Green Computing Algorithmics

Kirk Pruhs®)

University of Pittsburgh, Pittsburgh, PA 15260, USA
kirk@cs.pitt.edu
https://people.cs.pitt.edu/ kirk/

Abstract. We discuss what green computing algorithmics is, and what a
theory of energy as a computational resource isn’t. We then present some
open problems in this area, with enough background from the literature
to put the open problems in context. This background should also be
a reasonably representative sample of the green computing algorithmics
literature.

1 Introduction

®

Check for
updates

Time arguably ascended over space as the dominant computational resource
circa 1970, when semiconductor memory replaced magnetic core memory, and
energy arguably ascended over time as the dominant computational resource
circa 2000, when information technologies could no longer handle the exponen-
tiality of Moore’s law. Three examples illustrating the ascendancy of energy in
the areas of computer chip design, data center management, and high perfor-

mance computing are:

— In May 2004, Reuters reported that: Intel Hits Thermal Wall: “Intel Corp.

said on Friday it has scrapped the development of two new computer chips
(code-named Tejas and Jayhawk) for desktop/server systems in order to rush
to the marketplace a more efficient chip technology more than a year ahead
of schedule. Analysts said the move showed how eager the world’s largest
chip maker was to cut back on the heat its chips generate. Intel’s method of
cranking up chip speed was beginning to require expensive and noisy cooling
systems for computers.”

In September 2002, the New York Times quoted then Google CEO Eric
Schmidt as saying, “What matters most to the computer designers at Google
is not speed, but power, low power, because data centers can consume as
much electricity as a city.”

In 2010 the Advanced Scientific Computing Advisory Committee in their
report The Opportunities and Challenges of Ezxascale Computing stated that
one of the three main challenges is reducing power requirements. In particular,
it said, “Based on current technology, scaling today’s systems to an exaflop
level would consume more than a gigawatt of power, roughly the output of
Hoover Dam. Reducing the power requirement by a factor of at least 100 is
a challenge for future hardware and software technologies.”

© Springer Nature Switzerland AG 2019
B. Steffen and G. Woeginger (Eds.): Computing and Software Science, LNCS 10000, pp. 161-183, 2019.
https://doi.org/10.1007/978-3-319-91908-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91908-9_10&domain=pdf
https://doi.org/10.1007/978-3-319-91908-9_10

162 K. Pruhs

Thus we are about a decade into a green computing revolution in which a
wide array of information technologies are being redesigned with energy as a first
class design constraint [54]. Inevitably these new technologies have spawned new
theoretical/algorithmic problems. The most obvious type of algorithmic prob-
lem arising from this green computing revolution involves directly managing
power, energy or temperature as a computational resource. Additionally, these
new, more green, technologies also often have different non-energy-related phys-
ical properties than previous technologies. For example, in many new memory
technologies, writes are significantly more time consuming than reads. Thus the
management of these new informational technologies, that will likely be adopted
for reasons related to energy efficiency, often give rise to new algorithmic prob-
lems that do not directly involve managing energy. Green computing algorithmics
is just the study of the algorithmic problems spawned by the green computing
revolution.

When I (as one of the very few researchers working extensively on green
computing algorithms) was asked to write this paper, I had first had to decide
who my intended audience to be. I decided that my primary intended audience
are researchers, particularly young researchers, who are potentially interested in
initiating a research program in green computing algorithms. Another plausible
audience for this paper are researchers who want to know what has happened in
green computing algorithmics, and where the field is going.

Firstly we should discuss what research in green computing algorithms is
like. Some of the problems spawned by the green computing revolution are
algorithmically interesting, and many/most are not. For our purposes, let us
say that a problem is algorithmically interesting if it is a problem for which a
trained /expert algorithms researcher can obtain interesting results/insights that
a generic application researcher likely wouldn’t be able to attain. However, before
algorithmic researchers can contribute, they have to become aware of these algo-
rithmically interesting problems. From my experience, the bottleneck for algo-
rithmic research community making a contribution to green computing is not a
lack of researchers with the skills to make headway on algorithmically interesting
problems, but a lack of researchers who make the effort to mine/identify algorith-
mically interesting management issues in new greener information technologies,
formalize these problems, and then expose these problems to the algorithmic
research community. And with all due respect to the experimental computer
systems research communities, few researchers in those communities are able to
identify algorithmically interesting problems, or are able to formalize the prob-
lems so that algorithmic research will provide maximum insight. There is a bit
of an art to constructing a formal model/problem that accurately captures the
complicated interactions and goals in the real computing technology, but that
is still amenable to mathematical analysis that yields useful insight. Often the
most obvious ways to formally model technological problems lead to uninterest-
ing formal problems, for example because one gets a trivial impossibility result.

Thus much of green computing algorithmics research involves problem min-
ing and problem formulation, not solving well-known formal problems. But as

Green Computing Algorithmics 163

effective problem mining and formulation is usually difficult for researchers who
are new to an application area, particularly if they are also junior researchers,
I’ve decided structure this survey around a collection of formal algorithmic prob-
lems related to green computing algorithmics that I find interesting, instead of
trying to do some sort of comprehensive survey, like the previous two surveys
on green computing algorithmics [2,39]. The hope is these problems might pro-
vide a starting point for a researcher looking to initiate a research program on
green computing algorithmics. This survey is certainly biased towards my own
research. But still T think that these open problems, and the associated back-
ground that I give, should form a representative sample of the research in green
computing algorithmics.
The outline for the rest of the survey is:

— Section 2 discusses why a theory of energy as a computational resource will
look different than the established theory of time or space as computational
resources.

— Section 3 discusses common modeling assumptions.

— Section 4 discusses online convex optimization problems that naturally arise
from different data centers trying to handle a time-varying workload in the
most energy efficient manner.

— Section 5 discusses energy efficient circuit routing in a network.

— Section 6 discusses near-threshold computing, and designing combinatorial
circuits that optimally tradeoff energy efficiency and reliability.

— Section 7 discusses online scheduling on heterogeneous processors.

— Section 8 discusses the complexity of finding schedules that optimally tradeoff
energy and performance.

— Section 9 provides a brief conclusion that compares the current state of the
theory energy as a computational resource to the theories of time and space
as computational resources.

2 The Theory of Energy as Computational Resource

At the start of this green computing revolution, there were several National
Science Foundation sponsored visioning workshops, many of which I attended,
and one of which, on the The Science of Power Management, 1 organized. A
ubiquitous first demand of all manner of computing researchers at all of these
visioning workshops was:

“We need a big Oh theory for energy!”

The universal demand for a such theory is a testament to the tremendous success
of the current theory time (and space) as a computational resource within the
broad computing community. Of course what they are talking about is only tan-
gentially related to big Oh. They are referring to being able to label algorithms,
and problems, with time and space complexities. So the algorithm MergeSort

164 K. Pruhs

takes time O(nlogn) and the problem of deciding whether two regular expres-
sions requires exponential space. This is possible because of the time hierarchy
and space hierarchy theorems, which are the bedrock of the theory of time and
space as computational resources.

But the laws of physics make it difficult to assign algorithms, and thus prob-
lems, energy complexities. There are two natural possible approaches. The first
approach is to assume that all standard computer operations use unit energy,
analogous to the standard assumption that all operations take unit time. At
first glance this assumption for energy seems not significantly more unreason-
able than the assumption for time. But a consequence this assumption is that
the energy used by an algorithm is equal to the time used by that algorithm.
This is unsatisfying theoretically as it produces no new mathematical/theoretical
questions, and is unsatisfying practically as the green computing revolution is
being caused by the fact that optimizing for energy instead of time has lead to
practitioners developing significantly different technologies/solutions.

The second natural approach would be to assume that different operations
require different amounts of energy, where the amount of energy required by an
operation would be the minimum energy allowed by the laws of physics. The
most natural candidate for a physical law to lower bound the energy for com-
putation is Landauer’s principle, which is intuitively related to the second law
of thermodynamics. Landauer’s principle states that the amount of energy that
must be expended each time a bit of information is lost is linear in the temper-
ature. Thus irreversible operations, where information is lost, like overwriting
a bit, or taking the AND of two bits, require energy. But Landauer’s principle
does not give a lower bound on energy for reversible operations, like swapping
the contents of two memory locations. Thus Landauer’s principle can give a
lower bound on energy for a combinatorial circuit, or a particular implementa-
tion of an algorithm. But unfortunately for this approach, all computation can
be made reversible. In the context of combinatorial circuits, there are reversible
logically-complete gates, such as the controlled swap or Fredkin gate. In the con-
text of Turing machine, all computation can be made reversible at a cost of a
linear slowdown in time. Thus every algorithm can be implemented using only
reversible operations. Thus its at best a bit tricky giving an algorithm an energy
complexity as it depends on the implementation. And there is no way to give
an energy complexity to a problem as every computable problem can be solved
with arbitrarily little energy.

I know from experience that many researchers are reticent to accept that a
theory of energy as a computational resource will not be based on complexity
classes like ENERGY (n?), that are analogous to the TIME(n?) and SPACE(n?)
complexity classes that are the foundation of the current theory of time/space
as a computational resource. But the lack of energy complexity classes seems to
be dictated by physics, and their absence from the current theory of energy as
a computational resource isn’t an oversight.

But there should be ways in which a theory of energy as a computational
resource will be similar to the established theory of time/space as computational

Green Computing Algorithmics 165

resource. It should be based on simple models that balance the competing needs
of accurately reflecting reality, and being mathematically tractable. It should
serve engineers and computing researchers, when confronted with problems in
which power/energy/temperature is the key scarce, as the current theory of
time as a computational resources serves them when confronted with problems
where time is the scarce resource. That is, it should give them appropriate simple
models for commonly arising situations that will allow then to think heuristically
about the preeminent issues.

For example, a common mechanism for achieving energy efficiency is building
a system with heterogeneous devices, each with different energy and performance
characteristics. For a given area and power budget, heterogeneous designs often
give significantly better performance, for a given energy/hardware budget, for
standard workloads than homogeneous designs [24,42,52,53]. One common sce-
nario is that there might be some devices that are slow but energy efficient,
and other devices that are fast but energy inefficient. The resulting management
problem is how to choose the appropriate collection of devices for a workload to
properly balance energy efficiency and performance. So a theory of energy as a
computational resource should include appropriate models for such situations,
and general algorithmic design and analysis techniques for dealing with such
problems.

3 Common Modeling Assumptions

We quickly summarize common modeling assumptions. As much of the green
computing algorithmic literature focuses on saving energy in processors, this
discussion is biased toward models related to processors.

Energy is power integrated over time. Power has two components, dynamic
power and static power. Dynamic power is the power used by the process of com-
puting, and the static power is the energy used by the device just from being on.
Thus the only real way to not spend energy on static power is to turn the device
off. Before say the year 2000, the static power in common processors was gener-
ally negligible compared to the static power, but now the static power is often
comparable to dynamic power. Generally there is a strictly convex relationship
between speed and power. So faster processors have a higher ratio of power to
speed than lower speed processors. Thus faster processors are less efficient than
slower processors in terms of the energy that they expend per operation. Which
seems to be a general consequence of the laws of physics, as for example, high
performance cars invariably less energy efficient than lower performance cars.
The most common model is that the dynamic power P(s) is equal to s, where
s is the speed and « is some constant that is strictly bigger than 1. For example,
the well known cube-root rule for CMOS based devices states that the speed s is
roughly proportional to the cube-root of the dynamic power P, or equivalently,
the dynamic power is proportional to the speed cubed [25]. So the most common
model for power in the literature is P(s) = s* + 3, where [is constant repre-
senting the static power, and « is a constant that one thinks as being about 2
or 3. For more detail on modeling processor power see [26].

166 K. Pruhs

We now turn our attention to temperature. Cooling, and hence temperature,
is a complex phenomenon that can not be modeled completely accurately by any
simple model [60]. All the green computing literature that I have seen assumes
that cooling is governed by Newton’s law of cooling, and implicitly assumes
that environmental temperature is constant (which is what a fan is in principle
trying to achieve). Newton’s law cooling states that the rate of cooling is propor-
tional to the difference in temperature between the object and the environment.
Without loss of generality one can scale temperature so that the environmental
temperature is zero. A first order approximation for the rate of change T’ of the
temperature 7' is then 7" = aP — bT', where P is the supplied power, and a and
b are constants. The maximum temperature is within a factor of 4 of a times
the maximum energy used over any interval of length ; [14]. This observation
also shows that there is a relationship between total energy and maximum tem-
perature optimization and simplifies the task of reasoning about temperature. If
the cooling parameter b is 0 then maximum temperature minimization becomes
equivalent (within a constant factor) to energy minimization. This also explains
why some algorithms in the literature for energy management are poor for tem-
perature management, that is, these algorithms critically use the fact that the
parameter b = 0. If the cooling parameter b is co then maximum temperature
minimization becomes equivalent to minimizing the maximum power, or equiv-
alently minimizing the maximum speed. [14] uses the term cooling oblivious to
refer to an algorithm that doesn’t rely on the particular values of @ and b. Thus
if a cooling oblivious algorithm performs well for the objective of minimizing
the maximum temperature, it should perform reasonably well for the objective
of minimizing the total energy and the objective of minimizing the maximum
speed /power.

Moore’s law states that the switch/transistor density in processors doubles
about every other year. While at some point Moore’s law has stop holding, it
looks like it will continue to hold a bit longer. Up until around 2004, this also
meant that processor speeds also doubled about every other year. But since
2004 the rate of improvement of processor performance (speed) lags the rate of
transistor density. This is called Moore’s gap. So let me now summarize some of
the more energy efficient processor architecture designs that have arisen to cope
with the exponentiality of Moore’s law, and how they are generally modeled.

Speed Scalable Processors: A speed scalable processor has a collection of oper-
ational modes, each with a different speed and power. When performance is
important the processor can be run at a high-speed (but with low energy effi-
ciency) and when performance is less important, the processor can be run at a
lower speed that has better energy efficiency. One gets a wide variety of models
depending on whether the speed is assume to be discrete or continuous, whether
there is an upper bound on speed, and the speed to power function.

Multiprocessor Chips: Another alternative design is multiprocessor chips.
Roughly speaking, k speed s/k processors would use only about 1/k? fraction
of the power of a single speed s processor, but potentially would have the same

Green Computing Algorithmics 167

processing capability. But the fact that such efficient parallelization of computa-
tion is not so easy to pull off in practice is one of the reasons for Moore’s Gap. As
best as I can tell there are three different visions of the future of multiprocessor
chips:

— Identical Processors: The first is expressed by the following quote from Anant
Agarwal, CEO of Tilera: “I would like to call it a corollary of Moore’s Law
that the number of cores will double every 18 months.” [52].

— Related Processors: Others [24,42,43,52,53] predict that the future dominant
multiprocessor architecture will be heterogeneous processors/cores. It is envi-
sioned that these heterogeneous architectures will consist of a small number of
high-performance processors (with low energy efficiency) for critical jobs, and
a larger number of lower-performance (but more energy efficient) processors
for less critical jobs (and presumably eventually processors of intermediate
performance for jobs of intermediate importance). For a given area and power
budget, heterogeneous designs can give significantly better performance for
standard workloads [24,42,52,53]. Such technologies are probably best mod-
eled by what is called “related” processors in the scheduling nomenclature:
That is, each processor i has an associated speed s; and power P;.

— Unrelated Processors: Some architects claim that, again due to Moore’s law,
chip makers soon will hit another thermal wall in that the density of switches
will become so great that it will be prohibitively expensive to cool the chip if
all switches were active at the same time [29]. Thus it will be necessary that all
times, some switches must be turned off. This commonly goes by the moniker
“dark silicon”. Thus it is envisioned that there will be processors specialized
for particular types of jobs, and for jobs to be assigned to a processor best
suited for that job; and the processors not best suited for the current jobs
would be turned off. In such a setting the processors might naturally be
modeled by what in scheduling parlance is called “unrelated machines”, where
the execution time of a job is dependent on the processor to which is it
assigned (and there is no particular consistency between which processors are
fastest between jobs). We should point out that even multiprocessors that
were designed to be homogeneous, are increasingly likely to be heterogeneous
at run time [24]: the dominant underlying cause is the increasing variability
in the fabrication process as the feature size is scaled down.

4 Online Convex Optimization

The Definition of the Online Convex Optimization Problem (OCQO): The input is
an online sequence F, Fy, ..., F,, of convex functions from R¥ to R*. In response
to the convex function F; that arrives at time ¢, the online algorithm can move
to any destination/point p; in the metric space R¥. The cost of such a feasible
solution is Y7 | (d(pi—1,pt) + Fi(pe)), where d(p;—1,p) is the distance between
points p;_1 and p;, that is, the distance traveled plus the value of the convex
functions at the destination points. The objective is to minimize the cost.

168 K. Pruhs

The Motivating Data Center Application: The initial motivation for introduc-
ing and studying the OCO problem was due to its applications in rightsizing
power-proportional data centers, see for example [4,46-49,51,65]. To explain
this application, let us for simplicity initially assume that we have one data
center consists of a homogeneous collection of servers/processors that are speed
scalable and that may be powered down. The load on the data center varies with
time, and at each time the data center operator has to determine the number of
servers that will be operational. The standard assumption is that there is some
fixed cost for powering a server on, or powering the server off. Most naturally
this cost incorporates the energy used for powering up or down, but this cost
may incorporate ancillary terms such as the cost of the additional wear and
tear on the servers. In response to a load L; at time ¢, the data center operator
decides on a number of servers x; to use to handle this load. In a data center,
there are typically sufficiently many servers so that this discrete variable can
be reasonably be modeled as a continuous one. The data center operator pays a
convex cost of |z;—1 — x| for either powering-up or powering-down servers, and a
cost of Fy(x:) = x¢((Lt/x¢)*+ 3) for handling the load, which is the most energy
efficient way to service the load L; using x; processors, assuming the standard
model for processor power. So this corresponds to an instance of OCO on a line,
that is, where k = 1.

A general instance of OCO would arise from a setting where there are k
different types of servers, and where each type of server would generally have
different power characteristics. Then x; ; would represent the number of servers
of type ¢ that are powered on, and Fy(z14, ..., Zx) would represent the minimum
cost way to handle the load L; using the number of specified numbers of each
type (which is convex for all standard models of power).

4.1 Looking Backward

Theoretical work on OCO deals primarily with the case that k = 1. [48] gave
a 3-competitive deterministic full-history algorithm. [4] showed that there is an
algorithm with sublinear regret, but that O(1)-competitiveness and sublinear
regret cannot be simultaneously achieved. [13] gave a 2-competitive algorithm,
that is most easily understood as a randomized algorithm that maintains a prob-
ability distribution p over destinations. [13] also observed that any randomized
algorithm for OCO can be converted to a deterministic algorithm without any
loss of approximation. [13] also give a simple 3-competitive memoryless algo-
rithm, which in the context of OCO means that the algorithm determines p,
based solely on p; 1 and F}, and showed that this competitiveness is optimal for
deterministic memoryless algorithms. Finally [13] gave a general lower bound of
1.86 on the competitiveness of any algorithm, which shows that in some sense
this problem is strictly harder than classic online ski rental problem [22].

The OCO problem is a special case of the classic metrical task system
problem, where both the metric space and the cost functions can be arbi-
trary. The optimal deterministic competitive ratio for a general metrical task
system is 2n — 1, where n is the number of points in the metric [23], and

Green Computing Algorithmics 169

the optimal randomized competitive ratio is 2(logn/loglogn) [20,21], and
O(log? nloglogn) [30].

The Convex Body Chasing problem is a special case of OCO where the
convex functions are restricted to be those that are zero within some convex
region/body, and infinite outside that region. So in the Convex Body Chasing
problem the algorithm sees a sequence of convex bodies, and must in response
move to a destination within the last convex body. The objective is to mini-
mize the total distance traveled. [31] observed that there is a lower bound of
2(vk) on the competitive ratio for Convex Body Chasing. Most of the upper
bounds in the literature for Convex Body Chasing are for chasing certain special
types of convex bodies. [31] gave a somewhat complicated algorithm and O(1)-
competitiveness analysis for chasing lines in two dimensions, and observe that
any O(1)-competitive line chasing algorithm for two dimensions can be extended
to an O(1)-competitive line chasing algorithm for an arbitrary number of dimen-
sions. [31] gave an even more complicated algorithm and O(1)-competitiveness
analysis for chasing arbitrary convex bodies in two dimensions. [62] showed in a
very complicated analysis that the work function algorithm is O(1)-competitive
for chasing lines and line segments in any dimension. The (Generalized) Work
Function Algorithm moves to the location p; that minimizes a linear combina-
tion of d(p;—1,pt) and wy(p;), where w(z) is is the cheapest cost to handle the
first ¢ requests and end in location z. [32] showed that the greedy algorithm is
O(1)-competitive if & = 2 and the convex bodies are regular polygons with a
constant number of sides.

[8] considered the relationship between OCO and Convex Body Chasing. [§]
showed that an O(1)-competitive algorithm for Convex Body Chasing can be
used to obtain an O(1)-competitive algorithm for OCO instances in which the
convex functions have radial symmetry. This reduction is through an intermedi-
ate Lazy Convex Body Chasing problem, which is a special case of OCO in which
the convex functions are zero within some convex region, and increase linearly
as one moves away from this convex region. [8] also gave an online algorithm for
Convex Body Chasing when the convex bodies are subspaces, in any dimension,
and an O(1)-competitiveness analysis when k = O(1). Finally [8] gave an online
algorithm for chasing lines and line segments in any dimension, and show that it
is O(1)-competitive. The underlying insight of this online algorithm is the same
as in [31], to be greedy with occasional adjustments toward the area where the
adversary might have cheaply handled recent requests. However, the algorithm
and its analysis is cleaner/simpler than the algorithm in [31], as well as being
essentially memoryless.

4.2 Open Problems

The two clear top open problems are:

Open Problem: Find an online algorithm for OCO that one can prove is O(1)-
competitive when the number of dimensions is constant, which is a reasonable
assumption in data center applications.

170 K. Pruhs

Open Problem: Find a provably O(1)-competitive algorithm for the special case
of Convex Body Chasing. Convex Body Chasing is easier to think about, and
one take away from our paper [8] is that probably OCO isn’t too much harder
than Convex Body Chasing.

Intuitively the main difficulty of obtaining a provably O(1)-competitive algo-
rithm for Convex Body Chasing is balancing the competing needs of the algo-
rithm remembering enough history to be able to be competitive, but keeping
its consideration of history sufficiently simple to be analyzable. In some sense,
most of the algorithms in the literature keep the consideration of history simple.
These algorithms break the input into “phases”, and then determine their new
destination based only on the history within the current phase. And their anal-
yses all have essentially the same form: after each “phase” in the input, either
the location of the online algorithm has either moved closer to the adversary’s
location by an amount proportional to its cost in the phase, or the adversary is
in some position where its costs are proportional to the online algorithm’s costs.
On the other one extreme is the Work Function algorithm, which uses all of the
history in the most complete way imaginable. This makes it quite likely that the
algorithm is O(1)-competitive, but also means that even for simple instances like
line chasing, the analysis is quite involved, and we don’t currently know how to
analyze the Work Function algorithm for chasing more complex convex bodies.

To get some feel for the issues involved, let us consider two instances for
halfspace chasing in three dimensions, which is the simplest setting where we
don’t know how to achieve O(1)-competitiveness. In the first instance, the half-
spaces are rotating around a line L, say L is the z axis for the moment. So the
halfspace arriving at time ¢ (think of time as being continuous for the moment)
would be az + by > 0, where a = cos t and b = sin t. Any O(1)-competitive
algorithm would have to move quickly to the line L. From an algorithmic design
viewpoint, this isn’t a problem at all, as natural generalizations of the algorithms
in the literature would move to L. But this instance is a bit of a problem from
the standard algorithm analysis point of view. Observe that if the adversary’s
location is on the line L, but far from the online algorithm’s location, then both
the adversary’s cost is low, and the algorithm isn’t get closer to the adversary
fast enough to offset its costs.

The second instance is a bit trickier. In this instance, as the halfspaces are
again continuously rotating around the line L, but now the line L is simulta-
neously continuously spinning around the origin in such a way that the loci of
points that L sweeps out is a cone. So L at time ¢ could be the line where
0 = ax + by and 22 = 22 + y2, where @ = cos t and b = sin t. Any O(1)-
competitive algorithm would have to move quickly to the origin. But its a bit
unclear how one could algorithmically recognize that the algorithm needs to
move to the origin in a way that is both principled, and that uses the history in
some sort of limited way.

Green Computing Algorithmics 171

5 Energy Efficient Routing

According to the US Department of Energy [1], data networks consume more
than 50 billion kWH of energy per year, and a 40% reduction in wide-area
network energy is plausibly achievable if network components were energy pro-
portional.

5.1 Looking Back

Circuit routing, in which each connection is assigned a reserved route in the
network with a guaranteed bandwidth, is used by several network protocols
to achieve reliable communication [44]. [6] introduced the problem of routing
circuits to minimize energy in a network of components that are speed scalable,
and that may be shutdown when idle, using the standard models for circuit
routing and component energy. The input consists of an undirected graph G,
and a collection of source/sink vertex pairs. The output is a path, representing
the circuit for a unit bandwidth demand, between each source/sink pair. The
power used by an component with positive flow f is o + f%, and the component
is shutdown and consumes no power if it supports no flow. The objective is
to minimize the aggregate power used over all the components. Primarily for
reasons of mathematical tractability, the initial research assume that the speed
scalable components are the edges.

The difficulty of these problems comes from the competing goals of minimiz-
ing static power, where it’s best that flows are concentrated, and minimizing
dynamic power, where it’s best that the flows are spread out. A critical param-
eter is ¢ = o'/, If the flow on an edge is at least ¢, then one knows that the
dynamic power on that edge is at least the static power. [6] show that there
is a limit to how well these competing demands can be balanced by showing
that there is no polynomial-time algorithm with approximation ratio o(logl/ 4 n),
under standard complexity theoretic assumptions. In contrast, [5] shows that
these competing forces can be “poly-log-balanced” by giving a polynomial-time
poly-log-approximation algorithm that uses several “big hammers” [27,40,59].

We have a line of papers [11,12,41] that significantly extend the results on
this line of research. We started with [12], which considered the case of a common
source vertex s for all request-pairs, that is all s; = s. Applications for a com-
mon source vertex include data collection by base stations in a sensor network,
and supporting a multicast communication using unicast routing. [12] gives a
polynomial-time O(1)-approximation algorithm. The algorithm design and anal-
ysis is considerably easier than [5] because, after aggregation into groups, all the
flow is going to the same place. [12] also gives an O(log®*** k)-competitive ran-
domized online algorithm, by giving a procedure for forming the groups in an
online fashion.

We then extended these ideas in [11], which contained two main results. The
first main result was a polynomial-time O(log® k)-approximation algorithm for
the general problem. This algorithm consisted of 3 stages, each of which was
essentially a combinatorial greedy algorithm:

172 K. Pruhs

Activating a Steiner Forest: The algorithm first activates a Steiner forest,
to ensure minimal connectivity, using the standard O(1)-approximation algo-
rithm for Steiner forest [66].

Activating the Hallucination Backbone: Then each request-pair, with
probability @(%) hallucinates that it wants to route ¢ units of flow unsplit-
tably on a path between its end points. This hallucinated flow is then routed
using the natural greedy algorithm, all edges on which hallucinated flow is
routed are then activated. (Note that no actual flow is routed here, this hal-
lucinated flow is just used to determine which additional edges to activate).

Routing: The algorithm routes the flow on the activated edges using the natural
greedy algorithm. The heart of the algorithm analysis is to appeal to the
flow-cut gap for multicommodity flows [45,50] to show that there must be a
low-congestion routing.

The second main result in [11] is a randomized O(log®**** k)-competitive

online algorithm. The offline algorithm rather naturally extends to an online
algorithm. The analysis however is considerably more involved than in the offline
case. Since the edges are bought online, the analysis in [35] only shows that the
dynamic power for the greedy algorithm is competitive against the power used
in an optimal “priority routing”, where a request-pair can only route over edges
bought by the online algorithm up until the arrival time of the request-pair.
Thus to mimic the analysis in the offline case, we need to show that there is
a low-congestion priority multicommodity flow on the bought edges. This is
accomplished by characterizing the notion of sparsest priority-cuts, and then
bounding the priority flow-cut gap for multicommodity flows.

Finally in [41] we made a start on extending the results in previous papers to
the case that the speed scalable components of the graph are the vertices, and not
the edges. The main difficulty in emulating the approaches in the previous (edge
based) papers is that they all relied on the fact that it is possible to aggregate
flows in a (Steiner) tree in such a way that there is low edge congestion, but
we would need that there is low node congestion, which is not possible in some
trees, e.g. a star. To surmount this difficultly we showed how to efficiently find
a low-cost collection of nearly node-disjoint trees that span all terminals, which
can then be used to obtain an aggregation of flows with low vertex congestion.

5.2 The Open Problems

Open Problem: Find a poly-log approximation algorithm, when the speed scal-
able components are the edges, where the polynomial doesn’t depend on «.

All of the analysis of the energy used by circuit routing protocols in [5,6,11,
12,41] goes via congestion. To understand this consider the situation of randomly
throwing n balls into n bins, where the resulting energy is the sum of the ath
power of the bin sizes. An analysis in the spirit of the ones in [5,6,11,12,41] would
argue that the resulting energy is within a O(loga n) factor of optimal because
with high probability no bin has (2(logn) balls. As some bin likely has fZ(log n)
balls, this is the best bound one can obtain by only analyzing the fullest bin.

Green Computing Algorithmics 173

But in actuality, the energy used is O(1) approximate to optimal because very
few bins have loads near logn. A competitive analysis of a poly-log competitive
algorithm, where the polynomial doesn’t depend on «, can not go via congestion,
and would require reasoning about energy more directly. It is instructive to
first see why the Hallucination algorithm won’t work. The oversampling in the
formation of the Hallucination backbone in [11] was required if the analysis was
via congestion; otherwise there would likely be a cut without sufficient capacity
to route all the flow across the cut with low congestion. But this oversampling
meant that the hallucinated flow was a log n factor more than the actual flow, and
thus increasing costs by a log® n factor. Thus one needs to be a bit more careful
about how one oversamples. It seems that a new Hallucination algorithm, that
is a modest tweak of the original Hallucination algorithm in [11] is a reasonable
candidate algorithm. The hallucination backbone would be the union of logn
sub-backbones. For each sub-backbone each source/sink hallucinates a flow of ¢
with probability %, so there is no oversampling in a sub-backbone. Intuitively if
the sub-backbones are (nearly) disjoint, then the static power would only be a
O(logn) more than optimal, and there would still be sufficient capacity to route
all flow with low dynamic power. The worry is that if all the sub-backbones
had high overlap, then there would be insufficient capacity for a low energy
routing. But for all the graphs that we can think of where the sub-backbones
might overlap with some reasonable probability, it is the case that for these
graphs oversampling is not required to obtain sufficient capacity for a low energy
routing.

Open Problem: Find a poly-log competitive online algorithm when the speed
scalable components are the vertices.

The obvious starting point is try to find a way to build online a low-cost
collection of nearly node-disjoint trees that span all terminals.

6 Energy Efficient Circuit Design

The threshold voltage of a transistor is the minimum supply voltage at which the
transistor starts to conduct current. However, if the designed supply voltage was
exactly the ideal threshold voltage, some transistors would likely fail to operate
as designed due to manufacturing and environmental variations. In the tradi-
tional approach to circuit design the supply voltages for each transistor/gate are
set sufficiently high so that with sufficiently high probability no transistor fails,
and thus the designed circuits need not be fault-tolerant. One potential method
to attain more energy-efficient circuits is Near-Threshold Computing, which sim-
ply means that the supply voltages are designed to be closer to the threshold
voltage. As the power used by a transistor/gate is roughly proportional to the
square of the supply voltage [26], Near-Threshold Computing can potentially sig-
nificantly decrease the energy used per gate. However, this energy savings comes
at a cost of a greater probability of functional failure, which necessitates that
the circuits must be more fault-tolerant, and thus contain more gates. As the

174 K. Pruhs

total energy used by a circuit is approximately the energy used per gate times
the number of gates, achieving energy savings with Near-Threshold Computing
involves properly balancing the energy used per gate with the number of gates
used.

6.1 Looking Back

In [10] we initiated the theoretical study of the design of energy-efficient circuits.
We assumed that the design of the circuit specifies both the circuit layout as
well as the supply voltages for the gates. We assume a failure-to-energy function
P(e) that specifies the power required to insure the probability that a gate fails
is at most €. For current CMOS technologies, it seems that the “right” model for
failure-to-energy function is P(e) = O(log?(1/¢€)) [28]. For simplicity we assume
this failure-to-energy function, but the theoretical results are not particularly
sensitive to the exact nature of this function. We subsequently had three follow-
up papers [9,18,19] on theoretical issues related to near-threshold computing.
[10] showed how to use techniques from the literature on fault-tolerant circuits

to obtain bounds on circuit energy. [10] show that (2 <s log (s(l - 2\/5)/5))

energy is required by any circuit that computes a relation with sensitivity s
correctly with probability at least (1 —). [10] also showed, using techniques
from [64] and [33,55], that a relation h that is computable by a circuit of size ¢
can, with probability at least (1 — §), be computed by a circuit of faulty gates
using O(clog(c/d)) energy.

In [9] we considered the problem of: given a circuit C, an input I to C,
and a desired circuit error bound §, compute a supply voltage s that minimizes
energy subject to the constraint that the error probability for the circuit is
less than ¢. The traditional approach/algorithm cranks up the supply voltage
s until the error probability at each gate is §/n, so that by the union bound
the probability that the circuit is incorrect is at most d. In [9] we observed that
the traditional algorithm produces an O(log2 n) approximation to the minimum
energy. The main result in [9] is that is N P-hard to obtain an approximation
ratio of O(log®> “n). This shows that there are complexity theoretic barriers to
systematically beating the traditional approach.

In [18] we showed that almost all Boolean functions require circuits that
use exponential energy (foreshadowing slightly, this holds even if circuits can
have heterogeneous supply voltages). This is not an immediate consequence of
Shannon’s classic result [61] that almost all functions require exponential sized
circuits of faultless gates because (as we showed in [18]) the same circuit layout
can compute many different functions, depending on the value of the supply
voltage. The key step in the proof is to upper bound the number of different
functions that one circuit layout can compute as the supply voltage changes.

While it may not currently be practical, in principle the supply voltages need
not be homogeneous over all gates, that is, different gates could be supplied with
different voltages. This naturally leads to the question of whether allowing het-
erogeneous supply voltages might yield lower-energy circuits than are possible

Green Computing Algorithmics 175

if the supply voltages are required to be homogeneous. While each of [9,10,18]
touched on this question, and [19] squarely addressed this question. Intuitively,
heterogeneous voltages should benefit a circuit where certain parts of the com-
putation are more sensitive to failure than others. For example, in order for a
circuit to be highly reliable, gates near the output need to be highly reliable.
However, it may be acceptable for gates that are far from the output to be less
reliable if there is sufficient redundancy in the circuit.
We considered four variations on the question, depending on

— whether what one is trying to compute, f : {0,1}™ — {0,1}, is a function, or
an injective relation (meaning one doesn’t care what the output is on some
inputs), and

— whether one wants the circuit to be correct with a fixed/constant probability,
or with high probability (so the error decreases inverse polynomially as the
input size increases).

For each of these four variations, we wanted to determine whether w(1) energy
savings is possible for all, none, or some of the f. It is relatively straight-forward
to observe that the maximum possible energy savings due to allowing hetero-
geneity is O(log2 n) in all cases. Our answers to date can be found in Table 1.

Table 1. Possible energy savings from heterogeneous supply voltages

Circuit error § = ©(1) | Circuit error § = © (m)
Functions ©(1) for some O(logn) for all with linear size
circuits
Injective relations | ©(1) for some 2(log? n) for some

2(logn) for all with linear sized
circuits

So one can see from the table that we have a reasonable understanding
of when heterogeneity can save energy when computing with high probabil-
ity, as long as the functions and relations that have linear sized circuits. Func-
tions/relations with (near) linear sized circuits presumably include those that
one is most likely to want to implement in hardware. When computing with high
probability, heterogeneous circuits can save a ©(logn) factor of energy for all
functions with linear sized circuits, and an additional logn factor can be saved
for some relations with linear sized circuits.

6.2 Open Problems

There are myriad open problems in this area, but if I had to pick one as the best
open problem, it would be the following:

176 K. Pruhs

Open Problem: Does there exist a function (or injective relation) f : {0,1}" —
{0, 1} where there is a heterogeneous circuit that computes f with constant error
using an o(1) factor less energy than any homogeneous circuit that computes f
with constant error?

We know that heterogeneity can give at most constant energy savings for
computing some functions with constant error. Not surprisingly one such func-
tion is the parity function as intuitively every part of any reasonable circuit for
parity is equally highly sensitive to error. And there are examples of relations
where heterogeneity helps the obvious circuit. In [10] we showed that the most
obvious circuit, a tree of majority gates, to compute the super-majority relation
can be made o(1) more energy efficient by turning down the supply voltage near
the input gates. But there is a less obvious circuit to compute super-majority [63],
that seemingly can not be made more energy efficient with heterogeneous supply
voltages.

This seems to be asking a fundamental question about computation. Is it
true for it is always the case in the most energy efficient circuit to compute some
function with constant error probability that essentially every part of the circuit
is equally sensitive to error? (Recall that we know that this answer is no when
computing with high probability.) If the answer is always yes for computing with
constant probability then we known that heterogeneous circuits will not yield
any energy savings for computing with constant error probability.

7 Online Scheduling of Power Heterogeneous Processors

The new architectural designs lead to a plethora of natural algorithmic schedul-
ing problems related to balancing the competing demands of performance
and energy efficiency. The natural resulting algorithmic management problems
involve determining which task to run on each processor, and for speed scalable
processors at what speed to run that task, so as to obtain a (near) optimal trade-
off between the conflicting objectives of quality of service and energy efficiency.

There enough literature in this area to justify an independent survey. So
in the interest of space, I will just discuss one result, which at least arguably
is the culmination of this research line for the common processor models. We
showed in [37] that there is a scalable algorithm, which we called SelfishMigrate,
for scheduling unrelated machines to minimize a (user/application specified)
linear combination of energy and weighted job delay (here some jobs are more
important and contribute more to this total). The result holds even when each
machine has an arbitrary convex speed-to-power function, and processors may be
shutdown (and thus consume no energy). An algorithm is scalable if it guarantees
that the objective value is within a constant factor of optimal for processors
that run slightly slower at each power level. An algorithm is nonclairvoyant if
does not know the size of a job. The algorithm does however need to know the
suitability of each processor for each job, or more formally, the rate that each
processor can process each job. Its easy to see that such knowledge is necessary to
achieve any reasonable approximation. We had previously shown in [34] that the

Green Computing Algorithmics 177

standard priority algorithms, like Highest Density First (HDF), that one finds in
standard operating systems textbooks, can perform quite badly on heterogeneous
processors when the quality of service objective is weighted delay [34]. So we
knew we were not going to be able to obtain scalability with a known standard
algorithm.

The SelfishMigrate algorithm can be best viewed in a game theoretic setting
where jobs are selfish agents, and machines declare their scheduling policies in
advance. Each machine maintains a virtual queue on the current set of jobs
assigned to it; newly arriving jobs are appended to the tail of this queue. Each
machine treats a migration of a job to it as an arrival, and a migration out of
it as a departure. This means a job migrating to a machine is placed at the
tail of the virtual queue. Each job j has a virtual utility function, which roughly
corresponds to the inverse of the instantaneous weighted delay introduced by j to
jobs ahead of it in its virtual queue, and their contribution to j’s weighted delay.
Using these virtual utilities, jobs perform sequential best response dynamics,
migrating to machines (and get placed in the tail of their virtual queue) if doing
so leads to larger virtual utility. Therefore, at each time instant, the job migration
achieves a Nash equilibrium of the sequential best response dynamics on the
virtual utilities. The analysis is via dual fitting, and involves showing that the
Nash dynamics on virtual utilities directly corresponds to our setting of dual
variables being feasible. In hindsight, we believe this framework is the right way
to generalize the greedy dispatch rules and dual fitting analysis from previous
works [3,36].

This result suggests that perhaps that heterogeneous multiprocessors should
be scheduled very differently than the way that uniprocessors and homogeneous
multiprocessors have been scheduled.

7.1 Open Problem

Open Problem: Show that the standard priority scheduling algorithms are scal-
able for the objective of total flow time when scheduling on related processors.

The standard priority scheduling algorithms that one finds in introductory
operating systems texts, e.g. Shortest Remaining Processing Time (SRPT),
Shortest Job First (SJF), Shortest Elapsed Time First (SETF), Multi-Level
Feedback (MLF), are all known to be scalable for the objective of total delay on
one processor and on identical processors [38,56,57]. Given that it is often diffi-
cult to get new policies/protocols adopted, it would be good to know how bad
things can get for these standard scheduling policies on heterogeneous proces-
sors. That is, are these algorithms scalable for total delay on related machines.
Intuitively I see no reason to think that they are not scalable. The intuition
why the standard algorithms are not scalable for weighted delay is that if one
has multiprocessor with many slow processors and few fast processors then it
can be difficult to harness the aggregate speed of the slow processors. Some-
how it seems that, if jobs are of equal importance, this is not such an issue.
The standard potential function and dual fitting approaches don’t seem imme-
diately applicable as there doesn’t seem to be a simple algebraic expression for

178 K. Pruhs

the contribution of a particular job towards the objective. So it seems that some
innovation in algorithm analysis will be required.

8 Understanding Optimal Energy Tradeoff Schedules

8.1 Looking Back

Another line of my research related to speed scalable processors is to under-
stand optimal energy-performance tradeoff schedules, primarily by finding effi-
cient algorithms to compute them. We initiated this line of research in [58] by
giving a polynomial time algorithm for scheduling jobs that have a common size
with an objective of minimizing a linear combination of total delay and energy. In
[15] we considered the problem of scheduling arbitrary sized jobs with the objec-
tive of minimizing a linear combination of fractional weighted delay and energy,
and showed how to recognize an optimal schedule. In [7] we gave a polynomial
time algorithm for scheduling arbitrary sized jobs with the objective of minimiz-
ing a linear combination of fractional weighted delay and energy. The algorithm
in [7] can be viewed as a primal-dual algorithm that raises the dual variables in
an organized way. In [16] we considered the setting of a sensor that consists of
a speed-scalable processor, a battery, and a solar cell that harvests energy from
its environment at a time-invariant recharge rate. The processor must process a
collection of jobs of various sizes. Jobs arrive at different times and have different
deadlines. The objective is to minimize the recharge rate, which is the rate at
which the device has to harvest energy in order to feasibly schedule all jobs. The
main result was a polynomial-time combinatorial algorithm for processors with
a natural set of discrete speed/power pairs. The main takeaway form this paper
was that it is much harder to reason about energy when it is supplied over time
instead of all being initially available.

One can formulate many different optimization problems depending on how
one models the processor (e.g., whether allowed speeds are discrete or continu-
ous, and the nature of relationship between speed and power), the performance
objective (e.g., whether jobs are of equal or unequal importance, and whether
one is interested in minimizing waiting times of jobs or of work), and how one
handles the dual objective (e.g., whether they are combined in a single objective,
or whether one objective is transformed into a constraint). In [17] we finally bit
the bullet, and determined the complexity of a reasonably full landscape of all
the possible formulations.

One commonality of the algorithms that we developed in [7,16,58] is that
they all can be viewed as continuous homotopic optimization algorithms. These
homotopic algorithms trace the evolution of the optimal solution as either the
objective function evolves from one, where it is simple to compute the optimal,
to the desired objective, or the constraints evolve from ones, that are easy to
satisfy, to the desired constraints. So one take away point from these results
is that homotopic optimization can be a fruitful approach for computing and
understanding optimal tradeoff schedules.

Green Computing Algorithmics 179

8.2 Open Problem

The clear top open problem in this area, which was left open in [17] is:

Open Problem: Determine the complexity of finding optimal schedule for the
objective of total delay plus energy on a speed scalable processor.

In the optimal schedule it must be the case that at all times the job being
processed is the one that has the least amount of work left to be processed.
But this is of less help than it might first appear, as this doesn’t help decide
what speed the processor should run, and thus how much work should be left on
this job at the next time step. The main difficulty of extending the algorithms in
[7,58] is that the optimal total delay plus energy schedule for arbitrary work jobs
is more fragile than if the jobs had unit size or the quality of service objective
was fractional total delay. Still, many of the insights in [7,58] carry over. In
particular, the power of a job should generally be proportional to the number of
jobs that depend on that job. As a consequence of this, if one knew the ordering
of the release times and completion times, obtaining an optimal schedule subject
to such an ordering constraint is straightforward. So my intuition at this point
says that this problem should be solvable in polynomial time. But I don’t have
any real idea how to touch this problem. I find it a bit surprising that even
computing an optimal schedule when there are only 2 speeds seems hard. I think
it would be fine to get an algorithm whose running time is polynomial in the
number of jobs, but possibly exponential in the number of speeds, as usually the
number of speeds is usually on the order of 5 to 10. However, it is certainly not
inconceivable that there is no polynomial-time algorithm for this problem, say
because the problem is NP-hard. There is no proof in the literature showing the
hardness a speed scaling problem where the hardness somehow arose nontrivally
from the speed scaling aspect of the problem. So a hardness proof would be
interesting, as SRPT is optimal for a fixed speed processor, and its not clear
where the hardness would come for a speed scalable processor.

9 Conclusion

Some characteristics of the theory of energy as a computational resource that
has developed over the last decade are:

— Most problems arise at a lower layer of the information technology stack that
is not aware of the exact nature of the computation taking place on the high
layer.

— Most problems involve managing some mechanism/technology created/
installed to achieve greater energy efficiency.

— Most problems involve balancing dual objectives, one related to energy, and
one related to performance. Often of these objectives is implicit as it has been
turned into a constraint.

As a consequence, the current theory energy as a computational resource is less
concentrated, and less distinct from other research areas, than the theory of
time/space as a computational resource were in their first decade.

180

K. Pruhs

References

10.

11.

12.

13.

14.

15.

16.

. Vision and roadmap: routing telecom and data centers toward efficient energy use.

In: Proceedings of Vision and Roadmap Workshop on Routing Telecom and Data
Centers Toward Efficient Energy Use, May 2009

Albers, S.: Energy-efficient algorithms. Commun. ACM 53(5), 86-96 (2010)
Anand, S., Garg, N., Kumar, A.: Resource augmentation for weighted flow-time
explained by dual fitting. In: ACM-SIAM Symposium on Discrete Algorithms, pp.
1228-1241 (2012)

. Andrew, L.L.H., Barman, S., Ligett, K., Lin, M., Meyerson, A., Roytman, A.,

Wierman, A.: A tale of two metrics: simultaneous bounds on competitiveness and
regret. In: Conference on Learning Theory, pp. 741-763 (2013)

Andrews, M., Antonakopoulos, S., Zhang, L.: Minimum-cost network design with
(dis)economies of scale. In: IEEE Symposium on Foundations of Computer Science,
pp. 585-592 (2010)

Andrews, M., Fernandez, A., Zhang, L., Zhao, W.: Routing for energy minimization
in the speed scaling model. In: INFOCOM, pp. 2435-2443 (2010)

. Antoniadis, A., Barcelo, N., Consuegra, M., Kling, P., Nugent, M., Pruhs, K.,

Scquizzato, M.: Efficient computation of optimal energy and fractional weighted
flow trade-off schedules. In: Symposium on Theoretical Aspects of Computer Sci-
ence (2014)

Antoniadis, A., Barcelo, N., Nugent, M., Pruhs, K., Schewior, K., Scquizzato,
M.: Chasing convex bodies and functions. In: Kranakis, E., Navarro, G., Chavez,
E. (eds.) LATIN 2016. LNCS, vol. 9644, pp. 68-81. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49529-2_6

Antoniadis, A., Barcelo, N., Nugent, M., Pruhs, K., Scquizzato, M.: Complexity-
theoretic obstacles to achieving energy savings with near-threshold computing. In:
International Green Computing Conference, pp. 1-8 (2014)

Antoniadis, A., Barcelo, N., Nugent, M., Pruhs, K., Scquizzato, M.: Energy-efficient
circuit design. In: Innovations in Theoretical Computer Science, pp. 303-312 (2014)
Antoniadis, A., Im, S., Krishnaswamy, R., Moseley, B., Nagarajan, V., Pruhs, K.,
Stein, C.: Energy efficient virtual circuit routing. In: ACM-SIAM Symposium on
Discrete Algorithms (2014)

Bansal, N., Gupta, A., Krishnaswamy, R., Nagarajan, V., Pruhs, K., Stein, C.: Mul-
ticast routing for energy minimization using speed scaling. In: Even, G., Rawitz,
D. (eds.) MedAlg 2012. LNCS, vol. 7659, pp. 37-51. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34862-4_3

Bansal, N., Gupta, A., Krishnaswamy, R., Pruhs, K., Schewior, K., Stein, C.: A
2-competitive algorithm for online convex optimization with switching costs. In:
Workshop on Approximation Algorithms for Combinatorial Optimization Prob-
lems, pp. 96-109 (2015)

Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling to manage energy and temper-
ature. J. ACM 54(1), 3 (2007)

Barcelo, N., Cole, D., Letsios, D., Nugent, M., Pruhs, K.: Optimal energy trade-off
schedules. Sustain. Comput.: Inf. Syst. 3, 207-217 (2013)

Barcelo, N., Kling, P., Nugent, M., Pruhs, K.: Optimal speed scaling with a solar
cell. In: Chan, T.-H.H., Li, M., Wang, L. (eds.) COCOA 2016. LNCS, vol. 10043,
pp. 521-535. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48749-
6-38

https://doi.org/10.1007/978-3-662-49529-2_6
https://doi.org/10.1007/978-3-642-34862-4_3
https://doi.org/10.1007/978-3-319-48749-6_38
https://doi.org/10.1007/978-3-319-48749-6_38

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Green Computing Algorithmics 181

Barcelo, N., Kling, P., Nugent, M., Pruhs, K., Scquizzato, M.: On the complexity
of speed scaling. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS
2015. LNCS, vol. 9235, pp. 75-89. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48054-0_7

Barcelo, N.; Nugent, M., Pruhs, K., Scquizzato, M.: Almost all functions require
exponential energy. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS
2015. LNCS, vol. 9235, pp. 90-101. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48054-0_8

Barcelo, N., Nugent, M., Pruhs, K., Scquizzato, M.: The power of heterogeneity
in near-threshold computing. In: International Green and Sustainable Computing
Conference, pp. 1-4 (2015)

Bartal, Y., Bollobds, B., Mendel, M.: Ramsey-type theorems for metric spaces with
applications to online problems. J. Comput. Syst. Sci. 72(5), 890-921 (2006)
Bartal, Y., Linial, N., Mendel, M., Naor, A.: On metric Ramsey-type phenomena.
In: ACM Symposium on Theory of Computing, pp. 463-472 (2003)

Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

Borodin, A., Linial, N., Saks, M.E.: An optimal on-line algorithm for metrical task
system. J. ACM 39(4), 745-763 (1992)

Bower, F.A., Sorin, D.J., Cox, L.P.: The impact of dynamically heterogeneous
multicore processors on thread scheduling. IEEE Micro 28(3), 17-25 (2008)
Brooks, D.M., Bose, P., Schuster, S.E., Jacobson, H., Kudva, P.N., Buyukto-
sunoglu, A.; Wellman, J.-D.; Zyuban, V., Gupta, M., Cook, P.W.: Power-aware
microarchitecture: design and modeling challenges for next-generation micropro-
cessors. IEEE Micro 20(6), 26-44 (2000)

Butts, J.A., Sohi, G.S.: A static power model for architects. In: ACM/IEEE Inter-
national Symposium on Microarchitecture, pp. 191-201 (2000)

Chekuri, C., Khanna, S., Shepherd, F.B.: Multicommodity flow, well-linked termi-
nals, and routing problems. In: ACM Symposium on Theory of Computing, pp.
183-192 (2005)

Dreslinski, R.G., Wieckowski, M., Blaauw, D., Sylvester, D., Mudge, T.N.: Near-
threshold computing: reclaiming Moore’s law through energy efficient integrated
circuits. Proc. IEEE 98(2), 253-266 (2010)

Esmaeilzadeh, H., Blem, E.R., Amant, R.S., Sankaralingam, K., Burger, D.: Dark
silicon and the end of multicore scaling. IEEE Micro 32(3), 122-134 (2012)

Fiat, A., Mendel, M.: Better algorithms for unfair metrical task systems and appli-
cations. STAM J. Comput. 32(6), 1403-1422 (2003)

Friedman, J., Linial, N.: On convex body chasing. Discret. Comput. Geom. 9,
293-321 (1993)

Fujiwara, H., Iwama, K., Yonezawa, K.: Online chasing problems for regular poly-
gons. Inf. Process. Lett. 108(3), 155-159 (2008)

Gécs, P.: Reliable computation. In: Algorithms in Informatics, vol. 2. ELTE E6tvos
Kiad4, Budapest (2005)

Gupta, A., Im, S., Krishnaswamy, R., Moseley, B., Pruhs, K.: Scheduling heteroge-
neous processors isn’t as easy as you think. In: ACM-SIAM Symposium on Discrete
Algorithms, pp. 1242-1253 (2012)

Gupta, A., Krishnaswamy, R., Pruhs, K.: Online primal-dual for non-linear opti-
mization with applications to speed scaling. In: Erlebach, T., Persiano, G. (eds.)
WAOA 2012. LNCS, vol. 7846, pp. 173-186. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38016-7_15

https://doi.org/10.1007/978-3-662-48054-0_7
https://doi.org/10.1007/978-3-662-48054-0_7
https://doi.org/10.1007/978-3-662-48054-0_8
https://doi.org/10.1007/978-3-662-48054-0_8
https://doi.org/10.1007/978-3-642-38016-7_15
https://doi.org/10.1007/978-3-642-38016-7_15

182

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.
53.

54.

55.

K. Pruhs

Im, S., Kulkarni, J., Munagala, K.: Competitive algorithms from competitive equi-
libria: non-clairvoyant scheduling under polyhedral constraints. In: Symposium on
Theory of Computing, pp. 313-322 (2014)

Im, S., Kulkarni, J., Munagala, K., Pruhs, K.: Selfishmigrate: a scalable algo-
rithm for non-clairvoyantly scheduling heterogeneous processors. In: Symposium
on Foundations of Computer Science, pp. 531-540 (2014)

Im, S., Moseley, B., Pruhs, K.: A tutorial on amortized local competitiveness in
online scheduling. SIGACT News 42(2), 83-97 (2011)

Irani, S., Pruhs, K.: Algorithmic problems in power management. SIGACT News
36(2), 63-76 (2005)

Khandekar, R., Rao, S., Vazirani, U.V.: Graph partitioning using single commodity
flows. J. ACM 56(4), 19 (2009)

Krishnaswamy, R., Nagarajan, V., Pruhs, K., Stein, C.: Cluster before you halluci-
nate: approximating node-capacitated network design and energy efficient routing
(2014)

Kumar, R., Tullsen, D.M., Jouppi, N.P.: Core architecture optimization for het-
erogeneous chip multiprocessors. In: International Conference on Parallel Archi-
tectures and Compilation Techniques, pp. 23-32. ACM (2006)

Kumar, R., Tullsen, D.M., Ranganathan, P., Jouppi, N.P., Farkas, K.I.: Single-ISA
heterogeneous multi-core architectures for multithreaded workload performance.
SIGARCH Comput. Archit. News 32(2), 64 (2004)

Kurose, J.F., Ross, K.W.: Computer Networking: A Top-Down Approach. Addison-
Wesley Publishing Company, Boston (2009)

Leighton, F.T., Rao, S.: Multicommodity max-flow min-cut theorems and their use
in designing approximation algorithms. J. ACM 46(6), 787-832 (1999)

Lin, M., Liu, Z., Wierman, A., Andrew, L.L.H.: Online algorithms for geographical
load balancing. In: International Green Computing Conference, pp. 1-10 (2012)
Lin, M., Wierman, A., Andrew, L.L.H., Thereska, E.: Online dynamic capacity
provisioning in data centers. In: Allerton Conference on Communication, Control,
and Computing, pp. 1159-1163 (2011)

Lin, M., Wierman, A., Andrew, L.L.H., Thereska, E.: Dynamic right-sizing for
power-proportional data centers. IEEE/ACM Trans. Netw. 21(5), 1378-1391
(2013)

Lin, M., Wierman, A., Roytman, A., Meyerson, A., Andrew, L.L.H.: Online opti-
mization with switching cost. SIGMETRICS Perform. Eval. Rev. 40(3), 98-100
(2012)

Linial, N.; London, E., Rabinovich, Y.: The geometry of graphs and some of its
algorithmic applications. Combinatorica 15(2), 215-245 (1995)

Liu, Z., Lin, M., Wierman, A., Low, S.H., Andrew, L.L.H.: Greening geographical
load balancing. In: ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems, pp. 233-244 (2011)

Merritt, R.: CPU designers debate multi-core future. EE Times, February 2008
Morad, T.Y., Weiser, U.C., Kolodny, A., Valero, M., Ayguade, E.: Performance,
power efficiency and scalability of asymmetric cluster chip multiprocessors. IEEE
Comput. Archit. Lett. 5(1), 4 (2006)

Mudge, T.: Power: a first-class architectural design constraint. Computer 34(4),
52-58 (2001)

Pippenger, N.: On networks of noisy gates. In: Symposium on Foundations of
Computer Science, pp. 30-38 (1985)

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Green Computing Algorithmics 183

Pruhs, K.: Competitive online scheduling for server systems. In: Special Issue of
SIGMETRICS Performance Evaluation Review on New Perspectives in Scheduling,
no. 4 (2007)

Pruhs, K., Sgall, J., Torng, E.: Online scheduling. In: Handbook of Scheduling;:
Algorithms, Models, and Performance Analysis (2004)

Pruhs, K., Uthaisombut, P., Woeginger, G.J.: Getting the best response for your
erg. ACM Trans. Algorithms 4(3), 38:1-38:17 (2008)

Rao, S., Zhou, S.: Edge disjoint paths in moderately connected graphs. SIAM J.
Comput. 39(5), 1856-1887 (2010)

Sergent, J.E., Krum, A.: Thermal Management Handbook. McGraw-Hill,
New York (1998)

Shannon, C.E.: The synthesis of two-terminal switching circuits. Bell Syst. Tech.
J. 28, 59-98 (1949)

Sitters, R.: The generalized work function algorithm is competitive for the gener-
alized 2-server problem. STAM J. Comput. 43(1), 96-125 (2014)

Valiant, L.G.: Short monotone formulae for the majority function. J. Algorithms
5(3), 363-366 (1984)

von Neumann, J.: Probabilistic logics and the synthesis of reliable organisms from
unreliable components. In: Shannon, C.E., McCarthy, J. (eds.) Automata Studies,
pp. 329-378. Princeton University Press, Princeton (1956)

Wang, K., Lin, M., Ciucu, F., Wierman, A., Lin, C.: Characterizing the impact of
the workload on the value of dynamic resizing in data centers. In: IEEE INFOCOM,
pp. 515-519 (2013)

Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cam-
bridge University Press, Cambridge (2011)

	Green Computing Algorithmics
	1 Introduction
	2 The Theory of Energy as Computational Resource
	3 Common Modeling Assumptions
	4 Online Convex Optimization
	4.1 Looking Backward
	4.2 Open Problems

	5 Energy Efficient Routing
	5.1 Looking Back
	5.2 The Open Problems

	6 Energy Efficient Circuit Design
	6.1 Looking Back
	6.2 Open Problems

	7 Online Scheduling of Power Heterogeneous Processors
	7.1 Open Problem

	8 Understanding Optimal Energy Tradeoff Schedules
	8.1 Looking Back
	8.2 Open Problem

	9 Conclusion
	References

