
Computation and Complexity

Gerhard J. Woeginger(B)

Department of Computer Science, RWTH Aachen, 52074 Aachen, Germany
woeginger@algo.rwth-aachen.de

Abstract. Algorithmics, computation, optimization, complexity, com-
binatorics and knowledge representation are closely related sub-areas of
Theoretical Computer Science. The following summary presents short
descriptions of the twelve chapters in this topical part.

This first part of the book covers a wide range of topics that may roughly
be summarized under the words “computation” and “complexity”. The choice of
topics reflects the massive developments in computer science over recent decades.
Many research areas that used to be outside of traditional computer science have
been conquered and attacked with computer science tools. For example, classical
Euclidean geometry has led to the area computational geometry, classical graph
theory has led to algorithmic graph theory, biology gave us the area of com-
putational biology, from the social sciences we got computational social choice,
and economics delivered the areas of algorithmic game theory and computational
economics. Computer science has always been very successful in modelling com-
munication systems, for example wireless networks. One of the biggest challenges
in neuroscience consists in understanding how the human brain works and how
the brain performs computations. The internet (as a gigantic decentralized com-
puting system) has led to the areas data mining and knowledge harvesting.

The first part of the book deals with some of these challenges and trends,
and the following twelve chapters analyze some aspects of these developments.
We present short descriptions of these chapters.

The chapter “Some Estimated Likelihoods for Computational Com-
plexity” by Williams [16] addresses some of the most fundamental open prob-
lems in computational complexity theory. Of course, we would like to know the
answer to the P versus NP question (Is P=NP?). A slightly easier problem asks
whether P=PSPACE (this statement should at least be easier to disprove than
P=NP, as NP⊆PSPACE holds). Other central open questions in complexity
theory concern the so-called Exponential Time Hypothesis (ETH) of Impagli-
azzo and Paturi [9], the Strong Exponential Time Hypothesis (SETH), and the
Nondeterministic Strong Exponential Time Hypothesis (NSETH), which all form
strengthenings of the statement P �= NP. In his chapter, Ryan Williams states
concrete probabilities with which he believes that the various open problems have
positive answers: P �= NP with probability 80%, ETH should hold with prob-
ability 70%, SETH with probability 25%, and so on. The body of the chapter
deals with the reasons why and how Ryan arrived at these probabilities, with
technical possibilities and impossibilities, and many other things.
c© Springer Nature Switzerland AG 2019

B. Steffen and G. Woeginger (Eds.): Computing and Software Science, LNCS 10000, pp. 3–8, 2019.

https://doi.org/10.1007/978-3-319-91908-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91908-9_1&domain=pdf
https://doi.org/10.1007/978-3-319-91908-9_1


4 G. J. Woeginger

The chapter “Computing in Combinatorial Optimization” by Cook
[5] summarizes some of the history of algorithms for combinatorial optimiza-
tion problems. One of the most prominent problems in this area is the Trav-
elling Salesman Problem (TSP): Given a finite number of points with pairwise
distances, find a shortest path connecting all points. William Cook traces the
problem back to the year 1930, when Karl Menger described the problem in a col-
loquium held in Vienna; Menger used the German word “Botenproblem” (“post-
man problem”) for the TSP, as the problem is faced in practice by every postman.
Starting from the TSP, the chapter walks through a variety of other fundamental
problems and algorithms. The reader learns many surprising facts on the history
of the assignment problem, the Hungarian algorithm, dynamic programming, lin-
ear programming, cutting planes, matchings, the simplex method, CPLEX, and
the reader meets Kurt Gödel, Julia Robinson, Richard Karp, George Dantzig,
Michel Balinski, Richard Bellman, Jack Edmonds, Lex Schrijver, and many other
superstars of the area.

The chapter “Computational Social Choice: The First Ten Years and
Beyond” by Aziz et al. [2] introduces the reader to a relatively new subarea
of theoretical computer science. Computational social choice lies at the intersec-
tion between social choice theory (a subarea of economics and political science)
and computer science. As a typical application, we want to mention Dodgson’s
method which is an electoral system that was proposed in 1876 by the British
mathematician Charles Dodgson (who is much better known under the name
Lewis Carroll, the author of Alice in Wonderland). On the positive side, Dodg-
son’s method yields an electoral system that is very safe and extremely difficult
to manipulate. On the negative side, Bartholdi et al. [3] have shown that even
determining the winner of an election under Dodgson’s method is an NP-hard
problem. Other popular topics in computational social choice concern voting,
coalition formation, matching markets, market equilibria, fair division, and cake
cutting protocols. The chapter authors highlight several representative research
areas in contemporary computational social choice, and also hint at future devel-
opments of the field.

The chapter “Geometric Optimization Revisited” by Agarwal et al.
[1] deals with the area of computational geometry. Computational geometry is
devoted to the study of algorithms that deal with points, lines, circles, trian-
gles, polytopes, spheres, and other geometric objects. The area was triggered by
computer graphics and computer-aided design, and more recently by geographic
information systems, robotics, and computer vision. Typical problems studied in
computational geometry concern motion planning, visibility problems, geometric
location, geometric search, route planning, and mesh generation. Computational
geometry forms an old and very mature part of algorithmics, and there are entire
books available that summarize the main results [6,7]. The chapter concentrates
on three concrete problems that have been very active in recent years: Geometric
set cover problems; geometric independent set problems; and computing maps
between point sets. These problems are typically hard to solve, and the chapter
discusses various ways of working around this hardness.



Computation and Complexity 5

The chapter “Ten Reasons to Get Interested in Graph Drawing”
by Binucci et al. [4] introduces the reader to the area of graph drawing. (Note
that there are ten authors who present ten reasons.) Graph drawing combines
methods from geometry, graph theory, algorithmics, and information visualiza-
tion to derive nice two-dimensional pictures of graphs that arise in application
areas such as cartography, social network analysis and bioinformatics. A stan-
dard example is how to get a nice drawing of a subway network, with clearly
readable names of subway stations and clearly recognizable changeover points.
The chapter highlights ten concrete topics in graph drawing, four from theory
(computational geometry; canonical orderings; the existential theory of the reals;
SPQR-trees) and six from applications (information visualization; software engi-
neering; model-based design; automated cartography; social sciences; molecular
biology).

The chapter “Sublinear-Time Algorithms for Approximating Graph
Parameters” by Ron [14] surveys the field of sublinear-time algorithms. For
decades, researchers in algorithmics have been aiming for linear-time algorithms
and considered them as the best-possible type of result that one can hope for.
After all, it is hard to imagine that one could do better than linear-time: For
any non-trivial problem, an algorithm should at least read and consider all of
the input before making a qualified decision. However, (very) large data sets
have become prevalent in a wide variety of settings, and it is natural to wonder
what one can actually do in sublinear-time. With sublinear-time, one obviously
can only read a miniscule fraction of the input. Typically, sublinear-time algo-
rithms must use randomization and must give an answer which is (in some sense)
approximate. Dana Ron discusses a variety of results on the sublinear approx-
imation of certain graph parameters (average degree; higher moments of the
degree distribution; number of connected components; vertex cover number; the
weight of minimum spanning trees).

The chapter “Dynamic Erdős-Rényi graphs” by Mandjes et al. [11] deals
with dynamic versions of the classical random graph model. Transportation net-
works, traffic networks, communication networks, and energy networks form the
backbone of our modern society. Networks and graphs are used to model social,
physical, chemical, biological, and technological phenomena. The existing liter-
ature predominantly focuses on static graphs: A random graph is drawn just
once, and does not change over time. In many real-life situations, however, the
network structure temporally evolves, with edges appearing and disappearing
over time. The chapter discusses two dynamic versions of the classical Erdős-
Rényi random graph. In the first version, the transition rates are governed by an
external regime process, and in the second version the transition rates are peri-
odically resampled. The chapter analyzes the corresponding moments, derives
central limit theorems and investigates the large deviations asymptotics.

The chapter “Wireless Network Algorithmics” by Halldorsson and
Wattenhofer [8] provides an introduction to algorithmic models for wireless net-
works. While wireless networks save us the costly process of introducing cables
and make our lives easier, they also create new problems, as wireless transmission



6 G. J. Woeginger

may suffer from interference. To prevent interference, we could carefully schedule
all transmissions so that concurrent transmissions are separated in space or time;
however, scheduling a transmission at a different time might create new interfer-
ences at the newly chosen time slot. Another possibility would be to increase the
transmission power in order to reduce interference; however, by increasing the
transmission power, we may also create new interferences with other transmis-
sions. The chapter presents the most popular mathematical models for wireless
networks. It discusses a number of central results on link scheduling algorithms
and on power control algorithms, it states future directions and poses several
major open questions.

The chapter “Green Computing Algorithmics” by Pruhs [12] surveys the
relatively new field of green computing, which perhaps could as well be called
energy-aware computing. Nowadays one of the main problems in the design of
new and faster VLSI chips is the generated heat, as it requires expensive (and
noisy) cooling systems for computers. For instance, CEO Eric Schmidt from
Google says: “What matters most to the computer designers at Google is not
speed, but power, low power, because data centers can consume as much electricity
as a city.” Power consumption has led us to rethink and to redesign algorithmics
from scratch, now with the minimization of energy as our top design constraint
(instead of the somewhat outdated maximization of speed). The chapter explains
why a theory of energy as a computational resource will look very different
from the established theory of time or space as computational resources. Kirk
Pruhs discusses various optimization problems under energy constraints, such as
circuit routing in a network, scheduling on heterogeneous processors, and finding
schedules that optimally trade off energy and performance.

The chapter “Brain Computation: A Computer Science Perspective”
by Maass et al. [10] gives an introduction for computer scientists into brain com-
putation. The human brain carries out tasks that are very demanding from a
computational point of view, and apparently it is powered by a mere 20 Watts.
The computational neuroscience pioneer David Marr has proposed a three-level
approach to understanding brain computation: The behavioral level identifies
the input-output behavior of the system, the algorithmic level analyzes the pro-
cesses and representations used in the system, and the hardware level studies
the biophysical elements and the molecular mechanisms used by the system
to implement the algorithm. The chapter provides an overview of interactions
between computer science and the study of computational aspects of the brain.
The authors discuss the methodology of the computational study of the brain,
while focusing on algorithms of the brain, on abstract and simplified models of
brain systems, and on learning.

The chapter “Rating Computer Science Via Chess” by Regan [13] pro-
vides an introduction to (certain aspects of) computer chess. The chapter author
Ken Regan is not only a well-known authority in theoretical computer science,
but also a top notch chess player: In the 1970s he was one of the youngest chess
masters since Bobby Fischer, and in 1980 he reached the international master
(IM) level. In recent years Ken has also served as a member of the anti-cheating



Computation and Complexity 7

committee of the World Chess Federation (FIDE), where he has been pivotal
in writing the guidelines to prevent cheating in professional chess. By using
his database with tens of thousands of top-level games, Ken has devised com-
puter programs that can help to determine whether a player is playing more
like a human or rather more like a computer. The chapter provides insight into
the intersection between chess and computer science. Among other things, it
discusses the complexity of endgames, the ways chess computers work, and it
analyzes rating systems for the strength of chess players and chess programs.

The chapter “Knowledge Harvesting: Achievements and Challenges”
by Weikum et al. [15] gives an overview on recent developments in the area
of knowledge bases and knowledge harvesting. Knowledge bases are a technol-
ogy used to store complex structured and unstructured information used by a
computer system. Knowledge harvesting designs approaches for turning noisy
Internet content into clearly structured information on entities and relations.
Prominent examples of knowledge bases are the Google Knowledge Graph, the
True Knowledge Answer Engine of Amazon, the semantic search engine Facebook
Graph Search, and Wolfram Alpha. Prominent examples of knowledge harvesting
are search engines like Google or Bing, semantic search, aggregating by entities,
recommendations and data integration. The chapter surveys key principles of
knowledge harvesting, summarizes the state of the art, discusses strategic chal-
lenges, and points out opportunities for future research.

References

1. Agarwal, P., Ezra, E., Fox, K.: Geometric optimization revisited. In: Steffen, B.,
Woeginger, G. (eds.) Computing and Software Science. LNCS, vol. 10000, pp. 66–
84. Springer, Cham (2018)

2. Aziz, H., Brandt, F., Elkind, E., Skowron, P.: Computational social choice: the
first ten years and beyond. In: Steffen, B., Woeginger, G. (eds.) Computing and
Software Science. LNCS, vol. 10000, pp. 48–65. Springer, Cham (2018)

3. Bartholdi, J., Tovey, C.A., Trick, M.A.: Voting schemes for which it can be difficult
to tell who won the election. Soc. Choice Welf. 6, 157–165 (1989)

4. Binucci, C., et al.: Ten reasons to get interested in graph drawing. In: Steffen,
B., Woeginger, G. (eds.) Computing and Software Science. LNCS, vol. 10000, pp.
85–104. Springer, Cham (2018)

5. Cook, W.: Computing in combinatorial optimization. In: Steffen, B., Woeginger,
G. (eds.) Computing and Software Science. LNCS, vol. 10000, pp. 27–47. Springer,
Cham (2018)

6. de Berg, M., Cheong, O., van Kreveld, M.J., Overmars, M.H.: Computational
Geometry: Algorithms and Applications. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-77974-2

7. Edelsbrunner, H.: Algorithms in Combinatorial Geometry. Springer, Heidelberg
(1987). https://doi.org/10.1007/978-3-642-61568-9

8. Halldorsson, M., Wattenhofer, R.: Wireless network algorithmics. In: Steffen, B.,
Woeginger, G. (eds.) Computing and Software Science. LNCS, vol. 10000, pp. 141–
160. Springer, Cham (2018)

9. Impagliazzo, R., Paturi, R.: The complexity of k-SAT. In: Proceedings of the 14th
IEEE Conference on Computational Complexity, pp. 237–240 (1999)

https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-642-61568-9


8 G. J. Woeginger

10. Maass, W., Papadimitriou, C., Vempala, S., Legenstein, R.: Brain computation: a
computer science perspective. In: Steffen, B., Woeginger, G. (eds.) Computing and
Software Science. LNCS, vol. 10000, pp. 184–199. Springer, Cham (2018)

11. Mandjes, M., Starreveld, N., Bekker, R., Spreij, P.: Dynamic Erdős-Rényi graphs.
In: Steffen, B., Woeginger, G. (eds.) Computing and Software Science. LNCS, vol.
10000, pp. 123–140. Springer, Cham (2018)

12. Pruhs, K.: Green computing algorithmics. In: Steffen, B., Woeginger, G. (eds.)
Computing and Software Science. LNCS, vol. 10000, pp. 161–183. Springer, Cham
(2018)

13. Regan, K.: Rating computer science via chess. In: Steffen, B., Woeginger, G. (eds.)
Computing and Software Science. LNCS, vol. 10000, pp. 200–216. Springer, Cham
(2018)

14. Ron, D.: Sublinear-time algorithms for approximating graph parameters. In: Stef-
fen, B., Woeginger, G. (eds.) Computing and Software Science. LNCS, vol. 10000,
pp. 105–122. Springer, Cham (2018)

15. Weikum, G., Hoffart, J., Suchanek, F.: Knowledge harvesting: achievements and
challenges. In: Steffen, B., Woeginger, G. (eds.) Computing and Software Science.
LNCS, vol. 10000, pp. 217–235. Springer, Cham (2018)

16. Williams, R.: Some estimated likelihoods for computational complexity. In: Steffen,
B., Woeginger, G. (eds.) Computing and Software Science. LNCS, vol. 10000, pp.
9–26. Springer, Cham (2018)


	Computation and Complexity
	References




