Chapter 12 Branching Points on the Path of the *Slow* Neutron-Capture Process

Maria Lugaro and Alessandro Chieffi

We supplement this book, and in particular the discussion of stellar nucleosynthesis presented in Chap. 3, with a list of the unstable isotopes at which branching points become relevant in the *s*-process reaction chain in AGB stars. For sake of clarity and a better understanding it is advisable to go through the list with a chart of the nuclides at hand. For each branching point a brief description of its operation and its relevance in the study of the *s* process in AGB stars is presented. The 21 branching points highlighted by a star symbol next to their atomic mass are those that Käppeler et al. (2011) considered as interesting candidates for future Time-Of-Flight (TOF) measurements of their neutron-capture cross sections. All listed isotopes suffer β^- decay, unless specified otherwise. It should also be noted that usually in *s*-process conditions nuclear energy metastable levels higher than the ground state are not populated, thus the effect of these states does not need to be included in the study of branching points, except for the special cases reported in the list (see also Ward 1977).

Branching factors for each branching point can be calculated in each case at a given temperature, density, and neutron density conditions referring to Takahashi

M. Lugaro (\boxtimes)

Monash Centre for Astrophysics, Monash University, Clayton, VIC, Australia

Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Budapest, Hungary e-mail: maria.lugaro@csfk.mta.hu

A. Chieffi Istituto Nazionale Astronomia Fisica INAF, Roma, Italy e-mail: achieffi@iasf-roma.inaf.it

and Yokoi (1987) for the β decay rates, and to Rauscher (2012) for the neutroncapture cross section, unless advised otherwise in the description below.¹

- 35 S This branching point may lead to production of the rare neutron-rich 36 S, whose abundance can be observed in stars via molecular lines, and may be measured in sulphur-rich meteoritic materials (for discussion and models see Mauersberger et al. 2004).
- ³⁶Cl and ⁴¹Ca These are both long-living nuclei produced and destroyed mostly via (n, p) and (n, α) channels—via neutron captures in AGB stars, and discussed in detail in Sect. 3.6.4 of Chap. 3. While ³⁶Cl behaves as stable nucleus during the *s* process, the half life of ⁴¹Ca against electron captures has a strong temperature and density dependence, which could make it act as a branching point and most importantly prevent its survival instellar environments as in the case, e.g., of the other long-living ²⁰⁵Pb.
- ⁴⁵**Ca** This branching point may lead to production of the rare neutron-rich ⁴⁶Ca, which could be measured in Ca-rich meteoritic material.
- ⁵⁹**Fe** This important branching point leads to the production of the long-living radioactive nucleus ⁶⁰Fe. See Sect. 3.6.3 of Chap. 3 for a detailed description and AGB model results.
- ⁶³*Ni The half life of this nucleus decreases from 100 years to \simeq 12 years at 300 MK. The associated branching point affects the production of the rare neutron-rich ⁶⁴Ni as well as the ⁶⁵Cu/⁶³Cu ratio.
- ⁶⁴**Cu** The half life of this nucleus is short, of the order of a few hours, however, this isotope is a branching point on the *s*-process paths as it has comparable β^+ and β^- decay rates. The branching point may affect the production of ⁶⁴Ni and ⁶⁵Cu.
- ⁶⁵**Zn** This nucleus suffers β^+ decay and the branching point may affect the production of ⁶⁵Cu.
- ⁷¹Ge This nucleus suffers β^+ decay and the branching point may affect the production of ⁷¹Ga.
- ^{79*}Se This branching point may lead to production of the long-living radioactive isotope ^{81*}Kr. This production occurs when the temperature increases in the thermal pulse, and the half life of ⁷⁹Se decreases from the terrestrial half life of 65,000 years to roughly 4 years at 300 MK due to population of the shorter-living isomeric state (Klay and Käppeler 1988, and see Sect. 3.6.5 of Chap. 3 for model results). Operation of this branching point also affects the ⁸¹Br/⁷⁹Br ratio.
- ⁸⁰**Br** The half life of this nucleus is short, of the order of minutes, however, it is a branching point on the *s*-process paths as it can decay both β^+ and β^- , with the β^- roughly ten times faster than the β^+ channel. It can affect the production of ⁸¹Kr.
- ⁸¹**Kr** This nucleus is too long living ($T_{1/2} = 0.23$ Myr, down to 2300 years at temperature 300 MK) to act as a branching point during the *s* process and rather

¹Maria Lugaro thanks Roberto Gallino and Franz Kaeppeler for communicating the passion for branching points and for help with this section.

behaves as a stable nucleus. Its production during the *s*-process is discussed in detail in Sect. 3.5 of Chap. 3. Its radiogenic decay leads to 81 Br.

- ⁸⁵*Kr The relatively long half life of 85 Kr (11 years) allows this branching point to activate already at low neutron densities, $> 5 \times 10^8$ n/cm³. The actual operation of this branching point is complicated by the fact that roughly 40% of 84 Kr (n, γ) reactions during the *s* process result in the production of the isomeric state of ⁸⁵Kr. Approximately 80% of these nuclei quickly decay into ⁸⁵Rb, with a half live of 4.5 h, while the remaining 20% relax into the ground state. The production of ⁸⁷Rb, a very long-living isotope with half live of 48 Gyr and a magic number of neutrons N = 50, has traditionally been attributed to the activation of the branching point at ⁸⁵Kr (Lambert et al. 1995; Abia et al. 2001). However, van Raai et al. (2012) showed that the activation of the branching point at 85 Kr mostly results in the production of ⁸⁶Kr, a nucleus with a magic number of neutrons N=50 and a very small neutron capture cross section of only \simeq 3.4 mbarn. ⁸⁶Kr is thus more likely to accumulate than to capture the further neutron that would allow the production of ⁸⁷Rb. The importance of the production of ⁸⁶Kr in meteoritic SiC grains and the s-process is discussed in Sect. 3.5.5 of Chap. 3.
- ⁸⁶**Rb** The branching point at ⁸⁶Rb is activated at relatively high neutron densities, above 10^{10} n/cm³, being the half life of this nucleus 18.7 days, and it leads directly to the production of ⁸⁷Rb. The importance of ⁸⁷Rb in *s*-process observations and models is discussed in Sect. 3.5.4 of Chap. 3.
- ^{89,90}Sr and ⁹¹Y The branching point at ⁸⁹Sr may produce the unstable ⁹⁰Sr, also a branching point producing ⁹¹Sr, which quickly decays into unstable ⁹¹Y. This is also a branching point, producing ⁹²Y, which quickly decays into stable ⁹²Zr. The final result of the operation of this chain of branching points is to decrease the production of ⁹⁰Zr and ⁹¹Zr, with respect to that of ⁹²Zr. This point is discussed by Lugaro et al. (2003), in relevance to the Zr isotopis ratios measured in meteoritic silicon carbide (SiC) grains from AGB stars.
- 93 **Zr** This nucleus is too long-living (T_{1/2} = 1.5 Myr) to act as a branching point during the *s* process and rather behaves as a stable nucleus (see Sect. 3.5.2 and Fig. 3.10 of Chap. 3), with an experimentally determined neutron-capture cross section (Macklin 1985b). Its production during the *s*-process is discussed in detail in Sect. 3.6.5 of Chap. 3. Its radiogenic decay produces most of the solar abundance of ⁹³Nb. (A small fraction of the ⁹³Nb is also contributed by the radiogenic decay of ⁹³Mo (T_{1/2} = 3500 years) which is not on the main *s*-process path but can be produced by neutron-capture on the relatively abundant *p*-only ⁹²Mo, 15% of solar Mo.)
- 95* Zr This important branching point can lead to production by the *s* process of 96 Zr if N_n > 5 × 10⁸ n/cm³ (Toukan and Kaeppeler 1990; Lugaro et al. 2014; Yan et al. 2017). Zr isotopic ratios have been estimated in MS and S stars via molecular lines and measured in meteoritic SiC grains, providing constraints on the neutron density in the thermal pulses. This point is further discussed in Sects. 3.4.1 and 3.4.4.
- 94,95 Nb The half life of 94 Nb decreases from terrestrial 20,000 years to $\simeq 0.5$ years at 100 MK and $\simeq 9$ days at 300 MK. This branching point can produce

the unstable ⁹⁵Nb, which is also a branching point producing the unstable ⁹⁶Nb, which quickly decays into stable ⁹⁶Mo. Via the operation of the ⁹⁴Nb branching point the ⁹⁴Mo nucleus is skipped during the *s*-process chain, this nucleus is in fact classified among *p*-only nuclei.

- ⁹⁹Tc The half life of ⁹⁹Tc is 0.21 Myr, and decreases to 0.11 Myr at 100 MK and to 4.5 years at 300 MK. Thus, the neutron-capture path of the branching point is mostly open, producing ¹⁰⁰Tc, which quickly decays into ¹⁰⁰Ru, thus skipping ⁹⁹Ru (Fig. 3.10). Then, radiogenic decay of ⁹⁹Tc produces ⁹⁹Ru. The production of ⁹⁹Tc is discussed in detail in Sect. 3.5.5, and mentioned in Sect. 3.5.6 of Chap. 3 in relation to ⁹⁹Ru in meteoritic SiC grains.
- ¹⁰⁷**Pd** This nucleus is too long-living ($T_{1/2}$ =6.5 Myr, down to \simeq 700 years at 300 MK) to act as a branching point during the *s* process and rather behaves as a stable nucleus, with an experimentally determined neutron-capture cross section (Macklin 1985a). Its production during the *s*-process is discussed in detail in Sect. 3.6.5 of Chap. 3. Its radiogenic decay is responsible for production of ^{107}Ag .
- ¹²⁸**I** The decay half life of this nucleus is too short to allow for neutron captures, however, there is a marginal branching point here due to the fact that ¹²⁸I has both β^+ and β^- decay channels. The β^+ channel has significant temperature and density dependence and represents only a few percent of the decay rate. Nevertheless, this branching point has been investigated in detail because it affects the precise determination of relative abundances of the two *s*-only isotopes ¹²⁸Xe and ¹³⁰Xe, and because the timescale for its activation of the order of 25 min is comparable to that of the convective turn-over timescale of the material inside AGB thermal pulses of hours (Reifarth et al. 2004).
- ¹³³Xe May lead to production of the ¹³⁴Xe. Of interest in relation to the Xe-S component from SiC grains in primitive meteorites, as discussed in Sect. 3.5.4 of Chap. 3.
- ¹³⁴*,¹³⁵*,^{136,137}Cs The chain of branching points at the Cs isotopes is of particular interest because it affects the isotopic composition of the *s*-process element Ba and in particular the relative abundances of the two *s*-only nuclei ¹³⁴Ba and ¹³⁶Ba, as it is discussed in Sect. 3.5.5 in relation to Ba data from meteoritic SiC grains. The branching point at ¹³⁴Cs allows production of the long-living isotope ¹³⁵Cs (see Sect. 3.6.5 of Chap. 3 for model results). The half lives of both ¹³⁴Cs and ¹³⁵Cs have a strong theoretical temperature dependence, decreasing by orders of magnitude in stellar conditions. Specifically for the long-living ¹³⁵Cs, T_{1/2} varies from terrestrial of 2 Myr down to \simeq 200 years at 300 MK, while its neutron-capture cross section has been experimentally determined (Patronis et al. 2004). The branching point at ¹³⁵Cs can produce the unstable ¹³⁶Cs, which is also a branching point producing the unstable ¹³⁷Cs. With a constant half life of \simeq 30 years, this is also a branching point producing the unstable ¹³⁸Cs, which quickly decays into stable ¹³⁸Ba.

- ¹⁴¹Ce this branching point may lead to production of the neutron-rich ¹⁴²Ce, thus skipping the *s*-only ¹⁴²Nd and affecting the Nd isotopic ratios, which are measured in SiC stardust grains (Gallino et al. 1997).
- ^{142,143}**Pr** The branching point at ¹⁴²Pr is affected by the temperature dependence of the β^- half life of ¹⁴²Pr, which increases to $\simeq 4$ days at 300 MK from the terrestrial 19 h. The neutron-capture branch may produce the unstable ¹⁴³Pr, which is also a branching point producing the unstable ¹⁴⁴Pr, which quickly decays into ¹⁴⁴Nd. The operation of this chain of branching points may affect the isotopic composition of Nd because ¹⁴²Nd and ¹⁴³Nd are skipped by the neutron-capture flux and their abundances are decreased.
- ¹⁴⁷***Nd** This branching point may lead to the production of the neutron-rich "ronly" ¹⁴⁸Nd, which is of interest in relation to stellar SiC grain Nd data (Gallino et al. 1997).
- ^{147*,148*}**Pm** The branching point at ¹⁴⁷Pm is affected by the strong temperature dependence of the β^- decay of this nucleus, where the half life decreases from the terrestrial value of 2.6 years down to \simeq 1 years at 300 MK. The neutron-capture cross section of this nucleus is experimentally determined (Reifarth et al. 2003). When the branching is open, it produces the unstable ¹⁴⁸Pm, a branching point that may lead to production of ¹⁴⁹Pm, which quickly decays into ¹⁴⁹Sm. The operation of this chain of branching points affects the isotopic composition of Sm, by skipping ¹⁴⁷Sm and the *s*-only ¹⁴⁸Sm. This is of interest in relation to stellar SiC grain Sm data (Gallino et al. 1997).
- ¹⁵¹*Sm The operation of this branching point is affected by the temperature dependence of the β^- decay rate of ¹⁵¹Sm, where the half life of this nucleus decreases from 93 years to $\simeq 3$ years at 300 MK. Its operation changes the ¹⁵³Eu/¹⁵¹Eu ratio, which can be measured in stars (Sect. 3.5.4 of Chap. 3) and in SiC stardust grains (Sect. 3.5.5 of Chap. 3). Note that ¹⁵¹Sm is one of few radioactive nuclei acting as branching points on the *s*-process path for which an experimental determination of the neutron capture cross section is available (Abbondanno et al. 2004; Wisshak et al. 2006), however, some uncertainty is due to the contribution of excited states, which could be significant (Ávila et al. 2013; Rauscher 2012).
- 153 Sm This branching point can produce the neutron-rich 154 Sm and affect the 153 Eu/ 151 Eu ratio.
- ¹⁵²**Eu** This nucleus suffers both β^- and β^+ decays, with rates showing a strong temperature dependence covering several orders of magnitude variation in stellar conditions. The β^+ decay rate also has a strong dependence on density. The operation of this branching point, in combination with that at ¹⁵¹Sm, makes possible the production of the rare *p*-only isotope ¹⁵²Gd by the *s* process.
- 154*,155* Eu The decay rate of 154 Eu has a strong temperature dependence, with its half life decreasing from 8.8 years down to $\simeq 11$ days at 300 MK. If activated, it leads to production of the unstable 155 Eu, a branching point also with a temperature dependence, and an experimentally determined neutron-capture cross section (Jaag and Käppeler 1995), which may produce 156 Eu, which

quickly decays into ¹⁵⁶Gd. The operation of this chain of branching points affects the isotopic composition of Gd, which is a refractory element present in stellar SiC grains (Yin et al. 2006).

- ¹⁵³***Gd** This nucleus suffers β^+ decay with a temperature dependence, where the terrestrial half life of 239 days increases with increasing the temperature by up to an order of magnitude in AGB stars conditions. The operation of this branching point may affect the ¹⁵³Eu/¹⁵¹Eu ratio.
- ¹⁶³**Dy** and ^{163*,164}**Ho** The nucleus ¹⁶³Dy is stable in terrestrial conditions, but it can become unstable inside stars: at 300 MK the half life of this isotope becomes \simeq 18 days. Thus, a branching can open on the *s*-process path, leading to the production of the unstable ¹⁶³Ho via β^- decay of ¹⁶³Dy. In this conditions, the β^+ half life of ¹⁶³Ho (which also has a strong temperature and density dependence) is \simeq 12 years, so another branching can open on the *s*-process neutron capture path. Neutron captures on ¹⁶³Ho lead to production of the unstable ¹⁶⁴Ho, which has fast β^- and β^+ channels, both temperature dependent. The β^- channel can eventually lead to the production of ¹⁶⁴Er, a *p*-only nucleus, which may thus have a *s*-process component in its cosmic abundance.
- ¹⁶⁹Er This branching point may lead to the production of the neutron-rich ¹⁷⁰Er. ^{170*,171*}Tm The branching point at ¹⁷⁰Tm may produce the unstable ¹⁷¹Tm, which is also a branching point (with a temperature dependence) producing the unstable ¹⁷²Tm, which quickly decays into ¹⁷²Yb. By skipping ^{171,172}Yb during the *s*-process flux, these branching points affect the isotopic composition of Yb, which is a refractory element present in meteoritic stellar SiC grains (Yin et al. 2006).
- ¹⁷⁶Lu A branching point at ¹⁷⁶Lu is activated because of the production of the short-living (half life of $\simeq 4$ h) isomeric state of ¹⁷⁶Lu via neutron captures on ¹⁷⁵Lu. The situation is further complicated because, at around 300 MK, the isomeric and the ground state of ¹⁷⁶Lu are connected via the thermal population of nuclear states that can act as mediators between the two. Hence, the half life of the ¹⁷⁶Lu system can decrease at such temperatures by orders of magnitude. This branching point is of importance for the production of the very long-living ground state of ¹⁷⁶Lu (half life of 380 Gyr) and of the stable ¹⁷⁶Hf, which are both *s*-only isotopes, shielded by ¹⁷⁶Yb against *r*-process production. Hence, the relative solar abundances of these two isotopes need to be matched by *s*-process in AGB stars. For details and models see Heil et al. (2008) and Mohr et al. (2009).
- ¹⁷⁷Lu This branching point may lead to production of the unstable ¹⁷⁸Lu, which quickly decays into ¹⁷⁸Hf, thus decreasing the abundance of ¹⁷⁷Hf.
- ¹⁷⁹**Hf**, ¹⁷⁹*,¹⁸⁰**Ta** A branching point at ¹⁷⁹Hf may be activated on the *s*-process path because this stable nucleus becomes unstable in stellar conditions (as in the case of ¹⁶³Dy) with a β^- half life of \simeq 40 years at 300 MK. This may allow the production of the unstable ¹⁷⁹Ta, which is also a branching point with a temperature-dependent β^+ decay rate, which may lead to the production of ¹⁸⁰Ta, the least abundant nucleus in the solar system (Käppeler et al. 2004) as a few percent of neutron captures on ¹⁷⁹Ta lead to production of the very long-living

isomeric state of ¹⁸⁰Ta, instead of the ground state, which suffers fast β^+ and β^- decays. As in the case of ¹⁷⁶Lu, the ground and the isomeric states of ¹⁸⁰Ta can be connected via the thermal population of nuclear states that act as mediators between the two. It is still unclear if the cosmic abundance of ¹⁸⁰Ta is to be ascribed to the *s* process or to nucleosynthetic processes in supernovae connected to neutrino fluxes.

- ¹⁸¹**Hf** This branching point leads to production of the long-living radioactive nucleus ¹⁸²Hf (one of the few radioactive isotopes with an experimentally determined neutron-capture cross section available, Vockenhuber et al. 2007) whose decay into ¹⁸²W is of extreme importance for early solar system datation. The half life of ¹⁸¹Hf is relatively long (42 days) allowing production of ¹⁸²Hf in AGB stars when the ²²Ne(α ,n)²⁵Mg reaction is activated (see also Sect. 3.5 of Chap. 3).
- ^{182,183}Ta The branching point at ¹⁸²Ta is temperature dependent and may produce the unstable ¹⁸³Ta, also a branching point, producing ¹⁸⁴Ta, which quickly decays into the stable ¹⁸⁴W. These branching points may affect the isotopic composition of W, which is a refractory element that is present in stellar SiC grains.
- ¹⁸⁵***W** This branching point may produce ¹⁸⁶W, and affect the isotopic composition of W as well as the ¹⁸⁶Os/¹⁸⁸Os ratio. Its signature may be seen in data from stellar SiC grains for W and Os (Humayun and Brandon 2007; Ávila et al. 2012). Note that ¹⁸⁵W is one of few radioactive nuclei acting as branching points on the *s*-process path for which an experimental determination of the neutron capture cross section is available, even thought only via indirect (γ , *n*) studies, which have rather large uncertainties of about 30% (Sonnabend et al. 2003; Mohr et al. 2004).
- ¹⁸⁶**Re** This isotope decays in \simeq 89 h, and has both β^- and β^+ decay channel. The β^- decay channel is faster by one to two orders of magnitude depending on the temperature, which affects the β^+ decay rate. This branching point can affect the production of ¹⁸⁶Os, ¹⁸⁶W, and the very long-living ¹⁸⁷Re, whose slow decay into ¹⁸⁷Os is used as a cosmological clock (see discussion in Chap. 2).
- ¹⁹¹Os This branching point has a mild temperature dependence whereby the half life of ¹⁹¹Os decreases with the temperature from the terrestrial 15 days to \simeq 8 days at 300 MK. If activated, the neutron-capture branch can decrease the *s*-process abundances of ¹⁹¹Ir and ¹⁹²Pt and lead to production of ¹⁹²Os, thus affecting the isotopic composition of Os, which is measured in meteoritic materials (Brandon et al. 2005), and ¹⁹³Ir.
- ¹⁹²Ir This branching point can produce ¹⁹³Ir, and affect the *s*-process production of the rare proton-rich ¹⁹²Pt. A few percent of the decay rate of ¹⁹²Ir is made by β^+ decays.
- ¹⁹³**Pt** This isotope decays β^+ with a half life of $\simeq 50$ years, which may affect the production of ¹⁹³Ir.
- ²⁰⁴***TI** This branching point has a strong temperature dependence with its half life decreasing from the terrestrial value of \simeq 3.8 years to \simeq 7 days at 300 MK, leading to production of the *s*-only ²⁰⁴Pb.

- ²⁰⁵**Pb** This nucleus is long-living in terrestrial conditions ($T_{1/2} = 15$ Myr), but its half life against electron captures has a strong temperature and density dependence, which affects its survival in stellar environments, as in the case of ⁴¹Ca. Its production during the *s*-process is discussed in detail in Sect. 3.5 of Chap. 3. Its radiogenic decay is responsible for production of ¹⁰⁵Tl.
- ²¹⁰**Bi** This temperature-dependent branching point may lead to production of the unstable ²¹¹Bi, which α decays into ²⁰⁷Tl, which quickly decays β^+ into ²⁰⁷Pb.
- ²¹⁰**Po** May produce ²¹¹Po, which quickly α decays into ²⁰⁷Pb. The α decay of ²¹⁰Po, and ²¹¹Bi above, represent the chain of reactions that terminates the *s* process (Clayton and Rassbach 1967; Ratzel et al. 2004).

To complete the picture we list nuclei that could be classified as potential *s*-process branching points, given that their terrestrial half life is greater than a few days, however, they do not open during the *s* process because their half life decreases with the temperature to below a few days. These are: 103 Ru, 123 Sn, 124 Sb, 156 Eu, 160*,161 Tb, 175 Yb, 198 Au, and 205 Hg. Finally, we point out the special case of 157 Gd, a stable nucleus which becomes unstable at stellar temperatures, but not enough to open a branching point on the *s*-process path in AGB stars.

References

- Abbondanno U, Aerts G, Alvarez-Velarde F, Álvarez-Pol H, Andriamonje S, Andrzejewski J, Badurek G, Baumann P, Bečvář F, Benlliure J, Berthoumieux E, Calviño F, Cano-Ott D, Capote R, Cennini P, Chepel V, Chiaveri E, Colonna N, Cortes G, Cortina D, Couture A, Cox J, Dababneh S, Dahlfors M, David S, Dolfini R, Domingo-Pardo C, Duran I, Embid-Segura M, Ferrant L, Ferrari A, Ferreira-Marques R, Frais-Koelbl H, Furman W, Goncalves I, Gallino R, Gonzalez-Romero E, Goverdovski A, Gramegna F, Griesmayer E, Gunsing F, Haas B, Haight R, Heil M, Herrera-Martinez A, Isaev S, Jericha E, Käppeler F, Kadi Y, Karadimos D, Kerveno M, Ketlerov V, Koehler P, Konovalov V, Krtička M, Lamboudis C, Leeb H, Lindote A, Lopes I, Lozano M, Lukic S, Marganiec J, Marrone S, Martinez-Val J, Mastinu P, Mengoni A, Milazzo PM, Molina-Coballes A, Moreau C, Mosconi M, Neves F, Oberhummer H, O'Brien S, Pancin J, Papaevangelou T, Paradela C, Pavlik A, Pavlopoulos P, Perlado JM, Perrot L, Pignatari M, Plag R, Plompen A, Plukis A, Poch A, Policarpo A, Pretel C, Quesada J, Raman S, Rapp W, Rauscher T, Reifarth R, Rosetti M, Rubbia C, Rudolf G, Rullhusen P, Salgado J, Soares JC, Stephan C, Tagliente G, Tain J, Tassan-Got L, Tavora L, Terlizzi R, Vannini G, Vaz P, Ventura A, Villamarin D, Vincente MC, Vlachoudis V, Voss F, Wendler H, Wiescher M, Wisshak K (2004) Neutron capture cross section measurement of ¹⁵¹Sm at the CERN neutron time of flight facility (n_TOF). Phys Rev Lett 93(16):161103. https://doi.org/10.1103/PhysRevLett.93. 161103
- Abia C, Busso M, Gallino R, Domínguez I, Straniero O, Isern J (2001) The ⁸⁵Kr s-process branching and the mass of carbon stars. Astrophys J 559:1117–1134. https://doi.org/10.1086/ 322383, arXiv:astro-ph/0105486
- Ávila JN, Lugaro M, Ireland TR, Gyngard F, Zinner E, Cristallo S, Holden P, Buntain J, Amari S, Karakas A (2012) Tungsten isotopic compositions in stardust SiC grains from the Murchison meteorite: constraints on the s-process in the Hf-Ta-W-Re-Os Region. Astrophys J 744:49. https://doi.org/10.1088/0004-637X/744/1/49, 1110.4763
- Ávila JN, Ireland TR, Lugaro M, Gyngard F, Zinner E, Cristallo S, Holden P, Rauscher T (2013) Europium s-process signature at close-to-solar metallicity in stardust SiC grains from

asymptotic giant branch stars. Astrophys J 768:L18. https://doi.org/10.1088/2041-8205/768/1/L18, 1303.5932

- Brandon AD, Humayun M, Puchtel IS, Leya I, Zolensky M (2005) Osmium isotope evidence for an s-Process carrier in primitive chondrites. Science 309:1233–1236. https://doi.org/10.1126/ science.1115053
- Clayton DD, Rassbach ME (1967) Termination of the s-PROCESS. Astrophys J 148:69. https:// doi.org/10.1086/149128
- Gallino R, Busso M, Lugaro M (1997) Neutron capture nucleosynthesis in AGB stars. In: Bernatowicz TJ, Zinner E (eds) American Institute of Physics conference series, vol 402, pp 115–153. https://doi.org/10.1063/1.53327
- Heil M, Winckler N, Dababneh S, Käppeler F, Wisshak K, Bisterzo S, Gallino R, Davis AM, Rauscher T (2008) ¹⁷⁶Lu/¹⁷⁶Hf: a sensitive test of s-Process temperature and neutron density in AGB stars. Astrophys J 673:434–444. https://doi.org/10.1086/523892
- Humayun M, Brandon AD (2007) s-Process implications from osmium isotope anomalies in chondrites. Astrophys J 664:L59–L62. https://doi.org/10.1086/520636
- Jaag S, Käppeler F (1995) Stellar (n,γ) cross section of the unstable isotope ¹⁵⁵Eu. Phys Rev C 51:3465–3471. https://doi.org/10.1103/PhysRevC.51.3465
- Käppeler F, Arlandini C, Heil M, Voss F, Wisshak K, Reifarth R, Straniero O, Gallino R, Masera S, Travaglio C (2004) Stellar neutron capture on ¹⁸⁰Ta^m. II. Defining the s-process contribution to nature's rarest isotope. Phys Rev C 69(5):055802. https://doi.org/10.1103/PhysRevC.69. 055802
- Käppeler F, Gallino R, Bisterzo S, Aoki W (2011) The s process: nuclear physics, stellar models, and observations. Rev Mod Phys 83:157–194. https://doi.org/10.1103/RevModPhys.83.157, 1012.5218
- Klay N, Käppeler F (1988) β-decay rate of ^{79m}Se and its consequences for the s-process temperature. Phys Rev C 38:295–306. https://doi.org/10.1103/PhysRevC.38.295
- Lambert DL, Smith VV, Busso M, Gallino R, Straniero O (1995) The chemical composition of red giants. IV. The neutron density at the s-Process site. Astrophys J 450:302. https://doi.org/10. 1086/176141
- Lugaro M, Davis AM, Gallino R, Pellin MJ, Straniero O, Käppeler F (2003) Isotopic compositions of strontium, zirconium, molybdenum, and barium in single Presolar SiC grains and asymptotic giant branch stars. Astrophys J 593:486–508. https://doi.org/10.1086/376442
- Lugaro M, Tagliente G, Karakas AI, Milazzo PM, Käppeler F, Davis AM, Savina MR (2014) The impact of updated Zr neutron-capture cross sections and new asymptotic giant branch models on our understanding of the S process and the origin of stardust. Astrophys J 780:95. https:// doi.org/10.1088/0004-637X/780/1/95, 1311.2660
- Macklin RL (1985a) Neutron capture measurements on fission product¹⁰⁷Pd. Nucl Sci Eng 89:79
- Macklin RL (1985b) Neutron capture measurements on radioactive Zr-93. Astrophys Space Sci 115:71–83. https://doi.org/10.1007/BF00653828
- Mauersberger R, Ott U, Henkel C, Cernicharo J, Gallino R (2004) The abundance of ³⁶S in IRC+10216 and its production in the Galaxy. Astron Astrophys 426:219–227. https://doi.org/ 10.1051/0004-6361:20040451, arXiv:astro-ph/0407003
- Mohr P, Shizuma T, Ueda H, Goko S, Makinaga A, Hara KY, Hayakawa T, Lui Y, Ohgaki H, Utsunomiya H (2004) s-process branching at ¹⁸⁵W revised. Phys Rev C 69(3):032801. https:// doi.org/10.1103/PhysRevC.69.032801, arXiv:astro-ph/0409642
- Mohr P, Bisterzo S, Gallino R, Käppeler F, Kneissl U, Winckler N (2009) Properties of the 5⁻ state at 839 keV in Lu176 and the s-process branching at A=176. Phys Rev C 79(4):045804. https://doi.org/10.1103/PhysRevC.79.045804, 0903.3897
- Patronis N, Dababneh S, Assimakopoulos PA, Gallino R, Heil M, Käppeler F, Karamanis D, Koehler PE, Mengoni A, Plag R (2004) Neutron capture studies on unstable ¹³⁵Cs for nucleosynthesis and transmutation. Phys Rev C 69(2):025803. https://doi.org/10.1103/PhysRevC. 69.025803

- Ratzel U, Arlandini C, Käppeler F, Couture A, Wiescher M, Reifarth R, Gallino R, Mengoni A, Travaglio C (2004) Nucleosynthesis at the termination point of the s process. Phys Rev C 70(6):065803. https://doi.org/10.1103/PhysRevC.70.065803
- Rauscher T (2012) Formalism for inclusion of measured reaction cross sections in stellar rates including uncertainties and its application to neutron capture in the s-process. Astrophys J 755:L10. https://doi.org/10.1088/2041-8205/755/1/L10, 1207.1664
- Reifarth R, Arlandini C, Heil M, Käppeler F, Sedyshev PV, Mengoni A, Herman M, Rauscher T, Gallino R, Travaglio C (2003) Stellar neutron capture on promethium: implications for the s-Process neutron density. Astrophys J 582:1251–1262. https://doi.org/10.1086/344718
- Reifarth R, Käppeler F, Voss F, Wisshak K, Gallino R, Pignatari M, Straniero O (2004) ¹²⁸Xe and ¹³⁰Xe: testing He-Shell burning in asymptotic giant branch stars. Astrophys J 614:363–370. https://doi.org/10.1086/422206, arXiv:astro-ph/0405065
- Sonnabend K, Mengoni A, Mohr P, Rauscher T, Vogt K, Zilges A (2003) Determination of the (n, γ) reaction rate of unstable ¹⁸⁵W in the astrophysical s-process via its inverse reaction. Nucl Phys A 718:533–535. https://doi.org/10.1016/S0375-9474(03)00835-2
- Takahashi K, Yokoi K (1987) Beta-decay rates of highly ionized heavy atoms in stellar interiors. Atom Data Nucl Data Tables 36:375. https://doi.org/10.1016/0092-640X(87)90010-6
- Toukan KA, Kaeppeler F (1990) The stellar neutron capture cross sections of Zr-94 and Zr-96. Astrophys J 348:357–362. https://doi.org/10.1086/168243
- van Raai MA, Lugaro M, Karakas AI, García-Hernández DA, Yong D (2012) Rubidium, zirconium, and lithium production in intermediate-mass asymptotic giant branch stars. Astron Astrophys 540:A44. https://doi.org/10.1051/0004-6361/201117896, 1202.2620
- Vockenhuber C, Dillmann I, Heil M, Käppeler F, Winckler N, Kutschera W, Wallner A, Bichler M, Dababneh S, Bisterzo S, Gallino R (2007) Stellar (n,γ) cross sections of Hf174 and radioactive Hf182. Phys Rev C 75(1):015804. https://doi.org/10.1103/PhysRevC.75.015804
- Ward RA (1977) The importance of long-lived isomeric states in s-Process branching. Astrophys J 216:540–547
- Wisshak K, Voss F, Käppeler F, Krtička M, Raman S, Mengoni A, Gallino R (2006) Stellar neutron capture cross section of the unstable s-process branching point ¹⁵¹Sm. Phys Rev C 73(1):015802. https://doi.org/10.1103/PhysRevC.73.015802
- Yan SQ, Li ZH, Wang YB, Nishio K, Lugaro M, Karakas AI, Makii H, Mohr P, Su J, Li YJ, Nishinaka I, Hirose K, Han YL, Orlandi R, Shen YP, Guo B, Zeng S, Lian G, Chen YS, Liu WP (2017) The ⁹⁵Zr(n, γ)⁹⁶Zr cross section from the surrogate ratio method and its effect on s-process nucleosynthesis. Astrophys J 848:98. https://doi.org/10.3847/1538-4357/aa8c74, 1709.04635
- Yin QZ, Lee CTA, Ott U (2006) Signatures of the s-Process in presolar silicon carbide grains: barium through hafnium. Astrophys J 647:676–684. https://doi.org/10.1086/505188