lignification, osmoregulation, redox
homeostasis, dehydration protection and drought-induced senescence, which
demonstrated the potential of wild emmer wheat as a source for candidate genes for
improving drought resistance (Krugman et al. 2010). The WRKY proteins belong
to a superfamily of plant TFs involved in regulation of plant growth processes as
well as biotic and abiotic stress responses. Thirty-five transcripts were detected
having an identity to ten known TaWRKY genes through in silico approach using
RNA-Seq data. The relative expression of TaWRKY16/TaWRKY16-A, TaWRKY17,
TaWRKY19-C, TaWRKY24, TaWRKY59, TaWRKY61, and TaWRKY82 were found
to be up-regulated in root tissue of drought-tolerant cultivar Sivas 111/33 compared
to susceptible cultivar Atay 85 (Okay et al. 2014). Genes involved in ABA, proline,
glycine-betaine and sorbitol pathways were found to be up-regulated by drought
stress in both bread and durum wheat. The expression levels of four
9-cis-epoxycarotenoid-dioxygenase (NCED)-related probes, the key enzyme of
ABA biosynthesis, were strongly up-regulated by water stress. Several probe sets
encoding enzymes involved in b-xanthophyll biosynthesis were also up-regulated
by drought (Aprile et al. 2009). In plants, b-xanthophylls, violaxanthin and neox-
anthin are biosynthetic precursors of ABA (Nambara and Marion-Poll 2005). The
probe set encoding aldose reductase increased to seven times in bread wheat
Chinese Spring under severe drought stress. This sequence expressed and regulated
only in T. aestivum, is a typical example of a gene likely located on the D genome
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or regulated by genomic elements of the D genome (Aprile et al. 2009). Transgenic
wheat lines overexpressing betaine aldehyde dehydrogenase (BADH) gene exhib-
ited increased heat and drought tolerance. The over accumulation of glycine betaine
resulted in stress tolerance through protecting the thylakoid membrane and pro-
moting antioxidant activity, indirectly increasing photosynthesis and stabilizing
water status when exposed to the combination of heat and drought (Wang et al.
2010a, b).

Drought stress-responsive miRNAs in the root and leaf of bread wheat (T.
aestivum cv. Sivas 111/33) by miRNA microarray analysis showed that 285
miRNAs (207 upregulated and 78 downregulated) and 244 miRNAs (115 upreg-
ulated and 129 downregulated) were differentially expressed in leaf and root tissues,
respectively. Among the differentially expressed miRNAs, 23 miRNAs were only
expressed in the leaf and 26 miRNAs were only expressed in the root of wheat
growth under drought stress. The regulatory network analysis showed that miR395
family was significantly up-regulated and has connections with a number of target
transcripts, and miR159 and miR319 share a number of target genes (Akdogan et al.
2015).

5.7 Transgenic Wheat for Abiotic Stress Tolerance

It is a difficult task to genetically manipulate multigene-controlled traits through
conventional breeding. Thus, introduction of an alien gene into wheat cultivars
provides an alternative approach to facilitate the development of wheat varieties
with improved stress tolerance for sustainable agriculture. Stress tolerance in
transgenic plants has largely been achieved by over-expressing the
stress-responsive gene transcription factors (Pellegrineschi et al. 2004; Kumar et al.
2017a, b; Rong et al. 2014; Saad et al. 2013), and heat shock transcription factor.
Besides these, transgenic plants with enhanced expression of proteins involved in
osmotic adjustment, reactive oxygen species removal, saturation of
membrane-associated lipids, photosynthetic reactions, production of polyamines
and protein biosynthesis process have improved stress tolerance (Grover et al.
2013) (Table 5.3).

5.8 Future Prospects

Drought and heat stresses are the most important environmental stresses affecting
productivity of wheat crop worldwide. Since the degree of stresses vary in fields
(degree, timing i.e. growth stage, and period of stress), the effect of genes may differ
depending on environmental conditions. Elucidation of the complex mechanisms of
these stresses regulated by large number of genes, requires a comprehensive and
integrative approach of physiology, genetics, genomics and genetic engineering.
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Table 5.3 Transgenic wheat for abiotic stress tolerance

Gene Source Promoter Genotype Trait References

HVA1 H. vulgare Maize ubiquitin
(ubi)

Hi-Line Drought stress Sivamani et al.
(2000)

DREB1A A. thaliana rd29A stress
inducible

Bobwhite Drought stress Pellegrineschi
et al. (2004)

AtNHX1 A. thaliana CaMV35S Hesheng 3,
Yan 103

Salt stress Xue et al.
(2004)

GmDREB Glycine
max

ubi and rd29A
stress inducible

Jimai 19 Drought stress,
high salt, and
freezing stress

Gao et al.
(2005)

DREB A. thaliana rd29A stress
inducible

8901, 5-98,
Baofeng
104

Drought stress Wang et al.
(2006)

P5CS Vigna
aconitifolia

AIPC stress
inducible

CD200126 Drought stress Vendruscolo
et al. (2007)

EF-Tu Z. mays ubi Bobwhite
and Xin
Chun 9

Heat stress Fu et al.
(2008)

GhDREB G.
hirsutum

ubi and rd29A
stress inducible

Yangmai,
Lumai

Drought, high
salt, and
freezing stresses

Gao et al.
(2009)

betA E. coli ubi Jinan 17 Drought stress He et al.
(2011)

TaDREB2,
TaDREB3

T. aestivum Rab17 maize
salt-inducible

Bobwhite Drought stress Morran et al.
(2011)

TaNAC69 T. aestivum HvDhn4 s
Drought
inducible

Bobwhite Salt and drought
stress

Xue et al.
(2011)

AlSAP Aeluropus
littoralis

Karim Salt and drought
stress

Ben-Saad
et al. (2012)

OsNAC1 O. sativa ubi Yangmai12 Salt and drought
stress

Saad et al.
(2013)

TaERF3 T. aestivum ubi Yangmai
12

Salt and drought
stress

Rong et al.
(2014)

TaHsfA6f T. aestivum HVA1 s
Drought stress-
inducible
promoter

Bobwhite Heat stress Xue et al.
(2015)

TaPIE1 T. aestivum CaMV35S Yangmai
12

Cold stress Zhu et al.
(2014)

mtlD E. coli ubi Giza 163 Salt stress El-Yazal et al.
(2016)

TaCIPK25 T. aestivum ubi Chinese
spring

Salt stress Jin et al.
(2016)

AtHDG11 A. thaliana Actin1 Chinese
spring

Drought stress Li et al. (2016)
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The state-of-the-art of unmanned aerial vehicle technology with high-throughput
imaging systems may be integrated for efficient filed phenotyping for these stresses.
Genome-wide association studies can facilitate dissection of complex genes con-
trolling these abiotic stresses. The wheat genome sequence information can be
explored to identify the candidate genes responsible for complex traits of agro-
nomic importance to expedite the wheat improvement programs. Pyramiding and
combination of different QTLs and transgenes through marker-assisted breeding
approaches may lead to drought and heat tolerant wheat varieties.
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Chapter 6
Molecular Chaperones: Key Players
of Abiotic Stress Response in Plants

Suchismita Roy, Manjari Mishra, Om Prakash Dhankher,
Sneh L. Singla-Pareek and Ashwani Pareek

Abstract Plants counter an array of stresses by generation of a group of
stress-related proteins, often referred to as the chaperones. Expression of these
chaperones is induced in response to almost all kinds of stress. However, there are
numerous evidences showing that these chaperones are vital for survival even under
normal physiological conditions. They act as key modulators in physiological stress
response and acquired tolerance. Research carried out over the past several years
has clearly established that these chaperones are involved in diverse cellular
functions such as folding, accumulation, translocation and degradation of proteins.
Thus, these evolutionarily conserved proteins affect a broad array of cellular pro-
cesses. Gaining knowledge about this cellular chaperone machinery is of immense
significance to understand the mechanism of interdependent stress-related cross talk
in plants and ultimately, for the crop improvement programs.

Keywords Calnexin � Calreticulin � Chaperones � Cyclophilins
Heat shock proteins
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6.1 Introduction

Plants are sessile and thus are exposed to several harsh environmental cues. Abiotic
stresses are one of the main causes for yield loss throughout the world (Suzuki et al.
2014). Unavoidable forms of these stresses as drought, salinity, extremes of tem-
perature and air pollutants act concurrently on plants causing disturbances in their
overall cellular homeostasis. In order to cope with such conditions, plants have
devised a wide range of mechanisms for their survival, sustained growth and
development. In plant system, stress tolerance is a myriad of various stress responsive
mechanisms that act in an orchestrated manner (Sewelam et al. 2016). Chaperones
and foldases, such as heat shock proteins (Hsps), immunophilins, calnexins and
calreticulins are the primary requisites for survival in unsuitable environments.
Recent studies have shown that these chaperone families are also effective in neu-
tralizing phenotypic variation (Rutherford 2003). Research shows that the heat shock
response is highly elastic in its alteration under different environments, even in similar
species. This chapter largely focuses on critically presenting the evidence suggesting
the role of chaperones in plants in relation to varied abiotic stresses, normal physi-
ological situation and their comprehensive network of actions.

The cells perceive sudden fluctuation in the cellular repertoire as “shock”. This
shock hinders plant’s normal physiological, metabolic, morphological and
anatomical features, and causes a drastic reduction in plant’s performance and yield.
The sudden and abrupt changes cause transcriptional activation of several
shock-related genes, which cause rapid synthesis and accumulation of several
chaperone-like proteins (Verghese et al. 2012). The reaction to heat-shock response
is well adapted in different organisms of diverse ecological niche. The algae
experience heat-shock response at 5°C, whereas the thermophylic archaea experi-
ences such kind of stress at temperatures above 100°C (Rutherford 2003).
Chaperone system existing in the plant, forms a complex network involving dif-
ferent molecules at different cellular and subcellular level (Verghese et al. 2012).
Recently, it has become quite evident that they interact with other stress responsive
components and thus administer stress tolerance to the plant. Amongst these
chaperones, Hsps are the most abundant ones, expressed in response to all other
forms of stresses (Fulda et al. 2010). These diverse class of proteins are known to
have allied functions, but with a distinctive mechanism of action. Hsps rearrange
themselves along with nascent or stress-related proteins, help in rescuing mis-
foldings and aggregation of proteins via binding to various intermediate complexes.
Due to their stress-related behavioural pattern, these are often called as the “stress
proteins” (Benjamin and McMillan 1998). The best explained chaperone systems
till date are the Hsp70/DnaK and Hsp60/Gro. Hsps, initially, were identified as a
class of proteins that show enhancement in their expression when the cells are
exposed to high temperature. Ritossa (1962) observed these heat shock proteins
while observing the gene expression of the puffing polytene chromosomes
of Drosophila subjected to high temperature stress. Subsequently, he observed this
phenomenon of increase in protein synthesis by added stressors such as azide, 2,
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4-dinitrophenol and salicylate. Later, these proteins were acknowledged as heat
shock proteins (Tissieres et al. 1974). These classes of proteins are present in all
organisms (Lindquist 1986). Based on their intra and extracellular localization, these
proteins have different roles. Intracellular Hsps pose a defensive mechanism, allowing
cells to endure lethal conditions. Several Hsps have been identified to act together with
other components of the coordinated cell death or apoptosis. Extracellularly located
Hsps or other membrane-bound Hsps are known to trigger several immunological
functions as well. They elicit an immune reaction nurtured by the adaptive or innate
immunity of the organism. This system is not well studied in plants though.

Hsps have a mass ranging from 10 to 200 kDa and they take part in the per-
ception and induction of the signaling cascade during stress (Schoffl et al. 1999).
Numerous forms of Hsps have been analysed in almost all organisms. Schlesinger
(1990) concluded that the principle Hsps of Homo sapiens do not differ from those
of bacteria, except for the presence of Hsp33. Most of the Hsps have a characteristic
C terminal domain called heat-shock domain (Helm et al. 1993).

Other chaperones include, peptidyl-prolyl cis/trans isomerases (PPIases) and
protein disulfide isomerases (PDIs), which aid in catalyzing the arrangement and
reorganization of cis-trans isomerization of peptide linkages presiding proline
residues and disulfide bonds, respectively. These chaperones are collectively known
as foldases as they act in similar manner, in folding or unfolding of proteins,
assembly of multi-protein units, trafficking proteins to and from the subcellular
compartmnets, controling cell cycle, signaling and safeguarding of cells against
stress or cell death (Kumari et al. 2013). The common property amongst them is
their ability to bind to substrate proteins in their unsteady structural forms and
reconstitute them back to their native form. Other endoplasmic reticulum based
organellar chaperones are the calreticulin and calnexins. These are Ca2+ binding
chaperones of eukaryotic systems, acting in glycoprotein folding mechanics, pro-
tein quality control and Ca2+ concentration (Boston 1996). Table 6.1 enlists
chaperones in plants and their characteristics including: (a) nomenclature (b) sub-
cellular localizations (c) functions (d) homologues.

6.2 Functional Characterization of Molecular
Chaperones in Plants

Molecular chaperones generally identify the hydrophobic regions on unfolded
polypeptides facilitating proper protein folding and preventing their aggregation.
Free energy of the residing amino acids of a protein decides the pattern in which
protein folds and this is the main determining factor for the function of any protein
(Levitt et al. 1997). However, factors like temperature, acidity or alkalanity, salt
concentration, and total protein concentration affect the proper folding of proteins.
The molecular chaperones bind to and stabilize unfolded and partially folded
polypeptides by preventing unnecessary interaction via minimizing the protein
aggregation or promoting dissociation of aggregates and direct them to proper
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Table 6.1 Chaperones in plants, suggested prokaryotic homologues location and functions

Chaperones
in plants

Function Homologues
in
prokaryotes

Location References

Hsp100 Show ATPse activity;
dissociates aggregates,
facilitates proteolysis,
resolubilization of
non-functional protein
aggregates, protein
remodelling

Clp B Cytosol Parsell et al.
(1994)

Hsp90 Stabilizes proteins prior to
complete folding or
activation; forms stable
complexes with inactive
receptor and other
transcription factors

HtpG Endoplasmic
reticulum (ER)

Taipale et al.
(2010)

Hsp70 Show ATPase activity,
protein folding, transport
across membranes and
proteolysis; and prevents
aggregation of misfolded
and unassembled proteins,
signaling

DnaK/Ssa Cytosol, ER,
mitochondria,
chloroplasts,
peroxisomes

Miernyk
(1997)

Hsp60 Show ATPase activity,
promotes efficient folding,
forms stable inactive
aggregates

Chaperonin/
Cpn60/
GroEL

Plastids,
mitochondria,
and cytoplasm

Hemmingsen
et al. (1988)

Hsp40 Gene expression and
translational initiation,
folding and unfolding as
well as translocation and
degradation of proteins

DnaJ Cytosol, ER Kampinga
and Craig
(2010)

sHsp Blocks aggregation of
protein; stabilizes misfolded
protein involved in
regulation of actin assembly/
disassembly

– Nucleus,
membrane,
cytoskeleton

Mogk et al.
(2003)

Protein di
sulphidase

Breakage and alternative
isomerization of incorrectly
formed peptide linkages

– Lumen of ER,
mitochondria,
nucleus, and
cytosol

Hatahet and
Ruddock
(2007)

Peptidyl
prolyl cis
trans
isomerase

Protein stabilization and
protein folding, hormonal
signaling

– Cytosol,
chloroplast,
nucleus,
mitochondria

Kumari et al.
(2009)

Calnexins
and
calreticulins

Maintaining protein folding
machinery that enhances
correct folding of proteins

– ER Michalak
et al. (2009)
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protein folding, transportation and degradation pathways (Miernyk 1997; Sigler
et al. 1998). Chaperones bind to the nascent polypeptide chain, while its translation
is going on, to prevent misfolding and aggregation of amino terminal of peptidal
chain, until it folds in a proper manner. Chaperones are also known to bind to and
stabilize protein in unfolded confirmation during their subcellular repositioning
(Young et al. 2004). For example, during the transfer of protein from cytosol to the
mitochondria, cytosolic chaperones bind to and stabilize the protein in cytosol in a
partially unfolded conformation; mitochondrial chaperones facilitate their transfer
across mitochondrial membrane and assist in protein folding within the same. They
assist in assembly of poypeptide chains, assembly of macromolecular structures and
regulation of protein degradation (Young et al. 2004). Figure 6.1 enlists the known
chaperones, their related functions under stress and summarizing their role in plants.

6.2.1 Heat Shock Proteins (Hsps)

Hsp gene family is well characterized in plants and they are required for normal
build up and regulation of the plant as well as to tide over unfavorable environ-
mental conditions. Hsps are primarily concerned in heat stress-related response in
association with the response of downstream proteins. Mutants, not capable of

Fig. 6.1 Role of chaperones in plants under stress condition.(1) Protein remodelling via Hsp100.
(2) Protein refolding via Hsp70 and Hsp40. (3) Preventing of misfolding in newly synthesized
protein via Hsp40. (4) Protein stabilization in the chloroplast via Hsp60. (5) Protein refolding via
ATPase activity of Hsp90 and co-chaperonin complex. (6) Protein stabilization via dimeric sHsps
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producing these Hsps, are prone to severe heat-induced damage (Burke 2001). Heat
sensitivity towards heat stress was allied with lower efficiency of the bentgrass
variants to pile up Hsps in the plastids (Wang and Luthe 2003). Hsp22 transcript
level remained high throughout continous heat stress condition in maize (Lund et al.
1998). Barua et al. (2003) summarized the presence of small Hsps (sHsps) in the
chloroplast membranes. Their observations affirmed that sHsps might have a role in
photosynthetic electron transport, thereby protecting the PSII subunit from adverse
effects of temperature stress. Maintaining cell membrane structure and integrity is
also an important function of the sHsps. Based on the Escherichia coli nomen-
clature, Hsps are categorized as Hsp100, Hsp90, Hsp70, Hsp60, Hsp40 and sHsp
proteins. The sHsps generally form multisubunit complexes having molecular mass
ranging from approximately 200 to 800 kDa (Kim et al. 1998).

6.2.2 Hsp100 Family Proteins

Hsp100 or the homologues Clp proteins are integral members of the superfamily of
ATPase with an extensive variety of different active properties such as protein
disaggregation and degradation (Parsell et al. 1994). Hsp100 proteins perform
binary function as a chaperone and also as a regulatory protein. These proteins act
via altering the portion of fully degraded or distorted protein substrates in the cell
(Liberek et al. 2008). The removal of polypeptides that are not functional and are
potentially harmful as a result of misfolding, accumulation or denaturation is crucial
for the maintenance of homeostasis in the cells. Another unique task of this class is
the recovery of protein aggregates by resolubilization of protein aggregates, which
are in their unfolded state. This also serves to degrade totally damaged polypeptides
(Kim and Schoffl 2002). The mission of rescuing aggregated proteins involves the
support of Hsp70 protein. Hsp70 is a different ATP-dependent chaperone system.
Hsp100 helps in solubilizing the protein aggregate and delivers it in a state that
Hsp70 complex can revert back (Zolkiewski et al. 2012). Hsp100 proteins are
typically hexameric rings, with a middle domain (M domain), an N-terminal
domain (N domain) followed by a nucleotide-binding domain (NBD-1). In addition
to these domains, they also contain a second nucleotide-binding domain (NBD-2),
next to the C terminal domain. N and M domains are indistinctly related (Lipinska
et al. 2013). The NBDs are competent enough to bind and cause hydrolysis of
ATP. Once ATP binding takes place, it mutually stabilizes the oligomeric status and
its connections with the substrate protein. Protein remodeling in this case also
occurs by the hydrolysis of ATP. The M domain is distinctive for Hsp104, which is
also found to be vital for protein remodeling (Lipinska et al. 2013).

Hsp100 has been surveyed in many plant species including Arabidopsis, soy-
bean (Glycine max), tobacco (Nicotiana tabaccum), rice (Oryza sativa), maize (Zea
mays) and wheat (Triticum spp.) (Pareek et al 1995). Hsp100 like molecular
chaperones are frequently expressed throughout plant life. Environmental stresses
such as extreme temperatures, dessication, saline or dark-induced etiolation
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enhances their expressions. Hsp101 in association with the 5-leader sequence of
tobacco mosaic virus (TMV) has also been recognized as a trans-acting feature
accountable for mediating enhancement of translation (Verchot 2012). In the same
report, Hsp101 has been suggested to function as a RNA binding protein, which
gets associated to a poly CAA region inside the leader sequence.

6.2.3 Hsp90 Family Proteins

Hsp90 relatively comprises of 1–2% of total protein present in the eukaryotic
cytosol (Taipale et al. 2010). Hsp90 adorns the much important central regulatory
protein of many of the biological pathways regulating growth and development. It
also serves an important role in evolutionary processes. Hsp90s expression profiles
in Arabidopsis have been shown to keep pace both with the plant’s developmental
stages and with different stressers such as salt stress, severe temperature conditions,
heavy metals etc. Their expression profile also gets affected by the phytohormones
and circadian rhythm (Li et al. 2013). Hsp90s serve as molecular chaperones in
dimerised forms often in harmony with their ATPase activity. Hsp90s are consti-
tutively expressed and show their induced expression level in response to stress
across diverse genera of organism (Taipale et al. 2010). Hsp90 family of proteins
form a conserved set of proteins, containing a conserved ATP-binding domain
towards the N-terminus, M domain and a domain at the C-terminus. The C domain
is responsible for the proteins dimerization. These are implicated in the maturation
of a variety of meta-stable protein substrates. Hsp90s exert their chaperone like
activity on a plethora of target proteins including several receptors, cell cycle
kinases, signaling cascade-related components, microtubule dynamics, proteolytic
machinery, and related proteins (Taipale et al. 2010). Hsp90s have shown elevated
expression level under stress condition in the endoplasmic reticulum (ER),
chloroplasts and mitochondria, suggesting their contribution to stress response.
Cytosolic, ER and plastidial Hsp90 genes have been characterized from different
plant species and share nearly 63–71% similarity with Hsp90 of Saccharomyces
and Hsps of animal source (Krishna and Gloor 2001). Genome-wide analysis of
Hsp90 genes in Arabidopsis revealed the presence of 7 members of Hsp90 family
from which AtHsp90-1-AtHsp90-4 are cytosolic, whereas AtHsp90-5, AtHsp90-6-
AtHsp90-7 are predicted to be plastidial-, mitochondrial- and ER-localized,
respectively (Krishna and Gloor 2001). Hsp90s are known to act in co-ordination
with other co-chaperones, such as Hsp70s, which includes Hip i.e. Hsp70 inter-
acting protein and Hop i.e. Hsp70/ Hsp90 organizing protein (Carrigan et al. 2006).
Mammalian co-chaperone homologues isolated from Glycine max, GmHop-1, Hop
protein, (Zhang et al. 2003) showed indued level of transcripts under stress con-
dition. It was reported that under normal condition, Hsp90.2 negatively regulates
the transcription of heat-induced genes by elimination of heat shock factors (HSFs)
(Zhang et al. 2003). Heat shock reaction includes inactivation of Hsp90.2 and
activation of subsequent genes harbouring HSF elements. Subsequently, it was
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ascertained that Hsp90.2 overexpression downregulates HsfA2 transcription, lead-
ing to HsfA2 induction in a way to acclimatize to reactive oxygen species
(ROS) genarated stress (Nishizawa-Yokoi et al. 2010). Similar results were noticed
in rhizosphere fungus, where an inhibitor of Hsp90, affected the overall growth and
development, but boosted up the level of resistance in Arabidopsis (McLellan et al.
2007). Hsp90 is also identified to interact with proteasomal 26S and aids in
packaging and preservation of this complex (Imai et al. 2003).

Sangster et al. (2008) stated the role of Hsp90 as a ‘buffer’ of morphological
evolution as well. Geldanamycin treatment on Hsp90 of Arabidopsis generated
several morphological phenotypes, presumably the genetic variations that are
usually neutralized by Hsp90. The buffering activity was allied to varied devel-
opment and morphogenesis relating the signaling cascades. Pertaining to physio-
logical environment, the genetic variations that are masked by the Hsp90 buffering
activity or neutralizing outcome is subdued (Sangster et al. 2008). Authors thus
reported a potent evolutionary mechanism in which Hsp90 undertakes a crucial
position in maintaining genetic stability at usual physiological conditions, while
allowing mutational changes that would be apparent under the prevailing stress
conditions (Sangster et al. 2008).

6.2.4 Hsp70 Family Proteins

Till date, Hsp70s are the best characterized Hsps in plants. Hsp70s are, at hand, in
the cytosol, mitochondria, endoplasmic reticulum and as well as in the
plant-specific organelles including chloroplasts, peroxisomes, glyoxysomes and
P-bodies (Wimmer et al. 1997). The identity between bacterial and eukaryotic
Hsp70s pertains to around 50%, indicating their immense importance and functions
in various life forms. Numerous cellular activities are envisaged by Hsp70s. These
proteins prefer to undertake this task via binding to hydrophobic amino acid chains,
which get exposed when a protein is in its unfolded state during or before folding. It
helps to prevent aggregation of misfolded proteins, necessiates renaturation of
protein aggregates and keeps proteins in a competent mode, which can easily be
translocated to various other compartments as condition prevails (Boston et al.
1996). Hsp70s partake in molecular folding all the way through the cycle that
involve steps of binding ATP, ATP hydrolysis and further peptide discharge
(Miernyk 1997). Wheat germ extract with exhausted cytosolic Hsp70 showed
inefficient co-translocational machinery and reduced processing power of its pre-
cursor proteins. The functions got restored on addition to the same Hsp (Miernyk
et al. 1992). Some Hsp70s participate in framing the activity of additional regu-
latory proteins acting as negative regulators of HSF-mediated transcription. It was
observed by Sandqvist et al. (2009) that the Hsp70 and its associated transcription
factors prohibit trimerization and binding of heat shock elements to their respective
transcription factors. Hsp70s contains two major domains i.e., ATPase domain at its
N terminal that binds to ATP and causes hydrolysis of ADP and the

132 S. Roy et al.



substrate-binding domain (SBD) that helps in folding of intermediate complexes
(Mayer and Bukau 2005). The C sub-domain acts as a ‘lid’ for the SBD (Mayer and
Bukau 2005). HSP70-ATP together in a bound state causes the protein lid to open,
following which peptides associates and is released swiftly. The reverse happens in
the ADP bound state. The lid is clogged and peptides are firmly adhered to the SBD
(Mayer and Bukau 2005).

In a study, 11 out of the 14 Hsp70 genes present in Arabidopsis showed sig-
nificant increase in their expression level under heat stress. Rest of the Hsp70s did
not show enhancement of expression by heat stress (Guy and Li 1998). In spinach,
there are 12 genes encoding Hsp70s (Sung et al. 2001). Some Hsp70 homologues
are constitutively expressed in the cytosol and are referred to as heat shock cognate
70 (HSC70) proteins. They also help in stabilizing newly developed proteins before
being freed from the ribosomal complex, which thus prevents the possible misfolds
and aggregation of the newly formed proteins before its complete synthesis. Hsp70
homologue has also been isolated from tomato (Lycopersicon esculentum), which is
much similar to the BiP/GRP proteins present in other eukaryotic organism. Cooper
and Ho (1987) reported the presence of a 72-kDa Hsp, enriched in endoplasmic
reticulum membranes from heat-stressed corn root system, and a heat shock cognate
protein (Hsc70) characterized from microsomes of growing caryopsis of wheat.

6.2.5 Hsp60 Family Proteins

Hsp60s, also known as the chaperonins, are the most conserved and form a ubiq-
uitous class existing in the plastids, mitochondria, and in the cytoplasm of plants.
The term ‘chaperonin’ was coined to portray a class of chaperones, having evo-
lutionary homology to E. coli GroEL (Yamada et al. 2002). Chaperonins form a
part of elaborate co-operative network of chaperones. Plant chaperonins in general
are the stromal chaperones. Hsp60 and Hsp70 are mainly concerned in attaining
serviceable conformation of recently synthesized chloroplast target proteins
(Jackson-Constan et al. 2001). Functional characterization of chaperonins in plants
is very confined. Hsp60s are critical in maintaining the integrity of plastidial pro-
teins like Rubisco (Young et al. 2004). Chaperonins are also present in chloroplasts
and mitochondria. Chaperonins aid in forming high molecular weight oligomeric
complexes of approximately 800 kDa (Hemmingsen et al 1988). Chaperonins falls
into two groups; GroEL chaperonins mostly present in prokaryotes and
endosymbionts and the chaperonins containing TCP-1 (CCT), which exist in
archaebacterial and eukaryotic cytosol. The CCTs isolated from Bruguiera, a
halophyte bearing Group II chaperonin, improves tolerance toward osmotic and
salinity stress in E. coli (Yamada et al. 2002).

Hsp60s are characterized by their capability to identify proteins with abnormally
exposed hydrophobic residues and form stable inactive aggregates. Hsp60s show an
inherent ATPase activity implying an ATP-dependent augment in the energy of
misfolded or aggregated substrate molecules. Sequence similarity of groEL gene
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with its complementarity with the cDNA of the chloroplast Cpn60 protein, proved
them as chaperonins and that these proteins might be evolutionarily homologues
(Bukau et al 2006). These chaperones come together as stacked seven ringed
structure in combination with Cpn10, another co-chaperone (Hsp10/GroES
homologue). They possibly form a heptameric caps at both ends of the tetra dec-
amer Cpn60. Other proteins then enter the newly formed Cpn60 core, which
apparently provids a secluded section where protein folding can happen without
much obstacle. The entire process is supervised by the dynamics of folding and
binding phases of the ATP-dependent cycling of Cpn60 subunits. Boston et al.
(1996) documented the character of the Cpn60/Cpn10 chaperonin in the folding of
larger and smaller subunits of Rubisco. Maize mitochondrial Hsp60 protein levels
increased up to three times in expression during a prolonged heat treatment in maize
seedlings (Lund et al. 1998). Hsp60s also constitute a larger portion of total soluble
protein during imbibition and early stages of seedling growth, as compared to
mature seedlings (Lund et al. 1998). Hsp60s are required during germination and
other phases of active mitochondrial biogenesis. The end product of the E. coli
groEL is indispensable for viability of the cell and is also essential for the clustering
of capsid proteins of bacteriophages.

6.2.6 Hsp40 Family Proteins

Accurate assembly of cellular proteins is essential for cell’s overall functions.
Hsp70/DNAK chaperones play an important role in such cases. It is hypothesized
that Hsp40 recognizes the denatured proteins and handovers the “client” protein to
Hsp70 for further folding via stimulating the Hsp70 ATPases. Consequently, cer-
tain nucleotide exchange factors (NEFs) operate to let the bound client proteins
released and help them to transform to their indigenous form. Diverse Hsp40
proteins identify different set of client proteins and its related substrates. Plasticity
of the SBD domain of Hsp70 allows it to lodge a large array of client proteins
(Schlecht et al. 2011). Hsp40 has a conserved J domain sequence of 70 amino acid
residues long at the N-terminus, which is responsible for its association with Hsp70.
On the other hand, the C-terminus is variable amongst different Hsp40s and is
responsible for providing specificity to substrate “client” proteins. Hsp40 proteins
are broadly divided into three groups on the basis of their protein sequences,
followed by the presence of a J domain. Type I has a Glycine- and
phenylalanine-enriched region and four cysteine residue repeats in zinc finger
domains. Glycine and phenylalanine residues are present in type II only, whereas
type III comprises of a J domain only (Walsh et al. 2004; Kampinga and Craig
2010). Transgenic Arabidopsis plants that constitutively overexpress Hsp40 exhibit
increased tolerance towards salinity in comparision to wild type plants. DnaJ was
identified as a vital force in providing tolerance towards salinity in Arabidopsis.
Only a few genetic studies in the green algae Chlamydomonas have indicated roles
for the Hsp70 and Hsp40 chaperone systems in its microtubule dynamics (Silflow
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et al. 2011). BIL2 gene also codes for another mitochondrial Hsp40. BIL2-over-
expressing plants showed cell elongation on treatment with a brassinosteroid
(BR) biosynthesis inhibitor Brz. It increases the development of plant inflorescence
and its root system. It also regulates BR-responsive gene expression. These plants
showed tolerance to oligomycin (ATPase inhibitor of the mitochondria) and
showed increased vigour of exogenous ATP in the treated plants than wild type
plants. BIL2 participates in increasing the endurance against abiotic stress tolerance
like salinity and photoperiodic treatment (Bekh-Ochir et al. 2013).

6.2.7 sHsps Family Proteins

sHsps are low molecular-weight Hsps of approximately 12-40 kDa. As other
chaperones prevailing in plant system, sHsps are also produced ubiquitously in
prokaryotes and eukaryotes cells under the condition of heat and other forms of
stress. sHsps have the ability to form active oligomers, which gets disassembled for
effective chaperoning activity. sHsps monomers have highly conserved
alpha-crystallin domain (ACD) at its C-terminal and are enriched in beta-strands,
which is accountable for its dimeric structure. On the other terminal, resides the less
conserved N terminal domain (Kriehuber et al. 2010). Triticum Hsp16.9ACDs are
arranged as trimers of dimers, forming a dodecamer 2-ringed structure, as studied
by its diffraction pattern (van Montfort et al. 2001). sHsps have a tenacity to bind to
non-native proteins employing hydrophobic linkages as alone it cannot reframe
non-native proteins structures. They cause stabilization and prevention of aggre-
gates of proteins, which are non-native in their structure. This, thereby, facilitates
their subsequent refolding by ATP-dependent chaperones such as DnaK/ClpB/Dna
system. Currently, sHsps from Pisum sativum and Synechocystis, Hsp18.1 and
Hsp16.6 respectively, under in vitro conditions, binds to unfolded proteins and aids
in dynamic refolding by Hsp70/Hsp100 protein complex and its formation (Mogk
et al. 2003).

Six multigene families of sHsps have been characterized in plants. Individual
gene family has proteins residing in vivid cellular compartments. Scharf et al.
(2001) grouped six classes of 13 different Arabidopsis sHsps relying on their
intracellular localization and their similarities to protein residues (Scharf et al.
2001). sHsps probably reflects molecular adaptation to stress as increasing evidence
suggests a positive link between sHsps accumulation and plant tolerance under
stress conditions. Maize mitochondrial sHsps (ZmHsp) showed better mitochondrial
electron transport under saline condition, primarily by protection of the Complex I
of the ETC (Electron Transport Chain). Chloroplastic sHsp26.2 was reported in the
Agrostis stolonifera. But point mutated sHsp26.2 m, identical to sHsp26.2 created a
stop codon isolated from the heat-sensitive variant. It was unable to show stress
responsiveness (Wang et al. 2003). Plants synthesize significant amount of sHsps
when subjected to high temperatures, drought stress, oxidative stress, cold accli-
mation, salts, and ABA treatment. It was noticed that there was a positive

6 Molecular Chaperones: Key Players of Abiotic Stress … 135



qualitative relation between the accumulation of sHsps in the plastids and ther-
motolerance of heat shock from temperature ranging from 28 to 40°C in different
Anthophyta species, including C-3, C-4, CAM, monocotyledonous and dicotyledonous
species (Downs and Heckathorn 1998). Similar results were obtained for other
Anthophyta species. Downs and Heckathorn (1998) suggested the role of mitochondrial
sHsps in protecting ubiquinone oxidoreductase (complex I) under heat treatment in
Pyrus pumila. A recent report suggested sHsps playing a significant role in the quality
membrane control and hence has the potential contribution in the membrane integrity
maintenance especially under the conditions of stress. Liming et al. (2008) transformed
plants with Hsp24 isolated from Trichoderma, which conferred higher tolerance to heat
stress when expressed constitutively in S. cerevisiae.

6.2.8 Co-chaperones

Co-chaperones are the proteins, which participate in the function of other chaper-
one. They have similar functions as to prevent polypeptide aggregation and thus
have chaperone activity. These co-chaperones have regulatory function in chaper-
one action. Co-chaperones act as a mediator of chaperone specificity by assisting
the selection of the client protein. For example, in case of Hsp70 or Hsp90,
co-chaperones bind and release by Hsp70 or Hsp90 in a manner that facilitates
protein folding and disassembly. Co-chaperones have been categorized on the basis
of the domain architecture. First is the J domain found in Hsp40 co-chaperone of
Hsp70 and another one is tetra tricopeptide repeats (TFR) domain found in
co-chaperones that act together with Hsp70 and Hsp90. Substrate binding and
release cycles of Hsp70 require Hsp70 co-chaperones (DnaJ/Hsp40 and GrpE).
Aha1 is the activator of Hsp90 ATPase and is stress-regulated co-chaperone, i.e.
required for in vivo Hsp90-mediated activation of its patron protein (Obermann
et al. 1998). In vitro Aha1 and its homolog Hch1 (suppressor of Hsp90) stimulates
inherent Hsp90 ATPase activity in eukaryotes (Panaretou et al. 1998). Unc45 is a
co-chaperone for Hsp90, which has TPR domain and helps in myosin assembly. P23

is a co-chaperone for Hsp90, which helps in maturation of Hsp90 client proteins at a
later stage. Cdc37 is co-chaperone of Hsp-90 and helps in protein kinase folding
(Joo et al. 2011). PP5 is a Hsp90 co-chaperone, which has a TPR domain and is
involved in protein phosphatase activity (de la Fuente van Bentem et al. 2005).
Cytosolic Hip50 has a TPR domain and can act with the ATPase domain of Hsc70,
further enhancing its interaction with substrate by establishing its ADP-associated
form (Hohfeld et al. 1995). Link between Hsp70 and Hsp90 in various systems is
also provided by HOP protein, which is also another TPR domain associated
co-chaperone (Dittmar et al. 1996; Chen and Smith 1998; Zhang et al. 2003).
Hsp40 is J domain containing co-chaperone, which triggers Hsp70 ATPase activity
(Wall et al. 1994). DnaJ and GrpE (nucleotide exchange factor) stimulate DnaK
ATPase activity (Liberek et al.1991). Bag1 is GrpE homologue and regulates
nucleotide exchange and ATPase activity of Hsp70 (Hohfeld and Jentsch 1997;
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Sondermann et al. 2001). Fes1, another Hsp70 nucleotide exchange factor, is
involved in ubiquitin-dependent degradation of misfolded proteins present in the
cytosolic fraction (Gowda et al. 2012). Chip (a TPR domain containing Hsp70/
Hsp90 co-chaperonre) is also involved in proteasomal degradation. Tom70 is TPR
domain containing Hsp70/Hsp90 co-chaperonre and is involved in mitochondrial
preprotein transport (Fan and Young 2011). FKB52/51 and Cyp40 are TPR domain
containing Hsp90 co-chaperonre and are implicated in peptidyl propyl cis-trans
isomerase activity. Cns1 also have TPR domain containing Hsp90 co-chaperone
activity.

6.3 Other Chaperones

6.3.1 Disulphide Isomerases

Disulphide isomerases (PDIs) are generally involved in dealing with nascent
polypeptides in the ER lumen to catalyze the formation of new disulphide bonds.
During folding and maturation processes of proteins in eukaryotes, these PDIs aid
in the breakage and alternative isomerization of incorrectly formed peptide link-
ages. Even though most of them are endoplasmic reticulum dependent, PDIs have
predominant existence at other intracellular locations as in nucleus, cytosol and also
in mitochondria. PDI was the first protein-folding catalyst reported (Hatahet and
Ruddock 2007). It contains a typical thioredoxin (TRX) domain, which catalyses
disulfide bond configuration in endoplasmic reticulum under the condition of
oxidative stress. It helps in stabilizing the structure of protein during its folding
state. Homologs of PDIs, as present in plants have a conserved amino acid active
site Ala-Pro-Trp-Cys-Gly-His-Cys-Lys and endoplasmic reticulum nascent peptide
(Gruber et al. 2007), which is absent in vertebrates. Plant PDIs form quite a large
family and have more diversity as compared to the animal kingdom. Arabidopsis,
soybean, rice and maize have nearly 10 to 20 members of the PDIs with their TRX
domains (Yuen et al. 2016). These proteins have some unique roles in storage
protein folding. PDI having a mass of 55-kDa proteins is characterized by TRX
domain sequence in the order of “a-b-b′-a′” domains. The catalytic motifs involved
with redox regulation are found in the 2“a” domains and TRX fold structure lies in
the “b” domains. The “b” regions are rich with hydrophobic residues and are
concerned with substrate detection and binding activity (Selles et al. 2011). A short
inter domain region called x-linker comprising of 19 residues connects the b′ and
the a′ domains, and a highly acidic extension at the C-terminus (c domain) is
involved in calcium sensing and binding. It contains the typical ER retrieval motif
‘KDEL’ (D’ Aloisio et al. 2010). The 4 TRX domains are arranged in the form of a
“U” like shape having the active sites opposite to each other across its arms. The
inside surface of the “U” is rich in hydrophobic residues, thereby promoting
interactions with misfolded proteins (D’Aloisio et al. 2010). AtPDI gene isolated
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from Arabidopsis has been studied with altered expression in different tissues, in
response to chemically-treated unfolded protein resonse (UPR), and in null mutants
of UPR signaling intermediaries (AtIRE1-2 and AtbZIP60). These experiments
provide the evidence of higher expression of 6 AtPDI genes by UPR and its
expression was found to be perturbed by actinomycin D treatment (transcription
inhibitor), indicating UPR-induced AtPDI gene transcription. PDIs response was
also studied in the grass family, alfalfa and Nicotiana cells on treatment with the
antibiotic and tunicamycin. Genome-wide analysis of PDIs sequences have
revealed the presence of 10 of its types in plants. In the primitive algae
Chlamydomonas, PDI RB60 served as a redox sensor of an mRNA-binding com-
plex concerned with photoregulation. It affects translation of psbA, which is the
RNA, encoding for the protein D1 of the photosystem II complex (Levitan et al.
2005). Thus PDIs also play a role in the regulation of dynamic disulfide bonds in
chloroplasts.

6.3.2 Peptidyl Prolyl cis-trans Isomerase

Cyclophilins were first isolated by Handschumacher et al. (1984) from the bovine
thymocytes. They are conserved across genera, giving prominence to their role in
overall cellular processes. Majority of the existing cyclophilins display peptidyl
prolyl cis-trans isomerase (PPIase) activity. Their diversity, assorted cellular
locations and dynamics in folding of protein highlight them to be integrated in the
group of molecular chaperones. Cyclophilins are the members of group of proteins
quite oftenly called “immunophillins”. Cyclophilins are highly conserved proteins
and are ubiqutously present, having diverse functions. Several plant cyclophilins
have been reported from Lycopersicon, Vicia faba, maize, sorghum, pigeon pea,
Arabidopsis, tomato, wheat, rice and even the algae. Cyclophilins assumed to
exercise cellular protection, helping the plant to adapt to specific unfavorable
changes in the environment. The universal presence and diverse roles of cyclo-
philins in plant system serves as a notion for several studies related to plant
cyclophilins at a global level (Kumari et al. 2013). An affirmative workflow
between cyclophilin protein family and stress protection has been deciphered.
Cyclophilin’s exact mode of action to bring about stress protection is yet to be
identified. All cyclophillins have conserved domain i.e. cyclophillin like domain
(CLD). Some are single domain cyclophillins having only CLD domain, whereas
others are multiple domain cyclophillins having CLD domains like TPR, Zinc
finger etc. (Taylor et al. 2001; Kumari et al. 2013). Cyclophilin A (CypA) is present
in cytosol, whereas other cyclophilins having single domain or multiple domains
are found in mitochondria, endoplasmic reticulum and nucleus. Cyclophillins
having nuclease activity possess two active sites, one having PPIase activity and
other for catalytic degeneration of DNA in a Ca2+ and Mg2+-dependent manner.
There are 16 cyclophilins proteins in humans, 29 cyclophilins proteins in rice and 8
cyclophilins proteins in Saccharomyces (Kumari et al. 2015). Immunophilins like
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chaperones have enzymatic properties and have vivid localization and roles in
protein folding. They have peptidyl-propyl isomerase activity (Fisher et al. 1984),
which is required for protein folding. They also act as scaffolding proteins due to
their involvement in assembly of supramolecular complexes (Goel et al. 2001). Due
to their cis-trans isomerisation catalytic activity, they act as acceleration factor for
protein folding. In proteins, trans state is mainly favoured in unfolded state and in
such state process of cis-trans isomerisation is very slow i.e. rate limiting step for
final folding and cis-confirmation of proteins (Herzberg and Moult 1991). Abiotic
stresses such as thermal stress, UV treatment, changes in acidic or alkaline nature of
cell environment, treatment with oxidants etc. enhance the expression of cyclo-
philins (Kumari et al. 2013). These stresses generally lead to unfolding or mis-
folding of intracellular proteins and cause the induction of transcriptional response
due to heat shock and hence induction of Hsps. TLP46 is the best characterized
cyclophillin protein from spinach, which is involved in the regulation of D1 pho-
tosystem II protein (Fulgosi et al. 1998). Arabidopsis cyclophillin AtCyp38 plays a
major role in the assembly of photosystem II supercomplexes (Fu et al. 2007).
Arabidopsis cyclophillin cyp20-3, also known as ROC4, is highly sensitive to
oxidative stress and enables thiol biosynthesis pathway to overcome stress effects
(Dominguez-Solis et al. 2008). AtCyp59 is involved in activities that connects
transcription and splicing (Leverson and Ness 1998). RcCyp1, a castor bean
cyclophillin, plays role in refolding of protein entered through phloem translocation
stream (Chou and Gasser 1997).

6.3.3 Calnexins and Calreticulins

Calnexins (Cnxs) and calreticulins (Crts) are calcium sensing molecular chaperones
present in endoplasmic reticulum (Michalak et al. 2009). Calnexins along with
calreticulins are responsible for checking the protein folding machinary that
enhance appropriate folding of proteins that go into the secretory channel and
promotes degradation of misfolded proteins. Both of them are reported to be present
in all the plants across genera. They are also known to diverge from a common
ancestral source (Del Bem 2011). Duplication event of Cnxs and Crts happens to
occur in the early tracheophytas. Calnexin, as a founder gene member, was
inherited from the early chlorophytas in a low copy number (Del Bem 2011). Crts,
as present in plants, help in development, growth as well as resistance to various
environmental stresses. Crt from Arabidopsis (AtCRT), has been established as an
alleviator of unfolded protein response as it gets induced by the effector drug
tunicamycin. Two distinguished isoformic sets of Crts have been identidied in
higher plants (Jia et al. 2009). Ca2+-dependent processes, endoplasmic reticulum
mediated chaperone response, programmed cell death and necrosis are many of the
cellular responses, which gets altered by Crt gene expression. High mRNA levels of
Crts were markedly observed in Brassica seedlings under saline and high tem-
peratures (Georges et al. 1999). TaCrt overexpressing lines showed superior
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drought tolerance in wheat (Jia et al. 2008). These proteins help in combating
dessication stress in Arabidopsis. Recently, calreticulins Crt1, Crt2 and Crt3 from
Arabidopsis have been suggested to mediate defensive responses against both viral
and microbial inoculums. Crt1, Crt2 and Crt3 have amino acid sequence identity as
well. Co-expression of a maize Crt1 helps in mitigating the related side effects via
enhancing the Ca2+ content (Wu et al. 2012). Perhaps, expression of Crts could
mitigate the hypersensitivity for ion inequity in Nicotiana. Furthermore, enhanced
Crts expressions mitigated blossom end rot disease (BER) in Crt1 expressing lines
of Lycopersicon (Wu et al. 2012).

Calnexins (Cnxs) in plant system were first characterized in Arabidopsis, fol-
lowing which they were characterized from Pisum, spinach, barley, tobacco and
many other plant species (Schrag et al. 2001). Calnexins are 90 kDa proteins
harbouring a large calcium-binding luminal domain at N terminal region, a distinct
transmembrane helix and an additional short acidic cytosolic domain. Calreticulins
are well conserved Ca2+-binding proteins having 3 different domains: N-terminus
domain which is globular in form, a middle domain which is proline rich, and a C
terminus domain which is acidic, following which is the ER related signal peptide,
(K/H)DEL (Michalak et al. 2009). In osmotic or other kinds of stresses, Cnxs show
reduced buildup in developing soybean root system. The spinach Crt’s glycan
structure when resolved (Navazio et al. 1996), revealed it to be explicitly phos-
phorylated by the casein kinase (CK2) (Baldan et al. 1996). Crts play role in Ca2+

sensing and binding (Michalak et al. 1992). It has role in Ca2+ signaling as second
messenger (Mery et al.1996), cell adherence (Coppolino et al. 1997) and subse-
quent gene regulation (Michalak et al. 1992).

Chaperoning activity for both the Crts and Cnxs is considered from their sig-
nificant sequence homology (Rajagopalan et al. 1994; Tatu and Helenius 1997).
Nicotiana Crt is present in stress condition and works in a nucleotide-dependent
method (Denecke et al. 1995). The major disparity between Crts of plant and animal
origin is the prominence of N-glycosylation sites, which are primarily taken by
glycan-like chains, as reported in several plant species. Several possible phos-
phorylation consensus sequences for the protein CK2 are phosphorylated compe-
tently in plant Crts (Mariani et al. 2013).

Both Crts and Cnxs have properties similar to lectin and can attach to the
monoglucosylated glycans, which are Asn-linked of the glycoproteins (Hammond
et al. 1994). The current understanding for substrate binding and liberation of these
two proteins is dependent on the turnover of the enzymes that are accountable for
trimming the glucose moiety and reglucosylation of high-mannose Asn-linked
glycans (Rodan et al. 1996). UDP-glucose, a glycoprotein glucosyl transferase
reglucosylate nonglucosylated glycans to monoglucosylated forms, reverting them
into ligands. Reglucosylation occurs only on glycopolypeptides that have not
reached their destined forms, suggesting that the calnexin-calreticulin/glucosyl-
transferase system regulates the conformational maturation stages and renders them
to the ER (Sousa and Parodi 1995).

140 S. Roy et al.



6.4 Role of Chaperone in Protein Translocation in Plants

6.4.1 Chaperone Mediated Translocation of Protein
in Mitochondria

Translocation of protein to and from the double membrane of mitochondria is
carried out by the pre-sequence translocation coupled motor complex
(PAM) associated with the chaperone Hsp70 (mtHsp70), J domain containing
proteins (PAM16/TIM16, PAM18/TIM14, Mdj2) (Mokranjac et al. 2003; Kozany
et al. 2004; Mayer 2004; Vasiljev et al. 2004) and Mge1 (nucleotide exchange
factor) that are responsible for this kind of interaction. The ATP-bound mito-
chondrial Hsp70 (mtHsp70) remain associated with the translocating protein sub-
strate and also to the mitochondrial import canal by its affiliation to the Translocase
of the Inner membrane of Mitochondria (Tim). mtHsp70 remains tightly bound to
the incoming polypeptide in the ADP bound state (Matouschek et al. 2000; Liu
et al. 2003; Mayer 2004). Brownian ratchet model stated that the transitory binding
of mtHsp70 to the incoming translocating chain prevents its backward movement,
thus favouring its forward movement (Simon et al. 1992; Neupert and Brunner
2002). The energy requirement is fulfilled by the ATP hydrolysis. Power stroke
model proposed that ATP hydrolysis cause conformational change within the
substrate via ATP hydrolysis and results in high affinity state with the substrate. It
produces mechanical force i.e. sufficient to pull polypeptide into matrix causing it to
unfold into the cytoplasmic side (Glick 1995; Matouschek et al. 1997, 2000).
Figure 6.2a represents chaperone-mediated translocation across mitochondrial
membrane.

6.4.2 Chaperone-Mediated Translocation Across
Chloroplast Membrane

Chloroplast contains sub-organellar compartments such as the outer and inner
membrane, intermembranal space, stroma, membrane and lumen of the thylakoid.
Nuclear-targeted chloroplast proteins are generated in the cytosol with a nascent
peptide, which in alliance with cytosolic Hsp70 and 14-3-3 proteins target the
precursor protein to the plastid (Jackson-Constan et al. 2001). Precursor protein gets
linked with the component of external membrane translocon, COM70 (Wu et al.
1994) via GTP hydrolysis (Olsen and Keegstra 1992; Young et al. 1999).
Interaction of precursor protein to the component of inner membrane translocon is
mediated by ATP hydrolysis and is assisted by heat shock protein Hsp70 residing in
the intermembrane space, which helps in the precursor proteins’ relocation to the
Translocon at the inner membrane of the chloroplast (Tic) complex. Final transfer
of precursor protein into the chloroplastic interior happens, where the signal peptide
is detached in an energy-dependent manner by Hsp93 (Nielsen et al. 1997). Finally,
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chaperones in the chloroplastic stromal region such as Hsp70 and CPN60 aid in the
folding of imported protein into its native confirmation. After that, protein may
enter into the thylakoid lumen by a variety of pathways such as general secretory
(SEC) pathway, TAT (Twin Arginine Translocation) pathway and SRP (Signal
Recognition Particle) pathway (Jackson-Constan et al. 2001). Chaperone-mediated
translocation across chloroplast membrane has been shown in Fig. 6.2b.

6.4.3 Chaperone-Mediated Translocation Across
Endoplasmic Reticulum

Co-translational translocation is used for secretory and membrane proteins
translocation. In this process, the signal sequence present on the elongating
polypeptide chain from translating ribosomes is captured by the signal recognition
particle (SRP). Subsequently, the ribosome and SRP complex adheres to the
membrane via SRP and membrane receptor complexes and the association happens
by the interaction amongst the ribosome and the translocation channel (Halic and
Beckmann 2005). The elongating polypeptide enters the ER membrane from the
ribosomal tunnel. This reaction happens by GTP hydrolysis but hydrolysis is not
required for polypeptide movement through channel (Connolly and Gilmore 1986).
In case of membrane proteins, certain peptide segments emerge from the ribosome
channel junction but do not enter into the channel and make cytosolic domains
(Mothes et al. 1997). In most cells, protein transportation occurs
post-translationally. This pathway is generally adapted by the lower organisms such
as bacteria where translocation is not in parity with translational mechanisms.
Soluble secretory proteins having moderately hydrophobic signal sequences favour
this path (Ng et al. 1996; Huber et al. 2005). These proteins should be in unfolded
state after their release from ribosome (Huber et al. 2005). In eukaryotes, channel

JFig. 6.2 Chaperone mediated protein translocation: a schematic presentation of the role of Hsp70
in protein translocation through mitochondrial membrane. MtHsp70ATP anchors to theTim44
protein. The nearby J domain of membrane-anchored PAM complex triggers ATP hydrolysis. ATP
hydrolysis cause conformational change within the chaperone which result in high affinity state of
HSP70 with the substrate and produce mechanical force i.e. sufficient to pull polypeptide into
matrix and its unfolding into the cytoplasmic side. b Schematic presentation of Hsp70’s role in
protein translocation through chloroplast membrane. HSP70 and 14-3-3 remain associated with
incoming peptide and keep it in unfolded state. GTP hydrolysis stimulates association of
component of outer membrane (com70) with precursor protein. ATP hydrolysis in intermembrane
space promotes association of precursor protein with inner membrane components i.e. facilitated
by HSP70 chaperone. Stromal ATP hydrolysis promotes translocation of protein into chloroplast
interior where HSP70 and cpn60 promotes its proper folding. c Schematic view of SRP and Sec61
mediated co-translational tanslocation across ER membrane. Post translational translocation
involves channel association with Sec62/Sec63 tetrameric complex and Bip i.e. a member of
HSP70 family. J domain of Sec63 triggers ATP hydrolysis which favours polypeptide
translocation across endoplasmic reticulum membrane
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proteins remain associated with Sec62/Sec63, which is a tetrameric complex along
with the luminal chaperone Bip i.e. Hsp70 family member (Panzner et al. 1995).
During translocation of polypeptide into the channel, all cytosolic chaperones are
detached from the peptide chain (Plath and Rapoport 2000). Once the polypeptide
chain enters the channel, binding immunoglobulin protein (Bip) prevents its
backward movement inside the cytosol, favouring translocation in forward direc-
tion. ATP bound Bip interacts with the Sec63 residue of the J domain resulting in
ATP hydrolysis and further closing of peptide binding pocket surrounding the
translocating polypeptide. After significant movement of polypeptide in the forward
direction, Bip molecule can also bind next to it. The process keeps going on until
the complete movement of polypeptide chain occurs (Rapoport 2007). Figure 6.2c
represents involvement of chaperone and other component in tanslocation across
ER membrane.

6.5 Protein Degradation via Chaperone in Plants

6.5.1 Protein Quality Control in Chloroplast
and Mitochondria

Chaperones are mandatory to sustain the misfolded protein in soluble state by
preventing their aggregation i.e. essential for the degradation by protease (Wagner
et al. 1994). Different types of proteases have been identified in Arabidopsis, which
are analogues of bacterial proteases and help in degradation of misfolded proteins.

Clp chaperone protease: Clp proteases play role in chloroplast and mitochondria
(Nakabayashi et al. 1999). These belong to the serine type proteases having two
different polypeptides (Proteolytic subunit and regulatory ATPase subunit) assigned
to different functions. Only one isomer is encoded by plastidic genome, while
others are nuclear-encoded. ClpP4, 5, 6 are targeted to stroma (Sokolenko et al.
1998) and ClpP2 is directed to mitochondria (Halperin et al. 2001). Four other
sequences having sequence similarity with ClpP proteins are present in Arabidopsis
genome but they don’t have catalytic triad.

Lon Protease: Lon protease possesses both chaperone and protease function
(Goto-Yamada et al. 2015). Arabidopsis genome contains three sequences, which
encode Lon proteases. Lon proteases are characterized by the presence of single
polypeptide having both functions (catalytic as well as regulatory). Lon1 is targeted
to mitochondria (Sarria et al. 1998), Lon2 and Lon3 are targeted to chloroplast.

FtsH Protease: Arabidopsis genome contains nine sequences, which encode
Ftsh protease. Like Lon proteases, Ftsh proteases are also characterized by the
presence of single polypeptide having both functions (catalytic as well as regula-
tory). FtsH1 and FtsH2 are present in thylakoid membrane (Lindahl et al.1996,
Chen et al. 2000). FtsH3 is predicted to be targeted in mitochondria. Mitochondrial
homologue of FtsH4 has been reported in yeast (Leonhard et al. 1996). FtsH5, 6, 7,
8 are present in chloroplast.
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DegP Protease: DegP protease possesses both protease and chaperone activity.
Arabidopsis genome contains thirteen sequences, which encode DegP protease, all
having catalytic triad His-Asp-Ser. DegP1 and DegP2 are targeted to thylakoid
membrane (Peltier et al. 2000). The localization of other isoforms has been pre-
dicted to be varying from chloroplast to mitochondria, nuclei and cytosol.

6.5.2 Chaperone and Ubiquitin Proteasome-Mediated
Degradation

In archea, eukaryotes and in some bacteria, chaperones are required for degradation
of abnormal proteins through ubiquitin-proteasome pathway. This comprises of
active participation of enzymes that link polypeptide co-factor ubiquitin on to the
protein and direct their degradation. These tagged proteins are accepted by 26S
proteasome complex, which consists of multicatalytic proteases that cause degra-
dation of ubiquitinated proteins to small peptides (Burger and Seth 2004).
Attachments of ubiquitin to the target protein require the active participation of
enzymes. E1 is the UB-activating enzyme, E2 is the UB-conjugating enzyme and
E3 is the UB ligase enzyme. E1 hydrolyze ATP, adenylates UB at the C-terminus
end and promotes a thioester bond accompanied by C-terminus of UB and active
site of cysteine of E1 (Pickart 2001; Schulman and Harper 2009). UB is linked by
another thioester bond to the active site of cysteine of E2. E3 helps in the transport
of UB from E2 to the lysine residue of E3, which results into isopeptide bond
formation between lysine and UB at the C-terminus. Further, UB molecules can be
linked to first one to form a poly UB chain via its activity of UB elongation enzyme
i.e. E4 (Koegl et al. 1999). Poly UB chains linked at different arrangement alters the
fate of target protein. Lys (11), Lys (29) and Lys (48) linked polyubiquitin chain
targets the protein for proteasome. Lys (6) and Lys (63)-linked polyubiquitin chain
alters protein activity, location or trafficking. The 26S proteasome is a big complex
having 20S barrel shaped proteolytic center consisting of alternating a and b
subunits and 19S regulatory caps present at both ends. The 19S caps recognize
de-ubiquitinylate and unfold the target protein before it is pulled through the hollow
core of the catalytic centre, where it gets dissociated into the native amino acids
residues that can be used again.

6.5.3 Endoplasmic Reticulum Associated Degradation

In endoplasmic reticulum, oligosaccharyl transferase complex transfers oligosac-
charide (Glc3Man9GlcNAc2) from the lipid-associated precursor proteins to the
residue asparagine of the target polypeptides. The a-glucosidase is responsible for
removing 2 terminal glucose moieties. The resulting polypeptides with
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monoglucosylated N-glycan are then subjected to calnexin/calreticulin cycle
(Huttner and Stasser 2012). Both Cnxs and Crts influence folding along with other
folding catalysts, similar to the PDI family members. Accurately folded glyco-
proteins are detached from the Cnx/Crt cycle and further processing is done by
a-mannosidases in the Golgi complex. The misfolded proteins are subjected to
degradation (Huttner and Stasser 2012). In ER, degradation of misfolded protein
occurs with the help of HRD1-SEL1L/HRD3-OS9 pathway where misfolded gly-
coproteins are identified and mannose trimmed by MNS (Mannosidase) proteins
(Huttner and Stasser 2012). Mannosidase proteins remove mannose residues and
produce a glycan chain. OS9 recognizes this glycan chain and then removal of
misfolded protein needs HRD1-SEL1L/HRD3-OS9 complex (Su et al. 2011;
Huttner et al. 2012), which results in ubiquitylation and degradation (Huttner and
Stasser 2012). Further investigation is required for endoplasmic reticulum associ-
ated protein degradation (ERAD) pathway in plants.

6.6 Role of Chaperones in Plants

6.6.1 Chaperones in Plant Growth and Development

Chaperones actively participate in normal plant metabolism. Lin et al. (1984)
observed that the induction of Hsp synthesis in Glycine max var. wayne seedlings
was accompanied by the reduction of other proteins synthesis after exposure to heat
shock (from 28 to 45°C) for 10 min (longer periods killed the seedlings). Hsps
production and accumulation occur differently in different parts of the plant.
Constant high temperature during seed maturation is certainly detrimental in all
instances. Pea pods experience high temperature during later stages of development
under field conditions. Hernandez and Vierling (1993) provided a conclusive study
on Hsps, which are expressed in standard conditions during pea pod development.
Also, Hsp expression is reported to occur at different developmental stages of plant,
in which cooling mechanisms forms the limiting factor, such as during the period of
seedling emergence. Seed temperatures are sufficient to stimulate Hsps, which may
occur under normal conditions for many plant species. Hsp transcripts and HSP
protein synthesis take place in all proliferative parts, for example in seed devel-
opment, in the aleurone layer of imbibed seeds and in the developing embryos as
well (Hong and Vierling 2001). A pea hsp70 (LP19) gene showed a complex
pattern of expression, as it was shown to be expressed not only in response to heat
shock, but also during normal developmental events in the plant, including pod
lignification and seed maturation (Dhankher et al. 1997). Simarly, various other
HSPs, such as HSP 104 and HSP 90, have been shown to be induced in response to
multiple stresses and various stages of development in rice (Pareek et al. 1995,
Singla and Grover 1993).
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sHsp mRNAs are reported to be present during early embryogenesis and also in
totally developed pea pods and wheat grains (DeRocher and Vierling 1994). sHsp
mRNAs expression is followed by accumulation of the corresponding proteins
during the later stages of seed development. These emphasizes that sHsps are also
expressed in seeds as a safety guard against tentative stress conditions. sHsps
mRNAs expression has been shown during some stages of microsporogenesis in
Lilium and maize (Bouchard 1990). Cross-linking and immunoprecipitations
methods have shown Hsp70 to play an active role in import of premature protein by
interacting with chloroplast precursor transit peptides. It was recommended that
precursor target peptides be translocated from cytoplasmic chloroplastic Hsp70s
(Kourtz and Ko 1997). DnaK was reported to act with Hsp70s and can also interact
with chloroplast signal peptides (Ivey and Bruce 2000; Rial et al. 2000). These
Hsp70s interactions were quite selective, as this happened only with the precursor
proteins and not with the mature complexes (Rial et al. 2000). Most probably,
Hsp70 is implicated in the import of late and early protein-mediated functions
(Schnell et al. 1994).

Singla et al. (1997) provided evidence regarding the developmental and
stress-related regulation of Hsp100 in Oryza sativa. High transcript level was
reported in developing and mature rice grains even under un-induced stress con-
dition. High induction levels of Hsp100 protein has also been reported in maize and
wheat grains. The HSP100 transcript abundance in rice grains decreased during
seed germination (Singh et al. 2010). Expression of Hsp101 during maize growth
has revealed its excess in the tassel development, ear formation, embryo and
endosperm formation etc. and lower expression level in the roots and foliar
appendages (Young et al. 2001). Organs which are implicated in growth of the
germ cells, such as green tissues including the shoot and floral meristematic regions
have higher Hsp101 transcript level, while other organs involved in the general
growth of the plant like leaves and roots do not need Hsp101 expression under
control conditions. Hsp101 expression level was reported to be low in the mature
pollen grains and was not triggered by heat (Young et al. 2001). Constitutive
Hsp100 expression in seeds and remaining developing organs is a pre-planned
mode of adaptation that is not required for prolonged period under non-stress
condition but actively required under unfavourable conditions. Hsp60 is necessary
during mitochondrial biogenesis. The requirement of this protein lies in assisting
the rapid assembly of the protein complexes. The presence of Hsp60 in pumpkin
cotyledons has provided evidence regarding its role in earlier stages of seed ger-
mination (Tsugeki et al. 1992). The chloroplastic GroEL/Hsp60 homologue is the
Rubisco subunit binding protein, often referred to as the chaperonin. It is hypoth-
esized that Hsp60 is associated with the assembly of Rubisco holoenzyme.
Mutation in Arabidopsis plastid chaperonin protein Cpn60 is associated with defect
in plastid growth and, consequently reduction in embryo and seedling development
(Suzuki et al. 2009). Cpn60b antisense lines of transgenic tobacco plants showed
strong phenotypic changes like delayed growth pattern, deferred flowering,
chlorosis and stunting of leaves (Apuya et al. 2001).
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PDIs gets upper hand in endoplasmic reticulum related stress conditions. They
are expressed ubiquitously in cotyledonary tissues. Soybean PDI sequence showed
major conservation with Arabidopsis and Oryza genome (Wadahama et al. 2008).
During seed development and germination, these PDIs accompany changes of the
storage proteins at their reduced or oxidised level. A disulfide bond promotes
packaging of these proteins into storage organelles. This process converts back the
oxidized forms to reduced form, which in turn makes them more susceptible for
proteolysis and increases the accessibility of macronutrients like nitrogen and
sulfur, which are essential for germination. PDIs regulate several signaling cascades
through their alliance with other transcriptional factors. In the algae,
Chlamydomonas the RB60 (PDI like protein) is drawn in regulating the photo-
synthetic efficiency along with the redox regulatory protein complex which controls
translation of chloroplastic protein (Levitan et al. 2005).

PDI expression level is abundant in the developing caryopses as compared to
other tissues. In vivo and in vitro reports strongly suggest that members of the PDI
family play different physiological roles in different types of plant cells. For
example, Arabidopsis AtPDIL1, which restores the wild-type phenotype in the
E. coli protein folding mutant dsbA, is highly expressed in root tips and developing
seeds and interacts with BiP in the ER, thereby establishing its involvement in
oxidative protein folding, whereas, the ER-localized AtPDIL2, which can restore
the wild-type phenotype in a yeast PDI1 null mutant, is extremely expressed in the
micropylar area of the ovule and assists in the development of embryonal sac (Onda
2013). Crts are the most abundant in the tissues actively involved with secretion, for
example in vasculature development and germination of the seeds in floral organs.
Arabidopsis Crt3, the founder of the plant Crts family, acts in keeping a defective
brassinosteroid receptor in the ER in right form (Jin et al. 2009).

6.6.2 Chaperones in Abiotic and Biotic Stresses

It is known that heat and other stress treatments cause a transient spurt in cytosolic
Ca2+ level and further enhancement of ROS production in plant cells, which in turn
activates stress-related genes, i.e. the chaperones. Furthermore, plant’s mitochon-
dria participates in maintaining the homeostasis of intracellular calcium level and
serves as a source of ROS generation. These results provide grounds to believe that
mitochondria takes part in heat-activated expression of Hsp genes by modulating
ROS production and the Ca2+ level in the cytoplasm. For example, the treatment of
Arabidopsis cells with the bacterial elicitor harpin disrupted normal functioning of
mitochondria and activated Hsp expression (Rhoads et al. 2006). Analogous effect
in plants was also observed under anoxia and in mutants with damaged mito-
chondrial functions. In some cases, Ca2+ may cause cell death, whereas in other
conditions it trigerrs the expression of stress-related genes, thus protecting the cell
from being completely perished. The treatment of A. thaliana cell culture with the
programmed cell death causing agent amiodarone (AMD) and the inhibitor of
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oxidative phosphorylation carbonyl cyanide m-chlorophenyl hydrazone (CCCP) at
optimal temperature elevated the Ca2+ concentration in the cytoplasm and, at the
same time, activated Hsp101 expression (Pyatrikas et al. 2014). The presence of
CCCP during heat stress inhibited the heat induced activation of Hsp101 expres-
sion, whereas no such effect was observed with the drug AMD (Pyatrikas et al.
2014). The excessive rise in the cytosolic Ca2+ level was accompanied by the
inhibition of Hsp101 expression. Hsp activation as well as expression under stress
depends on particular spatio-temporal dynamics of cytosolic Ca2+ changes
(Pyatrikas et al. 2014). Numerous pathways related to signaling are involved in the
heat shock response, several of them direct Hsps while others regulate downstream
effector molecules activation. Promising evidences have shown that any shock
response is followed by some extent of oxidative stress. There is a likelihood of a
cross-talk between temperature and oxidative stress-mediated signaling pathways
(Desikan et al. 2004). In plants, elevated temperature favours H2O2 accumulation
which resulted in increased NADPH oxidase enzyme activity (Desikan et al. 2004).
This spurt was interconnected with heat shock responsive genes activation. This
process has been hypothesized to be directed through the sensing of the released
redox molecules as H2O2 by HSFs (Miller and Mittler 2006). Prior treatments with
H2O2 or the compound menadione also caused increased tolerance to heat shock,
whereas mutants such as atrbohB and atrbohD (NADPH oxidases delpeted)
showed deformity in tolerance. Moreover, in maize mitochondrial mutants having
defects in their respiratory chain, specific Hsps were upregulated. Mostly, the
Hsp90s chaperones substrates are kinases and the factors that play role in signaling
pathways via activation or inhibition of diverse defense-associated gene expression.
They are also implicated in the regulation between different signaling pathways.
Plants Hsp90 provides resistance not only against abiotic but also biotic stresses.
Hsp90 interacts with SGT1 i.e. G2 allele kinetochore protein suppressor and is
required for Mla12 (Mildew resistance locus a12) resistance (RAR1). It also confers
permanence to resistance (R) protein providing identification of pathogen effectors.
Interaction of SGT1 with Hsp90 is mediated through binding of its CS and TPR
domains with Hsp90 ATPase and C-terminal sites, respectively. SGT1 interacts
with the R protein through the leucine rich repeats (LRR) (Shirasu and
Schulze-Lefert 2003), while RAR1 interacts with the Hsp90ATP binding region. In
AtHsp90-2 mutant lines, another disease resistant signature RPM1 was weakened.
Hsp90 provides tomato Pto gene-mediated resistance to Pseudomonas cloves. The
interaction of Hsp90 with RAR1 and TIR-NB-LRR provides resistance to TMV.
Virus-induced gene silencing has supported the notion that Hsp90, SGTl, and RARl
are required for Mla13-directed resistance against powdery mildew in Hordeum and
resistance against leaf rust disease in Triticum mediated through Lr21.

Current findings by Bhattarai et al. (2007) revealed that plant Hsp90s are
involved in signaling resistance against pests and insects. Tomato Mi-1 protein
contains NBS and LRR motifs that directs resistance against root-knot nematodes,
aphids and Bemecia. SGTl and Hsp90 knockouts lowered the Mi-1-directed
resistance against nematodes and aphids. Ulva Hsp90, positively regulated the
diurnal and temperature fluctuations. It also affected the prolonged heavy metal
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stress in its sterile condition (Tominaga et al. 2012). Yeast Hsp90 is helpful in
maintaining permeability of cell wall and stress effects by maintaining the glycerol
content via HOG pathway and several mitogenesis associated protein kinases
(MAPK) (Hawle et al. 2007). Arabidopsis ROF1, another FK506 binding protein
family member, interacts with the co-chaperone Hsp90.1 through its TPR domain
(Meiri and Breiman 2009).

Under physiological conditions, ROF1-Hsp90.1 resides in the cytosol. Upon
stress stimulation, HsfA2 combines with the ROF1-Hsp90.1complex, which further
translocates to the nucleus and regulates the expression of targeted stress tolerant
genes (Meiri and Breiman 2009). ROF1 or ROF2 silenced lines showed increased
stress tolerance (Xu et al. 2012). Some plant Hsp70s show enhanced expression on
cold shock (Li et al. 1999), such as in tomato and spinach. Low temperature stress
was perceived by cytosol and mitochondria was reported in Lycopersicon, spinach
and Arabidopsis (Guy and Li 1998). The cause behind specific response of these
Hsps at low temperature is yet to be deciphered.

Calreticulins play defensive role in plant inherent immunity. They are recruited
by the immune receptors to provide complete defense against different pathogens
(Caplan et al. 2009). In case of TMV, Arabidopsis Crt1, Crt2 and Crt3 mediated
protection against pathogenesis has also been reported. Mi-Crt secreted by the
nematode into the apoplast of diseased tissues, imparts an essential role in patho-
genesis through suppressing basal defence of the plants. RNA interference of
Mi-Crton, on the other hand, makes plants more susceptible to nematode infection
compared to the wild type (WT) (Jaouannet et al. 2013). Matsukawa et al. (2013)
have shown that Nicotiana Crt 3a (NbCrt3a) is employed for resistance of
Nicotiana to Phytophthora infection. NbCrt3a codes for an ER quality-control
(ERQC) chaperone, which helps in glycoproteins maturation. Shaterian et al. (2005)
explored the expression of Crts and concluded its involvement in ABA-dependent
tolerance mechanism, controlled mainly by its root system. The Crts also showed
their role in providing drought tolerance in wheat crop (Jia et al. 2008).
Co-expression of ZmCrt1 mitigated the adverse effects via enhancing the Ca2+

concentration as reported in Zea mays (Nouri et al. 2012). LEN1 (encoding
Cpn60b) deletion causes cell death in Arabidopsis. This activates systemic acquired
resistance (SAR), triggered by necrotic lesions induced from infections.

6.6.3 An Interaction Map of Chaperones and Other Stress
Responsive Mechanisms

Environmental stresses are liable for photosynthetic ROS production. There is an
existing notion of cross-talk between all the stress signaling components and
complexes forming a complex interaction map. This ubiquitous system plays key
functions in stress as well as non-stressed conditions. There are several evidences
suggesting the active participation of chaperones with other stress-responsive
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mechanisms, creating an avenue for complex network in the plant system. In plants
a burst of H2O2 occurs at short intervals as a result of NADPH oxidase activity gets
enhanced at elevated temperature conditions (Desikan et al. 2004). This sudden
excitation was directly linked with the expression profile of the heat responsive
genes, which was reported to occur by sensing of H2O2 by HSFs. This report
further shed light on the over expression of other chaperones as Hsp70 and Hsp17
under different stress conditions (Desikan et al. 2004). On the other hand, osmolytes
which are low weight organic compounds also render a positive correlation. It
accumulates in plants under any unfavourable conditions. The disaccharide tre-
halose prohibits the denatured protein segregation and maintains protein in a
moderately folded state, which can be reactivated by other chaperones. In E. coli,
other osmolytes such as as glycine betaine may act as ‘chemical chaperones’ by
rising the steadiness of native proteins and supporting the refolding of added
unfolded polypeptides (Singer and Lindquist 1998). Trehalose and a sHsp26 from
Artemia (a crustacean), can act synergistically in vitro throughout heat stress
treatment (Viner and Clegg 2001). It is thus well documented that stability of cells
protein and chaperone directed disaggregation and protein refolding can be mod-
ulated by different osmolytes at different cellular level. These studies help us to
relate the complex network among Hsps, chaperones and stress responsive
mechanisms.

Hsp90 and Hsp70 chaperones families along with their co-chaperones bind with
a plethora of signaling related molecules, which involves hormone receptors,
kinases and regulators of cell cycle and cell-death, demonstrating interplay of
interdependent networks. The oxidized and reduced state of thiol containing
molecules is crucial in carrying out cellular functions. Even though most of these
reports were in systems other than plants, related cross-talk interactive maps might
exist in plant system. For example, HSFs enhanced the expression of antioxidants
like ascorbate peroxidases (APX) in Arabidopsis. It is suggested that HSFs might
be implicated in Hsp synthesis and also in the regulation of antioxidant gene
expression. Further, ER chaperones and foldases function together in vivo to fold
proteins but the mechanism is still unclear. Their association into multimember
complexes has been proposed to focus their activities on nascent forms.

6.7 Engineering Plant Chaperones for Enhanced Abiotic
Stress Tolerance

With the availaibility of whole genome sequences of crop species, for example rice,
Arabidopsis, maize etc., recombinant DNA technology has become a suitable
approach to generate transgenic varieties with improved tolerance to abiotic
stresses. Hsp family members have been widely used for this purpose (Agarwal
et al. 2001; Batra et al. 2007). Recently, there are several reports where researchers
have manipulated different Heat Shock Response (HSR) components to raise the
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transgenic lines, which can withstand increased temperature and other allied
stresses. A large number of heat shock genes have been cloned (Agarwal et al.
2003). Tolerance to elevated temperature can be achieved either by directly
manipulating the Hsps or by manipulating regulatory factors that control Hsps,
osmolytes and/or regulatory molecules affecting membrane fluidity and cell
detoxification system (Grover et al. 2000). Lee et al. (1995) changed the Hsp
expression profile by changing the level of HSFs in A. thaliana and observed that
over expression of A. thaliana transcription factor Athsf successfully led to increase
in thermotolerance. There are reports which clearly showed that at high tempera-
ture, Heat shock elements (HSEs) interact with positively acting heat shock tran-
scription factors for enhanced expression of heat shock proteins (Wu 1995). It has
been proposed that Hsp70 regulates HSF and thermotolerance acquisition. Hsp70
antisense A. thaliana lines were also found to have loss of thermotolerance (Lee and
Schoffl 1996). Prandl et al. (1998) over expressed Athsf3 in Arabidopsis under the
CaMv35S constitutive promoter and observed increased thermotolerance in trans-
genic lines. Modified expression of carrot sHsp gene 17.7 altered the range of
thermotolerance (Malik et al. 1999). Queitsch et al. (2000) showed that transgenic
A. thaliana plants over expressing AtHsp100 protein had better survival rates at 45°
C temperature. Yeh et al. (2002) noticed that overexpression of OsHsps 16.9 in
E. coli provided thermal stress tolerance to bacteria. Pike et al. (2001) reported the
role of sHsps in providing thermotolerance to E. coli as well as the blue green algae
Synechococcus. They over-expressed OsHsp from rice cytoplasm, tom111 from
Lycopersicon chloroplasts and 6803 HSP from Synechocytis sp. PCC6803 in
E. coli. They observed that all these proteins protect the enzyme malate dehydro-
genase from aggregation in vitro. These proteins were also able to protect several
other soluble proteins from thermal aggregation in vitro in E.coli extract as well as
the extract of the pigment phycocyanin of Synechococcus sp. Down regulation of
Hsp100 in A. thaliana and Z. mays mutants generally lead to the loss of both basal
and acquired thermotolerance (Hong and Vierling 2001; Nieto-Sotelo et al. 2002).
Panchuk et al. (2002) overexpressed hsf3 in A. thaliana and resulted in enhanced
thermotolerance. Overexpression of hsfA1 leads to enhanced thermotolerance in
tomato (Mishra et al. 2002). Further, overexpressiopn of AtHsp100 protein in rice
plants resulted in better recovery after temperature stress compared to the control
one (Katiyar-Agarwal et al. 2003). Overexpression of rice OsHsps resulted in
enhanced thermotolerance and resistance to ultraviolet radiation (Murakami et al.
2004). Tobacco plants overexpressing tomato LeHsp gene resulted in inceased
thermotolerance (Sanmiya et al. 2004). Yang et al. (2006) observed that silencing of
Hsp100/ClpB protein in tomato plants lead to loss of thermotolerance. Hsa32 is a
heat inducible protein and its silencing leads to loss of thermotolerance even after
the preconditioning of A. thaliana plants with the sub-lethal temperature treatment
(Charng et al. 2006). Charng et al. (2007) observed that HsfA2 knockout mutants
are more sensitive to heat stress than wild type suggesting a major role of HsfA2 in
acquired thermotolerance in Arabidopsis. Schramm et al. (2008) characterized
DREB2A as a heat stress responsive regulator and emphasized its role in the
induction of HsfA3 under temperature stress. Malik et al. (1999) provided evidence
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that overexpression of sHsps 17.7 in carrot cell lines and plants resulted in increased
endurance of transgenic cell lines to high temperature. Overexpression of rice
chloroplast OsHsp26 in E. coli provided heat tolerance and tolerance to other oxidative
stresses (Lee and Vierling 2000). Ono et al. (2001) reported that overexpression of
DnaK from halotolerant cyanobacteriun Aphanothece halophytica in tobacco showed
endurance towards thermal stress. Transgenic tobacco plants overexpressing class 1
sHsps also showed thermotolerance (Park and Hong 2002). Introduction of tomato
mitochondrial sHsps in tobacco also provided tolerance to thermal stress (Sanmiya
et al. 2004). Li et al. (2005) reported that A. thaliana AthsfA2 overexpression increased
themotolerance, whereas AthsfA2 mutant lines showed reduced basal tolerance and
oxidative stress tolerance in Arabidopsis. Arabidopsis transgenic lines overexpressing
OshsfA2e under the control of maize ubiquitin promoter also showed thermotolerance
(Yokotani et al. 2007). Molecular chaperones, which belong to heat shock cognate
70KDa family (hsc70), are highly conserved and their altered expression assists in
biotic and abiotic stress tolerance (Cazale et al. 2009). Preconditioning of plants with
mild stress conditioned them to overcome severe stress (Vasquez-Robinet et al. 2010).

Calreticulin’s role in response to environmental stress has also been investigated.
To elucidate the functions of the calreticulin in reaction to drought stress, Jia et al.
(2008) overexpressed full-length wheat calreticulin TaCrt in tobacco plants. TaCrt
over-expressing plants showed drought resistance compared to the control plants
under water-deficit condition. Transgenic tobacco plants showed higher water
uptake effectiveness, water retention capacity, relative water content and low level
of membrane damage under water-deficit conditions compared to the wild type
control plants (Jia et al. 2008). Wheat calreticulin is thus implicated in the drought
stress tolerance. Calreticulins have the ability to increase the capacity to rapidly
store calcium or release it from the ER as well. Overexpression of maize Crt in
Arabidopsis lines led to increase in total calcium, chlorophyll level and yield
compared to control wild type plant (Tsou et al. 2012). Arabidopsis transgenic lines
overexpressing maize Calreticulin also showed increased root growth and better
survival under intermittent drought stress through up-regulation of CIPK6 (Tsou
et al. 2012). These transgenics have proven that chaperones are suitable candidate
genes for transgenic studies. Table 6.2 provides comprehensive detail on plant
transgenics raised by genetic manipulation of chaperones for different abiotic stress
tolerance.

6.8 Conclusion and Future Perspectives

Chaperones provide tolerance to plants as ellucidated in several plants systems and
their role in plants overall sustenance have also been widely accepted. Their
presence in all the cellular organelle as well their multifaceted functionality reaf-
firms their regulatory character. The natural phenomenon of stress adaptation is
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Table 6.2 Representative examples of chaperones reported to be suitable for generating
transgenic plants for various abiotic stresses

Molecular
chaperones

Transformants Role in abiotic stress tolerance in
plants

References

AtHsp70 A. thaliana Overexpression lines show
thermotolerance and antisense lines
show loss of thermotolerance

Lee and Schoffl
(1996)

DcHsp17.7 E. coli Transformants exhibit
thermotolerance

Malik et al. (1999)

AtHsp100 A. thaliana, Z.
mays

Transformants are tolerant to sudden
exposure of extreme temperature

Hong and Vierling
(2001), Nieto-Sotelo
et al. (2002)

OsHsp26 E. coli Overexpression provides
thermotolerance and tolerance to
other oxidative stresses

Lee et al. (2000)

OsHsp16.9 E. coli Overexpression provide
thermotolerance

Yeh et al. (2002)

AtHsp101 O. sativa Transformants show tolerance to high
temperature

Katiyar-Agarwal
et al. (2003)

Lehsp N. tabacum Overexpression lines show
thermotolerance, whereas, antisense
lines are thermosensitive

Sanmiya et al. (2004)

Hsp17.7 O. sativa Overexpression confers both heat
tolerance and UV-resistance

Murakami et al.
(2004)

Tomato
MtsHsp

Tomato Overexpression lead to
thermotolerance

Nautiyal et al. (2005)

Hsp21 N. tabacum Protect photosystem II from
temperature induced oxidative stress

Neta-Sharir et al.
(2005)

OaPDI
(Oldenlandia
affinis)

O. sativa Tolerance towards oxidative stress. Gruber et al. (2007)

TaCRT T. aestivum Overexpression shows drought stress
tolerance under water deficit
condition

Jia et al. (2008)

Hsc70 A. thaliana Overexpression lead to tolerance to
salt, cadmium and arsenic.

Cazale et al. (2009)

ZmCrt A. thaliana Overexpression lead to increase in
calcium content, chlorophyll content
and yield

Tsou et al. (2012)

GhCyp1 N. tabacum Salt and biotic stress tolerance Zhu et al. (2011)

MTH1745
(PDIL)

O. sativa Heavy metal tolerance Chen et al. (2012)

OsCyp2 N. tabacum Overexpression shows tolerance
towards salinity and oxidative stress

Kumari et al. (2015)

AtHsp90.5 Arabidopsis Tolerance towards salt and drought Oh et al. (2014)
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complicated and requires active participation of many biological micro- and
macromolecules, including proteins and lipids. Depiction of their impending sites
of stress perception and understanding the way plants respond to any form of stress
forming a complex network is yet to be studied. It would be remarkable to map
these chaperones to quantitative trait loci linked to tolerance. Chaperones syner-
gistically form alluring molecular networks that plants exploit to tolerate different
stress forms. These proteins generally show pleiotropy, interact with multiple
pathways in varied fashion. Cellular stress response has implications on, and is
subjected by, mechanisms at all steps of organismal constitution. Some Hsps are
quite exclusive to the plants, solely because of the localization of these chaperones
in chloroplasts and other plant specific subcellular compartments. Many reports for
the presence of Hsp70, Hsp60, sHsps, cyclophilins in the organelles do exits. These
chaperones are quite related to their homologs in both eukaryotic and prokaryotic
organisms. They show similar impact to the retention of chloroplast structure and
organellar maintainance, but further investigations are underway.
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Chapter 7
Role of Chromatin Assembly
and Remodeling in Water Stress
Responses in Plants

Shoib Ahmad Baba, Deepti Jain and Nasheeman Ashraf

Abstract Owing to the sessile lifestyle, plants are exposed to the ever-changing
and harsh environmental conditions. To defend themselves and to cope up with
multitude of biotic and abiotic aggressors that compromise their development and
reproduction, plants have developed various survival strategies. These include a
plethora of physiological responses as well as developmental and morphological
adaptations. Defense response to environmental stresses largely depends on the
plant’s capability of stress sensing and transcriptional reprogramming to minimize
trade-off between growth and stress. Changes in chromatic organization, chromatin
remodeling and action of chromatin modifying enzymes constitute an important
phenomenon involved in establishing these transcriptional states. This helps plants
to attain higher degree of flexibility and facilitate activation or repression of specific
sets of genes in response to environmental stresses. The present chapter provides
insights about the events and the mechanisms involved in chromatin reorganization
that occurs in plants in response to water stress.
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7.1 Introduction

Plants are sessile organisms and, therefore, constantly exposed to changing envi-
ronmental conditions like drought, high salinity, and low temperature. These
conditions have adverse effects on growth and development of plants and subse-
quently their productivity. Therefore, plants have adapted to undergo cellular
reprogramming in order to perceive and respond to these stresses (Han and Wagner
2014). Further, plants may face multiple stresses at the same time and therefore,
possess elaborate regulatory mechanisms to coordinate the activation of
stress-specific responses. Uncovering the key mechanisms by which plants tailor
their responses to different stresses has become a major focus of stress biology.
Chromatin reorganization is one of the principal mechanisms involved in regulating
abiotic stress responses in plants.

The genetic information encoded by DNA is organized into chromatin. This
chromatin is composed of nucleosome units each of which is formed by wrapping
147 bp of DNA around a histone octamer (two copies each of histones H2A, H2B,
H3 and H4). This nucleosomal DNA does not allow interaction of proteins with
DNA thus regulating gene expression. Therefore, expression of many genes is
brought about by reorganizing the chromatin so as to alter these constraints and
create accessible genome in response to endogenous and exogenous cues. Three
different processes are involved in making genome accessible and these include:

1. Histone modifications which alter histone-DNA interaction and subsequently
expose or block protein binding sites

2. Chromatin remodeling in which ATPases utilize the energy derived from ATP
hydrolysis to alter position or composition of nucleosomes

3. Cytosine methylation in DNA which interferes with binding of some proteins
while facilitates that of others

The regulation of chromatin structure through above-mentioned processes
occurs by the dynamic interplay between DNA-binding proteins, histone variants,
histone-modifying enzymes, chromatin-associated proteins and ATP-dependent
nucleosome remodelers. These factors provide instructions that direct the tran-
scriptional dynamics of a genome in response to developmental or environmental
cues.

7.2 Histone Modifications

N-terminal regions of nucleosome core complex histones undergo various
post-translational modifications including acetylation, methylation, phosphoryla-
tion, ubiquitination, sumoylation, or ADP-ribosylation (Bannister and Kouzarides
2011; Zentner and Henikoff 2013). Further, each histone has variants encoded by
different genes. These post-translational modifications and histone variants
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constitute a ‘histone code’, which determines the transcriptional state and level of
expression of genes. Some histone modifications like acetylation, certain phos-
phorylation and ubiquitination (Fig. 7.1) (Sridhar et al. 2007; Zhang et al. 2007)
result in active transcription state, while biotinylation and sumoylation repress gene
expression (Nathan et al. 2006; Camporeale et al. 2007).

7.2.1 Histone Acetylation

Acetylation of core histones is a mysterious process. The study of histone
acetyltransferases and deacetylases in yeast and vertebrates has advanced our
knowledge and understanding about the biological role of histone acetylation. The
basics of histone acetylation in plants are other eukaryotes are more or less
similar. However, there are some differences, which are reflected in new classes of
histone deacetylases. Many new classes or new members of similar classes of
histone modifying enzymes have been identified which are specific to plants
(Lusser et al. 2001).

There are many explanations for the effects of lysine acetylation on chromatin
structure. For examples, initially, acetylation weakens the interaction of the histone
octamer with the negatively charged DNA by neutralizing with a positive charge.
This in turn destabilizes the nucleosomes thereby allowing transcriptional regula-
tors to gain access to the DNA. Acetylation might also interfere with packing of
chromatin and thus modify the availability of chromatin areas for proteins which
play regulatory role. Further, acetylation may also act as signal that changes

Fig. 7.1 The amino acid terminal of H2A, H2B, H3 and H4 are subject to several
posttranslational alterations. Modified amino acid positions in H2A and H2B correspond to
human sequences (Redrawn from Lusser et al. 2002)
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histone–protein interactions (Loidl 1994). This possibility is further supported by
the observation that non-histone proteins are also acetylated and deacetylated by
histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively.
These non-histone proteins include high mobility group (HMG) proteins, nuclear
receptor coactivators, transcriptional activators, general transcription factors and
importin a7 (Sterner and Berger 2000). It has been seen that the N-terminal
extensions of core histones have sites for multiple modifications such as acetylation,
phosphorylation, ubiquitination, ADP-ribosylation and methylation. I has raised the
question of how these modifications could cross talk to each other in histone-
encoded language (Strahl and Allis 2000). There are evidences which indicate that
acetylation has major role in gene expression. Acetylation of H3 and H4 within
promoter chromatin coordinates with gene expression as revealed by chromatin
immunoprecipitation (Krebs et al. 1999; Parekh and Maniatis 1999). Further, use of
antibodies recognizing acetylated isoforms of all the core histones has revealed that
highly acetylated histones are not restricted to promoter regions of active genes
only (Madisen et al. 1998; Crane-Robinson et al. 1999). These studies suggest that
the acetylation of different histones may have different effects in different regions of
chromatin. So far several HATs have been discovered and among them many are
related to General Control Nonderepressible 5 (Gcn 5) family members, a principal
integrator of various signaling pathways; transcriptional regulators such as CREB,
Jun/Fos and hormone receptors are associated with CREB binding protein (CBP/
p30, CBP/p300) (Davie and Chadee 1998). Acetylation by CBP can either switch
on (Parekh and Maniatis 1999) or switch off (Munshi et al. 1998) the transcription
of a gene, subjected to the protein modified. It is important to note that histone
acetylations generally have a positive effect on transcription but acetylation of
non-histone factors may have activating or repressing effects. Most HATs consist of
a bromodomain. This domain has a conserved sequence motif with functions yet to
be elucidated but includes protein–protein recognition and interaction. These rec-
ognize acetyl-lysines (Dhalluin et al. 1999) suggesting that they might function as
acetylation receptors (Sterner and Berger 2000). Further, HATs may modulate the
binding of factors to chromatin by acetylating transcription factors but not histones.
In animals and fungi, H4 is the main target of acetylation while in plants, it is H3
(Waterborg et al. 1990). Recently, it has been reported that the H3 and H4 acety-
lation patterns of field bean (Vicia faba) nuclei change during the cell cycle and it
correlates with the replication than with the transcriptional activity. H4 from
Medicago, Arabidopsis, tobacco and carrot was detected in five acetylated isoforms.
The core histones and histone H1 are phosphorylated at specific serine/threonine
residues. During activation of c-Jun and c-Fos heterodimers in response to stimu-
lation by growth factors phosphorylation of Ser10 of H3 has been reported. It plays
a vital role in chromosome condensation during mitosis. Further, the pattern of
staining in meiotic cells has been reported to differ significantly between plant and
animal chromosomes (Manzanero et al. 2000).

Maize (Zea mays) is a model monocot organism for molecular and functional
characterization of different HAT and HDAC types. Three HAT and four different
HDAC activities have been reported in germinating seedlings of maize (Loidl 1994;
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Lechner et al. 2000). Two nuclear HATs (HATA1, HATA2) have been biochem-
ically identified in maize apart from cytoplasmic HAT1. An antibody against a
maize Gcn5-related protein has shown the presence of ZmGcn5 in both HATA
fractions, indicating the presence of complexes with different compositions (Sterner
and Berger 2000). HATB of Zea mays is responsible for the acetylation of newly
synthesized H4 at lysines 5 and 12 before chromatin assembly. H4 acetylation is
essential for the transport of newly synthesized H4 into the nucleus and/or correct
assembly into the nucleosome (Grunstein 1997). Therefore, HATB activity is
needed to provide free H4 with a tag for its subsequent fate. However, deletion of
the Hat1 gene from yeast exhibited no mutant phenotype. Moreover, recently, it
was reported that histones need not to be acetylated for interacting with chromatin
assembly factor (CAF-1) or to be deposited onto chromatin. Since H3 and
H4 N-termini in yeast are functionally redundant, it is believed that acetylation of
H3 N-termini by another enzyme could complement in H4 acetylation (Verreault
2000), however, the enzyme is not identified yet.

Histone deacetylases (HDACs) have been grouped into three classes (Davie and
Chadee 1998). The enzymes which are related to the yeast proteins Rpd3 and HAD
are placed in classes 1 and 2, respectively, and the proteins similar to maize HD2
are placed in class 3. The yeast-silencing information protein (Sir2) has been
recently reported to be homologous to the HDA1 family. However, so far none of
them has been studied in detail. Further, it has been shown that maize HD1BI,
HD1BII and HATB co-fractionate with a protein related to tomato LeMSI, a WD
repeat containing protein. These WD repeat-containing proteins are responsible for
targeting the enzymes to histones (Verreault 1998). In maize, only the HD1B can be
responsible for deacetylation pattern introduced by HATB on H4, indicating a
possible function for HD1B in the histone deposition process (Kolle et al. 1999).
The ZmRpd3/HD1BI can functionally complement a yeast rpd3 null mutant (Rossi
et al. 1998). Also downregulation of Arabidopsis AtRPD3A resulted in a delayed
flowering phenotype, suggesting that histone acetylation has a role in plant
development (Wu et al. 2000). Another HDAC activity was found in germinating
maize embryos and loosely chromatin-associated HD1A. The activity of this
enzyme is controlled by phosphorylation. Its dephosphorylation leads to an increase
in enzyme activity and an alteration in substrate specificity (Verreault 1998).
However, it is yet to be established whether HD1A belongs to one of the known
HDAC families or represents a different family. HD2-like HDACs (Lusser et al.
1997) form multigene families of highly conserved members across the plant
kingdom (Dangl et al. 2001). HD2 was isolated from maize chromatin as a high
molecular weight complex and is composed of three identical polypeptides. This
enzyme also undergoes phosphorylation but unlike HD1A, its dephosphorylation
almost abolishes its activity. The location of HD2 in nucleus of maize cells indi-
cates its potential role in the regulation of rRNA genes (Lusser et al. 1997).
Arabidopsis homologue AtHD2A has been shown to repress transcription when
targeted to a reporter gene in vivo, (Wu et al. 2000; Guarente 2000), thus defining a
fourth class. Three biochemically different HDAC activities have been reported in
pea and four in maize (HD1A, HD1BI, HD1BII and HD2) (Loidl 1994; Lechner
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et al. 2000). Maize HD1BI and HD1BII are class-1 HDACs, and there is at least one
additional member of this family in the databases. Several EST clones from maize,
Arabidopsis and other plant species are also present in the databases that are
homologous to the HDA1 family, however, not much is known about them.

Histone acetylation leads to more open chromatin and hence more active tran-
scription, while reverse is true for histone deacetylation (Zentner and Henikoff
2013). Several reports have shown that in plants drought sensing or treatment with
abiotic stress hormone ABA results in activation of histone acetylases resulting in
acetylation at coding regions of drought stress-responsive genes, thereby enhancing
their expression (Kim et al. 2008). This correlation holds true for expression of
stress-responsive genes (Zong et al. 2013). There are many reports to support this.
For example, ABA could induce H3S10 phosphorylation and H4K14 acetylation in
cultured Arabidopsis and tobacco cells (Sokol et al. 2007). Further, in Arabidopsis
seedlings, acetylation of H3K9, H3K23, and H3K27 was induced at coding regions
of drought stress-responsive genes after drought treatment, which in turn resulted in
gene activation. Also, HATs have been found to interact with transcription factors
involved in stress-responsive expression (Chinnusamy and Zhu 2009).

Various developmental and environmental cues can also repress the target genes
by reducing histone acetylation levels. For example, HDA19 interacts with ERF7
(AP2/EREBP-type transcriptional repressor) and SIN3 repressor complex causing
repression of abiotic stress-responsive genes (Song et al. 2012). Furthermore,
HDA19 also represses transcription activities of WRKY38 and WRKY62 during
plant defense responses (Kim et al. 2008). Thus, HDA19 plays important roles in
abiotic and biotic stress signaling pathways. HDA6 is also involved in biotic and
abiotic stress responses. Mutation in this gene increased the sensitivity of the plants
to ABA and salt stresses, which suggests its positive role in these stresses (Chen
2010). Loss-of-function mutants of HDA6 also exhibited reduced freezing and cold
tolerance. This indicates that HDA6 has a critical role in cold acclimation and
freezing tolerance (To et al. 2011). Further, expression of four Arabidopsis HD2
genes, HD2A, HD2B, HD2C, and HD2D, was repressed by ABA and salt
(Chinnusamy et al. 2008; Luo et al. 2012). Also, it was observed that overex-
pression of AtHD2 causes ABA-insensitive phenotype and leads to enhanced tol-
erance to salt and drought stresses (Sridha and Wu 2006). Also HD2C protein was
found to interact with HDA6 in vitro and in vivo (Luo et al. 2012), which suggests
that these two proteins may work together in plant responses to stresses. To Thus
histone acetylation and deacetylation processes coordinate regulation of gene
expression in response to various stresses.

7.2.2 Histone Methylation

Methylation of histones is being studied from last five decades or so and studies
have revealed that lysines 4, 9, 27 and 36 of histone H3 and lysine 20 in histone H4
can be mono-, di- or tri-methylated (Zhang and Reinberg 2001). The reults of this
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modification for epigenetic regulation was also revealed (Rea et al. 2000). An
important relationship between H3K9Me and heterochromatin was identified by the
discovery that the mammalian Su(var)3-9, Enhancer-of-zeste and Trithorax (SET
DOMAIN) protein methylates H3 at K9 (Rea et al. 2000). Suv39 h histone
methyltransferase (HMT) homologues have been identified in fission yeast,
Neurospora and in Arabidopsis and their mutants show loss of transcriptional
silencing. Thus, it shows that this epigenetic mechanism is evolutionary conserved.
Further, in vivo links between histone and DNA methylation have been reported by
examination of Neurospora and Arabidopsis mutants that are defective in H3K9
and DNA methylation (Nakayama et al. 2001; Tamaru and Selker 2001; Jackson
et al. 2002; Malagnac et al. 2002). In Neurospora, DIM-5 was shown to encode a
H3K9-specific methylase that resulted in trimethylated K9 and dim-5 mutants
showing abnormal growth and complete loss of DNA methylation (Tamaru et al.
2003).

In Arabidopsis, the majority of H3K9Me is present in centromeric and in
pericentromeric heterochromatin, which appears as densely 40,
60-diamidino-2-phenylindole (DAPI)-stained chromocenters. Different genetic
approaches led to the identification and characterization of the Kryptonite gene
(KYP), the first H3K9-specific methylase in plants. DNA methylation was reported
to be affected in kyp mutants which resembled dim-5 mutants. However, a reduction
of DNA methylation in Arabidopsis associated with a depletion of H3K9Me
occurred predominantly in plant-specific CNG-methylation sites. In Arabidopsis,
about 29 HMT-related genes have been reported and KYP being the major one
because of the drastic loss of H3K9Me observed at kyp mutant chromocenters.
Methylation of H3K9 is believed to be an important characteristic of heterochro-
matin and the presence of H3K9Me at specific loci in Arabidopsis correlates with
heterochromatic silencing. But it is important to note that the loss of H3K9Me does
not always alleviate silencing suggesting that increased levels of H3K9Me are not
sufficient to maintain silencing in plants. In fission yeast and in mammals, the
methylation at H3K9 is recognized by the chromodomain containing heterochro-
matin protein 1 (HP1), which is a key component of heterochromatin (Gendrel et al.
2002; Johnson et al. 2002; Soppe et al. 2002; Tariq et al. 2003; Probst et al. 2003).

Methylation at lysine and arginine residues of histones is also known to regulate
gene expression states. Histone lysine methyltransferases have a characteristic SET
domain. In Arabidopsis and rice, 31 and 25 SET domain‐containing proteins have
been identified, respectively (Ng et al. 2006). SET domain proteins in plants are
classified into four categories, SU(VAR) 3-9, E(Z) (enhancer of zeste), TRX
(trithorax) and ASH1 (absent, small, or homeotic discs 1) based on their homology
with animals and yeast SET proteins (Springer et al. 2003). Plant SET proteins play
crucial roles in many developmental and stress responses. For example, loss of
function of Arabidopsis ATX1 results in decreased dehydration tolerance. ATX1
has a direct influence on transcription of NCED3, a key gene in ABA biosynthetic
pathway. ATX1-mediated H3K4 methylation is required for activating transcription
of NCED3 and subsequent accumulation of ABA in response to water stress (Ding
et al. 2011).
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Arginine methylation mainly occurs at Arg2, Arg8, Arg17, and Arg26 of histone
H3, and Arg3 of histone H4 by means of a small group of protein arginine
methyltransferases (PRMTs). It was shown that a PRMT5 designated as SKB1 is
involved in salt stress response (Zhang et al. 2011). SKB1 mutant plants resulted in
salt hypersensitivity phenotype and it was demonstrated that SKB1 associates with
chromatin and thereby increases the H4R3sme2 leading to suppression of the
transcription of stress‐responsive genes. During salt stress, the H4R3sme2 level is
reduced leading to dissociation of SKB1 from chromatin and subsequent induction
of the stress-responsive genes. This shows that SKB1 mediates salt response by
altering the methylation status of H4R3sme2 of stress-responsive genes. Taken
together, there are strong evidences supporting the view that post-translational
modifications of histones play a critical role during water stress response. However,
the target genes and the enzymes involved, needs to be identified.

7.2.3 Histone Demethylases

It was known that methylated histones are irreversible because of the more stable
nature of the C-N bond, while in case of histone deacetylation simple hydrolysis of
an amide bond is involved. The irreversible nature of methylation was based on
experiments indicating that the half-life of histone methyl marks was approximately
equal to that of the histone itself (Byvoet et al. 1972; Thomas et al. 1972). Other
mechanisms of histone demethylation were also identified which included active
histone exchange (Ahmad and Henikoff 2002) and proteolytic removal of histone
amino-termini (Allis et al. 1980). Furthermore, another potential mechanism was
also recognized which involved conversion of methylarginine to citrulline by a
peptidylarginine deiminase. This enzyme also worked equally well on arginine
(Wang et al. 2004; Cuthbert et al. 2004). However, all of these mechanisms would
require passive or active histone exchange to get back to the original unmethylated
state.

On the basis of bioinformatics, several groups proposed different mechanisms of
direct histone demethylation. For example, S-adenosylmethionine (SAM) was
proposed as the source of a reactive radical intermediate, which would target the
N-methyl group, create an unstable aminium cation radical which may sponta-
neously hydrolyzes to form formaldehyde and a demethylated residue (Chinenov
2002). There were many other possibilities like oxidation of the methyl group
coupled to reduction of a cofactor, releasing the methyl group as formaldehyde or
as another higher oxidative state (Bannister et al. 2002). However, the experimental
evidence was not available for many decades. The first experimental evidence of
enzymatic demethylation was provided with discovery of lysine-specific
demethylase 1 (LSD1). The mechanism of histone demethylation by LSD1 is
highly conserved among most eukaryotes. Homologs of LSD1 have been identified
and characterized in Arabidopsis, Drosophila, Caenorhabditis elegans, and the
fission yeast S. pombe (Liu et al. 2007; Rudolph et al. 2007; Opel et al. 2007; Lan
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et al. 2007a, b; Katz et al. 2009). In all of these examples, each organism contains at
least two LSD1 homologs. In humans, a recently characterized LSD1 homolog,
LSD2, has also been shown to encode an H3K4me2/1 demethylase (Ciccone et al.
2009; Karytinos et al. 2009). The LSD1 counterparts in plants, flies, and worms that
have been characterized also encode H3K4 demethylases. Further, it has been found
that S. pombe LSD1 homologs demethylate H3K9 and not H3K4 (Opel et al. 2007;
Lan et al. 2007a, b), suggesting that this mechanism of demethylation may also be
used to target other sites of methylation. After the discovery of LSD1, Zhang et al.
(2011) provided the first experimental evidence for an alternative
oxidation-reduction mechanism for histone demethylation. This was followed by
reports from several groups that were independently pursuing new demethylases
(Tsukada et al. 2006; Whetstine et al. 2006; Fodor et al. 2006; Cloos et al. 2006).

There are not evidences so far regarding involvement of plant HDMs in abiotic
stresses. However, recent studies suggest that process of histone demethylation
occurs and therefore, the histone demethylases might have a possible role in plant
stress responses. For example, abscisic acid (ABA) increases methylation of H3K4,
while it decreases methylation of H3K9 and of ABA-responsive genes, such as
ABI1, ABI2, and RD29B in Arabidopsis (Chen 2010). This suggests possible role of
HDM in removing the methyl groups from histone H3K9ME2. Further, changes in
the methylation status of histone residues were observed in Arabidopsis in response
to dehydration stress, which again supports the involvement of HDM (van Dijk
et al. 2010).

7.2.4 Histone Variants

Most of the organisms including plants have genes coding for highly conserved
canonical histones (H3, H4, H2A, and H2B). These genes are expressed during the
S phase of the cell cycle. There are other less conserved histones which are
expressed throughout the cell cycle and they are known as histone variants. The
sequence of genes coding for canonical histones and the histone variants is not
much different. However, histone variants can bring about change in the nucleo-
some characteristics. These histone variants may also lead to changes in extent to
which various histone modifications can occur (Talbert and Henikoff 2010; Burgess
and Zhang 2013; Skene and Henikoff 2013).

In plants, there are reports which show that linker histone (H1) variants are
involved in water stress response. For example, HIS1-3 gene, a linker histone
variant is expressed in response to salt, drought, and ABA in Arabidopsis (Ascenzi
and Gantt 1997; Zhu et al. 2012). Also in tomato, water stress leads to expression of
a linker gene H1-S (Scippa et al. 2002). Although, the role of these histone variants
in plant stress response is known to be conserved, the mechanism of action needs to
be established.
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7.3 Chromatin Remodeling

Chromatin remodeling is carried out by ATP-dependent chromatin remodeling
ATPases, which bring about changes in histone–DNA interactions non-covalently
by utilizing the energy derived from ATP hydrolysis. This leads to changes in
position and/or composition of nucleosome. This change increases or decreases the
accessibility of given DNA segment to trans-acting factors and hence induces or
represses transcription respectively (Clapier and Cairns 2009; Hargreaves and
Crabtree 2011; Narlikar et al. 2013). There are four types of chromatin remodelers:
SWI/SNF, ISWI, CHD, and INO80/SWR1. Among these, SWI/SNF and CHD
sub-groups have been shown to play roles in water stress responses in plants.

Plant genomes have three types of SWI/SNF ATPases known as BRAHMA
(BRM), SPLAYED (SYD), and MINUSCULE (MINU) (Jerzmanowski 2007;
Kwon and Wagner 2007; Sang et al. 2012). The functional unit of ATPase consists
of catalytic subunit forming a core complex together with SWIRM- and SANT-
domain proteins (SWI3) and SNF5-domain proteins. Also, some accessary proteins
are present which regulate tissue- and developmental-stage-specific targeting and
activity of the complex (Clapier and Cairns 2009; Hargreaves and Crabtree 2011;
Kwon and Wagner 2007). Recently, it has been shown that ATP-dependent chro-
matin remodeling factors play important roles in plant responses to abiotic stresses.
In Arabidopsis, a gene called SWI3B (homolog of yeast SWI3) is shown to directly
interact with HAB1, a protein phosphatase type 2C, which is a negative regulator of
ABA signaling (Saez et al. 2008). The swi3b mutants were demonstrated to be less
sensitive to ABA–mediated inhibition of seed germination and growth. They were
also shown to have reduced expression of ABA-responsive genes suggesting that
SWI3B is a negative regulator of ABA signaling and HAB1 modulates the ABA
response through the regulation of SWI/SNF chromatin-remodeling complex (Saez
et al. 2008). Further, it was shown that a SWI2/SNF2 chromatin remodeling
ATPase BRM (BRAHMA) plays an essential role in stress responses in
Arabidopsis. Brm mutants were found to display increased drought tolerance (Han
2012). Moreover, loss of BRM activity led to destabilization of nucleosomes,
suggesting that BRM-mediated stress responses occur through the regulation of
nucleosome stability. The CHD subgroup chromatin remodeler PKL (PICKLE) has
also been shown to be involved in ABA response. CHD chromatin remodelers have
two tandem chromodomains, which bind methylated lysines. These domains further
couple ATP hydrolysis to remodeling (Hauk et al. 2010).

7.4 DNA Methylation

Methylation of cytosine bases in genome also influences chromatin structure and
gene expression (Jones 2012). Methylation on the 5th carbon of cytosine bases is
considered as an important epigenetic mark. In plants, cytosine methylation is
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found in the context of CG, CHG, and CHH (H = A, C, or T). The symmetric CG
and CHG methylation is catalyzed by DNA methyltransferase I (MET1) and
chromo-methyltransferase 3 (CMT3), respectively. The asymmetric CHH methy-
lation is carried out through de novo methylation by Domains Rearranged
Methyltransferase 2 (DRM2) and RNA-directed DNA methylation pathway (Chan
et al. 2005; Goll and Bestor 2005; Law and Jacobsen 2010). While CMT3 is a plant
specific methyltransferase, MET1 is a homologue of the mammalian methyltrans-
ferase DNMT1. DRM2 is also a homologue of mammalian DNMT3A/b gene. In
plants many chromosomal regions, repetitive DNA sequences, and transposons are
heavily methylated and the extent of methylation is related to the level of gene
expression. Different developmental or environmental cues affect the extent of
methylation. For example, abiotic stress has been shown to trigger hyper or
hypomethylation of different genomic regions, thereby leading to different mani-
festations. It has been proposed that hypermethylation of coding regions and
hypomethylation of promoters leads to stress adaptation in plants (Sahu et al. 2013).
Changes in DNA methylation in response to drought was shown to be more pro-
nounced in drought-tolerant plant species. More work needs to be done to explore
the in depth effect of DNA methylation on abiotic stress responses in plants.

7.5 Conclusion

With the advancements in our knowledge about the mechanisms that regulate gene
activity, it has become quite clear that chromatin is not merely a way of packaging
DNA in the nucleus. It signifies a vital regulatory entity that enables maintenance of
genome stability and permits the integration of several endogenous and exogenous
signals at the gene level. All the post-translational histone modifications as well as
DNA methylation play a role through expression or suppression of specific genes in
response to various stress stimuli. However, the knowledge about their role in water
stress responses in plants is still fragmentary and requires further investigation.
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Chapter 8
The ‘Omics’ Approach for Crop
Improvement Against Drought Stress

Deepti Jain, Nasheeman Ashraf,
J. P. Khurana and M. N. Shiva Kameshwari

Abstract Plants are sessile organisms and are inevitably exposed to various stress
factors during their lifetime. Among abiotic stresses, drought is the most prominent
which affects plant growth and yield worldwide. To combat with drought, plants have
developed various adaptive strategies. Understanding the mechanisms by which plants
perceive and transduce stress signals to initiate adaptive responses is of extreme
relevance for rational engineering of hardier crop. Crop improvement against drought
stress has been particularly enthralling; consequently, the complex drought stress
response has been extensively studied in order to understand tolerance mechanisms
thoroughly. As conventional breeding strategies for crop improvement approach their
limits, agriculture has to adapt novel approaches to meet the demands of an
ever-growing world population. Recent technical advances have led to the emergence
of high-throughput tools to explore and exploit plant genomes for crop improvement.
In this context, the high-throughput ‘-Omics’ era of research has arisen with most
propitious perspectives in developing improved varieties. These omics-based
approaches aim to decipher the entire genome for gaining insights into plant molec-
ular responses, which will in turn provide specific strategies for crop improvement.
The three main omics technologies—genomics, proteomics and metabolomics are
aimed at unraveling the overall expression of genes, proteins and metabolites,
respectively, in a functionally relevant context. Advances in this area have provided
insights into the molecular basis of various fundamental processes involved in plant
stress responses and thus opened up new perspectives and opportunities for improving
crop plants. In this chapter, how three core ‘-omics’ techniques can be translated to
create new crops that are more efficiently adapted to adverse conditions.
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8.1 Introduction

Sustainable agricultural production is an urgent issue to meet the huge challenge of
feeding a thriving global population, using fewer resources, in what is likely to be
an increasingly difficult climate. As sessile organisms, plants are often exposed to
various adverse conditions during their lifetime that affect their growth and yield.
Stress responses to these biotic or abiotic factors vary considerably from plant to
plant and thus the need to understand these variations prompted us to study
underlying regulatory mechanisms. Abiotic stresses comprise various stresses
caused by abiotic factors like ultraviolet radiations, high and low temperatures,
drought, salinity, heavy metals, hypoxia, etc. Amongst all, drought being the most
prominent and widespread has been studied extensively in terms of regulatory
mechanisms. Drought stress can occur in any developmental phase of plant and it
often occurs in concurrence with other environmental stresses, such as heat stress
and salinity (Suzuki et al. 2014). Drought stress induces a range of physiological
and biochemical responses in plants, including stomatal closure, repression of cell
growth and photosynthesis, and activation of respiration.

For several decades, stress genetics and physiology has been dominated by the
view that physiological or biochemical models can be developed for improving
stress responses and then strategies can be designed to test these approaches. The
advent of high-throughput whole genome, metabolome, proteome and related
technologies has offered a valuable tool to further dissect proven adaptive traits, and
provided opportunities to develop collections of sequence-based resources for
specific organisms. In this chapter, we will briefly discuss the recent resources and
advancements in omics technologies with particular emphasis on genomics, tran-
scriptomics, proteomics and metabolomics in plant research.

8.2 Stress-Adaption Mechanisms in Plant Species

Plants have developed adaptive strategies to cope with environmental stresses
during their lifecycle. To cope with water deficit, they have evolved three major
mechanisms: escape, avoidance and tolerance. Plants escape drought stress by
formation of seeds before drought conditions appear. To avoid stress, plants
undergo various morphological changes such as development of specialized leaf
surfaces to decrease the rate of transpiration, the reduction of leaf area, sunken
stomata or an altered root system to use water more efficiently. Stress tolerance is a
complex trait of co-ordinating physiological and biochemical alterations at the
cellular and molecular level i.e. the accumulation of various osmolytes and proteins

184 D. Jain et al.



specifically involved in stress tolerance coupled with an efficient antioxidant
system.

In any living being, one of the fundamental properties of adaptive mechanisms is
that they must be able to sense and respond to the external threat, to ensure that the
resources are being used when required. Accordingly, plant cells have evolved to
perceive differential signals from their environment, integrate them and respond by
modulating the gene expression and regulation. Molecular and genomic analyses
have shown that several different transcriptional regulatory systems are involved in
cumulative stress-responsive gene induction or repression of an assortment of genes
with diverse functions (Shinozaki et al. 2003; Yamaguchi-Shinozaki and Shinozaki
2005). Recently, a number of stress-inducible genes have been identified using
microarray analysis in various plant species and analyzing the functions of these
genes is critical to help our understanding of the molecular mechanisms governing
plant stress response and tolerance. More importantly, the expression of such
inducible genes has been used as markers and thus an overall scheme of tran-
scriptional regulation has been developed. In the proposed model, transcriptional
activation occurs at distinct time points in response to stress stimuli and these
variations in induction phases are controlled by different signaling mechanisms and
different transcription factors (Hirayama and Shinozaki 2010). Also, genetic screens
for mutations that affect the expression of stress inducible genes have allowed the
identification of novel components of regulatory system (Chinnusamy et al. 2002).
The study of plant species living under extreme environmental conditions has also
provided important information on stress tolerance mechanisms. These findings
altogether have provided a basic model of gene regulatory networks in abiotic stress
responses in plants, ultimately leading to enhancement of stress tolerance in crops
through genetic manipulation.

8.3 Strategies in Crop Breeding

The main aim of studying stress responses in plants lies in improving the abiotic
stress tolerance of crops by either conventional breeding methods or genetic
manipulation. The results of basic research using Arabidopsis as a model plant have
been applied to other crop plants in improving stress tolerance. Though such
strategies are promising to improve stress tolerance, however, improvement of
crops will require further research. The biggest challenge in crop improvement is to
fill the gap between laboratory and field conditions. For example, in many reports
the tolerance levels of genetically manipulated plant against a stress was examined
only over short periods, whilst in fields, plants are subjected to various stresses
simultaneously. The combinatorial effect of various abiotic stresses have been
reported to cause unexpected physiological changes in plant cells (Larkindale et al.
2005; Mittler 2006). To overcome these difficulties, we need to fully understand
whole stress-response system of plants (Fig. 8.1).
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8.4 Omics for Gene Discovery and Breeding

A significant challenge in gene discovery based on forward genetics or positional
cloning approach is the final identification of the gene or regulatory sequence
responsible for the phenotype. Though positional cloning helps us to generate very
useful genetic data, it does not conclusively identify the key sequence variant
associated with the target phenotype. Various omics platforms improve our ability
to identify likely candidate genes that control specific traits and elucidate the bio-
logical role or process that determines the gene effect. One can generate a series of
large ‘omics’ datasets from stress-adapted versus unadapted lines which would
further be used in the identification of a number of genes or emerging pathways that
could be associated with enhanced stress response (Langridge and Fleury 2011).
A schematic representation of each relevant omics resource is shown in Fig. 8.2.
A conceptual model is representing each biological element in a corresponding
plane with layers ranging from genome to phenome, a model termed ‘omic
space’(Toyoda and Wada 2004). Such comprehensive models often provide an
excellent boost for designing experiments and generating hypotheses based on the
integrated knowledge found in the omic space of a particular organism.
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Fig. 8.1 Transcriptional regulatory networks of abiotic stress signaling. Abiotic stress
responses involve ABA-independent or -dependent pathways. In the ABA-dependent pathway,
AREB/ABFs transcription factors function in ABA-inducible gene expression of RD20A, RD29B
genes and MYB2/MYC2 is responsible for RD22 gene expression. In one of the ABA-independent
pathways, DREB transcription factors are mainly involved in RD29A gene expression not only by
drought and salt but also by cold stress. DREB1/CBFs are important transcription factors in
cold-responsive gene expression. DREB2s are involved in dehydration and high salinity
stress-responsive gene expression. Another ABA-independent pathway involves NAC transcrip-
tion factors is controlled by drought and salt, but not by cold. NAC regulates ERD1 gene
expression
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Furthermore, the comparison of such omic resources and datasets among species
promises to be an efficient way to find collateral evidence for conserved gene
functions that might be evolutionarily supported.

8.4.1 Genomics Related Platforms and Resources

Evolution of novel technologies like molecular markers, trait/physical mapping,
transcriptome/genome sequencing during the last two decades has improved our
understanding from genome to gene level to gene networks for plant development
and stress management in many model or crop species (Varshney and Dubey 2009).
The efficacy of breeding programs can increase by either extending the amount or
nature of genetic variation, or by accelerating the selection process to produce
varieties more rapidly. Genomics can provide support for both approaches.
‘Genomics-assisted breeding’ is a revolutionizing breeding technology based on
genomics tools (Varshney et al. 2005) that significantly enhances the efficiency of
breeding for improvement of agronomical traits. Further, the studies done in the
areas of functional, structural and comparative genomics suggested that the infor-
mation gained from one plant species could be used for the improvement of related
species. The genomics-based approaches help in deciphering the entire genome to
gain insights into plant molecular responses, which will in turn provide specific
strategies for crop improvement.

8.4.1.1 Functional Genomics

Functional genomics tools have been used to study gene functions and the inter-
actions between genes in regulatory networks. RNA (transcriptomics), protein
(proteomics) and metabolite (metabolomics) levels can be assessed for parental
lines to gain information linked to the trait of interest. This further can be exploited
to generate improved varieties. For example, if a quantitative trait locus (QTL) is
associated with drought tolerance, transcriptomics of QTL ± lines will reveal genes

Genomics Transcriptomics Proteomics Metabolomics Phenomics

DNA RNA Protein Metabolite Phenotype

Fig. 8.2 Omics space and its related techniques in plants. Involvement of different -omics
techniques in plant genome to phoneme analysis
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in the region that are differentially regulated in response to drought stress. Similarly,
protein profiling will provide information on changes in protein abundance or
modification in response to the stress and metabolomics data might indicate that the
region is associated with a major change in levels of any metabolite suggesting
those genes to be involved in the biosynthesis of any osmoprotectant (Fleury et al.
2010). Information on loci that control gene expression levels, protein modification
or levels of a particular metabolite can directly be mapped onto a segregating
population by the help of transcript, protein and metabolite profiles. The QTLs
associated with such traits are known as expression (eQTL), protein (pQTL) or
metabolite (mQTL). The preliminary information on molecular phenotypes helps
elucidate genotypic variation that underlies morphological and physiological traits.
Functional genomic studies are perhaps the most readily applicable information for
crop improvement. These approaches employ predominantly either sequence- or
hybridization-based methodologies.

Sequencing-based approaches include Expressed Sequence Tag (EST)
sequencing, Serial Analysis of Gene Expression (SAGE) analysis or Massively
Parallel Signature Sequencing (MPSS). Expressed gene catalogue of any species
can be easily analyzed by EST sequencing as ESTs have been shown to identify
corresponding genes unambiguously in a rapid and cost-effective fashion (Bouchez
and Höfte 1998). National Center for Biotechnological Information (NCBI) has the
EST database for important crops such as maize, soybean, wheat, and rice, along
with several thousands of ESTs for other plants. EST sequencing of different cDNA
libraries from various tissues, developmental stages, or stress treatments generally
help in revealing differentially expressed genes (Yamamoto and Sasaki 1997). EST
sequencing is very useful in crops lacking whole genome sequence information or
in crops with large and repetitive genomes. SAGE is an alternative approach to
quantitate the abundance of thousands of transcripts simultaneously. In this tech-
nique, short sequence tags from transcripts are concatenated and sequenced, giving
an absolute measure of gene expression (Velculescu et al. 1995; Vega-Sánchez
et al. 2007). The first report of SAGE in plants identified stress-responsive novel
genes and also implied novel functions for known genes in rice seedlings (Lee and
Lee 2003; Matsumura et al. 1999). Similarly, in MPSS technique, longer sequence
tags are ligated to microbeads and sequenced in parallel, enabling analysis of
millions of transcripts simultaneously (Brenner et al. 2000). MPSS captures rare
transcripts too in species that lack a whole genome sequence (Reinartz et al. 2002).
MPSS has also been employed in the expression studies of small RNAs in plants
(Meyers et al. 2006; Nobuta et al. 2007).

Hybridization-based approaches are array-based techniques that assess expres-
sion by hybridization of the target DNA with cDNA or oligonucleotide probes
attached to a solid surface (Lockhart et al. 1996). Substantial microarray expression
data exists for model crops like Arabidopsis thaliana and rice (Wang et al. 2011;
Zimmermann et al. 2004) and other crop species such as wheat (Ergen et al. 2009),
barley (Close et al. 2004), maize (Luo et al. 2010), cotton (Ranjan et al. 2012),
cassava (Utsumi et al. 2012), and tomato (Loukehaich et al. 2012). The relevance of
microarray study depends upon the choice of tissue or genotype. Agricultural gain
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and stress adaptation are best studied in reproductive tissues and stress-tolerant
genotypes, respectively (Deyholos 2010). Generally, abiotic stresses are complex in
nature, eliciting intricate mechanisms of responses in plants, so slight differences in
the stress conditions may bring significant differences in stress responses. Similarly,
pre- and post-translational modifications may affect the result interpretations.
Whole genome tiling arrays are a successful expansion of array-based transcript
profiling to investigate abiotic stress responses in species with an available whole
genome sequence (Rensink and Buell 2005). Candidate genes for desired traits,
such as stress tolerance can be detected by genome wide expression profiles whose
inactivation or overexpression will further help in their characterization and uti-
lization. The whole idea of high-throughput phenotyping, or ‘phenomics’, has
developed into a highly active research field. The complex nature of drought stress
has been proven by the involvement of a number of genes in drought stress.
Drought tolerant genotypes revealed the presence of multiple pathways conferring
drought stress tolerance. Since, transcription factors are generally the key players
for diversifying stress responses; they are often targeted to examine crops for
drought stress responses. A comprehensive EST database is a prerequisite for the
success of the above-mentioned approaches to identify genes accurately and
unambiguously. ESTs are the source for designing ‘functional markers’ which are
the polymorphic sites on causal genes responsible for phenotypic variation of traits
in crops (Andersen and Lübberstedt 2003). The importance of functional markers
has been well documented in stress tolerance studies (Bagge et al. 2007).

8.4.1.2 Structural Genomics

Functional genomics focuses on the functions of genes and gene networks, whilst
structural genomics on the physical structure of the genome to identify, locate, and
order genomic features along chromosomes. In the last decade, advances in DNA
sequencing technologies have paved the way for the exploitation of plant genomics
studies for breeding improved varieties. Through Next Generation Sequencing
(NGS) reference or draft genome sequences for a number of species like
Arabidopsis thaliana, Brachypodium distachyon, rice, sorghum, soybean, and
maize, have been published (Morrell et al. 2012). Detailed information on genomic
features including coding and noncoding genes, regulatory sequences, repetitive
elements, and GC content can be obtained from whole genome sequences which
can further be exploited for crop improvement via molecular breeding, particularly
for complex traits (Mochida and Shinozaki 2010).

NGS-mediated shotgun sequencing made its impact by contributing in the
development of molecular markers. In contrast to morphological markers which
once had been the focus of traditional breeding studies, DNA based markers are not
affected by the environment (Mohan et al. 1997). Amongst all markers, Single
Nucleotide Polymorphisms (SNPs) (Edwards and Batley 2010) are beneficial for
use in genomics because of their abundance in genome, codominant nature and
amenability to high-throughput genotyping. SNPs are readily identified by
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comparison of different genotypes in crop species provided reference genome
sequences or extensive transcript databases are available and may thus serve as
functional markers (Mammadov et al. 2012). Insertion Site-Based Polymorphisms
(ISBPs) is a recently developed molecular marker type that utilizes the insertional
polymorphisms observed in the repeat junctions of complex genomes (Paux et al.
2010).

The utilization of molecular markers in breeding is referred to as
Marker-Assisted Selection (MAS) that helps in improving varieties with respect to
desired traits, such as pathogen resistance, abiotic stress tolerance, or high yield
(Collard and Mackill 2008). Any trait, if tightly linked to a molecular marker or
more preferably flanked by two close markers results in a more efficient and
accurate MAS (Edmeades et al. 2004; Edwards and Batley 2010). Additionally,
markers should be highly polymorphic in the germplasm used for breeding for
efficient MAS. Since, genetic diversity plays a very important role in improving
crops through breeding techniques; molecular markers are used in the exploration
of the variation among the germplasm to select the best candidate parental lines.
Likewise, molecular markers ensure genomic purity or may identify heterotic
groups of cultivars to achieve heterosis. Several backcrossing steps are involved in
conventional plant breeding to enable transfer of one or a few traits to an elite
cultivar while retaining most of the recurrent genome and molecular markers have
provided the opportunity for accelerated backcrossing. Genotyping by MAS
enables early selection of traits that are labor and/or cost-intensive to score phe-
notypically, that are under complex genetic control, or that are manifested late in
development (Collard and Mackill 2008). Though MAS usually requires the vali-
dation of QTLs when applied in different genetic backgrounds, but functional
markers, however, may overcome the issue of QTL validation (Edmeades et al.
2004). In recent years, MAS has been successfully utilized to improve crops for
abiotic stress tolerance, including drought (Ashraf 2010), salinity (Yamaguchi and
Blumwald 2005), and waterlogging (Ahmed et al. 2012).

8.4.1.3 Comparative Genomics

Comparative genomics is a promising tool to gain information for species with
largely unexplored genomes by utilizing the conservation between closely related
plant species (Guyot et al. 2012). A collinear order of genes and markers shared by
genomes of different species has been shown by comparative genome mapping
studies. Though plant genomes greatly differ in size, yet these differences generally
correspond to intergenic regions. A recent concept of “genome zipper” was sig-
nificantly contributed by comparative genomics, which enables the determination of
a virtual gene order in a partially sequenced genome. Genome zippers predict the
gene order and organization in species like Brachypodium, sorghum, and rice by
comparing the fully sequenced and annotated genomes with various sources of data
from less well-studied species (Mayer et al. 2011). Despite of comparative ge-
nomics and genome zippers concept, species-specific genomic features, like
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homoeologous genes with different orthologous relationships, can still only be
accessed through a fully annotated reference genome sequences (Rustenholz et al.
2010).

8.4.2 Transcriptome Resources

Transcriptome analysis is a useful tool to screen candidate genes, predict gene
function and discover cis-regulatory motifs. It comprises the comprehensive and
high-throughput analysis of gene expression. Large-scale gene expression profiles
for various species have been done by the well-established hybridization-based
methods, such as microarrays and gene chips. The multiple data sets thus generated
containing large-scale gene expression profiles serve as a common pool of large
amounts of information. This pool helps us to access, analyse and disseminate
expression data for comprehensive functional genomics studies, such as
co-expression and comparative analyses. Furthermore, this data helps in answering
biological questions and leveraging existing large-scale expression studies results
for developing novel strategies to demonstrate the expression and translation of a
particular gene. Recently, deep sequencing of short fragments of expressed RNAs is
becoming an efficient tool to study genome-sequenced species (Harbers and
Carninci 2005; de Hoon and Hayashizaki 2008). High-throughput expression
profiling and analysis systems have been developed and have matured rapidly
through the past decade. Broadly, there can be two categories: sequencing-based
and hybridization-based approaches. Though, these approaches are based on dif-
ferent principles they should be considered complementary to each other and
currently, both are important tools for transcriptome profiling.

8.4.2.1 Sequence-Tag Based Resources

Expressed sequence tag (EST) and complementary DNA (cDNA) sequences are
currently the most important resources for transcriptome exploration.
Transcriptome profiles of contrasting genotypes are generally acquired by
large-scale sequencing of ESTs randomly picked in their unbiased cDNA libraries
and then classified into clusters of transcript sequences using sequence-clustering
and/or assembling methods. The transcript abundance in each tissue is estimated by
counting the number of ESTs with identifiers for each cDNA library and/or each
sequence cluster. The formal identification of candidate genes thus proceeds first by
gathering information from expressed sequences tags (ESTs) and then by cloning
the complete gene. Furthermore, the sequence information from ESTs enable gene
discovery, complement genome annotation, guide SNP (single nucleotide poly-
morphism) characterization and ease proteome analysis. Digital differential display
(DDD) tool, part of NCBI’s UniGene database uses the same platform by com-
paring and identifying changes in mRNA transcript levels between two or more
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samples. This technique is widely used in comprehensive cDNA projects for a
number of eukaryotic species (Fei et al. 2004; Mochida et al. 2004; Sterky et al.
2004; Zhang et al. 2004). SAGE is a technique for deep sequencing of short read
cDNA tags that further let the user identify a large number of transcripts present in
tissues and allows quantitative comparison of transcriptomes (Velculescu et al.
1995). The development of SAGE technique has further expanded its utility. These
are MAGE (Multiplex Automated Genomic Engineering), CAGE (Cap Analysis of
Gene Expression), SADE (SAGE Adaptation for Down-sized Extracts),
microSAGE, miniSAGE, longSAGE, superSAGE, deepSAGE, super SAGE, 5′
SAGE, etc. (Hashimoto et al. 2004; Anisimov 2008). Another sequencing-based
technology is Massively Parallel Serial Sequencing (MPSS) that uniquely quantifies
gene expression levels (Brenner et al. 2000). This method combines the non-gel
based sequencing with in vitro cloning of millions ESTs on microbeads. This
approach was adopted to perform genome-scale discovery and expression profiling
of sRNAs in Arabidopsis and rice (Lu et al. 2006; Nobuta et al. 2007).

8.4.2.2 Hybridization-Based Resources

DNA microarray and chip-related technologies are widely used in a variety of life
sciences disciplines. The power of DNA microarrays lies in the simultaneous
hybridization of mRNA extract from biological samples to a pre-selected mRNA
library (probe set), immobilized on a glass slide or on a silicon chip. The expression
levels of each transcript are obtained by reading out intensities of hybridization
signals. With the rapid increase in the number of sequenced species, a number of
DNA microarrays have been developed for transcriptome analysis in various plant
species and thus enables users to use a particular DNA microarray design to obtain
transcriptome data from many experiments. Gene expression profiles can be linked
to other information to gain insight into biological regulatory processes, predicting
binding sites, predicting protein interactions, predicting functionally conserved
modules, predicting protein functions, etc. Various web tools have been developed
for in-depth expression analysis and functional predictions. GenExpress (https://
www.genialis.com/tag/genexpress/), a web application tool is a hard earned
multinational effort designed to uncover the transcriptome of A. thaliana and stands
as one of the most comprehensive resources for the Arabidopsis transcriptome
(Kilian et al. 2007; Goda et al. 2008). DAVID (Database for Annotation,
Visualization and Integrated Discovery) is another web-based tool for annotation
and functional analysis. Similarly, NCBI’s Gene Expression Omnibus (GEO) and
the European Bioinformatics Institute (EBI)’s Array Express have been used as the
primary sources of transcriptome data in the public domain (Parkinson et al. 2007;
Barrett et al. 2008). Xcluster is a cross platform software for expression analysis.
Likewise, a number of commercial comprehensive software for microarray data
analysis are available that helps in extensive visualization and graphics.
Additionally, more databases for transcriptome data are available such as
ATTED II, which provides co-expression analysis data calculated from Arabidopsis

192 D. Jain et al.

https://www.genialis.com/tag/genexpress/
https://www.genialis.com/tag/genexpress/


ATH1 Gene Chip data (Obayashi et al. 2007, 2009). Genevestigator is another
database that summarizes hundreds of microarray experiments from various
organisms (Zimmermann et al. 2004). Electronic Fluorescent Pictograph
(eFP) browser provides gene expression patterns collected from Arabidopsis,
poplar, Medicago, rice and barley (Winter et al. 2007). Arabidopsis Gene
Expression Database AREX provides data sets of high-resolution gene expression
patterns of root tissues in Arabidopsis (Birnbaum et al. 2003). RICEATLAS
database covers rice transcriptome data covering various types of tissues (Jiao et al.
2009). Moreover, tiling arrays, a subtype of microarray chips, provide a platform
for analyzing expressed regions throughout a whole genome and is an effective
method to discover novel genes, elucidate their structure and interacting partners
through chromatin immunoprecipitation (Matsui et al. 2008). Linking with the
immune precipitation method has recently extended the usefulness of tiling arrays.
A comprehensive DNA methylation map of the Arabidopsis genome was con-
structed by combining methylcytosine immunoprecipitation (mCIP) method with
the Arabidopsis tiling array (Zhang et al. 2006). ‘ChIP-seq’, has also become an
alternative but powerful approach to sequence co-precipitated DNAs together with
a protein using the next generation sequencer (Park 2009). It helps in identifying the
genome wide DNA-binding positions of transcription factors and proteins.

8.4.3 Proteome Resources

Proteome analysis, the detailed investigation of the functions, functional networks
and 3D structures of proteins, is increasingly gaining attention after the completion
of genome sequencing projects in model and non-model crops. These
high-throughput proteome data sets serves as an important resource for under-
standing protein functions in cellular systems that reflect cell and organ states in
terms of growth, development and response to environmental changes. Functional
proteomics helps in the high-throughput identification of all of the proteins in cells
and/or tissues. Recently, the advanced proteome tools took us to second generation
of functional proteomics, including quantitative proteomics, subcellular proteomics,
and protein-protein interactions (Rossignol et al. 2006; Jorrín-Novo et al. 2009;
Yates et al. 2009).

8.4.3.1 Proteome Profiling

Protein sample preparation, separation, detection and their identification are the key
steps for protein profiling of any organism. Protein samples can be fractionated
based on solubility, molecular mass and isoelectric point by sequential solubiliza-
tion. Complex proteins can be fractionated by one-dimensional SDS-PAGE based
on their molecular masses. Two-dimensional gel electrophoresis (2-DE), which
uses isoelectric focusing (IEF) as the first dimension and SDS-PAGE as the second
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dimension, is an effective method for high-resolution separation of complex pro-
teins. This technique has been widely used in proteomics for various species
(Méchin et al. 2004; Chen and Harmon 2006; Yates et al. 2009).
Chromatography-based separation methods are effective in separating proteins
based on their physicochemical properties. In recent times, mass spectrometry
(MS) plays an important role in proteomics. MS equipment consists of an ionizer
and mass spectrometer(s) to detect the ionized samples. The obtained peptide mass
fingerprint data are then searched against a database of theoretically predicted
masses of known amino acid sequences to identify the target proteins (Hirano et al.
2004; Newton et al. 2004). Moreover, in the gel-free separation method the protein
mixture is directly digested into peptides and separated by the multi-dimensional
separation method (Yates et al. 2009).

8.4.3.2 Quantitative Proteomics

Comprehensive quantification of each protein’s abundance in a cell has become
quite important to discover key proteomic changes, including expression, interac-
tion and modification, that may be associated with genetic variations and/or visible
phenotypic changes (Gstaiger and Aebersold 2009). Difference Gel Electrophoresis
(DIGE) method is popularly used for differential display of proteins for quantitative
protein comparison in which protein samples are labeled with different fluorophores
before 2-DE, enabling accurate analysis of differences in protein abundance
between samples (Rossignol et al. 2006). Other widely used methods for protein
differential display using stable isotope labeling are Isotope-Coded Affinity Tags
(ICATs), Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) and Stable
Isotope Labeling with Amino acids in Cell culture (SILAC) (Jorrín-Novo et al.
2009). Recently, label-free quantitative techniques like (LC)-MS/MS or MS/MS are
developed for high-throughput comparisons of proteomic expression.

8.4.3.3 Subcellular Proteomics

The enzymatic inventory of a cell organelle, the compartmentalization of metabolic
pathways, protein targeting, trafficking and proteomic dynamics at the organelle
level are an integral part of the understanding for a large-scale proteome analysis of
cellular systems undergoing changes (Andersen and Mann 2006; Chen and Harmon
2006; Baginsky 2009). The proteome of different organelles of plant cells such as
chloroplasts, etioplasts, amyloplasts, chromoplasts, mitochondria, vacuoles, plasma
membranes, nucleus, peroxisomes, cytosolic ribosome and cell wall has been
studied by a variety of approaches (Baginsky 2009). ICAT and iTRAQ techniques
are also effective for acquiring quantitative data on proteomes in each organelle. In
Arabidopsis, rice and alga, differential proteome profiles of plant plasma mem-
branes were studied to identify differentially expressed proteins in response to
environmental factors such as cold, salt and bacterial stress (Benschop et al. 2007;
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Katz et al. 2007; Cheng et al. 2009; Minami et al. 2009). Several databases are
available that provide subcellular proteome information like, the rice proteome
database (Komatsu 2005), the soybean proteome database (Sakata et al. 2009), the
Nottingham Arabidopsis Stock Centre (NASC) Proteomics database and the
SUB-cellular location database for Arabidopsis proteins (SUBA) (Dunkley et al.
2006).

8.4.3.4 Post-translational Protein Modifications

Modificome research investigates various kinds of post-translational protein mod-
ifications and plays a key role in the current study of proteomics. It elucidates the
role of each protein’s functional modification with its associated biological event
(Kwon et al. 2006). Protein phosphorylation is a most common protein modification
affecting most basic cellular processes in eukaryotic organisms. Large-scale in vivo
phosphorylation site mapping can be done by MS-based technologies accompanied
by phosphopeptide enrichment techniques. The Plant Protein Phosphorylation
Database (P3DB) (http://www.p3db.org) provides information for phosphopro-
teomes from multiple plants (Gao et al. 2009). Ubiquitination of protein is another
major post-translational modification that controls protein abundance, localization
and activity. Large-scale protein ubiquitination analysis has been reported in many
plants (Shirasu 2007; Manzano et al. 2008; Igawa et al. 2009).

8.4.3.5 Structural Proteomics

Protein 3D structural information is crucial for elucidating relationships between
protein functions and structures or for analyzing molecules in protein complexes.
International Structural Genomics Organization (ISGO, http://www.isgo.org) was
formed to facilitate global structural genomics research efforts (Stevens et al. 2001).
For structural proteomics, production of soluble and folded proteins remains a
major limiting step. Mostly Escherichia coli cells are used for protein production
but advanced E. coli cell-free system and wheat germ embryo cell-free system have
also been developed (Kigawa et al. 1999; Endo and Sawasaki 2003). NMR spec-
troscopy and X-ray crystallography has also played an important role in structural
proteomics. Bioinformatics and related databases are also necessary tools for
advanced structural proteomics.

8.4.4 Metabolome Resources and Related Platforms

Metabolomics aims to understand the metabolic systems and allows us to conduct
parallel assessments of multiple metabolites and to undertake quantitative analysis
of particular metabolites. The plant metabolome is enormously diversified due to
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complex set of metabolites produced in each plant species (Bino et al. 2004; von
Roepenack-Lahaye et al. 2004). Metabolomics is able to elucidate plant cellular
systems and allows us to engineer crops to improve the productivity and func-
tionality of plants under different conditions (Fernie and Schauer 2009;
Oksman-Caldentey and Saito 2005; von Roepenack-Lahaye et al. 2004). Various
analytical instruments such as GC-MS (Gas Chromatography-Mass Spectrometry),
LC-MS (Liquid Chromatography-Mass Spectrometry), FT-MS (Fourier
Transform-Mass Spectrometry), FT-IR (Fourier Transform-Infrared Spectroscopy)
and NMR (Nuclear Magnetic Resonance) spectroscopy can be used for metabo-
lomics experiments (Roessner et al. 2001; Schripsema 2010). The metabolic
pathway maps often combines metabolic profiles with other omics methods,
including gene expression profiles of genes encoding enzymes involved in partic-
ular pathways (Thimm et al. 2004).

8.4.4.1 Metabolite Profiling

Metabolite profiling is the systematic collection of metabolite profiles and is the
prerequisite step in metabolomics. It improves the understanding of the cellular
systems responsive to changes in intracellular and extracellular environments.
Furthermore, the changes in metabolic profiles helps in identifying genes involved
in particular metabolic pathways. Several metabolomics databases are available
from various studies of metabolic profiling in plant species, such as the
Metabolome Tomato Database (MoTo DB) (Moco et al. 2006), the KOMICS
(Kazusa-omics) database for the tomato cultivar (Iijima et al. 2008) and the Golm
Metabolome Database (GMD) (Kopka et al. 2004). These databases are the
information resources and serve as tools for further integration of metabolic profiles
and other omics data (Akiyama et al. 2008).

8.4.4.2 Integrated Metabolomics and Other Omics Resources

Several MS technologies and bioinformatics are applied to extensively analyze the
metabolic changes in plants in response to environmental stress factors (Fiehn
2002; Shulaev et al 2008). A combinatorial approach for metabolomics and other
omics instances elucidate the gene-to-metabolites molecular networks and has
markedly increased our understanding of plants’ responses to various stresses.
Metabolite profiling has been used to characterize stress responses to various abiotic
factors such as drought, cold, high salinity or temperature for comprehensive
analyses of stress signal transduction pathways. The integrated approaches have
also elucidated regulatory networks, like ABA-dependent or -independent networks
that act in response to environmental stresses in plants. The endogenous ABA level
significantly increases in response to drought stress to regulate physiological stress
responses and gene expression. A combined approach of the metabolome and
transcriptome was adopted to analyze the dehydration-stress responses of an
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Arabidopsis NCED3-knockout mutant and the wild-type plant (Urano et al. 2009).
NCED3 plays a critical role in the dehydration-inducible biosynthesis of ABA
(Yamaguchi-Shinozaki and Shinozaki 2006). Metabolite profiling showed that the
ABA accumulated during drought regulates the accumulation of various amino
acids and sugars such as glucose and fructose. Particularly, the drought-inducible
expression of key biosynthetic genes (BCAT2, LKR/SDH, P5CS1, and ADC2) is
correlated with the drought-inducible accumulations of branch-chain amino acids
(BCAAs), saccharopine, proline, and agmatine respectively, which are regulated by
endogenous ABA. On the contrary, the accumulation of raffinose and galactinol is
not regulated by ABA during drought stress. Moreover, metabolic network analysis
showed a strong correlation between dehydration stress and raffinose in the nced3
mutant. These results altogether revealed the important role of ABA in regulating
the metabolic changes that occur during the drought-stress response. Metabolite and
transcript profiles were compared between dehydration and salinity stress in
grapevine. Higher concentrations of glucose, malate, and proline were found in
dehydration-treated plants, compared with salt-stressed plants. The differential
levels of metabolites were correlated with those of transcript levels of many genes
involved in energy metabolism and nitrogen assimilation. In comparison with
salt-stressed plants, dehydration-treated plants were weaker in adjusting osmoti-
cally, detoxifying ROS, and ameliorating photoinhibition (Cramer et al. 2007).
Metabolic profiling in fact showed that sucrose replaces proline in plants as the
major osmoprotectant during the combined dehydration and heat-stress treatment
(Rizhsky et al. 2004).

In order to identify genes involved in anthocyanin biosynthesis in Arabidopsis,
an integrated approach that comprised metabolome and transcriptome analysis was
conducted for investigation of an activation-tagged mutant and overexpressors of an
MYB TF, PAP1 gene (Tohge et al. 2005). The co-expression data of the
Arabidopsis transcriptome provided by the ATTED-II database was used to identify
novel genes involved in lipid metabolism, leading to identification of a novel gene,
UDP-glucose pyrophosphorylase 3 (UGP3) that is required for the first step of
sulfolipid biosynthesis (Okazaki et al. 2009). All of the genes related to flavonoid
biosynthesis was identified by co-expression analysis (Yonekura-Sakakibara et al.
2008).

8.5 Modeling Plant Responses for Crop Improvement

Molecular plant breeding often revolves around predictions of phenotype based on
genotypes. The reliability of these predictions is derived from measurements of
phenotypic performance in large segregating populations. Statistical and modelling
techniques for phenotypic data, which have been generated from field and con-
trolled environment studies further supported the analysis of complex traits
(Hammer et al. 2006). Since phenotypic prediction sometimes becomes difficult
because of the large genotype by environment interaction, drought tolerance has
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been modeled to produce an ‘index of the climatic environment’. This index can
identify the stages of crop development in which the interaction between the
genotype and the environment is strongest which can further be deployed to
identify the components of the crop response that offer the greatest response to
breeding and selection (Chapman 2008). Physiological and molecular knowledge is
linked to the more conventional phenotyping and genetic analysis by the advent of
different omics platforms. Genomics and genome analysis provide valuable infor-
mation regarding structure and behavior of crop genomes. Genotype or environ-
ment interaction can be analyzed by the detailed genomics and related omics data.
Availability of detailed omics datasets is now helping in interrogating components
of the environment that react with particular regions of the genome. This type of
analysis offers the potential to target studies to specific environmental issues, like
drought stress and identify responses that will result in the greatest genetic gain.
The objective is to develop gene-network and ecophysiological models that link
agronomy to gene structure and provide information on selection targets for
breeding. Any gene responsible for a particular trait can be used to enhance
breeding in different ways. Firstly, if the gene is known then diagnostic markers can
be developed and used for screening the phenotypic differences, which could be due
to variation in the protein product, differential expression levels, gene duplication or
due to the presence or absence of the gene. Screening germplasm collections
provides the opportunity to look for sequence variants at the locus or can be
extended to look at landraces or wild relatives (Barkley and Wang 2008). Discovery
of new alleles with increased expression should be given a high priority to deter-
mine the most appropriate strategy for crop improvement. High-throughput
screening methods such as Targeting Induced Local Lesions in Genomes
(TILLING) have made mutant populations a valuable source of variation and have
reinvigorated interest in mutation breeding. Site-directed mutagenesis is the basis of
a recently designed zinc finger nuclease technology (Townsend et al. 2009) that has
been successfully used to generate herbicide-tolerant maize lines by precise
insertion in a target gene (Shukla et al. 2009).

8.6 Conclusions and Future Prospects

The aim of molecular plant breeding is to improve crop variety for yield, quality
and resistance by means of latest innovations in the fields of genetics and genomics.
Genomic tools help in improving our understanding about the association between
genotype and phenotype. Recent advances in sequencing and genotyping tech-
nologies have made it possible to identify molecular markers associated with the
trait of interest for breeders. Such markers have greatly helped the breeding com-
munities in overcoming the constraints of phenotypic selection for several crops.
These approaches together with ‘omics’ analyses are crucial to understand the
whole processes of molecular networks in response to drought and related stress
and can be used to identify the genomic regions or genes involved in expression of
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trait(s) that are of interest to the breeders. It is important to validate the functions of
newly identified stress-responsive protein-coding and non-coding RNAs to under-
stand the complex drought-related stress responses of plants. An integrated meta-
bolome and transcriptome analysis is necessary to identify the broad function of
metabolite regulatory networks during responses to abiotic stresses.

In summary, the presented tools and approaches in this chapter have great
potential to impact crop breeding. However, it is really important at this stage to
bring integrated technologies/approaches together with conventional breeding
methodologies for enhancing the genetic gain leading to crop improvement.
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Chapter 9
Genomic Strategies for Improving
Abiotic Stress Tolerance in Crop Plants

Jyoti Taunk, Asha Rani, Richa Singh,
Neelam R. Yadav and Ram C. Yadav

Abstract Abiotic stresses which adversely affect agricultural production are a
serious global concern for food security. Environmental stresses such as drought,
salinity, high temperature and frost are predicted to worsen with the anticipated
climate change. Hence, production of stress tolerant crops is urgently required for
ensuring future food security. Traditional crop improvement approaches have
almost reached their limits and will not provide any further gain. Use of genomics
approaches is gaining importance and leading to a new revolution of plant breeding
for abiotic stress tolerance. Advances in genomics technologies have allowed an
in-depth analysis of crop genomes and have enhanced our understanding of the
complexity of the mechanisms governing abiotic stress tolerance. For example, next
generation sequencing (NGS) technologies are allowing the mass sequencing of
genomes and transcriptomes, thus producing a vast array of genomic information.
The analysis of NGS data by means of bioinformatics developments have allowed
discovery of new genes and regulatory sequences controlling important traits. Also,
with the generation of innumerable number of markers and their use in genome-
wide association studies, many genomic regions associated with important traits
related to abiotic stress tolerance have been identified. This review provides an
overview of the various genomics approaches available for crop improvement
against abiotic stresses and their successes and failures in different crops. The
chapter will be useful particularly for the students and scientists in genomics
research and also to the larger community of researchers who have recognized the
potential of genomics research and are beginning to explore the technologies
involved.
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9.1 Introduction

Abiotic stress, one of the most serious constraints to global food production, are
projected to worsen with the anticipated climate change. Researchers have been
trying to understand and dissect the mechanisms of plant tolerance to abiotic
stresses using a variety of approaches. However, success has been limited as most
of these stresses are complex in nature being controlled by networks of genetic and
environmental factors (Sinclair 2011). As traditional methods have reached their
limits for crop improvement; there is a need to adopt novel approaches to meet the
demands of an ever growing world population. Modern genomics and genetics
approaches coupled with advances in precise phenotyping and breeding method-
ologies are expected to effectively unravel the genes and metabolic pathways that
confer abiotic stress tolerance in crops. Here, we will discuss the most recent
advances in the genetic and genomics strategies to unravel the complex multilay-
ered abiotic stress tolerance mechanisms and their exploitation in crop improve-
ment. Emphasis has been given to molecular dissection of abiotic stress tolerance
by quantitative trait loci (QTL) mapping or gene discovery through linkage and

Fig. 9.1 Genomic strategies for improving abiotic stress tolerance in plants
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association mapping (AM), QTL cloning, candidate gene identification, transcrip-
tomics and functional genomics. The aim of utilizing these genomics-based
approaches is to screen the entire genome including genic and intergenic regions,
and to gain insights into plant molecular responses for developing effective
strategies for crop improvement (Fig. 9.1).

9.2 Molecular Genetic Approaches and QTL Mapping

The identification of genes (responsible for important agricultural traits) has been
mostly conducted by traditional forward and reverse genetic approaches for discrete
traits and by QTL mapping for complex traits (Takeda and Matsuoka 2008). The
traditional methods are important to reveal the genes that are involved in a par-
ticular function, whereas QTL mapping reveals the effects of genetic variants on
complex traits, which include most agronomic traits. Molecular genetic approaches
are relatively straight forward in model plants such as rice and Arabidopsis thali-
ana, where whole genome sequence information is available and transformation
techniques are well established (Alonso and Ecker 2006; Jung et al. 2008). Insertion
lines generated by the use of transfer DNA (T DNA) (the modified, transferable
DNA of some species of bacteria) and mutant libraries (prepared by chemical
mutagenesis and transposon insertions) are available in A. thaliana and rice.
Moreover, systematic transgenic approaches have been enabled recently in A.
thaliana and rice by using enormous complementary DNA (cDNA) collections. For
example, the full-length cDNA overexpressor (FOX)-hunting system can help
screening of several transgenic lines in which full-length cDNAs are overexpressed
randomly (Ichikawa et al. 2006; Nakamura et al. 2007). However, transgenic
approaches for both forward and reverse genetic studies are not yet practical in
many crop species (such as barley, wheat and sorghum), in which gene manipu-
lation technologies are either inefficient or not available.

The important goals of QTL mapping in plants are to increase our biological
knowledge of the inheritance and genetic architecture of quantitative traits, both
within a species and across related species, and to identify genetic markers that can
be used as indirect selection tools in breeding (Bernardo 2008). QTL mapping relies
on statistical linkage analyses among quantitative traits of interest and genetic
markers, using a population such as second generation (F2) plants, recombinant
inbred lines (RILs), backcross plants (BC), near isogenic lines (NILs), and double
haploids (DH). Such mapping populations are developed by crossing two inbred
parents with clear contrasting differences in phenotypic traits of interest. Each
mapping population has its own advantages and disadvantages and the researchers
need to decide the appropriate population depending on project’s objectives,
available time, trait complexity and whether molecular markers to be used for
genotyping are dominant or codominant (Semagn et al. 2010). QTL mapping
requires (1) selection and/or development of appropriate mapping population;
(2) phenotyping of the population for the trait(s) of interest (morphological
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characters, agronomic traits, abiotic stress resistance, etc.) under field conditions;
(3) genotyping by molecular markers [entire population, selective genotyping or
bulk segregant analysis (BSA)] to generate molecular data with adequate and
uniformly spaced polymorphic markers; and (4) identification of molecular markers
linked to the trait of interest using statistical programs. QTL mapping studies have
led to the identification of QTLs in many crops for tolerance to abiotic stresses like
drought (Sanchez et al. 2002; Harris et al. 2007; Landi et al. 2007), salinity
(Lindsay et al. 2004; Huang et al. 2006; Fan et al. 2015), cold (Juan et al. 2010; Liu
et al. 2013; Zhang et al. 2014), submergence (Xu et al. 2000; Gutterson and Reuber
2004; Xu et al. 2006) and heat (Shanmugavadivel et al. 2017).

9.2.1 QTLs for Drought Tolerance

Sorghum has been studied as a model among crop species for drought resistance,
because of its adaptation to hot and dry environments. ‘Stay green’ trait is partic-
ularly a relevant trait conferring drought tolerance towards improvement of sor-
ghum, characterized by delayed leaf senescence during grain ripening under
water-limited conditions. Sanchez et al. (2002) identified four genomic regions
associated with the stay-green trait using a RIL population developed from
B35 � T � 7000. These four major stay-green QTLs were consistently identified
in all field trials and accounted for 53.5% of the phenotypic variance. In another
QTL-mapping study, four major QTLs (Stg1, Stg2, Stg3, and Stg4) for this trait
were identified, which account for approximately 20, 30, 16 and 10% of the phe-
notypic variation, respectively (Harris et al. 2007). In maize, Landi et al. (2007)
developed back-cross-derived lines (BDLs) homozygous either for the (+) or for the
(−) allele increasing or decreasing, respectively, root size and leaf ABA concen-
tration. They reported a major QTL for root-ABA1 (involved in root architecture,
Abscisic acid (ABA) concentration and other traits according to water availability),
which accounts for 32% of the phenotypic variation in ABA concentration in the
leaf. They found that the (+) root-ABA1 allele confers not only a consistently lower
susceptibility to root lodging but also a lower grain yield, especially when root
lodging does not occur. In case of upland rice, QTL (qtl12.1) with a large effect on
grain yield under drought stress was detected on chromosome 12. Under stress
conditions, the locus also increased harvest index, biomass yield, and plant height
while reducing the number of days to flowering (Bernier et al. 2007), whereas in
case of lowland rice, drought tolerance QTL was detected on chromosome 1 near
sd1 that explained 32% of the genetic variation for yield under stress (Kumar et al.
2007). In pearl millet, a major QTL for terminal drought tolerance has been
identified on linkage group 2 (LG 2) using segregating populations derived from
two independent crosses between ICMB 841 and 863B, and H 77/833-2 and PRLT
2/89-33 (Serraj et al. 2005; Bidinger et al. 2007). This QTL on LG 2 has been
considered a major target for marker-assisted selection (MAS) for improving grain
yield under variable terminal stress conditions in pearl millet (Yadav et al. 2011).
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9.2.2 QTLs for Salinity Tolerance

In order to identify QTL associated with salt tolerance in soybean, lines from the
cross of S-100 (salt tolerant) x Tokyo (salt sensitive) were evaluated in field under
saline condition. Each line was characterized using restriction fragment length
polymorphism (RFLP) markers and an initial QTL single-factor analysis was
completed. Finally, these results were used to saturate the selected genomic regions
with simple sequence repeat (SSR) markers to improve mapping precision and to
identify genomic regions associated with the desired trait. Subsequently, on LG N,
a salt tolerant major QTL was identified near the Sat_091 SSR marker. The strong
relationship between the SSR marker alleles and salt tolerant character suggested
that these markers could be used for MAS in commercial breeding programme (Lee
et al. 2004). In durum wheat, the QTL Nax1 was observed as a genetic component
that confers lower Na+ and higher K+ concentrations in the leaf blade (Lindsay et al.
2004). By using NILs, Nax1 was shown to have a role in salt tolerance through
higher levels of Na+ exclusion from the xylem in the roots and leaf sheath, thereby
reducing Na+ concentration in the leaf blades. By comparative mapping of wheat
and rice chromosomes, HKT7-A2 (encoding a sodium transporter), was suggested
to be a strong candidate gene for Nax1 (Davenport and Munns 2006; Huang et al.
2006). Fan (2015) used 72 DH lines from a cross between T X 9425 (a Chinese
landrace variety with superior drought and salinity tolerance) and a sensitive variety
to identify QTL for drought and salinity tolerance, based on a range of develop-
mental and physiological traits. Two QTLs for drought tolerance (leaf wilting under
drought stress) and one QTL for salinity tolerance (plant survival under salt stress)
were identified from this population.

9.2.3 QTLs for Submergence Tolerance

A major QTL, Submergence1 (Sub1), was found linked to the submergence tol-
erance character in FR13A cultivar of the indica rice variety. This locus is a cluster
of three genes (Sub1A, Sub1B, and Sub1C) that encode putative ethylene response
factors (ERFs). The gene specific for submergence tolerance has been identified as
Sub1A. Introgression of the Sub1 genes into the widely grown Indian variety
Swarna, (lacking Sub1A), confers strong submergence tolerance without affecting
plant height, yield, harvest index and grain quality (Xu et al. 2000; Gutterson and
Reuber 2004; Xu et al. 2006). Gonzaga et al. (2016) developed rice RILs derived
from IR42/FR13A mapping population and identified 5 QTLs complementary to
Sub1 gene on chromosomes 1, 4, 8, 9 and 10, where four were from FR13A and
one was from IR42. They found that lines without Sub1 were still tolerant, with a
maximum survival rate up to 95%. The non-Sub1 QTLs identified have great
potential to enhance tolerance as evidenced by the superior tolerance of FR13A
compared with that of the developed Sub1 lines.
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9.2.4 QTLs for Heat Tolerance

High temperature (heat) stress during grain filling is a major problem in most of the
wheat growing areas. Through composite interval mapping, Talukder et al. (2014)
identified five QTL regions significantly associated with response to heat stress.
Associations were identified for plasma membrane damage on chromosomes 7A,
2B and 1D; SPAD chlorophyll content on 6A, 7A, 1B and 1D; thylakoid membrane
damage on 6A, 7A and 1D. To map the QTLs for heat tolerance in rice,
Shanmugavadivel et al. (2017) used 272 F8 RILs derived from a cross between
Nagina22, a well-known heat tolerant Aus cultivar and IR64, a heat sensitive
popular Indica rice variety. They identified two high effect QTLs, one novel
(qSTIPSS9.1) and one known (qSTIY5.1/qSSIY5.2) for heat tolerance in rice in
narrow physical intervals, which can be employed for crop improvement by MAS
after development of suitable markers. In case of tomato, F2 mapping population
from two contrasting cultivars, i.e. Nagcarlang and NCHS-1, was generated and
phenotyped under continuous mild heat conditions for a number of traits underlying
reproductive success, i.e. pollen viability, pollen number, style length, anther
length, style protrusion, female fertility and flowering characteristics like inflores-
cence number and flowers per inflorescence. QTLs were identified for most of these
traits, including a single, highly significant one for pollen viability, which
accounted for 36% of phenotypic variation in the population and modified pollen
viability under high temperature with around 20% (Xu et al. 2017).

9.2.5 QTLs for Cold Tolerance

QTLs for cold tolerance have also been found by several scientists at seedling stage
in rice, viz. qSPA-1 and qCTS-1 on chromosome 1 (Juan et al. 2010; Liu et al.
2013; Park et al. 2013); qCTS-2 on chromosome 2 (Lou et al. 2007; Liu et al.
2013); qCTS-12 on chromosome 12 (Andaya and Tai 2006; Zhang et al. 2014; Suh
et al. 2013). For QTL mapping of cold tolerance in tomato, Liu et al. (2016) derived
a population of 146 RILs from the cross between a cold sensitive cultivated
Solanum lycopersicum L. XF98-7 and a cold tolerant wild Solanum pimpinelli-
folium LA2184. Five QTLs controlling relative germination ratio and four QTLs for
chilling index were detected with genetic contribution ranging from 0.95 to
19.55%.

Most of the above mentioned studies identified QTLs that explained a significant
proportion of the phenotypic variance of the desired trait, and therefore, gave rise to
an optimistic assessment of the prospects of MAS and/or fine mapping. However,
many studies have reported multiple small-effect QTLs on every chromosome for
various abiotic stress traits (Tuberosa et al. 2002; Arriagada et al. 2017). Such
QTLs, which cannot be fine mapped or used for MAS become dead end for any
future investigation.
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9.3 Association Mapping

Association mapping (AM) is another QTL mapping method based on linkage
disequilibrium (LD). AM is one of the important applications of LD. LD refers to
non-random association between two markers (alleles at different loci), between
two genes or QTLs, between a gene/QTL and a marker locus (Gupta et al. 2005),
while AM refers to significant association of a molecular marker with a phenotypic
trait.

LD has a central role in AM. The distance over which LD persists will determine
the number and density of markers, and experimental design for association anal-
ysis, therefore, it is important to determine the extent of LD in the species under
investigation. There are many factors contributing to the increase of LD such as
inbreeding, small population size, genetic isolation between lineages, population
subdivision, low recombination rate, population admixture, genetic drift and epis-
tasis. On the other hand, factors like high recombination rate, outcrossing, high
mutation rate, gene conversion, etc., lead to a decrease/disruption in LD which have
been extensively discussed in a number of papers (Weiss and Clark 2002; Gaut and
Long 2003; Gupta et al. 2005; Kim et al. 2007). LD will tend to decay with genetic
distance between the loci, because genetically distant loci are more likely to have
recombined in the past as compared to tightly linked loci. Several studies on rates of
decay of LD have been reported in various plant taxa (Flint-Garcia et al. 2003) such
as Arabidopsis thaliana (Nordborg et al. 2005), maize (Palaisa et al. 2003), barley
(Caldwell et al. 2006), sorghum (Hamblin et al. 2005) and durum wheat (Maccaferri
et al. 2005) which indicate tremendous variation in the extent of LD that is mostly
due to founder effect followed by genetic drift.

AM falls into two broad categories; candidate-gene AM and genome-wide AM
(GWAM).The first one relates polymorphisms in selected candidate genes with
phenotypic traits and second surveys genetic variation in the whole genome to find
signals of association for various complex traits (Risch and Merikangas 1996).

9.3.1 Candidate Gene Association Mapping

The candidate genes are selected based on the prior information related to the
location or function of the gene involved in genetic, biochemical or physiological
pathways that lead to final trait variation (Risch and Merikangas 1996; Mackay
2001). Yu et al. (2013) conducted candidate gene AM of drought tolerance traits in
192 diverse perennial ryegrass (Lolium perenne L.) accessions from 43 countries.
They identified significant associations between a putative LpLEA3 encoding late
embryogenesis abundant group 3 protein and a putative LpFeSOD encoding iron
superoxide dismutase and leaf water content, as well as between a putative LpCyt
Cu-ZnSOD encoding cytosolic copper-zinc superoxide dismutase and chlorophyll
fluorescence under drought conditions.
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Yu et al. (2015) conducted candidate gene association mapping for winter sur-
vival (WS) and spring regrowth in perennial ryegrass. They found significant
association between C-repeat binding factor LpCBF1b and WS. Also, significant
association of LpLEA3 (encoding a late embryogenesis abundant group 3 protein)
and LpCAT (encoding a catalase) with percentage of canopy green cover and
chlorophyll index (Chl), and of LpMnSOD (encoding a magnesium superoxide
dismutase) and LpChl Cu-ZnSOD (encoding a chlorophyll copper–zinc superoxide
dismutase) with normalized difference vegetation index and Chl. Jespersen et al.
(2017) subjected colonial bentgrass plants to heat stress in controlled-environmental
growth chambers for phenotypic evaluation and determination of genetic variation
in candidate gene expression. They developed molecular markers for genes
involved in protein degradation (cysteine protease), antioxidant defense (catalase
and glutathione-S-transferase), energy metabolism (glyceraldehyde-3-phosphate
dehydrogenase), cell expansion (expansin) and stress protection (heat shock pro-
teins HSP26, HSP70, and HSP101). Through Kruskal-Wallis analysis, they found
that the physiological traits of chlorophyll content, electrolyte leakage, normalized
difference vegetative index, and turf quality were associated with all candidate gene
markers with the exception of HSP101.

Sehgal et al. (2015) phenotyped pearl millet inbred germplasm association panel
(PMiGAP) for yield and yield components and morpho-physiological traits under
both well-watered and drought conditions and genotyped with SNPs and insertions/
deletions (InDels) from seventeen genes underlying a major validated drought
tolerance QTL. They obtained significant associations for 22 SNPs and 3 InDels
from 13 genes under different treatments. A SNP in putative acetyl CoA car-
boxylase gene showed constitutive association with grain yield, grain harvest index
and panicle yield under all treatments. An InDel in putative chlorophyll a/b binding
protein gene was found to be significantly associated with both stay-green and grain
yield traits under drought stress. Sehgal et al. (2015) suggested that this InDel can
be used as a functional marker for selecting high yielding genotypes with ‘stay
green’ phenotype under drought stress.

9.3.2 Genome Wide Association Mapping

For whole-genome association scans, high-density genome-wide markers are
required that accurately reflect genome-wide LD structure and haplotype diversity.
Due to decrease in sequencing and genotyping costs, GWAM studies have grown
rapidly in many crops, even for complex traits (Rostoks et al. 2005; Bastien et al.
2014; Kumar et al. 2015; Thudi et al. 2014).

Wan et al. (2017) conducted GWAM to identify salt tolerance-related QTL.
They identified 75 SNPs distributed across 14 chromosomes, which were associated
with 4 salt tolerance-related traits. These SNPs were integrated into 25 QTLs that
explained 4.21–9.23% of the phenotypic variation in the cultivars. Additionally, 38
possible candidate genes were also identified which fell into several functional
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groups associated with plant salt tolerance, including transcription factors, aqua-
porins, transporters, and enzymes.

Liu and Yu (2017) used a diverse panel of 198 alfalfa accessions for mapping
loci associated with plant growth and forage production under salt stress using
GWAM. Forty-two markers were found to be significantly associated with salt
tolerance, of which 13 were associated with multiple traits. Nineteen putative
candidate genes were linked to 24 significant markers. Among them, B3
DNA-binding protein, Thiamine pyrophosphokinase and IQ calmodulin-binding
motif protein were identified among multiple traits.

To dissect the genetic basis of heat tolerance in sorghum, Chen et al. (2017)
performed GWAM for traits responsive to heat stress at the vegetative stage in an
association panel. They identified 9 SNPs that were significantly associated with
leaf firing and five SNPs that were associated with leaf blotching. Fourteen can-
didate genes were found to be directly linked to biological pathways involved in
plant stress responses including heat stress.

A joint linkage–LD mapping approach that takes advantage of each approach
(linkage mapping and LD mapping) (Wu et al. 2002) was used in maize for
detecting QTL for drought tolerance (Lu et al. 2010). Nearly 2000 SNP markers,
including 659 SNPs developed from drought-response candidate genes, were
screened across 3 RIL populations and 305 diverse inbred lines (ILs).
Anthesis-silking interval (ASI), an important trait for maize drought tolerance, was
used for mapping. Eighteen QTL were identified, with the sum of phenotypic
variation explained (PVE) increasing from 5.4 to 23.3% for single SNP-based
analysis (Lu et al. 2010). This combined approach (linkage analysis and LD) for
QTL analysis has been extended for fine mapping of multi-trait QTLs (Meuwissen
and Goddard 2004; Gupta et al. 2005).

9.4 Marker-Assisted Selection

Following the discovery of promising QTLs and identification of molecular
markers, MAS has been used to transfer single genes or QTL in various species. For
instance, MAS has been very successful for development of first drought tolerant
aerobic rice variety (MAS 946-1), which was released in India. Scientists at the
University of Agricultural Sciences (UAS), Bangalore, crossed a deep rooted
upland japonica rice variety from the Philippines with a high yielding indica variety
that consumed up to 60% less water than other traditional varieties (Gandhi 2007).
At International Rice Research Institute (IRRI), MAS was used for submergence
tolerance using the sub1 gene on chromosome 9. Molecular markers that were
tightly linked with Sub1, flanking Sub1, and unlinked to Sub1 were used to apply
foreground, recombinant, and background selection, respectively, in backcrosses
between a submergence-tolerant donor and the widely grown recurrent parent
Swarna. The mega variety Swarna was efficiently converted to a submergence
tolerant variety in three backcross generations within a time frame of 2–3 years
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(Neeraja et al. 2007). Through MAS, four QTL alleles for deeper roots from
‘Azucena’ (a japonica upland cultivar that is well adapted to rainfed conditions)
have been transferred into ‘IR64’, a rice cultivar with shallow root system. Under
drought-stressed field conditions, the MAS-generated lines had a root mass greater
than that of ‘IR64’ (Courtois et al. 2003). MAS has been widely used for
improvement of rice and due to the prevalence of several rice ‘mega varieties’ it is
likely to continue being a successful approach (Mackill et al. 2005).

Until recently, only limited genomic resources were available for legume crops,
so MAS adoption has been slow (Kumar et al. 2011). However, for these crops,
advances in DNA sequencing and genotyping technologies have recently delivered
large-scale transcriptome sequence data sets (Kaur et al. 2012), that can be
exploited for the design of DNA-based genetic markers such as SSRs and SNPs,
supporting linkage mapping, analysis of genetic diversity (Fondevilla et al. 2011) as
well as gene tagging for MAS (Collard et al. 2005). For physiologically complex
traits such as salinity tolerance (Ashraf and Foolad 2013), molecular markers
implementation has rarely been achieved. Breeders, therefore, need to select for
varying and multiple genomic regions or response mechanisms found in different
germplasm and different screening environments. It may therefore be necessary to
quantify the adaptive nature of different QTLs according to varying salinity stress.

Molecular markers also assist in backcrossing i.e. marker assisted backcrossing
(MABC). This is an effective and precise method for introgression of a single locus
controlling trait of interest while retaining the essential characteristics of the
recurrent parent (RP) (Collard and Mackill 2008). It is effective for QTLs with large
variations in phenotype. Conventional method of plant breeding requires several
backcrossing steps to enable transfer of one or a few traits to an elite cultivar while
retaining most of the recurrent genome. In general, at least six backcrossing steps
are required to achieve the desired homozygosity, particularly for the selection of
traits with low heritability. MAS can greatly accelerate this process by utilizing
both the flanking markers linked to the desired trait for selecting this particular trait
and a set of unlinked markers for tracking the RP genome. Flanking markers and
selection for recombination also reduces “linkage drag”, which is the main cause of
reduction in crop performance due to the co-transfer of undesirable traits located
near the trait of interest (Collard and Mackill 2008). Furthermore, MAS enables
early selection of traits that are labor and cost-intensive to score phenotypically and
are under complex genetic control. This dramatically reduces the number of plants
to be screened for genotyping in further steps (Collard and Mackill 2008; Edmeades
et al. 2004). The three selection steps of MABC were reported: foreground selec-
tion, recombinant selection and background selection. In foreground selection,
breeder selects plants having the marker allele of the donor parent at the target
locus. Its objective is to maintain the target locus of trait of interest in a
heterozygous state (one donor allele and one RP allele) until the final backcross is
completed. Those markers tightly linked to the target gene or QTL are used to select
the target locus of donor parent in early (BC) progenies for the selection of plants
having the target gene. ‘Foreground selection’ is also referred as ‘positive selection’
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(Takeuchi et al. 2006). The purpose of second level i.e. recombinant selection is to
reduce the size of the donor chromosome segment containing the target locus (i.e.
size of the introgression). Recombinant selection is usually performed for at least
two backcross generations because double recombination events occurring on both
sides of a target locus are extremely rare (Hasan et al. 2015). Background selection
is important in order to reduce unnecessary genes (linkage drag) introduced from
donor. Its aim is to select the backcross progeny with the greatest proportion of
recurrent parent genome. Background selection is also referred as ‘negative
selection’ (Takeuchi et al. 2006). This type of selection is done by using markers
that are unlinked to the target gene/QTL on all other chromosome. This is very
useful approach because the RP recovery can be greatly accelerated. The use of
background selection to accelerate the development of an RP with an additional one
or more genes has been referred to as ‘variety development or enhancement’
(Mackill 2006) and ‘complete line conversion’ (Ribaut et al. 2002).

Marker-mediated backcrossing approach has been used to generate series of
maize NILs derived from an elite recipient line (the recurrent line) and an exotic
donor line (Stuber et al. 1999). For foreground and background selection,
marker-facilitated selfing and marker-facilitated backcrossing were used. Two BCs
and one selfing (to fix the introgressed segment) generations were sufficient to
generate different NILs (each with different introgressed genomic regions). At
International Crop Research Institute for Semi-Arid Tropics (ICRISAT), MAS was
used in chickpea to introgress QTL alleles associated with a large root size into elite
germplasm where terminal drought stress increased yield from about 20% to more
than 50%. Hence, a deep root system was found capable of extracting additional
soil moisture that positively impacted chickpea yield under terminal drought stress
conditions (Crouch and Serraj 2002). Successful introgression of Sub1, derived
from donor rice variety IR64, has been done into popular rice variety AS996
through MABC. Fifty-three polymorphic markers, out of 460 markers, were used
for assessment on BC1F1, BC2F1 and BC3F1 generations. RP genome recovery was
87.5, 93.75 and 96.15% in BC1F1, BC2F1 and BC3F1 generations, respectively (Cuc
et al. 2012). All mega- varieties [Samba Mahsuri and CR1009 from India,
Thadokkham 1 (TDK1) from Laos, IR64 from the Philippines (IRRI), and BR11
from Bangladesh] with Sub1 introgression were observed with significantly higher
survival rate than the original parents by using the MABC strategy (Septiningsih
et al. 2009).

‘Saltol QTL’ obtained from the salt tolerant rice variety FL478 has been trans-
ferred into the high-yielding and widely grown cultivar, ASS996 by MABC
strategy (Huyen et al. 2012). In each backcross generations, QTL-linked markers
were used for screening heterozygous plants and 63 polymorphic markers (dis-
tributed on 12 chromosomes) were used to check RP genome recovery. In this
study, two plants P284 and P307 with the highest recipient alleles, up to 89.06 and
86.36%, were used to develop BC2F1 populations. In another study, ‘Saltol QTL’
derived from FL478 was introgressed in genetic background of Bacthom 7 cultivar.
The background analysis in the introgression line revealed the recovery of up to
96.8–100% of RP alleles after three generations (Vu et al. 2012). NILs were
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developed by introgression of three drought tolerance root QTLs through MABC
procedure from CT9993 (an upland japonica) into IR20, a lowland indica cultivar
(Suji et al. 2012).

The major drawbacks of MAS in breeding are its high cost of implementation
and the risk of recombination between the marker and the trait. These problems
reduce the reliability of MAS to predict phenotype via genotype. The high cost of
MAS is particularly relevant in cases where an effective phenotyping method is
already established using conventional method of breeding. Despite its drawbacks,
MAS has been successfully utilized to improve crops for abiotic stress tolerance,
given that the genetic element responsible for the high tolerance is accurately
defined and delineated.

In addition, MAS can provide specific advantages in marker-assisted pyramid-
ing, the process of combining several genes together into a single genotype.
Pyramiding may be possible using conventional method of breeding but it is very
difficult to identify the plants containing more than one gene while DNA markers
can greatly facilitate such selection. Marker-assisted pyramiding was successfully
done for pyramiding salt tolerance QTLs in rice. Two major QTLs; one on chro-
mosome 7 for shoot Na+ concentration (called as qSNC-7) and another on chro-
mosome 1 for shoot K+ concentration (called as qSKC-1) (Lin et al. 2004), along
with two others, were pyramided in a salt-tolerant variety. Three F3 lines were
observed with enhanced level of seedling survival in salt stress. A locus conferring
submergence tolerance was introgressed from cultivar ‘FR13A’ into the variety
‘Swarna’ for the development of strong submergence tolerance lines (Xu et al.
2006).

The successful examples of MAS pyramiding suggest that it could facilitate
transfer of combination of QTLs in elite cultivar for development of several abiotic
stress tolerance varieties. Hence, the research dealing with such strategies will be
able to take advantage of the results being gathered from other approaches such as
omics technologies. Nevertheless, current advances in omics technologies together
with advances in transgenic technology and MAS will prove useful in improving
the present scenario.

9.5 Allele Mining

Allele mining utilizes the DNA sequence of a genotype to isolate useful alleles from
related genotypes (Latha et al. 2004). It helps in tracing the evolution of alleles,
identification of new haplotypes and development of allele specific markers for use
in MAS (Kumar et al. 2010). Latha et al. (2004) used rice calmodulin gene and
salt-inducible rice gene for allele mining of stress tolerance genes in related rice
germplasm. Platten et al. (2013) conducted allele mining of HKT1;5 for salinity
tolerance in Oryza sativa and O. glaberrima and identified seven major and three
minor alleles of OsHKT1;5.
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9.6 Ecotype Targeting Induced Local Lesions in Genomes
(EcoTILLING)

EcoTILLING is a reverse genetics approach, which utilizes mutation detection
strategy to elucidate gene function and for finding desired genotypes. This approach
generally characterizes SNP and/or InDels in natural mutation populations
(Al-Yassin and Khademian 2015). This is a modification of TILLING strategy,
which utilizes induced mutation instead of natural mutation populations (Comai
et al. 2004). This technology is cost effective which allows screening of 15–20 kb
large gene regions for rare mutations with high sensitivity (Coassin et al. 2008).
Also, EcoTILLING could determine heterozygosity levels within a gene fragment.
Utilizing EcoTILLING technique for allele mining and haplotype discovery in 9
candidate genes in barley, Cseri et al. (2011) were able to identify 185 SNPs and 46
InDels for drought tolerance. Similarly, Negrão et al. (2011) studied 375 rice
accessions for salt tolerance and identified a total of 15 SNPs and 23 InDels in
OsCPK17 and SalT genes, respectively. Yu et al. (2012) analyzed diversity in
promoter sequences of 24 transcription factor families using 95 diverse rice lan-
draces. Association between the promoters’ sequence diversity and drought toler-
ance index (DTI)/level (DTL), association of three genes with DTI and five genes
with DTL was found. In sugarbeet, EcoTILLING revealed polymorphism in the
BvFL1 gene associated with winter hardiness (Frerichmann et al. 2013).

9.7 Functional Markers

Functional markers are derived from sequence polymorphisms found in the allelic
variants of a functional gene (Salgotra et al. 2014). In contrast to random DNA
markers, functional markers are completely linked to the trait of interest, therefore
they are also called “perfect markers” (Akpınar et al. 2013). An et al. (2011)
developed functional SSR markers on a large scale across Brassica species through
functional annotation of publically available PlantGDB-assembled unique tran-
scripts, which showed good transferability among Brassica species. Garg et al.
(2012) studied the role of TaMYB2 gene in dehydration tolerance in common
wheat. They identified synonymous SNPs associated with dehydration tolerance
and developed an allele specific marker for the same. Liu et al. (2012) summarized
functional markers being developed and currently in use in common wheat.
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9.8 Expression Quantitative Trait Locus (EQTL)

An eQTL is a chromosomal region that accounts for the proportion of the variation
in abundance of a mRNA transcript observed between individuals in a genetic
mapping population (Druka et al 2010). The concept was first recognized by Jansen
and Nap (2001), who coined the term “genetical genomics” in which the combi-
nation of a genotyped segregating population and genome-wide expression pro-
filing is used to formulate hypothetic regulatory pathways and unravel complex
traits in a higher throughput manner. Level of gene expression varies in response to
environmental changes (E) and among individuals of a species due to natural
genetic variation (G). Some genes may further exhibit genetic variation in their
expression in response to the environment (GxE interactions), which can be studied
through eQTL mapping (Snoek et al. 2012). The eQTLs are of two types, cis and
trans. When the sequence variation controlling transcript levels is assumed to be
determined by the sequence variation that lies within or in the close proximity of the
gene, they are of cis types whereas, in trans-eQTL, the observed location of the
eQTL does not coincide with the location of the gene. Jiang et al. (2011) identified
76 eQTLs for nine cold-related traits on 12 chromosomes of rice. These eQTLs
showed significant interactions of QTLs and environment. Lowry et al. (2013)
explored the genetic architecture underlying expression responses to soil drying
using eQTL mapping in the Tsu-1 (Tsushima, Japan) x Kas-1 (Kashmir, India)
cross-based RIL population of A. thaliana and found some statistically significant
eQTLs that interacted with soil drying treatments.

9.9 Proteomics

Proteomics is a powerful tool for investigating the molecular mechanisms of the
responses of plants to stresses, and it provides a path toward increasing the efficiency
of indirect selection for inherited traits (Nouri et al. 2011). Advances in protein
profiling methodologies, mass spectrometry instrumentation and bioinformatics tools
have paved the way for high throughput analysis. Previously, two-dimensional gel
electrophoresis techniques were used (Grimplet et al. 2009; Giribaldi and Giuffrida
2010), but these are now being replaced by shotgun proteomics techniques including
isobaric Tag for Relative and Absolute Quantitation (iTRAQ) and Tandem Mass Tag
(TMT) (Martinez-Esteso et al. 2011; Liu et al. 2014; Li et al. 2015), or label-free
quantitation methods (Cramer et al. 2013). Proteomics allow global investigation of
structural, functional, abundance and interactions of proteins at a given time point and
it can detect translational and post-translational regulations, thereby providing new
insights into complex biological phenomena (Ghosh and Xu 2014). Proteomic studies
have led to the identification of various abiotic stress-responsive proteins in a wide
range of crops (Abreu et al. 2013; Barkla et al. 2013; Ngara and Ndimba 2014).
Following differential expression proteomics approach in soluble chloroplast of
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Arabidopsis, Uberegui et al. (2015) revealed the participation of the ‘Executer
pathway’ in response to increased light conditions. A number of light- and genotype-
responsive proteins were detected and mass-spectrometry identification showed
changes in several abundant photosynthesis- and carbon metabolism-related proteins
as well as proteins involved in plastid messenger RNA (mRNA) processing. Li et al.
(2015) employed an isobaric tag for iTRAQ-based proteomic technique to identify
the early differentially expressed proteins (DEPs) from salt-treated cotton roots and
identified 128 differentially expressed proteins, 76 of which displayed increased
abundance and 52 decreased under salt stress conditions. A few proteomic studies
dealing with combined stress treatments have shown that plant response to a com-
bined stress treatment is specific when compared to the individual stress factors
applied separately (Kosová et al. 2015). For example, the effects of drought and
salinity proteome response when compared in wheat revealed that salinity induced
significant alterations in a higher number of proteins than drought as a consequence
of an ionic effect of salinity stress (Peng et al. 2009). Similarly, Li et al. (2014)
observed differences between the individual treatments and combined treatments
when effects of a spring freezing in combination with either drought or waterlogging
were studied in winter wheat. A comparison of drought and flooding in soybean
seedlings revealed an increase in enzymes involved in regulation of redox home-
ostasis in drought-stressed plants while an increase in anaerobic metabolism-related
enzymes in flooded plants (Oh and Komatsu 2015). Some proteomic studies have
specifically characterized posttranslation modification in crops under abiotic stress
like analysis of phosphorylation during salt and water stresses in maize (Zörb et al.
2010; Bonhomme et al. 2012; Hu et al. 2013) and characterization of protein gly-
cosylation in soybean roots under flooding (Mustafa and Komatsu 2014).

9.10 Metabolomics

Under abiotic stress conditions, plant metabolism is disturbed either because of
inhibition of metabolic enzymes, shortage of substrate, excess demand for specific
compounds or several other factors. Therefore, the metabolic network is reconfig-
ured to maintain essential metabolism and to acclimate adopting a new steady state
(Obata and Fernie 2012). Metabolomics is a powerful tool, which elucidates reg-
ulation of metabolic networks along with gene functions as part of functional
genomics and system biology. The term ‘metabolomics’ is defined as compre-
hensive and quantitative analysis of all small molecules in a biological system at a
given developmental stage, and in a given tissue or cell type (Fiehn 2001). Amongst
all—omics technologies, metabolomics is the most transversal and can be applied to
different organisms with little or no modifications (Arbona et al. 2013). Several
techniques including gas chromatography-mass spectrometry (GC-MS), liquid
chromatography (LC)-MS, capillary electrophoresis (CE)-MS, nuclear magnetic
resonance spectroscopy (NMR) and fourier transform infrared spectroscopy (FTIR)
are commonly used in plant metabolomics research (Obata and Fernie 2012). Plant
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metabolomics has been used for several purposes including evaluation of the impact
of stress/treatment on plant metabolism, tracking of a certain compound or com-
pound category within a particular biosynthetic/degradation pathway and classifi-
cation of samples. Using metabolic changes as a ‘map’ or ‘marker’, factors
regulating metabolic movements were investigated in combination with other
‘omic’ analyses (Hirayama and Shinozaki 2010). Among all primary metabolites,
sugars, sugar alcohols and amino acids are the most important metabolites whose
concentration in plant tissues is affected by stress.

In maize, an NMR-based metabolite profiling study confirmed that early effects
of salt stress are related to the osmotic component of salinity (Gavaghan et al.
2011). Non-targeted metabolomics studies revealed effect on pantothenate/CoA
pathways in acclimation of plants to heat stress (Guy et al. 2008). Secondary
metabolities like phenolics and carotenoids provide protection against excess light
and UV irradiation, glucosinolates and alkaloid glycosides act as semiotic com-
pounds during abiotic stresses. In response to flooding, more than 40 flavonoids in
leaves of two citrus rootstock species differing in stress tolerance were identified
(Munns and Tester 2008). In Arabidopsis, drought stress was found to induce
accumulation of aliphatic glucosinolates and flavonoids but repressed accumulation
of the phytoalexin camalexin (Grubb and Abel 2006). Dhuique-Mayer et al. (2009)
found that the compound triterpenoidlimonin occurs in juice sacs of citrus as a
result of physical damage or field freeze. Metabolomic analysis of Punica granatum
under drought stress found 12 volatile compounds in leaf profiles, mainly alde-
hydes, alcohols, and organic acids. The study has evidenced a possible role of the
oxylipin pathway in response to water stress (Catola et al. 2015). Studies of
metabolomics conducted for different abiotic stresses have identified metabolites
specific to each abiotic stress like dehydration, salinity, light, heat and low tem-
perature (Cramer et al. 2007; Wienkoop et al. 2008; Caldana et al. 2011). Scalabrin
et al. (2015) exposed Nicotiana langsdorffii plants, wild and transgenic for the rol C
gene and the rat glucocorticoid receptor (GR) gene, to different abiotic stresses like
high temperature, water deficit and high chromium concentrations. Through
untargeted metabolomic analysis, they investigated the metabolic effects of the
inserted genes in response to the applied stresses. The plants exposed to heat stress
showed a unique set of induced secondary metabolites along with changes in lipid
composition and induction of both acylsugars and glykoalkaloids. Water deficit and
high chromium stresses resulted in enhanced antioxidants [for example,
dihydrocoumarin-apocynin derivative (HCAs), polyamine] levels. Metabotypes or
the genetic determinants of metabolic phenotypes have helped in development of
biomarkers through metabotype QTL (mQTL) mapping and metabolomic genome-
wide association studies (mGWAS) (Fernie and Schauer 2009). Schauer et al.
(2006) analyzed metabolite profiles of tomato interspecific introgression lines
between wild Solanum pennelli and S. lycopersicon cv. M82 and mapped specific
fruit metabolite fingerprints to whole-plant phenotypes. In a population of nine
Arabidopsis accessions acclimated to different environments and subjected to cold
stress, it was found that particular transcript and metabolite profiles correlated with
the ability to cold acclimate (Hannah et al. 2006).
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9.11 Comparative Genomics

Comparative stress genomics scores various commonalities and differences in
expression patterns of different genes relative to populations that differ in stress
tolerance (Bressan et al. 2001). The availability of plant genomes, along with the
accumulation of expression data and an increasing number of stress-related cDNA
libraries, represent valuable resources for comparative genomics-based discovery of
stress-related genes and pathways (Ma et al. 2012). Comparative analysis among
genotypes within the same species and between species will enable us to identify
species-specific genes underlying stress responses. Using this approach,
stress-responsive transcription factors (TFs) were predicted in soybean, maize,
sorghum, barley and wheat using a comparative analysis of known
stress-responsive TFs in Arabidopsis and rice (Mochida et al. 2009, 2011; Tran and
Mochida 2010). Taji et al. (2004) applied the full-length Arabidopsis cDNA mi-
croarray to reveal the differences in the regulation of salt tolerance mechanisms
between a glycophyte, Arabidopsis, and a halophyte, salt cress. Salt cress was
found to accumulate proline at much higher levels than Arabidopsis, which cor-
responded to a higher expression of AtP5CS in salt cress, a key enzyme of proline
biosynthesis. Also, salt cress was found to be more tolerant to oxidative stress than
Arabidopsis. Comparative analysis of genotype-dependent expressed sequence tags
(EST) and stress-responsive transcriptome of chickpea have revealed 209 gene
families and 262 genotype-specific SNPs (Ashraf et al. 2009). Using comparative
genomics, Sanchez et al. (2011) analyzed the responses to salinity of three model
and three cultivated species of the legume genus Lotus. Transcriptome analysis
showed that about 60% of expressed genes were responsive to salt treatment in one
or more species, but less than 1% was responsive in all.

9.12 High Throughput Sequencing

Next-generation sequencing (NGS) technology along with new complementary
computational tools have intensified genome projects like whole genome
re-sequencing for diversity analysis and RNA sequencing for transcriptome and
non-coding RNAome analysis (Wang et al. 2013). These technologies offer several
advantages compared with existing technologies such as EST sequencing and
microarrays (Wang et al. 2009; Haas and Zody 2010). NGS technologies have
provided important genome-wide insights on the evolution of organisms for which
genomic information is lacking (Yang et al. 2015). Miao et al. (2015) revealed
novel insights into mechanisms underlying abiotic stress-responsive pathways in
Medicago falcate grown under standard, dehydration, high salinity, and cold con-
ditions through de novo transcriptome analysis. Mechanisms underlying the
metabolism and core signaling components of major phytohormones were revealed
and nod factor signaling pathways modified by abiotic stresses were identified.

9 Genomic Strategies for Improving Abiotic Stress … 221



Further, comparison of homology between the M. falcate and M. truncatula tran-
scriptomes, along with five other leguminous species, revealed a high level of
global sequence conservation within the family. Wang et al. (2013) employed
RNA-seq technology to characterize the de novo transcriptome of radish roots and
identified 4,614 differentially expressed genes (DEGs) during lead (Pb) stress. The
upregulated DEGs under Pb stress are predominately involved in defense responses
in cell walls and glutathione metabolism-related processes, while down regulated
DEGs were mainly involved in carbohydrate metabolism-related pathways. Also,
many candidate genes, which were involved in defense and detoxification mech-
anisms including signaling protein kinases, transcription factors, metal transporters
and chelate compound biosynthesis-related enzymes were also identified. Kohli
et al. (2014) identified and characterized salt stress-responsive micro RNA
(miRNA) in chickpea through Illumina Solexa sequencing. A total of 12,135,571
unique reads were obtained. In addition to 122 conserved miRNAs belonging to 25
different families, 59 novel miRNAs along with their star sequences were identified.
Four legume-specific miRNAs, including miR5213, miR5232, miR2111 and
miR2118, were also found. Yadav et al. (2016) identified a set of novel and known
dehydration-responsive miRNAs in foxtail millet, where 32 were found to be
upregulated in tolerant cultivar and 22 miRNAs were downregulated in sensitive
cultivar. Identified miRNAs were found to encode various TFs and functional
enzymes, indicating their involvement in broad spectrum regulatory functions and
biological processes. Using RNA-Seq, Digital gene expression (DGE) and
sRNA-Seq technologies, Zheng et al. (2015) performed an integrative analysis of
miRNA and mRNA expression profiling and their regulatory network of tea plants
under chilling (4°C) and freezing (−5°C) stress. They found that karrikins, a new
group of plant growth regulators, and b-primeverosidase (BPR), a key enzyme
functionally relevant with the formation of tea aroma might play an important role
in both early chilling and freezing response of tea plants. More than 600 DEGs after
chilling stress were revealed through transcriptome analysis of sugarcane hybrid
CP72-1210 (cold susceptible) and Saccharum spontaneum TUS05-05 (cold toler-
ant). Further, to investigate the relevance of transmembrane transporter activity
against abiotic stress tolerance, a S. spontaneum homolog of a NOD26-like major
intrinsic protein gene (SspNIP2) was functionally analyzed, which revealed that
some degree of tolerance to salt stress was conferred by SspNIP2 (Park et al. 2015).

9.13 Conclusion

Genomic approaches significantly contribute to design breeding strategies aimed at
improved crop production and yields against abiotic stress tolerance. This becomes
more pertinent in the light of meeting challenges of climate change. The integration
of different “omics” techniques and functional genetics can provide novel insights
into genetic and biochemical aspects of cellular function and metabolic network
regulation involved in abiotic stress tolerance. The full elucidation of biochemical
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and genetic mechanisms underlying plant stress-responsive biology depends largely
on the comprehensive investigations using systematic omics. Although, different
genomic approaches are very useful to build catalogs, but linking abiotic stress
genes with phenotypic variation is still a challenging task. The combined power of
different omics technologies and post-genomics tools are expected to accelerate the
selection process and will considerably shorten the time required for the production
of elite lines. Much progress has been demonstrated, but interpretation of the
complex information generated and its application needs further investigation. The
use of bioinformatics tools in facilitating the management of big data and its
integration in genomic approaches is desirable. Collaborations among public and
private crop breeding institutions, research centers and academia would play a key
role in the success of improving abiotic stress tolerance in crops.
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Chapter 10
Genomics of Arsenic Stress Response
in Plants

Smita Kumar and Prabodh Kumar Trivedi

Abstract Heavy metal stress severely affects plant growth, development and
reduces crop yield and productivity. Among different heavy metals, arsenic (As) is
a toxic metalloid and a potent carcinogen. It not only hampers plant development
but also causes severe health hazards to mankind once entered into the food chain.
Infact, As contamination in the groundwater has turned out to be an epidemic in
many regions of South and Southeast Asia. Naturally, As is present in trace
amounts in the environment, however, geogenic sources and anthropogenic activ-
ities have tremendously increased the level of As in the soil. Epidemiological
studies have reported that As poses severe health risk in humans. In plants, As
affects several physiological and molecular processes, therefore, it is prerequisite to
understand As uptake, translocation, accumulation and detoxification. As a part of
detoxification mechanism, As undergoes chemical modifications including reduc-
tion, methylation, and glutathione conjugation. Alleviation of As phytotoxicity is
important and attempts are being made in exploring the molecular components
associated with As detoxification and tolerance in plants. In this context, it is
important to understand the genetic control of As uptake and accumulation, which
might help in protecting the food crops from contamination. In the past decade,
significant knowledge has been generated at the level of “omics” which includes
genomics, proteomics and metabolomics. Studies have demonstrated that plants’
response to stress is associated with profound changes at the level of transcriptome.
Modulation in the expression of genes involved in plants’ stress response signifi-
cantly assists in unravelling the pathways and networks providing tolerance towards
stress. The information available through transcriptome studies led to the functional
characterization of genes and development of plant varieties resistant to As stress.
This chapter summarizes the current knowledge on As contamination, transcrip-
tional regulation and biotechnological advances in the functional genomics of As
uptake, transport, accumulation and detoxification in plants.
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10.1 Introduction

Arsenic is a ubiquitous element and is present naturally in the bedrock, soil, water
and plants. Arsenic is further released into the environment through natural pro-
cesses such as volcanic eruption, forest fires and erosion of rocks (Kumar et al.
2015a). Unrestricted manufacture of industrial chemicals and increased use of
arsenicals in the pesticides or defoliants, the fallout from the ore-smelting opera-
tions, mining, and coal power stations have tremendously contaminated the soil and
groundwater (Neumann et al. 2010; Zhao et al. 2010). Notably, As levels tend to be
high in the ground water sources as compared to the surface water sources of
drinking water such as lakes and rivers (Christen 2001). Unfortunately, As con-
tamination in drinking water has globally threatened the lives of millions of people
(Fendorf et al. 2010; Rodriguez-Lado et al. 2013). Many countries including
Bangladesh, Cambodia, China, India and Vietnam have been reported to contain
10–100 fold levels of As in comparison to uncontaminated areas (Abedin et al.
2002; Santra et al. 2013). Arsenic is extremely toxic elemental pollutant endan-
gering human health and ecological integrity. In nature, As occurs in both inorganic
and organic forms and has diverse chemical behaviour with different oxidation
states (Tripathi et al. 2007; Kumar et al. 2015a). Organic forms, which include
arsenobetaine, arsenocholine, tetramethylarsonium salts and arsenosugars are rel-
atively less toxic and occurs in ocean fish and sea food (Newcombe et al. 2010).
Historically, organic arsenicals were used as antimicrobial agents to treat infectious
diseases (Jones 2007). Inorganic As forms, mainly trivalent and pentavalent oxi-
dation states such as arsenite As(III) and arsenate As(V), are more toxic than the
organic forms monomethylarsonic acid (MMA), dimethylarsinic acid (DMA),
trimethylarsinic acid (TMA), and trimethylarsine oxide (TMO). The symptoms of
As exposure are subtle in onset and are directly related to the degree of dose and
duration of exposure (Bernstam and Nriagu 2000). Numerous health hazards such
as keratosis, melanosis, bladder, skin, lung and prostate cancers have been reported
in humans due to chronic As exposure (Banerjee et al. 2013). In humans, As
biotransformation takes place in the liver and the inorganic form is methylated in
the body by alternate reduction of As(V) to As(III) and the addition of a methyl
group from S-adenosylmethionine (Vahter 2002).

The element is immutable, and cannot be degraded by biological processes.
Arsenic chemistry has indicated that As(V) ion is alike orthophosphate. In plants,
As(V) enters via phosphate transporters and thus alters phosphate metabolism and
interrupts phosphorylation reactions (Meharg and Macnair 1992). Under anaerobic
conditions, As(III) is predominant, whereas As(V) is mainly present under aerobic
conditions. As(III) reacts with the sulfhydryl group of proteins and leads to inac-
tivation of enzymes (Mosa et al. 2012). Arsenic causes growth inhibition,
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chlorophyll degradation, nutrient deficiency and induces the production of Reactive
Oxygen Species (ROS) leading oxidation of proteins and membrane lipids which
causes severe membrane damage (Ahsan et al. 2008; Kumar and Trivedi 2016a;
Shukla et al. 2015). To subsist As-induced oxidative burst, plants have evolved
biochemical strategies, which enhance the activity of enzymes involved in the
antioxidant responses (Shri et al. 2009). In plants, the role of sulphur metabolism in
As detoxification has been implicated (Dixit et al. 2015a, b, 2016). Arsenic is
chelated to sulphur containing compounds; phytochelatins (PCs) and glutathione
(GSH), and gets sequestered into the vacuoles. The sulphate transporters and the
genes associated with sulphur assimilation and GSH biosynthesis help in main-
taining the sulphur pool inside the cell (Kumar et al. 2011; Khare et al. 2017;
Nocito et al. 2006). In silico analysis of rice sulphate transporter gene family
suggests the role of sulphate transporters in conferring tolerance towards an array of
stresses including As stress (Kumar et al. 2011). In addition, comprehensive
analysis of the regulatory elements of the rice sulphate transporter promoters and
the functional characterization of OsSul1;1 promoter also affirms the role of sul-
phate transporter in As stress response (Kumar et al. 2015b).

In recent years, several studies have described As metabolism in different plant
species. However, significant research has been focussed on rice as it accumulates
more As compared to other crops due to its physiological properties and anaerobic
growing conditions (Abedin et al. 2002; Kumar and Trivedi 2016a; Zhao et al.
2010). Under normal conditions, rice takes up large amount of silicon (Si) from the
soil, which is used to strengthen plant parts including stems and husks. Also, Si is
important in protecting grains against pathogens. Chemically, As and Si are very
similar and so the efficient uptake pathway of Si in rice allows the inadvertent
uptake of As (Ma et al. 2008). Rice is also the dietary staple for almost half of the
world’s population. Therefore, it is a prerequisite to avidly understand and unravel
the complex chemistry of assimilation and metabolization of As for the develop-
ment of mitigation strategies to reduce As uptake in plants.

In recent years, several groups have carried out extensive studies and identified
genes involved in As uptake, accumulation and detoxification (Tuli et al. 2010).
Comparative studies using contrasting germplasm have identified myriad of genes
involved in conferring tolerance towards As stress. Association studies and QTL
mapping using natural variation have also opened up a new avenue for the iden-
tification and characterization of genes crucial in As stress response. Exploration of
transcriptional regulation via gene expression profiling, and deep transcriptome
sequencing have created a reservoir of information of the genes and pathways
involved in As stress response in different plant species. In addition, functional
genomics approaches have assisted in developing transgenic plants resilient towards
As stress. In this chapter, we aim to provide an overview of the genomics of As
stress response and the diverse molecular strategies that have been employed to
develop As resistant crops with the purpose to enhance the sustainable growth of
plants and improve global health.
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10.2 Arsenic Uptake and Accumulation in Plants

Due to geogenically elevated As levels and phytotoxicity, the environmental fate
and behaviour of As have gained attention in recent years. Many regions throughout
the world rely on the As contaminated groundwater for the irrigation of staple crops
including paddy rice. Consequently, there is a disturbing condition of As accu-
mulation in the rice plants grown in these areas and exposure of people to As not
only through drinking water but also through vegetation (Zhao et al. 2010). In the
recent past, significant advancement has been made in understanding the uptake,
accumulation and transport of As in the plants using high throughput technologies
and functional genomics. The different forms of As and their uptake mechanism
have been described briefly below.

10.2.1 Inorganic As

During the uptake of As from soil, different nutrients such as Iron (Fe), Phosphorus
(P), Silicon (Si) and Sulphur (S) interact with it (Zhao et al. 2010). Chemically, As
(V) is analogous to phosphate and exhibits similar physicochemical behaviour in
soil and thus competes with it for entry inside the plant cell (Abedin et al. 2002;
Catarecha et al. 2007; González et al. 2005; Shin et al. 2004). As(V) has an affinity
for the iron oxides/hydroxides in soil and so its concentration is less. It alters the
phosphorylation reactions and thus severely affects phosphate metabolism in plants.
As(III), which is the most toxic and predominant form in the reducing environment,
enters into the plants by a number of aquaporin nodulin26-like intrinsic proteins
(NIPs) and binds to the sulfhydryl groups of proteins disrupting their structure and
catalytic function (Bienert et al. 2008; Zhao et al. 2010). It renders enzymes inactive
and thus increases toxicity. The undissociated methylated As species are also taken
up by the NIP aquaporin channels (Li et al. 2009). In the past decade, understanding
at the level of genomics and transcriptional regulation of As uptake and metabolism
in plants has made headway.

In plants, phosphate transporter gene family has been well described and a
number of phosphate transporters from different plant species have been func-
tionally characterized by overexpression and mutant analysis. Arabidopsis and rice
genome encodes 13 and 9 phosphate transporter genes, respectively (Mudge et al.
2002; Paszkowski et al. 2002). Among other phosphate transporters, Pht1;1 and
Pht1;4 express in root epidermis and function in phosphate acquisition from both
low and high phosphorus environments (Shin et al. 2004). These transporters
significantly mediate As(V) uptake inside the plants. Studies have reported that the
suppression of phosphate transporters subsequently decreases As(V) uptake
(Logoteta et al. 2009; Shukla et al. 2015). Although progress has been made in
identifying the genes through genomics, the genetics of As uptake and transport has
not been studied in detail in plants. Screening of number of inbred lines and QTL
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mapping has identified an As tolerant gene on chromosome 6 in rice (Dasgupta
et al. 2004). It would be intriguing to understand the mechanistic details underlying
relative selectivity of phosphate and As(V) using natural variation in different plant
species including rice and Arabidopsis. Therefore, quantitative and qualitative data
need to be generated using diverse germplasms available globally.

In rice, Nodulin 26-like Intrinsic Proteins (NIPs) have been reported to be
involved in As(III) uptake. OsNIP2;1 and OsNIP3;2, bi-directional As(III) chan-
nels, have been shown to be involved in transport As(III) across the membrane
(Bienert et al. 2008). Apart from NIPs, As(III) is also taken up by the Si uptake
pathway in rice. Mutant studies have shown that mutations in Lsi1 and Lsi2 sig-
nificantly decreased As(III) uptake and transport to xylem, respectively (Ma et al.
2008). Recently, a novel aquaporin tonoplast intrinsic protein (TIP), PvTIP4, was
found to take up As(III) in Pteris vittata (He et al. 2016). These studies have been
useful in depicting the influx and efflux systems of As, which are the key com-
ponents in causing toxicity in plants. Further studies on such types of channels
would assist in developing strategies for improving tolerance and remediation by
plants.

10.2.2 Arsenic Methylation and Volatilization

Studies suggest that several microorganisms transform inorganic species of As to
organic species and vice versa by the process of methylation or demethylation
(Bentley and Chasteen 2002). Genome sequencing of bacteria and archaea have
identified the presence of As resistance (ars) operons, which provide tolerance
towards As stress. In a study, a soil bacterium Arsenicibacter rosenii gene, arsM,
was shown to encode protein for As methylation and volatilization (Huang et al.
2016). Expression of Rhodopseudomonas palustris arsM gene in E. coli increased
tolerance towards As(III) stress due to formation of methylated species from As
(Qin et al. 2006). This microbial-mediated conversion of As to less toxic species
may contribute to the cycling of As wordwide. In a different study, arsM from the
bacterium R. palustris was expressed in rice, which depicted increased As
volatilization with overall low As methylation efficiency (Meng et al. 2011).
Further, studies have reported that overexpression of As(III)-S-adenosyl methyl
transferase (arsM) methylates As and maintains low As levels in the grains, and
organic As species methylarsonic acid (MMA(V) and dimethylarsinic acid (DMA
(V) in the roots and shoots of the transgenic rice in comparison to wild type plants
(Meng et al. 2011). In addition, overexpression of Met synthase and AdoMet
synthetase has been shown to enhance As(III) methylation and could be a strategy
for the phytoremediation. Recent study by Zhang et al. (2017) revealed that
recombinant Rhiobium-legume symbiont expressing Chlamydomonas reinhardtii
arsM gene methylates and subsequently volatilizates As more efficiently. In addi-
tion, genetically engineered Pseudomonas putida with the alga Chlamydomonas
reinhardtii arsM gene (CrarsM) depicted methylation and volatilization of As by
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the engineered bacterium (Chen et al. 2013a, b). In a study, overexpression of an
arsM gene from the thermophilic alga Cyanidioschyzon merolae in Bacillus subtilis
showed As volatilization (Huang et al. 2015). Above studies by different groups
suggest an important role of legume-rhizobia symbionts and recombinant bacterium
in As bioremediation. Contrary, higher plants lack the potential of methylation of
inorganic As (Lomax et al. 2012). It has been reported that uptake efficiency of
inorganic As species in the roots is higher as compared to the methylated species,
however, the translocation efficiency of methylated As species is higher in the
shoots (Raab et al. 2007).

10.3 Transcriptional Regulation of As Uptake
and Accumulation

With the advent of global gene expression profiling including microarray and
next-generation sequencing, number of studies have been carried out to understand
the differential gene expression pattern in As stress response (Kumar and Trivedi
2016b; Tripathi et al. 2012). Studies have reported that As stress alters metabolic
pathways and affects molecular and physiological processes in plants (Chakrabarty
et al. 2009; Norton et al. 2008). A number of defense and stress-responsive genes
including metallothioneins, heat shock proteins, multi drug resistance proteins have
been found to be up-regulated in plants grown under As stress. In addition, many
transporters such as sulphate transporter, multidrug and toxic compound extrusion
(MATE) transporters, glutathione-conjugated transporters, and metal transporter
including Natural Resistance Associated Macrophage Protein 1 (NRAMP1) were
up-regulated under As(V) stress in rice (Chakrabarty et al. 2009). Also, genome-wide
transcriptome and miRNA analyses under As(III) stress in rice have shown
up-regulation of transporters, transcription factors, and genes related to lipid meta-
bolism and phytohormone pathways (Yu et al. 2012; Sharma et al. 2015). As(V)
stress induces the expression of antioxidant system including superoxide dismutase,
transcription factors, vacuolar proteins and genes associated with plant growth and
development (Abercrombie et al. 2008). Moreover, differential expression of genes is
observed in different rice genotypes in response to As stress (Rai et al. 2011). In a
study, large-scale screening of rice germplasm showed contrasting responses towards
As sensitivity. This study also revealed that expression of genes associated with
sulphur assimilation pathway and antioxidant defence system are modulated in the
tolerant and sensitive rice cultivars (Rai et al. 2011).

Differential expression of rice sulphate transporter gene family has been
observed in response to As stress in different rice cultivars (Kumar et al. 2011).
Interestingly, a unique pattern of alternative splicing for one member of high
affinity sulphate transporter OsSul1;1 was observed in response to As stress in rice
(Kumar et al. 2011). These observations significantly advance our knowledge of the
post-transcriptional regulatory mechanisms operating to regulate sulphur demand

236 S. Kumar and P. K. Trivedi



by the plants under As stress. In addition, a comparative biochemical and tran-
scriptional analysis of contrasting varieties of Brassica juncea showed differential
regulation of the sulphate transporters and phytohormone pathways (Srivastava
et al. 2009). Furthermore, expression analysis of Crambe abyssinica in response to
As(V) stress identified a set of novel genes and regulatory networks under As stress.
Differential expression profiling of the genes encoding members of GST gene
family and those associated with defence and sulphur metabolism, transporters, heat
shock proteins as well as encoding enzymes of the ubiquitination pathway of
protein degradation was observed (Paulose et al. 2010). These studies have opened
up the possibility of unravelling the genetic architecture and the targeted identifi-
cation of molecular pathways involved in As stress response. Further studies will
help in underpinning the As tolerance mechanisms. Remarkably, the integrated
studies utilizing genomics, proteomics and metabolomics intend to elucidate
complex mechanisms, which can bridge the gap between current knowledge about
As stress resistance in plants. The transcriptional regulation of As uptake and
translocation has now well defined that As tolerance is regulated by several genes
and pathways. The identified genes enable plant to withstand As stress, and thus are
prospective candidates for the wide application in crop breeding. Apart from this, in
the past few years, several mitigation processes including genetic modifications
have been employed to reduce As uptake and enhance detoxification mechanism in
plants to increase agronomic productivity.

Apart from As stress, nutrient deficiency leads tomodulation in several physi-
ological and biological processes and causes reduction in productivity and yield
(Kumar et al. 2017). Recently, studies have been carried out to understand the
response of natural variation under combined stress of As and nutrient deficiency.
The expression analysis of the genes related to regulation and detoxification of As
(V) and As(III) stress under limiting phosphate and sulphate conditions, respec-
tively, were studied (Shukla et al. 2015; Khare et al. 2017). Results suggested that
the genetic variation-dependent regulatory mechanisms might be the plausible
reason for the differential response of Arabidopsis natural variants towards As stress
under limiting nutrient conditions. These studies have offered a deeper under-
standing of the genes and the pathways involved in providing As resilience and the
genetic basis of Arabidopsis response to nutrient deficiency and heavy metal stress.

10.4 Detoxification Mechanism of As in Plants

Arsenic intoxication affects biochemical, physiological and molecular processes in
plants. To overcome As stress, plants have developed a sophisticated mechanism of
detoxification. Studies have unravelled detoxification mechanisms in mammals
(Aposhian 1997), fungi and algae (Cullen and Reimer 1989), suggesting methy-
lation and biotransformation including incorporation of As into organic molecules
such as arsenocholine, arsenobetaine and arsenosugars. An enzyme arsenate
reductase converts As(V) into As(III), which is then extruded from the plant cell via

10 Genomics of Arsenic Stress Response in Plants 237



specific As(III) efflux transporters (Pickering et al. 2000). ACR2 from yeast
Saccharomyces cerevisiae was reported to provide resistance towards As stress
(Mukhopadhyay et al. 2000). Similarly, heterologous expression of bacterial arse-
nate reductase (ArsC) in Arabidopsis thaliana conferred tolerance towards As stress
and enhanced its accumulation (Dhankher et al. 2002). Studies have functionally
characterized arsenate reductases from different plant species including Arabidopsis
(Dhankher et al. 2006), rice (Duan et al. 2007), Holcus lanatus (Bleeker et al.
2006), and Pteris vittata (Ellis et al. 2006). Genome-wide association
(GWA) mapping of loci has identified a gene in Arabidopsis, termed as High
Arsenic Content 1 (HAC1), which functions as arsenate reductase and regulates As
accumulation (Chao et al. 2014; Sánchez-Bermejo et al. 2014). Very recently, a
new gene HAC4 has been identified, which encodes a rhodanase-like protein having
As(V) reductase activity. Overexpression of OsHAC4 enhanced tolerance towards
As(V) stress and reduced As accumulation in rice. In contrast, mutation in OsHAC4
showed decreased As(V) reduction in roots, and As(III) efflux to the external
medium with remarkably enhanced accumulation of As in rice shoots (Xu et al.
2017). Thus, such new genes showing As tolerance have emerged as key players in
detoxification and regulation of As accumulation in plants.

Studies have shown that As stress induces antioxidant system and increases the
activities of the isozymes superoxide dismutase, ascorbate peroxidase, peroxidase
and glutathione reductase (Rai et al. 2011; Shri et al. 2009). Number of genes
associated with glutathione synthesis and metabolism have been found to be
up-regulated under As stress. Differential expression of members of GST gene
family is found in response to As stress (Kumar et al. 2013a). Also, overexpression
of one member of Lambda class GST showed tolerance towards abiotic stress
including As stress (Kumar et al. 2013b). As a part of detoxification mechanism, As
induces the production of sulphur containing molecules such as GSH and PCs
(Srivastava et al. 2007; Schulz et al. 2008). These PCs are heavy-metal-binding
peptides derived from GSH and have the general structure (c-Glu-Cys) n-Gly (n=2–
11). Their biosynthesis is due to the transpeptidation of c-glutamylcysteinyl
dipeptides from GSH by the action of a constitutively present PC synthase. Other
heavy metals including Cd2+, Cu2+, Ag+, Hg2+, and Pb2+ also activate PC synthase.
Subsequently, these ions are complexed by the induced PCs via thiolate coordi-
nation. Inhibition of PC synthesis by treatment with a potent inhibitor of
c-glutamylcysteine synthetase, L-buthionine-sulphoxime (BSO), causes hypersen-
sitivity towards As stress (Schat et al. 2002). Studies have been performed to
understand As chelation by cysteine-rich peptides and intracellular compartmen-
talization. Expression of CdPCS from aquatic macrophyte Ceratophyllum demer-
sum in tobacco has been observed to enhance PC content, precursor non-protein
thiols, and increased As and Cd accumulation without significant decrease in the
plant growth (Shukla et al. 2012). Similarly, heterologous expression of phy-
tochelatin synthase gene (AtPCS1) in tobacco showed increased As and Cd accu-
mulation and detoxification in the transgenic plants due to enhanced levels of
phytochelatins (Zanella et al. 2016). Interestingly, in a study, synthetic PCs have
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been proposed as potential candidates for enhancing the metal accumulation
capacity of the plants (Shukla et al. 2013).

In terms of As translocation from roots to shoots, it is observed that As(V) has
low mobility as compared to phosphate and also most of the As(V) is converted to
As(III) by arsenate reductase. This As(III) is further chelated by PCs and seques-
tered into the vacuoles (Dhankher et al. 2006). Hence, the predominant form of As
in the xylem sap is the As(III), which is not complexed and sequestered into the root
vacuoles. Therefore, for different plant species, variation in the ratio of the As
present in the xylem sap and the external medium has been observed. Studies have
determined that the translocation ratio is less than 1 in the non-hyperaccumulating
plants, whereas it is more than 1 in the hyperaccumulating plants such as Pteris
vittata (Wang et al. 2002).

10.5 Arsenic Hyperaccumulating Plants

The metal(oid) hyperacccumulators are efficient in extracting As from the soil and
translocating it to the aboveground parts. Arsenic hyperaccumulators have developed
different strategies to accumulate large amount of As in their roots and fronds (Ghori
et al. 2016). Several plant species have been identified to accumulate As, but gen-
erally the hyperaccumulators belong to the family Pteridaceae. Pteris vittata has been
explored in detail to study the efficient system of uptake, translocation and seques-
tration of As in vacuoles (Danh et al. 2014). Recently, phytate-induced As uptake and
growth of P. vittata was reported (Liu et al. 2017). Phytate, which is a large pool of
unavailable phosphorous in the soil, acts as an energy source for the seeds. It is
predominant in the root exudates of P. vittata and has been observed to enhance As
and phosphorous uptake. Thus, it could be proposed that the use of phytate or similar
molecules might help in developing strategies for the efficient phytoremediation of As
contaminated soils (Liu et al. 2017). It has been reported that hyperaccumulators have
low ROS and possess a strong antioxidant system. Vacuolar sequestration of As, the
key detoxification mechanism in hyperaccumulators also persists in the
non-hyperaccumulating plants, however, As accumulated in the roots and fronds of
fern is chelated with PCs (Zhang et al. 2004). Several studies have been carried out to
understand the detoxification mechanisms of hyperaccumulating plants and to use it
for the purpose of bioremediation. The isolation and characterization of two P. vittata
genes ACR3 (Arsenical Compound Resistance3) and ACR3;1 encoding As(III)
transporter has been carried out. It was complemented in the yeast strain defective in
the function of ACR3 gene, which suggested its role as As(III) effluxer (Indriolo et al.
2010). Overexpression of glutaredoxin gene, PvGRX5, from the hyperaccumulating
brake fern in Arabidopsis enhanced tolerance towards As stress (Sundaram et al.
2009). In addition, hyperaccumulating plants show a minimal level of efflux of As
from the roots to the external medium. These peculiar characteristics of hyperaccu-
mulators depict their capability in remediating As contaminated soils.
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10.6 Biotechnological Advances in Developing As
Resistant Plants

The conventional remediation technologies including physical, chemical and ther-
mal processes have been utilized to remediate an As contaminated area. However,
these are costly, time-consuming, and harmful to the workers and generate sec-
ondary wastes that may be hazardous. In the past two decades, important advances
have been made in understanding alternative approaches for remediation of the
heavy metal contaminated soils (Bakhat et al. 2017). Among other bioremediation
techniques, phytoremediation has gained momentum, which employs plants to
reduce the concentration of As in the soils. In contrast to the conventional tech-
nologies, phytoremediation is environmentally-friendly, non-intrusive, prevents
landscape destruction and increases soil microorganisms activity and diversity
(McGuinness and Dowling 2009). Studies have identified that among other phy-
toremediation techniques, phytostabilization, which reduces the bioavailability of
As in soils, and phytoextraction that involves the cultivation of tolerant plants are
the most suitable and effective processes for the remediation of As contaminated
soils (Karami and Shamsuddin 2010).

Exhaustive work has been carried out to develop As resistant crops (Table 10.1).
Heterologous expression of PvACR3;1 in S. cerevisiae showed that PvACR3;1
functions as an As(III) antiporter and mediates As(III) efflux to the external med-
ium. In addition, the transgenic plants expressing PvACR3;1 in Arabidopsis and
Nicotiana tabacum exhibited increased As accumulation in roots and reduced
accumulation in shoots in comparison to the wild type plants (Chen et al. 2017).
This study provided a potential strategy to restrict As translocation in shoots and
develop plants with low As accumulation in the edible parts of the plants. In another
study, enhanced resistance towards As and Cd has been observed in Indian mustard
by overexpression of AtPCS1 (Gasic and Korban 2007). A study on vacuolar
transporters has demonstrated that in the absence of two tonoplast localized
transporters AtABCC1 and AtABCC2, Arabidopsis shows sensitivity towards As
stress. Also, the heterologous expression of these transporters in S. cerevisiae
showed enhanced As accumulation and tolerance (Song et al. 2010). Furthermore,
heterologous expression of yeast As(III) efflux system, ACR3 in Arabidopsis
showed increased tolerance towards As(III) and As(V) stress and higher potential of
As(V) efflux (Ali et al. 2012). In rice, expression of ScACR3 leads to increased As
(III) efflux and decreased As accumulation in grains (Duan et al. 2012). Notably,
significantly decreased levels of As was found in the roots and shoots of transgenic
lines expressing ScACR3 in comparison to wild type. However, no change in the As
translocation factor was observed in the transgenic lines. Overexpression of
AtMT2B in tobacco leads to significant reduction in As accumulation in roots with
an increase in the shoots (Grispen et al. 2009). Genetically engineered eastern
cottonwood with a bacterial gamma- glutamylcysteine synthetase (c-ECS) gene
depicted increased ECS activity and elevated thiol levels. Also, enhanced As(V)
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tolerance was observed in the transgenic plants in comparison to the WT (Le Blanc
et al. 2011). Though in the past decades significant advances have been achieved in
manipulating the genes involved in As uptake and detoxification in plants, still
integrated approaches of genomics, proteomics and metabolomics are required to
target and manipulate specific genes to develop As resistant crops and safeguard
food security.

10.7 Conclusion

Arsenic contamination is a problem of great concern across the globe. Arsenic
occurrence, existence and speciation together are important, intriguing, challenging
and complex, which require different physiological, biochemical and molecular tools.
Understanding As dynamics in the agronomic system to combat its uptake and
accumulation is a prerequisite. Arsenic occurs in different forms and oxidation states
in the environment and has the propensity to be methylated. Arsenic severely affects
plants growth and development and is a food chain contaminant. Biotechnological
advances have been made in understanding As uptake, accumulation, speciation,
detoxification and development of mitigation strategies in plants. The recent impetus
in research on the area of genomics of As stress in plants have helped in deciphering
the molecular mechanisms involved in As stress and tolerance. Significant studies
have been carried out in determining mechanism of As sequestration in the vacuoles
and the pathways and enzymes involved in As detoxification, however, still there are
substantial knowledge gaps with regard to the loading and unloading of As in the
xylem and phloem, and regulation of As accumulation in the plant parts. In addition,
considerable attempts are required in the area of exploring hyperaccumulator-based
remediation processes. The integrated system of functional genomics and molecular
genetics would be helpful in better understanding of As stress response in plants and
the development of As resistant crop varieties.
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Chapter 11
Phytohormones Regulating the Master
Regulators of CBF Dependent Cold
Stress Signaling Pathway

Prakriti Kashyap and Renu Deswal

Abstract Cold stress studies have elucidated the role of plant hormones in gene
regulation during cold stress responses. Plants acquire tolerance to stress by
reprogramming metabolism and gene expression. A large group of transcriptional
regulators controls the changes in gene expression. The most studied cold stress
signaling pathway is the C-repeat binding factor (CBF)-dependent pathway. The
CBF transcription factors were the first transcriptional activators demonstrated to
have a role in controlling the expression of cold-responsive genes with a role in
cold acclimation. They belong to AP2 (APETALA2)/EREBP (Ethylene Responsive
Element Binding Proteins) family. A constitutive regulator, ICE (Inducer of CBF
expression), activates CBF. As the name suggests, CBF expresses in an ethylene-
dependent manner. This family of transcription factors recognize and bind to cold
and dehydration-responsive DNA regulatory element known as CRT/DRE cis
element in the promoter of many cold responsive genes. Low temperature is shown
to increase the levels of endogenous abscisic acid (ABA) and its exogenous
application enhances cold tolerance. Although the CBF-dependent cold signaling
pathway tends to operate in ABA-independent manner, the reports of cross talk
between ABA-dependent and ABA-independent pathways suggest its role in the
CBF-dependent signaling. Recently, a defense related phytohormone jasmonate
was shown to regulate freezing stress responses in Arabidopsis through ICE-CBF/
DREB1 transcriptional pathway. Its exogenous application significantly improved
freezing tolerance, while blocking its biosynthesis decreased freezing tolerance. In
this chapter, we have discussed the significance of phytohormones in CBF-
dependent cold stress signaling.
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11.1 Introduction

Phytohormones are the chemicals synthesized by plants, which regulate their
growth and development. These are the signaling molecules produced at very low
concentrations and regulate various physiological functions in different targeted
sites. In animals, glands produce the hormones but in plants, there are no specific
organs to produce hormones. In plants, these can operate locally or move to the
different sites to regulate diverse processes like formation of stems and leaves,
flowering, leaf senescence and fruit ripening. Plant classical hormones include
Abscisic acid (ABA), cytokinins (CKs), auxins, gibberellins (GAs) and ethylene
(ETH). Amongst these, auxins, cytokinins and gibberellins are growth-promoting
hormones, whereas abscisic acid and ethylene are growth-inhibiting hormones.
These major hormones are made up of different chemicals and their structures may
vary from plant to plant. In addition to these major hormones, some other growth
regulators are also considered as plant hormones namely florigen, vernalin, jas-
monates, brassinosteroides, salicylic acid, caulines and morphactines. Out of these,
jasmonates and salicylic acid have gained importance as signaling molecules during
pathogen attack or disease outbreak. Plant hormones also affect gene expression and
transcription along with their roles in cell division, growth and development. When
a plant faces some kind of biotic or abiotic stress, the transcriptome undergoes
reprogramming leading to altered metabolism, which provides tolerance. A number
of transcription factors participate in the signaling networks for this reprogramming
of metabolism. Plant hormones also modulate these signaling networks for pro-
viding stress tolerance.

Most plants face cold stress at least once during the lifecycle. Cold stress
increases the endogenous ABA and several transcription factors participate in
signaling cascades to provide cold tolerance to the plants. Amongst these cascades,
CBF-dependent signaling is the most investigated cold stress signaling cascade and
CBF transcription factors are the most studied transcription factors. CBFs regulate
approximately 12% of the cold-responsive transcriptome (Fowler and Thomashow
2002). They are not present in plants under control conditions but starts accumu-
lating within 15 min of cold stress. The accumulated CBFs bind to the DRE/CRT
elements in the promoter of cold responsive genes commonly known as COR genes
(Thomashow 1999; Chinnusamy et al. 2006). These cause the physiological and
biochemical changes in the metabolism of plants conferring them cold tolerance.
The activation of CBF occurs with the help of an upstream regulator ICE (Inducer
of CBF Expression). Unlike CBF, ICE is constitutively present in plants. ICE
belongs to bHLH family of proteins and contains a very conserved bHLH domain.
This domain binds to the E-box present in the promoter of CBFs during cold stress,
thus inducing their expression. Both CBF and ICE have many isoforms and dif-
ferent isoforms of ICE activate different isoforms of CBFs. CBFs seem to be key
regulators in promoting the biosynthesis of different molecules that enhance
freezing tolerance. Moreover, they also control plant growth and development
under cold environmental conditions. CBFs perform these roles by integrating a
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network of hormone signaling. The specific components that together compose this
network and the underlying molecular mechanism(s) are still not very well char-
acterized. In addition to their role in increasing freezing tolerance, CBFs also cause
growth retardation and late flowering by promoting the accumulation of DELLA
proteins because of reduced gibberellic acid (GA) levels. On the other hand, CBFs
also promote delayed cold-induced leaf senescence through ABA-mediated
mechanisms that suppress leaf tissue responsiveness to ethylene. Therefore, CBFs
modulate plant growth and senescence by crosstalk with hormone-mediated sig-
naling pathways involving GA, ethylene and ABA. Liang and Yang (2015) sug-
gested ICE1 as a negative regulator of ABA-dependent pathways in seeds and
seedlings of Arabidopsis. The phytohormone jasmonate, which is involved in
defense responses (Howe et al. 1996; Farmer 2001; Browse 2009) was shown to
regulate freezing stress responses in Arabidopsis through ICE-CBF/DREB1 tran-
scriptional pathway. Its exogenous application significantly improved freezing
tolerance while blocking its biosynthesis decreased freezing tolerance (Hu et al.
2013). Thus the phytohormones cross talk activates the genes essential for plant
development and responses to cold stress (Shi et al. 2015).

11.2 Cold Stress Signaling Pathway

The cold stress-signaling pathway in plants is broadly categorized into ABA-de-
pendent and ABA-independent pathways. Generally, the ABA-independent regulon
operates in cold stress conditions while ABA-dependent pathway in drought con-
ditions. However, in cold stress, plants face scarcity of water and the physiological
conditions are like drought. Therefore, many ABA-dependent cold inducible pro-
teins are common in cold and drought stress. ABA-dependent pathway operates
mainly via bZIP, MYC and MYB transcription factors under drought conditions.
Together these transcription factors bind to the ABRE (Abscisic acid Responsive
Elements) in the promoter regions of ABA-inducible genes, thereby activating these
and conferring cold tolerance. The ABA-independent CBF regulon is a relatively
better-studied regulon and is driven by ICE and CBF transcription factors. CBFs
regulate the expression of 12% of Arabidopsis cold inducible genes. ICE is an
upstream transcription factor in the transcriptional cascade leading to activation of
CBF and COR (cold-responsive) genes. It is suggested that during cold stress, ICE
is activated due to some post-translational modification and binds to a
MYC-recognition sequence, the E-box in the promoter region of CBF genes. CBF
belongs to AP2/EREBP family of DNA binding proteins. This family of tran-
scription factors recognizes and binds to cold- and dehydration-responsive DNA
regulatory element known as CRT/DRE cis element in the promoter of many cold
responsive genes. A large number of low temperature-induced genes have been
identified and characterized in plants (Tsuda et al. 2000; Zhang et al. 2009). These
include Late Embryogenesis Abundant (LEA), Dehydrins (DHN), Responsive to
Abscisic acid (RAB), Low Temperature Responsive (LT) and COR genes.
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The COR gene expression and freezing tolerance are positively correlated. This
regulon controls several biochemical changes associated with cold acclimation like
accumulation of simple sugars and the amino acid proline. Moreover, CBFs also
regulate the expression of genes involved in phosphoinositide metabolism, osmo-
lyte biosynthesis, reactive oxygen species (ROS) detoxification, membrane trans-
port, hormone metabolism and signaling (Fowler and Thomashow 2002; Maruyama
et al. 2004; Yamaguchi-Shinozaki and Shinozaki 2006).

Post-translational modifications such as ubiquitination and sumoylation control
ICE1-dependent cold signaling. An E3 ligase HOS1 physically interacts with ICE1
and mediates the ubiquitination of ICE1 both in vitro and in vivo. Cold induces the
proteasome-mediated degradation of ICE1 via HOS1 (Dong et al. 2006).
Furthermore, serine 403 is identified as a key residue for attenuation of cold stress
response by HOS1-mediated degradation of ICE1 (Miura et al. 2011). The serine
403, when substituted by alanine, enhanced the transactivational activity of ICE1 in
Arabidopsis protoplasts and therefore, the expression of cold induced genes, such
as CBF3/DREB1A, COR 47 and KIN1 resulting in cold tolerance. Sumoylation/
desumoylation of proteins has a pivotal role in plant responses to abiotic and biotic
stress and in ABA and salicylic acid signaling (Miura et al. 2007a). During
sumoylation, SUMO (Small Ubiquitin-related Modifier) proteins conjugate to
protein substrates by SUMO E3 ligases and in desumoylation, SUMO proteins are
removed from their target proteins by SUMO proteases. Sumoylation prevents
ubiquitination and can protect target proteins from proteasomal degradation (Ulrich
2005). An Arabidopsis SUMO E3 ligase, SIZ1 is required for the accumulation of
SUMO conjugates during cold stress. SIZ1 sumoylates ICE1 at K393 residue, the
principal site for SUMO conjugation, and blocks its HOS1-mediated polyubiqui-
tinization, stabilizing and enhancing the activity of the transcription factor.
Furthermore, sumoylated ICE1 represses MYB15, which is a negative regulator of
CBF3/DREB1A and confers freezing tolerance (Miura et al. 2007b). Therefore,
ICE-CBF pathway works in a complex way and provides cold tolerance to the
plants. The event of changes that take place in a plant cell in ABA-dependent and
independent manner is summarized in Fig. 11.1.

This complex network of CBF-dependent cold stress signaling pathway becomes
more complicated with the participation of phytohormones. The phytohormones
and their role in CBF-dependent signaling is discussed later in this chapter.

11.2.1 Gibberellic Acid

Gibberellic acid gathered attention of scientists in 1950s. It has obtained its name
from a pathogenic fungus Gibberella fujikuroi, which causes ‘foolish seedling’
disease in rice plants resulting in exceptionally tall plants. GAs include a range of
chemicals produced in plants. Gibberellins possess a tetracyclic ent-gibberellane
skeleton with 20 carbon atoms or a 20-nor-ent-gibberellane skeleton with 19 carbon
atoms (Fig. 11.2). Gibberellins are important in seed germination as they initiate
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Fig. 11.1 ABA dependent and independent signaling in plants during cold stress

Fig. 11.2 Gibberellane
skeleton with 19 and 20
carbon atoms
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mobilization of storage materials in seeds during germination by affecting enzyme
production, which mobilizes food reserves used for growth of new seedlings. This
is done by modulating chromosomal transcription. GAs cause elongation of stems,
stimulate bolting in biennials and stimulate pollen tube growth. They also promote
cellular division, sex determination, flowering, fruit set and parthenocarpy.
Gibberellins also reverse the inhibition of shoot growth and dormancy induced by
ABA.

11.2.1.1 CBF-Dependent Signaling Is GA-Mediated

In response to biotic and abiotic stresses, plants show many adaptive responses in
which hormones are involved. Among the GA-signaling components, DELLA
proteins are the GA signaling components that arrest plant growth during the
adverse environmental conditions, thereby promoting survival (Achard et al. 2006,
2008). Reduced GA levels induce DELLA proteins that further cause dwarf stature
and delay in flowering. DELLAs contribute significantly to the function of CBFs
during cold acclimation and freezing tolerance by CBF-dependent cold stress sig-
naling pathway. Achard et al. (2008) observed that the over expression of CBF1
reduced the endogenous gibberellin, in turn affecting Arabidopsis growth nega-
tively. Furthermore, low temperature induces the expression of genes involved in
GA inactivation, which also results in reduced plant growth (Achard et al. 2008).
The phytohormones gibberellin (GA) and jasmonate (JA) play an important role in
regulating growth in response to temperature. It has been shown that the GA/
DELLA pathway interacts with JA signaling and C-repeat binding factor dependent
cold acclimation in annual plants (Wingler 2015). Overall, these data indicate that
in response to low temperature, CBFs inhibit plant growth through the GA/
DELLA-signaling pathway.

11.2.2 Jasmonic Acid

Jasmonates are well known for their role in the production of defense proteins to
protect plant from invading organisms. They are also believed to have a role in seed
germination and storage of protein in seeds. JA biosynthesis and signaling has been
the interest of reviewers (Kazan and Manners 2008, 2013; Lyons et al. 2013;
Wasternack 2014). To sum up, several plastid, peroxisome and cytoplasmic
enzymes are involved in synthesis of JA. JAZ proteins are the repressors of
well-known master transcription factors MYC2 (Kazan and Manners 2013). MYC2
and related proteins regulate JA responses by binding to the G-box promoter ele-
ment in the promoter of JA-responsive genes.
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11.2.2.1 Jasmonic Acid- and CBF-Dependent Signaling

Jasmonate is a stress hormone that affects growth negatively (Wasternack 2014). In
Arabidopsis, cell number and size is reduced by JA (Noir et al. 2013). Furthermore,
JA treatment causes rapid reduction in growth and photosynthetic gene expression
without affecting photosynthetic activity (Attaran et al. 2014). Therefore, reduced
growth cannot be solely explained with low photosynthetic rate (Wingler 2015).
However, jasmonic acid is mainly considered as a defense hormone, enough evi-
dences support its role during abiotic stress for conversion of carbon into sugars
(Wingler 2015). In CBF-dependent cold stress signaling pathway, jasmonates
(JAs) act as upstream regulators with the (GA) /DELLA pathway regulating growth
downstream of CBFs in addition to interactions between JA and GA signaling. GA
and JA have antagonistic effects on growth. Heinrich et al. (2013) showed that JA
can inhibit the synthesis of active GAs and also other signaling pathways via
DELLA proteins. In Arabidopsis, JA induce expression of the DELLA gene RGL3,
involved in JA signaling (Wild et al. 2012). Moreover, DELLAs interact with JAZ
repressors participating in JA signaling (Song et al. 2014; Xu et al. 2014).

JAs are considered as positive regulators of cold tolerance. Cold stress induce JA
biosynthesis genes such as LOX1, AOS1, AOC1, and JAR1 in Arabidopsis and
OsAOS, OsOPR1, OsAOC, and OsLOX2 in rice (Oryza sativa), thus elevating
endogenous JA levels (Hu et al. 2013; Du et al. 2013). Also, the exogenous JA
treatment increases freezing tolerance in Arabidopsis. However, Arabidopsis
mutants (i.e., lox2, aos, jar1, and coi1) deficient in JA biosynthesis are sensitive to
freezing stress (Hu et al. 2013) confirming importance of JA in conferring freeze
tolerance to the plants.

Hu et al. (2013) also showed Arabidopsis JAZ repressors to act as regulators of
cold stress tolerance. JAZ1 and JAZ4, physically interact with ICE1 and ICE2
(Box 2) and suppress their transcriptional activities preventing non-specific cold
stress responses under normal growth conditions. However, during cold stress, JA
level is elevated, further triggering COI1-mediated degradation of JAZs. This
activates ICEs. ICE1 and ICE2 that further activate CBFs by binding to their DRE/
CRT box promoter region (Hu et al. 2013). JAZs also activate downstream bHLH
TFs that are involved in the regulation of cold responses. In banana (Musa
acuminata) and Arabidopsis, MYC2 homologs physically interact with ICE1 (Peng
et al. 2013; Zhao et al. 2013) This further suggests the another point of cross-talk
between these TFs of two regulatory pathways (Kazan 2015).

Both cold and JA pathway are regulated by another protein SFR6 (Sensitive to
Freezing 6) in Arabidopsis (Knight et al. 1999, 2009). SFR6 was known to be a
downstream target of CBFs. However, it was later identified as Mediator16
(MED16) with a role in JA- responsive defense gene expression (Boyce et al. 2003;
Zhang et al. 2012). Previous studies showed that EIN3/EIL1 interacts with JAZ1 to
mediate jasmonate-regulated responses (Pauwels and Goossens 2011; Zhu et al.
2011). Later, Shi et al. (2015) proposed that JAZs are antagonistic or synergistic to
EIN3/EIL1 and ICE1 modulating the CBF signaling pathway during cold response.
Moreover, JA causes the upregulation of CBF genes in Arabidopsis (Hu et al. 2013)
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and C. bursa-pastoris (Zhou et al. 2014). This may further result in restrained
growth as CBF negatively affects GA content and enhances the DELLA protein
expression and stability. Together, these examples show that JA, GA and cold
pathways share several common components/cross talk nodes.

11.2.3 Abscisic Acid

Abscisic acid (ABA) is a ubiquitous plant hormone in all vascular plants. It got its
name “abscisic acid” because of its presence in large amount in newly abscised or
freshly fallen leaves. ABA is a 15-carbon compound (Fig. 11.3) with two cis and
trans isomers determined by the orientation of the carboxyl group at carbon 2. It
also has an asymmetric carbon atom resulting in the enantiomers. Amongst enan-
tiomers, S enantiomer is the natural form. However, commercially available ABA
has equal amounts of both S and R enantiomers. ABA is an inhibitory chemical
compound that affects bud growth and seed and bud dormancy negatively. It also
plays a role in closing the stomata in water-stressed plants. During water stress,
when the roots are deficient in water, a signal goes to the leaves triggering the
formation of ABA precursors, which afterwards move to the roots. ABA is present
in all parts of the plant. Its concentration within tissues varies, which mediates its
effects and its function as a hormone.

ABA is commonly considered to inhibit growth under stress conditions. It
causes both positive and negative effects on growth and therefore, its effects on
plant growth are controversial (Skirycz and Inzé 2010; Tardieu et al. 2010). In
poplar, there is a direct correlation between cambial growth and ABA content. The
external ABA application exhibits positive effect on cambia activity (Arend and
Fromm 2013). Apart from this, ABA also induces stomatal closure, causes
non-hydraulic effects and improves water conductance.

11.2.3.1 Abscisic Acid- and CBF-Dependent Cold Stress Signaling

Despite the contrasting effects on growth, the involvement of ABA in dehydration
and cold response is well defined (Knight and Knight 2012). There may be roles of
ABA in the CBF-dependent and independent regulation of gene expression and a

Fig. 11.3 Abscisic acid
chemical formula
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function of ABA in dehydration caused by freezing (Mäntylä et al. 1995; Sharma
et al. 2005). Among CBF-independent cold signaling pathways, ABA-dependent
cold signaling pathway has been extensively studied. As per transcriptome analysis,
approximately 10% of ABA-responsive genes respond towards cold stress (Kreps
et al. 2002). Some COR genes, such as RD29A, RD22, COR15A and COR47
contain ABA response (ABRE) cis-elements along with the CRT/DRE motif in
their promoter region and can be activated by ABRE-binding proteins/factors
(AREBs/ABFs) (Uno et al. 2000). ABA is considered to be the primary plant
hormone regulating abiotic stress responses. However, in plants, response to abiotic
stress is also regulated by ABA-independent pathways with crosstalk between
ABA-dependent and ABA-independent pathways. Plant genes responding to ABA
contain the ABA Response Element (ABRE) in their promoters. ABRE Binding
Factors (AREB/ABF) are bZIP transcription factors that bind to ABREs and reg-
ulate ABA-dependent pathway. Abiotic stress tolerance can also be regulated in an
ABA-independent manner by the AP2/ERF transcription factors such as
Dehydration Responsive Element Binding Proteins (DREB1) and DREB2. DREB1/
CBF and DREB2 regulate temperature and osmotic stress responses, respectively.
These cause physiological and biochemical changes in plants by binding to the
DRE/CRT sequence element present in the promoters of stress-responsive COR
genes. However, ICE1 was proposed to be a negative regulator of ABA-dependent
pathways. ABA or glucose hyperacivate the ABA signaling genes ABI3 and ABI4
in ice1-2 mutants. Also, over-expression of ABI3 or ABI4 results in ABA hyper-
sensitivity (Soderman et al. 2000; Lopez-Molina et al. 2002; Zhang et al. 2005).
With consonance to this, glucose-induced hyper-activation of ABI3 and ABI4 in
ICE1 mutants explains the arrested growth. Moreover, ABI3, was shown to func-
tion in the cold stress response. Ectopic expression of the seed-specific ABI3
confers ability to express COR genes in vegetative tissues and enhances freezing
tolerance in Arabidopsis (Tamminen et al. 2001).

A more specific role of ABA has been proposed for the temperature and
photoperiod-dependent growth cessation in trees in autumn. Although ABA treat-
ment does not generally result in growth cessation and dormancy, it acts by
interacting with photoperiod. Therefore, ABA might function in the seasonal
growth cycle. In poplar buds, cold treatment leads to a transient increase in ABA
under short day conditions (Welling et al. 2002). In addition, short day treatment on
its own increases ABA content transiently in birch and poplar (Rinne et al. 1998;
Rohde et al. 2002) and this increase is related to freezing tolerance (Welling et al.
1997; Rinne et al. 1998). On the other hand, high endogenous ABA or ABA
treatment under long-day conditions did not induce growth cessation (Welling et al.
1997), suggesting that the short day dependent increase in ABA is not responsible
for bud growth cessation. The role of ABA in the process therefore, remains unclear
(Olsen 2010; Cooke et al. 2012).

11 Phytohormones Regulating the Master Regulators … 257



11.2.4 Auxin

Auxin was the first growth hormone to be studied in plants. It received its name
from the Greek word auxein, which means to grow. Indole-3-acetic acid (IAA) was
the first auxin to be discovered (Fig. 11.4). Later, other auxins were discovered but
still IAA is the most abundant and important auxin. Auxins are compounds that
positively influence cell enlargement, bud formation and root initiation. They also
promote the production of other hormones. They work in conjunction with cyto-
kinins and control the growth of stems, roots, fruits and convert stems into flowers.
Auxins in seeds regulate specific protein synthesis. Synthetic auxins including
2,4-D and 2,4,5-T have been developed and used for weed control.

The growth and development of plant is regulated by a network of hormonal
interactions. Interestingly, auxin has been found to be a common factor in majority
of these interactions. Auxin and cytokinin have been shown to act both synergis-
tically and antagonistically for shoot and root development, respectively (Swarup
et al. 2002; Dello Ioio et al. 2008).

11.2.4.1 Auxin- and CBF-Dependent Cold Stress Signaling Pathway

Auxin has been shown to regulate several aspects of growth and development of
plants. However, knowledge about its role under cold stress is limiting. The
inflorescence gravitropism of Arabidopsis is regulated by auxin and is inhibited by
cold stress indicating a connection between auxin and cold stress (Fukaki et al.
1996; Wyatt et al. 2002). The gravity response and the rootward auxin transport
were abolished at 4 °C and inhibition of inflorescence gravitropism was observed.
It returned to wild-type level when the plants returned to room temperature (Fukaki
et al. 1996; Wyatt et al. 2002; Nadella et al. 2006). Although it clearly suggests the
importance of auxin in cold-stress-mediated plant growth and development, the
question arises if the CBF-dependent cold stress-signaling pathway is associated
with auxin. Interestingly, SIZ1, a regulatory component of CBF cold signaling
pathway, which represses the polyubiquitination of ICE1 at low temperature (Miura
et al. 2007a, b) has been shown to affect phosphate-starvation-induced root archi-
tecture remodeling negatively through the control of auxin patterning (Miura et al.
2011). Shibasaki et al. (2009) suggested that the effect of cold stress on auxin is
linked to the inhibition of intracellular trafficking of auxin efflux carriers.

Fig. 11.4 Indole-3-acetic
acid
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11.2.5 Ethylene

Ethylene is a gas that is formed by the breakdown of methionine, which is present
in all cells. It is a simple olefin with the molecular weight 28 (Fig. 11.5) and lighter
than air. For about 25 years, ethylene did not get any recognition and importance as
a plant hormone. The effects of ethylene were considered to be because of auxin
and it was believed that ethylene produced in cells plays some insignificant role.
Ethylene has very limited solubility in water and therefore, does not accumulate in
the cell. Being gaseous in nature, it easily diffuses out of the cell. Therefore, the
effectiveness of ethylene as a plant hormone depends on its rate of production
versus its rate of escape into the atmosphere. The production of ethylene varies with
the type of tissue and stage of development. Besides, wounding and other physi-
ological stresses like temperature, drought, water or even some disease can cause
the accumulation of ethylene hormone. Its production increases during leaf
abscission and flower senescence. Ethylene also affects fruit ripening. When the
plant seeds become mature, ethylene production increases and thus accumulates
within the fruit. It causes a climacteric event just before seed dispersal. Moreover, it
is also involved in the plant hormone cross-talk by regulating them. The nuclear
protein Ethylene Insensitive2 (EIN2) is regulated by ethylene production and it
regulates other hormones including ABA and stress hormones.

11.2.5.1 Ethylene and Cold Stress Signaling Pathway

Cold stress alters endogenous ethylene levels in many plant species. Therefore, the
role of enhanced ethylene levels in cold and freezing tolerance was analyzed.
However, the role of ethylene in freezing tolerance is somewhat controversial in
Arabidopsis as when in vitro grown Arabidopsis seedlings were treated with the
ethylene precursor 1- aminocyclopropane-1-carboxylic acid (ACC), they showed
reduced freezing tolerance with or without cold-acclimation. However, when an
inhibitor of ACC biosynthesis, aminoethoxyvinylglycine (AVG) was applied, it
increased freezing tolerance. This indicated a negative effect of ethylene on cold
tolerance (Shi et al. 2012). Furthermore, the Arabidopsis ethylene overproducing
mutant eto1 shows reduced freezing tolerance (Shi et al. 2012). Surprisingly, in
contrast to this, another study showed that ACC application enhanced freezing
tolerance in soil grown Arabidopsis seedlings (Catalá et al. 2014). In the model
legume Medicago truncatula, again ethylene levels negatively affected the
cold-acclimation-dependent freezing tolerance (Zhao et al. 2014). However, in

Fig. 11.5 Ethylene chemical
formula
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tomato (Lycopersicon esculentum), the inhibitor of ethylene biosynthesis
1-methylcyclo-propene (1-MCP) reduced cold tolerance. This suggested a positive
correlation between ethylene and cold tolerance in tomato (Zhao et al. 2009). In
tobacco (Nicotiana tabacum) the increase in freezing tolerance ability was observed
after treatment with AVG and therefore, ethylene had negative effect on cold tol-
erance (Zhang and Huang 2010). Therefore, we can conclude a species-dependent
role of ethylene on freezing tolerance.

11.3 Conclusion

Phytohormones, commonly known as growth regulators have established them-
selves as essential components of plant stress signaling. With increasing research,
they are gaining more and more importance, especially GAs, ABA and JA with
respect to their diverse roles under cold stress. ABA accumulates in plants under
cold stress and even participates in providing cold tolerance but via CBF-inde-
pendent cold stress signaling pathway. It is a negative regulator of ICE1 and
therefore, affects the pathway negatively. On the other hand JA, which also accu-
mulates under cold stress, acts as a positive regulator and helps in activating ICE1
after degradation of JAZ proteins. GA and JA have antagonistic effects on growth.
The overlapping network of phytohormonal regulation and CBF-dependent

Fig. 11.6 Phytohormone network in CBF dependent cold stress signaling pathway
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signaling during cold stress is summarized in Fig. 11.6. More in depth investiga-
tions on the roles of these phytohormones under cold stress can unravel the intricate
network operating among these under cold stress.
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