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Preface

These proceedings contain the papers that were presented at the 5th International
Conference on Algorithms for Computational Biology (AlCoB 2018), held in Hong
Kong, during June 25–26, 2018.

The scope of AlCoB includes topics of either theoretical or applied interest, namely:

– Exact sequence analysis
– Approximate sequence analysis
– Pairwise sequence alignment
– Multiple sequence alignment
– Sequence assembly
– Genome rearrangement
– Regulatory motif finding
– Phylogeny reconstruction
– Phylogeny comparison
– Structure prediction
– Compressive genomics
– Proteomics: molecular pathways, interaction networks, mass spectrometry analysis
– Transcriptomics: splicing variants, isoform inference and quantification, differential

analysis
– Next-generation sequencing: population genomics, metagenomics,

metatranscriptomics
– Microbiome analysis
– Systems biology

AlCoB 2018 received 20 submissions. Most papers were reviewed by three Program
Committee members. There were also a few external reviewers consulted. After a
thorough and vivid discussion phase, the committee decided to accept 11 papers (which
represents an acceptance rate of about 55%). The conference program included three
invited talks and some poster presentations of work in progress.

The excellent facilities provided by the EasyChair conference management system
allowed us to deal with the submissions successfully and handle the preparation
of these proceedings in time.

We would like to thank all invited speakers and authors for their contributions, the
Program Committee and the external reviewers for their cooperation, and Springer for
its very professional publishing work.

April 2018 Jesper Jansson
Carlos Martín-Vide

Miguel A. Vega-Rodríguez
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Algorithms for Analysis and Control
of Boolean Networks

Tatsuya Akutsu(B)

Bioinformatics Center, Institute for Chemical Research,
Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

takutsu@kuicr.kyoto-u.ac.jp

Abstract. Boolean network is a discrete mathematical model of gene
regulatory networks. In this short article, we briefly review algorithmic
results on finding attractors in Boolean networks. Since it is known that
the problem of finding a singleton attractor is NP-hard and the problem
can be trivially solved in O∗(2n) time (under a reasonable assumption),
we focus on special cases in which the problem can be solved in O((2−δ)n)
time for some constant δ > 0. We also briefly review algorithmic results
on control of Boolean networks.

Keywords: Boolean networks · Attractors · Controllability

1 Boolean Networks

Mathematical analysis of biological networks is an important topic in bioinfor-
matics and computational biology. For that purpose, various kinds of mathemat-
ical models have been proposed. Among them, the Boolean network (BN) has
been extensively studied since 1960’s [3]. BN is a discrete mathematical model
of gene regulatory networks, in which each node (e.g., gene) takes either 0 or 1
and the states of nodes change synchronously according to regulation rules given
as Boolean functions, where 1 (resp., 0) means that the corresponding gene is
expressed (resp., not expressed).

Formally, a BN N(V, F ) consists of a set V = {x1, . . . , xn} of nodes and a list
F = (f1, . . . , fn) of Boolean functions, where a Boolean function fi(xi1 , . . . , xiki

)
with inputs from specified nodes xi1 , . . . , xiki

is assigned to each node xi. We
use IN(xi) to denote the set of input nodes xi1 , . . . , xik to xi. Each node takes
either 0 or 1 at each discrete time t, and the state of node xi at time t is denoted
by xi(t). Then, the state of node xi at time t + 1 is determined by

xi(t + 1) = fi(xi1(t), . . . , xiki
(t)).

The state of the whole network at time step t is represented by an n-dimensional
0–1 vector x(t) = [x1(t), . . . , xn(t)]. We also write xi(t + 1) = fi(x(t)) to denote

Partially supported by JSPS, Japan: Grant-in-Aid 26240034.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Jansson et al. (Eds.): AlCoB 2018, LNBI 10849, pp. 3–7, 2018.
https://doi.org/10.1007/978-3-319-91938-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91938-6_1&domain=pdf
http://orcid.org/0000-0001-9763-797X


4 T. Akutsu

the regulation rule for xi and x(t + 1) = f(x(t)) to denote the regulation rule
for the whole BN. The network structure of a BN N(V, F ) is represented by a
directed graph G(V,E) such that E = {(xij , xi)|xij ∈ IN(xi)}. The dynamics of
a BN can be well represented by a state transition diagram, in which a vertex and
a directed edge correspond to a (global) state of the BN and a state transition,
respectively. For example, consider a BN N(V, F ) defined by

x1(t + 1) = x3(t),
x2(t + 1) = x1(t) ∧ x3(t),
x3(t + 1) = x1(t) ∧ x2(t).

Then, G(V,E) and its state transition diagram are as in Fig. 1(A) and (B),
respectively.

(A) (B)

0 0 0

0 1 0

1 1 0

1 0 10 1 1

1 0 0

1 1 1 0 0 1
x1

x2 x3

Fig. 1. Example of BN. (A) G(V, E). (B) State transition diagram.

Starting from any initial state, a BN will eventually reach a cyclic sequence of
states, called an attractor, which is often regarded as a type of a cell. An attractor
consisting of only one global state (i.e., x = f(x)) is called a singleton attractor.
Otherwise, it is called a periodic attractor. A periodic attractor consisting of
p states is called a p-periodic attractor. For example, the BN given in Fig. 1
has two singleton attractors 〈[0, 0, 0]〉 and 〈[1, 0, 1]〉, and one 2-periodic attractor
〈[0, 1, 1], [1, 0, 0]〉.

2 Attractor Detection

After making a BN model of some organism or its part, it is important to find
or enumerate attractors because they are considered to correspond to cell types.
Since an attractor corresponds to a directed cycle in a state transition diagram,
attractors can be enumerated by enumerating cycles in the diagram. Since a state
transition diagram consists of 2n vertices and 2n edges, enumeration of attractors
can be done in O∗(2n) time1 once the diagram is constructed. Construction of
1 O∗(f(n)) denotes O(f(n)poly(n)).
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the diagram can also be done in O∗(2n) time if the value of each Boolean function
appearing in the BN can be computed in polynomial time. On the other hand,
it is known that deciding whether or not there exists a singleton attractor is
NP-hard. Since it is quite difficult to break the O∗(2n) barrier for the general
case, existing studies focused on developments of O∗((2 − δ)n) time algorithms
for special but important subclasses of BNs. In particular, the author and his
colleagues developed the following algorithms [1]:

– O(1.587n) time algorithm for detection of a singleton attractor for a BN
consisting of AND/OR functions (i.e., each Boolean function is a conjunction
or disjunction of literals),

– O(1.871n) time algorithm for detection of a singleton attractor for a BN
consisting of nested canalyzing functions (see [1] for the definition of a nested
canalyzing function),

– O(1.985n) time algorithm for detection of a 2-periodic attractor for a BN
consisting of AND/OR functions,

– O∗(n2p(w+1)) time algorithm for detection of a p-periodic attractor for a BN
consisting of nested canalyzing functions and having bounded treewidth w.

Improvements of these algorithms and developments of O∗((2 − δ)n) time algo-
rithms for other important subclasses are left as open problems.

3 Control of Boolean Networks

Recently, control of BNs has captured a lot of attentions because of its potential
application to control of cells and diseases. In particular, algebraic approaches
based on semi-tensor product have been extensively studied [2,4].

Here, we focus on computational complexity of control of BNs. Although
there exist many variants, one of the fundamental control problems is defined
as: given a BN with control nodes, its initial and target states, find a
sequence of 0–1 vectors for control nodes which leads BN from the initial
state to the target state. Formally, this problem is defined as follows. Let
V = {x1, . . . , xn, xn+1, . . . , xn+m}, where x1, . . . , xn are internal nodes and
xn+1, . . . , xn+m are external nodes (i.e., control nodes). We use ui to denote an
external node xn+i. Let x(t) = [x1(t), . . . , xn(t)] and u(t) = [u1(t), . . . , um(t)].
Then, the state of each internal node xi(t + 1) (i = 1, . . . , n) at time step t + 1
is determined by

xi(t + 1) = fi(xi1(t), . . . , xiki
(t)),

where each xij is either an internal node or an external node. We can describe
the dynamics of a BN with external nodes by

x(t + 1) = f(x(t),u(t)).

Then, control of BN is defined as follows (see also Fig. 2): given a BN with external
nodes, initial and target states x0 and xM of the internal nodes, find a sequence
of 0–1 vectors 〈u(0), . . . ,u(M − 1)〉 such that x(0) = x0 and x(M) = xM
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(if there does not exist such a sequence, “None” should be the output). For exam-
ple, consider a BN defined by

x1(t + 1) = u1(t),
x2(t + 1) = x1(t) ∧ u2(t),
x3(t + 1) = x1(t) ∨ x2(t).

Suppose that x0 = [1, 0, 0], xM = [0.1.1], and M = 3 (see also Fig. 2). Then, we
have a control sequence 〈u(0),u(1),u(2)〉 with

u(0) = [0, 0], u(1) = [0, 1], u(2) = [1, 1],

which drives the BN from x0 to xM .

1 0 0

0 1 1

0 1 0 0 0 0

1 0 1 0 1

1 1 1 1 1

0 1 1 - -

t

1

2

3

(M=3)

initial (       )x 0

desired (       )xM

x1 x2 x3 u1 u2

AND

OR

NOT

u1 u2

x1 x2

x3

(A) (B)

Fig. 2. Example of control of BN. (A) BN with external nodes u1 and u2. (B) State
transitions from the initial state to the target state.

This control problem can be solved by a dynamic programming algorithm
as follows. We use a table D[b1, . . . , bn, t], where each entry (except t) takes
either 0 or 1, and t corresponds to a time step. D[b1, . . . , bn, t] takes 1 if there
exists a control sequence 〈u(t), . . . ,u(M − 1)〉 which leads to the target state
xM beginning from the state [b1, . . . , bn] at time t. This table is computed from
t = M to t = 0 by using the following procedure:

D[b1, . . . , bn,M ] =
{

1, if [b1, . . . , bn] = xM ,
0, otherwise,

D[b1, . . . , bn, t − 1] =

⎧⎨
⎩

1, if there exists (c,u) such that D[c1, . . . , cn, t] = 1
and c = f(b,u),

0, otherwise,
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where b = [b1, . . . , bn] and c = [c1, . . . , cn]. Then, there exists a desired control
sequence if and only if D[a1, . . . , an, 0] = 1 holds for x0 = [a1, . . . , an]. Once
the table is constructed, a desired control sequence can be obtained using the
standard traceback technique. It is easy to see that this algorithm requires O(M ·
2n+m) time excluding the time for calculation of Boolean functions. This is an
exponential-time algorithm. Actually, the problem is NP-hard even for M = 1
and BNs with very simple network structures. Furthermore, it is PSPACE-hard
if M is not bounded [1]. A polynomial time algorithm is known only for BNs
with tree structures [1]. Development of an algorithm that is faster than the
O(M ·2n+m) time one is left as an open problem, even for considerably restricted
BNs.
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Reconciliation Feasibility of Non-binary
Gene Trees Under a
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Ricson Cheng1, Matthew Dohlen2, Chen Pekker3, Gabriel Quiroz3,
Jincheng Wang3, Ran Libeskind-Hadas3, and Yi-Chieh Wu3(B)
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Abstract. Phylogenetic tree reconciliation is a widely-used method to
understand gene family evolution. For eukaryotes, the duplication-loss-
coalescence (DLC) model seeks to explain incongruence between gene
trees and species trees by postulating gene duplication, gene loss, and
deep coalescence events. While efficient algorithms exist for inferring
optimal DLC reconciliations, they assume that only one individual is
sampled per species. In recent work, we demonstrated that with addi-
tional samples, there exist gene tree topologies that are impossible to
reconcile with any species tree. However, our algorithm required the gene
tree to be binary whereas, in practice, gene trees are often non-binary due
to uncertainty in the reconstruction process. In this work, we consider for
the first time reconciliation under the DLC model with non-binary gene
trees. Specifically, we describe an efficient algorithm that takes as input
an arbitrary gene tree with an arbitrary number of samples per species
and either (1) determines that there is a valid reconcilable binary reso-
lution of that tree and constructs one such resolution or (2) determines
that there exists no valid reconcilable binary resolution of that tree. Our
work makes it possible to systematically analyze non-binary gene trees
and will help biologists identify incorrect gene tree topologies and thus
avoid incorrect evolutionary inferences.

Keywords: Phylogenetics · Reconciliation
Gene duplication and loss · Coalescence · Non-binary trees

M. Dohlen and C. Pekker—These authors contributed equally to this work.
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1 Introduction

Phylogenetic tree reconciliation is a fundamental technique for understanding
the evolutionary histories of genes found across a set of species. Given a gene
tree, species tree, and the association between their leaves, a reconciliation postu-
lates evolutionary events to explain the incongruence, or topological differences,
between those trees. These events may include gene duplication [21], gene loss [2],
horizontal gene transfer [20], and incomplete lineage sorting [11], among others.
Accurate reconciliations can provide important insights into centrally important
questions on gene evolution and the introduction of new gene functions [16,30].

Reconciliations rely on an underlying evolutionary model. Some widely-used
models include the duplication-loss (DL) model [1,6,7,14,15,22,24,35], which
allows for gene duplication and gene loss; the duplication-transfer-loss (DTL)
model [3,8–10,13,29], which considers horizontal gene transfers as well; and the
multispecies coalescent (MSC) model [19,23,31,33], which allows for incomplete
lineage sorting through deep coalescence. However, the DL and DTL models
cannot address population effects, and MSC models cannot address paralogous
gene families. Thus, each model has limited accuracy and applicability.

Recently, a unified duplication-loss-coalescence (DLC) model was proposed
that combines the DL and MSC models [25], thereby addressing the most
common events in eukaryotic gene evolution. Given a single haploid sample
per species, two algorithms exist for solving the DLC reconciliation problem:
DLCoalRecon finds the reconciliation with highest posterior probability [25],
and DLCpar finds a most parsimonious reconciliation (one that minimizes the
total cost of the constituent events) [32]. More recently, we extended the DLC
model to allow for multiple samples per species and demonstrated that these
multiple samples impose additional constraints such that gene trees may have
no feasible reconciliation. Such infeasible gene trees can occur, for example, due
to noisy sequencing, reconstruction error, or violations of model assumptions. To
address this problem, we presented a polynomial-time algorithm for determining
reconciliation feasibility of gene trees under the DLC model [26].

A significant limitation of these formulations is that they require the gene and
species trees to be binary. In practice, species trees for several clades are binary
since their reconstruction can benefit from well-behaved gene families as well as
multigene phylogeny construction methods [4,12]. When a species tree is non-
binary, the non-binary nodes, or polytomies, are often “hard” and represent the
simultaneous speciation of a common ancestor into multiple species. In contrast,
gene trees are often non-binary due to lack of phylogenetic signal [27]. Their
polytomies are “soft” in the sense that better data would allow us to resolve such
nodes to yield a binary gene tree. Note that the number of binary resolutions is
exponential in the number of non-binary nodes and their maximum out-degree.
When given a non-binary gene tree and a binary species tree, reconciliation
algorithms under the simpler DL and DTL models often seek to find a binary
resolution of the gene tree that minimizes the reconciliation cost [5,17,18,34].

In this work, we consider the problem of binary resolution under the DLC
model with multiple samples per species. We present an efficient new algorithm
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that finds a valid binary resolution when such a resolution exists. Note that a
brute-force approach of enumerating each binary resolution and testing it for
reconcilability would take exponential time and thus be impractical. Using our
algorithm, we also prove that there exist non-binary gene trees for which there is
no valid binary resolution. This work generalizes existing results on reconciliation
feasibility of binary gene trees and is thus an important step towards a full
reconciliation algorithm for non-binary gene trees under the DLC model.

2 Background

2.1 Reconciliation Feasibility

We previously studied reconciliation feasibility under the DLC model [26] and
review that work here.

We start with some basic tree and graph definitions. Let T be an unrooted,
full, binary tree1 with a set V (T ) of nodes (or vertices) and a set E(T ) of branches
(or edges). Let L(T ) ⊂ V (T ) denote the set of leaves, and for nodes u and v,
let path(u, v) denote the set of branches along the unique simple path from u
to v in T . Similarly, let G = (V (G), E(G)) be an undirected graph with a set
V (G) of vertices and a set E(G) of edges. Let C(G) denote the set of connected
components of G, where C ∈ C(G) is a subgraph of G denoting a single connected
component.

A species tree S is a tree that depicts the evolutionary history of a set of
species, and a gene tree G is a tree that depicts the evolutionary history of a
set of genes sampled from these species. Gene trees may be either binary or
non-binary while the species tree is always assumed to be binary. A species leaf
map Le : L(G) → L(S) associates each leaf of G with the leaf of S in which that
gene is found. Note that more than one gene may be sampled from the same
species; these genes could correspond to either multiple loci or multiple haploid
samples. A gene tree is associated with a finite locus set L of species-specific
loci that have evolved within the gene family. A locus leaf map LeL : L(G) → L

associates each leaf of G with the species-specific locus at which that gene is
found. For example, two genes map to the same species-specific locus if they are
mapped to the same location on a reference genome. Note that the relationship
between loci in different species is assumed to be unknown. Furthermore, there
may exist copy number variations resulting in different samples from the same
species containing different loci.

The labeled coalescent tree (LCT) formalizes the notion of a reconciliation in
the DLC model [32]. In brief, the LCT is an annotated gene tree that simultane-
ously describes the gene tree topology and its reconciliation to the species tree.
As a full description of the LCT is not necessary to characterize the reconcilia-
tion feasibility problem, we present only the necessary concepts and terminology.
First, duplications occur along branches in the LCT, denoting that the locus has
changed at some point along the branch. Second, the LCT labels each node and

1 Branch lengths are not used in this work, so a tree always refers to a tree topology.
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branch with the locus in which the gene evolves; for branches with a duplication,
one side of the branch (before the duplication) is labeled with the original locus
and the other side (after the duplication) with the new locus.

Multiple species-specific loci may be related through speciation events alone
and thus correspond to the same evolutionary locus. This notion is formalized
and used to define reconcilable gene trees as follows:

Definition 1 (Locus Class). Let a collection LC = {Ci} of nonempty sets
form a partition over L such that each locus l ∈ L belongs to a single locus class
Ci ∈ LC.

Definition 2 (Reconcilable Gene Tree2). Given gene tree G, species leaf
map Le, and locus leaf map LeL, G is said to be reconcilable if there exists some
map L : L(G) ∪ E(G) → LC of each leaf and edge of the gene tree to a single
locus class, such that for each pair of genes g1 ∈ L(G), g2 ∈ L(G), g1 �= g2, L is
subject to the following constraints:

1. If LeL(g1) = LeL(g2), then L(g1) = L(g2) and for each e ∈ path(g1, g2),
L(e) = L(g1). (Allele Constraint)

2. If Le(g1) = Le(g2) but LeL(g1) �= LeL(g2), then L(g1) �= L(g2). (Paralog
Constraint)

Constraint 1 ensures that genes from the same species-specific locus are
assigned the same locus class and, because duplications create a unique new
locus, that genes and edges assigned the same locus class form a subtree of the
gene tree. Constraint 2 ensures that genes from paralagous loci are assigned
different locus classes. Note that reconcilability of the gene tree depends on its
topology and the mapping of its leaves to the leaves of the species tree and to
species-specific loci, but reconcilability does not depend on the actual topology
of the species tree.

Problem 3 (Reconciliation Feasibility). Given gene tree G, species leaf map Le,
and locus leaf map LeL, determine whether G is reconcilable.

The reconciliation feasibility problem can be solved using two structures, the
Partially Labeled Coalescent Tree (PLCT, Fig. 1B) and the Locus Equivalence
Graph (LEG, Fig. 1C), defined formally below:

Definition 4 (Partially Labeled Coalescent Tree). Let P(L) denote the
power set of L. Given G and LeL, the partially labeled coalescent tree (PLCT)
is a map P : E(G) → P(L) constructed as follows: Consider each pair of genes
g1 ∈ L(G), g2 ∈ L(G), g1 �= g2 such that LeL(g1) = LeL(g2) = l. For each gene
tree edge e ∈ path(g1, g2), add l to P(e).

Definition 5 (Locus Equivalence Graph). Given a PLCT P for G and
LeL, the locus equivalence graph (LEG) is a graph G constructed as follows: Set
V (G) = L. For each gene tree edge e ∈ E(G) and each pair of loci l1 ∈ P(e), l2 ∈
P(e), l1 �= l2, add (l1, l2) to E(G).
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Fig. 1. Reconciliation feasibility for binary gene trees. (A) The sampled species
(capital letters), loci (numbers), and haploid samples (roman numerals). We assume
knowledge of the species-specific locus from which each gene is sampled. Within a
species, genes at the same locus (across multiple samples must be alleles), and genes
at different loci (regardless of sample) must be paralogs. (B) For a gene tree (black),
the PLCT uses alleles to label branches along which no duplications are allowed (col-
ored lines). (C) The LEG contains one node per species-specific locus and encodes
overlapping labels in the PLCT as edges in the LEG. (D) A gene tree has a feasible
reconciliation if and only if every connected component of the LEG contains no par-
alogs, that is, no more than one locus from each species. [Figure and caption adapted
with permission from Rogers et al. [26].]

The PLCT captures the allele constraints for each species-specific locus by label-
ing edges of the gene tree with the species-specific locus or loci to which the edge
must belong. If an edge is labeled with multiple loci, these multiple loci must
correspond to the same locus class. This equivalency constraint is captured as
an edge between loci in the LEG. Rogers et al. [26] provide a formal description
of the algorithm for constructing the PLCT and LEG, describe an optimization,
and derive their time complexities of O(nk) and O(nk2), respectively, where
n = |L(G)| and k = |L|. Next, paralog constraints are used to define reconcil-
able LEGs:

Definition 6 (Reconcilable Locus Equivalence Graph). For each l ∈ L,
let map LeS : L → L(S) associate each species-specific locus with the leaf of S
in which the locus is found. That is, for each g ∈ L(G), if l = LeL(g), then
LeS(l) = Le(g). Given G, Le, and LeL, a LEG G for G and LeL is said to be
reconcilable if for each C ∈ C(G) and for each s ∈ L(S), there exists no more
than one locus l ∈ C such that LeS(l) = s.

The LEG enforces the paralog constraints for each species by requiring that
each connected component contain no more than one locus from any species.
LEG reconcilability can be determined in O(k3) time and related to gene tree
reconcilability [26]:



16 R. Cheng et al.

Theorem 7. A gene tree is reconcilable if and only if its locus equivalence graph
is reconcilable.

3 Reconciliation Feasibility for Non-binary Gene Trees

In the previous section, all definitions and theorems applied only to binary gene
trees. In this section, we consider the reconcilability of non-binary gene trees.

Let M be a non-binary, or multifurcating, gene tree. Each node with more
than two children is called a multifurcation. Without loss of generality, and to
simplify our discussion, we root M arbitrarily along any branch. A binarization
B(M) of M is a binary tree in which each multifurcation v with k > 2 children
is replaced by a binary tree rooted at v with k leaves. These k leaves represent
the k original children of v and thus may themselves be the roots of subtrees
with their own descendants. The binary tree rooted at v is said to resolve the
multifurcation, and we call that binary tree an expansion tree for v.

We now formalize the notion of reconcilable multifurcating gene trees:

Definition 8. A multifurcating gene tree M is said to be reconcilable if there
exists a binarization B(M) of M that is reconcilable.

Note that for a multifurcating gene tree, not all binarizations may be reconcil-
able. For example, two binarizations may induce different paths between two
genes such that allele and paralog constraints are satisfiable in one binariza-
tion but not in another (Fig. 2). Rather than enumerate all binarizations and
evaluate each for reconcilability, we propose to evaluate the reconcilability of
multifurcating gene trees directly.

Fig. 2. Reconciliation feasibility for non-binary gene trees. A multifurcating
gene tree M and two binarizations B1 and B2. Superscripts indicating haploid samples
have been omitted. For B1, a1 and a2 can be mapped to distinct locus classes, so the
gene tree is reconcilable. For B2, a1 and a2 must be mapped to the same locus class,
but a1 and a2 are paralogs, so the gene tree is irreconcilable.

We start by applying the definitions of the PLCT and LEG (Definitions 4
and 5) directly to multifurcating gene trees. However, Theorem 7, which relates
reconcilability of gene trees to reconcilability of LEGs requires that the gene tree
be binary.2 Our goal is to extend Theorem 7 to multifurcating gene trees:

2 The proof considers only the single unique path between two genes in a binary tree.
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Theorem 9. A multifurcating gene tree is reconcilable if and only if its locus
equivalence graph is reconcilable.

For a multifurcating gene tree M , let the associated LEG be GM . We then
reformulate Theorem 9 as two separate theorems, one for each direction of the
“if and only if” statement:
Theorem 9a. If GM is reconcilable, then there exists a binarization B(M) of
M that is reconcilable.
Theorem 9b. If GM is irreconcilable, then there exists no binarization B(M)
of M that is reconcilable.

3.1 Proof of Reconcilability

For each locus l ∈ L, there exists a locus tree3 which is the subtree of M whose
leaves contain that locus. Let r(M) denote the root of M , and for u ∈ V (M), u �=
r(M), let the parent edge of u be the edge from u to its parent. Consider a node
u and its parent edge e. If edge e is not used by any locus trees, then u is said
to be uncontained. However, if one or more locus trees contain edge e, then, by
definition, the set of those loci are in a single connected component C of GM ,
and we say that u is contained by C.

Given a non-binary tree M (Fig. 3A), we want to efficiently determine
whether or not there exists a binarization B(M) of M that is reconcilable. We
propose the following binarization algorithm:

1. For each multifurcation v ∈ V (M), partition its children by the connected
components in GM that contain them, placing uncontained children arbitrarily
(Fig. 3B).

2. For each set in the partition, construct a sub-expansion tree by attaching all
the children to the leaves of an arbitrary binary tree with the same number
of leaves as children in the set (Fig. 3C).

3. Join all sub-expansion trees together with another arbitrary binary tree of
appropriate size, called the connecting tree, by attaching the roots of the
sub-expansion trees to the leaves of the connecting tree. This results in our
expansion tree for v (Fig. 3C).

Constructing an expansion tree for each multifurcating node in M , in this
way, results in our binarization B(M). Note that since some aspects of the
construction permit arbitrary decisions (e.g., placement of uncontained nodes,
construction of the connecting tree), the resulting binarization is not unique.

We now relate GM for M with GB(M) for B(M).

Lemma 10. Let v be a multifurcating vertex in M , and let B(M) be a binariza-
tion constructed by our algorithm. In B(M), if a locus tree L for locus l contains
an edge in the connecting tree of v, then it contains the parent edge of v.

3 Note that this locus tree is distinct from the locus tree of Rasmussen and Kellis [25].
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Fig. 3. Reconciliation feasibility for non-binary gene trees. (A) A multifurcat-
ing gene tree M and its locus equivalency graph GM . Superscripts indicating haploid
samples have been omitted. Nodes with parent edges e1 and e4 are contained by con-
nected component C1, and nodes with parent edges e2 and e3 are contained by con-
nected component C2. (B) The partition of children from multifurcating node v. The
first set includes the children contained by connected component C1, and the second
set includes the children contained by connected component C2. (C) Sub-expansion
trees (solid) joined through a connecting tree (dashed) to yield an expansion tree for v.

Proof. Suppose L contains an edge in the connecting tree of v but does not
contain the parent edge of v. Then, by construction of B(M), L has leaves g1
and g2 in two distinct sub-expansion trees of v. Therefore, in the original tree M ,
the path from g1 to g2 passes through v and thus passes through two children
of v, denoted vi and vj . Since g1 and g2 are in distinct sub-expansion trees, it
follows that vi and vj are each contained by a distinct connected component in
GM . But, by definition of GM , the path from g1 to g2 implies that vi and vj are
covered by a single connected component in GM . ��
Lemma 11. Let T be any binarization of M . Let l be a locus and let LM and
LT be the locus trees for l in M and T , respectively. The edge set of LT is exactly
the edge set of LM , with the addition of a subset of edges from expansion trees.

Proof. Note that LM is the union of paths between all pairs of leaves with locus
l in M , and similarly, LT is the union of paths between all pairs of leaves with
locus l in T . Every path in M corresponds to a unique path in T where all
internal nodes are expanded into a path through the corresponding expansion
tree. By the uniqueness of paths in trees, LT is exactly LM augmented with the
edges traversed in the expansion trees. ��
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For graph G and two nodes u, v ∈ V (G), we say that u and v are connected if
they are in the same connected component and disconnected otherwise.

Lemma 12. Let l and k be a pair of disconnected loci in GM . Then, there is no
edge between l and k in GB(M).

Proof. Let T = B(M). Consider any l and k in different connected components
in GM and any multifurcation v in M . Let LM and KM denote the locus trees
for l and k, respectively, in M , and let LT and KT denote the corresponding
locus trees in T .

Since l and k are in different connected components of GM , at least one of
LM or KM does not use the parent edge of v. By Lemma 11, the edge set of LM

and KM are subsets of LT and KT , respectively. Therefore, at least one of LT

or KT does not use the parent edge of v. Therefore, by Lemma 10, at most one
of LT or KT contains an edge in the connecting tree for v in T .

Next, we claim that if l and k are in different connected components Cl

and Ck in GM , then LT and KT do not intersect in any sub-expansion tree in T .
Suppose LT and KT intersect inside a sub-expansion tree of some vertex v. Since
Cl and Ck are in different components in GM , this intersection must happen at
an edge that was introduced when joining the children of v into sub-expansion
trees; these edges correspond to edges from v to its children in M . Thus, in M ,
LM and KM must share an edge and are thus in the same component, which
contradicts our assumption.

We have established that if l and k are in different connected components
in GM , then they cannot share an edge in either a connection tree or a sub-
expansion tree in T . Therefore, by Lemma 11, l and k cannot share any edge in
T and thus there is no edge between them in GT . ��

Finally, we prove Theorem 9a, which has been restated using B(M) con-
structed by our algorithm.

Theorem 9a. If GM is reconcilable, then GB(M) is reconcilable.

Proof. Let T = B(M). It suffices to show that if l and k are in different connected
components in GM , then they are in different connected components in GT ,
implying that if GM is reconcilable, then GT is reconcilable.

Assume by way of contradiction that loci l and k are disconnected in M but
connected in T . Then, there exists a path p from � to k in GT . Let (u, v) be
the first edge on p such that l and u are in the same connected component in
GM but u and v are in different connected components in GM . From Lemma 12,
(u, v) cannot be an edge in GT , contradicting the assumption. ��

Theorem 9a implies a polynomial-time algorithm for both determining if a
non-binary gene tree is reconcilable and, if so, constructing one reconcilable bina-
rization. Recall that, for n = |L(G)| and k = |L|, it takes O(nk)+O(nk2)+O(k3)
time to construct the PLCT and LEG and then test the LEG for reconcilability.
For the binarization process, let c denote the maximum number of children over
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all multifurcations in the gene tree, and m denote the total number of multifur-
cations. The time required to build the expansion tree for each multifurcation
is linear in c, and each multifurcation can be resolved independently. Thus, the
total complexity of the binarization process is O(cm).

For comparison, the number of distinct binary resolutions for multifurcation
v with kv children is Nv = (2kv − 3)!!. A brute-force approach that enumerates
each binarization and combines them would therefore result in

∏
v∈V (M):kv>2 Nv

expansion trees, making it infeasible to enumerate and test each one for feasi-
bility.

3.2 Proof of Irreconcilability

Theorem 9b. If GM is irreconcilable, then there exists no binarization B(M) of
M that is reconcilable.

Proof. Let T be an arbitrary binarization of M . By Lemma 11, any pair of locus
trees LT and KT in T contain all the edges of the corresponding locus tree, LM

and KM , in M . Thus, any two loci that are connected by an edge in GM must
also have an edge in GT . ��

It is not difficult to show that there exist non-binary gene trees that are not
reconcilable.4

4 Discussion

We have presented an efficient algorithm that evaluates an arbitrary gene tree
topology with an arbitrary number of samples per species under the DLC model
and either (1) determines that there is a valid reconcilable binary resolution of
that tree and constructs one such resolution or (2) determines that there exists
no valid reconcilable binary resolution of that tree.

In previous work [26], we reconstructed RAxML [28] gene trees, collapsed
poorly-supported branches to yield non-binary gene trees, and analyzed the rec-
oncilability of the associated LEG. Our work here allows us to directly relate
LEG reconcilability to gene tree reconcilability. In particular, while gene tree rec-
oncilability is affected by poorly-supported branches, even multifurcating gene
trees with well-supported branches can be infeasible.

One limitation of our work is that given a non-binary gene tree, we are not
guaranteed to construct an optimal binary resolution. That is, our binarization
may not yield a gene tree with the lowest reconciliation cost under a parsimony
framework. But our work suggests one possible approach. We propose to explore
the space of reconcilable resolutions compared to the space of all resolutions.
If, in-practice, most non-binary gene trees have a single or small number of

4 For example, in Fig. 3, swapping leaves labeled a2 with leaves labeled c1 would result
in an irreconcilable LEG and thus a multifurcating gene tree for which there exists
no reconcilable binarization.
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reconcilable resolutions, it would imply that we could simply enumerate the
resolutions, then apply existing reconciliation algorithms for binary trees.5

For irreconcilable gene trees, a possible research direction is to investigate
error-correction algorithms. Such an algorithm could find the minimum number
of topological rearrangements needed to yield a reconcilable gene tree. An alter-
native is to remove the minimum number of sampled individuals and explore
possible patterns among the removed individuals. Such patterns could provide
insight into whether certain populations are correlated with error and therefore
more susceptible to problems elsewhere in a phylogenomic pipeline.
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Abstract. The tree containment problem (TCP) is a fundamental prob-
lem in phylogenetic study. It was introduced as a mean for verifying
whether a network is consistent with a binary tree. The containment
problem is NP-complete, even if the network input is binary. If the input
is restricted to reticulation-visible networks, the TCP has been proved
to be solvable in quadratic time. In this paper, we show that there is a
linear time TCP algorithm for binary reticulation-visible networks.
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1 Introduction

Binary trees have been used to model evolutionary history for a long time. In a
binary tree, an internal node represents a speciation event (i.e. the emerging of a
new species) whereas a leaf represents an existing species. Recently, researchers
discover reticulate evolutionary events such as hybridization and horizontal gene
transfer [3,10], where genetic material may flow from one species to another. As
these reticulation events cannot be explained using trees, researchers develop a
more general model called phylogenetic networks (or simply networks), where the
reticulation events are represented by internal nodes of indegree more than one.

Although binary tree model cannot explain reticulation events, it is still
widely used due to its simplicity. For instance, by comparing similarity between
homologous proteins across different species, biologists can produce a binary
tree that can best predict the evolution. One way to verify whether a binary
tree is consistent with a phylogenetic network is by checking whether the latter
contains a subtree that is conceptually the same as the former. This verification
problem is known as the tree containment problem (TCP), and is known to be
NP-complete, even if the network input is restricted to binary networks [8].
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In order to make the network model practical, much effort has been devoted
to find big network classes where the TCP can be solved quickly. In [7],
van Iersel et al. posed the question whether the TCP is solvable in polyno-
mial time for the class of binary reticulation-visible networks. Positive answers
were independently obtained five years after in [2,4], the former gave a cubic
time algorithm while the latter gave a quadratic time algorithm. Since then, the
class of reticulation-visible networks remains to be one of the largest network
classes where the TCP is solvable in polynomial time.

In this paper, we present a TCP algorithm for binary reticulation-visible
networks that runs in linear time. We use a decomposition theorem that was
introduced in [4], which has also been used to produce two fast algorithms (albeit
exponential) for solving the TCP [5] and a related network verification problem
called the cluster containment problem [9] for arbitrary networks.

2 Basic Definitions and Notations

A (phylogenetic) network is a rooted directed acyclic graph that satisfies: (i) a
non-root node is of either indegree or outdegree one, and (ii) the leaves (i.e. nodes
of outdegree zero) are bijectively labeled by a set of taxa of some species under
study. A non-leaf node is called a tree node if it is of indegree one, and otherwise
is called a reticulation node, or simply reticulation. Of note, a reticulation is of
outdegree one by property (i) above. For convenience, we add an incoming edge
with open end to the root, thereby making it a tree node.

For a given network N , ρN denotes its root, V(N) its set of nodes, E(N) its
set of edges, T (N) its set of tree nodes (including the root), R(N) its set of
reticulations, and L(N) its set of leaves. A binary network is a network where
every internal node is of total degree three. Of note, a binary tree is a binary
phylogenetic network that has no reticulation.

An incoming edge of a reticulation (resp. a tree node or a leaf) is called a
reticulation edge (resp. tree edge). A tree path is a path consisting of only tree
edges.

Node u is a parent of node v (or v is a child of u) if the edge (u, v) exists.
Two nodes are siblings if they have a common parent. In a more general context,
node u is above node v (or u is an ancestor of v) if there is a path from u to v.
The subnetwork of N induced by the nodes below v is denoted as N [v].

A node u is a visible ancestor of another node v if every path from the
network root to v passes u. A node is visible if it is the visible ancestor of some
labeled leaf in N ; otherwise it is invisible. A reticulation-visible network is a
network where every reticulation is visible. It is worth noting that if N is a
binary reticulation-visible network with n leaves, then there are at most 8n − 7
nodes and 11n − 10 edges [2,6].

For a set of nodes V and a set of edges E, N − V − E is the network with
node set V(N)\V and edge set {(u, v) ∈ E(N)\E : u, v /∈ V }. If V ∪E comprises
a single element x, we may simply write the resulting network as N − x.
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2.1 Tree Containment Problem

Let u be a node in a network N . If u has only one parent v and one child w,
then suppressing u means we replace u and all edges adjacent to it with an edge
(i.e. we update the network into N − u + (v, w)). If u is a dummy leaf (i.e. a
leaf that is not labeled with any taxa), then suppressing u means we remove the
node u from N . Of note, a dummy leaf may exist after removing some edges
from a network. From now on, nodes of total degree two and dummy leaves are
called redundant nodes.

Let G be a binary tree, and let N be a network. A subtree T of N is a
subdivision of G if we can get G from T by repeatedly suppressing redundant
nodes. The tree containment problem (TCP; see Fig. 1 for illustration) is then
formulated as follows:

Tree containment problem (TCP)
Instance: A phylogenetic network N and a full binary tree G over

the same set of leaves.
Question: Does N display G?

Fig. 1. A binary reticulation-visible network N (left) which contains three nontrivial
components (namely, C0, C1, C2) and four trivial components ({1}, {2}, {3}, and {4}).
The components C1 and C2 are exposed. N contains a spanning subtree T (middle)
that is a subdivision of the binary tree G (right), therefore N displays G. The node d
in T is a dummy leaf

2.2 A Decomposition Theorem

Removing every reticulation from N yields a forest N − R(N), which comprises
the tree nodes and leaves in N . Each maximal connected component in this
forest is called a tree node component (or simply component) of N . The root of
a component C is the topmost tree node in the component, and is denoted as
ρ(C). See Fig. 1 for an illustration.
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A tree component C is below another component C ′ if ρ(C) is below ρ(C ′).
This induces a partial ordering on the components, and thus we can label the
components with C0, C1, . . . , Ck such that ρ(C0) = ρN and Cj is below Ci only if
i < j. A tree component is trivial if it contains only a single leaf. A nontrivial tree
component is exposed if every tree component below it is trivial. The following
decomposition theorem was established in [4]:

Theorem 1 (Network Decomposition). Let C0, C1, . . . , Cq be the compo-
nents of a reticulation-visible network N . The following statements are true:

(i) T (N) ∪ L(N) = �q
i=0V(Ci), where � denotes union of disjoint sets.

(ii) The child of a reticulation is a component root, and each parent of a retic-
ulation is a tree node that belongs to some component. Additionally, every
component root is visible.

(iii) |V(Ci)| = 1 if and only if Ci is trivial. If |V(Ci)| > 1, then Ci contains
either a network leaf or there is a reticulation whose parents are all in Ci.

(iv) If |V(N)| > 1, there is at least one exposed component.

3 The TCP Algorithm

Throughout this section, let N be a binary reticulation-visible network and G
be a binary tree for the TCP. Similar as the algorithms in [4,5,9], the TCP
algorithm in this paper also uses the decomposition theorem to approach the
containment problem in a divide-and-conquer manner. First, we pre-process the
input network N to decompose it into its components. We then pick a nontrivial
exposed component and observe its structure. From this observation, we either
deduce that the TCP has a negative answer or simplify the network by dissolving
the exposed component (along with some corresponding subtree of G) into a
single leaf. Finally, we repeat the process and find another exposed component.
An illustration of the process can be found in Fig. 2.

Step 1 Step 2

Fig. 2. An example of the divide-and-conquer approach in solving the TCP. In each
step, we choose an exposed component, remove several reticulation edges (dotted red
edges) from the reticulation below it, and contract the component into a single leaf
(Color figure online)
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3.1 Early Results

Let u be a node below ρC in N , and let x be a node in G. To simplify notation,
we let LM (u) denote the set of (labeled) leaves below a node u in some network
M . We also use L+

M (u) to denote the set of leaves below u of which u is a visible
ancestor.

We introduce a Boolean variable f(u, x) to indicate whether or not the sub-
network of N below u displays the subtree of G below x, that is:

f(u, x) =

{
1 if N [u] displays G[x],
0 otherwise.

(1)

We remark here that for N [u] to display G[x], we do not impose an additional
requirement that � /∈ L+

N (u) for every leaf � not below x in G like what we did
in [4]. For every pair or leaves u in N and x in G, clearly we have f(u, x) = 1
if and only if x = u (i.e. they are labeled by the same taxa). The following
proposition can then be used to compute f(u, x):

Proposition 2 (Proposition 8, [4]). For any tree node u in some exposed
component of N , f(u, x) = 1 if and only if one of the following two conditions
is true:

(1) u has a child v, such that f(v, x) = 1; or
(2) x has two children y, z and u has two distinct children v and w, such that

f(v, y) = 1 and f(w, z) = 1.

Now, suppose that u is a visible node (thus L+
N (u) �= ∅). For a fixed leaf

�u ∈ L+
N (u), we define t(u, �u) as:

t(u, �u) = max({x ∈ V(G) : x is above �u and f(u, x) = 1}). (2)

In words, t(u, �u) is the highest ancestor of �u in G, such that the subtree of G
below t(u, �u) is displayed by the network N [u].

We remark that the node vdC
defined in [4] is the same as t(ρC , �ρC

) for
some �ρC

∈ L+
N (ρC), so the above definition can be seen as a generalization of
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the result in the previous paper. Additionally, Propositions 4 and 5 in the same
paper can be generalized as follows (the proofs are similar and thus omitted):

Proposition 3. If N displays G, then the node t(u, �u) is above every leaf in G
that is also in L+

N (u).

Proposition 4. If N displays G, then G has a subdivision T that is a subtree
of N such that t(u, �u) in G corresponds to some node below u in T .

Proposition 3 can be used to deduce that the TCP has negative answer if
L+

N (u) �⊆ LG(t(u, �u)). We also remark that for some node u in an exposed
component, every leaf � ∈ LN (u)\L+

N (u) has a reticulation parent r, such that
r has two parents p and q that must be below and not below u, respectively.
Therefore, Proposition 4 implies that we can remove the edge (q, r) if � is below
t in G (thereby keeping � below u) without changing the outcome of the TCP.
Similarly, we can remove (p, r) if � is not below t in G. This can be followed by
replacing N [u] and G[t(u, �u)] with a leaf.

In order to dissolve an exposed component, in [4] we compute vdC
=

t(ρC , �ρC
) by first computing the value of f(u, x) for every node u in C and

x in G. This is in fact the biggest hurdle for breaking the quadratic time bound.
In the next subsection (Lemma 7), we show how to compute t(s, �s) in linear
time if s satisfies some special conditions. This allows us to dissolve the exposed
component part by part, rather than dissolving the whole exposed component
at once as in [4].

3.2 Computing the Largest Subtree Displayed Below Some Node
with Certain Properties

Let C be an exposed component, and suppose that its root ρC is a visible ancestor
of some leaf �. As C is exposed, we have that either � is a network leaf in C or the
parent of � is a reticulation whose parents are both in C. In the latter case, there
is a unique node in C that is the lowest visible ancestor of the two grandparents
of �. Such a node is called the split node of �, and is denoted as spl(�).

Let spl(C) denote the set of split nodes in C, that is:

spl(C) = {spl(�) : � ∈ L+
N (ρC) \ V(C)}.

In addition, we define spl∗(C) = spl(C) ∪ {ρC}. A node s is a lowest split node
if s ∈ spl∗(C) and s has no strict descendant in spl∗(C). Such node satisfies the
following lemma:

Lemma 5. If s is one of the lowest nodes in spl∗(C), then s and every node
below it satisfies the following key property:
(�) for every child s′ of s and reticulation r, r has at most one parent below s′.

Proof. If s satisfies condition (�), then for every node v strictly below s, N [v] is
only a tree, and therefore v also satisfies (�). Thus it is enough to prove that s
satisfies (�).
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If spl(C) = ∅, then C has no split node and s = ρC . This implies that every
reticulation below C has exactly one parent in C, and thus the proposition
follows.

If spl(C) is not empty, then s = spl(�) for some leaf � in a trivial component
below C such that the two grandparents of � are both in C. Let s′ be any child of
s. Suppose for contradiction that there is a reticulation r below s′ whose parents
are both below s′ in C. As C is an exposed component, the child of r is a leaf
�′. But this implies that spl(�′) is another split node below s′, contradicting the
fact that s is a lowest node in spl∗(C). This concludes the proof. �	

Of note, condition (�) implies that for every child s′ of s, the subnetwork
N [s′] is just a tree. Now, let parM (v) and sibM (v) be the parent and the sibling
of v in network M , if any. The following lemma holds:

Lemma 6. Let u be a node in C such that there is a tree path from u to a leaf
�u. If parN (u) is a tree node, then

t(parN (u), �u) =

{
parG(x) if N [sibN (u)] displays G[sibG(x)], and

x otherwise,

where x = t(u, �u).

Proof. By definition of t(·, ·) in Eq. 2, we have: (i) f(u, x) = 1, and (ii) f(u, z) = 0
for any node z that is strictly above x. Moreover, there is a tree path from u to
�u, which implies that the sibling of u is not above �u. This fact and the fact
that x is an ancestor of �u implies: (iii) f(sibN (u), z) = 0 for any ancestor z of
x. Then there are three observations that we can deduce from Proposition 2.

First, f(parN (u), x) = 1 as f(u, x) = 1 (condition (1) in Proposition 2).
Second, we claim f(parN (u),parG(parG(x))) = 0. Suppose otherwise for con-

tradiction, then either condition (1) or (2) in Proposition 2 must hold. Condi-
tion (1) cannot hold, because (ii) implies that f(u,parG(parG(x))) = 0, and (iii)
implies that f(sibN (u),parG(parG(x))) = 0. Consequently, condition (2) must
hold, and thus either [f(u,parG(x)) = 1 and f(sibN (u), sibG(parG(x))) = 1] or
[f(sibN (u),parG(x)) = 1 and f(u, sibG(parG(x))) = 1]. The former contradicts
(ii), whereas the latter contradicts (iii), and thus the claim holds.

Third, f(parN (u),parG(x)) = 1 if and only if f(sibN (u), sibG(x)) = 1. By
Proposition 2, f(parN (u),parG(x)) = 1 if and only if one of the following holds:

(a) f(u,parG(x)) = 1 or f(sibN (u),parG(x)) = 1;
(b) f(u, sibG(x)) = 1 and f(sibN (u), x) = 1; or
(c) f(u, x) = 1 and f(sibN (u), sibG(x)) = 1.

Condition (a) contradicts (ii) or (iii), whereas (b) contradicts (iii), and thus the
observation follows from (c).

The rest of the proof then follows from the three observations and the defi-
nition of t(·, ·) in Eq. 2. �	
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Algorithm 1. A subroutine for finding t(s, �s) that follows from Lemma 7

Procedure t-Finder(N , G, s, �s)
Input: A binary reticulation-visible N , a full binary tree G, a visible node s

that satisfies (�), and a leaf �s ∈ L+
N (s).

Output: A node t(s, �) as defined in Eq. (2).
1 if �s has a tree node parent then
2 set u = �s in N and t = �s in G;
3 while u �= s do
4 if u has a sibling then
5 set u′ = sbN (u) and t′ = sbG(t);
6 if N [u′] displays G[t′] then
7 t = parG(t);

8 set u = parN (u);

9 else
10 Let e1, e2 be the incoming edges of parN (�s);
11 t1 = t-Finder(N − e1, G, s, �s);
12 t2 = t-Finder(N − e2), G, s, �s);
13 t = max(t1, t2);

14 return t;

Empowered by Lemmas 5 and 6 above, we present the following lemma:

Lemma 7. If s is an internal node in C such that s satisfies condition (�) and
�s ∈ L+

N (s), then Algorithm 1 correctly finds t(s, �s) in O(|N [s]|) time.

Proof. (Correctness) There are two possible cases. First, assume that �s has
a tree node parent (thus �s is in C), in which case Lines 1–8 are executed (see
Fig. 3 for illustration). Then there is a tree path:

P : uk+1 = s, uk, . . . , u1 = �s.

We then apply Lemma 6 recursively on ui in ascending order for each 2 ≤ i ≤
k + 1. To find t(ui, �s), we simply check whether the subnetwork of N below the
sibling of ui−1 displays the subtree of G below the sibling of t(ui−1, �s) (Line 6).
Therefore we correctly obtain t(s, �s) when the procedure ends.

For the second case, assume that �s has a reticulation parent, such that the two
grandparents of �s are in C. In this paragraph, we use tM (·, ·) instead of t(·, ·) when
considering a network M to avoid ambiguity. Let e1, e2 be the incoming edges of
the reticulation parent of �s, and let Ni = N − ei for i = 1, 2. Clearly a subtree of
N [s] is a subtree of either N1[s] or N2[s] and vice versa; therefore we have

tN (s, �s) = max(tN1(s, �s), tN2(s, �s)).

Computing tN1(s, �s) and tN2(s, �s) can be done by repeating the procedure in
the first case (Lines 11 and 12), and this completes the proof of the correctness.
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Fig. 3. An illustration of the proof of Lemma 7. The top figure shows a subnetwork of
N rooted at s, whereas the bottom figure shows a subtree of G. The node s satisfies
condition (�), and there is a tree path from s to the leaf a. Thus, following the notation
in Lemma 7, we set u1 = a and ui+1 = parN (ui) for i = 1, 2, 3. The nodes in G is
labeled similarly, but with vi instead of ui. Initially, we set t(u1, a) = a, and compare
the subtree of N branching off u2 with the subtree of T branching off v2 (highlighted
in grey background) to deduce that t(u2, a) = v2. Next, we compare the subtree of
N branching off u3 with the subtree of T branching off v3. The subtree of G is not
displayed here, so t(u3, a) = t(u2, a) = v2. Finally, the subtree of G branching off v3
is displayed in the subtree of N branching off u4, so t(s, a) = v3 and we complete the
procedure

(Complexity) Consider a call of Line 6, where we need to check whether
N [u′] displays G[t′]. We first check whether LG(t′) ⊆ LN (u′). This can be done
in O(|N [u′]|) time by a breadth-first-search on N and G to find every leaf below
u′ and t′ (we quit once we find a leaf below t′ that is not below u′). If LG(t′) �⊆
LN (u′), then we immediately obtain a negative answer, so we assume otherwise.
We can then find a subtree of N [u′] over the same leaves as LG(t′) and suppress
every redundant node in it to obtain a binary subtree T , which can then be
compared with G[t′]. The construction of T can be done via a post-order traversal
on N [u′], whereas the comparison of T and G can be done by a simultaneous
post-order traversal on T and G[t′] to check if there is any difference between
them. Thus, an execution of Line 6 can be done in O(|N [u′]|) time.

Now, suppose that �s has a tree node parent, and thus Lines 3–8 are executed.
It is not hard to see that Lines 4, 5, 7, and 8 can be done in constant time.
Therefore, an execution of the ‘While’ loop in Line 3 when considering the node
ui takes O(N [sibN (ui)]) by the previous paragraph. The ‘While’ loop at line 3 is
executed for each ui, 1 ≤ i ≤ k. Moreover, s satisfies condition (�), so N [uk] is a
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tree and thus {N [sibN (ui)], 1 ≤ i ≤ k − 1} are pairwise node-disjoint subtrees of
N . Therefore, the total time required for Lines 3–8 can be computed as follows:

O

(
k∑

i=1

|N [sibN (ui−1)]|
)

= O (|N [uk]| + |N [sibN (uk)]|) = O (|N [s]|)

The case when �s has a reticulation parents is trivial, as we simply call the
above procedure twice. Thus the procedure runs in O(|N [s]|) time. �	

3.3 The TCP Algorithm

We are now ready to present the TCP algorithm. The pseudo-code of the algo-
rithm can be found in Algorithm 2.

(Correctness) We pre-process the network by decomposing it as in
Theorem 1, and order the components in topological order of the component
roots. This can be done in linear time [4]. After the pre-processing, we can find
an exposed component C (Line 3) by looking for the nontrivial component with
the highest index. In order to dissolve C, there are two major parts that need
to be done.

First, we compute the visible subtree T of C, which is a subtree comprises
visible nodes in C (Lines 5–16). Recall that for every visible node v and for
every leaf � ∈ L+

N (v), either there is a tree path from v to � or spl(�) exists and
is below v. Therefore T is the minimal subtree of C containing every split node
in C, such that every leaf of T is either a network leaf or a lowest split node.

In order to find T , it is enough to find the network leaves in C and to
find the set of lowest split nodes in C. To find the latter, we enumerate the
reticulations from left to right (according to their left-parent) as r1, r2, . . . , rk. We
then traverse C in post-order, and for each node v we assign two variables lmin(v)
and rmax(v). lmin(v) (resp. rmax(v)) is the minimum (maximum) index of the
reticulations whose left-parent (right-parent) is below v. By how we enumerate
the reticulations and by how we traverse C, v must be above the left-parent of
every reticulation in {ri : lmin(v) ≤ i ≤ rv}, where rv is the last reticulation
whose left-parent has been visited when visiting v. Therefore, v is a lowest split
node if and only if there is a reticulation rj whose left and right parents are both
below v, i.e. when lmin(v) ≥ rmax(v).

Next, we dissolve the exposed component (Lines 17–27). To this end, we tra-
verse T in post-order manner as s. If s is a network leaf, then the algorithm actually
does nothing. If s is a leaf of T that is a split node, then s is a visible node that sat-
isfies condition (�) in the previous section. Therefore Algorithm 1 can be used to
find t = t(s, �s) for some leaf �s ∈ L+

N (s). After finding t, we use Proposition 3
to early-terminate the algorithm whenever possible, or Proposition 4 to dissolve
N [s] into a single leaf. Finally, if an internal node s of T is visited, then its child
in N is either an invisible node (thus satisfies (�) as it is not above any split node)
or a visible node whose subnetwork below has been replaced by a leaf. Therefore,
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Algorithm 2. A TCP algorithm for binary reticulation-visible networks
Procedure TCP BnryRtcltnVsbl(N , G)

Input: A binary reticulation-visible network N and a full binary tree G.
Output: ”true” if N displays G, ”false” otherwise.

1 compute and sort the components in topological order [4];
2 while |V(N)| > 1 do
3 choose an exposed component C;
4 compute R = {r ∈ R(N) : par(r) ⊆ V(C)}, and enumerate the

reticulations in R as r1, r2, . . . , rk according to their left parent in C;

/* finding the visible subtree T of C */

5 suppress redundant nodes in C, and set T = ∅;
6 traverse C in post-order manner as u;
7 foreach u ∈ V(C) do
8 if u is a network leaf then add u to T ;
9 else if u is a leaf of C then

10 Set lmin(u) = min({∞} ∪ {i : u is the left parent of ri});
11 Set rmax(u) = max({0} ∪ {j : u is the right parent of rj});

12 else if u has a child in T then add u to T ;
13 else
14 Let v, w be the left and right children of u resp.;
15 Set lmin(u) = lmin(v) and rmax(u) = max(rmax(v), rmax(w));
16 if rmax(u) > lmin(u) then add u to T ;

/* dissolving the exposed component */

17 traverse T in post-order manner as s;
18 foreach s ∈ V(T ) do
19 compute LN (s) and L+

N (s), and let � be a leaf in L+
N (s);

20 compute t = t-Finder2(N, G, s, �), and compute LG(t);

21 if L+
N (s) �⊆ LG(t) or LG(t) �⊆ LN (s) then

22 return ”false”;

23 foreach � ∈ LN (s)\L+
N (s) do

24 let r = parN (�), and p (resp. q) be the parent of r below (not
below) u;

25 if � ∈ LG(t) then remove (q, r);
26 else remove (p, r);

27 replace N [s] and G[t] by a single new leaf;

28 return ”true”;

s is also a visible node that satisfies (�), and we can dissolve N [s] using the same
procedure as above. This completes the proof of the correctness.

(Time complexity) The pre-processing in Line 1 and choosing an exposed
component in Line 3 can be done in linear time in total [4]. We now consider
the time required when a ‘While’ loop in Line 2 is executed for some exposed
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component C. Lines 4 and 5 can be done with one post-order traversal on C,
thus they require O(|V(N [ρC ])|) time.

Clearly, the condition for the ‘If’/‘ElseIf’ command in Lines 8, 9, and 12
can be checked in O(1) time. Moreover, the computation of lmin and rmax also
requires O(1) time. As we need to repeat this for each node in C, Lines 7–16
require O(|V(C)|) time for each ‘While’ loop execution.

Lines 19 and 21 require O(|V(N [s])|) time. Line 20 also requires the same
time by Lemma 7. The conditions on Lines 24–26 can each be checked in O(1)
time, so the ‘Foreach’ loop requires O(|V(C)|) time. In each execution of Line 27,
we replace N [s] by a single leaf. Therefore Lines 17–27 requires O(|V(N [ρC ])|)
time for each ‘While’ loop execution.

Hence an iteration of the ‘While’ loop requires O(|V(N [ρC ])|) time for dis-
solving an exposed component C into a single leaf. As in each iteration we con-
sider different exposed component, we therefore conclude this discussion with
the following theorem:

Theorem 8. Algorithm 2 correctly solves the TCP for a binary reticulation-
visible network N in O(|V(N)|) time.

4 Conclusion

We further improve the time complexity of TCP algorithm for binary
reticulation-visible networks into linear time. However, this method relies heav-
ily on the facts that the indegree of each reticulation r is two and there are
no two adjacent reticulations. Without this assumption, there could be multiple
“split node” for each reticulation and some may not be visible, which is a crucial
property that is used here. Thus, it is unclear whether similar method can be
applied to obtain a linear time TCP algorithm for arbitrary reticulation-visible
network.

A similar result was independently obtained in [11], only a few days after
we obtained this result. Although the algorithm in [11] is more general as it
can be applied for non-binary case (in which case the running time might be
super-linear), Weller’s algorithm requires a pre-processing on the components
which allows us to find the lowest common ancestors of any two nodes in O(1)
time (e.g. see [1]). Although linear in theory, such pre-processing is not easy
to implement and may take some time to run. In contrast, our algorithm only
requires some simple traversals, and thus is potentially faster.
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Abstract. A common problem in phylogenetics is to try to infer a
species phylogeny from gene trees. We consider different variants of this
problem. The first variant, called Unrestricted Minimal Episodes
Inference, aims at inferring a species tree based on a model of spe-
ciation and duplication where duplications are clustered in duplication
episodes. The goal is to minimize the number of such episodes. The
second variant, Parental Hybridization, aims at inferring a species
network based on a model of speciation and reticulation. The goal is to
minimize the number of reticulation events. It is a variant of the well-
studied Hybridization Number problem with a more generous view on
which gene trees are consistent with a given species network. We show
that these seemingly different problems are in fact closely related and
can, surprisingly, both be solved in polynomial time, using a structure
we call “beaded trees”. However, we also show that methods based on
these problems have to be used with care because the optimal species
phylogenies always have some restricted form. We discuss several possi-
bilities to overcome this problem.

Keywords: Phylogenetic inference problems
Polynomial-time algorithms

1 Introduction

Phylogenetic trees are commonly used to represent the evolutionary history of
a set of taxa. The leaves represent extant taxa; internal nodes represent spe-
ciation events that caused lineages to diverge. If we assume the only processes
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are speciation and modification and that no incomplete lineage sorting occurs,
then any gene will give a gene tree that is consistent with the species phy-
logeny. In such cases, there exist efficient algorithms to reconstruct a species
tree from gene trees. There are, however, evolutionary processes beyond vertical
inheritance of genetic material and speciation events that make it more challeng-
ing to reconstruct the real evolutionary history. Examples of such processes are
hybridization, horizontal gene transfer, and duplication. Each of these processes
can result in discordance between gene trees.

This leads to a number of problems in which the task is to minimize the
number of such complicating events. In reconciliation problems, we are given the
gene trees together with the species phylogeny, and the task is to find optimal
embeddings of the gene trees into the species phylogeny. Such methods are for
example used to estimate dates of duplications, to discover relations between
duplicate genes [7], and to reconstruct the infection history of parasites [19]. In
inference problems, only the gene trees are given and we aim to find a species
phylogeny that minimizes the discordance with the gene trees. Such problems
are relevant when the species phylogeny is not yet known with certainty.

Duplication Minimization Problems. Gene duplications happen as a conse-
quence of errors in the DNA replication process. This leads to a species having
multiple copies of the same gene. There exist many types of gene duplication,
which depend on the positions of errors within the replication process [20]. The
scale of gene duplications is determined by the number of genes that get dupli-
cated. An extreme example of a large-scale duplication is Whole Genome Dupli-
cation (WGD), in which every gene in the genome is duplicated. This process,
also known as polyploidization, occurs as a result of an error in separation of
chromosomes during gamete production. It is most common in plants but has
also occurred in animals [22], and there are two WGD events even in the evolu-
tionary history leading to humans [8]. Large-scale duplications provide species
with diversification potential, giving them the ability to quickly adapt to a chang-
ing environment [10].

In their seminal paper [11], Goodman et al. pioneered the parsimony app-
roach to reconciling gene trees with species trees. This has motivated researchers
to explore reconciliation through different models, whilst optimizing some mea-
sure of the number of duplication events.

These models can be categorized according to how duplication events are
clustered to form duplication episodes and which restrictions are put on the
possible locations of duplications [21]. We focus on the minimal episodes (ME)
model where duplications can be clustered if they occur on the same branch of
the species phylogeny and have no ancestor-descendant relationship in a gene
tree (see Fig. 1). We believe this model to be most relevant since it can cluster
duplications that can be part of a single (large-scale) duplication event. We con-
sider the unrestricted variant of this model, which does not put any restrictions
on the locations of gene duplications (called the FHS-model in [21]).

Reconciliation problems have been studied intensively, especially models
without clustering. Several reconciliation problems with clustering have been



Polynomial-Time Algorithms for Phylogenetic Inference Problems 39

Fig. 1. Left: A gene tree embedded into a branch of a species tree with duplications
clustered as in the Minimal Episodes model. Duplication clusters are shown as rectan-
gles. Right: A representation of the DNA of the species at different points in the species
tree (at corresponding heights). In the first duplication, the gene A (dark rectangle) is
duplicated, forming A1 and A2. In the second duplication, the block B (light rectangle)
comprising A1 and A2 is duplicated. This results in four homologous copies of gene A
using only two duplication episodes. The gene tree is also drawn through the depictions
of the DNA.

proven to be computationally intractable [9,17], whereas for others there are
polynomial-time [3,6] or even linear-time [16,18,21] algorithms. For unrestricted
ME reconciliation, there only exists an exponential-time algorithm [21], while the
computational complexity of this problem is still unknown.

It has also been attempted to use reconciliation as a basis for inferring species
phylogenies. For the unrestricted ME model, Burleigh et al. [5] used a brute-force
approach on all possible species phylogenies. They observed that the unrestricted
ME model fails to rank the true species tree among the top third of all topolo-
gies. It was suggested that a possible reason for this anomaly is that duplication
episodes near the root are overly powerful under this model. A similar obser-
vation was made in a more recent reconciliation study [21]. However, neither
article gives a mathematical explanation for this phenomenon. It should also be
noted that, since the number of possible species phylogenies grows extremely
quickly with the number of species, brute-force approaches are only feasible for
very small data sets.

Inference problems are generally assumed to be computationally intractable.
However, NP-hardness has been proven only for some restricted inference prob-
lem without clustering [17]. For an inference problem with restricted clustering
(called gene duplication (GD) clustering in [21]), NP-hardness was suggested
in [9] but not proven. Because of the suspected intractability of these prob-
lems, some heuristic inference approaches have been attempted using efficient
algorithms for reconciliation (see, e.g., [12]).
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Reticulation Minimization Problems. Another possible cause of discor-
dance between gene trees is reticulate evolution, such as hybridization or hori-
zontal gene transfer. In such cases, the evolutionary history is represented by a
phylogenetic network rather than a tree.

Reticulate evolution can occur in nature when genetic material from one
species is transmitted to some other species. In asexual species, such transfers
are called horizontal gene transfers (HGT). In bacteria, for example, this hap-
pens in nature by transformation (take-up from the environment) or conjugation
(transmission from another bacterium). In sexual species, a cause for such trans-
missions can be hybridization, where individuals from different but related taxa
mate. There is also evidence that horizontal gene transfers occur between mul-
ticellular sexual species. HGT can even happen between more distant species.

Gene trees that appear to be inconsistent may in fact simply take different
paths through the network. This leads to a family of inference problems in which
the aim is to find a phylogenetic network that is consistent with the gene trees
and has the minimum number of reticulation events (nodes in the network with
two ancestral branches). A phylogenetic network is often taken to be consistent
with a gene tree if that tree is displayed by the network, which, roughly speaking,
means that the gene tree can be drawn inside the network in such a way that each
network branch contains at most one lineage of the gene tree. A more generous
definition is to count a network as consistent with a gene tree if the tree is weakly
displayed by the network [13,23]. Roughly speaking, this means that different
lineages of the gene tree may “travel down” the same branch of the network, as
long as any branching node in the tree coincides with a branching node in the
network. In this case, the tree is also called a parental tree of the network. This
models situations where a species has individuals carrying multiple homologous
copies of a gene.

The Hybridization Number problem, in which we seek a network with
the minimum number of reticulations displaying all input trees, has been well-
studied. It has been shown that Hybridization Number is NP-hard already
when the input consists of only two gene trees [4]. Furthermore, there are theo-
retical FPT algorithms for any fixed number of gene trees [15], but there are no
practical algorithms that can handle instances with more than two input trees
unless the number of taxa is extremely small.

In contrast, the Parental Hybridization problem, in which we seek a net-
work with the minimum number of reticulations that weakly displays each input
tree, was introduced only recently [23] and its computational complexity was
open prior to this article. Our motivation for studying this problem is threefold:

(i) Since Hybridization Number is NP-hard, it is interesting whether relax-
ing the notion of a tree displayed by a network leads to an easier problem.

(ii) Since reticulation can lead to multiple homologous copies of a gene in a
species, requiring that each gene tree is displayed by the network may lead
us to overestimate the number of reticulations.
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(iii) The problem of finding an optimal network that weakly displays a set of
phylogenies arises as a crucial subproblem in a recent heuristic approach
for constructing phylogenetic networks in the presence of hybridization and
incomplete lineage sorting [23].

Structural Assumptions. We restrict to binary trees and networks. Unlike
many papers in this area, we allow a network to contain parallel arcs, that is,
pairs of arcs that join the same pair of nodes. Parallel arcs are normally omitted
because, for most problems, it can either be shown that there exists an optimal
solution without parallel arcs or it can be assumed that a realistic solution
contains no parallel arcs. For example, any set of gene trees has an optimal
hybridization network without parallel arcs. For the problems studied in this
paper, however, an optimal solution may require parallel arcs. Considering this
problem with the added restriction that parallel arcs are forbidden may be an
interesting mathematical challenge; however, we do not believe it is biologically
meaningful.

Explicit reasons to allow parallel arcs in networks are abundant. We give
three: First, if one restricts a large network to a subset of the taxa, the nat-
ural restriction could have parallel arcs. Second, phylogenetic Markov models
for character evolution behave differently if parallel arcs are suppressed. Third,
polyploidization events often result from a sort of interspecific or intraspecific
hybridization [2]; an intraspecific hybridization is most naturally represented by
parallel arcs in the network.

Throughout this paper, we allow input trees to be multi-labeled, that is, each
species may appear as a label of multiple leaves in a tree. This is natural for
the problems we study, as gene duplication and reticulation can both lead to
multiple homologous genes appearing in the genome of a single species.

Our Contributions. We show that both Unrestricted Minimal Episodes
Inference and Parental Hybridization reduce to the problem Beaded
Tree, which we introduce in this paper. Using this reduction, we show that
both problems can be solved in polynomial time by adapting Aho et al.’s clas-
sic algorithm for testing gene tree consistency [1]. Thereby, we provide the first
polynomial-time algorithm for an inference problem with a duplication cluster
model. Furthermore, we provide the first polynomial-time algorithm for con-
structing a phylogenetic network from gene trees.

We also show that optimal solutions to Beaded Tree have a restricted
structure and this has corresponding implications for the optimal solutions to
Unrestricted Minimal Episodes Inference and Parental Hybridiza-
tion that our algorithms produce. Moreover, we show that, in fact, all optimal
solutions to Unrestricted Minimal Episodes Inference have a restricted
structure. Therefore, this model should be used with care. We end with a dis-
cussion of different ways to overcome these issues.

See [14] for the full version of this paper.
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2 Preliminaries

We begin by defining multi-labeled trees, which form the input for all problems
considered in this paper.

Definition 1. Let X be a set of species. A multi-labeled tree (MUL-tree) on
X is a directed acyclic graph with one node of in-degree 0 and out-degree 1 (the
root) and with all other nodes having either in-degree 1 and out-degree 2 ( tree
nodes) or in-degree 1 and out-degree 0 ( leaf nodes or leaves). Each leaf is labeled
with an element of X. If each element of X labels at most one leaf, we call the
MUL-tree a tree.

Next, we define a duplication tree, which represents the evolutionary history
of a set of species, including points at which duplication events occurred.

Definition 2. Let X be a set of species. A duplication tree on X is a directed
acyclic graph D with one node of in-degree 0 and out-degree 1 (the root), |X|
nodes of in-degree 1 and out-degree 0 ( leaf nodes or leaves), and all other nodes
having either in-degree 1 and out-degree 2 ( tree nodes) or in-degree 1 and out-
degree 1 (duplication nodes). The leaves are bijectively labeled with the elements
of X. The duplication number of D is the number of duplication nodes it con-
tains.

Informally, a MUL-tree T is consistent with a duplication tree D if T can be
drawn inside D so that branches of T duplicate only at duplication nodes of D,
in the sense that both out-edges of a node of T may follow the same out-edge of
the duplication node (see Fig. 2). We formalize this as follows:

Fig. 2. (a) A MUL-tree T on X = {a, b}. (b) A duplication tree D that is consistent
with T . (c) An illustration showing how T can be drawn inside D, and a zoomed-in
portion to illustrate what happens at the duplication nodes. This shows how two or
more incoming branches may duplicate simultaneously at a duplication node (according
to the Minimal Episodes model).

Definition 3. Given a MUL-tree T on X and a duplication tree D on X, a
duplication mapping from T to D is a function M : V (T ) → V (D) such that
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– For each leaf l ∈ L(T ), M(l) is a leaf of D labeled with the same species as l,
– For each edge uv ∈ E(T ), M(u) is a strict ancestor of M(v), and
– For each internal node u of T with children v, v′, either M(u) is the least

common ancestor of M(v) and M(v′), or M(u) is a duplication node.

This is illustrated in Fig. 3. We say that D is consistent with T if there is a
duplication mapping from T to D.

Fig. 3. A MUL-tree T , a duplication mapping from T to a duplication tree D, and
weak embeddings of T into a beaded tree B and into a phylogenetic network N .

Let S be the species tree derived from D by suppressing duplication nodes.
Then a duplication mapping from T to D represents a reconciliation of T with
S under the Minimal Episodes model. Each duplication node in D represents
a cluster of duplications, which is called a duplication episode. Internal nodes
in T are treated as duplications if they are mapped to duplication nodes of
D, and as speciations otherwise. Duplications are clustered together if they are
mapped to the same duplication node of D. The properties of a duplication
tree and duplication mapping ensure that duplications that are clustered occur
on the same branch of the species phylogeny and have no ancestor-descendant
relationship in a gene tree, as required by the Minimal Episodes model. We are
now ready to define the following problem:

Unrestricted Minimal Episodes Inference
Input: A set T = {T1, . . . , Tt} of MUL-trees with label sets X1, . . . , Xt ⊆ X.
Output: A duplication tree D on X with minimum duplication number such
that D is consistent with each tree in T .

Next, we introduce the concept of phylogenetic networks, which are central
to the problem Parental Hybridization:

Definition 4. Let X be a set of species. A (rooted binary) phylogenetic net-
work N on X is a directed acyclic multigraph with one node of in-degree 0 and
out-degree 1 (the root), |X| nodes of in-degree 1 and out-degree 0 ( leaves), and
all other nodes having either in-degree 1 and out-degree 2 or in-degree 2 and
out-degree 1 ( reticulation nodes). The leaves are bijectively labeled with the ele-
ments of X. The reticulation number of N is the number of reticulation nodes
it contains.
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Definition 5. Given a set X of species, let N be a phylogenetic network, and
T a MUL-tree on X. A weak embedding of T into N is a function h that maps
every node of T to a node of N , and every edge in T to a directed path in N
such that

– for each leaf l ∈ L(T ), h(l) is a leaf of N labeled with the same species;
– for each edge xy ∈ E(T ), the path h(xy) is a path from h(x) to h(y) in N ;
– for each internal node x in T with children y, y′, the paths h(xy) and h(xy′)

start with different out-edges of h(x).

This is illustrated in Fig. 3. We say that N weakly displays T if there is a weak
embedding of T into N .

We note that N weakly displays T if and only if T is a parental tree inside N as
defined in [23], hence the name Parental Hybridization. The notion of a tree
weakly displayed by a network was first introduced in [13], where it was shown
that T is weakly displayed by N if and only if there exists a locally separated
reconciliation from T to N , which is equivalent to our definition of a weak
embedding. We now formally define the Parental Hybridization problem:

Parental Hybridization
Input: A set T = {T1, . . . , Tt} of MUL-trees with label sets X1, . . . , Xt ⊆ X.
Output: A phylogenetic network N on X with minimum reticulation number
such that N weakly displays all trees in T .

Next, we define a certain type of phylogenetic network that, together with
the corresponding computational problem defined below, turns out to be the
key to both Unrestricted Minimal Episodes Inference and Parental
Hybridization.

Definition 6. A bead in a phylogenetic network N is a pair of nodes (u, v) such
that there are two parallel edges from u to v. A beaded tree is a phylogenetic
network B in which every reticulation node is in a bead (see Fig. 3).

Beaded Tree
Input: A set T = {T1, . . . , Tt} of MUL-trees with label sets X1, . . . , Xt ⊆ X.
Output: A beaded tree B on X with minimum reticulation number that weakly
displays all trees in T .

3 Reduction to Beaded Trees

The two problems Unrestricted Minimal Episodes Inference and
Parental Hybridization are in fact both reducible to Beaded Tree. This
allows us to focus on the Beaded Tree problem in the rest of the paper.

Lemma 7. Let X be a set of species and T = {T1, . . . , Tt} a set of MUL-trees
on subsets of X. For any integer k, there exists a solution to Unrestricted
Minimal Episodes Inference on T with k duplications if and only if there
exists a solution to Beaded Tree on T with k beads.



Polynomial-Time Algorithms for Phylogenetic Inference Problems 45

Lemma 8. For any instance T of Parental Hybridization, there exists an
optimal solution B that is a beaded tree.

We can also show that any instance of Beaded Tree has an optimal solution
with a certain interesting structure.

Theorem 9. Given an instance T of Beaded Tree, there exists an optimal
solution B such that all reticulations are on a single path.

Moreover, any optimal solution to an instance of Beaded Tree must satisfy
certain structural properties.

Theorem 10. Given any optimal solution B to an instance T of Beaded
Tree, there exists a path from the root to a leaf of B, such that for any node u
not on this path, there is at most one reticulation strictly descended from u.

4 Beaded Tree Algorithm

Let Supertree denote an algorithm that takes as input a set of MUL-trees T ,
and returns either a tree T weakly displaying T , or the value None if no such
tree exists. A simple modification of the algorithm of [1] can be used for this.

Given a phylogenetic network N on X and a subset S ⊆ X, let N \S denote
the network derived from N by deleting every leaf in S, and then exhaustively
deleting unlabelled nodes of out-degree 0 and suppressing nodes of in-degree 1
out-degree 1. Let N |S denote the network N \ (X \ S).

Given a set T of MUL-trees, let F1(T ) denote the set of trees derived by,
roughly speaking, splitting each tree of T into two by deleting the root.

Definition 11. Let {T1, . . . , Tt} be a set of MUL-trees and X the union of their
label sets. The split partition {S1, . . . , Ss} of {T1, . . . , Tt} is the partition of X
into minimal sets such that, if x and y appear within the same MUL-tree in
F1(T ) and x ∈ Sj, then y ∈ Sj.

The beaded tree algorithm is described in Algorithm 1 and an example is
given in Fig. 4.

Theorem 12. Algorithm 1 finds an optimal solution to the Beaded Tree
problem with input T in time O((|X|3 + |X|2k)n), with n the total number of
vertices of the trees in T and k the reticulation number of an optimal solution.
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Data: T = {T1, . . . , Tt}
Result: Beaded tree B that weakly displays T with minimum number of

reticulations
if |X| = 1 and maxi∈[t] |L(Ti)| = 1 then

return a tree with 1 leaf on X;
end
else

Calculate the split partition S1, . . . , Ss of T ;
for i ∈ [s] do

Let T = Supertree(T |Si
);

if T is not None then
Let B′ = Beaded-Tree(T \ Si);
Construct B by joining B′ and T with a new root;
return B

end
end
Let B′ = Beaded-Tree(F1(T ));
Construct B by adding a bead whose child is the root of B′;
return B

end
Algorithm 1. Algorithm Beaded-Tree(T ).

Fig. 4. (a) An instance T = {T1, T2} of Beaded Tree. (b) The beaded tree B con-
structed by running algorithm Beaded-Tree on T . Initially, the split partition is
{a, b, c}, {e, f, g}. As Supertree returns a tree on {e, f, g}, the top tree node of B has
that tree as one of its children. To construct the other side of B, we run Beaded-Tree
on T |{a,b,c}, and Supertree does not return a tree on this set. Therefore this side of
B begins with a bead.

5 Concluding Remarks

Although we have shown that the Unrestricted Minimal Episodes Infer-
ence and Parental Hybridization problems are polynomial-time solvable,
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we have also shown that the phylogenies produced by solving these problems
have severely restricted structures.

The optimal phylogenetic network that our algorithm produces for the
Parental Hybridization problem is always a phylogenetic tree with “beads”,
where a bead consists of a speciation directly followed by a reticulation. Such
solutions are not necessarily the most realistic or likely ones since they contain a
lot of “extra lineages”, i.e. multiple lineages of an input tree travelling through
the same branch of the phylogenetic network. Minimizing the total number of
extra lineages, the XL-score, irrespective of the reticulation number, is also not
ideal, since there always exists a solution with zero extra lineages and possibly a
very high reticulation number. Therefore, the most relevant open problem that
needs to be solved is to find a phylogenetic network that minimizes a weighted
sum of the XL-score and the reticulation number of the network. Another alter-
native problem formulation that seems reasonable is to minimize the total num-
ber of parental trees that the constructed phylogenetic network has in addition
to the input trees.

Another option would be to completely exclude beads in the solutions. How-
ever, although this is an interesting theoretical open problem, we do not see
a reason why the resulting optimal solutions would by any more realistic, or
why it would be reasonable to assume that a speciation cannot be followed by a
reticulation.

Regarding Unrestricted Minimal Episodes Inference, the situation is
in some sense even worse. We have shown that all optimal solutions have a very
specific structure: there is one main path from the root to a taxon containing
potentially many duplication episodes, while each path branching off this main
path contains at most one duplication episode. Although such scenarios are not
to be excluded (for example see the eukaryotic species phylogeny from [12]), it is
unrealistic to expect all phylogenies to look like this. Therefore, we have proposed
an alternative problem in [14], which miminizes the “duplication depth”: the
maximum number of duplication episodes that lie on any directed path. This
problem can also be solved in polynomial time and we expect it to produce more
realistic solutions. Note moreover that, although the problem definition does
not exclude unnecessary duplication episodes as long as they do not increase
the duplication depth, our algorithm will not create such redundant duplication
episodes. Nevertheless, to properly assess the two algorithms, it is necessary to
implement both algorithms and extensively test them on simulated and real
biological datasets.

Interestingly, the problem Unrestricted Minimal Episodes Reconcil-
iation, where the species tree is given, is not known to be polynomial-time
solvable. There is only an exponential-time algorithm [21]. Could it be possible
to adapt our algorithm for Unrestricted Minimal Episodes Inference to
solve also the reconciliation variant?

Finally, it would be interesting to study more general models, which simul-
taneously take different processes into account, such as duplication episodes,
hybridization, gene loss and transfers. Although such problems have been stud-
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ied in a reconciliation setting where the species tree is (assumed to be) known,
there has been less work on variants where the species tree or network needs to
be inferred. Although such problems seem daunting, we have shown here that
not knowing the species tree can actually make computational problems easier.
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Abstract. Rearrangements are mutations that affect large portions of a
genome. When comparing two genomes, one wants to find a sequence of
rearrangements that transforms one into another. When we use permu-
tations to represent the genomes, this reduces to the problem of sorting
a permutation using some sequence of rearrangements. The traditional
approach is to find a sequence of minimum length. However, some studies
show that some rearrangements are more likely to disturb an individual,
and so a weighted approach is closer to the real evolutionary process.
Most weighted approaches consider that the cost of a rearrangement
can be related to its type or to the number of elements affected by it.
This work introduces a new type of cost function, which is related to
the amount of fragmentation caused by a rearrangement. We present
some results about lower and upper bounds for the fragmentation-
weighted problems and the relation between the unweighted and the
fragmentation-weighted approach. Our main results are 2-approximation
algorithms for 5 versions of the fragmentation-weighted problem involv-
ing reversals and transpositions events.
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1 Introduction

One of the main problems in Computational Biology is to find the evolutionary
distance among species. In most approaches, such distance only involves rear-
rangements, which are mutations that alter large pieces of the species’ genome.
Considering that the genome has no repeated genes, we can represent them as
signed permutations, if the orientation of the genes is known, or unsigned permu-
tations, if it is unknown. The most common types of rearrangements are rever-
sals, which revert a segment of the genome, and transpositions, which exchange
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two adjacent segments of the genome. A rearrangement model is the set of valid
rearrangements that can be used to find the evolutionary distance, and it can
contain one or more rearrangement operations.

The traditional approach is to consider that any rearrangement has the same
probability to happen, and so the evolutionary distance can be defined as the
minimum number of rearrangements that transforms one genome into another.
Due to algebraic properties, this problem is equivalent to the problem of sorting
permutations by rearrangements. The problems of sorting by reversals and sort-
ing by transpositions are NP-Hard [5,6]. The best-known approximation factor
for sorting by reversals is 1.375 [3], which is the same best-known factor for
sorting by transpositions [8]. On the other hand, when considering signed per-
mutations, the problem of sorting by reversals becomes polynomial, as shown by
Hannenhalli and Pevzner [10].

Walter et al. [12] considered a variation in which both reversals and trans-
positions are allowed, and presented a 2-approximation algorithm for signed
permutations and a 3-approximation algorithm for unsigned permutations. The
best-known approximation factor for unsigned permutations, though, has factor
2k [11], where k is the approximation factor of the algorithm for cycle decompo-
sition of the breakpoint graph [7]. The best-known value for k is 1.4167 + ε [7],
which turns the 2k into 2.8334 + ε, for ε > 0. The complexity of these problems
remains open.

Some rearrangements are more likely to occur than others [1,4], and so a
weighted approach is closer to the real evolutionary process. In a weighted
approach, each rearrangement has an associated cost and the goal is to find
a minimum-cost sequence of rearrangements that transforms one genome into
another, which is also equivalent to the sorting problem with weighted oper-
ations. The traditional approach is equivalent to setting a unitary cost for all
rearrangements.

Eriksen [9] presented a study aimed to find which cost function for reversals
and transpositions is more related to the evolutionary process. The best sce-
narios were found when the costs of reversals and transpositions are 2 and 3,
respectively. The study did not consider prefix and suffix operations separately
from other rearrangements.

In this work, we consider a new type of cost function which is equal to the
amount of fragmentation that a rearrangement causes in a permutation. These
costs are similar to those presented by Eriksen [9], differing only in prefix and
suffix rearrangements, which cause less fragmentation in the genome. To our
knowledge, there are no studies that have addressed this version of the problem.

We present 2-approximation algorithms for five such problems: Sorting by
Fragmentation-Weighted Unsigned Reversals (SbR), Sorting by Fragmentation-
Weighted Signed Reversals (SbR̄), Sorting by Fragmentation-Weighted Trans-
positions (SbT), Sorting by Fragmentation-Weighted Unsigned Reversals and
Transpositions (SbRT), Sorting by Fragmentation-Weighted Signed Reversals
and Transpositions (SbR̄T).
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This work is organized as follows. Section 2 presents definitions related to
the problems. Section 3 describes the algorithms we developed. Section 4 shows
experimental results. Section 5 presents final considerations and future work.

2 Definitions

An unsigned permutation of size n is represented as π = (π1 π2 . . . πn),
where πi ∈ {1, 2, . . . , n} and πi �= πj if and only if i �= j, for all i and j.
A signed permutation of size n is represented as π = (π1 π2 . . . πn), where
πi ∈ {−n,−(n − 1), . . . ,−1, 1, 2, . . . , n−1, n} and |πi| �= |πj | if and only if i �= j,
for all i and j.

The identity permutation ιn is equal to (1 2 . . . n). When considering signed
permutations, all elements in the identity have positive sign. The reverse per-
mutation ηn is the permutation (n . . . 2 1), and the signed reverse permutation
η̄n is the permutation (−n . . . −2 −1).

A composition of two permutations π and σ is the operation “·” for which
π · σ = (πσ1 πσ2 . . . πσn

). As we use permutations to represent rearrangements,
the composition is used to indicate the occurrence of a rearrangement on a
permutation. Thus, a rearrangement β transforms π into the permutation π · β.

For all rearrangements β in the rearrangement model M , there is a cost
associated to applying β in π, which is denoted by the function f : M → R. The
cost of a sequence β1, β2, . . . , βm is equal to

∑m
i=1 f(βi).

Given a rearrangement model M , a cost function f , and a permutation π,
the sorting distance cf

M (π) is the cost of a sequence β1, β2, . . . , βm, such that all
rearrangements are in M , π · β1 · β2 · . . . · βm = ιn, and

∑m
i=1 f(βi) is minimum.

When f(β) = 1 for all β ∈ M , this problem is equivalent to the traditional
approach and is simply denoted by cM (π). Formally, the goal of sorting problems
by fragmentation-weighted operations is to find such sorting distance.

2.1 Rearrangements

An unsigned reversal ρ(i, j), with 1 ≤ i < j ≤ n, is the rearrangement (1 2
. . . i − 1 j j − 1 . . . i + 1 i j + 1 . . . n) that, when applied to a permutation
π, inverts the segment πi, . . . , πj , that is, it transforms π into π · ρ(i, j) = (π1

. . . πi−1 πj πj−1 . . . πi+1 πi πj+1 . . . πn). A prefix reversal ρp(j) is a reversal
ρ(1, j), with 1 < j ≤ n, while a suffix reversal ρs(i) is a reversal ρ(i, n), with
1 ≤ i < n.

A signed reversal ρ̄(i, j), with 1 ≤ i ≤ j ≤ n, is the rearrangement (1 2
. . . i − 1 −j − (j − 1) . . . − (i + 1) − i j + 1 . . . n) that, when applied to
a permutation π, inverts the segment πi, . . . , πj and changes the sign of each
element of the segment, that is, it transforms π into π · ρ̄(i, j) = (π1 . . . πi−1

−πj − πj−1 . . . − πi+1 − πi πj+1 . . . πn). A signed prefix reversal ρ̄p(j) is a
reversal ρ̄(1, j), with 1 ≤ j ≤ n, while a signed suffix reversal ρ̄s(i) is a reversal
ρ̄(i, n), with 1 ≤ i ≤ n.



56 A. O. Alexandrino et al.

A transposition τ(i, j, k), with 1 ≤ i < j < k ≤ n + 1, is the rearrange-
ment (1 2 . . . i − 1 j j + 1 . . . k − 1 i i + 1 . . . j − 1 k . . . n) that, when
applied to a permutation π, exchanges the segment πi, . . . , πj−1 with the adja-
cent segment πj , . . . , πk−1, that is, it transforms π into π ·τ(i, j, k) = (π1 . . . πi−1

πj πj+1 . . . πk−1 πi πi+1 . . . πj−1 πk . . . πn). A prefix transposition τp(j, k) is
a transposition τ(1, j, k), with 1 < j < k ≤ n + 1, while a suffix transposition
τs(i, j) is a transposition τ(i, j, n + 1), with 1 ≤ i < j ≤ n.

2.2 Breakpoints

A reversal breakpoint exists between a pair of consecutive elements πi and πi+1

if |πi+1 − πi| �= 1, for 1 ≤ i < n. This type of breakpoint is used in problems
involving unsigned reversals, such as SbR and SbRT. The number of reversal
breakpoints in a permutation π is denoted by br(π). Considering unsigned per-
mutations, only the identity and reverse permutations have zero breakpoints.

A transposition breakpoint or signed reversal breakpoint exists between a pair
of consecutive elements πi and πi+1 if πi+1 − πi �= 1, for 1 ≤ i < n. This type of
breakpoint is used in problems involving signed reversals or only transpositions,
such as SbT, SbR̄, and SbR̄T. The number of transposition breakpoints or signed
reversal breakpoints in a permutation π is denoted by bt(π) or br̄(π), respectively.
For this type of breakpoint, only the identity and signed reverse permutations
have zero breakpoints.

Considering some type of breakpoint, a strip is a maximal sequence of ele-
ments such that there are no breakpoints between two consecutive elements of
the sequence. A singleton is a strip of length one. For unsigned permutations, a
strip (πi πi+1 . . . πj) of length greater than one is increasing if πk+1 = πk + 1
for all i ≤ k < j, otherwise it is decreasing. A singleton is considered as an
increasing strip. For signed permutations, we only differentiate positive and neg-
ative strips, where the former has only positive elements and the latter has only
negative elements.

2.3 Cost Function

In this work, we consider that the cost of a rearrangement is equal to the amount
of fragmentation that it causes in a permutation.

Formally, the cost function f : M → R, where M is the rearrangement model,
for fragmentation-weighted reversals is defined as

f(ρ(i, j)) =

⎧
⎪⎨

⎪⎩

0, if i = 1 and j = n

1, if i = 1 and j < n or if i > 1 and j = n

2, otherwise.

For fragmentation-weighted transpositions, the cost function is defined as

f(τ(i, j, k)) =

⎧
⎪⎨

⎪⎩

1, if i = 1 and k = n + 1
2, if i = 1 and k < n + 1 or if i > 1 and k = n + 1
3, otherwise.



Sorting Permutations by Fragmentation-Weighted Operations 57

Henceforth, we will use r, r̄, t, rt, and r̄t to denote the rearrangement model M
that allows unsigned reversals, signed reversals, transpositions, unsigned reversals
and transpositions, and signed reversals and transpositions, respectively.

3 Algorithms

The following subsections describe the approximation algorithms developed, in
addition to some lower bounds on the distances of the problems.

3.1 Relation with Traditional Approach

This subsection shows how the traditional approach distance is related to the
fragmentation-weighted distance, for any permutation. Lemma 1 shows a prop-
erty of fragmentation-weighted problems involving reversals. Lemmas 2 to 4
define upper and lower bounds for the fragmentation-weighted distance consid-
ering the distance for the traditional approach (unweighted).

Lemma 1. Considering the problems SbR, SbRT, SbR̄, and SbR̄T, there is an
optimal sequence which contains at most one reversal ρ(1, n) of cost 0.

Proof. Any optimal sequence of length m that has k > 1 reversals of type ρ(1, n)
can be replaced by a sequence of length m − k + (k mod 2) with at most one
reversal of type ρ(1, n), since any subsequence ρ(1, n), β1, . . . , β�, ρ(1, n), where
βi is a reversal or a transposition and 
 ≥ 0, can be replaced by the subsequence
β

′
1, . . . , β

′
�, where β

′
i is equal to ρ(n + 1 − j, n + 1 − i), when βi = ρ(i, j), or

τ(n + 1 − (k − 1), n + 1 − (j − 1), n + 1 − (i − 1)), when βi = τ(i, j, k).

Lemma 2. For any permutation π, cr(π) ≤ cf
r (π)+1, crt(π) ≤ cf

rt(π)+1, cr̄(π)
≤ cf

r̄ (π) + 1, and cr̄t(π) ≤ cf
r̄t(π) + 1.

Proof. An optimal sorting sequence for a fragmentation-weighted problem is also
a sorting sequence for the corresponding unweighted problem. By Lemma 1,
we know that there exists an optimal sequence which contains at most one
reversal of cost zero for the problems SbR, SbRT, SbR̄, and SbR̄T. Therefore,
all rearrangements of this optimal sequence have cost greater than or equal to
1, except for at most one reversal, and so the number of rearrangements of this
sequence is less than or equal to the cost of this sequence plus 1, for any π. Note
that the unweighted distance, for any rearrangement model, is less than or equal
to the number of rearrangements of any sequence that sorts π, which includes
optimal sequences for the fragmentation weighted problems.

Lemma 3. For any permutation π, ct(π) ≤ cf
t (π).

Proof. This result follows from the fact that any transposition has cost greater
than or equal to 1.

Lemma 4. For any permutation π, cf
r (π) ≤ 2cr(π), cf

r̄ (π) ≤ 2cr̄(π), and cf
t (π)

≤ 3ct(π).
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Proof. First consider that only reversals are allowed. The maximum fragmen-
tation cost that a reversal can have is 2, so the sequence from the unweighted
problem, which can be used for the weighted problem, has cost less than or equal
to twice its own length. Thus, any permutation can be sorted with a cost of at
most 2cr(π). The proof is analogous for signed reversals and for transpositions,
noticing that the maximum fragmentation cost of a transposition is 3.

Lemmas 5 to 7 show approximation algorithms for SbR̄, SbR, and SbT.

Lemma 5. SbR̄ is 2(1 + 1/(cr̄(π) − 1))-approximable.

Proof. There is an exact algorithm for sorting by unweighted signed rever-
sals [10]. From Lemma 4, the fragmentation cost of the sequence retrieved by this
algorithm is at most 2cr̄(π), for any permutation π. Therefore, by Lemma 2, the
approximation factor for any permutation π, given by applying the fragmentation
cost to the sequence retrieved by this algorithm, is at most 2cr̄(π)/(cr̄(π) − 1)
= 2(cr̄(π) − 1 + 1)/(cr̄(π) − 1) = 2(1 + 1/(cr̄(π) − 1)) for SbR̄.

Lemma 6. SbR is 2.75(1 + 1/(cr(π) − 1))-approximable.

Proof. There is a 1.375-approximation algorithm for sorting by unweighted
unsigned reversals [3]. From Lemma 4, the fragmentation cost of the sequence
retrieved by this algorithm is at most 2 × 1.375 × cr(π), for any permutation π.
Therefore, by Lemma 2, the approximation factor for any permutation π, given
by applying the fragmentation cost to the sequence retrieved by this algorithm,
is at most 2 × 1.375 × cr(π)/(cr(π) − 1) = 2.75 × (cr(π) − 1 + 1)/(cr(π) − 1)
= 2.75(1 + 1/(cr(π) − 1)) for SbR.

Lemma 7. SbT is 4.125-approximable.

Proof. There is a 1.375-approximation algorithm for sorting by unweighted
transpositions [3]. From Lemma 4, the fragmentation cost of the sequence
retrieved by this algorithm is at most 3 × 1.375 × ct(π), for any permutation π.
Therefore, by Lemma 3, the approximation factor for any permutation π, given
by applying the fragmentation cost to the sequence retrieved by this algorithm,
is at most 3 × 1.375 × ct(π)/ct(π) = 4.125 for SbT.

3.2 Lower Bounds Using Breakpoints

In the next sections, we show how to achieve an approximation factor of 2 for
all five problems. For that, we define new lower bounds using the concepts of
breakpoints.

Lemma 8. For any permutation π, br(π) ≤ cf
r (π) and br̄(π) ≤ cf

r̄ (π).

Proof. A reversal of cost 0 (inverts the whole permutation) does not remove any
breakpoints. A prefix or suffix reversal has cost 1 and can remove at most one
breakpoint. Any other reversal has cost 2 and removes at most two breakpoints.
So, the ratio between cost and breakpoints removed is at least 1, and the cost
of any sequence that sorts π must be greater than or equal to its number of
breakpoints. The same is valid for signed reversals.
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A similar result can be achieved for SbT problem, as shown in Lemma 9.

Lemma 9. For any permutation π, bt(π) ≤ cf
t (π).

Proof. A transposition of cost 1 can remove at most one breakpoint, since it
exchanges the first segment of π with the last segment of π. A prefix or suffix
transposition has cost 2 and can remove at most two breakpoints. A transposition
of cost 3 removes at most three breakpoints. So, the cost of any sequence that
sorts π must be at least the number of breakpoints.

3.3 2-Approximation Algorithms

The first 2-approximation algorithms that we present use the concepts of break-
points and strips to achieve their approximation factor. The idea is to find the
largest element that is not in the correct position, to bring the strip that con-
tains this element to the correct place with one or two operations, and repeat
this process until there are no breakpoints. At the end we can have the identity
permutation (the goal of the sorting) or the reverse permutation, which can be
transformed into the identity with a reversal of cost 0. As the next lemmas and
theorems show, this approach results in 2-approximation algorithms for the five
problems.

Lemma 10. For any permutation π, cf
r (π) ≤ 2br(π) and cf

r̄ (π) ≤ 2br̄(π).

Proof. At each step, while the permutation is not sorted, do the following pro-
cess. Let |πt| = k be the largest element (largest absolute value) out of its correct
position (i.e., k �= t or πt < 0) and let πi, . . . , πj be the strip containing k (note
that t = i or t = j). If it is an increasing (positive) strip, use one prefix reversal
from positions 1 to j to put this strip at the beginning of π and another prefix
reversal from 1 to k to put it in its correct place. Otherwise, the strip is decreas-
ing (negative) and a reversal from position i to k can put it in its correct place.
Note that for signed permutations, an element πi = −i is considered not to be
in its correct position.

Note that if πn �= n, the first step of the algorithm will put the strip contain-
ing n (or −n) in the correct place with cost 1 but will not remove a breakpoint.
All other steps remove a breakpoint, and they will use at most two operations
of cost one for doing it. The last breakpoint removed, though, will cost at most
one. Thus, cf

r (π) ≤ 1 + 2(br(π) − 1) + 1 = 2br(π). Similarly, cf
r̄ (π) ≤ 2br̄(π).

Theorem 11. SbR and SbR̄ are 2-approximable.

Proof. This follows directly from Lemmas 8 and 10.

We call the approximation algorithms for SbR and SbR̄ given in Lemma 10
as 2-R and 2-R̄, respectively. Lemma 12 and Theorem 13 show that 2-R is also
a 2-approximation algorithm for SbRT, and 2-R̄ is a 2-approximation algorithm
for SbR̄T.
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Lemma 12. For any permutation π, cf
rt(π) ≤ 2br(π) and cf

r̄t(π) ≤ 2br̄(π).

Proof. The proof follows directly from Lemma 10 and using the fact that cf
rt(π) ≤

cf
r (π) and cf

r̄t(π) ≤ cf
r̄ (π).

Theorem 13. SbRT and SbR̄T are 2-approximable.

Proof. This follows directly from Lemmas 8, 9 and 12.

Next lemma describes the general idea behind algorithm 2-T, for SbT prob-
lem, and Theorem 15 proves its approximation factor.

Lemma 14. For any unsigned permutation π, cf
t (π) ≤ 2bt(π).

Proof. At each step, while the permutation is not sorted, perform the following
process. Let πj = k be the largest element out of its correct position (i.e., k �= j)
and let πi, . . . , πj be the strip containing k. Move such strip to its correct place
with a prefix transposition τ(1, j + 1, k + 1).

Note that if πn �= n, the first step of the algorithm will put the strip con-
taining n in the correct place with cost 1 and it may not remove a breakpoint.
All other steps remove a breakpoint with one operation, and they will use cost
at most 2. The last breakpoint removed, though, will cost at most one, since
the last transposition applied will remove the remaining two breakpoints in the
permutation. Thus, cf

t (π) ≤ 1 + 2(bt(π) − 1) + 1 = 2bt(π).

Theorem 15. SbT is 2-approximable.

Proof. This follows directly from Lemmas 9 and 14.

All three algorithms have time complexity O(n2), since the distance is O(n)
and they spend linear time to choose and to apply an operation at each step.

3.4 Greedy Algorithms

We also developed greedy algorithms, whose choice is to give priority to rear-
rangements which remove more breakpoints with the lowest cost. These algo-
rithms work as follows. At each step, the rearrangement with best ratio “removed
breakpoints/cost of operation” is chosen. This is repeated until there are no
breakpoints left. For the problems SbR and SbR̄, we may reach a state where
the permutation has only increasing (positive) strips or only decreasing (nega-
tive) strips. In this case, there are no operations that can remove breakpoints
and so the algorithm uses a reversal of cost 1 to ensure that in the next step there
will exist a rearrangement with ratio 1. At the end, when considering problems
with reversals, we may have the reverse permutation, which can be sorted with
a cost 0 reversal. These algorithms are named 2-Rg, 2-R̄g, 2-Tg, 2-RTg, and
2-R̄Tg for the problems SbR, SbR̄, SbT, SbRT, and SbR̄T, respectively. They
are also 2-approximation algorithms as shown in Lemmas 16 to 18.
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Lemma 16. 2-Rg and 2-R̄g are 2-approximation algorithms for SbR and SbR̄,
respectively.

Proof. We need to prove that in each step there is a way to remove a breakpoint
with cost less than or equal to 2. The result will then follow by Lemma 8. For
any unsigned permutation π, we can divide the proof into the following cases:

1. π has at least one singleton. Let πi be the first singleton. If πi < n, then
there is a reversal that can remove a breakpoint by joining πi with the strip
containing πi +1. If πi > 1, then there is a reversal that can remove a breakpoint
by joining πi with the strip containing πi − 1.

2. π has at least one strip of different type from the others. Let πi, . . . , πj

be the first strip such that there exists a strip πi′ , . . . , πj′ of different type for
which |πj − πj′ | = 1 or |πi − πi′ | = 1. Note that we will always be able to find
such strip if π respects this case. If |πj − πj′ | = 1, a reversal ρ(j + 1, j′) will join
these strips and remove a breakpoint. Otherwise, |πi − πi′ | = 1 and a reversal
ρ(i, i′ − 1) will remove a breakpoint.

3. All strips are increasing or all strips are decreasing. In this case, there is
no reversal that can remove a breakpoint, so the algorithm has to use a reversal
of cost 1 to ensure that in the next step there will be a reversal that can remove a
breakpoint with cost 1. Let π1, . . . , πj be the first strip. If π1, . . . , πj is increasing
and πj < n, a prefix reversal ρ(1, j) turns π into a permutation that respects
case 2, and so in the next step a prefix reversal ρ(1, i′ − 1), where πj + 1 is in
position i′, can remove a breakpoint. If π1, . . . , πj is decreasing and πj > 1, a
prefix reversal ρ(1, j) turns π into a permutation that respects case 2, and so
in the next step a prefix reversal ρ(1, i′ − 1), where πj − 1 is in position i′, can
remove a breakpoint. If π1, . . . , πj is increasing and πj = n, a suffix reversal
ρ(i′, n), where πi′ is the first position of the strip s that contains π1 − 1, makes
the strip s be the last strip and a prefix reversal can join the first strip with s
and remove a breakpoint. If π1, . . . , πj is decreasing and πj = 1, the analysis is
analogous to the previous one.

The proof is analogous for signed reversals.

Lemma 17. 2-Tg is a 2-approximation algorithm for SbT.

Proof. At each step of 2-Tg, there will be at least one prefix or suffix transpo-
sition that removes one breakpoint in the following way. Let π1, . . . , πj be the
first strip. If πj < n, then there is a prefix or a suffix transposition that can join
π1, . . . , πj with the strip containing πj + 1, removing a breakpoint. Otherwise,
we have πj = n and there is a prefix transposition than can join π1, . . . , πj with
the strip containing π1 − 1. So, the average cost of removing a breakpoint is less
than or equal to 2. By Lemma 14, this is a 2-approximation algorithm.

Lemma 18. 2-RTg and 2-R̄Tg are 2-approximation algorithms for SbRT and
SbR̄T, respectively.

Proof. The proof is analogous to the proofs of Lemmas 16 and 17, since these
algorithms use both reversals and transpositions. Note that in the only case
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where no reversals can remove a breakpoint, all strips are increasing or decreas-
ing, and we can use a prefix or suffix transposition to remove one breakpoint
with cost 2. The arguments are analogous to the ones used in Lemma 17.

The algorithms 2-Rg and 2-R̄g have time complexity O(n3), since they spend
O(n2) time to choose the operation to be applied. The algorithms 2-Tg, 2-RTg,
and 2-R̄Tg have time complexity O(n4), since they involve transpositions and
need to spend O(n3) time to choose the operation to be applied.

4 Experimental Results

All algorithms were implemented in C language and executed on an Intel Core
i7 with 8 cores of 4.20 GHz, 8 GB of RAM running Ubuntu 16.04 LTS. For the
experimental results, we used two sets of permutations. One of them has 99,000
random unsigned permutations, being 1,000 of each size n, with n varying from
10 to 500 in intervals of 5. The other also has 99,000 permutations divided in
the same way, but they are signed.

The algorithms used in this experiment were those presented in this work
and five more algorithms from the literature for the unweighted case that were
adapted to the fragmentation-weighted version. To adapt these algorithms, we
took each sequence of operations returned by them and applied our fragmenta-
tion cost function. These algorithms are: A-R, (1.4167 + ε)-approximation algo-
rithm for sorting by unsigned reversals, which is an algorithm for cycle decom-
position [7] followed by exact algorithm for signed reversals [10]; A-R̄, exact
algorithm for sorting by signed reversals [10]; A-T, 1.5-approximation algorithm
for sorting by transpositions [2]; A-RT, 3-approximation algorithm for sorting
by unsigned reversals and transpositions [12]; A-R̄T, 2-approximation algorithm
for sorting by signed reversals and transpositions [12].

The results are presented in Figs. 1(a) to (e), where the x-axis gives the size of
the permutations and the y-axis gives the average approximation factor among
all permutations of that size. The approximation factors were calculated using
the theoretical lower bounds given in Lemmas 8 and 9.

As expected, the greedy algorithms had better practical results than the other
algorithms. In all cases, except for the algorithm A-RT, the adapted algorithms
had better results than the 2-approximation algorithms presented in Sect. 3.3.
We can note that all greedy algorithms presented average approximation factors
significantly smaller than the other algorithms.
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(a) SbR Problem.
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(b) SbR̄ Problem.
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(c) SbT Problem.
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(d) SbRT Problem.

0 100 200 300 400 500

Permutation Size

1.0

1.2

1.4

1.6

1.8

2.0

A
ve
ra
ge

A
pp

ro
xi
m
at
io
n
Fa
ct
or

2-R̄T
2-R̄Tg

A-R̄T

(e) SbR̄T Problem.

Fig. 1. Average approximation factor for 2-R, 2-Rg, A-R, 2-R̄, 2-R̄g, A-R̄, 2-T, 2-Tg,
A-T, 2-RT, 2-RTg, A-RT, 2-R̄T, 2-R̄Tg, and A-R̄T when the permutation size grows.
For all five problems, the greedy algorithms were significantly better than the others.
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5 Conclusion

In this work we presented 2-approximation algorithms for 5 problems of sort-
ing permutations by fragmentation-weighted operations. We also presented
greedy algorithms and a relation between the unweighted approach and the
fragmentation-weighted approach.

For future work, we aim at improving the approximation factors. For this,
our next step will be the use of other structures, such as the cycle graph, to
obtain better lower bounds and approximation factors.
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Abstract. We present two heuristics, Sliding Window and Look Ahead,
to improve solutions for the Sorting Signed Permutations by Reversals
and Transpositions Problem. To assess the heuristics, we implemented
algorithms described in the literature to provide initial solutions. Despite
the fact that we addressed a specific problem, both heuristics can be
applied to many others within the area of genome rearrangement. When
time is a crucial factor, Sliding Window is a better choice because it
runs in linear time and improves the initial solutions in 76.4% of cases. If
the quality of the solution is a priority, Look Ahead should be preferred
because it improves the initial solutions in 97.6% of cases, but it runs in
O(n3×alg(n)), where alg(n) is the complexity of the algorithm given as
input. By using these heuristics one may find a good tradeoff between
running time and solution improvement.

Keywords: Genome rearrangement · Heuristics · Reversals
Transpositions

1 Introduction

Genome rearrangements affect large portions of the DNA sequence. They occur
when chromosomes break at one or more locations and the pieces are reassembled
in a different order. Due to the Principle of Maximum Parsimony, we approx-
imate the evolutionary distance by the minimum number of events that trans-
forms one genome into another. A Genome Rearrangement Problem aims at
finding this minimum number, the so-called rearrangement distance.

Assuming no duplicated genes, we assign numbers to each gene to represent
genomes as permutations of integers. If we know the relative orientation of the
genes, we associate a sign (positive or negative) to each element of the permu-
tation, resulting in a signed permutation; we omit this sign otherwise, resulting
in an unsigned permutation (or simply permutation).
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A reversal is a genome rearrangement event that inverts a segment of the
genome, changing the order and the orientation of genes in this segment. A
transposition swaps the position of two consecutive genome segments, keeping
the order and the orientation of genes unchanged inside the segments.

To compute the distance between two genomes, we map one to the identity
permutation defined as ιn = (+1 . . . +n) and use gene labels to map the other
to an arbitrary permutation α. The goal is to transform α into ι—a sorting
problem—using the minimum number of genome rearrangement events.

Hannenhalli and Pevzner [10] proved that the Sorting Signed Permutations
by Reversals problem can be solved in polynomial time. Caprara [4] proved that
the unsigned version is NP-hard. Bulteau and coauthors [3] proved that the
Sorting Permutations by Transpositions problem is also NP-hard.

Sorting Signed Permutations by Reversals and Transpositions has unknown
complexity, the same being true for the unsigned version. The best algorithm for
the signed version has an approximation factor of 2 [14]. The best algorithm for
the unsigned has an approximation factor of 2k [11], where k is the approximation
factor of the algorithm used for cycle decomposition [5].

In this work, we present two heuristics to improve solutions from existing
algorithms. Our heuristics produce smaller sorting sequences in the vast majority
of cases when compared to those provided by the algorithms with no heuristics
applied.

The paper is organized as follows. Section 2 presents notations and defini-
tions. Section 3 details the heuristics. Section 4 shows the algorithms used to
evaluate our heuristics. Section 5 reports the experiments. Section 6 concludes
the manuscript.

2 Preliminaries

In genome rearrangement problems, we represent a genome as an n-tuple, where
each element stands for a gene or blocks of genes. Assuming no duplicated genes,
the n-tuple is a permutation π = (π1 π2 π3 . . . πn), where πi ∈ {−n,−(n −
1), . . . ,−2,−1,+1,+2, . . . ,+(n − 1),+n} such that |πi| �= |πj | ↔ i �= j. The
positive or negative sign of an element indicates the orientation of the gene.

The composition between two permutations π = (π1 π2 . . . πn) and σ =
(σ1 σ2 . . . σn) results in a new permutation: α = π ◦ σ = (πσ1 πσ2 . . . πσn

). If
σi < 0, then αi = −π|σi|, otherwise αi = πσi

.
The inverse of σ is a permutation σ−1 such that σ ◦ σ−1 = ιn. The inverse

σ−1 indicates the position and orientation in σ of each element i.
A reversal reverts the order of the segment {πi, πi+1, ..., πj} and also flips

the signs of the elements. Therefore, a reversal ρ(i, j) applied to π leads to
π ◦ ρ(i, j) = (+π1 . . . +πi−1 −πj . . . −πi +πj+1 . . . +πn).
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A transposition τ(i, j, k), 1 ≤ i < j < k ≤ n + 1, swaps the positions of
two adjacent blocks. Therefore, a transposition τ(i, j, k) applied to π leads to
π ◦ τ(i, j, k) = (π1 . . . πi−1 πj . . . πk−1 πi . . . πj−1 πk . . . πn).

The distance between π and σ, d(π, σ), is the size of a minimum length sequence
δ1, δ2, . . . , δt of reversals and transpositions such that π ◦ δ1 ◦ δ2 . . . δt = σ. In this
case, d(π, σ) = t.

Let ιn = (+1 . . . +n) be the identity permutation. A sorting problem is the
distance between an arbitrary permutation α = (α1 . . . αn) into ιn. We denote
the distance between α and ιn by d(α, ιn) = d(α).

The sorting problem may appear a particular case of rearrangement distance,
but it has the same power of representation. Sorting α is equivalent to transform-
ing π into σ if we consider α = π ◦σ−1. Note that d(π, σ) = d(π ◦σ−1, σ ◦σ−1) =
d(α, ιn) = d(α).

If we can sort α, we can also transform π into σ using the same sequence
of operations. For example, let π = (+6 +5 +1 +2 +4 +3) and σ =
(+2 −1 +4 −5 +3 +6), the inverse of σ is σ−1 = (−2 +1 +5 +3 −4 +6).
We compute α = π ◦σ−1 = (+6 −4 −2 +1 +3 +5). Applying a sorting sequence
in α leads to α ◦ ρ(2, 4) ◦ τ(4, 5, 6) ◦ τ(1, 2, 7) ◦ ρ(1, 1) = ι6. Applying the same
operations in π leads to π ◦ ρ(2, 4) ◦ τ(4, 5, 6) ◦ τ(1, 2, 7) ◦ ρ(1, 1) = σ.

We obtain an extended permutation from π by inserting two new elements:
π0 = +0 and πn+1 = n+1. From now on, unless stated otherwise, permutations
will be extended.

A breakpoint occurs in a pair πi and πi+1 of π if πi+1 −πi �= 1, 0 ≤ i ≤ n. We
denote the number of breakpoints by b(π). For π = (+0 ·−2 −1 ·+4 +5 ·−3 ·+6),
where “·” represents a breakpoint, we have b(π) = 4. The identity permutation
ι is the only with no breakpoints.

Breakpoints split a permutation into strips, which are maximal intervals with-
out breakpoints. We do not add the elements π0 and πn+1 to the scope of strips.
For π = (+0 · −2 −1 · +4 +5 · −3 · +6), we have three strips: (−2 −1), (+4 +5),
and (−3).

Christie [6] created an algorithm to reduce a permutation π into a permuta-
tion πreduced such that d(π) ≤ d(πreduced). Four steps summarize the algorithm:
(i) Remove the first strip if it starts with +1. (ii) Remove the last strip if it ends
with +n. (iii) Replace each strip with the smallest element in it. (iv) Renumber
the final sequence to obtain a valid permutation.

For example, let π = (+1 +2 −9 −8 +5 +6 +7 +3 +4) be a permutation
with four strips: (+1 +2), (−9 −8), (+5 +6 +7), and (+3 +4). We remove
the first strip since it starts with +1, resulting in (−9 −8), (+5 +6 +7), and
(+3 +4). Then, we select the smallest element in each strip: (−9 +5 +3). Finally,
we renumber the final sequence to obtain the reduced permutation: πreduced =
(−3 +2 +1).
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3 Heuristics

We developed two heuristics, Sliding Window and Look Ahead, that extend pre-
vious approaches applied to unsigned permutations [7,8] and we assess them on
the Sorting Signed Permutations by Reversals and Transpositions problem.

3.1 Sliding Window

Sliding Window uses a database that contains optimal sorting sequences for
signed permutations of size up to nine [9]. It receives a permutation π and an
algorithm alg as input and outputs a sequence of rearrangement events that
sorts π.

The heuristic behaves as follows: we use alg to sort π and generate a sequence
of permutations S = [π0, . . . , πz], such that πi ◦ δ = πi+1, where δ ∈ {ρ, τ}, for
0 ≤ i < z. The output is a sequence S

′
= [π0, . . . , πy], such that y ≤ z and

πy = πz.
Initially, the heuristic picks a subsequence of permutations Sw from S that

we call window. The window begins with πi and ends with πj , 0 ≤ i < j ≤ z.
The heuristic computes α = πi ◦ πj−1

and reduces it to αreduced. If αreduced has
up to nine elements, we retrieve the optimal sorting sequence from the database,
otherwise a smaller window Sw will be sought and slided through S.

If the optimal sequence for αreduced is shorter than Sw, we use it to build a
sequence Sw′

that sorts α. Each permutation α′ ∈ Sw′
is replaced by πj ◦α′ and

the window Sw is replaced by Sw′
, which improves S. Figure 1 shows a flowchart

for this heuristic.

Fig. 1. Flowchart of the Sliding Window heuristic.

The heuristic runs in O(n + alg(n)), where alg(n) is the complexity of the
algorithm given as input.
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3.2 Look Ahead

Look Ahead receives a permutation π and an algorithm alg as input, and outputs
a sequence of events that sorts π. The heuristic behaves as follows: we start with
the permutation π as the current permutation. While the current permutation
is not sorted, the heuristic assess all possible reversals and transpositions, fully
investigating the neighborhood of π.

We use alg to estimate the distance of each permutation in the neighborhood
of π, and we select the permutation with the shortest distance (or one of the
shortest if multiple choices are available). The selected permutation will be the
current permutation in the next iterative step. The process ends when we reach
the identity.

Look Ahead requires a distance estimator alg to select an operation at each
step. If the estimator does not work well, it negatively impacts the solution
provided.

The heuristic runs in O(n3 × alg(n)), where alg(n) is the complexity of the
algorithm given as input. Since the complexity of this heuristic is directly linked
to alg(n), it becomes prohibitive in cases where alg(n) has a high complexity.
Figure 2 shows the flowchart for this heuristic.

Fig. 2. Flowchart of the Look Ahead heuristic.

4 Algorithms Implemented to Evaluate the Heuristics

We use as input different algorithms from the literature. Some were not designed
for the Sorting Signed Permutations by Reversions and Transpositions problem,
but they provide a valid solution or some modifications were performed to make it
valid. We employed such algorithms to verify the behavior on various situations.
Table 1 shows the algorithms used as input.
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Table 1. Algorithms used to evaluate the heuristics.

Rearrangement problem Code Reference Time Ratio

Reversal and transposition RSH Rahman et al. [11] O(n3) 2k

Signed reversal and transposition WDM Walter et al. [14] O(n3) 2

BRPT Walter et al. [14] O(n2) 3

BRPR Walter et al. [14] O(n2) 3

Signed reversal HPB Hannenhalli and Pevzner [10] O(n2) 1

Bader et al. [1] O(n) 1

Transposition BP Bafna and Pevzner [2] O(n2) 1.5

• RSH: An algorithm for the Sorting Unsigned Permutations by Reversals and
Transpositions problem with an approximation factor of 2k, where k is the
approximation of the algorithm that decomposes π in cycles. If applied on
signed permutations, it outputs valid solution with approximation factor of 2.

• WDM: An algorithm for the Sorting Signed Permutations by Reversals and
Transpositions problem that guarantees an approximation factor of 2.

• BRPT: An algorithm for the Sorting Signed Permutations by Reversals and
Transpositions problem with an approximation factor of 3. The algorithm
greedly removes the largest number of breakpoints. In case of ties between
reversals and transpositions, a transposition is chosen.

• BRPR: A variation of BRPT that favours reversals instead of transpositions.
• HPB: An exact algorithm for the Sorting Signed Permutations by Reversals

problem. Since Look Ahead needs a distance estimation, we used a linear time
algorithm that outputs only the distance. Since Sliding Window requires an
initial sequence of rearrangement events, we used a quadratic algorithm. The
implementations were provided by Tesler [12,13].

• BP: An approximation algorithm for the Sorting Unsigned Permutations by
Transpositions problem with an approximation factor of 3

2 . To ensure a valid
solution for the Sorting Signed Permutations by Reversals and Transpositions
problem, we first reverse all negative strips before applying this algorithm.
The final sorting sequence is composed by the reversal operations that were
first applied and the result of this algorithm.

5 Results

The heuristics and the algorithms implemented from literature received the same
set of permutations that were randomly generated with the maximum number
of breakpoints. The sizes of permutations ranged from 10 to 500 and increased
in intervals of 10 from 10 to 100, and in intervals of 50 from 150 up to 500. For
each size, we created a set of 1000 permutations. We executed Look Ahead on
permutations with size up to 100 due to the slow running time. We executed
Sliding Window on all permutations.
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Fig. 3. Average approximation factor of each (a) original algorithm, (b) Sliding Win-
dow, and (c) Look Ahead. We can see a significant improvement in the average approx-
imation factor in almost all the algorithms where Sliding Window was applied. Look
Ahead improved the average approximation factor of all algorithms.
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To compute the approximation factors, we used the lower bound � (n+1)−c(π)
2 �,

where c(π) is the number of cycles in the cycle graph [14].
Figure 3 shows the average approximation factor of the original algorithms

and our heuristics. Comparing the Fig. 3(a) and (b) we observe improvement
in the average approximation factor in almost all the algorithms provided by
Sliding Window. We make similar comparison with Fig. 3(a) and (c) and see
a significant reduction in average approximation factor in all algorithms using
Look Ahead. In most cases, the results provided by Look Ahead showed better
performance than those provided by Sliding Window, except for the case where
the WDM algorithm was used.
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Fig. 4. Percentage of sorting sequences that have been improved using (a) Sliding
Window and (b) Look Ahead. We can see that in almost all cases Sliding Window
improved the initial sorting sequence of a significant amount of permutations. The only
case in which this behavior was not observed was when we used the BP algorithm. Look
Ahead improved the initial sorting sequence of a significant amount of permutations.
For all permutations with size greater than 10, this value exceeded 90%.
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Figure 4 shows the percentage of permutations where the original sorting
sequence was improved by Sliding Window and Look Ahead, respectively.

Applying Sliding Window in permutations of size 10 up to 100, we obtained
an improvement in 75.6% of cases, and for permutations of size 150 up to 500,
we obtained an improvement in 77.4% of cases. Look Ahead was executed with
permutations up to size 100 and improved the original sorting sequence in 97.6%
of cases. All algorithms presented significant improvements.

Table 2 reports the average running time in seconds. The abbreviations ALG,
SW, LA, represents the original algorithm, Sliding Window, and Look Ahead. We
see that Sliding Window runs extremely fast, whereas Look Ahead is more time-
consuming.

Table 2. Average running time in seconds. In all cases, Sliding Window outputs a
solution in less than 0.1 s. Look Ahead is more time-consuming, but it runs fast when
an algorithm with low time complexity like HBP is used.

Algorithm Size of permutations

100 500

ALG SW LA ALG SW

RSH 0.003 0.016 11378.694 0.048 0.085

WDM 0.003 0.017 15330.229 0.047 0.092

BRPT 0.001 0.007 1676.322 0.006 0.021

BRPR 0.001 0.007 1445.922 0.005 0.019

HPB 0.003 0.009 72.803 0.029 0.049

BP 0.002 0.005 3941.291 0.025 0.035

Table 3. Average approximation factor provided by the original algorithms and our
heuristics. Look Ahead significantly improved the average approximation factor of all
algorithms. Sliding Window showed better results when applied to specific algorithms
for the Sorting Signed Permutations by Reversals and Transpositions Problem.

Algorithm Permutation size

100 500

ALG SW LA ALG SW

RSH 1.559 1.347 1.208 1.520 1.322

WDM 1.982 1.368 1.575 1.997 1.356

BRPT 1.402 1.376 1.091 1.277 1.272

BRPR 1.180 1.155 1.075 1.052 1.046

HPB 1.990 1.920 1.459 1.998 1.974

BP 1.540 1.539 1.450 1.514 1.514
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Table 3 shows a comparison between the average approximation factor of
the original algorithms and our heuristics. The abbreviations ALG, SW, LA,
represents the original algorithm, Sliding Window, and Look Ahead.

6 Conclusion

The heuristics presented in this work significantly improved the sorting sequence
provided by several algorithms known in the literature for the Sorting Signed
Permutations by Reversals and Transpositions Problem. The heuristics Sliding
Window and Look Ahead improved the sorting sequence in 76.4% and 97.6% of
cases, respectively.

These heuristics can be applied in scenarios with different needs. If time is a
crucial factor, the Sliding Window stands out since it presents good results and
suffer less variation in execution time when permutation size increases. If time
is not a priority, then Look Ahead is a better fit, presenting more remarkable
results.

The next step is to use these heuristics on variants of the Sorting Signed
Permutations by Reversals and Transpositions problem and check if it is possible
to obtain results similar to those shown in this work.
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Abstract. Estimating the evolutionary distance between genomes of
two organisms is a challenging task for Computational Biology. One of
the most well-accepted ways to do this is to consider the size of the small-
est sequence of rearrangement events required to transform one genome
into another, characterizing the rearrangement distance problem. Com-
putationally, genomes can be represented as permutations of integers
and, with this, the problem can be reduced to transforming a permuta-
tion into the identity with the minimum number of operations (sorting
the permutation). These operations are given by a rearrangement model
and they affect segments of a genome in different ways. Among the most
common models are those that allow only reversals, only transpositions,
or both of them. In this paper we study sorting permutations when a
restriction of biological relevance is added: the size of the rearrangements
should be at most a given value λ. Some results are known for λ = 2 and
λ = 3 but, to the best of our knowledge, there are no results for λ > 3.
We consider rearrangement models that allow reversals and/or transposi-
tions for sorting unsigned permutations given any value of λ. We present
approximation algorithms for 3 such problems, where the approximation
factors depend on λ and/or on the size of the permutations.

Keywords: Genome rearrangement · Sorting permutations
Reversals · Transpositions · Computational Biology

1 Introduction

An important challenge to Computational Biology is to understand the evolu-
tionary process of two organisms, which can be done by using the length of the
shortest sequence of genome rearrangements that transform one genome into the
other, called rearrangement distance. This is the most likely to occur, based the
Principle of Maximum Parsimony. A genome rearrangement is an event which
occurs with relative rarity, changing larger stretches of the genome.
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Computationally, a genome can be represented by a permutation of integers
if we assume that there are no duplicate genes and that its composition is a single
linear chromosome. The permutation is called unsigned permutation when the
orientation of genes are unknown. Due to such representation, estimating the
evolutionary distance with the rearrangement distance can be reduced to cal-
culating the minimum number of rearrangements that transform a permutation
into another. In addition, one of the genomes can be represented as the identity
permutation and, in this way, the problem is equivalent to finding the minimum
number of operations that sort a permutation. For convenience, we will refer to
unsigned permutations only as permutations in the rest of the text.

Different rearrangement events are considered in the literature. Two of the
most often studied ones are (i) reversals, which invert a determined segment of
the genome, and (ii) transpositions, which exchange two adjacent segments in
the genome. The problem of sorting permutations by reversals was proved to be
NP-Hard [4] and the best-known result is a 1.375-approximation algorithm, pro-
posed by Berman et al. [2]. The problem of sorting permutations by transposi-
tions was introduced by Bafna and Pevzner [1]. This problem was proved to be
NP-Hard by Bulteau et al. [3] and the best known result is a 1.375-approximation
algorithm which was proposed by Elias and Hartman [7].

The complexity of the problem of sorting permutations when both operations
are allowed is unknown. Walter et al. [17] presented a 3-approximation algorithm
for this problem and, later, Rahman et al. [15] presented a 2α-approximation
algorithm, where α is the approximation factor of the cycle decomposition algo-
rithm for breakpoint graphs [13]. Given the best-known value of α [13], the
approximation factor is 2.8334 + ε, where ε > 0.

These variants of sorting permutations problems can have extra restrictions,
such as in which parts of the genome the operations will be applied [6,14] and
the size limit of the rearrangements [5,8–11,16], which is the amount of permu-
tation’s elements that are affected by it. The biological relevance for considering
limited-size operations is based on the observation that rearrangement events
which modify large stretches of the genome occurs rarely, prevailing rearrange-
ments that involve few genes [12]. Chen and Skiena [5] considered sorting per-
mutations by applying only reversals of the same size and they characterized the
number of equivalence classes of permutations of size n and reversals of size k,
for linear and circular permutations. When the size limit of an operation is at
most 2, Jerrum [10] proved that the problem of sorting permutations by reversals
(or transpositions) is polynomial. When the limit is at most 3, the best results
are (i) a 2-approximation [9] algorithm for the problem of sorting permutations
by reversals, (ii) a 5

4 -approximation algorithm for the problem of sorting permu-
tations by transpositions [11], and (iii) a 2-approximation [16] algorithm for the
problem of sorting permutations by reversals and transpositions, respectively.

We present approximation algorithms for the problems of sorting permuta-
tions by reversals, by transpositions, and by both of them with an additional
restriction: the operations have size limited by a given value λ. To the best of
our knowledge, there are no results in the literature for λ > 3.
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The next sections are organized as follows. Section 2 presents the definitions
and notations regarding problems of sorting permutations. Section 3 presents the
proposed approximation algorithms. Section 4 presents the concluding remarks.

2 Definitions

A permutation of size n is defined as π = (π1 π2 . . . πn), where πi ∈ {1, 2, . . . ,
(n − 1), n} and πi �= πj if and only if i �= j. The identity permutation of size n
is defined as ι = (1 2 . . . n).

Given two permutations π and σ of size n, the composition operation “·”
is defined as π · σ = (πσ1 πσ2 . . . πσn

). Compositions are used to indicate the
application of a rearrangement over a permutation, as we see in the following.

A reversal ρ(i, j) with 1 ≤ i < j ≤ n is an event that occurs in a permu-
tation π = (π1 π2 . . . πn) and transforms it into the permutation π · ρ(i, j) =
(π1 π2 . . . πi−1 πj πj−1 . . . πi+1 πi πj+1 . . . πn−1 πn). For example, for the permu-
tation π = (1 2 3 4 5), we have π · ρ(2, 4) = (1 4 3 2 5).

A transposition τ(i, j, k) with 1 ≤ i < j < k ≤ n + 1 is an operation
that occurs in a permutation π = (π1 π2 . . . πn) and transforms it into the
permutation π · τ(i, j, k) = (π1 π2 . . . πi−1 πj . . . πk−1 πi . . . πj−1 πk . . . πn). For
example, for the permutation π = (1 2 3 4 5) we have π · τ(1, 3, 5) = (3 4 1 2 5).

A λ-reversal is a reversal ρ(i, j) such that j − i + 1 ≤ λ, where j − i + 1 is
the size of the reversal. A λ-transposition is a transposition τ(i, j, k) such that
k − i ≤ λ, where k − i is the size of the transposition.

In a sorting problem, we have a rearrangement model, denoted by β, which
indicates what are the operations allowed to be applied in order to sort a per-
mutation. This is used in the definitions bellow.

Given a rearrangement model β and a permutation π, the sorting distance,
denoted by dβ(π), is the minimum amount of operations in β needed to transform
π into ι. If β allows only reversals, only transpositions, or both these operations,
we denote the sorting distance of π by dr(π), dt(π), and drt(π), respectively.
Similarly, we denote by dλ

r (π), dλ
t (π) and dλ

rt(π) the sorting distances for when
we only allow λ-operations.

3 Approximation Algorithms

In this section we present approximation algorithms for the three problems we
are studying. We separated this section in two parts. The first one presents
algorithms whose approximation factors are better for large values of λ, while
the second one presents algorithms whose approximation factors are better for
small values of λ. We note, however, that all algorithms presented in both parts
work for any λ ≥ 2.



Sorting Permutations by Limited-Size Operations 79

3.1 Approximation Algorithms for Large Values of λ

The approximation algorithms shown in this part were obtained by using algo-
rithms that already exist in the literature for the variants where the size of the
rearrangements is not limited. Thus, the first step is to relate the distance of our
problems with the distance of such variants, which is shown in Lemma 1.

Lemma 1. For all permutations π and all λ ≥ 2, we have dλ
r (π) ≥ dr(π),

dλ
t (π) ≥ dt(π) and dλ

rt(π) ≥ drt(π).

Proof. Any sorting sequence where the size of the rearrangements is limited by
λ is valid for the case with no restriction. ��

Lemmas 2 and 3 show how to mimic any given reversal and transposition
with a sequence of λ-reversals and λ-transpositions, respectively.

Lemma 2. For a permutation π and λ ≥ 2, the effect of a reversal ρ(i, j) of size
j − i + 1 > λ can be obtained by at most q(q+1)

2 λ-reversals, where q =
⌈

j−i+1
�λ/2�

⌉
.

Proof. Initially we divide the segment of π from position i to position j into
subsegments of size �λ/2	, except maybe for the one closest to j, which results
in q =

⌈
j−i+1
�λ/2�

⌉
subsegments. Formally, for each 1 ≤ � < q, the �th subsegment

contains elements of π from position i + �λ/2	 (� − 1) to i + �λ/2	 � − 1, and
the qth subsegment contains elements of π from position i + �λ/2	 (q − 1) to j.
Note that the subsegments are defined by the elements contained in them. For
example, in π the qth subsegment ends at position j but in π · ρ(i, j) it starts at
position i. Even so, we can still refer to it as the qth subsegment.

The idea now is to move each subsegment until its respective position in
π · ρ(i, j) by exchanging a subsegment with the one at its right. The reversals
used will have size at most 2 �λ/2	, and so they are λ-reversals.

For each value of �, from � = 1 up to � = q − 1, we apply a sequence of
λ-reversals that first exchanges the �th subsegment with the (�+1)th subsegment,
then exchanges the �th with the (� + 2)th, and so on, until it exchanges the �th
with the qth subsegment. Note that after applying this sequence over the �th
subsegment, it is correctly placed in its final order (relative to π · ρ(i, j)) and
the (� + 1)th subsegment is currently starting at position i. Also, after applying
the final sequence (of one λ-reversal) over the (q −1)th subsegment (the last one
considered), subsegments q − 1 and q are correctly placed in their final order.

Note that exactly q−� λ-reversals are performed over the �th subsegment, so
a total of (q − 1)+ (q − 2)+ · · ·+1 = q(q−1)

2 λ-reversals are required to correctly
position all segments. Now, if q is even, then at the end of the process we will
directly have π ·ρ(i, j). Otherwise, all subsegments still have to be reversed and,
therefore, another q reversals of size �λ/2	 (except, maybe, for the one over
the qth subsegment) are applied, one for each subsegment. Thus, the effect of a
reversal can be obtained by at most q(q−1)

2 + q = q(q+1)
2 λ-reversals. ��
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As an example of the previous lemma, let π = (1 2 3 4 5 6 7 8) and suppose
we want to obtain π · ρ(2, 6) with 4-reversals. Let A = (2 3), B = (4 5), and
C = (6) be the subsegments to be moved, as described in Lemma 2. Note that
the sum of the size of any two consecutive segments is less than or equal to
λ = 4. The process described in the lemma first exchanges A with B, generating
(1 5 4 3 2 6 7 8), and then with C, generating (1 5 4 6 2 3 7 8). Then it
exchanges B with C, generating (1 6 4 5 2 3 7 8), and the process ends. Note
that q = 
(j − i + 1)/ �λ/2	� = 
(6 − 2 + 1)/ �4/2	� = 
5/2� = 3 is an odd
number so, although the segments are in their correct positions, we still have
to revert A, B, and C (actually, note that it is not necessary to revert C, since
|C| = 1). Thus, we obtain π · ρ(2, 6) with 5 = 3 + 2 ≤ q(q + 1)/2 = (3 × 4)/2 = 6
4-reversals.

Lemma 3. For a permutation π and λ ≥ 2, the effect of a transposition τ(i, j, k)
of size k − i > λ can be obtained by at most

⌈
j−i

�λ/2�
⌉ ⌈

k−j
�λ/2�

⌉
λ-transpositions.

Proof. Let F denote the first segment of the transposition, which contains ele-
ments of π comprised between positions i and j −1, and let S denote the second
segment, which contains elements of π comprised between positions j and k − 1.
We divide F into f = 
(j − i)/ 
λ/2�� subsegments of size 
λ/2�, except maybe
for the one that ends at j − 1, and we divide S into s = 
(k − j)/ �λ/2	� sub-
segments of size �λ/2	, also except maybe for the one that ends at k − 1, in the
following manner. For 1 ≤ � < f , the �th subsegment of F contains elements of
π from position i + 
λ/2� (� − 1) to i + 
λ/2� � − 1 and the fth subsegment of F
contains elements of π from position i + 
λ/2� (f − 1) to j − 1. For 1 ≤ � < s,
the �th subsegment of S contains elements of π from position j +�λ/2	 (�−1) to
j +�λ/2	 �−1 and the sth subsegment of S contains elements of π from position
j + �λ/2	 (s − 1) to k − 1. Again, note that the segments F and S and their
subsegments were defined by the elements contained in them.

The idea now is to move each subsegment of F until their respective positions
in π · τ(i, j, k) by exchanging them with subsegments of S. The transpositions
used will have size at most 
λ/2� + �λ/2	 and so they are λ-transpositions.

For each value of �, starting from � = f and going down to � = 1, we apply a
sequence of λ-transpositions that first exchanges the �th subsegment of F with
the 1st segment of S, then exchanges the �th of F with the 2nd of S, and so on,
until it exchanges the �th of F with the sth subsegment of S. Note that after
applying this sequence of the �th subsegment of F , it is correctly placed in its
final position (relative to π ·τ(i, j, k)) and segment S is as it is in π but beginning
to the right of the (�−1)th subsegment of F . Thus, the next iteration (for �−1)
will correctly exchange the (� − 1)th subsegment of F with all subsegments of S
and place it in its final position.

Note that exactly s λ-transpositions are performed over the �th subsegment
of F , so a total of fs = 
(j − i)/ 
λ/2�� 
(k − j)/ �λ/2	� λ-transpositions are
required to correctly position all segments. ��

Theorems 4 to 8 use Lemmas 2 and 3 to obtain approximation algorithms
for the three problems we are considering.
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Theorem 4. Sorting permutations by λ-reversals has an approximation algo-
rithm of factor 0.6875p(p + 1), where p =

⌈
n

�λ/2�
⌉
.

Proof. Let ALGr be the 1.375-approximation algorithm for sorting permutations
by reversals [2]. We can create an algorithm for sorting permutations by λ-
reversals by changing each reversal given by ALGr over a permutation π for a
sequence of λ-reversals, as described in Lemma 2. Since a reversal can have size
at most n, it will be replaced by at most p = 
n/ �λ/2	� λ-reversals.

Let ALGr(π) be the size of the sorting sequence produced by ALGr to sort
a permutation π. The amount of λ-reversals used by our algorithm to sort π is
thus at most ALGr(π)p(p+1)

2 ≤ 1.375dr(π)p(p+1)
2 ≤ 0.6875p(p + 1)dλ

r (π), where
the last inequality follows from Lemma 1. ��
Corollary 5. Sorting permutations by λ-reversals has an approximation algo-
rithm of factor 8.25 for all n > 3 and λ > 
n/2�.
Theorem 6. Sorting permutations by λ-transpositions has an approximation
algorithm of factor 1.375

⌈
�n/2�
�λ/2�

⌉ ⌈
�n/2�
�λ/2�

⌉
.

Proof. Let ALGt be the 1.375-approximation algorithm for sorting permutations
by transpositions [7]. We can create an algorithm for sorting permutations by
λ-transpositions by changing each transposition given by ALGt for a sequence of
λ-transpositions, as described in Lemma 3. Since a transposition can have size
at most n, it will be replaced by at most T = 

n/2� / 
λ/2�� 
�n/2	 / �λ/2	�
λ-transpositions.

Let ALGt(π) be the size of the sorting sequence produced by ALGt to sort
a permutation π. The amount of λ-transpositions used by our algorithm to sort
π is thus at most ALGt(π)T ≤ 1.375T dt(π) ≤ 1.375T dλ

t (π), where the last
inequality follows from Lemma 1. ��
Corollary 7. Sorting permutations by λ-transpositions has an approximation
algorithm of factor 5.5 for all n > 3 and λ > 
n/2�.
Theorem 8. Sorting permutations by λ-reversals and λ-transpositions has an
approximation algorithm of factor α p(p+1), where α is the approximation factor
of the cycle decomposition algorithm for breakpoint graphs and p =

⌈
n

�λ/2�
⌉
.

Proof. Let ALGrt be the 2α-approximation algorithm for sorting permutations
by reversals and transpositions [15]. Our algorithm for sorting permutations by
λ-reversals and λ-transpositions transforms the sequence of operations given by
ALGrt into λ-operations, as described in Lemmas 2 and 3.

Since reversals and transpositions can have size at most n, each transposition
is replaced by at most T = 

n/2� / 
λ/2�� 
�n/2	 / �λ/2	� λ-transpositions,
and each reversal is replaced by at most R = 1/2(
n/ �λ/2	� (
n/ �λ/2	� + 1))
λ-reversals. As T ≤ R, we can suppose that, in the worst case, ALGrt only uses
reversals to sort. Let ALGrt(π) be the size of the sorting sequence used by ALGrt
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to sort a permutation π. The amount of operations used by our algorithm is at
most ALGrt(π)R ≤ 2α R drt(π) ≤ α p(p + 1)dλ

rt(π), where the last inequality
follows from Lemma 1. ��
Corollary 9. Sorting permutations by λ-reversals and λ-transpositions has an
approximation algorithm of factor 12α for all n > 3 and λ > 
n/2�.

3.2 Approximation Algorithms for Small Values of λ

In this section we present algorithms that have a better approximation factor
when the value of λ is small. To do this, we first need some new definitions.

The entropy of an element πi, denoted by ent(πi), is given by |πi − i|, that is,
the distance between πi and its position in ι. The entropy of a permutation π,
denoted by ent(π), is given by the sum of all values of ent(πi), for 1 ≤ i ≤ n. For
example, the entropy of π = (2 3 5 4 1) is ent(π) = 1 + 1 + 2 + 0 + 4 = 8. Note
that, by definition, the entropy of any permutation is an even number. Also note
that ent(ι) = 0 and ent(π) > 0 for all π �= ι.

Let Δent(π, σ) = ent(π · σ) − ent(π) be the variation of the entropy after
the application of an operation σ. Note that, to calculate Δent(π, σ), it suffices
to determinate the entropy of the elements affected by σ (the entropy of other
elements does not change).

Lemma 10 gives an upper bound on the variation of entropy caused by any
λ-reversal or λ-transposition.

Lemma 10. Let Δmax
ent (π, σ) be the maximum variation of entropy caused by a

λ-reversal or by a λ-transposition σ. We have Δmax
ent (π, σ) = 2 
λ/2� �λ/2	.

Proof. First let σ be a λ-reversal ρ(i, j). Note that the maximum variation of
entropy occurs when j − i + 1 = λ, when the most amount of elements are
involved. In this case, after the reversal, element πi ends up λ−1 positions away
from i, element πi+1 ends up λ − 3 positions away from i + 1, and so on, up to
element πi+�λ/2�−1, which ends up 1 position away from i+�λ/2	−1, if λ is even,
or it ends up 2 positions away from i + �λ/2	 − 1, if λ is odd. Similarly, element
πj ends up λ − 1 positions away from j, element πj−1 ends up λ − 3 positions
away from j − 1, and so on, down to element πj−�λ/2�+1, which similarly ends
up 1 or 2 positions away from j − �λ/2	 + 1, if λ is even or odd, respectively.
When λ is odd, element i + 
λ/2� remains in the same position. Therefore, the
maximum variation of entropy for each element between positions i and j is at
most 2

∑�λ/2�
�=1 (λ − (2� − 1)) = 2 �λ/2	 
λ/2�.

Now let σ be a λ-transposition τ(i, j, k) and, similarly, suppose k−i = λ so we
can have the maximum variation of entropy. In this case, after the transposition,
all elements πh, for i ≤ h < j, end up k − j positions away from h, while all
elements π�, for j ≤ � < k, end up j − i positions away from �. Since there
are j − i elements of the first type and k − j elements of the second type, the
maximum variation of entropy for each element between i and k is at most
2(j − i)(k − j) ≤ 2 �λ/2	 
λ/2�. ��
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Corollary 11. For any permutation π, λ ≥ 2, and β ∈ {r, t, rt}, we have
dλ

β(π) ≥ ent(π)/(2 
λ/2� �λ/2	).
Let π be a permutation of size n and let i and j be two integers such that

1 ≤ i < j ≤ n. Function φ(π, i, j) returns a permutation π′ such that π′
i = πj ,

π′
j = πi, and π′

k = πk for all k /∈ {i, j}. In other words, only elements πi and πj

are exchanged. Lemmas 12 and 13 show how to obtain φ(π, i, j) with λ-reversals
and λ-transpositions, respectively.

Lemma 12. Let π be a permutation, λ ≥ 2, and i and j be positions such that
1 ≤ i < j ≤ n. It is possible to obtain φ(π, i, j) by applying at most 2x λ-reversals
on π, where x =

⌈
j−i
λ−1

⌉
.

Proof. We show that the result follows by considering two cases, according to
the relation between i and j. If j − i ≤ λ − 1, then at most two λ-reversals are
necessary. First we apply the operation ρ(i, j) that exchanges the position of
elements πi and πj . It is easy to see that, if j − i + 1 ≤ 3, we already obtain
φ(π, i, j) with only this operation. Otherwise, observe that we will have the
segment πi+1, . . . , πj−1 in reverse order (regarding φ(π, i, j)). Thus, we have to
apply a second operation ρ(i + 1, j − 1) to revert it again and, then, we obtain
φ(π, i, j) with two λ-reversals.

Otherwise, j − i > λ − 1. In a first step, we move element πi to position j by
repeatedly increasing its position by λ−1 (except, maybe, at the last movement)
with exactly x = 
(j − i)/(λ − 1)� λ-reversals applied successively. Formally, this
is done by applying the sequence ρ(i, i + (λ − 1)), ρ(i + (λ − 1), i + 2(λ − 1)),
ρ(i + 2(λ − 1), i + 3(λ − 1)), . . . , ρ(i + (x − 1)(λ − 1), j) of λ-reversals. Now
element πj is at position i+(x−1)(λ−1) and elements πt, for i < t < j, are not
necessarily at position t. To correct this and, at the same time, move element
πj to position i, we have a second step that applies a sequence with the same
λ-reversals that were used before (except for the last λ-reversal) in reversed order,
to repeatedly decrease the position of πj by λ − 1. Thus, a total of x − 1 extra
operations are needed. Formally, the sequence is ρ(i + (x − 2)(λ − 1), i + (x − 1)
(λ− 1)), ρ(i+(x− 3)(λ− 1), i+(x− 2)(λ− 1)), . . . , ρ(i+2(λ− 1), i+3(λ− 1)),
ρ(i + (λ − 1), i + 2(λ − 1)), ρ(i, i + (λ − 1)). At this point, if the size of the
λ-reversal ρ(i + (x − 1)(λ − 1), j) (the last λ-reversal of the first step) is less
than or equal to 3, then at the end of the process we will directly have φ(π, i, j).
Otherwise, we have to apply one more λ-reversal ρ(i + (x − 1)(λ − 1) + 1, j − 1)
to obtain φ(π, i, j), which totalizes 2x λ-reversals. ��
Lemma 13. Let π be a permutation, λ ≥ 2, and i and j be positions such
that 1 ≤ i < j ≤ n. It is possible to obtain φ(π, i, j) by applying exactly x + y

λ-transpositions on π, where x =
⌈

j−i
λ−1

⌉
and y =

⌈
j−i−1
λ−1

⌉
.

Proof. We show that the result follows by considering two cases, according to
the relation between i and j. If j − i ≤ λ − 1, then at most two λ-transpositions
are necessary. First we apply τ(i, i + 1, j + 1) that puts element πi at position j.
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When j = i+1, it also puts element πj at position i and, since there is no elements
between πi and πj , we have already obtained φ(π, i, j). Otherwise, observe that
we will have elements πt, for i < t ≤ j, exactly one position to the left of their
original position in π. Thus, we have to apply a second operation τ(i, j − 1, j) in
order to correct this. Note that, after applying this second operation, we have πj

at position i at the same time that elements i < t < j were moved one position
to the right and, then, we got φ(π, i, j) with two λ-transpositions.

Otherwise, j−i > λ−1. Initiallywemove elementπi to position j by repeatedly
increasing its position by λ−1 (except, maybe, at the last movement) with exactly
x = 
(j − i)/(λ − 1)� λ-transpositions applied successively. Formally, this is done
by applying the sequence of λ-transpositions τ(i, i + 1, i + λ), τ(i + (λ − 1), i +
(λ − 1) + 1, i + 2(λ − 1)), τ(i + 2(λ − 1), i + 2(λ − 1) + 1, i + 2(λ − 1) + λ), . . . ,
τ(i+(x−1)(λ−1), i+(x−1)(λ−1)+1, j +1). After this, each element πt, for i <
t ≤ j, is exactly one position to the left of its original position in π. To correct this,
we can apply a similar sequence of λ-transpositions, but now we will repeatedly
decrease the position of πj (which is at position j − 1) by λ − 1 (except, maybe, at
the last operation)with exactly y = 
(j − 1 − i)/(λ − 1)�λ-transpositions applied
successively. Formally, the sequence is τ(j − λ, j − 1, j), τ(j − (λ − 1) − λ, j−
(λ − 1) − 1, j − (λ − 1)), τ(j − 2(λ − 1) − λ, j − 2(λ − 1) − 1, j − 2(λ − 1)), . . . ,
τ(i, j − y(λ − 1) − 1, j − y(λ − 1)). Note that each λ-transposition moves λ − 1
(again, except, maybe, the last operation) elements πt, for i < t < j, one position
to the right by exchanging all of them with element πj . At the end of this process
we directly have φ(π, i, j). ��

Since ent(ι) = 0 and ent(π) > 0 for all π �= ι, an algorithm that always
reduces the entropy of the input permutation will eventually reach the identity.
Lemma 14 is auxiliar to Lemma 15, which shows that it is always possible to
reduce the entropy of any permutation.

Lemma 14. For all permutations π �= ι, there exists a pair of elements πi and
πj, with 1 ≤ i < j ≤ n, such that πi ≥ j and πj ≤ i.

Proof. Let Gπ be the directed graph such that V (Gπ) = {1, 2, . . . , n} and
E(Gπ) = {(πi, i) : 1 ≤ i ≤ n}. Note that each vertex has in-degree 1 and out-
degree 1, and, therefore, the components of Gπ are cycles. Also note that only
Gι has n unitary cycles.

Let C be any cycle of Gπ with at least two vertices and let u be the smallest-
value vertex of C. Let B = (v1, v2, . . . , v�) be a maximal sequence of vertices of
C such that v1 = u, vi < vi+1 for all 1 ≤ i < �, and (vi, vi+1) ∈ E(Gπ).

Since the vertices of B are in a cycle and B is maximal, the edge incident to
v� is of the form (v�, x), with x < v�. If v�−1 ≤ x, then take i = x and j = v�. In
this case, we have πi = πx = v� = j and πj = πv�

= v�−1 ≤ x = i and the lemma
follows. If v�−1 > x, then let k, for 1 ≤ k < � − 1, be such that vk ≤ x < vk+1

and take i = x and j = vk+1. In this case, we have πi = πx = v� > vk+1 = j and
πj = πvk+1 = vk ≤ x = i and the lemma follows. See Fig. 1 for an example. ��
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1 2 3 4 5 6 7 8 9 10

Fig. 1. Graph Gπ for π = (6 7 3 9 5 4 2 1 8 10). Considering the notation of Lemma 14’s
proof, if C = (1, 8, 9, 4, 6, 1), then B = (1, 8, 9).

Lemma 15. For all permutations π, it is possible to obtain another permutation
φ(π, i, j) such that ent(φ(π, i, j)) = ent(π)−2(j−i), for some pair 1 ≤ i < j ≤ n.

Proof. Let i and j be as in Lemma 14. By definition, ent(π) − ent(φ(π, i, j)) =
|πi −i|+ |πj −j|−|πi −j|−|πj −i|. Since πi ≥ j > i, we have |πi −j| = πi −j and
|πi − i| = πi − i. Since πj ≤ i < j, we have |πj − i| = i−πj and |πj − j| = j −πj .
Thus, ent(π) − ent(φ(π, i, j)) = πi − i + j − πj − πi + j − i + πj = 2(j − i). ��

A permutation π �= ι is called normal if there exists one λ-operation σ such
that ent(π · σ) < ent(π). Moreover, since the entropy of any permutation is an
even number, ent(π) − ent(π · σ) ≥ 2. Otherwise π is called special.

Consider the unsigned normal permutation π = (4 5 2 3 1) whose entropy is
12. Note that ent(π ·ρ(2, 3)) = 10 but ent(π ·ρ(1, 5)) = 4. The following algorithm
is greedy in the sense of always choosing a λ-operation that most decreases the
entropy when applied to a normal permutation. When the permutation is special,
Lemma 15 is applied. The algorithm receives the rearrangement model β, since
it works for any of the problems we are considering, and it runs in polynomial
time, as we discuss later. We show its approximation factor in Theorem 16.

function GreedyAlgorithm(π, λ, β):
while ent(π) > 0 do

if π is a normal permutation then
Let σ be a λ-operation such that ent(π) − ent(π · σ) is maximum;
π ← π · σ;

else
Let i and j be positions such that πi ≥ j, πj ≤ i, and 1 ≤ i < j ≤ n;
π ← φ(π, i, j), according to Lemma 12 or 13;

end

end

Theorem 16. Sorting permutations by λ-reversals, by λ-transpositions, or by
both operations has an approximation algorithm of factor 4 
λ/2� �λ/2	.
Proof. If π is a normal permutation, then the amount of entropy decreased per
operation is at least 2, as mentioned above.
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Otherwise π is special. Let i and j be as in GreedyAlgorithm and note that
π′ = φ(π, i, j) is a permutation with ent(π′) = ent(π)−2(j − i) (see Lemma 15).
Also, we obtain π′ through the operations described in Lemma 12 or 13.

If j − i ≤ λ − 1, then we obtain π′ by applying at most two λ-operations.
Therefore, the amount of entropy decreased per operation is at least (2(j −
i))/2 ≥ 1, for any of the 3 problems.

If j − i > λ − 1, then we obtain π′ by applying at most 2 
(j − i)/(λ − 1)�
λ-reversals or 
(j − i)/(λ − 1)� + 
(j − i − 1)/(λ − 1)� λ-transpositions. Since
2 
(j − i)/(λ − 1)� ≥ 
(j − i)/(λ − 1)� + 
(j − i − 1)/(λ − 1)�, we have the
amount of entropy decreased per operation is at least 2(j−i)

2
 j−i
λ−1� = j−i


 j−i
λ−1� ≥ j−i

2 j−i
λ−1

=
λ−1
2 ≥ 1

2 .
Thus, in the worst case we only reduce the entropy by 1/2 per operation

for all the problems we are addressing, which means that the total amount
of operations used by GreedyAlgorithm is at most ent(π)

1/2 = 2 ent(π) ≤
2 dλ

r (π) 2 
λ/2� �λ/2	 , where the inequality follows from Lemma 10. ��
Regarding the time complexity of the algorithm, first observe that the while

loop at the first line runs at most O(n2) times because the entropy of a permu-
tation is O(n2) and, as seen in Theorem 16, one operation reduces the entropy
by at least 1/2. In the “if” command we must decide whether a permutation
is normal, which can be done by finding the desired λ-operation. We can sim-
ply test all possible λ-operations, which takes time O(nλ) for λ-reversals and
O(nλ2) for λ-transpositions. Furthermore, it takes O(λ) time to calculate the
entropy’s variation. Therefore, testing if a permutation is normal takes time
O(nλ3). In the “else” command, we must first obtain positions i and j as desired,
which takes time O(n). Now consider obtaining φ(π, i, j) with λ-transpositions.
By Lemma 13, we can use at most 
(j − i)/(λ − 1)� + 
(j − i − 1)/(λ − 1)�
such operations, each one of size at most λ, which means the time to perform
each transposition is O(λ) and so the total time to obtain φ(π, i, j) is at most
O(λ)

(
j−i+1
λ−1 + j−i

λ−1

)
≤ O(λ)2 n

λ−1 = O(nλ), since λ ≥ 2. Similarly, the time
to obtain φ(π, i, j) with reversals is also O(nλ). Therefore, the total time of
GreedyAlgorithm is O(n3λ3) for any of the problems we are considering.
Note that this is polynomial because λ = O(n).

4 Conclusion

We have presented six approximation algorithms for the problems of sorting
permutations by λ-reversals and/or λ-transpositions, being 2 algorithms for each
problem we considered, where one of them works better when we have large
values of λ and the other one works better when we have small values of λ.
We are currently extending these results to signed permutations, in which each
element is associated with a sign ‘+’ or ‘−’. These permutations are used to
represent the genomes when the orientation of the genes is known, and so the
sign of each element is used to indicate this.
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Abstract. A novel algorithm to find all sufficiently long repeating
nucleotide substrings in one or several DNA sequences is proposed. The
algorithm searches approximately matching strings very fast with given
level of local error density. Some biological applications illustrate the
method.

Keywords: Multiple sequence alignment · Edit distance · Gauge
Repeat · Insertion · Deletion · Mutation

1 Introduction

The search of common strings in two or several symbol sequences makes a core in
bioinformatics and up-to-date molecular biology [1,7]. The problem is far from
a completion, in spite of a long story [2,9,12]. In general, the problem is the
following: given sequences T1,T2, . . .,Tk of symbols from some finite alphabet,
find all possible common substrings (i.e. coherent subsequences) occurred in the
sequences Ti, maybe, with some mismatches. Further we shall concentrate on
the four-letter alphabet ℵ = {A,C,G,T}.

Previously, a new algorithm for the fast search of common substrings in
two or several symbol sequences had been reported [15]. The algorithm was
originally implemented for the exact matching strings search, while it allows
some extensions for error tolerant search of substrings. The algorithm [15] for
search of exactly matching substrings is much faster compared to the brute force
search methods; it is based on a simple idea of rarefied dictionaries and uses the
classical Vernier scale, cf. for example [16].

Here we provide the modification of Vernier gauge algorithm [15] that is
extended for the case of errors of deletion and insertion types. Theoretical back-
ground of the algorithm correctness is provided, as well as some computational
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results showing its high speed and efficiency, for the case of genetic sequences
analysis. The modification allows all three types of errors (these are mutation,
insertion and deletion). It should be said that the most popular BLAST engine
[2,3], and other up-to-date methods (see, e.g. [5,10]) may also resolve the prob-
lem. The point is that any homology search consists (roughly) of two steps: the
former is seeds search of exactly matching k-mers (executed over the complete
dictionary), and the latter is the expansion of them. The method proposed here
does not, yet, compete to BLAST in expansion procedure; our method takes an
advantage over BLAST in the speed of the seeds search. The advantage results
from the rarefication of dictionary of k-mers, thus accelerating the search pro-
cedure. Also, an additional advantage of our seeds search algorithm consists
in significantly reduced number of false (not expandable) matching seeds, and
giving a possibility to increase the length k of k-mers. Another important advan-
tageous issue of the proposed algorithm is that it allows mismatches and indels
in seed search, unlike classic BLAST. We found 30 times acceleration, in our
experiments, at the search step.

Let us introduce some notions and definitions; T1, T2, . . . , Tk make the set
of sequences from four-letter alphabet ℵ = {A,C,G,T}. Sj , 1 ≤ j ≤ k are the
“common” parts (substrings), so that Sj ⊂ Tj , and lj = l(Sj) = |Sj |, 1 ≤ j ≤ k
are the lengths of those “common” substrings. The substrings Sj ⊂ Tj may not
be identical, and if it happens, then they must be approximately matching; the
exact definition of this approximate matching see below in Sect. 3 (we adopt the
classical definition of edit distance to measure substring mismatching [8,11]).
Similarly, they may vary in length, while the variation must not be too large.
Frequency dictionary W(q,t) is the set of the substrings of the fixed length q
within a sequence T so, that the window of the given length q moves along the
sequence T with the step t; see details in [4,13–15].

Section 2 briefly presents the previous version of our algorithm targeted to
search the exactly matching substrings. Section 3 provides the description of the
new algorithm feasible for any type of mismatches in the strings under com-
parison as well, as necessary theoretical issues with rigorous estimations for
algorithm parameters. Finally, Sect. 4 shows some computational experiments
proving the efficiency and feasibility of the method and its implementation.
Everywhere below, the classical BLAST seeds are called tags.

2 Fast Vernier Search Algorithm for Exact Matching

For better explanation of our new algorithm of approximate matching search,
we briefly consider the algorithm of the exact matching search presented in [15].
This is how the method works. Suppose, there are two sequences T1 and T2 each
having the common substring S (here S is the same in two sequences), and N
is the lower bound of the expected length of S.

Step 1. Given the target length bound N , choose as great k, as possible and
m (in practice m varies from 20 to 50, see details in [15]) such that N ≥
k(k − 1) + m − 1.
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Step 2. Develop two dictionaries W
[1]
m,k and W

[2]
m,k−1, over sequences T1 and T2,

respectively. Any substring of the length m in these dictionaries is a tag,
we also keep the positions of the tags in the dictionaries. This construction
implements Vernier gauge algorithm described in detail in [15].

Step 3. Find identical tags in these two dictionaries W 1
m,k and W 2

m,k−1 (for
example using lexicographic sorting) and return the common tags (including
positions); if the common substring S exists, so that S ⊂ T1 and S ⊂ T2,
and k is chosen in proper way (as described above), then there must be such
identical tag W 1

m,k and W 2
m,k−1 (see Theorem 1 in [15]).

Step 4. Starting from the positions of these common tags in Ti, expand the
tag substrings left and right letter by letter, checking every expansion step
whether two expansions still coincide.

The details of that procedure see in [15]. It should be stressed that the algorithm
presented in [15] supports the error tolerant search, while mutations only are
permitted. Below we generalize it for the case of insertion/deletion errors.

3 New Vernier Gauge Algorithm for Insertion/Deletion
Errors

Here we introduce a new method to search approximately matching repeating
substrings of the length ≥ N in a symbol sequence T (alternatively, approx-
imately matching substrings in several symbol sequences Ti) generalizing the
Vernier gauge approach described in Sect. 2. The key idea (similar to that in
[15]) is to change the analysis of a complete dictionary Wm,1 (where each sym-
bol in a sequence T gives a start to a tag, i. e. substring of the length m) to the
analysis of appropriately rarefied dictionary Wm,ts with variable step ts yielding
significantly less number of entries. First let us fix the necessary definitions.

Definition 1. Given two strings S1, S2 we call their edit transformation a fixed
series of one-symbol mutations (substitutes of some symbol by another from the
same alphabet), symbol deletions and symbol insertions transforming S1 into S2

and having minimal possible total number of mutations, deletions and insertions
(this total number is the standard edit distance [8,11]).

As soon, as the edit transformation from S1 into S2 is fixed, we can keep track
of the positions in S1 of the symbols unchanged by the edit transformation; it
results in a partial mapping from S1 to S2 that yields a correspondence of such
unchanged symbols in S1 and S2. Let us call this correspondence a matching
map MS1,S2 : S1 � S2. This is a partial mapping from S1 to S2 and from S2

to S1. An example of such matching map is shown in Fig. 1.
Sometimes the edit transformation mapping S1 to S2 may have very long

exactly matching substrings and all deletions/insertions/mutations may be con-
centrated in some relatively short parts of the substrings S1, S2. Thus, one can
not distinguish between this case and the case where one has in fact two pairs
of (approximately) matching substrings S11 ⊂ S1, S12 ⊂ S2 and S21 ⊂ S1,
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Fig. 1. A matching map. Bold letters in boxes are the deletions/insertions; the dashed
line shows mutation

S22 ⊂ S2 with zero (or very small) edit distance that are occasionally close to
each other. To avoid such questionable situations we constrain the edit trans-
formations: suppose that the local density of edits is bounded from below by a
prescribed non-negative number δ < 1 (δ = 0 means exact matching):

Definition 2. Given two approximately matching strings S1, S2, the corre-
sponding matching map MS1,S2 : S1 � S2 and an integer m, we call the local
error m-density of this matching map the minimal non-negative number δ < 1
such that any substring s ⊂ S1 of length at least m and any MS1,S2-corresponding
substring ŝ ⊂ S2 has at most d = δ · length(s) mismatches (mutations, deletions,
insertions).

Note that if the substring s ⊂ S1 starts with a symbol (or several symbols)
deleted/inserted in the corresponding edit transformation from S1 into S2, the
MS1,S2-corresponding substring ŝ ⊂ S2 may be determined in a number of ways;
we check all such possible ŝ for the local error m-density bound δ. In fact this
means the following obvious fact: if deletions/insertions are concentrated around
some position, the rest of the m-neighborhood of this location must have much
lower m-density of errors.

3.1 General Description of the Problem of Vernier Search of Long
Repeats with Bounded Local Error Density. Modified Vernier
Gauge and the Idea of the Algorithm

The general problem solved by our new algorithms is:

Given parameters N (an integer) and δ (a non-negative real number,
δ < 0.5), find all couples of substrings Sk of the length at least N in
one or several symbol sequences Ti that differ at most by the edit
distance d = δ · max(length(Sk)), with local error v-density ≤ δ, for some
convenient v.

The idea to search approximately matching substrings (including deletions
and insertions) using relatively short tags and appropriately rarefied dictionaries
(we call it Vernier gauges on Ti) is based on the following simple construction.
Suppose we have two symbol sequences T1, T2 with two approximately matching
substrings S1 ⊂ T1, S2 ⊂ T2 of lengths ≥ N with local error m-density ≤ δ.
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Put (virtual) marks on over the string T1 with step k (we choose k = �√N�
for simplicity) as shown in Fig. 2 similar to the standard Vernier gauge described
in Sect. 2. Then put k + 1 (virtual) marks with step 1 in T2 starting at position
1, then another batch of k+1 marks with step 1 starting at position N −k, then
another batch of k + 1 marks with step 1 starting at position 2(N − k − 1) + 1,
etc., as shown on Fig. 2.

Fig. 2. Positions of tags for our algorithm of the approximate substring matching

Now we can form the rarefied dictionaries: ˜W
[1]
m is built choosing substrings

of length m (such substring are called tags) starting at the marked positions in
the first string T1 (this is in fact W

[1]
m,k with constant step k) and the second

dictionary ˜W
[2]
m with variable step, choosing substrings of length m starting at

the marked positions in the second string T2 (in fact portions of the complete
dictionary W

[1]
m,1 with step 1, but with only (k+1) consecutive positions, repeated

with step N − k − 1 between such portions). The sizes of these dictionaries are
approximately k = �√N� times less than the complete dictionaries W

[1]
m,1, W

[2]
m,1.

We see that for sure at least one complete batch of k + 1 marks falls inside
S2 ⊂ T2. Then the matching map MS1,S2 : S1 � S2 will transfer this batch into
a part of S1 that will include at least one mark in T1 (they were taken with
step k) provided the corresponding marked position was not deleted by the edit
transformation or it will be very close to such a mark if deletions/insertions
were situated at positions close to the marked one in T1. Then the respective
tags in T1, T2 (entries in ˜W

[1]
m , ˜W

[2]
m ) will approximately match with local error

k-density δ or nearby. So using some appropriate method of search for approx-
imately matching entries in ˜W

[1]
m , ˜W

[2]
m (for example the method described in

[6]) we can find such matching seed tags for further expansion into the complete
approximately matching substrings S1, S2 in the way described in more detail
below.

Now we give more rigorous description of the process of tag selection, the
relation between the parameters N , k, m and δ and prove correctness of the first
stage (development of the dictionaries ˜W

[1]
m , ˜W

[2]
m with approximately matching

tags if there are some approximately matching Si ⊂ Ti).
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Theorem 1. If there are approximately matching substrings S1 ⊂ T1, S2 ⊂ T2

of the length N or more with local error v-density δ, v = min(m, k), then approx-
imately matching tags (substrings of length m) can be found in the dictionary
˜W

[1]
m (developed using constant step k for the sequence T1) and in the dictionary

˜W
[2]
m (developed from T2 according to the informal description above and the rig-

orous description below) respectively, with local error m-density δ (i.e. with edit
distance at most d = δ · m between the approximately matching tags) provided
that N ≥ 2(k + 1) · (1 + δ) + m − 1.

Proof. We fix the matching map MS1,S2 : S1 � S2, the prescribed local error
v-density δ, some integer k and the tag length m. Next we form the first dictio-
nary ˜W

[1]
m = W

[1]
m,k as described above. The second dictionary should be formed

taking into account the local error m-density δ and possible deletion/insertion
errors: we mark batches of (k +1) · (1+ δ) consecutive positions (instead of k +1
consecutive positions taken above for simplicity) with N −2(k+1)·(1+δ)−m+1
steps between the starting marks of each batch (instead of N −k −1 steps taken
above for simplicity).

Then, let us cut off (virtually, for simplicity of the proof) the last m − 1
symbols of the substrings S1, S2 and look only at the starting positions of the
tags of the dictionaries ˜W

[i]
m in such truncated Si. Obviously at least one complete

batch of (k + 1) · (1 + δ) marks falls inside this truncated S2 ⊂ T2 and the
matching map MS1,S2 : S1 � S2 will transfer this batch as well as the tags
of length m (from the original non-truncated S2) into a part of S1 that will
include at least one mark in T1 (taken with step k) if the corresponding marked
position in S1 was not deleted by the edit transformation. In this favorable case
we have the corresponding tag from the first dictionary ˜W

[1]
m that differs from

the corresponding tag in ˜W
[2]
m at most by the edit distance d = δ · m and the

statement of the theorem is proved.
In the opposite case when the marked position in T1 was deleted by the

matching map, we still have a guarantee (cf. the explanation after the Defini-
tion 2) that the tag in ˜W

[1]
m starting at the deleted position still has the edit

distance not more than d = δ · m from the tag from ˜W
[2]
m starting at one of the

positions that are close to the deleted position after application of the matching
map MS1,S2 : S1 � S2. The theorem is proved.

Note that the bound N ≥ 2(k + 1) · (1 + δ) + m − 1 given in the statement
of the Theorem is formally much smaller than the bound N ≥ k(k − 1) + m − 1
of Theorem 1 in [15]. This means in fact more freedom in the choice of k in
our new algorithm compared to the classical Vernier scale of [15]. In practice
one still has a reasonable choice k = �√N�: if one chooses a larger k then the
second dictionary ˜W

[2]
m will be too large; vice versa smaller k yields large ˜W

[1]
m

(see discussion in Sect. 5).
In order to find approximately matching tags with bounded error density in

the constructed dictionaries one may apply different techniques; in our current
implementation the free software [6] was used (cf. Subsect. 4.1). As soon as all
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approximately matching tags in the dictionaries ˜W
[i]
m are found, the next steps

of our algorithm are similar to that in [15]:

– expand the found matching tags using their positions in Ti: consecutively
compare the symbols on the right and on the left of the found tags in T1

and T2 counting non-matching symbols as mutations as well as detected dele-
tions/insertions (one should again use some additional module to detect them)
as far as the (local) error density does not exceed the given bound δ, stopping
when this error density exceeds δ.

– If the length of the expanded tag is at least N in both T1 and T2, add it to
the list of successful expansions for further output after all identical tag pairs
in ˜W

[i]
m are expanded.

Note that the choice of the parameter m is essential in our approach, it was
discussed in [15].

3.2 The Algorithm

Step 1. Given the target length N and δ, choose proper k and m such that
N ≥ 2(k + 1) · (1 + δ) + m − 1.

Step 2. If we have two DNA sequences to analyze, develop the dictionaries ˜W
[1]
m

and ˜W
[2]
m as described in Subsect. 3.1. Otherwise (for one or more than two

DNA sequences if we want to find approximately matching substrings inside
symbol sequences as well) develop for each DNA sequence a dictionary with
variable step: first take tags of length m starting at positions 1, k+1, 2k+1,
. . . and then add to this dictionary batches of (k+1) ·(1+δ) consecutive tags
of length m, the batches start at positions 1, N − 2(k + 1) · (1 + δ) − m + 1,
2(N − 2(k + 1) · (1 + δ) − m) + 1, etc. Add the positions of the selected tags
into the dictionaries for further expansion.

Step 3. Check whether there are approximately matching entry tags (with the
given upper bound on the local error m-density) in the dictionaries using an
appropriate external algorithm.

Step 4.Expand the found repeated tags (using their positions stored in the dic-
tionaries) as described in Sect. 3.1.

Step 5. List all tagged expansions with their positions in Ti and output the list.

More Technical Details. Finding approximately matching tags on Step 3. In
our current implementation we use the free software [6]. In fact there is a variety
of algorithms and techniques to do this approximate matching search; one may
vary the algorithm used on this step according to the goals of the particular
experiment (cf. Sect. 5).

Expansion strategies on Step 4. If δ = 0, then simple exact matching search and
expansion method described in [15] should be applied. If δ > 0, then continue
expansion even if the compared symbols around it violate the constraint provided
by the local or global error level d; here different strategies for expansion may
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be useful. For example, one may free error density level for expansion or count,
but limit the total number errors globally and/or their global density relative
to the total length of the tagged expansions so far (not stopping as soon as the
local error m-density will be exceeded).

Treatment of symbols N, W etc. In the currently available DNA databases one
encounters results with non-exact recognition of nucleotides, they are marked
by letters outside of the standard nucleotide alphabet ℵ = {A,C,G,T}. Several
strategies may be applied depending on the problem solved by the researcher; a
discussion in [15] gives some guidelines.

4 Experimental Results

To evaluate the efficiency of the proposed algorithm, we have carried out several
computational experiments.

To test the most complicated Step 3 (Sect. 3.2) two types of computational
experiments have been carried out with the software implementation of the algo-
rithm described in [6]. The first one (Sect. 4.1, Experiment 1) addresses the ques-
tion of feasibility of the method with some freely distributed software, and on
estimation of its run time, for some typical sequences. The main purpose of this
experiment is to evaluate the total run time of the program, both for the nec-
essary hash-table implementation and compression, and for a single the query
time. The second experiment (Sect. 4.1, Experiment 2) addresses the question
towards the feasibility and efficiency of the used software for batch mode queries.
All experiments showed reasonable results, proving the feasibility of the method,
and usability of the freely distributed software [6].

Section 4.2 shows the results of the expansion Step 4 of our new algorithm.

4.1 Error Tolerant Search

To search the common tags with minor mismatches, we used free software http://
code.google.com/p/compact-approximate-string-dictionary/ by Chegrane and
Belazzougui [6]. It provides the search of a given string over a given ensem-
ble (a dictionary), with two or less mismatches. A symbol deletion, a symbol
insertion, or a symbol mutation are the mismatches allowed by this software. To
get the solution, software designers changed the exact hashing for linear probing,
eliminated all empty entries in hash-table, and used the direct string comparison.
It should be noted that the limitation of two or less mismatches in the search is
not a matter of principle; a large number of other approaches without this limi-
tation are known, we simply used the freely available and ready-to-use software
[6], other available approaches will remove this limitation, when implemented.

Experiment 1. Single Query Processing. To test the single query time,
and the memory necessary to process a query, we used the following data. The

http://code.google.com/p/compact-approximate-string-dictionary/
http://code.google.com/p/compact-approximate-string-dictionary/
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first original symbol sequence was the DNA sequence of the XIVth human chro-
mosome. Two dictionaries have been developed over this sequence following the
algorithm described in Sects. 3.1 and 3.2; the first used tags of length m = 50,
and the second used tags of length m = 30 (with smaller step k). The first
dictionary had 1.7×103 entries (tags), and the second one had 1.7×106 entries.

At the first run, the query CTGAATCAACCAACCACCTGAAGCTGTCCC was
used, with two mutations of symbols. The run time was 80.341 s, and the soft-
ware returns 34 strings with two mismatches. Neither exact match, nor a single
mismatch return has been obtained. The hash-table implementation and its com-
pression took 80.071 s, the exact match search took 0.241 s, a single mismatch
search took 0.241 s, and the search with two mismatches took 0.029 s.

At the second run, we used the same string from the dictionary implementing
a single insertion, and a single deletion in it. The rum time was 93.458 s, and
the software returned two strings differing in two mismatches. Again, neither
exact matching, nor a single mismatch return had come back. The hash-table
implementation and compression took as long, as 93.022 s, the search for exact
match took 0.065 s, and the search with two mismatches took 0.072 s. Slightly
more than 3 Gb of memory have been allocated, for the task execution.

For the dictionaries comprising the 50 symbols long string two runs have
been executed, also. We used the real tag

CAAGCCACCATACCCAGACATGATGGTCTTTGAAGAAGCGGCCAGTGAAG

with two mutations, to query. The run time was 17.617 s, and the software
returned the original string, indicating two mismatches. The hash-table imple-
mentation and compression took 17.600 s, the exact matching search took 0.000 s,
a single mismatch search took 0.001 s, and two mismatches search took 0.016 s.
Similarly, if the string with one deletion and one insertion has been queried,
the run time was 19.386 s, and a string has been returned having a mismatch.
The software returned 67 strings with two mismatches. The hash-table imple-
mentation and compression took 19.341 s, while the exact matching search took
0.000 s, a single mismatch search took 0.004 s, and two mismatches search took
0.041 s. About 0.5 Gb of memory has been allocated, for the task execution.

Experiment 2. Batch Mode Query Processing. We searched for approxi-
mately matching tags from the same dictionary with one or two mismatches in
batch mode constructing the necessary hash-table implementation and compres-
sion and then running a loop of queries for search of approximately matching tags
giving consecutively all tags from the dictionary. The queries returned 528 enti-
ties with a single mismatch, and 55 302 double-mismatched entities, respectively.
The first stage (hash-table implementation and compression) took 17.453 s, while
the batch search for single mismatches took 6.906 s, and for double-mismatch
search took 497.070 s.

Also, we used two bacterial genomes to develop the dictionaries (these are
Streptomyces bingchenggensis BCW-1, AC CP002047 in EMBL–bank, 11 936 683
nucleotides long, and Myxococcus stipitatus DSM 14675, AC CP004025 in
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EMBL–bank, 10 350 586 nucleotides long). Two dictionaries have been devel-
oped, both comprising the tags of length 20, for each genome. All tags were
labeled with their position number, within the sequence. The dictionaries enlist
119 376 and 109 568 entries, respectively. We used the first dictionary to build
the hash-table implementation and batch queries from the second dictionary,
looking for approximately matching substrings between the two genomes. For
these dictionaries, after batch queries, a few exact matches has been found; 36
single mismatches and 802 approximate matches with double mismatches have
been found. Total run time was 36.612 s, including 2.056 s for hash-table imple-
mentation and compression, and 34.566 s for the batch search.

4.2 Expansion of the Found Approximately Matching Tags

First we briefly list the results of the Step 4 (Sect. 3.2) for the bacterial genomes
Streptomyces bingchenggensis and Myxococcus stipitatus. After expansion, we
got 4 exactly matching substrings of lengths 52, 54 and 67 (two matching pairs
for this length). Using all found approximately matching tags and setting the
global error density bound to δ = 0.25 we got more than 40 approximately
matching substrings, of the length 50 and more, up to the length 1006.

Much more interesting results were obtained in another experiment for the
DNA sequence of the XIVth human chromosome. After performing Steps 1 and
2 with N = 1000, k = 30, m = 20 and finding the approximately matching
dictionary tags with not more than 2 errors, we got 4,079,978 matching pairs of
tags without errors, 5,050,238 matching pairs of tags with 1 error and 17,881,553
matching pairs of tags with 2 errors (mostly ins/dels) thus 27,011,769 approx-
imately matching pairs in total. Expanding the found pairs of tags (seeds in
the traditional terminology) with the error tolerance δ = 0.3 we got 385,082
expansions of length 1000 or more (the chosen parameter N); among them only
81,204 are in fact different pairs (i.e. many of them were found several times,
especially the long ones). It should be noted that we obtain matching pairs of
substrings of the target length (1000 or more nucleotides) and many substrings
are encountered several times (with the given error tolerance), so after the sim-
ple clustering of the found pairs w.r.t. the starting points and the lengths of the
matching pairs we got approximately 4 times less number of different (approxi-
mately) repeating substrings; so the average rate of repeats of a given substring
of length 1000 or more is 4. Certainly a number of well-known phenomena were
observed: periodic substrings (long runs), a lot of repeats near the end of the
XIVth chromosome, etc. Practically all found approximately matching pairs of
substrings of length 10,000 and more are in fact long periodic substrings; only
two of them were not close to the right end of the chromosome.

Compared to the results obtained for the same XIVth human chromosome by
the previous version of the algorithm described in [15] we conclude that the num-
ber of approximately matching substrings of the target length 1000 or mire now
is dramatically larger: the method of [15] found only 19,946 repeating (exactly
matching) tags and only a few hundreds of long repeats (approximate matches
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with only mutations allowed) of lengths 1000 or more were found after expan-
sion; this is due to the inadequacy of the method of [15] for long repeats with
insertions and deletions. The approach presented here as we see from the previ-
ous experiment was much more successful in finding long repeats with insertions
and deletions permitted. As the Theorem1 proves, the current algorithm finds
all such approximately matching long repeats.

The above experiments show that the modified Vernier algorithm proposed
in this paper is feasible and can be used in practice.

5 Discussion and Conclusion

In this paper we present basically new algorithm for fast search of approximately
matching substrings; the previous version described in [15] addressed the exact
matching string search (with minor mismatches). The rarefaction of dictionaries
typical of both algorithms brings an advantage in the speed of algorithm execu-
tion, since it skips a huge number of comparisons and checks for coincidence of
substrings (that is redundant, from the point of view of the search of a common
string). The results shown in Sect. 4 demonstrate a 30-fold and even a 100-fold
acceleration, on the seeds search step. This is a direct consequence of introduc-
tion of the parameter N in our algorithm (minimal length of long repeats to be
found).

An implementation of an approximate search heavily depends on the afford-
able level of errors to be set up. The method description provided in Sect. 3.2
fixes the parameter that is an average local permissible errors level (that is
parameter δ in Sect. 3.1) in substrings under comparison. Formally, one may
expect that the parameter may be set up almost arbitrary, and the method still
works correctly. Formal correctness yet does not make sense, if δ is great enough:
indeed, any two strings may be claimed to be equal, if an arbitrary number of
mismatches is allowed. In our paper, we choose the parameter δ < 0.5. Further
growth of this parameter may yield any two substrings to be indistinguishable.

We believe that the proposed algorithm with proper choice of parameter
(k, m and δ) would be highly effective for usage in large genomic databases.
In this respect special attention should be paid to the appropriate choice of
the parameters N , k, m and δ of the algorithm proposed. The target length N
should be obviously chosen according to the minimal length of long repeats to
be found; m = 20 or m = 30 is usually a good choice depending on the length
of genomes to be analyzed. δ is chosen according to the expected error density
(δ = 0.3 was good for expansion in our experiments). The parameter k (the
step for the dictionary creations) is more delicate; k =

√
N may be a reasonable

choice for analysis of two DNA sequences of approximately the same length,
this maximally reduces the dictionary sizes (see the discussion after the end of
the proof of Theorem 1). On the contrary, if one would like to improve speed
of seeds search in large DNA databases and reduce query time for search of
similar genomes to a newly sequenced one, one should consider to choose k only
a bit smaller than N , this will result in maximal reduction of the dictionary
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constructed for the whole DNA database and in fact requires to compose a
complete dictionary of m-mers for the DNA sequence sent as the request to the
database. More experimentation will be necessary to adapt the parameters of
our algorithm to the typical DNA sequences of a given database.
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S., Vega-Rodŕıguez, M.A. (eds.) Algorithms for Computational Biology. LNCS,
vol. 9702, pp. 171–182. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
38827-4 14

16. https://en.wikipedia.org/wiki/Vernier scale

http://arxiv.org/abs/1312.4678v2
https://doi.org/10.1007/978-3-319-38827-4_14
https://doi.org/10.1007/978-3-319-38827-4_14
https://en.wikipedia.org/wiki/Vernier_scale


Systems Biology and Other Biological
Processes



Fixed Parameter Algorithms
and Hardness of Approximation Results

for the Structural Target
Controllability Problem

Eugen Czeizler1,4(B), Alexandru Popa2,3, and Victor Popescu1

1 Department of Computer Science, Åbo Akademi University,
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1 Introduction

The network control research field has been investigated for more than 50 years,
with some of its algorithmic questions only recently being able to be solved. The
general topic is concerned with the optimization of output intervention needed
in order to drive a linear, time-invariant, dynamical system from an arbitrary
initial state, to a precise final configuration, in finite time. Although many real-
life dynamical systems tend not to be linear, most of these systems are known
to be well approximated by such dynamics, or could behave as such in specific
conditions, such as at their steady state. Although inquiries into this field have
been initiated in the 60’s and 70’s, see e.g. the works in [10,13,18], only in
2011 Liu et al. [14] succeeded to demonstrate that the algorithmic complexity
of the full network control optimization problem is actually of a low polynomial
complexity, being reduced to computing the maximum matching in a directed
graph. The result was received with a lot of interest, and sparked a renewal
of the field. Since then, the network control theory and its newly discovered
results have been successively applied to the study of control over power grid
networks [9], of bio-medical signaling processes [8,11,21], and even the control
of social networks [12,14].

Driven by this new insight into the field as well as by its new applications
into the current world of Big (or just Large) Data, researchers have realized that
full control can sometime be still too expensive. For example, the network con-
trol theory has been recently applied in the case of cancer-related bio-medical
networks [8,11], with the aim of using known drugs in order to drive the system
towards a more favorable state. Thus, researchers aimed at using the protein
signaling network in order to drive cancerous cells towards apoptosis, i.e., pro-
grammed cell death. However, the full controllability of sparse homogeneous
networks, such being many bio-medical networks (e.g. gene signaling networks,
metabolic networks, gene regulating networks, etc.) requires a lot of effort, some-
times needing a direct outside control over up to 70% of the initial nodes of the
network [11,14]. As in these cases an outside control equivalents to the use of spe-
cific drugs, and since these protein networks contain up to 2–3 thousands nodes, a
70% direct outside control would imply an un-viable solution. The key to solving
this problem came in the form of a variant of the initial control-theory problem,
namely that of target-control. Instead of enforcing the control of the entire net-
work, one would desire to optimize the outside intervention needed to control
only a well-specified target, i.e., a subset of the initial network. This proved to be
particularly well-fitted with the study of protein signaling networks, as recent
research has emphasized the existence of disease-specific essential genes, i.e.,
disease-specific sets of genes/proteins which, if knocked down, would drive the
corresponding cells to apoptosis [1,22,23]. As is the case, new formulations lead
to new problems. The Structural Target Control (optimization) problem [3,7]
asks to provide an optimum amount of outside intervention in order to drive
a linear dynamical system from any initial state to a desired final state of the
chosen targets.
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Contrary to the full network control case, the Structural Target Controlla-
bility problem was proved to be NP-hard [3]. Several heuristic approaches have
been implemented and applied to the study of bio-medical networks [3,7,8,11].
However, no detailed analysis of the hardness of approximation have been devel-
oped for this problem.

Assuming the widely believed conjecture, that P �= NP , no polynomial time
exact algorithms exist for any NP-hard problems. Thus, there are several alter-
native methods to tackle the difficulty of these problems, such as approximation
algorithms and fixed parameter algorithms. Approximation algorithms run in
polynomial time and provide a suboptimal solution. Nevertheless, unlike heuris-
tic algorithms, approximation algorithms guarantee that on every input instance
the solution they return is within a certain factor of the optimal solution. For
example, a 2-approximation algorithm for a minimization problem, guarantees
that on every input, the solution returned is at most twice the size of the optimal
solution on that input. However, some problems, such as the one studied in this
paper, might not have approximation algorithms with a constant approximation
factor, unless P = NP . See [20] for a textbook on approximation algorithms.

In practice instances, many problems have parameters that are typically
much smaller than the input size. We can exploit the existence of these parame-
ters in order to design faster algorithms for these problems. Parameterized com-
plexity [4,6] aims to classify problems according to various parameters that are
independent of the size of the input. A fixed parameter algorithm runs in time
f(k)O(nc), where, n is the input size, c is a constant, and k is the size of a
parameter (independent of the input size). A problem is termed fixed parameter
tractable (FPT) if it has an FPT algorithm.

In this paper we show that the Structural Target Controllability problem is
fixed parameter tractable when parameterized by the number of target nodes.
Also, if a second parameter is allowed, known in practice to have significantly
lower values, the resulted fixed parameter algorithm has a considerably improved
complexity. Finally, we also formally prove that the Structural Target Control-
lability problem is hard to approximate at a factor better than O(log n).

2 Notation and Preliminaries

A linear, time invariant dynamical system (ltis) is a system

dx(t)
dt

= Ax(t) (1)

where x(t) = (x1(t), ..., xn(t))T is the n-dimensional vector describing the sys-
tem’s state at time t, and A ∈ Rn×n is the time-invariant state transition matrix ;
the entry ai,j of matrix A describes the weight of the influence of node j over
node i. The elements in x are called the variables of the system; we denote with
X the set of these variables.

The external control over the system is performed through the action of
m external driver nodes, u(t) = (u1(t), ..., um(t))T . Their influence over the n
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variables of the system is described by the time-invariant input matrix B ∈
Rn×m; then the ltis (1), now denoted as (A,B), becomes:

dx(t)
dt

= Ax(t) + Bu(t) (2)

Let T ⊆ X, T = {t1, ..., tk} for some k ≤ n be a subset of a particular
interest for the variables X, a.k.a., the target set. We say that the ltis (A,B)
is T -target controllable if for any initial state of the variables in X and any
desired numerical setup of the target variables, there exists a time-dependent
input vector u(t) = (u1(t), ..., um(t))T that can drive the system in finite time
from its initial state to a state in which the target variables are in the desired
final numerical setup. We associate to the k-target set T the characteristic matrix
CT ∈ {0, 1}k×n where CT (i, j) = 1 iff i = j and i, j ∈ T (otherwise, CT (i, j) = 0),
i.e., CT is the identity matrix restricted to the subset T . It is known, see e.g. [7],
that a system (A,B) is T -target controllable if and only if

rankOC(A,B,CT ) = |T | (3)

where the matrix OC(A,B,CT ) := [CTB | CTAB | CTA2B | ... | CTAn−1B] is
called the controllability matrix.

In the particular case when the target is the entire n variable set X,
the above condition translates to the well known Kalman’s condition for full
controllability [10], i.e., an ltis (A,B) is (fully) controllable if and only if
rank[B | AB | A2B | ... | An−1B] = n.

The notion of target controllability and the focus of imposing a controlling
effect only on a subset of the variables of the system, has been introduced and
studied only recently, see e.g., [3,7,8,11]. However, this notion can be seen as a
special case of output controllability, a topic which received considerate attention
in the 80’s and 90’s, see. e.g. the works of Poljak and Murota [15–17].

Although the control methodology seem to be very dependent on the numer-
ical setup of the dynamical system of our choice, i.e., the numerical setup
of the associated transition matrix A, it turns out that this is not the case.
We say that an ltis (A,B) is T -structurally target controllable (with respect
to a given size-k target set T ) if there exists a time-dependent input vector
u(t) = (u1(t), ..., um(t))T and a numerical setup for the non-zero values within
the matrices A and B, that can drive the state of the target nodes to any desired
numerical setup in finite time. A deep result of [13,18] shows that a system is
structurally target controllable if and only if it is target controllable for all struc-
turally equivalent matrices A and B, except a so-called “thin” set of matrices;
we say that two matrices are structurally equivalent iff they differ only on their
non-zero values.1 Thus, the existence of “a good choice” for the numerical param-
eters in A and B is (almost) equivalent to picking up any numerical values for
these parameters. According to Eq. (3) above, for a k-sized target T , a system
1 It is beyond the goal of this paper to define the topological notion of thin sets; we

only give here the intuition that such sets consist of isolated cases that may be easily
replaced with nearby favorable cases.
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(A,B) is structurally T -target controllable if and only if there exist values for
the non-zero entries in A, B such that rankOC(A,B,CT ) = |T | = k.

It is known, see e.g. [16,17], that the structural controllability problem has
a counterpart formulation in terms of graphs/networks. Given an LTIS (A,B),
we associate to it the graph G(A,B) = (V,E) where the n variables of the sys-
tem {x1, ..., xn} and the size-m external controller {u1, ..., um} are the nodes of
the graphs, while directed edges correspond to the non-zero values in the state
transition matrix and input matrix, respectively. That is, there exists a directed
edge from the node corresponding to variable xi to the node corresponding to
xj if and only if A(xj , xi) �= 0.2 Similarly, there exists a directed edge from ui to
xj if and only if B(xj , ui) �= 0. The nodes {u1, ..., um} are called driver nodes,
while the nodes xj such that there exists i with B(xj , ui) �= 0 are called the
driven nodes of the network. In the literature, the driver and the driven nodes
are sometimes known as input and controlled nodes [7,14]. To a rough under-
standing, the difference between driver and driven nodes is as follows. The set
of driver nodes is describing the complexity of an outside controller, assuming
this controller can interact/influence independently several well specified nodes
of the network. Meanwhile, the set of driven nodes provides exactly the exact
collection of network nodes that are used in order to ultimately control the entire
set of targets. From an algebraic perspective, the number of driver nodes is given
by the number of (nonzero) columns of the control matrix B, while the number
of driven nodes is given by the number of nonzero rows of B. It was shown in [3]
that from a practical perspective, it is more meaningful to analyze the control-
lability optimization problem from the point of view of minimizing the number
of driven nodes. This is why in this research we focus on this particular formu-
lation of the optimization problem. Thus, we impose that each driver node is
connected to exactly one driven node, i.e., the input matrix B contains exactly
one non-zero element on each column.

Given an LTIS (A,B) and its associated graph G(A,B) = (V,E), the n vari-
ables of the system are (all) structurally controllable from the m-sized input
controller u (and control matrix B) if and only if we can select a set of n
directed paths from driver nodes as starting points (we denote this set as U)
to each of the network nodes, as ending points, such that no two paths would
intersect at the same distance d from their end points. The above formulation
is closely related to the concepts of linking and dynamic graph as investigated
in [16,17]. In case of the target controllability problem, for a given target set
T = {t1, t2, . . . , tk} ⊆ X, the above graph formulation is naturally adjusted as
follows. We introduce k new output nodes CT = {c1, c2, . . . , ck} (also denoted as
C when clear from the context) and edges (ti, ci), for all 1 ≤ i ≤ k. Note that
the output matrix CT describes exactly the above wiring. Now, the objective
becomes to find a path family containing k directed paths, connecting all the
driver nodes (as start-points) to the output nodes (as end-points), such that
no two paths would intersect at the same distance d from their end-points. In
contrast to the case of full control, the graph condition is only necessary for

2 We implicitly interchange the usage of xi and i for matrix indices.
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target control, but not sufficient [16]. However, as investigated in [3], it is only
in very restrictive cases where the existence of such a path family would not
translate into the algebraic definition of structural control. Thus, from all prac-
tical purposes, one can equate the algorithmic process of finding such a family
of k directed path to verifying that the system is structural target controllable.

We define the notion of optimization for structural target controllability in
case of ltis as follows:

Definition 1. The Structural Target Control (Optimization) problem (in short
STC):

Input: The size-n variable set X, the associate transition matrix A of size
n × n, and a size-k target subset T ⊆ X, with k ≤ n.

Output: Matrix B of size n × m such that

1. every column of B contains exactly one non-zero value,
2. SrankOC(A,B,C) = k,
3. m (i.e., the number of columns of B) is minimum among all feasible matrices.

3 Fixed Parameter Algorithm

In this section we prove that the STC problem is fixed parameter tractable,
parameterized by some of the secondary variables of our problem. First, we
show that one parameter, namely the number of target nodes |T | = k, suffice
in generating such a fixed parameter algorithm. On the other hand, from the
practical instances from where this problem was generated, namely the targeted
control of human protein signaling networks in cancer, we identify several other
variables of this problem which are known to have significantly lower numerical
values, i.e., one or even two orders of magnitude lower than the total number of
input nodes. Thus, we will involve these parameters in order to generate some
lower complexities for the structural target control optimization problem.

3.1 A One-Parameter STC Algorithm

Informally, our algorithm carries out the following steps. First we compute for
each vertex v in the input graph, all the possible subsets of T that v can control.
Since T = k, there can be at most 2k such subsets for each node v. Then, we
enumerate over all possible subsets of 2T (notice that there are precisely 22

k

of
such subsets). For each such subset of D ⊆ 2T we check if there exists a collection
of |D| nodes such that each node controls precisely one set in D. If so, we solve
exactly the set cover instance (D, T ) and store the solution if it is better than
the previously found solutions (i.e., controls the target nodes with less nodes
than the previous solutions). Algorithm1 describes our procedure in detail.

Theorem 2. Given a graph G = (V,E) and a target set T ⊆ V with |T | = k,
Algorithm1 solves the STC problem in time O(f(k)p(n)). Thus, the STC problem
is fixed parameter tractable.
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Algorithm 1. An FPT algorithm for the STC problem
Input: An undirected graph G = (V,E) and a set of nodes T ⊆ V , |T | = k
Output: A set of nodes S ⊆ V of minimum cardinality that controls T .

1. For every node v ∈ V , compute all possible sets of target nodes that v can control
in the same time Cv ⊆ 2T .

2. OPT := ∞, S = ∅
3. For every D ⊆ 2T do:

(a) Let D = {D1, D2, . . . , D�}. If there exists nodes v1, v2, . . . , v� such that Cv1 =
D1, Cv2 = D2, . . . , Cv� = D�, then:

(b) Solve exactly the set cover problem on instance (D, T ). Let D′ =
{Du1 , Du2 , . . . , Dux} be the sets in the optimal set cover. If x < OPT , then
OPT := x and S := {u1, u2, . . . , ux}

return S

Proof. We present in more detail and analyze the running time of each step of
Algorithm 1.

Step 1. For each node v ∈ V we compute and store as follows all the sets
of nodes in T that v can simultaneously control. First, we show how to decide
if a node v ∈ V covers a given subset of nodes T ′ ⊆ T in polynomial time
in |V |. Given a set of vertices X ⊆ V , let N(X) be the neighborhood of X,
that is N(X) = {v ∈ V : ∃a ∈ X s.t. (v, a) ∈ E}. Define the following graph
Gv,T ′ = (V ′, E′) where:

1. Let T0 = T and Ti+1 = N(Ti), ∀0 ≤ i < n. The vertex set V ′ of the graph
Gv,T ′ is the multiset consisting of all the sets Ti plus two other vertices {s, t}.
We refer to a vertex p ∈ V that is in the set Ti as pi. Notice that a vertex p
cannot appear twice in a set Ti.

2. In the edge set E′ of the graph Gv,T ′ we add an edge (ai+1, bi) if (a, b) ∈ E.
Moreover, we add an edge between (s, vi), if vi ∈ Ti. Finally we add an edge
(a, t), ∀a ∈ T ′

The vertex v can control simultaneously the nodes in the set V if and only
if there exists k-vertex disjoint paths from s to t. Observe that graph Gv,T ′

was constructed such that any two vertex disjoint paths from s to t in Gv,T ′

correspond to paths in G from v to a vertex in T ′ that do not intersect at
the same distance from the vertices in T ′. The k vertex disjoint paths problem
between two vertices is solvable in time O(k(n + m)) on a graph with n vertices
and m edges [2]. Thus, since Gv,T ′ has at most |V |2 vertices and |V |3 edges, to
find k disjoint paths between s and t, takes time at most k|V |3.

Then, to complete step 1, we repeat the procedure described above for every
vertex v ∈ V and any subset T ′ ⊆ T . Since there are 2k subsets of T , the total
running time of step 1 is O(2kk|V |4).
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Step 2(a)
Since any set Cv has at most 2k elements and any set D has at most 22

k

elements, step 2(a) of the algorithm is solved in time O(n22
k

): for every node
v ∈ V we simply search each element of Cv in D.

Step 2(b)
Notice that since the number of sets in the set cover instance is bounded by

22
k

and the number of elements is k, then we can solve the set cover in O(22
2k

)
time by a simple brute force algorithm that chooses all the possible subsets of
D and verifies if such a subset covers T .

Since Steps 2(a) and 2(b) are executed 22
k

times, the total running time of

Step 2 is O(22
2k

).

Thus, the overall running time of Algorithm1 is O(k2k|V |4 + 22
2k

)

3.2 Towards Tractable Full Search Algorithms
by Multiple-Parameterization

In the following, we present a fixed parameter tractable algorithm for STC whose
runtime complexity is exponential in the parameters k and p, corresponding to
the size of the target set T and the maximal length of the controlling path from a
driver to a target node, respectively, and low polynomial in n, the total number
of nodes in the network. The algorithm is a full search expansion of a Greedy
approach first reported in [7] and later analyzed and improved in [3,8,11].

Algorithm 2. An FPT algorithm for the STC problem parametrized by k, the
size of the target set and p, the maximal length of the controlling path
Input: A directed graph G = (V,E), a set of nodes T ⊆ V , |T | = k, and an integer p.
Output: A set of nodes U ⊆ V of minimum cardinality that controls T .

1. We create a new graph G′ = (V ′, E′). For determining V ′ we add to V a number
of k nodes (denoted u1, u2, ..., uk) and for E′ we add to E a number of k edges,
such that the edge (ui → ti) ∈ E′, ∀i = 1, k.

2. We set Sbest = T , |Sbest| = k and S = ∅.
3. We apply the iterative algorithm Control (Algorithm 3) for (G′ = (V ′, E′), i =

1, T0 = T, p, S).
return Sbest

Theorem 3. Given a graph G = (V,E) and a target set T ⊆ V with |T | = k
and |V | = n, Algorithm 2 solves the Target Controllability Problem in time

O(kn · ( e(n+k)
k )

kp
).3 By further assuming a ratio of 1/10 between the size of

the target set vs. the total nodes, we obtain an approximate time complexity
O((11e)kp × n).

3 We use the following upper bound for the binomial coefficient
(

n+k
k

) ≤ ( e(n+k)
k

)
k
.
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Algorithm 3. The iterative function Control called in the main program
Input: A directed graph G = (V,E), an integer i- the current level in the linking
graph, two sets of nodes S- the current solution (incomplete if i < p) and Ti−1- the

current target in the ith level of the linking graph, and an integer p- the maximum
expansion of the linking graph.

Output: The set Ti which is the target in the (i+ 1)th level of the linking graph and
an update of S, the current solution for the driven set. If i = p, a possible update of
the Sbest solution.

1. We build a bipartite graph Gi with the nodes in V on the left side (denoted Ti),
and the nodes in Ti−1 on the right side. We add to Gi all of the edges in E that
have the source node in Ti and the destination node in Ti−1.

2. We compute/enumerate all maximal matchings in the graph Gi between the nodes
in Ti and the nodes in Ti−1.

3. For each maximal matching, do:
(a) We remove from Ti all of the nodes left unmatched. We add all unmatched

nodes from Ti−1 to S, if they are not already there. If they are, then they are
left unchanged.

(b) (Optionally, to speed up the search, we check if |S| ≥ |Sbest|, and if so we
backtrack)

(c) If i = p, we add to S all of the nodes in Ti. If |S| < Sbest, then Sbest ← S.
(d) If i �= p, we repeat again the iterative algorithm for (G′ = (V ′, E′), i+1, Ti, p, S)

We omit the proof due to space limitations.

Proof. In the following, we present in more details and analyze the running time
of each step of the Algorithm 2 and of its Control sub-function, i.e., Algorithm3.

The final controlling set, Sbest, can be updated only after p nested appli-
cations of the iterative Control algorithm. In each of these p nested steps, we
need to generate a bipartite graph, compute/enumerate all possible maximal
matchings, and form the set S, which will then be fed into the next applica-
tion of the iterative function Control. While the construction of the bipartite
graph can be done in O(kn), enumerating all its maximal matchings requires
O(n) per maximal matching, see e.g. [19]. In the worst case scenario, when we
are dealing with a complete graph G, all of the intermediary bipartite graphs
Gi will also be complete. Thus, in each case, the number of edges will be
bounded by k · (n + k) (since we have |V ′| = n + k nodes on the left side, and
|Ti| ≤ k nodes on the right side) while the number of maximal matchings will be
upper bounded by

(
n+k
k

)
. Therefore, the overall time complexity can be upper

bounded by O(kn+
(
n+k
k

) · (1kn+
(
n+k
k

) · (2...p times...)2)1), i.e., O(
(
n+k
k

)p ·kn).

As
(
n+k
k

) ≤ ( e(n+k)
k )

k
, we get that the running time of the algorithm can be

upper bounded by O(kn · ( e(n+k)
k )

kp
).
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4 Hardness of Approximation

In this section we show that the Structural Target Controllability (optimization)
problem cannot be approximated within a factor of (1 − ε) ln k,∀ε > 0 where k
is the number of nodes in the target set T . We prove this via an approximation
preserving reduction from the Set Cover problem, which is known to be hard to
approximate by Feige [5].

Definition 4 (Set Cover). Given an universe of elements U = {u1, u2, . . . , uk}
and a family consisting of n subsets of U , S = {S1, S2, . . . , Sn}, find the smallest
sub-collection S ′ ⊆ S such that the union of all the sets S ′ is U .

Theorem 5. Unless NP ⊆ DTIME(nlog log n), the STC problem cannot be
approximated within a factor of (1 − ε) ln n,∀ε > 0.

Proof. Given an instance of the Set Cover problem, i.e., a set U =
{u1, u2, . . . , uk} with k elements and n sets S1, S2, . . . , Sn ⊆ U , we construct
the following instance of the STC problem.

1. Add a vertex si ∈ V corresponding to each set Si in the Set Cover instance.
2. Add a vertex ti ∈ V corresponding to each element ui in the set U .
3. For each Si add qi = |Si|(|Si| − 1)/2 auxiliary vertices in V . We term these

vertices ai
1, a

i
2, a

i
3, . . . , a

i
qi

4. The target set T consists of all the nodes ti ∈ V
5. For each set Si of the set cover instance we construct |Si| paths

of length 2, 3, 4 . . . |Si| + 1 as follows. Let Si = {u1, u2, . . . u|Si|}.
Then we construct the paths: {si, u1}, {si, a

i
1, t1}, {si, a

i
2, a

i
3, t2}, . . . ,

{si, a
i
qi−|Si|+1, a

i
qi−1, . . . , a

i
qi

, t|Si|}
We show now that the Set Cover instance has a solution with x sets if and

only if the target set of nodes T can be controlled with x driver nodes. Thus, the
existence of an approximation algorithm of (1 − ε) ln n, for some ε > 0, implies
the existence of an approximation algorithm with the same factor for the Set
Cover problem (which leads to a contradiction).

Given a Set Cover with x sets Si1 , Si2 , . . . Six , then the driver nodes
si1 , si2 , . . . six control all the target nodes since each sij controls precisely the
target nodes corresponding to the elements in Sij . This holds since each path
from the node sij to vertices in T has a different length.

Conversely, given a set of x driver nodes that control all the target nodes we
reconstruct a valid Set Cover with x sets, by choosing the sets corresponding to
the driver nodes. Thus, the theorem follows.

5 Conclusions and Future Work

Network Science has been proven to be highly relevant within the current devel-
opments of medicine and of personalized therapeutics. Within this field, struc-
tural network control is a powerful and efficient tool for steering the involved
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bio-medical systems towards desirable configurations. Thus, the algorithmic opti-
mization problems studied in this manuscript are relevant for the computational
bio-medicine community, as highly optimized solutions have a significant chance
of translating into efficient therapeutics. Although the Structural Target Control
(Optimization) problem has been proven to be NP-hard in its general case and
can not even be approximated within a constant factor, and although it is a
known fact that bio-medical networks are rather large, containing thousands of
nodes and (tens of thousands of) interactions, in practice, several of the involved
parameters can still be considerably bounded to significantly lower values. In this
research we took advantage of these insights in order to provide two optimization
algorithms which remain of low polynomial complexity with regards to the size
of the network, and are exponential only in those chosen parameters.

However, Structural Controllability is only one of network science methods
which can be used in order to influence the dynamics of these systems. Other
methods, such as the Minimum Dominating Set (MDS) approach, or the Target
Reachability approach come with new challenges, but also with several advan-
tages. Thus, the optimization and approximation of these algorithms is of a
similar practical importance, and worth of detailed investigation and analysis.
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Abstract. In this paper we propose a method for transforming a square
polynomial set into block triangular form by using Tarjan’s algorithm.
The proposed method is then applied to symbolic detection of steady
states of autonomous differential biological systems which are usually
sparse systems with a large number of loosely coupling variables. Two
biological systems of 12 and 43 variables respectively are studied to illus-
trate the effectiveness of the proposed method.
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1 Introduction

Many biological systems such as chemical reaction networks and reconstructed
signal pathways can be modeled mathematically by dynamic systems (see, e.g.
[1,15,16]). Algebraic approaches have been successfully applied to the detection
and stability analysis of equilibria of biological dynamic systems for both con-
tinuous and discrete systems [17,19,24,28] and the analysis of bifurcations and
limit cycles for continuous systems [10,23,25]. In these applications of algebraic
methods to such analysis of biological dynamic systems, the problems of inter-
ests for the biological systems are usually first reduced into algebraic problems
like finding real solutions of polynomial systems (or semi-algebraic systems) and
finding the ranges of the parameters for which the algebraic or semi-algebraic
systems have prescribed numbers of real solutions, and then symbolic methods,
including but not limited to those for solving polynomial systems like Gröbner
bases [4,11] and triangular decomposition [2,27], for quantifier elimination like
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CAD and partial CAD [6,7], and for real root isolation and real solution classi-
fication [29], are called to solve the reduced algebraic problems.

In this paper we are interested in the symbolic detection of steady states of
autonomous differential biological systems which can be easily reduce to solving
polynomial systems symbolically. Compared with numeric methods for solving
polynomial systems, symbolic methods produce rigorous and reliable solutions
which are convenient for later manipulations (for example the stability analysis
after the steady states of dynamic systems are computed), but the applications of
symbolic methods are also limited by their relatively low computational efficiency
compared with numeric methods. To overcome this difficulty, efficient specialized
algorithms for symbolically solving polynomial systems have been proposed for
sparse systems [12,14], systems with symmetry [13], systems with special graph
structures (e.g., chordal graphs) [5,22].

Biological dynamic systems usually involve a large number of interacting vari-
ables governed by differential equations. Typically finding all the real solutions
of large polynomial systems like these ones with symbolic methods are difficult
computationally. However, in many biological systems like chemical reaction
networks or reconstructed signal pathways [3,21], the connections between the
variables are loose, resulting in sparse polynomial systems with respect to the
variables. In particular, the structures of real solutions of sparse polynomial
systems in chemical reactions are studied in [16] by using graph theory.

In this paper we make use of the sparsity of polynomial systems arising
from autonomous differential biological systems by transforming them into block
triangular form and then solving the resultant polynomial systems blockwise.
This strategy can be viewed as multivariate generalization of similar techniques
for solving sparse linear systems [9,26] and it is effective for studying autonomous
differential biological systems for they are usually large and sparse as mentioned
above.

The outline of this paper is as follows. After presenting necessary notions and
notations for polynomial sets in block triangular form and Tarjan’s algorithm
for sparse linear systems in Sect. 2, we describe the method we proposed for
symbolic detection of autonomous differential biological systems by blockwise
solving polynomial sets obtained after transformation into block triangular form
by using Tarjan’s algorithm in Sect. 3. In Sect. 4 two biological systems of 12 and
43 variables respectively are studied with the proposed method to illustrate its
effectiveness, and the paper ends with some concluding remarks in Sect. 5.

2 Preliminaries

Let K[x1, . . . , xn] be a multivariate polynomial ring, where K is a ground field
and x1, . . . , xn are the variables ordered as x1 < x2 < · · · < xn. We write
x for {x1, . . . , xn} and K[x] for K[x1, . . . , xn] respectively for simplicity. These
notations will be fixed hereafter.
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2.1 Triangular Sets and Polynomial Sets in Block Triangular Form

Triangular Sets. For an arbitrary polynomial P ∈ K[x], the greatest variable
which effectively appears in P is called the leading variable of P and denoted by
lv(F ). Suppose that lv(P ) = xk. Then P can be written as P = Ixd

k + R with
I ∈ K[x1, . . . , xk−1], R ∈ K[x1, . . . , xk], and deg(R, xk) < d. The polynomial I
here is called the initial of P and denoted by ini(P ).

Definition 1. An ordered set of non-constant polynomials T = [T1, . . . , Tr] ⊂
K[x] is called a triangular set if lv(T1) < · · · < lv(Tr).

The special structure of triangular sets makes them easy to solve by suc-
cessively solving univariate polynomials after substitution of computed partial
solutions. For two polynomial sets P,Q ⊂ K[x], the set of common zeros of P
is denoted by Z(P), and Z(P/Q) := Z(P) \ Z(

∏
Q∈Q Q).

Definition 2. Let P ⊂ K[x] be a polynomial set. Then a finite number of
triangular sets T1, . . . , Tr ⊂ K[x] are called a triangular decomposition of P if
the zero relationship Z(P) = ∪r

i=1Z(Ti/ini(Ti)) holds, where ini(Ti) := {ini(T ) :
T ∈ Ti}.

Like the method based on Gröbner bases, triangular decomposition is a stan-
dard symbolic method for solving polynomial systems. The process of computing
a triangular decomposition T1, . . . , Tr of P, which can be viewed as multivariate
generalization of Gaussian elimination for reducing a square matrix to echelon
form, reduces the problem of finding all the solutions of P = 0 to solving Ti = 0
for i = 1, . . . , r where each Ti is a triangular set and thus easy to solve.

The elimination properties of triangular sets and Gröbner bases permit con-
structive procedures for solving polynomial systems in a generalized way of solv-
ing linear systems in echelon form. We want to mention that computationally
the difficulty of solving polynomial systems with these symbolic methods is sen-
sitive to the numbers of variables of the systems, for example in the worst case
the complexity of computing Gröbner bases is doubly exponential in the number
of variables [20].

Block Triangular Form. Let P ⊂ K[x] be a polynomial set and X =
[x1, . . . ,xr] be a partition of the variable set x, where each xi is a subset of
x = {x1, . . . , xn} for i = 1, . . . , r. Then P is said to be in block triangular form
with respect to X if P can be written in the form

P1(x1),P2(x1,x2), . . . ,Pr(x1, . . . ,xr), (1)

where Pi ⊂ K[x] for i = 1, . . . , r and {P1,P2, . . . ,Pr} forms a partition of the
polynomial set P. In the case when #Pi = 1 for i = 1, . . . , n, the polynomial
set P is said to be in strict triangular form. By comparisons to the definition
of triangular sets (Definition 1), one can find that when in strict triangular
form, P is a triangular set with respect to any variable ordering compatible with
x1 < x2 < · · · < xr.
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When a polynomial set P ⊂ K[x] is in block triangular form (1), solving
the polynomial equation system P = 0 is reduced to successively solving each Pi

with respect to xi after the substitution of solutions x1, . . . ,xi−1 of P1, . . . ,Pi−1

respectively for i = 1, . . . , r. Therefore the concept of polynomial sets in block
triangular form is generalization of triangular sets and also multivariate gener-
alization of matrices in echelon form in Gaussian elimination. As in the previous
discussions, the complexity of solving a polynomial system is heavily dependent
on the number of its variables, this kind of reduction into solving subsystems is
effective when r, the number of sets in the partition, is relatively large.

2.2 Tarjan’s Algorithm for Transforming Matrices into Block
Triangular Form

A square matrix A over K is said to be in block triangular form if A can be
written as

A =

⎛

⎜
⎜
⎜
⎝

A1,1

A2,1 A2,2

...
...

...
Ar,1 Ar,2 · · · Ar,r

⎞

⎟
⎟
⎟
⎠

,

where Ai,j is a square submatrix for i = 1, . . . , r and j = 1, . . . , i and all the
empty positions above are filled in with zero matrices. When a matrix A is in
block triangular form, solving Ax = b is reduced to solving smaller linear systems
Ai,ixi = bi after substitutions of partial solutions x1, . . . ,xi−1 of previously
solved linear systems.

Methods have been proposed to transform a square matrix A into block
triangular form with only permutations of rows and columns [9, Chap. 6]. These
methods mainly consist of two steps: (1) apply permutations to A to result in
non-zero diagonals if possible; and (2) apply symmetric permutations to result
in a matrix in block triangular form. Steps (1) and (2) can be realized by Duff’s
algorithm in [8] and Tarjan’s algorithm [26] respectively.

The algorithm due to Duff for transforming a matrix into non-zero diagonals
will fail if the input matrix is so-called structurally singular. For example, when
A contains a row full of zeros, it is impossible to transform A with only permu-
tations of rows and columns to result in a matrix with non-zero diagonals. In
the case of a structurally singular matrix, the algorithm due to Duff will return
a matrix with the most non-zero diagonals.

Tarjan’s algorithm is originally for finding the strongly connected components
of directed graphs. When applied to a square matrix A, Tarjan’s algorithm will
find the symmetric permutations to transform A into block triangular form.
Tarjan’s algorithm is of low computational complexity (O(τ)+O(n) for a matrix
of order n with τ entries) and easy to implement with stacks. Tarjan’s algorithm
assumes an input matrix with non-zero diagonals.

A trivial block triangular form of a matrix A is that there is only one block,
and in this worst case there is no saving for solving Ax = b. When the matrix
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A is dense, or equivalently the variables in Ax are all heavily coupled, Tar-
jan’s algorithm applied to A may result in such a trivial block triangular form.
Therefore, the effectiveness of Tarjan’s algorithm, which can be described by the
number of blocks and sizes of the blocks, is dependent on the sparsity of the
input matrix. Generally speaking, the sparser the matrix is, the more effective
Tarjan’s algorithm is.

3 Symbolic Detection of Steady States of Autonomous
Differential Systems in Biology

3.1 Autonomous Differential Systems and Their Steady States

Consider the following n-dimensional autonomous differential system
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dx1

dt
=

P1(u1, . . . , um, x1, . . . , xn)
Q1(u1, . . . , um, x1, . . . , xn)

,

...
dxn

dt
=

Pn(u1, . . . , um, x1, . . . , xn)
Qn(u1, . . . , um, x1, . . . , xn)

,

(2)

where u1, . . . , um are parameters independent on t, x1, . . . , xn are variables
dependent on t, and P1, . . . , Pn, Q1, . . . , Qn ∈ R[u1, . . . , um, x1, . . . , xn] are poly-
nomials over the real field R. We denote u = (u1, . . . , um) for simplicity.

Definition 3. For an arbitrary value u ∈ R
m of the parameters u, a point

x = (x1, . . . , xn) ∈ R
n is said to be a steady state or equilibrium of system (2) if

P1(u,x) = · · · = Pn(u,x) = 0 and Q1(u,x) �= 0, · · · , Qn(u,x) �= 0.

Many biological systems like chemical reaction networks and reconstructed
signal pathways can be modeled as (2), and the steady states and their stability
of such systems are of our interest. For detection of steady states of the dynamic
system (2), we need to first calculate all the real solutions Φ ⊂ R

n of P1(u,x) =
· · · = Pn(u,x) = 0 with respect to x and then remove a solution x ∈ Φ if there
exists some u ∈ R

m and Qj such that Q(u,x) = 0. Next we focus on the first
step by transforming the polynomial set P1, . . . , Pn into block triangular form
and then solving the polynomial sets blockwise. This transformation into block
triangular form is achieved with Tarjan’s algorithm applied to the adjacency
matrix of P defined below, similar to the linear case.

For a polynomial F ∈ K[x], the set of the variables which effectively
appear in F is called the (variable) support of F and denoted by supp(F ). Let
F = [F1, . . . , Fn] ⊂ K[x] be a square polynomial set. Then the adjacency matrix
M of F is an n × n matrix such that

Mi,j =
{

1, if xj ∈ supp(Fi);
0, otherwise.
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We call F a sparse polynomial system if its adjacency matrix is sparse. In
particular, let Mn×n be a matrix over K. Then the associated directed graph
G(M) = (V,E) of M is a directed graph such that V = {x1, . . . , xn} and
E = {(xj , xi) : Mi,j �= 0}.

Tarjan’s algorithm applied to the adjacency matrix M of a polynomial set P
will return symmetric permutations of rows and columns to transform M. These
permutations, considered in the settings of solving P = 0, are merely reordering
of the variables x1, . . . , xn and the polynomial equations P1 = 0, . . . , Pn = 0 and
they will result in a new polynomial set P ′ equivalent to P. In particular, the fol-
lowing observations make this strategy very suitable for autonomous differential
systems arising from biology.

Let P = {P1, . . . , Pn} ⊂ K[x] as in (2). Then clearly P is a square polynomial
set of n polynomials in n variables and thus permits a square adjacency matrix
M of size n × n. Furthermore, for polynomial systems arising from biology, the
numbers of variables effectively appearing in them are large (easily tens of or
even hundreds of variables), but the couplings of their variables in the polyno-
mial systems from biology are quite loose in general, which results in a sparse
adjacency matrix M. For examples, in the two biological dynamic systems we
consider later in Sect. 4, the percentages of non-zero entries in the adjacency
matrices are 29/122 ≈ 20.1% and 87/432 ≈ 4.7% respectively. The sparsity of M
gives a larger chance for Tarjan’s algorithm to transform P into smaller blocks,
greatly reducing the complexity of solving P = 0 symbolically.

When the adjacency matrix M of P has zero diagonals, Tarjan’s algorithm
applied to M still works as if M is of all non-zero diagonals. Suppose that Mi,i = 0
for some i (1 ≤ i ≤ n). Next we show that in this case {i} will be one block
in the result returned by Tarjan’s algorithm applied to M. Suppose that B =
{j1, . . . , js, i} is a block returned by Tarjan’s algorithm applied to a matrix M
with Mi,i = 0 for some i. This means that for each variable xk ∈ supp(Pj1)∪· · ·∪
supp(Pjs) ∪ supp(Pi), either k is contained in the preceding blocks returned by
Tarjan’s algorithm or k ∈ {j1, . . . , js, i}. Since Mi,i = 0, we have xi �∈ supp(Pi),
and thus for each variable xk ∈ supp(Pi), either k is contained in preceding blocks
or k ∈ {j1, . . . , js}, and thus B1 = {j1, . . . , js} and B2 = {i} are two smaller
blocks, which contradicts the fact that Tarjan’s algorithm returns irreducible
blocks.

In the case when xi �∈ supp(Pi) for some i (1 ≤ i ≤ n), or namely
Mi,i = 0. Let X = [x1, . . . ,xj = {xi}, . . . ,xr] be a partition of the variables
{x1, . . . , xn} returned by Tarjan’s algorithm applied to M and Ψ = [P1, . . . ,Pj =
{Pi}, . . . ,Pr] be the corresponding polynomial partition of P in block triangu-
lar form with respect to X. Next we show how to refine the partitions X and
P in this case. Since xi �∈ supp(Pi), we know that supp(Pi) ⊂ ∪j−1

l=1xl. Let
k = max{l ∈ {1, . . . , j − 1} : ∃x ∈ supp(Pi) such that x ∈ xl}. Then clearly we
have supp(Pi) ⊂ ∪k

l=1xl. Let

X ′ = [x1, . . . ,xk ∪ {xi}, . . . ,xj−1,xj+1, . . . ,xr],
P ′ = [P1, . . . ,Pk ∪ {Pi}, . . . ,Pj−1,Pj+1, . . . ,Pr].
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Then it is easy to see that P ′ is in block triangular form with respect to X ′

and we finish the update for the integer i. To summarize, for each i (1 ≤ i ≤ n)
such that xi �∈ supp(Pi), we will update the variable and polynomial partitions X
and P accordingly before we start the process of solving the resultant polynomial
systems blockwise.

3.2 A Refined Algorithm for Solving Square Polynomial Systems
by Transformation into Block Triangular Form

Based on the discussions above, we formulate the procedure for solving square
polynomial systems by using Tarjan’s algorithm for transforming the polyno-
mial set into block triangular form as Algorithm1 below. In this algorithm,
the subroutine Tarjan(·) takes a square matrix and returns an ordered partition
[x1, . . . ,xr] for some r of {x1, . . . , xn} such that the input matrix is in block
triangular form with respect to this partition, and the subroutine Solve(F ,x)
solves the polynomial system F = 0 with respect to the variables x symboli-
cally (for example by using triangular decomposition or computation of Gröbner
bases) and returns all the solutions as a set. The operator index(xi) returns the
index i of the input variable xi, and [A]cat[B] equals [A,B].

With Algorithm 1, finding all the steady states of autonomous differen-
tial biological systems modeled as (2) can be achieved more effectively with
BlockTriangular(·), for a biological system usually furnishes a sparse adjacency
matrix when n is large.

4 Two Illustrative Examples

In this section we illustrate the effectiveness of finding steady states of
autonomous differential biological systems by transformation into block trian-
gular forms with two biological models.

4.1 Synthesis of One Enzyme in Bacterial Cells: 12 Variables

Consider the following autonomous differential equation system in [3] which
describes the synthesis of one enzyme in bacterial cells.

dx1/dt = p1x3 − (p2 + p3)x1, dx2/dt = p15x3 − p4x2,
dx3/dt = (p2 + p3)x1 − (p1 + p15)x3 + p4x2, dx4/dt = p12x7x6 − p7x4

dx5/dt = p6x7 − p8x5, dx6/dt = p3x1 − p5x6 − p12x6x7,
dx7/dt = −p12x6x7 + p7x4 − p6x7 + p8x5, dx8/dt = p14x12 − p13x8x9,
dx9/dt = p8x5 − p9x9 − p13x8x9, dx10/dt = p11x11,
dx11/dt = p10x12 − p11x11, dx12/dt = p13x8x9+p11x11−(p10+p14)x12.

In these differential equations t is the temporal variable, x1, . . . , x12 are the
variables dependent on t, and p1, . . . , p14 are constants. Denote the polynomials
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Algorithm 1: Algorithm for solving square polynomial systems by trans-
formation into block triangular form Φ := BlockTriangular(F)
Input: F = [F1, . . . , Fn], a square polynomial set in K[x]
Output: Φ, all the solutions of F = 0 in K

n

1 M := the adjacency matrix of F ;
2 Z := {i ∈ {1, . . . , n} : Mi,i = 0};
3 X := Tarjan(M); Compute the ordered variable partition
4 P := [ ]; Construct the corresponding polynomial partition
5 for x̃ ∈ X do
6 I := {index(xi) : xi ∈ x̃};
7 P := P cat [{Fi ∈ F : i ∈ I}];

8 for i ∈ Z do
9 B := ∅;

10 for x ∈ supp(Fi) do
11 Find j s.t. x ∈ X[j]; B := B ∪ {j};

12 k := max(B);
13 Remove {Fi} from P and {xi} from X; Update the partitions X and P
14 xk := xk ∪ {xi}, Pk := Pk ∪ {Fi};

15 Φ := {[ ]}; Solving F = 0 blockwise
16 for i = 1, . . . , #P do
17 Φt := {[ ]};
18 for x ∈ Φ do
19 Ψ := Solve(P[i](x, X[i]), X[i]);
20 if Ψ = ∅ then
21 break;
22 else
23 Φt := Φt ∪ {x cat x′ : x′ ∈ Ψ};

24 Φ := Φt;

25 return Φ;

in the right-hand side of the equations above by P1, . . . , P12 respectively. Then
the adjacency matrix M of P = {P1, . . . , P12} is

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 0 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 1 0 1 1 1 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

One may find that the 10-th row of M is a zero one, and thus x10 does not appear
in any polynomial in P. The associated directed graph of M is shown in Fig. 1
below. A clear structure in the graph of three blocks can be found visually.
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Fig. 1. Associated directed graph: 12 variables

Tarjan’s algorithm applied to M returns the ordered partition

X = [{1, 3, 2}, {4, 6, 7, 5}, {8, 9, 12, 11}, {10}],

where {10} means that the variable x10 does not appear in P10. Since P10 only
involves one variable x11, the variable and polynomial partitions are updated as

[{1, 3, 2}, {4, 6, 7, 5}, {8, 9, 12, 11, 10}],
[{F1, F3, F2}, {F4, F6, F7, F5}, {F8, F9, F12, F11, F10}]

respectively.
Solving the first polynomial block F1 = F2 = F3 = 0 with respect to the first

variable block {x1, x2, x3} results in one partial solution

x1 = x1, x2 =
p15(p2 + p3)x1

p1p4
, x3 =

(p2 + p3)x1

p1
.

After successive substitutions of the partial solution to and then solving the
second and third polynomial blocks, this partial solution is extended to the
solution of F = 0:

x1 = x1, x2 =
p15(p2 + p3)x1

p1p4
, x3 =

(p2 + p3)x1

p1
, x4 =

p3x1 − p5x6

p7
,

x5 =
p6(p3x1 − p5x6)

(p12x6p8)
, x6 = x6, x7 =

p3x1 − p5x6

p12x6
, x9 =

p6(p3x1 − p5x6)

p9p12x6
,

x8 = x11 = x12 = 0,

where x1 and x6 are free variables. Any combination of specific values for x1 and
x6 (with x6 �= 0) leads to a specific solution of F = 0.

4.2 Signaling Network for Leishmaniasis with Positive Feedback
Loop: 43 Variables

A medium-size example we consider is a reconstructed mathematical signaling
network for leishmaniasis with positive feedback loop in [21], also deposited in
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the BioModels Database [18] with the assigned identifier MODEL1308080000.
This model consists of 43 differential equations in 43 variables for the interact-
ing species to describe the reactions in the reconstructed network, and all the
data, including the values for the kinetic parameters, the equations, and initial
conditions can be found in the online supplementary data of the paper. Below
one equation in the model is reproduced as an example:

d[MKK4/7]Vc

dt
= Vc

0.3[TAB2 TAK1 TAB1]

0.01 + [TAB2 TAK1 TAB1]Vc
+ Vc

0.4[Ras]

1.5 + [Ras]Vc

+ Vc
0.6[MEKK1]

0.2 + [MEKK1]Vc
− Vc

0.98[MKK4/7]

0.15 + [MKK4/7]Vc
,

where [MKK4/7], [TAB2 TAK1 TAB1], [Ras], and [MEKK1] are the vari-
ables for species in [21]. We rename the variables in the left hands of the differ-
ential equations to x1, . . . , x43 as shown in the following table (Table 1).

Table 1. Variable correspondences

Species TNFc TNFR1 TRADD TRAF2 IkB NIK IkK NFkB NFkBc MEKK1

RIP

Variables x1 x2 x3 x4 x5 x6 x7 x8

Species MKK4/7 JNKc ASK p38c LPG CD14-TLR MyD88 IRAK1/4

Variables x9 x10 x11 x12 x13 x14 x15 x16

Species TRAF6 TAB2 TAK1 MKK1/2 ERK1/2c MKK3/6 EGF EGFR PLC gamma

TAB1

Variables x17 x18 x19 x20 x21 x22 x23 x24

Species PIP2 DAG PKC PI3K Aktc Shc/Grb2/Sos1 Ras Raf

Variables x25 x26 x27 x28 x29 x30 x31 x32

Species JAK STAT1/3c NFkBn JNKn cjun p38n cfos ERK1/2n

Variables x33 x34 x35 x36 x37 x38 x39 x40

Species Aktn STAT1/3n TNFn

Variables x41 x42 x43

The adjacency matrix M of the polynomial system is a 43 × 43 matrix with
87 non-zero entries. The associated directed graph of this adjacency matrix is
shown in Fig. 2 below. Note that some of the adjacent vertexes in the right circle
are also connected but the edges are not clearly shown.

The application of Tarjan’s algorithm to M returns the following partition

[{13},{14},{15},{16},{17},{18},{22},{23},{24},{25},{26},{27},{1,43,35,7,6,4,5,3,2},{8},{30},{31},
{9},{10},{11},{21},{12},{32},{19},{20},{28},{29},{33},{34},{36},{37},{38},{39},{40},{41},{42}],

and after the update the variable partition becomes

[{13},{14},{15},{16},{17},{18},{22},{23},{24},{25},{26},{27},{1,43,35,7,6,4,5,3,2},{8},{30},
{31},{9},{10},{11},{21},{12},{32},{19},{20},{28},{29,41},{33},{34,42},{36,37},{38,39}, {40}],

and the polynomial partition also gets updated accordingly.
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Fig. 2. Associated directed graph: 43 variables

This partition indicates that following the specific ordering as shown in the
above partition, the essential difficulty of solving the original polynomial system
of 43 variables is reduced to solving one polynomial system of 9 variables (corre-
sponding to the block {1, 43, 35, 7, 6, 4, 5, 3, 2}) and some univariate polynomials
after substitutions of previously computed partial solutions. As discussed in the
introduction, this greatly reduces the cost for solving this polynomial set.

5 Concluding Remarks

Autonomous differential systems are typical mathematical models of many bio-
logical systems like chemical reaction networks. In the study of steady states
and their stability of such systems, solving polynomial systems symbolically is
one important step but its efficiency suffers when the numbers of variables in
the systems are large.

In this paper we propose a method for transforming a square polynomial set
into block triangular form by using Tarjan’s algorithm applied to the adjacency
matrix of the polynomial set. This method can be viewed as a preprocessing step
for solving polynomial systems with little cost compared with the actual solving,
and it is effective when the polynomial system admits a sparse adjacency matrix.

Biological systems are perfect candidates for the applications of this method,
for the variable numbers in such systems are usually large and the systems them-
selves are sparse due to the loose coupling of the variables. Two biological systems
of 12 and 43 variables respectively are studied to illustrate the effectiveness of
the proposed method.

Acknowledgments. The author would like to thank Yufei Gao and Yishan Cui for
their help in the investigation on Tarjan’s algorithm and the biological database and
the anonymous reviewers for their helpful comments which lead to improvement on
this manuscript and potential enrichment in its extended version.
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Appl. Algebra 139(1–3), 61–88 (1999)

12. Faugère, J.C., Mou, C.: Sparse FGLM algorithms. J. Symbolic Comput. 80(3),
538–569 (2017)

13. Faugère, J.C., Rahmany, S.: Solving systems of polynomial equations with symme-
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Abstract. There is an extensive literature using probabilistic models,
such as hidden Markov models, for the analysis of biological sequences.
These models have a clear theoretical basis, and many heuristics have
been developed to reduce the time and memory requirements of the
dynamic programming algorithms used for their inference. Neverthe-
less, mirroring the shift in natural language processing, bioinformat-
ics is increasingly seeing higher accuracy predictions made by recur-
rent neural networks (RNN). This shift is exemplified by basecalling
on the Oxford Nanopore Technologies’ sequencing platform, in which a
continuous time series of current measurements is mapped to a string
of nucleotides. Current basecallers have applied connectionist temporal
classification (CTC), a method originally developed for speech recogni-
tion, and focused on the task of decoding RNN output from a single
read. We wish to extend this method for the more general task of con-
sensus basecalling from multiple reads, and in doing so, exploit the gains
in both accelerated algorithms for sequence analysis and recurrent neu-
ral networks, areas that have advanced in parallel over the past decade.
To this end, we develop a dynamic programming algorithm for consensus
decoding from a pair of RNNs, and show that it can be readily optimized
with the use of an alignment envelope. We express this decoding in the
notation of finite state automata, and show that pair RNN decoding
can be compactly represented using automata operations. We addition-
ally introduce a set of Markov chain Monte Carlo moves for consensus
basecalling multiple reads.

Keywords: Nanopore sequencing · Deep learning
Dynamic programming · Alignment envelope · Finite state automata

1 Introduction

In nanopore sequencing, such as that done on the MinION platform produced by
Oxford Nanopore Technologies (ONT), a single strand of DNA is passed through
a protein nanopore on a synthetic membrane. A voltage is applied across the
membrane, such that as the DNA goes through the pore, it alters the electrical
current in a sequence-dependent way. The basecaller then uses a learned model

c© Springer International Publishing AG, part of Springer Nature 2018
J. Jansson et al. (Eds.): AlCoB 2018, LNBI 10849, pp. 128–139, 2018.
https://doi.org/10.1007/978-3-319-91938-6_11
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to find the most probable nucleotide sequence given the input of current mea-
surements. Originally this was done with hidden Markov models (e.g. Nanocall
[2]), though more recent basecallers produced both by ONT and the academic
community have moved to recurrent neural networks (RNNs).

First applied to the speech recognition, which similarly seeks to find a map-
ping between a continuous input and a discrete set of labels, connectionist tem-
poral classification (CTC) uses a loss function and associated decoding algorithm
that allow for gaps and variable spacing of signal [4]. The ONT basecalling tool
Scrappie is an early example of CTC applied to bioinformatic RNNs. CTC is
implemented in the TensorFlow library, and has been used by other nanopore
basecallers, e.g. Chiron [10].

In Sect. 2, we present an algorithm for consensus CTC decoding of paired
RNNs. The algorithm, which is not tied to any particular RNN architecture and
may be used quite generally, makes use of the “alignment envelope” technique
from bioinformatics sequence analysis. In this technique, a set of plausible can-
didate alignments is quickly estimated for a pair of sequences, then applied as a
filter mask to more complex calculations [5,6]. This is particularly relevant for
the 1D2 sequencing protocol, in which a DNA strand and its complement are
both passed through a nanopore successively, thus yielding two current traces
over the same sequence.

In Sect. 3, we present an overview of an alternative consensus approach using
Markov chain Monte Carlo. Besides decoding 1D2 traces, this algorithm can
be easily extended to more than two sequences, making it useful for consensus
basecalling in general.

Finally, in Sect. 4, we show how our dynamic programming algorithms may
be represented using an algebra of intersecting finite-state automata1. This alge-
braic framework is not necessary to follow or implement our algorithms, but may
help in the systematic derivation and verification of such algorithms.

2 Pair Decoding of RNNs

2.1 Recurrent Neural Network

Following a notation similar to [4], consider a recurrent neural network with
input sequence x having length T , and an output matrix of probabilities y
having dimension T × (|L| + 1), where L is a label alphabet.

The matrix y represents a gapped position-specific weight matrix profile, and
can be thought of as a simple automaton (Fig. 1). Element yt

a is the probability
that the t’th position has output a, whether this is a label character (a ∈ L) or
a gap (a = ε).

1 This builds on the interpretation of Scrappie, and similar CTC-decoding basecallers,
as “transducer” neural networks (Tim Massingham, Oxford Nanopore Technologies,
pers. comm.).
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Fig. 1. Representation of neural network outputs as a hidden Markov model. The tran-
sition weights for the state machine R(y) (bottom) are given by the output probability
matrix y of the RNN. The neural network may have any architecture, as long as the
output matrix has the form shown here.

2.2 Overview of CTC Decoding

The idea of Connectionist Temporal Classification decoding (CTC) is to find the
most likely label sequence �, marginalizing away the gaps. In order to find this
sequence we need to be able to (efficiently) compute two probabilities:

– the probability P (�|x) that � is the correct label sequence;
– the probability σ(κ|x) that κ is a prefix of the correct label sequence.

These probabilities, which both sum over (potentially) many ways that y
can encode �, are computed by dynamic programming using the Forward algo-
rithm. The derivatives of P (�|x) with respect to the RNN parameters, which are
required for training, can be computed using the Forward-Backward algorithm.
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Assuming that we can calculate these probabilities, CTC finds the most likely
label sequence by a prefix search. This can be accomplished as follows:

– Maintain a priority queue of prefix sequences κ, sorted by their prefix prob-
ability σ(κ|x).

– At each step, the top candidate is extended by one label symbol, trying each
of the symbols from the label alphabet; the |L| different extended prefix
sequences that are so created are added onto the priority queue.

– For each sequence κ that is visited as a prefix, the probability P (� = κ|x) of
it also being the exact correct label is calculated, and the most probable such
label �̂ is recorded.

– The search terminates when the probability σ(κ|x) of the best unextended
prefix κ is less than the label probability P (� = �̂|x) of the best label �̂.

In practice, some additional constraints are required to prevent the prefix
search space from exploding [4].

2.3 Dynamic Programming Calculations

Let π ∈ (L′)T be a path, comprising T symbols from the extended label alphabet
L′ = L ∪ {ε}. Define the path probability

P (π|x) =
T∏

t=1

yt
πt

Let B(π) be the function that removes all ε’s from π, converting a path to
a label sequence. In the original CTC description this function also removes
repeated label characters, though here we consider a simplified version. Let �i:j

denote the subsequence of � from position i to position j (inclusive), or the empty
sequence ε if i > j.

Let t denote an index into y and let s denote an index into �.
The Forward-Backward dynamic programming recursions are, for 1 ≤ t ≤ T

and 0 ≤ s ≤ |�|

αε
t(�1:s) = yt

εαt−1(�1:s)
α∗

t (�1:s) = yt
�s

αt−1(�1:s−1)
βε

t (�s:|�|) = yt
εβt+1(�s:|�|)

β∗
t (�s:|�|) = yt

�s
βt+1(�s+1:|�|)

where

αt(�1:s) = αε
t(�1:s) + α∗

t (�1:s)
βt(�s:|�|) = βε

t (�s:|�|) + β∗
t (�s:|�|)
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with appropriate boundary conditions (α0(ε) = βT+1(ε) = 1, and α0(κ) =
βT+1(κ) = 0 for all other κ). These compute the following probabilities

αε
t(�1:s) =

∑

π∈P
ε
t(�1:s)

P (π|x)

α∗
t (�1:s) =

∑

π∈P
∗
t (�1:s)

P (π|x)

βε
t (�s:|�|) =

∑

π∈S
ε
T −t+1(�s:|�|)

P (π|x)

β∗
t (�s:|�|) =

∑

π∈S
∗
T −t+1(�s:|�|)

P (π|x)

where the Forward probabilities (α) are marginals over sets of prefix paths (P) and
the Backward probabilities (β) are marginals over sets of suffix paths (S), with
the path sets further partitioned by whether the paths end in a gap character
(αε, βε;Pε, Sε) or a label symbol (α∗, β∗;P∗, S∗)

Pt(κ) = {π : π ∈ (L′)t,B(π) = κ}
P

ε
t(κ) = {π : π ∈ (L′)t,B(π) = κ, πt = ε}

P
∗
t (κ) = {π : π ∈ (L′)t,B(π) = κ, πt �= ε}
S

ε
t(κ) = {π : π ∈ (L′)t,B(π) = κ, π1 = ε}

S
∗
t (κ) = {π : π ∈ (L′)t,B(π) = κ, π1 �= ε}

The marginal probability of a given label sequence is

P (�|x) =
∑

π∈PT (�)

P (π|x)

= αT (�)
= β1(�) (1)

The derivatives of this probability (required for training) are

∂

∂θ
P (�|x) =

|�|∑

s=0

T∑

t=1

αt−1(�1:s) · ∂yt
ε

∂θ
· βt+1(�s+1:|�|)

+
|�|∑

s=1

T∑

t=1

αt−1(�1:s−1) · ∂yt
�s

∂θ
· βt+1(�s+1:|�|)

The marginal probability that the label sequence has prefix κ can be calcu-
lated by conditioning on the output position associated with the last symbol of
κ and then summing this out

σ(κ|x) =
T∑

t=1

α∗
t (κ)
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Efficient computation of the Forward probabilities during the prefix search
relies on the fact that, if � is a prefix of �′, then many of the α used in computing
P (�|x) can be reused when computing P (�′|x).

2.4 Consensus of Two RNNs

Consider the case where we have two RNNs with respective input sequences u,
v (lengths U , V ) and output probability matrices y, z (sizes U × (|L| + 1) and
V × (|L| + 1)).

We can re-use the prefix search strategy, now using the following probabilities:

– the probability P (� = �′|u,v) that �′ is the correct label sequence;
– the probability σ(κ|u,v) that κ is a prefix of the correct label sequence.

We want to find the best labeling given that both RNNs agree, so we define
the above probabilities for paired RNNs as follows

P (� = �′|u,v) =
1
Z

P (� = �′|u)P (� = �′|v) (2)

σ(κ|u,v) =
∑

�′∈L∗
P (� = κ ⊕ �′|u,v)

where Z is the probability that the RNNs agree (this is a normalization constant
that does not depend on �), and ⊕ denotes sequence concatenation.

As before, we introduce variables π ∈ (L′)U , φ ∈ (L′)V representing paths
through the two models, with path probabilities

P (π|u) =
U∏

u=1

yu
πu

P (φ|v) =
V∏

v=1

zv
πv

Probability that the Two RNNs Agree. The probability that the two RNNs
agree on the same label sequence is Z = γ1,1 where γu,v is the probability that
yu:U agrees with zv:V

γε
u,v = yu

ε γu+1,v

γ∗ε
u,v = zv

ε γ∗
u,v+1

γ∗∗
u,v =

∑

a∈L

yu
azv

aγu+1,v+1

γ∗
u,v = γ∗ε

u,v + γ∗∗
u,v

γu,v = γε
u,v + γ∗

u,v

with boundary condition γ∗∗
U+1,V +1 = 1 (and other “out-of-bounds” likelihoods

defined to be zero). These recursions are illustrated in Fig. 2.
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A/C/G/T

A/C/G/T

A/C/G/T

(a) (b)

Fig. 2. (a) The recursions for calculating the γ dynamic programming matrix. The
terms above each arrow are multiplied by the cell from which they originate to give the
left hand side of each recursion. The shaded recursive variables at each time step are
obtained by summing the cells directly under them. (b) Simple automaton illustrating
the relationship between recursive variables. To avoid overcounting gapped paths, an
ordering is imposed such that those from z appear first (shown by lack of an edge from
γε to γ∗ε).

The interpretation of these probabilities is

γε
u,v =

∑

(π,φ)∈Cε(u,v)

P (π|u)P (φ|v)

γ∗ε
u,v =

∑

(π,φ)∈C∗ε(u,v)

P (π|u)P (φ|v)

γ∗∗
u,v =

∑

(π,φ)∈C∗∗(u,v)

P (π|u)P (φ|v)

where

C
ε(u, v) = {(π, φ) : π ∈ (L′)U−u+1, φ ∈ (L′)V −v+1,B(π) = B(φ), π1 = ε}

C
∗ε(u, v) = {(π, φ) : π ∈ (L′)U−u+1, φ ∈ (L′)V −v+1,B(π) = B(φ), π1 �= ε, φ1 = ε}

C
∗∗(u, v) = {(π, φ) : π ∈ (L′)U−u+1, φ ∈ (L′)V −v+1,B(π) = B(φ), π1 �= ε, φ1 �= ε}

Analogously to P (which represents the set of paths that produce a given label
prefix) and S (which represents the set of paths that produce a given label suffix),
C represents the set of path-pairs (one path for each RNN) such that both paths
produce the same sequence.

Probability that the Two RNNs Agree on a Particular Label Sequence.
The probability that the two RNNs both generate label sequence �, given that
they agree, is

P (�|u,v) =
1
Z

αU,V (�)
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where

αε
u,v(�1:s) = yu

ε αu−1,v(�1:s)
α∗ε

u,v(�1:s) = zv
ε α∗

u,v−1(�1:s)
α∗∗

u,v(�1:s) = yu
�s

zv
�s

αu−1,v−1(�1:s−1)
α∗

u,v(�1:s) = α∗ε
u,v(�1:s) + α∗∗

u,v(�1:s)
αu,v(�1:s) = αε

u,v(�1:s) + α∗
u,v(�1:s)

with boundary condition α∗∗
0,0(ε) = 1 (and other “out-of-bounds” forward likeli-

hoods defined to be zero).
The interpretation of these probabilities is

αε
u,v(�1:s) =

∑

π∈Pε
u(�1:s)

P (π|u)
∑

φ∈Pv(�1:s)

P (φ|v)

α∗ε
u,v(�1:s) =

∑

π∈P∗
u(�1:s)

P (π|u)
∑

φ∈Pε
v(�1:s)

P (φ|v)

α∗∗
u,v(�1:s) =

∑

π∈P∗
u(�1:s)

P (π|u)
∑

φ∈P∗
v(�1:s)

P (φ|v)

Note that the label probability P (�|u,v) can, in fact, be calculated more
efficiently by combining Eqs. 1 and 2, without reference to the pairwise Forward
probabilities α∗∗

u,v(κ). However, the pairwise Forward probabilities are useful for
calculating the prefix probability, σ(κ|u,v)

σ(κ|u,v) =
1
Z

∑

(u,v)∈A(u,v)

α∗∗
u,v(κ)γu+1,v+1 (3)

where A(u,v) = {(u, v) : 1 ≤ u ≤ U, 1 ≤ v ≤ V } is the alignment envelope.
Following [5,6], one general strategy for optimizing these calculations is to

replace the exact expression for σ(κ|u,v) with a lower bound that is faster to
compute, where the summation is constrained to some subset A′(u,v) ⊂ A(u,v)
of the full alignment envelope, pre-identified as including the most probable
alignment paths. After having sampled an alignment envelope A

′, one then
computes the pairwise Forward probabilities αu,v, a computation that may be
accelerated by visiting only cells with indices that are in the reduced envelope,
(u, v) ∈ A

′. Finally, σ(κ|u,v) is computed as in Eq. 3, above.

Finding the Alignment Envelope. Having computed γ, an alignment enve-
lope may be sampled by N iterations of stochastic trace (which samples from
the set of paths where the two RNNs agree), as follows

– Initalize A
′ ← ∅

– Repeat N times:
• Initialize (u, v) ← (0, 0)
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• While u < U or v < V :
∗ If (u, v) /∈ A

′, then add (u, v) to A
′

∗ Sample (u′, v′) with weight γu′,v′ (or zero if u′ > U or v′ > V ) from
the set {(u + 1, v), (u, v + 1), (u + 1, v + 1)}

∗ Set (u, v) ← (u′, v′)

3 MCMC Consensus for Multiple Reads

We can alternatively formulate a complementary consensus approach using
Markov chain Monte Carlo (MCMC). This has the advantage of being more
easily generalized to more than two reads. This generic MCMC approach is
similar to, and inspired by, Nanopolish [8].

Let R = {(x(i),y(i))} denote a set of reads x(i) and their associated RNN
outputs y(i). We augment this by an imputed state (to be sampled by MCMC)
that specifies alignments of reads to an imputed consensus sequence: let C ∈ L∗

denote the consensus and A = {(π(i), S(i))} the alignments, where π(i) is the
path through the i’th read’s RNN. Let �(i) = B(π(i)) denote the corresponding
label sequence. We require at all times, and for all reads, that �(i) be a subse-
quence of C, and that S(i) is the index (1-based with respect to C) of the first
label symbol �

(i)
1 for the i’th read. Thus, E(i) = S(i) + |�(i)| − 1 is the index of

the last label symbol, and �(i) = CS(i):E(i) .
We define a target distribution of the form

P (C,A|R) ∝ P (C)
∏

i

P (�(i)|y(i))

where P (C), a prior, penalizes sequences that get too long (e.g. IID with
geometrically-distributed length).

One can readily describe a MCMC algorithm for sampling from this target
distribution via

– Moves that resample the alignment of an individual read (π(i), S(i)) while
keeping the consensus sequence C fixed (and the other alignments)

• Increase or decrease S(i) by removing or adding label symbols to the
beginning of π(i)

• Sample directly from P (π(i)|�(i) = CS(i):E(i)) using stochastic traceback
through the α(CS(i):E(i)) matrix of Sect. 2.3

– Moves that resample the consensus sequence C while fixing the number and
locations of gaps in the alignments

• Insert base (adding a label character to the paths π(i) of any reads that
overlap with that base)

• Delete base (removing a label character from the paths of any overlapping
reads)



Consensus Decoding of Recurrent Neural Network Basecallers 137

The probabilities of these candidate moves (C′,A′) can be calculated with
P (π(i)|y(i)), which leaves the Metropolis-Hastings acceptance probability

min
(

1,
P (C′,A′|R)
P (C,A|R)

)

where the proposal moves are accepted if the acceptance probability is greater
than u ∈ unif(0, 1).

4 Connection to Finite State Automata

Since the RNN’s output y is like the parameterization of a gapped position-
specific weight matrix, we can represent it using a profile Hidden Markov Model,
i.e. a state machine with (probabilistically) weighted transitions [3]. This is illus-
trated in Fig. 1. Denote this HMM by R(y).

Suppose � represents a label sequence that may be the output of the RNN.
One way to represent this constraint—that a sequence must have a particular
value—is by using a second state machine as an indicator function (a one-hot
vector for �) that assigns unit weight to sequence �, and zero weight to anything
else. Denote this second state machine by S(�).

To impose the constraint that two weighted automata A and B emit the
same sequence, we use a well-defined algorithm [11] to take the intersection
AB. That is, we construct a combined state machine whose individual paths
represent alignments of paths through A and B emitting the same thing. The
combined machine uses a product of A and B’s transition graphs, as illustrated
for R(y)S(�) in Fig. 3.

Several quantities of interest are then well-defined in terms of the norms (i.e.
sum-over-all-paths) of these intersected machines, including:

– The probability P (�|y) that the RNN’s output decodes to sequence � is
|R(y)S(�)| and this probability takes time O(T |�|) to compute

– The probability σ(κ|y) that it decodes to a sequence whose prefix is κ is
|R(y)P(κ)|, where P(κ) is the indicator machine matching any sequence
beginning with κ

– The probability Z that two RNNs with outputs y, z decode to the same
sequence is |G| where G = R(y)R(z)

– The probability P (�|y, z) that � is the consensus decoded sequence is
1
Z |GS(�)| = 1

Z |R(y)S(�)| · |R(z)S(�)|; the probability σ(κ|y, z) that κ is
its prefix is 1

Z |GP(κ)|; and so on
– Calculations involving G take time and memory O(UV ), which is expensive.

However, optimized approximations are possible, e.g. using a reduced-size
machine G′ ⊂ G
The states of G and GS(�) are related to the recursions for γε

u,v, γ∗ε
u,v, γ∗∗

u,v

and αε
u,v, α∗ε

u,v, α∗∗
u,v in Sect. 2.4. Restricting the alignment envelope to a subset

A
′ of the full alignment envelope A is equivalent to using a smaller automaton

G′ whose transition graph is a subgraph of the full transition graph of G.
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Fig. 3. Intersection of automata (analogous to pointwise vector multiplication) con-
strains two machines to emit the same thing. The intersection shown here is written
R(y)S(AG) where R(y) represents the machine on the left, derived from a neural net-
work (see Fig. 1) and S(AG) represents the machine in the middle, which allows only the
sequence AG. Intersection is implemented by taking the product of the two transition
graphs, keeping only edges where the labels of the two machines are synchronized, with
an arbitrary well-defined ordering on gaps [1,7,9,11]. Some states and transitions in
the intersected machine may be inaccessible (shown grayed-out).

Further details may be found in a supplement available on the paper’s website
(https://jordisr.github.io/consensus-rnns/) and in references [1,7,9,11].
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Abstract. Both epigenetics and genetic alterations are associated with cancer
formation. Identification of prognostic biomarkers, DNA-methylation-mediated
miRNAs, is an important step towards developing therapeutic treatment of
cancer. Ovarian cancer is one of the most lethal cancers among the females, it was
selected for the present study. The TCGA database provides large volume of data
for cancer study, which is useful if one can combine different batches of datasets;
hence, higher confident results can be obtained. There are several issues arise in
data integration, i.e., missing data problem, data heterogeneity problem and the
need of construct an automatic platform to reduce human intervention.
Method. Both the normal and ovarian tumor datasets were obtained from the
TCGA database. To interpolate the missing methylation values, we employed
the KNN imputation method. Simulation tests were performed to obtain the
optimal k value. We utilized meta-analysis to minimize the heterogeneity
problem and derived statistical significant DNA methylation-mediated-miRNA
events. Finally, a semi-automatic pipeline was constructed to facilitate the
imputation and meta-analysis studies; thus, identify potential epigenetic
biomarkers in a more efficient manner.
Results. Both epigenetic- and TF-mediated effects were examined, which allow
us to remove false positive events. The methylation-mediated-miRNA pairs
identified by our platform are in-line with literature studies.
Conclusion. We have demonstrated that our imputation and meta-analysis
pipeline led to better performance and efficiency in detecting methylation-
mediated-miRNA pairs. Furthermore, this study reveals the association between
aberrant DNA methylation and alternated miRNA expression, which contributes
to better knowledge of the role of epigenetics regulation in ovarian cancer
formation.
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1 Introduction

Epigenomics study not only provides a normal functional process in cell differentiation
but also may reveal the relations between methylation patterns and cancer diseases [1].
For example, aberrant methylation in CpG island shores and gene bodies may affect
large genomic regions in colorectal cancer [2]. Similarly, histone methylation and
acetylation is altered in breast cancer cell [3]. Moreover, aberrant expression of
miRNA, another regulatory element of epigenetics disease, shows responsible in
gastric cancer angiogenesis [4].

Ovarian cancer is one of the most dangerous cancers among other cancers of the
female reproductive system that causes higher mortality rate in women. In 2013, there
were 20,927 women in the United States were diagnosed with ovarian cancer and
14,276 died because of this cancer [5]. Furthermore, ovarian cancer is one of the
diseases that has been studied both in genetics and epigenetics. Ovarian serous cys-
tadenocarcinoma (OSC) was chosen for the present study.

miRNAs can contribute disease progression by acting as oncogenes (OCGs) or
tumor suppressor genes (TSGs) [6] and also negatively regulate genes involved in cell
proliferation and cell survival which cause the instability of gene transcription and
protein development [7]. Aberrant DNA methylation has been considered as one of the
epigenetic mechanisms that controls both up- and down-regulation of miRNA
expression, which led to cancer formation [8].

Multiples studies have shown the interaction between methylation and miRNA
expression in cancer progression. For example, down regulation of miR-10b* in breast
tumors due to hypermethylation of CpG islands located upstream promotes tumor
proliferation [9, 10]. Additionally, recent study has shown hypermethylation of
miR-193a-3p resulted in GRB7 upregulation which enhance oncogenic properties of
ovarian cancer cells in vitro and in vivo [11].

Moreover, experimental studies show that transcription factors (TFs) and miRNAs
can regulate each other. Delfino et al. [12] identified eight TFs involve in ovarian
cancer; such as, circadian locomotor output cycles kaput (CLOCK), estrogen receptor 2
(ESR2), v-etsery throblastosis virus E26 oncogene homolog 2 (ETS2), histone
deacetylase 3 (HDAC3), homeobox A1 (HOXA1), v-myc myelocytomatosis viral
oncogene homolog (MYC), nuclear receptor subfamily 5, group A, member 1
(NR5A1), and POU class 2 homeobox 2 (POU2F2).

In recent years, a large amount of information on ovarian cancer study is well
documented in The Cancer Genome Atlas (TCGA) database, a resource provided by
the National Cancer Institute and the National Human Genome Research Institute [13,
14]. Despite TCGA delivers massive genomic information, some of the microarray and
NGS data might be missing while making measurements. As missing data can reduce
the accuracy in the results, a study [15] shown that KNN imputation can be used as a
standard to interpolate the missing values due to its accuracy performance. It has shown
that only 6–26% average deviation from the true values of the estimated values and the
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error rate is under 0.25 after normalization [15, 16]. On the other hand, meta-analysis
could provide a rigorous statistical framework for summarizing the results of multiple
experiments in a single estimate [17].

In our previous work [8], we utilized meta-analysis to identify DNA-methylation-
mediated miRNA in OSC using 12 batches of datasets. In this study, we extended our
previous work by performing five additional tasks: (i) determine the optimal k value by
conducting missing data simulation experiments, (ii) make use of the imputation
method to infer missing methylation values, (iii) quantify the difference between the
normal and tumor cases using two different parameters: i.e. the methylation levels
(so-called beta-value or b-value) and the log2(fold change), (iv) apply Student’s t-test to
infer aberrant methylation and differentially expressed miRNAs, and (v) develop a
semi-automatic pipeline to facilitate data integration, data pre-processing, and
meta-analysis study for 14 batches of data, i.e. two more batches compare to our
previous work [8].

2 Methods

2.1 Dataset

We obtained 14 batches of tumor samples (569 cases) and one batch of normal sample
(12 cases) of both DNA methylation and miRNA expression data from TCGA. DNA
methylation profiles were measured by using the Illumina Infinium human DNA
methylation 27 platform (consists of 27578 DNA methylation sites), which provided
methylation probe ID, chromosome locations, genomic locations and each patient’s
CpG islands’ methylation levels. The miRNA expression levels were recorded by using
the Agilent 8x15K Human miRNA-specific microarray platform (consists of 799
miRNAs), which provided miRNA ID and miRNA expression score information. All
the beta-values and miRNA expression information used in this study are normalized
data (‘Level 3’ data).

2.2 Construction of a Semi-automatic Pipeline

We developed a semi-automatic pipeline to accelerate the data processing and analysis
process. This pipeline provides the following functionalities: (i) it integrates DNA
methylation and miRNA expression datasets, (ii) it interpolates missing methylation
values using the KNN imputation method, and (iii) it performs the heterogeneity test
and meta-analysis study. Figure 1 showed the workflow of our work.

Prior to pipeline construction, we designed a folder management process to orga-
nize the methylation and miRNA expression data. The folder management organization
structure was provided in Fig. 2.

KNN Imputation. After combined the batch information, we handled the missing data
problem. This process replaces the missing values with some values resemble the
individual test value or approximately has the same distribution [18]. For probe xb with
missing beta-value, its methylation level j is estimated by taking the average of the
k nearest probes’methylation levels xai. The missing beta-value of probe xbj is given by,
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xbj ¼
P

8xa2Nb
xai

k
ð1Þ

where Nb is the set of k nearest neighbors of probe xb.
To determine the optimal k, we conducted simulation test to find the best performing

k value. A study reported by Ahmadi-Nedushan [19], suggested optimal k lies between
1, 2, 3, 4 or 5. We used the ‘batch 40’ dataset (from TCGA) as our control, because:
(i) it consists of the largest number of cases, i.e. 49, and (ii) it has no missing value.
Simulated datasets were generated by randomly assigned five different levels, i.e. 10%,
20%, 30%, 40%, and 50%, of missing values for each row in the control dataset. Then
we applied the KNN method, using five different k, i.e. 1 to 5, to impute the missing
values.

To infer the optimal k, both statistical t-test analysis and matrix difference calcu-
lation were conducted. The difference between matrices A and B is given by:

Fig. 1. The workflow of utilizing imputation and meta-analysis DNA-methylation-mediated
miRNA pipeline
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d A;Bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

Xn

j¼1
aij � bij
� �2r

ð2Þ

where A = the control matrix, B = the imputated matrix, aij = the ith row and jth
column matrix element of A, and bij = the ith row and jth column matrix element of B.
All analysis was done using MATLAB® (R2016b) function knnimpute() and t-test
analysis using the function ttest2(). Performance tests were repeated five times and the
results were averaged.

As shown in Table 1, k equals to 5 shows the best performance which has the
smallest matrix difference. The results of the t-test suggests that there is no significant
difference; i.e. pt [ 0:05, between the control and the imputed matrix.

Meta-analysis Study. We examined direct DNA-methylation-mediated events by
sorting out methylation sites that are located within 100 kb (both upstream and
downstream) of a miRNA’s TSS [20]. The genomic coordinates of the DNA methy-
lation sites are based on NCBI36/hg18, while the TSS of the miRNAs’ genomic
positions are based on GRCh37/hg19 from MiRStart [21] and MiRBase [22]. To adjust
the difference between two human genome versions, we employed the ‘Lift Over’ tool,
which is provided by the UCSC genome browser, to map the methylation sites’
coordinates to the GRCh36/hg18 version. Then we performed the Spearman’s Rank
Correlation Coefficient (SRCC) calculation to estimate the correlation strength between
the methylation level and the miRNA expression level. To conduct the meta-analysis
study, the SRCC were first transformed into the Fisher’s Z metric, and all the calcu-
lations were conducted using the Z-values [23].

As proposed by Agustriawan et al. [8], we handled the heterogeneous problem by
performing the I2 statistical test, where I2 is defined by [20],

I2 ¼ Q � df
Q

� 100% ð3Þ

Table 1. The results of the performance of KNN imputation in datasets with five different levels
of randomized missing values

KNN Percentage of randomized missing values

10% 20% 30% 40% 50%
d pt d pt d pt d pt d pt

k = 1 0.060 0.97 0.071 0.91 0.071 0.84 0.071 0.83 0.071 0.77
k = 2 0.056 0.96 0.066 0.92 0.067 0.87 0.068 0.86 0.068 0.81
k = 3 0.053 0.96 0.063 0.94 0.065 0.86 0.066 0.83 0.066 0.78
k = 4 0.053 0.96 0.061 0.96 0.063 0.89 0.064 0.87 0.064 0.82
k = 5 0.052 0.96 0.059 0.97 0.062 0.92 0.063 0.92 0.063 0.87

d = matrix difference; pt = p-value of the t-test
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where df denotes the degree of freedom, and Q is given by,

Q ¼
Xq

p¼1
Wp Yp �M

� �2 ð4Þ

where q, W , Y , M represent the number of studies, the study weight, the study effect
size and the summary effect, respectively [23]. This test assessing the dispersion across
batches with 25%, 50% and 75% heterogeneity values might be interpreted as low,
moderate and high variances, respectively. I2 also can be interpreted as the signal to
noise ratio between batches, so if I2 shows statistically significant result, we can
conclude that the results across batches do not share a common effect size, i.e. the
Z-values or SRCC, used in the present study. At the end of the meta-analysis study, the
Z-values were transformed back to the SRCC. Furthermore, the confidence intervals of
SRCC and meta-analysis p-values, pMA, were estimated.

Differential Expression Analysis of DNA Methylation and miRNA Expression. We
conducted Differential Methylation Region (DMR) study and differential expressed
miRNA analysis. In DMR study, we applied the difference in mean b-value concept,

Db ¼ mean b-value in tumor caseð Þ� mean b-value in normal caseð Þ ð5Þ

As suggested by Sung et al. [24], a methylation site is hypermethylated or
hypomethylated if Db was greater than 0.2 or less than −0.2, respectively. In order to
have better knowledge of the mean differences, t-test analysis was applied using the
MATLAB® package mattest() with VARTYPE set as ‘unequal’ for unknown variance.
Methylation level is considered as hypermethylated if Db > 0.2 and hypomethylated if
Db < −0.2 with t-test shows statistically significant (a = 0.05).

To determine differentially expressed miRNAs, we compared the tumor and normal
cases by using the two-sample t-test. If pt < 0.05, then the difference is significant.
Negative log2(fold change) represents downregulation while positive logarithmic value
represents upregulation.

2.3 Comparison of DNA-Methylation-Mediated miRNA Predictions
with Disease-Related miRNA Databases

Aside from epigenetics alterations, which play a role in regulating the miRNAs in
cancer study, transcription factor (TFs) may also control gene expression by activating
or deactivating the DNA transcription process. To the best our knowledge, there are
very limited works addressing the interaction between these two mechanisms. We
examined this by utilizing information retrieved from a TF-mediated-miRNA database,
TransmiR (August 7th, 2016 version) [25]. Also, to validate the methylation-
mediated-miRNA results, we compared our predicted miRNAs with both the Pheno-
miR 2.0 [26] and the MiR2Disease [27] databases.

Identify DNA-Methylation-Mediated microRNAs in Ovarian Cancer 145



3 Results

3.1 KNN Imputation Results

Given the Illumina platform, we scanned a total of 27578 methylation probes and
found 2603 rows (methylation probes) with >50% missing values. After removed
methylation probes with >50% missing values, we applied KNN imputation with k = 5
to interpolate the missing values for the 24975 remaining probes. As a result, there are
a minimum of 24 probes and a maximum of 2569 probes’ beta-values were imputed.
Furthermore, the number of predicted methylation-mediated miRNA pairs increased
from 1718 without imputation to 2512 with imputation. The number of
DNA-methylation-mediated miRNAs was reduced from 15 significant pairs using
imputation to nine without imputation due to increase of noise ratio (I2 < 0.05, data not
shown). Among the nine events, two miRNAs are related to ovarian cancer. Four
events are common to both studies. Imputation has the potential in detecting more
methylation-mediated-miRNA pairs; however, the method may result in removing a
few real events. It is not clear whether imputation will incur such effect in general or
not, more studies are need to settle this question.

3.2 The Results of Meta-analysis Study and TF-Mediated-miRNAs

By comparing the genomic locations of the methylation sites and the miRNA TSS, we
found 2512 pairs, which include 1118 methylation sites and 375 miRNAs. Some of the
miRNAs may have two or more methylation regions falling within 100 kbps of the
miRNA TSS. Given the beta-values and the miRNA expression levels, the SRCC were
calculated. Next, our pipeline performed the heterogeneity test and the meta-analysis
calculation. Heterogeneity test showed that there is no significant variance across
batches. The test shows that all the 14 batches share the common effect size, SRCC.
Then, the final SRCC and p-values (pMA) for the 2512 pairs were calculated. It was
found that 586 pairs are significant, i.e. pMA < 0.05, Out of the 586 pairs, 376 pairs are
anti-correlation events.

To access aberrant alternations, both DMR study and differential expressed miRNA
study were performed. Out of the 376 events, we found 11 methylation sites are
differentially methylated and 13 miRNAs are differentially expressed (Table 2). We
noted that among the 11 methylation sites, hypomethylation is the dominant regulation
mechanism, which is consistent with the general consensus that global hypomethyla-
tion occur in cancer [28] and in ovarian cancer [29]. Moreover, we observed that the
hypomethylated probe, cg12019109, mediates upregulation of hsa-miR-25*. This event
has the most negative SRCC, i.e. r = −0.46 and pMA � 0.05.

It is known that [30] the interaction between TF and methylation can be mediated
through DNA methylation and chromatin interaction. Methylation of DNA results in a
chromatin structure that may prevent TF from accessing DNA. As a result, the tran-
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scription will not occur. In contrast, unmethylated DNA involved in chromatin
remodeling and chromatin modification which permit the TF hybridizes with the DNA.

Among the 15 events, 14 significant DNA-methylation-mediated miRNAs
(hsa-miR-29a* appear twice) were identified, where four miRNAs are regulated by TFs
(Table 3). If both epigenetic and TF regulations appear to associate miRNA expression;
it suggests that the DNA-methylation-mediated prediction may be a false positive
event. For example, E2F1 and PTEN act as an activator of miRNA-25*. From Table 2
results, miRNA-25* is associated with a hypomethylated site, thus, we can assume that
hypomethylated miRNA-25* is activated by E2F1 and PTEN. As we shown in
Table 4, miR-25* does involve in ovarian cancer formation, which is recorded by both
the PhenomiR and the MiR2Disease databases.

MiR-93 is regulated by three TFs, where E2F1 acts as a regulator, PDGF-B and
MYC act as suppressors. If miR-93 is hypomethylated, then it will be down-regulated
by PDGF-B or MYC, which is not consistent with the hypomethylate-mediate effect;
hence, there may be other effects involved. Similarly, E2F1 acts as a regulator of
miRNA-106b; and miR-29a* is regulated by nine TFs, i.e. HMGA1, MYC, NFKB1,
YY1, IL-4, PDGF-B, TGFB1, CEBPA and AP-1. Among the nine TFs, two TFs activate
miRNA-29* expression. Again, both miR-106b and miR-29a* may involve other
effects beside DNA-methylation.

Table 2. Significant correlated DNA-methylation-mediated miRNAs

Methylation site Methylation status miRNA miRNA expression SRCC pMA

cg12019109 Hypomethylated hsa-miR-25* Upregulated −0.46 0.00
cg07446572 Hypomethylated hsa-miR-200c Upregulated −0.30 1.16E−12
cg07446572 Hypomethylated hsa-miR-200c* Upregulated −0.30 1.83E−12
cg07109801 Hypomethylated hsa-miR-425 Upregulated −0.27 1.18E−10
cg07297906 Hypomethylated hsa-miR-20b Upregulated −0.21 6.41E−07
cg11063110 Hypomethylated hsa-miR-335 Upregulated −0.20 2.54E−06
cg06641503 Hypomethylated hsa-miR-191 Upregulated −0.20 5.38E−06
cg12019109 Hypomethylated hsa-miR-93 Upregulated −0.18 2.32E−05
cg07297906 Hypomethylated hsa-miR-106a Upregulated −0.18 2.95E−05
cg10722799 Hypermethylated hsa-miR-802 Downregulated −0.14 0.001
cg21578541 Hypomethylated hsa-let-7g Upregulated −0.13 0.002
cg08077673 Hypomethylated hsa-miR-29a* Upregulated −0.13 0.002
cg01888566 Hypomethylated hsa-miR-29a* Upregulated −0.13 0.002
cg12019109 Hypomethylated hsa-miR-106b* Upregulated −0.10 0.021
cg13118849 Hypomethylated hsa-miR-640 Upregulated −0.09 0.039

pMA denotes the p-value for the meta-analysis study, bold, italic and underline fonts denote the
same methylation sties.

Identify DNA-Methylation-Mediated microRNAs in Ovarian Cancer 147



3.3 DNA-Methylation-Mediated miRNAs and Disease-Related Databases

From the PhenomiR and MiR2disease database records, it was found that there are
10 miRNAs (from Table 4, hsa-miR-25*, hsa-miR-200c, hsa-miR-335, hsa-miR-191,
hsa-miR-93, hsa-miR-106a, hsa-let-7g, hsa-miR-29a*, hsa-miR-106b*, hsa-miR-640)
consistently upregulated and are involved in ovarian cancer. Each one of these miR-
NAs is associated with a hypomethylated site (Table 2). Our study suggested that due
to aberrant methylation, those miRNAs are associated with ovarian cancer formation.
In particular, among these 10 miRNAs, four of them (Table 4) were recorded upreg-
ulated in our prediction as well as in the PhenomiR or the MiR2Disease database.
According to PhenomiR and MiR2Disease, there are four miRNAs (hsa-let-7g,
hsa-miR-106b*, hsa-miR-29*, and hsa-miR-335) were reported to be both up- and
down-regulated. Also, the rest three miRNAs (hsa-miR-20b, hsa-miR-425, and
hsa-miR-802) remain unrecorded in the literature. Therefore, further study is required
to clarify this confusing situation.

Table 3. TransmiR - ovarian cancer associated TF-mediated miRNAs

TF TF-regulated
miRNA

Action miRNA
expression

Methylation probes

E2F1 miR-25* Regulation Upregulated cg12019109
PTEN miR-25* Activation Upregulated cg12019109
E2F1 miR-93 Regulation Upregulated cg12019109
PDGF-B,
MYC

miR-93 Repression Upregulated cg12019109

HMGA1 miR-29a* Activation Upregulated cg08077673, cg01888566
MYC miR-29a* Repression Upregulated cg08077673, cg01888566
NFKB1 miR-29a* Repression Upregulated cg08077673, cg01888566
YY1 miR-29a* Repression Upregulated cg08077673, cg01888566
IL-4 miR-29a* Repression Upregulated cg08077673, cg01888566
PDGF-B miR-29a* Repression Upregulated cg08077673, cg01888566
TGFB1 miR-29a* Repression Upregulated cg08077673, cg01888566
CEBPA miR-29a* Repression Upregulated cg08077673, cg01888566
AP-1 miR-29a* Activation Upregulated cg08077673, cg01888566
E2F1 miR-106b* Regulation Upregulated cg12019109
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4 Discussion and Conclusion

Although epigenetics has very complex mechanisms and many factors involved
leading to ovarian cancer, we investigated direct DNA-methylation-mediated miRNA
expression in this work. Both DNA-methylation and TFs could cause abnormal
miRNA expression, where aberrant DNA-methylation level may be one of the
mechanisms that induce the altered miRNA expression. It is possible that certain TFs
may interfere epigenetic alterations. However, those miRNAs are putative epigenetic
biomarkers, further study is needed to investigate their involvement in ovarian cancer.

Compared with two cancer-associated miRNA databases, we identified 10 miRNAs
exhibit aberrant alterations in ovarian cancer (Table 4). In Table 4, some miRNAs
reported as being both up and down-regulated. The conflicting reports can be occurred
because of the similar or dissimilar samples (e.g. real tumours vs cell lines, etc.),
unbalance number of samples between cancer and normal patients, lack of normal
samples can be a limitation to identify differentially expressed miRNAs.

Some of miRNA such as hsa-let-7g might have different results due to sample
differences in their study design. PhenomiR database reported patients study phenotype
[31] while in Mir2disease database reporting miRNA expression using Type I/SC1 and

Table 4. The results miRNAs prediction involved in ovarian cancer according to Phenomir and
OncomirDB

miRNA Probe miRNA regulation/effect References (PMID)
P PhR M2D

let-7g cg21578541 Up Up Down 18442408, 17600087
miRNA-106a cg07297906 Up Up – 18442408
miRNA-106b* cg12019109 Up Up/down Down 16754881, 18560586, 18442408
miRNA-191 cg06641503 Up – – 27419385, 26191186, 25819812,

20167074
miRNA-200c cg07446572 Up Up Up 17875710, 18451233, 17875710,

19435871, 19854497
miRNA-20b cg07297906 Up – – –

miRNA-25* cg12019109 Up Up – 16754881
miRNA-29a* cg08077673/

cg01888566
Up Up/down Up 16754881, 18560586, 17875710,

18199536, 18451233
miRNA-335 cg11063110 Up Up/down Down 16754881, 18560586
miRNA-425 cg07109801 Up – – –

miRNA-640 cg13118849 Up – – 23627607
miRNA-802 cg10722799 Down – – –

miRNA-93 cg12019109 Up Up Up 16754881, 18451233, 18442408

P = Prediction; PhR = PhenomiR; M2D = MiR2Disease. Note 1: the * symbol denotes the less
predominant miRNA derives from the same hairpin of the pre-miRNA; 3p and 5p denotes the
direction of miRNA is from 3′ arm and 5′ arm, respectively. The sequence of the miRNA is
predominant. Note 2: PhenomiR (PhR) and MiR2Disease (M2D) database might cite using the
same references PMI.

Identify DNA-Methylation-Mediated microRNAs in Ovarian Cancer 149



Type II/SC2 cell lines model [32]. Similar to hsa-let-7g, hsa-miRNA-106b* has
inconsistency result due to multiple study designs reported especially in PhenomiR
database while another miRNA remains unrecorded in PhenomiR or Mir2disease
database. Furthermore, according to meta-analysis result these miRNAs are signifi-
cantly associated with at least one hypomethylated region, suggesting that they are
potential epigenetic biomarkers in ovarian cancer.

There are some limitations of the present work, that is, TCGA provided methylation
data measured by the Illumina InfiniumHumanMethylation27 platform instead of
Infinium, HumanMethylation450 Bead Chip array (January 15, 2016). This platform
provide data for more than 485,000 methylation sites at single-nucleotide resolution.
Unfortunately, TCGA provided a few patients’ 450k data, hence subjected to large
statistical variation problem. If more samples are available in the future, we can apply
our computation pipeline to conduct the same analysis. Moreover, the published lit-
erature did not provide epigenetic-mediated miRNA information for ovarian cancer;
therefore, it is difficult to evaluate the accuracy of our predictions.

In conclusion, this work demonstrated a comprehensive analysis strategy to predict
direct DNA-methylation-mediated miRNAs in OSC. The KNN imputation method was
utilized to interpolate the missing b-values using an optimal k value determined by
simulation experiments. Data heterogeneity and multi-batches issues are solved by
performing meta-analysis study. Both normal and ovarian tumor cases were employed
to determine the correlation between aberrant DNA methylation and alternated miRNA
expression.

A pipeline has been developed to facilitate the above steps in a semi-automatic
manner. This pipeline can be easily extended to analyze large-scale data for other
cancers, i.e. pan-cancer studies. Also, we have removed TF-mediated miRNAs, thus,
highly confident epigenetic-regulated miRNA events were obtained. The effectiveness
of this pipeline is supported by the literature.

Fig. 2. Folder management for organizing data
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We created a root folder named ‘Cancer Type’ with four subfolders name:
(i) normal sample data (NT), (ii) tumor sample data (TN) (iii) both normal and tumor
datasets (TN – NT) for differentially expression analysis and (iv) MATLAB_CODING
folder for collecting MATLAB programs.

NT folder, consist of normal sample DNA methylation and miRNA batch. This
dataset manually collected and move according to their batch number folder.
TN folder, similar to NT folder, tumor sample of DNA methylation and miRNA
batch dataset and collected according to its batch number. Add MiRNA-Methyl
subfolder which consist of Correlation and MA folder (directory output for corre-
lation and meta-analysis statistical result).
TN-NT folder, final output directory location of Differentially Methylated Region
(DMR), differentially express miRNA, and meta-analysis with methylation-miRNA
pair expression analysis.
MATLAB_CODING folder, all MATLAB programs for data integration, imputa-
tion, correlation analysis, meta-analysis, and expression analysis. All MATLAB
function coding inside this folder will be executed through mastercode_imputa-
tion_MA.m function.
mastercode_imputation_MA.m function, an executable MATLAB coding to
automatically process all analysis function collected in the MATLAB_CODING
folder.
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