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Abstract. Boolean network is a discrete mathematical model of gene
regulatory networks. In this short article, we briefly review algorithmic
results on finding attractors in Boolean networks. Since it is known that
the problem of finding a singleton attractor is NP-hard and the problem
can be trivially solved in O∗(2n) time (under a reasonable assumption),
we focus on special cases in which the problem can be solved in O((2−δ)n)
time for some constant δ > 0. We also briefly review algorithmic results
on control of Boolean networks.
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1 Boolean Networks

Mathematical analysis of biological networks is an important topic in bioinfor-
matics and computational biology. For that purpose, various kinds of mathemat-
ical models have been proposed. Among them, the Boolean network (BN) has
been extensively studied since 1960’s [3]. BN is a discrete mathematical model
of gene regulatory networks, in which each node (e.g., gene) takes either 0 or 1
and the states of nodes change synchronously according to regulation rules given
as Boolean functions, where 1 (resp., 0) means that the corresponding gene is
expressed (resp., not expressed).

Formally, a BN N(V, F ) consists of a set V = {x1, . . . , xn} of nodes and a list
F = (f1, . . . , fn) of Boolean functions, where a Boolean function fi(xi1 , . . . , xiki

)
with inputs from specified nodes xi1 , . . . , xiki

is assigned to each node xi. We
use IN(xi) to denote the set of input nodes xi1 , . . . , xik to xi. Each node takes
either 0 or 1 at each discrete time t, and the state of node xi at time t is denoted
by xi(t). Then, the state of node xi at time t + 1 is determined by

xi(t + 1) = fi(xi1(t), . . . , xiki
(t)).

The state of the whole network at time step t is represented by an n-dimensional
0–1 vector x(t) = [x1(t), . . . , xn(t)]. We also write xi(t + 1) = fi(x(t)) to denote
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the regulation rule for xi and x(t + 1) = f(x(t)) to denote the regulation rule
for the whole BN. The network structure of a BN N(V, F ) is represented by a
directed graph G(V,E) such that E = {(xij , xi)|xij ∈ IN(xi)}. The dynamics of
a BN can be well represented by a state transition diagram, in which a vertex and
a directed edge correspond to a (global) state of the BN and a state transition,
respectively. For example, consider a BN N(V, F ) defined by

x1(t + 1) = x3(t),
x2(t + 1) = x1(t) ∧ x3(t),
x3(t + 1) = x1(t) ∧ x2(t).

Then, G(V,E) and its state transition diagram are as in Fig. 1(A) and (B),
respectively.
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Fig. 1. Example of BN. (A) G(V, E). (B) State transition diagram.

Starting from any initial state, a BN will eventually reach a cyclic sequence of
states, called an attractor, which is often regarded as a type of a cell. An attractor
consisting of only one global state (i.e., x = f(x)) is called a singleton attractor.
Otherwise, it is called a periodic attractor. A periodic attractor consisting of
p states is called a p-periodic attractor. For example, the BN given in Fig. 1
has two singleton attractors 〈[0, 0, 0]〉 and 〈[1, 0, 1]〉, and one 2-periodic attractor
〈[0, 1, 1], [1, 0, 0]〉.

2 Attractor Detection

After making a BN model of some organism or its part, it is important to find
or enumerate attractors because they are considered to correspond to cell types.
Since an attractor corresponds to a directed cycle in a state transition diagram,
attractors can be enumerated by enumerating cycles in the diagram. Since a state
transition diagram consists of 2n vertices and 2n edges, enumeration of attractors
can be done in O∗(2n) time1 once the diagram is constructed. Construction of
1 O∗(f(n)) denotes O(f(n)poly(n)).
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the diagram can also be done in O∗(2n) time if the value of each Boolean function
appearing in the BN can be computed in polynomial time. On the other hand,
it is known that deciding whether or not there exists a singleton attractor is
NP-hard. Since it is quite difficult to break the O∗(2n) barrier for the general
case, existing studies focused on developments of O∗((2 − δ)n) time algorithms
for special but important subclasses of BNs. In particular, the author and his
colleagues developed the following algorithms [1]:

– O(1.587n) time algorithm for detection of a singleton attractor for a BN
consisting of AND/OR functions (i.e., each Boolean function is a conjunction
or disjunction of literals),

– O(1.871n) time algorithm for detection of a singleton attractor for a BN
consisting of nested canalyzing functions (see [1] for the definition of a nested
canalyzing function),

– O(1.985n) time algorithm for detection of a 2-periodic attractor for a BN
consisting of AND/OR functions,

– O∗(n2p(w+1)) time algorithm for detection of a p-periodic attractor for a BN
consisting of nested canalyzing functions and having bounded treewidth w.

Improvements of these algorithms and developments of O∗((2 − δ)n) time algo-
rithms for other important subclasses are left as open problems.

3 Control of Boolean Networks

Recently, control of BNs has captured a lot of attentions because of its potential
application to control of cells and diseases. In particular, algebraic approaches
based on semi-tensor product have been extensively studied [2,4].

Here, we focus on computational complexity of control of BNs. Although
there exist many variants, one of the fundamental control problems is defined
as: given a BN with control nodes, its initial and target states, find a
sequence of 0–1 vectors for control nodes which leads BN from the initial
state to the target state. Formally, this problem is defined as follows. Let
V = {x1, . . . , xn, xn+1, . . . , xn+m}, where x1, . . . , xn are internal nodes and
xn+1, . . . , xn+m are external nodes (i.e., control nodes). We use ui to denote an
external node xn+i. Let x(t) = [x1(t), . . . , xn(t)] and u(t) = [u1(t), . . . , um(t)].
Then, the state of each internal node xi(t + 1) (i = 1, . . . , n) at time step t + 1
is determined by

xi(t + 1) = fi(xi1(t), . . . , xiki
(t)),

where each xij is either an internal node or an external node. We can describe
the dynamics of a BN with external nodes by

x(t + 1) = f(x(t),u(t)).

Then, control of BN is defined as follows (see also Fig. 2): given a BN with external
nodes, initial and target states x0 and xM of the internal nodes, find a sequence
of 0–1 vectors 〈u(0), . . . ,u(M − 1)〉 such that x(0) = x0 and x(M) = xM
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(if there does not exist such a sequence, “None” should be the output). For exam-
ple, consider a BN defined by

x1(t + 1) = u1(t),
x2(t + 1) = x1(t) ∧ u2(t),
x3(t + 1) = x1(t) ∨ x2(t).

Suppose that x0 = [1, 0, 0], xM = [0.1.1], and M = 3 (see also Fig. 2). Then, we
have a control sequence 〈u(0),u(1),u(2)〉 with

u(0) = [0, 0], u(1) = [0, 1], u(2) = [1, 1],

which drives the BN from x0 to xM .
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Fig. 2. Example of control of BN. (A) BN with external nodes u1 and u2. (B) State
transitions from the initial state to the target state.

This control problem can be solved by a dynamic programming algorithm
as follows. We use a table D[b1, . . . , bn, t], where each entry (except t) takes
either 0 or 1, and t corresponds to a time step. D[b1, . . . , bn, t] takes 1 if there
exists a control sequence 〈u(t), . . . ,u(M − 1)〉 which leads to the target state
xM beginning from the state [b1, . . . , bn] at time t. This table is computed from
t = M to t = 0 by using the following procedure:

D[b1, . . . , bn,M ] =
{

1, if [b1, . . . , bn] = xM ,
0, otherwise,

D[b1, . . . , bn, t − 1] =

⎧⎨
⎩

1, if there exists (c,u) such that D[c1, . . . , cn, t] = 1
and c = f(b,u),

0, otherwise,



Analysis and Control of Boolean Networks 7

where b = [b1, . . . , bn] and c = [c1, . . . , cn]. Then, there exists a desired control
sequence if and only if D[a1, . . . , an, 0] = 1 holds for x0 = [a1, . . . , an]. Once
the table is constructed, a desired control sequence can be obtained using the
standard traceback technique. It is easy to see that this algorithm requires O(M ·
2n+m) time excluding the time for calculation of Boolean functions. This is an
exponential-time algorithm. Actually, the problem is NP-hard even for M = 1
and BNs with very simple network structures. Furthermore, it is PSPACE-hard
if M is not bounded [1]. A polynomial time algorithm is known only for BNs
with tree structures [1]. Development of an algorithm that is faster than the
O(M ·2n+m) time one is left as an open problem, even for considerably restricted
BNs.

References

1. Akutsu, T.: Algorithms for Analysis, Inference, and Control of Boolean Networks.
World Scientific, Singapore (2018)

2. Cheng, D., Qi, H., Li, Z.: Analysis and Control of Boolean Networks: A Semi-tensor
Product Approach. Springer, London (2011). https://doi.org/10.1007/978-0-85729-
097-7

3. Kauffman, S.A.: Homeostasis and differentiation in random genetic control net-
works. Nature 224, 177–178 (1969)

4. Lu, J., Li, H., Liu, Y., Li, F.: Survey on semi-tensor product method with its appli-
cations in logical networks and other finite-valued systems. IET Control Theory
Appl. 11, 2040–2047 (2017)

https://doi.org/10.1007/978-0-85729-097-7
https://doi.org/10.1007/978-0-85729-097-7

	Algorithms for Analysis and Control of Boolean Networks
	1 Boolean Networks
	2 Attractor Detection
	3 Control of Boolean Networks
	References




