
Bernhard Steffen
Gerhard Woeginger (Eds.)

LN
CS

 1
00

00

State of the Art and Perspectives

Computing and
Software Science

Lecture Notes in Computer Science 10000

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Bernhard Steffen • Gerhard Woeginger (Eds.)

Computing and
Software Science
State of the Art and Perspectives

123

Editors
Bernhard Steffen
Technical University of Dortmund
Dortmund, Germany

Gerhard Woeginger
RWTH Aachen
Aachen, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-91907-2 ISBN 978-3-319-91908-9 (eBook)
https://doi.org/10.1007/978-3-319-91908-9

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
The chapter “Computing in Combinatorial Optimization” is Open Access. This chapter is licensed under the
terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/). For further details see license information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Cover illustration: The tag cloud shown on the cover, provided by Markus Frohme, Stefan Naujokat,
and Bernhard Steffen (TU Dortmund, Germany), visualizes the topical coverage of the articles included.
Used with permission.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-91908-9
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Geleitwort

Quoting the introductory sentence of the preface Jan van Leeuwen wrote in September
1995 in [1], it is my pleasure to state mutatis mutandis: “This volume of the series
Lecture Notes in Computer Science (including its subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) marks a truly unique and festive
moment: it is the 10,000th volume that appears in the series.”

Indeed, during the 46 years since the launch of the LNCS series in 1973 more than
10,000 volumes have been published in LNCS as of today, roughly 1000 volumes
during the first half of this 45-year period and more than 9000 volumes since 1995. The
10,000 volumes published constitute a treasure of around 350,000 research papers and
make the series an indispensable resource for computer scientists and an outstanding
bibliographic entity across all disciplines of scientific research as well.

In the aforementioned preface of LNCS 1000, a short overview of the beginnings
of the series and of its history up to 1995 is presented, also by pointing to some key
publications. While it is too demanding to survey the developments in and around
LNCS since then at the same level of depth within the limitations of a “Geleitwort”, we
make an attempt to briefly summarize some major developments and accomplishments
of LNCS.

The vast majority of the volumes published in LNCS have always been proceedings
or post-proceedings drawing together the research papers or revised versions of work
presented at conferences or workshops, thus providing an archival documentation
of the scientific outcome of the underlying meetings. However, even in its early years,
LNCS included course notes, monographs, and advanced school lectures as well,
several of which were among the bestselling and most broadly known ones of their
times.

Not least because of the steep growth in the number of LNCS volumes published
annually since the early 1990s, exceeding 100 volumes published in 1993, and in order
to visually distinguish the non-proceedings literature from proceedings content and
post-proceedings content, starting in 1995 we introduced several LNCS color-cover
sublines: the Tutorials, the State-of-the-Art Surveys, the Hot Topics, and later on, the
Festschrifts. Initially, these books came with a color jacket cover wrapped around the
red-and-silver standard cover (blue-and-silver for LNAI). However, we soon learnt that
librarians didn’t like the jacket covers and mostly removed them before putting the
books on the shelves so we then printed the actual softcover in full color.

The LNCS color cover subline volumes include many nice and widely used volumes
covering a broad variety of topics. An outstanding Tutorial is MMIXware – A RISC
Computer for the Third Millennium by Don E. Knuth [2]. Among the LNCS
State-of-the-Art Surveys, it is Neural Networks: Tricks of the Trade by Grégoire
Montavon, Genevieve B. Orr, and Klaus-Robert Müller (Eds.) [3] which stands out, not
only because of its extremely high number of chapter downloads in SpringerLink. After
year-long discussions back and forth with the LNCS series editors on how to deal with

proposals for collections of articles honoring an individual scientist or the anniversary
of a result or of an institution, we introduced the LNCS Festschrift subline; here a
remarkable one is the volume for Zohar Manna on the occasion of his 64th birthday
edited by Nachum Dershowitz [4]. At a time when LNCS was still covered by
Thompson ISI’s Science Citation Index (Expanded), we established the LNCS
Transactions sublines, publishing journal content while using LNCS as the production
and distribution machinery, thus providing a direct inroad for ISI indexing. Unfortu-
nately and without any prior indication, ISI stopped indexing LNCS in SCI(E) meaning
that the formula didn’t work any longer and most of the LNCS Transactions then had
trouble attracting submissions for publication.

With around 600 volumes published annually, LNCS had reached a critical size,
e.g., with regard to subscriptions by institutions. We therefore decided to source out
growth by establishing the Lecture Notes in Business Information Processing, LNBIP,
and the proceedings series Communications in Computer and Information Science,
CCIS, which also allows for the publication of content from more applied or regional
conferences and which serves as an incubator environment for LNCS. Internally at
Springer, other editorial groups beyond computer science tried to adapt the LNCS
publication model and workflow for their audiences and especially the engineering
colleagues succeeded in establishing several successful proceedings series.

In the second half of the 1990s, when electronic publishing had already been
established for scientific journals, we realized that for the future success of a
proceedings series like LNCS, besides printed content distribution, availability of the
content in electronic version as part of a digital library would become crucial.
Unfortunately, the workflow for feeding, and the structure of, the digital library
established at Springer for electronic journal publishing could not be used for the
production and presentation of electronic LNCS proceedings in a straightforward
manner, mainly because the journal article files processed by professional typesetters
were clean and uniform and included carefully structured metadata in HTML, whereas
the proceedings article files we received in “camera-ready” fashion were prepared by
authors individually using various text processing systems for typesetting on different
machine configurations.

As our digital library colleagues were busy with optimizing electronic journal
publishing, we in editorial had to take the lead in the development of electronic
proceedings publishing at Springer, also in response to a demand expressed by con-
ference organizers and proceedings volume editors more and more urgently. With the
help of our colleague Antje Endemann, as well as with the essential contribution of a
freelance technical consultant, Markus Richter, and in cooperation with in-house digital
library colleagues, we succeeded in 1998 to shoot the first two LNCS volumes onto
SpringerLink: FSE 1997, volume 1267 [5], for which we received the complete col-
lection of article files from Eli Biham, and IDA 1997, volume 1280 [6], with all files
received from Michael Berthold. A few years later, all LNCS volumes, previously
published in print version only, were re-digitized and included in the digital library.
LNCS Online has since survived several platform and provider changes and, with well
over 100 million article downloads annually, has become the most highly used content
item in SpringerLink.

vi Geleitwort

The LNCS publication workflow was further refined, e.g., by sending the proofs
of the papers, once they had passed through the light typesetting and normalization
process at our end, to the corresponding paper author for approval. Moreover, in
parallel to the PDF article files, we now produce full-text HTML and offer both
versions in the digital library. Videos can be seamlessly embedded in an LNCS paper
and other files can be provided as electronic supplementary material. We have
experimented and now offer data/code publishing services and systematically offer the
inclusion of author ORCIDs. And, last but not least, already back in 2011 [7], we
started publishing in the Gold Open Access mode.

When I took over LNCS in early 1991, Gerhard Goos and Juris Hartmanis had been
onboard as LNCS series editors already since the formation of the series in 1973, also
drawing advice from an Editorial Board made up of internationally highly reputed
computer scientists. The LNCS subseries Lecture Notes in Artificial Intelligence with
Joerg Siekmann as series editor had published its first volume, LNCS/LNAI 345 [8], in
1988. Initially all proposals were evaluated and decided upon by the series editors,
based on the proposal information received and the context information prepared by
Springer, often relating the proposal to predecessor publications with us. Most often
proposal decisions were taken unanimously and this didn’t change much when Jan van
Leeuwen joined as third LNCS series editor in 1994 and when we gave up the Editorial
Board. However, occasionally we got stuck with the evaluation of proposals, even
when taking into account external expert advice. Once, in such a deadlock situation,
Juris Hartmanis stated: “Thinking back on what we were allowed to publish when we
were young I feel we should give them a try” (and he authorized me to quote him on
this statement). And indeed, looking at some of the very early volumes published in
LNCS, one can find articles published even in the German language, which up to now
haven’t received significant numbers of citations.

With the expansion of the topical coverage of LNCS and the steadily and rapidly
increasing number of proposals received, especially from China, the need to ask for
external expert advice became more urgent than before and this put me more and more
into a position of managing series editor. Repeat proposals, e.g., conference series
successfully publishing in LNCS for years, were granted default acceptance status and
weren’t evaluated in depth each year anew. In 2004, when reaching volume number
3000, a new group of 14 outstanding computer scientists took over as LNCS series
editors providing valuable advice during the years of accelerated growth of the series
and essentially acting as an Advisory Board.

The Lecture Notes in Bioinformatics, LNBI, commenced publication as a subseries
of LNCS in 2005, with Sorin Istrail, Pavel Pevzner, and Mike Waterman as series
editors and LNBI 3500 [9] as the first volume. In an attempt to structure and classify
the huge amount of content published, topical sublibraries and sublines were intro-
duced such as the Advanced Research in Computing and Software Science, ARCoSS,
as a quality and relevance focused subline headed by Giorgio Ausiello and Vladimiro
Sassone, or, later on, the Formal Methods subline headed by Ana Cavalcanti and
Marie-Claude Gaudel. Conference communities and learned societies, like the
International Association for Cryptologic Research, IACR, whose proceedings we
published from as early on as 1984 and which had developed a bundle of conferences
and workshops held each year, sought a publication package deal that would avoid

Geleitwort vii

formal evaluation of individual proposals with its delays and uncertainties each year
anew. In a certain sense, LNCS developed into a holding in which various conference
communities and learned societies had their share and their sheltered place for the
publication of their proceedings and post-proceedings.

For me personally, the delayed publication of this anniversary volume coincides
with a major change in my (professional) life: after having been in charge of LNCS
since 1991, I am approaching my legal retirement age and have now handed over
responsibility for the series to my successor Aliaksandr Birukou. Having worked with
Alex for more than seven years, I am absolutely convinced that he will do an excellent
job continuing and further developing LNCS by bringing in fresh ideas. Given this
closing aspect of my involvement with Springer and LNCS, this is a unique oppor-
tunity to express my sincere gratitude, externally as well as internally, for a wonderful
professional life often overgrowing my private life:

Firstly, special thanks, as well as my sincere apologies, go to Bernhard Steffen and
Gerhard Woeginger as the editors of the present book and to the authors whose articles
are included here: thank you for delivering such a nice thought-provoking collection of
expository articles, providing a highly relevant snapshot of the state of the art of
foundational aspects of computer science, and please accept my apologies for delaying
this project.

Internally, I am reporting my gratitude to several generations of management: some
of the direct and higher-up line managers under whom I worked actively provided
recognition and support, while others at least let me do my thing – and this is by no
means self-evident. And then there is, of course, the entire LNCS Team, now headed
by Aliaksandr Birukou, to whom I want to express my gratitude: first and foremost, to
Anna Kramer as my long-year right hand, the team’s soul and pacemaker, and our
external communication center; and to Christine Reiss as the technical innovation
expert, workflow specialist and Anna’s substitute; as well as to Nicole Sator as
personal/team assistant. However, each of the LNCS assistant editors working with us
in the past and now deserves a big thank you for dealing as project managers with
hundreds of, or even a thousand, LNCS projects during the publication stage and
typically under very tight schedules. Presently, the LNCS assistant editors (in order of
time working for us) are: Erika Siebert-Cole, Peter Strasser, Ingrid Haas, Elke Werner,
Abier El-Saeidi, Miriam Costales, Sanja Evenson, Alla Serikova, and Lauren Perkins.
Posthumously and in deep gratitude, I acknowledge the essential contribution of fellow
editor Frank Holzwarth, who for many years was our LaTeX-wizard and IT-factotum
and who prematurely passed away in January 2018. A special thank you goes to
colleague editors Ralf Gerstner and Ronan Nugent, around the corner here in
Heidelberg, for their input, advice, and help on many proposals and projects, as well as
to Beijing colleague editor Celine Chang, who, besides running her own publication
program, as the LNCS bridgehead in China has been of invaluable help in the success
of LNCS in this booming country. Finally, my gratitude extends to the production
department, especially to colleagues Viktoria Dobisch and Anja Seibold here in
Heidelberg and to their counterpart, Julia Pressels Loyola, who runs the LNCS group of
well over 200 people at Scientific Publishing Services Pvt Ltd in Chennai, India, for
always being cooperative in incorporating our special requirements into their work-
flows and for turning around a vast number of projects under extremely tight schedules.

viii Geleitwort

Interacting with the computer science research and development community for
almost three decades, I met excellent scientists and outstanding characters, many
of them working extremely hard. Of course, like in real life, there were also conflicts
and battles to be fought, some even at the kindergarten level of interaction. However,
overall, at home, in the office, on the phone, and in email, as well as in personal
meetings at conferences and during campus visits, I experienced the computer science
research community as a wonderful working environment. The success Springer had in
computer science publishing during the past few decades is all due to the authors’
community in the field, to whom I shall remain connected in deep gratitude.

September 2019 Alfred Hofmann

References

1. van Leeuwen, J. (ed.): Computer Science Today: Recent Trends and Developments,
LNCS, vol. 1000. Springer, Heidelberg (1995). https://doi.org/10.1007/
BFb0015232

2. Knuth, D.E. (ed.): MMIXware: A RISC Computer for the Third Millennium, LNCS,
vol. 1750. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46611-8

3. Montavon, G., Orr, G.B., Müller, K.R. (eds.): Neural Networks: Tricks of the Trade,
2nd edn., LNCS, vol. 7700. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-35289-8

4. Dershowitz, N. (ed.): Verification: Theory and Practice, Essays Dedicated to Zohar
Manna on the Occasion of His 64th Birthday, LNCS, vol. 2772. Springer,
Heidelberg (2003). https://doi.org/10.1007/b12001

5. Biham, E. (ed.): Fast Software Encryption, 4th International Workshop, FSE 1997,
Haifa, Israel, January 20–22, 1997, Proceedings, LNCS, vol. 1267. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0052329

6. Liu, X., Cohen, P., Berthold, M. (eds.): Advances in Intelligent Data Analysis:
Reasoning about Data, Second International Symposium, IDA-1997, London, UK,
August 4–6, 1997, Proceedings, LNCS, vol. 1280. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0052824

7. Domingue, J.D., et al. (ed.): The Future Internet, Future Internet Assembly 2011:
Achievements and Technological Promises, LNCS, vol. 6656. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20898-0

8. Nossum, R.T. (ed.): Advanced Topics in Artificial Intelligence, 2nd Advanced
Course, ACAI ’87, Oslo, Norway, July 28 – August 7, 1987, LNCS, vol. 345.
Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-50676-4

9. Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.):
Research in Computational Molecular Biology, 9th International Conference,
RECOMB 2005, Cambridge, MA, USA, May 14–18, 2005, Proceedings,
LNCS/LNBI, vol. 3500. Springer, Heidelberg (2005). https://doi.org/10.1007/
b135594

Geleitwort ix

https://doi.org/10.1007/BFb0015232
https://doi.org/10.1007/BFb0015232
https://doi.org/10.1007/3-540-46611-8
https://doi.org/10.1007/978-3-642-35289-8
https://doi.org/10.1007/978-3-642-35289-8
https://doi.org/10.1007/b12001
https://doi.org/10.1007/BFb0052329
https://doi.org/10.1007/BFb0052824
https://doi.org/10.1007/978-3-642-20898-0
https://doi.org/10.1007/3-540-50676-4
https://doi.org/10.1007/b135594
https://doi.org/10.1007/b135594

Preface

The first volume of the Springer LNCS series appeared back in the year 1973, and in
the meantime more than 10000 volumes have been published. LNCS proceedings have
accompanied and helped to shape our scientific life. The book series has formed the
knowledge backbone for generations of computer scientists. It was therefore a special
honor for us to accept Alfred Hofmann’s invitation to cooperatively edit the 10000th
volume. We are very proud that we could win world-leading experts to share their
specific views and visions with us in this book.

The contributions in this volume focus on the foundational aspects of computer
science, the thematic origin and stronghold of LNCS, under the title “Computing and
Software Science: State of the Art and Perspectives”. They are organized in two parts.

The first part, Computation and Complexity, presents a collection of expository
papers on fashionable themes in algorithmics, optimization, and complexity. The topics
cover a wide territory, ranging from efficient algorithms in areas like social choice,
graph drawing, and wireless networks to knowledge harvesting, green computing,
chess programs, and brain computation. The introduction to this part presents a brief
overview of the 12 contributions.

The second part, Methods, Languages and Tools for Future System Development,
aims at sketching the methodological evolution that helps to guarantee that future
systems meet their increasingly critical requirements. To understand how far today’s
ambitions reach, one must only think of challenges like automotive driving and traffic
control, secure communications and business transactions, knowledge and process
management in healthcare, and robotic systems and digital manufacturing, where
autonomic systems closely cooperate with humans. The introduction to this topical part
provides an overview of its 12 contributions structured in the three sections The Power
of Languages; Validation: Testing and Beyond; and Verification Methods and Tools.

We are very grateful to the authors for their exceptional contributions and their
reviewing support. Their constructive mutual feedback turned the development of this
volume into a collaborative effort. In fact, the second topical part used zero-blind
reviewing to explicitly encourage discussion and cross referencing. We are also very
grateful to Springer, and here in particular to Alfred Hofmann, for his initiative and
continuous support, and to Markus Frohme for his help with the OCS (in particular
during the production phase).

March 2019 Bernhard Steffen
Gerhard Woeginger

Organization

Reviewing Committee (Computation and Complexity)

Pankaj K. Agarwal Duke University, USA
Haris Aziz UNSW Sydney, Australia
Rene Bekker Vrije Universiteit Amsterdam, The Netherlands
Carla Binucci University of Perugia, Italy
Ulrik Brandes ETH Zürich, Switzerland
Felix Brandt Technische Universität München, Germany
William Cook University of Waterloo, Canada
Tim Dwyer Monash University Melbourne, Australia
Edith Elkind University of Oxford, UK
Esther Ezra Georgia Tech, USA
Kyle Fox The University of Texas at Dallas, USA
Martin Gronemann Universität zu Köln, Germany
Magnus Halldorsson Reykjavik University, Iceland
Johannes Hoffart Max-Planck-Institut für Informatik, Saarbrücken,

Germany
Robert Legenstein Graz University of Technology, Austria
Wolfgang Maass Graz University of Technology, Austria
Michel Mandjes Universiteit van Amsterdam, The Netherlands
Petra Mutzel TU Dortmund, Germany
Christos H. Papadimitriou Columbia University New York, USA
Kirk Pruhs University of Pittsburgh, USA
Kenneth Regan University at Buffalo, The State University

of New York, USA
Dana Ron Tel Aviv University, Israel
Marcus Schaefer DePaul University Chicago, USA
Falk Schreiber Univesität Konstanz, Germany
Piotr Skowron University of Warsaw, Poland
Bettina Speckmann Eindhoven University of Technology, The Netherlands
Peter Spreij Universiteit van Amsterdam, Radboud University

Nijmegen, The Netherlands
Nicos Starreveld Korteweg-de-Vries Instituut, Amsterdam,

The Netherlands
Fabian Suchanek Télécom Paris University, France
Luca Trevisan U.C. Berkeley, USA
Santosh Vempala Georgia Tech College of Computing, USA
Roger Wattenhofer ETH Zürich, Switzerland
Gerhard Weikum Max Planck Institute for Informatics, Germany
Ryan Williams MIT, USA

Gerhard Woeginger RWTH Aachen, Germany
Michael Wooldridge University of Oxford, UK
Marc van Krefeld Universiteit Utrecht, The Netherlands
Reinhard von Hanxleden CAU Kiel, Germany

Reviewing Committee (Methods, Languages and Tools
for Future System Development)

Rajeev Alur University of Pennsylvania, USA
Christel Baier TU Dresden, Germany
Albert Benveniste Inria, France
George Candea EPFL, Switzerland
Alastair Donaldson Imperial College London, UK
Hilding Elmqvist Mogram AB, Sweden
Patrice Godefroid Microsoft Research, USA
Radu Grosu Technische Universität Wien, Austria
Klaus Havelund Jet Propulsion Laboratory/NASA, USA
Thomas A. Henzinger IST, Austria
Holger Hermanns Saarland University, Germany
Falk Howar Dortmund University of Technology

and Fraunhofer ISST, Germany
Marieke Huisman University of Twente, The Netherlands
Michael Huth Imperial College London, UK
Reiner Hähnle TU Darmstadt, Germany
Bengt Jonsson Uppsala University, Sweden
Joost-Pieter Katoen RWTH Aachen University, Germany
Fabrice Kordon Sorbonne Université, France
Kim Larsen University of Southern Denmark, Denmark
Axel Legay Inria, France
Michael Leuschel University of Düsseldorf, Germany
Tiziana Margaria University of Limerick and Lero, Ireland
Petra Mutzel TU Dortmund, Germany
Alan Mycroft University of Cambridge, UK
Flemming Nielson Technical University of Denmark
Grigore Rosu University of Illinois at Urbana-Champaign, USA
Scott Smolka Stony Brook University, USA
Bernhard Steffen TU Dortmund University, Germany
Frits Vaandrager Radboud University, The Netherlands
Jaco van de Pol University of Twente, The Netherlands

Reviewers

Eranda Cela TU Graz, Austria
Janosch Fuchs RWTH Aachen, Germany
Tim Hartmann RWTH Aachen, Germany

xiv Organization

Cor Hurkens TU Eindhoven, The Netherlands
Bettina Klinz TU Graz, Austria
Stefan Lendl TU Graz, Austria
Aleksandar Markovic TU Eindhoven, The Netherlands
Astrid Pieterse TU Eindhoven, The Netherlands
Rebecca Reiffenhäuser RWTH Aachen, Germany
Peter Rossmanith RWTH Aachen, Germany
Frits Spieksma TU Eindhoven, The Netherlands
Björn Tauer RWTH Aachen, Germany
Walter Unger RWTH Aachen, Germany
Gerhard Woeginger RWTH Aachen, Germany

Organization xv

Contents

Computation and Complexity

Computation and Complexity . 3
Gerhard J. Woeginger

Some Estimated Likelihoods for Computational Complexity 9
R. Ryan Williams

Computing in Combinatorial Optimization . 27
William Cook

Computational Social Choice: The First Ten Years and Beyond 48
Haris Aziz, Felix Brandt, Edith Elkind, and Piotr Skowron

Geometric Optimization Revisited . 66
Pankaj K. Agarwal, Esther Ezra, and Kyle Fox

10 Reasons to Get Interested in Graph Drawing . 85
Carla Binucci, Ulrik Brandes, Tim Dwyer, Martin Gronemann,
Reinhard von Hanxleden, Marc van Kreveld, Petra Mutzel,
Marcus Schaefer, Falk Schreiber, and Bettina Speckmann

Sublinear-Time Algorithms for Approximating Graph Parameters 105
Dana Ron

Dynamic Erdős-Rényi Graphs. 123
Michel Mandjes, Nicos Starreveld, René Bekker, and Peter Spreij

Wireless Network Algorithmics. 141
Magnús M. Halldórsson and Roger Wattenhofer

Green Computing Algorithmics. 161
Kirk Pruhs

Brain Computation: A Computer Science Perspective 184
Wolfgang Maass, Christos H. Papadimitriou, Santosh Vempala,
and Robert Legenstein

Rating Computer Science via Chess: In Memoriam Daniel Kopec
and Hans Berliner. 200

Kenneth W. Regan

Knowledge Harvesting: Achievements and Challenges. 217
Gerhard Weikum, Johannes Hoffart, and Fabian Suchanek

Methods, Languages and Tools for Future System Development

Methods, Languages and Tools for Future System Development 239
Bernhard Steffen

The Next 7000 Programming Languages . 250
Robert Chatley, Alastair Donaldson, and Alan Mycroft

Multi-Mode DAE Models - Challenges, Theory and Implementation 283
Albert Benveniste, Benoît Caillaud, Hilding Elmqvist, Khalil Ghorbal,
Martin Otter, and Marc Pouzet

Language-Driven Engineering: From General-Purpose
to Purpose-Specific Languages . 311

Bernhard Steffen, Frederik Gossen, Stefan Naujokat,
and Tiziana Margaria

Deductive Software Verification: From Pen-and-Paper Proofs
to Industrial Tools . 345

Reiner Hähnle and Marieke Huisman

Static Analysis for Proactive Security . 374
Michael Huth and Flemming Nielson

Software Architecture of Modern Model Checkers 393
Fabrice Kordon, Michael Leuschel, Jaco van de Pol,
and Yann Thierry-Mieg

The 10,000 Facets of MDP Model Checking . 420
Christel Baier, Holger Hermanns, and Joost-Pieter Katoen

Continuous-Time Models for System Design and Analysis 452
Rajeev Alur, Mirco Giacobbe, Thomas A. Henzinger, Kim G. Larsen,
and Marius Mikučionis

Statistical Model Checking . 478
Axel Legay, Anna Lukina, Louis Marie Traonouez, Junxing Yang,
Scott A. Smolka, and Radu Grosu

Automated Software Test Generation: Some Challenges, Solutions,
and Recent Advances . 505

George Candea and Patrice Godefroid

Runtime Verification Past Experiences and Future Projections 532
Klaus Havelund, Giles Reger, and Grigore Roşu

xviii Contents

Combining Black-Box and White-Box Techniques for Learning
Register Automata. 563

Falk Howar, Bengt Jonsson, and Frits Vaandrager

Author Index . 589

Contents xix

Computation and Complexity

Computation and Complexity

Gerhard J. Woeginger(B)

Department of Computer Science, RWTH Aachen, 52074 Aachen, Germany
woeginger@algo.rwth-aachen.de

Abstract. Algorithmics, computation, optimization, complexity, com-
binatorics and knowledge representation are closely related sub-areas of
Theoretical Computer Science. The following summary presents short
descriptions of the twelve chapters in this topical part.

This first part of the book covers a wide range of topics that may roughly
be summarized under the words “computation” and “complexity”. The choice of
topics reflects the massive developments in computer science over recent decades.
Many research areas that used to be outside of traditional computer science have
been conquered and attacked with computer science tools. For example, classical
Euclidean geometry has led to the area computational geometry, classical graph
theory has led to algorithmic graph theory, biology gave us the area of com-
putational biology, from the social sciences we got computational social choice,
and economics delivered the areas of algorithmic game theory and computational
economics. Computer science has always been very successful in modelling com-
munication systems, for example wireless networks. One of the biggest challenges
in neuroscience consists in understanding how the human brain works and how
the brain performs computations. The internet (as a gigantic decentralized com-
puting system) has led to the areas data mining and knowledge harvesting.

The first part of the book deals with some of these challenges and trends,
and the following twelve chapters analyze some aspects of these developments.
We present short descriptions of these chapters.

The chapter “Some Estimated Likelihoods for Computational Com-
plexity” by Williams [16] addresses some of the most fundamental open prob-
lems in computational complexity theory. Of course, we would like to know the
answer to the P versus NP question (Is P=NP?). A slightly easier problem asks
whether P=PSPACE (this statement should at least be easier to disprove than
P=NP, as NP⊆PSPACE holds). Other central open questions in complexity
theory concern the so-called Exponential Time Hypothesis (ETH) of Impagli-
azzo and Paturi [9], the Strong Exponential Time Hypothesis (SETH), and the
Nondeterministic Strong Exponential Time Hypothesis (NSETH), which all form
strengthenings of the statement P �= NP. In his chapter, Ryan Williams states
concrete probabilities with which he believes that the various open problems have
positive answers: P �= NP with probability 80%, ETH should hold with prob-
ability 70%, SETH with probability 25%, and so on. The body of the chapter
deals with the reasons why and how Ryan arrived at these probabilities, with
technical possibilities and impossibilities, and many other things.
c© Springer Nature Switzerland AG 2019

B. Steffen and G. Woeginger (Eds.): Computing and Software Science, LNCS 10000, pp. 3–8, 2019.

https://doi.org/10.1007/978-3-319-91908-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91908-9_1&domain=pdf
https://doi.org/10.1007/978-3-319-91908-9_1

4 G. J. Woeginger

The chapter “Computing in Combinatorial Optimization” by Cook
[5] summarizes some of the history of algorithms for combinatorial optimiza-
tion problems. One of the most prominent problems in this area is the Trav-
elling Salesman Problem (TSP): Given a finite number of points with pairwise
distances, find a shortest path connecting all points. William Cook traces the
problem back to the year 1930, when Karl Menger described the problem in a col-
loquium held in Vienna; Menger used the German word “Botenproblem” (“post-
man problem”) for the TSP, as the problem is faced in practice by every postman.
Starting from the TSP, the chapter walks through a variety of other fundamental
problems and algorithms. The reader learns many surprising facts on the history
of the assignment problem, the Hungarian algorithm, dynamic programming, lin-
ear programming, cutting planes, matchings, the simplex method, CPLEX, and
the reader meets Kurt Gödel, Julia Robinson, Richard Karp, George Dantzig,
Michel Balinski, Richard Bellman, Jack Edmonds, Lex Schrijver, and many other
superstars of the area.

The chapter “Computational Social Choice: The First Ten Years and
Beyond” by Aziz et al. [2] introduces the reader to a relatively new subarea
of theoretical computer science. Computational social choice lies at the intersec-
tion between social choice theory (a subarea of economics and political science)
and computer science. As a typical application, we want to mention Dodgson’s
method which is an electoral system that was proposed in 1876 by the British
mathematician Charles Dodgson (who is much better known under the name
Lewis Carroll, the author of Alice in Wonderland). On the positive side, Dodg-
son’s method yields an electoral system that is very safe and extremely difficult
to manipulate. On the negative side, Bartholdi et al. [3] have shown that even
determining the winner of an election under Dodgson’s method is an NP-hard
problem. Other popular topics in computational social choice concern voting,
coalition formation, matching markets, market equilibria, fair division, and cake
cutting protocols. The chapter authors highlight several representative research
areas in contemporary computational social choice, and also hint at future devel-
opments of the field.

The chapter “Geometric Optimization Revisited” by Agarwal et al.
[1] deals with the area of computational geometry. Computational geometry is
devoted to the study of algorithms that deal with points, lines, circles, trian-
gles, polytopes, spheres, and other geometric objects. The area was triggered by
computer graphics and computer-aided design, and more recently by geographic
information systems, robotics, and computer vision. Typical problems studied in
computational geometry concern motion planning, visibility problems, geometric
location, geometric search, route planning, and mesh generation. Computational
geometry forms an old and very mature part of algorithmics, and there are entire
books available that summarize the main results [6,7]. The chapter concentrates
on three concrete problems that have been very active in recent years: Geometric
set cover problems; geometric independent set problems; and computing maps
between point sets. These problems are typically hard to solve, and the chapter
discusses various ways of working around this hardness.

Computation and Complexity 5

The chapter “Ten Reasons to Get Interested in Graph Drawing”
by Binucci et al. [4] introduces the reader to the area of graph drawing. (Note
that there are ten authors who present ten reasons.) Graph drawing combines
methods from geometry, graph theory, algorithmics, and information visualiza-
tion to derive nice two-dimensional pictures of graphs that arise in application
areas such as cartography, social network analysis and bioinformatics. A stan-
dard example is how to get a nice drawing of a subway network, with clearly
readable names of subway stations and clearly recognizable changeover points.
The chapter highlights ten concrete topics in graph drawing, four from theory
(computational geometry; canonical orderings; the existential theory of the reals;
SPQR-trees) and six from applications (information visualization; software engi-
neering; model-based design; automated cartography; social sciences; molecular
biology).

The chapter “Sublinear-Time Algorithms for Approximating Graph
Parameters” by Ron [14] surveys the field of sublinear-time algorithms. For
decades, researchers in algorithmics have been aiming for linear-time algorithms
and considered them as the best-possible type of result that one can hope for.
After all, it is hard to imagine that one could do better than linear-time: For
any non-trivial problem, an algorithm should at least read and consider all of
the input before making a qualified decision. However, (very) large data sets
have become prevalent in a wide variety of settings, and it is natural to wonder
what one can actually do in sublinear-time. With sublinear-time, one obviously
can only read a miniscule fraction of the input. Typically, sublinear-time algo-
rithms must use randomization and must give an answer which is (in some sense)
approximate. Dana Ron discusses a variety of results on the sublinear approx-
imation of certain graph parameters (average degree; higher moments of the
degree distribution; number of connected components; vertex cover number; the
weight of minimum spanning trees).

The chapter “Dynamic Erdős-Rényi graphs” by Mandjes et al. [11] deals
with dynamic versions of the classical random graph model. Transportation net-
works, traffic networks, communication networks, and energy networks form the
backbone of our modern society. Networks and graphs are used to model social,
physical, chemical, biological, and technological phenomena. The existing liter-
ature predominantly focuses on static graphs: A random graph is drawn just
once, and does not change over time. In many real-life situations, however, the
network structure temporally evolves, with edges appearing and disappearing
over time. The chapter discusses two dynamic versions of the classical Erdős-
Rényi random graph. In the first version, the transition rates are governed by an
external regime process, and in the second version the transition rates are peri-
odically resampled. The chapter analyzes the corresponding moments, derives
central limit theorems and investigates the large deviations asymptotics.

The chapter “Wireless Network Algorithmics” by Halldorsson and
Wattenhofer [8] provides an introduction to algorithmic models for wireless net-
works. While wireless networks save us the costly process of introducing cables
and make our lives easier, they also create new problems, as wireless transmission

6 G. J. Woeginger

may suffer from interference. To prevent interference, we could carefully schedule
all transmissions so that concurrent transmissions are separated in space or time;
however, scheduling a transmission at a different time might create new interfer-
ences at the newly chosen time slot. Another possibility would be to increase the
transmission power in order to reduce interference; however, by increasing the
transmission power, we may also create new interferences with other transmis-
sions. The chapter presents the most popular mathematical models for wireless
networks. It discusses a number of central results on link scheduling algorithms
and on power control algorithms, it states future directions and poses several
major open questions.

The chapter “Green Computing Algorithmics” by Pruhs [12] surveys the
relatively new field of green computing, which perhaps could as well be called
energy-aware computing. Nowadays one of the main problems in the design of
new and faster VLSI chips is the generated heat, as it requires expensive (and
noisy) cooling systems for computers. For instance, CEO Eric Schmidt from
Google says: “What matters most to the computer designers at Google is not
speed, but power, low power, because data centers can consume as much electricity
as a city.” Power consumption has led us to rethink and to redesign algorithmics
from scratch, now with the minimization of energy as our top design constraint
(instead of the somewhat outdated maximization of speed). The chapter explains
why a theory of energy as a computational resource will look very different
from the established theory of time or space as computational resources. Kirk
Pruhs discusses various optimization problems under energy constraints, such as
circuit routing in a network, scheduling on heterogeneous processors, and finding
schedules that optimally trade off energy and performance.

The chapter “Brain Computation: A Computer Science Perspective”
by Maass et al. [10] gives an introduction for computer scientists into brain com-
putation. The human brain carries out tasks that are very demanding from a
computational point of view, and apparently it is powered by a mere 20 Watts.
The computational neuroscience pioneer David Marr has proposed a three-level
approach to understanding brain computation: The behavioral level identifies
the input-output behavior of the system, the algorithmic level analyzes the pro-
cesses and representations used in the system, and the hardware level studies
the biophysical elements and the molecular mechanisms used by the system
to implement the algorithm. The chapter provides an overview of interactions
between computer science and the study of computational aspects of the brain.
The authors discuss the methodology of the computational study of the brain,
while focusing on algorithms of the brain, on abstract and simplified models of
brain systems, and on learning.

The chapter “Rating Computer Science Via Chess” by Regan [13] pro-
vides an introduction to (certain aspects of) computer chess. The chapter author
Ken Regan is not only a well-known authority in theoretical computer science,
but also a top notch chess player: In the 1970s he was one of the youngest chess
masters since Bobby Fischer, and in 1980 he reached the international master
(IM) level. In recent years Ken has also served as a member of the anti-cheating

Computation and Complexity 7

committee of the World Chess Federation (FIDE), where he has been pivotal
in writing the guidelines to prevent cheating in professional chess. By using
his database with tens of thousands of top-level games, Ken has devised com-
puter programs that can help to determine whether a player is playing more
like a human or rather more like a computer. The chapter provides insight into
the intersection between chess and computer science. Among other things, it
discusses the complexity of endgames, the ways chess computers work, and it
analyzes rating systems for the strength of chess players and chess programs.

The chapter “Knowledge Harvesting: Achievements and Challenges”
by Weikum et al. [15] gives an overview on recent developments in the area
of knowledge bases and knowledge harvesting. Knowledge bases are a technol-
ogy used to store complex structured and unstructured information used by a
computer system. Knowledge harvesting designs approaches for turning noisy
Internet content into clearly structured information on entities and relations.
Prominent examples of knowledge bases are the Google Knowledge Graph, the
True Knowledge Answer Engine of Amazon, the semantic search engine Facebook
Graph Search, and Wolfram Alpha. Prominent examples of knowledge harvesting
are search engines like Google or Bing, semantic search, aggregating by entities,
recommendations and data integration. The chapter surveys key principles of
knowledge harvesting, summarizes the state of the art, discusses strategic chal-
lenges, and points out opportunities for future research.

References

1. Agarwal, P., Ezra, E., Fox, K.: Geometric optimization revisited. In: Steffen, B.,
Woeginger, G. (eds.) Computing and Software Science. LNCS, vol. 10000, pp. 66–
84. Springer, Cham (2018)

2. Aziz, H., Brandt, F., Elkind, E., Skowron, P.: Computational social choice: the
first ten years and beyond. In: Steffen, B., Woeginger, G. (eds.) Computing and
Software Science. LNCS, vol. 10000, pp. 48–65. Springer, Cham (2018)

3. Bartholdi, J., Tovey, C.A., Trick, M.A.: Voting schemes for which it can be difficult
to tell who won the election. Soc. Choice Welf. 6, 157–165 (1989)

4. Binucci, C., et al.: Ten reasons to get interested in graph drawing. In: Steffen,
B., Woeginger, G. (eds.) Computing and Software Science. LNCS, vol. 10000, pp.
85–104. Springer, Cham (2018)

5. Cook, W.: Computing in combinatorial optimization. In: Steffen, B., Woeginger,
G. (eds.) Computing and Software Science. LNCS, vol. 10000, pp. 27–47. Springer,
Cham (2018)

6. de Berg, M., Cheong, O., van Kreveld, M.J., Overmars, M.H.: Computational
Geometry: Algorithms and Applications. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-77974-2

7. Edelsbrunner, H.: Algorithms in Combinatorial Geometry. Springer, Heidelberg
(1987). https://doi.org/10.1007/978-3-642-61568-9

8. Halldorsson, M., Wattenhofer, R.: Wireless network algorithmics. In: Steffen, B.,
Woeginger, G. (eds.) Computing and Software Science. LNCS, vol. 10000, pp. 141–
160. Springer, Cham (2018)

9. Impagliazzo, R., Paturi, R.: The complexity of k-SAT. In: Proceedings of the 14th
IEEE Conference on Computational Complexity, pp. 237–240 (1999)

https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-642-61568-9

8 G. J. Woeginger

10. Maass, W., Papadimitriou, C., Vempala, S., Legenstein, R.: Brain computation: a
computer science perspective. In: Steffen, B., Woeginger, G. (eds.) Computing and
Software Science. LNCS, vol. 10000, pp. 184–199. Springer, Cham (2018)

11. Mandjes, M., Starreveld, N., Bekker, R., Spreij, P.: Dynamic Erdős-Rényi graphs.
In: Steffen, B., Woeginger, G. (eds.) Computing and Software Science. LNCS, vol.
10000, pp. 123–140. Springer, Cham (2018)

12. Pruhs, K.: Green computing algorithmics. In: Steffen, B., Woeginger, G. (eds.)
Computing and Software Science. LNCS, vol. 10000, pp. 161–183. Springer, Cham
(2018)

13. Regan, K.: Rating computer science via chess. In: Steffen, B., Woeginger, G. (eds.)
Computing and Software Science. LNCS, vol. 10000, pp. 200–216. Springer, Cham
(2018)

14. Ron, D.: Sublinear-time algorithms for approximating graph parameters. In: Stef-
fen, B., Woeginger, G. (eds.) Computing and Software Science. LNCS, vol. 10000,
pp. 105–122. Springer, Cham (2018)

15. Weikum, G., Hoffart, J., Suchanek, F.: Knowledge harvesting: achievements and
challenges. In: Steffen, B., Woeginger, G. (eds.) Computing and Software Science.
LNCS, vol. 10000, pp. 217–235. Springer, Cham (2018)

16. Williams, R.: Some estimated likelihoods for computational complexity. In: Steffen,
B., Woeginger, G. (eds.) Computing and Software Science. LNCS, vol. 10000, pp.
9–26. Springer, Cham (2018)

Some Estimated Likelihoods
for Computational Complexity

R. Ryan Williams(B)

MIT CSAIL & EECS, Cambridge, MA 02138, USA
rrw@mit.edu

Abstract. The editors of this LNCS volume asked me to speculate on
open problems: out of the prominent conjectures in computational com-
plexity, which of them might be true, and why?

I hope the reader is entertained.

1 Introduction

Computational complexity is considered to be a notoriously difficult subject.
To its practitioners, there is a clear sense of annoying difficulty in complexity.
Complexity theorists generally have many intuitions about what is “obviously”
true. Everywhere we look, for every new complexity class that turns up, there’s
another conjectured lower bound separation, another evidently intractable prob-
lem, another apparent hardness with which we must learn to cope. We are sur-
rounded by spectacular consequences of all these obviously true things, a sharp
coherent world-view with a wonderfully broad theory of hardness and cryptog-
raphy available to us, but—gosh, it’s so annoying!—we don’t have a clue about
how we might prove any of these obviously true things. But we try anyway.

Much of the present cluelessness can be blamed on well-known “barriers”
in complexity theory, such as relativization [BGS75], natural properties [RR97],
and algebrization [AW09]. Informally, these are collections of theorems which
demonstrate strongly how the popular and intuitive ways that many theorems
were proved in the past are fundamentally too weak to prove the lower bounds
of the future.

– Relativization and algebrization show that proof methods in complexity the-
ory which are “invariant” under certain high-level modifications to the compu-
tational model (access to arbitrary oracles, or low-degree extensions thereof)
are not “fine-grained enough” to distinguish (even) pairs of classes that seem
to be obviously different, such as NEXP and BPP.

– Natural properties also show how the generality of many circuit complexity
lower bound proofs can limit their scope: if a method of proving circuit com-
plexity lower bounds applies equally well to proving lower bounds against
random functions, then it had better not be a highly constructive argument,
where one can feasibly discern the circuit complexity of a simple function.
Otherwise, our method for proving circuit lower bounds also proves an upper

c© Springer Nature Switzerland AG 2019

B. Steffen and G. Woeginger (Eds.): Computing and Software Science, LNCS 10000, pp. 9–26, 2019.

https://doi.org/10.1007/978-3-319-91908-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91908-9_2&domain=pdf
https://doi.org/10.1007/978-3-319-91908-9_2

10 R. R. Williams

bound, showing that pseudorandom functions cannot be implemented in the
circuit class.

In any case, these barriers show that many known proof methods have so much
slack in their arguments that, when it comes to questions like P versus NP,
the method will simply hang itself. To make further progress on complexity
class separations and prove these obviously-true theorems, we need to dig into
computation deeper, and find less superficial methods of argument which speak
about computation on a finer level.

I think it is highly probable that a decent level of cluelessness is due to simply
being wrong about some of these obviously true things. I’m certainly not the
first to proclaim such an opinion; Lipton and Regan’s blog and books [Lip10,
LR13] have spoken at length about how everyone was wrong about X for all
sorts of X, and other “contrarian” opinions about complexity can be found in
Gasarch’s polls on P vs NP [Gas02,Gas12]. The idea that complexity theorists
can be very wrong is certainly not in doubt.1 The fact that it happens at a non-
trivial frequency is enough that (I think) folks should periodically reconsider
the conjectured complexity separations they have pondered over the years, and
update their thoughts on them as new information arises. Regardless of one’s
opinions about how wrong we may or may not be, I think it is an important
exercise to review the major problems in one’s field once a year, and seriously
check if you got any smarter about them over the previous year.

Moreover, I claim that complexity theorists are more often wrong about
their lower bound conjectures than their upper bound conjectures. (Two recent
occurrences are the non-rigidity of Hadamard/Sylvester matrices [AW17] which
had been conjectured for decades to be rigid, along with the construction of good
linear codes that are also not rigid [Dvi17].) This observation is quite probably
due to the extremely useful and natural (conservative) heuristic that:

If a bunch of smart people could not figure out how to do it, then it probably
cannot be done.

So, when no good upper bound (i.e., algorithm) is attained for a problem,
even after a bunch of smart people have thought about it, the inclination is to
conclude that the upper bound does not exist (i.e., a lower bound). Hence it
is natural that beliefs about lower bounds tend to be refuted more often than
those about upper bounds: we rarely assert that interesting upper bounds exist,
unless we already know how to attain them. (An interesting exception is that of
matrix multiplication over a field; researchers in that area tend to believe that
nearly-optimal running time is possible for the problem.) There seems to be an
additional belief in the justification of the above heuristic:

As the bunch of smart people who cannot find a good algorithm increases
over time, we get closer to a universal quantifier over all good algorithms.

1 Just ask my students!

Some Estimated Likelihoods for Computational Complexity 11

For example, our collective inability to find an efficient SAT algorithm, even
over decades of thought about the problem, even though all the other thousands
of NP-complete problems are really only SAT in disguise, suggests to many that
P �= NP.

Unfortunately, I do not believe that the “bunch of smart people” living in
the present time covers this sort of quantifier well, and I am not sure how we will
raise the next generation of smart people to cover it more thoroughly (other than
teaching them to be skeptical, and providing them a vastly-thicker literature of
algorithms and complexity than what we had). For this reason, I am probably
less dogmatic than a “typical” complexity theorist regarding questions such as
P versus NP.

1.1 Some Estimated Likelihoods for Some Major Open Problems

I decided to present my perspective on some well-known open problems in com-
plexity theory with a table of my personal “estimated likelihood” values for each
one. Here is the table:

Table 1. What you receive, when you ask for my opinions on some open problems in
complexity theory.

Proposition RW’s estimated likelihood

TRUE 100%

EXPNP �= BPP 99%

NEXP �⊂ P/poly 97%

L �= NP 95%

NP �⊂ SIZE(nk) 93%

BPP ⊆ SUBEXP 90%

P �= PSPACE 90%

P �= NP 80%

ETH 70%

NC1 �= TC0 50%

NEXP �= EXP 45%

SETH 25%

NEXP �= coNEXP 20%

NSETH 15%

L �= RL 5%

FALSE 0%

The numerical values of my “estimated likelihoods” are (obviously) nothing
too rigorous. What is more important is the relative measure between problems.
I did want the measures to be “consistent” in some simple senses. For example,

12 R. R. Williams

if we know that A implies B, then B should not be (much) less likely to be true
than A. I will give some explanations for my likelihoods in the next section.

There are many other open problems for which I could have put a likelihood,
but I wanted to focus on problems where I thought I had something interesting
to say along with my measure of likelihood. I deliberately refrained from putting
a measure on conjectures which I do not feel that I am very knowledgeable on the
state-of-the-art, such as the famous Unique Games Conjecture of Khot [Kho02].
For the record, the present state of knowledge suggests to me that Unique Games
(as usually stated) is probably intractable, but perhaps not NP-hard. But what
do I know? A very recent line of work [KMS17,KMS18] claims to settle the 2-to-2
conjecture, a close relative of Unique Games.

2 Thoughts on Various Separations

I will discuss the separations mentioned in Table 1, starting with those that I
think are most likely to be true.

2.1 EXP with an NP Oracle Versus BPP

Recall that BPP is the class of problems solvable in randomized polynomial
time (with two-sided error), and EXPNP is the class of problems solvable in
(deterministic) exponential time with access to an oracle for the SAT problem
(note that exponentially-long SAT instances can be solved in one step with such
a model). I put 99% on the likelihood of EXPNP �= BPP, for several reasons.
One reason is that everything we know indicates that randomized computation
is far, far weaker than deterministic exponential time, and exponential time
with an NP oracle should be only more powerful. Another reason is that the
open problem becomes trivially closed (separating the two classes) if one makes
various small changes in the problem statement. Change the “two-sided error”
to “one-sided error” (the class RP) and it is easy to separate them. Change the
EXP to ZPEXP (randomized exponential time with “zero-error”) and it is again
easy to separate them. For a third reason, EXPNP �= BPP is implied by very weak
circuit lower bounds (such as NEXP �⊂ P/poly) that I am also very confident are
true (they will be discussed later).

It appears to me that EXPNP �= BPP is primarily still open because there
are oracles making them equal [Hel86], so one will need to use the right sort of
non-relativizing argument to get the job done. I do not view the existence of
oracles as a significant barrier, but rather a caution sign that we will need to
dig into the guts of Turing machines (or equivalent formalizations) in order to
separate the classes. Some potential approaches to (weak) lower bounds against
BPP are outlined in an earlier article of mine [Wil13b].

2.2 NEXP vs P/poly

Recall that NEXP is the class of problems solvable in nondeterministic exponen-
tial time: a huge complexity class. The class P/poly is a special kind of class: it

Some Estimated Likelihoods for Computational Complexity 13

consists of those problems over {0, 1}� which can be solved by an infinite family
of polynomial-size circuits {Cn}. Intuitively, this is a computational model with
an infinitely-long description (a so-called non-uniform model), but for any par-
ticular input length n, the description of the computer solving the problem on all
inputs of length n (and the running time of this computer) is a fixed polynomial
of n. I put 97% likelihood on NEXP �⊂ P/poly. Note that this lower bound would
imply EXPNP �= BPP.

I can think of two major reasons why this separation is almost certainly true.

2.2.1 Why Would Non-uniformity Help Here? I can see no reason why
the non-uniform circuit model should let us significantly speed-up the solution
to every NEXP problem (or to every EXP problem, for that matter). Having a
distinct algorithm for each input length does not intuitively seem to be very
helpful: how could it be that every input length n allows for some special hyper-
optimization on that particular n, yielding an exponentially faster solution to
an NEXP problem? And how could this happen to be true for every individual
length n? In this light, it feels remarkable to me that this separation problem is
still open at all.

Note that there are still oracles relative to which NEXP is contained in P/poly,
even in the algebrization sense [AW09]. It is known that there are undecidable
problems in P/poly, but this is because we can concoct undecidable problems
out of unary (or more generally, sparse) languages.

I am willing to entertain the possibility that there are infinitely many input
lengths for which NEXP problems are easy: perhaps NEXP is contained infinitely
often in P/poly. For example, the “good” input lengths could have the form

22
. . .

2

, or something more bizarre. This would be an amazing result, but because
we only require infinitely many input lengths to work, perhaps some hyper-
optimization of certain strange input lengths is possible in this setting. There
are oracles relative to which NEXP is contained infinitely often in NP [For15],
which shows that infinitely-often simulations can be very tricky to rule out. Still,
this also seems unlikely.

2.2.2 Extremely Weak Derandomization. If the first reason was not already
enough, the second reason for believing NEXP �⊂ P/poly is that extremely weak
derandomization results would already imply the result. More precisely, it is
generally believed that P = BPP. A productive way to think about P = BPP is
to study a particular approximation problem, often called CAPP:

Circuit Approximation Probability Problem (CAPP)
Input: A Boolean circuit C
Output: The quantity Prx∈{0,1}n [C(x) = 1], to within ± 1/10.

(Note the choice of 1/10 is arbitrary, and could be any constant in (0,1/2).) It
is known that a deterministic polynomial time algorithm for CAPP would imply

14 R. R. Williams

P = BPP. From the work of Impagliazzo and Wigderson [IW97] on pseudoran-
dom generators, such an algorithm follows from assuming that TIME[2O(n)] does
not (infinitely often) have 2δn-size circuits, for some δ > 0. It was shown by
Impagliazzo, Kabanets, and Wigderson [IKW02] that a deterministic 2nε

-time
algorithm for CAPP, for every ε > 0 would already imply NEXP �⊂ P/poly.2

So, sub-exponential time deterministic algorithms for CAPP imply the NEXP
circuit lower bound.

But in fact something even stronger can be said. For a circuit C with n
inputs and size s, the brute-force algorithm for deciding CAPP takes no more
than 2n · poly(s) time. I showed [Wil10] that deciding CAPP in deterministic
time

O(2n · poly(s)/α(n)),

for any super-polynomial function α(n), would already imply NEXP �⊂ P/poly.
That is, any significant improvement over exhaustive search for CAPP would
imply the lower bound we seek.3 I strongly believe that such an algorithm exists,
but it may be tough to find. Several circuit lower bounds against NEXP have
indeed been proved by giving non-trivial SAT algorithms for various circuit
classes [Wil11,Wil14,Tam16,ACW16,COS17].

2.3 LOGSPACE vs NP

I also believe that L �= NP is extremely likely: that (for example) the Vertex
Cover problem on m-edge graphs cannot be solved by any algorithm that uses
only mk time (for some constant k) and O(log m) additional space (beyond the
O(m log(n)) bits of input that lists the edges of the graph). This is far from a
controversial position; O(log m) space is not enough to even store a subset of
nodes from the graph (a candidate vertex cover), and it is widely believed that
this tiny space requirement is a severe restriction on computational power. In
particular it is also widely believed that L �= P (which I would put less likelihood
on, but not much less).

I mainly want to highlight L �= NP because (unlike the situation of P �= NP,
which is murkier) I believe that substantial progress has already been made
on the problem. Significant combinatorial approaches to space lower bounds
(such as [BJS98,Ajt99,BSSV00,BV02]) have yielded model-independent super-
linear time lower bounds on decision problems in P, when the space usage is
n1−ε or less. (In fact, these results hold in a non-uniform version of time-space
bounded computation.) Approaches based on diagonalization/simulation meth-
ods, aimed at proving lower bounds on NP-hard decision problems such as SAT,
include [For00,FLvMV05,Wil08a,Wil13a,BW12] and show that problems such
as SAT, Vertex Cover, and Independent Set require n2 cos(π/7) time to be solved

2 In fact, a “nondeterministic” algorithm for CAPP of this form would be enough. I
will refrain here from defining what such an algorithm means, and refer the reader
to the paper [IKW02].

3 Again, a “nondeterministic” CAPP algorithm with this property would already be
enough.

Some Estimated Likelihoods for Computational Complexity 15

when the space usage of the algorithm is no(1). Unfortunately, 2 cos(π/7) < 1.81,
and in fact the last reference above shows that current techniques cannot improve
this curious exponent. So in a quantitative sense, we have a long way to go before
L �= NP.

After studying these methods for years now, I am more-or-less convinced of
L �= NP and that it will be proved, possibly long before P vs NP is resolved.
In fact I believe that only a few new ideas will be required to yield enough
“bootstrapping” to separate L and NP. The catch is that I am afraid the miss-
ing ideas will need to be extraordinarily clever, unlike anything seen before in
mathematics (at least a Gödel-incompleteness-level of cleverness, relative to the
age in which he proved those famous theorems). In the meantime, we do what
we can.

2.4 NP Does Not Have Fixed Polynomial-Size Circuits

Recall that SIZE(nk) is the class of problems solvable with Boolean circuits (of
fan-in two) with O(nk) gates. Here we are investigating the likelihood of the
proposition

∀k ∈ N,NP �⊂ SIZE(nk).

That is, for every k, there is some problem in NP that doesn’t have O(nk)-size
circuits.

First, I put a bit less likelihood (93%) on NP �⊂ SIZE(nk) for some constant
k, because it implies NEXP �⊂ P/poly (and they don’t seem to be equivalent),
so it is stronger than the other circuit lower bound problems that have been
mentioned so far.

There is a considerable history of results in this direction. Kannan [Kan82]
proved “fixed polynomial” circuit lower bounds for the class NPNP (a.k.a. Σ2P):
for every constant k ≥ 1, there is a problem in NPNP that does not have nk

size Boolean circuits (over any gate basis that you like). Over time, his fixed-
polynomial lower bound has been improved several times, from NPNP to seem-
ingly smaller complexity classes such as ZPPNP [KW98]. It is known that MA/1
(Merlin-Arthur with one bit of advice) is not in SIZE(nk) for each k [San07], and
due to our beliefs about circuit lower bounds [IW97] it is believed that MA = NP
(i.e., it is believed that randomness doesn’t help much with non-interactive ver-
ification of proofs). This looks like strong evidence in favor of NP �⊂ SIZE(nk),
besides the intuition that NP problems that require n100000k nondeterministic
time probably can’t be “compressed” to nk-size circuits.

The problems of proving that classes such as P, NP, and PNP have fixed
polynomial-size circuits are discussed in [Lip94,FSW09,GM15,Din15], and many
absurd-looking consequences have been derived from propositions such as NP ⊂
SIZE(nk) (of course, none of these have been proved to be actually contradictory).

Here’s an example from [FSW09]. PNP ⊂ SIZE(nk) implies that for every
NP verifier V , and every yes-instance x for the verifier V , there is a witness yx

that is extremely compressible: it can be represented by a circuit of only O(|x|k)
size. To see this, note that the problem

16 R. R. Williams

Given an x and an integer i, print the ith bit of the lexicographically first
y such that V (x, y) accepts (or print 0 if no such y exists)

is in PNP, and therefore has O(nk)-size circuits under the hypothesis. Thus
the witnesses printed by these circuits have low circuit complexity, for every x.

2.5 BPP is in Sub-Exponential Time

Recall SUBEXP = ∩k∈NTIME(2n1/k

), i.e., it is the class of problems solvable in
O(2nε

) time, for any ε > 0 as close to zero as you like.
The main reason for putting a high likelihood on BPP ⊆ SUBEXP is that

it is implied by EXP �⊂ io-P/poly [NW94,BFNW93], which I also believe to be
true, although perhaps not quite as strongly as NEXP �⊂ P/poly. (The “io” part
stands for “infinitely often” and it means that there is a function EXP which, for
almost every input length n, fails to have circuits of size poly(n).) The intuition
for why EXP �⊂ io-P/poly is similar to the intuition for why NEXP �⊂ P/poly.
As a starting point, one can easily prove results like EXP �⊂ io-TIME[2nk

] for
every constant k, by diagonalization. It would be very surprising, even magical,
if one could take a problem that cannot be solved infinitely-often in 2nk

time and
solve it infinitely-often in polynomial time, simply because one got a separate
algorithm and received polynomially-long extra advice for each input length.
Intuitively, to solve the hardest problems in EXP, the only advice that could
truly help you solve the problem quickly (on all inputs of length n) would be the
entire 2n-bit truth table for length n, and for such problems it is not clear why
some input lengths would ever be easier than others. (Aside: it is interesting to
note that P = NP implies circuit lower bounds such as EXP �⊂ io-P/poly.)

For what it’s worth, I would put about 87% likelihood on P = BPP: a bit
lower than the 90% BPP in sub-exponential time (for good reason), but not
significantly less. These two likelihoods aren’t substantially different for me,
because I tend to believe that non-trivial derandomizations of BPP are likely
to imply much more efficient derandomizations, along the lines of Theorems 1.4
and 1.5 in [Wil10].

2.6 P vs PSPACE

I have put a little less likelihood (90%) on P �= PSPACE than the previous lower
bounds mentioned such as L �= NP. I feel that less intellectual progress has been
made on separating P from PSPACE, and so the extent to which we should believe
P �= PSPACE is less understood. For example, we don’t know an n1.0001 time
lower bound against any PSPACE-hard problem solvable in linear space, such
as quantified Boolean formula satisfiability (but we do know a few non-trivial-
but-not-so-great lower bounds [HPV77,Wil08b,LW13]). The reminder that such
a time lower bound is still open should signal a call-to-arms for complexity
theorists:

Some Estimated Likelihoods for Computational Complexity 17

If PSPACE is so large, why can’t we prove an n1.0001 time lower bound
against solving QBF? What are the obstacles? Can we articulate some
interesting tools that would suffice to prove the lower bound, if we had
them?

Nevertheless, P = PSPACE does look extremely unlikely : the idea that
PSPACE corresponds to computing winning strategies in two-player games makes
it clear that our world would be extremely weird and wonderful if P = PSPACE
and we discovered a fast algorithm for solving quantified Boolean formulas.

2.7 P vs NP

I do not have much to say about P versus NP beyond what has already been
said, over many decades, by many researchers (a notable example is Aaronson’s
astounding recent survey [Aar16]). But I do only give 80% likelihood of P �=
NP being true. Why only 80%? Because the more I think about P versus NP,
the less I understand about it, so why should I be so confident in its answer?
Because ETH is less likely to be true than P �= NP, and I feel like the truth of
ETH is not so far from a coin toss. Because it is not hard, when you squint, to
view incredible achievements like the PCP theorem [AS98,ALM+98] as progress
towards P = NP (one only has to satisfy 7/8 + ε of the clauses in a MAX-3-SAT
instance! [H̊as01]) instead of hardness for approximately solving NP problems.

Yes, intuitively and obviously P �= NP—but only intuitively and obviously.
(Incidentally, I put about the same likelihood on the existence of one-way func-
tions; I tend to believe in strong worst-case to average-case reductions.)

2.8 ETH: The Exponential Time Hypothesis

Recall that ETH asserts that

3SAT on n variables cannot be solved in 2εn time, for some ε > 0.

I put only 70% likelihood on ETH. My chief reason (which will also appear later
when I discuss NEXP and EXP) is that we simply do not yet have a somewhat-
comprehensive understanding of what can be solved via sub-exponential time
algorithms. That is not for a lack of trying: it is a very active subject (see
for example [FK10]). Our understanding of polynomial-time algorithms is fairly
deep, but even there we have very few lower bounds: we know a lot less about
what cannot be done.

Although I give it only 70% likelihood, I do not think it is necessarily pre-
sumptuous to base a research program on ETH being true, but I do think
researchers should be a little more skeptical of ETH, and periodically think
seriously about how it might be refuted. (As Russell Impagliazzo often reminds
me: “It’s not a Conjecture, it’s a Hypothesis! We chose that word for a reason.”)
More points along these lines will be given when SETH (the Stronger ETH) is
discussed.

18 R. R. Williams

2.9 NC1 versus TC0

Recall that NC1 (“Nick’s Class 1”) is the class of problems solvable with O(log n)-
depth circuits of polynomial size and constant fan-in for each gate. The class
TC0 contains problems solvable with O(1)-depth fan-in circuits of polynomial
size with unbounded fan-in MAJORITY gates along with inverters. (The T
stands for “Threshold”—without loss of generality, the gates could be arbitrary
linear threshold functions.) It is well-known that TC0 ⊆ NC1, and NC1 �= TC0 is
sometimes used as a working hypothesis.

Upon reflection, I have possibly put significantly less weight on NC1 �= TC0

(only 50% likelihood) than one might expect. (I know of at least one complexity
theorist who has worked for years to prove that NC1 = TC0. No, it’s not me.)
One not-terribly-serious reason for doubting NC1 �= TC0 is that TC0 is (as far
as we know) the class of circuits most closely resembling the human brain, and
we are all familiar with how unexpectedly powerful that sort of computational
device can be.

A more serious reason for doubting NC1 �= TC0 is that NC1 has proven to be
surprisingly easier than expected, and TC0 has been surprisingly powerful (in
a formal sense). Barrington’s amazing theorem [Bar89] shows that NC1 corre-
sponds to only “O(1)-space computation” in a computational model that has
random access to the input. One corollary is that the word problem over the
group S5 (given a sequence of group elements, is its product the identity?) is
already NC1-complete: solving it in TC0 would prove NC1 = TC0.

The circuit complexity literature shows that many problems known to be
in NC1 were systematically placed later in TC0; a nice example is integer divi-
sion [BCH86,RT92] but many other interesting numerical and algebraic tasks
also turn out to be in TC0 (such as the pseudorandom function constructions of
Naor and Reingold [NR04]). For many different types of groups (but not S5, as
far as we know) their word problems are known to be in TC0 (see [MVW17] for
very recent work, with references). In fact, every natural problem that I know in
NC1 is either already NC1-complete under TC0 reductions, or is already in TC0

(there are no good candidate problems which are neither). So perhaps we are
one smart threshold circuit away from making the two classes equal.

An argument leaning towards NC1 �= TC0 may be found in Allender and
Koucky [AK10] who show that if NC1 = TC0, then there are n1+ε-size O(1/ε)-
depth TC0 circuits for certain NC1-complete problems, for every ε > 0. Another
point is that, if NC1 = TC0, then (by a padding argument) the class PSPACE lies
in the so-called “polynomial-time counting hierarchy” which intuitively seems
smaller. Maybe multiple layers of oracle calls to counting solutions are powerful,
and such circuits exist? To me, it’s a coin flip.

2.10 EXP vs NEXP

Many may wonder why I put only 45% likelihood on EXP �= NEXP. (I suspect
the others will, instead of wondering, just assume that I’m out of my mind.)
Well, for one, we do have that EXP �= NEXP implies P �= NP, and the other

Some Estimated Likelihoods for Computational Complexity 19

direction (at least from a provability standpoint) does not seem to hold, so it is
natural to consider EXP �= NEXP to be not as likely as P �= NP.

To make the percentage dip below 50%, there are other reasons. For one, if
we think we’re ignorant about what is impossible in P, then we are total idiots
about what is impossible in EXP. The scope of what can be done in exponen-
tial time has been barely scratched, I believe, and many improved exponential
time algorithms in the literature are mainly applications of known polynomial-
time strategies to exponential-sized instances. That is, we generally don’t know
how to construct algorithms that take advantage of the additional structure
provided by succinctly-represented inputs—which are the defining feature of
many NEXP-complete problems [PY86,GW83])—and I am inclined to believe
that non-trivial algorithms for solving problems on succinct inputs should exist.
Arora et al. [ASW09] study exponentially-large graphs whose edge relations are
defined by small weak circuits such as AC0, and give several interesting algo-
rithms for solving problems on such graphs. They also show how the usual NP-
complete problems cannot be solved on graphs defined by AC0 circuits unless
NEXP = EXP.

Let me give a concrete example of the knife edge that NEXP versus EXP sits
upon. Let f : {0, 1}2n → {0, 1} be a Boolean function, and define the graph of f
to be the 2n-node graph with vertex set {0, 1}n and edge set {(u, v) | f(uv) = 1}.
Define the Max-Clique-CNF problem to be:

Given a CNF F on 2n variables and m clauses, and an integer k ∈ [2n], is
there a clique in the graph of F of size at least k?

One can define the Max-Clique-DNF problem in an analogous way. In unpublished
work, Josh Alman and I noticed that Max-Clique-CNF is solvable in 2O(m+n) time,
but Max-Clique-DNF is already NEXP-complete, even for constant-width DNFs
of n variables and poly(n) terms! Das et al. [DST17] make similar observations
for the CNF and DNF versions of other NP-hard problems.

I would be very surprised if the hardest cases of the Max-Clique problem
(or even the somewhat-hardest cases) can be generated by tiny DNF formulas
of constant width. I predict that problems solvable in 2O(n) time can be solved
faster than the naive 22

O(n)
deterministic running time; perhaps even in 2O(nk)

time for some large constant k.

2.11 SETH: The Strong Exponential Time Hypothesis

Recall that SETH asserts that

For all δ < 1, there is k such that k-SAT on n variables is not in 2δn time.

So SETH says there is no universal δ < 1 and algorithm solving constant-width
CNF SAT instances in 2δn time. I am generally considered to be a skeptic of
SETH (due to work such as [Wil16]), but I am not completely convinced that
SETH is false: I put 25% likelihood.

20 R. R. Williams

The main reason for skepticism is that the area of exponential-time algo-
rithms has produced many results where the naive running time of cn for an
NP-complete problem was reduced to O((c − δ)n) for some δ > 0 (see the text-
book of Fomin and Kratsch for examples [FK10]). I do not see a good reason for
believing that k-SAT is immune to such improvements. But people have tried
hard to solve the problem, especially over the last 10 years, so there is some rea-
son to believe SETH. Personally, I have benefited from believing it is false: trying
to solve SAT faster has led me down several fruit-bearing paths that I would
have never explored otherwise. I believe that contentious conjectures/hypotheses
like SETH need to exist, to keep a research area vibrant and active.

I should stress that a large chunk of recent work of the form SETH implies
X (such as [AVW14,BI15,ABV15,Bri14,BM16,BI16]) does not actually require
SETH to be true. In fact, their hardness rests on the following basic Orthogonal
Vectors (or Disjoint Sets) problem.

Orthogonal Vectors: Given n Boolean vectors in c log(n) dimensions (for
some constant parameter c), are there two which are orthogonal?

The Orthogonal Vectors Conjecture (OVC) is that for every ε > 0, there is
a (potentially large) c ≥ 1 such that no algorithm solves Orthogonal Vectors
in n2−ε time. It is known that OVC implies SETH [Wil04,WY14], and many
SETH-hardness results are actually OVC-hard. It looks very plausible to me
that OVC is true but SETH is false.

It is useful to think of the Orthogonal Vectors problem as an interesting
detection version of rectangular matrix multiplication: given a “skinny” Boolean
matrix A, does A · AT contain a zero entry? Note that detecting if there is a
non-zero can be done in randomized linear time, by Freivalds’ checker for matrix
multiplication [Fre77]. So the OVC asks whether matrix multiplication checking
in the Boolean domain can be extended to checking for a zero entry, without
(essentially) multiplying the two matrices.

2.12 NEXP vs CoNEXP

According to Table 1, I am putting 80% likelihood on NEXP = coNEXP. Why
would a self-respecting complexity theorist do that? Here are a few reasons:

1. It is true with small advice. First, it is known that coNEXP is already
contained in NEXP with O(n) bits of advice, as reported by Buhrman, Fort-
now, and Santhanam [BFS09]. Given a language L ∈ coNEXP, for inputs
of length n, the advice encodes the number of strings of length n which
are in L. Then in nondeterministic exponential time, one can guess the
inputs that are not in L, guess witnesses for each of them, and verify all
of this information. Thus in order to put coNEXP in NEXP without advice,
it would suffice to be able to count (in NEXP) the number of accepted
strings of length n for an NEXP machine. Note how the power of exponen-
tial time is being used: coNP ⊂ NP/poly seems very unlikely in comparison.
This proof looks to be inspired by the inductive counting technique in the

Some Estimated Likelihoods for Computational Complexity 21

proof of NSPACE[S(n)] = coNSPACE[S(n)], due to Immerman [Imm88] and
Szelepcsényi [Sze88].

2. The Spectrum Problem. A stronger result than NEXP = coNEXP would
be implied by an expected resolution of the spectrum problem. In finite model
theory, the spectrum of a first-order sentence φ is the set of all finite cardinal-
ities of models of φ. For example, if φ is a sentence that defines the axioms of
a field, then its spectrum is the set of all prime powers. In the 1950s, Asser
(see [DJMM12] for a comprehensive survey) asked whether the complement
of a spectrum is always a spectrum itself: i.e.,

The Spectrum Problem: Given a first-order sentence φ, is there
another sentence ψ whose spectrum is the complement of φ’s spec-
trum?

This question has a long rich history, and some working in finite model the-
ory believe the answer to be yes. Jones and Selman [JS74] showed that
the spectrum problem has a yes answer if and only if NTIME[2O(n)] =
coNTIME[2O(n)], since in fact the class of all spectra (where the numbers
are encoded in some finite alphabet) equals NTIME[2O(n)]. There are sev-
eral interesting conjectures regarding spectra, any of which would imply a
yes-answer [Ash94,CM06], and the conclusion would be stronger than prov-
ing NEXP = coNEXP. (For instance, one could have nondeterministic 2O(n9)-
time algorithms for deciding the complements of nondeterministic O(2n)-time
problems, and this would still imply NEXP = coNEXP, but not necessarily
the spectrum conjecture.)

3. Max-Clique-DNF. From the section on EXP vs NEXP (Sect. 2.10), the fol-
lowing would imply NEXP = coNEXP: Given a DNF formula F of constant
width, 2n variables, and poly(n) terms, there is a nondeterministic algorithm
running in 2poly(n) time which accepts F if and only if the graph of F does not
have a clique of a certain desired size. (Recall we said that the corresponding
problem for CNF is solvable exactly in 2poly(n) time.)

4. Why not? I don’t know of any truly counter-intuitive consequences of
NEXP = coNEXP. Because one can enumerate over all inputs of length n in
exponential time, and in nondeterministic exponential time one can even guess
witnesses of exponential length for each input of length n, I think these classes
will behave differently than our intuition about lower complexity classes.

2.13 NSETH: Nondeterministic SETH

The NSETH, introduced by Carmosino et al. [CGI+16] recently, states:

For all δ < 1, there is a k such that k-UNSAT on n variables is not in
nondeterministic in 2δn time.

So NSETH proposes that there is no proof system which can refute unsatisfiable
ω(1)-width CNFs in 2δn steps, for any δ < 1.

I put 15% likelihood on NSETH being true. The most obvious reason for
skepticism is that the mild extension to Merlin-Arthur proof systems is very

22 R. R. Williams

false: Formula-UNSAT for 2o(n)-size formulas can be proved with a probabilistic
verifier in only 2n/2+o(n) time [Wil16].

Since it is generally believed that MA = NP, one might think the story is
essentially over, and that I should have a much lower likelihood for NSETH. That
is not quite the case: while MA may well equal NP, it is not clear how a 2n/2-time
MA algorithm could be simulated in 1.999n nondeterministic time. It’s not even
clear that the (one-round) Arthur-Merlin version of SETH is false, because the
inclusion of MA in AM takes quadratic overhead. Refuting the one-round Arthur-
Merlin SETH (where Arthur tosses coins, then Merlin sends a message based on
the coins, then an accept/reject decision is made, and we want Merlin to prove
that a given formula is UNSAT in 1.999n time) would probably imply that a
non-uniform variant of NSETH is false.

2.14 L vs RL

I put 95% likelihood on L = RL, that is, the problems solvable in random-
ized logarithmic space equals the problems solvable in (deterministic) logspace.
At this moment in time, it feels like this problem has “almost” been solved.
Intuitively, there are two factors in favor of L = RL: (1) we already believe
that randomness generally does not help solve problems much more efficiently
than deterministic algorithms, and (2) space-bounded computation appears to
be fairly robust under modifications to the acceptance conditions of the model
(think of NL ⊆ SPACE[log2 n] [Sav70] and NL = coNL [Imm88,Sze88]).

As far as I know, the main problem that was thought to be a potential separa-
tor of RL and L was undirected s-t connectivity [AKL+79]. However this problem
was shown to be in L by a remarkable algorithm of Reingold [Rei08]. In follow-up
work, Reingold et al. [RTV06] showed how to solve s-t connectivity in Eulerian
directed graphs in L, and show that a logspace algorithm for a seemingly slight
generalization of their problem would imply L = RL. My personal interpretation
of these results is that L = RL is true, and is only one really good idea away
from being resolved.

Acknowledgment. I appreciate Gerhard Woeginger’s considerable patience with me
during the writing of this article, and Scott Aaronson, Josh Alman, Boaz Barak, Greg
Bodwin, Sam Buss, Lance Fortnow, Richard Lipton, Kenneth Regan, Omer Reingold,
Rahul Santhanam, and Madhu Sudan for helpful comments on a draft, some of which
led me to adjust my likelihoods by a few percentage points.

References

[Aar16] Aaronson, S.: P
?
=NP . In: Nash Jr., J.F.F., Rassias, M.T.T. (eds.) Open

Problems in Mathematics, pp. 1–122. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-32162-2 1

[ABV15] Abboud, A., Backurs, A., Williams, V.V.: Tight hardness results for LCS
and other sequence similarity measures. In: FOCS, pp. 59–78 (2015)

https://doi.org/10.1007/978-3-319-32162-2_1
https://doi.org/10.1007/978-3-319-32162-2_1

Some Estimated Likelihoods for Computational Complexity 23

[ACW16] Alman, J., Chan, T.M., Williams, R.R.: Polynomial representations of
threshold functions and algorithmic applications. In: FOCS, pp. 467–476
(2016)

[Ajt99] Ajtai, M.: A non-linear time lower bound for Boolean branching programs.
Theory Comput. 1(1), 149–176 (2005). Preliminary version in FOCS’99

[AK10] Allender, E., Koucký, M.: Amplifying lower bounds by means of self-
reducibility. J. ACM 57(3), 14 (2010)

[AKL+79] Aleliunas, R., Karp, R.M., Lipton, R.J., Lovász, L., Rackoff, C.: Random
walks, universal traversal sequences, and the complexity of maze problems.
In: FOCS, pp. 218–223 (1979)

[ALM+98] Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verifica-
tion and the hardness of approximation problems. J. ACM 45(3), 501–555
(1998)

[AS98] Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization
of NP. J. ACM 45(1), 70–122 (1998)

[Ash94] Ash, C.J.: A conjecture concerning the spectrum of a sentence. Math. Log.
Q. 40, 393–397 (1994)

[ASW09] Arora, S., Steurer, D., Wigderson, A.: Towards a study of low-complexity
graphs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikolet-
seas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp.
119–131. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
02927-1 12

[AVW14] Abboud, A., Williams, V.V., Weimann, O.: Consequences of faster align-
ment of sequences. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Kout-
soupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 39–51. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-43948-7 4

[AW09] Aaronson, S., Wigderson, A.: Algebrization: a new barrier in complexity
theory. ACM TOCT 1(1), 2 (2009)

[AW17] Alman, J., Williams, R.: Probabilistic rank and matrix rigidity. In: STOC,
pp. 641–652 (2017)

[Bar89] Barrington, D.A.M.: Bounded-width polynomial-size branching programs
recognize exactly those languages in NC1. J. Comput. Syst. Sci. 38(1),
150–164 (1989)

[BCH86] Beame, P.W., Cook, S.A., Hoover, H.J.: Log depth circuits for division
and related problems. SIAM J. Comput. 15(4), 994–1003 (1986)

[BFNW93] Babai, L., Fortnow, L., Nisan, N., Wigderson, A.: BPP has subexponen-
tial time simulations unless EXPTIME has publishable proofs. Comput.
Complex. 3(4), 307–318 (1993)

[BFS09] Buhrman, H., Fortnow, L., Santhanam, R.: Unconditional lower bounds
against advice. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Niko-
letseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp.
195–209. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
02927-1 18

[BGS75] Baker, T., Gill, J., Solovay, R.: Relativizations of the P =? NP question.
SIAM J. Comput. 4(4), 431–442 (1975)

[BI15] Backurs, A., Indyk, P.: Edit distance cannot be computed in strongly
subquadratic time (unless SETH is false). In: STOC, pp. 51–58 (2015)

[BI16] Backurs, A., Indyk, P.: Which regular expression patterns are hard to
match? In: FOCS, pp. 457–466 (2016)

https://doi.org/10.1007/978-3-642-02927-1_12
https://doi.org/10.1007/978-3-642-02927-1_12
https://doi.org/10.1007/978-3-662-43948-7_4
https://doi.org/10.1007/978-3-642-02927-1_18
https://doi.org/10.1007/978-3-642-02927-1_18

24 R. R. Williams

[BJS98] Beame, P., Thathachar, J.S., Saks, M.: Time-space tradeoffs for branch-
ing programs. J. Comput. Syst. Sci. 63(4), 542–572 (2001). Preliminary
version in FOCS’98

[BM16] Bringmann, K., Mulzer, W.: Approximability of the discrete Fréchet dis-
tance. JoCG 7(2), 46–76 (2016)

[Bri14] Bringmann, K.: Why walking the dog takes time: frechet distance has
no strongly subquadratic algorithms unless SETH fails. In: FOCS, pp.
661–670 (2014)

[BSSV00] Beame, P., Saks, M., Sun, X., Vee, E.: Time-space trade-off lower bounds
for randomized computation of decision problems. J. ACM 50(2), 154–195
(2003). Preliminary version in FOCS’00

[BV02] Beame, P., Vee, E.: Time-space tradeoffs, multiparty communication com-
plexity, and nearest-neighbor problems, pp. 688–697 (2002)

[BW12] Buss, S.R., Williams, R.: Limits on alternation trading proofs for time-
space lower bounds. Comput. Complex. 24(3), 533–600 (2015). Prelimi-
nary version in CCC’12

[CGI+16] Carmosino, M., Gao, J., Impagliazzo, R., Mikhailin, I., Paturi, R.,
Schneider, S.: Nondeterministic extensions of the strong exponential time
hypothesis and consequences for non-reducibility. In: ACM Conference on
Innovations in Theoretical Computer Science (ITCS), pp. 261–270 (2016)

[CM06] Chateau, A., More, M.: The ultra-weak Ash conjecture and some partic-
ular cases. Math. Log. Q. 52(1), 4–13 (2006)

[COS17] Chen, R., Oliveira, I.C., Santhanam, R.: An average-case lower bound
against ACĈ0. In: Electronic Colloquium on Computational Complexity
(ECCC), vol. 24, no. 173 (2017)

[Din15] Ding, N.: Some new consequences of the hypothesis that P has fixed
polynomial-size circuits. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC
2015. LNCS, vol. 9076, pp. 75–86. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-17142-5 8

[DJMM12] Durand, A., Jones, N.D., Makowsky, J.A., More, M.: Fifty years of the
spectrum problem: survey and new results. Bull. Symb. Logic 18(4), 505–
553 (2012)

[DST17] Das, B., Scharpfenecker, P., Torán, J.: CNF and DNF succinct graph
encodings. Inf. Comput. 253(3), 436–447 (2017)

[Dvi17] Dvir, Z.: A generating matrix of a good code may have low rigidity.
Written by Oded Goldreich (2017). http://www.wisdom.weizmann.ac.il/
∼oded/MC/209.pdf

[FK10] Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-16533-7

[FLvMV05] Fortnow, L., Lipton, R.J., van Melkebeek, D., Viglas, A.: Time-space lower
bounds for satisfiability. J. ACM 52(6), 835–865 (2005)

[For00] Fortnow, L.: Time-space tradeoffs for satisfiability. J. Comput. Syst. Sci.
60(2), 337–353 (2000)

[For15] Fortnow, L.: Nondeterministic separations. In: Theory and Applications
of Models of Computation (TAMC), pp. 10–17 (2015)

[Fre77] Freivalds, R.: Probabilistic machines can use less running time. In: IFIP
Congress, pp. 839–842 (1977)

[FSW09] Fortnow, L., Santhanam, R., Williams, R.: Fixed-polynomial size circuit
bounds. In: CCC, pp. 19–26. IEEE (2009)

[Gas02] Gasarch, W.I.: The P =? NP poll. ACM SIGACT News 33(2), 34–47
(2002)

https://doi.org/10.1007/978-3-319-17142-5_8
https://doi.org/10.1007/978-3-319-17142-5_8
http://www.wisdom.weizmann.ac.il/~oded/MC/209.pdf
http://www.wisdom.weizmann.ac.il/~oded/MC/209.pdf
https://doi.org/10.1007/978-3-642-16533-7

Some Estimated Likelihoods for Computational Complexity 25

[Gas12] Gasarch, W.I.: Guest column: the second P=? NP poll. ACM SIGACT
News 43(2), 53–77 (2012)

[GM15] Goldreich, O., Meir, O.: Input-oblivious proof systems and a uniform com-
plexity perspective on P/poly. ACM Trans. Comput. Theory (TOCT)
7(4), 16 (2015)

[GW83] Galperin, H., Wigderson, A.: Succinct representations of graphs. Inf. Con-
trol 56(3), 183–198 (1983)

[H̊as01] H̊astad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–
859 (2001)

[Hel86] Heller, H.: On relativized exponential and probabilistic complexity classes.
Inf. Control 71(3), 231–243 (1986)

[HPV77] Hopcroft, J., Paul, W., Valiant, L.G.: On time versus space. J. ACM 24(2),
332–337 (1977)

[IKW02] Impagliazzo, R., Kabanets, V., Wigderson, A.: In search of an easy witness:
exponential time vs. probabilistic polynomial time. J. Comput. Syst. Sci.
65(4), 672–694 (2002)

[Imm88] Immerman, N.: Nondeterministic space is closed under complement. SIAM
J. Comput. 17, 935–938 (1988)

[IW97] Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential cir-
cuits: derandomizing the XOR lemma. In: STOC, pp. 220–229 (1997)

[JS74] Jones, N.D., Selman, A.L.: Turing machines and the spectra of first-order
formulas. J. Symb. Log. 39(1), 139–150 (1974)

[Kan82] Kannan, R.: Circuit-size lower bounds and non-reducibility to sparse sets.
Inf. Control 55(1), 40–56 (1982)

[Kho02] Khot, S.: On the power of unique 2-prover 1-round games. In: STOC, pp.
767–775. ACM (2002)

[KMS17] Khot, S., Minzer, D., Safra, M.: On independent sets, 2-to-2 games, and
grassmann graphs. In: STOC, pp. 576–589 (2017)

[KMS18] Khot, S., Minzer, D., Safra, M.: Pseudorandom sets in Grassmann graph
have near-perfect expansion. In: Electronic Colloquium on Computational
Complexity (ECCC), vol. 18, no. 6 (2018)

[KW98] Kobler, J., Watanabe, O.: New collapse consequences of NP having small
circuits. SIAM J. Comput. 28(1), 311–324 (1998)

[Lip94] Lipton, R.J.: Some consequences of our failure to prove non-linear lower
bounds on explicit functions. In: Structure in Complexity Theory Confer-
ence, pp. 79–87 (1994)

[Lip10] Lipton, R.J.: The P=NP Question and Gödel’s Lost Letter. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-1-4419-7155-5. http://
rjlipton.wordpress.com

[LR13] Lipton, R.J., Regan, K.W.: People, Problems, and Proofs. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-41422-0. http://
rjlipton.wordpress.com

[LW13] Lipton, R.J., Williams, R.: Amplifying circuit lower bounds against poly-
nomial time, with applications. Comput. Complex. 22(2), 311–343 (2013)

[MVW17] Miasnikov, A., Vassileva, S., Weiß, A.: The conjugacy problem in free
solvable groups and wreath products of abelian groups is in TC0. In: Weil,
P. (ed.) CSR 2017. LNCS, vol. 10304, pp. 217–231. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-58747-9 20

[NR04] Naor, M., Reingold, O.: Number-theoretic constructions of efficient
pseudo-random functions. J. ACM 51(2), 231–262 (2004)

https://doi.org/10.1007/978-1-4419-7155-5
http://rjlipton.wordpress.com
http://rjlipton.wordpress.com
https://doi.org/10.1007/978-3-642-41422-0
http://rjlipton.wordpress.com
http://rjlipton.wordpress.com
https://doi.org/10.1007/978-3-319-58747-9_20

26 R. R. Williams

[NW94] Nisan, N., Wigderson, A.: Hardness vs randomness. J. Comput. Syst. Sci.
49(2), 149–167 (1994)

[PY86] Papadimitriou, C.H., Yannakakis, M.: A note on succinct representations
of graphs. Inf. Control 71(3), 181–185 (1986)

[Rei08] Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 17:1–
17:24 (2008)

[RR97] Razborov, A., Rudich, S.: Natural proofs. J. Comput. Syst. Sci. 55(1),
24–35 (1997)

[RT92] Reif, J.H., Tate, S.R.: On threshold circuits and polynomial computation.
SIAM J. Comput. 21(5), 896–908 (1992)

[RTV06] Reingold, O., Trevisan, L., Vadhan, S.: Pseudorandom walks on regular
digraphs and the RL vs L problem. In: STOC, pp. 457–466. ACM (2006)

[San07] Santhanam, R.: Circuit lower bounds for Merlin-Arthur classes. SIAM J.
Comput. 39(3), 1038–1061 (2009). Preliminary version in STOC’07

[Sav70] Savitch, W.J.: Relationships between nondeterministic and deterministic
tape complexities. J. Comput. Syst. Sci. 4(2), 177–192 (1970)

[Sze88] Szelepcsényi, R.: The method of forced enumeration for nondeterministic
automata. Acta Informatica 26(3), 279–284 (1988)

[Tam16] Tamaki, S.: A satisfiability algorithm for depth two circuits with a sub-
quadratic number of symmetric and threshold gates. In: Electronic Collo-
quium on Computational Complexity (ECCC), vol. 23, no. 100 (2016)

[Wil08a] Williams, R.R.: Time-space tradeoffs for counting NP solutions modulo
integers. Comput. Complex. 17(2), 179–219 (2008)

[Wil08b] Williams, R.: Non-linear time lower bound for (succinct) quantified
Boolean formulas. In: Electronic Colloquium on Computational Complex-
ity (ECCC), (TR08-076) (2008)

[Wil13a] Williams, R.: Alternation-trading proofs, linear programming, and lower
bounds. TOCT 5(2), 6 (2013)

[Wil13b] Williams, R.: Towards NEXP versus BPP? In: Bulatov, A.A., Shur, A.M.
(eds.) CSR 2013. LNCS, vol. 7913, pp. 174–182. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38536-0 15

[Wil14] Williams, R.: New algorithms and lower bounds for circuits with linear
threshold gates. In: STOC, pp. 194–202 (2014)

[Wil16] Williams, R.R.: Strong ETH breaks with Merlin and Arthur: short non-
interactive proofs of batch evaluation. In: CCC, pp. 2:1–2:17 (2016)

[Wil11] Williams, R.: Nonuniform ACC circuit lower bounds. JACM 61(1), 2
(2014). Preliminary version in CCC’11

[Wil04] Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its
implications. Theor. Comput. Sci. 348(2–3), 357–365 (2005). Preliminary
version in ICALP’04

[Wil10] Williams, R.: Improving exhaustive search implies superpolynomial lower
bounds. SIAM J. Comput. 42(3), 1218–1244 (2013). Preliminary version
in STOC’10

[WY14] Williams, R., Yu, H.: Finding orthogonal vectors in discrete structures.
In: SODA, pp. 1867–1877 (2014)

https://doi.org/10.1007/978-3-642-38536-0_15

Computing in Combinatorial
Optimization

William Cook(B)

University of Waterloo, Waterloo, Canada
bico@uwaterloo.ca

Abstract. Research in combinatorial optimization successfully com-
bines diverse ideas drawn from computer science, mathematics, and oper-
ations research. We give a tour of this work, focusing on the early devel-
opment of the subject and the central role played by linear programming.
The paper concludes with a short wish list of future research directions.

Keywords: Combinatorial optimization · Linear programming
Traveling salesman problem

1 In the Beginning was n Factorial

The design of efficient algorithms for combinatorial problems has long been a tar-
get of computer science research. Natural combinatorial models, such as shortest
paths, graph coloring, network connectivity and others, come equipped with a
wide array of applications as well as direct visual appeal. The discrete nature of
the models allows them to be solved in finite time by listing candidate solutions
one by one and selecting the best, but the number of such candidates typically
grows extremely fast with the input size, putting optimization problems out of
reach for simple enumeration schemes.

A central model is the traveling salesman problem, or TSP for short. It is
simple to state. Given a set of cities, together with the distance between each
pair, find the shortest way to visit all of them and return to the starting point,
that is, find the shortest circuit containing every city in the specified set.

The TSP has its own array of applications, but its prominence is more due
to its success as an engine of discovery than it is to miles saved by travelers. The
cutting-plane method [20], branch-and-bound [22], local search [32], Lagrangian
relaxation [53], and simulated annealing [65], to name just a few, were all devel-
oped with the salesman problem as the initial target. This success, coupled with
the simplicity of the model, has made the TSP the poster child for the NP-hard
class of problems.

It was Karl Menger who first brought the algorithmic challenge of the TSP
to the attention of the mathematics community, describing the model in a col-
loquium held in Vienna in 1930 [76].

c© The Author(s) 2019

B. Steffen and G. Woeginger (Eds.): Computing and Software Science, LNCS 10000, pp. 27–47, 2019.

https://doi.org/10.1007/978-3-319-91908-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91908-9_3&domain=pdf
https://doi.org/10.1007/978-3-319-91908-9_3

28 W. Cook

We use the term Botenproblem (because this question is faced in practice
by every postman, and, by the way, also by many travelers) for the task,
given a finite number of points with known pairwise distances, to find the
shortest path connecting the points. This problem is of course solvable by
finitely many trials. Rules that give a number of trials below the number
of permutations of the given points are not known.

Menger was quite informal about the notion of an algorithm, speaking of “rules”.
(He used the German word “Regeln”.) Keep in mind that at the time Alan Turing
was an undergraduate student at Cambridge and still several years away from
his breakthrough concept of general-purpose computing machines [87].

Menger’s call for a better-than-finite TSP algorithm arose at an important
period of mathematical research, where fundamental issues in logic and com-
putability were being explored. Indeed, the published statement of Menger’s
problem appears in the same volume as Gödel’s paper [37] on incompleteness
theorems. This is not entirely a coincidence, since Gödel and Menger were both
Ph.D. students of Hans Hahn and active members of the Vienna Circle. Being a
great fan of the salesman problem, I’d like to think Gödel and Menger spent time
discussing TSP complexity in Viennese coffee houses, but there is no indication
of that.

His challenge did however capture the imagination of the mathematics com-
munity. Denoting by n the number of cities to visit, beating n! in a race to the
optimal TSP tour became a well-established research topic by the late 1940s.

The first major paper was written by Robinson [82] in 1949, while she was
a post-doctoral fellow at the RAND Corporation. Her Ph.D. thesis, Definability
and Decision Problems in Arithmetic [81], placed her firmly on Gödel’s side
of the Vienna Circle activities, but the TSP proved hard to resist while she
was at RAND as part of “what may have been the most remarkable group of
mathematicians working on optimization every assembled” [50].

When we today read the statement of Menger’s problem, we immediately
think of it in terms of establishing an asymptotic complexity bound. But early
researchers considered it not as an asymptotic challenge, but rather as a call for
mathematical methods to handle modest-sized instances. The following passage
is Robinson’s description [82] of her research target.

Since there are only a finite number of paths to consider, the problem
consists in finding a method for picking out the optimal path when n is
moderately large, say n = 50. In this case there are more than 1062 possible
paths, so we can not simply try them all. Even for as few as 10 points,
some short cuts are desirable.

Her approach towards a 50-point algorithm was to consider a relaxation of the
TSP where each city is assigned to another (and no two cities are assigned to
the same target city), so as to minimize the total distance between pairs of cities
in the assignments. A solution to this relaxation gives a set of disjoint directed
circuits (possibly including circuits having only two points) such that every city

Computing in Combinatorial Optimization 29

is contained in exactly one of them. The total length of the solution provides a
lower bound on the length of any TSP tour.

Robinson’s relaxation is known as the assignment problem, where we typically
think of assigning n workers to n tasks, rather than assigning cities to cities.
Her solution method is an iterative approach, moving step by step towards the
optimal assignment via a cycle-canceling operation (that later became a standard
technique for minimum-cost flow problems).

The method presented here of handling this problem will enable us to
check whether a given system of circuits is optimal or, if not, to find a
better one. I believe it would be feasible to apply it to as many as 50
points provided suitable calculating equipment is available.

She mentions again the specific target of 50-point problems, but the paper does
not provide an analysis of the algorithm’s running time.

Several years later, in 1956, Flood [32] wrote the following in a survey paper
on TSP methods.

It seems very likely that quite a different approach from any yet used may
be required for successful treatment of the problem. In fact, there may well
be no general method for treating the problem and impossibility results
would also be valuable.

It is not clear what he meant by “impossible”, but Flood may have had in
mind the notion of polynomial time and was thus speculating that the TSP had
no solution method with the number of steps bounded above by nk for some
constant k. Such an algorithm would certainly have been viewed as a major
breakthrough at the time, possibly permitting the solution of the target-sized
instances.

An argument for suggesting Flood was hoping to replace Menger’s n! by a
more tidy nk can be seen in Schrijver’s beautifully detailed history of combina-
torial optimization [84, Chap. 3]. Schrijver cites several examples from the early
1950s where authors point out polynomial running-time bounds. The earliest of
these is the following passage from a lecture given by von Neumann [78] in 1951,
concerning the assignment problem.

We shall now construct a certain related 2-person game and we shall show
that the extreme optimal strategies can be expressed in terms of the opti-
mal permutation matrices in the assignment problem. (The game matrix
for this game will be 2n×n2. From this it is not difficult to infer how many
steps are needed to get significant approximate solutions with the method
of G. W. Brown and J. von Neumann. It turns out that this number is a
moderate power of n, i.e. considerably smaller than the “obvious” estimate
n! mentioned earlier.)

Details are not provided in the transcript, but the use of the phrase “moderate
power of n” fits with the overall theme of developing methods for use in practice.

An explicit running-time bound for solving the assignment problem was given
by Munkres [77] in 1957, making use of a variant of the Hungarian algorithm.

30 W. Cook

The final maximum on the number of operations needed is

(11n3 + 12n2 + 31n)/6.

This maximum is of theoretical interest since it is so much smaller than the
n! operations necessary in the most straightforward attack on the problem.

Munkres’s paper is entirely analysis; there is no mention of target applications
or possible computational testing. Indeed, his use of the phrase “theoretical
interest” is striking, making an early claim for the mathematics of algorithmic
complexity.

From Menger to Robinson to von Neumann to Munkres, we see the modern
treatment of combinatorial algorithms starting to take shape. But back in the
TSP camp, the obvious n! bound for worst-case complexity remained the state
of the art through the 1930s, 40s, and 50s. This finally changed in 1962 with
the publication of papers by Bellman [5] and Held and Karp [52], describing an
elegant method for solving any n-city TSP in time proportional to n22n. Not
the dreamed-for nk, but still an answer to Menger’s challenge.

The Bellman-Held-Karp algorithm adopts Bellman’s general tool of dynamic
programming [4], building an optimal tour from shortest paths through each of
the 2n subsets of points. Both teams were well aware of the asymptotic limita-
tions of the algorithm. In a section titled “Computational Feasibility”, Bellman
gives estimates of the memory requirement (which also grows exponentially with
n) for 11, 17, and 21 cities. He goes on to write the following passage [5].

It follows that the case of 11 cities can be treated routinely, that 17 cities
requires the largest of current fast memory computers, but that problems
involving 21 cities are a few years at least beyond our reach. One can
improve upon these numbers by taking advantage of the fact that the
distances will be integers and that we need not use all the digits of one
word to specify a distance, but this requires some fancy programming.

This is an interesting display of mathematical analysis with real-world computing
in mind.

Held and Karp take this a step further, giving explicit computational results
on IBM hardware: “An IBM 7090 program can solve any 13-city traveling-
salesman problem in 17 seconds.” And they describe how the exact algorithm
can be used as a tool for high-quality solutions for larger instances [52].

It is characteristic of the algorithms under discussion that their complexity,
measured by numbers of arithmetic operations and storage requirements,
grows quite rapidly. They are, however, a vast improvement over complete
enumeration, and permit the rapid solution of problems of moderate size.
In this section we show how the algorithms can be combined with a method
of successive approximations to provide a systematic procedure for treating
large problems. This procedure yields a sequence of permutations, each
obtained from its predecessor by the solution of a derived subproblem
of moderate size having the same structure as the given problem. The

Computing in Combinatorial Optimization 31

associated costs form a monotone nonincreasing sequence which may not
converge to the optimum solution; however, computer experimentation has
yielded excellent results in a variety of cases.

Again, a fantastic combination of theory and practice. Their computer code,
developed together with Richard Shareshian, was made available to users of
IBM’s hardware; an image of the 1964 press release is displayed in Fig. 1.

Fig. 1. Michael Held, Richard Shareshian and Richard Karp, 1964. Courtesy of IBM
Corporate Archives.

2 Dantzig, Linear Programming, and Cutting Planes

We mentioned that Julia Robinson was a post-doc at the RAND Corporation,
a think tank for the United States government. Another member of the RAND
group was the remarkable George Dantzig. His name is forever associated with
his life’s work: the creation of the linear programming model, the simplex method
for its solution, and its application to problems far and wide. Grötschel [44] gave
the following powerful summary.

The development of linear programming is—in my opinion—the most
important contribution of the mathematics of the 20th century to the
solution of practical problems arising in industry and commerce.

This is from the operations research perspective, but Dantzig’s LP model was
also a bombshell for the general theory and practice of computing in combina-
torial optimization.

Linear programming was introduced to the world in a lecture given by
Dantzig on September 9, 1948, at an economics meeting at the University of
Wisconsin in Madison [18].

The basic assumptions of the model lead to a fundamental set of linear
equations expressing the conditions which much be satisfied by the various
levels of activity, Xi, in the dynamic system. These variables are subject

32 W. Cook

to the further restriction Xi ≥ 0. The determination of the “best” choice
of Xi is made to depend on the maximization (or minimization) of linear
form in Xi. ... It is proposed that computational techniques developed by
J. von Neumann and by the author be used in connection with large scale
digital computers to implement the solution of programming problems.

This last point, concerning digital computers, is important. Dantzig was work-
ing to get linear programming at the head of the queue for implementation on
the first generation of electronic hardware. Computation pioneers Hoffman and
Wolfe [57] write the following.

Linear programming was an important force in sponsoring the early UNI-
VAC computers, as well as the SEAC at the National Bureau of Standards,
because of U.S. Air Force funding in support of computations required by
it and other planning tools developed by Dantzig and his associates in the
Office of the Air Controller.

The computers were lined up and ready to go. And, indeed, extensive LP tests
were made as early as 1952 [56,79].

The general LP model is to optimize a linear function cTx subject to con-
straints Ax = b, x ≥ 0, where matrix A, vector b, and vector c are data and
x = (x1, x2, . . . , xn) is a vector of variables. Note that each xi can be assigned
possibly a fractional value. This makes the connection to combinatorial optimiza-
tion subtle, since combinatorial objects, such as paths, correspond to integer-
valued solutions. Indeed, most often in combinatorial models we have a logical
choice for each variable, either we use it or we do not, xi = 1 or xi = 0.

In some basic cases, like the assignment problem, it can be shown there exists
always an optimal LP solution that is integer valued. Geometrically, this means
all vertices of the polyhedral set {x : Ax = b, x ≥ 0} have integer components.
There are beautiful theorems in combinatorics that can be described in this way,
but, for optimization models, such naturally-integer examples are the exception,
rather than the rule.

The TSP is not one of the exceptional cases. That said, it is also true that
any combinatorial problem is, in principle, an LP problem. Take the example of
the salesman. A tour through n cities selects n direct point-to-point links, that
is, n edges in the complete graph on n points. So a tour can be specified as a 0-1
vector indexed by the edges of the complete graph, where a 1 means we include
the edge in the tour. The TSP is to minimize the total travel distance, which is
a linear function, over these (n − 1)! vectors. That sounds unpleasant, but, for
any finite set of vectors S, a classic result of Minkowski states that there exists a
convex polytope P such that S is precisely the set of vertices of P , that is, P is
the convex hull of S. For our set of tour vectors, by taking the linear constraints
that describe the corresponding polytope P , we have formulated the TSP as an
LP problem.

Cheers for Minkowski, but actually solving the LP problem could be difficult.
Indeed, following up on Robinson’s work, Heller [54] and Kuhn [68] presented
results showing the number of linear constraints needed to describe the TSP

Computing in Combinatorial Optimization 33

polytope grows exponentially fast with the number of cities. This is not a trivial
statement. For example, there are n! solutions to the n-dimensional assignment
problem and yet its corresponding polytope is described by only 2n + 2n2 con-
straints. But not so for the TSP.

Dantzig brushed aside this concern. He was willing to gamble that only a
small number of these exponentially many constraints would be needed to solve
a target instance that was making the rounds of the US mathematics community,
namely to visit one city chosen in each of the 48 states plus Washington, DC.1

He and his RAND colleagues Ray Fulkerson and Selmer Johnson settled the
challenge, finding a tour through the 49 cities together with an LP proof that it
was the shortest possible.

The approach they invented in this TSP work is called the cutting-plane
method. Rather than taking the full polytope as envisioned by Heller and Kuhn,
they instead take a simple polytope that includes all of the tours, and refine
it step by step, adding in each step constraints that are satisfied by all tours
but violated by the optimal solution to the current LP relaxation. At the end
of their computation, they have an LP relaxation of the TSP that has as an
optimal solution a TSP tour. Game over.

In the research-report version of their paper, Dantzig et al. [19] wrote the
following line to start a section titled “The method”.

The title of this section is perhaps pretentious, as we don’t have a method
in a precise sense.

This is typical of the modest style of writing at the time, but there were indeed
certain ad hoc aspects to their work.

1. They did not know explicitly the full set of inequalities that define the TSP
polytope for n = 49 points. Indeed, even today the full description is known
only for n ≤ 9. So it was possible they could reach an LP relaxation having a
non-tour optimal solution and not have any means to refine their relaxation
with an additional constraint.

2. Even for the classes of constraints they did know, they did not have available
exact algorithms to test whether or not the current LP solution satisfies all
member constraints of each class. In the computation, they relied on their
own creativity to locate a violated constraint.

3. Despite Dantzig’s willingness to place a wager, they had no upper bound on
the number of iterations that might be needed to reach an LP optimal solution
that was a tour. Indeed, without further restrictions on the constraints to be
considered (such as defining facets of the TSP polytope) the process is not
guaranteed to be finite.

That is three strikes. Nonetheless, Dantzig’s team accomplished the task
described in their abstract [20]: “It is shown that a certain tour of 49 cities, one

1 This is literally true. Dantzig wagered Fulkerson one dollar that at most 25 inequal-
ities would be needed on top of the assignment problem constraints [57].

34 W. Cook

in each of the 48 states and Washington, DC, has the shortest road distance.”
A feat no team would surpass until the 1970s.

Interestingly, rather than unleash the new electronic computers that Dantzig
secured for LP testing, the TSP team carried out all computations by hand.
This was due to the shear size of their model. The 1,176 variables in the 49-city
example put it far beyond the capabilities of available hardware and software.
In the long run this proved to be a good thing—the specialized techniques they
developed to short-cut the computations provided a template for large-scale
computing in the following decades.

The computation by Dantzig’s team was an amazing accomplishment, but,
due to the three strikes, the work made no direct contribution to the asymptotic
complexity of the TSP. Here is the concluding paragraph of their paper [20].

It is clear that we have left unanswered practically any question one might
pose of a theoretical nature concerning the traveling-salesman problem;
however, we hope that the feasibility of attacking problems involving a
moderate number of points has been successfully demonstrated, and that
perhaps some of the ideas can be used in problems of similar nature.

That is marvelous in its modesty. The team may not have given Karl Menger
a satisfactory answer, but they showed us how to use LP to attack seemingly
intractable problems.

The cutting-plane method is far and away the most successful technique for
the exact solution of NP-hard models in combinatorial optimization; a nice
survey can be found in Jünger et al. [60].

For the TSP itself, it took twenty years for the community to catch up to
the by-hand computations of Dantzig’s team. But starting in the 1970s, led

Fig. 2. Optimal walking tour to 49,603 sites from the National Register of Historic
Places. Image Google Maps c©.

Computing in Combinatorial Optimization 35

by Martin Grötschel and Manfred Padberg and aided by increasingly powerful
computing platforms, great progress was made in exact methods [1,17,43,45,80].
It is now routine to exactly solve problems with many hundreds of cities.

The most recent study [15] reports the optimal solution of a 49,603-city USA
instance with point-to-point distances measured by walking directions provided
by Google Maps. I like to think Dantzig, Fulkerson, and Johnson would be proud
(Fig. 2).

3 Edmonds, Matchings, and Polynomial Time

Following the success of Bellman, Held and Karp, the stage in the 1960s look set
for the jump to an nk algorithm for the TSP. And the best hope for making such
a breakthrough was Jack Edmonds, a mathematician who brought the theory of
combinatorial optimization into the modern era.

The 28-year-old Edmonds burst onto the scene in 1961, at a summer work-
shop held at the RAND Corporation. At the time, he was working for the
National Bureau of Standards, having obtained a Master’s degree at the Univer-
sity of Maryland. Balinsky, Edmonds, and several other young researchers had
been invited to join a who-is-who list of stars from the field of combinatorics.
He described his talk as follows [26].

At this lecture, everybody I’d ever heard of was there. Gomory and Dantzig
and Tutte and Fulkerson and Hoffman ... And I gave this grand philosoph-
ical speech ... Here is a good algorithm, here is a solved integer program.
This was a sermon, this was a real sermon. Here is a solved integer pro-
gram. It was my first glimpse of heaven.

This was a report on a polynomial-time algorithm for the matching problem
in general graphs, a difficult generalization of the assignment problem. Along
the way, he made a strong case for the mathematical importance of such good
algorithms.

Edmonds’ paper on these topics was written in 1963 and appeared in jour-
nal form [24] in 1965, the same year as Alan Cobham’s paper on machine-
independent computation [13]. Both authors present the notion of polynomial-
time algorithms, but they emphasize different aspects of the theory. In his Turing
Award lecture [14], Stephen Cook summarized the work as follows.

Cobham pointed out that the class was well defined, independent of which
computer model was chosen, and gave it a characterization in the spirit
of recursive function theory. The idea that polynomial time computabil-
ity roughly corresponds to tractability was first expressed in print by
Edmonds.

It was certainly a great year for computational complexity—the classic paper by
Hartmanis and Stearns [51] also appeared in journal form in 1965.

If you are a card-carrying complexity theorist, then you almost certainly turn
to Cobham’s elegant paper for an explanation of the class P. For a combinato-
rial optimizer, however, Edmonds is the polynomial-time champion (Fig. 3). His

36 W. Cook

description is less formal, but he brings the topic to life, showing by example how
to put combinatorial problems into P. It is his glimpse of algorithmic heaven.

Fig. 3. Jack Edmonds, 2015. Photograph courtesy of Kathie Cameron.

The center piece of Edmonds’ paper is his blossom algorithm for matching in
a general graph. A matching is a set of edges that have no common end points.
Unlike the assignment problem, the natural LP relaxation for matchings may
have optimal solutions that are not integer valued. For this problem, however,
Edmonds was able to describe explicitly the full set of linear inequalities that
define the polytope promised by Minkowski. He thus obtained an LP model that
returns always a matching as an optimal solution. The LP has exponentially
many constraints, but he was able to devise a primal-dual algorithm to handle
them all in polynomial time. And his algorithm was not just good in theory,
but also in practice: careful implementations are able to handle graphs with a
million or more points [2,16,66,75].

In his work, Edmonds was able to overcome all three strikes we had against
the cutting-plane method. So the big question was whether or not his method-
ology would also give a means to devise a polynomial-time algorithm for the
TSP. Edmonds writes that he did indeed follow up his success with matchings
by taking a crack at the salesman problem [27].

Inspired by Dantzig, Fulkerson, Johnson (1954), I became excited in 1961
to show that TSP is co-NP by finding an NP description of a set of

Computing in Combinatorial Optimization 37

inequalities whose solution set is the convex hull of all the 0,1 incidence
vectors of tours in G. I failed, and so in 1966 I conjectured that TSP is
not in P.

Sadly, he became convinced we will never see an nk algorithm for the TSP. He
stated this explicitly in a paper [28] published in 1967: “I conjecture that there
is no good algorithm for the traveling salesman problem.” Bad luck for all fans
of the TSP. And the news got even worse when both the directed and undirected
versions of the TSP appeared on Karp’s famous list [62] of 21 NP-hard problems
in 1972.

So the fate of the TSP is now tied to the great P versus NP question. But,
along the way, Edmonds provided an important insight into possible solution
methods. He made the following remark during a discussion that took place
after a TSP lecture by Gomory [42] in 1964.

For the traveling salesman problem, the vertices of the associated polyhe-
dron have a simple characterization despite their number—so might the
bounding inequalities have a simple characterization despite their num-
ber. At least we should hope they have, because finding a really good
traveling salesman algorithm is undoubtedly equivalent to finding such a
characterization.

Edmonds’ thesis was that polynomial-time algorithms go hand-in-hand with
polyhedral characterizations.

And he was right. Some twenty years later, Edmonds’ thesis was proven in
a deep result by Grötschel et al. [49]. The theorem is based on the ellipsoid
algorithm for linear programming and it goes by the slogan optimization ≡
separation. Roughly speaking, if we can solve an optimization problem in poly-
nomial time, then we have an implicit description of the corresponding poly-
tope, and, the other way around, if we understand the polytope then we have a
polynomial-time algorithm for the optimization problem.

Beautiful! The new work brought together combinatorial-optimization the-
ory, practice, algorithms, and complexity, all united via linear programming.

4 Sixty-Three Years of Progress

Let’s take a step back to fill in other research highlights, before jumping ahead
to current topics. In this quick survey, we start the combinatorial-optimization
clock ticking with the 1954 publication of the Dantzig-Fulkerson-Johnson paper
on the TSP.

Despite the ringing success of their cutting-plane method, the research carried
out by Dantzig’s team did not have an immediate impact on the computational
side of the field. They were simply too far ahead of their time, both in the sophis-
ticated use of LP theory and in their ability to perform by-hand calculations that
were out of reach for existing computing platforms.

38 W. Cook

But the clock did not stand still in the 1950s. Led by Hoffman’s min-max
theorems [55], Ford and Fulkerson’s network-flow algorithms [33], Gomory’s cut-
ting planes [41], and Eastman [22] and Land and Doig’s [69] branch-and-bound
method, the overall field advanced quickly. This work, particularly by Hoffman,
showed further the central role that was to be played by linear programming.

The following decade was dominated by Edmonds on the algorithmic side,
including polynomial-time results for matchings [23], matroid intersection [25],
optimal branchings [28], Gaussian elimination [29] and, together with Karp,
maximum flow and minimum-cost flow [30]. On the computational side, Lin and
Kernighan’s introduction of powerful heuristic methods for graph partitioning
[64] and the TSP [72,73] established the study of heuristic search as an important
and sophisticated component of combinatorial optimization.

The 1970s saw the introduction of the formal study of α-approximation algo-
rithms by Johnson [58], where he considers polynomial-time methods that pro-
duce solutions guaranteed to have value no greater than α times that of an opti-
mal solution. His paper was quickly followed by Christofides’ 1.5-approximation
for the TSP [11], and the sub-discipline was off and running. A highlight here is
the spectacular result on approximating the maximum-cut problem by Goemans
and Williamson [39] in 1995, where they use semi-definite programming to move
beyond what can be obtained with the natural LP relaxation. Texts by Vazirani
[88] and Williamson and Shmoys [89] provide great coverage of the area.

We have already discussed the iconic result of the 1980s, the decade of opti-
mization ≡ separation. But these years also saw, on the applied/computational
side, the start of a great expansion of the use of the cutting-plane method. This
work goes well beyond the confines of the TSP, led by successful projects by
Grötschel et al. [46–48] and others. A huge boost to this computational area was
the arrival of robust LP solvers that could be called as functions from within a
cutting-plane code, in particular the CPLEX library created by Bixby [6].

Moving to the 1990s, a major development was the introduction of new hier-
archical relaxations of combinatorial optimization models by Lovász and Schri-
jver [74], Sherali and Adams [85], and Lasserre [70]. The template for this line
of work was the classic paper on cutting planes by Chvátal [12], where he shows
that the convex hull associated with any combinatorial problem can be obtained
by iteratively applying a simple rounding process. The new procedures expand
on this idea, by considering the problem in higher-dimensional spaces (obtained
by adding variables to the initial relaxation) where it can be easier to enforce
integrality conditions.

I’ve been skipping over important work by a host of researchers, so with the
field getting ever broader and more active, I prefer not to try for a two-line
summary of the 2000s. But let me point out a clear highlight, the publication
of Schrijver’s monograph Combinatorial Optimization: Polyhedra and Efficiency
[84]. His work, published in 2003, covers 1881 pages in three volumes and includes
over 4,000 references. Schrijver’s scholarly writing is amazing. And to bring you
forward from 2003, there are excellent recent texts by Frank [35] and Korte
and Vygen [67]. If you want to study the first sixty-three years of combinatorial
optimization, these three books contain all the material you need.

Computing in Combinatorial Optimization 39

5 Wish List of Research Directions

A good sign of the health of a field of study is the ease in which it is possible
to list future research directions. Combinatorial optimization looks great under
this metric. I could have started with any of the seventy-five open problems and
conjectures listed in Schrijver’s monograph [84]. But I decided to go with only
a short wish list of five topics, all aimed at pushing forward the intersection of
computation, algorithms, and theory.

5.1 Improving the Simplex Method

Perhaps the most important contribution the computer-science algorithms com-
munity could make to the field of operations research would be the delivery of
ideas to improve the practical performance of the simplex method for solving
linear programming problems. The simplex method was named one of the top
ten algorithms of the century [21], but it needs help to continue to drive progress
in OR applications. The steepest-edge pivot rules that are the state of the art in
simplex implementations date back to the 1970s [40], and the best known meth-
ods for implementing these rules go back to the early 1990s [34]. Moreover, there
currently are no implementations of the simplex method that make effective use
of multi-core processors, GPUs, or other parallel computing platforms.

For solving any single large-scale LP model, the simplex method has a seri-
ous competitor in the class of polynomial-time algorithms called interior-point
methods, that parallelize nicely. But for solving a sequence of closely related LP
models, such as those that arise in the cutting-plane method or in a branch-and-
bound search, the simplex method is the only game in town. This comes from
the fact that the simplex method can be set up to start its search at the opti-
mal solution to the previously solved model, dramatically decreasing the number
of steps needed to reach an optimal solution to the new model. Interior-point
methods are not able to do this effectively.

Here is the context. Over a broad class of models and considering the com-
mercial software libraries CPLEX 1.0 to 11.0 and Gurobi 1.0 to 7.0, Bixby [7]
reports a machine-independent speed-up in mixed-integer programming (MIP)
codes of a factor over 1.3 million in the past 25 years, roughly a factor of 1.75
each year. That is amazing progress in practical computing and it has been a
driving force in the growth of successful OR applications. But Bixby also reports
that, with continued increases in model sizes, linear programming has become
a roadblock towards solutions in a substantial fraction of MIP settings. Help is
needed.

The big ticket item, from the CS theory side, is the fact that there is no
known polynomial-time variant of the simplex method. Avis [3] sums things up
nicely in a short note marking the 100th anniversary of the birth of George
Dantzig.

Surely the close collaboration of TCS and the optimization community
would be able to settle this question: is there or is there not a polynomial

40 W. Cook

time pivot selection rule for the simplex method? Of course I think all
of us, including George, hope for a positive answer that is both strongly
polynomial time and a winner in practice!

Settling this question may be difficult, but there has been progress in under-
standing the complexity of Dantzig’s algorithm, including a long line of award
winning papers from the OR, CS, optimization, and mathematics communities.

– Borgwardt [8], average-case analysis of the simplex method, Lanchester Prize
1982 (INFORMS).

– Kalai [61], quasi-polynomial bound on diameter of polyhedra, Fulkerson Prize
1994 (MOS and AMS).

– Spielman and Teng [86], smoothed analysis of the simplex method, Gödel
Prize 2008 (ACM) and Fulkerson Prize 2009 (MOS and AMS).

– Friedmann [36], super-polynomial lower bounds for simplex pivot rules,
Tucker Prize 2012 (MOS).

– Santos [83], counterexample to the Hirsh conjecture, Fulkerson Prize 2015
(MOS and AMS).

Each of these results concerns analysis of the simplex method or the paths it
takes along the edges of polyhedra. What I’d like to emphasize is the need for
turning analytical insights, such as these, into recommendations for improving
the simplex method in practice.

For example, can machine-learning techniques be used to build pivot-selection
rules that adapt to the properties of the input polyhedra? In this area, every
saved pivot helps.

5.2 Language of Algorithms

I’d like to draw attention to a research direction that is more of a dream than
a specific problem. Namely, the development and adoption of a more nuanced
way of expressing accomplishments in the analysis of algorithms.

Avis [3] gives a dramatic example. Suppose history was reversed and Dantzig
announced a polynomial-time interior-point algorithm in his 1948 talk in Madi-
son. Would a paper today on a newly invented, exponential-time simplex method
have a chance of being accepted into a major conference? Would it even be coded
for testing? One might hope the operations research community would handle
the task, but it takes an exceptional amount of care to implement the simplex
method in a way that makes it competitive with interior-point codes. With-
out guidance from the algorithms community, it seems unlikely the necessary
time and energy would be devoted to building the expertise needed to bring the
simplex method into practical use.

I do not mean to criticize the focus on asymptotic analysis and polynomial-
time results. Indeed, this focus drives CS theory, and CS theory has long supplied
a lifeline of techniques for everyone in the business of attacking large-scale opti-
mization models. But this focus, together with the use of big-oh notation and the
hiding of logarithmic factors, can sometimes make it difficult to tap into ideas

Computing in Combinatorial Optimization 41

that can have a major impact in computational studies. And, more importantly,
it may sometimes hinder the creation of techniques that could have dramatic
impact on computational practice, such as the simplex method in Avis’s fable.

5.3 Understanding Heuristic Algorithms

The term heuristic is sometimes used to describe both non-exact techniques, such
as simulated annealing, as well as exact, but exponential-time, techniques, such
as the cutting-plane method. In my discussion I refer only to the first meaning.
That is, a heuristic algorithm is one designed to find a hopefully good solution,
but comes without a performance guarantee.

Heuristic algorithms are widely used in operations research and many other
areas. They are used, but not understood. The success of these techniques far
outstrips our ability to explain and evaluate analytically.

In his 2010 Knuth Prize lecture [59], David Johnson discussed the theme of
how best to increase the impact of theoretical computer science research. His
first rule was “Study problems people might actually want to solve” and his top
open question in this regard was the following.

When (and why) do metaheuristc approaches work well?

Just so. Computer science is the research community best equipped with analytic
tools to address this issue.

And Johnson is not the only giant of computer science to bring up this topic.
Richard Karp, in a lecture given at Harvard University in 2011 [63], made the
following statement.

Heuristics are often “unreasonably effective,” for reasons not well under-
stood.

This is certainly the case. Recall that I mentioned the report of an optimal TSP
tour to visit 49,603 sites with distance measured by Google walking routes. To
solve this instance, the total computing time for the cutting-plane method and
branch-and-bound search was 178.9 years (on a network of processors). That is a
great deal of computing power, but it turned out that the heuristic tour we had
at the start of the search was in fact optimal. All of the computation was to verify
there was no better solution. It is definitely unreasonable that a combination of
local search and genetic algorithms was able to produce an optimal solution for
such a complex optimization problem. Unreasonable and unexplained.

5.4 Analysis of Exact Algorithms for Hard Problems

Facing an NP-hard optimization problem, the main targets for study are approx-
imation methods and computational methods, combining heuristic search with
lower-bound techniques like cutting planes. A third option is the study of
exponential-time exact solution algorithms. Research in this direction can pro-
vide effective means to handle small problem instances (and these can in turn

42 W. Cook

be used to solve larger examples, using techniques such as the local-cuts pro-
cedure described in [1]), as well as providing insights that can be adopted in
branch-and-bound and other computational methods.

A nice survey of this area, together with a list of open problems, is given
in Woeginger [90]. Prominent among these is the challenge of improving the
Bellman-Held-Karp n22n bound for solving an n-city TSP, possibly replacing
the exponential term by cn for a constant c < 2. It has been 55 years since the
publication of the BHK algorithm, but there has been no improvement for gen-
eral instances. This is likely one of the longest-standing, non-trivial, complexity
bounds for any combinatorial model.

5.5 Complexity of Cutting-Plane Methods

The cutting-plane method is a well-established computational technique, with
successful application to a broad range of combinatorial models. As such, it is a
good target for investigation from a computer science theory perspective. Pos-
sible topics include examining bounds on the complexity of the overall method,
investigating algorithms for separation problems to deliver cutting planes for
particular models, and obtaining insights into the selection of cutting planes to
speed the convergence of the process.

A nice result of the first type was given recently by Chandrasekaran et al. [10],
establishing a polynomial-time cutting-plane method for the matching problem.
A direct challenge here would be to establish a similar bound for the subtour
relaxation of the TSP.

For the second type of problem, there are interesting results for the separa-
tion of TSP inequalities by Carr [9], Fleischer and Tardos [31], Letchford [71]
and others. But, even for this intensely studied model, there are far more open
questions than results. For example, the comb-separation problem (the most
basic question for TSP inequalities) is not known to be NP-hard and also not
known to be polynomial-time solvable. It would be interesting to see non-trivial
approximation results in this area.

The third type of problem, the selection of cutting planes, is critical in prac-
tice. It would be great to see analysis for well-known models, such at the TSP, the
maximum-cut problem, and the maximum stable-set problem. A nice paper here
is an initial study of TSP inequalities by Goemans [38]. His results are worst-
case comparisons, but they predict well the performance seen in computational
studies (see [1, p. 524]).

References

1. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.: The Traveling Salesman
Problem: A Computational Study. Princeton University Press, Princeton (2006)

2. Applegate, D.L., Cook, W.: Solving large-scale matching problems. In: Johnson,
D.S., McGeoch, C.C. (eds.) Algorithms for Network Flows and Matching. DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, vol. 12, pp.
557–576. American Mathematical Society, Providence (1993)

Computing in Combinatorial Optimization 43

3. Avis, D.: George Dantzig: father of the simplex method. Bull. EATCS 116 (2015)
4. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
5. Bellman, R.: Dynamic programming treatment of the travelling salesman problem.

J. ACM 9, 61–63 (1962)
6. Bixby, R.: You have to figure out who your customer is going to be. Optima 101,

1–6 (2016)
7. Bixby, R.: A saga of 25 years of progress in optimization. Lecture at the University

of Tokyo, 1 December 2016
8. Borgwardt, K.-H.: Some distribution-independent results about the asymptotic

order of the average number of pivot steps of the simplex-method. Math. Oper.
Res. 7, 441–462 (1983)

9. Carr, R.: Separating clique trees and bipartition inequalities having a fixed number
of handles and teeth in polynomial time. Math. Oper. Res. 22, 257–265 (1997)

10. Chandrasekaran, K., Végh, L.A., Vempala, S.S.: The cutting plane method is poly-
nomial for perfect matchings. Math. Oper. Res. 41, 23–48 (2015)

11. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman
problem. Report no. 388, Graduate School of Industrial Administration, Carnegie
Mellon University, Pittsburgh (1976)

12. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Dis-
cret. Math. 4, 305–337 (1973)

13. Cobham, A.: The intrinsic computational difficulty of functions. In: Proceedings
of the 1964 International Congress for Logic, Methodology, and Philosophy of Sci-
ences, pp. 24–30. North Holland, Amsterdam (1965)

14. Cook, S.A.: An overview of computational complexity. Commun. ACM 26, 401–408
(1983)

15. Cook, W., Espinoza, D., Goycoolea, M., Helsgaun, K.: US50K (2016). http://www.
math.uwaterloo.ca/tsp/us/index.html

16. Cook, W., Rohe, A.: Computing minimum-weight perfect matchings. INFORMS
J. Comput. 11, 138–148 (1999)

17. Crowder, H., Padberg, M.W.: Solving large-scale symmetric travelling salesman
problems to optimality. Manag. Sci. 26, 495–509 (1980)

18. Dantzig, G.: Programming in a linear structure. Econometrica 17, 73–74 (1948)
19. Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large scale traveling salesman

problem. Technical report P-510. RAND Corporation, Santa Monica (1954)
20. Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling-salesman

problem. Oper. Res. 2, 393–410 (1954)
21. Dongara, J., Sullivan, F.: The top 10 algorithms. IEEE Comput. Sci. Eng. 2, 22–23

(2000)
22. Eastman, W.L.: Linear programming with pattern constraints. Ph.D. thesis,

Department of Economics, Harvard University, Cambridge (1958)
23. Edmonds, J.: Maximum matching and a polyhedron with 0,1-vertices. J. Res. Nat.

Bur. Stan. 69B, 125–130 (1965)
24. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965)
25. Edmonds, J.: Submodular functions, matroids, and certain polyhedra. In: Guy, R.,

Hanani, H., Sauer, N., Schönheim, J. (eds.) Combinatorial Structures and Their
Applications, pp. 69–87. Gordon and Breach, New York (1970)

26. Edmonds, J.: A glimpse of heaven. In: Lenstra, J.K., et al. (eds.) History of Math-
ematical Programming-A Collection of Personal Reminiscences, pp. 32–54. North-
Holland, Amsterdam (1991)

http://www.math.uwaterloo.ca/tsp/us/index.html
http://www.math.uwaterloo.ca/tsp/us/index.html

44 W. Cook

27. Edmonds, J.: EP and PPA: can it be hard to find if it’s easy to recognize and
you know it’s there? Lecture at the 21st Combinatorial Optimization Workshop,
Aussois, France, 13 January 2017

28. Edmonds, J.: Optimum branchings. J. Res. Nat. Bur. Stan. 71B, 233–240 (1967)
29. Edmonds, J.: Systems of distinct representatives and linear algebra. J. Res. Nat.

Bur. Stan. 71B, 241–245 (1967)
30. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for

network flow problems. J. ACM 19, 248–264 (1972)
31. Fleischer, L., Tardos, É.: Separating maximally violated comb inequalities in planar

graphs. Math. Oper. Res. 24, 130–148 (1999)
32. Flood, M.M.: The traveling-salesman problem. Oper. Res. 4, 61–75 (1956)
33. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Prince-

ton (1962)
34. Forrest, J.J., Goldfarb, D.: Steepest-edge simplex algorithms for linear program-

ming. Math. Program. 57, 341–274 (1992)
35. Frank, A.: Connections in Combinatorial Optimization. Oxford University Press,

Oxford (2011)
36. Friedmann, O.: Exponential lower bounds for solving infinitary payoff games and

linear programs. Ph.D. thesis, Ludwig-Maximilians-Universität München (2011)
37. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und

verwandter Systeme, I. Monats-hefte für Mathematik und Physik 38, 173–198
(1931)

38. Goemans, M.: Worst-case comparison of valid inequalities for the TSP. Math. Pro-
gram. 69, 335–349 (1995)

39. Goemans, M., Williamson, D.: Improved approximation algorithms for maximum
cut and satisfiability problems. J. ACM 42, 1115–1145 (1995)

40. Goldfarb, D., Reid, J.K.: A practicable steepest-edge simplex algorithm. Math.
Program. 1, 361–371 (1977)

41. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs.
Bull. Am. Math. Soc. 64, 275–278 (1958)

42. Gomory, R.E.: The traveling salesman problem. In: Proceedings of the IBM Scien-
tific Computing Symposium on Combinatorial Problems, pp. 93–121. IBM, White
Plains (1996)

43. Grötschel, M.: On the symmetric travelling salesman problem: solution of a 120-
city problem. Math. Program. Study 12, 61–77 (1980)

44. Grötschel, M.: Notes for a Berlin Mathematical School (2006)
45. Grötschel, M., Holland, O.: Solution of large-scale symmetric travelling salesman

problems. Math. Program. 51, 141–202 (1991)
46. Grötschel, M., Jünger, M., Reinelt, G.: A cutting plane algorithm for the linear

ordering problem. Oper. Res. 32, 1195–1220 (1984)
47. Grötschel, M., Jünger, M., Reinelt, G.: On the acyclic subgraph polytope. Math.

Program. 33, 28–42 (1985)
48. Grötschel, M., Jünger, M., Reinelt, G.: Facets of the linear ordering polytope.

Math. Program. 33, 43–60 (1985)
49. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial

Optimization. Springer, Berlin (1988). https://doi.org/10.1007/978-3-642-97881-4
50. Grötschel, M., Nemhauser, G.L.: George Dantzig’s contributions to integer pro-

gramming. Discret. Optim. 5, 168–173 (2008)
51. Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms.

Trans. Am. Math. Soc. 117, 285–306 (1965)

https://doi.org/10.1007/978-3-642-97881-4

Computing in Combinatorial Optimization 45

52. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems.
J. Soc. Ind. Appl. Math. 10, 196–210 (1962)

53. Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning
trees: Part II. Math. Program. 1, 6–25 (1971)

54. Heller, I.: On the problem of the shortest path between points. I. Abstract 664t.
Bull. Am. Math. Soc. 59, 551 (1953)

55. Hoffman, A.J.: Generalization of a theorem of Konig. J. Wash. Acad. Sci. 46,
211–212 (1956)

56. Hoffman, A., Mannos, M., Sokolowsky, D., Wiegmann, N.: Computational experi-
ence in solving linear programs. J. Soc. Ind. Appl. Math. 1, 17–33 (1953)

57. Hoffman, A.J., Wolfe, P.: History. In: Lawler, E.L., Lenstra, J.K., Rinnooy Kan,
A.H.G., Shmoys, D.B. (eds.) The Traveling Salesman Problem, pp. 1–15. Wiley,
Chichester (1985)

58. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput.
Syst. Sci. 9, 256–278 (1974)

59. Johnson, D.S.: Knuth Prize Lecture (2010)
60. Jünger, M., Reinelt, G., Thienel, S.: Practical problem solving with cutting plane

algorithms. In: Cook, W., Lovász, L., Seymour, P. (eds.) Combinatorial Optimiza-
tion. DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
vol. 20, pp. 111–152. American Mathematical Society, Providence (1995)

61. Kalai, G.: Upper bounds for the diameter and height of graphs of the convex
polyhedra. Discret. Comput. Geom. 8, 363–372 (1992)

62. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum
Press, New York (1972)

63. Karp, R.M.: Implicit hitting set problems. Lecture at Harvard University, 29
August 2011

64. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs.
Bell Syst. Tech. J. 49, 291–307 (1970)

65. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated anneal-
ing. Science 220, 671–680 (1983)

66. Kolmogorov, V.: Blossom V: a new implementation of a minimum cost perfect
matching algorithm. Math. Program. Comput. 1, 43–67 (2009)

67. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms.
Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-24488-9

68. Kuhn, H.W.: On certain convex polyhedra. Abstract 799t. Bull. Am. Math. Soc.
61, 557–558 (1955)

69. Land, A.H., Doig, A.G.: An automatic method of solving discrete programming
problems. Econometrica 28, 497–520 (1960)

70. Lasserre, J.B.: Global optimization with polynomials and the problem of moments.
SIAM J. Optim. 11, 796–817 (2001)

71. Letchford, A.N.: Separating a superclass of comb inequalities in planar graphs.
Math. Oper. Res. 25, 443–454 (2000)

72. Lin, S.: Computer solutions of the traveling salesman problem. Bell Syst. Tech. J.
44, 2245–2269 (1965)

73. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-
salesman problem. Oper. Res. 21, 498–516 (1973)

74. Lovász, L., Schrijver, A.: Cones of matrices and set-functions, and 0–1 optimization.
SIAM J. Optim. 1, 166–190 (1991)

https://doi.org/10.1007/978-3-642-24488-9

46 W. Cook

75. Mehlhorn, K., Schäfer, G.: Implementation of O(nm logn) weighted matchings in
general graphs: the power of data structures. J. Exp. Algorithmics 7, Article 4
(2002)

76. Menger, K.: Bericht über ein mathematisches Kolloquium. Monats-hefte für Math-
ematik und Physik 38, 17–38 (1931)

77. Munkres, J.: Algorithms for the assignment and transportation problems. J. Soc.
Ind. Appl. Math. 5, 32–38 (1957)

78. von Neumann, J.: A certain zero-sum two-person game equivalent to the optimal
assignment problem. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the
Theory of Games, pp. 5–12. Princeton University Press, Princeton (1953). (Tran-
script of a seminar talk given by Professor von Neumann at Princeton University,
26 October 1951)

79. Orden, A.: Solution of systems of linear inequalities on a digital computer. In:
Proceedings of the 1952 ACM National Meeting, pp. 91–95 (1952)

80. Padberg, M., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-
scale symmetric traveling salesman problems. SIAM Rev. 33, 60–100 (1991)

81. Robinson, J.: Definability and decision problems in arithmetic. Ph.D. thesis, Uni-
versity of California, Berkeley (1948)

82. Robinson, J.: On the Hamiltonian game (a traveling salesman problem). RAND
Research Memorandum RM-303. RAND Corporation, Santa Monica (1949)

83. Santos, F.: A counterexample to the Hirsh conjecture. Ann. Math. 176, 383–412
(2011)

84. Schrijver, A.: Combinatorial Optimization. Springer, Berlin (2003)
85. Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solving

Discrete and Continuous Nonconvex Problems. Springer, Berlin (2013). https://
doi.org/10.1007/978-1-4757-4388-3

86. Spielman, D.A., Teng, S.-H.: Smoothed analysis of algorithms: why the simplex
algorithm usually takes polynomial time. J. ACM 51, 385–463 (2004)

87. Turing, A.M.: On computable numbers, with an application to the Entschei-
dungsproblem. Proc. London Math. Soc. s2-42, 230–265 (1937)

88. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-662-04565-7

89. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cam-
bridge University Press, Cambridge (2011)

90. Woeginger, G.J.: Exact algorithms for NP-hard problems: a survey. In: Jünger,
M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization — Eureka, You
Shrink!. LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-36478-1 17

https://doi.org/10.1007/978-1-4757-4388-3
https://doi.org/10.1007/978-1-4757-4388-3
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/3-540-36478-1_17
https://doi.org/10.1007/3-540-36478-1_17

Computing in Combinatorial Optimization 47

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Computational Social Choice: The First
Ten Years and Beyond

Haris Aziz1, Felix Brandt2(B), Edith Elkind3, and Piotr Skowron4

1 UNSW Sydney and Data61 (CSIRO), Sydney, Australia
2 Technische Universität München, Munich, Germany

brandtf@in.tum.de
3 University of Oxford, Oxford, UK

4 Technische Universität Berlin, Berlin, Germany

Abstract. Computational social choice is a research area at the inter-
section of computer science, mathematics, and economics that is con-
cerned with aggregation of preferences of multiple agents. Typical appli-
cations include voting, resource allocation, and fair division. This chapter
highlights six representative research areas in contemporary computa-
tional social choice: restricted preference domains, voting equilibria and
iterative voting, multiwinner voting, probabilistic social choice, random
assignment, and computer-aided theorem proving.

1 Introduction

Within the past few decades there has been a lively exchange of ideas between
computer science, in particular artificial intelligence, algorithms and complexity
theory, on the one hand, and economics, in particular game theory and social
choice, on the other hand. This exchange goes in both directions, and is largely
motivated by the emergence and the growing ubiquity of the Internet, which cre-
ated a need for concepts concerning social interaction and cooperation provided
by economics as well as for the algorithmic tools of computer science.

A recent example of this trend is the formation of the inter-disciplinary
research area known as computational social choice, which combines ideas, mod-
els, and techniques from social choice theory with those of computer science.
Social choice theory, which itself is already a multi-disciplinary area with con-
tributions from economics, mathematics, political science, and philosophy, con-
cerns the formal analysis and design of methods for aggregating the preferences
of multiple agents. Typical applications include voting, resource allocation, and
fair division. Computer science offers several powerful tools such as algorithm
design, complexity theory, and communication complexity for analyzing such
problems. At the same time, computer science has produced new application
areas for social choice such as webpage ranking or collective decision-making in
computational multi-agent systems.

In its most general form, social choice theory is concerned with a set of alter-
natives and a set of agents who possess binary preference relations (typically
c© Springer Nature Switzerland AG 2019

B. Steffen and G. Woeginger (Eds.): Computing and Software Science, LNCS 10000, pp. 48–65, 2019.

https://doi.org/10.1007/978-3-319-91908-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91908-9_4&domain=pdf
https://doi.org/10.1007/978-3-319-91908-9_4

Computational Social Choice: The First Ten Years and Beyond 49

assumed to be complete and transitive) over the alternatives; a collection of
agents’ preference relations is called a preference profile. Problems of interest
then include how to define (and find) a collective choice in form of a set of alter-
natives, a ranking of alternatives, or a lottery over alternatives that appropriately
reflect the agents’ individual preferences. Collective outcomes and aggregation
functions that return these outcomes are usually evaluated and compared by ver-
ifying whether they satisfy desirable properties, so-called axioms. Classic results
in social choice—the most famous of which is certainly Arrow’s impossibility
theorem [2]—have shown the incompatibility of certain sets of axioms, or char-
acterized specific aggregation functions in terms of axioms they satisfy.

Most subareas of social choice (e.g., coalition formation, matching markets,
and fair division) can be obtained as special cases of the general model described
above by imposing structure on the set of alternatives and restricting the domain
of preference relations accordingly. For example, in assignment problems, the
goal is to find a fair and efficient assignment of objects to agents based on the
agents’ preferences over objects. To cast an assignment problem as a social choice
problem, we let the set of alternatives be the set of all possible allocations and
postulate that agents are indifferent among all allocations in which they receive
the same object. This conceptual insight is useful because it sometimes allows
the transfer of positive results from superdomains to subdomains and that of
negative results from subdomains to superdomains. However, most statements
require a specific analysis of the domain in question and are often based on
axioms that can only be meaningfully defined within this domain. Moreover,
computational statements usually do not carry over from one domain to another
due to the different representations.

Initial results in computational social choice focused on the computational
complexity of aggregation functions that were proposed in the social choice liter-
ature. For example, it was shown that computing Kemeny’s rule, which returns
collective consensus rankings and satisfies many desirable axioms, is NP-hard
[23], and deciding whether a given alternative is on top of a consensus rank-
ing is Θp

2-complete [85]. This and similar hardness results were followed by the
analysis of heuristics, approximation algorithms, and fixed-parameter tractable
algorithms for these problems. At the same time, new interesting computational
problems concerning various ways of manipulating the election outcome were
defined and investigated. Here, computational hardness is desirable and meant
to serve as a shield against strategic behavior (see, e.g., [55,70–72]). The con-
tributions of contemporary computational social choice go far beyond purely
algorithmic questions, and it has been claimed that computational social choice
has revitalized the entire field of social choice theory. For instance, a recent
result in computational social choice resolved a long-standing open problem in
the cake cutting literature: Aziz and Mackenzie [6] proposed the first envy-
free cake cutting protocol that requires a bounded number of queries and cuts.
Even though the number of cuts is astronomically large, this result is surprising
because experts believed that no such protocol exists.1

1 The number of cuts is upper bounded by nnnnnn

where n is the number of agents.

50 H. Aziz et al.

Computational social choice is much too broad to be covered in its entirety in
this chapter. We will therefore discuss a handful of new exciting research direc-
tions within computational social choice that have not been comprehensively
addressed so far and that we consider to be particularly promising: restricted
preference domains, voting equilibria and iterative voting, multiwinner voting,
probabilistic social choice, random assignment, and computer-aided theorem
proving.

2 Restricted Preference Domains

It is well known that when we aggregate the preferences of a group of agents
by taking a majority vote over each pair of alternatives, we cannot ensure a
rational outcome: the collective preference relation may fail to be transitive even
if individual preferences are. This observation goes back to Condorcet (1785),
and can be seen as the root cause for many impossibility results such as those
of Arrow [2] or Gibbard [82] and Satterthwaite [120].

Black [26] was the first to observe that this issue does not arise if the voters’
preferences are essentially one-dimensional: he defined the domain of single-
peaked preferences and showed that for preference profiles that belong to this
domain, the majority preference relation is necessarily transitive for an odd
number of voters; this implies the existence of a Condorcet winner (an alternative
that is preferred to every other alternative by a majority of voters). Informally, a
preference profile is said to be single-peaked if the alternatives can be ordered on
a line so that each voter has a favorite point (peak) on this line and his affinity
for the alternatives declines as one moves away from the peak in either direction.

Single-peaked preferences have received a considerable amount of attention
from social choice researchers since Black’s pioneering work (e.g., [100]). More
recently, it has been observed that restricting attention to such preferences can
also simplify many problems in computational social choice. For instance, there
are several voting rules that return a Condorcet winner whenever it exists and
otherwise have to solve an NP-hard optimization problem. For any such rule
computing the winner is easy if the number of voters is odd and their prefer-
ences are single-peaked: by Black’s result, we can simply return the Condorcet
winner. For some of these rules, further effort yields polynomial-time algorithms
for single-peaked profiles with an even number of voters [39]. The single-peaked
ordering of the alternatives can also be used as a basis for a dynamic program;
intuitively, one proceeds by computing a partial solution for each prefix of the
alternative ordering. This approach leads, e.g., to a polynomial-time algorithm
for computing the outcome of the Chamberlin–Courant multiwinner voting rule
(see Sect. 4) for single-peaked profiles [24]. In recent years, many other compu-
tational social choice problems were shown to become easier for single-peaked
preferences: examples include various forms of strategic behavior in elections
(see, e.g., [74,75]) and preference elicitation [52]. Some of these easiness results
extend to preference profiles that are nearly single-peaked, i.e., can be made
single-peaked by a small number of modifications (such as deleting a few voters
or collapsing or swapping a few alternatives) (see, e.g., [56,57,75,134]).

Computational Social Choice: The First Ten Years and Beyond 51

In single-peaked profiles, alternatives can be positioned on a line in a way that
respects the voters’ preferences. We can also obtain positive algorithmic results
if alternatives can be mapped to a tree [109,137] or a cycle [110]. Another app-
roach is based on ordering voters rather than alternatives; the resulting domain
of single-crossing preferences also admits efficient algorithms for a number of
problems that are otherwise computationally hard (see, e.g., [95,125]).

An interesting class of algorithmic problems associated with restricted pref-
erence domains is to determine whether a given profile belongs to a particular
domain. For single-peaked and single-crossing preferences, these problems admit
efficient algorithms [59] as well as elegant characterizations in terms of forbidden
substructures [21,44]. By contrast, for trees, the complexity depends on whether
we are satisfied with any tree, in which case there is an efficient algorithm [130],
or whether we want to construct a tree that satisfies additional constraints, in
which case the answer depends on the nature of the constraints [109]. A related
question is whether voters and alternatives can be embedded into a d-dimensional
space so that the preferences are driven by distances: for d = 1 the existence of
such an embedding can be determined in polynomial time [59], but for d > 1 this
problem is equivalent to the existential theory of reals (and thus, in particular,
NP-hard) [107]. It is also hard to determine whether a preference profile is close
to being single-peaked or single-crossing for many distance measures (with some
notable exceptions) [45,57,69].

A more extensive survey of recent computational results for restricted
domains is provided by Elkind et al. [66].

3 Voting Equilibria and Iterative Voting

In many voting scenarios, a voter or a group of voters can alter an election out-
come to their benefit by misrepresenting their preferences; indeed, no reasonable
voting rule is immune to this problem [82,120]. As a consequence, understand-
ing the complexity of finding a manipulative vote under various voting rules has
been a prominent research topic in computational social choice since the incep-
tion of the area (see, e.g., the survey by Conitzer and Walsh [55]). However, the
standard setting of voting manipulation assumes that only some of the voters
are strategic, and the interests of all strategic voters are aligned.

When all voters act strategically, it is natural to assume that their behavior
is governed by a game-theoretic solution concept, such as Nash equilibrium.
However, it is not easy to identify an appropriate solution concept: voting games
rarely admit dominant strategies, and they often have many Nash equilibria. For
instance, under plurality voting with at least three voters, the situation where all
voters vote for the same alternative is a Nash equilibrium, even if this alternative
is universally hated, as no voter can unilaterally change the election outcome.

One can eliminate some of these equilibria by assuming that, in addition to
preferences over alternatives, voters also have secondary preferences: e.g., they
may prefer not to lie unless a lie is clearly beneficial (such voters are called truth-
biased), or they may prefer not to participate at all if their vote cannot influence

52 H. Aziz et al.

the election outcome (such voters are called lazy). Either assumption eliminates
many unrealistic Nash equilibria; the properties of the surviving equilibria and
their computational complexity have been investigated by a number of authors
[62,63,103,129]. Another useful technique to get rid of many of the unintuitive
outcomes is to focus on trembling-hand Nash equilibria [106].

An alternative approach is to move away from the assumption that all vot-
ers submit their ballots simultaneously. For instance, one can consider settings
where voters submit their ballots one by one; the appropriate solution concept is
then subgame-perfect Nash equilibrium [58,133]. Alternatively, one can consider
dynamic mechanisms, where voters take turns changing their ballots in response
to the observed outcome, until no voter has an incentive to make a change: this
line of work was initiated by Meir et al. [97], who focused on better/best-response
dynamics of plurality voting, and has been subsequently extended to other vot-
ing rules (see, e.g., [84,93,104,116]). Convergence and complexity of iterative
voting depends on whether voters get to observe the full set of current ballots or
just some aggregated information about the ballot profile [68,98,115], whether
voters compute their best responses at each step, or may use other heuristics
[84,105], and whether voters exhibit secondary preferences, such as laziness or
truth bias [113]; see the recent survey by Meir [96].

4 Multiwinner Voting

In multiwinner voting, the goal is to select not just a single winner, but a fixed-
size set of winners (a committee). Multiwinner voting has a diverse set of appli-
cations, which include electing parliaments, shortlisting candidates for a job,
selecting locations for public facilities, or deciding which products to advertise
to customers. As a consequence, there is a wide variety of multiwinner voting
rules, and the research challenge is to formulate desirable properties (axioms) for
such rules so as to decide which rules are more suitable for each application, as
well as to develop efficient algorithms for computing the outputs of such rules.

Multiwinner voting rules can be broadly classified according to their inputs;
while most of the research so far focused on rules where voters have to rank the
alternatives, there is also a substantial body of work on multiwinner rules that
merely ask each voter to indicate which alternatives they approve.

For ranked ballots, an important class of multiwinner rules is that of commit-
tee scoring rules [65], which can be seen as analogues of the classic single-winner
scoring rules. In more detail, under single-winner scoring rules, each voter assigns
a certain number of points to each alternative, based on that alternative’s posi-
tion in her ranking. A typical example is the Borda rule: the Borda score assigned
by voter v to alternative c is given by m − j, where j is the position of c in v’s
ranking and m is the number of alternatives; the winner(s) are the alternatives
with the highest total Borda score (summed over all voters). Similarly, under
committee scoring rules, each voter assigns a score to each committee, based on
the set of positions of committee members in her preference order. For instance,
the score that voter v assigns to a committee S can be the sum of Borda scores

Computational Social Choice: The First Ten Years and Beyond 53

of all members of S, or the Borda score of v’s most preferred member of S;
under the former approach, the winning size-k committee consists of k alterna-
tives with the highest Borda score, and under the latter approach we get the
well-known Chamberlin–Courant rule [50].

An alternative approach is based on extending Condorcet’s principle to the
multiwinner setting. There are several ways to implement this idea: one can
directly compare committees and ask for a committee that is preferred to every
other committee by a majority of voters, or one can compare committees and
individual alternatives, and require that each committee member is preferred to
each non-member by a majority of voters [22,80,114], or, alternatively, that no
‘large’ group of voters prefers a non-member of the committee to each committee
member [20,61]. Yet another class of voting rules, which includes the popular
single transferable vote rule, is based on iteratively adding alternatives to the
committee and removing or reweighting the voters who approve these alterna-
tives. The seemingly simpler setting of multiwinner voting with approval ballots
also admits a variety of interesting voting rules; in fact, there are sophisticated
approval-based multiwinner rules that date back to 19th century such as those
due to Thiele and Phragmén. This area also has connections to the literature on
apportionment [46].

Unfortunately, for many appealing multiwinner rules it is NP-hard to find
a winning committee [15,92,94,112,126]. To circumvent these hardness results,
researchers have developed approximation algorithms and used techniques of
fixed-parameter tractability (see, e.g., [24,48,94,124,126]); also, it has been
shown that many multiwinner voting rules become easier when voters’ pref-
erences belong to a restricted domain (see Sect. 2) [24,60,108,110,125,137].

Computational social choice researchers have also contributed to understand-
ing multiwinner voting rules from a normative perspective. For ranked ballots,
Elkind et al. [65] put together a list of prominent multiwinner rules, formulated
a number of desirable properties of such rules, and determined which of the rules
in their list satisfied each property. Interestingly, they observed that an approx-
imation algorithm for an NP-hard voting rule, when interpreted as a voting rule
in its own right, may perform better according to these criteria than the rule it
was meant to approximate; this is the case, for instance, for the Greedy Monroe
rule of Skowron et al. [124]. For approval-based ballots, the justified represen-
tation axiom and its extensions have been used to explain some features of the
important Proportional Approval Voting (PAV) rule [19,119]. The class of com-
mittee scoring rules discussed in the beginning of this section was shown to admit
an axiomatic characterization [127] that is reminiscent of Young’s famous char-
acterization of single-winner scoring rules [136]; the structure of this class and
axiomatic properties of individual rules within this class are a subject of ongoing
research (see, e.g., [49,64,76,77,123,126]). We refer the reader to the recent sur-
vey by Faliszewski et al. [78] for further details on axiomatic and computational
properties of multiwinner rules.

54 H. Aziz et al.

5 Probabilistic Social Choice

Randomization plays an important role in social choice theory. It is easily seen
that deterministically picking a single winner is at variance with basic fairness
principles (for example, when there are two alternatives and two voters such
that each voter prefers a different alternative). In the past few years, there has
been refreshed interest in voting rules that return probability distributions over
alternatives (so-called lotteries) (e.g., [11,13,14,31,32,34]). Often, the outcomes
of these rules can also be interpreted as fractional shares of the alternatives.

Randomization may provide a way to circumvent classic impossibility results
because the design space of probabilistic voting rules is much richer than that
of deterministic ones. Since it is impractical to ask voters for their complete
preferences over all lotteries, a common approach is to systematically extend
preferences over alternatives to (possibly incomplete) preferences over lotteries
via so-called preference extensions. There are various sensible preference exten-
sions, which in turn lead to different generalizations of standard properties such
as strategyproofness (no voter is better off by misrepresenting his preferences)
and Pareto efficiency (no voter can be made better off without making another
one worse off). A very influential preference extension is based on first-order
stochastic dominance (SD). According to this extension, lottery p is preferred
to lottery q if and only if, for every alternative x, the probability that p selects
an alternative that is at least as good as x is greater or equal than the proba-
bility that q selects such an alternative. Equivalently, p is preferred to q if and
only if, for every utility function consistent with the preferences over alterna-
tives, p yields at least as much expected utility as q. A series of increasingly
difficult theorems has recently culminated in a sweeping computer-aided impos-
sibility, showing that there is no randomized rule that simultaneously satisfies
SD-efficiency and weak SD-strategyproofness [32], see also Sect. 7.

Of course, every set-valued voting rule can be straightforwardly turned into a
randomized rule by returning the uniform lottery over all winners. Randomiza-
tion, however, allows for more elaborate rules that satisfy properties unmatched
by deterministic rules. Particularly noteworthy in this context are random serial
dictatorship (RSD) and maximal lotteries (ML).

RSD is defined by picking a sequence of the voters uniformly at random
and then invoking serial dictatorship where voters proceed in a sequence, and
each voter narrows down the set of alternatives by picking his most preferred
alternatives among the ones selected by previous voters. RSD enjoys strong SD-
strategyproofness, but violates SD-efficiency. It is often used in the domain of
assignment where it is also referred to as random priority (see Sect. 6). While
implementing RSD by uniformly selecting a sequence of agents and then running
serial dictatorship is straightforward, it was shown that computing the result-
ing RSD probabilities is #P-complete [10], but fixed parameter tractable for
parameters such as the number of voters or the number of alternatives [7].

ML is defined as the rule that returns all lotteries that are at least as good as
any other lottery in a well-defined way. Maximal lotteries can thus be viewed as
a probabilistic generalization of the notion of a Condorcet winner. However, in

Computational Social Choice: The First Ten Years and Beyond 55

contrast to deterministic Condorcet winners which often fail to exist, existence
of maximal lotteries is guaranteed by the Minimax Theorem. ML satisfies a very
strong notion of efficiency (stronger than SD-efficiency), but fails to be even
weakly SD-strategyproof. Maximal lotteries are equivalent to mixed maximin
strategies in a symmetric zero-sum game induced by the voters’ preferences and
can be computed in polynomial time via linear programming. ML has been
characterized as the only randomized voting rule that satisfies two fairly natural
consistency conditions and it has been repeatedly recommended for practical use
(see [33]).2

Other computational work on probabilistic social choice deals with estab-
lishing hardness of manipulation via randomization (e.g., [54,102,132]), approx-
imating deterministic voting rules (e.g., [25,111,122]), defining new randomized
rules (e.g., [4,8]), and measuring the worst-case utilitarian performance of ran-
domized voting rules (e.g., [1]). A more comprehensive overview of recent trends
in probabilistic social choice is provided by Brandt [36].

6 Random Assignment

Random assignment is concerned with the probabilistic assignment of m objects
to n agents. Each agent specifies transitive and complete preferences over the
objects, and the goal is to allocate the objects among the agents in a fair, efficient,
and strategyproof manner. When fairly assigning indivisible objects, randomiza-
tion is necessary in order to satisfy agents with identical preferences. Possible
applications include assigning dormitories to students, jobs to applicants, rooms
to housemates, processor time slots to jobs, parking spaces to employees, offices
to workers, kidneys to patients, etc.

For simplicity, it is often assumed that m = n, that each agent has demand
for exactly one object (unit demand), and that individual preferences are strict.
A random assignment is a probability distribution over deterministic assign-
ments and can be represented by a matrix that specifies, for each agent and each
object, the probability with which the agent receives the object. The matrix is
bistochastic, which means that all row sums and all column sums are equal to
1.3 A random assignment rule maps each preference profile to a random assign-
ment. It is assumed that agents are only concerned about their individual ran-
dom assignment, given by the corresponding row of the bistochastic matrix. In
order to reason about the axiomatic properties of random assignments and ran-
dom assignment rules, preferences over objects can be extended to preferences
over lotteries just as described in Sect. 5. It is then possible to define efficiency,
strategyproofness, and envy-freeness (no agent prefers another agent’s random
assignment) based on the SD preference extension. Bogomolnaia and Moulin
[29] have shown that no random assignment rule satisfies SD-efficiency, strong
2 ML is one of several voting rules used by the online voting tool Pnyx (https://pnyx.

dss.in.tum.de).
3 By the Birkhoff-von Neumann Theorem, any random assignment can be represented

by a (not necessarily unique) convex combination over discrete assignments.

https://pnyx.dss.in.tum.de
https://pnyx.dss.in.tum.de

56 H. Aziz et al.

SD-strategyproofness and equal treatments of equals (agents with identical pref-
erences receive identical individual random assignments), even when individual
preferences are strict. The tradeoff among these properties is the subject of
ongoing research (e.g., [5,99]).

RSD, as described in Sect. 5, has a particularly natural interpretation in ran-
dom assignment: a sequence of agents is picked uniformly at random and then
one agent after another picks his most preferred of the remaining objects. RSD
inherits strategyproofness from the more general voting domain, but still violates
SD-efficiency and only satisfies a weak notion of SD-envy-freeness. The compu-
tational properties of RSD mentioned in Sect. 5 also hold within the domain of
assignment [7,10,118].

A well-studied alternative to RSD is the probabilistic serial (PS) rule, which
is SD-efficient, strongly SD-envy-free, and weakly SD-strategyproof (as long
as individual preferences are strict).4 Under PS, agents ‘eat’ the most pre-
ferred available object at an equal rate until all objects are consumed. When
a most preferred object is completely consumed, agents eat their next most pre-
ferred object that is still available. The fraction of any object consumed by an
agent is the probability of the agent receiving that object. There have been a
number of appealing axiomatic characterizations of PS using SD-efficiency, SD-
envy-freeness, and additional properties [27,28,131]. Furthermore, PS has been
extended in a number of ways (e.g., [3,47,88,121,135]). In particular, there is
a natural extension to the more general case of multi-unit demand [29,86,91].
Just as in the case of ties in the preferences, weak SD-strategyproofness breaks
down when allowing multi-unit demand. However, it has been shown that the
problem of manipulating PS to increase one’s expected utility is NP-hard [16].

Maximal lotteries, as described in Sect. 5, are known as popular random
assignments within the domain of assignment [12,89]. In contrast to the voting
domain, however, popular random assignments are rarely unique and popularity
can be seen as a property of random assignment rules rather than a rule by itself.
In this sense, popularity is stronger than SD-efficiency and it is violated by both
RSD and PS. Moreover, popularity has been shown to be incompatible with each
of weak SD-strategyproofness and weak SD-envy-freeness [42]. Kavitha et al. [89]
have shown that popular random assignments can be computed in polynomial
time via linear programming.

Apart from examining existing rules, the structure and computational com-
plexity of efficiency notions constitutes an interesting research area [14,17]. There
is a close connection between probabilistic assignment of indivisible objects and
deterministic allocation of divisible objects (see, e.g., [9]). Other recent work
has focused on theoretically and experimentally analyzing the performance of
random assignment rules (e.g., [18,79,87]) and extending the model to allow
for other richer features such as incorporating side constraints [47], priorities of
objects over agents [90], endowments [3], or optional participation [35].

4 No rule satisfies these conditions when ties are allowed in the agents’ preferences
[88].

Computational Social Choice: The First Ten Years and Beyond 57

7 Computer-Aided Theorem Proving

Due to its rigorous axiomatic foundation and its emphasis on impossibility
results, social choice theory is particularly well-suited for computer-aided theo-
rem proving techniques. Apart from work that is directed towards formalizing
and verifying existing results (see, e.g., [83,101]), a number of recent papers have
proved new theorems with the help of computers [30,32,37,41,43]. This branch
of research was initiated by Tang and Lin [128], who reduced well-known impos-
sibility results such as Arrow’s theorem to finite instances, which could then be
checked by SAT solvers.

In more detail, the approach for these proofs usually goes along the following
lines:5 First, it is manually proven that if there exists a voting rule that satisfies
a given set of axioms for m+1 alternatives and n+1 voters, then we can also find
a voting rule that satisfies the same set of axioms for m alternatives and n voters.
The contrapositive of this statement can serve as an induction step for impossibil-
ity theorems: If there is no voting rule satisfying some axioms for fixed m and n,
then there is no such rule for any larger m and n either. Thus, it suffices to prove
the impossibility for fixed—and ideally small—m and n. Checking whether there
exists a voting rule that satisfies certain axioms even for small m and n can be
very difficult and is obviously a much more complex task than checking whether
a given voting rule satisfies the axioms. Exhaustive search is infeasible because
the number of possible voting rules is prohibitively large. These problems are
therefore typically tackled using general problem solvers such as SAT (propo-
sitional satisfiability), SMT (satisfiability modulo theories), ASP (answer set
programming), or MIP (mixed integer programming). In most cases, the axioms
are encoded as a propositional formula and a SAT solver is asked whether this
formula has a satisfying assignment. If it does, the satisfying assignment can be
translated back to a concrete voting rule that satisfies the given axioms. If the
formula is unsatisfiable, no such voting rule exists. Many SAT instances are ini-
tially computationally infeasible and can only be solved after leveraging insights
into the axioms and finding a restricted domain of preference profiles sufficient
for the impossibility. A common criticism of computer-aided proving methods is
that the verdict of the computer usually stands without human-readable proof.
Fortunately, when relying on SAT solving, this criticism can be addressed by
extracting a human-readable proof from an inclusion-minimal unsatisfiable set
of clauses returned by the SAT solver. This approach, pioneered by Brandt and
Geist [37], has been successfully applied in several recent papers [30,32,41,43].

Two representative results in this branch of research are an improved
computer-aided proof of Moulin’s No-Show Paradox and an impossibility for
randomized voting rules mentioned in Sect. 5. The first proof requires only 12
voters (instead of Moulin’s 25) and this bound is furthermore shown to be tight
[41]. The computer proof (unexpectedly) exploits certain automorphisms in pref-
erence profiles, which makes the proof easier to verify and arguably more elegant

5 This section focuses on voting, but all techniques can be similarly applied to other
social choice domains such as assignment or coalition formation.

58 H. Aziz et al.

than Moulin’s proof. The second result shows the incompatibility of SD-efficiency
and weak SD-strategyproofness and strengthens a number of previous impossi-
bilities [32]. Since working with lotteries requires real-valued arithmetic (rather
than only Boolean logic), the statement was obtained via an SMT solver. The
resulting proof is rather complex and difficult to verify for humans. It was there-
fore translated back into a proof in higher-order logic, which was in turn verified
via the interactive theorem prover Isabelle/HOL.6

An important benefit of the described approach is its universality and flexi-
bility. As soon as a problem has been formalized, it is straightforward to adapt
individual axioms or alter the encoding so that related problems can be solved,
too. For a more comprehensive account of computed-aided theorem proving in
social choice theory, the reader is referred to the survey by Geist and Peters [81].

8 Further Reading

There are various excellent sources that extensively cover the existing literature,
most notably the Handbook of Computational Social Choice [40] and a recently
released book on trends in computational social choice [67]. Further overviews
and introductions were provided by Rothe [117], Brandt et al. [38], Conitzer [53],
Faliszewski and Procaccia [70], Faliszewski et al. [73], and Chevaleyre et al. [51].

Acknowledgements. Haris Aziz is supported by a Julius Career Award. Felix Brandt
is supported by the DFG under grant BR 2312/11-1. Edith Elkind and Piotr Skowron
are supported by the ERC under grant 639945 (ACCORD). Piotr Skowron is also sup-
ported by a Humboldt Research Fellowship for Postdoctoral Researchers. The authors
thank Florian Brandl and Dominik Peters for helpful feedback.

References

1. Anshelevich, E., Postl, J.: Randomized social choice functions under metric pref-
erences. J. AI Res. 58, 797–827 (2017)

2. Arrow, K.J.: Social Choice and Individual Values, 1st edn. Cowles Foundation,
New Haven (1951)

3. Athanassoglou, S., Sethuraman, J.: House allocation with fractional endowments.
Int. J. Game Theory 40(3), 481–513 (2011)

4. Aziz, H.: Maximal recursive rule: a new social decision scheme. In: Proceedings
of 23rd IJCAI, pp. 34–40 (2013)

5. Aziz, H., Kasajima, Y.: Impossibilities for probabilistic assignment. Soc. Choice
Welf. 49(2), 255–275 (2017)

6. Aziz, H., Mackenzie, S.: A discrete and bounded envy-free cake cutting protocol
for any number of agents. In: Proceedings of 57th FOCS, pp. 416–427 (2016)

7. Aziz, H., Mestre, J.: Parametrized algorithms for random serial dictatorship.
Math. Soc. Sci. 72, 1–6 (2014)

6 Unfortunately, the theorems considered in this context are much too complex to be
proven directly by higher-order theorem provers.

Computational Social Choice: The First Ten Years and Beyond 59

8. Aziz, H., Stursberg, P.: A generalization of probabilistic serial to randomized
social choice. In: Proceedings of 28th AAAI, pp. 559–565 (2014)

9. Aziz, H., Ye, C.: Cake cutting algorithms for piecewise constant and piecewise
uniform valuations. In: Liu, T.-Y., Qi, Q., Ye, Y. (eds.) WINE 2014. LNCS,
vol. 8877, pp. 1–14. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
13129-0 1

10. Aziz, H., Brandt, F., Brill, M.: The computational complexity of random serial
dictatorship. Econ. Lett. 121(3), 341–345 (2013)

11. Aziz, H., Brandt, F., Brill, M.: On the tradeoff between economic efficiency and
strategyproofness in randomized social choice. In: Proceedings of 12th AAMAS,
pp. 455–462 (2013)

12. Aziz, H., Brandt, F., Stursberg, P.: On popular random assignments. In: Vöcking,
B. (ed.) SAGT 2013. LNCS, vol. 8146, pp. 183–194. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-41392-6 16

13. Aziz, H., Brandl, F., Brandt, F.: On the incompatibility of efficiency and strat-
egyproofness in randomized social choice. In: Proceedings of 28th AAAI, pp.
545–551 (2014)

14. Aziz, H., Brandl, F., Brandt, F.: Universal Pareto dominance and welfare for
plausible utility functions. J. Math. Econ. 60, 123–133 (2015)

15. Aziz, H., Gaspers, S., Gudmundsson, J., Mackenzie, S., Mattei, N., Walsh, T.:
Computational aspects of multi-winner approval voting. In: Proceedings of 14th
AAMAS, pp. 107–115 (2015)

16. Aziz, H., Gaspers, S., Mackenzie, S., Mattei, N., Narodytska, N., Walsh, T.:
Manipulating the probabilistic serial rule. In: Proceedings of 14th AAMAS, pp.
1451–1459 (2015)

17. Aziz, H., Mackenzie, S., Xia, L., Ye, C.: Ex post efficiency of random assignments.
In: Proceedings of 14th AAMAS, pp. 1639–1640 (2015)

18. Aziz, H., Chen, J., Filos-Ratsikas, A., Mackenzie, S., Mattei, N.: Egalitarianism of
random assignment mechanisms. In: Proceedings of 15th AAMAS, pp. 1267–1268
(2016)

19. Aziz, H., Brill, M., Conitzer, V., Elkind, E., Freeman, R., Walsh, T.: Justified
representation in approval-based committee voting. Soc. Choice Welf. 48(2), 461–
485 (2017)

20. Aziz, H., Elkind, E., Faliszewski, P., Lackner, M., Skowron, P.: The Condorcet
principle for multiwinner elections: from shortlisting to proportionality. In: Pro-
ceedings of 26th IJCAI, pp. 84–90 (2017)

21. Ballester, M.A., Haeringer, G.: A characterization of the single-peaked domain.
Soc. Choice Welf. 36(2), 305–322 (2011)

22. Barberà, S., Coelho, D.: How to choose a non-controversial list with k names.
Soc. Choice Welf. 31(1), 79–96 (2008)

23. Bartholdi III, J., Tovey, C.A., Trick, M.A.: The computational difficulty of manip-
ulating an election. Soc. Choice Welf. 6(3), 227–241 (1989)

24. Betzler, N., Slinko, A., Uhlmann, J.: On the computation of fully proportional
representation. J. AI Res. 47, 475–519 (2013)

25. Birrell, E., Pass, R.: Approximately strategy-proof voting. In: Proceedings of 22nd
IJCAI, pp. 67–72 (2011)

26. Black, D.: On the rationale of group decision-making. J. Polit. Econ. 56(1), 23–34
(1948)

27. Bogomolnaia, A.: Random assignment: redefining the serial rule. J. Econ. Theory
158, 308–318 (2015)

https://doi.org/10.1007/978-3-319-13129-0_1
https://doi.org/10.1007/978-3-319-13129-0_1
https://doi.org/10.1007/978-3-642-41392-6_16

60 H. Aziz et al.

28. Bogomolnaia, A., Heo, E.J.: Probabilistic assignment of objects: characterizing
the serial rule. J. Econ. Theory 147, 2072–2082 (2012)

29. Bogomolnaia, A., Moulin, H.: A new solution to the random assignment problem.
J. Econ. Theory 100(2), 295–328 (2001)

30. Brandl, F., Brandt, F., Geist, C., Hofbauer, J.: Strategic abstention based on
preference extensions: positive results and computer-generated impossibilities. In:
Proceedings of 24th IJCAI, pp. 18–24 (2015)

31. Brandl, F., Brandt, F., Hofbauer, J.: Incentives for participation and abstention
in probabilistic social choice. In: Proceedings of 14th AAMAS, pp. 1411–1419
(2015)

32. Brandl, F., Brandt, F., Geist, C.: Proving the incompatibility of efficiency and
strategyproofness via SMT solving. In: Proceedings of 25th IJCAI, pp. 116–122
(2016)

33. Brandl, F., Brandt, F., Seedig, H.G.: Consistent probabilistic social choice. Econo-
metrica 84(5), 1839–1880 (2016)

34. Brandl, F., Brandt, F., Suksompong, W.: The impossibility of extending random
dictatorship to weak preferences. Econ. Lett. 141, 44–47 (2016)

35. Brandl, F., Brandt, F., Hofbauer, J.: Random assignment with optional partici-
pation. In: Proceedings of 16th AAMAS, pp. 326–334 (2017)

36. Brandt, F.: Rolling the dice: recent results in probabilistic social choice. In:
Endriss, U. (ed.) Trends in Computational Social Choice. AI Access (2017)

37. Brandt, F., Geist, C.: Finding strategyproof social choice functions via SAT solv-
ing. J. AI Res. 55, 565–602 (2016)

38. Brandt, F., Conitzer, V., Endriss, U.: Computational social choice. In: Weiß, G.
(ed.) Multiagent Systems, 2nd edn, pp. 213–283. MIT Press, Cambridge (2013)

39. Brandt, F., Brill, M., Hemaspaandra, E., Hemaspaandra, L.: Bypassing combi-
natorial protections: polynomial-time algorithms for single-peaked electorates. J.
AI Res. 53, 439–496 (2015)

40. Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A. (eds.): Handbook
of Computational Social Choice. Cambridge University Press, Cambridge (2016)

41. Brandt, F., Geist, C., Peters, D.: Optimal bounds for the no-show paradox via
SAT solving. Math. Soc. Sci. 90, 18–27 (2017)

42. Brandt, F., Hofbauer, J., Suderland, M.: Majority graphs of assignment problems
and properties of popular random assignments. In: Proceedings of 16th AAMAS,
pp. 335–343 (2017)

43. Brandt, F., Saile, C., Stricker, C.: Voting with ties: strong impossibilities via SAT
solving. In: Proceedings of 17th AAMAS. IFAAMAS (2018)

44. Bredereck, R., Chen, J., Woeginger, G.J.: A characterization of the single-crossing
domain. Soc. Choice Welf. 41(1), 989–998 (2013)

45. Bredereck, R., Chen, J., Woeginger, G.: Are there any nicely structured preference
profiles nearby? Math. Soc. Sci. 79, 61–73 (2016)

46. Brill, M., Laslier, J.F., Skowron, P.: Multiwinner approval rules as apportionment
methods. In: Proceedings of 31st AAAI, pp. 414–420 (2017)

47. Budish, E., Che, Y.-K., Kojima, F., Milgrom, P.: Designing random allocation
mechanisms: theory and applications. Am. Econ. Rev. 103(2), 585–623 (2013)

48. Byrka, J., Sornat, K.: PTAS for minimax approval voting. In: Liu, T.-Y., Qi, Q.,
Ye, Y. (eds.) WINE 2014. LNCS, vol. 8877, pp. 203–217. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-13129-0 15

49. Caragiannis, I., Nath, S., Procaccia, A.D., Shah, N.: Subset selection via implicit
utilitarian voting. J. AI Res. 58, 123–152 (2017)

https://doi.org/10.1007/978-3-319-13129-0_15

Computational Social Choice: The First Ten Years and Beyond 61

50. Chamberlin, J.R., Courant, P.N.: Representative deliberations and representative
decisions: proportional representation and the Borda rule. Am. Polit. Sci. Rev.
77(3), 718–733 (1983)

51. Chevaleyre, Y., Endriss, U., Lang, J., Maudet, N.: A short introduction to com-
putational social choice. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W.,
Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 51–69.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-69507-3 4

52. Conitzer, V.: Eliciting single-peaked preferences using comparison queries. J. AI
Res. 35, 161–191 (2009)

53. Conitzer, V.: Making decisions based on the preferences of multiple agents. Com-
mun. ACM 53(3), 84–94 (2010)

54. Conitzer, V., Sandholm, T.: Universal voting protocol tweaks to make manipula-
tion hard. In: Proceedings of 18th IJCAI, pp. 781–788 (2003)

55. Conitzer, V., Walsh, T.: Barriers to manipulation in voting. In: Brandt, F.,
Conitzer, V., Endriss, U., Lang, J., Procaccia, A.D. (eds.) Handbook of Com-
putational Social Choice. Cambridge University Press, Cambridge (2016)

56. Cornaz, D., Galand, L., Spaajaard, O.: Bounded single-peaked width and propor-
tional representation. In: Proceedings of 20th ECAI, pp. 270–275 (2012)

57. Cornaz, D., Galand, L., Spaajaard, O.: Kemeny elections with bounded single-
peaked or single-crossing width. In: Proceedings of 23th IJCAI, pp. 76–82 (2013)

58. Desmedt, Y., Elkind, E.: Equilibria of plurality voting with abstentions. In: Pro-
ceedings of 11th ACM-EC, pp. 347–356 (2010)

59. Doignon, J., Falmagne, J.: A polynomial time algorithm for unidimensional
unfolding representations. J. Algorithms 16(2), 218–233 (1994)

60. Elkind, E., Lackner, M.: Structure in dichotomous preferences. In: Proceedings of
24th IJCAI, pp. 2019–2025 (2015)

61. Elkind, E., Lang, J., Saffidine, A.: Condorcet winning sets. Soc. Choice Welf.
44(3), 493–517 (2015)

62. Elkind, E., Markakis, E., Obraztsova, S., Skowron, P.: Equilibria of plurality vot-
ing: lazy and truth-biased voters. In: Hoefer, M. (ed.) SAGT 2015. LNCS, vol.
9347, pp. 110–122. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48433-3 9

63. Elkind, E., Markakis, E., Obraztsova, S., Skowron, P.: Complexity of finding equi-
libria of plurality voting under structured preferences. In: Proceedings of 15th
AAMAS, pp. 394–401 (2016)

64. Elkind, E., Faliszewski, P., Laslier, J., Skowron, P., Slinko, A., Talmon, N.:
What do multiwinner voting rules do? An experiment over the two-dimensional
Euclidean domain. In: Proceedings of 31st AAAI, pp. 494–501 (2017)

65. Elkind, E., Faliszewski, P., Skowron, P., Slinko, A.: Properties of multiwinner
voting rules. Soc. Choice Welf. 48(3), 599–632 (2017)

66. Elkind, E. Lackner, M., Peters, D.: Structured preferences. In: Endriss, U. (ed.)
Trends in Computational Social Choice. AI Access (2017)

67. Endriss, U. (ed.): Trends in Computational Social Choice. AI Access (2017)
68. Endriss, U., Obraztsova, S., Polukarov, M., Rosenschein, J.S.: Strategic voting

with incomplete information. In: Proceedings of 25th IJCAI, pp. 236–242 (2016)
69. Erdélyi, G., Lackner, M., Pfandler, A.: Computational aspects of nearly single-

peaked electorates. J. AI Res. 58, 297–337 (2017)
70. Faliszewski, P., Procaccia, A.D.: AI’s war on manipulation: are we winning? AI

Mag. 31(4), 53–64 (2010)

https://doi.org/10.1007/978-3-540-69507-3_4
https://doi.org/10.1007/978-3-662-48433-3_9
https://doi.org/10.1007/978-3-662-48433-3_9

62 H. Aziz et al.

71. Faliszewski, P., Rothe, J.: Control and bribery in voting. In: Brandt, F., Conitzer,
V., Endriss, U., Lang, J., Procaccia, A.D. (eds.) Handbook of Computational
Social Choice. Cambridge University Press, Cambridge (2016)

72. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: A richer under-
standing of the complexity of election systems. In: Ravi, S., Shukla, S. (eds.)
Fundamental Problems in Computing: Essays in Honor of Professor Daniel J.
Rosenkrantz. Springer, Dordrecht (2009). https://doi.org/10.1007/978-1-4020-
9688-4 14

73. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.: Using complexity to pro-
tect elections. Commun. ACM 53(11), 74–82 (2010)

74. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: The shield that
never was: societies with single-peaked preferences are more open to manipulation
and control. Inf. Comput. 209(2), 89–107 (2011)

75. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A.: The complexity of
manipulative attacks in nearly single-peaked electorates. Artif. Intell. 207, 69–99
(2014)

76. Faliszewski, P., Skowron, P., Slinko, A., Talmon, N.: Committee scoring rules:
axiomatic classification and hierarchy. In: Proceedings of 25th IJCAI, pp. 250–
256 (2016)

77. Faliszewski, P., Skowron, P., Slinko, A., Talmon, N.: Multiwinner analogues of the
plurality rule: axiomatic and algorithmic views. In: Proceedings of 30th AAAI,
pp. 482–488 (2016)

78. Faliszewski, P., Skowron, P., Slinko, A., Talmon, N.: Multiwinner voting: a new
challenge for social choice theory. In: Endriss, U. (ed.) Trends in Computational
Social Choice. AI Access (2017)

79. Filos-Ratsikas, A., Frederiksen, S.K.S., Zhang, J.: Social welfare in one-sided
matchings: random priority and beyond. In: Lavi, R. (ed.) SAGT 2014. LNCS,
vol. 8768, pp. 1–12. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44803-8 1

80. Gehrlein, W.V.: The Condorcet criterion and committee selection. Math. Soc.
Sci. 10(3), 199–209 (1985)

81. Geist, C., Peters, D.: Computer-aided methods for social choice theory. In:
Endriss, U. (ed.) Trends in Computational Social Choice. AI Access (2017)

82. Gibbard, A.: Manipulation of voting schemes: a general result. Econometrica
41(4), 587–601 (1973)

83. Grandi, U., Endriss, U.: First-order logic formalisation of impossibility theorems
in preference aggregation. J. Philos. Logic 42(4), 595–618 (2013)

84. Grandi, U., Loreggia, A., Rossi, F., Venable, K.B., Walsh, T.: Restricted manip-
ulation in iterative voting: condorcet efficiency and borda score. In: Perny, P.,
Pirlot, M., Tsoukiàs, A. (eds.) ADT 2013. LNCS (LNAI), vol. 8176, pp. 181–192.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41575-3 14

85. Hemaspaandra, E., Spakowski, H., Vogel, J.: The complexity of Kemeny elections.
Theoret. Comput. Sci. 349(3), 382–391 (2005)

86. Heo, E.J.: Probabilistic assignment with multiple demands: a generalization of
the serial rule and and its characterization. J. Math. Econ. 54, 40–47 (2014)

87. Hosseini, H., Larson, K., Cohen, R.: Investigating the characteristics of one-sided
matching mechanisms. In: Proceedings of 15th AAMAS, pp. 1443–1444 (2016)

88. Katta, A.-K., Sethuraman, J.: A solution to the random assignment problem on
the full preference domain. J. Econ. Theory 131(1), 231–250 (2006)

89. Kavitha, T., Mestre, J., Nasre, M.: Popular mixed matchings. Theoret. Comput.
Sci. 412(24), 2679–2690 (2011)

https://doi.org/10.1007/978-1-4020-9688-4_14
https://doi.org/10.1007/978-1-4020-9688-4_14
https://doi.org/10.1007/978-3-662-44803-8_1
https://doi.org/10.1007/978-3-662-44803-8_1
https://doi.org/10.1007/978-3-642-41575-3_14

Computational Social Choice: The First Ten Years and Beyond 63

90. Kesten, O., Unver, U.: A theory of school choice lotteries. Theor. Econ. 10(2),
543–595 (2015)

91. Kojima, F.: Random assignment of multiple indivisible objects. Math. Soc. Sci.
57(1), 134–142 (2009)

92. LeGrand, R., Markakis, E., Mehta, A.: Some results on approximating the mini-
max solution in approval voting. In: Proceedings of 6th AAMAS, pp. 1193–1195
(2007)

93. Lev, O., Rosenschein, J.S.: Convergence of iterative scoring rules. J. AI Res. 57,
573–591 (2016)

94. Lu, T., Boutilier, C.: Budgeted social choice: from consensus to personalized deci-
sion making. In: Proceedings of 22nd IJCAI, pp. 280–286 (2011)

95. Magiera, K., Faliszewski, P.: How hard is control in single-crossing elections? In:
Proceedings of 21st ECAI, pp. 579–584 (2014)

96. Meir, R.: Iterative voting. In: Endriss, U. (ed.) Trends in Computational Social
Choice. AI Access (2017)

97. Meir, R., Polukarov, M., Rosenschein, J.S., Jennings, N.R.: Convergence to equi-
libria in plurality voting. In: Proceedings of 24th AAAI, pp. 823–828 (2010)

98. Meir, R., Lev, O., Rosenschein, J.S.: A local-dominance theory of voting equilibria.
In: Proceedings of 15th ACM-EC, pp. 313–330 (2014)

99. Mennle, T., Seuken, S.: An axiomatic approach to characterizing and relaxing
strategyproofness of one-sided matching mechanisms. In: Proceedings of 15th
ACM-EC, pp. 37–38 (2014)

100. Moulin, H.: On strategy-proofness and single peakedness. Public Choice 35(4),
437–455 (1980)

101. Nipkow, T.: Social choice theory in HOL: Arrow and Gibbard-Satterthwaite. J.
Automated Reason. 43, 289–304 (2009)

102. Obraztsova, S., Elkind, E.: On the complexity of voting manipulation under ran-
domized tie-breaking. In: Proceedings of 22nd IJCAI, pp. 319–324 (2011)

103. Obraztsova, S., Markakis, E., Thompson, D.R.M.: Plurality voting with truth-
biased agents. In: Vöcking, B. (ed.) SAGT 2013. LNCS, vol. 8146, pp. 26–37.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41392-6 3

104. Obraztsova, S., Lev, O., Markakis, E., Rabinovich, Z., Rosenschein, J.S.: Beyond
plurality: truth-bias in binary scoring rules. In: Proceedings of 14th AAMAS, pp.
1733–1734 (2015)

105. Obraztsova, S., Markakis, E., Polukarov, M., Rabinovich, Z., Jennings, N.R.: On
the convergence of iterative voting: how restrictive should restricted dynamics be?
In: Proceedings of 29th AAAI, pp. 993–999 (2015)

106. Obraztsova, S., Rabinovich, Z., Elkind, E., Polukarov, M., Jennings, N.R.: Trem-
bling hand equilibria of plurality voting. In: Proceedings of 25th IJCAI, pp. 440–
446 (2016)

107. Peters, D.: Recognising multidimensional Euclidean preferences. In: Proceedings
of 31st AAAI, pp. 642–648 (2017)

108. Peters, D.: Single-peakedness and total unimodularity: new polynomial-time algo-
rithms for multi-winner elections. In: Proceedings of 32nd AAAI (2018)

109. Peters, D., Elkind, E.: Preferences single-peaked on nice trees. In: Proceedings of
30th AAAI, pp. 594–600 (2016)

110. Peters, D., Lackner, M.: Preferences single-peaked on a circle. In: Proceedings of
31st AAAI, pp. 649–655 (2017)

111. Procaccia, A.D.: Can approximation circumvent Gibbard-Satterthwaite? In: Pro-
ceedings of 24th AAAI, pp. 836–841 (2010)

https://doi.org/10.1007/978-3-642-41392-6_3

64 H. Aziz et al.

112. Procaccia, A.D., Rosenschein, J.S., Zohar, A.: On the complexity of achieving
proportional representation. Soc. Choice Welf. 30, 353–362 (2008)

113. Rabinovich, Z., Obraztsova, S., Lev, O., Markakis, E., Rosenschein, J.S.: Analysis
of equilibria in iterative voting schemes. In: Proceedings of 29th AAAI, pp. 1007–
1013 (2015)

114. Ratliff, T.C.: Some startling inconsistencies when electing committees. Soc.
Choice Welf. 21(3), 433–454 (2003)

115. Reijngoud, A., Endriss, U.: Voter response to iterated poll information. In: Pro-
ceedings of 11th AAMAS, pp. 635–644 (2012)

116. Reyhani, R., Wilson, M.C.: Best reply dynamics for scoring rules. In: Proceedings
of 20th ECAI, pp. 672–677 (2012)

117. Rothe, J. (ed.): Economics and Computation: An Introduction to Algorithmic
Game Theory, Computational Social Choice, and Fair Division. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-47904-9

118. Saban, D., Sethuraman, J.: The complexity of computing the random priority
allocation matrix. Math. Oper. Res. 40(4), 1005–1014 (2015)

119. Sánchez-Fernández, L., Elkind, E., Lackner, M., Fernández, N., Fisteus, J.A., Bas-
anta Val, P., Skowron, P.: Proportional justified representation. In: Proceedings
of 31st AAAI, pp. 670–676 (2017)

120. Satterthwaite, M.A.: Strategy-proofness and Arrow’s conditions: existence and
correspondence theorems for voting procedures and social welfare functions. J.
Econ. Theory 10(2), 187–217 (1975)

121. Schulman, L.J., Vazirani, V.V.: Allocation of divisible goods under lexicographic
preferences. In: Proceedings of 35th FSTTCS, pp. 543–559 (2015)

122. Service, T.C., Adams, J.A.: Strategyproof approximations of distance rationaliz-
able voting rules. In: Proceedings of 11th AAMAS, pp. 569–576 (2012)

123. Skowron, P.: What do we elect committees for? A voting committee model for
multi-winner rules. In: Proceedings of 24th IJCAI, pp. 1141–1148 (2015)

124. Skowron, P., Faliszewski, P., Slinko, A.: Achieving fully proportional representa-
tion: approximability result. Artif. Intell. 222, 67–103 (2015)

125. Skowron, P., Yu, L., Faliszewski, P., Elkind, E.: The complexity of fully propor-
tional representation for single-crossing electorates. Theoret. Comput. Sci. 569,
43–57 (2015)

126. Skowron, P., Faliszewski, P., Lang, J.: Finding a collective set of items: from
proportional multirepresentation to group recommendation. Artif. Intell. 241,
191–216 (2016)

127. Skowron, P., Faliszewski, P., Slinko, A.: Axiomatic characterization of committee
scoring rules. In: Proceedings of 6th COMSOC (2016)

128. Tang, P., Lin, F.: Computer-aided proofs of Arrow’s and other impossibility the-
orems. Artif. Intell. 173(11), 1041–1053 (2009)

129. Thomson, D.R.M., Lev, O., Leyton-Brown, K., Rosenschein, J.: Empirical analysis
of plurality election equilibria. In: Proceedings of 12th AAMAS, pp. 391–398
(2013)

130. Trick, M.A.: Recognizing single-peaked preferences on a tree. Math. Soc. Sci.
17(3), 329–334 (1989)

131. Ünver, M.U., Kesten, O., Kurino, M., Hashimoto, T., Hirata, D.: Two axiomatic
approaches to the probabilistic serial mechanism. Theor. Econ. 9, 253–277 (2014)

132. Walsh, T., Xia, L.: Lot-based voting rules. In: Proceedings of 11th AAMAS, pp.
603–610 (2012)

133. Xia, L., Conitzer, V.: Stackelberg voting games: computational aspects and para-
doxes. In: Proceedings of 24th AAAI, pp. 921–926 (2010)

https://doi.org/10.1007/978-3-662-47904-9

Computational Social Choice: The First Ten Years and Beyond 65

134. Yang, Y., Guo, J.: The control complexity of r-approval: from the single-peaked
case to the general case. In: Proceedings of 13th AAMAS, pp. 621–628 (2014)

135. Yilmaz, O.: Random assignment under weak preferences. Games Econ. Behav.
66(1), 546–558 (2009)

136. Young, H.P.: Social choice scoring functions. SIAM J. Appl. Math. 28(4), 824–838
(1975)

137. Yu, L., Chan, H., Elkind, E.: Multiwinner elections under preferences that are
single-peaked on a tree. In: Proceedings of 23rd IJCAI, pp. 425–431 (2013)

Geometric Optimization Revisited

Pankaj K. Agarwal1, Esther Ezra2,3, and Kyle Fox4(B)

1 Department of Computer Science, Duke University, Durham, NC 27708-0129, USA
2 Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
3 School of Math, Georgia Institute of Technology, Atlanta, GA 30332, USA

4 Department of Computer Science, The University of Texas at Dallas, Richardson,
TX 75080, USA

kyle.fox@utdallas.edu

Abstract. Many combinatorial optimization problems such as set cover,
clustering, and graph matching have been formulated in geometric set-
tings. We review the progress made in recent years on a number of such
geometric optimization problems, with an emphasis on how geometry
has been exploited to develop better algorithms. Instead of discussing
many problems, we focus on a few problems, namely, set cover, hitting
set, independent set, and computing maps between point sets.

1 Introduction

A combinatorial optimization problem is often formulated as maximizing or min-
imizing a function of one or more variables subject to a number of inequality (and
equality) constraints. In contrast to continuous optimization, the set of feasible
solutions is discrete or can be reduced to discrete. Because several problems in a
wide range of fields such as mathematics, operations research, statistics, graph
algorithms, machine learning, auction theory, robotics, GIS, computer graphics,
and computational geometry can be formulated as combinatorial optimization
problems, it has been an active research area for more than seventy years. Many
of the combinatorial optimization problems are known to be NP-Hard and thus
much attention has focused on fast approximation algorithms. With the increas-
ing size of data sets, faster, say, near-linear-time, approximation algorithms are
needed even if polynomial-time exact algorithms exist.

In many applications, the underlying optimization problem involves a large
number of constraints that are induced by a set of geometric objects in low
dimensions. In fact, one of the earliest combinatorial optimization problems stud-
ied was the transportation-plan problem in Euclidean space (see Sect. 4 below for
a formal definition), which was first investigated by the French mathematician

P.K. Agarwal and K. Fox are supported in part by NSF under grants CCF-15-13816,
CCF-15-46392, and IIS-14-08846, by ARO grant W911NF-15-1-0408, and by grant
2012/229 from the U.S.-Israel Binational Science Foundation. E. Ezra is supported in
part by NSF CAREER under grant CCF-15-53354, and by Grant 824/17 from the
Israel Science Foundation.

c© Springer Nature Switzerland AG 2019

B. Steffen and G. Woeginger (Eds.): Computing and Software Science, LNCS 10000, pp. 66–84, 2019.

https://doi.org/10.1007/978-3-319-91908-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91908-9_5&domain=pdf
https://doi.org/10.1007/978-3-319-91908-9_5

Geometric Optimization Revisited 67

Gaspard Monge in 1784. Furthermore, many classical combinatorial problems
have been formulated in geometric settings; e.g., the Euclidean traveling sales-
person problem: computing the shortest tour in a set of points in R

d; the k-center
problem: covering a set of points by k congruent disks of the smallest radius;
and the geometric hitting-set problem: stabbing a set of simple geometric objects
(e.g. disks) by the minimum number of points. We refer to such combinatorial
optimization problems as geometric optimization problems.

A natural question in the context of geometric optimization problems is
whether geometry can be exploited to obtain faster algorithms or to improve the
approximation factor in the case of approximation algorithms. This question has
received much attention over the last forty years and tremendous progress has
been made on a large class of problems. For example, faster algorithms have been
developed for low-dimensional linear programming [49], and a polynomial-time
ε-approximation algorithm is now known for the Euclidean traveling salesperson
problem [22,61] while no such algorithm exists for general graphs unless P = NP.

A survey paper by Agarwal and Sharir [14] in Vol. 1000 of LNCS (see [15]
for an expanded version of this survey) reviews the work on geometric optimiza-
tion until the early 1990s, including parametric search, prune-and-search, and
randomized algorithms for LP-type problems. In the current volume, we discuss
some of the main developments in this area over the last two decades, focusing
on a few classical combinatorial optimization problems in geometric settings.

The first problem that we discuss (Sect. 2) is the classical set-cover or hitting-
set problem in geometric settings, i.e., we have a set system whose elements are
simple geometric objects such as points, lines, squares, disks, etc., and each set
is a subset of geometric objects that satisfies certain geometric constraints (e.g.
input points lying inside a disk). It turns out that both the set-cover and the
hitting-set problems are NP-Complete even in very simple geometric settings.
Therefore, attention has focused on developing fast approximation algorithms
with as good an approximation factor as possible, including obtaining a trade-off
between the running time and approximation factor. The work on geometric set-
cover has also led to some interesting work in combinatorial geometry, including
work on ε-nets and discrepancy theory.

A problem closely related to set-cover is the independent-set problem.
Although the independent-set problem is intractable even from the approxi-
mation point of view for arbitrary graphs [76], it is easier to approximate in
many geometric settings. Several interesting results have been obtained, includ-
ing a quasi-polynomial ε-approximation algorithm that has found applications
in many related problems (Sect. 3).

Next, we turn our attention in Sect. 4 to the problem of computing maps
between two point sets to identify shared structures between them. We first
consider the transportation-map problem mentioned earlier. Next, we discuss
the problem of computing maps between two point sequences, which model time-
series data or trajectories, and review recent results. We note that polynomial-
time algorithms exist for both of these problems even in non-geometric settings.

68 P. K. Agarwal et al.

2 Geometric Set Cover

A set system (or range space) (P,R) is a pair consisting of an underlying universe
P of objects (also called the space) and a family R of subsets of P, referred to
as ranges. A set cover of (P,R) is a subcollection S ⊆ R such that

⋃
S = P. In

a typical geometric setting, P is a set of points in R
d, and each set in R is the

intersection of P with a simply-shaped region (e.g., halfspaces, balls, simplices,
etc.); with a slight abuse of notation, we will use R to denote the set of these
regions as well. Given this setting, the geometric set-cover problem is to find a
smallest subcollection of regions that cover the underlying set of points. The dual
problem of set-cover is the hitting-set problem: find the smallest subset H ⊆ P
such that H ∩ R �= ∅ for all R ∈ R. The problem of set-cover (resp., hitting-set)
can also be formulated where one assigns (non-negative) weights on the regions
(resp., points), in which case the objective is to find a coverage (resp., hitting
set) of smallest weight.

These problems were among the original NP-Complete problems [56], and
the classic greedy approach leads to a (1+lnn)-approximation algorithm, where
n = |P| [74]. Dinur and Steurer [40] showed that a polynomial-time o(log n)-
approximation algorithm is infeasible unless P = NP. They remain NP-Complete
even in simple 2D geometric settings such as when P is a set of points and R

is a set of unit squares or disks [52, Chap. 8]. Nevertheless, the approximation
factors achieved in geometric setups are considerably better than those obtained
in abstract settings. We present an overview of these results in Sect. 2.2.

2.1 Greedy Algorithms

Let (P,R) be a geometric set system, where P ⊆ R
d and R is a set of simply-

shaped regions in R
d. For the time being we assume P is finite, and set n = |P|,

m = |R|. As mentioned above, the standard greedy approach yields a (1 + lnn)-
approximation factor, but a näıve implementation of this approach is in general
inefficient. By exploiting geometric properties of the set system, considerably
faster algorithms can be obtained in many cases. We briefly present such an
approach, introduced in [7], when P ⊂ R

2 and R is a collection of planar regions
with low “union complexity”, that is, the number of vertices and arcs appearing
along the boundary of

⋃
S, for any subset S ⊆ R, is close to linear. This is,

e.g., the case for (pseudo-)disks1 and “fat triangles”2; see [19] and the references
therein. Here, we focus on the hitting-set problem.

Let Opt be the size of the optimal hitting set of (P,R). The main idea is
to construct a set Π of O(Opt) pairwise-disjoint cells (appearing in a plane
decomposition induced by a subset of the regions in R) that cover P. Each cell
of Π has small complexity (e.g., cells are trapezoids or triangles), and each cell
meets only a small fraction of the boundary regions in R. Using the fact that

1 Each of the regions is bounded by a closed Jordan curve, where each pair of boundary
curves meet at most twice.

2 In each triangle, every angle is greater than some constant.

Geometric Optimization Revisited 69

the union complexity of R is close to linear, Agarwal et al. [7] show that such a
Π can be constructed in near-linear time. They choose one point of P from each
cell of Π, add it to the hitting set, remove the regions of R hit by the chosen
points, and recurse. They show that the procedure terminates after O(log n)
steps, thereby constructing a hitting set of size O(Opt log n) in near-linear time.

Greedy algorithms have also been used to approximate the solution of the
art-gallery problem, that is, the set-up is a polygonal domain P and the goal is
to place a smallest number of guards in P , such that any point p ∈ P is visible
to at least one of these guards [70]. This problem is an instance of geometric set-
cover in which the set P = P is infinite and so is the set of ranges, one range for
each point p ∈ P (namely, the visibility polygon of P). The art-gallery problem
is known to be APX-Hard [43], and if the guard locations are chosen anywhere
in the polygon, no polynomial-time approximation algorithm is known. In such
cases, however, one can still obtain efficient approximation algorithms if they are
allowed to leave a relatively small portion of P uncovered [6,37]. Very recently,
Bonnet and Miltzow [26] showed an O(logOpt) approximation algorithm assum-
ing the vertices of P have integer coordinates (as well as several general position
assumptions). Moreover, they showed in a slightly earlier work [27] that when
the guards are selected among the vertices of P (with arbitrary real coordinates),
the exact problem cannot be solved in time no(Opt/ logOpt), unless the Exponential
Time Hypothesis (ETH) fails.

2.2 Iterative Reweighing Scheme and ε-Nets

Not only can one obtain fast O(log n)-approximation algorithms for hitting-set
(or set-cover) in geometric settings, the approximation factor can be improved to
o(log n). One general technique to obtain improved approximations is based on
linear programming. Roughly speaking, one (implicitly) formulates the hitting-
set problem as a linear program and uses an iterative reweighing scheme, pro-
posed for solving packing and covering linear programs [44], to compute a near-
optimal fractional solution. Then, the concept of ε-nets is used to construct
an integral solution. We first describe ε-nets and then make the connection to
set-cover and hitting-set.

ε-Nets. Let Σ = (P,R) be a (discrete) set system, and let w : P → R≥0 be
a weight function. Given a parameter 0 < ε < 1, a range R ∈ R is called ε-
heavy if w(R) ≥ εw(P) and ε-light otherwise. A subset N ⊆ P is called an
ε-net of (P,R) if N ∩ R �= ∅ for every ε-heavy range R ∈ R. If we flip the
roles of P and R, we obtain the so called dual set system: Σ∗ = (R,P∗), where
P∗ = {{R ∈ R | p ∈ R} | p ∈ P}. We note that a set cover of Σ is a hitting set
of Σ∗ and vice-versa. In the dual case, an ε-net for (R,P∗) is a subset S ⊆ R

that covers all the ε-heavy points of P, that is, those points that are originally
covered by regions whose total weight is at least εw(R). Originally introduced
as a tool for range-searching data structures in computational geometry, ε-nets
have found many applications in computational and combinatorial geometry as
well as in learning theory.

70 P. K. Agarwal et al.

By a seminal result of Haussler and Welzl [49, Chap. 5], a geometric set
system (P,R) has an ε-net of size O(ε−1 log ε−1) (the same asymptotic bound
holds in dual set systems). In fact, a random sample of that size is an ε-net with
constant probability. More generally, set systems of VC-dimension d admit ε-nets
of size O((d/ε) log(d/ε)); informally, this fact implies that the number of sets in
R is polynomial in |P| (concretely, O(|P|d)), and that this property is hereditary
for any restriction of the set system onto a subset of P [49, Chap. 5]. In general, it
is known that the bound on ε-nets for set systems of finite VC-dimension is tight
in the worst case [49, Chap. 5], and recently Pach and Tardos [65] showed that
this bound is tight in several geometric settings. Still, there are several favorable
geometric scenarios where this bound is smaller, that is, it is very close to O(1/ε).
For example, ε-nets of size O(1/ε) exist when R is a set of halfspaces in two
or three dimensions, pseudo-disks in the plane, or translates of a fixed convex
polytope in 3-space; see, e.g., the references in [20]. The case of axis-parallel boxes
in two and three dimensions was addressed by Aronov et al. [20], who showed
an ε-net bound of O(ε−1 log log ε−1); this bound has later been shown to be
tight [65]. Additional progress has been made by Clarkson and Varadarajan [39],
who introduced a method for constructing small-size ε-nets in several dual set
systems. Specifically, they addressed the case where the underlying regions in R

have low union complexity and showed that the resulting ε-nets have complexity
o(ε−1 log ε−1). Later, this bound has further been improved by Aronov et al. [20].
For example, for fat triangles the bound is O(ε−1 log log∗ ε−1), and for more
general fat objects the bound becomes O(ε−1 log∗ ε−1).

Iterative Reweighing Scheme. We now describe a simple algorithm, which com-
putes a hitting set of Σ using ε-nets [49, Chap. 6]; the algorithm can compute
a set cover of Σ by running it on the dual range space Σ∗. Let k be an integer
such that k/2 < Opt ≤ k. We initialize the weight of each point in P to 1 and
repeat the following step until every range is 1/(2k)-heavy. Let R be a 1/(2k)-
light range. We double the weights of all points in R. We refer to this step as
a weight-doubling step. When the process stops, we return a 1/(2k)-net H of Σ
(with respect to the final weights), which serves as a hitting set (as at this point
all ranges are 1/(2k)-heavy). If a 1/(2k)-net of size O(kg(k)) can be computed
efficiently, we obtain a hitting set of size O(Opt · g(Opt)).

Using a double-counting argument, it can be shown that if Opt ≤ k, then
the above procedure terminates within μ(k) = O(k log n) weight-doubling steps.
Therefore, if the algorithm does not terminate within μ(k) steps, we can conclude
that Σ does not have a hitting set of size at most k. An exponential search
can then be used to guess the value of k such that k/2 < Opt ≤ k. Many
methods have been proposed to check whether a 1/(2k)-light range exists at
each stage. For example, a 1/(2k)-net can be computed at each step to detect
a light range. Agarwal and Pan [12] described a data structure to detect light
ranges, which leads to a near-linear-time implementation of the above algorithm
in many cases. Putting these results together, one obtains a near-linear-time
O(1)-approximation algorithm when ranges are disks in the plane or halfspaces

Geometric Optimization Revisited 71

in R
3, and an O(log logOpt)-approximation algorithm when ranges are rectangles

or fat triangles. See [12] for details and concrete results.
As noted above, this algorithm is nothing but the iterative-reweighing algo-

rithm proposed by packing and covering linear programs. The set of final weights
that the algorithm computes is a near-optimal fractional solution, and the ε-net
is being used to “round” this fractional solution into an integral solution. Agar-
wal and Pan presented a simpler iterative-reweighing scheme for computing a
hitting set or set cover by formulating the problem as 2-player zero-sum game
and computing a near-optimal strategy for each of the two players. The strategy
for one of the players gives a near-optimal fractional solution for the hitting set,
and then they use ε-nets to compute the actual hitting set [12].

2.3 Extensions

Weighted Set-Cover. The above iterative-reweighing technique is in general not
extendible to compute a hitting set (or set cover) of smallest weight. Specifically,
an O(logOpt)-approximation factor can be obtained when all weights are greater
than 1 [44], but the situation is unclear for arbitrary weight functions. Moreover,
one may encounter the issue that this latter approximation factor can be arbi-
trarily larger than log n (e.g., if the input weights are large), which defeats the
advantage geometric settings may have over abstract ones.

Notable progress on this problem was made by Varadarajan [72], who used
a quasi-uniform sampling approach in order to find an approximately optimal
weighted set cover, where the regions in R have low union complexity. The
resulting approximation factors almost match those in the unweighted case.
Chan et al. [34] later strengthened Varadarajan’s technique and obtained asymp-
totically matching bounds.

Multi-Set-Cover. Another problem of interest is that of multi-set-cover, that is,
in addition to the set system (P,R), each point p ∈ P has an integer demand
d(p), and the goal is to find a smallest set cover so that each p is covered by d(p)
(distinct) regions of the cover. For abstract set systems, the standard greedy
approach results in a (1+ lnn)-approximation factor [74], but the LP-relaxation
approach based on ε-nets does not extend to the multi-cover setting. This prob-
lem was studied by Chekuri et al. [36], who showed similar asymptotic approx-
imation factors as those obtained for the (standard) geometric set-cover. Their
proof technique is somewhat intricate and involves a reduction to set cover with
objects of one dimensional higher, which is the key to obtain an O(logOpt)-
approximation.

PTAS: Shifted Grids and Local Search. Notwithstanding that polynomial-time
approximation schemes (PTASes) for the hitting-set/set-cover problem exist in
a few cases, including pseudo-disks in the plane and halfspaces in 3-space [63], a
PTAS is much more difficult to obtain in general. For instance, even for the cases
of fat triangles in the plane (of similar size with angles close to 60 degrees) and
fat axis-parallel rectangles (of similar size), the set-cover problem is APX-Hard

72 P. K. Agarwal et al.

[33,51]. In fact, the work in [51] presents several such hardness results, where
the overall conclusion is that for “non-shallow” (and even very simple) geometric
settings, the hitting-set/set-cover problem tends to be APX-Hard, whereas in
shallow settings it is more likely to have a PTAS3.

For the case of points and unit disks in the plane, if only the points are given
but the disks can be drawn anywhere in the plane, then one can obtain a PTAS
for set cover using a “sliding grid” technique due to Hochbaum and Maas [52,
Chap. 9]. The main observation is that in an optimal solution any given point
is covered by only a constant number of disks. Therefore, any grid cell in the
plane with constant side length must contain only a few disks in the optimal
solution. This immediately yields a PTAS for hitting-set of points and unit disks
by observing that a disk D covers a point p if and only if the unit disk centered at
p is hit by the center of D. Chan [31] addressed the case of disks with arbitrary
radii, and presented a PTAS for hitting-set based on planar separators. If the
disk set is discrete, the problem becomes considerably more difficult; Mustafa
and Ray [63] presented a PTAS for hitting set of arbitrary disks exploiting a local-
search algorithm. In a more recent paper, Mustafa et al. [62] studied the weighted
set cover problem for arbitrary disks, where they obtained a quasi-polynomial-
time approximation scheme (QPTAS); their technique was inspired by a result
of Adamaszek and Wiese [2] for approximating the maximum independent set
for axis-parallel rectangles; we review this result is detail in Sect. 3.

3 Geometric Independent Set

Given a collection R of n (simply-shaped) regions, the geometric maximum
independent-set problem is to find a maximum-cardinality subset S ⊂ R of
pairwise disjoint regions. This is the largest independent set in the intersection
graph of R, and for brevity we just refer to the problem as the independent-
set problem. When the regions in R are assigned (non-negative) weights, the
maximum-weight independent-set problem is to find a maximum-weight subset
S ⊆ R of pairwise-disjoint regions.

In abstract graphs, the independent-set problem is known to be NP-Complete.
Unless NP=ZPP, no polynomial-time algorithm with approximation factor bet-
ter than n1−ε, for any ε > 0, exists [52, Chap. 10], and the currently best known
approximation is O(n(log log n)2/(log n)3) [45]. Moreover, even when the maxi-
mum degree of the graph is 3, a PTAS does not exist. Recently Har-Peled and
Quanrud [51] showed that it is possible to construct intersection graphs of trian-
gles in 3-space for which a PTAS does not exist. However, better approximation
algorithms have been developed for some geometric settings, and in some cases
even a PTAS exists, e.g., the cases of fat objects [31] (such as disks and squares)
and pseudo-disks [35].

Of particular interest is the case of axis-parallel rectangles which attracted
much attention over the past decade [2,30,35,38] because of its application to
3 A collection of geometric objects is shallow if any point in the ambient space is

covered by only a few such objects.

Geometric Optimization Revisited 73

“label placement” in a map—place on top of a given map as many labels as
possible from a given collection without conflicts; each label is represented as a
rectangle, and the rectangles are required to be pairwise disjoint. Nevertheless,
there is also a high theoretical interest in this setting since the currently known
PTAS techniques for fat objects do not extend to axis-parallel rectangles. In the
sequel we describe these techniques and their consequences for different cases.

PTAS for Fat Objects. We begin with reviewing the case of fat objects. First,
the case of unit disks is handled using the “sliding grid” technique [52, Chap.
9]. As in set-cover, the main observation is that a grid cell of side-length Δ
can contain only O(Δ2) pairwise-disjoint unit disks in an optimal solution (but
unlike set-cover, the disks here are given). If the disks have arbitrary radii,
the grid is replaced by a hierarchical spatial subdivision. Specifically, Chan [31]
used randomly shifted quadtrees, originally proposed for Euclidean TSP [22]. His
construction extends to any dimension d ≥ 2; moreover, this extension applies
to any set of fat objects, as the packing argument applied for (unit) disks still
holds. An interesting consequence of Chan’s algorithm is that it extends to the
weighted case as well.

PTAS for Pseudo-Disks. The techniques for fat objects do not extend to pseudo-
disks, as they strongly rely on a packing argument exploiting the fatness prop-
erty. For the unweighted case, Chan and Har-Peled [35] showed a PTAS using
a simple local-search approach and exploiting a planar separator theorem. An
interesting consequence of their analysis is that a local-search algorithm yields
a PTAS for the independent-set problem in planar graphs, giving an alternative
approach to existing algorithms [76, Chap. 10]. In the weighted case, Chan and
Har-Peled [35] used a clever LP-relaxation approach, where the main idea is to
sparsify the intersection graph (which is a consequence of the low union com-
plexity of pseudo-disks), and then apply Turán’s theorem in order to extract the
desired independent set. The latter implies that in every graph on n vertices and
average degree d, there is an independent set of size at least n/(d + 1).

Axis-Parallel Rectangles. The main difficulty in obtaining small approximation
factors for non-fat objects (excluding pseudo-disks) is the fact that their union
complexity is typically large, e.g., for axis-parallel rectangles in the plane this
complexity is quadratic (realized by a set of long and skinny rectangles forming
a grid). It is fairly standard to obtain a logarithmic approximation for axis-
parallel rectangles in the plane, using, e.g., a näıve LP-relaxation. However,
improving the approximation factor further is considerably more challenging.
Chan and Har-Peled [35] showed an O(log n/ log log n)-approximation for the
weighted case, and an intricate LP-relaxation based approach by Chalermsook
and Chuzhoy [30] obtains an O(log log n)-approximation for the unweighted
case, which is currently the best known. Although an O(1)-approximation algo-
rithm for axis-parallel rectangles has remained elusive, the recent QPTAS for the
weighted case by Adamaszek and Wiese [2] is a major step forward. They present
a (1 − ε)-approximation algorithm that runs in nO(poly(log n)/ε) time. A key
idea in their analysis is a new geometric dynamic programming scheme, which

74 P. K. Agarwal et al.

recursively subdivides the plane into polygons of bounded complexity. Chuzhoy
and Ene [38] obtained an improved QPTAS for the unweighted case, reducing
the running time to nO(poly(log log n)/ε). These results suggest that the problem
is unlikely to be APX-Hard.

Non-rectilinear Non-fat Objects. For arbitrarily oriented non-fat objects such as
segments or triangles, the approximation factors are worse, because the struc-
tural properties imposed by such objects tend to be weaker. Among these settings
is the case of line-segments in the plane, studied by Agarwal and Mustafa [11],
who obtained an approximation factor close to O(

√
Opt) using properties of par-

tially ordered sets. Fox and Pach [46] improved and generalized this bound to
curves, each pair of which have a bounded number of intersections. In this case
a QPTAS was shown, using the existence of separators in intersection graphs.
The case of arbitrary polygons in the plane has been studied by Har-Peled [50],
who showed a QPTAS based on the decomposition in [2].

4 Maps Between Point Sets

In this section, we consider the problem of computing a map between two point
sets, say, A and B, each representing a geometric object, with the goal of identi-
fying common structure (similarity) between them. This is a central problem in
shape analysis, which has been studied extensively in computational geometry,
computer vision, computer graphics, molecular biology, and machine learning.
For simplicity, we assume A and B to be finite point sets, and in some cases a
weight may be associated with each point. We seek a correspondence C ⊆ A×B
subject to some restriction on C, e.g., each point of A and B should appear in
at least one pair in C or there is some penalty for each point not included in any
pair of C. A cost function is defined to measure how well C measures the com-
mon structure between A and B, and the goal is to compute a correspondence
that minimizes the cost function.

The cost function generally falls under one of two loosely defined categories.
Extrinsic cost functions are based on the embedding of the points in the ambient
space, while intrinsic cost functions are based on properties of the objects repre-
sented by A and B and not on their embedding in the ambient space. Examples
of the former include the Hausdorff distance and the Fréchet distance, and an
example of the latter is the Gromov-Hausdorff distance. Extrinsic cost functions
are generally easier to optimize using combinatorial algorithms, and many fast
algorithms exist; see [17] for a survey of earlier results. Intrinsic cost functions are
significantly more difficult and most of the known algorithms rely on numerical
methods; see [54] for a survey.

In this section, we will focus on two settings of extrinsic cost functions: trans-
portation maps between two weighted point sets and order preserving maps
between point sequences. We will then briefly discuss their extensions and the
relatively sparse landscape of combinatorial optimization for intrinsic measures.

Geometric Optimization Revisited 75

4.1 Transportation Maps

Let R and B be two point sets in R
d, and let |R| = |B| = n. Let λ : R ∪ B → N

denote the supplies of points in A and the demands of points in B. We assume∑
r∈R λ(r) =

∑
b∈B λ(b) = U . A function τ : R×B → N is a transportation map

between R and B if
∑

b∈B τ(r, b) = λ(r) for all r ∈ R and
∑

r∈R τ(r, b) = λ(b)
for all b ∈ B.

Let d(·, ·) be a suitable distance function. We define the cost of a transporta-
tion map τ to be μ(τ) =

∑
(r,b)∈R×B d(r, b)τ(r, b). The Hitchcock-Koopmans

transportation problem (often referred to simply as the transportation problem)
is to find a minimum-cost transportation map τ∗. The cost μ(τ∗) is called the
transportation distance or earth mover’s distance. The transportation problem
is a special case of the minimum-cost flow problem in complete bipartite graphs.
Similarly, the special case of the transportation problem with all supplies and
demands equal to 1 is a special case of the minimum-cost perfect matching prob-
lem in complete bipartite graphs. For that reason, we refer to this special case
as geometric bipartite matching.

The Hitchcock-Koopmans transportation problem as defined above is the dis-
crete version of the optimal transport or Monge-Kantarovich problem originally
proposed by Gaspard Monge in 1784 and studied extensively since the early 20th
century. Both the continuous and discrete versions of the transportation problem
are used in a wide range of applications, including computing the Barycenter of a
family of distributions, matching shapes, matching images, and matching prob-
ability distributions. We focus on the discrete transportation problem in this
section and refer the reader to the book by Villani [75] for more information on
(continuous) optimal transport. We begin by discussing algorithms for geometric
bipartite matching. We then discuss the case of general supplies and demands.

Geometric Bipartite Matching. For simplicity, we slightly reformulate the geo-
metric bipartite matching problem from the version given above. A matching M
is a set of point-disjoint pairs or edges (r, b) ∈ R × B. A point is exposed with
respect to M if it does not belong to any pair of M . A perfect matching con-
tains every point in R ∪ B exactly once. A minimum cost matching is a perfect
matching M∗ that minimizes

∑
(r,b)∈M∗ d(r, b).

In weighted bipartite graphs with n vertices and m edges, a minimum
cost matching can be computed in O(mn + n2 log n) time using the Hungar-
ian algorithm [47]. The running time has been improved to O(m

√
n polylog(n))

using an interior-point method [57]. This fact, in turn, implies the existence of
an O(n5/2 polylog(n))-time algorithm for geometric bipartite matching.

In the language of geometric bipartite matching, the Hungarian algorithm
works as follows. We maintain a set of potentials π : R ∪ B → R on the points
of R and B such that π(r) + π(b) ≤ d(r, b) as well as a matching M . Initially,
M = ∅, π(r) = 0 for all r ∈ R, and π(b) = minr∈R d(r, b) for all b ∈ B. An
edge (r, b) is called admissible if d(r, b) = π(r) + π(b). The Hungarian algorithm
guarantees every edge of M is admissible. An alternating path is a sequence that

76 P. K. Agarwal et al.

alternates between edges of M and edges outside of M . An alternating path
between two exposed points is called an augmenting path.

The algorithm iteratively changes potentials in order to create new augment-
ing paths lying on admissible edges and then augments M by finding such a path
P , removing every edge of P ∩ M , and adding every edge of P ⊕ M . Each aug-
mentation increases the size of M by one, guaranteeing that each edge of M is
admissible. Vaidya [71] showed that each iteration can be performed in O(nφ(n))
time in geometric settings (in contrast to O(m+n log n) time for general graphs),
where φ(n) is the update time to maintain a weighted bichromatic closest pair
between two point sets dynamically under insertions and deletions. For d = 2,
he described such data structures with φ(n) = O(log3 n) if the distance between
a pair of points is measured in the L1 or L∞ metric, and with φ(n) = O(

√
n)

for any other Lp metric. Agarwal et al. [5] presented an improved data struc-
ture for general Lp-metrics with φ(n) = O(nε), for an arbitrarily small constant
ε > 0. The bound was recently improved to O(polylog(n)) by Kaplan et al. [55].
Putting these results together, a minimum-weight matching between two point
sets in R

2 of size n each can be computed in O(n2 polylog(n)) time for any Lp

metric. This bound holds for a larger class of well-behaved metrics in the plane;
see e.g. [55].

No subquadratic algorithm is known for computing the minimum-weight
bipartite matching in the plane except for some very special cases such as when
points are in convex position [58] or when points have polynomially bounded
integer coordinates [68]. Efrat et al. [42] described an O(n3/2 log n) algorithm to
compute the optimal bottleneck matching, i.e., minimizing the maximum length
of an edge in the matching, in the plane. Consequently, a series of papers have
investigated approximation algorithms for geometric bipartite matching [16,73].
Agarwal and Varadarajan [16] proposed a Monte Carlo algorithm that with high
probability computes an O(log(1/ε))-approximate matching in O(n1+ε) time
for any fixed dimension and under any Lp-metric. Their algorithm decomposes
space using a large randomly shifted grid. Within each grid cell, they recursively
compute a matching using as many points as possible. Some points may be
left unmatched due to imbalances between the points of R and B lying within
each cell, so they optimally match the leftover points lying in all cells using
the Hungarian algorithm. In expectation, the total cost of matching the leftover
points within each level of recursion is a constant approximation of the cost of
the optimal geometric matching on R and B, so limiting the number of levels
to O(log(1/ε)) gives them their desired approximation factor. Adapting their
method, Indyk [53] described a Monte Carlo algorithm that in O(npolylog(n))
time approximates the cost of the optimal matching within a constant factor,
with high probability. Unfortunately, his approach cannot be extended to com-
pute the matching itself.

The state-of-the-art for geometric bipartite matching is an algorithm of
Sharathkumar and Agarwal [69] that computes an ε-approximation under any
Lp metric in O(npoly(log n, 1/ε)) time with high probability. Like the Hungar-
ian algorithm, their algorithm performs a sequence of augmentation steps, each

Geometric Optimization Revisited 77

of which increases the size of the matching by one. However, they relax the
admissibility condition slightly so that the cost of the matching it computes is
at most (1 + ε) times that of the optimal matching but the total number of
edges in all the augmenting paths computed is only O(nε−1 log n). Using a data
structure based on randomly shifted quadtrees, they compute the augmenting
path at each step in time proportional to the length of the augmenting path. An
interesting question is whether their approach yields an ε-approximation algo-
rithm for the bottleneck matching or the root-mean-square Euclidean matching
(i.e., minimize the sum of squares of Euclidean lengths of the matching edges).
Agarwal and Sharathkumar [13] presented an algorithm that uses dynamic near-
est neighbor data structure and obtains a O((1/δ)log2(1/δ))-approximate match-
ing in O(n1+δ) time. This is the first sub-quadratic O(1)-approximation algo-
rithm in high dimensional spaces. For fixed dimensions, they also developed
an O((1/εO(d))n3/2 log5(n/ε))-time deterministic algorithm that computes an
ε-approximate bipartite matching.

Transportation. We now return to transportation problems with arbitrary inte-
ger supplies and demands, with U being the total demand (or supply). As men-
tioned earlier, the transportation problem can be formulated as an instance
of minimum-cost flow in a complete bipartite graph. Using the currently best-
known algorithm for minimum cost flow by Lee and Sidford [57], optimal trans-
portation maps can be computed in O(n5/2 polylog(n) polylog(U)) time, assum-
ing the demand and supply of each point is an integer and the total demand is U .
Extending Vaidya’s matching algorithm, Atkinson and Vaidya [24] had shown
that the optimal transportation map can be computed in O(n2φ(n) log(U)) time,
where φ(n) is again the update time for maintaining the weighted bichromatic
closest pair. The above discussion implies that the optimal transportation map
can be computed in O(n2 polylog(n) log(U)) time under any Lp metric in R

2.
Recently, Agarwal et al. [10] improved the running time to O(n2 polylog(n)) by
adapting a strongly polynomial-time minimum-cost flow algorithm by Orlin [64]
for general graphs.

Sharathkumar and Agarwal [68] describe an algorithm that computes, in
O((n

√
U log2 n+U log U)φ(n) log(ΔU/ε)) time, where Δ is the diameter of R∪B,

a transportation map that is optimal within an additive error of ε. Andoni et
al. [18] describe a result similar to Indyk’s [53] in that they can estimate the cost
of the optimal transportation map within an ε factor in n1+oε(1) time (here, the
constant in the little-o depends upon ε) assuming U = nO(1).

Agarwal et al. [10] describe two approximation algorithms for the transporta-
tion problem. The first is a Monte Carlo algorithm that computes in O(n1+ε)
time a transportation map with expected cost O(log2(1/ε)) of the optimal. This
algorithm is an extension of the one by Agarwal and Varadarajan [16] for geo-
metric bipartite matching, but a number of new ideas are needed to handle arbi-
trary demand and supply values. Their other algorithm gives an ε-approximation
in O(n3/2ε−d polylog(n) polylog(U)) time. For this algorithm, they construct a
graph of O(n/εd) edges over R∪B for which the optimal transportation distance

78 P. K. Agarwal et al.

is at most (1 + ε)μ(τ∗) and then run the minimum cost flow algorithm of Lee
and Sidford [57].

4.2 Order Preserving Maps

Let P = 〈p1, . . . , pn〉 and Q = 〈q1, . . . , qn〉 be two sequences of points in R
d.

Recall, a correspondence between P and Q is a set of pairs C ⊆ P × Q. A corre-
spondence C is monotone if for any two pairs (pi, qj), (pi′ , qj′) ∈ C with i′ ≥ i,
we have j′ ≥ j. The goal is to compute monotone correspondences that have
certain properties. While one can imagine many criteria for computing mono-
tone correspondences, we focus on three in this survey; minimizing the discrete
Fréchet distance, dynamic time warping (DTW), and minimizing the geometric
edit distance (GED). These criteria have been used in many applications such
as speech recognition, molecular biology, and trajectory analysis.

Both the discrete Fréchet distance and DTW require C to contain every point
in P and Q at least once. However, minimizing the Fréchet distance requires find-
ing such a correspondence C that minimizes the maximum distance between p
and q for any (p, q) ∈ C while DTW minimizes the sum of distances. Formally,
we define the discrete Fréchet distance as dfr(P,Q) = minC max(p,q)∈C ‖p − q‖
and the DTW distance as dtw(P,Q) = minC

∑
(p,q)∈C ‖p − q‖ where both min-

ima are taken over all correspondences C covering points in P and Q. GED
requires C to be a matching on P and Q—i.e. each point appears in exactly
one pair—and it minimizes the sum of distances between matched points plus
an additional gap penalty g for each point in P and Q outside of C. Formally,
GED is defined as ged(P,Q) = minC

∑
(p,q)∈C ‖p − q‖ + g(2n − 2|C|) with the

minimum taken over all matchings C.

Exact Algorithms. All three criteria can be computed in O(n2) time using
straightforward dynamic programming algorithms, and these algorithms can be
interpreted as computing a path through a weighted grid G on V = {(i, j) | 0 ≤
i ≤ n, 0 ≤ j ≤ n} where, in general, each cell (i, j) has weight ‖pi − qj‖. The
exact paths allowed and their cost vary by criteria, but generally one takes steps
from each position (i, j) to one of (i + 1, j), (i, j + 1), and (i + 1, j + 1) while
trying to minimize the maximum cell weight encountered for the discrete Fréchet
distance or some function based on the sum of weights for DTW or GED. For
the remainder of this section, we focus on attempts to improve the running times
for computing these criteria both exactly and approximately.

Progress on exact algorithms with worst-case guarantees was only made
recently. Agarwal et al. [4] described the first result, an O(n2 log log n/ log n) time
algorithm for computing the discrete Fréchet distance. We will briefly describe
a decision procedure for determining if dfr(P,Q) ≤ δ, for a given parameter δ.
Then, using a binary search, the actual Fréchet distance can be found. The main
idea in the decision procedure is to partition the dynamic programming grid into
blocks B0, B1, . . . containing O(log n) columns each. Then, in each block Bi, one
needs to (implicitly) determine which of the cells in its rightmost column are
reachable by a path through the grid touching cells of weight at most δ.

Geometric Optimization Revisited 79

Subsequently, Gold and Sharir [48] described O(n2 log log log(n)/ log log(n))
time algorithms for computing DTW and GED when d = 1. Their approach is
similar to [4], but filling the entries of the right column of each Bi is now more
challenging, thereby resulting in a somewhat larger running time. For each Bi,
they encode the costs of all the paths between boundary cells as points in high
dimensional Euclidean space and use a bichromatic dominating pairs reporting
algorithm [32] to compute and encode the cheapest boundary-to-boundary paths.

Recent lower bound results suggest that no significantly faster algorithm can
be developed for these problems. In particular, no O(n2−ε)-time algorithm exists,
for constant ε, assuming the strong exponential time hypothesis (SETH) holds4.
The strongest of these lower bounds was formulated by Abboud et al. [1].

Approximations. Bringmann and Mulzer [28] have shown that a strongly sub-
quadratic ε-approximation for the discrete Fréchet distance is unlikely assuming
SETH, and they have presented an α-approximation algorithm for this problem,
for any α ∈ [1, n], that runs in O(n log n + n2/α) time. In contrast, near-linear-
time ε-approximation algorthms have been proposed for discrete Fréchet distance
and some other related cost functions by restricting the input to certain natu-
ral families of sequences. Here we focus on κ-packed curves5; see [21] for other
types of well-behaved curves. Aronov et al. [21] described an ε-approximation
for the discrete Fréchet distance that runs in O((κ/ε)n log n) time on κ-packed
sequences (see [9,41]). The key component of their algorithm is an approximate
decision procedure that given a value δ, correctly reports, in O(κn/ε) time, the
discrete Fréchet distance to be less than δ if dfr(P,Q) < (1 − ε)δ and correctly
reports the distance to be greater than δ if dfr(P,Q) > (1 + ε)δ. The decision
procedure accomplishes this by constructing simplified sequences P ′, Q′ of P
and Q respectively, and then reducing the problem to a reachability problem in
a grid graph with O(κn/ε) cells. Agarwal et al. [9] obtained similar bounds for
DTW and GED. Their algorithm computes ε-approximations of those criteria
in O((κ/ε)n log n)time for κ-packed curves by covering the dynamic program-
ming grid described above with rectangles of similar weights. Then, using the
properties of κ-packed curves, they observe that the overall number of boundary
cells, appearing along all the rectangles, is relatively small.

4.3 Extensions

Our use of extrinsic cost functions in defining optimal transportation maps and
monotone correspondences is useful for matching of shapes that lie in the same
position within their ambient spaces. However, one can still use extrinsic costs to
do rigid matching between shapes lying in different positions or even orientations
in their ambient space by minimizing the measures under translation or rotation.

4 SETH says that for all 0 < δ < 1, there is a k > 2 such that k-SAT requires 2δn

time to be solved in the worst-case.
5 A point sequence is κ-packed if the length of its polygonal chain is at most κ · r

within any ball of radius r.

80 P. K. Agarwal et al.

One method of finding a good translation/rotation is the iterative closest point
(ICP) method [25], wherein one iteratively computes a correspondence between
two objects based on an extrinsic measure and then translates/rotates one of
the objects to minimize the cost of the correspondence.

Intrinsic costs, mentioned in the beginning of the section, are more use-
ful for applications like non-rigid matching of shapes. Notwithstanding a num-
ber of recent results in computer graphics and geometric modeling on methods
for intrinsic cost functions—see [54] for a survey—very few combinatorial algo-
rithms are known for them. For example, consider the problem of computing
the Gromov-Hausdorff distance between two metric spaces X1 = (X1, ρ1) and
X2 = (X2, ρ2), defined as

1
2

inf
C

sup
(x1,x2),(x′

1,x′
2)∈C

|ρ1(x1, x
′
1) − ρ2(x2, x

′
2)|,

where the infimum is taken over all correspondences C ⊆ X1 × X2 containing
each x1 ∈ X1 and x2 ∈ X2 at least once. Gromov-Hausdorff distance is used
in applications such as matching of deformable shapes [29,60]. The currently
known results concerning approximability of computation include a proof that
it is NP-Hard to approximate this measure within a factor less than 3, when X1

and X2 are metric trees [8,67], and an O(min{n,
√

rn})-approximation algorithm
for that case where r is the ratio of the longest edge length in both trees to the
shortest edge length [8]. This problem is an instance of low-distortion embedding
between two metric spaces, which has been extensively studied; see [59, Chap.
15] for a survey.

5 Discussion

In this survey, we reviewed recent progress on a few geometric optimization
problems, namely, geometric set cover and hitting set, geometric independent
set, and computing maps between a pair of point sets. Because of lack of space,
there are several major developments in geometric optimization that we did not
cover here. Perhaps the most significant among them is the PTAS for Euclidean
TSP by Arora [22] and by Mitchell [61]. Their techniques—randomly shifted
quadtrees and guillotine subdivisions—have been successfully applied to many
geometric optimization problems and have had a profound impact on the field.
See [23] for a survey.

Another technique that has become quite popular over the last two decades
is the coreset based approach. Roughly speaking, a coreset is a small subset
of the input set where an optimal solution to a problem on the coreset is a
good approximation of the optimal solution on the overall set. Surprisingly, fast
algorithms exist for computing coresets for a large class of geometric optimization
problems whose sizes depend only on the quality of approximation and not on
the input size. See surveys [3,66].

Other widely-studied topics include optimal path planning, curve/surface
simplification, clustering, and network-design problems.

Geometric Optimization Revisited 81

Acknowledgements. We thank Timothy Chan, Sariel Har-Peled, and Micha Sharir
for their helpful comments.

References

1. Abboud, A., Hansen, T.D., Williams, V.V., Williams, R.: Simulating branching
programs with edit distance and friends: or: a polylog shaved is a lower bound
made. In: Proceedings of the 48th Annual ACM Symposium on Theory Computing,
pp. 375–388 (2016)

2. Adamaszek, A., Wiese, A.: Approximation schemes for maximum weight indepen-
dent set of rectangles. In: Proceedings of the 54th IEEE Annual Symposium on
Foundations of Computer Science, pp. 400–409 (2013)

3. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Geometricapproximation via
coresets. In: Goodman, J.E., Pach, J., Welzl, E. (eds.) Combinatorial and Compu-
tational Geometry, pp. 1–30. Cambridge University Press, New York (2005)

4. Agarwal, P.K., Avraham, R.B., Kaplan, H., Sharir, M.: Computing the discrete
fréchet distance in subquadratic time. SIAM J. Comput. 43, 429–449 (2014)

5. Agarwal, P.K., Efrat, A., Sharir, M.: Vertical decomposition of shallow levels in 3-
dimensional arrangements and its applications. SIAM J. Comput. 29(3), 912–953
(1999)

6. Agarwal, P.K., Ezra, E., Ganjugunte, S.K.: Efficient sensor placement for surveil-
lance problems. In: Krishnamachari, B., Suri, S., Heinzelman, W., Mitra, U. (eds.)
DCOSS 2009. LNCS, vol. 5516, pp. 301–314. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-02085-8 22

7. Agarwal, P.K., Ezra, E., Sharir, M.: Near-linear approximation algorithms for geo-
metric hitting sets. Algorithmica 63(1–2), 1–25 (2012)

8. Agarwal, P.K., Fox, K., Nath, A., Sidiropoulos, A., Wang, Y.: Computing the
Gromov-Hausdorff distance for metric trees. In: Proceedings of 26th International
Symposium on Algorithms and Computation, pp. 529–540 (2015)

9. Agarwal, P.K., Fox, K., Pan, J., Ying, R.: Approximating dynamic time warping
and edit distance for a pair of point sequences. In: 32nd International Symposium
on Computational Geometry, pp. 6:1–6:16 (2016)

10. Agarwal, P.K., Fox, K., Panigrahi, D., Varadarajan, K., Xiao, A.: Efficient algo-
rithms for the geometric transportation problem. In: 33rd International Symposium
on Computational Geometry (2017, to appear)

11. Agarwal, P.K., Mustafa, N.H.: Independent set of intersection graphs of convex
objects in 2D. Comput. Geom. 34(2), 83–95 (2006)

12. Agarwal, P.K., Pan, J.: Near-linear algorithms for geometric hitting sets and set
covers. In: Proceedings of the 30th Annual Symposium on Computational Geom-
etry, pp. 271–280 (2014)

13. Agarwal, P.K., Sharathkumar, R.: Approximation algorithms for bipartite match-
ingwith metric and geometric costs. In: Proceedings of the 46th Annual ACM
Symposium on Theory of Computing, pp. 555–564 (2014)

14. Agarwal, P.K., Sharir, M.: Algorithmic techniques for geometric optimization. In:
van Leeuwen, J. (ed.) Computer Science Today. LNCS, vol. 1000, pp. 234–253.
Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0015247

15. Agarwal, P.K., Sharir, M.: Efficient algorithms for geometric optimization. ACM
Comput. Surv. 30(4), 412–458 (1998)

https://doi.org/10.1007/978-3-642-02085-8_22
https://doi.org/10.1007/978-3-642-02085-8_22
https://doi.org/10.1007/BFb0015247

82 P. K. Agarwal et al.

16. Agarwal, P.K., Varadarajan, K.R.: A near-linear constant-factor approximation for
Euclidean bipartite matching? In: Proceedings of the 20th Annual Symposium on
Computational Geometry, pp. 247–252 (2004)

17. Alt, H., Guibas, L.J.: Discrete geometric shapes: matching, interpolation, and
approximation. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational
Geometry, pp. 121 – 153. North-Holland, Amsterdam (2000)

18. Andoni, A., Nikolov, A., Onak, K., Yaroslavtsev, G.: Parallel algorithms for geo-
metric graph problems. In: Proceedings of the 46th ACM Symposium on Theory
of Computing, pp. 574–583 (2014)

19. Aronov, B., de Berg, M., Ezra, E., Sharir, M.: Improved bounds for the union of
locally fat objects in the plane. SIAM J. Comput. 43(2), 543–572 (2014)

20. Aronov, B., Ezra, E., Sharir, M.: Small-size ε-nets for axis-parallel rectangles and
boxes. SIAM J. Comput. 39, 3248–3282 (2010)

21. Aronov, B., Har-Peled, S., Knauer, C., Wang, Y., Wenk, C.: Fréchet distance for
curves, revisited. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp.
52–63. Springer, Heidelberg (2006). https://doi.org/10.1007/11841036 8

22. Arora, S.: Polynomial time approximation schemes for euclidean traveling salesman
and other geometric problems. J. ACM 45(5), 753–782 (1998)

23. Arora, S.: Approximation schemes for NP-hard geometric optimization problems:
a survey. Math. Program. 97(1–2), 43–69 (2003)

24. Atkinson, D.S., Vaidya, P.M.: Using geometry to solve the transportation problem
in the plane. Algorithmica 13(5), 442–461 (1995)

25. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans.
Pattern Anal. Mach. Intell. 14, 239–256 (1992)

26. Bonnet, É., Miltzow, T.: An approximation algorithm for the art gallery problem.
CoRR abs/1607.05527 (2016). http://arxiv.org/abs/1607.05527

27. Bonnet, É., Miltzow, T.: Parameterized hardness of art gallery problems. In: 24th
Annual European Symposium on Algorithms, vol. 57, pp. 19:1–19:17 (2016)

28. Bringmann, K., Mulzer, W.: Approximability of the discrete fréchet distance. J.
Comput. Geom. 7(2), 46–76 (2016)

29. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Efficient computation of isometry-
invariant distances between surfaces. SIAM J. Sci. Comput. 28(5), 1812–1836
(2006)

30. Chalermsook, P., Chuzhoy, J.: Maximum independent set of rectangles. In: Pro-
ceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
892–901 (2009)

31. Chan, T.M.: Polynomial-time approximation schemes for packing and piercing fat
objects. J. Algorithms 46(2), 178–189 (2003)

32. Chan, T.M.: All-pairs shortest paths with real weights in O(n3/ log n) time. Algo-
rithmica 50(2), 236–243 (2008)

33. Chan, T.M., Grant, E.: Exact algorithms and apx-hardness results for geometric
packing and covering problems. Comput. Geom. 47(2), 112–124 (2014)

34. Chan, T.M., Grant, E., Könemann, J., Sharpe, M.: Weighted capacitated, priority,
and geometric set cover via improved quasi-uniform sampling. In: Proceedings of
the 23rd ACM-SIAM Symposium on Discrete Algorithms, pp. 1576–1585 (2012)

35. Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent
set of pseudo-disks. Disc. Comput. Geom. 48, 373–392 (2012)

36. Chekuri, C., Clarkson, K.L., Har-Peled, S.: On the set multicover problem in geo-
metric settings. ACM Trans. Algorithms 9(1), 9:1–9:17 (2012)

37. Cheong, O., Efrat, A., Har-Peled, S.: Finding a guard that sees most and a shop
that sells most. Disc. Comput. Geom. 37(4), 545–563 (2007)

https://doi.org/10.1007/11841036_8
http://arxiv.org/abs/1607.05527

Geometric Optimization Revisited 83

38. Chuzhoy, J., Ene, A.: On approximating maximum independent set of rectangles.
In: Proceedings of the IEEE 57th Annual Symposium on Foundations of Computer
Science, pp. 820–829 (2016)

39. Clarkson, K.L., Varadarajan, K.R.: Improved approximation algorithms for geo-
metric set cover. Disc. Comput. Geom. 37(1), 43–58 (2007)

40. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: Proceedings of
the 46th Annual ACM Symposium on Theory of Computing, pp. 624–633 (2014)

41. Driemel, A., Har-Peled, S., Wenk, C.: Approximating the Fréchet distance for
realistic curves in near linear time. Disc. Comput. Geom. 48(1), 94–127 (2012)

42. Efrat, A., Itai, A., Katz, M.J.: Geometry helps in bottleneck matching and related
problems. Algorithmica 31(1), 1–28 (2001)

43. Eidenbenz, S., Stamm, C., Widmayer, P.: Inapproximability results for guarding
polygons and terrains. Algorithmica 31(1), 79–113 (2001)

44. Even, G., Rawitz, D., Shahar, S.: Hitting sets when the VC-dimension is small.
Inf. Process. Lett. 95(2), 358–362 (2005)

45. Feige, U.: Approximating maximum clique by removing subgraphs. SIAM J. Dis-
cret. Math. 18(2), 219–225 (2004)

46. Fox, J., Pach, J.: Computing the independence number of intersection graphs. In:
Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 1161–1165 (2011)

47. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM 34(3), 596–615 (1987)

48. Gold, O., Sharir, M.: Dynamic time warping and geometric edit distance: Breaking
the quadratic barrier. CoRR abs/1607.05994 (2016)

49. Har-Peled, S.: Geometric Approximation Algorithms. American Mathematical
Society, Boston (2011)

50. Har-Peled, S.: Quasi-polynomial time approximation scheme for sparse subsets
of polygons. In: Proceedings of the 30th Annual Symposium on Computational
Geometry, pp. 120–129 (2014)

51. Har-Peled, S., Quanrud, K.: Approximation algorithms for polynomial-expansion
and low-density graphs. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol.
9294, pp. 717–728. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48350-3 60

52. Hochbaum, D.S. (ed.): Approximation Algorithms for NP-Hard Problems. PWS
Publishing Co., Boston (1997)

53. Indyk, P.: A near linear time constant factor approximation for Euclidean bichro-
matic matching (cost). In: Proceedings of the 18th Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 39–42 (2007)

54. van Kaick, O., Zhang, H., Hamarneh, G., Cohen-Or, D.: A survey on shape corre-
spondence. Comput. Graph. Forum 30(6), 1681–1707 (2011)

55. Kaplan, H., Mulzer, W., Roditty, L., Seiferth, P., Sharir, M.: Dynamic planar
Voronoi diagrams for general distance functions and their algorithmic applica-
tions. In: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 2495–2504 (2017)

56. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations, pp.
85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2 9

57. Lee, Y.T., Sidford, A.: Path finding methods for linear programming: solving lin-
ear programs in Õ(vrank) iterations and faster algorithms for maximum flow. In:
Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer
Science, pp. 424–433 (2014)

https://doi.org/10.1007/978-3-662-48350-3_60
https://doi.org/10.1007/978-3-662-48350-3_60
https://doi.org/10.1007/978-1-4684-2001-2_9

84 P. K. Agarwal et al.

58. Marcotte, O., Suri, S.: Fast matching algorithms for points on a polygon. SIAM J.
Comput. 20, 405–422 (1991)

59. Matoušek, J.: Lectures on Discrete Geometry. Springer, New York (2002). https://
doi.org/10.1007/978-1-4613-0039-7

60. Mémoli, F., Sapiro, G.: A theoretical and computational framework for isometry
invariant recognition of point cloud data. Found. Comput. Math. 5(3), 313–347
(2005)

61. Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: a
simple polynomial-time approximation scheme for geometric TSP, k-MST, and
related problems. SIAM J. Comput. 28(4), 1298–1309 (1999)

62. Mustafa, N.H., Raman, R., Ray, S.: Settling the APX-hardness status for geometric
set cover. In: Proceedings of the 55th IEEE Annual Symposium on Foundations of
Computer Science, pp. 541–550 (2014)

63. Mustafa, N.H., Ray, S.: Improved results on geometric hitting set problems. Disc.
Comput. Geom. 44(4), 883–895 (2010)

64. Orlin, J.B.: A faster strongly polynomial minimum cost flow algorithm. Oper. Res.
41(2), 338–350 (1993)

65. Pach, J., Tardos, G.: Tight lower bounds for the size of epsilon-nets. J. Am. Math.
Soc. 26, 645–658 (2013)

66. Phillips, J.M.: Coresets and sketches. CoRR abs/1601.00617 (2016)
67. Schmiedl, F.: Computational aspects of the Gromov-Hausdorff distance and its

application in non-rigid shape matching. Disc. Comput. Geom. 57(4), 854–880
(2017)

68. Sharathkumar, R., Agarwal, P.K.: Algorithms for the transportation problem in
geometric settings. In: Proceedings of the 23rd Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 306–317 (2012)

69. Sharathkumar, R., Agarwal, P.K.: A near-linear time ε-approximation algorithm
for geometric bipartite matching. In: Proceedings of the 44th Annual ACM Sym-
posium on Theory of Computing, pp. 385–394 (2012)

70. Urrutia, J.: Art gallery and illumination problems. In: Handbook of Computational
Geometry, pp. 973–1027. North-Holland (2000)

71. Vaidya, P.M.: Geometry helps in matching. SIAM J. Comput. 18(6), 1201–1225
(1989)

72. Varadarajan, K.R.: Weighted geometric set cover via quasi-uniform sampling. In:
Proceedings of the 42nd ACM Symposium on Theory of Computing, pp. 641–648
(2010)

73. Varadarajan, K.R., Agarwal, P.K.: Approximation algorithms for bipartite and
non-bipartite matching in the plane. In: Proceedings of the 10th Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 805–814 (1999)

74. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001). https://
doi.org/10.1007/978-3-662-04565-7

75. Villani, C.: Optimal Transport: Old and New, vol. 338. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-71050-9

76. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cam-
bridge University Press, Cambridge (2011)

https://doi.org/10.1007/978-1-4613-0039-7
https://doi.org/10.1007/978-1-4613-0039-7
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/978-3-540-71050-9

10 Reasons to Get Interested in Graph
Drawing

Carla Binucci1, Ulrik Brandes2, Tim Dwyer3, Martin Gronemann4,
Reinhard von Hanxleden5, Marc van Kreveld6, Petra Mutzel7(B),

Marcus Schaefer8, Falk Schreiber9, and Bettina Speckmann10

1 University of Perugia, Perugia, Italy
carla.binucci@unipg.it

2 ETH Zurich, Zurich, Switzerland
ulrik.brandes@gess.ethz.ch

3 Monash University, Melbourne, Australia
tim.dwyer@monash.edu

4 University of Cologne, Cologne, Germany
gronemann@informatik.uni-koeln.de

5 Kiel University, Kiel, Germany
rvh@informatik.uni-kiel.de

6 Utrecht University, Utrecht, The Netherlands
m.j.vankreveld@uu.nl

7 TU Dortmund University, Dortmund, Germany
petra.mutzel@cs.tu-dortmund.de
8 DePaul University, Chicago, USA

MSchaefer@cdm.depaul.edu
9 University of Konstanz, Konstanz, Germany

falk.schreiber@uni-konstanz.de
10 TU Eindhoven, Eindhoven, The Netherlands

b.speckmann@tue.nl

Abstract. This is an invitation to the research area of graph drawing. It
encompasses basic research such as graph theory, complexity theory, data
structures, and graph algorithms as well as applied research such as soft-
ware libraries, implementations, and applications. Application domains
include areas within computer science (e. g., information visualization,
software engineering, model-based design, automated cartography) as
well as outside (e. g., molecular biology and the social sciences). A selec-
tion of results demonstrates the influence of graph drawing on other areas
and vice versa.

Keywords: Graph drawing · Visualization · Complexity
Computational geometry · Software engineering

1 Introduction

The ultimate goal of graph drawing is to construct suitable visualizations of
graphs and networks. While important contributions date back much further,
c© Springer Nature Switzerland AG 2019

B. Steffen and G. Woeginger (Eds.): Computing and Software Science, LNCS 10000, pp. 85–104, 2019.

https://doi.org/10.1007/978-3-319-91908-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91908-9_6&domain=pdf
https://doi.org/10.1007/978-3-319-91908-9_6

86 C. Binucci et al.

(a)
cats dogs

fish

chase

eat

rats

eat eat

(b)

Fig. 1. (a) The graph K4 in three different styles: planar straight-line, planar with
circular arcs, and non-planar straight-line. (b) Graph with vertex and edge labels.

institutionalization began with an International Work Meeting on Graph Draw-
ing in 1992. The first published proceedings appeared as Lecture Notes in Com-
puter Science vol. 894 in 1994 and have appeared in this series ever since.1 From
the very beginning, the area has featured a unique combination of basic research
in, for instance, topological graph theory, complexity, data structures, computa-
tional geometry, and optimization, research in various application domains, and
practical research on implementations, tools, and usage.

We highlight ten characteristic topics of basic and applied research in graph
drawing to incentivize readers to learn more about the area. A comprehensive
overview is given in the Handbook of Graph Drawing and Visualization [80], and
some open problems have been compiled by Brandenburg et al. [16].

2 Basic Research

The most common visual representation of a graph is a two-dimensional draw-
ing in which points in the plane represent vertices and curves connecting them
represent edges.

2.1 Computational Geometry

When drawing a graph we need to give the vertices coordinates and the edges
shapes. Computational geometry is the field within algorithms research that
is concerned with coordinates and shapes. Most of the aesthetic criteria that
assess the quality of a drawing of a graph are geometric, and techniques from
computational geometry can be used to compute them.

We call a graph planar if it can be drawn in the plane without edge crossings.
Suppose we are given a planar straight-line drawing of a graph (see Fig. 1).
Its angular resolution is the smallest angle in the drawing over any two edges
incident to the same vertex. The graph resolution is the maximum ratio between
the longest edge length and the shortest distance between distinct, non-incident
features (two vertices, or a vertex and a non-incident edge). Both resolutions
can be computed in linear time.

1 See http://graphdrawing.org/ for a complete list.

http://graphdrawing.org/

10 Reasons to Get Interested in Graph Drawing 87

The area requirement of a graph is the size of the integer grid needed to
embed the graph so that all vertices lie on grid points. Commonly, the graph
is planar and a planar drawing on the grid is required. The algorithm of de
Fraysseix et al. [35] shows that any planar graph can be drawn planarly on the
2n− 4 by n− 2 grid (see Fig. 2(b)). This bound was improved by Schnyder [71],
who shows that an n − 2 by n − 2 grid suffices. It is also possible to use quality
measures on faces. Since the “best” shape of a face is convex, one may wonder
which planar graphs allow drawings where all faces are convex. Chrobak and
Kant [24] showed that every triconnected planar graph allows a drawing where
all bounded faces are convex. The vertices are chosen on an n− 2 by n− 2 grid.

The angular resolution of planar graph drawings can often be improved if
one is willing to use curved edges; angular resolution must now be defined using
tangents of curves at incident vertices. Lombardi drawings are plane drawings
where all edges are circular and the angular resolution at every vertex is per-
fect [30]. Not all planar graphs admit a Lombardi drawing. Other variants from
the straight-line edge style are edges with bends and thick edges. Especially the
former is studied extensively in graph drawing.

For non-planar graphs, intersection angles of edges are important for read-
able, aesthetic graph drawings. This observation has led to the introduction of
right-angle crossing drawings [29] and large angle crossing drawings [37] of non-
planar graphs. How different drawing styles and aesthetic measures relate was
investigated by Hoffmann et al. [44]. Figure 1(a) shows a K4 drawing in three
different styles, leading to a different optimal angular resolution in each style.

Often drawings also need labels, see Fig. 1(b). Automated label placement
has been studied extensively in various research fields. To compute placements,
text labels are usually represented by a rectangular bounding box. Labels should
be placed close to the features they refer to, and they should not intersect each
other, nor any other features. In this setting, label placement can be seen as an
optimization problem related to packing; for an overview of results, see [54].

2.2 Graph Theory: Canonical Orderings

One of the most intuitive ways to draw a planar graph by hand is to add elements
(vertices, edges, faces, etc.) of the graph in an incremental manner to an already
existing drawing. This drawing usually satisfies certain properties that serve as
an invariant during this process.

In 1988 de Fraysseix et al. [35] took this idea and introduced the so-called
canonical orderings for maximal planar graphs (graphs to which no edge can
be added without losing planarity). They used this order of the vertices in an
algorithm to draw every maximal planar graph in a planar straight-line style
on a grid of quadratic size (see Sect. 2.1 and Fig. 2). The canonical ordering as
described in [35] requires the graph to be maximal planar. In case the input does
not satisfy this constraint, one may augment it by simply triangulating it. This
step, however, is not advisable for certain applications. A more general variant
for triconnected planar graphs has been given by Kant [48]. His definition differs
from the original one in that it uses an ordered partition of the vertices instead

88 C. Binucci et al.

1 23 4

65

7

(a)
1 2

3
5 4

6

7

(b)

Fig. 2. (a) Example for a canonical ordering of a maximal planar graph and (b) incre-
mental construction of a planar straight-line grid drawing using the algorithm in [35].

of a vertex ordering. A more detailed description of a linear-time algorithm to
obtain such an ordering is given by Badent et al. [5]. They also show that a
canonical ordering induces one in the dual of a triconnected planar graph.

Kant’s definition has found numerous applications in graph drawing.
Although the initial purpose was to draw planar graphs, it has been success-
fully applied to other graph-related problems. For example, Chiang et al. [23]
use it to encode planar graphs with as few bits as possible. See [5] for an extensive
list of applications.

Gronemann [39] suggested orderings for directed planar graphs based on st-
orderings. This allows one to use techniques for undirected graphs to construct
upward planar drawings (all arcs point upward). For undirected triconnected
non-planar graphs, Schmidt [70] showed how to efficiently obtain a Mondshein
sequence, a special non-separating ear decomposition similar to canonical order-
ings. With this result, Schmidt is able to improve the runtime to linear time for
several algorithms, e. g., for finding independent spanning trees in triconnected
graphs, which is the preprocessing step for querying internally disjoint paths.

2.3 Complexity: A Real Analogue of NP in Graph Drawing

In this section, we give some intuition for the fact that several problems in
graph drawing with a geometric flavor like the rectilinear crossing number are
computationally different from NP-complete problems like the crossing number.

The existential theory of the reals, ETR, is the set of all true, existential
statements over the real numbers, such as (∃x, y)[xy = 1 ∧ x2 + y2 = 1], stat-
ing that the hyperbola intersects the unit circle, or, equivalently, the set of real
satisfiable formulas like [xy = 1 ∧ x2 + y2 = 1]. ETR is very expressive, partic-
ularly for graph drawing problems involving straight lines, convexity, or metric
concepts. Take cr, the rectilinear crossing number: Deciding whether a graph
has a straight-line drawing with k crossings can be phrased in ETR. Since ETR
is decidable in polynomial space, we can compute cr, at least in principle. A
closer study reveals that many problems decidable via ETR are computationally
equivalent to it; this implies that solving them is likely hard, much harder than
NP-complete problems. Similarly to NP, we can introduce a complexity class

10 Reasons to Get Interested in Graph Drawing 89

∃R, the real satisfiability problem, as the set of problems which computation-
ally reduce to ETR. Returning to the cr-problem: Bienstock [9] showed that it is
equivalent to ETR, so ∃R-complete. Since ETR encodes NP-complete problems,
this also implies that computing cr is NP-hard.

While ETR, like satisfiability for NP, can serve as a starting point to show
∃R-completeness, there are problems closer to graph drawing that can fulfill this
role. The two most fundamental ones are stretchability of pseudoline arrange-
ments, deciding the question whether a pseudoline arrangement is isomorphic
to a straight-line arrangement, a result due to Mnëv, and its projective dual,
the realizability of a chirotope by a pointset. A promising third problem has
been added to the list recently, realizability of an allowable sequence [45]. These
three problems can serve as the starting point for reductions, like the Clique or
Independent set problem for NP.

Intersection graphs, such as string graphs (Jordan arcs), and interval graphs
(intervals on a line), can often be recognized in NP, but convexity seems to esca-
late the complexity to ∃R. We know that recognizing intersection graphs of line
segments (one of the oldest ∃R-results, due to Kratochv́ıl and Matoušek [53]),
rays, convex sets, disks and unit disks is ∃R-complete. There are further ∃R-
complete problems in simultaneous graph drawing, visibility graphs, and metric
problems such as unit distance and matchstick graphs, Delaunay triangulations,
and problems related to angles and slopes. See [53,59] for a survey.

We conclude with some candidates for ∃R-completeness: Does the rectilinear
crossing number problem, cr(G) ≤ k, remain ∃R-complete for fixed k? Is calcu-
lating the geometric thickness of a graph, or its maximum rectilinear crossing
number ∃R-complete? How hard is it to decide whether a graph has a straight-
line drawing in which certain edges have to be free of crossings? For puzzle fans:
How hard is it to tell whether a set of puzzle pieces can be placed into a given
frame without overlapping (see Nagata’s Arrow Puzzle)?

2.4 Data Structures: SPQR-Tree

Decomposition techniques often lead to efficient approaches for solving graph
problems. The idea of using a decomposition in triconnected components goes
back to MacLane (1937) and Tutte (1966) and has been used early in the graph
algorithm literature (e. g., Bienstock and Monma [10]), but the methods became
much easier using the data structure of SPQR-trees.

The data structure of SPQR-trees was suggested by Di Battista and Tamassia
[26] in the context of graph drawing to represent the triconnected decomposition
of a biconnected graph using series parts (S-nodes), parallel parts (P-nodes), and
triconnected parts (R-nodes). Q-nodes denote single edges. Every node comes
with a skeleton describing the whole graph with some parts contracted to an
edge. For example, the skeleton of an S-node is a cycle, the skeleton of a P-node
is a pair of vertices with some parallel edges, and the skeleton of an R-node is a
triconnected component. The data structure combines these nodes in form of a
tree (see Fig. 3). Since for planar graphs the skeletons are also planar, a combi-
natorial embedding of all the skeletons uniquely describes a planar embedding

90 C. Binucci et al.

(a)

S

S

P SRS

(b)

Fig. 3. (a) A biconnected graph and (b) its SPQR-tree with the skeletons (Q-nodes
skipped). The edges in the skeletons represent either an original edge (solid) or a larger
part of the graph (dashed, dotted).

of the whole graph and vice versa. Hence, SPQR-trees can be used to represent
the set of all planar embeddings of a biconnected graph. This data structure can
be computed in linear time and linear space [40].

SPQR-trees are applicable to problems that are easier to solve for tricon-
nected graphs than for non-triconnected ones. This is particularly true for prob-
lems in which combinatorial embeddings play a crucial role. Another example are
problems that can be solved in linear time for the class of series-parallel graphs.
This data structure also works for problems in which divide-and-conquer meth-
ods work well.

SPQR-trees have been used heavily within the graph drawing community,
e. g., to elegantly solve variations of planarity testing problems such as on-line,
cluster or upward planarity testing, and to efficiently compute layouts (e. g., bend
minimization and symmetric planar drawings). A survey on the SPQR tree data
structure and its applications can be found in [63].

Outside graph drawing, SPQR-trees have been used for many different graph
problems, e. g., for maintaining a minimum spanning tree and for solving tri-
angulation problems. In computer-aided design they are important for solving
layout decomposition problems in general multiple patterning lithography [87].
In business process management, the data structure has been used for develop-
ing process models and analyzing the control flow of business processes (e. g.,
[83]). SPQR-trees have also been used outside Computer Science: in electrical
engineering for the generation of wave digital structures from reference circuits
[34] and in theoretical physics for reducing Feynman integrals in perturbative
quantum field theory [58].

3 Applications

3.1 Information Visualization

Information visualization is the research field concerned with all aspects of cre-
ating interactive visuals for abstract data. Abstract data are any data with-
out inherent geometry: whether multivariate tabular data or—the chief con-
cern of this article—relational data, where objects (which may have their own

10 Reasons to Get Interested in Graph Drawing 91

Fig. 4. Investigations of confluent drawing by a graph drawing paper and later by an
information visualization paper. (a) Flat and outerplanar strict confluent drawings of
the same graph by Eppstein et al. [33]. (b) Bach et al. [3] apply confluent drawing to
a large authorship network.

attributes) are related to one another in various ways. The latter, of course,
are networks or graphs. Network visualization has always been a core topic of
information visualization. Papers on this topic presented at information visual-
ization forums routinely cite—and are heavily inspired by—material originally
presented at graph drawing forums, and vice-versa.

Speaking generally, the graph drawing community tends to be rigorous about
developing efficient and correct algorithms and the theory to support these.
In information visualization, the focus is more on applications and the human
factors or usability of the methods. Just one such example is the idea of confluent
drawings of graphs in which the edges are drawn in bundles to reduce clutter
but in such a way that their connectivity remains clear (see Fig. 4). Confluent
drawing was introduced in the graph drawing community first [28] primarily as
a theoretical topic. More recently, the practical applications of this idea have
been explored at InfoVis [3].

Another area where early work in graph drawing had significant impact upon
information visualisation is force-directed layout. Graph drawers were the first to
make this algorithm scale to large graphs with, for example, the Barnes-Hut cell
opening criteria used in physics particle simulations by Tunkelang [82] and the
first to make interactive, animated versions for online graph layout [31]. These
ideas were later chosen for the force-directed layout implementation in D3, one
of the most highly cited and influential InfoVis papers ever [15].

92 C. Binucci et al.

It is also interesting to consider the graph drawing approach to tree compar-
ison, which has focused on crossing minimisation problems, e. g., Tanglegrams.
By contrast, an early information visualization approach focused on interaction,
e. g., Tree Juxtaposer [62]. Another major theme of tree visualization at InfoVis
has been treemaps [76]. This design, developed by InfoVis researchers, inspired
graph drawers to tackle the much harder problem of creating space-filling draw-
ings of directed acyclic graphs at Graph Drawing [81]. In summary (and in
keeping with the subject of trees), it is an extremely healthy cross-pollination
that occurs between these two communities, helping both to grow and prosper.

3.2 Software Engineering

The field of software engineering concerns all the phases of the lifecycle of a soft-
ware system: design, development, implementation, testing, and maintenance.
Each of these phases may involve a large amount of data, thus requiring the
use of visualization techniques to help software engineers in carrying out their
job. Since the relationships and the interplay between data, objects, procedures,
and architectural components of an architectural system are usually modeled as
graphs, special attention has been devoted to the study of algorithms and user
interfaces for the visualization of graphs in the scientific literature.

In the following we describe interconnections between software engineering
and graph drawing. Early works that used graph drawing techniques focused
on the automatic layout of Entity-Relationship diagrams [6] and data flow dia-
grams [7]. These papers are milestones since they are among the first applications
of graph drawing to computer-aided software engineering and they devise a new
strategy to incrementally build a graph layout. This strategy, called the topology-
shape-metrics (TSM) approach, has been formally defined and made popular by
a work of Tamassia [79] and it aims to compute a drawing of the graph in an
orthogonal style (vertices are drawn as points or rectangles and edges are drawn
as chains of horizontal and vertical segments).

The object-oriented programming paradigm became extremely popular in
the late’90s and motivated the introduction of the Unified Modeling Language
(UML), a universal formalism intended to visually describe the architecture and
the behavior of a software system at different levels of abstractions. In particular,
class diagrams are among the most adopted types of UML diagrams. They are
based on the use of graphs and are helpful in the design of a software architecture
in terms of its classes (vertices of the graph) and their relationships (edges of
the graph). These class diagrams required new graph drawing research. One of
the main challenges for automatic visualization of a class diagram is to clearly
show different types of relationships that such a diagram can have: some rela-
tionships (e. g., generalizations) correspond to oriented edges that describe the
hierarchical structure (inheritance) of the classes, while other types of relation-
ships correspond to non-oriented edges. Moreover, labels (both for the vertices
and for the edges) [13,50] and clustering information (to model containment
relations) [27,42] must be taken into account in the layout.

10 Reasons to Get Interested in Graph Drawing 93

Fig. 5. Two layouts of the same UML class diagram taken from [41]: (a) an industrial
layout; (b) a layout based on the extended TSM approach (OGDF).

Several techniques have been proposed in the graph drawing literature to
automatically visualize a class diagram. The layouts computed by the first com-
mercial tools were mainly based on the well-known layered approach of Sugiyama
et al. [78], without distinguishing between directed and undirected edges. Accord-
ing to this approach vertices are suitably distributed on different horizontal lay-
ers. Seemann [75] was the first to propose a modified version of the layered
approach, considering separately directed and undirected edges.

The approaches in [32,41] proposed new drawing algorithms that exploit and
extend the TSM approach in order to handle mixed graphs (i. e., graphs with
both directed and undirected edges), vertices of prescribed size, and clusters
of vertices. These algorithms produce significant improvements with respect to
the layered approach (see Fig. 5) and their implementations are integrated in
software libraries and systems, like OGDF and the yFiles library. Alternative
techniques have been described for dealing with mixed graphs [12,14], vertices
of prescribed size, and orthogonal drawings with prescribed clusters of vertices
(see [80]).

We finally mention that some tools for software documentation integrate
graph visualization facilities to automatically generate class diagrams of object-
oriented software from annotated source code. Among them, Doxygen2 is widely
used and adopts the layered drawing algorithm available in the GraphViz library.

3.3 Model-Based Design

Model-based design (MBD), also referred to as model-based development or
model-driven engineering, is a design methodology where some artefact, referred

2 http://www.stack.nl/∼dimitri/doxygen/.

http://www.stack.nl/~dimitri/doxygen/

94 C. Binucci et al.

Fig. 6. An SCChart modeled with KIELER. The graphical view (center) is synthesized
automatically from the textual ABRO.sctx model (left). Layout directives (starting with
@) govern the filtering and drawing, e. g., region HandleA is collapsed. The view also
helps to navigate in the model; here, the user has clicked in region HandleB, which
selects the corresponding part in the text. The control panel (right) gives further options
on layout and filtering, concerning for example the shortening of labels.

to as system under development (SUD), is created based on some model(s) of it.
This model (or collection of models) is initially rather abstract, concentrating
on what the SUD is supposed to do, and only in later—possibly automated—
development stages it is specified how the SUD does what it does. The models
tend to use a graphical instead of a textual syntax; as Schätz et al. put it, “Intu-
itively, model-based development means to use diagrams instead of code” [69].
As argued in this section, automated graph drawing is not as systematically
employed in MBD as it could and should be.

It is common practice especially in the development of cyber-physical sys-
tems to start with a graphical model of the SUD and often also its environ-
ment, and synthesize (textual) code for generating software or hardware from
this model. There are numerous commercially successful tools that support this,
such as Matlab/Simulink (from Mathworks), LabVIEW (National Instruments),
ASCET (ETAS) or SCADE (Ansys/Esterel Technologies). The typical scenario
is that the modeler manually creates a drawing (or view) of the model, using an
initially empty drawing canvas and a palette from which graphical elements are
dragged and dropped onto the canvas. This can be very time consuming; Petre
quotes a developer: “I quite often spend an hour or two just moving boxes and
wires around, with no change in functionality, to make it that much more com-
prehensible when I come back to it” [67]. When creating or changing a model, an
estimated 30% of a user’s time is spent on manual layout adjustments accord-
ing to Klauske and Dziobek [51]. In particular programmers who are used to
powerful text editors and integrated development environments (IDEs) such as
Eclipse often find working with today’s graphical editors rather cumbersome.

10 Reasons to Get Interested in Graph Drawing 95

Ideally, one would like that modelers can focus their efforts on the models
they work with, and do not have to spend significant time on mechanical draw-
ing activities, just like today’s circuit developers leave the place-and-route step
typically to automation. This is also advocated in modeling pragmatics, which
concerns all practical aspects of handling a model in its design process [36].
The separation of model and view is in fact a classic design principle in soft-
ware development, known as model-view-controller pattern. Applied to MBD,
this means that customized views should be constructed automatically from a
model. This, however, requires automated graph drawing capabilities. One mod-
eling tool that follows this approach is KIELER, shown in Fig. 6, which uses the
Eclipse Layout Kernel3 (ELK), an open-source collection of numerous layout
algorithms implemented in Java. However, to adapt this approach into common
practice, there is a range of obstacles to overcome, ranging from fundamental dif-
ficulties and technical problems (such as properly dealing with comments [74])
to psychological issues, concerning various stakeholders in different communi-
ties. For example, todays modelers are just accustomed to creating the layout
manually, just like early circuit designers were used to do manual placement and
routing. Even though there seems to be a pretty clear case for the usage of graph
drawing techniques to improve modeler productivity, as argued above, there is
little pressure on the tool vendors to provide good solutions. Sometimes, how-
ever, there is no way around this; for example, when the visual syntax changes
significantly from one tool version to the next, old models must be migrated
automatically to the next version [68]. Also, while modelers are often unhappy
with automatic layout results applied to “their” finished models that they have
hand-crafted before, they seem much more open to automatic layout if it has
been applied from the very beginning. But still, mechanisms that let modelers
guide the layout and layout stability, meaning that small changes in the model
should not lead to abrupt changes in the overall drawing, are important issues
to be addressed for increasing the acceptance of automated graph drawing in
MBD practice.

3.4 Automated Cartography

Graph drawing and cartography both use a certain degree of abstraction when
visualizing data. The graph drawing perspective has hence been used to address
several questions from automated cartography. Consider, for example, an admin-
istrative map of the countries of Europe. Such a map can be viewed as a graph
in two ways: (1) the boundaries of the countries can be considered edges, and the
three-country points are the most prominent vertices, and (2) the adjacencies of
countries can be represented by a graph, dual to the first view. Also the infor-
mation shown on certain maps can be seen as graphs to be drawn. A prominent
example are the weighted trees of flow maps. Below we describe the main map
types that relate to graph drawing.

3 http://www.eclipse.org/elk.

http://www.eclipse.org/elk

96 C. Binucci et al.

Fig. 7. (a) Rectangular cartogram of the 2008 US presidential election (from Buchin
et al. [21]. (b) Flow map showing migration from Colorado (from Verbeek et al. [84]).

Cartograms show values for regions by shrinking and expanding those regions,
so that the area of each region corresponds to the value represented, for example
total population. Necessarily, cartograms show distorted regions.

The first algorithmic study of rectangular cartograms, where all regions are
rectangles of specified sizes (Fig. 7(a)), is due to van Kreveld and Speckmann [55];
extensions and refinements were presented by Buchin et al. [21]. It is not always
possible to realize the same rectangle adjacencies as the corresponding region
adjacencies on a normal map. To overcome this, rectilinear cartograms were
introduced, where regions can have more than four corners. De Berg et al. [8]
showed that only constantly many corners per region are needed in rectilinear
cartograms. Alam et al. [1] showed that eight corners is always enough. In linear
cartograms, Euclidean distances between vertices represent values, such as travel
time. Vertices must be placed correspondingly and the map will be distorted
[11,47]. Alternatively, one can use distorted edges to represent travel time [19].

Flow maps show the movement of objects between geographic locations on a
map using thick arrows (Fig. 7(b)). Edge bundling is often used to avoid visual
clutter. Using a modification of Steiner trees, Buchin et al. [20] modelled this
problem and gave an approximation algorithm, since a general formulation is
NP-hard.

Schematic maps are commonly used for public transportation systems. Con-
nections between major stations are drawn with polygonal lines that are highly
abstracted: they have only a few segments with few orientations (horizontal,
vertical, or slope +1 or −1). Cabello et al. [22] compute an order of the connec-
tions suitable for incremental placement, leading to an O(n log n) time algorithm.
Neyer [64] views the problem as a line simplification problem and approximates
each connection with the minimum number of segments in the specified orien-
tations. Nöllenburg and Wolff [66] give an integer programming approach to the
problem, respecting multiple constraints. Brandes and Wagner [17] draw con-
nections between stations as circular arcs and address the visualization problem
as a graph layout problem.

10 Reasons to Get Interested in Graph Drawing 97

(a) manual layout [61] (b) density-adapted layout [65]

Fig. 8. Social networks of actors organized into (a) cottages (circles) and (b) dorms
(colors). Layout is (a) manual taking known groups into account and (b) with a graph-
drawing algorithm based on local density variation not knowing the clusters (inset
shows result of straightforward force-directed layout).

3.5 Social Sciences

Graph drawing is relevant to much of the social sciences but its most direct
association is with social structure and social relations. The analytic concept of
social networks has been linked so closely with its representation as a graph that
the use of related graph-theoretic techniques in any discipline is often considered
an application of social network analysis.

Social networks in the strict sense consist of actors and the social ties
that moderate their actions [43,85]. Variant types include affiliation networks
(depending on context, represented as hypergraphs or bipartite graphs with a
fixed bipartition), ego networks (represented with or without the defining focal
actor who is in relationship with everyone else, and with or without relationships
between the other actors), and longitudinal networks (given, for instance, as
cross-sectional panel data, interval-censored aggregations, or relational events).
Descriptive features include macro-level classifications such as being a core-
periphery or small-world type network as well as structural properties such as
cohesive groups, roles, and actor centralities. Statistical inference is often based
on particular families of models for which there is a long history [38].

It was realized early on that visualization is not only for communication but
that it can serve as a tool to explore the intricate and a-priori unknown patterns
of complex webs of relationships [18]. The first known matrix representation of
a graph of social relations goes back to the end of the 19th century [25] and
Moreno’s influential book [61] is full of hand-made graph drawings such as the
one in Fig. 8(a).

While graphs associated with social relations often exhibit certain tenden-
cies such as being sparse with one or more locally dense centers, low average

98 C. Binucci et al.

distance, and a skewed degree distribution, there is no guaranteed restriction to
any particular class of graphs. Instead, layout problems are often associated with
an analytic focus. A rule of thumb for effective visualization of social networks
is that the aspect of interest defines layout constraints whereas the objective for
the remaining degrees of freedom is to maximize readability. In this way, social
networks provide a rich source of graph drawing problems, even if the resulting
problems have often been addressed without this particular application in mind.
Examples include (straight or radial) layered layout to depict actor centrality
and status, clustered layout for (nested or flat) communities, and preprocessing
techniques for skewed degree distributions.

Actual use of graph drawing methods is limited, though. A lack of graphi-
cal standards and, more importantly, widely known and easy-to-use dedicated
software tools hinders the routine practice of purposefully designed graphical
illustrations that are prepared with the help of graph drawing algorithms. While
the share of network visualization papers in the area of information visualization
is increasing, the development of dedicated layout algorithms is lagging behind.
Consequently, as in almost any applied area, the most widely used tools are rel-
atively standard implementations of force-directed layout algorithms. Given the
rich history of visualization in social network analysis, the variety of layout prob-
lems, and its increasing relevance due to the spread of online social networks,
there is a lot to be gained by developing – and applying – more sophisticated lay-
out algorithms. An example, a preprocessing technique to untangle small-world
networks common in social media [65], is given in Fig. 8(b). Other heavily under-
explored areas are network models, ensembles of networks, multilayer networks,
and sequences of relational events.

3.6 Molecular Biology

Molecular biology is a subfield of biology which studies structure and function
of cells at a molecular level. Cells are living objects composed of molecules such
as DNA, proteins, and metabolites, that interact with each other in different
ways. Molecules and their interactions play a central role, and structures based
on these elements are commonly referred to as biological networks. Examples
include gene regulatory and metabolic networks. In addition, there are further
graphs derived from those elements such as phylogenetic trees and correlation
networks. See [46] for an overview of networks in molecular biology.

These structures are often represented by multivariate networks which dif-
fer in both the semantics of vertices and edges as well as the data attached to
vertices and edges. Examples are undirected graphs (e. g., for protein interac-
tion networks), rooted trees (phylogenetic trees) and hyper-graphs (metabolic
networks), often containing additional attributes attached to vertices and edges.
Figure 9 shows some examples, Kohlbacher et al. present more information about
multivariate networks in the life sciences in [52].

While manual drawings of tree-like information such as the tree of life
appeared at least at the beginning of the 19th century [77], the earliest drawings
of cellular networks are most likely of metabolic (sub)pathways in the early 20th

10 Reasons to Get Interested in Graph Drawing 99

(a) Metabolic network
(hyper-graph) visualized
with an adapted layered
approach [72].

(b) Regulatory network
(directed graph) visu-
alized with a hive plot
layout [56].

(c) Signal transduction
network (directed graph)
visualized manually in the
SBGN AF standard [60].

Fig. 9. Some biological networks and related layout methods.

century, for example, the glucose fermentation pathway proposed by Wohl in
1907 [86]. A huge number of biological networks have been drawn manually, and
manual drawings are still common nowadays for illustrations in publications, in
electronic systems such as the well-known KEGG database and so on.

When graph drawing algorithms became available, they were first used to
compute visualizations for presentations (e. g., for networks derived from data-
bases as in [49]), later employed to support the discovery process such as to
investigate structure, connectivity, or hubs in such networks, and finally novel
layout algorithms were developed tailored to specific networks (e. g., see Fig. 9)
or—as generic algorithms—for different visualization tasks (e. g. [73]). Applica-
tions and specific adaptions of common graph drawing algorithms for the visu-
alization of biological networks are detailed in [4]. Examples for specific layout
methods motivated by biological questions or data characteristics are power-
graph layout, which reduces the network complexity by explicitly representing
re-occurring network motifs, and hive plot layout, which is a parallel coordinate
layout of a graph with radially arranged axes, see also Fig. 9.

Standardised representations, ontologies and taxonomies are common in bio-
logical sciences, an early example is Linnaeus’ taxonomy from 1735 [57]. Recent
developments also include graphical standards: SBGN (Systems Biology Graph-
ical Notation) covers the graphical representation of major networks and pro-
cesses in molecular biology. The specifications of the three SBGN languages not
only defines glyphs for vertices and edges, their syntax and semantics, but also
contain rules and recommendations for a good layout of these networks.

Graph drawing is well established in molecular biology as method to visualize
biological networks. Similar to other areas discussed earlier, molecular biology
is not only a field of science which uses and applies graph drawing algorithms,

100 C. Binucci et al.

but also an interesting source of new problems in graph drawing. This field
offers a broad range of layout problems for multivariate graphs and, given the
increasing size, complexity and availability of the data, there is huge interest for
better visualization (layout) and exploration methods. Some open problems in
biological network visualization are presented by Albrecht et al. [2].

Acknowledgements. This work was supported by the DFG under the project Com-
pact Graph Drawing with Port Constraints (DFG HA 4407/8-1 and MU 1129/9-1).
Marc van Kreveld is supported by the Netherlands Organisation for Scientific Research
(NWO) on project no. 612.001.651. Bettina Speckmann is supported by the Nether-
lands Organisation for Scientific Research (NWO) on project no. 639.023.208.

References

1. Alam, M., Biedl, T., Felsner, S., Kaufmann, M., Kobourov, S., Ueckerdt, T.: Com-
puting cartograms with optimal complexity. Discret. Comput. Geom. 50(3), 784–
810 (2013)

2. Albrecht, M., Kerren, A., Klein, K., Kohlbacher, O., Mutzel, P., Paul, W.,
Schreiber, F., Wybrow, M.: On open problems in biological network visualization.
In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 256–267.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11805-0 25

3. Bach, B., Riche, N.H., Hurter, C., Marriott, K., Dwyer, T.: Towards unambiguous
edge bundling: investigating confluent drawings for network visualization. IEEE
Trans. Vis. Comput. Graph. 23(1), 541–550 (2017)

4. Bachmaier, C., Brandes, U., Schreiber, F.: Biological networks. In: Handbook of
Graph Drawing and Visualization, pp. 621–651. Chapman and Hall/CRC, Boco
Raton (2014)

5. Badent, M., Brandes, U., Cornelsen, S.: More canonical ordering. J. Graph Algo-
rithms Appl. 15(1), 97–126 (2011)

6. Batini, C., Talamo, M., Tamassia, R.: Computer aided layout of entity relationship
diagrams. J. Syst. Softw. 4(2), 163–173 (1984)

7. Batini, C., Nardelli, E., Tamassia, R.: A layout algorithm for data flow diagrams.
IEEE Trans. Softw. Eng. 12(4), 538–546 (1986)

8. de Berg, M., Mumford, E., Speckmann, B.: On rectilinear duals for vertex-weighted
plane graphs. Discret. Math. 309(7), 1794–1812 (2009)

9. Bienstock, D.: Some provably hard crossing number problems. Discret. Comput.
Geom. 6(5), 443–459 (1991)

10. Bienstock, D., Monma, C.: On the complexity of embedding planar graphs to
minimize certain distance measures. Algorithmica 5, 93–109 (1990)

11. Bies, S., van Kreveld, M.: Time-space maps from triangulations. In: Didimo, W.,
Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 511–516. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36763-2 45

12. Binucci, C., Didimo, W.: Computing quasi-upward planar drawings of mixed
graphs. Comput. J. 59(1), 133–150 (2016)

13. Binucci, C., Didimo, W., Liotta, G., Nonato, M.: Orthogonal drawings of graphs
with vertex and edge labels. Comput. Geom. 32(2), 71–114 (2005)

14. Binucci, C., Didimo, W., Patrignani, M.: Upward and quasi-upward planarity test-
ing of embedded mixed graphs. Theoret. Comput. Sci. 526, 75–89 (2014)

https://doi.org/10.1007/978-3-642-11805-0_25
https://doi.org/10.1007/978-3-642-36763-2_45

10 Reasons to Get Interested in Graph Drawing 101

15. Bostock, M., Ogievetsky, V., Heer, J.: D3 data-driven documents. IEEE Trans.
Vis. Comput. Graph. 17(12), 2301–2309 (2011)

16. Brandenburg, F., Eppstein, D., Goodrich, M.T., Kobourov, S., Liotta, G., Mutzel,
P.: Selected open problems in graph drawing. In: Liotta, G. (ed.) GD 2003. LNCS,
vol. 2912, pp. 515–539. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24595-7 55

17. Brandes, U., Wagner, D.: Using graph layout to visualize train interconnection
data. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 44–56. Springer,
Heidelberg (1998). https://doi.org/10.1007/3-540-37623-2 4

18. Brandes, U., Freeman, L.C., Wagner, D.: Social networks. In: Tamassia, R. (ed.)
Handbook of Graph Drawing and Visualization, pp. 805–839. Chapman and
Hall/CRC, Boca Raton (2013)

19. Buchin, K., van Goethem, A., Hoffmann, M., van Kreveld, M., Speckmann, B.:
Travel-time maps: linear cartograms with fixed vertex locations. Geograph. Inf.
Sci. (GIScience) 2014, 18–33 (2014)

20. Buchin, K., Speckmann, B., Verbeek, K.: Angle-restricted Steiner arborescences
for flow map layout. Algorithmica 72(2), 656–685 (2015)

21. Buchin, K., Speckmann, B., Verdonschot, S.: Evolution strategies for optimizing
rectangular cartograms. GIScience 2012, 29–42 (2012)

22. Cabello, S., de Berg, M., van Kreveld, M.: Schematization of networks. Comput.
Geom. 30(3), 223–228 (2005)

23. Chiang, Y.T., Lin, C.C., Lu, H.I.: Orderly spanning trees with applications to
graph encoding and graph drawing. In: SODA 2001, pp. 506–515. SIAM (2001)

24. Chrobak, M., Kant, G.: Convex grid drawings of 3-connected planar graphs. Int.
J. Comput. Geom. Appl. 7(3), 211–223 (1997)

25. Delitsch, J.: Über Schülerfreundschaften in einer Volksschulklasse. Zeitschrift für
Kinderforschung 5(4), 150–163 (1900)

26. Di Battista, G., Tamassia, R.: On-line graph algorithms with SPQR-trees. In:
Paterson, M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp. 598–611. Springer, Heidel-
berg (1990). https://doi.org/10.1007/BFb0032061

27. Di Battista, G., Didimo, W., Marcandalli, A.: Planarization of clustered graphs.
In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 60–74.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45848-4 5

28. Dickerson, M., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent drawings:
visualizing non-planar diagrams in a planar way. In: Liotta, G. (ed.) GD 2003.
LNCS, vol. 2912, pp. 1–12. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-24595-7 1

29. Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings.
Theoret. Comput. Sci. 412(39), 5156–5166 (2011)

30. Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Nöllenburg, M.:
Lombardi drawings of graphs. J. Graph Algorithms Appl. 16(1), 85–108 (2012)

31. Eades, P., Cohen, R.F., Huang, M.L.: Online animated graph drawing for web
navigation. In: Di Battista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 330–335.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63938-1 77

32. Eiglsperger, M., Gutwenger, C., Kaufmann, M., Kupke, J., Jünger, M., Leipert, S.,
Klein, K., Mutzel, P., Siebenhaller, M.: Automatic layout of UML class diagrams
in orthogonal style. Inf. Visual. 3(3), 189–208 (2004)

33. Eppstein, D., Holten, D., Löffler, M., Nöllenburg, M., Speckmann, B., Verbeek,
K.: Strict confluent drawing. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS,
vol. 8242, pp. 352–363. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-
03841-4 31

https://doi.org/10.1007/978-3-540-24595-7_55
https://doi.org/10.1007/978-3-540-24595-7_55
https://doi.org/10.1007/3-540-37623-2_4
https://doi.org/10.1007/BFb0032061
https://doi.org/10.1007/3-540-45848-4_5
https://doi.org/10.1007/978-3-540-24595-7_1
https://doi.org/10.1007/978-3-540-24595-7_1
https://doi.org/10.1007/3-540-63938-1_77
https://doi.org/10.1007/978-3-319-03841-4_31
https://doi.org/10.1007/978-3-319-03841-4_31

102 C. Binucci et al.

34. Franken, D., Ochs, J., Ochs, K.: Generation of wave digital structures for networks
containing multiport elements. Trans. Circuits Syst. 52(3), 586–596 (2005)

35. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10(1), 41–51 (1990)

36. Fuhrmann, H., von Hanxleden, R.: Taming graphical modeling. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 196–210.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16145-2 14

37. Giacomo, E.D., Didimo, W., Liotta, G., Meijer, H.: Area, curve complexity, and
crossing resolution of non-planar graph drawings. Theory Comput. Syst. 49(3),
565–575 (2011)

38. Goldenberg, A., Zheng, A.X., Fienberg, S.E., Airoldi, E.M.: A survey of statistical
network models. Found. Trends Mach. Learn. 2(2), 129–233 (2010)

39. Gronemann, M.: Bitonic st-orderings for upward planar graphs. In: Hu, Y.,
Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 222–235. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-50106-2 18

40. Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks,
J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44541-2 8

41. Gutwenger, C., Jünger, M., Klein, K., Kupke, J., Leipert, S., Mutzel, P.: A new
approach for visualizing UML class diagrams. In: Diehl, S., Stasko, J.T., Spencer,
S.N. (eds.) Symposium on Software Visualization 2003, pp. 179–188. ACM (2003)

42. Gutwenger, C., Jünger, M., Leipert, S., Mutzel, P., Percan, M., Weiskircher, R.:
Advances in C -planarity testing of clustered graphs. In: Goodrich, M.T., Kobourov,
S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 220–236. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-36151-0 21

43. Hennig, M., Brandes, U., Pfeffer, J., Mergel, I.: Studying Social Networks - A Guide
to Empirical Research. Campus Frankfurt, New York (2012)

44. Hoffmann, M., van Kreveld, M.J., Kusters, V., Rote, G.: Quality ratios of mea-
sures for graph drawing styles. In: 26th Canadian Conference on Computational
Geometry, CCCG (2014)

45. Hoffmann, U.: Intersection graphs and geometric objects in the plane. Ph.D. thesis,
Technische Universität Berlin, Berlin (2016)

46. Junker, B.H., Schreiber, F.: Analysis of Biological Networks. Wiley Series on Bioin-
formatics, Computational Techniques and Engineering. Wiley, New York (2008)

47. Kaiser, C., Walsh, F., Farmer, C., Pozdnoukhov, A.: User-centric time-distance
representation of road networks. GIScience 2010, 85–99 (2010)

48. Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16,
4–32 (1996)

49. Karp, P.D., Paley, S.M.: Automated drawing of metabolic pathways. In: Lim, H.,
Cantor, C., Bobbins, R. (eds.) International Conference on Bioinformatics and
Genome Research, pp. 225–238 (1994)

50. Klau, G.W., Mutzel, P.: Combining graph labeling and compaction. In: Kratochv́ıl,
J. (ed.) GD 1999. LNCS, vol. 1731, pp. 27–37. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-46648-7 3

51. Klauske, L.K., Dziobek, C.: Improving modeling usability: Automated layout gen-
eration for Simulink. In: Proc. MathWorks Automotive Conference (2010)

52. Kohlbacher, O., Schreiber, F., Ward, M.O.: Multivariate networks in the life sci-
ences. In: Kerren, A., Purchase, H.C., Ward, M.O. (eds.) Multivariate Network
Visualization. LNCS, vol. 8380, pp. 61–73. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-06793-3 4

https://doi.org/10.1007/978-3-642-16145-2_14
https://doi.org/10.1007/978-3-319-50106-2_18
https://doi.org/10.1007/3-540-44541-2_8
https://doi.org/10.1007/3-540-44541-2_8
https://doi.org/10.1007/3-540-36151-0_21
https://doi.org/10.1007/3-540-46648-7_3
https://doi.org/10.1007/3-540-46648-7_3
https://doi.org/10.1007/978-3-319-06793-3_4
https://doi.org/10.1007/978-3-319-06793-3_4

10 Reasons to Get Interested in Graph Drawing 103

53. Kratochv́ıl, J., Matoušek, J.: Intersection graphs of segments. J. Combin. Theory
Ser. B 62(2), 289–315 (1994)

54. van Kreveld, M.: Geographic information systems (Chap. 59). In: Goodmann, J.,
O’Rourke, J., Toth, C. (eds.) Handbook of Discrete and Computational Geometry,
3rd edn. Chapman & Hall/CRC, Boca Raton (2017)

55. van Kreveld, M., Speckmann, B.: On rectangular cartograms. Comput. Geom.
37(3), 175–187 (2007)

56. Krzywinski, M., Birol, I., Jones, S.J., Marra, M.A.: Hive plots - rational approach
to visualizing networks. Brief. Bioinform. 13, 627–644 (2012)

57. Linnaei, C.: Species Plantarum. Holmiae (1735)
58. von Manteuffel, A., Studerus, C.: Reduze 2–distributed Feynman integral reduc-

tion. CoRR (2012)
59. Matousek, J.: Intersection graphs of segments and ∃R. arXiv:1406.2636 (2014)
60. Mi, H., Schreiber, F., Moodie, S., Czauderna, T., Demir, E., Haw, R., Luna, A.,

Novère, N.L., Sorokin, A., Villéger, A.: Systems biology graphical notation: activity
flow language level 1 version 1.2. J. Integr. Bioinform. 12(2), e265 (2015)

61. Moreno, J.L.: Who Shall Survive? Foundations of Sociometry, Group Psychother-
apy and Sociodrama. Beacon House, New York (1953). (First published in 1934)

62. Munzner, T., Guimbretière, F., Tasiran, S., Zhang, L., Zhou, Y.: TreeJuxtaposer:
scalable tree comparison using focus+ context with guaranteed visibility. ACM
Trans. Graph. (TOG) 22(3), 453–462 (2003)

63. Mutzel, P.: The SPQR-tree data structure in graph drawing. In: Baeten, J.C.M.,
Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719,
pp. 34–46. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45061-0 4

64. Neyer, G.: Line simplification with restricted orientations. In: Dehne, F., Sack,
J.-R., Gupta, A., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp. 13–24.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48447-7 2

65. Nocaj, A., Ortmann, M., Brandes, U.: Untangling the hairballs of multi-centered,
small-world online social media networks. J. Graph Algorithms Appl. 19(2), 595–
618 (2016)

66. Nöllenburg, M., Wolff, A.: Drawing and labeling high-quality metro maps by mixed-
integer programming. IEEE Trans. Vis. Comp. Graph. 17(5), 626–641 (2011)

67. Petre, M.: Why looking isn’t always seeing: readership skills and graphical pro-
gramming. Commun. ACM 38(6), 33–44 (1995)

68. Rüegg, U., Lakkundi, R., Prasad, A., Kodaganur, A., Schulze, C.D., von
Hanxleden, R.: Incremental diagram layout for automated model migration. In:
ACM/IEEE 19th International Conference on Model Driven Engineering Lan-
guages and Systems, MODELS 2016, pp. 185–195. ACM, New York (2016)

69. Schätz, B., Pretschner, A., Huber, F., Philipps, J.: Model-based development of
embedded systems. In: Bruel, J.-M., Bellahsene, Z. (eds.) OOIS 2002. LNCS, vol.
2426, pp. 298–311. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
46105-1 34

70. Schmidt, J.M.: The Mondshein sequence. In: Esparza, J., Fraigniaud, P., Husfeldt,
T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 967–978. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-43948-7 80

71. Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of 1st Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 138–148 (1990)

72. Schreiber, F.: High quality visualization of biochemical pathways in BioPath. Silico
Biol. 2(2), 59–73 (2002)

73. Schreiber, F., Dwyer, T., Marriott, K., Wybrow, M.: A generic algorithm for layout
of biological networks. BMC Bioinform. 10, 375 (2009)

http://arxiv.org/abs/1406.2636
https://doi.org/10.1007/3-540-45061-0_4
https://doi.org/10.1007/3-540-48447-7_2
https://doi.org/10.1007/3-540-46105-1_34
https://doi.org/10.1007/3-540-46105-1_34
https://doi.org/10.1007/978-3-662-43948-7_80

104 C. Binucci et al.

74. Schulze, C.D., von Hanxleden, R.: Automatic layout in the face of unattached
comments. In: Proceedings of Symposium on Visual Languages and Human-Centric
Computing (2014)

75. Seemann, J.: Extending the Sugiyama algorithm for drawing UML class diagrams:
towards automatic layout of object-oriented software diagrams. In: DiBattista, G.
(ed.) GD 1997. LNCS, vol. 1353, pp. 415–424. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-63938-1 86

76. Shneiderman, B.: Tree visualization with tree-maps: 2-D space-filling approach.
ACM Trans. Graph. 11(1), 92–99 (1992)

77. Stevens, P.: Augustin Augier’s “Arbre Botanique” (1801), a remarkable early
botanical representation of the natural system. Taxon 32, 203–211 (1983)

78. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierar-
chical system structures. IEEE Trans. Syst. Man. Cybern. 11(2), 109–125 (1981)

79. Tamassia, R.: On embedding a graph in the grid with the minimum number of
bends. SIAM J. Comput. 16(3), 421–444 (1987)

80. Tamassia, R. (ed.): Handbook of Graph Drawing and Visualization. Chapman and
Hall/CRC, Boca Raton (2013)

81. Tsiaras, V., Triantafilou, S., Tollis, I.G.: Treemaps for directed acyclic graphs. In:
Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 377–
388. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77537-9 37

82. Tunkelang, D.: JIGGLE: Java interactive graph layout environment. In: White-
sides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 413–422. Springer, Heidelberg
(1998). https://doi.org/10.1007/3-540-37623-2 33

83. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data
Knowl.Eng. 68(9), 793–818 (2009)

84. Verbeek, K., Buchin, K., Speckmann, B.: Flow map layout via spiral trees. IEEE
Trans. Vis. Comput. Graph. 17(12), 2536–2544 (2011)

85. Wasserman, S., Faust, K.: Social Network Aanalysis. Methods and Applications.
Cambridge University Press, Cambridge (1994)

86. Wohl, A.: Die neueren Ansichten über den chemischen Verlauf der Gärung. Bio-
chemische Zeitschrift 5, 45–64 (1907)

87. Zhang, Y., Luk, W.S., Zhou, H., Yan, C., Zeng, X.: Layout decomposition with
pairwise coloring for multiple patterning lithography. In: Proceedings of Interna-
tional Conference on Computer-Aided Design, pp. 170–177. IEEE Press (2013)

https://doi.org/10.1007/3-540-63938-1_86
https://doi.org/10.1007/3-540-63938-1_86
https://doi.org/10.1007/978-3-540-77537-9_37
https://doi.org/10.1007/3-540-37623-2_33

Sublinear-Time Algorithms
for Approximating Graph Parameters

Dana Ron(B)

School of Electrical Engineering, Tel Aviv University, 69978 Tel Aviv, Israel
danaron@tau.ac.il

1 Introduction

Given a graph G = (V,E), we may be interested in computing various parameters
that are associated with the graph. Such parameters include the average degree,
the number of connected components, and the size of a minimum vertex cover.
These parameters and many others can be computed (exactly or approximately)
in an efficient manner. That is, in time that is polynomial in the size of the graph,
and possibly even linear in this size. However, for very large graphs, even linear
time may by infeasible. Hence, we need to design more efficient algorithms, that
is, algorithms that run in sublinear time.

Given the constraint on their running time, such algorithms cannot read the
entire graph, but can access parts of the graph by performing queries. We mainly
consider two types of queries: degree queries and neighbor queries. In a degree
query the algorithm specifies a vertex v ∈ V , and the answer to the query is
the degree of v in G, denoted d(v). In a neighbor query, the algorithm specifies
a vertex v and an index i. The answer to the query is the ith neighbor of v if
i ∈ {1, . . . , d(v)}, and is a special symbol, ⊥, otherwise.1 A third possible type of
query is a vertex-pair query, where the algorithm specifies a pair of vertices {u, v}
and the answer is 1 if {u, v} ∈ E and 0 otherwise. If the graph is edge weighted,
then the answer to a neighbor query (similarly, a vertex-pair query) also includes
the weight of the corresponding edge. We assume that the algorithm is given the
number of vertices in the graph, denoted n, and, without loss of generality, may
assume that V = {1, . . . , n}. In all that follows, unless stated explicitly otherwise,
the algorithm has access to degree queries and neighbor queries.

The algorithms presented in this survey are randomized algorithms that are
allowed a small constant failure probability (e.g., 1/3). This failure probability
can be reduced in a standard manner to any desired value δ > 0 at a multi-
plicative cost of log(1/δ). The algorithms compute approximations of various
graph parameters. Ideally, we would like to design algorithms that, given any
ε ∈ (0, 1), compute an approximation that is within a multiplicative factor of

D. Ron—Research supported by the Israel Science Foundation grant no. 671/13.
1 Observe that a degree query to a vertex v can be replaced by O(log d(v)) neighbor
queries to v by performing a “doubling” search. For the sake of simplicity we allow
both types of queries.

c© Springer Nature Switzerland AG 2019

B. Steffen and G. Woeginger (Eds.): Computing and Software Science, LNCS 10000, pp. 105–122, 2019.

https://doi.org/10.1007/978-3-319-91908-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91908-9_7&domain=pdf
https://doi.org/10.1007/978-3-319-91908-9_7

106 D. Ron

(1±ε) from the exact value of the graph parameter in question, and furthermore,
their complexity grows polynomially with 1/ε. While some of the algorithms have
this desired behavior, others provide weaker approximations, as we detail when
presenting the corresponding results.

In the rest of this section, we present a variety of results for sublinear approx-
imation of graph parameters. In the sections that follow we give more details for
a selection of these results.

1.1 Average Degree and Higher Moments of the Degree
Distribution

The Average Degree. The problem of estimating the average degree d = d(G)
of a graph G in sublinear time was first studied by Feige [10]. He considered this
problem when the algorithm is allowed only degree queries, so that the problem
is a special case of estimating the average value of a function given query access
to the function. For a general function d : {1, . . . , n} → {0, . . . , n− 1}, obtaining
a constant-factor estimate of the average value of the function (with constant
success probability) requires Ω(n) queries to the function (and this remains true
even if there is a promise that the average value is at least 1). Feige showed
that when d is the degree function of a graph, for any ε ∈ (0, 1] it is possible
to obtain an estimate ˜d such that ˜d ∈ [d, (2 + ε) · d] with probability at least
2/3 by performing O(

√
n/ε) (uniformly selected) queries. He also showed that

in order to go below a factor of 2 in the quality of the estimate, Ω(n) queries
are necessary.

However, given that the object in question is a graph, it is natural to allow
the algorithm to query the neighborhood of vertices of its choice and not only
their degrees; indeed, the aforementioned problem definition follows this nat-
ural convention. Goldreich and Ron [14] showed that by giving the algorithm
this extra power, it is possible to break the factor-2 barrier. They provide an
algorithm that, given ε ∈ (0, 1), outputs a (1 ± ε)-factor estimate of the aver-
age degree (with probability at least 2/3) after performing ˜Oε(n1/2) degree and
neighbor queries, assuming d ≥ 1. (We use ˜Oε(·) to suppress both poly(log n)
factors and poly(1/ε) factors.) More precisely, the number of queries and the run-
ning time are ˜Oε((n/d)1/2) in expectation. Thus, the complexity decreases as the
average degree increases. Furthermore, this result is essentially optimal [14]: a
(1 ± ε)-factor estimate requires Ω((n/(εd))1/2) queries.

Higher Moments. For a graph G = (V,E), consider the sum (average) of
higher powers of the vertices’ degrees: for s ≥ 1 we let Ms = Ms(G) def=
∑

v∈V d(v)s and μs = μs(G) def= 1
n · Ms(G). Observe that for s = 1 we have

that μ1 = d (and M1 = 2m where m is the number of edges in the graph), while
for s = 2, the variance of the degree distribution is μ2 − μ2

1.
Gonen et al. [15] gave a sublinear-time algorithm for approximating μs. Tech-

nically, their algorithm approximates the number of stars in a graph (with a given

Sublinear-Time Algorithms for Approximating Graph Parameters 107

size s), but a simple modification yields an algorithm for moments estimation.
A much simpler algorithm (and analysis) was later given by Eden et al. [9] with
essentially the same complexity (the dependence on 1/ε, s and the poly(log n)
factors are reduced in [9]). Both papers show how to obtain a (1 ± ε)-factor

approximation of μs by performing ˜Oε

(

n
1− 1

s+1

μ
1

s+1
s

+ min
{

n1− 1
s , ns−1

μ
1− 1

s
s

})

queries

in expectation, where this bound is essentially optimal [15] (up to a dependence
on 1/ε and polylogarithmic factors in n). For example, when s = 2 this function
behaves as follows. For μ2 ≤ n1/2 the bound is n2/3/μ

1/3
2 , for n1/2 < μ2 ≤ n,

the bound is n1/2, and for μ2 > n, it is n/μ
1/2
2 .

Aliakbarpour et al. [1] consider a stronger model that assumes access to
uniform random edges. They show that in this model ˜Oε

(

m

M
1/s
s

+ n1−1/s
)

=

˜Oε

(

n1−1/s · max
{

1, d · μ
− 1

s
s

})

queries suffice for s > 1.

The Lower Bound and Graphs with Bounded Arboricity. The lower
bound constructions showing that the complexity of the aforementioned algo-
rithms for approximating μs is essentially optimal [15], are based on “locally
dense” graphs. In particular, the first (and simpler) lower bound (corresponding

to the first term, n1− 1
s+1 /μ

1
s+1
s = n/M

1
s+1
s), is simply based on the difficulty of

“hitting” a clique of size M
1

s+1
s , and the second lower bound (corresponding to

the second term), is based on a complete bipartite subgraph. A natural question
is whether we can get a better upper bound if we know that there are no dense
subgraphs. This question was answered affirmatively by Eden et al. [9]. They
showed that a significantly improved complexity can be obtained for graphs
with bounded arboricity.2 For precise details see [9].

Number of Triangles and Larger Cliques. Gonen et al. [15] also considered
the problem of approximating the number of triangles in a graph G, denoted
t = t(G). They showed a linear lower bound when the algorithm may use degree
and neighbor queries and m = Θ(n). This raises the natural question whether
a sublinear bound can be obtained if the algorithm is also allowed pair-queries
(which are not helpful in the case of moments estimation). This question was
answered affirmatively by Eden et al. [7]. They gave an algorithm whose query
complexity and running time are ˜Oε

(

n
t1/3 + m3/2

t

)

in expectation. To be precise,

in the expression for the query complexity, the second term is min{m,m3/2/t}
(so that the number of queries is at most linear, and is strictly sublinear as long as
t > m1/2). This bound on the query complexity is tight (up to factors polynomial
in log n and 1/ε) [7]. The result was recently extended to approximating the
number of k-cliques [8], for any given k ≥ 3.
2 The arboricity of a graph G, denoted arb(G), is the minimum number of forests into

which its edges can be partitioned. It satisfies [20,21] arb(G) = maxS⊆V

{⌈
|E(S)|
|S|−1

⌉}
,

where E(S) denotes the set of edges in the subgraph induced by S.

108 D. Ron

1.2 The Number of Connected Components

The problem of approximating the number of connected components in a graph
was addressed by Chazelle et al. [4] in the course of designing an algorithm for
approximating the minimum weight of a spanning tree. We discuss the latter prob-
lem in Subsect. 1.4. Their algorithm for approximating the number of connected
components of a graph G, denoted cc(G), outputs an estimate that with prob-
ability at least 2/3 is within an additive error of εn from cc(G) (for any given
ε ∈ (0, 1)). The query complexity and running time of the algorithm are ˜O(d/ε2).

1.3 Minimum Vertex Cover and Related Parameters

Let vc(G) denote the minimum size of a vertex cover in a graph G. The prob-
lem of approximating vc(G) in sublinear time was first studied by Parnas and
Ron [24]. They showed how to obtain an estimate v̂c that with probability at
least 2/3 satisfies v̂c ∈ [vc(G), 2 · vc(G) + εn]. The query complexity and run-
ning time of the algorithm are dO(log d/ε3) where d is the maximum degree in the
graph. The dependence on d can be replaced by a dependence on d/ε (recall that
d denotes the average degree in the graph) [24]. It is also possible to replace the
combination of the multiplicative factor of 2 and the additive term of εn by a
multiplicative factor of 2+ ε at a cost that depends on n/vc(G) (and such a cost
is unavoidable).

The upper bound of dO(log d/ε3) was significantly improved in a sequence of
papers [19,22,23,27]. The best result, appearing in [23] (and building on [22]
and [27]), gives an upper bound of ˜O(d/εO(1)).

On the negative side, it was also proved in [24] that at least a linear depen-
dence on the average degree, d, is necessary. Namely, Ω(d) queries are neces-
sary for obtaining an estimate v̂c that satisfies (with probability at least 2/3)
v̂c ∈ [vc(G), α·vc(G)+εn] for any α ≥ 1 and ε < 1/4, provided that d = O(n/α).
In particular this is true for α = 2. We also mention that obtaining such an esti-
mate with α = 2−γ for any constant γ and sufficiently small constant ε requires
Ω(

√
n) queries, as shown by Trevisan (see [24]). For α < 7/6, the lower bound [3]

is Ω(n).

Improved Approximation for Restricted Families of Graphs. Hassidim
et al. [16] introduced the notion of a Partition Oracle, and showed how it can
be applied to solve a variety of testing and approximation problems in sublinear
time (possibly under a promise that the graph belongs to a certain restricted
family of graphs). In particular, for graphs with excluded minors3 (of constant
size, e.g., planar graphs), this implies an algorithm that computes an estimate
v̂c that satisfies (with probability at least 2/3) v̂c ∈ [vc, vc + εn] (i.e., with no
multiplicative factor). The query complexity and running time of the algorithm
are O(dpoly(1/ε)). An improved partition oracle presented in [17] implies that an
3 A graph H is a minor of a graph G if H can be obtained from a subgraph of G by
a sequence of edge contractions.

Sublinear-Time Algorithms for Approximating Graph Parameters 109

estimate with the same quality can be obtained in time O((d/ε)O(log(1/ε))) =
O(dlog

2(1/ε)). Similar results hold for the size of a minimum dominating set and
maximum independent set.

Maximum Matching. The aforementioned algorithms for approximating
vc(G) work by approximating the size of a maximal matching. Nguyen and
Onak [22] showed how such an approximation can be extended and used in a
recursive manner (based on augmenting paths for matchings) so as to obtain an
estimate m̂m of the maximum size of a matching in a graph G, denoted mm(G).
The estimate satisfies m̂m ∈ [mm(G)−εn,mm(G)] with probability at least 2/3.
The query complexity of the algorithm is 2dO(1/ε)

in expectation. This result was
improved by Yoshida et al. [27] to dO(1/ε2).

1.4 Minimum Weight Spanning Tree

Chazelle et al. [4] studied the problem of approximating the minimum weight of
a spanning tree in an edge-weighted graph. For a (connected) graph G = (V,E)
with an associated weight function w over E, let st(G,w) denote the minimum
weight of a spanning tree in G (according to the weight function w). Assuming
w(e) ∈ {1, . . . , W} for an integer W and every e ∈ E, they show how to obtain
an estimate ̂st that satisfies ̂st ∈ [st(G,w), (1 + ε)st(G,w)] with high constant
probability by performing ˜O

(

d·W
ε2

)

queries. Here a query for a neighbor of a
given vertex v also returns the weight of the corresponding edge. They also give
an almost-matching lower bound of Ω

(

d·W
ε2

)

. The algorithm can be extended
to the case of non-integer weights in the range [1,W] (by discretization of the
edge weights).4

The problem of approximating the minimum weight of a spanning tree when
the distance function is a metric was studied by Czumaj and Sohler [6], and for
the special case of the Euclidean metric, by Czumaj et al. [5].

1.5 Distance to Properties

Another type of graph parameter is the distance of a graph to having a partic-
ular property. Distance is measured in terms of the fraction of edges that need
to be added and/or removed so that the graph obtains the property. Distance
approximation was first explicitly introduced by Parnas et al. [25] (together with
tolerant property testing).

In what is known as the dense-graphs model , a distance-approximation algo-
rithm for a graph property P may perform vertex-pair queries, and is given an
approximation parameter ε ∈ (0, 1). It should output an estimate of the distance
to the property that is within ±εn2 from the true value with probability at least

4 In CRT it was shown how this can be done at a cost of 1/ε in the query complexity,
and Bansal [2] showed how this cost can be avoided.

110 D. Ron

2/3. Hence a distance-approximation algorithm is a generalization of a (graph)
property-testing algorithm (as defined in [12]). A property-testing algorithm
should distinguish between the case that the graph has the property (distance
0), and the case in which it has distance greater than ε to the property.

As observed in [25], for some graph properties, known algorithms for property
testing in the dense-graphs model presented in [12] immediately imply distance
approximation algorithms. In particular this holds for a variety of Graph Par-
titioning properties (such as bipartiteness, and more generally, k-colorability),
where the query complexity is polynomial in 1/ε. (Assuming P �= NP, the run-
ning time cannot be polynomial in 1/ε.) Fischer and Newman [11] proved that
every property that has a testing algorithm in the dense-graphs model whose
query complexity depends only on 1/ε, has a distance approximation algorithm
whose query complexity depends only on 1/ε (though the dependence may be
quite high (e.g., a tower function)).

Marko and Ron [19] studied distance approximation for bounded-degree and
unbounded-degree sparse graphs. In both cases the algorithms can perform
neighbor and degree queries. For graphs with a degree bound d, distance is
measured with respect to d · n, while when there is no bound on the degree, dis-
tance is measured with respect to a given upper bound on the number of edges.
They present several distance approximation algorithms for properties that have
testing algorithms [13], such as k-connectivity and subgraph-freeness.

1.6 Organization

Following a preliminaries section, in Sect. 3 we describe an algorithm for approx-
imating the average degree d, and more generally, μs for s ≥ 1. In Sect. 4 we
give two algorithms for approximating the minimum size of a vertex cover, and
in Sect. 5 we describe an algorithm for approximating the minimum weight of a
spanning tree. Due to space constraints, some analysis details are omitted.

2 Preliminaries

For an integer s, we let [s] def= {1, . . . , s}. Let G = (V,E) be an undirected
graph, which, unless stated otherwise, is simple and unweighted. We denote
the number of vertices in G by n and the number of edges by m. Each vertex
v ∈ V is associated with a unique id, denoted id(v). For a vertex v ∈ V , we let
Γ (v) denote its set of neighbors, and let d(v) denote its degree. We denote the
maximum degree in the graph by d = d(G), and the average degree by d = d(G).
We assume it is possible to uniformly select a vertex in V , and for any vertex
v ∈ V to obtain its degree d(v) (referred to as a degree query), as well as its ith

neighbor for any i ∈ [d(v)] (referred to as a neighbor query), all at unit cost.

Sublinear-Time Algorithms for Approximating Graph Parameters 111

3 Moments of the Degree Distribution

3.1 Average Degree

We start by considering the average degree, d
def= 1

n

∑

v∈V d(v). In what follows
we present an algorithm due to [9] (which is a variant of the algorithm appearing
in [26]).

This algorithm and its analysis are more elegant than what appears in [14],
and also serve as an introduction to higher moments. We have chosen to combine
the presentation of the algorithm and its analysis, since we believe it better brings
out the ideas behind them. The more general algorithm, for higher moments, is
presented in a more conventional and formal manner in Subsect. 3.2.

In what follows we assume we have a “rough” constant factor estimate m̃ of
the number of edges in the graph. That is, m̃ = Θ(m). We describe an algorithm
that, given such an estimate m̃, computes a “refined” estimate of d = 2m/n
that is within (1 ± ε) of d (for any given approximation parameter ε ∈ (0, 1)).
In fact, to ensure its correctness, the algorithm only requires that m̃ = O(m).
Furthermore, if m̃ = Ω(m), then with high probability it will not overestimate d

(but may underestimate it). The running time of the algorithm is ˜Oε((n/m̃)1/2).
Hence, the assumption regarding m̃ can be removed by a geometric search, as
shown in [14, Sect. 3.1.2].

Weight Assignment. Consider assigning each edge e ∈ E to its endpoint that
has smaller degree, breaking ties arbitrarily (e.g., by the ids of the vertices). Let
the weight of vertex v, denoted w(v), be twice5 the number of edges assigned to v.
Observe first that since each edge is assigned to exactly one vertex,

∑

v∈V w(v) =
2m. Next, observe that w(u) ≤ 2(2m)1/2 for every vertex u. This is true since
w(u) ≤ 2 · d(u), and for each of the w(u)/2 edges {u, v} that are assigned
to u, we have that d(u) ≤ d(v). Hence, if w(u) > 2(2m)1/2 for some u, then
∑

v∈V d(v) > (w(u)/2)·d(u) > 2m, contradicting the fact that
∑

v∈V d(v) = 2m.
The algorithm starts by selecting r vertices, uniformly, independently, at

random, where r = cr·n
m̃1/2 · 1

ε2 = Θ
(

n1/2

d
1/2 · 1

ε2

)

and cr is a (sufficiently large)
constant. Let R = {u1, . . . , ur} denote the multiset of vertices selected, and let
w(R) def=

∑r
i=1 w(ui). By the definition of the weight of vertices, since each ui is

selected uniformly at random, Exp[w(ui)] = 2m/n = d for each i ∈ [r], so that
ExpR

[

1
r · w(R)

]

= d.
We can now apply the multiplicative Chernoff bound on the sum of the

random variables Xi = w(ui), which satisfy Exp[Xi] = d and Xi ∈ [0, 2(2m)1/2].
By our choice of r and the assumption that m̃ = Θ(m) = Θ(d · n), we get that

PrR

[∣

∣

∣

∣

1
r

· w(R) − d

∣

∣

∣

∣

> εd

]

< 2 exp
(−r · d · ε2

3 · 2(2m)1/2

)

< 1/10 ,

5 The factor of 2 is due to the relation between the number of edges and the average
degree, as well as for the sake of consistency with the higher moments algorithm.

112 D. Ron

where the last inequality is for a sufficiently large constant cr in the setting of
the sample size r. The above implies that if we had an oracle for the weight
function over vertices, we could compute w(R) and simply output 1

r · w(R).
Unfortunately, we do not have such an oracle, and furthermore, it is not even
clear how to approximate w(ui) for all u ∈ R in an efficient manner. Therefore,
we approximate w(R) in a different manner, as described next, conditioning on
the event that w(R) = (1 ± ε) · d · r (which holds with probability at least 9/10).
In what follows we assume without loss of generality that ε ≤ 1/2 (or else we set
ε = 1/2).

Approximating w(R). Let E(R) denote the multiset of ordered pairs, (u, v)
such that u ∈ R and {u, v} ∈ E. Note that if u and v both belong to R, then
E(R) contains both (u, v) and (v, u). Consider next “spreading” the weight of
the vertices in R onto E(R). Namely, for each (u, v) ∈ E(R), if d(u) < d(v) or
d(u) = d(v) and id(u) < id(v), then w(u, v) = 2, and otherwise, w(u, v) = 0. By
this definition,

w(R) =
∑

(u,v)∈E(R)

w(u, v) .

The benefit of moving the assignment of weight from vertices to (ordered)
edges, is that for any edge (u, v), we can determine whether w(u, v) = 2 or
w(u, v) = 0 by simply performing two degree queries. Note that |E(R)| =
∑

u∈R d(u), which can be computed by performing degree queries on all vertices
in R. Also note that we can select a pair (u, v) ∈ E(R) uniformly at random
as follows: Select a vertex u ∈ R with probability d(u)/|E(R)|, select i ∈ [d(u)]
uniformly at random, and query the ith neighbor of u to obtain (u, v). Finally,
observe that Exp[|E(R)|] = d · r, and by Markov’s inequality, |E(R)| ≤ 10 · d · r
with probability at least 9/10. From this point on, we condition on the last event,
in addition to w(R) = (1 ± ε) · d · r, which gives us that w(R)/|E(R)| ≥ 1/20.

Armed with the ability to uniformly sample (ordered) edges from E(R) and
obtain their weight, the algorithm selects, uniformly, independently, at random,
q = cq/ε2 edges in E(R) (for an appropriate constant cq), and sums their weights.
Let the sum be denoted by X. By the above discussion, the expected value of X/q

is w(R)
|E(R)| , which is at least 1/20. By applying the multiplicative Chernoff bound,

we get that X/q is within (1 ± ε) from this expected value with probability at
last 9/10. Hence, the algorithm outputs |E(R)|

q·r · X as its estimate for d.
By summing the probabilities of three “bad” events ((1) w(R) deviates from

d · r by more than a factor of (1 ± ε); (2) |E(R)| > 10 · d · r; (3) X/q deviates
from w(R)

|E(R)| by more than a factor of (1 ± ε)), we get that

|E(R)|
q · r

· X = (1 ± ε) · w(R)
r

= (1 ± 3ε) · d ,

with probability at least 2/3. By running the algorithm with ε/3 instead of ε,
we obtain the desired accuracy.

Sublinear-Time Algorithms for Approximating Graph Parameters 113

Since the geometric search for a “rough” constant factor estimate m̃ for m
increases the complexity of the algorithm by a multiplicative factor of poly(log n)
(in expectation), we get the following theorem.

Theorem 1. There exists an algorithm that, given query access to a graph G =
(V,E) and an approximation parameter ε ∈ (0, 1), returns a value that belongs to
[(1− ε) · d, (1+ ε) · d] with probability at least 2/3. The expected query complexity
and running time of the algorithm are ˜Oε

(

n1/2

d
1/2

)

.

3.2 Higher Moments

For s ≥ 1, we consider the sum over all vertices, of their degrees to the power
of s, denoted Ms

def=
∑

v d(v)s and let μs
def= 1

n · Ms (so that in particular,
M1 = 2m and μ1 = d). As done implicitly in the case of s = 1 (described in
Subsect. 3.1), we consider an ordering, denoted ≺, over the graph vertices, where
u ≺ v if d(u) < d(v) or d(u) = d(v) and id(u) < id(v). Our algorithm is given in
Fig. 1, and as can be seen, generalizes the algorithm described in Subsect. 3.1.
The sample sizes r and q will be determined in the analysis (see the statement
of Theorem 2).

Algorithm 1 (An algorithm for approximating μs)

1. Select r vertices, uniformly, independently, at random and denote the result-
ing multi-set by R. Query the degree of each vertex in R, and let d(R) =

v∈R d(v).
2. For i = 1, . . . , q do:

(a) Select a vertex ui ∈ R with probability proportional to its degree (i.e., with
probability d(ui)/d(R)), and query for a random neighbor vi of ui.

(b) If ui ≺ vi, then Xi = (ds−1(ui) + ds−1(vi)), otherwise, Xi = 0.

3. Return X = 1
r

· d(R)
q

·
q

i=1
Xi .

Fig. 1. An algorithm for approximating μs.

Here too we assign weights to vertices (and to edges), so that when summing
over the weights of all vertices (similarly, all edges) we get Ms. We first introduce
some notations. Let Γ�(u) = {v ∈ Γ (u) : v
 u}, Γ≺(u) = Γ (u) \ Γ�(u),
d�(u) = |Γ�(u)| and d≺(u) = |Γ≺(u)|. For each vertex u let

ws(u) def=
∑

v∈Γ�(u)

(

d(u)s−1 + d(v)s−1
)

,

and observe that for s = 1 the weight of a vertex u equals 2d�(u), which fits the
definition in Subsect. 3.1. Taking the sum over all vertices we get

114 D. Ron

∑

u∈V

ws(u) =
∑

u∈V

d�(u) · d(u)s−1 +
∑

v∈V

d≺(v) · d(v)s−1 = Ms. (1)

For a multi-set of vertices R, let ws(R) def=
∑

u∈R ws(u), and let E(R) be as

defined in Subsect. 3.1 (i.e., E(R) def= {(u, v) : u ∈ R, {u, v} ∈ E}). Observe that
if for each (u, v) ∈ E(R) we define ws(u, v) = d(u)s−1 +d(v)s−1 when u ≺ v and
ws(u, v) = 0 otherwise, then ws(R) =

∑

(u,v)∈E(R) ws(u, v).
The next lemma provides a bound on the maximum weight of a vertex (recall

that for s = 1 the bound was O(m1/2)). It is proved by separately considering
“low-degree” vertices and “high-degree” vertices, where the degree threshold is

M
1

s+1
s .

Lemma 1. For every vertex v ∈ V we have that ws(v) ≤ 4M
s

s+1
s .

Lemma 1 is the main ingredient in the proof of the next theorem.

Theorem 2. If r = cr·n
ε2·M

1
s+1

s

for a sufficiently large constant cr, and q =

min
{

n1− 1
s , ns− 1

s

M
1− 1

s
s

}

· cq

ε2 for a sufficiently large constant cq, then for X as defined

in Step 3 of Algorithm 1, X ∈ [(1 − 2ε)μs, (1 + 3ε)μs] with probability at least
2/3.

Proof Sketch: Lemma 1 implies that for r as stated in the theorem, with high
constant probability, the sample R is such that w(R) is close to its expected
value, r · μs. The size of r also ensures that with high constant probability
d(R) (as defined in Algorithm 1) is not much larger than its expected value,
r · d. Conditioned on these two events we get that Exp[Xi] = ws(R)

d(R) = Ω
(

Ms

m

)

,
for the random variables Xi defined in Step 2b of Algorithm 1. Since it can

be shown that m ≤ M
1
s
s · n1− 1

s , we get that Exp[Xi] = Ω

(

M
1− 1

s
s

n1− 1
s

)

. We

also use the fact that each Xi is upper bounded by 2maxv{d(v)s−1} ≤
2min{M

1− 1
s

s , ns−1} (since d(v) ≤ M
1/s
s and d(v) < n). By the multiplicative

Chernoff bound we get that for a sufficiently large constant cq in the setting of

q, Pr
[∣

∣

∣

1
q

∑q
i=1 Xi − w(R)

d(R)

∣

∣

∣ > ε · w(R)
d(R)

]

< 1
10 , and the theorem follows. ��

As stated in Theorem 2, the sample sizes r and q used in the algorithm depend
on Ms. Similarly to the case of the average degree (s = 1), a constant factor
estimate suffices, and such an estimate can be found by performing a geometric
search (at a multiplicative cost of poly(s log n, 1/ε) [9, Sect. 6]), obtaining the
following theorem:

Theorem 3. There exists an algorithm that, given query access to a graph
G = (V,E) and an approximation parameter ε ∈ (0, 1), returns a
value that belongs to [(1 − ε) · μs, (1 + ε) · μs] with probability at least

Sublinear-Time Algorithms for Approximating Graph Parameters 115

2/3. The expected query complexity and running time of the algorithm are

O

(

n
1− 1

s+1

μ
1

s+1
s

+ min
{

n1− 1
s , ns−1

μ
1− 1

s
s

}

· poly(s log n, 1/ε)
)

.

4 Minimum Vertex Cover and Maximum Matching

There are several approaches to the problem of approximating the size of a
minimum vertex cover in sublinear time. Here we present two. Both are based
on the relation between vertex covers and matchings. Namely, for any graph
G = (V,E) and any matching M ⊆ E, the size of a minimum vertex cover of
G, denoted vc(G), satisfies vc(G) ≥ |M | (because any vertex cover must include
at least one endpoint of every edge in M). Furthermore, if M is a maximal
matching, then vc(G) ≤ 2|M | (because taking both endpoints of each edge in
M gives us a vertex cover). Both algorithms provide an estimate v̂c, that with
high constant probability satisfies v̂c ∈ [vc(G), 2vc(G) + εn]. The algorithms are
described for bounded degree graphs, where their complexity depends on the
degree bound, d. They can be adapted to work with bounded average degree, d,
as we discuss shortly following Theorem 5.

4.1 Building on a Distributed Algorithm

In this subsection we describe an algorithm that is due to [19]. The basic underly-
ing idea (first applied in [24]) is to transform a local distributed algorithm into a
sublinear algorithm. Recall that in the local distributed model, there is a processor
residing on each vertex, and the computation proceeds in rounds. In each round,
each vertex can send messages to all its neighbors. When the computation ends,
each vertex knows “its part” of the output, where in the case of the computation
of a vertex cover, it knows whether or not it belongs to the cover.

The distributed algorithm described in [19] is similar to the O(log n)-rounds
distributed algorithm for the maximal independent set of Luby [18]. The algo-
rithm, presented in Fig. 2, is described as if there is a processor assigned to every
edge, but clearly this can be emulated by processors that are assigned to the ver-
tices. For an edge e = {u, v}, we let d(e) def= d(u)+d(v) denote the number of edges
that have a common endpoint with e, which are considered to be its neighbors.

In the course of the algorithm (described in Fig. 2), the edges (processors
assigned to them) make various decisions (to activate/inactivate themselves, to
select/un-select themselves, and to add their endpoints to the cover). Following
each such decision, a corresponding message is sent to all neighboring edges
(this notification is not stated explicitly in the algorithm). On a high level, the
algorithm works in iterations, where in each iteration a new subset of vertices
is added to the cover C (based on a certain (distributed) random process). In
each iteration, the vertices added to C constitute endpoints of a matching. After
the last iteration, for each edge that has remained uncovered by C, one of its
endpoints is added to C. In the analysis of the algorithm, we show that with high
probability (over the random selection process), the number of edges remaining
in the final stage is small.

116 D. Ron

Theorem 4. For every graph G = (V,E) with degree-bound d and every δ > 0,
Algorithm 2 constructs a vertex cover C ⊆ V such that with probability at least
5/6, |C| ∈ [vc(G), 2 · vc(G) + δn].

Algorithm 2 (Distributed approximation for minimum vertex cover)

1. Each edge initially activates itself.
2. From i = 1 to r = 16 · log(6d/δ) :

(a) Each active edge e selects itself with probability 1
4·d(e) . If d(e) = 0 then e

is selected with probability 1.
(b) Every two neighboring edges that were both selected, un-select themselves.
(c) Each vertex that is incident to a selected edge (that was not un-selected),

adds itself to the vertex cover C.
(d) All selected edges and neighbors of selected edges, inactivate themselves.
(e) Active edges update their degrees to be the number of their active neigh-

bors.
3. For every edge that remained active, its endpoint with the smaller id adds

itself to the vertex cover C.

Fig. 2. A distributed algorithm for an approximate minimum vertex cover.

Proof Sketch: Since an edge inactivates itself only when one of its endpoints
is added to C, and in Step 3 one endpoint from each edge that is still active
is added to C, all edges are covered by the end of the algorithm. Hence C is a
vertex cover, and this implies the lower bound on its size.

By the definition of the algorithm, the vertices that are added to C in the
r iterations of Step 2 are endpoints of a matching. Hence, their number is at
most 2 ·vc(G). It remains to show that with probability at least 5/6, the number
of edges that remain active at the start of Step 3 is at most δn. To this end
we introduce the following notation: for each i ∈ [r], let mi be the number of
active edges remaining at the end of the ith iteration of Step 2. For i = 0 let
m0 = m. It can be shown, that given the process by which the algorithm selects
and de-activates edges,

Exp [mi | mi−1] ≤
(

1 − 1
16

)

mi−1 . (2)

The heart of the argument for establishing Eq. (2) is that the following holds
for each iteration i and integer j > 0. If we consider at the start of iteration i an
active edge e that has j active neighbors, then the probability that e is selected
in iteration i and remains selected (since none of its active neighbors is selected),
is Ω(1/j). But if e remains selected, then it, as well as its j active neighbors,
are inactivated. The inactivation of an edge can be caused by more than one
selected neighbor, but since the selected edges do not neighbor each other, an
edge can be inactivated due to at most two of its neighbors. Equation (2) follows
by summing the “inactivation contribution” of edges with varying numbers of
(active) neighbors.

Sublinear-Time Algorithms for Approximating Graph Parameters 117

Equation (2) in turn implies that for r = 16 log(6d/δ), Exp[mr] ≤ (1−1/16)r ·
m < (δ/6)n. By Markov’s inequality, mr ≤ δn with probability at least 5/6, as
desired. ��

In order to estimate the size of a minimum vertex cover we apply the obser-
vation that it is possible to emulate the outcome of the distributed algorithm
(Algorithm 2) at any vertex v of our choice by considering the subgraph induced
by all vertices at distance at most r+1 from v. Since the distributed algorithm is
randomized, we only need to take care to use the same coin-flips if we encounter
the same vertex u in the neighborhoods of two different vertices v1 and v2. The
sublinear approximation algorithm is given in Fig. 3.

Algorithm 3 (Sublinear Approximation for vc(G), Version I)

1. Uniformly and independently sample s = 2 2 vertices from G. Let S =
{v1, . . . , vs} be the multiset of the sampled vertices.

2. For each vi ∈ S, query G in order to obtain the subgraph Gr(vi) induced by
the (r + 1)-neighborhood of vi, where r = 16 log(6d/δ) is as in Algorithm 2,
and δ = 2.

3. Run Algorithm 2 on the graph that is the union of all subgraphs Gr(vi) for
vi ∈ S (in a sequential manner). For each i ∈ [s], let χi = 1 if the algorithm
adds vi to the cover, otherwise χi = 0.

4. Output vc = n
s

s
i=1 χi + (2)n .

Fig. 3. A sublinear algorithm for approximating the minimum size of a vertex cover.

The next theorem follows by applying Theorem 4 together with the multi-
plicative Chernoff bound.

Theorem 5. For every graph G with degree bound d, and every ε ∈ (0, 1],
Algorithm3 outputs an estimate v̂c, that with probability at least 2/3 satisfies
v̂c ∈ [vc(G), 2 · vc(G) + εn]. The query and time complexity of the algorithm
are dO(log(d/ε)).

We remark that the same modifications of the algorithm in [24] can be applied
here to achieve a dependence on Θ(d/ε) instead of d in the query complexity.
The idea is to slightly modify the distributed algorithm so that initially, each
vertex with degree greater than 2d/ε is added to the cover, and all edges inci-
dent to these vertices are inactivated. This increases the size of the cover by an
additive term of at most εn/2, and reduces the maximum degree in the graph
induced by active edges to 2d/ε.

4.2 Building on a Random Ordering

The local emulation of the distributed algorithm described in the previous sub-
section can be viewed as an oracle (which is randomized) for a vertex cover C.

118 D. Ron

Namely, the cover C is defined by the protocol of the distributed algorithm, and
the coin flips used in the course of the execution of the distributed algorithm
(that determine which edges are selected in each iteration). The oracle is given a
vertex v and should answer whether v ∈ C. To this end it emulates the execution
of the distributed algorithm in the neighborhood of v (flipping coins “on the fly”,
while keeping track of previous coin flips if needed). The sublinear algorithm for
approximating the size of a minimum vertex cover can now be viewed as sim-
ply querying the oracle on Θ(1/ε2) uniformly selected vertices, and using the
fraction of sampled vertices that belong to the cover to determine its estimate.

Nguyen and Onak [22] also design such a randomized oracle for a vertex
cover, but their oracle is not based on a distributed algorithm but rather on the
greedy sequential algorithm for constructing a maximal matching (and adding to
the cover both endpoints of each edge in the matching). This algorithm considers
an arbitrary ranking π : E → [m] of the edges of the graph (where each edge
is given a unique rank). In each step the algorithm checks whether the next
edge according to this ranking neighbors any edge that was already added to
the matching Mπ (initially, Mπ is empty). If not, then the new edge is added
to Mπ. While for different rankings π we may get a different matching Mπ, we
always obtain a maximal matching (and hence |Mπ| ∈ [vc(G), 2vc(G)]).

Suppose we are given an edge e, and would like to determine whether e ∈ Mπ

(without necessarily constructing the entire matching Mπ). Consider the edges
that neighbor e. Observe that in order to decide whether e ∈ Mπ, it suffices to
know whether any of its neighbors with lower rank (according to π) is in Mπ.
If at least one of them is, then e /∈ Mπ, and if none of them belong to Mπ, then
e ∈ Mπ. This gives rise to the (recursively defined) oracle in Fig. 4.

Algorithm 4 (Oracle for Mπ, given an edge e as input)

1. For each edge e neighboring e such that π(e) < π(e), recursively call the
oracle (Algorithm 4) on e .

2. If the oracle returns TRUE for one of these neighbors, then return FALSE,
else return TRUE.

Fig. 4. An oracle of a maximal matching Mπ

The first question that arises is what is the number of recursive calls that
the oracle needs to perform in order to decide whether e belongs to Mπ. This of
course depends on π(e) (e.g., if π(e) = 1 then there are no recursive calls) and
more generally on the ranking of edges in the neighborhood of e. To be precise,
if we consider the tree of recursive calls, then the paths in the tree correspond
to edges with decreasing ranks. Nguyen and Onak consider a random choice of
π, and analyze the expected number of recursive calls, where the expectation is
taken both over the choice of π and the choice of a random edge e. Observe that
if we increase the range of π from [m] to [poly(m)], then π(e) can be selected

Sublinear-Time Algorithms for Approximating Graph Parameters 119

on-the-fly (that is, independently for each encountered edge), with only a small
probability of a collision (i.e., π(e) = π(e′) for e �= e′).

The next lemma directly follows from Lemma 12 in [22] (a more general
Locality Lemma regarding random rankings of edges is Lemma 4 in [22]).

Lemma 2. Let G = (V,E) be any graph with maximum degree bounded by d.
For a uniformly selected ranking π over E and a uniformly selected edge e ∈ E,
the expected number of recursive calls made by Algorithm 4 when called on e is
2O(d).

The resulting sublinear approximation algorithm for the size of a minimum ver-
tex cover is similar to Algorithm 3, and is provided in Fig. 5.

Algorithm 5 (Sublinear Approximation for vc(G), Version II)

1. Uniformly and independently sample s = 2 2 vertices from G. Let S be the
multiset of the sampled vertices.

2. For each v ∈ S, query the maximal matching oracle (Algorithm 4) on all edges
incident to v (where π is a random ranking selected on the fly by Algorithm 4).
If the oracle returns TRUE on one of these edges, then set χv = 1, otherwise
χv = 0.

3. Output vc = n
s v∈S χv + (2)n .

Fig. 5. A sublinear algorithm for approximating the minimum size of a vertex cover.

The proof of the correctness of Algorithm 5, stated next, is essentially the
same as the proof of Theorem 5, and the bound on the query complexity follows
from Lemma 2.

Theorem 6. For every ε > 0, and every graph G, Algorithm 5 outputs an esti-
mate v̂c, that with probability at least 2/3 satisfies v̂c ∈ [vc(G), 2 · vc(G) + εn].
The query complexity of the algorithm is 2O(d)/ε2.

Comparing the bound in Theorem 6 to the bound in Theorem 5 we see that
while the dependence on d is larger, the dependence on 1/ε is improved. More
importantly, the approach suggested in [22] led to a significant improvement
in the complexity, as we discuss shortly next. Here too we remark that it is
possible to achieve a dependence on Θ(d̄/ε) instead of d in the complexity of
the algorithm.

Reducing the Query Complexity. Nguyen and Onak [22] also suggested
the following variant of their algorithm. When making recursive calls on edges
neighboring an edge e, perform the calls from the smallest to the largest rank.
Since once some neighboring edge of e returns TRUE, we know that e should
return FALSE (so that there is no need to make calls on the other neighboring

120 D. Ron

edges), they asked whether it can be proved that this variant has smaller query
complexity (in expectation). A very clever analysis of Yoshida et al. [27] showed
that indeed the expected number of recursive calls can be upper bounded by a
polynomial in d. This yields an algorithm for approximating the size of a mini-
mum vertex cover whose query complexity is O(d4/ε2), or O(d

4
/ε4) in terms of

the average degree d. Onak et al. [23] showed how to further modify the algo-
rithm so as to obtain an algorithm whose query complexity is ˜O(d) · poly(1/ε)),
which almost matches the lower bound of Ω(d) for constant ε [24].

5 Minimum Weight Spanning Tree

In this section we present a slight variant of Chazelle et al. [4] algorithm for
approximating the minimum weight of a spanning tree in an edge weighted
graph with weights in [W] for an integer W . We denote the minimum weight
of a spanning tree by st(G,w) where G = (V,E) is the underlying graph and
w : E → [W] is the weight function.

The first idea underlying the algorithm is to reduce the problem of approxi-
mating st(G,w) to that of approximating the number of connected components
in a graph. Specifically, for each j ∈ [W], let Gj = (V,Ej) for Ej

def= {e ∈ E :
w(e) ≤ j}, and let ccj denote the number of connected components in Gj . The
next lemma relates between st(G,w) and cc1, . . . , ccW−1. It can be established
by recalling Kruskal’s algorithm for finding a minimum-weight spanning tree.

Lemma 3. st(G,w) = n − W +
∑W−1

j=1 ccj.

Armed with Lemma 3 it remains to show how to obtain an approximation of
the number of connected components cc(H) of a graph H (and to apply this to
the graphs G1, . . . , GW−1). For the sake of simplicity, in what follows we describe
an algorithm whose complexity depends on the maximum degree d (rather than
the average degree d, as done in [4]). The algorithm, which is due to Czumaj

Algorithm 6 (Sublinear Approximation for cc(H))

1. Repeat the following s = 1/γ2 times:
(a) Select a vertex vi ∈ V uniformly at random.
(b) Pick a random integer Xi according to the probability distribution

Pr[Xi ≥ k] = 1/k.
(c) If Xi > B then set χi = 0.
(d) Else, perform a Breadth First Search (BFS) from vi until Xi +1 vertices

are reached, or the BFS can reach at most Xi vertices (since vi belongs
to a connected component with at most Xi vertices). In the former case
set χi = 0 and in the latter case set χi = 1.

2. Output cc = n
s

s
i=1 χi .

Fig. 6. A sublinear algorithm for approximating the number of connected components
in a graph H.

Sublinear-Time Algorithms for Approximating Graph Parameters 121

and Sohler [6], receives both an approximation parameter γ and a size bound B
(and its performance is analyzed as a function of these two parameters).

Lemma 4. For every graph G with degree bounded by d and for every γ ∈ (0, 1]
and integer B, Exp[ĉc] ∈ [cc(H) − n/B, cc(H)] and Var[ĉc] ≤ γ2 · n · cc(H). The
expected number of queries performed by Algorithm 6 is O

(

d
γ2 log B

)

.

Lemma 4 can be established by a fairly standard probabilistic analysis.
In Fig. 7 we give an algorithm for approximating the minimum weight of a

spanning tree by using Algorithm 6 as a subroutine.

Algorithm 7 (Sublinear Approximation for st(G, w))

1. For j = 1 to W − 1:
(a) Run Algorithm 6 on Gj with parameters γ = 8 and B = 4 (the

degree bound d is the maximum degree in G).
(b) Let ccj be the estimate it returns.

2. Output st = n − W + W−1
j=1 ccj.

Fig. 7. A sublinear algorithm for approximating the minimum weight of a spanning
tree.

The next theorem follows by applying Lemmas 3 and 4 and Chebishev’s
inequality.

Theorem 7. For every edge-weighted graph G with degree bounded by d and
weights in [W], and for every ε ∈ (0, 1] Algorithm 7 returns an estimate ̂st that
satisfies ̂st ∈ [(1 − ε) · st(G,w), (1 + ε) · st(G,w)] with probability at least 2/3. Its
expected query complexity is O

(

d·W
ε2 log W

ε

)

.

References

1. Aliakbarpour, M., Biswas, A.S., Gouleakis, T., Peebles, J., Rubinfeld, R., Yod-
pinyanee, A.: Sublinear-time algorithms for counting star subgraphs with applica-
tions to join selectivity estimation. Technical report 1601.04233, Arxiv (2016). To
appear in Algorithmica. 107

2. Bansal, V.: Sublinear-time algorithms for estimating the weight of minimum span-
ning trees. Unpublished manuscript (2003). 109

3. Bogdanov, A., Obata, K., Trevisan, L.: A lower bound for testing 3-colorability in
bounded-degree graphs. In: Proceedings of FOCS, Los Alamitos, CA, pp. 93–102
(2002). 108

4. Chazelle, B., Rubinfeld, R., Trevisan, L.: Approximating the minimum spanning
tree weight in sublinear time. SIAM J. Comput. 34(6), 1370–1379 (2005). 108, 109,
120

5. Czumaj, A., Ergun, F., Fortnow, L., Magen, A., Newman, I., Rubinfeld, R., Sohler,
C.: Approximating the weight of the euclidean minimum spanning tree in sublinear
time. SIAM J. Comput. 35(1), 91–109 (2005). 109

122 D. Ron

6. Czumaj, A., Sohler, C.: Estimating the weight of metric minimum spanning trees
in sublinear time. SIAM J. Comput. 39(3), 904–922 (2009). 109, 120

7. Eden, T., Levi, A., Ron, D., Seshadhri, C.: Approximately counting triangles in
sublinear time. SIAM J. Comput. 46(5), 1603–1646 (2017). 107

8. Eden, T., Ron, D., Seshadhri, C.: On approximating the number of k-cliques in
sublinear time. CoRR, abs/1707.04858 (2017). 107

9. Eden, T., Ron, D., Seshadhri, C.: Sublinear time estimation of degree distribution
moments: the arboricity connection. In: Proceedings of ICALP, pp. 7:1–7:13 (2017).
106, 107, 110, 114

10. Feige, U.: On sums of independent random variables with unbounded variance,
and estimating the average degree in a graph. SIAM J. Comput. 35(4), 964–984
(2006). 106

11. Fischer, E., Newman, I.: Testing versus estimation of graph properties. SIAM J.
Comput. 37(2), 482–501 (2007). 110

12. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connections to
learning and approximation. J. ACM 45, 653–750 (1998). 110

13. Goldreich, O., Ron, D.: Property testing in bounded degree graphs. Algorithmica
32, 302–343 (2002). 110

14. Goldreich, O., Ron, D.: Approximating average parameters of graphs. Random
Struct. Algorithms 32(4), 473–493 (2008). 106, 111

15. Gonen, M., Ron, D., Shavitt, Y.: Counting stars and other small subgraphs in
sublinear time. SIAM J. Discret. Math. 25(3), 1365–1411 (2011). 106, 107

16. Hassidim, A., Kelner, J.A., Nguyen, H.N., Onak, K.: Local graph partitions for
approximation and testing. In: Proceedings of FOCS, pp. 22–31 (2009). 108

17. Levi, R., Ron, D.: A quasi-polynomial time partition oracle for graphs with an
excluded minor. ACM Trans. Algorithms 11(3), 24 (2015). 109

18. Luby, M.: A simple parallel algorithm for the maximal independent set problem.
SIAM J. Comput. 15(2), 1036–1055 (1986). 115

19. Marko, S., Ron, D.: Distance approximation in bounded-degree and general sparse
graphs. ACM Trans. Algorithms 5(2), 22 (2009). 108, 110, 115

20. Nash-Williams, C.S.J.A.: Edge-disjoint spanning trees of finite graphs. J. Lond.
Math. Soc. 1(1), 445–450 (1961). 107

21. Nash-Williams, C.S.J.A.: Decomposition of finite graphs into forests. J. Lond.
Math. Soc. 1(1), 12 (1964). 107

22. Nguyen, H.N., Onak, K.: Constant-time approximation algorithms via local
improvements. In: Proceedings of FOCS, pp. 327–336 (2008). 108, 109, 118, 119

23. Onak, K., Ron, D., Rosen, M., Rubinfeld, R.: A near-optimal sublinear-time algo-
rithm for approximating the minimum vertex cover size. In: Proceedings of SODA,
pp. 1123–1131 (2012). 108, 119

24. Parnas, M., Ron, D.: Approximating the minimum vertex cover in sublinear time
and a connection to distributed algorithms. Theoret. Comput. Sci. 381(1–3), 183–
196 (2007). 108, 115, 117, 120

25. Parnas, M., Ron, D., Rubinfeld, R.: Tolerant property testing and distance approx-
imation. J. Comput. Syst. Sci. 72(6), 1012–1042 (2006). 109, 110

26. Seshadhri. C.: A simpler sublinear algorithm for approximating the triangle count.
CoRR, abs/1505.01927 (2015). 111

27. Yoshida, Y., Yamamoto, M., Ito, H.: An improved constant-time approximation
algorithm for maximum matchings and other optimization problems. SIAM J.
Comput. 41(4), 1074–1093 (2012). 108, 109, 119

Dynamic Erdős-Rényi Graphs

Michel Mandjes1(B), Nicos Starreveld1, René Bekker2, and Peter Spreij1

1 Korteweg-de Vries Institute for Mathematics, University of Amsterdam,
Amsterdam, The Netherlands

m.r.h.mandjes@uva.nl
2 Department of Mathematics, VU University, Amsterdam, The Netherlands

Abstract. We propose two classes of dynamic versions of the classical
Erdős-Rényi graph: one in which the transition rates are governed by
an external regime process, and one in which the transition rates are
periodically resampled. For both models we consider the evolution of
the number of edges present, with explicit results for the corresponding
moments, functional central limit theorems and large deviations asymp-
totics.

Keywords: Random graphs · Dynamics · Scaling limits

1 Introduction

Over the past decades, networks have been the subject of an intensive research
effort. As networks offer the right framework to model e.g. social, physical, chem-
ical, biological and technological phenomena, various specific aspects have been
studied in depth. Arguably among the most studied objects is the Erdős-Rényi
graph [6,7]. In such a random graph G(n, p) there are n vertices, and each of the
N =

(
n
2

)
edges is ‘up’ with a fixed probability p ∈ (0, 1) or ‘down’ otherwise.

By now there is a sizeable literature on this type of graph, providing detailed
insight into its probabilistic properties, an example of a key result being that if
the ‘up-probability’ p is larger than log n/n, then the resulting graph is almost
surely connected.

The existing literature predominantly focuses on static graphs: the random
graph is drawn just once, and does not change over time. In many real-life situa-
tions, however, the network structure temporally evolves, with edges appearing
and disappearing. In a few recent contributions, first results on such dynamic
random graphs have been reported, but the analysis of this class of models is still
in its infancy; see e.g. [8,9,15], and [1] for an illustration of its use in engineering.

In [15] various dynamic random graph models are discussed, among them a
dynamic Erdős-Rényi graph in which all N edges evolve independently. In this
model, each edge makes transitions from present to absent and vice versa in a
Markovian manner: it exists for an exponential time with parameter μ (which we
refer to as the ‘up-rate’), and disappears for an exponential time with parameter
λ (the ‘down-rate’). For this model various metrics can be analyzed in closed
c© Springer Nature Switzerland AG 2019

B. Steffen and G. Woeginger (Eds.): Computing and Software Science, LNCS 10000, pp. 123–140, 2019.

https://doi.org/10.1007/978-3-319-91908-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91908-9_8&domain=pdf
https://doi.org/10.1007/978-3-319-91908-9_8

124 M. Mandjes et al.

form. In particular the distribution of the number of edges at time t, throughout
this paper denoted by Y (t), can be explicitly computed. A special case is that
in which no edges exist at t = 0: then the distribution of Y (t) coincides with the
number of edges in a static Erdős-Rényi graph G(n, p(t)) (with an up-probability
that depends on t).

In many applications the model that we just sketched is of limited relevance,
as various features that play a role in real-life networks are not covered. To
remedy this, in [15] alternative random graph processes were proposed, such as
the dynamic counterparts of the configuration model and the stochastic block
model. It is noted that a specific property that is often not fulfilled in real
networks is that of the edges evolving independently; in practice likely there will
be ‘external’ factors that affect all these N processes simultaneously, rendering
them dependent. An example is a dynamic random graph in which the values of
the up-rate and down-rate are determined by an independent stochastic process
(think of temperature in a chemical network, weather conditions in a road traffic
network, economic conditions in a financial network, etc.).

Motivated by the above considerations, the focus of this paper is on models in
which the edges evolve dependently; the main contribution is that we propose and
analyze two such models. In the first model, studied in Sect. 2, the up-rate and
the down-rate of each of the edges are determined by an external, autonomously
evolving Markov process X(t), in the sense that at time t these rates (for all
edges) are λi and μi if X(t) = i; this mechanism is usually referred to as regime
switching. In the second model, which is analyzed in Sect. 3, the up-rate and the
down-rate (say, Λ and M) are resampled every Δ > 0 time units (and these
sampled values then apply to all edges).

In more detail, our findings are the following. The focus is on the probabilis-
tic properties of the process Y (t) that records the number of edges present as a
function of time. For both models mentioned above we manage to uniquely char-
acterize its transient and stationary behavior, albeit in a somewhat implicit way:
for the first model in terms of a pde for the corresponding probability generating
function (pgf), for the second model in terms of a recursion for the pgf. Then
we use these characterizations to point out how transient and stationary means
can be computed. The next step is to consider scaling limits; under a particular
scaling, the process Y (t) satisfies a functional central limit theorem. More specif-
ically, after centering and scaling it converges to an Ornstein-Uhlenbeck (ou)
process; interestingly, in [13] it is shown that for certain dynamic Erdős-Rényi
graphs that a particular clique-complex related quantity (the ‘Betti number’) is
described by an ou process as well. Finally we discuss for both models the cor-
responding sample-path large deviations, characterizing the models’ rare-event
behavior. In Sect. 4, the results are illustrated by numerical examples.

2 Erdős-Rényi Graphs Under Regime Switching

In this section we consider the following model. Let (X(t))t�0 be an irreducible
continuous-time Markov process, typically referred to as the regime process or

Dynamic Erdős-Rényi Graphs 125

background process, living on the state space {1, . . . , d}. The transition rate
matrix corresponding to (X(t))t�0 is denoted by Q = (qij)d

i,j=1 and the corre-
sponding invariant distribution by the (column) vector π. As before, we consider
the situation of N possible edges. Let μi � 0 be the hazard rate of an existing
edge becoming inactive when the regime process is in state i; likewise, λi � 0 is
the hazard rate corresponding with a non-existing edge becoming active. Due to
the common regime process the edges are reacting to, the number of links present
(denoted by (Y (t))t�0) evolves according to an interesting dynamic structure.

2.1 Generating Function

We start our exposition by studying the (transient and stationary) pgf s

φi(t, z) := E

(
zY (t) 1{X(t)= i}

)
, φi(z) := E

(
zY 1{X = i}

)
.

We do so by first analyzing pi(m, t) := P(Y (t) = m,X(t) = i), by following
classical procedures; later we also point out how pi(m) := P(Y = m,X = i) can
be found. Setting up the Kolmogorov equations, with qi := −qii > 0,

pi(m, t + Δt) =
∑

j �=i

pj(m, t)qji Δt

+ pi(m + 1, t)μi(m + 1)Δt + pi(m − 1, t)λi(N − m + 1)Δt

+ pi(m, t)
(
1 − qiΔt − μi mΔt − λi (N − m)Δt

)
+ o(Δt),

leading to the linear system of differential equations

p′
i(m, t) =

d∑

j=1

pj(m, t)qji + pi(m + 1, t)μi (m + 1)

+ pi(m − 1, t)λi (N − m + 1) − pi(m, t)μi m − pi(m, t)λi (N − m),

where pi(−1, t) and pi(N + 1, t) are set to 0. Multiplying by zm and summing
over m = 0 up to N , we arrive at the pde

∂

∂t
φi(t, z) =

d∑

j=1

φj(t, z)qji + μi(1 − z)
∂

∂z
φi(t, z) +

λiN(z − 1)φi(t, z) + λiz(1 − z)
∂

∂z
φi(t, z).

In stationarity, the left-hand side of the previous display can be equated to 0,
thus leading to an ode. We obtain

0 =
d∑

j=1

φj(z)qji + μi(1 − z)φ′
i(z) + λiN(z − 1)φi(z) + λiz(1 − z)φ′

i(z).

126 M. Mandjes et al.

2.2 Moments

Following a standard procedure, we can find explicit expressions for all (factorial)
moments. To this end, we define ei,k := E((Y)k1{X=i}), with (x)k denoting
x(x − 1) · · · (x − k + 1). We obtain the factorial moments by differentiating with
respect to z and plugging in z = 1: in self-evident matrix/vector notation, with
Λ := diag{λ} and M := diag{μ},

0T = eT
1 Q − eT

1 M + πTΛN − eT
1 Λ.

This leads to EY = eT
1 1, with eT

1 = N · πTΛ(Λ + M − Q)−1; observe that the
mean is proportional to N , as expected. This procedure provides a recursion for
all factorial moments: by differentiating k times and inserting z = 1, we obtain,
for k = 2, 3, . . . , N ,

0T = eT
k Q − k eT

k M + kN eT
k−1Λ − k eT

k Λ − k(k − 1)eT
k−1Λ,

and consequently

eT
k = k (N − k + 1) · eT

k−1 Λ(kΛ + kM − Q)−1.

Observe that this recursion can be explicitly solved, as we know eT
1 ; the following

result now straightforwardly follows.

Proposition 1. For k = 1, . . . , N ,

eT
k = k! (N)k · πTΛ(Λ + M − Q)−1Λ(2Λ + 2M − Q)−1 · · · Λ(kΛ + kM − Q)−1,

whereas eT
k = 0 for k = N + 1, N + 2,

Following standard techniques, we can now evaluate all stationary probabil-
ities as well. First, pi(N) follows from the identity ei,N = E((Y)N1{X=i}) =
N ! pi(N). We can recursively find the other probabilities pi(m); applying

ei,N−1 = E((Y)N−11{X=i}) = (N − 1)! pi(N − 1) + N ! pi(N),

we can express pi(N − 1) in terms of pi(N) (and ei,N−1 and ei,N). In general
pi(m) can be found from pi(m + 1), . . . , pi(N) using

ei,m =
N∑

k=m

(k)mpi(k).

Remark 1. In addition, the transient factorial moments E((Y (t))k 1{X(t)=i}) can
be (recursively) found; in every step of the recursion a system of linear differential
equations (rather than a linear-algebraic equation) needs to be solved; see [12]
for a similar procedure in the context of infinite-server queues under regime
switching.

Dynamic Erdős-Rényi Graphs 127

2.3 Diffusion Results Under Scaling

In this subsection we impose the scaling Q �→ N δQ, entailing that the regime
process is sped up by a factor N δ, with the objective to prove a functional central
limit theorem for the resulting limiting process. To get a feeling for how this
scaling affects the system’s behavior, we first compute the mean and variance of
the stationary number of edges. To this end, we use the following lemma, which
is proven in the appendix. In the sequel D := (1πT − Q)−1 − 1πT denotes the
deviation matrix. Also x� := xTπ for x ∈ R

d and Γ := diag{γ} = Λ + M . Let
γ := λ + μ be componentwise positive.

Lemma 1. Define FN,k := (k Γ − NQ)−1 for k ∈ N. Then, as N → ∞,

FN,k =
1
k

1
γ�

1πT +
1
N

E + O(N−2), E :=
(

I − 1
γ�

1πTΓ

)
D

(
I − 1

γ�
γ πT

)
.

Let us first evaluate the mean of Y under this scaling; in the steps below we use
πTΛ1 = λ� and D1 = 0. From the above lemma, we find, with 	̄ := λ�/γ�,

EY = NπTΛ(Λ + M − N δQ)−11 = NπTΛFNδ,11

= NπTΛ

(
1
γ�

1πT1 + N−δ E1 + O(N−2δ)
)

= N 	̄ + O(N1−δ).

Along the same lines,

(EY)2 = N2	̄ 2 − N2−δ 2
γ�

πT(Λ − 	̄ Γ)D 	̄ Γ1 + o(Nmax{1,2−δ}).

In addition, ignoring sublinear terms,

EY (Y − 1) = 2N(N − 1)πTΛ(Λ + M − N δQ)−1Λ(2Λ + 2M − N δQ)−11

= 2N(N − 1)πTΛFNδ,1 ΛFNδ,21

= 2N(N − 1)πTΛ

(
1
γ�

1πT +
1

N δ
E

)
Λ

(
1

2γ�
1πT +

1
N δ

E

)
1.

Using the following equalities

πTΛ

(
1
γ�

1πT

)
Λ

(
1

2γ�
1πT

)
1 =

	̄ 2

2
,

πTΛEΛ

(
1

2γ�
1πT

)
1 =

1
2γ�

πT(Λ − 	̄ Γ)D(Λ − 	̄ Γ)1,

πTΛ

(
1
γ�

1πT

)
ΛE1 = − 1

γ�
πT(Λ − 	̄ Γ)D 	̄Γ1,

we arrive at

EY (Y −1) = N(N −1) 	̄ 2+N2−δ 1
γ�

πT(Λ− 	̄ Γ)D(Λ−3 	̄ Γ)1+o(Nmax{1,2−δ}).

128 M. Mandjes et al.

By virtue of the identity Var Y = EY (Y − 1) + EY − (EY)2, we thus find

Var Y = N 	̄(1 − 	̄) + N2−δ v + o(Nmax{1,2−δ}), (1)

with
v :=

1
γ�

πT(Λ − 	̄ Γ)D(Λ − 	̄ Γ)1.

It can be checked that this formula is symmetric, in the sense that it is invariant
under swapping λ and μ, which is in line with Var Y = Var (N − Y); note that
Λ − 	̄ Γ = (1 − 	̄)Λ − 	̄M .

Upon inspecting the asymptotic shape of Var Y , we observe a dichotomy.
For δ > 1 the regime process jumps so fast that all edges essentially behave
independently, experiencing an ‘effective up-rate’ of λ�, and an ‘effective down-
rate’ of μ�, so that in this regime Y is approximated with a Binomial random
variable with parameters N and 	̄. For δ < 1 the regime process is relatively
slow, and hence affects the variance (which is, as a result, superlinear in N).

We now prove a functional central limit theorem. For the moment we focus
on the case δ = 1; in Remark 3 we comment on what happens when δ > 1 or
δ < 1. Let P1(·) and P2(·) be two independent unit-rate Poisson processes. With
Zi(s) := 1{X(s)=i}, and Y (0) = 0 (remarking that any other starting point can
be dealt with similarly),

Y (t) = P1

(
d∑

i=1

∫ t

0

λiZi(s)(N − Y (s))ds

)

− P2

(
d∑

i=1

∫ t

0

μiZi(s)Y (s)ds

)

. (2)

The first step is to verify that Y (t)/N converges to y(t), defined as the solution
of the integral equation

y(t) = λ�

∫ t

0

(1 − y(s))ds − μ�

∫ t

0

y(s)ds,

i.e., y(t) = 	(t) := 	̄ · (1 − e−γ�t). Define

Ȳ (t) :=
Y (t) − N	(t)√

N
; (3)

our objective is to prove that Ȳ (·) converges to a Gaussian process (and we
identify this process). As we follow [2, Sect. 5], which in turn uses intermediate
results of [10], we restrict ourselves to the most important steps.

We know from (2) that, for some martingale K(t),

dY (t) = λT Z(t)(N − Y (t))dt − μTZ(t)Y (t)dt + dK(t),

and therefore

dȲ (t) =
√

N
(
(1−	(t))λT−	(t)μT

)
Z(t)dt−γTZ(t)Ȳ (t)dt+

dK(t)√
N

−
√

N	′(t)dt.

Dynamic Erdős-Rényi Graphs 129

Now define W (t) := eZ+(t)Ȳ (t), where Z+(t) :=
∫ t

0
γTZ(s)ds, so that,

dW (t) = eZ+(t)

(√
N

(
(1 − 	(t))λT − 	(t)μT

)
Z(t)dt +

dK(t)√
N

−
√

N	′(t)dt

)
.

Observing that
(
(1 − 	(t))λT − 	(t)μT

)
π = 	′(t), and recalling that γ = λ + μ,

the equality in the previous display simplifies to

dW (t) = eZ+(t)

(√
N

(
λT − 	(t)γT

)
(Z(t) − π)dt +

dK(t)√
N

)
.

We now consider the two terms in the previous display separately. As was estab-
lished in [2,10], for the first term, as N → ∞,

∫ ·

0

√
NeZ+(s)

(
λT − 	(s)γT

)
(Z(s) − π)ds →

∫ ·

0

eγ�sdG(s),

where G(·) satisfies

〈G〉t = g(t) := 2
∫ t

0

πT(Λ − 	(s)Γ)D(Λ − 	(s)Γ)1ds. (4)

Also as in [2,10], the second term obeys, as N → ∞,
∫ ·

0

1√
N

eZ+(s)dK(s) →
∫ ·

0

eγ�sdH(s),

where H(·) satisfies (using the relation between K(·) and the Poisson processes
P1(·) and P2(·))

〈H〉t = h(t) :=
∫ t

0

λ�(1 − 	(s))ds +
∫ t

0

μ�	(s)ds. (5)

Combining the two terms studied above, it thus follows that, as N → ∞, W (·)
weakly converges to W∞(·), which is the solution to the stochastic differential
equation, with B(·) a standard Brownian motion,

dW∞(t) = eγ�t
√

g′(t) + h′(t) dB(t). (6)

Translating this back in terms of a stochastic differential equation, again mim-
icking the line of reasoning of [2,10], we obtain the following result.

Theorem 1. Ȳ (·) converges weakly to Ȳ∞(·), which is the solution to the
stochastic differential equation

dȲ∞(t) = −γ� Ȳ∞(t) dt +
√

g′(t) + h′(t) dB(t), (7)

with g(·) and h(·) given by (4) and (5), respectively.

130 M. Mandjes et al.

Remark 2. Using the behavior of g′(t) and h′(t) for t large, we conclude that for
large values of t (‘in stationarity’), this stochastic differential equation reads

dȲ∞(t) = −γ� Ȳ∞(t) dt +
√

2γ� 	̄ (1 − 	̄) + 2γ� v dB(t),

which defines an ou process with mean 0 and variance 	̄ (1 − 	̄) + v; note that
this aligns with what we found, plugging in δ = 1, in (1).

Remark 3. When δ < 1, the
√

N in the definition of (2) needs to be replaced by
N δ/2; it is readily checked that in the limiting stochastic differential equation (7)
we then just have g′(t) below the square-root sign. On the contrary, if δ > 1 then
the definition of (2) remains unchanged, but below the square-root sign in (7)
we only have h′(t).

2.4 Large Deviations Results Under Scaling

Where we above discussed the diffusion behavior of the process under study, we
now consider rare events. We again focus on the scaling corresponding to δ = 1,
following the setup of [11]. Intuitively, the rare-event behavior is decomposed
into the effect of the regime process, and that of the edge dynamics conditional
on the regime process.

Let g(·) be in UT , defined as the set of non-negative d-dimensional functions
such that the gi(s) sum to 1, for all s ∈ [0, T]. Then

JT (g) :=
∫ T

0

sup
u�0

(

−
d∑

i=1

(Qu)i

ui
gi(s)

)

ds.

In addition,

Λx,g (ϑ) :=
d∑

i=1

gi

(
xμi(e−ϑ − 1) + (1 − x)λi(eϑ − 1)

)
.

Based on the findings in [11], one anticipates a sample-path ldp (of ‘Mogulskii
type’; cf. [4, Theorem 5.2]), with local rate function

Ix,g (y) := sup
ϑ

(ϑy − Λx,g (ϑ)) .

This concretely means that, with Y ◦(t) := N−1Y (t) and t ∈ [0, T], and under
mild regularity conditions on the set A,

lim
N→∞

1
N

logP(Y ◦(·) ∈ A) = − inf
f∈A

IT (f),

with

IT (f) := inf
g(·)∈UT

(∫ T

0

If(s),g(s)(f ′(s))ds + JT (g)

)

.

A formal derivation of this ldp is beyond the scope of this paper.

Dynamic Erdős-Rényi Graphs 131

3 Erdős-Rényi Graphs with Resampling

An alternative dynamic Erdős-Rényi model (in discrete time) can be defined as
follows; we refer to it as a Erdős-Rényi graph with resampling. Let the N edges
alternate between two states: the edge has the value 0 when the corresponding
edge is absent and 1 when it exists. In slot m, let the transition matrix of the
presence of any of the N edges be given by

(
Pm 1 − Pm

1 − Rm Rm

)
,

where the sequence (Pm, Rm)m∈N consists of i.i.d. vectors in (0, 1)2; we note that
Pm and Rm (for a given time m, that is) are not necessarily assumed independent.
It is stressed that the samples in slot m, i.e., Pm and Rm, hold for any of the
edges—as a consequence, the individual edges (each of them alternating between
absent and present) evolve dependently, as intended.

In this section we find the counterparts for the resampling model of all results
that we derived for the regime switching model of Sect. 2. To make notation
compact, let (P,R) denote a generic sample of (Pm, Rm).

3.1 Generating Function

Let us now analyze the object ϕk(z) := E
(
zYm |Ym−1 = k

)
. Realize that Ym is

the sum of (i) the edges that were present at time m − 1 and still are at m, and
(ii) the edges that were not there at m − 1 but do appear at m. Both obey a
binomial distribution (with appropriately chosen parameters). More precisely,

ϕk(z) = E

(
N−k∑

�=0

(
N − k

)
(1 − Pm)�PN−k−�

m z� ·
k∑

�=0

(
k

)
R�

m(1 − Rm)k−�z�

)

,

which simplifies to

E

(
((1 − Pm)z + Pm)N−k · (Rmz + 1 − Rm)k

)
.

Now consider the stationary random variable Y , through its z-transform ϕ(z) :=
E zY . Based on the above computation, we have found the following fixed-point
equation:

ϕ(z) = E

(
((1 − P)z + P)N ϕ

(
Rz + 1 − R

(1 − P)z + P

))
. (8)

3.2 Moments

In this subsection, we compute the mean, variance and correlation in stationarity.

Mean. Let us first compute EY , by differentiating both sides to z and plugging
in z = 1. To this end, we define

ψ1(z) := ((1 − P)z + P)N , ψ2(z) := ϕ

(
Rz + 1 − R

(1 − P)z + P

)
.

132 M. Mandjes et al.

We first compute a number of quantities that we need in the sequel. It takes
routine calculations to conclude that

ψ′
1(z) = (1 − P)N((1 − P)z + P)N−1,

ψ′′
1 (z) = (1 − P)2N(N − 1)((1 − P)z + P)N−2,

ψ′
2(z) =

P + R − 1
((1 − P)z + P)2

ϕ′
(

Rz + 1 − R

(1 − P)z + P

)
,

and

ψ′′
2 (z) = −2

(P + R − 1)(1 − P)
((1 − P)z + P)3

ϕ′
(

Rz + 1 − R

(1 − P)z + P

)

+
(P + R − 1)2

((1 − P)z + P)4
ϕ′′

(
Rz + 1 − R

(1 − P)z + P

)
.

As a consequence,

ψ′
1(1) = (1 − P)N, ψ′′

1 (1) = (1 − P)2N(N − 1), ψ′
2(1) = (P + R − 1)ϕ′(1),

and
ψ′′
2 (1) = −2(P + R − 1)(1 − P)ϕ′(1) + (P + R − 1)2ϕ′′(1).

Regarding the first moment of Y , we obtain the equation α := ϕ′(1) = Eψ′
1(1)+

Eψ′
2(1), or equivalently α = N(1 − EP) + α(EP + ER − 1), and hence

α = N
1 − EP

2 − EP − ER
. (9)

Variance. We now evaluate the quantity

β := EY (Y − 1) = ϕ′′(1) = Eψ′′
1 (1) + 2Eψ′

1(1)ψ′
2(1) + Eψ′′

2 (1).

We thus obtain that β equals

N(N−1)E
(
(1 − P)2

)
+2(N−1)αE ((P + R − 1)(1 − P))+β E

(
(P + R − 1)2

)
,

and therefore

β =
N(N − 1)E

(
(1 − P)2

)
+ 2(N − 1)αE ((P + R − 1)(1 − P))

1 − E ((P + R − 1)2)
.

As a consequence, Var Y equals

α − α2 +
N(N − 1)E

(
(1 − P)2

)
+ 2(N − 1)αE ((P + R − 1)(1 − P))

1 − E ((P + R − 1)2)
.

It takes an elementary but tedious computation to verify that if P and R equal
(deterministically) p and r, respectively, then this variance reduces to Nπ0π1,
as desired.

Dynamic Erdős-Rényi Graphs 133

We also conclude that Var Y grows essentially quadratically in N . Indeed, it
follows by standard computations that, with P̄ := 1 − P and R̄ := 1 − R,

Var Y = γ1N
2 + γ2N, (10)

where

γ1 =
E(R̄2)(E P̄)2 − 2E(PR)E P̄ E R̄ + E(P̄ 2)(E R̄)2

(
1 − E

(
(P̄ + R̄ − 1)2

)) (
E P̄ + E R̄

)2 ,

and

γ2 =
−E(R̄2)E P̄ + 2E P̄ E R̄ − E(P̄ 2)E R̄
(
1 − E

(
(P̄ + R̄ − 1)2

)) (
E P̄ + E R̄

) .

Notice that γ1 and γ2 are symmetric in P and R, as desired, and observe that
γ1 ≥ 0 (with equality only if P and R are deterministic). We conclude that
no standard CLT applies (which would require that Var Y grows linearly in N)
unless P and R are deterministic.

Correlation. We now focus on computing the limit of covariance Cov(Ym, Ym+1)
as m → ∞. Observe that

lim
m→∞Cov(Ym, Ym+1) = lim

m→∞

N∑

k=0

kE(Ym+1 |Ym = k)P(Ym = k) − (EY)2,

which, in self-evident notation, reads

N∑

k=0

kE(Bin(k,R))P(Y = k) +
N∑

k=0

kE(Bin(N − k, 1 − P))P(Y = k) − (EY)2.

This reduces to

ER

N∑

k=0

k2
P(Y = k) + (1 − EP)

N∑

k=0

k(N − k)P(Y = k) − (EY)2,

so that we obtain

lim
m→∞Cov(Ym, Ym+1) = (EP + ER − 1)E(Y 2) + (1 − EP)N EY − (EY)2,

which we can evaluate from the expressions for EY and Var Y .

3.3 Diffusion Results Under Scaling

We now consider the following scaling: for some δ > 0 we put

P = 1 − η/Nδ, R = 1 − ζ/Nδ, (11)

134 M. Mandjes et al.

where η and ζ are non-negative random variables. The resulting model has some
built-in ‘inertia’: for N large, the process has the inclination to stay in the same
configuration. The mean number of vertices is N 	̄, with

	̄ :=
E η

E η + E ζ
,

irrespective of the value of δ. When analyzing the variance, however, the reveal-
ing issue is that the value of δ has crucial impact. More specifically, a minor
computation tells us that Var Y essentially reads

N 	̄ (1 − 	̄) + N2−δ E(ζ2)(E η)2 − 2E(ηζ)E η E ζ + E(η2)(E ζ)2

2(E η + E ζ)3
.

Note that, due to the inertia that we incorporated, the variance is smaller than
in the unscaled model, where the variance was effectively proportional to N2.
Observe from the above expression that there is a dichotomy that resembles the
one we came across in Sect. 2, with some sort of transition at δ = 1. For δ > 1
the standard deviation scales as

√
N , whereas for δ < 1 it scales as N1−δ/2.

An intuitive explanation is that in the regime of relatively few transitions (i.e.,
δ > 1) the system’s inertia is so strong that its steady-state essentially behaves
as an Erdős-Rényi graph with the probability that an edge exists being given by
	̄. In the regime with relatively many transitions (i.e., δ < 1), on the contrary,
the (co-)variances play a role, in the sense that the increased variability caused
by the resampling has impact; the limiting object is not of Erdős-Rényi-type.

Along the same lines, an elementary computation yields that the covari-
ance between the numbers of edges at two subsequent epochs (in stationarity)
behaves as

Var Y

(
1 − E η + E ζ

N δ

)
;

this correlation coefficient essentially reads 1 − (E η + E ζ)N−δ (for N large).

A Related Continuous-Time Model. In the remainder of this subsection we
consider a specific explicit continuous-time model in which we can embed the
discrete-time model discussed above, and in particular the scaling (11). To this
end, we first describe the model without scaling, and then include the scaling.

Let, at time s, M(s) � 0 be the hazard rate of an existing vertex becoming
inactive; likewise, Λ(s) � 0 is the hazard rate corresponding with a non-existing
vertex becoming active. Here M(s) and Λ(s) are piecewise constant stochastic
processes: for some Δ > 0,

Λ(s) = Λi 1{(i−1)Δ�s<iΔ}, M(s) = Mi 1{(i−1)Δ�s<iΔ},

where (Mi, Λi)i∈N is a sequence of i.i.d. bivariate random vectors such that both
Var Λ and Var M are finite. Let Y (t) be the number of vertices at time t, and Y
its stationary counterpart. As it turns out, we can reuse quite a few results from

Dynamic Erdős-Rényi Graphs 135

the previous subsections, using the identification Y (mΔ) = Ym. In particular, it
is seen that ϕ(z) := E zY satisfies (8), with

P :=
M

Λ + M
+

Λ

Λ + M
e−(Λ+M)Δ, R :=

Λ

Λ + M
+

M

Λ + M
e−(Λ+M)Δ.

We thus obtain from (9)

EY = N E

(
Λ

Λ + M

(
1 − e−(Λ+M)Δ

))/
E

(
1 − e−(Λ+M)Δ

)

Similarly, we can compute the variance by (10).
Now we describe how to scale this model. The idea is to scale Δ �→ 1/N δ,

and to consider the regime in which we let N grow large, i.e., the transition rates
are frequently resampled (and simultaneously the number of potential edges N
grows). It is immediate that P and R fulfill (11) with η = Λ and ζ = M. We
obtain that EY tends to 	̄ := EΛ/EΓ , where Γ := Λ + M . In addition, Var Y
satisfies the expansion N 	̄ (1 − 	̄) + N2−δv + o(Nmax{1,2−δ}), where

v :=
1

2EΓ

(
	̄ 2

Var M − 2 	̄ (1 − 	̄)Cov (Λ,M) + (1 − 	̄)2 Var Λ
)

=
1

2EΓ
Var (Λ − 	̄ Γ) .

The proof of a functional central limit theorem is very similar to the one for
the regime switching model in Sect. 2; we therefore restrict ourselves to the key
steps. With P1(·) and P2(·) as before,

Y (t) = P1

(∫ t

0

Λ(s)(N − Y (s))ds

)
− P2

(∫ t

0

M(s)Y (s)ds

)
,

so that, for some martingale K(t),

dY (t) = Λ(t)(N − Y (t))dt − M(t)Y (t)dt + dK(t).

Then Ȳ (t) is defined as in (3), with 	(t) := 	̄ · (1− exp(−tEΓ)). We define, with
Γ (s) = Λ(s) + M(s),

W (t) := eΓ+(t)Ȳ (t), with Γ+(t) :=
∫ t

0

Γ (s)ds.

After a few steps, this leads to the stochastic differential equation,

dW (t) = eΓ+(t)

(√
N ((Λ(t) − EΛ) − 	(t)(Γ (t) − EΓ)) dt +

dK(t)√
N

)
.

Consider the two terms in the previous display. For the first term, as N → ∞,
∫ ·

0

√
NeΓ+(s)

(
(Λ(s) − EΛ) − 	(s)(Γ (s) − EΓ)

)
ds →

∫ ·

0

esEΓ dG(s),

136 M. Mandjes et al.

where G(·) satisfies

〈G〉t = g(t) :=
∫ t

0

Var (Λ − 	(s)Γ)ds; (12)

to see this note that, almost surely, uniformly on compacts, as N → ∞,

eΓ+(s) = exp

(
1
N

sN∑

i=1

(Λi + Mi)

)

→ exp (sEΓ) ,

and use this in combination with the (classical) functional central limit theorem
for the random walk with i.i.d. increments [14, Theorem 4.3.5]. For the second
term, as N → ∞, due to the definition of the martingale K(·),

∫ ·

0

1√
N

eΓ+(s)dK(s) →
∫ ·

0

eγ�sdH(s),

where H(·) is such that

〈H〉t = h(t) := EΛ

∫ t

0

(1 − 	(s))ds + EM

∫ t

0

	(s)ds. (13)

Combining the two terms studied above, it thus follows that, as N → ∞, W (·)
weakly converges to W∞(·), which is the solution to the stochastic differential
equation (6), but now with the g(·) and h(·) given by (12) and (13), respectively.
We obtain the following result.

Theorem 2. Ȳ (·) converges weakly to Ȳ∞(·), which is the solution to the
stochastic differential equation (7), with g(·) and h(·) given by (12) and (13),
respectively.

Remark 4. For large t (‘in stationarity’), this stochastic differential equation
essentially behaves as

dȲ∞(t) = −EΓ · Ȳ∞(t) dt +
√

2EΓ · 	̄(1 − 	̄) + 2EΓ · v dB(t),

corresponding with an ou process with mean 0 and variance 	̄ (1 − 	̄) + v. Note
that this is in line with what we found, plugging in δ = 1, in the expansion
N 	̄ (1 − 	̄) + N2−δv + o(Nmax{1,2−δ}). Regarding the cases δ < 1 and δ > 1 a
reasoning similar to that in Remark 3 applies.

3.4 Large Deviations Results Under Scaling

The above computations focused on the mean, variance, and correlation under
the scaling proposed. We now consider rare events. Another straightforward
calculation yields for the cumulant function, assuming Nx to be integer,

logE exp (ϑ(Ym − Ym−1) |Ym−1 = Nx)

= logE
((

e−ϑ(1 − Rm) + Rm)
)Nx (

eϑ(1 − Pm) + Pm)
)N(1−x)

)
,

Dynamic Erdős-Rényi Graphs 137

which, for δ = 1, converges to

Λx(ϑ) := logE exp
(
xζ(e−ϑ − 1) + (1 − x)η(eϑ − 1)

)

= log M
(
x(e−ϑ − 1), (1 − x)(eϑ − 1)

)
,

where M(·, ·) is the joint moment generating function of the random variables
ζ and η (assuming that it exists). One thus finds a sample-path ldp where the
local rate function is given by

Ix(y) := sup
ϑ

(ϑy − Λx(ϑ)) .

More precisely, with Y ◦(t) := N−1Y�Nt	 and t ∈ [0, T], and under mild regularity
conditions on the set A,

lim
N→∞

1
N

logP(Y ◦(·) ∈ A) = − inf
f∈A

IT (f), with IT (f) :=
∫ T

0

If(s)(f ′(s))ds.

Fig. 1. Left panel: histogram of Ȳ for situation (A). Right panel: histogram of Ȳ for
situation (B). In both cases we took N = 45.

4 Numerical Illustration

In this section we include a number of illustrative examples that assess the
applicability of the diffusion limits. We consider two situations; in both cases we
take δ = 1. (A) In the first situation we consider the regime switching model
of Sect. 2. The background process has two states, with q12 = 2 and q21 = 3;
in addition λ1 = 0.3, λ2 = 0.5, μ1 = 1, and μ2 = 0.1. Using the formulae we
derived in Sect. 2, we find EY = 0.762N and Var Y = 0.182N . (B) The second
situation corresponds to the resampling model of Sect. 3. More, specifically, M
has a uniform distribution on [0, 3] and Λ a uniform distribution on [0, 5]. It is
readily checked that EY = 0.625N and Var Y = 0.308N .

In Fig. 1 histograms are presented for the random variable

Ȳ :=
Y − EY√
Var Y

.

138 M. Mandjes et al.

The number of experiments the estimates are based upon equals the number of
this lncs volume. Each simulation experiment starts with an empty system, and
is then run for a sufficiently long time such that the process has reached equilib-
rium. The red curves in Fig. 1 correspond to the density of the standard Normal
distribution. The figures confirm the convergence to the Normal distribution.

In Fig. 2 typical sample paths are depicted, illustrating the ou-like mean-
reverting behavior. The red curves correspond to the mean of Y (t).

Fig. 2. Left panel: sample path of Y (·) for situation (A). Right panel: sample path of
Y (·) for situation (B). In both cases we took N = 45.

5 Discussion and Concluding Remarks

In this paper we have discussed distributional properties of the number of edges
in a dynamic Erdős-Rényi graph. We have considered two variants: one with
the underlying mechanism being based on regime switching, and the other in
which the transition probabilities are resampled at equidistant points in time.
For both models we have succeeded in obtaining fairly explicit results for various
transient and stationary quantities. Under a specific scaling a functional central
limit theorem was established.

There is an interesting relation between the models considered in this paper
and two-node closed queueing networks. In such closed networks a fixed number
of jobs, say N , move between an active state (‘in service’) and an inactive state
(‘waiting’). Such models (but without regime switching or resampling) have been
intensively studied in the literature in the context of so-called Engset models [5];
see e.g. [3] and references therein.

Topics for future research may relate to other graph metrics than the total
number of edges. In the introduction, we mentioned that [13] considers the behav-
ior of the Betti number, but one could also think of e.g. the evolution of the num-
ber of wedges or triangles in the random graph. In addition, one may wonder
under what conditions the dynamic random graph in which the edges (indepen-
dently) alternate between present and absent is almost surely connected; one
would expect that if this alternating process is ‘sufficiently fast’ and the station-
ary up-probability is larger than log n/n, this should be the case.

Dynamic Erdős-Rényi Graphs 139

Acknowledgment. The authors thank Frank den Hollander (Leiden) for useful
discussions.

Appendix

We now prove Lemma 1. We do so by establishing the claim for k = 1; plugging in
k Γ for Γ yields the stated. Write F∞ := (γ�)−11πT and abbreviate FN := FN,1.

As Q has a kernel of dimension 1, we can factorize Q as Q = AB, where
A ∈ R

d×(d−1) is of full column rank and B ∈ R
(d−1)×d is of full row rank. It is

not hard to show that BA is an invertible matrix. Moreover, every element in
the right kernel of Q is a multiple of 1 and, likewise, every element in the left
kernel of Q is a multiple of πT.

Applying the Sherman-Morrison formula to FN = (Γ − NAB)−1, we find

FN = Γ−1 + Γ−1A

(
Id−1

N
− BΓ−1A

)−1

BΓ−1. (14)

Taking the limit for N → ∞, we arrive at

F∞ = Γ−1 − Γ−1A (BΓ−1A)−1BΓ−1, (15)

where the invertibility of BΓ−1A is due to γ� > 0. One sees that F∞A = 0 and
BF∞ = 0. Hence F∞ belongs to the left kernel of A and to the right kernel of
B, so F∞ = c1πT for some c ∈ R. One also has F∞Γ1 = F∞γ = 1, and hence
c = (γ�)−1, which gives the desired result for limN→∞ FN .

We proceed by proving the expansion. Inserting
(

I

N
− BΓ−1A

)−1

= −(BΓ−1A)−1 − 1
N

(BΓ−1A)−2 + O(N−2)

into (14), one obtains

FN = F∞ − 1
N

Γ−1A(BΓ−1A)−2BΓ−1 + O(N−2).

Let A+ (B+, resp.) denote any left (right, resp.) inverse of A (B, resp.), so that
A+A = BB+ = Id−1. Then

Γ−1A(BΓ−1A)−2BΓ−1 = Γ−1A(BΓ−1A)−1BB+A+A(BΓ−1A)−1BΓ−1.

Now, it follows from (15) that Γ−1A(BΓ−1A)−1B = I − F∞Γ and in addition
A(BΓ−1A)−1BΓ−1 = I − ΓF∞. Hence,

FN = F∞ − 1
N

(I − F∞Γ)B+A+(I − ΓF∞) + O(N−2). (16)

We specialize to judicious choices of A+ and B+, namely

A+ =
(
Id−1 0

)
A−1

1 , B+ = B−1
1

(
Id−1

0

)
, where A1 :=

(
A 1

)
, B1 :=

(
B

−πT

)
,

140 M. Mandjes et al.

and 0 stands here as well as below for a zero matrix or vector of appropriate
dimensions. Both A1 and B1 are invertible, as an immediate consequence of the
relation A1B1 = Q − 1πT = −(D + 1πT)−1. In addition,

B+A+ = B−1
1

(
Id−1 0

0 0

)
A−1

1 , B11 = −
(

0
1

)
, πTA1 =

(
0 1

)
.

A straightforward computation gives with the above relations

B+A+ = B−1
1 A−1

1 − B−1
1

(
1
0

)
(
1 0

)
A−1

1 = −(D + 1πT) + 1πT = −D.

The result (for k = 1) now follows from (16). �

References

1. Basu, P., Bar-Noy, A., Ramanathan, R., Johnson, M.: Modeling and analysis of
time-varying graphs. arXiv:1012.0260 (2010)

2. Blom, J., de Turck, K., Mandjes, M.: Functional central limit theorems for Markov-
modulated infinite-server systems. Math. Methods Oper. Res. 83, 351–372 (2016)

3. Czachórski, T., Nycz, T., Nycz, M., Pekergin, F.: Traffic engineering: Erlang and
Engset models revisited with diffusion approximation. In: Proceedings of 29th
International Symposium on Computer and Information Sciences, Information Sci-
ences and Systems 2014, pp. 249–256 (2014)

4. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-03311-7

5. Engset, T.: Die Wahrscheinlichkeitsrechnung zur Bestimmung der Wählerzahl in
automatischen Fernsprechämtern. Elektrotechnische Zeitschrift, Heft 31 (1918)

6. Erdős, P., Rényi, A.: On random graphs I. Publicationes Mathematicae Debrecen
6, 290–297 (1959)

7. Gilbert, E.: Random graphs. Ann. Math. Stat. 30, 1141–1144 (1959)
8. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519, 97–125 (2012)
9. Holme, P.: Modern temporal network theory: a colloquium. Eur. Phys. J. B 88,

1–30 (2015)
10. Huang, G., Jansen, H.M., Mandjes, M., Spreij, P., de Turck, K.: Markov-modulated

Ornstein-Uhlenbeck processes. Adv. Appl. Probab. 48, 235–254 (2016)
11. Huang, G., Mandjes, M., Spreij, P.: Large deviations for Markov-modulated diffu-

sion processes with rapid switching. Stoch. Process. Appl. 126, 1785–1818 (2016)
12. Mandjes, M., de Turck, K.: Markov-modulated infinite-server queues driven by a

common background process. Stoch. Models 32, 206–232 (2016)
13. Thoppe, G., Yogeshwaran, D., Adler, R.: On the evolution of topology in dynamic

clique complexes. Adv. Appl. Probab. 48, 989–1014 (2016)
14. Whitt, W.: Stochastic-Process Limits. Springer, New York (2002). https://doi.org/

10.1007/b97479
15. Zhang, X., Moore, C., Newman, M.: Random graph models for dynamic networks.

arXiv:1607.07570v1 (2016)

http://arxiv.org/abs/1012.0260
https://doi.org/10.1007/978-3-642-03311-7
https://doi.org/10.1007/b97479
https://doi.org/10.1007/b97479
http://arxiv.org/abs/1607.07570v1

Wireless Network Algorithmics

Magnús M. Halldórsson1(B) and Roger Wattenhofer2

1 ICE-TCS, School of Computer Science, Reykjavik University,
Reykjavik, Iceland

mmh@ru.is
2 ETH Zurich, Zürich, Switzerland

wattenhofer@ethz.ch

Abstract. The last decade has seen a large amount of algorithmic work
analyzing wireless networks. In this paper we focus on some of the main
lessons learned when studying the physical (SINR) wireless model, with
a focus on link scheduling, without or with power control. We summarize
the results in this domain, present simplified versions of some key results,
and outline future directions along with major open questions.

1 Introduction

Wireless networks are ubiquitous. We use 802.11 Wi-Fi networks at home and
in the office, and elsewhere our mobile devices connect to, e.g., GSM, LTE,
Bluetooth. The bandwidth, latency, or error rates of wireless transmissions can
be improved by carefully adjusting various parameters such as the modulation
and coding scheme. However, apart from such point-to-point considerations, the
network itself may also influence wireless communication.

In particular, in a network with more than two devices, concurrent trans-
missions may interfere. To prevent interference, one may (i) carefully schedule
transmissions so that concurrent transmissions are separated in space or time.
In addition, one may (ii) control the transmission power in order to reduce
interference.

Increasing the transmission power of a sender will likely increase the prob-
ability that its packets are being received, but it also increases the interference
for other concurrent transmissions. Similarly, scheduling a transmission at a dif-
ferent time may improve this transmission but generate interference for the now
concurrent transmissions. Since scheduling and transmission power affect the
whole network, they are difficult to understand.

There are several classic models and model variants to represent transmis-
sions and interference in wireless networks. Here we just present two of the most
common models; for a more comprehensive survey we recommend, e.g., [52]. A
typical model to understand wireless networks is the so-called radio network
model, e.g., [3].

This research was partially supported by Icelandic Research Fund grants 152679-051
and 174484-05.

c© Springer Nature Switzerland AG 2019

B. Steffen and G. Woeginger (Eds.): Computing and Software Science, LNCS 10000, pp. 141–160, 2019.

https://doi.org/10.1007/978-3-319-91908-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91908-9_9&domain=pdf
https://doi.org/10.1007/978-3-319-91908-9_9

142 M. M. Halldórsson and R. Wattenhofer

Definition 1 (Radio Network Model). In the radio network model, the wire-
less network is modeled as a graph. The nodes of the graph are the wireless
devices, either base stations or mobile nodes. There is an edge between two nodes
if these nodes can communicate by wireless transmissions. In addition, edges also
model interference. A node v can only receive a wireless transmission of a neigh-
bor node u ∈ N(v) if no other neighbor w ∈ N(v) is transmitting concurrently.

The radio network model was very influential to understand wireless net-
works, but it sometimes falls short because it is a binary model: either a node
has interference or it has no interference. This is often too simplistic. In the
real world, a node v may receive a packet of neighbor u despite interference of
neighbor w if v is closer to u than w. This cannot be modeled by an unweighted
graph. Also power control is difficult to represent with a radio network model.
An improved model to understand wireless networks is the so-called disk model,
e.g., [11].

Definition 2 (Disk Model). In the geometric disk model, nodes are points in
the Euclidean plane. A transmitting node u reaches all possible points within
some radius r around u, where the radius may depend on the power that node u
is using for the transmission. Again, a transmission will be successfully received
if an intended receiver node v is inside the transmission disk of node u but not
inside the transmission disk of another concurrent transmission.

Setting the radii correctly, the disk model may be accurate enough to model
some wireless phenomena, but it is still “too binary” to model reality well. Maybe
a transmission can withstand a single concurrent interfering transmission if it
is reasonably far away. But can it withstand multiple concurrent transmissions?
Interference of electromagnetic waves is additive, and to truly understand wire-
less transmission and interference our model must be additive as well. Moreover,
electromagnetic waves get weaker with distance – physics tells us that a signal
drops at least quadratically with distance. If a receiver is closer to a sender, it
may withstand more interference.

About a decade ago, researchers studying wireless network algorithms started
dropping the radio network, the disk graph, and various other binary models in
favor of a model that seemed to represent reality better: the so-called physical
model, e.g., [47].

2 Physical Model

Definition 3 (Physical Model, Signal-to-Interference Ratio). In the
physical model, there is a gain between every pair of nodes u, v. The gain may
be non-symmetric, i.e. the gain from u to v may be different from the gain from
v to u. The gain describes how much the power of a transmission at u decreases
on the way from u to v. If node u transmits with power pu, node v will receive
the signal with power S = pu · g(u, v), where g(u, v) is the gain from u to v.
Interfering transmissions behave exactly the same, so a concurrent interfering

Wireless Network Algorithmics 143

transmission of node w will arrive at node v with interference power pw ·g(w, v).
Interference is additive, so all the interfering transmissions W accumulate to
I =

∑
w∈W pw · g(w, v). Whether or not node v can correctly receive u’s trans-

mission depends on the signal-to-interference ratio S/I. If this ratio is at least
some constant β, node v will receive the transmission correctly. The physical
model is also known as the signal-to-interference-ratio model.

The ratio β is hardware and coding dependent. For inexpensive hardware the
signal should be stronger than the interference, i.e., β ≥ 1. However, reasonably
good hardware and/or coding may drive the value of β below 1.

Sometimes, we add a constant ambient noise term N to the interfer-
ence of concurrent transmissions; the reception test then becomes a signal-to-
interference-plus-noise (SINR) test, i.e., we want S

I+N ≥ β.

Definition 4 (Geometric and General Physical Model). Sometimes, we
add a geometric component to this physical model by assuming that the gain is
determined by the geometric distance, i.e. g(u, v) = d(u, v)−α, where d(u, v) is
the Euclidean distance between u and v, and α is the so-called path-loss expo-
nent, typically α ≥ 2. We call this special case the geometric physical model. In
practice, wireless effects such as shadowing or reflection at walls may make the
gain non-geometric – if we have no restrictions on the gain function, the model
is simply known as general physical model.

Wireless networks offer a wide range of challenging algorithmic problems.
One family of problems stands out, however: the so-called scheduling/capacity
problem. Let us define this family of problems formally.

Definition 5 (Link). A wireless communication link l is defined by a sending
node s and a receiving node r, i.e., l = (s, r). The length of l is the distance
d(s, r) from sender to receiver, which we shall overload with the notation l.

Definition 6 (Feasible Link Set, Link Scheduling). We use gain as intro-
duced in Definition 3. A traffic demand is given by a set L of links. We want
to choose a subset L′ ⊆ L such that all links in L′ are feasible, i.e., all links
can be scheduled concurrently. A subset L′ is feasible if all links l ∈ L′ have a
signal-to-interference ratio of at least β. More formally, for any l = (s, r) ∈ L′,
we want Sl/Il ≥ β, where Sl = ps · g(s, r) and Il =

∑
l′∈L′\{l} ps′ · g(s′, r) with

l′ = (s′, r′) being a link in L′ \ {l}.
The link scheduling problem has three main dimensions:

– Gain: Geometric or general gain as discussed in Definition 4.
– Power control: We will introduce power control in Definition 12.
– Objective: Finding the largest possible (weighted) subset L′ is only one pos-

sible objective. Alternatively, we might want to partition all links L into as
few as possible subsets L1, L2, . . . , Lk, such that each subset is feasible, and
then schedule the subsets sequentially. Finding a single subset L′ is known as
the one-shot problem, finding a partition is simply known as the scheduling
problem.

144 M. M. Halldórsson and R. Wattenhofer

The capacity problem is a close relative of the link scheduling problem, inher-
iting these three dimensions.

Definition 7 (Wireless Capacity). The input to the wireless capacity problem
is a set of nodes. On top of these nodes we need to specify a traffic pattern. We
want to measure how much concurrent traffic is possible.

On top of the link scheduling dimensions mentioned above, wireless capacity
has additional parameters:

– Traffic Pattern: Typical traffic patterns include, e.g. every node must send a
packet to every other node, or every node must send to a random node. Other
classic traffic patterns form trees, e.g., all nodes must collect the average or
median temperature at a specific node known as the sink.

– Node Distribution: Early capacity computations only worked if the nodes
were distributed in some peculiar way, e.g. Poisson distributed nodes. Later,
researchers studied best or worst case node distributions. Algorithmic analy-
ses are able to handle arbitrary node distributions.

– Multi-Hop: Nodes may forward traffic for other nodes in a multi-hop fashion.
Sometimes the routes are given, sometimes routing is part of the problem.

The scheduling/capacity problems measure how efficiently we can use a wire-
less network in the physical model. For wireless networks this is the core problem,
as higher layers are generally not different from wireline networks.

Practically, link scheduling and wireless capacity will tell us how we should
organize media access on the link layer, as it answers questions about optimal
scheduling and power control. In wireless networks, link and network layers can-
not be separated as nicely as in wireline networks as network issues will influence
the link layer.

3 Link Scheduling Algorithms

We first explore algorithms for the one-shot uniform-power geometric-gain link
scheduling problem, as introduced in Definition 6.

Short links are naturally preferable for maximizing the number of links: their
signal is still relatively strong at the receiver, making them more tolerant to
interference. We therefore start by sorting the input L = {l1, l2, . . . , ln} into a
non-decreasing order of length.

Greedy algorithms often work well for subset maximization. In our context,
this leads to the natural approach of Algorithm1.

Unfortunately, Algorithm1 is too greedy. Suppose the second shortest link
l2 is just barely feasible when joined with the shortest link l1, i.e. the signal-to-
interference ratio of l2 is exactly β. Then we cannot add any other link without
violating the signal-to-interference ratio of l2. In contrast, if the other links are
well separated in space, the optimal set may contain all of them.

We should therefore be slightly less “greedy”! Before we present a greedy-
like algorithm that works, we first introduce a convenient way of quantifying the
impact of interference.

Wireless Network Algorithmics 145

Algorithm 1. Too Näıve Greedy Algorithm for Link Scheduling
1: R ← ∅
2: for i = 1 to n do
3: if R ∪ {li} is feasible then
4: R ← R ∪ {li}

Interference matters only in relation to the strength of the signal that is
to be received. According to Definition 6, a transmission is received correctly if
the strength of the interference is small enough relative to the strength of the
signal. We ignore the effect of the ambient noise by setting N = 0. Noise can be
included, but it complicates the treatment.

Definition 8 (Affectance). Consider a link l = (s, r) and an interfering link
l′ = (s′, r′). The signal strength of l (as received at r) is p/lα = p/d(s, r)α,
where p is the uniform power used by all senders. Similarly, the interference of
l′ is p/d(s′, r)α. Then, the relative interference of l′ on l is 1

β · p/d(s′,r)α

p/d(s,r)α . For
technical reasons, to define affectance we cap this relative interference of a single
link at 1:

affectance al′→l := min
(

1
β

· d(s′, r)−α

l−α
, 1

)

.

For convenience, let al→l = 0.

The key feature of affectance is that it is cumulative. The affectance of a set
S of links on a given link l is the sum of the individual affectances.

Definition 9 (Set Affectance). Define

aS→l =
∑

s∈S

as→l and al→S =
∑

s∈S

al→s.

Crucially, the question of whether a link l is feasible concurrently with set S of
links is equivalent to the condition that aS→l ≤ 1.

Definition 10 (Symmetric Affectance). Let a(x, y) = ax→y + ay→x be the
symmetric version of affectance, and define a(S, l) =

∑
s∈S a(s, l) as in Defini-

tion 9.

Besides avoiding being too greedy, we could also allow infeasible intermediate
solutions. Algorithm 2 from [29] combines these two approaches, using a stricter-
than-absolutely-necessary criteria to add a link, yet allowing the already added
links to accumulate more than affectance 1. A key feature is to bound not only
the total affectance on the incoming link from the previous links, but also its
total affectance on the previous links (by the same amount). Afterwards, we
eliminate those that exceed their affectance budget.

We show here that the algorithm achieves a constant-factor approximation
in the one-dimensional setting (when links are positioned on the line), utilizing
some arguments of Kesselheim [41]. We first define some concepts.

146 M. M. Halldórsson and R. Wattenhofer

Algorithm 2. Algorithm for Link Scheduling
1: R ← ∅
2: for i = 1 to n do
3: if a(R, li) < 1/2 then
4: R ← R ∪ {li}
5: return X := {l ∈ R : aR→l ≤ 1}

Definition 11 (Bi-feasible). A set S of links is bi-feasible if it is feasible
(aS→l ≤ 1 for each l ∈ S), and if al→S ≤ 2, for each l ∈ S.

Lemma 1. Each feasible set S contains a bi-feasible subset of at least half the
links.

Proof. We use that aS→l ≤ 1 for each l ∈ S. Hence,

|S| ≥
∑

l∈S

aS→l =
∑

l∈S

∑

l′∈S

al′→l =
∑

l∈S

al→S .

In other words, the average “out-affectance” al→S of each link l is also at most 1.
Since affectance is non-negative, less than half the links l ∈ S can have affectance
al→S more than twice the average.

Lemma 2. With uniform power, two feasible links on a line cannot overlap if
β ≥ 1.

Proof. Suppose there are links l = (s, r) and l′ = (s′, r′) that overlap. There are
two cases as to their configuration. In one case, sender s′ is located inside the
link l. But then, l′ generates too much interference on l, and so with β ≥ 1 we
have al→l′ = 1. In the other case, the order of the nodes on the line is s, r′, r, s′.
Then, either s is closer to r′ than s′ is, or s′ is closer to r than s is; either way,
at least one of the links is infeasible.

Lemma 3. Let m be a link and S be a bi-feasible set of links not smaller than
m, with m /∈ S. Then, a(S,m) ≤ 10.

Proof. Thanks to Lemma 2 we know that links in S do not overlap. Let l (r)
be the link in S whose receiver is closest to m’s receiver on the left (right),
respectively. Let Sl (Sr) be the links of S to the left of l (right of r), respectively.
Since l (r) is no smaller than m, and closer to each link in Sl (Sr), it receives more
affectance from links in Sl (Sr) than m, respectively. Thus, aSl→m ≤ aSl→l ≤ 1
and aSr→m ≤ aSr→r ≤ 1. Since the affectance of single links is bounded by 1
(Definition 8), we get

aS→m = al→m + ar→m + aSl→m + aSr→m ≤ 4.

Similarly, we can bound am→S ≤ 6. Let x (y) be the link in S whose sender
is closest to m’s sender on the left (right), respectively. Let Sx (Sy) be the links

Wireless Network Algorithmics 147

of S to the left of x (right of y), respectively. Since x (y) is closer to each link in
Sx (Sy), it creates more affectance on links in Sx (Sy) than m does, respectively.
Thus, am→Sx

≤ ax→Sx
≤ 1 and am→Sy

≤ ay→Sy
≤ 1. Since the affectance on a

single link is bounded by 1 and S being a bi-feasible set (Definition 11), we get

am→S = am→x + am→y + am→Sx
+ am→Sy

≤ 1 + 1 + 2 + 2 ≤ 6.

Theorem 1. Algorithm2 is a constant approximation algorithm for one-
dimensional one-shot uniform-power geometric-gain link scheduling problem,
independent of α.

Proof. Assume that all links are of different length, with symmetry broken arbi-
trarily. First, let us compare the sizes of the sets R and X found by Algorithm
2 on a given instance. The selection criterion in line 3 measures the affectance
between the new link and all links in set R so far. At the end of the loop, each
link r ∈ R has been symmetrically affected exactly once by every other link
r′ ∈ R, i.e.

∑

r∈R

a(R, r) =
∑

r∈R

∑

r′∈R

a(r′, r) <
1
2
|R|.

Thus, on average the value of a(R, r) is less than 1/2. At least half the items in
a non-negative set have a value within twice the average value. It follows that
at least half the links r ∈ R satisfy aR→r ≤ a(r,R) < 1; i.e. |X| ≥ |R|/2.

We now compare R with a maximum cardinality feasible set OPT . As we
observed in Lemma 1, there is a bi-feasible subset O of OPT of size at least
|OPT |/2. Split O into two parts: O1 = O ∩ R, and O2 = O \ R. Since O1 ⊆ R
we have |O1| ≤ |R|, but it remains to bound the size of O2.

On each pair of links r ∈ R and o ∈ O2, define the weight function

w(r, o) =

{
a(r, o) if o is longer than r

0 else

The weight function w only considers the symmetric affectance between shorter
links in r and longer links in O2.

Let us consider the point in time when Algorithm2 decided not to include
link o ∈ O2 to the set R in line 3; it did so because a(R, o) ≥ 1/2. Since R
contains then only links shorter than o, we have (i) w(R, o) = a(R, o) ≥ 1/2. On
the other hand, Lemma 3 implies that (ii) w(O2, r) ≤ 10, for every r ∈ R. With
(i) and (ii) we get

1
2
|O2| ≤

∑

o∈O2

w(R, o) =
∑

r∈R

∑

o∈O2

w(r, o) =
∑

r∈R

w(O2, r) ≤ 10|R|.

It follows that |O2| ≤ 20|R|. Since |O1| ≤ |R|, we get that |OPT | ≤ 2|O| =
2|O1 + O2| ≤ 42|R| ≤ 84|X|.

148 M. M. Halldórsson and R. Wattenhofer

Some observations are in order. Note that the approximation ratio is com-
pletely independent of α. This has not been observed before, but crucially needs
the one-dimensional setting.

We also note that the performance analysis does not vitally utilize the defi-
nition of affectance, we only need a weak sense of monotonicity: ax→z ≤ ay→z,
if x is further away from z than y is. Thus, signal strength can be an arbitrary
function of distance and the transmitter that is monotone in the distance.

Several heuristic variations are possible without affecting the performance
ratio. The affectance threshold “1/2” can be any positive constant less than
1. Also, the greedy set can be formed more gradually, e.g., by eliminating the
highest affectance links first.

Moreover, similar algorithms exist for different variants of the problem, mul-
tiple dimensions and also arbitrary power link scheduling can be solved similarly,
using slightly more geometry in the proofs. We will summarize the most impor-
tant results in Sect. 5.

The parameter β indicates how large the signal-to-interference-ratio must be
for a signal to be decodable. This is a function of the technology used, both
hardware (e.g. antenna design) and software (e.g. modulation, coding, error cor-
rection). One natural question is how much impact the value of β has on link
scheduling and wireless capacity. Increasing β clearly makes decoding more chal-
lenging, but could there be some kind of threshold at which point the problem
jumps from being very easy to very hard?

The answer is negative: Scaling β by a constant factor can only lengthen the
schedule by a constant factor.

Theorem 2. Let L be a set of links with affectance at most a, i.e., either aL→l ≤
a or a(L, l) ≤ a for l ∈ L. Then, for any b > 0, L can be partitioned into �2a/b�2
sets, each with affectance at most b.

Proof. Let ρ = �2a/b�. Process the links in L in an arbitrary order, assigning
each link l to some set Li, i ∈ {1, 2, . . . , ρ}, where l’s affectance from the previous
links in Li is at most b/2. Such a set must exist, since otherwise the affectance
on the link l is larger than ρ · b/2 ≥ a.

Now process each set Li in the opposite order, forming sets Li,j , j =
1, 2, . . . , ρ. The affectance on each link l is again at most b/2 from the earlier
links, with the same argument. Since we processed the links in opposite order,
the total affectance on link l is at most b in total.

A linear bound of �2a/b� was given in [6] using linear algebra. The implica-
tion to changing β applies when the noise term can be ignored. When noise is
dominant because throughput can mostly be achieved by weak links, Theorem2
still tells us that we can increase requirements for the spatial separations of links
in a solution by paying only a constant factor.

4 Power Control

One of the most versatile tools for increasing throughput in wireless networks
is the use of power control. Power control is a double-edged sword though:

Wireless Network Algorithmics 149

Increasing the transmission power may make decoding easier at the intended
receiver, but it also causes more interference for all other links.

Definition 12 (Power Assignment). There are three types of power assign-
ment:

– Uniform power does not depend on the length of the link.
– Oblivious power only depends on the length of the link. This includes linear

power lα and mean power lα/2, for links of length l.
– Arbitrary power can depend on all other links that are simultaneously trans-

mitting.

A tantalizing question is whether power control matters in a non-trivial way?
How much gain is possible by using power control, as opposed to being limited
to uniform power?

Theorem 3. Power control matters. Mean power can be arbitrarily more effi-
cient than uniform or linear power.

Proof. Consider the following prototypical example, known as the exponential
chain. Nodes are positioned on a line at locations 20, 21, . . . , 2n from left to
right. There are bi-directional links between all adjacent nodes; i.e., for each i =
1, . . . , n, there is a link (2i−1, 2i) and the opposite link (2i, 2i−1). With uniform
power, at most one node can transmit successfully to its left-hand neighbor: the
left-most link will overpower any other transmission. Namely, if senders 2i and
2j transmit concurrently, where i < j, then the signal from 2j at receiver 2j−1

is weaker than the signal from 2i since d(2i, 2j−1) < d(2j , 2j−1).
Another popular and useful power assignment strategy is linear power, where

links of length l transmit with power proportional to lα. This strategy has the
benefit of being frugal, in that the received power of each link is the same.
Perhaps surprisingly, linear power fails equally badly on the exponential chain.
Namely, at most one node can transmit successfully to its right-hand neighbor,
and the right-most link will overpower any other transmission.

On the other hand, mean power lα/2 for links of length l works well here. The
affectances from the other links form a geometric series, which converges to a con-
stant. For instance, using that the power used on link i is Pi = d(2i, 2i−1)α/2 =
2(i−1)α/2, the affectances on link i by longer links is

n∑

j=i+1

Pj/d(2j , 2i−1)α

Pi/d(2i, 2i−1)α
<=

n∑

j=i+1

2(i − 1)α/2
2(j−1)α/2

==
n−i∑

k=1

(
2−α/2

)k

<
1

1 − 2−α/2
.

We leave the case of affectances by shorter links as an exercise.
Thus, by Theorem 2, the set can be scheduled in constant number of slots.

Thus, we see here an example of linear -factor improvement in throughput, by
using the right power assignment.

150 M. M. Halldórsson and R. Wattenhofer

A natural question is whether oblivious power can be as powerful as arbitrary
power. This has been answered negatively: For every oblivious power assignment,
there is an instance with n links that is feasible under some power assignment,
but only one link can be scheduled with oblivious power [18]. There is qualitative
difference, though, in comparison to uniform power. In order to achieve these
constructions, the lengths of the links must increase doubly exponentially [27,33],
whereas our earlier construction of Theorem3 only involved a singly-exponential
chain. We compare the relative power of these power assignments in Table 1.

Table 1. Entry f(Δ) in row X and column Y represents that an optimal solution
using power assignment X is at most an f(Δ) factor worse than the optimal solution
using power assignment Y , where Δ is the link diversity, i.e., the ratio between longest
and shortest link.

Uniform Mean Arbitrary

Uniform — Θ(log Δ) [47] Θ(log Δ)

Mean O(1) [57] — Θ(log log Δ) [18,27]

4.1 A Measure of Interference Under Power Control

The advent of power control means that we cannot use affectance directly when
reasoning about links or instances, since it depends directly on the power assign-
ment. We introduce here a stand-in replacement that avoids any reference to
power, but still provides a measure of feasibility like affectance does in fixed-
power settings.

First, some additional notation. We assume a total order ≺ on the links such
that if l is shorter than l′, then l ≺ l′. To simplify notation we write dll′ = d(s, r′),
for links l = (s, r), l′ = (s′, r′). We generalize affectance to involve arbitrary
power assignment P, defining aP

l→l′ = min(1, P (l)/dα
ll′

P (l′)/(l′)α). We also combine it
with set notation as before, and define aP(l, l′) = aP

l→l′ + aP
l′→l. A set S of links

is bi-feasible under power assignment P if it is feasible and aP
l→S ≤ 2 for each

link l ∈ S.
Define the function W such that W (l, l′) = min

{
1, lα

min(dll′ ,dl′l)
α

}
if l ≺

l′, while W (l, l′) = 0, otherwise. For set X and link l, define W (X, l) =∑
l′∈X W (l′, l) and W (l,X) =

∑
l′∈X W (l, l′).

A key insight is that W lower bounds affectance under arbitrary power assign-
ment. The term lα/dα

ll′ corresponds to the affectance of the shorter link l on the
longer link l′ using linear power, while lα/dα

l′l matches the affectance of the longer
link l′ on l using uniform power. Both of these are minimal requirements for fea-
sibility, modulo constant factors. We need the following bound that follows from
the classic theorem of the geometric and arithmetic means.

Observation 4. For any positive γ, x, y, it holds that γx + 1
γ y ≥ 2

√
xy.

Wireless Network Algorithmics 151

Lemma 5. For any links l and l′ and power assignment P, W (l, l′)+W (l′, l) ≤
3α/2aP(l, l′).

Proof. Assume without loss of generality that l ≺ l′. Then, W (l′, l) = 0. Let
dmin = min(dll′ , dl′l) and dmax = max(dll′ , dl′l). By the triangle inequality,
dmax ≤ dmin + l + l′ ≤ 3 · max(l′, dmin). Since dll′dl′l = dmindmax,

l · l′

dl′ldll′
≥ l

dmin
· l′

3max(l′, dmin)
≥ 1

3
W (l, l′)1/α min(1,

l

dmin
) =

W (l, l′)2/α

3
.

Applying Observation 4 with γ = Pl′/Pl, x = (l/dl′l)
α and y = (l′/dll′)

α,

aP(l, l′) =
Pl′

Pl

(
l

dl′l

)α

+
Pl

Pl′

(
l′

dll′

)α

≥
√(

l

dl′l

l′

dll′

)α

≥
(

1
3

)α/2

W (l, l′).

Close links cannot coexist in the same (highly) feasible set.

Lemma 6. For links l, l′ in a 3α-feasible set, d(l, l′) ≥ 1
2 min(dll′ , dl′l).

Proof. Assume without loss of generality that l ≺ l′. Suppose the claim is false.
Let dmin = min(dl,l′ , dl′,l) and dmax = max(dl,l′ , dl′,l). By the triangle inequality
and the supposition,

dmin ≤ l + d(l, l′) < l +
1
2
dmin ≤ 2l. (1)

By the strong feasibility, 3−2α ≥ aP
l→l′ · aP

l′→l =
(

l·l′
dl·dl′

)α

. Thus,

dmax · dmin = dl,l′ · dl′,l ≥ 9ll′

Applying Inequality (1), we get that dmax > 9
2 l′. But, by the triangle inequality,

dmax ≤ d(l, l′) + l + l′ ≤ 3l + l′ ≤ 4l′, which is a contradiction.

The following lemma is the counterpart of Lemma 3 for power control.

Lemma 7. Let X be bi-feasible under some power assignment P and let l be a
link (not necessarily in X). Then, W (l,X) = O(1).

Proof. We may assume without loss of generality that l ≺ l′ for all links l′ ∈ T ,
since W (l, l′) = 0 otherwise. Apply Theorem 2 to partition T into (2·3α)2 = 4·9α

sets Ti, each of which is strongly feasible in the sense that aP
Ti→v ≤ 3−α, for each

i and each link lv ∈ Ti. We argue a bound for each Ti separately and add them
up to obtain a bound on X.

Let T = Ti be one of the strongly feasible subsets. Let d(la, lb) denote the
shortest distance between a node on link la and a node on link lb.

Let lx be the link in T containing a node that is closest to a node on l, i.e.
d(lx, l) = minl′∈T d(l′, l). Let l′ ∈ T \ {lx}. By the triangle inequality, d(lx, l′) ≤

152 M. M. Halldórsson and R. Wattenhofer

d(lx, l)+d(l, l′) ≤ 2d(l, l′). Using this and Lemma 6, min(dlxl′ , dl′lx) ≤ 4d(l, l′) ≤
4min(dll′ , dl′l). Thus,

W (l, l′) = min
(

1,
lα

min(dll′ , dl′l)α

)

≤ min
(

1,
min(lx, l′)α

4α min(dlxl′ , dl′lx)α

)

≤ 4α(W (lx, l′) + W (l′, lx)) ≤ 3α/24αaP(lx, l′), (2)

using the definition of W and Lemma 5. Summing over all l′ in T ′ we have,

W (l, T) = W (l, lx) + W (l, T \ {lx}) ≤ 1 + 4α · 3α/2aP(lx, T).

Finally, summing over the subsets Ti of X yields

W (l,X) ≤ 4 · 9α + 4α3α/2aP(lx,X) ≤ 4 · 9α + 4α · 3α/2+1,

using the bi-feasibility of X.

4.2 Power Control Algorithm

A constant-approximation algorithm for the one-shot link scheduling problem
with arbitrary-power of Kesselheim [40] is given as Algorithm 3. The first part is
equivalent to the first pass of Algorithm 2, but using the measure W instead of
uniform-power affectance. The second pass assigns the links power in decreasing
order of length, designed to assign each link just a little more power than is
needed to overcome the interference from the longer links. Note that if the noise
N is zero, the first (longest) link can be assigned arbitrary power.

Algorithm 3. One-Shot Link Scheduling with arbitrary power control
1: Given: A set L of links
2: Let S = ∅ and let τ = 1

2β(1+3α+1)

3: for lw ∈ L in order of increasing length do
4: if W (S, lw) ≤ τ then
5: S ← S ∪ {lw}
6: for lv ∈ S in order of decreasing length do
7: Pv ← 2βlαv (N +

∑
lw∈S,lv≺lw

Pw/dα
wv)

Theorem 4. Let τ be as in Algorithm3. If S is a set of links that satisfies, for
each link l ∈ S, W (S, l) ≤ τ , then S is feasible. Moreover, the set S computed
by Algorithm3 is feasible with the power assignment computed.

Proof. Let lv be a link in S. The total interference received by lv is I−
v + I+v ,

where I−
v =

∑
lw∈S,lw≺lv

Pw/dα
wv is the interference received by shorter links and

I+v = N +
∑

lw∈S,lv≺lw
Pw/dα

wv is the ambient noise plus interference received
by longer links. Note that I+v = Pv/(2βlαv), by the definition of Pv (in line 7).
So, the focus is on bounding I−

v , the interference from shorter links.

Wireless Network Algorithmics 153

We first expand I−
v using the assigned powers:

I−
v =

∑

lw∈S
lw≺lv

Pw

dα
wv

= 2β
∑

lw∈S
lw≺lv

⎛

⎜
⎜
⎝Nlαw

1
dα

wv

+
∑

lu∈S
lw≺lu

1
dα

wv

(

Pu
lαw

dα
uw

)
⎞

⎟
⎟
⎠ . (3)

The first term is bounded by 2βNτ , by the condition in line 4 of Algorithm3
that defines S. Let Xuv = {lw ∈ S : lw ≤ min(lv, lu)}, for any link lu ∈ S. By
rearranging indices, we continue from (3) with

I−
v ≤ 2βNτ + 2β

∑

lu∈S

∑

lw∈Xuv

Pulαw
dα

wvdα
uw

. (4)

Let lu be a link in S. Since W (lw, lv) ≤ W (X, lv) ≤ τ < 1, it holds that
lw/dwv < 1, so lw ≤ dwv and lαw/dα

wv ≤ W (lw, lv), for any link lw ∈ S. Similarly,
lw ≤ duw and lαw/dα

uw ≤ W (lw, lu).
We split the terms of the inner sum into two parts: M1 = {lw ∈ Xuv|duv ≤

3duw} and M2 = Xuv \ M1. For each lw ∈ M1, using the definition of M1 and
the assumed bound on W ,

∑

lw∈M1

lαw
dα

wvdα
uw

≤ 3α

dα
uv

∑

lw∈M1

lαw
dα

wv

≤ 3α

dα
uv

W (M1, lv) ≤ 3α

dα
uv

τ. (5)

For each lw ∈ M2, we have by the triangle inequality that duv ≤ duw + lw +
dwv ≤ duw +2dwv. By the definition of M2, duv > 3duw, so duv ≤ 1

3duv +2dwv ≤
3dwv. Hence, using the assumed bound on W ,

∑

lw∈M2

lαw
dα

wvdα
uw

≤ 3α

dα
uv

∑

lw∈M2

lαw
dα

uw

≤ 3α

dα
uv

W (M2, lu) ≤ 3α

dα
uv

τ. (6)

Applying Inequalities (5) and (6), along with the definition of Pv,

∑

lu∈S,
lv≺lu

∑

lw∈Xuv

Pulαw
dα

wvdα
uw

≤ 2 · 3ατ
∑

lu∈S,
lv≺lu

Pu

dα
uv

≤ 2 · 3ατ
Pv

2βlαv
, (7)

and, using also the definition of I−
v ,

∑

lu∈S,
lu≺lv

∑

lw∈Xuv

Pulαw
dα

wvdα
uw

≤ 2 · 3ατ
∑

lu∈S,
lu≺lv

Pu

dα
uv

= 4β · 3α · τ · I−
v . (8)

Plugging (7) and (8) into Eq. (3) gives,

I−
v ≤ 2βNτ + 3ατ · Pv/lαv + 4β3ατ · I−

v .

Solving for I−
v , cancelling τ and using the bound 2βN ≤ Pv/lαv ,

I−
v ≤ 2βN + 3α · Pv/lαv

1/τ − 4β3α
≤ (1 + 3α)Pv/lαv

1/τ − 4β3α
=

1
2β

· Pv

lαv
, (9)

154 M. M. Halldórsson and R. Wattenhofer

after plugging in the value of τ . Thus, the total interference on lv is bounded by
I−
v + I−

v ≤ 1
β Pv/lαv , implying the required SINR for lv, as desired.

Observe that the constant-approximation bound now follows from exactly
the same arguments as in Theorem 1, just using W and Lemma 7 instead of a
and Lemma 3.

Theorem 5. Algorithm3 is a constant approximation algorithm for one-shot
arbitrary-power geometric-gain link scheduling problem.

5 Bibliography

Gupta and Kumar [25] proposed the geometric version of the SINR model,
where signal decays as a fixed polynomial of distance; it has since been the
default model in analytic and simulations studies. They also initiated average-
case analysis of network capacity, giving rise to a large body on “scaling law”
results. Moscibroda and Wattenhofer [47] initiated the first algorithmic (worst-
case) analysis in the SINR model.

The first algorithmic result on link scheduling for arbitrary link sets was by
Moscibroda et al. [49]. This result was soon superseded by the first approxi-
mation results [8,22]. These early approaches involved (directly or indirectly)
partitioning links into length groups, which results in performance guarantees
that are at least logarithmic in Δ, the link diversity [9,16,22,27]. NP-hardness
was established in [22]. Constant approximation for the One-shot Link Schedul-
ing problem were given for uniform power [21], linear power [19,58], fixed power
assignments [29], and arbitrary power control [40]. This was extended to dis-
tributed learning [4,16], admission control in cognitive radio [30], link rates [41],
multiple channels [7,59], spectrum auctions [35,36], changing spectrum avail-
ability [13], jamming [14], and MIMO [61]. Numerous works on heuristics are
known, as well as exponential time exact algorithms, e.g., [54].

Our treatment for uniform power is based on the algorithm of [29] and sim-
plified arguments of [41]. Theorem 2 on signal-strengthening is due to [34]; an
improved bound using linear algebra is given in [6]. Algorithm 3 for power con-
trol is due to [40,41]; the proof given here holds for general metric space, but is
significantly shorter than the one in [41].

A related problem is the scheduling problem where we want to partition the
given set of links into fewest possible feasible sets. Early work on this problem
includes [8,12,17]. Constant approximations for one-shot link scheduling imme-
diately imply a O(log n)-approximation for scheduling, where n is the number
of links. Another approach is to solve links of similar lengths in groups, which
results in a O(log Δ)-approximation [20,22,27]. NP-completeness results have
been given for different variants [22,38,44], but as of yet no APX-hardness
or stronger lower bounds are known. The weighted version of One-shot Link
Scheduling – where the links have positive weights and the objective is to find a
maximum weighted feasible set – behaves similar computationally as scheduling.
Recently, a O(log∗ Δ)-approximation algorithm was given for arbitrary-power

Wireless Network Algorithmics 155

scheduling and weighted One-shot Link Scheduling [32], by transforming the
physical model into a conflict graph.

A problem of fundamental importance to sensor networks is connectivity : how
efficiently can the nodes be connected into a strongly connected structure. This
is an issue that affects the network as well as the link layer of the networking
stack, as one must select the links in a spanning tree, choosing their power and
scheduling them. The first analytic result in the SINR model showed that with
the right power control, any set of nodes can be connected into a tree that can
be scheduled in polylogarithmic, O(log4 n), number of slots [47]. This was soon
improved to O(log2 n) [46,50] and later to O(log n) [31].

Other more complex problems studied include non-preemptive scheduling
[20], joint power control, scheduling and routing [8], fixed-power multiflow [9],
multi-path flow with general demand vectors [60], stochastic packet schedul-
ing [42,56], and joint power control, routing and throughput scheduling in mul-
tiple channels [2], to name a few. Many of these rely on (weighted) One-shot
Link Scheduling as a building block.

Beyond the computational aspects covered in this survey, there are chal-
lenging issues that arise when trying to achieve communication in a distributed
setting. There is also some deep work on geometric characterizations of the
regions in which specific transmissions can be decoded under the physical model,
e.g., [37].

6 Beyond the Physical Model

6.1 Realistic Signal Propagation

The assumption of geometric gain is mathematically pleasing, but it can be
quite far from reality, even in relatively simple environments [24,45,53,55]. On
the other hand, the additivity of interference and the near-threshold nature of
signal reception has been borne out in experiments [10,45,48,55,62].

Several proposals have been suggested for extending the standard physical
model to capture the non-geometric aspects of signal propagation. The basic
model allows the pathloss constant α to vary [25], giving a first-order approxi-
mation of the signal gain. Another more general approach is to view the variation
as conforming the plane into a general metric space [18,29]. Much recent analytic
work holds in arbitrary metric spaces [29,41], while some requires them to have
a certain “bounded independence” property [32].

One practical alternative is to use facts-on-the-ground in the form of signal
strength measurements, instead of the prescriptive distance-based formula [7,24].
This might suggest the general physical model (Definition 4), but that runs into
the computational intractability monster, since such a formulation can encode
highly-inapproximable problems like maximum independent set in graphs [21].
Instead, one can characterize the performance guarantee in terms of natural
parameters of the gain matrix, such as its nearness to a metric [24]. Another
such parameter is the weighted “inductive independence” [35], which has shown
to be of wide general utility [28].

156 M. M. Halldórsson and R. Wattenhofer

In the world of stochastic analysis, the default assumption is to model the
variations in signal propagation by a probabilistic distribution [26]. Significant
experimental literature exists that lends support for stochastic models [51], espe-
cially log-normal distributions [62]. There is a need to better understand the
impact of such stochastic assumptions on effective algorithms.

The temporal aspect of signal variability is another dimension. The dual graph
model [43] extends the radio network model to a pair of graphs, one of which
contains the links that are unreliable, that may or may not transmit a message
by adversarial control. Stochastic models usually assume independence across
time. In such a setting Dams et al. [15] showed that temporal variations that
follow as Rayleigh distribution do not significantly affect the performance of link
scheduling algorithms, incurring only a O(log∗ n)-factor increase in performance.

6.2 Advances in Technology

In wireless communication, multiple-input and multiple-output (MIMO) is a
method for expanding the capacity of a radio link using multiple transmission
and receiving antennas [39]. MIMO is well established in practice, with several
wireless standards supporting it. MIMO has also received a lot of attention from
lower layer signal processing research and information theorists. Network wide
MIMO applications are known as multi-user MIMO (MU-MIMO) or cooperative
MIMO (CO-MIMO). These are still in research, and there are not many studies
with an algorithmic flavor, but there are exceptions, e.g. [5].

Closely related to MIMO is beamforming using antenna arrays. Beamforming
is a signal processing technique at either the transmission or the reception side. The
idea is to carefully choose the phase of the signal of the various antenna in order
to produce either constructive or destructive interference at different locations.
Again this is an active research area in information theory, less so in algorithms.

Network coding [1] on the other hand only works in the presence of a network.
While we assumed that concurrent wireless transmissions interfere, one may hope
to make use of the additive nature of concurrent wireless signals. Consider three
nodes u, v, w, with v sitting in the middle of u and w, and nodes u and w
want to exchange a message. In the first time slot, let u and w transmit their
own message concurrently. Node v may understand neither u’s nor w’s message
because of interference, but v could just retransmit the received additive signal
in the second time slot. Now both u and w receive the additive signal, and
since they know their own original message, they can simply subtract their own
message from the additive message, and consequentially get the missing message.
All this requires just two time slots. Network coding has been analyzed from an
algorithmic perspective, e.g. [23], but it is rarely used in the wild.

7 Open Questions

The last section discussed new directions that all need to be addressed better
algorithmically. We list here some of the most significant open questions regard-
ing the physical model:

Wireless Network Algorithmics 157

1. Is there a constant-approximate algorithm for scheduling problem with uni-
form power? Only logarithmic factors are known, even in one dimension.

2. Are there small constant approximations of one-shot link scheduling, e.g. a 2-
approximation? Can the possibility of an approximation scheme be disproved?

3. How much can the capacity of practical wireless networks be improved with
good scheduling algorithms? How much of the gain is due to power control,
and how much can be achieved already with uniform power?

4. What kind of infrastructure and/or assumptions are sufficient/necessary to
achieve efficient distributed algorithms for link scheduling?

5. How can one capture the unreliability or time-variability seen in most actual
wireless networks, to make such realistic but non-deterministic models algo-
rithmically tractable?

Acknowledgement. We thank Tigran Tonoyan for helpful comments.

References

1. Ahlswede, R., Cai, N., Li, S.Y., Yeung, R.W.: Network information flow. IEEE
Trans. Inf. Theory 46(4), 1204–1216 (2006)

2. Al-Ayyoub, M., Gupta, H.: Joint routing, channel assignment, and throughput
scheduling for throughput maximization in general interference models. IEEE
Trans. Mob. Comput. 9(4), 553–565 (2010)

3. Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A lower bound for radio broadcast. J.
Comput. Syst. Sci. 43(2), 290–298 (1991)

4. Ásgeirsson, E., Mitra, P.: On a game theoretic approach to capacity maximization
in wireless networks. In: INFOCOM (2011)

5. Ásgeirsson, E.I., Halldórsson, M.M., Mitra, P.: Maximum MIMO flow in wireless
networks under the SINR model. In: WiOpt, pp. 295–302 (2014)

6. Bang-Jensen, J., Halldórsson, M.M.: Vertex coloring edge-weighted digraphs. Inf.
Process. Lett. 115(10), 791–796 (2015)

7. Bodlaender, M.H.L., Halldórsson, M.M.: Beyond geometry: towards fully realistic
wireless models. In Proceedings of 33rd ACM Symposium on Principles of Dis-
tributed Computing, PODC 2014, Paris, pp.347–356 (2014)

8. Chafekar, D., Kumar, V.S., Marathe, M., Parthasarathy, S., Srinivasan, A.: Cross-
layer latency minimization for wireless networks using SINR constraints. In: Pro-
ceedings of 8th International Symposium on Mobile Ad Hoc Networking and Com-
puting, MobiHoc, Montreal, pp. 110–119. ACM (2007)

9. Chafekar, D., Kumar, V.S.A., Marathe, M.V., Parthasarathy, S., Srinivasan, A.:
Approximation algorithms for computing capacity of wireless networks with SINR
constraints. In: INFOCOM, pp. 1166–1174 (2008)

10. Chen, Y., Terzis, A.: On the mechanisms and effects of calibrating RSSI measure-
ments for 802.15.4 radios. In: Silva, J.S., Krishnamachari, B., Boavida, F. (eds.)
EWSN 2010. LNCS, vol. 5970, pp. 256–271. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11917-0 17

11. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discret. Math. 86(1–
3), 165–177 (1990)

12. Cruz, R.L., Santhanam, A.: Optimal routing, link scheduling, and power control
in multi-hop wireless networks. In: INFOCOM (2003)

https://doi.org/10.1007/978-3-642-11917-0_17
https://doi.org/10.1007/978-3-642-11917-0_17

158 M. M. Halldórsson and R. Wattenhofer

13. Dams, J., Hoefer, M., Kesselheim, T.: Sleeping experts in wireless networks. In:
Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 344–357. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-41527-2 24

14. Dams, J., Hoefer, M., Kesselheim, T.: Jamming-resistant learning in wireless net-
works. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP
2014. LNCS, vol. 8573, pp. 447–458. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-43951-7 38

15. Dams, J., Hoefer, M., Kesselheim, T.: Scheduling in wireless networks with
Rayleigh-fading interference. IEEE Trans. Mob. Comput. 14(7), 1503–1514 (2015)

16. Dinitz, M.: Distributed algorithms for approximating wireless network capacity.
In Proceedings of 29th International Conference on Computer Communications,
INFOCOM, San Diego, CA, pp. 1–9. IEEE (2010)

17. ElBatt, T., Ephremides, A.: Joint scheduling and power control for wireless ad-hoc
networks. In: INFOCOM (2002)

18. Fanghänel, A., Kesselheim, T., Räcke, H., Vöcking, B.: Oblivious interference
scheduling. In: Proceedings of 28th Symposium on Principles of Distributed Com-
puting, PODC, Calgary, pp. 220–229. ACM (2009)

19. Fanghänel, A., Keßelheim, T., Vöcking, B.: Improved algorithms for latency min-
imization in wireless networks. In: Albers, S., Marchetti-Spaccamela, A., Matias,
Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 447–458.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02930-1 37

20. Fu, L., Liew, S.C., Huang, J.: Power controlled scheduling with consecutive trans-
mission constraints: complexity analysis and algorithm design. In: INFOCOM, pp.
1530–1538 (2009)

21. Goussevskaia, O., Halldórsson, M.M., Wattenhofer, R.: Algorithms for wireless
capacity. IEEE/ACM Trans. Netw. (TON) 22(3), 745–755 (2014)

22. Goussevskaia, O., Oswald, Y.A., Wattenhofer, R.: Complexity in geometric SINR.
In: Proceedings of 8th International Symposium on Mobile Ad Hoc Networking
and Computing, MobiHoc, Montreal, pp. 100–109. ACM (2007)

23. Goussevskaia, O., Wattenhofer, R.: Complexity of scheduling with analog network
coding. In: Proceedings of 1st International Workshop on Foundations of Wireless
Ad Hoc and Sensor Networking and Computing, FOWANC, Hong Kong, pp. 77–84.
ACM (2008)

24. Gudmundsdottir, H., Ásgeirsson, E.I., Bodlaender, M., Foley, J.T., Halldórsson,
M.M., Vigfusson, Y.: Measurement based interference models for wireless schedul-
ing algorithms. In: MSWiM (2014). arXiv:1401.1723

25. Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Trans. Inf. The-
ory 46(2), 388–404 (2000)

26. Haenggi, M., Andrews, J.G., Baccelli, F., Dousse, O., Franceschetti, M.: Stochastic
geometry and random graphs for the analysis and design of wireless networks. IEEE
J. Sel. Areas Commun. 27(7), 1029–1046 (2009)

27. Halldórsson, M.M.: Wireless scheduling with power control. ACM Trans. Algo-
rithms 9(1), 7:1–7:20 (2012)

28. Halldórsson, M.M., Holzer, S., Mitra, P., Wattenhofer, R.: The power of non-
uniform wireless power. In: Proceedings of 24th Symposium on Discrete Algo-
rithms, SODA, New Orleans, LA, pp. 1595–1606. ACM-SIAM (2013)

29. Halldórsson, M.M., Mitra, P.: Wireless capacity with oblivious power in general
metrics. In: Proceedings of 22nd Symposium on Discrete Algorithms, SODA, San
Francisco, CA, pp. 1538–1548. ACM-SIAM (2011)

30. Halldórsson, M.M., Mitra, P.: Wireless capacity and admission control in cognitive
radio. In: INFOCOM, pp. 855–863. IEEE (2012)

https://doi.org/10.1007/978-3-642-41527-2_24
https://doi.org/10.1007/978-3-662-43951-7_38
https://doi.org/10.1007/978-3-662-43951-7_38
https://doi.org/10.1007/978-3-642-02930-1_37
http://arxiv.org/abs/1401.1723

Wireless Network Algorithmics 159

31. Halldórsson, M.M., Mitra, P.: Wireless connectivity and capacity. In: Proceedings
of 23rd Symposium on Discrete Algorithms, SODA, Kyoto, pp. 516–526. ACM-
SIAM (2012)

32. Halldórsson, M.M., Tonoyan, T.: How well can graphs represent wireless interfer-
ence? In: Proceedings of 47th Annual ACM Symposium on Theory of Computing,
STOC, pp. 635–644 (2015)

33. Halldórsson, M.M., Tonoyan, T.: The price of local power control in wireless
scheduling. In: 35th IARCS Annual Conference on Foundations of Software Tech-
nology and Theoretical Computer Science, FSTTCS. Leibniz International Pro-
ceedings in Informatics (LIPIcs), vol. 45, pp. 529–542 (2015)

34. Halldórsson, M.M., Wattenhofer, R.: Wireless communication is in APX. In:
Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009. LNCS, vol. 5555, pp. 525–536. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02927-1 44

35. Hoefer, M., Kesselheim, T.: Secondary spectrum auctions for symmetric and sub-
modular bidders. ACM Trans. Econ. Comput. 3(2), 9 (2015)

36. Hoefer, M., Kesselheim, T., Vöcking, B.: Approximation algorithms for secondary
spectrum auctions. In: Proceedings of 23rd Symposium on Parallelism in Algo-
rithms and Architectures, SPAA, San Jose, CA, pp. 177–186. ACM-SIAM (2011)

37. Kantor, E., Lotker, Z., Parter, M., Peleg, D.: The topology of wireless communi-
cation. In: Proceedings of 43rd Symposium on Theory of Computing, STOC, San
Jose, CA, pp. 383–392. ACM (2011)

38. Katz, B., Volker, M., Wagner, D.: Energy efficient scheduling with power control
for wireless networks. In: WiOpt, pp. 160–169. IEEE (2010)

39. Kaye, A., George, D.: Transmission of multiplexed pam signals over multiple chan-
nel and diversity systems. IEEE Trans. Commun. Technol. 18(5), 520–526 (1970)

40. Kesselheim, T.: A constant-factor approximation for wireless capacity maximiza-
tion with power control in the SINR model. In: Proceedings of 22nd Symposium
on Discrete Algorithms, SODA, San Francisco, CA, pp. 1549–1559. ACM-SIAM
(2011)

41. Kesselheim, T.: Approximation algorithms for wireless link scheduling with flexible
data rates. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp.
659–670. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33090-
2 57

42. Kesselheim, T.: Dynamic packet scheduling in wireless networks. In: Proceedings
of 31st Symposium on Principles of Distributed Computing, PODC 2012, Funchal,
pp. 281–290. ACM (2012)

43. Kuhn, F., Lynch, N., Newport, C., Oshman, R., Richa, A.: Broadcasting in unre-
liable radio networks. In: PODC, pp. 336–345 (2010)

44. Lin, H., Schalekamp, F.: On the complexity of the minimum latency scheduling
problem on the Euclidean plane. arXiv preprint arXiv:1203.2725 (2012)

45. Maheshwari, R., Jain, S., Das, S.R.: A measurement study of interference modeling
and scheduling in low-power wireless networks. In: SenSys, pp. 141–154. ACM
(2008)

46. Moscibroda, T.: The worst-case capacity of wireless sensor networks. In: Proceed-
ings of 6th International Symposium on Information Processing in Sensor Net-
works, IPSN, Cambridge, MA, pp. 1–10. ACM (2007)

47. Moscibroda, T., Wattenhofer, R.: The complexity of connectivity in wireless net-
works. In: Proceedings of 25th International Conference on Computer Communi-
cations, INFOCOM 2006, Barcelona, pp. 1–13. IEEE (2006)

https://doi.org/10.1007/978-3-642-02927-1_44
https://doi.org/10.1007/978-3-642-33090-2_57
https://doi.org/10.1007/978-3-642-33090-2_57
http://arxiv.org/abs/1203.2725

160 M. M. Halldórsson and R. Wattenhofer

48. Moscibroda, T., Wattenhofer, R., Weber, Y.: Protocol design beyond graph-based
models. In: Proceedings of 5th Workshop on Hot Topics in Networks, HotNets
2006, Irvine, CA, pp. 25–30. ACM (2006)

49. Moscibroda, T., Wattenhofer, R., Zollinger, A.: Topology control meets SINR: the
scheduling complexity of arbitrary topologies. In: 7th ACM International Sympo-
sium on Mobile Ad Hoc Networking and Computing (MOBIHOC), Florence, Italy,
May 2006

50. Moscibroda, T., Wattenhofer, R., Zollinger, A.: Topology control meets SINR: the
scheduling complexity of arbitrary topologies. In: Proceedings of 7th International
Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc, Florence,
pp. 310–321. ACM (2006)

51. Nikookar, H., Hashemi, H.: Statistical modeling of signal amplitude fading of indoor
radio propagation channels. In: Proceedings of 2nd IEEE International Conference
on Universal Personal Communications, vol. 1, pp. 84–88. IEEE (1993)

52. Schmid, S., Wattenhofer, R.: Algorithmic models for sensor networks. In:
14th International Workshop on Parallel and Distributed Real-Time Systems
(WPDRTS), Island of Rhodes, Greece, April 2006

53. Sevani, V., Raman, B.: SIR based interference modeling for wireless mesh networks:
a detailed measurement study. In: COMSNETS. IEEE (2012)

54. Shi, Y., Hou, Y.T., Kompella, S., Sherali, H.D.: Maximizing capacity in multihop
cognitive radio networks under the SINR model. IEEE Trans. Mob. Comput. 10(7),
954–967 (2011)

55. Son, D., Krishnamachari, B., Heidemann, J.: Experimental study of concurrent
transmission in wireless sensor networks. In: SenSys, pp. 237–250. ACM (2006)

56. Tassiulas, L., Ephremides, A.: Stability properties of constrained queueing systems
and scheduling policies for maximum throughput in multihop radio networks. IEEE
Trans. Autom. Control 37(12), 1936–1948 (1992)

57. Tonoyan, T.: On the capacity of oblivious powers. In: Erlebach, T., Nikoletseas, S.,
Orponen, P. (eds.) ALGOSENSORS 2011. LNCS, vol. 7111, pp. 225–237. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28209-6 18

58. Tonoyan, T.: On some bounds on the optimum schedule length in the SINR
model. In: Bar-Noy, A., Halldórsson, M.M. (eds.) ALGOSENSORS 2012. LNCS,
vol. 7718, pp. 120–131. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-36092-3 14

59. Wan, P.-J.: Joint selection and transmission scheduling of point-to-point commu-
nication requests in multi-channel wireless networks. In: MobiHoc, pp. 231–240
(2016)

60. Wan, P.-J., Frieder, O., Jia, X., Yao, F., Xu, X., Tang, S.: Wireless link scheduling
under physical interference model. In: INFOCOM, pp. 838–845. IEEE (2011)

61. Wan, P.-J., Xu, B., Frieder, O., Ji, S., Wang, B., Xu, X.: Capacity maximization in
wireless MIMO networks with receiver-side interference suppression. In: MobiHoc,
pp. 145–154 (2014)

62. Zamalloa, M.Z., Krishnamachari, B.: An analysis of unreliability and asymmetry
in low-power wireless links. ACM Trans. Sens. Netw. (TOSN) 3(2), 7 (2007)

https://doi.org/10.1007/978-3-642-28209-6_18
https://doi.org/10.1007/978-3-642-36092-3_14
https://doi.org/10.1007/978-3-642-36092-3_14

Green Computing Algorithmics

Kirk Pruhs(B)

University of Pittsburgh, Pittsburgh, PA 15260, USA
kirk@cs.pitt.edu

https://people.cs.pitt.edu/~kirk/

Abstract. We discuss what green computing algorithmics is, and what a
theory of energy as a computational resource isn’t. We then present some
open problems in this area, with enough background from the literature
to put the open problems in context. This background should also be
a reasonably representative sample of the green computing algorithmics
literature.

1 Introduction

Time arguably ascended over space as the dominant computational resource
circa 1970, when semiconductor memory replaced magnetic core memory, and
energy arguably ascended over time as the dominant computational resource
circa 2000, when information technologies could no longer handle the exponen-
tiality of Moore’s law. Three examples illustrating the ascendancy of energy in
the areas of computer chip design, data center management, and high perfor-
mance computing are:

– In May 2004, Reuters reported that: Intel Hits Thermal Wall: “Intel Corp.
said on Friday it has scrapped the development of two new computer chips
(code-named Tejas and Jayhawk) for desktop/server systems in order to rush
to the marketplace a more efficient chip technology more than a year ahead
of schedule. Analysts said the move showed how eager the world’s largest
chip maker was to cut back on the heat its chips generate. Intel’s method of
cranking up chip speed was beginning to require expensive and noisy cooling
systems for computers.”

– In September 2002, the New York Times quoted then Google CEO Eric
Schmidt as saying, “What matters most to the computer designers at Google
is not speed, but power, low power, because data centers can consume as
much electricity as a city.”

– In 2010 the Advanced Scientific Computing Advisory Committee in their
report The Opportunities and Challenges of Exascale Computing stated that
one of the three main challenges is reducing power requirements. In particular,
it said, “Based on current technology, scaling today’s systems to an exaflop
level would consume more than a gigawatt of power, roughly the output of
Hoover Dam. Reducing the power requirement by a factor of at least 100 is
a challenge for future hardware and software technologies.”

c© Springer Nature Switzerland AG 2019

B. Steffen and G. Woeginger (Eds.): Computing and Software Science, LNCS 10000, pp. 161–183, 2019.

https://doi.org/10.1007/978-3-319-91908-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91908-9_10&domain=pdf
https://doi.org/10.1007/978-3-319-91908-9_10

162 K. Pruhs

Thus we are about a decade into a green computing revolution in which a
wide array of information technologies are being redesigned with energy as a first
class design constraint [54]. Inevitably these new technologies have spawned new
theoretical/algorithmic problems. The most obvious type of algorithmic prob-
lem arising from this green computing revolution involves directly managing
power, energy or temperature as a computational resource. Additionally, these
new, more green, technologies also often have different non-energy-related phys-
ical properties than previous technologies. For example, in many new memory
technologies, writes are significantly more time consuming than reads. Thus the
management of these new informational technologies, that will likely be adopted
for reasons related to energy efficiency, often give rise to new algorithmic prob-
lems that do not directly involve managing energy. Green computing algorithmics
is just the study of the algorithmic problems spawned by the green computing
revolution.

When I (as one of the very few researchers working extensively on green
computing algorithms) was asked to write this paper, I had first had to decide
who my intended audience to be. I decided that my primary intended audience
are researchers, particularly young researchers, who are potentially interested in
initiating a research program in green computing algorithms. Another plausible
audience for this paper are researchers who want to know what has happened in
green computing algorithmics, and where the field is going.

Firstly we should discuss what research in green computing algorithms is
like. Some of the problems spawned by the green computing revolution are
algorithmically interesting, and many/most are not. For our purposes, let us
say that a problem is algorithmically interesting if it is a problem for which a
trained/expert algorithms researcher can obtain interesting results/insights that
a generic application researcher likely wouldn’t be able to attain. However, before
algorithmic researchers can contribute, they have to become aware of these algo-
rithmically interesting problems. From my experience, the bottleneck for algo-
rithmic research community making a contribution to green computing is not a
lack of researchers with the skills to make headway on algorithmically interesting
problems, but a lack of researchers who make the effort to mine/identify algorith-
mically interesting management issues in new greener information technologies,
formalize these problems, and then expose these problems to the algorithmic
research community. And with all due respect to the experimental computer
systems research communities, few researchers in those communities are able to
identify algorithmically interesting problems, or are able to formalize the prob-
lems so that algorithmic research will provide maximum insight. There is a bit
of an art to constructing a formal model/problem that accurately captures the
complicated interactions and goals in the real computing technology, but that
is still amenable to mathematical analysis that yields useful insight. Often the
most obvious ways to formally model technological problems lead to uninterest-
ing formal problems, for example because one gets a trivial impossibility result.

Thus much of green computing algorithmics research involves problem min-
ing and problem formulation, not solving well-known formal problems. But as

Green Computing Algorithmics 163

effective problem mining and formulation is usually difficult for researchers who
are new to an application area, particularly if they are also junior researchers,
I’ve decided structure this survey around a collection of formal algorithmic prob-
lems related to green computing algorithmics that I find interesting, instead of
trying to do some sort of comprehensive survey, like the previous two surveys
on green computing algorithmics [2,39]. The hope is these problems might pro-
vide a starting point for a researcher looking to initiate a research program on
green computing algorithmics. This survey is certainly biased towards my own
research. But still I think that these open problems, and the associated back-
ground that I give, should form a representative sample of the research in green
computing algorithmics.

The outline for the rest of the survey is:

– Section 2 discusses why a theory of energy as a computational resource will
look different than the established theory of time or space as computational
resources.

– Section 3 discusses common modeling assumptions.
– Section 4 discusses online convex optimization problems that naturally arise

from different data centers trying to handle a time-varying workload in the
most energy efficient manner.

– Section 5 discusses energy efficient circuit routing in a network.
– Section 6 discusses near-threshold computing, and designing combinatorial

circuits that optimally tradeoff energy efficiency and reliability.
– Section 7 discusses online scheduling on heterogeneous processors.
– Section 8 discusses the complexity of finding schedules that optimally tradeoff

energy and performance.
– Section 9 provides a brief conclusion that compares the current state of the

theory energy as a computational resource to the theories of time and space
as computational resources.

2 The Theory of Energy as Computational Resource

At the start of this green computing revolution, there were several National
Science Foundation sponsored visioning workshops, many of which I attended,
and one of which, on the The Science of Power Management, I organized. A
ubiquitous first demand of all manner of computing researchers at all of these
visioning workshops was:

“We need a big Oh theory for energy!”

The universal demand for a such theory is a testament to the tremendous success
of the current theory time (and space) as a computational resource within the
broad computing community. Of course what they are talking about is only tan-
gentially related to big Oh. They are referring to being able to label algorithms,
and problems, with time and space complexities. So the algorithm MergeSort

164 K. Pruhs

takes time O(n log n) and the problem of deciding whether two regular expres-
sions requires exponential space. This is possible because of the time hierarchy
and space hierarchy theorems, which are the bedrock of the theory of time and
space as computational resources.

But the laws of physics make it difficult to assign algorithms, and thus prob-
lems, energy complexities. There are two natural possible approaches. The first
approach is to assume that all standard computer operations use unit energy,
analogous to the standard assumption that all operations take unit time. At
first glance this assumption for energy seems not significantly more unreason-
able than the assumption for time. But a consequence this assumption is that
the energy used by an algorithm is equal to the time used by that algorithm.
This is unsatisfying theoretically as it produces no new mathematical/theoretical
questions, and is unsatisfying practically as the green computing revolution is
being caused by the fact that optimizing for energy instead of time has lead to
practitioners developing significantly different technologies/solutions.

The second natural approach would be to assume that different operations
require different amounts of energy, where the amount of energy required by an
operation would be the minimum energy allowed by the laws of physics. The
most natural candidate for a physical law to lower bound the energy for com-
putation is Landauer’s principle, which is intuitively related to the second law
of thermodynamics. Landauer’s principle states that the amount of energy that
must be expended each time a bit of information is lost is linear in the temper-
ature. Thus irreversible operations, where information is lost, like overwriting
a bit, or taking the AND of two bits, require energy. But Landauer’s principle
does not give a lower bound on energy for reversible operations, like swapping
the contents of two memory locations. Thus Landauer’s principle can give a
lower bound on energy for a combinatorial circuit, or a particular implementa-
tion of an algorithm. But unfortunately for this approach, all computation can
be made reversible. In the context of combinatorial circuits, there are reversible
logically-complete gates, such as the controlled swap or Fredkin gate. In the con-
text of Turing machine, all computation can be made reversible at a cost of a
linear slowdown in time. Thus every algorithm can be implemented using only
reversible operations. Thus its at best a bit tricky giving an algorithm an energy
complexity as it depends on the implementation. And there is no way to give
an energy complexity to a problem as every computable problem can be solved
with arbitrarily little energy.

I know from experience that many researchers are reticent to accept that a
theory of energy as a computational resource will not be based on complexity
classes like ENERGY(n2), that are analogous to the TIME(n2) and SPACE(n2)
complexity classes that are the foundation of the current theory of time/space
as a computational resource. But the lack of energy complexity classes seems to
be dictated by physics, and their absence from the current theory of energy as
a computational resource isn’t an oversight.

But there should be ways in which a theory of energy as a computational
resource will be similar to the established theory of time/space as computational

Green Computing Algorithmics 165

resource. It should be based on simple models that balance the competing needs
of accurately reflecting reality, and being mathematically tractable. It should
serve engineers and computing researchers, when confronted with problems in
which power/energy/temperature is the key scarce, as the current theory of
time as a computational resources serves them when confronted with problems
where time is the scarce resource. That is, it should give them appropriate simple
models for commonly arising situations that will allow then to think heuristically
about the preeminent issues.

For example, a common mechanism for achieving energy efficiency is building
a system with heterogeneous devices, each with different energy and performance
characteristics. For a given area and power budget, heterogeneous designs often
give significantly better performance, for a given energy/hardware budget, for
standard workloads than homogeneous designs [24,42,52,53]. One common sce-
nario is that there might be some devices that are slow but energy efficient,
and other devices that are fast but energy inefficient. The resulting management
problem is how to choose the appropriate collection of devices for a workload to
properly balance energy efficiency and performance. So a theory of energy as a
computational resource should include appropriate models for such situations,
and general algorithmic design and analysis techniques for dealing with such
problems.

3 Common Modeling Assumptions

We quickly summarize common modeling assumptions. As much of the green
computing algorithmic literature focuses on saving energy in processors, this
discussion is biased toward models related to processors.

Energy is power integrated over time. Power has two components, dynamic
power and static power. Dynamic power is the power used by the process of com-
puting, and the static power is the energy used by the device just from being on.
Thus the only real way to not spend energy on static power is to turn the device
off. Before say the year 2000, the static power in common processors was gener-
ally negligible compared to the static power, but now the static power is often
comparable to dynamic power. Generally there is a strictly convex relationship
between speed and power. So faster processors have a higher ratio of power to
speed than lower speed processors. Thus faster processors are less efficient than
slower processors in terms of the energy that they expend per operation. Which
seems to be a general consequence of the laws of physics, as for example, high
performance cars invariably less energy efficient than lower performance cars.
The most common model is that the dynamic power P (s) is equal to sα, where
s is the speed and α is some constant that is strictly bigger than 1. For example,
the well known cube-root rule for CMOS based devices states that the speed s is
roughly proportional to the cube-root of the dynamic power P , or equivalently,
the dynamic power is proportional to the speed cubed [25]. So the most common
model for power in the literature is P (s) = sα + β, where β is constant repre-
senting the static power, and α is a constant that one thinks as being about 2
or 3. For more detail on modeling processor power see [26].

166 K. Pruhs

We now turn our attention to temperature. Cooling, and hence temperature,
is a complex phenomenon that can not be modeled completely accurately by any
simple model [60]. All the green computing literature that I have seen assumes
that cooling is governed by Newton’s law of cooling, and implicitly assumes
that environmental temperature is constant (which is what a fan is in principle
trying to achieve). Newton’s law cooling states that the rate of cooling is propor-
tional to the difference in temperature between the object and the environment.
Without loss of generality one can scale temperature so that the environmental
temperature is zero. A first order approximation for the rate of change T ′ of the
temperature T is then T ′ = aP − bT , where P is the supplied power, and a and
b are constants. The maximum temperature is within a factor of 4 of a times
the maximum energy used over any interval of length 1

b [14]. This observation
also shows that there is a relationship between total energy and maximum tem-
perature optimization and simplifies the task of reasoning about temperature. If
the cooling parameter b is 0 then maximum temperature minimization becomes
equivalent (within a constant factor) to energy minimization. This also explains
why some algorithms in the literature for energy management are poor for tem-
perature management, that is, these algorithms critically use the fact that the
parameter b = 0. If the cooling parameter b is ∞ then maximum temperature
minimization becomes equivalent to minimizing the maximum power, or equiv-
alently minimizing the maximum speed. [14] uses the term cooling oblivious to
refer to an algorithm that doesn’t rely on the particular values of a and b. Thus
if a cooling oblivious algorithm performs well for the objective of minimizing
the maximum temperature, it should perform reasonably well for the objective
of minimizing the total energy and the objective of minimizing the maximum
speed/power.

Moore’s law states that the switch/transistor density in processors doubles
about every other year. While at some point Moore’s law has stop holding, it
looks like it will continue to hold a bit longer. Up until around 2004, this also
meant that processor speeds also doubled about every other year. But since
2004 the rate of improvement of processor performance (speed) lags the rate of
transistor density. This is called Moore’s gap. So let me now summarize some of
the more energy efficient processor architecture designs that have arisen to cope
with the exponentiality of Moore’s law, and how they are generally modeled.

Speed Scalable Processors: A speed scalable processor has a collection of oper-
ational modes, each with a different speed and power. When performance is
important the processor can be run at a high-speed (but with low energy effi-
ciency) and when performance is less important, the processor can be run at a
lower speed that has better energy efficiency. One gets a wide variety of models
depending on whether the speed is assume to be discrete or continuous, whether
there is an upper bound on speed, and the speed to power function.

Multiprocessor Chips: Another alternative design is multiprocessor chips.
Roughly speaking, k speed s/k processors would use only about 1/k2 fraction
of the power of a single speed s processor, but potentially would have the same

Green Computing Algorithmics 167

processing capability. But the fact that such efficient parallelization of computa-
tion is not so easy to pull off in practice is one of the reasons for Moore’s Gap. As
best as I can tell there are three different visions of the future of multiprocessor
chips:

– Identical Processors: The first is expressed by the following quote from Anant
Agarwal, CEO of Tilera: “I would like to call it a corollary of Moore’s Law
that the number of cores will double every 18 months.” [52].

– Related Processors: Others [24,42,43,52,53] predict that the future dominant
multiprocessor architecture will be heterogeneous processors/cores. It is envi-
sioned that these heterogeneous architectures will consist of a small number of
high-performance processors (with low energy efficiency) for critical jobs, and
a larger number of lower-performance (but more energy efficient) processors
for less critical jobs (and presumably eventually processors of intermediate
performance for jobs of intermediate importance). For a given area and power
budget, heterogeneous designs can give significantly better performance for
standard workloads [24,42,52,53]. Such technologies are probably best mod-
eled by what is called “related” processors in the scheduling nomenclature:
That is, each processor i has an associated speed si and power Pi.

– Unrelated Processors: Some architects claim that, again due to Moore’s law,
chip makers soon will hit another thermal wall in that the density of switches
will become so great that it will be prohibitively expensive to cool the chip if
all switches were active at the same time [29]. Thus it will be necessary that all
times, some switches must be turned off. This commonly goes by the moniker
“dark silicon”. Thus it is envisioned that there will be processors specialized
for particular types of jobs, and for jobs to be assigned to a processor best
suited for that job; and the processors not best suited for the current jobs
would be turned off. In such a setting the processors might naturally be
modeled by what in scheduling parlance is called “unrelated machines”, where
the execution time of a job is dependent on the processor to which is it
assigned (and there is no particular consistency between which processors are
fastest between jobs). We should point out that even multiprocessors that
were designed to be homogeneous, are increasingly likely to be heterogeneous
at run time [24]: the dominant underlying cause is the increasing variability
in the fabrication process as the feature size is scaled down.

4 Online Convex Optimization

The Definition of the Online Convex Optimization Problem (OCO): The input is
an online sequence F1, F2, . . . , Fn of convex functions from R

k to R
+. In response

to the convex function Ft that arrives at time t, the online algorithm can move
to any destination/point pt in the metric space R

k. The cost of such a feasible
solution is

∑n
t=1 (d(pt−1, pt) + Ft(pt)), where d(pt−1, pt) is the distance between

points pt−1 and pt, that is, the distance traveled plus the value of the convex
functions at the destination points. The objective is to minimize the cost.

168 K. Pruhs

The Motivating Data Center Application: The initial motivation for introduc-
ing and studying the OCO problem was due to its applications in rightsizing
power-proportional data centers, see for example [4,46–49,51,65]. To explain
this application, let us for simplicity initially assume that we have one data
center consists of a homogeneous collection of servers/processors that are speed
scalable and that may be powered down. The load on the data center varies with
time, and at each time the data center operator has to determine the number of
servers that will be operational. The standard assumption is that there is some
fixed cost for powering a server on, or powering the server off. Most naturally
this cost incorporates the energy used for powering up or down, but this cost
may incorporate ancillary terms such as the cost of the additional wear and
tear on the servers. In response to a load Lt at time t, the data center operator
decides on a number of servers xt to use to handle this load. In a data center,
there are typically sufficiently many servers so that this discrete variable can
be reasonably be modeled as a continuous one. The data center operator pays a
convex cost of |xt−1−xt| for either powering-up or powering-down servers, and a
cost of Ft(xt) = xt((Lt/xt)α +β) for handling the load, which is the most energy
efficient way to service the load Lt using xt processors, assuming the standard
model for processor power. So this corresponds to an instance of OCO on a line,
that is, where k = 1.

A general instance of OCO would arise from a setting where there are k
different types of servers, and where each type of server would generally have
different power characteristics. Then xi,t would represent the number of servers
of type i that are powered on, and Ft(x1,t, . . . , xk,t) would represent the minimum
cost way to handle the load Lt using the number of specified numbers of each
type (which is convex for all standard models of power).

4.1 Looking Backward

Theoretical work on OCO deals primarily with the case that k = 1. [48] gave
a 3-competitive deterministic full-history algorithm. [4] showed that there is an
algorithm with sublinear regret, but that O(1)-competitiveness and sublinear
regret cannot be simultaneously achieved. [13] gave a 2-competitive algorithm,
that is most easily understood as a randomized algorithm that maintains a prob-
ability distribution p over destinations. [13] also observed that any randomized
algorithm for OCO can be converted to a deterministic algorithm without any
loss of approximation. [13] also give a simple 3-competitive memoryless algo-
rithm, which in the context of OCO means that the algorithm determines pt

based solely on pt−1 and Ft, and showed that this competitiveness is optimal for
deterministic memoryless algorithms. Finally [13] gave a general lower bound of
1.86 on the competitiveness of any algorithm, which shows that in some sense
this problem is strictly harder than classic online ski rental problem [22].

The OCO problem is a special case of the classic metrical task system
problem, where both the metric space and the cost functions can be arbi-
trary. The optimal deterministic competitive ratio for a general metrical task
system is 2n − 1, where n is the number of points in the metric [23], and

Green Computing Algorithmics 169

the optimal randomized competitive ratio is Ω(log n/ log log n) [20,21], and
O(log2 n log log n) [30].

The Convex Body Chasing problem is a special case of OCO where the
convex functions are restricted to be those that are zero within some convex
region/body, and infinite outside that region. So in the Convex Body Chasing
problem the algorithm sees a sequence of convex bodies, and must in response
move to a destination within the last convex body. The objective is to mini-
mize the total distance traveled. [31] observed that there is a lower bound of
Ω(

√
k) on the competitive ratio for Convex Body Chasing. Most of the upper

bounds in the literature for Convex Body Chasing are for chasing certain special
types of convex bodies. [31] gave a somewhat complicated algorithm and O(1)-
competitiveness analysis for chasing lines in two dimensions, and observe that
any O(1)-competitive line chasing algorithm for two dimensions can be extended
to an O(1)-competitive line chasing algorithm for an arbitrary number of dimen-
sions. [31] gave an even more complicated algorithm and O(1)-competitiveness
analysis for chasing arbitrary convex bodies in two dimensions. [62] showed in a
very complicated analysis that the work function algorithm is O(1)-competitive
for chasing lines and line segments in any dimension. The (Generalized) Work
Function Algorithm moves to the location pt that minimizes a linear combina-
tion of d(pt−1, pt) and wt(pt), where wt(x) is is the cheapest cost to handle the
first t requests and end in location x. [32] showed that the greedy algorithm is
O(1)-competitive if k = 2 and the convex bodies are regular polygons with a
constant number of sides.

[8] considered the relationship between OCO and Convex Body Chasing. [8]
showed that an O(1)-competitive algorithm for Convex Body Chasing can be
used to obtain an O(1)-competitive algorithm for OCO instances in which the
convex functions have radial symmetry. This reduction is through an intermedi-
ate Lazy Convex Body Chasing problem, which is a special case of OCO in which
the convex functions are zero within some convex region, and increase linearly
as one moves away from this convex region. [8] also gave an online algorithm for
Convex Body Chasing when the convex bodies are subspaces, in any dimension,
and an O(1)-competitiveness analysis when k = O(1). Finally [8] gave an online
algorithm for chasing lines and line segments in any dimension, and show that it
is O(1)-competitive. The underlying insight of this online algorithm is the same
as in [31], to be greedy with occasional adjustments toward the area where the
adversary might have cheaply handled recent requests. However, the algorithm
and its analysis is cleaner/simpler than the algorithm in [31], as well as being
essentially memoryless.

4.2 Open Problems

The two clear top open problems are:

Open Problem: Find an online algorithm for OCO that one can prove is O(1)-
competitive when the number of dimensions is constant, which is a reasonable
assumption in data center applications.

170 K. Pruhs

Open Problem: Find a provably O(1)-competitive algorithm for the special case
of Convex Body Chasing. Convex Body Chasing is easier to think about, and
one take away from our paper [8] is that probably OCO isn’t too much harder
than Convex Body Chasing.

Intuitively the main difficulty of obtaining a provably O(1)-competitive algo-
rithm for Convex Body Chasing is balancing the competing needs of the algo-
rithm remembering enough history to be able to be competitive, but keeping
its consideration of history sufficiently simple to be analyzable. In some sense,
most of the algorithms in the literature keep the consideration of history simple.
These algorithms break the input into “phases”, and then determine their new
destination based only on the history within the current phase. And their anal-
yses all have essentially the same form: after each “phase” in the input, either
the location of the online algorithm has either moved closer to the adversary’s
location by an amount proportional to its cost in the phase, or the adversary is
in some position where its costs are proportional to the online algorithm’s costs.
On the other one extreme is the Work Function algorithm, which uses all of the
history in the most complete way imaginable. This makes it quite likely that the
algorithm is O(1)-competitive, but also means that even for simple instances like
line chasing, the analysis is quite involved, and we don’t currently know how to
analyze the Work Function algorithm for chasing more complex convex bodies.

To get some feel for the issues involved, let us consider two instances for
halfspace chasing in three dimensions, which is the simplest setting where we
don’t know how to achieve O(1)-competitiveness. In the first instance, the half-
spaces are rotating around a line L, say L is the z axis for the moment. So the
halfspace arriving at time t (think of time as being continuous for the moment)
would be ax + by ≥ 0, where a = cos t and b = sin t. Any O(1)-competitive
algorithm would have to move quickly to the line L. From an algorithmic design
viewpoint, this isn’t a problem at all, as natural generalizations of the algorithms
in the literature would move to L. But this instance is a bit of a problem from
the standard algorithm analysis point of view. Observe that if the adversary’s
location is on the line L, but far from the online algorithm’s location, then both
the adversary’s cost is low, and the algorithm isn’t get closer to the adversary
fast enough to offset its costs.

The second instance is a bit trickier. In this instance, as the halfspaces are
again continuously rotating around the line L, but now the line L is simulta-
neously continuously spinning around the origin in such a way that the loci of
points that L sweeps out is a cone. So L at time t could be the line where
0 = ax + by and z2 = x2 + y2, where a = cos t and b = sin t. Any O(1)-
competitive algorithm would have to move quickly to the origin. But its a bit
unclear how one could algorithmically recognize that the algorithm needs to
move to the origin in a way that is both principled, and that uses the history in
some sort of limited way.

Green Computing Algorithmics 171

5 Energy Efficient Routing

According to the US Department of Energy [1], data networks consume more
than 50 billion kWH of energy per year, and a 40% reduction in wide-area
network energy is plausibly achievable if network components were energy pro-
portional.

5.1 Looking Back

Circuit routing, in which each connection is assigned a reserved route in the
network with a guaranteed bandwidth, is used by several network protocols
to achieve reliable communication [44]. [6] introduced the problem of routing
circuits to minimize energy in a network of components that are speed scalable,
and that may be shutdown when idle, using the standard models for circuit
routing and component energy. The input consists of an undirected graph G,
and a collection of source/sink vertex pairs. The output is a path, representing
the circuit for a unit bandwidth demand, between each source/sink pair. The
power used by an component with positive flow f is σ + fα, and the component
is shutdown and consumes no power if it supports no flow. The objective is
to minimize the aggregate power used over all the components. Primarily for
reasons of mathematical tractability, the initial research assume that the speed
scalable components are the edges.

The difficulty of these problems comes from the competing goals of minimiz-
ing static power, where it’s best that flows are concentrated, and minimizing
dynamic power, where it’s best that the flows are spread out. A critical param-
eter is q = σ1/α. If the flow on an edge is at least q, then one knows that the
dynamic power on that edge is at least the static power. [6] show that there
is a limit to how well these competing demands can be balanced by showing
that there is no polynomial-time algorithm with approximation ratio o(log1/4 n),
under standard complexity theoretic assumptions. In contrast, [5] shows that
these competing forces can be “poly-log-balanced” by giving a polynomial-time
poly-log-approximation algorithm that uses several “big hammers” [27,40,59].

We have a line of papers [11,12,41] that significantly extend the results on
this line of research. We started with [12], which considered the case of a common
source vertex s for all request-pairs, that is all si = s. Applications for a com-
mon source vertex include data collection by base stations in a sensor network,
and supporting a multicast communication using unicast routing. [12] gives a
polynomial-time O(1)-approximation algorithm. The algorithm design and anal-
ysis is considerably easier than [5] because, after aggregation into groups, all the
flow is going to the same place. [12] also gives an O(log2α+1 k)-competitive ran-
domized online algorithm, by giving a procedure for forming the groups in an
online fashion.

We then extended these ideas in [11], which contained two main results. The
first main result was a polynomial-time O(logα k)-approximation algorithm for
the general problem. This algorithm consisted of 3 stages, each of which was
essentially a combinatorial greedy algorithm:

172 K. Pruhs

Activating a Steiner Forest: The algorithm first activates a Steiner forest,
to ensure minimal connectivity, using the standard O(1)-approximation algo-
rithm for Steiner forest [66].

Activating the Hallucination Backbone: Then each request-pair, with
probability Θ(log k

q) hallucinates that it wants to route q units of flow unsplit-
tably on a path between its end points. This hallucinated flow is then routed
using the natural greedy algorithm, all edges on which hallucinated flow is
routed are then activated. (Note that no actual flow is routed here, this hal-
lucinated flow is just used to determine which additional edges to activate).

Routing: The algorithm routes the flow on the activated edges using the natural
greedy algorithm. The heart of the algorithm analysis is to appeal to the
flow-cut gap for multicommodity flows [45,50] to show that there must be a
low-congestion routing.

The second main result in [11] is a randomized Õ(log3α+1 k)-competitive
online algorithm. The offline algorithm rather naturally extends to an online
algorithm. The analysis however is considerably more involved than in the offline
case. Since the edges are bought online, the analysis in [35] only shows that the
dynamic power for the greedy algorithm is competitive against the power used
in an optimal “priority routing”, where a request-pair can only route over edges
bought by the online algorithm up until the arrival time of the request-pair.
Thus to mimic the analysis in the offline case, we need to show that there is
a low-congestion priority multicommodity flow on the bought edges. This is
accomplished by characterizing the notion of sparsest priority-cuts, and then
bounding the priority flow-cut gap for multicommodity flows.

Finally in [41] we made a start on extending the results in previous papers to
the case that the speed scalable components of the graph are the vertices, and not
the edges. The main difficulty in emulating the approaches in the previous (edge
based) papers is that they all relied on the fact that it is possible to aggregate
flows in a (Steiner) tree in such a way that there is low edge congestion, but
we would need that there is low node congestion, which is not possible in some
trees, e.g. a star. To surmount this difficultly we showed how to efficiently find
a low-cost collection of nearly node-disjoint trees that span all terminals, which
can then be used to obtain an aggregation of flows with low vertex congestion.

5.2 The Open Problems

Open Problem: Find a poly-log approximation algorithm, when the speed scal-
able components are the edges, where the polynomial doesn’t depend on α.

All of the analysis of the energy used by circuit routing protocols in [5,6,11,
12,41] goes via congestion. To understand this consider the situation of randomly
throwing n balls into n bins, where the resulting energy is the sum of the αth
power of the bin sizes. An analysis in the spirit of the ones in [5,6,11,12,41] would
argue that the resulting energy is within a Õ(logα n) factor of optimal because
with high probability no bin has Ω(log n) balls. As some bin likely has Ω̃(log n)
balls, this is the best bound one can obtain by only analyzing the fullest bin.

Green Computing Algorithmics 173

But in actuality, the energy used is O(1) approximate to optimal because very
few bins have loads near log n. A competitive analysis of a poly-log competitive
algorithm, where the polynomial doesn’t depend on α, can not go via congestion,
and would require reasoning about energy more directly. It is instructive to
first see why the Hallucination algorithm won’t work. The oversampling in the
formation of the Hallucination backbone in [11] was required if the analysis was
via congestion; otherwise there would likely be a cut without sufficient capacity
to route all the flow across the cut with low congestion. But this oversampling
meant that the hallucinated flow was a log n factor more than the actual flow, and
thus increasing costs by a logα n factor. Thus one needs to be a bit more careful
about how one oversamples. It seems that a new Hallucination algorithm, that
is a modest tweak of the original Hallucination algorithm in [11] is a reasonable
candidate algorithm. The hallucination backbone would be the union of log n
sub-backbones. For each sub-backbone each source/sink hallucinates a flow of q
with probability 1

q , so there is no oversampling in a sub-backbone. Intuitively if
the sub-backbones are (nearly) disjoint, then the static power would only be a
O(log n) more than optimal, and there would still be sufficient capacity to route
all flow with low dynamic power. The worry is that if all the sub-backbones
had high overlap, then there would be insufficient capacity for a low energy
routing. But for all the graphs that we can think of where the sub-backbones
might overlap with some reasonable probability, it is the case that for these
graphs oversampling is not required to obtain sufficient capacity for a low energy
routing.

Open Problem: Find a poly-log competitive online algorithm when the speed
scalable components are the vertices.

The obvious starting point is try to find a way to build online a low-cost
collection of nearly node-disjoint trees that span all terminals.

6 Energy Efficient Circuit Design

The threshold voltage of a transistor is the minimum supply voltage at which the
transistor starts to conduct current. However, if the designed supply voltage was
exactly the ideal threshold voltage, some transistors would likely fail to operate
as designed due to manufacturing and environmental variations. In the tradi-
tional approach to circuit design the supply voltages for each transistor/gate are
set sufficiently high so that with sufficiently high probability no transistor fails,
and thus the designed circuits need not be fault-tolerant. One potential method
to attain more energy-efficient circuits is Near-Threshold Computing, which sim-
ply means that the supply voltages are designed to be closer to the threshold
voltage. As the power used by a transistor/gate is roughly proportional to the
square of the supply voltage [26], Near-Threshold Computing can potentially sig-
nificantly decrease the energy used per gate. However, this energy savings comes
at a cost of a greater probability of functional failure, which necessitates that
the circuits must be more fault-tolerant, and thus contain more gates. As the

174 K. Pruhs

total energy used by a circuit is approximately the energy used per gate times
the number of gates, achieving energy savings with Near-Threshold Computing
involves properly balancing the energy used per gate with the number of gates
used.

6.1 Looking Back

In [10] we initiated the theoretical study of the design of energy-efficient circuits.
We assumed that the design of the circuit specifies both the circuit layout as
well as the supply voltages for the gates. We assume a failure-to-energy function
P (ε) that specifies the power required to insure the probability that a gate fails
is at most ε. For current CMOS technologies, it seems that the “right” model for
failure-to-energy function is P (ε) = Θ(log2(1/ε)) [28]. For simplicity we assume
this failure-to-energy function, but the theoretical results are not particularly
sensitive to the exact nature of this function. We subsequently had three follow-
up papers [9,18,19] on theoretical issues related to near-threshold computing.

[10] showed how to use techniques from the literature on fault-tolerant circuits
to obtain bounds on circuit energy. [10] show that Ω

(
s log

(
s(1 − 2

√
δ)/δ

))

energy is required by any circuit that computes a relation with sensitivity s
correctly with probability at least (1 − δ). [10] also showed, using techniques
from [64] and [33,55], that a relation h that is computable by a circuit of size c
can, with probability at least (1 − δ), be computed by a circuit of faulty gates
using O(c log(c/δ)) energy.

In [9] we considered the problem of: given a circuit C, an input I to C,
and a desired circuit error bound δ, compute a supply voltage s that minimizes
energy subject to the constraint that the error probability for the circuit is
less than δ. The traditional approach/algorithm cranks up the supply voltage
s until the error probability at each gate is δ/n, so that by the union bound
the probability that the circuit is incorrect is at most δ. In [9] we observed that
the traditional algorithm produces an O(log2 n) approximation to the minimum
energy. The main result in [9] is that is NP -hard to obtain an approximation
ratio of O(log2−ε n). This shows that there are complexity theoretic barriers to
systematically beating the traditional approach.

In [18] we showed that almost all Boolean functions require circuits that
use exponential energy (foreshadowing slightly, this holds even if circuits can
have heterogeneous supply voltages). This is not an immediate consequence of
Shannon’s classic result [61] that almost all functions require exponential sized
circuits of faultless gates because (as we showed in [18]) the same circuit layout
can compute many different functions, depending on the value of the supply
voltage. The key step in the proof is to upper bound the number of different
functions that one circuit layout can compute as the supply voltage changes.

While it may not currently be practical, in principle the supply voltages need
not be homogeneous over all gates, that is, different gates could be supplied with
different voltages. This naturally leads to the question of whether allowing het-
erogeneous supply voltages might yield lower-energy circuits than are possible

Green Computing Algorithmics 175

if the supply voltages are required to be homogeneous. While each of [9,10,18]
touched on this question, and [19] squarely addressed this question. Intuitively,
heterogeneous voltages should benefit a circuit where certain parts of the com-
putation are more sensitive to failure than others. For example, in order for a
circuit to be highly reliable, gates near the output need to be highly reliable.
However, it may be acceptable for gates that are far from the output to be less
reliable if there is sufficient redundancy in the circuit.

We considered four variations on the question, depending on

– whether what one is trying to compute, f : {0, 1}n → {0, 1}, is a function, or
an injective relation (meaning one doesn’t care what the output is on some
inputs), and

– whether one wants the circuit to be correct with a fixed/constant probability,
or with high probability (so the error decreases inverse polynomially as the
input size increases).

For each of these four variations, we wanted to determine whether ω(1) energy
savings is possible for all, none, or some of the f . It is relatively straight-forward
to observe that the maximum possible energy savings due to allowing hetero-
geneity is O(log2 n) in all cases. Our answers to date can be found in Table 1.

Table 1. Possible energy savings from heterogeneous supply voltages

Circuit error δ = Θ(1) Circuit error δ = Θ
(

1
poly(n)

)

Functions Θ(1) for some Θ(log n) for all with linear size
circuits

Injective relations Θ(1) for some Ω(log2 n) for some

Ω(log n) for all with linear sized
circuits

So one can see from the table that we have a reasonable understanding
of when heterogeneity can save energy when computing with high probabil-
ity, as long as the functions and relations that have linear sized circuits. Func-
tions/relations with (near) linear sized circuits presumably include those that
one is most likely to want to implement in hardware. When computing with high
probability, heterogeneous circuits can save a Θ(log n) factor of energy for all
functions with linear sized circuits, and an additional log n factor can be saved
for some relations with linear sized circuits.

6.2 Open Problems

There are myriad open problems in this area, but if I had to pick one as the best
open problem, it would be the following:

176 K. Pruhs

Open Problem: Does there exist a function (or injective relation) f : {0, 1}n →
{0, 1} where there is a heterogeneous circuit that computes f with constant error
using an o(1) factor less energy than any homogeneous circuit that computes f
with constant error?

We know that heterogeneity can give at most constant energy savings for
computing some functions with constant error. Not surprisingly one such func-
tion is the parity function as intuitively every part of any reasonable circuit for
parity is equally highly sensitive to error. And there are examples of relations
where heterogeneity helps the obvious circuit. In [10] we showed that the most
obvious circuit, a tree of majority gates, to compute the super-majority relation
can be made o(1) more energy efficient by turning down the supply voltage near
the input gates. But there is a less obvious circuit to compute super-majority [63],
that seemingly can not be made more energy efficient with heterogeneous supply
voltages.

This seems to be asking a fundamental question about computation. Is it
true for it is always the case in the most energy efficient circuit to compute some
function with constant error probability that essentially every part of the circuit
is equally sensitive to error? (Recall that we know that this answer is no when
computing with high probability.) If the answer is always yes for computing with
constant probability then we known that heterogeneous circuits will not yield
any energy savings for computing with constant error probability.

7 Online Scheduling of Power Heterogeneous Processors

The new architectural designs lead to a plethora of natural algorithmic schedul-
ing problems related to balancing the competing demands of performance
and energy efficiency. The natural resulting algorithmic management problems
involve determining which task to run on each processor, and for speed scalable
processors at what speed to run that task, so as to obtain a (near) optimal trade-
off between the conflicting objectives of quality of service and energy efficiency.

There enough literature in this area to justify an independent survey. So
in the interest of space, I will just discuss one result, which at least arguably
is the culmination of this research line for the common processor models. We
showed in [37] that there is a scalable algorithm, which we called SelfishMigrate,
for scheduling unrelated machines to minimize a (user/application specified)
linear combination of energy and weighted job delay (here some jobs are more
important and contribute more to this total). The result holds even when each
machine has an arbitrary convex speed-to-power function, and processors may be
shutdown (and thus consume no energy). An algorithm is scalable if it guarantees
that the objective value is within a constant factor of optimal for processors
that run slightly slower at each power level. An algorithm is nonclairvoyant if
does not know the size of a job. The algorithm does however need to know the
suitability of each processor for each job, or more formally, the rate that each
processor can process each job. Its easy to see that such knowledge is necessary to
achieve any reasonable approximation. We had previously shown in [34] that the

Green Computing Algorithmics 177

standard priority algorithms, like Highest Density First (HDF), that one finds in
standard operating systems textbooks, can perform quite badly on heterogeneous
processors when the quality of service objective is weighted delay [34]. So we
knew we were not going to be able to obtain scalability with a known standard
algorithm.

The SelfishMigrate algorithm can be best viewed in a game theoretic setting
where jobs are selfish agents, and machines declare their scheduling policies in
advance. Each machine maintains a virtual queue on the current set of jobs
assigned to it; newly arriving jobs are appended to the tail of this queue. Each
machine treats a migration of a job to it as an arrival, and a migration out of
it as a departure. This means a job migrating to a machine is placed at the
tail of the virtual queue. Each job j has a virtual utility function, which roughly
corresponds to the inverse of the instantaneous weighted delay introduced by j to
jobs ahead of it in its virtual queue, and their contribution to j’s weighted delay.
Using these virtual utilities, jobs perform sequential best response dynamics,
migrating to machines (and get placed in the tail of their virtual queue) if doing
so leads to larger virtual utility. Therefore, at each time instant, the job migration
achieves a Nash equilibrium of the sequential best response dynamics on the
virtual utilities. The analysis is via dual fitting, and involves showing that the
Nash dynamics on virtual utilities directly corresponds to our setting of dual
variables being feasible. In hindsight, we believe this framework is the right way
to generalize the greedy dispatch rules and dual fitting analysis from previous
works [3,36].

This result suggests that perhaps that heterogeneous multiprocessors should
be scheduled very differently than the way that uniprocessors and homogeneous
multiprocessors have been scheduled.

7.1 Open Problem

Open Problem: Show that the standard priority scheduling algorithms are scal-
able for the objective of total flow time when scheduling on related processors.

The standard priority scheduling algorithms that one finds in introductory
operating systems texts, e.g. Shortest Remaining Processing Time (SRPT),
Shortest Job First (SJF), Shortest Elapsed Time First (SETF), Multi-Level
Feedback (MLF), are all known to be scalable for the objective of total delay on
one processor and on identical processors [38,56,57]. Given that it is often diffi-
cult to get new policies/protocols adopted, it would be good to know how bad
things can get for these standard scheduling policies on heterogeneous proces-
sors. That is, are these algorithms scalable for total delay on related machines.
Intuitively I see no reason to think that they are not scalable. The intuition
why the standard algorithms are not scalable for weighted delay is that if one
has multiprocessor with many slow processors and few fast processors then it
can be difficult to harness the aggregate speed of the slow processors. Some-
how it seems that, if jobs are of equal importance, this is not such an issue.
The standard potential function and dual fitting approaches don’t seem imme-
diately applicable as there doesn’t seem to be a simple algebraic expression for

178 K. Pruhs

the contribution of a particular job towards the objective. So it seems that some
innovation in algorithm analysis will be required.

8 Understanding Optimal Energy Tradeoff Schedules

8.1 Looking Back

Another line of my research related to speed scalable processors is to under-
stand optimal energy-performance tradeoff schedules, primarily by finding effi-
cient algorithms to compute them. We initiated this line of research in [58] by
giving a polynomial time algorithm for scheduling jobs that have a common size
with an objective of minimizing a linear combination of total delay and energy. In
[15] we considered the problem of scheduling arbitrary sized jobs with the objec-
tive of minimizing a linear combination of fractional weighted delay and energy,
and showed how to recognize an optimal schedule. In [7] we gave a polynomial
time algorithm for scheduling arbitrary sized jobs with the objective of minimiz-
ing a linear combination of fractional weighted delay and energy. The algorithm
in [7] can be viewed as a primal-dual algorithm that raises the dual variables in
an organized way. In [16] we considered the setting of a sensor that consists of
a speed-scalable processor, a battery, and a solar cell that harvests energy from
its environment at a time-invariant recharge rate. The processor must process a
collection of jobs of various sizes. Jobs arrive at different times and have different
deadlines. The objective is to minimize the recharge rate, which is the rate at
which the device has to harvest energy in order to feasibly schedule all jobs. The
main result was a polynomial-time combinatorial algorithm for processors with
a natural set of discrete speed/power pairs. The main takeaway form this paper
was that it is much harder to reason about energy when it is supplied over time
instead of all being initially available.

One can formulate many different optimization problems depending on how
one models the processor (e.g., whether allowed speeds are discrete or continu-
ous, and the nature of relationship between speed and power), the performance
objective (e.g., whether jobs are of equal or unequal importance, and whether
one is interested in minimizing waiting times of jobs or of work), and how one
handles the dual objective (e.g., whether they are combined in a single objective,
or whether one objective is transformed into a constraint). In [17] we finally bit
the bullet, and determined the complexity of a reasonably full landscape of all
the possible formulations.

One commonality of the algorithms that we developed in [7,16,58] is that
they all can be viewed as continuous homotopic optimization algorithms. These
homotopic algorithms trace the evolution of the optimal solution as either the
objective function evolves from one, where it is simple to compute the optimal,
to the desired objective, or the constraints evolve from ones, that are easy to
satisfy, to the desired constraints. So one take away point from these results
is that homotopic optimization can be a fruitful approach for computing and
understanding optimal tradeoff schedules.

Green Computing Algorithmics 179

8.2 Open Problem

The clear top open problem in this area, which was left open in [17] is:

Open Problem: Determine the complexity of finding optimal schedule for the
objective of total delay plus energy on a speed scalable processor.

In the optimal schedule it must be the case that at all times the job being
processed is the one that has the least amount of work left to be processed.
But this is of less help than it might first appear, as this doesn’t help decide
what speed the processor should run, and thus how much work should be left on
this job at the next time step. The main difficulty of extending the algorithms in
[7,58] is that the optimal total delay plus energy schedule for arbitrary work jobs
is more fragile than if the jobs had unit size or the quality of service objective
was fractional total delay. Still, many of the insights in [7,58] carry over. In
particular, the power of a job should generally be proportional to the number of
jobs that depend on that job. As a consequence of this, if one knew the ordering
of the release times and completion times, obtaining an optimal schedule subject
to such an ordering constraint is straightforward. So my intuition at this point
says that this problem should be solvable in polynomial time. But I don’t have
any real idea how to touch this problem. I find it a bit surprising that even
computing an optimal schedule when there are only 2 speeds seems hard. I think
it would be fine to get an algorithm whose running time is polynomial in the
number of jobs, but possibly exponential in the number of speeds, as usually the
number of speeds is usually on the order of 5 to 10. However, it is certainly not
inconceivable that there is no polynomial-time algorithm for this problem, say
because the problem is NP-hard. There is no proof in the literature showing the
hardness a speed scaling problem where the hardness somehow arose nontrivally
from the speed scaling aspect of the problem. So a hardness proof would be
interesting, as SRPT is optimal for a fixed speed processor, and its not clear
where the hardness would come for a speed scalable processor.

9 Conclusion

Some characteristics of the theory of energy as a computational resource that
has developed over the last decade are:

– Most problems arise at a lower layer of the information technology stack that
is not aware of the exact nature of the computation taking place on the high
layer.

– Most problems involve managing some mechanism/technology created/
installed to achieve greater energy efficiency.

– Most problems involve balancing dual objectives, one related to energy, and
one related to performance. Often of these objectives is implicit as it has been
turned into a constraint.

As a consequence, the current theory energy as a computational resource is less
concentrated, and less distinct from other research areas, than the theory of
time/space as a computational resource were in their first decade.

180 K. Pruhs

References

1. Vision and roadmap: routing telecom and data centers toward efficient energy use.
In: Proceedings of Vision and Roadmap Workshop on Routing Telecom and Data
Centers Toward Efficient Energy Use, May 2009

2. Albers, S.: Energy-efficient algorithms. Commun. ACM 53(5), 86–96 (2010)
3. Anand, S., Garg, N., Kumar, A.: Resource augmentation for weighted flow-time

explained by dual fitting. In: ACM-SIAM Symposium on Discrete Algorithms, pp.
1228–1241 (2012)

4. Andrew, L.L.H., Barman, S., Ligett, K., Lin, M., Meyerson, A., Roytman, A.,
Wierman, A.: A tale of two metrics: simultaneous bounds on competitiveness and
regret. In: Conference on Learning Theory, pp. 741–763 (2013)

5. Andrews, M., Antonakopoulos, S., Zhang, L.: Minimum-cost network design with
(dis)economies of scale. In: IEEE Symposium on Foundations of Computer Science,
pp. 585–592 (2010)

6. Andrews, M., Fernández, A., Zhang, L., Zhao, W.: Routing for energy minimization
in the speed scaling model. In: INFOCOM, pp. 2435–2443 (2010)

7. Antoniadis, A., Barcelo, N., Consuegra, M., Kling, P., Nugent, M., Pruhs, K.,
Scquizzato, M.: Efficient computation of optimal energy and fractional weighted
flow trade-off schedules. In: Symposium on Theoretical Aspects of Computer Sci-
ence (2014)

8. Antoniadis, A., Barcelo, N., Nugent, M., Pruhs, K., Schewior, K., Scquizzato,
M.: Chasing convex bodies and functions. In: Kranakis, E., Navarro, G., Chávez,
E. (eds.) LATIN 2016. LNCS, vol. 9644, pp. 68–81. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49529-2 6

9. Antoniadis, A., Barcelo, N., Nugent, M., Pruhs, K., Scquizzato, M.: Complexity-
theoretic obstacles to achieving energy savings with near-threshold computing. In:
International Green Computing Conference, pp. 1–8 (2014)

10. Antoniadis, A., Barcelo, N., Nugent, M., Pruhs, K., Scquizzato, M.: Energy-efficient
circuit design. In: Innovations in Theoretical Computer Science, pp. 303–312 (2014)

11. Antoniadis, A., Im, S., Krishnaswamy, R., Moseley, B., Nagarajan, V., Pruhs, K.,
Stein, C.: Energy efficient virtual circuit routing. In: ACM-SIAM Symposium on
Discrete Algorithms (2014)

12. Bansal, N., Gupta, A., Krishnaswamy, R., Nagarajan, V., Pruhs, K., Stein, C.: Mul-
ticast routing for energy minimization using speed scaling. In: Even, G., Rawitz,
D. (eds.) MedAlg 2012. LNCS, vol. 7659, pp. 37–51. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34862-4 3

13. Bansal, N., Gupta, A., Krishnaswamy, R., Pruhs, K., Schewior, K., Stein, C.: A
2-competitive algorithm for online convex optimization with switching costs. In:
Workshop on Approximation Algorithms for Combinatorial Optimization Prob-
lems, pp. 96–109 (2015)

14. Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling to manage energy and temper-
ature. J. ACM 54(1), 3 (2007)

15. Barcelo, N., Cole, D., Letsios, D., Nugent, M., Pruhs, K.: Optimal energy trade-off
schedules. Sustain. Comput.: Inf. Syst. 3, 207–217 (2013)

16. Barcelo, N., Kling, P., Nugent, M., Pruhs, K.: Optimal speed scaling with a solar
cell. In: Chan, T.-H.H., Li, M., Wang, L. (eds.) COCOA 2016. LNCS, vol. 10043,
pp. 521–535. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48749-
6 38

https://doi.org/10.1007/978-3-662-49529-2_6
https://doi.org/10.1007/978-3-642-34862-4_3
https://doi.org/10.1007/978-3-319-48749-6_38
https://doi.org/10.1007/978-3-319-48749-6_38

Green Computing Algorithmics 181

17. Barcelo, N., Kling, P., Nugent, M., Pruhs, K., Scquizzato, M.: On the complexity
of speed scaling. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS
2015. LNCS, vol. 9235, pp. 75–89. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48054-0 7

18. Barcelo, N., Nugent, M., Pruhs, K., Scquizzato, M.: Almost all functions require
exponential energy. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS
2015. LNCS, vol. 9235, pp. 90–101. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48054-0 8

19. Barcelo, N., Nugent, M., Pruhs, K., Scquizzato, M.: The power of heterogeneity
in near-threshold computing. In: International Green and Sustainable Computing
Conference, pp. 1–4 (2015)

20. Bartal, Y., Bollobás, B., Mendel, M.: Ramsey-type theorems for metric spaces with
applications to online problems. J. Comput. Syst. Sci. 72(5), 890–921 (2006)

21. Bartal, Y., Linial, N., Mendel, M., Naor, A.: On metric Ramsey-type phenomena.
In: ACM Symposium on Theory of Computing, pp. 463–472 (2003)

22. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

23. Borodin, A., Linial, N., Saks, M.E.: An optimal on-line algorithm for metrical task
system. J. ACM 39(4), 745–763 (1992)

24. Bower, F.A., Sorin, D.J., Cox, L.P.: The impact of dynamically heterogeneous
multicore processors on thread scheduling. IEEE Micro 28(3), 17–25 (2008)

25. Brooks, D.M., Bose, P., Schuster, S.E., Jacobson, H., Kudva, P.N., Buyukto-
sunoglu, A., Wellman, J.-D., Zyuban, V., Gupta, M., Cook, P.W.: Power-aware
microarchitecture: design and modeling challenges for next-generation micropro-
cessors. IEEE Micro 20(6), 26–44 (2000)

26. Butts, J.A., Sohi, G.S.: A static power model for architects. In: ACM/IEEE Inter-
national Symposium on Microarchitecture, pp. 191–201 (2000)

27. Chekuri, C., Khanna, S., Shepherd, F.B.: Multicommodity flow, well-linked termi-
nals, and routing problems. In: ACM Symposium on Theory of Computing, pp.
183–192 (2005)

28. Dreslinski, R.G., Wieckowski, M., Blaauw, D., Sylvester, D., Mudge, T.N.: Near-
threshold computing: reclaiming Moore’s law through energy efficient integrated
circuits. Proc. IEEE 98(2), 253–266 (2010)

29. Esmaeilzadeh, H., Blem, E.R., Amant, R.S., Sankaralingam, K., Burger, D.: Dark
silicon and the end of multicore scaling. IEEE Micro 32(3), 122–134 (2012)

30. Fiat, A., Mendel, M.: Better algorithms for unfair metrical task systems and appli-
cations. SIAM J. Comput. 32(6), 1403–1422 (2003)

31. Friedman, J., Linial, N.: On convex body chasing. Discret. Comput. Geom. 9,
293–321 (1993)

32. Fujiwara, H., Iwama, K., Yonezawa, K.: Online chasing problems for regular poly-
gons. Inf. Process. Lett. 108(3), 155–159 (2008)

33. Gács, P.: Reliable computation. In: Algorithms in Informatics, vol. 2. ELTE Eötvös
Kiadó, Budapest (2005)

34. Gupta, A., Im, S., Krishnaswamy, R., Moseley, B., Pruhs, K.: Scheduling heteroge-
neous processors isn’t as easy as you think. In: ACM-SIAM Symposium on Discrete
Algorithms, pp. 1242–1253 (2012)

35. Gupta, A., Krishnaswamy, R., Pruhs, K.: Online primal-dual for non-linear opti-
mization with applications to speed scaling. In: Erlebach, T., Persiano, G. (eds.)
WAOA 2012. LNCS, vol. 7846, pp. 173–186. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38016-7 15

https://doi.org/10.1007/978-3-662-48054-0_7
https://doi.org/10.1007/978-3-662-48054-0_7
https://doi.org/10.1007/978-3-662-48054-0_8
https://doi.org/10.1007/978-3-662-48054-0_8
https://doi.org/10.1007/978-3-642-38016-7_15
https://doi.org/10.1007/978-3-642-38016-7_15

182 K. Pruhs

36. Im, S., Kulkarni, J., Munagala, K.: Competitive algorithms from competitive equi-
libria: non-clairvoyant scheduling under polyhedral constraints. In: Symposium on
Theory of Computing, pp. 313–322 (2014)

37. Im, S., Kulkarni, J., Munagala, K., Pruhs, K.: Selfishmigrate: a scalable algo-
rithm for non-clairvoyantly scheduling heterogeneous processors. In: Symposium
on Foundations of Computer Science, pp. 531–540 (2014)

38. Im, S., Moseley, B., Pruhs, K.: A tutorial on amortized local competitiveness in
online scheduling. SIGACT News 42(2), 83–97 (2011)

39. Irani, S., Pruhs, K.: Algorithmic problems in power management. SIGACT News
36(2), 63–76 (2005)

40. Khandekar, R., Rao, S., Vazirani, U.V.: Graph partitioning using single commodity
flows. J. ACM 56(4), 19 (2009)

41. Krishnaswamy, R., Nagarajan, V., Pruhs, K., Stein, C.: Cluster before you halluci-
nate: approximating node-capacitated network design and energy efficient routing
(2014)

42. Kumar, R., Tullsen, D.M., Jouppi, N.P.: Core architecture optimization for het-
erogeneous chip multiprocessors. In: International Conference on Parallel Archi-
tectures and Compilation Techniques, pp. 23–32. ACM (2006)

43. Kumar, R., Tullsen, D.M., Ranganathan, P., Jouppi, N.P., Farkas, K.I.: Single-ISA
heterogeneous multi-core architectures for multithreaded workload performance.
SIGARCH Comput. Archit. News 32(2), 64 (2004)

44. Kurose, J.F., Ross, K.W.: Computer Networking: A Top-Down Approach. Addison-
Wesley Publishing Company, Boston (2009)

45. Leighton, F.T., Rao, S.: Multicommodity max-flow min-cut theorems and their use
in designing approximation algorithms. J. ACM 46(6), 787–832 (1999)

46. Lin, M., Liu, Z., Wierman, A., Andrew, L.L.H.: Online algorithms for geographical
load balancing. In: International Green Computing Conference, pp. 1–10 (2012)

47. Lin, M., Wierman, A., Andrew, L.L.H., Thereska, E.: Online dynamic capacity
provisioning in data centers. In: Allerton Conference on Communication, Control,
and Computing, pp. 1159–1163 (2011)

48. Lin, M., Wierman, A., Andrew, L.L.H., Thereska, E.: Dynamic right-sizing for
power-proportional data centers. IEEE/ACM Trans. Netw. 21(5), 1378–1391
(2013)

49. Lin, M., Wierman, A., Roytman, A., Meyerson, A., Andrew, L.L.H.: Online opti-
mization with switching cost. SIGMETRICS Perform. Eval. Rev. 40(3), 98–100
(2012)

50. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its
algorithmic applications. Combinatorica 15(2), 215–245 (1995)

51. Liu, Z., Lin, M., Wierman, A., Low, S.H., Andrew, L.L.H.: Greening geographical
load balancing. In: ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems, pp. 233–244 (2011)

52. Merritt, R.: CPU designers debate multi-core future. EE Times, February 2008
53. Morad, T.Y., Weiser, U.C., Kolodny, A., Valero, M., Ayguade, E.: Performance,

power efficiency and scalability of asymmetric cluster chip multiprocessors. IEEE
Comput. Archit. Lett. 5(1), 4 (2006)

54. Mudge, T.: Power: a first-class architectural design constraint. Computer 34(4),
52–58 (2001)

55. Pippenger, N.: On networks of noisy gates. In: Symposium on Foundations of
Computer Science, pp. 30–38 (1985)

Green Computing Algorithmics 183

56. Pruhs, K.: Competitive online scheduling for server systems. In: Special Issue of
SIGMETRICS Performance Evaluation Review on New Perspectives in Scheduling,
no. 4 (2007)

57. Pruhs, K., Sgall, J., Torng, E.: Online scheduling. In: Handbook of Scheduling:
Algorithms, Models, and Performance Analysis (2004)

58. Pruhs, K., Uthaisombut, P., Woeginger, G.J.: Getting the best response for your
erg. ACM Trans. Algorithms 4(3), 38:1–38:17 (2008)

59. Rao, S., Zhou, S.: Edge disjoint paths in moderately connected graphs. SIAM J.
Comput. 39(5), 1856–1887 (2010)

60. Sergent, J.E., Krum, A.: Thermal Management Handbook. McGraw-Hill,
New York (1998)

61. Shannon, C.E.: The synthesis of two-terminal switching circuits. Bell Syst. Tech.
J. 28, 59–98 (1949)

62. Sitters, R.: The generalized work function algorithm is competitive for the gener-
alized 2-server problem. SIAM J. Comput. 43(1), 96–125 (2014)

63. Valiant, L.G.: Short monotone formulae for the majority function. J. Algorithms
5(3), 363–366 (1984)

64. von Neumann, J.: Probabilistic logics and the synthesis of reliable organisms from
unreliable components. In: Shannon, C.E., McCarthy, J. (eds.) Automata Studies,
pp. 329–378. Princeton University Press, Princeton (1956)

65. Wang, K., Lin, M., Ciucu, F., Wierman, A., Lin, C.: Characterizing the impact of
the workload on the value of dynamic resizing in data centers. In: IEEE INFOCOM,
pp. 515–519 (2013)

66. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cam-
bridge University Press, Cambridge (2011)

Brain Computation: A Computer Science
Perspective

Wolfgang Maass1(B), Christos H. Papadimitriou2, Santosh Vempala3,
and Robert Legenstein1

1 Institute for Theoretical Computer Science, Graz University of Technology,
Graz, Austria

{maass,robert.legenstein}@igi.tugraz.at
2 Computer Science, Columbia University, New York, NY, USA

christos@columbia.edu
3 Computer Science, Georgia Tech, Atlanta, GA, USA

vempala@gatech.edu

Abstract. The brain carries out tasks that are very demanding from
a computational perspective, apparently powered by a mere 20W. This
fact has intrigued computer scientists for many decades, and is currently
drawing many of them to the quest of acquiring a computational under-
standing of the brain. Yet, at present there is no productive interaction of
computer scientists with neuroscientists in this quest. Research in com-
putational neuroscience is advancing at a rapid pace, and the resulting
abundance of facts and models makes it increasingly difficult for scientists
from other fields to engage in brain research. The goal of this article is
to provide—along with a few words of caution—background, up-to-date
references on data and models in neuroscience, and open problems that
appear to provide good opportunities for theoretical computer scientists
to enter the fascinating field of brain computation.

1 Introduction

We have known since antiquity1 that our brain gives rise to our perceptions,
memories, thoughts and actions, and yet precisely how these phenomena arise
remains the greatest scientific mystery and challenge of our time. This is despite
massive, brilliant and accelerating progress in our understanding of the brain,
its structure and molecular basis, its development and pathology, its neurons
and its synapses, as well as the complex ways in which they are modified by
experience2.
1 In the early 5th century BCE, Alcmaeon of Croton proclaimed the brain “the seat

of intelligence,” conjectured that it is connected to sensory organs through chan-
nels, and discovered and dissected the optical nerve. Disappointingly, in his response
to Alcmaeon more than a century later, Aristotle argues instead that intelligence
springs from the heart...

2 [1] is a standard graduate and [2] a standard undergraduate textbook in Neuro-
science, while [3] is a mathematical treatment of the subject.

c© Springer Nature Switzerland AG 2019

B. Steffen and G. Woeginger (Eds.): Computing and Software Science, LNCS 10000, pp. 184–199, 2019.

https://doi.org/10.1007/978-3-319-91908-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91908-9_11&domain=pdf
https://doi.org/10.1007/978-3-319-91908-9_11

Brain Computation: A Computer Science Perspective 185

How does the mind emerge from the brain? It seems very plausible, and has
been strongly suggested over the decades [4–6], that the eventual answer to this
question will be at least partly computational. We therefore believe that com-
puter scientists, and theoreticians in particular, should work on this problem.
And yet, despite important early connections between computer science and the
study of the brain (see the brief historical account in Sect. 2), there is at present
no community of computer theorists studying the brain3. Furthermore, there
is no articulated suite of models, research questions, and early results in the
interface between computer science and brain science, inviting computer scien-
tists to participate in this grand quest4. This is significant, because such entry
points have in the past marked the beginnings of successful interactions between
computer science and other scientific disciplines, such as statistical physics [10],
quantum physics [11,12] and economics [13,14].

This is the context and thrust of this paper. In Sect. 2 we give a brief his-
torical overview of past interactions between computer science and the study
of computational aspects of the brain, and we articulate David Marr’s vision of
computational research on the brain, ca. 1980. In Sect. 3 we discuss aspects of
the methodology of the computational study of the brain, focusing on algorithms
of the brain, abstract and simplified models of brain systems, and learning. In
Sect. 4 we exemplify these principles by describing current work by our group on
computational models for the formation, association, and binding of memories
in the medial temporal lobe (MTL), a brain region believed to be involved with
such activities. We conclude in Sect. 5 with an array of research questions and
fronts.

2 History

The pioneers of computation were keenly interested in the brain. Turing saw
the human brain as the archetype of computation [15], and later, famously, as
an important challenge for computers [16]. Von Neumann in a posthumously
published essay [17,18] compares the brain with the computers of his time. He
observes that the brain is larger in number of elements (still is, but it is getting
close), but slower (much more so now); he notes the analogue nature, but digital
operation, of neurons and synapses, acknowledges the key role played by biol-
ogy and genes, and ponders the brain’s architecture (having himself pioneered
the computer’s). Remarkably, he hypothesized already that the brain is likely
to carry out computations on a statistical level with algorithms that are “char-
acterized by less logical and arithmetical depth that we are normally used to”.
McCulloch and Pitts [19] and later Rosenblatt [20] proposed stylized neuron-
like elements as a possible basis of brain-inspired computation, initiating a rich

3 In contrast, there is a well developed theoretical field of investigation for the related
field of Machine Learning, namely the COLT community.

4 Valiant’s work starting from the 1990s [7–9] is a notable exception discussed exten-
sively later.

186 W. Maass et al.

research tradition which eventually brought us deep learning (on which more
later).

In 1980, computational neuroscience pioneer Marr proposed an influential
three-level approach to understanding brain computation [21]:

• At the computational or behavioural level (today we would call it specifica-
tional) one identifies the input-output behavior of the system being studied;
we refer to this as the first level.

• At the software or algorithmic level, one seeks to understand the organizations
and dynamics of the particular processes and representations used by the
system; we refer to this as the second level.

• Finally, the biological implementation, or hardware, level entails identifying
the biophysical elements (e.g., neurons and synapses) and molecular mecha-
nisms employed by the system to realize the algorithm; we refer to this as the
third level.

We shall use Marr’s taxonomy as the basic framework of our discussion of
computational approaches to the brain.

3 On Methodology

Can we hope to use Marr’s method to discover the overarching algorithmic prin-
ciple underlying all of brain computation, the coveted algorithm run by the brain?
In articulating his three-level proposal, we believe that Marr was expecting the
various systems in the brain (probably hundreds of them) to have each its own
function and specification, and its own algorithm and hardware. One should
expect large-scale algorithmic heterogeneity in the brain—a plethora of princi-
ples, methods, procedures, and representations—and one has to be prepared for
the long haul of understanding them one by one. (But see [22,23] for a recent
principled attempt at a compilation of a broad range of elementary computa-
tional tasks at Marr’s level.)

There is a subtlety in Marr’s level two, where we infer the algorithm used by
the system: We know from the theory of computation that there are infinitely
many algorithms for the same task, and furthermore classical universality results
[24,25] imply that neuron-like systems can in principle implement any process
and algorithm whatsoever. Showing that one particular algorithm accomplishing
the level-one task can be implemented in the hardware of level three, or that a
class of algorithms can be so implemented (see for example [26]), constitutes no
evidence whatsoever that this algorithm or class is actually used at level two.
To solve the second level problem, one needs to rely on experimental results
revealing properties of the hardware (level three), and use these to restrict the
unlimited repertoire of possible algorithms.

In fact, one may speculate that the algorithmic second level may in many
cases end up being simply the computational behavior of the hardware/third
level: The algorithm vanishes, essentially because the hardware is well adapted
to (probably has co-evolved with) the task, and the inputs (from sensors or

Brain Computation: A Computer Science Perspective 187

other parts of the brain) as well as the parameters of the chemical environment
are adequate for driving the hardware in an essentially “algorithm-free” way.
In other cases, the algorithm may be disappointingly opaque and lacking in a
meaningful explanation, perhaps because it is the result of a long evolutionary
process of parameter setting though trial and error; recurrent neural networks
often appear to be like this.

Computational work of the brain must get inspiration from, and be meticu-
lously cognizant5 of, the tremendously rich and informative current experimental
work in neuroscience. In fact, one particular strand of this work seems especially
well suited to enlighten the computational study of the brain: Connectomics
[27,28], the ongoing herculean effort to create detailed large-scale maps of all
actual neurons and synapses of animal brains. Would this project, once suc-
cessful, facilitate—even obviate—the computational study of the brain? In pon-
dering this question, it is useful to remember deep learning: We currently have
at our disposal a wide variety of artificial neural network architectures solving
sophisticated problems, and we know to the last detail the precise structure,
connectivity, and vast array of numerical parameters of these networks. And yet
we are lacking a meaningful explication of how each of these systems solves the
problem at hand. Further, one should keep in mind that a static connectome of
the brain does not exist, at least for higher vertebrates such as mice. Instead
synaptic connections in the brain are known to rewire themselves on a time
scale of hours to days [29–31]. Hence, any connectome can only be a momentary
snapshot of a dynamically changing brain structure, and brain computation has
to be understood in the context of this dynamics.

Models. The study of the brain often employs models of the brain (or, more
commonly, of parts thereof). Models are important and useful, but must be
created and used with care. Abstract models create mathematical abstractions—
that is, generalizations—of the realities of the brain or a subsystem thereof. In
employing an abstract model, one must remember that it is a generalization;
this means that some but not all of its specializations will be reasonable models
of the brain. In addition, an abstract model may not be sufficiently abstract,
in the sense that models of biological neural networks that take into account
experimentally verified and functionally relevant features of biological neurons
or synapses may not be specializations of the abstract model. For example, we
know that weights of synapses are subject to use-dependent short-term plasticity;
apparently every biological synapse has an individual short-term plasticity, which
implies that its effective weight for the second spike in a spike train is smaller
or larger than for the first one, and assumes yet another value for the third
spike, depending on the interspike intervals and the specific type of synapse (see
Sect. 1 of [32] for references). This feature of biological synapses does appear to
be functionally relevant, and provides clues about the types of algorithms that
can be implemented by biological networks of neurons. On the other hand, it

5 The use of “killer adjectives” such as biologically plausible is a poor substitute for
computational models and results informed by experimental knowledge.

188 W. Maass et al.

sets such networks apart from Boolean circuits and artificial neural networks,
which require that the parameters of the units remain stable between steps.

Another genre of models are simplified models. Brain systems are often of
tremendous complexity, and it is difficult and unwieldy to include all that is
known from experiments in a single manageable model. In such cases, a sim-
plified model can be invaluable for capturing the system’s salient aspects, disre-
garding effects and interactions which seem largely inconsequential. However, in
employing a simplified model one must remember what was thrown away, and
in the end of the analysis go back to determine, for which kinds of predictions is
the model suitable, and for which it is not. Simplified models are often further
modified and implemented as brain-inspired computational engines for solving
actual computational problems. This is of course valuable, but again one must
remember that the success (or failure) of such engines may have little to teach
us about the way brains work (deep learning comes again to mind).

Learning, Environments, and Language. One cannot engage in a computational
study of the brain without considering how the brain is changed by the animal’s
experience—that is to say, how learning6 happens in the brain. By “learning” one
means changes occurring in the brain through interactions with other parts of
the brain and, importantly, with the surrounding environment. Processes that
implement learning are part of a large repertoire of plasticity processes that
take place in the brain simultaneously at many different time scales, and whose
function is only partially understood. Further, one cannot claim to understand
the brain without also considering the brain’s environment and its challenges.
One subtlety here is that the environment is affected by the brain’s activity—in
the short term through motor action and animal interactions, in the longer term
through design of the environment (dwellings, signs, etc.).

Language is itself an important environment (since utterances are the input
to a specialized yet overarching brain activity in humans). This environment was
designed from scratch, and, in evolutionary terms, extremely recently [34], at a
time when the human brain had already been developed essentially to its present
form. Human language is, so to speak, a last-minute adaptation. Furthermore,
it has undergone its own vigorous evolutionary process over a window of very
few thousands of generations. It seems natural to posit then that language has
evolved to be well adapted to the human brain’s strengths—for example, so it can
be learned easily by babies. We believe that language is an especially important
and opportune arena for the computational study of the brain and the mind.

4 Models of Memories and Cognitive Computation

Much current experimental work explores the nature and function of memories:
the representation in the brain of distinct concepts, such as persons we know,
places where we have been, or words we use. It is estimated that many tens
6 In fact, Poggio [33] proposes that learning is so fundamental for brain computation

so as to constitute an extra top level of Marr’s hierarchy.

Brain Computation: A Computer Science Perspective 189

of thousands of such memories are represented in the human brain, along with
associations between them. We believe that memories, because of their discrete
and symbolic nature, and their close relationship with language, are an interest-
ing place for theoretical computer scientists to start thinking about the brain.
In this section we focus on recent work by our group on memory creation, asso-
ciation, and binding; a reader more interested in a birds eye view of the subject
may want to go directly to the next section on open questions.

Valiant’s Model. Leslie G. Valiant’s neuroidal model was proposed in 1994 as
a possible basis of a computational theory of the brain, and ultimately of cog-
nition. He posits a random directed graph of neuroids (model neurons with
discrete internal states) as nodes, and synapses as directed edges. Parameters
of the neuroids and the synapses (e.g., internal state, threshold, strength, etc.)
are modified in clocked discrete steps in a distributed, automaton-like manner.
Valiant used this model to develop his theory of memory based on items. An
item is a set of neurons whose simultaneous firing is coterminous with the sub-
ject thinking one particular thought (such as “apple”); items may or may not
overlap, yielding two different models. Valiant defines Boolean-style operations
on items: Join (e.g., “apple” may be joined with “green” to form a new item
which will fire every time the two constituent items fire together) and Link
(e.g., “apple” linked to the item representing the class “fruit”). The operations
of Join and Link can be implemented within the neuroidal model by determin-
istic algorithms that switch between states of neurons and synapses, including
synaptic weights and thresholds—the algorithms must switch rather arbitrarily
between states in order to achieve the desired functionality— and by exploiting
the random nature of the underlying directed graph to recruit and manipulate
new neurons.7

Valiant’s model was a brave and inspiring early attempt to make computa-
tional sense of the brain. In the two decades since the publication of [7], experi-
mental neuroscience has provided much insight into various details of computa-
tion and plasticity (learning) of networks of neurons in the brain; some of these
findings align well with the premises and predictions of Valiant’s model, but
others do not. Even though the complete rules for synaptic plasticity (the ways
in which synaptic weights change in response to neural activity, effecting learn-
ing) are still not known, we now understand that Hebbian plasticity (changes
in synaptic weights resulting from the near-simultaneous firing of neurons) can
increase synaptic weights by some limited amount within a given time window,
say, by 100% within a day; see e.g. [37], and furthermore there is a lot of vari-
ability in this respect among different synapses, and within the same synapse
over time. Hence it cannot be assumed that synaptic weights can be set to an
arbitrary and precise value during learning.

7 Recently, Valiant’s theory was extended by the introduction of the predictive join, or
PJoin [35], a more algorithmically apt version of Join, which however is subject to
the same criticism. It is an interesting question as to whether the conceptual primi-
tives of Join, Link, PJoin, which enable rich computation [36], can be implemented
in more realistic models.

190 W. Maass et al.

Similarly, as we discuss below, neural recordings both from the animal and the
human brain [38] suggest that salient concepts are indeed encoded in the brain
through distributed “assemblies” of neurons, so that a fair portion of the neurons
in an assembly will fire whenever the corresponding concept is invoked. However,
these assemblies are not static entities, since the concrete set of firing neurons
varies substantially from trial to trial, presumably in dependence on the context,
and, as we discuss below, the underlying set can be changed by experience. Also,
even though, as we shall see, there is now evidence that associations somewhat
akin to the ones predicted by Valiant’s Join do happen in the human brain, such
associations appear to be of a different nature and form than Join: Associations
seem to be recorded by the assemblies “bleeding” into each other, as opposed to
collaborating to create an altogether new assembly8.

The Ison et al. Experiment. In a recent experiment [40], the formation of asso-
ciations between memories in the human medial temporal lobe (MTL, a brain
region long thought to be crucial to the representation of memories) has been
documented. They recorded from a few neurons9 in the MTL of a human sub-
ject to whom many (over a hundred) pictures of known people and places were
shown in a precise protocol. They found a particular neuron that fired every
time the Eiffel tower was shown, but not when other familiar images, such as
Barack Obama’s, were shown10. Then a combined image of the two was pre-
sented, and the neuron duly fired (as it always did when the Eiffel tower was in
sight). Remarkably, when a picture of Obama was presented next, the neuron
also fired: the subject had learned the connection, or association, between Obama
and the Eiffel tower! And the recorded neuron was a part of the representation
of this association. The principle that associations between memory items are
accompanied by overlaps in the corresponding assemblies was confirmed more
recently also for long-term representations of associations [41].

Neural Network Models of Memory. Memories and their associations, especially
in view of the experimental results just described, constitute a very concrete
description at the first (specificational) level of Marr’s framework, begging impor-
tant questions about the third and second levels: How are memories represented
in the animal MTL, how are these representations created, and how are they
altered to record associations between memories?

We start by proposing an answer to the third-level problem: There are by
now ample reasons to believe that assemblies of neurons play an important role
in answering these questions. A neuronal assembly is a set of neurons that are
likely to fire together, or at proximal times. It has not been established that the
neurons in an assembly are interconnected by strong synaptic connections, but
8 Earlier experiments with rodents and monkeys did however find neurons that only

responded to a specific combination of stimulus features but not to any of these
features in isolation, see e.g. [39], supporting in this case Valiant’s version.

9 There were many human subjects, and a total of hundreds of recorded neurons, see
[40] for details, but in this exposition we focus on one subject and one neuron.

10 Illustrating example.

Brain Computation: A Computer Science Perspective 191

this is a reasonable hypothesis (in Valiant’s model, intra-item connections do not
matter). Assemblies were conjectured by Hebb [42] already in 1949 (who depicted
them as Hamilton paths of strong synaptic connections). Since researchers have
discovered in human subjects neurons responding to the Eiffel tower or Jennifer
Aniston [40,43] by recording from only a few hundreds of randomly chosen neu-
rons in MTL, and presenting a few hundreds of familiar stimuli, it is plausible
that many more neurons (in the tens of thousands at least) respond consistently
to this same stimulus. Further, it is tempting to assume that the reason these
groups of neurons fire together after the image presentation is because they form
an assembly. Neural computation in the rodent brain has also been found to be
dominated by activations of assemblies of neurons, and in fact transiently active
assemblies of neurons seem to have replaced attractors as the putative tokens of
neural network activity, providing a link between single neurons and entities on
the cognitive level [38]. However, a theory of neural computation with assemblies
is still missing at this point.

How exactly does an assembly, corresponding to a particular memory, mate-
rialize in the MTL? And how are associations between two assemblies formed,
in a way that explains the experiment in [40] (Obama causing the Eiffel neuron
to fire)? Ongoing simulations [44], demonstrate that a model neuronal system,
with parameters for synaptic connectivity and plasticity of synaptic weights that
are compatible with what we know about the MTL exhibits similar behavior:

• when presented with particular input patterns for long enough, neurons tend
to form groups that fire consistently when the same pattern appears later;
and

• when presented simultaneously with two such previously encountered pat-
terns, some of the neurons in the two corresponding groups subsequently
respond to both patterns.

Hence the formation of assemblies and the creation of associations between them
can be reproduced in silico.

Theoretical Model. It is difficult to model synaptic plasticity in a neural net-
work so that the model (a) is consistent with experimental findings and (b)
remains theoretically tractable. One approach used in the past is to analyze
equilibrium points of the dynamics of synaptic weights in a network, see [45].
In [46] we propose a simplified linearized model of neurons and plasticity, in
which the synaptic input is interpreted as a measure of the probability that the
neuron fires, along with a novel variant of random graphs. Equilibrium analysis
of the linearized model predicts that a stable assembly emerges which includes
certain neurons with high synaptic projection from the stimulus, but also neu-
rons with high synaptic projection from (recursively) other assembly neurons;
interestingly, such behavior had been recently observed [47] in the formation of
olfactory memories in the piriform cortex.

We also analyze a simplified nonlinear discrete-time model of this system,
where we assume that the K (a fixed number) neurons with the highest synap-
tic input fire at each step; this assumption is an attempt to capture implicitly the

192 W. Maass et al.

effect of a population of inhibitory neurons interacting with the excitatory ones
under consideration. Importantly, we assume that the population of excitatory
neurons is randomly and sparsely connected, a reasonable model in view of exper-
imental data [48]. In particular, our model of synaptic connectivity (between
pyramidal/excitatory cells) is a Gn,p [49] directed graph with an added bias for
“pattern completions” [50] (such a model had been proposed for different pur-
poses in [35]): Conditioned on the existence of edges (a, b) and (b, c), edges (b, a)
or (a, c) are many times more likely to exist than predicted by chance and the
baseline parameter p. We show in [46] that this simplified model predicts the
formation of a stable assembly in response to the presentation of a stimulus, and
the association of two assemblies—two assemblies shifting slightly their support
to increase their intersection—in response to the concurrent presentation of two
previously established stimuli.

Binding. A fundamental capability of the brain, especially the human brain, is
to form and apply abstract rules. Such a rule could specify how to behave in a
particular social context, how to pick up an object, or how to form a syntactically
correct sentence. Applying such rules requires to bind temporarily a variable in
an abstract rule to a concrete context. For example, a simple sentence may
consist of a subject, a patient, and a verb, and these must be bound to specific
words during sentence formation. Recently, evidence has been emerging from
fMRI imaging of the human brain [51] about the processes that occur during
this binding process. Binding is related to Valiant’s Link operation. However,
that operation connects coequal memories, whereas binding involves an abstract
concept (such as “verb,” possibly represented not by an assembly but by a whole
brain area as suggested by the results in [51]) bound to an ordinary memory.

We propose that assemblies also play a prominent role during the binding of
a variable to a context. Recent simulations [52] suggest that such binding oper-
ation can be implemented in a realistic neural model through so-called assembly
pointers. Such pointer would connect an assembly representing “go” to a newly
formed assembly within the intended brain area that represents the concept
“verb”, in a process similar to the assembly formation discussed above (with the
“go” assembly now playing the role of the input stimulus).

Association Graphs. Occasionally, computational research on the brain will yield
an interesting theoretical problem worthy of scrutiny through the methodology
of theoretical computer science; we next describe briefly one such instance. As
more and more memories and associations will be formed through life, an intri-
cate network will be created [41], with intersections that are initially larger and
then appear to shrink, and it would be of some interest to develop a theory of
this aspect of cognition. It appears safe to assume that synaptic connections
between the neurons of two assemblies A and B get strengthened when an asso-
ciation between the corresponding concepts is learned; this provides a plausible
explanation for the previously described finding that both assemblies extend so
that their intersection becomes larger (estimates range between a 4% and 40%
of the size of a single assembly [41]). In an abstract model one can focus solely

Brain Computation: A Computer Science Perspective 193

on these overlaps between associated assemblies, and ignore synaptic weights
altogether. Such a network can be represented as an edge-weighted undirected
graph (V,E,w) such that each vertex v is a memory, each edge [u, v] is an asso-
ciation between memories u and v, and its weight wuv represents the strength
of this association, say the proportion of the neurons in the two assemblies that
also lie in their intersection. We call such graphs association graphs.

One immediate question is, are all weighted graphs association graphs? The
answer is trivially “yes” if no further assumptions are made, which can be shown
through a straightforward modification of the Erdős construction of intersection
graphs [53]. However, this construction may require that the size (number of
neurons) of the assemblies/vertices differ considerably and that intersections are
very small. What if we also insist that the assembly sizes are kept the same,
or approximately so? This gives rise to an interesting theoretical problem. The
requirement that the association graph be realized by intersecting assemblies by
approximately equal size can be expressed as a linear program, whose variables
are real numbers xS representing the (normalized) number of neurons belonging
to precisely all the assemblies in the set S ⊆ V . The constraints correspond to
the vertices and the edges of the graph. One seeks to minimize the maximum rel-
ative difference between sizes of nodes. Interestingly, a related but more general
problem had been addressed during the 1990s by philosophers [54].

It turns out that solving this linear program through the dual ellipsoid
method is related to the cut norm [55], a well known challenge in combina-
torics. In collaboration with Nima Anari and Amin Saberi we have shown that
the problem is in fact NP-hard, even to approximate within some nα factor,
but can be approximated in certain interesting special cases. Another interest-
ing variant is the one in which only the unweighted graph is given, with edges
representing intersections of size above a threshold, while non-edges stand for
intersections of size below a lower threshold; in this model again not all graphs
can be represented, but a large class of graphs can.

There are many more questions and directions in connection to the graph-
theoretic modeling of associations that seem worth exploring.

5 Open Questions

The purpose of the previous section was to describe ongoing work in just one pos-
sible direction—an important and opportune one, in our view—where familiar
methods from theoretical computer science can support modeling, analyzing, and
ultimately understanding brain function. The intended message of this article
is that there are several such opportunities, not just in connection with memo-
ries but also with many other important questions and directions of research on
brain computation; below is an assortment of such opportunities, starting with
the ones closest to the described work.

• Neurons tend to have surprisingly different levels of activity (measured for
example through their long-term average firing rate); this is true even for

194 W. Maass et al.

neurons of the same general type, e.g. pyramidal cells. Furthermore a few
neurons are connected by really strong synapses while most are not [56].
These differences show up in statistical analyses as heavy-tailed distributions
(often approximated by a log normal) of measurements such as long-term
firing rates, synaptic weights, see e.g. [57,58]11. The question arises: what
do these differences between neurons imply for the organization of neural
computation? Do they point to an implicit hierarchical organization of neu-
rons even within a single brain area, where more frequently firing neurons
remember, process and transmit information in a coarser way—possibly even
initialized through the genetic code—while less frequently firing neurons con-
tribute refinements in a more flexible and experience-based manner?

• Another surprising invariant of neural activity in the awake brain is the
scale-free (power law) distribution of avalanches of neural activity, i.e., of
continuous episodes of neural activity within a patch of a brain area, or
within larger brain areas, see e.g. [59,60]. Scale-free distributed activity is
commonly interpreted as a sign that the brain computes in a critical or near-
critical regime [61]. Criticality of network dynamics could be an important
clue for the large-scale organization of neural computations in the brain. How-
ever, several pieces of the puzzle are missing. Criticality is typically studied in
deterministic dynamical system, while the brain is best modeled as a stochas-
tic one; and we are not aware of a rigorous, computational understanding of
criticality in dynamical systems. See [62,63], and also [32], for references to
first steps in this direction.

• A further surprising feature of brain activity is that it is not input driven: the
brain is almost as active when there is (seemingly) nothing to compute. For
example, the neurons in the primary visual cortex (area V1) are almost as
active as during visual processing as they are in complete darkness [64]. Since
brain activity consumes a fair portion of the energy budget of an organism, it
is unlikely that this spontaneously ongoing brain activity is just an accident,
and highlights a clear organizational difference between computers and brains.
A challenge for theoretical work is to understand the role of spontaneous
activity in brain computation and learning.

• Another ubiquitous and mysterious feature of neural network activity in the
brain is the prominence of stereotypical spatio-temporal firing patterns of neu-
rons that occur both during active processing of sensory stimuli and spon-
taneously, see e.g. [65–67]. These experimental data undermine theoretical
models that are based on an orderly bottom-up organization of encoding
and computational transformation, where individual neurons report through
their firing the presence of a specific feature of a sensory stimulus, or a specific
value of an analog feature (for example in so-called population codes). These
puzzles are nicely described in [68] for the case of area V1, which is one of
the brain areas where neural coding has been studied the most. The presence
of stereotypical spatio-temporal firing patterns of neurons points to a more

11 In fact, such lognormal distribution of synaptic weights can be predicted theoretically
from a simplified model of plasticity.

Brain Computation: A Computer Science Perspective 195

implicit coding and computing mechanisms, and better computing paradigms
and computational models are needed.

• As we have already discussed briefly, language appears to be a most attrac-
tive research arena for the computational study of the brain. One particular
intriguing – and well studied from the theoretical point of view – aspect of
language is syntax, the way our brain appears to form larger linguistic units
such as phrases and sentences from smaller units such as words. Can we define
a biologically plausible small set of primitives for syntactic processing during
language generation and parsing? We believe that the mechanisms for assem-
bly creation, association, and binding described in the previous section may
be of relevance to this quest.

• Visual invariants are one of the mysteries of vision: How is it possible that a
plethora of very different images and sensations (an object such as a person’s
face, and its various translations, rotations, zoom-ins and -outs, occlusions,
etc., not to mention the person’s last name, or voice) are mapped instan-
taneously and unambiguously to the same “memory”? We suspect that the
processes of assembly formation and association may provide some insight to
this problem, see [69,70] for experimental data and related theories.

• Randomness, its nature and utility, is one of the beloved research themes of
Theoretical Computer Science. Valiant proposes that random synaptic con-
nections are an essential ingredient of the brain’s power and versatility. A
further hypothesis, begging for algorithmic verification, is that pattern com-
pletion deviations from the randomness of Gn,p graphs (see the brief dis-
cussion in the previous section) play an important role. Randomness is also
ubiquitous everywhere in neural activity, resulting in a wide range of trial-to-
trial variation in almost any brain experiment. We refer to Sects. 3 and 4 of
[32] for references to related experimental data. It is essential to incorporate
randomness in computational models of brain systems, and to understand its
origins and function in the brain. Examples of algorithms that exploit the
randomness of neural firing are given in [71,72].

• The foundational understanding of the apparent power of deep learning is
an important current challenge for Theoretical Computer Science. How does
this quest relate to the brain? We refer to [73] for a discussion of related
literature. Deep learning of some sort does happen in the brain (consider the
visual cortex and the hierarchical processing through its areas, from V1 to
V2 and V4 all the way to MT and beyond). But there are differences, and
perhaps the most fundamental among them is the existence of lateral and
backward connections between brain areas. What is their function, and how
do they enhance learning?

• A complementary question is, what replaces backpropagation in brain circuits?
The famous backpropagation algorithm that is used to efficiently optimize
deep neural networks is incompatible with our understanding of brain con-
nectivity, as it requires reciprocal connections with weight updates that are
maintained to levels identical to those of the forward connections. An intrigu-
ing recent finding in this regard is the surprising learning capability of (rather

196 W. Maass et al.

shallow) neural networks in which, instead of backpropagation, feedback is
carried out with fixed random weights [74].

6 Summary

We sketched the history, current status, and prospects of research interaction
between computer scientists and neuroscientists in the quest of unraveling the
organization of brain computation. We then focused on the specific question,
how are memories and a web of associations between memories implemented
in networks of neurons in the brain. This question appears to be especially well
suited for contributions by theoretical computer scientists, since (a) a theory that
is consistent with recent recordings from the human brain is missing; and (b)
scaling and asymptotic analysis of model data structures and algorithms seem
essential for understanding how the human brain can create and maintain an
association web of tens of thousands of concepts. We concluded with a sprinkling
of open questions, each accompanied by references to some of the most recent
research articles and review papers in neuroscience. Since for most domains one
cannot extract from the literature a single model or set of assumptions, famil-
iarity with a diversity of models and experimental results is a prerequisite for
any lasting contribution to our understanding of brain computation. Ultimately,
an informed and fruitful dialogue and collaboration between computer scientists
and neuroscientists may be the brightest hope we have for finally unraveling the
mysteries of brain computation.

Acknowledgments. Written under partial support by the Human Brain Project of
the European Union #604102 and #720270, and NSF grants CCF-1408635, CCF-
1563838 and CCF-1717349.

References

1. Kandel, E.R., Schwartz, J.H., Jessell, T.M., Siegelbaum, S.A., Hudspeth, A.J.:
Principles of Neural Science, vol. 5th. McGraw-Hill, New York (2013)

2. Purves, D., Augustine, G.J., Fitzpatrick, D., Hall, W.C., LaMantia, A.S., White,
L.E.: Neuroscience, 5th edn. Sinauer Associates, Inc., Sunderland (2011)

3. Dayan, P., Abbott, L.F.: Theoretical Neuroscience, vol. 10. MIT Press, Cambridge
(2001)

4. Marr, D.: Vision: A Computational Investigation into the Human Representation
and Processing of Visual Information. Henry Holt and Co. Inc., New York (1982)

5. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)
6. Hawkins, J., Blakeslee, S.: On intelligence. Times Books, New York (2004)
7. Valiant, L.G.: Circuits of the Mind. Oxford University Press, Oxford (1994)
8. Valiant, L.G.: A neuroidal architecture for cognitive computation. J. ACM 47(5),

854–882 (2000)
9. Valiant, L.G.: Memorization and association on a realistic neural model. Neural

Comput. 17(3), 527–555 (2005)
10. Jerrum, M., Sinclair, A.: Polynomial-time approximation algorithms for the Ising

model. SIAM J. Comput. 22(5), 1087–1116 (1993)

Brain Computation: A Computer Science Perspective 197

11. Yao, A.C.C.: Quantum circuit complexity. In: 1993 Proceedings of 34th Annual
Symposium on Foundations of Computer Science, pp. 352–361. IEEE (1993)

12. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26(5),
1411–1473 (1997)

13. Papadimitriou, C.: Algorithms, games, and the internet. In: Proceedings of the
Thirty-Third Annual ACM Symposium on Theory of Computing, pp. 749–753.
ACM (2001)

14. Nisan, N., Ronen, A.: Algorithmic mechanism design. In: Proceedings of the Thirty-
First Annual ACM Symposium on Theory of Computing, pp. 129–140. ACM (1999)

15. Turing, A.M.: On computable numbers, with an application to the Entschei-
dungsproblem. Proc. Lond. Math. Soc. 2(1), 230–265 (1937)

16. Turing, A.M.: Computing machinery and intelligence. Mind 59(236), 433–460
(1950)

17. Von Neumann, J.: The Computer and the Brain. Yale University Press, New Haven
(1958)

18. Von Neumann, J., Burks, A.W.: Theory of Self-reproducing Automata. University
of Illinois Press, London (1966)

19. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous
activity. Bull. Math. Biophys. 5(4), 115–133 (1943)

20. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and
organization in the brain. Psychol. Rev. 65(6), 386 (1958)

21. Marr, D.C., Poggio, T.: From understanding computation to understanding neural
circuits. Technical report AI-M-357, Massachusetts Institute of Technology, Cam-
bridge, MA, US (1976)

22. Marcus, G.F.: The Algebraic Mind: Integrating Connectionism and Cognitive Sci-
ence. MIT Press, Cambridge (2003)

23. Marcus, G.F., Marblestone, A., Dean, T.: The atoms of neural computation. Sci-
ence 346(6209), 551–552 (2014)

24. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are uni-
versal approximators. Neural Netw. 2(5), 359–366 (1989)

25. Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal
function. IEEE Trans. Inf. Theory 39(3), 930–945 (1993)

26. Eliasmith, C., Anderson, C.H.: Neural Engineering: Computation, Representation,
and Dynamics in Neurobiological Systems. MIT Press, Cambridge (2004)

27. Seung, H.S.: Neuroscience: towards functional connectomics. Nature 471(7337),
170–172 (2011)

28. Lichtman, J.W., Livet, J., Sanes, J.R.: A technicolour approach to the connectome.
Nat. Rev. Neurosci. 9(6), 417–422 (2008)

29. Holtmaat, A., Svoboda, K.: Experience-dependent structural synaptic plasticity in
the mammalian brain. Nat. Rev. Neurosci. 10(9), 647–658 (2009)

30. Minerbi, A., Kahana, R., Goldfeld, L., Kaufman, M., Marom, S., Ziv, N.E.: Long-
term relationships between synaptic tenacity, synaptic remodeling, and network
activity. PLoS Biol. 7(6), e1000136 (2009)

31. Kasai, H., Fukuda, M., Watanabe, S., Hayashi-Takagi, A., Noguchi, J.: Structural
dynamics of dendritic spines in memory and cognition. Trends Neurosci. 33(3),
121–129 (2010)

32. Maass, W.: Searching for principles of brain computation. Curr. Opin. Behav. Sci.
(Spec. Issue Comput. Model.) 11, 81–92 (2016)

33. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex.
Nat. Neurosci. 2(11), 1019–1025 (1999)

198 W. Maass et al.

34. Berwick, R.C., Chomsky, N.: Why Only Us: Language and Evolution. MIT Press,
Cambridge (2016)

35. Papadimitriou, C.H., Vempala, S.S.: Cortical learning via prediction. In: Proceed-
ings of COLT (2015)

36. Papadimitriou, C.H., Petti, S., Vempala, S.: Cortical computation via iterative
constructions. In: Proceedings of the 29th Conference on Learning Theory, COLT
2016, 23–26 June 2016, New York, USA, pp. 1357–1375 (2016)

37. Froemke, R.C., Debanne, D., Bi, G.Q.: Temporal modulation of spike-timing-
dependent plasticity. Front. Synaptic Neurosci. (2010). https://doi.org/10.3389/
fnsyn.2010.00019

38. Buzsaki, G.: Neural syntax: cell assemblies, synapsembles, and readers. Neuron
68(3), 362–385 (2010)

39. Komorowski, R.W., Manns, J.R., Eichenbaum, H.: Robust conjunctive item-place
coding by hippocampal neurons parallels learning what happens where. J. Neurosci.
29(31), 9918–9929 (2009)

40. Ison, M.J., Quiroga, R.Q., Fried, I.: Rapid encoding of new memories by individual
neurons in the human brain. Neuron 87(1), 220–230 (2015)

41. De Falco, E., Ison, M.J., Fried, I., Quiroga, R.Q.: Long-term coding of personal
and universal associations underlying the memory web in the human brain. Nat.
Commun. 7, 13408 (2016)

42. Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory. Wiley,
New York (1949)

43. Quiroga, R.Q., Reddy, L., Kreiman, G., Koch, C., Fried, I.: Invariant visual rep-
resentation by single neurons in the human brain. Nature 435(7045), 1102–1107
(2005)

44. Pokorny, C., Ison, M.J., Rao, A., Legenstein, R., Papadimitriou, C., Maass, W.:
Associations between memory traces emerge in a generic neural circuit model
through STDP. bioRxiv:188938 (2017)

45. Nessler, B., Pfeiffer, M., Buesing, L., Maass, W.: Bayesian computation emerges
in generic cortical microcircuits through spike-timing-dependent plasticity. PLOS
Comput. Biol. 9(4), e1003037 (2013)

46. Legenstein, R., Maass, W., Papadimitriou, C.H., Vempala, S.S.: Long-term mem-
ory and the densest k-subgraph problem. In: Proceedings of 9th Innovations in The-
oretical Computer Science (ITCS) Conference, 11–14 January 2018, Cambridge,
USA (2018)

47. Franks, K.M., Russo, M.J., Sosulski, D.L., Mulligan, A.A., Siegelbaum, S.A., Axel,
R.: Recurrent circuitry dynamically shapes the activation of piriform cortex. Neu-
ron 72(1), 49–56 (2011)

48. Wang, X.J., Kennedy, H.: Brain structure and dynamics across scales: in search of
rules. Curr. Opin. Neurobiol. 37, 92–98 (2016)

49. Erdős, P., Renyi, A.: On the evolution of random graphs. Publ. Math. Inst. Hun-
gary Acad. Sci. 5, 17–61 (1960)

50. Guzman, S.J., Schlögl, A., Frotscher, M., Jonas, P.: Synaptic mechanisms of pattern
completion in the hippocampal CA3 network. Science 353(6304), 1117–1123 (2016)

51. Frankland, S.M., Greene, J.D.: An architecture for encoding sentence meaning in
left mid-superior temporal cortex. Proc. Natl. Acad. Sci. 112(37), 11732–11737
(2015)

52. Legenstein, R., Papadimitriou, C.H., Vempala, S., Maass, W.: Assembly point-
ers for variable binding in networks of spiking neurons. arXiv preprint
arXiv:1611.03698 (2016)

https://doi.org/10.3389/fnsyn.2010.00019
https://doi.org/10.3389/fnsyn.2010.00019
http://arxiv.org/abs/1611.03698

Brain Computation: A Computer Science Perspective 199

53. Erdős, P., Goodman, A., Posa, L.: The representation of graphs by set intersections.
Can. J. Math. 18, 106–112 (1966)

54. Pitowsky, I.: Correlation polytopes: their geometry and complexity. Math. Pro-
gram. 50(1), 395–414 (1991)

55. Alon, N., Naor, A.: Approximating the cut-norm via Grothendieck’s inequality.
SIAM J. Comput. 35(4), 787–803 (2006)

56. Song, S., Sjöström, P.J., Reigl, M., Nelson, S., Chklovskii, D.B.: Highly nonrandom
features of synaptic connectivity in local cortical circuits. PLoS Biol. 3(3), e68
(2005)

57. Buzsaki, G., Mizuseki, K.: The log-dynamic brain: how skewed distributions affect
network operations. Nat. Rev. Neurosci. 15(4), 264–278 (2014)

58. Grosmark, A.D., Buzsaki, G.: Diversity in neural firing dynamics supports both
rigid and learned hippocampal sequences. Science 351(6280), 1440–1443 (2016)

59. Beggs, J.M., Plenz, D.: Neuronal avalanches in neocortical circuits. J. Neurosci.
23(35), 11167–11177 (2003)

60. Bellay, T., Klaus, A., Seshadriand, S., Plenz, D.: Irregular spiking of pyramidal
neurons organizes as scale-invariant neuronal avalanches in the awake state. eLife
4, e07224 (2015)

61. Priesemann, V., Wibral, M., Valderrama, M., Pröpper, R., Le Van Quyen, M.,
Geisel, T., Triesch, J., Nikolic, D., Munk, M.H.: Spike avalanches in vivo suggest
a driven, slightly subcritical brain state. Front. Syst. Neurosci. 8, 108 (2014)

62. Legenstein, R., Maass, W.: Edge of chaos and prediction of computational perfor-
mance for neural circuit models. Neural Netw. 20(3), 323–334 (2007)

63. Legenstein, R., Maass, W.: What makes a dynamical system computationally pow-
erful. In: New Directions in Statistical Signal Processing: From Systems to Brain,
pp. 127–154 (2007)

64. Fiser, J., Chiu, C., Weliky, M.: Small modulation of ongoing cortical dynamics by
sensory input during natural vision. Nature 431, 573–583 (2004)

65. Luczak, A., Barthó, P., Harris, K.D.: Spontaneous events outline the realm of pos-
sible sensory responses in neocortical populations. Neuron 62(3), 413–425 (2009)

66. Bathellier, B., Ushakova, L., Rumpel, S.: Discrete neocortical dynamics predict
behavioral categorization of sounds. Neuron 76(2), 435–449 (2012)

67. Miller, J.e.K., Ayzenshtat, I., Carrillo-Reid, L., Yuste, R.: Visual stimuli recruit
intrinsically generated cortical ensembles. Proc. Natl. Acad. Sci. 111(38), E4053–
E4061 (2014)

68. Olshausen, B.A., Field, D.J.: How close are we to understanding V1? Neural Com-
put. 17(8), 1665–1699 (2005)

69. DiCarlo, J.J., Cox, D.D.: Untangling invariant object recognition. Trends Cogn.
Sci. 11(8), 333–341 (2007)

70. Cox, D.D.: Do we understand high-level vision? Curr. Opin. Neurobiol. 25, 187–193
(2014)

71. Maass, W.: Noise as a resource for computation and learning in networks of spik-
ing neurons. Spec. Issue Proc. IEEE “Eng. Intell. Electron. Syst. Based Comput.
Neurosci.” 102(5), 860–880 (2014)

72. Lynch, N., Musco, C., Parter, M.: Spiking neural networks: an algorithmic per-
spective (2017). https://groups.csail.mit.edu/tds/papers/Musco/neuralBda.pdf

73. Marblestone, A.H., Wayne, G., Kording, K.P.: Toward an integration of deep learn-
ing and neuroscience. Front. Comput. Neurosci. 10 (2016)

74. Lillicrap, T.P., Cownden, D., Tweed, D.B., Akerman, C.J.: Random feedback
weights support learning in deep neural networks. arXiv preprint arXiv:1411.0247
(2014)

https://groups.csail.mit.edu/tds/papers/Musco/neuralBda.pdf
http://arxiv.org/abs/1411.0247

Rating Computer Science via Chess

In Memoriam Daniel Kopec and Hans Berliner

Kenneth W. Regan(B)

Department of CSE, University at Buffalo, Amherst, NY 14260, USA
regan@buffalo.edu

Abstract. Computer chess was originally purposed for insight into the
human mind. It became a quest to get the most power out of com-
puter hardware and software. The goal was specialized but the advances
spanned multiple areas, from heuristic search to massive parallelism. Suc-
cess was measured not by standard software or hardware benchmarks,
nor theoretical aims like improving the exponents of algorithms, but by
victory over the best human players. To gear up for limited human chal-
lenge opportunities, designers of chess machines needed to forecast their
skill on the human rating scale. Our thesis is that this challenge led to
ways of rating computers on the whole and also rating the effectiveness of
our field at solving hard problems. We describe rating systems, the work-
ings of chess programs, advances from computer science, the history of
some prominent machines and programs, and ways of rating them.

1 Ratings

Computer chess was already recognized as a field when LNCS began in 1971. Its
early history, from seminal papers by Shannon [1] and Turing [2], after earlier
work by Zuse and Wiener, has been told in [3–5] among other sources. Its later
history, climaxing with humanity’s dethronement in the victory by IBM’s Deep
Blue over Garry Kasparov and further dominance even by programs on smart-
phones, will be subordinated to telling how rating the effectiveness of hardware
and software components indicates the progress of computing. Whereas com-
puter chess was first viewed as an AI problem, we will note contributions from
diverse software and hardware areas that have also graced the volumes of LNCS.

In 1971, David Levy was feeling good about his bet made in 1968 with Alan
Newell that no computer would defeat him in a match by 1978 [6]. That year
also saw the adoption by the World Chess Federation (FIDE) of the Elo Rating
System [7], which had been designed earlier for the United States Chess Feder-
ation (USCF). Levy’s FIDE rating of 2380, representative of his International
Master (IM) title from FIDE, set a level of proficiency that any computer needed
to achieve in order to challenge him on equal terms.

The Elo system has aged well. It is employed for physical sports as well as
games and has recently been embraced by the statistical website FiveThirtyEight
[8] for betting-style projections. At its heart is a simple idea:

c© Springer Nature Switzerland AG 2019

B. Steffen and G. Woeginger (Eds.): Computing and Software Science, LNCS 10000, pp. 200–216, 2019.

https://doi.org/10.1007/978-3-319-91908-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91908-9_12&domain=pdf
https://doi.org/10.1007/978-3-319-91908-9_12

Rating Computer Science via Chess 201

A difference of x rating points to one’s opponent corresponds to an expec-
tation of scoring a px portion of the points in a series of games.

This lone axiom already tells much. When x = 0, px must be 0.5 because the two
players are interchangeable. The curve likewise has the symmetry p−x = 1 − px.
When x is large, the value px approaches 1 but its rate of change must slow.
This makes px a sigmoid (that is, roughly S-shaped) curve. Two eminent choices
are the cumulant of the normal distribution and the simple logistic curve

px =
1

1 + e−Bx
, (1)

where B is a scaling factor. Originally the USCF used the former with factors to
make p200 = 0.75, but they switched to the latter with B = (ln 10)/400, which
puts the expectation of a 200-points higher-rated player a tad under 76%.

If your rating is R and you use your opponents’ ratings to add up your px
for each of N games, that sum is your expected score s. If your actual score S
is higher then you gain rating points, else your new rating R′ stays even or goes
down. Your performance rating over that set of games could be defined as the
value Rp whose expectation sp equals S; in practice other formulas with patches
to handle the cases S = N or S = 0 are employed. The last issue is how far to
move R in the direction of Rp to give R′. The amount of change is governed by
a factor called K whose value is elective: FIDE makes K four times as large for
young or beginning players as for those who have ever reached a rating of 2400.

Despite issues of rating uncertainty whose skew causes actual scores by 200-
points higher rated players to come in under 75% (see [9]), unproven suspicions
of “rating inflation,” proven drift between FIDE ratings and those of the USCF
and other national bodies, and alternative systems claiming superiority in Kaggle
competitions [10], the Elo system is self-stabilizing and reasonably reliable for
projections. Hence it is safe to express benchmarks on the FIDE rating scale,
whose upper reaches are spoken of as follows:

– 2200 is the colloquial threshold to call a player a “master”;
– 2400 is required for granting the IM title, 2500 for grandmaster (GM);
– 2600 and above colloquially distinguishes “Strong GMs”;
– 2800+ has been achieved by 11 players; Bobby Fischer’s top was 2785.

Kasparov was the first player to pass 2800; current world champion Magnus
Carlsen topped Kasparov’s peak of 2851 and reached 2882 in May 2014. Com-
puter chess players, however, today range far over 3000. How did they progress
through these ranks to get there? Many walks of computer science besides AI
contributed to confront a hard problem. Just how hard in raw complexity terms,
we discuss next.

2 Complexity and Endgame Tables

Chess players see all pertinent information. There are no hidden cards as in
bridge or poker and no element of chance as in backgammon. Every chess position

202 K. W. Regan

is well-defined as W , D, or L—that is, winning, drawing, or losing for the player
to move. There is a near-universal belief that the starting position is D, as was
proved for checkers on an 8 × 8 board [11]. So how can chess players lose? The
answer is that chess is complex.

Here is a remarkable fact. Take any program P that runs within n units of
memory. We can set up a position P ′ on an N × N board—where N and the
number of extra pieces are “moderately” bigger than n—such that P ′ is W if
and only if P terminates with a desired answer. Moreover, finding the winning
strategy in P ′ quickly reveals a solution to the problem for which P was coded.

Most remarkably, even if P runs for 2n steps, such as for solving the Towers
of Hanoi puzzle with n rings, individual plays of the game from P ′ will take
far less time. The “Fifty Move Rule” in standard chess allows either side to
claim a draw if 50 moves have been played with no capture or pawn advance.
Various reasonable ways to extend it to N × N boards will limit plays to time
proportional to N2 or N3. The exponential time taken by P is sublimated into
the branching of the strategy from P ′ within these time bounds. For the tower
puzzle, the first move frames the middle step of transferring the bottom ring,
then play branches into similar but separate combinations for the ‘before’ and
‘after’ stages of moving the other n − 1 rings.

If we allow P on size-n cases z of the problem to use 2n memory as well as
time, then we must lift the time limit on plays from P ′, but the size of the board
and the time to calculate P ′ from P and z remain moderate—that is, bounded
by a polynomial in n. In terms of computational complexity as represented by
Allender’s contribution [12], N ×N chess is complete in polynomial space with a
generalized fifty-move rule [13], and complete in exponential time without it [14].
This “double-rail” completeness also hints that the decision problem for chess is
relatively hard to parallelize. Checkers, Go, Othello, and similar strategy games
extended to N × N boards enjoy at least one rail of hardness [15–18].

These results as N grows do not dictate high complexity for N = 8 but their
strong hint manifests quickly in chess. The Lomonosov tables [19] give perfect
strategies for all positions of up to 7 pieces. They reside only in Moscow and their
web-accessible format takes up 140 terabytes. This huge message springs from
a small seed because the rules of chess fit on a postcard, yet is computationally
deep insofar as the effort required to generate it is extreme. The digits of π are
as easy as pie by comparison [20]. These tables may be the deepest message we
have ever computed.

Even with just 4 pieces, the first item in our history after 1971 shows how
computers tapped complexity unsuspected by human players. When defending
with king and rook versus king and queen, it was axiomatic that the rook needed
to stay in guarding range of the king to avoid getting picked off by a fork from the
queen. Such huddling made life easier for the attacker. Computers showed that
the rook could often dance away with impunity and harass from the sides to delay
up to 31 moves before falling to capture—out of the 50 allotted for the attacker
to convert by reducing (or changing) the material. Ken Thompson tabulated this
endgame for his program Belle and in 1978 challenged GM Walter Browne to

Rating Computer Science via Chess 203

execute the win. Browne failed in his first try, and after extensive study before
a second try, squeaked through by capturing the rook on move 50.

Thompson generated perfect tables for 5 pieces with positions tiered by
distance-to-conversion (DTC)—that is, the maximum number of moves the
defender could delay conversion. In distance-to-mate (DTM), the king and queen
versus king and rook endgame can last 35 moves. The 5-piece tables in Eugene
Nalimov’s popular DTM format occupy 7.1 GB uncompressed. Distance-to-zero
(DTZ) is the minimum number of moves to force a capture or pawn move while
retaining a W value; if the DTZ is over 50 then its “Z50” flavor flips the position
value from W to D in strict accordance with the 50-move draw rule.

Thompson also generated tables for all 6-piece positions without pawns. He
found positions requiring up to 243 moves to convert and 262 moves to mate. In
many more, the winning strategy is so subtle and painstaking as to be thought
beyond human capability to execute. The Lomonosov tables, which are DTM-
based, have upped the record to 545 moves to mate—more precisely, 1,088 ply
with the loser moving first. Some work on 8-piece tablebases is underway but no
estimate of when they may finish seems possible. This goes to indicate that posi-
tions with full armies are intractably complex, so that navigating them becomes
a heuristic activity. What ingredients allow programs to cope?

3 The Machines: Software to Hardware to Software

Computer chess players began largely as hardware entities but have evolved into
software, with enough convergence in basic architecture and interchangeability
under APIs that they are now called engines. Three main components are iden-
tifiable:

1. Position representation—by which the rules of chess are encoded and legal
moves are generated;

2. Position evaluation—by which “knowledge” is converted into numbers; and
3. Search heuristics—whose ingenuity marches on through the present.

Generating legal moves is cumbersome especially for the sliding pieces bishop,
rook, and queen. A software strategy used early on was to maintain and update
their limits in each of the compass directions. Limit squares can be off the board,
and the trick of situating the board inside a larger array pays a second dividend
of disambiguating differences in square indices. For example, the “0x88” layout
uses cells 0–7 then 16–23 and so on up to 112–119. Cell pairs with differences in
the range [−7,7] must then belong to the same rank (that is, row). The 0x88 lay-
out aligns differences a multiple of 15 southeast-northwest, 16 south-north, and
17 southwest-northeast. Off-board squares are distinguished by having nonzero
bitwise-AND with 10001000, which is 0x88 in hexadecimal.

Such tricks go only yea-far, and it became incumbent to implement board
operations directly in hardware. As noted by Lucci and Kopec [21], the best
computer players from Belle through Deep Blue went this route in the 1980s
and 1990s. They avoided the “von Neumann bottleneck” via multiprocessing of

204 K. W. Regan

both data support and calculation. Chess programs realize less than full benefits
of extra processing cores [22], an echo of the parallel hardness mentioned above.

The advent of 64-bit processing decisively favored an alternate representa-
tion that had been discussed since the late 1950s: bitboards. Instead of storing
the position in one 8 × 8 array, each piece has its own 8 × 8 binary array—or
several—coded as one 64-bit unsigned integer. A rook on the square b2 might
be represented by the number 29 and its potential moves along the second rank
by rm = 28 plus the sum of 210 through 215. If a same-colored piece arrives on
a square to its right, coded by s = 2i, then its mobility can be updated by

rm := rm & (s − 1),

in just two machine cycles. A similar subtraction trick finds the least bit set
to 1 in any position code. Similar operations for files and diagonals, perhaps
virtually rotated [23] into horizontal position to avail tricks like this, enable
fast move generation and updates. Newer generic hardware instructions, such as
population-count (POPCNT) which gives the number of bits set to 1, also speed
many operations. All this has lessened the advantage of specialized hardware,
exemplified by Robert Hyatt’s evolution of Cray Blitz into the open-source
program Crafty.

Evaluation assigns to each position p a numerical value e0(p). The values are
commonly output in discrete units of 0.01 called centipawns (cp), figuratively
1/100 the base value of a pawn. The knight and bishop usually have base val-
ues between 300 and 350 cp, the rook around 500 cp, and the queen somewhere
between 850 and 1,000 cp. The values are adjusted for positional factors, such
as pawns becoming stronger when further advanced and “passed” but weaker
when “doubled” or isolated. Greater mobility and attacks on forward and central
squares bring higher values. King safety is a third important category, judged
by the structure of the king’s pawn shield and the proximity of attackers and
defenders. The fourth factor emphasized by Deep Blue [24] is “tempo,” mean-
ing ability to generate threats and moves that enhance the position score. Addi-
tional factors face a tradeoff against the need for speedy evaluation, but this is
helped by computing them in parallel pipes and by keeping the formula linear.
Much human ingenuity goes into choosing and formulating the factors, but of
late their weights have been determined by massive empirical testing (see [25]).

3.1 Search and Soundness

Search has a natural recursive structure. We can replace e0(p) by the maximum—
from the player to move’s point of view—of e0(p′) over the set F1 of positions
p′ reachable by one legal move, calling this e1(p). From the other player’s point
of view those positions have value e′

0(p
′) = −e0(p′). Now let F2 be the set

of positions p′′ reachable by a move from some p′ and define e′
1(p

′) to be the
maximum of e′

0(p
′′) over all p′′ reached from p′. From the first player’s view this

becomes a minimizing update e1(p′); then re-doing the maximization at the root
p over these values yields e2(p). This so-called the negamax form of minimax

Rating Computer Science via Chess 205

search is often coded as a recursion exactly so. The sequence p′, p′′ such that
e2(p) = e1(p′) = e0(p′′) (breaking any ties in the order nodes were considered)
traces out the principal variation (PV) of the search, and the move m1 leading
to p′ is the engine’s best-move (or first-move).

Continuing for d ≥ 3, we define Fd to comprise all positions r reached by
one move from a position q ∈ Fd−1. Multiple lines of play may go from p to r
through different q. Such transpositions may also have different lengths so that
Fd overlaps Fi for some i < d of the same parity. Given initial evaluations e0(r)
for all r ∈ Fd, minimax well-defines ed(p) and a PV to a node r ∈ Fd so that
all nodes in the PV have value ed(p) = e(r). In case of overlap at a node u in
Fi the value with higher generation subscript—namely j in ej(u)—is preferred.
The simple depth-d search has e(r) = e0(r) for all r ∈ Fd, but we may get other
values e(r) by search extension beyond the base depth d, possibly counting them
as having higher generation and extending the PV.

The 50-move rule ensures that ed(p) converges to the true value +M , 0, or
−M of p, where a big number M is used as the mate value. Convergence is
aided by the rule that the side bringing the third occurrence of any position in a
game can claim a draw. Engines avoid cycles in search by the sharper policy of
giving any node q repeating a position earlier in the line of search (or game) a
fixed value e(q) = 0 of highest generation. The goal of search is to visit a subset
E of nodes within a feasible time budget so that minimax from values e0(r)
over sufficiently many “floor nodes” r in E well-defines a value vd(p) so that for
c ≤ d ≤ D with d and D as high as possible:

– E includes enough of Fc that no value e0(q) for an unvisited node q ∈ Fc \ E
affects vd(p) by minimax;

– most of the time this is true for Fd in place of Fc; and
– vd(p) approximates eD(p).

The first clause is solidly defined and says that the search is sound for depth c.
The second clause aspires to soundness for a stipulated depth d and motivates
our first considering search strategies that alone cannot violate such soundness.
The third clause is about trying to extend the search to depths D > d without
reference to soundness.

Nearly all chess programs use a structure of iterative deepening in successive
rounds d = 1, 2, 3, . . . of search. The sizes of the sets E = Ed of nodes visited in
round d nearly always follow a geometric series so that the effective branching
factor (ebf) of the search—variously reckoned as |Ed|/|Ed−1| or as |Ed|1/d for
high enough d—is bounded by a constant. This constant should be significantly
less than the “basic” branching factor |Fd|/|Fd−1|. Similar remarks apply for the
overall time Td to produce vd(p) and the number Nd of node visits (counting
multiple visits to the same node) in place of |Ed|.

3.2 Alpha-Beta

The first search strategy involves guessing α and β such that our ultimate vd =
vd(p) will belong to a window (α, β) with β −α as small as we dare. One motive

206 K. W. Regan

for iterative deepening is to compute vd−1 on which to center the window for
round d. Values outside the window are reckoned as “≥β” or “≤α” and these
endpoint-values work fine in minimax—if ed(p) crosses one of them then we fail
high or fail low, respectively. After a fail-low we can double the lower window
width by taking α′ = 2α − vd−1 and try again, doing similar for a fail-high, and
possibly winding back to an earlier round d′ < d. Using endpoints relieves the
burden of being precise about values away from vd. This translates into search
savings via cutoffs described next.

Suppose we enter node p as shown in Fig. 1 with window (1, 6) and the first
child p′ yields value 3 along the current PV. This lets us search the next child
q′ with the narrower window (3, 6). Now suppose this fails because its first child
q′′ gives value 2. It returns the value “≤2” for q′ without needing to consider
any more of its children, so search is cut off there and we pop back up to p to
consider its next child, r′. Next suppose r′ yields value 7. This breaks β for p
and all further children of p are considered beta-cutoffs. If p is the root then this
fail-high re-starts the search until we find a bound β′ that holds up when vd(p)
is returned. If not—say if the β = 6 value came from a sibling n of p as shown
in the figure—then p gets the value “≥6” and pops up to its parent. A value
vd−1(r′) = 4, however, would move the PV to go through r′ and keep the search
going with exact values in telescoping windows between α and β.

One further note is that if we had advance confidence that the adversary’s
first reply at q′ would show its inferiority to going to p′, then we could call
search at q′ with the null window (3, 3) there instead, propagating it downward
as needed. If we were wrong then we’d have to undo any ersatz cutoffs from
β′′ = 3 along the way, but if we’re right then we’ve pocketed their time savings.

Fig. 1. Alpha-beta search example

Returning to the beta-cutoff from v(r′) = 7, consider what happened along the
new PV in nodes below r′. Every defensive move m′ at r′ needed to be tried

Rating Computer Science via Chess 207

in order to show that none kept the lid under β = 6; there were no alpha-
cutoffs on these moves. This situation propagates downward so we’ve searched
all children of half the nodes on the PV. If there are always � such children then
we’ve done about �d/2 = (

√
�)d work. This is the general best-case for alpha-beta

search when soundness is kept at depth d, and it is often approachable. A further
move-ordering idea that helps is to try “killer moves” that achieved cutoffs in
sibling positions first, even recalling them from searches at previous moves in
the game. But with � between 30 and 40 in typical chess positions, optimizing
cutoffs alone brings the ebf down only to about 6.

Further savings come from storing values ej(q) at hashed locations h(q) in
the transposition table. The most common scheme assigns a “random”-but-fixed
64-bit code to each combination of 12 kinds of piece and square. This makes 12×
64 = 768 codes, plus one for the side to move, four for White and Black castling
rights, and eight for the files of possible en-passant captures. The primary key
H(q) is the bitwise-XOR of the basic codes that apply to q. Then the secondary
key h(q) can be defined by H(q) modulo the size N of the hash table, or when
N = 2k for some k, by taking k bits off one end of H(q). Getting H(r) for the
next or previous position r merely requires XOR-ing the codes for the destination
and source squares of the piece moved, any piece captured, the side-to-move
code, and any other applicable codes. Besides storing ej(q) we store H(q) and
j (and/or other “age” information), the former to confirm sameness with the
position probed and the latter to tell whether ej(q) went as deep as we need. If
so, we save searching an entire subtree of the current parent of q. We may ignore
the possibility of primary-key collisions H(q) = H(r) for distinct positions q, r
in the same search. Collisions of secondary keys h(q) = h(r) are frequent but
errors from them are often “minimaxed away” (see also [26]).

3.3 Extensions and Heuristics

We can get more mileage by extending D beyond d. Shannon [1] already noted
that many depth-d floor nodes come after a capture or check or flight from check
and have moves that continue in that vein. Those may be further expanded until
a position identified as quiescent is reached. Human players tend to calculate
such forced sequences as a unit. Thus the game-logical floor for round d may be
deeper along important branches than the nominal depth-d floor.

Furthermore, the PV may accrue many nodes q whose value hangs strongly
on one move m to a position q′, so that a large change to ei(q′) would change
ei+1(q) by the same amount. The move m is called singular and warrants a
better fix on its value by expanding it deeper. Such singular extensions could be
reserved for cases of delaying moves by a defender on the ropes or moves known
to affect positions already seen in the search, or liberalized to consider groups
of two or more move options as “singular” [27,28].

Other extensions have been tried. Search depths are commonly noted as
“d/D” where d is the nominal depth and D is the maximum extended depth.
Their values e(r) for r ∈ Fd may differ widely from e0(r) but this does not
violate our notion of depth-d soundness which takes those values e(r) as given.

208 K. W. Regan

We have added more nodes beyond Fd but not saved any more inside it than we
had from cutoffs. Further progress needs compromise on soundness.

From numerous heuristics we mention two credited with much of the software
side of performance gain. The idea of late move reductions (LMR) is simply to do
only the first yea-many moves from the previous round’s rank order to nominal
depth d, the rest to lower depths c. If d/c = 2, say, this can prevent a subtle mate-
in-n-ply from being seen until the search has reached round 2n. Even c = d − 4
or d − 3 can make terms in (

√
�)c minor enough to replace (

√
�)d by (

√
a)d for

a < 4, which is enough to bring the ebf under 2.
The second idea compresses search “vertically” rather than “horizontally” in

situations where we are trying to prove a cutoff value v after a “killer” but might
not know how to order our subsequent moves to cut off lower down too. If the
defender is really bad off then allowing two moves in a row might not improve the
score beyond v or much at all. Inserting null moves for our turns can cement the
search-depth halving on our side and also branch on fewer defensive sequences
than using two alternating levels of search would bring. To be sure, there are
so-called Zugzwang situations where letting the opponent move twice gives us an
unfair advantage—propagating the illusion of “killer moves” when there really
are none. However, these situations tend to occur in endgames where they are
recognizable in advance and errors especially for nodes away from the PV may
be stopped by minimax from propagating to the root.

Fig. 2. Left: Position illustrating search phenomena. Right: Bratko-Kopec test
position 22.

The position at left in Fig. 2 illustrates many of the above concepts. The
Lomonosov 7-piece tables show it a draw with best play. Evaluation gives White
a 100–200 cp edge on material with bishop and knight versus rook, but engines
may differ on other factors such as which king is more exposed. After 1. Qd4+
Kc2 2. Qc5+, Black’s king cannot return to d1 because of the fork 3. Nc3+, so
Black steps out with 2...Kb3. Then White has the option 3. Qb6+ Kc2 4. Qxb1+

Rating Computer Science via Chess 209

Kxb1 5. Nc3+ Kc2 6. Nxe2. Since Black is not in check and has no captures, this
position may be deemed quiescent and given a +600 to +700 value or even higher
since the extra bishop plus knight is generally a winning advantage. However,
Black has the quiet 6...Kd3 which forks the bishop and knight and wins one of
them, leaving a completely drawn game. What makes this harder to see is that
White can delay the reckoning over longer horizons by giving more checks: 4.
Qc7+ Kb3 5. Qb8+ Kc2 6. Qc8+ Kb3 7. Qb7+ Kc2 8. Qc6+ Kb3. White has not
repeated any position and now has three further moves 9. Qc3+ Ka2 (if Black
rejects ...Ka4) 10. Qa5+ Kb3 11. Qb4+ Kc2 before needing to decide whether to
take the plunge with 12.Qxb1+. Pushing things even further is that White can
preface this with 1. Ke7 threatening 2. Nb4 with Black’s queen unable to give
check. Black must answer by 1...Rb7+ and after 2. Kd6 must meekly return by
2...Rb1. Especially in the position after 1. Ke7 Rb7+, values can differ widely
between engines and between depths for the same engine and be isolated to
changes in the size of the hash table. Evidently the high degree of singularity
raises the chance of a rogue e(r) value propagating to the root.

How often is the quality of play compromised? It is one thing to try these
heuristics against human players, but surely a “sounder” engine is best equipped
to punish any lapses. Silver [29] reports an experiment where a current engine
running on a smartphone trounced one from ten years ago that was given hard-
ware fifty times faster. Although asking for depth d really gives a mélange of c
and D with envelope E lopsidedly bunched along the PV, it all works.

We have glossed over many variants and ideas, including Hans Berliner’s
B∗ search [30] which uses endpoints exclusively. Many have been studied and
debated in the journal and symposia of the International Computer Chess Associ-
ation, now evolved into the International Computer Games Association (ICGA),
including LNCS conference proceedings. We argue that their sum achievement
is most neatly expressed by plotting the engines’ position values v against the
portion pv of points that human players of a given rating went on to score
from positions of value v with either side to move. Figure 3 plots this from all
standard-time games recorded in [31] between players rated within 10 points of
a “milepost” 2600, 2625, 2650, or 2675, and likewise for levels in the 1600s range.
Both sets give a near-perfect fit to a two-parameter logistic curve:

pv = A +
1 − 2A

1 + e−Bv
. (2)

Here A represents the frequency of losing or drawing a “completely won” game
and is small enough that we can focus on B. The one parameter B does double-
duty: it is the scaling conversion from engine values to expectation and also scales
with the skill of the players. The y-axis and B are the same as in our Eq. (1)
for expectation based on rating difference. This suggests that skill is largely the
sharpness of perceptions of value. If a chess program were to value a queen at 15
rather than 9 and so on for other terms in its evaluation function, we would have
to scale B down by 3/5 to preserve the correspondence to scoring frequency. The
figures have about the same ratio of B, which suggests that values are 60% more
vivid to 2600s-rated players than to 1600s-rated players.

210 K. W. Regan

Their simplicity gives such curves the force of natural law. Amir Ban, co-
creator of the (Deep) Junior chess program, argued [32] that the logistic rela-
tionship optimizes both the predictive accuracy and playing skill of the programs.
In a skin-deep way this is false: the programs can post-process their values in
any way that preserves the rank order of moves without affecting their play.
In order to rule out this possibility, we have used the open-source Stockfish
program (official version 7 release) to analyze the human games for the plots.
That the evaluation terms, search heuristics, and minimax dynamics conform to
the logistic relationship shows their natural acuity.

Fig. 3. Points expectation for 2600s-rated and 1600s-rated players from Stockfish 7
values.

4 Benchmarking Progress

All the notable human-computer matchups under standard tournament condi-
tions over the past 40 years total in the low hundreds of games. A dozen such
games at most are available for major iterations of any one machine or program.
Games in computer-computer play do not connect into the human rating system.
With ratings based only on a few bits of information—the outcomes of games
and opponents’ ratings—the sample size is too small to get a fix. Ratings based
on 25 or fewer games are labeled “provisional” by the USCF. However much we
feel the lack in retrospect, it applied all the more years ago looking forward.

Various internal ways were used to project skill. Programs could be played
against themselves with different depth or time limits of search. The scoring rate
of the stronger over the weaker translates into an Elo difference by the curve
(1). Thompson [33] carried this out with Belle at single-digit search depths,
finding a steady gain of about 200 Elo per extra ply, but a followup experiment
joined by Condon [34] found diminishing returns beyond depth 7.

The two prior versions of Chess 4.7 triumphed in amateur and regional tour-
naments before its match with Levy, but the first provisional ratings above 2200

Rating Computer Science via Chess 211

were earned by Cray Blitz and Belle in the early 1980s. Berliner integrated
his B∗ search and high-tech parallel hardware to make his HiTech machine the
first recognized as surpassing 2400 in 1988. Feng-hsiung Hsu, Thomas Anan-
tharaman, and Murray Campbell, working apart from Berliner at Carnegie Mel-
lon, developed ChipTest. Mike Browne and Andreas Nowatzyk joined them for
Deep Thought, which was the first to beat a GM (Bent Larsen) in regulation
play and gain a GM-level rating (2552). A flurry of activity followed in 1989 but
with no clear forecast of further progress. Berliner et al. [35] conducted extensive
self-play experiments and were led to state in their abstract:

Projections of potential gain have time and again been found to overesti-
mate the actual gain. [Our work] suggests that once a certain knowledge
gap has been opened up, it cannot be overcome by small increments in
searching depth. The conclusion . . . is that extending the depth of search
without increasing the present level of knowledge will not in any foresee-
able time lead to World Championship level chess.

Hsu et al. [36] reached the opposite conclusion regarding Deep Thought,
projecting that a 14 or 15-ply basic search with extensions beyond 30 ply would
achieve a 3400 rating. The Thoresen engine competition site today shows no
rating above 3230 [37]. One can say that its evolution into Deep Blue landed
between the two projections. A chart from 1998 by Moravec [38] seems to justify
the extrapolation to 3400 by its notably linear plot of ascribed engine ratings
up to Deep Thought II near 2700 and 11 ply in 1991 and 1994, but it plots
Deep Blue well under the line at 13 ply and only a 2700–2750 rating.

Already in the late 1970s, Bratko and Kopec conceived that an external test
applicable to both human and computer players and less taxing than fully staged
games could provide a reliable metric. The published form [39,40] was a suite of
twenty-four positions, twelve on tactics and twelve emphasizing strategy of pawn
structure in particular. The former are instantly solved by today’s computers but
the latter retain their challenge, especially position 22 pictured in Fig. 2 which
they deemed “hardest.” The official Stockfish 8 version with 256 MB hash on
one core thread in its “Single-PV” playing mode takes until depth 26 to settle
on the key move—yet this happens within 20 s on an eight-year-old PC. Writing
in 1990, Marsland [41] opined:

Although one may disagree with the choice of test set, question its ade-
quacy and completeness, and so on, the fact remains that the design-
ers of computer chess programs still do not have an acceptable means of
estimating the performance of chess programs, without resorting to time-
consuming and expensive “matches” against other subjects. Clearly there
is considerable scope for such test sets, as successes in related areas like
pattern recognition attest.

What further distinguished the Bratko-Kopec work were tests on human
subjects rated below-1600, 1600–1799, 1800–1999, 2000–2199, 2200–2399, and
2400+. The results filled the whole range from only two correct out of 24 to

212 K. W. Regan

21-of-24, showing a clear correspondence to rating. The Elo rating chart in [40]
assigned 2150 to Belle, 2050 to Chess 4.9, and ratings 1900 and under to
Duchess and other tested programs. Their results were broadly in accord with
those ratings. But all these results were from small data.

Haworth [42] proposed using endgame tables to benchmark humans—and
computers not equipped with them. The DTM, DTC, and/or DTZ metrics fur-
nish numerical scores that are indisputable and objective, and the 6- and later
7-piece tables expand the range of realistic test positions. Humans of a given rat-
ing class could be benchmarked from games in actual competition that entered
these endgames.

Matej Guid led Bratko back into benchmarking with a scheme using depth
12 of Crafty as authority to judge all moves (after the first twelve turns) in
all games from world championship matches by intrinsic quality [43]. This was
repeated with other engines as judges [44] including then-champion Rybka 3 to
reported depth 10, which arguably compares best to depth 13 or 14 on other
engines since Rybka treats its bottom four search levels as a unit [45]. Coming
back to Haworth and company joined by this writer, two innovations of [46,47]
were doing un-pruned full-depth analysis of multiple move options besides the
best and played moves, and judging prior likelihoods of those moves by fallible
agents modeling player skill profiles in a Bayesian setting. This led in [48] to using
Rybka 3 to analyze essentially all legal moves to reported depth 13, training
a frequentist model on thousands of games over all rating classes from 1600 to
2700, and conditioning noise from the observed greater magnitude of errors in
positions where one side has a non-negligible advantage. The model supplies not
only metrics and projections but also error bars for various statistical tests of
concordance with the judging engine(s) and an “Intrinsic Performance Rating”
(IPR) based only on analysis of one’s moves rather than results of games.

For continuity with this past work—and because an expanded model with
versions of Komodo and Stockfish as judges is not fully trained and calibrated
at press time—we apply the scheme of [48] to rate the most prominent human-
computer matches as well as some ICCA/ICGA World Computer Chess Cham-
pionships (WCCC). This comes with cupfuls of caveats: Rybka 3 to reported
depth 13 is far stronger than Crafty to depth 12 but needs the defense [49] of
the latter to justify IPR values over 2900 and probably loses resolution before
3100. The IPR currently measures accuracy more than challenge put to the
opponent and is really measuring similarity to Rybka 3. Although moves from
turn 9 onward (skipping repeating sequences and positions with one side ahead
over 300 cp) give larger sample sizes than games, the wide two-sigma error bars
reflect the overall paucity of data and provisional nature of this work.

5 A “Moore’s Law of Games” and Future Prospects

Figure 4 lays out IPRs over 37 years of top events in computer chess. Despite
individual jumps in results, their wide error bars, and loss of resolution beyond
3000, some coherent points emerge from the long view:

Rating Computer Science via Chess 213

Year Engine Score IPR moves Event/Opponent(s) Opp. IPR moves
1978 CHESS 4.7 1.5/6 2120 +- 490 159 IM David Levy 2280 +- 415 159
1983 BELLE 5.5/10 2180 +- 300 279 US Open oppts. 2175 +- 320 280
1983 BELLE 3/5 2070 +- 415 126 WCCC oppts. 2130 +- 420 131
1983 CRAY BLITZ 4.5/5 2265 +- 350 144 WCCC oppts. 2065 +- 405 152
1986 CRAY BLITZ 4/5 2605 +- 315 153 WCCC oppts. 2135 +- 395 155
1986 HITECH 4/5 1975 +- 625 111 WCCC oppts. 1805 +- 660 115
1988 HITECH 5/7 2495 +- 270 188 avail. Open oppts. 2165 +- 385 194
1989 HITECH 3.5/4 3085 +- 275 97 GM A. Denker 2100 +- 555 98
1989 HITECH 3.5/5 2445 +- 325 146 WCCC oppts. 2485 +- 245 149
1989 BEBE 4/5 2415 +- 420 141 WCCC oppts. 1910 +- 505 144
1989 CRAY BLITZ 3.5/5 2470 +- 375 195 WCCC oppts. 2255 +- 360 196
1989 CHIPTEST 2/5 2540 +- 285 185 The Hague oppts. 2545 +- 250 181
1989 DEEP THOUGHT 5/5 2600 +- 255 126 WCCC oppts. 1890 +- 445 132
1988 DEEP THOUGHT 5.5/7 2780 +- 230 269 Long Beach oppts. 2400 +- 265 270
1989 DEEP THOUGHT 4/4 2885 +- 325 74 Levy 1820 +- 560 79
1989 DEEP THOUGHT 2/4 2325 +- 400 85 GM R. Byrne 2215 +- 690 83
1989 DEEP THOUGHT 2/5 2955 +- 245 131 Miles/Renet/Valvo 2585 +- 275 131
1989 DEEP THOUGHT 3.5/4 2830 +- 290 130 Amer. Open oppts. 1990 +- 440 133
1989 DEEP THOUGHT 0/2 2265 +- 815 53 Kasparov 2445 +- 340 51
1991 DEEP THOUGHT 2.5/7 2205 +- 430 213 Hannover oppts. 2400 +- 265 214
1993 DEEP BLUE 1.5/4 2820 +- 215 173 GM Bent Larsen 2800 +- 210 172
1993 DEEP BLUE 4.5/9 2720 +- 210 249 Copenhagen oppts. 2340 +- 295 246
1995 DEEP BLUE 3/3 3080 +- 220 100 ACM oppts. 2550 +- 420 103
1995 DEEP BLUE 3.5/5 2695 +- 430 119 WCCC oppts. 2420 +- 475 120
1996 DEEP BLUE 2/6 2915 +- 200 222 Kasparov 2610 +- 235 220
1997 DEEP BLUE 3.5/6 2850 +- 190 205 Kasparov 2585 +- 260 205
1999 REBEL 10 0.5/2 2915 +- 590 58 GM V. Anand 2660 +- 605 58
2000 DEEP JUNIOR 4.5/9 2845 +- 165 300 Dortmund oppts. 2605 +- 220 298
2002 DEEP FRITZ 4/8 3055 +- 140 221 GM V. Kramnik 2885 +- 155 221
2003 DEEP JUNIOR 3/6 2855 +- 275 148 Kasparov 2750 +- 305 148
2003 FRITZ X3D 2/4 2955 +- 175 107 Kasparov 2475 +- 395 108
2004 FRITZ 3.5/4 2945 +- 255 134 Bilbao HC oppts. 2530 +- 305 136
2004 HYDRA 3.5/4 3045 +- 230 176 Bilbao HC oppts. 2510 +- 275 176
2004 DEEP JUNIOR 1.5/4 2835 +- 290 124 Bilbao HC oppts. 2910 +- 155 121
2005 FRITZ 2/4 2705 +- 350 170 Bilbao HC oppts. 2740 +- 280 170
2005 HYDRA 3/4 3080 +- 190 99 Bilbao HC oppts. 2600 +- 340 101
2005 JUNIOR 3/4 3085 +- 100 251 Bilbao HC oppts. 2935 +- 115 251
2005 SHREDDER 9.5/10 2990 +- 165 239 Lopez ITT oppts. 2265 +- 275 243
2005 HYDRA 5.5/6 3160 +- 115 210 GM M. Adams 2825 +- 175 208
2006 DEEP FRITZ 4/6 2985 +- 160 208 Kramnik 2740 +- 265 208
2009 POCKET FRITZ 9.5/10 2905 +- 165 290 Mercosur oppts. 2250 +- 265 292
2011 JUNIOR 6/8 3065 +- 120 311 next 4 in WCCC 3035 +- 65 1,418
2013 JUNIOR 7.5/10 2995 +- 120 446 next 4 in WCCC 3095 +- 55 1,615
2015 JONNY 7/8 2970 +- 110 432 next 4 in WCCC 3035 +- 50 1,668

Fig. 4. IPRs from major human-computer events and some computer championships.

214 K. W. Regan

– There has been steady progress.
– Early estimated ratings of computers were basically right.
– Computers had GM level in sight before Deep Thought’s breakthrough.
– Not long after the retirement of Deep Blue, championship quality became

accessible to off-the-shelf hardware and software.
– A few years later smartphones had it, e.g. Hiarcs 13 as “Pocket Fritz.”
– Progress as measured by Elo gain flattens out over time.

The last point bears comparison with Moore’s Law and arguments over
its slowing or cessation. Those arguments pivot on whether the law narrowly
addresses chip density or clock speed or speaks more general measure of produc-
tivity. With games we have a fixed measure—results backed by ratings—but a
free-for-all on how this productivity is gained.

We may need to use Elo’s transportability to other games to meter future
progress. The argument that Elo sets a hard ceiling in chess goes as follows: We
can imagine that today’s strong engines E could hold a non-negligible portion d
of draws against any strategy. This may need randomly selecting slightly inferior
moves to avoid strategies with foresight of deterministic weaknesses. If E has
rating R, then no opponent can ever be rated higher than R + x by playing E,
where with reference to (1), p−x = 0.5d. The ceiling R + x may be near at hand
for chess but higher for Go—despite its recent conquest by Google DeepMind’s
AlphaGo [50]. Games of Go last over a hundred moves for each player and have
hair-trigger difference between win and loss.

A greater potential benefit comes from how large-scale data from deep engine
analysis of human games may reveal new regularities of the human mind, espe-
cially in decision-making under pressure. Why and when do we stop thinking
and take action, and what causes us to err? For instance, this may enable trans-
forming the analysis of blunders in [51] into a smooth treatment of error in per-
ception. Although computer chess left the envisaged mind and knowledge-based
trajectory, its power-play success may boost the original AI aims.

References

1. Shannon, C.: Programming a computer for playing chess. Philos. Mag. 41, 256–275
(1950)

2. Turing, A.: Computing machinery and intelligence. Mind 59, 633–660 (1950)
3. Marsland, T.A.: A short history of computer chess. In: Marsland, T.A., Schaeffer,

J. (eds.) Computers, Chess, and Cognition, pp. 3–7. Springer, New York (1990).
https://doi.org/10.1007/978-1-4613-9080-0 1

4. Campbell, M., Feigenbaum, E., Levy, D., McCarthy, J., Newborn, M.: The History
of Computer Chess: An AI Perspective (2005). http://www.computerhistory.org/
collections/catalog/102651382. Video, The Computer History Museum

5. Larson, E.: A brief history of computer chess. Best Sch. Mag. (2015)
6. Levy, D.: Computer chess-past, present and future. Chess Life Rev. 28, 723–726

(1973)
7. Elo, A.: The Rating of Chessplayers, Past and Present. Arco Pub., New York (1978)

https://doi.org/10.1007/978-1-4613-9080-0_1
http://www.computerhistory.org/collections/catalog/102651382
http://www.computerhistory.org/collections/catalog/102651382

Rating Computer Science via Chess 215

8. Silver, N.: Introducing Elo Ratings (2014). https://fivethirtyeight.com/datalab/
introducing-nfl-elo-ratings/

9. Glickman, M.E.: Parameter estimation in large dynamic paired comparison exper-
iments. Appl. Stat. 48, 377–394 (1999)

10. Sonas, J., Kaggle.com: Chess ratings: Elo versus the Rest of the World (2011).
http://www.kaggle.com/c/chess

11. Schaeffer, J., Burch, N., Björnsson, Y., Kishimoto, A., Müller, M., Lake, R., Lu,
P., Sutphen, S.: Checkers is solved. Science 317, 1518–1522 (2007)

12. Allender, E.: The complexity of complexity. In: Day, A., Fellows, M., Greenberg,
N., Khoussainov, B., Melnikov, A., Rosamond, F. (eds.) Computability and Com-
plexity. LNCS, vol. 10010, pp. 79–94. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-50062-1 6

13. Storer, J.: On the complexity of chess. J. Comput. Syst. Sci. 27, 77–100 (1983)
14. Fraenkel, A., Lichtenstein, D.: Computing a perfect strategy for n x n chess requires

time exponential in n. J. Comb. Theory 31, 199–214 (1981)
15. Lichtenstein, D., Sipser, M.: Go is polynomial-space hard. J. ACM 27, 393–401

(1980)
16. Robson, J.: The complexity of Go. In: Proceedings of the IFIP Congress, pp. 413–

417 (1983)
17. Robson, J.: N by N checkers is Exptime complete. SIAM J. Comput. 3, 252–267

(1984)
18. Iwata, S., Kasai, T.: The Othello game on an n*n board is PSPACE-complete.

Theoret. Comput. Sci. 123, 329–340 (1994)
19. Zakharov, V., Makhnychev, V.: Creating tables of chess 7-piece endgames on the

Lomonosov supercomputer. Superkomp’yutery 15 (2013)
20. Bailey, D., Borwein, P., Plouffe, S.: On the rapid computation of various polylog-

arithmic constants. Math. Comput. 66, 903–913 (1997)
21. Lucci, S., Kopec, D.: Artificial Intelligence in the 21st Century. Mercury Learning,

Dulles (2013)
22. Chess Programming Wiki: Parallel Search. chessprogramming.wikispaces.com/Para

llel+Search. Accessed 2017
23. Hyatt, R.: Rotated bitmaps, a new twist on an old idea. ICCA J. 22, 213–222

(1999)
24. IBM Research: How Deep Blue works (1997). https://www.research.ibm.com/

deepblue/meet/html/d.3.2.html
25. Chess Programming Wiki: Automated Tuning. https://chessprogramming.

wikispaces.com/Automated+Tuning. Accessed 2017
26. Hyatt, R., Cozzie, A.: The effect of hash signature collisions in a computer chess

program. ICGA J. 28, 131–139 (2005)
27. Anantharaman, T., Campbell, M., Hsu, F.: Singular extensions: adding selectivity

to brute-force searching. Artif. Intell. 43, 99–110 (1990)
28. Hsu, F.H.: Behind Deep Blue: Building the Computer that Defeated the World

Chess Champion. Princeton University Press, Princeton (2002)
29. Silver, A.: Komodo 8: the smartphone vs desktop challenge (2014). https://en.

chessbase.com/post/komodo-8-the-smartphone-vs-desktop-challenge
30. Berliner, H.: The B* tree search algorithm: a best-first proof procedure. Artif.

Intell. 12, 23–40 (1979)
31. ChessBase: Big 2017 Chess Database (2017)
32. Ban, A.: Automatic learning of evaluation, with applications to computer chess.

Technical Report Discussion Paper 613, Center for the Study of Rationality,
Hebrew University (2012)

https://fivethirtyeight.com/datalab/introducing-nfl-elo-ratings/
https://fivethirtyeight.com/datalab/introducing-nfl-elo-ratings/
http://www.kaggle.com/c/chess
https://doi.org/10.1007/978-3-319-50062-1_6
https://doi.org/10.1007/978-3-319-50062-1_6
http://chessprogramming.wikispaces.com/Parallel+Search
http://chessprogramming.wikispaces.com/Parallel+Search
https://www.research.ibm.com/deepblue/meet/html/d.3.2.html
https://www.research.ibm.com/deepblue/meet/html/d.3.2.html
https://chessprogramming.wikispaces.com/Automated+Tuning
https://chessprogramming.wikispaces.com/Automated+Tuning
https://en.chessbase.com/post/komodo-8-the-smartphone-vs-desktop-challenge
https://en.chessbase.com/post/komodo-8-the-smartphone-vs-desktop-challenge

216 K. W. Regan

33. Thompson, K.: Computer chess strength. In: Advances in Computer Chess, vol. 3,
pp. 55–56. Pergamon Press (1982)

34. Condon, J., Thompson, K.: Belle. In: Frey, P. (ed.) Chess Skill in Man and Machine,
pp. 201–210. Springer, Heidelberg (1982). https://www.springer.com/us/book/
9780387908151

35. Berliner, H., Geotsch, G., Campbell, M., Ebeling, C.: Measuring the performance
potential of chess programs. Artif. Intell. 43(1), 7–20 (1990)

36. Hsu, F.H., Anantharaman, T., Campbell, M., Nowatzyk, A.: A grandmaster chess
machine. Sci. Am. 263, 44–50 (1990)

37. Top Chess Engine Championship: Ratings after Season 9 - Superfinal. http://tcec.
chessdom.com/archive.php. Accessed 2017

38. Moravec, H.: When will computer hardware match the human brain? J. Evol.
Technol. 1 (1998)

39. Bratko, I., Kopec, D.: A test for comparison of human and computer performance
in chess. In: Advances in Computer Chess, vol. 3, pp. 31–56. Elsevier (1982)

40. Kopec, D., Bratko, I.: The Bratko-Kopec experiment: a comparison of human and
computer performance in chess. In: Advances in Computer Chess, vol. 3, pp. 57–72.
Elsevier (1982)

41. Marsland, T.: The Bratko-Kopec test revisited. ICCA J. 13, 15–19 (1990)
42. Haworth, G.: Reference fallible endgame play. ICGA J. 26, 81–91 (2003)
43. Guid, M., Bratko, I.: Computer analysis of world chess champions. ICGA J. 29,

65–73 (2006)
44. Guid, M., Bratko, I.: Using heuristic-search based engines for estimating human

skill at chess. ICGA J. 34, 71–81 (2011)
45. Rajlich, V., Kaufman, L.: Rybka 3 chess engine (2008). www.rybkachess.com
46. DiFatta, G., Haworth, G., Regan, K.: Skill rating by Bayesian inference. In: Pro-

ceedings of 2009 IEEE Symposium on Computational Intelligence and Data Mining
(CIDM 2009), Nashville, TN, pp. 89–94 (2009)

47. Haworth, G., Regan, K., Di Fatta, G.: Performance and prediction: Bayesian mod-
elling of fallible choice in chess. In: van den Herik, H.J., Spronck, P. (eds.) ACG
2009. LNCS, vol. 6048, pp. 99–110. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-12993-3 10

48. Regan, K., Haworth, G.: Intrinsic chess ratings. In: Proceedings of AAAI 2011,
San Francisco, pp. 834–839 (2011)

49. Guid, M., Pérez, A., Bratko, I.: How trustworthy is Crafty’s analysis of world chess
champions? ICGA J. 31, 131–144 (2008)

50. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree
search. Nature 529, 484–489 (2016)

51. Chabris, C., Hearst, E.: Visualization, pattern recognition, and forward search:
effects of playing speed and sight of the position on grandmaster chess errors.
Cogn. Sci. 27, 637–648 (2003)

https://www.springer.com/us/book/9780387908151
https://www.springer.com/us/book/9780387908151
http://tcec.chessdom.com/archive.php
http://tcec.chessdom.com/archive.php
www.rybkachess.com
https://doi.org/10.1007/978-3-642-12993-3_10
https://doi.org/10.1007/978-3-642-12993-3_10

Knowledge Harvesting: Achievements
and Challenges

Gerhard Weikum1(B), Johannes Hoffart2, and Fabian Suchanek3

1 Max Planck Institute for Informatics, Saarbrücken, Germany
weikum@mpi-inf.mpg.de

2 Ambiverse GmbH, Saarbrücken, Germany
johannes@ambiverse.com

3 Telecom ParisTech University, Paris, France
fabian@suchanek.name

Abstract. This article gives an overview on knowledge harvesting: auto-
matically constructing large high-quality knowledge bases from Internet
sources. The first part reviews key principles and best-practice methods.
The second part points out open challenges for future research.

1 Introduction

Enhancing computers with “machine knowledge” that can power intelligent
applications is a long-standing goal of computer science [34]. Major advances
on knowledge harvesting – methods for turning noisy Internet content into crisp
knowledge structures on entities and relations – have made this formerly elusive
vision practically viable today.

A prominent use case where knowledge bases (KB’s) have become a key
asset is search engines. When we send a query like “jobs biography” to Bing or
Google, we obtain information on the life of Steve Jobs. So the search engine
automatically detects that we are interested in facts about an individual entity.
On the other hand, for a query like “jobs in bay area”, the search engine locates
the spatial entity Bay Area and properly interprets the query as a request for
local job ads. Finally, for the query “jobs at apple”, the system returns a mix of
two different interpretations. All this is feasible because the search engine has a
huge knowledge base on its back-end servers, aiding in the discovery of entities
in user requests (and their contexts) and in finding concise answers.

The KB’s in this setting are centered on individual entities, containing:

• entities like people, places, organizations, products, events (e.g., SteveJobs,
the GoldenGateBridge, the Pixar company, the iPhone7, the Woodstock

Concert),
• the semantic classes to which entities belong (e.g., SteveJobs type entre-

preneur, SteveJobs type computerPioneer, SteveJobs type ZenBuddhist),

c© Springer Nature Switzerland AG 2019

B. Steffen and G. Woeginger (Eds.): Computing and Software Science, LNCS 10000, pp. 217–235, 2019.

https://doi.org/10.1007/978-3-319-91908-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91908-9_13&domain=pdf
https://doi.org/10.1007/978-3-319-91908-9_13

218 G. Weikum et al.

• relationships between entities (e.g., SteveJobs founded AppleInc,

SteveJobs invented iPhone, SteveJobs diedOf PancreaticCancer), as well as
• their validity times (e.g., SteveJobs wasCEOof Pixar [1986,2006]).

This concept of a comprehensive KB goes back to pioneering work in Arti-
ficial Intelligence on universal knowledge bases in the 1980s and 1990s, most
notably, the Cyc project at MCC in Austin [35] and the WordNet project at
Princeton [19]. However, these knowledge collections have been hand-crafted
and manually curated. Thus, knowledge acquisition was inherently limited in
scope and scale. Starting this millenium with the Semantic Web vision, domain-
specific ontologies [59] have been developed, but these are also manually created.
In the last decade, automatic knowledge harvesting from Web and text sources
has become a major research avenue, and has made substantial practical impact.
Knowledge harvesting is the core methodology for the automatic construction of
large knowledge bases, going beyond manually compiled knowledge collections
like Cyc or WordNet.

These achievements are rooted in academic research and community projects.
Salient projects that started ten to fifteen years ago are DBpedia [2], Freebase
[5], KnowItAll [18], WebOfConcepts [11], WikiTaxonomy [50] and Yago [60].
More recent projects with publicly available data include BabelNet [44], Con-
ceptNet [58], DeepDive [57], EntityCube (aka. Renlifang) [46], KnowledgeVault
[15], NELL [7] Probase [73], Wikidata [68], XLore [70].

The largest general-purpose KB’s with publicly accessible contents are Babel-
Net (babelnet.org), DBpedia (dbpedia.org), Wikidata (wikidata.org) and Yago
(yago-knowledge.org). They contain millions of entities, organized in hundreds
to hundred thousands of semantic classes, and hundred millions to billions of
relational facts on entities. These and other knowledge resources are interlinked
at the entity level, forming the Web of Linked Open Data [24].

Our own endeavor on knowledge harvesting was motivated by research on
semantic search. Later it became the Yago-Naga project, with the first release
of the Yago KB (yago-knowledge.org) in February 2007. The strength of Yago
is its rich type system with hundred thousands of classes. When IBM Watson
won the Jeopardy quiz show, it leveraged Yago’s knowledge of fine-grained entity
types for semantic type checking [28]. More recent Yago releases incorporated
temporal and spatial knowledge [25] and multilingual properties [53]. Yago is
maintained as a joint project of the Max Planck Institute for Informatics and
the Télécom ParisTech University.

Over the last five years, knowledge harvesting has been adopted at big indus-
trial stakeholders, and large KB’s have become a key asset in a variety of com-
mercial applications, including semantic search (see, e.g., [4]), analytics (e.g.,
aggregating by entities), recommendations and data integration (i.e., to com-
bine heterogeneous datasets in and across enterprises). Examples are the Google
Knowledge Graph (with Freebase as a catalyst), the use of KB’s in IBM Watson,
Amazon’s Evi, the Baidu Knowledge Graph, Facebook’s Graph Search, Microsoft
Satori, Wolfram Alpha as well as domain-specific knowledge bases in business,
finance, life sciences, and more (e.g., at Bloomberg, Mayo Clinic, Siemens, Wal-

http://babelnet.org
http://dbpedia.org
http://wikidata.org
http://yago-knowledge.org
http://yago-knowledge.org

Knowledge Harvesting: Achievements and Challenges 219

mart, etc.). In addition, KB’s have found wide use as a distant supervision source
for a variety of tasks in natural language processing, such as entity linking.

This article gives an overview of knowledge harvesting. Section 2 reviews
research achievements and the state of the art, identifying key principles and
best-practice methods. Section 3 presents open challenges that provide opportu-
nities for future research.

2 Achievements

2.1 Knowledge Base Model

Knowledge representation has received great attention in AI research, leading to
sophisticated forms of epistemic logics and, with the advent of the Semantic Web,
description logics for ontologies [59]. However, none of these powerful models ever
led to sizable collections of knowledge. The main reason then was the lack of data
to populate knowledge models with interesting instances.

Entities, Classes and Relations: The former limitation of sparse data on
instances was eventually overcome by the advent of knowledge-sharing com-
munities like Wikipedia and the increasing availability of public datasets. This
enabled the extraction of entities and their properties from high-quality Internet
sources to populate a KB. Most of today’s KB’s use a simple relational repre-
sentation where all knowledge is cast into grounded formulas of n-ary predicates
(i.e., relation symbols). Constants (i.e., 0-ary predicates) denote entities or literal
values (e.g., coordinates, dates and other numbers), unary predicates correspond
to classes of same-type entities, and higher-arity predicates are used to capture
entity attributes or relationships with other entities.

SPO Triples: The widely used RDF data model even restricts n-ary relations
to be binary and casts the unary predicates for class membership into the binary
form 〈entity〉 type 〈class〉 – in infix notation, with type being the predicate. The
elementary formulas in an RDF-compliant KB are also called subject-predicate-
object triples, or SPO triples for short. S is required to be an entity, whereas
O can be either an entity (e.g., someone’s spouse) or a literal (e.g., someone’s
birthdate). The following shows examples for such triples (in conceptual form,
disregarding the specifics of the RDF syntax):

SteveJobs type computerPioneer SteveJobs type entrepreneur

entrepreneur subclassOf businessperson businessperson subclassOf person

SteveJobs hasDaughter LisaBrennan AppleLisa namedAfter LisaBrennan

SteveJobs diedOf PancreaticCancer SteveJobs diedOn 5-Oct-2011

The two triples in the first line above are about class membership. In stan-
dard logics these would be written as unary-predicate formulas: computerPi-
oneer (SteveJobs) and entrepreneur (SteveJobs). This form of knowledge about
instances of classes forms the backbone of a KB. The two triples in the sec-
ond line above organize classes in a subsumption hierarchy of subtypes and

220 G. Weikum et al.

supertypes. To avoid that this subclassOf predicate takes second-order form,
the class predicates are cast into binary form with the type predicate. All triples
for the type and subclassOf predicate constitute the taxonomic knowledge of a
KB. Prior work on ontologies mostly focused on intensional knowledge centered
on the subclassOf predicate, and hardly captured any instances for the type

predicate.
Many KB’s require that the subject arguments of type be individual entities

(aka. named entities) that can be uniquely identified in the real world, this way
disregarding abstract entities (aka. general concepts) which are prone to sub-
jective interpretation. For example, concepts such as universe, love or quantum
physics are intentionally excluded to stay clear of potential pitfalls. This way, it
has become feasible to construct huge KB’s with millions of entities for many
thousands of classes with negligible error rate and very high agreement on what
is correct knowledge.

Taxonomic knowledge is already a huge asset for applications like search
and analytics. For example, a query such as “Which singers have won the
Nobel prize?” can be easily answered from the following triples (by intersect-
ing instances of different classes):

BobDylan type singer BobDylan type NobelPrizeLaureates

Likewise, an analytic task that compares frequencies of queries, clicks or
references for musicians vs. politicians, is made easy by a KB that provides the
class memberships of entities along with subclass knowledge such as:

singer subclassOf musician stateSecretary subclassOf politician

SPO triples with predicates other than type or subclassOf are referred to
as facts. The largest KB’s contain billions of facts for several thousand differ-
ent predicates. The predicates of interest (e.g., bornIn, hasDaughter, namedAfter

etc.) are often pre-specified. We will reconsider this point in Sect. 2.2.5.

Beyond SPO Triples: KB’s with this focus on binary relational facts are often
called knowledge graphs (KG’s), as they correspond to labeled graphs with nodes
denoting entities and predicate-labeled edges for the facts. However, the restric-
tion to binary predicates is an oversimplification. There are many cases where
ternary and higher-arity relations are needed to represent real-world situations.
One important case is temporal knowledge: extending facts with their validity
times, a timepoint or a timespan. For example, capturing when Steve Jobs (co-)
founded Apple or from when until when he was CEO of his various companies
calls for ternary predicates with an additional time argument:

SteveJobs founded AppleInc 1-April-1976

SteveJobs wasCEOof AppleInc [9-July-1997, 24-Aug-2011]

Generally, events often require three or more arguments to fully capture them:
several entities involved in various roles, time, place, etc. As an example, con-
sider the football match where Germany won 7:1 against Brazil on 8-July-2014

Knowledge Harvesting: Achievements and Challenges 221

in Belo Horizonte. Such a composite fact cannot be broken down into binary
facts without losing information. The RDF data model then usually escapes
to so-called reification: assigning an entity id to the entire event, and adding
multiple triples for the event’s different aspects with the entity id as their com-
mon subject argument. However, this technique makes querying and reasoning
with knowledge more tedious. Higher-arity predicates, on the other hand, are a
natural representation.

Canonicalization: An important point in capturing crisp knowledge is the
uniqueness of representing entities and facts. Many (but not all) KB’s strive to
canonicalize all arguments in their SPO triples and other facts. For classes, this
implies that differently named classes have (potentially) different instances (e.g.,
singer vs. songwriter vs. musician); conversely, differently named classes that
would always agree on their instances should be unified (e.g., humans vs. people).
For entities, the same principle applies: an entity can have different names, but
should be captured only once with a unique id. For example, knowledge about
the company Apple should not be registered twice or spread across different
names like “Apple”, “Apple Inc.”, “Apple company”. Instead, we need to map all
relevant facts to the same entity, canoncially denoted, for example, as AppleInc,
and keep its diverse surface names as labels (aka. alias names). This issue calls
for named entity disambiguation (aka. entity linking) (see, e.g., [38,56]). For
populating a KB, this step can be integrated into a knowledge harvesting method
or dealt with by specialized methods and tools.

The canonicalization principle carries over to entire facts. For example, a
high-quality KB should represent the gist of the sentences “Jobs was born in

San Francisco.” and “Apple’s charismatic Steve is from the City by the Bay” in a
single fact SteveJobs bornIn SanFrancisco. Without this unique representation,
querying a KB and using it for inference would be awkward.

Lessons Learned: A key point in enabling knowledge harvesting at large scale
has been to use a simple SPO-style representation as a backbone. This is suffi-
cient for a core KB to capture taxonomic classes and basic facts about millions of
individual entities. We emphasize, however, that this does not rule out additional
knowledge using higher-arity predicates and more sophisticated representations.
In particular, a rich KB should also comprise intensional assertions about the
world: constraints that couple different predicates or rules for deducing addi-
tional facts. For example, specifying that a person can have only one birthplace
and that the birthplace must be an entity of type location, is a vital piece of
knowledge. Obviously, this calls for more expressive predicate logics. We will
come back to this in Sect. 2.2.4.

2.2 Knowledge Gathering and Cleaning

For a KB model as outlined above, the core task of knowledge harvesting is
to (i) identify appropriate data sources as input, (ii) extract entities, classes
and relational facts, and (iii) organize them into a clean KB. This builds on
techniques from the area of information extraction (IE), based on patterns in

222 G. Weikum et al.

Web pages and text documents (see [9,55] for surveys). However, IE copes with
one source as fixed input (e.g., one Web site), whereas knowledge harvesting
has freedom in choosing its sources and can exploit redundancy and statistics
across many sources. Important knowledge is often expressed in many sources in
complementary ways. We can pick low-hanging fruit by choosing the best suitable
sources and treat sources with different degrees of noise in very different ways.

This principle suggests a layered approach where we first tap sources with
limited noise in content and structure, using robust extraction methods for high-
quality output. This is why many KB’s intensively build on harvesting semi-
structured elements of Wikipedia: category names, infoboxes, lists, headings, etc.
For specific domains (e.g., health), there are often specific sources that should
be prioritized (e.g., repositories such as Medscape, DrugBank, FAERS, etc.).

As a second stage, additional knowledge can then be harvested from riskier
sources. We will see below that the previously compiled high-quality knowledge
is beneficial in filtering noise and cleaning candidate facts. In other words, once
we have a strong core KB, it is an asset in acquiring more knowledge, deeper
knowledge and better knowledge – without degrading in quality.

2.2.1 Harvesting Entities and Classes
The first goal of knowledge harvesting is to compile a comprehensive set of
semantic classes (e.g., guitarists, electric guitarists, left-handed guitarists, etc.)
and their instances (i.e., individual entities such as Bob Dylan, Jimmy Page, Jimi
Hendrix, etc.). In addition, we want to capture subsumptions among classes.
We could address this task ab initio, starting with raw Internet contents, but
it would be unwise to ignore pre-existing high-quality resources. First, classic
work on linguistics and cognition led to WordNet [19], a large repository of
words and word senses with lexical relations like synonymy, antonymy, hyper-
nymy (i.e., subsumption), etc. This can be seen as a source of more than 100,000
semantically classes, carefully organized into a subclass/superclass taxonomy.
Second, knowledge-centric communities like Wikipedia organize articles in cat-
egory systems. While these were noisy in the early years of Wikipedia (with
improper or misleading categories), the editorial guidelines and manual curation
of Wikipedia have eventually led to a very rich and reasonably accurate system
of about half a million categories. Given these prior assets, one line of successful
research has derived taxonomic knowledge for high-quality KB’s from WordNet
and Wikipedia [44,50,60]. The Yago KB, for example, has carefully unified Word-
Net classes and Wikipedia categories and constructed a high-quality taxonomy
with more than 300,000 fine-grained classes.

Once we settle on a class taxonomy, the next step is to populate the classes
with individual entities (where one entity can belong to several classes). Here,
Wikipedia is by far the largest and best asset to tap into, as it already orga-
nizes articles about entities within its category system. Most of the large KB’s
have seized this opportunity. It is straightforward when the taxonomy is based
on Wikipedia categories. For connecting to WordNet classes, though, clever
alignment and pruning techniques are needed [60]. The philosophy of “picking

Knowledge Harvesting: Achievements and Challenges 223

low-hanging fruit first” also carries over beyond Wikipedia. For example, Yago
has integrated GeoNames (geonames.org) for spatial entities [25]. For health enti-
ties like diseases, symptoms, drugs, etc., manually curated sources like UMLS,
MeSH, DrugBank, etc. can be used very effectively (see, e.g., [17]). Generally,
entities of specific types (e.g., books, songs, medical drugs, etc.) can often be
harvested from dedicated sources or specific identifier systems [62]. As a caveat,
we note that this does not completely cover the world of emerging entities like
new events or people who suddenly become notable (e.g., a new singer). This
aspect of knowledge dynamics will be discussed in Sect. 2.3.

A major alternative to relying on Wikipedia-style sources is to tap all kinds
of Internet sources at large scale. A classic approach for this line of taxonomy
induction research is to use so-called Hearst patterns like X such as Y or X, Y and
other Z and match them against Web and text contents to extract class-entity or
subclass-superclass pairs [23]. Using advanced data-mining and machine-learning
techniques, this idea can be greatly generalized, to tap into additional patterns,
http links and HTML tables (where a column name and cell value may indicate
a class-entity pair), or into query-and-click logs of big search engines (see, e.g.,
[10,31,47,67,69,73]). These are powerful methods; however, they require large-
scale machinery and access to big data like complete Web crawls or search engine
logs.

2.2.2 Gathering Facts from Wikipedia
The most straightforward way of gathering binary facts is to harvest infoboxes
in Wikipedia. These provide attributes and relationships of the entity featured
in an article, in semi-structured form. Here is an example in the wiki markup
language:

{{ Infobox person

| name = Steve Jobs

| birth date = Birth date|1955|2|24|mf=y

| birth place = [[San Francisco]], California, U.S.

| death cause = [[Pancreatic cancer]] and [[respiratory arrest]] }}

Naturally, these P and O components for SPO triples can be extracted by
regular expressions (i.e., finite state automata). These expressions may even be
automatically learned from samples with manual markup. Unfortunately, even
Wikipedia infoboxes exhibit noise and terminological diversity. For example,
birthplaces could be stated differently in different articles: birth place = . . .,
born in = . . ., born in city = . . ., etc.; and the values may be encoded in dif-
ferent ways (e.g., with or without the state in a country). To cope with this
heterogeneity, type-checking the outputs of a regex matcher is a boost in quality
[25,60]. Here, having rich taxonomic knowledge – entities and their fine-grained
types – is a huge benefit. The result is clean facts in canonicalized form.

There are other opportunities to extract facts from semi-structured elements
(i.e., headings, tables, etc.) in Wikipedia or similar high-quality sources. As the
diversity of how facts are expressed increases, this calls for stochastic variants of

http://geonames.org

224 G. Weikum et al.

automata, like Conditional Random Fields (CRF’s). Facts from infoboxes can
be used to train CRF-based extractors (e.g., [72]).

2.2.3 Gathering Fact Candidates from Text
For high recall (i.e., gathering as many facts as possible), we eventually need
to tap into natural language text as input, facing even higher degrees of noise
and variability. In this setting, pattern-based harvesting has been the method of
choice. For example, birthplaces of people are often expressed by phrases such
as “his birthplace is”, “her hometown”, “is from”, etc. Of course, it would be
daunting to manually specify such patterns for hundreds or thousands of pred-
icates. Instead, a distantly supervised approach has become prevalent, centered
on the principle of pattern-fact duality [1,6,18,40]. For each relation of interest,
a small set of seed facts is needed, for example, the correct birthplaces of a few
prominent people (which could be obtained from semi-structured high-quality
sources). These facts can be matched against a corpus (or the entire Internet) by
searching for sentences that contain the subject entity and the object entity. The
key idea then is that facts frequently co-occur with connecting phrases (e.g., ver-
bal phrases) that can be distilled into patterns. The patterns in turn co-occur
with other, newly seen facts. This procedure – alternating between facts and
patterns – can be iterated, and eventually yields a large number of new fact
candidates. Patterns can be surface phrases, but can also cover generalizations
such as lifting the words “his” and “her” into personal pronouns, capture non-
adjacent words, or use dependency parsing to consider the syntactic structure of
sentences. Also, HTML tables in Web pages can be tapped for fact harvesting
in a similar vein; this has been successfully pursued, for example, by the NELL
[41] and Knowledge Vault [15] projects.

Of course, this gathering process needs to be comlemented by computing
statistical measures of confidence and support. Otherwise, spurious patterns may
easily lead to drifting targets. For example, starting with Steve Job’s birthplace
San Francisco among the seed facts, the method could pick up the pattern “his
favorite place” after a few iterations. By judicious thresholding, one can obtain
a good set of assertions for facts. This approach typically results in an accuracy
around 80% – that is, there are still 20% of the assertions incorrect, due to noise
in the patterns.

2.2.4 Cleaning Fact Candidates
The high recall of the outlined gathering methods comes at the expense of poten-
tially degrading in precision: introducing many false candidates for facts. For
example, we may obtain the following assertions for the birthplace relation:

SteveJobs birthplace SanFrancisco SteveJobs birthplace USA

SteveJobs birthplace Kyoto SteveJobs birthplace AppleInc

These fact candidates may be derived from diverse patterns for the
birthplace predicate, such as “his hometown”, “citizen of”, “his favorite place”

Knowledge Harvesting: Achievements and Challenges 225

or “mostly at”. The resulting triples have to be cleaned: removing spurious asser-
tions, and also mapping patterns of good triples – “his hometown” in the above
case – onto canonicalized predicates. Next, we discuss methods for this purpose.

Consistency Constraints: A key idea is to mimic human skepticism: use plau-
sibility considerations to rule out dubious assertions. In technical terms, we can
impose consistency constraints on the candidate space, to discard assertions that
violate certain conditions. The simplest idea is to enforce type constraints, and
this actually provides enormous mileage towards building a high-quality KB. For
the above example, the relation about where people are born should be spec-
ified with a type signature birthplace: person × location, or more specifically
birthplace: person × city. This constitutes a logical constraint:

∀x, y (birthplace(x, y) ⇒ (type(x, person) ∧ type(y, city)))

The constraint is violated by 2 of the 4 candidate facts above, leaving only
San Francisco and Kyoto as possible cities where Steve Jobs was born.

This logics-based approach is far more general than mere type checking.
There are other kinds of constraints to be harnessed, most notably, functional
constraints – many relations are actually functions – and inclusion constraints
between different relations. For example, each person can have only one birth-
place, and birthplaces are usually among the cities where a person has lived:

∀x, y, z ((birthplace(x, y) ∧ birthplace(x, z)) ⇒ y = z)
∀x, y (birthplace(x, y) ⇒ livedIn(x, y))

These constraints have to be manually specified by a knowledge engineer.
However, this is a fairly easy modeling task, and not a bottleneck at all. There
are also techniques for automatically learning constraints from data (see, e.g.,
[7,41]), but this comes at a higher risk. In general, constraints can be hard or soft:
absolutely excluding any violation or tolerating a certain degree of exceptions.
For example, the above formula that couples birthplace and livedIn is soft.
In such cases, the constraints may be weighted. Fact candidates are weighted as
well, typically by some notion of confidence based on statistics from the gathering
stage. This opens the way to deciding between San Francisco and Kyoto for the
birthplace of Steve Jobs.

Consistency Reasoning: Fact candidates should not solely be checked against
each constraint in isolation. Instead, it is beneficial to perform joint inference
over a set of assertions and a set of constraints. Consider, for example, the
following noisy candidates and soft constraints, with the last two constraints
stating that someone can either be a scientist or a musician, but never both:

BobDylan hasWon Grammy

BobDylan hasWon LiteratureNobelPrize

BobDylan hasWon PhysicsNobelprize

∀x (hasWon(x,Grammy) ⇒ type(x,musician))
∀x (hasWon(x, PhysicsNobelPrize) ⇒ type(x, scientist))
∀x (type(x, scientist) ⇒ ¬type(x,musician))
∀x (type(x,musician) ⇒ ¬type(x, scientist))

226 G. Weikum et al.

There is no way to keep all three fact candidates while enforcing all con-
straints. There are two different combinations of prizes, though, that are con-
sistent. By viewing the data as a set of logical formulas, this becomes a test for
satisfiability. By grounding the constraints with the constants from the candi-
date fact pool, the problem is reduced to an instance of the MaxSat problem.
Moreover, since each individual formula has a weight (see above), the task is
to compute a Weighted MaxSat solution. Although this is a classical NP-hard
problem, there are good approximation techniques and there are ways of cus-
tomizing them to this specific task of knowledge cleaning [43,61]. In the example,
assume that the weight for the Grammy fact is much higher than the weight for
the Physics Nobel Prize and the weights for the three constraints are identical.
Then, the best solution is to accept the facts about the Grammy and Literature
Nobel Prize while dropping the assertion about the Physics Nobel Prize.

Probabilistic Graphical Models: The above line of thought has been very
fruitful for knowledge cleaning and comes in a variety of ways: MaxSat reasoning
is one approach, integer linear programming another one, and there are also
powerful probabilistic inference methods along these lines. The latter include
especially probabilistic graphical models, where random variables for accepting
or refuting fact candidates are coupled through logical constraints [14,30]. In
this setting, the MAP inference (MAP = maximum a posteriori) is equivalent
to solving a weighted MaxSat problem. Approximation algorithms include SAT
solvers, Monte Carlo sampling, variational calculus and more. Applications to
knowledge harvesting have been developed, among others, by [7,52,57,61,74,75].
Constraints have also been leveraged for estimating the confidence in specific
extractions and for training fact extraction methods (see, e.g., [41]).

Beyond Triples: Methods of this kind can be further extended to go beyond
binary relations. An important use case is temporal knowledge where facts need
to be annotated with timepoints or timespans when they are valid [37,63,71].
For example, properly interpreting a fact such as BobDylan spouseOf SaraDylan

requires the corresponding time scope [Nov-1965, June-1977]. So strictly speak-
ing, we are looking at a ternary relation here: spouseOf: person×person× time.
This is a special case of higher-arity relations, often but not only in combination
with entities of type event. Knowledge harvesting methods, as outlined above,
can be further extended to this end (see, e.g., [32]).

2.2.5 Other Approaches
A potential concern about the above methods is their limitation to pre-specified
predicates. For example, we can harvest composers of songs or artists who cov-
ered songs only after a human curator provides the relevant predicates with type
signatures: composedMusic: musician×song and coveredMusic: musician×song.
On the other hand, facts on song lyrics being about specific people cannot be
harvested unless we explicitly model such a predicate. Therefore, we refer to the
presented methods as model-driven knowledge harvesting.

Knowledge Harvesting: Achievements and Challenges 227

Open IE: The paradigm of Open Information Extraction (Open IE) [3,12,39]
offers unsupervised harvesting of fact triples in an open-ended manner, without
any modeling effort. Using linguistic patterns, Open IE collects all kinds of triples
where S, P and O are meaningful phrases, typically noun phrases for S and O
and verbal phrases for P. These are not canonicalized; so outputs could be:

“Dylan’s Hurricane” “covers the story of” “the black boxer Carter”

“Hurricane” “is a protest song about” “racist victim Carter”

“Sara” “is a love song about” “Dylan’s wife”

“the love song Sara” “is about” “his ex-wife Sara Dylan”

Such output requires disambiguating the S and O arguments of the phrase-
level triples, which is typically an entity-linking task [56] against an existing
KB of entities. Canonicalizing the P components, on the other hand, is an open
challenge as the space of possible predicates is unknown in this open-ended
setting. Research along these lines, based on clustering techniques, includes [20].

Deep Learning: With recent breakthroughs in deep learning [33], an intriguing
thought could be to bypass the explicit construction of a KB, and rather use
end-to-end learning on a per-task basis (e.g., question answering or describing
videos). However, this raises caveats. First, it would require huge amounts of
labeled training data which are often unavailable. Second, this expensive training
would have to be repeated for every new task. Third, machine learning outputs
(i.e., predictions, recommendations, answers or even decisions) are not easily
explainable to human users. Explicit KB’s, on the other hand, are a reusable
asset for many tasks, they can inform and constrain the learning of models, and
they support user-comprehensible explanations.

2.3 Knowledge Evolution and Quality

Change is the only constant in knowledge. Attribute values of entities (e.g., city
populations) and relationships between entities (e.g., the CEO of a company
or a person’s spouse) change over time. Moreover, new entities of interest are
created all the time and need to be added to the KB (e.g., new songs, sports
matches, babies of celebrities). Also, existing entities may be irrelevant for a
KB at some point, but become prominent at a later point. Typical examples are
when a “garage band” or “garage company” becomes succesful. If Wikipedia had
already existed in 1976, it would probably have dismissed Apple for insufficient
notability.

Temporal Knowledge: So KB’s must be continuously updated. This requires
keeping versions of facts, along with their temporal validity scopes. We already
discussed methods for harvesting temporal knowledge in Sect. 2.2.4. Some of the
major KB’s have rigorously followed this principle (e.g., [25]).

Active Knowledge: For some kinds of highly dynamic and specialized knowl-
edge, explicitly capturing fact versions is not practically feasible. For example,
the chart positions of a song and the box office counts of a movie change so

228 G. Weikum et al.

rapidly that it is hardly meaningful to materialize such facts in the KB. Instead,
a preferable way is to keep links to specialized databases and to Web services
that return up-to-date values on demand [51].

Emerging Entities: A specific aspect of dynamic knowledge is to cope with
newly emerging entities. When discovering entity names in input sources (text,
Web tables, etc.), we first aim to disambiguate them onto the already known
entities in the KB. However, even if there is a good match in the KB, it is not
necessarily the proper interpretation. For example, when the documentary movie
“Amy” was first mentioned a few years ago, it would have been tempting to link
the name to the soul singer Amy Winehouse. However, although the movie is
about the singer’s life, the two entities must not be confused. To rectify this
situation, each observed name should always be potentially associated with an
additional virtual candidate: none of the known entities [26]. When the evidence
for the name denoting an out-of-KB entity is stronger than for a known entity,
we capture the name as a new entity, along with its context. After a while, we
will thus obtain a repository of recently emerging entity names. Then, clustering
techniques can be used to group the names, and knowledge curators can be
asked to confirm these canoncialized groups. Finally, the confirmed entities can
be registered in the KB. To keep the effort for the curation step as low as possible,
new entity candidates should be presented with informative context [27].

On-the-fly Knowledge Bases: A specific case for out-of-KB entities is con-
structing ad-hoc KB’s on the fly. Suppose a new corpus of documents becomes
available, for example, the Panama Papers or a batch of articles on a hot politi-
cal or health topic, such as the UK Brexit or Zika infections. Then we should be
able to automatically build a domain- and corpus-specific KB overnight, to sup-
port journalists and analysts in exploring the topic and analyzing particularly
interesting issues.

Knowledge Curation: As a KB is continuously updated and keeps growing, it
is virtually inevitable that errors sneak in and degrade the KB quality. Versioning
of facts helps to control the maintenance process, but may also lead to conflicting
versions. For example, when a new name for the CEO for a company is detected
by harvesting fresh online sources, should this be added as a new fact or is it,
perhaps, evidence that the previous fact in the KB was incorrect? One case leads
to a new version, the other should result in overwriting the prior version. Even
worse, an error may be detected only post-hoc, days or weeks after a new version
was added and became interlinked with other facts.

Thus, quality assurance requires a fundamental solution. Fact cleaning, as
discussed in Sect. 2.2.4 is an important element, and so is versioning. However,
more is needed for a comprehensive approach. Today, very large KB’s resort
to manual curation, by having human volunteers (e.g., in an online community
like Wikidata) or paid workers (in a commercial KB) checking newly added or
altered facts. Such a crowdsourcing solution can be orchestrated in various ways,
with the goal of optimizing the benefit/cost ratio (e.g., [29]).

Knowledge Harvesting: Achievements and Challenges 229

Fact Checking: An alternative or complement to human curators is to harness
the sources of evidence for doubtful facts in a more principled manner. This
may entail actively searching for evidence or counter-evidence about facts, as
a continuous background process. A typical approach is to consider a small
number of alternative O values for given S and P of a fact, such as birthplaces for
Steve Jobs: San Francisco vs. Cupertino vs. Kyoto. Then statistics derived from
Internet sources (i.e., databases, Web sites, news, etc.) can guide the analysis
and assessment of candidates towards finding the truth (see [36] for a survey).

This form of knowledge corroboration or knowledge fusion aggregates the
observation confidence from different sources, where sources are weighted by
their trustworthiness. Therefore, reasoning on truth (of statements) and trust (of
sources) are often intertwined. Not surprisingly, joint inference methods, based
on probabilistic models, have been pursued to this end (e.g., [16,42,48,49]).

3 Challenges

Notwithstanding the great advances of knowledge harvesting over the last
decade, there are major challenges left open – raising the bar for what computers
should know. In the following, we discuss a few strategic challenges, pointing out
opportunities for future research.

3.1 Knowledge Base Coverage

No matter how large a KB can grow, it will never be fully complete. The gaps,
relative to an ideal KB, take different forms as discussed next.

Locally Incomplete Knowledge: This form of incompleteness can be formally
characterized by referring to SPO triples that are in the KB and triples that
should ideally be included but are missing. The most obvious case is when some
O values are absent for a given S and P value – for example, when the KB
contains some movies of a director but not all of them. Another case is when
for a given P value, we have O values for some S but not all of them – for
example, knowing spouses of some people but not knowing any spouses for other
married people. The challenge here is not just to fill these gaps, but to realize
when and where gaps exist. Reasoning over locally closed worlds is one recent
approach [22]. More research is needed to equip KB’s with self-reflection abilities
to automatically detect their own gaps.

Long-tail Entities and Classes: There are many lesser known musicians,
regional politicians and good but not exactly famous scientists. How can we
identify these long-tail entities in the Internet, and harvest facts about them?
Long-tail classes pose a similar problem: even with hundred thousands of classes
in some KB’s, one could always add more interesting ones. For example, what
if we want to capture classes like YogaPractitioners or BobDylanFans (both of
which would have Steve Jobs as a member)? Where in the class taxonomy should
these classes be placed, and how can we find their instances?

230 G. Weikum et al.

Missing Facts: KB’s have largely been constructed in an opportunistic manner,
tapping into Wikipedia and its semi-structured data elements. If something is not
explicitly said in Wikipedia or stated only in sophisticated form in the article’s
text, most KB’s will miss it. This has resulted in high coverage of elementary
facts like birthdates, marriages, albums of musicians, etc., but has neglected a
diversity of salient facts that stand out to a human but are not easily captured
by a machine. For example, what is notable about Bob Dylan’s album Blonde on
Blonde? KB’s offer the release date, the list of songs, etc. To a human, however,
salient properties are, for example, that this was one of the first albums on
which Dylan “went electric” (using electric instruments – irritating many of
his folk music fans), and that its song “Sad Eyed Lady of the Lowlands” is
about Dylan’s wife Sara. The song was later covered by Joan Baez, who had a
romantic relationship with Bob Dylan in the early 1960s and with Steve Jobs
in the early 1980s. Her song “Diamonds and Rust” is about Bob Dylan. None
of this is captured by any KB; most do not even have the proper predicates like
romanceWith or songIsAbout.

3.2 Commonsense, Rules and Socio-Cultural Knowledge

Automatically constructed KB’s have mostly focused on harvesting encyclopedic
fact knowledge. However, for semantic search and other intelligent applications
(e.g., conversational bots in social media), machines need a broader understand-
ing of the world: properties of everyday objects, human activities, plausibility
invariants and more. This overriding goal calls for various research directions.

Commonsense: One objective is to distill commonsense from Internet sources.
This is about properties of objects like size, color, shape, parts or substance of
which an object is made of, etc., and knowledge on which objects are used for
which activities as well as when and where certain activities typically happen.
For example, a rock concert involves musicians, instruments – almost always
including drums and guitars, speakers, a microphone for the singer; the typical
location is a stage, and so on. This background knowledge is beneficial for the
interpretation of user questions, and also for retrieving images and videos when
queries refer to abstractions or emotions that cannot be directly matched by cap-
tions, tags or other text. Today’s search engines perform poorly on queries such
as “exhausted band at hippie concert” (where users may want to find footage
of concerts by the Grateful Dead or the Doors). Recent work on acquiring com-
monsense includes ConceptNet [58] and WebChild [64]; research with the specific
focus of organizing knowledge on human activities includes [65]. There is, how-
ever, still a long way to go for computers to learn what every child knows.

Visual Knowledge: Commonsense knowledge is often more expressed in visual
form than in textual sources; for example, think of colors, shapes and sizes
of objects. This observation entails the dual goals of (i) tapping visual con-
tents like images and videos for acquiring knowledge and (ii) constructing a KB
about visual properties. Along the latter lines, ImageNet [13] is the most notable
endeavor, which has populated a large fraction of WordNet classes with images.

Knowledge Harvesting: Achievements and Challenges 231

The NEIL project [8] has a gone a step further by extracting visual relationships
between objects. WebChild has acquired different kinds of part-whole knowledge,
at large scale, from combining textual and visual cues [66]. This is an instan-
tiation of the general challenge of jointly distilling knowledge from vision and
language (e.g., from movie scenes and their narratives [54]).

Rules: Another key element for advancing the intelligent behavior of machines
is to capture invariants over certain kinds of facts, in the form of logical rules.
For example, a rule about scientists and their advisors could state that the
advisor be on the faculty of the scientist’s alma mater – as of the time when
the scientist graduated. Similarly to the role of constraints in fact cleaning (see
Sect. 2.2.4), rules can have exceptions. But regardless of their soft nature, rules
can be a great asset to answer more queries and to infer additional facts for KB
completion. For example, a person who has or had a position on the government
of a certain country, is most likely a citizen of that country. To acquire this kind
of intensional knowledge, rule mining methods have been applied to large KB’s
[21]. However, the state of the art has major limitations: rules are restricted
in their logical form to Horn clauses or at least clauses. This disallows rules
with existential quantifiers or with disjunctions in the rule head; for example,
expressing that every human person has a mother and that every human is male
or female, would be beyond the current scope. An alternative approach to KB
completion, which bypasses logical representations, is to start with a tensor of
SPO triples and use matrix or tensor factorization methods to predict additional
triples (similarly to recommender systems) [45]. However, the derivation of new
facts is not easily explainable with such methods.

Commonsense rules were already in the focus of the seminal Cyc project [35],
but Cyc relied on human experts to manually specify logical axioms. A major
challenge with automatic rule mining arises from the open world assumption that
underlies KB’s and the bias in observations from Internet sources. For example,
if a KB does not contain any person who has won two different Nobel prizes,
this should not imply a functionality constraint or cardinality constraint. In
fact, Marie Curie is a counterexample anyway, but some KB’s may have only
a partial list of her awards. Likewise, a KB may have a restricted view on the
wealth of entrepreneurs: for example, all founders of IT companies have become
billionaires. This can be caused by the bias in the KB construction (e.g., by
harvesting only successful entrepreneurs from Wikipedia), and should not entail
a rule in the open world.

Socio-Cultural Knowledge: Another dimension where today’s KB’s have a
huge gap is the socio-cultural context of facts or rules. Consider statements on
people making discoveries and inventions. On first glance, one would expect that
these are objective and universally agreed upon. On second thought, however,
it becomes clear that it depends on the background and viewpoint of users. For
example, most people in the US would say that the computer was invented by
Eckert and Mauchley, whereas a German would give the credit to Konrad Zuse
and a British may point out Alan Turing (or perhaps Charles Babbage). This
depends not just on geographical context; for example, teenagers may widely

232 G. Weikum et al.

think of Steve Jobs as the (re-) inventor of the (mobile) computer. For common-
sense knowledge, it is even more critical to capture socio-cultural contexts. For
example, shaking hands when people meet is the usual way of welcoming some-
one only in parts of the world. In other regions, people often hug or kiss each
other (e.g., in France), or make gestures with both hands (e.g., in Thailand).

4 Conclusion

Knowledge harvesting has made great impact in enabling the automatic con-
struction of large knowledge bases, sometimes called knowledge graphs. These
have become essential assets in search and analytics over Internet contents and
enterprise data. In addition to reviewing the underlying methodological achieve-
ments, this article has pointed out open challenges towards the next level of
machine knowledge.

The success of deep learning, to enable smart computer behavior by training
on raw data, may open up new perspectives on knowledge harvesting as well. Do
computers need this kind of explicit knowledge representation at all, or is task-
specific end-to-end learning in a sub-symbolic manner sufficient? We believe that
machine knowledge and machine learning are complementary assets: the more
you know the better you learn, and better learning enables acquiring more and
deeper knowledge. A final challenge and research opportunity is to explore this
potential synergy.

References

1. Agichtein, E., Gravano, L.: Snowball: extracting relations from large plain-text
collections. In: ACM DL (2000)

2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -
2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-76298-0 52

3. Banko, M., et al.: Open information extraction from the web. In: IJCAI (2007)
4. Bast, H., Buchhold, B., Haussmann, E.: Semantic search on text and knowledge

bases. Found. Trends Inf. Retrieval 10(2–3) (2016)
5. Bollacker, K., et al.: Freebase: a collaboratively created graph database for struc-

turing human knowledge. In: SIGMOD (2008)
6. Brin, S.: Extracting patterns and relations from the world wide web. In: Atzeni,

P., Mendelzon, A., Mecca, G. (eds.) WebDB 1998. LNCS, vol. 1590, pp. 172–183.
Springer, Heidelberg (1999). https://doi.org/10.1007/10704656 11

7. Carlson, A.J., et al.: Toward an architecture for never-ending language learning.
In: AAAI (2010)

8. Chen, X., Shrivastava, A., Gupta, A.: NEIL: extracting visual knowledge from web
data. In: ICCV (2013)

9. Chiticariu, L., Li, Y., Reiss, F.: Transparent machine learning for information
extraction: state-of-the-art and the future. In: EMNLP (Tutorial) (2015)

10. Craven, M., et al.: Learning to construct knowledge bases from the world wide
web. Art. Intell. 118(1) (2000)

https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/10704656_11

Knowledge Harvesting: Achievements and Challenges 233

11. Dalvi, N., et al.: A web of concepts. In: PODS (2009)
12. Del Corro, L., Gemulla, R.: ClausIE: clause-based open information extraction. In:

WWW 2013 (2013)
13. Deng, J., et al.: ImageNet: a large-scale hierarchical image database. In: CVPR

(2009)
14. Domingos, P., Lowd, D.: Markov Logic: An Interface Layer for Artificial Intelli-

gence. Morgan & Claypool, San Rafael (2009)
15. Dong, X.L., et al.: Knowledge vault: a web-scale approach to probabilistic knowl-

edge fusion. In: KDD (2014)
16. Dong, X.L., et al.: Knowledge-based trust: estimating the trustworthiness of web

sources. PVLDB 8(9) (2015)
17. Ernst, P., et al.: KnowLife: a versatile approach for constructing a large knowledge

graph for biomedical sciences. BMC Bioinform. 16(157) (2015)
18. Etzioni, O., et al.: Unsupervised named-entity extraction from the web: an exper-

imental study. Art. Intell. 165(1) (2005)
19. Fellbaum, C., Miller, G.: WordNet: An Electronic Lexical Database. MIT Press,

Cambridge (1998)
20. Galarraga, L., et al.: Canonicalizing open knowledge bases. In: CIKM (2014)
21. Galarraga, L., et al.: Fast rule mining in ontological knowledge bases with AMIE+.

VLDB J. 24(6) (2015)
22. Galarraga, L., et al.: Predicting completeness in knowledge bases. In: WSDM

(2017)
23. Hearst, M.: Automatic acquisition of hyponyms from large text corpora. In: COL-

ING (1992)
24. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space.

Morgan & Claypool, San Rafael (2011)
25. Hoffart, J., et al.: YAGO2: a spatially and temporally enhanced knowledge base

from wikipedia. Art. Intell. 194 (2013)
26. Hoffart, J., Altun, Y., Weikum, G.: Discovering emerging entities with ambiguous

names. In: WWW 2014 (2014)
27. Hoffart, J., et al.: The knowledge awakens: keeping knowledge bases fresh with

emerging entities. In: WWW 2016 (2016)
28. Ferrucci, D.A.: “This is Watson”. IBM J. Res. Dev. 56(3/4) (2012). Special Issue
29. Kobren, A., et al.: Getting more for less: optimized crowdsourcing with dynamic

tasks and goals. In: WWW 2015 (2015)
30. Koller, D., Friedman, N.: Probabilistic Graphical Models. MIT Press, Cambridge

(2009)
31. Kozareva, Z., Hovy, E.H.: Learning arguments and supertypes of semantic relations

using recursive patterns. In: ACL (2010)
32. Krause, S., Li, H., Uszkoreit, H., Xu, F.: Large-scale learning of relation-extraction

rules with distant supervision from the web. In: Cudré-Mauroux, P., et al. (eds.)
ISWC 2012. LNCS, vol. 7649, pp. 263–278. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-35176-1 17

33. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521 (2015)
34. Lenat, D., Feigenbaum, E.: On the thresholds of knowledge. Art. Intell. 47(1)

(1991)
35. Lenat, D.: CYC: a large-scale investment in knowledge infrastructure. Commun.

ACM 38(11) (1995)
36. Li, Y., et al.: A survey on truth discovery. SIGKDD Explor. 17(2) (2015)
37. Ling, X., Weld, D.: Temporal information extraction. In: AAAI (2010)

https://doi.org/10.1007/978-3-642-35176-1_17
https://doi.org/10.1007/978-3-642-35176-1_17

234 G. Weikum et al.

38. Ling, X., Singh, S., Weld, D.: Design challenges for entity linking. TACL 3 (2015)
39. Mausam, et al.: Open language learning for information extraction. In: EMNLP-

CoNLL (2012)
40. Mintz, M., et al.: Distant supervision for relation extraction without labeled data.

In: ACL/IJCNLP (2009)
41. Mitchell, T., et al.: Never-ending learning. In: AAAI (2015)
42. Mukherjee, S., Weikum, G., Danescu-Niculescu-Mizil, C.: People on drugs: credi-

bility of user statements in health communities. In: KDD (2014)
43. Nakashole, N., Theobald, M., Weikum, G.: Scalable knowledge harvesting with

high precision and high recall. In: WSDM (2011)
44. Navigli, R., Ponzetto, S.: BabelNet: the automatic construction, evaluation and

application of a wide-coverage multilingual semantic network. Art. Intell. 193
(2012)

45. Nickel, M., et al.: A review of relational machine learning for knowledge graphs.
Proc. IEEE 104(1) (2016)

46. Nie, Z., Wen, J.-R., Ma, W.-Y.: Statistical entity extraction from the web. Proc.
IEEE 100(9) (2012)

47. Pasca, M.: Open-domain fine-grained class extraction from web search queries. In:
EMNLP (2013)

48. Pasternack, J., Roth, D.: Latent credibility analysis. In: WWW 2013 (2013)
49. Popat, K., et al.: Where the truth lies: explaining the credibility of emerging claims

on the web and social media. In: WWW 2017 (2017)
50. Ponzetto, S., Strube, M.: Deriving a large-scale taxonomy from wikipedia. In:

AAAI (2007)
51. Preda, N., et al.: Active knowledge: dynamically enriching RDF knowledge bases

by web services. In: SIGMOD (2010)
52. Pujara, J., Miao, H., Getoor, L., Cohen, W.: Knowledge graph identification. In:

Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L.,
Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 542–557.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41335-3 34

53. Rebele, T., Suchanek, F., Hoffart, J., Biega, J., Kuzey, E., Weikum, G.: YAGO:
a multilingual knowledge base from wikipedia, wordnet, and geonames. In: Groth,
P., et al. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 177–185. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46547-0 19

54. Rohrbach, A., et al.: A dataset for movie description. In: CVPR (2015)
55. Sarawagi, S.: Information extraction. Found. Trends Databases 1(3) (2008)
56. Shen, W., Wang, J., Han, J.: Entity linking with a knowledge base: issues, tech-

niques, and solutions. IEEE Trans. Knowl. Data Eng. 27(2) (2015)
57. Shin, J., et al.: Incremental knowledge base construction using deepdive. PVLDB

8(11) (2015)
58. Speer, R., Havasi, C.: Representing general relational knowledge in ConceptNet 5.

In: LREC (2012)
59. Staab, S., Studer, R.: Handbook on Ontologies. Springer, Heidelberg (2009)
60. Suchanek, F., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge. In:

WWW 2007 (2007)
61. Suchanek, F., Sozio, M., Weikum, G.: SOFIE: a self-organizing framework for infor-

mation extraction. In: WWW 2009 (2009)
62. Talaika, A., et al.: IBEX: harvesting entities from the web using unique identifiers.

In: WebDB 2015 (2015)
63. Talukdar, P., Wijaya, D., Mitchell, T.: Coupled temporal scoping of relational facts.

In: WSDM 2012 (2012)

https://doi.org/10.1007/978-3-642-41335-3_34
https://doi.org/10.1007/978-3-319-46547-0_19

Knowledge Harvesting: Achievements and Challenges 235

64. Tandon, N., et al.: WebChild: harvesting and organizing commonsense knowledge
from the web. In: WSDM (2014)

65. Tandon, N., et al.: Knowlywood: mining activity knowledge from hollywood nar-
ratives. In: CIKM (2015)

66. Tandon, N., et al.: Commonsense in parts: mining part-whole relations from the
web and image tags. In: AAAI 2016 (2016)

67. Venetis, P., et al.: Recovering semantics of tables on the web. PVLDB 4(9) (2011)
68. Vrandecic, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-

mun. ACM 57(10) (2014)
69. Wang, R., Cohen, W.: Iterative set expansion of named entities using the web. In:

ICDM (2008)
70. Wang, Z., et al.: XLore: a large-scale English-Chinese bilingual knowledge graph.

In: ISWC (2013)
71. Wang, Y., et al.: Coupling label propagation and constraints for temporal fact

extraction. In: ACL (2012)
72. Wu, F., Hoffmann, R., Weld, D.: Information extraction from wikipedia: moving

down the long tail. In: KDD (2008)
73. Wu, W., et al.: Probase: a probabilistic taxonomy for text understanding. In: SIG-

MOD (2012)
74. Yao, L., et al.: Structured relation discovery using generative models. In: EMNLP

(2011)
75. Zhu, J., et al.: StatSnowball: a statistical approach to extracting entity relation-

ships. In: WWW 2009 (2009)

Methods, Languages and Tools for
Future System Development

Methods, Languages and Tools for Future
System Development

Bernhard Steffen(B)

Chair for Programming Systems, TU Dortmund University, Dortmund, Germany
steffen@cs.tu-dortmund.de

Abstract. Language design for simplifying programming, analysis/ver-
ification methods and tools for guaranteeing, for example, security and
real-time constraints, and validation environments for increasing automa-
tion during quality assurance can all be regarded as means to factor out
and generically solve specific concerns of the software development pro-
cess and then reuse the corresponding solutions. In this sense, reuse, a
guiding engineering principle, appears as a unifying theme in software
science, and it is not surprising that the corresponding research is con-
tinuously converging. The following summary of the contributions of the
second topical part of the celebration volume LNCS 10,000 aims at estab-
lishing a common perspective and indicating the state and progress of
this convergence.

Keywords: Programming languages and paradigms
Integrated Development Environments · Domain-Specific Languages
Modeling · Simulation · Cyber-Physical Systems · Bootstraping
Deductive verification · Static analysis · Proactive/reactive security
Software architecture · Model checking · Markov decision processes
Continuous time models · Strategy/controller synthesis
Statistical model checking · Rare Events · Runtime verification
Fuzzing · Test generation · (Dynamic) symbolic execution
Monitoring · Specification mining · Automata learning
Register automata

1 Introduction

Technical progress does not necessarily mean conceptual improvement, as sum-
marized by Dijkstra [9]: “as long as there were no machines, programming was
no problem at all; when we had a few weak computers, programming became a
mild problem, and now we have gigantic computers,1 programming has become
an equally gigantic problem”. This quote from 1972, which expresses Dijkstra’s
frustration in having to deal with increasingly powerful, but also increasingly
1 This perspective underlines the “miracle” of the last few decades. Nobody would

have predicted the recent ‘digital revolution’ in 1972, neither in its technical, let
alone in its social dimension.

c© Springer Nature Switzerland AG 2019

B. Steffen and G. Woeginger (Eds.): Computing and Software Science, LNCS 10000, pp. 239–249, 2019.

https://doi.org/10.1007/978-3-319-91908-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91908-9_14&domain=pdf
https://doi.org/10.1007/978-3-319-91908-9_14

240 B. Steffen

difficult-to-handle machinery, embodies an important message to software scien-
tists, the quest for simplicity2, a message even more important today.

Of course, there is no general agreement on what to consider simple, but peo-
ple understand that things become simpler for them when their task is reduced,
for example, they only have to take care of the functionality of a program, but
not the user interface, the underlying security mechanism, or the performance.
In this sense, the change in software development from a ‘one-man show’ to
a coordinated collaborative enterprise involving different kinds of stakeholders
responsible for different aspects, like required functionality, security, real-time
guarantees, quality assurance, platform specifics, etc., is clearly a simplicity
improvement. On the other hand, this change imposes a challenge: how to reli-
ably manage or coordinate this collaborative effort.

This is a good example of trade-offs, which are omnipresent in computer sci-
ence. Typical are the three dimensions time vs. space, precision vs. performance,
and generality vs. ease. Another dimension of trade-off, language abstraction vs.
complexity of compilation, illustrates an important paradigm of software science,
reuse: the complexity of writing a compiler typically pays off because of its high
amount of reuse. In fact, there are interesting (re)use-oriented ways of solving
trade-off dilemmas. For example, in the 1990s, Microsoft became ‘famous’ for
treating the quality vs. time-to-market lemma by exploiting its millions of users
as testers, an approach also responsible for the often surprisingly high quality of
open source software. The “release early and release often” slogan of the perpet-
ual beta paradigm3 underlying many of Google’s applications seems, indeed, to
be adequate for many of today’s fast-moving applications. In fact, the power of
this approach to quality assurance is a direct consequence of the high amount
of (re)use, be it the (re)use of Microsoft Office to, for example, write texts, of
Google Maps or the (re)use of (generic) modules of an open source library: the
higher the amount of (re)use, the more intense the testing, and the better the
quality.

The quest for reuse is in fact one of the driving forces of software science:
how to solve certain tasks once and for all? In particular, when combined with
the popular divide-and-conquer approach this allows one to factor out and then
solve repetitive tasks. Ideally, in the long run, this leads to libraries of generalized
solutions whose quality increases with the frequency of (re)use.

Fifty years back, when the term software engineering was coined [25]4 nobody
would have imagined that the then anticipated software crisis would largely be
tamed by a sociological change: today’s library-based software development is

2 In [24] simplicity is emphasized as an important indicator of maturity.
3 Cf., Sect. 4 “End of the Software Release Cycle.” of [26].
4 It is interesting to read today that during the preparation of the famous NATO

Software Engineering Conference in 1968 in Garmisch-Partenkirchen “The phrase
‘software engineering’ was deliberately chosen as being provocative, in implying the
need for software manufacture to be based on the types of theoretical foundations and
practical disciplines, that are traditional in the established branches of engineering.”

Methods, Languages and Tools for Future System Development 241

a community effort which does not only increase the development performance
but also the software quality.

The concept of reuse inherent in software science comprises, however, much
more than the reuse of, for example, components provided by a software library:
effort spent on the development of powerful programming or modeling languages
and their corresponding Integrated Development Environments (IDEs) or on val-
idation and verification tools has a much bigger but often underestimated reuse
potential. Programmers are often not aware of the wealth of formal methods tech-
nologies they are relying on. Today’s complex IDEs comprise many such tech-
nologies in order to provide, for example, syntax-based guidance, type-checking,
model checking, and sophisticated validation and debugging support. In fact,
using runtime verification technology this support also continues after deploy-
ment. It is this general kind of reuse we rely on today when building systems
of a complexity far beyond what the participants of the software engineering
conference in Garmisch-Partenkirchen in 1968 could have imagined.

The following three sections discuss the contributions of this topical part of
the volume according to which concept of reuse they support. In this discussion,
automation is considered a particularly powerful means of reuse.

2 Languages

The evolution of programming and modeling languages and their correspond-
ing IDEs has an enormous impact on the productivity of software developers.
For example, depending on the chosen language paradigm5, solutions to cer-
tain programming tasks may differ drastically. It is therefore not surprising that
new language proposals try to embed the essential parts of all paradigms in one
comprehensive language in order to allow programmers to elegantly and effi-
ciently solve conceptually different tasks without switching context. Leveraging
the enormous power of such ‘super’ languages, however, is not easy. It requires
‘super’ developers who not only need to master all the individual paradigms
involved, but who must also understand how these different paradigms may
interfere.

A complementary line of programming language research aims at a dedicated
system development targeting specific domains. Resulting (often called domain-
specific) languages typically provide a much stronger development support where
applicable, but at the price of an often strongly reduced area of application. The
three chapters sketched in the following three paragraphs (1) discuss what makes
a programming language successful, (2) present a dedicated domain-specific envi-
ronment for modeling and simulating cyber-physical systems based on Julia, a
programming language designed to support numerical computation, and (3) pro-
pose a style of (software) system development which is based on the systematic
design of domain-specific (modeling) languages.

5 Classically imperative (which today comprises object-oriented), functional and
declarative programming were distinguished.

242 B. Steffen

The Next 7000 Programming Languages [6] can be regarded as a ret-
rospective view on Peter Landin’s seminal paper “The next 700 programming
languages” of 1966 [22] under the Darwinistic perspective of the ‘survival of the
fittest’. Considering the features (genes) of these languages and how they fared
in the past it discusses the divergence between the languages empirically used
in 2017 and the language features one might have expected if the languages
of the 1960s had evolved optimally to fill programming niches. In particular it
characterizes three divergences, or ‘elephants in the room’, where actual cur-
rent language use, or feature provision, differs from that which evolution might
suggest: the immortality of C, the renaissance of dynamically typed languages,
and the chaotic treatment of parallelism. Thus rather than predicting the con-
vergence towards a universal programming language corresponding to Landin’s
ISWIM, the authors foresee an increased productivity of software development
due to fast evolution of (niche-specific) language-supporting tooling.

While the next paragraph talks about such a concrete domain/niche-specific,
tool-supported language, the last paragraph of this section sketches a new system
engineering approach based on the systematic construction of domain-specific
development environments.

Multi-mode DAE Models – Challenges, Theory and Implementa-
tion [3] considers the domain of modeling and simulation of Cyber-Physical
Systems (CPS) such as robots, vehicles, and power plants. Characteristic here
is that CPS models are multi-mode in the sense that their structure may change
during simulation due to the desired operation, due to failure situations or due
to changes in physical conditions. The approach presented in the chapter focuses
on multi-mode Differential Algebraic Equations (DAEs), and, in particular, on
the problem of how to switch from one mode to another when the number of
equations may change and variables may exhibit impulsive behavior. The new
methods presented to solve this problem are evaluated with both the experimen-
tal modeling and simulation system Modia, a domain specific language extension
of the programming language Julia, and SunDAE, a novel structural analysis
library for multi-mode DAE systems.

The following quote taken from [10] indicates that languages like Modia are
still exceptions, and that domain-specific support is still rare in general: “Pro-
gramming language research is short of its ultimate goal – provide software devel-
opers tools for formulating solutions in the languages of problem domains”. The
ambitions of the chapter sketched below go even beyond this goal.

Language-Driven Engineering: From General Purpose to Purpose-
Specific Languages [30] presents a paradigm characterized by its unique sup-
port for division of labor based on stakeholder-specific Domain-Specific Lan-
guages (DSLs). Language-Driven Engineering (LDE) allows the involved stake-
holders, including the application experts, to participate in the system develop-
ment and evolution process using DSLs supporting their domain-specific mind-
set. In the considered proof-of-concept, the interplay between the involved DSLs
is technically realized in a service-oriented fashion which eases system evolution
through introduction and exchange of entire DSLs. The authors argue for the

Methods, Languages and Tools for Future System Development 243

potential of this approach by pointing at the widely available, typically graphical
DSLs used in the various fields of application that can be enriched to satisfy the
LDE requirements. For an economic technical realization they refer to the boot-
strapping6 effect, a recursive form of reuse, when considering the construction
of corresponding development environments as the domain of interest.

The power and practicality of a programming/modeling language strongly
depend on the power of the corresponding IDE. The following two sections pro-
vide an impression of powerful methods and tools that may be integrated in
future IDEs to enhance the software development process.

3 Verification Methods and Tools

The mathematical roots of computer science are nicely reflected in the very
early attempts to formally prove the correctness of programs [11,16]. Here, the
inductive assertion method, and Hoare’s syntax-driven proof organization can
be regarded as means to reduce the manual effort in a reuse fashion. Today’s
deductive program verification reflects 50 years of research in this direction.
The chapter sketched in the next paragraph provides a comprehensive overview
of the recent corresponding development, whereas the subsequent paragraphs
essentially exploit the abstract interpretation paradigm [8] to reduce the consid-
ered problem scenarios to decidable ones. This move toward decidable scenarios
can be regarded as a transition from weaker formal methods to stronger formal
methods in the sense of Wolper [32].

Deductive Verification: From Pen-and-Paper Proofs to Industrial
Tools [15] provides a retrospective view on the development of deductive soft-
ware verification, the discipline aiming at formally verifying that all possible
behaviors of a given program satisfy formally defined, possibly complex proper-
ties, where the verification process is based on logical inference. Following the
trajectory of the field from its inception in the late 1960s via its current state
to its promises for the future, from pen-and-paper proofs for programs written
in small, idealized languages to highly automated proofs of complex library or
system code written in mainstream languages, the chapter establishes the state-
of-the-art and provides a list of the most important challenges for the further
development of the field. Of practical importance are, in particular, the integra-
tion of methods and tools in existing software production environments in order
to support easy (re)use and exchange.

Deductive verification is known to be extremely labor intensive which led
to the rule of thumb: “A verified program equals a PhD thesis”. In contrast,
static analysis, the topic of the next paragraph, originally aimed at compiler
optimization and therefore had to be highly efficient.

Static Analysis for Proactive Security [18] reflects on current problems
and practices in system security, distinguishing between reactive security – which

6 An impressive illustration of the power of bootstrapping is Futamura’s partial
evaluation-based approach [12,20].

244 B. Steffen

deals with vulnerabilities as they are being exploited – and proactive security –
which aims to make vulnerabilities un-exploitable by removing them from a
system entirely. It is argued that static analysis is well positioned to support
approaches to proactive security, since it is sufficiently expressive to represent
many vulnerabilities yet sufficiently efficient to detect vulnerabilities prior to
system deployment, and it interacts well with both confidentiality and integrity
aspects. In particular, static analysis can be used to provide proactive security
concerning some models, such as those for access control. This indicates a high
reuse potential for static analyzers tuned for certain security models. Interest-
ingly, the chapter also hints at bootstrapping-based reuse: the static analysis of
the static analyzer. That verifiers/analyzers should themselves be verified is an
inevitable future requirement.

There is a strong link between static analysis and model checking which can
even be exploited to automatically generate efficient static analysis algorithms
via partial evaluation of a model checker for the specifying temporal formula
[28]. This emphasizes the high reuse potential for model checkers. On the other
hand, the wide range of application scenarios led to a wealth of model-checking
methods and tools, all with their specific application profile.

In 1995, the year when LNCS celebrated its 1000th issue, a layered architec-
ture to help manage the plurality of model checking methods was proposed [29].
This architecture was elaborated in [31] to even synthesize, for example, special-
ized model checkers from a temporal specification on the basis of a component
library. The chapter sketched in the next paragraph presents a three-tier archi-
tecture particularly emphasizing the integration of multiple input languages and
back-end analyzers.

Software Architecture of Modern Model-Checkers [21] summarizes
the recent trends in the design and architecture of model checking tools and
proposes a concrete architecture specifically designed to support many input
languages (front-end) and many verification strategies (back-end). In this archi-
tecture, a common intermediate layer – either in the form of an intermediate
language or a common API – is used to mediate between the many, often domain-
specific input languages for both systems and properties, and the corresponding
variants of model checking tools implementing different verification technologies.
(Re)using this intermediate layer allows one to easily add further languages and
tools just by hooking onto this layer. The impact of this approach is impressively
illustrated with application examples for LTSmin, and the difference between
the language and API variant of the intermediate layer is discussed according to
their practical implications. Altogether the chapter contributes to the alignment
of and leverages synergies between model checking methods and tools.

The following two paragraphs sketch chapters that focus on more domain-
specific verification scenarios: Markov decision processes and continuous-time
models. The presented methods provide dedicated support for their respective
fields of application, but are constrained in their range of reuse.

The 10,000 Facets of MDP Model Checking [2] presents how probabilis-
tic model checking can be applied to Markov Decision Processes (MDP), which

Methods, Languages and Tools for Future System Development 245

have a wide range of application areas ranging from stochastic and dynamic opti-
mization problems to robotics. Given an MDP and a property φ written in some
probabilistic logic, MDP model checking fully automatically determines all states
of the MDP that satisfy property φ. If successful, MDP model checking addition-
ally provides optimal policies as a by-product of verification. For robotics, this
by-product can be exploited to synthesize optimal strategies for tasks in uncer-
tain environments that are specified in terms of a probabilistic logic. This nicely
illustrates the close relationship between checking-based approaches that control
whether certain properties are guaranteed or can be satisfied, and methods for
property enforcement that aim at synthesizing property conforming solutions.

Continuous-time Models for System Design and Analysis [1] illus-
trates the ingredients of the state-of-the-art of the model-based approach for
the formal design and verification of cyber-physical systems. To capture the
interaction between a discrete controller and its continuously evolving environ-
ment, formal models of timed and hybrid automata are used. The approach is
illustrated via step-wise modeling and verification using the tools Uppaal and
SpaceEx with a case study based on a dual-chamber implantable pacemaker
monitoring a human heart. In particular, it is shown how to design a model
as a composition of components, how to construct models at varying levels of
detail, how to establish that one model is an abstraction of another, how to
specify correctness requirements using temporal logic, and how to verify that
a model satisfies a logical requirement. The chapter closes with a discussion of
directions for future research and specific challenges, like the combination with
probabilistic methods such as those addressed in the previous paragraph.

A common hurdle for the application of model checking based technologies is
the state explosion problem: the models to be considered grow exponentially with
the number of their variables and parallel components. Bounded model checking
has been proposed as a heuristic to overcome this problem [7]. An alternative
heuristic is addressed in the chapter sketched in the next paragraph which treats
the state explosion in a statistical, some people would say in a Monte Carlo-like,
fashion.

Statistical Model Checking [23] is a verification technology for quanti-
tative models of computer systems like the MDP discussed above. In contrast
to classical verification, which provides yes/no-answers as a response to a verifi-
cation task, statistical model checking answers probabilistically, indicating how
well the considered system satisfies the property in question. An important chal-
lenge here is the treatment of Rare Events: What happens when the probability
that S satisfies a certain property is extremely small? The proposed techniques
to address this problem, Importance Sampling and Importance Splitting, are then
also employed for optimal planning, and later further refined to obtain optimal
control. The technical development of the corresponding synthesis algorithms is
evaluated using the problem of changing a flock of birds from an initial random
configuration into a V-formation. Finally, introducing the notion of V-formation
games, it is shown how to ward off cyber-physical attacks.

246 B. Steffen

Similar to testing, statistical model checking does not suffer the state explo-
sion problem. However, looking at the technique from the verification perspec-
tive, we note that the guarantees achieved are only statistically valid, and the
value of this validity very much depends on assumptions about adequate proba-
bility distributions. Seen from the testing perspective, however, statistical model
checking establishes, where applicable, a frequency-sensitive quality measure, dif-
ferent to the usual coverage metrics traditionally used in testing which typically
treat all statements alike.

The three chapters sketched in the next section elaborate on formal methods-
based, dynamic (testing-oriented) technologies in a different fashion.

4 Validation: Testing and Beyond

In general, testing cannot be done exhaustively. Thus one has to find adequate
ways for test selection [13]. Whereas the first of the chapters sketched in the
following three paragraphs directly addresses how to automate the test selection
process, the other two focus on how to maximize the information produced when
running a system and how to automatically infer behavioral models from test
runs, respectively.

Automated Software Test Generation: Some Challenges, Solutions,
and Recent Advances [5] discusses automated test generation from a practical
perspective. After explaining random testing and input fuzzing, the chapter turns
to test generation via dynamic symbolic execution, whose precision improves over
‘traditional’, for example, coverage-heuristics-based test generation approaches.
In order to explain inherent trade-offs of the new approach, the chapter describes
the operation of a symbolic execution engine with a worklist-style algorithm,
before it addresses individual challenges like good search heuristics for loops,
summaries and state merging, efficient constraint solving, and parallelization.
Subsequently, it presents the white-box fuzzing system SAGE and the selective
symbolic execution system SSE, Microsoft’s prime tools for revealing security
vulnerabilities in, for example, Microsoft Windows. Whether or not other appli-
cation domains justify the use of the quite heavy machinery presented in this
chapter depends on the concrete situation.

Runtime verification borrows ideas from deductive verification to analyze
and possibly control a system while it is running, or to analyze a system execu-
tion post-mortem. This overcomes typical decidability or performance problems
of (deductive) verification, however at the price that errors may be detected
too late: what should be done if an automatic pilot reaches a property viola-
tion? Handing over to a human pilot may not always be sufficient. The chapter
sketched in the following paragraph provides insights into this multi-faceted
research field.

Runtime Verification – Past Experiences and Future Projections
[14] provides an overview of the work performed by the authors since the year
2000 in the field of runtime verification. Runtime verification is the discipline
of analyzing program/system executions using rigorous methods. The discipline

Methods, Languages and Tools for Future System Development 247

covers topics such as (1) specification-based monitoring, where single executions
are checked against formal specifications; (2) predictive runtime analysis, where
properties about a system are predicted/inferred from single (good) executions;
(3) fault protection, where monitors actively protect a running system against
errors; (4) specification mining from execution traces; (5) visualization of execu-
tion traces; and to be fully general (6) computation of any interesting information
from execution traces. The chapter attempts to draw lessons learned from this
work, and to project expectations for the future of the field.

The final chapter discusses automata learning, which, from a practical per-
spective, can be regarded as a form of test-based modeling [27]. Whereas its
strong links to testing are also discussed in [4], its applicability to runtime veri-
fication was demonstrated in [19].

Combining Black-Box and White-Box Techniques for Learning
Register Automata [17] presents model learning, a black-box technique
for constructing state machine models of software and hardware components,
which has been successfully used in areas such as telecommunication, net-
work protocols, and control software. The underlying theoretical framework
(active automata learning) was first introduced by Dana Angluin for finite state
machines. In practice, scalability to larger models of increased expressivity is
important. Recently, techniques have been developed for learning models which
combine control flow with guards and assignments. Inferring the required guards
and assignments just from observations of the test output is extremely costly.
The chapter discusses how black-box model learning can be enhanced using
often available white-box information, with the aim to maintain the benefits of
dynamic black-box methods while making effective use of information that can
be obtained through, for example, static analysis and symbolic execution.

5 Conclusions

We have summarized the chapters of the topical part ‘Languages, Methods and
Tools for Future System Development ’ under the unifying perspective of reuse.
It appears that the individual contributions can be regarded as different answers
to trade-offs such as (1) generic vs. domain-specific, (2) manual vs. automatic,
(3) static vs. dynamic, (4) post mortem vs. by construction, (5) statistical vs.
absolute, etc. The continuum of the solution space for responding to these trade-
offs constitutes, at the same time, the space for the convergence of the described
methods. We are convinced that this space will be investigated much more sys-
tematically in the future, leading to tailored solutions exploiting the character-
istics of given circumstances, in a way similar to the methods for combining
black-box and white-box knowledge presented in the last chapter of this celebra-
tion volume.

248 B. Steffen

References

1. Alur, R., Giacobbe, M., Henzinger, T., Larsen, K., Mikučionis, M.: Continuous-
time models for system design and analysis. In: Steffen, B., Woeginger, G. (eds.)
Computing and Software Science. LNCS, vol. 10000, pp. 452–477. Springer, Hei-
delberg (2018)

2. Baier, C., Hermanns, H., Katoen, J.P.: The 10,000 facets of MDP model checking.
In: Steffen, B., Woeginger, G. (eds.) Computing and Software Science. LNCS, vol.
10000, pp. 420–451. Springer, Heidelberg (2018)

3. Benveniste, A., Caillaud, B., Elmqvist, H., Ghorbal, K., Otter, M., Pouzet, M.:
Multi-Mode DAE models - challenges, theory and implementation. In: Steffen,
B., Woeginger, G. (eds.) Computing and Software Science. LNCS, vol. 10000, pp.
283–310. Springer, Heidelberg (2018)

4. Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.: On
the correspondence between conformance testing and regular inference. In: Cerioli,
M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 175–189. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31984-9 14

5. Candea, G., Godefroid, P.: Automated software test generation: some challenges,
solutions, and recent advances. In: Steffen, B., Woeginger, G. (eds.) Computing
and Software Science. LNCS, vol. 10000, pp. 505–531. Springer, Heidelberg (2018)

6. Chatley, R., Donaldson, A., Mycroft, A.: The next 7000 programming languages.
In: Steffen, B., Woeginger, G. (eds.) Computing and Software Science. LNCS, vol.
10000, pp. 250–282. Springer, Heidelberg (2018)

7. Clarke, E.M., Klieber, W., Nováček, M., Zuliani, P.: Model checking and the state
explosion problem. In: Meyer, B., Nordio, M. (eds.) LASER 2011. LNCS, vol. 7682,
pp. 1–30. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35746-
6 1

8. Cousot, P., Cousot, R.: Abstract interpretation: a unified model for static analysis
of programs by construction or approximation of fixpoints. In: Proceedings of 4th
ACM Symposium on Principles of Programming Languages, pp. 238–252 (1977)

9. Dijkstra, E.W.: The humble programmer. Commun. ACM 15(10), 859–866 (1972)
10. Felleisen, M., Findler, R.B., Flatt, M., Krishnamurthi, S., Barzilay, E., McCarthy,

J., Tobin-Hochstadt, S.: A programmable programming language. Commun. ACM
61(3), 62–71 (2018)

11. Floyd, R.W.: Assigning meaning to programs. In: Proceedings of Symposium on
Applied Mathematics. Mathematical Aspects of Computer Science, vol. 19, pp.
19–32. American Mathematical Society (1967)

12. Futamura, Y.: Partial evaluation of computation process - an approach to a
compiler-compiler. Syst. Comput. Controls 2(5), 45–50 (1971)

13. Goodenough, J.B., Gerhart, S.L.: Toward a theory of test data selection. IEEE
Trans. Softw. Eng. SE-1(2) (1975)

14. Havelund, K., Rosu, G., Reger, G.: Runtime verification - past experiences and
future projections. In: Steffen, B., Woeginger, G. (eds.) Computing and Software
Science. LNCS, vol. 10000, pp. 532–562. Springer, Heidelberg (2018)

15. Hähnle, R., Huisman, M.: Deductive software verification: from pen-and-paper
proofs to industrial tools. In: Steffen, B., Woeginger, G. (eds.) Computing and
Software Science. LNCS, vol. 10000, pp. 345–373. Springer, Heidelberg (2018)

16. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

https://doi.org/10.1007/978-3-540-31984-9_14
https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.1007/978-3-642-35746-6_1

Methods, Languages and Tools for Future System Development 249

17. Howar, F., Jonsson, B., Vaandrager, F.: Combining black-box and white-box tech-
niques for learning register automata. In: Steffen, B., Woeginger, G. (eds.) Com-
puting and Software Science. LNCS, vol. 10000, pp. 563–588. Springer, Heidelberg
(2018)

18. Huth, M., Nielson, F.: Static analysis for proactive security. In: Steffen, B., Woeg-
inger, G. (eds.) Computing and Software Science. LNCS, vol. 10000, pp. 374–392.
Springer, Heidelberg (2018)

19. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free app-
roach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11164-3 26

20. Jones, N.D., Sestoft, P., Søndergaard, H.: Mix: a self-applicable partial evaluator
for experiments in compiler generation. LISP Symbolic Comput. 2(1), 9–50 (1989)

21. Kordon, F., Leuschel, M., van de Pol, J., Thierry-Mieg, Y.: Software architecture
of modern model-checkers. In: Steffen, B., Woeginger, G. (eds.) Computing and
Software Science. LNCS, vol. 10000, pp. 393–419. Springer, Heidelberg (2018)

22. Landin, P.J.: The next 700 programming languages. Commun. ACM 9(3), 157–166
(1966)

23. Legay, A., Lukina, A., Traonouez, L.M., Yang, J., Smolka, S., Grosu, R.: Statistical
model checking. In: Steffen, B., Woeginger, G. (eds.) Computing and Software
Science. LNCS, vol. 10000, pp. 478–504. Springer, Heidelberg (2018)

24. Margaria, T., Steffen, B.: Simplicity as a driver for agile innovation. Computer
43(6), 90–92 (2010)

25. Naur, P., Randell, B. (eds.): Software Engineering: Report of a Conference Spon-
sored by the NATO Science Committee, Garmisch, Germany, 7–11 October 1968.
Scientific Affairs Division, NATO, Brussels 39 Belgium (1969)

26. O’Reilly, T.: What is Web 2.0. Design Patterns and Business Models for the Next
Generation of Software, September 2005. http://www.oreilly.com/pub/a/web2/
archive/what-is-web-20.html. Accessed 03 Apr 2018

27. Raffelt, H., Merten, M., Steffen, B., Margaria, T.: Dynamic testing via automata
learning. Int. J. Softw. Tools Technol. Transf. (STTT) 11(4), 307–324 (2009)

28. Steffen, B.: Generating data flow analysis algorithms from modal specifications.
Selected Papers of the Conference on Theoretical Aspects of Computer Software,
pp. 115–139. Elsevier Science Publishers B. V., Sendai (1993). http://portal.acm.
org/citation.cfm?id=172313

29. Steffen, B., Claßen, A., Klein, M., Knoop, J., Margaria, T.: The fixpoint-analysis
machine. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 72–87.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60218-6 6

30. Steffen, B., Gossen, F., Naujokat, S., Margaria, T.: Language-driven engineering:
from general-purpose to purpose-specific languages. In: Steffen, B., Woeginger, G.
(eds.) Computing and Software Science. LNCS, vol. 10000, pp. 311–344. Springer,
Heidelberg (2018)

31. Steffen, B., Margaria, T., Braun, V.: The electronic tool integration platform:
concepts and design. Int. J. Softw. Tools Technol. Transf. (STTT) 1(1–2), 9–30
(1997)

32. Wolper, P.: The meaning of “formal”: from weak to strong formal methods. Int. J.
Softw. Tools Technol. Transf. (STTT) 1(1), 6–8 (1997)

https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
http://www.oreilly.com/pub/a/web2/archive/what-is-web-20.html
http://www.oreilly.com/pub/a/web2/archive/what-is-web-20.html
http://portal.acm.org/citation.cfm?id=172313
http://portal.acm.org/citation.cfm?id=172313
https://doi.org/10.1007/3-540-60218-6_6

The Next 7000 Programming Languages

Robert Chatley1, Alastair Donaldson1, and Alan Mycroft2(B)

1 Department of Computing, Imperial College, London, UK
{robert.chatley,alastair.donaldson}@imperial.ac.uk

2 Computer Laboratory, University of Cambridge, Cambridge, UK
alan.mycroft@cl.cam.ac.uk

Abstract. Landin’s seminal paper “The next 700 programming lan-
guages” considered programming languages prior to 1966 and speculated
on the next 700. Half-a-century on, we cast programming languages in a
Darwinian ‘tree of life’ and explore languages, their features (genes) and
language evolution from the viewpoint of ‘survival of the fittest’.

We investigate this thesis by exploring how various languages fared in
the past, and then consider the divergence between the languages empir-
ically used in 2017 and the language features one might have expected
if the languages of the 1960s had evolved optimally to fill programming
niches.

This leads us to characterise three divergences, or ‘elephants in the
room’, where actual current language use, or feature provision, differs
from that which evolution might suggest. We conclude by speculating on
future language evolution.

1 Why Are Programming Languages the Way They Are?
and Where Are They Going?

In 1966 the ACM published Peter Landin’s landmark paper “The next 700
programming languages” [22]. Seven years later, Springer’s “Lecture Notes in
Computer Science” (LNCS) was born with Wilfred Brauer as editor of the
first volume [5]. Impressively, the contributed chapters of this first volume cov-
ered almost every topic of what we now see as core computer science—from
computer hardware and operating systems to natural-language processing, and
from complexity to programming languages. Fifty years later, on the occasion
of LNCS volume 10000, it seems fitting to reflect on where we are and make
some predictions—and this essay focuses on programming languages and their
evolution.

It is worth considering the epigraph of Landin’s article, a quote from the
July 1965 American Mathematical Association Prospectus: “. . . today . . . 1,700
special programming languages used to ‘communicate’ in over 700 application
areas”. Getting an equivalent figure nowadays might be much harder—our title
of ‘next 7000 languages’ is merely rhetorical.

c© Springer Nature Switzerland AG 2019

B. Steffen and G. Woeginger (Eds.): Computing and Software Science, LNCS 10000, pp. 250–282, 2019.

https://doi.org/10.1007/978-3-319-91908-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91908-9_15&domain=pdf
https://doi.org/10.1007/978-3-319-91908-9_15

The Next 7000 Programming Languages 251

On one hand, Conway and White’s 2010 survey1 (the inspiration behind
RedMonk’s ongoing surveys) found only 56 languages used in GitHub projects
or appearing as StackOverflow tags. This provides an estimate of the number of
languages “in active use”, but notably excludes those in large corporate projects
(not on GitHub) particularly where there is good local support or other disincen-
tives to raising programming problems in public. One the other hand, program-
ming languages continue to appear at a prodigious rate; if we count every pro-
posed language, perhaps including configuration languages and research-paper
calculi, the number of languages must now be in six digits.

The main thrust of Landin’s paper was arguing that the next 700 languages
after 1966 ought to be based around a language family which he named ISWIM
and characterised by: (i) nesting by indentation (perhaps to counter the Fortran-
based “all statements begin in column 7” tendency of the day), (ii) flexible
scoping mechanisms based on λ-calculus with the ability to treat functions as
first-class values and (iii) imperative features including assignment and control-
flow operators. Implicit was an expectation that there should be a well-defined
understanding of when two program phrases were semantically equivalent and
that compound types such as tuples should be available.

While the lightweight lexical scope ‘{. . . }’ is now often used for nesting
instead of adopting point (i),2 it is entertaining to note that scoping and control
(ii) and (iii) have recently been drivers for enhancements in Java 8 and 9 (e.g.
lambdas, streams, CompletableFutures and reactive programming).

Landin argued that ISWIM should be a family of languages, parameterised
by its ‘primitives’ (presumably to enable it to be used in multiple application-
specific domains). Nowadays, domain-specific use tends to be achieved by intro-
ducing abstractions or importing libraries rather than via adjustments to the
core language itself. Indeed there seems to be a strong correlation between the
number and availability of libraries for a language and its popularity.

The aim of this article is threefold: to explore trends in language design (both
past, present and future), to argue that Darwinian evolution by fitness holds for
languages as well as life-forms (including reasons why some less-fit languages can
persist for extended periods of time) and to identify some environmental pres-
sures (and perhaps even under-occupied niches) that language evolution could,
and we argue should, explore.

Our study of programming-language niches discourages us from postulating
a universal core language corresponding to Landin’s ISWIM.

1.1 Darwinian Evolution and Programming Languages

We start by drawing an analogy between the evolution of programming languages
and that of plants colonising an ecosystem. Here species of plants correspond to

1 http://www.dataists.com/2010/12/ranking-the-popularity-of-programming-
langauges/ [sic].

2 Mainstream languages using indentation include Python and Haskell.

http://www.dataists.com/2010/12/ranking-the-popularity-of-programming-langauges/
http://www.dataists.com/2010/12/ranking-the-popularity-of-programming-langauges/

252 R. Chatley et al.

programming languages, and a given area of land corresponds to a family of
related programming tasks (the word ‘nearby’ is convenient in both cases).

This analogy enables us to think more deeply about language evolution. In
the steady-state (think of your favourite bit of land—be it countryside, scrub,
or desert) there is little annual change in inhabitation. This is in spite of the
various plants, or adherents of programming languages, spreading seeds—either
literally, or seeds of dissent—and attempting to colonise nearby niches.

However, things usually are not truly steady state, and invasive species of
plants may be more fitted to an ecological niche and supplant current inhabi-
tants. In the programming language context, invasive languages can arise from
universities, which turn out graduates who quietly adopt staid programming
practices in existing projects until they are senior enough to start a new project—
or refactor3 an old one—using their education. Invasive languages can also come
from industry—how many academics would have predicted that, by 2016 accord-
ing to RedMonk, JavaScript would be the most popular language on GitHub
and also be most tagged in StackOverflow? A recent empirical study shows that
measuring popularity via volume of code in public GitHub repositories can be
misleading due to code duplication, and that JavaScript code exhibits a high
rate of duplication [24]. Nevertheless, it remains evident that JavaScript is one
of the most widely used languages today.

It is useful here to distinguish between the success of a species of plant
(or a programming language) and that of a gene (or programming language
concept). For example, while pure functional languages such as Haskell have
been successful in certain programming niches the idea (gene) of passing side-
effect-free functions to map, reduce, and similar operators for data processing,
has recently been acquired by many mainstream programming languages and
systems; we later ascribe this partly to the emergence of multi-core processors.

This last example highlights perhaps the most pervasive form of competi-
tion for niches (and for languages, or plants, to evolve in response): climate
change. Ecologically, an area becoming warmer or drier might enable previously
non-competitive species to get a foothold. Similarly, even though a given pro-
gramming task has not changed, we can see changes in available hardware and
infrastructure as a form of climate change—what might be a great language for
solving a programming problem on a single-core processor may be much less
suitable for multi-core processors or data-centre solutions.

Amusingly, other factors which encourage language adoption (e.g. libraries,
tools, etc.) have a plant analogy as symbiotes—porting (or creating) a wide
variety of libraries for a language enhances its prospects.

The academic literature broadly lumps programming languages together into
paradigms, such as imperative, object-oriented and declarative; we can extend our
analogy to view paradigms as being analogous to major characteristics of plants,
with languages of particular paradigms being particularly well-adapted to cer-
tain niches; for example xerophytes are well-adapted for deserts, and functional

3 Imagine the discussions which took place at Facebook on how to post-fit types to
its one million lines of PHP, and hence to the Hack programming language.

The Next 7000 Programming Languages 253

languages are well-suited to processing of inductively defined data structures.
Interestingly, the idea of convergent evolution appears on both sides of the anal-
ogy, in our example this would be where two species had evolved to become
xerophytes, despite their most recent common ancestor not being a xerophyte.
Similarly language evolution can enable languages to acquire aspects of multi-
ple paradigms (Ada, for example, is principally an imperative language despite
having object-oriented capabilities, and C# had a level of functional capabilities
from the off, amplified by the more-recent LINQ library for data querying).

Incidentally, the idea of a programming-language ecosystem with many niches
provides post-hoc academic justification for why past attempts to create a ‘uni-
versal programming language’ (starting back as far as PL/I) have often proved
fruitless: a language capable of expressing multiple programming paradigms risks
becoming inherently complex, and thus difficult to learn and to use effectively.
A central cause of this complexity is the difficulty of reasoning about feature
interaction. A modern language that has carefully combined multiple paradigms
since its inception is Scala. However, due to the resulting flexibility, there can be
many different stylistic approaches to solving a particular programming problem
in Scala, using different elements of the language. The language designer, Martin
Odersky, describes Scala as “. . . a bit of a chameleon. . . . depending at [sic] what
piece of code you look at, Scala might look very simple or very complex.”4

Finally, there is the issue of software system evolution. Just as languages
evolve, a given software system (solution to a programming problem) is more
likely to survive if it evolves to exploit more powerful concepts offered by later
versions of a language. It is noteworthy that tool support often helps here, and
we observe the growing importance of tools in supporting working with, adding
to and transforming large programs in a given language.

We discuss some of these ideas more concretely in Sect. 3 but to summarise,
the main external (climate-change) pressures on language evolution as we cur-
rently see them are:

– the change from single-core to multi-core and cloud-like computing;
– support for large programs with components that change over time;
– error resilience, helping programmers to produce reliable software;
– new industrial trends or research developments.

Conceptual Framework. In our setting the principal actors are programming
tasks which are implemented to produce software systems using programming
languages; the underlying available range of language concepts and hardware
and systems models continue to change, and together with fashion (programmer-
perceived and industrial views of fitness) drive the mutual evolution of program-
ming languages and software systems.

We see evolution as ‘selection of the fittest’ following mutation (introduction
of new genes etc.). While the mechanism for mutation (human design in program-
ming languages vs. random mutation in organisms) differs this does not affect

4 http://www.scala-lang.org/old/node/8610.

http://www.scala-lang.org/old/node/8610

254 R. Chatley et al.

the selection aspect. While all living things undergo evolution, we centre on plant
analogies as these help us focus on colonies rather than worrying about individ-
ual animal conflicts. ‘Fitness’ extends naturally: it captures the probability that
adopting a given programming language in a project will cause programmers to
report favourably upon it later—just as botanical fitness includes the probability
a seed falling in a niche will germinate and mature to produce viable seeds itself.
We discuss aspects of fitness later (e.g. ease of programming).

1.2 Paper Structure

We start by taking a more detailed look at history (Sect. 2), discuss the fac-
tors that drive programming language evolution (Sect. 3), and review the most
popular programming languages at time of writing, according to the RedMonk,
IEEE Spectrum and TIOBE rankings (Sect. 4). Our analysis identifies three ‘ele-
phants in the room’—language trends that rather conflict with a ‘survival of the
fittest’ viewpoint—which we discuss in some detail (Sect. 5). We conclude by
speculating on future language evolution (Sect. 6).

2 What’s New Since 1966?

By 1966, much of the modern gene-pool of programming language concepts
was well-established. We had Fortran, Algol 60 and Lisp capturing familiar
concepts, e.g. stack-allocated local variables, heap-allocated records, if-then-else
and iteration, named procedures and functions (including recursion), both static
and dynamic typing, and a peek around the corner to 1967 and 1968 gave us
references to structured data with named components (Algol 68) and object-
orientation and subtyping (Simula 67).5 The historic importance of COBOL
should not be understated: from 1959 it provided a way to describe, read, print
and manipulate fixed-format text and binary records—which fed both into lan-
guage design (records) and databases.

Some early divergences remain: compare programming paradigms (func-
tional, relational, object-oriented etc.) with the four major groups of plants
(flowering plants, conifers, mosses and ferns). Another programming-language
example is between static and dynamic typing. Modern fashion in real-world
programming appears once again to be embracing dynamic typing for practi-
cal programming (witness the use of JavaScript, Python, Ruby and the like),
often acting as glue languages to connect libraries written in statically typed
languages.

We now briefly outline what we see as some of the main developments in
programming languages, and drivers of programming language evolution, since
these early days.

5 Landin emphasised the λ-calculus as a theoretical base for programming languages,
and did not mention the richer notion of scoping which object-orientation adds.

The Next 7000 Programming Languages 255

What We Do not Cover. Space precludes us from covering all such languages
and drivers. Our selection is guided by those languages currently most used for
mainstream software development, and their ancestors. As a result, there are
certain important categories of language that we do not cover, e.g. logic and
probabilistic programming languages.

2.1 Tasks, Tools and Teams

In the early days of computing, computers were mainly used for business process-
ing or for scientific endeavour. Over the years, the range of problems that pro-
gramming is applied to has exploded, along with the power and cost-effectiveness
of computing hardware. As programming languages have evolved to inhabit these
niches, the range of people who use them and the situations that they use them
in has expanded, and conversely the widening set of applications has encouraged
language evolution: there has been an increasing need for languages to provide
features that help programmers to manage complexity, and to take better advan-
tage of computing resources.

Another decision point in choosing a language is “get it working” versus
“get it right” versus “get it fast/efficient”. In different situations, each might be
appropriate, and the software-system context, or niche, determines the fitness
of individual languages and hence guides the language choice. A quick script to
do some data-processing is obviously quite different from an I/O driver, or the
control system of a safety-critical device.

Software was initially developed by one person at one computer. Now it is
developed by distributed teams, often spanning across continents or organisa-
tions. The size of software systems has also increased massively. From systems
running on one machine, distributed systems can now execute across hundreds
or thousands of machines in data-centres around the world, and comprise tens
of millions of lines of code. Language implementations have evolved to help
humans manage this complexity, e.g. by providing sophisticated support for
packages and modules, including dynamic loading and versioning. Some lan-
guages (or runtimes) provide these as core functionality, for example Java and
C# provide the ability to dynamically load classes from jar files or assemblies.
For other languages, accompanying tools have been developed that help to man-
age and compose dependencies, e.g. ‘npm’ (Node Package Manager) for Node.js.
Such language features and tools can help to avoid so-called “dependency hell”
(“DLL hell” in Windows applications), whereby an application depends on a
given shared library that, due to poorly planned sets of inter-component depen-
dencies, in turn depends on an intricate mixture of specific versions of additional
library components, some of which conflict with one another, and many of which
are in essence irrelevant to the application under construction.

The way that teams work to develop software has also changed. Single-person
approaches were succeeded by waterfall-style development processes for manag-
ing multi-person software projects, which in turn have been largely superseded
(for all but the most safety-critical systems) by more agile approaches such as

256 R. Chatley et al.

eXtreme Programming [4]. Agile methods require analysis, testing and transfor-
mation tools to support frequent and reliable change, and to provide the rapid
feedback essential for developer productivity. Languages where these are well
supported have a natural advantage in the ecosystem.

Finally, one of the biggest changes since 1967 has been in the tools we use
to support programming—enabled, of course, by the vast increase in comput-
ing power over this time. While classical editors, compilers and (static) linkers
are still present there has been an explosion in new forms of tool support and
their use: integrated development environments (IDEs) including support for
code analysis and refactoring, version control systems, test generators, along
with tools for dynamically linking to code and data outwith the project. These
evolve much more quickly and largely independently of the huge code bases
in software systems; the latter in general only evolve incrementally to capture
software-feature change (and even more slowly in reflecting their underlying
programming-language evolution). We claim that appropriate tool support is a
strong factor in programming-language fitness, and hence for language choice in
a given software project.

2.2 Systems Programming and the Rise of C

The success of the C programming language and that of Unix are inseparably
intertwined. Ritchie [35] writes: “C came into being in the years 1969–1973,
in parallel with the early development of the Unix operating system; the most
creative period occurred during 1972.” In ecosystem terms, C is significant as it
successfully out-competed rival languages to become almost the only widely used
systems programming language. Gabriel remarks that “Unix and C are the ulti-
mate computer viruses” [11], arguing that their “worse-is-better” design, where
implementation simplicity is favoured over other features such as full correct-
ness and interface simplicity, makes Unix and C so easy to port that they virally
infected practically all systems. Alluding to natural selection, Gabriel writes:
“worse-is-better, even in its straw-man form, has better survival characteristics
than the-right-thing”.

Designed for relatively low-level systems programming, C provides mecha-
nisms for fine-grained and efficient management of memory—needed to build
operating systems and device drivers, or for programming resource-constrained
environments such as embedded systems. C is usually the first higher-than-
assembly-level language supported on a new architecture. Regarded for a long
time (and still to a large degree) as an inevitable price for its high performance, C
is an unsafe language: run-time errors, such as buffer overflows, are not typically
caught by language implementations, so a program may continue to execute after
an erroneous operation. This provides wide scope for attacks, e.g. control-flow
hijacking and reading supposedly confidential data. A botanical analogy might
be the prevalence of cacti in deserts, when some would prefer orchids as pret-
tier and lacking spines; we have to either adjust the niche—requiring beauty (or
security), contribute more to fitness by human intervention, or produce a new

The Next 7000 Programming Languages 257

plant species (or language) that better fits the existing niche while having the
desired characteristics.

Certainly C has been one of the most influential programming languages,
influencing the syntax, and to some degree semantics, of C++, Java and C#, and
forming the basis of parallel programming languages such as CUDA (NVIDIA’s
proprietary language for graphics-processing unit (GPU) programming) and
OpenCL (an industry-standard alternative). Moreover, C continues to be very
widely used; arguably much more so than it should be given its unsafe nature.
We return to this point in Sect. 5.1.

2.3 Object-Orientation and the Rise of Java

The object-oriented paradigm, where domain entities are represented as objects
that communicate by sending messages, became the dominant style of com-
mercial software development in the 1990s. Building on Kay’s original ideas,
embodied in Smalltalk, came a number of very influential languages, includ-
ing Delphi, Eiffel, Oberon, Self, and Simula 67. These impacted the design of
what are now the most widely used object-oriented languages—Java, C++ and
C#—which continue to thrive while many of these earlier languages are now
extinct or restricted to communities of enthusiasts. (We acknowledge that some
purists question whether languages such as Java, C++ and C# are truly object-
oriented—e.g. they fail the so-called “Ingalls Test”6 [30, Sect. 11.6.4]—but they
are widely regarded as belonging to the object-oriented paradigm.)

We also see influence in the growth of tooling, with the modern day Eclipse
IDE having its roots in IBM’s VisualAge for Java, which in turn evolved from
VisualAge for Smalltalk. A significant driver of Java’s early spread was its “write
once, run anywhere” philosophy, whereby a Java compiler generates code that
can run on any conformant implementation of the Java Virtual Machine (JVM).
Support for the JVM by web browsers, and the popularity of ‘applets’ embedded
in web-pages drove the adoption of Java. Its clean design and safe execution made
it a popular teaching language in universities.

Other features also drove adoption: Java, C++ and C# provided support for
exceptions—meeting a practical need for mainstream languages to capture this
idiom. Java and C# embraced ideas originating in languages such as Lisp and
Smalltalk—automatic memory-management (garbage collection) and the idea of
managed run-time environment abstracting away from the underlying operating
system (or browser!). There remains a tension between C/C++, with manual
allocation and the associated lack of safety, and Java and C# which, while safe,
can be problematic in a resource-constrained or real-time environment.

Note that there are two separate genes, representing class-based inheritance
(originating in Simula) and prototype-based inheritance (originating in Self, ini-
tially a dialect of Smalltalk) for object-oriented languages. There are arguments
in favour of each: the former allows static typing and is used by more main-

6 https://www.youtube.com/watch?v=Ao9W93OxQ7U, 26 min in.

https://www.youtube.com/watch?v=Ao9W93OxQ7U

258 R. Chatley et al.

stream languages; the latter is used in JavaScript, and therefore in some sense
more successful!

2.4 Web Programming, the Re-emergence of Dynamic Typing,
and the Rise of JavaScript

Although some early programming languages were dynamically typed—notably
Lisp—the focus of much research into programming languages in the 70s, 80s and
90s was on statically typed languages with stronger and richer type systems. In
industry, relatively strongly, statically typed, languages also became increasingly
popular, with dynamically typed languages largely restricted to scripting and
introductory programming.

The massive change since then has been the importance of programming for
the web, through languages such as JavaScript and PHP, which are dynamically
typed. Web programming is so pervasive that JavaScript is now one of the most
widely used programming languages. From a language-design perspective this
is somewhat ironic. Although a lot of high-end research into dynamically typed
programming languages had been conducted (e.g. notably working with systems
like CLOS [13], and building on those with languages like Self [47]), in fact
Brendan Eich designed and implemented JavaScript (then named Mocha) in 10
days, seemingly with no recourse to these research endeavours [42].

Other dynamically typed languages have developed a strong following includ-
ing Python and Ruby. Both are general-purpose languages, but Python has
become particularly popular among scientists [33], and a major driver of Ruby
adoption was the Rails framework of Heinemeier Hansson [36] designed to facil-
itate server-side web-application programming and easy database integration.
We reflect further on the popularity of dynamically typed languages in Sect. 5.2.

2.5 Functional Programming Languages

Functional languages, where function abstraction and application are the main
structuring regime, originated in Lisp. For many years, functional programming
languages lived in an “enthusiasts’ ghetto”, attracting strong supporters for spe-
cific programming areas, but their discouraging of mutating existing values was
a step too far for many mainstream programmers. Recently however, their ideas
appear to be becoming mainstream. Two of the most influential functional lan-
guages, Haskell and ML, are currently among the most widely used functional
languages (with the OCaml dialect enjoying the most use in the case of ML),
and both languages being used in quantitative (equity) trading applications in
banks, who argue that these languages allow their quant analysts to code more
quickly and correctly.7 One justification for this resurgence is that concurrency
and mutation appear hard for programmers to use together in large systems,
needing error-prone locks or hard-to-document whole-program assumptions of
when and how data structures can be modified.

7 https://adtmag.com/Ramel0911.

https://adtmag.com/Ramel0911

The Next 7000 Programming Languages 259

Functional languages have also inspired so-called “multi-paradigm” lan-
guages, principally F# and Scala, both of which feature first-class functional
concepts; these in turn have been incorporated into mainstream object-oriented
languages, most notably the LINQ extensions to C#, and lambdas in Java 8 and
C++11.

Even aspects (genes) of functional languages which previously seemed
abstruse to the mainstream have been incorporated into modern general-purpose
languages. For example Java 8’s streams incorporate the ideas of lazy evaluation,
deforestation and the functional idiom of transforming one infinite stream into
another.

2.6 Flexible Type Systems

At the time of Landin’s article, and indeed for most of the decade following
it, there was a split between, on one hand, dynamically typed languages such
as Lisp, which checked types at run time at the cost of reduced execution effi-
ciency and unexpected errors and, on the other hand, statically typed languages
giving increased efficiency and the possibility of eliminating type errors at com-
pile time (even if this had holes, such as in C and Algol 60). However, such
static type systems were often inexpressive; a running joke at the time of one
author’s PhD was that, e.g. in Pascal one had to write functions only differing
in types for finding the lengths of integer lists and string lists so that the com-
piler could generate duplicated code. The late 1970’s saw parameterised types,
and polymorphically typed (or ‘generic’) functions for operating over them. The
language ML (originally part of the Edinburgh LCF theorem-proving system)
was hugely instrumental here. In a sense ML was almost exactly “ISWIM with
types”, albeit without syntax-by-indentation. Types have continued to grow in
expressiveness, with type systems in Java and C# including three forms of poly-
morphism (generics, overloading and (bounded) sub-type polymorphism) all in
the same language.

More heavyweight type disciplines, such as dependently typed languages (e.g.
Agda, Coq) remain firmly away from the mainstream, in spite of the high preci-
sion that they offer and their potential link to program verification (see Sect. 6.2).
There is an argument that very precise types can end up revealing details about
a system’s internals, and that the desire for a particular type structure can have
a more direct influence on program structure than might really be desirable;
these have been dubbed the “Visible Plumbing Program” and the “Intersection
Problem”, respectively [9].

2.7 Parallelism and the Rise of Multi-core

The appearance of multi-core x86 processors from 2005 was, in retrospect, hugely
disruptive to programming languages. While parallel processing was not new
(e.g. High Performance Fortran offered relatively sophisticated language support
for parallel programming [20]), multi-core (and later GPU) technology caused
everyday programmers to want their language to support it. This world feels a

260 R. Chatley et al.

little like Landin’s in 1966—there are many language features and libraries offer-
ing support for various aspects of parallelism. Dedicated languages and libraries
include Cilk Plus, Threading Building Blocks and OpenMP for multi-core CPUs,
and OpenCL, CUDA, Vulkan, Metal and RenderScript for targeting GPUs.
Within a single language there can be many mechanisms by which to exploit
parallelism: in Java one can use parallel streams, an executor service, create
one’s own thread objects; in Haskell there are also multiple approaches [27].
More than a decade on, language support for parallelism remains patchy and
has converged less than we might have hoped, a point to which we return in
Sect. 5.3.

2.8 Domain-Oriented Programming Languages

Just as in Landin’s day, many languages have been created for solving problems
in particular domains. While Turing completeness means that we should be able
to apply any general purpose language to any programming task, domain-specific
languages often offer more convenient syntax and library support than would
be possible in a mainstream language, with examples including spreadsheets,
SQL, MATLAB and R, along with scripting languages for computer-game and
graphics-rendering engines.

3 Observed Programming Language Evolution

We now re-cast the changes of the previous section as language evolution pres-
sures, discussing: the factors that keep programming languages alive (Sect. 3.1),
the forces that lead to language evolution (Sect. 3.2), and cases where languages
have become practically extinct due to not having evolved (Sect. 3.3).

3.1 Factors that Keep Programming Languages Alive

Although the landscape of programming languages evolves, many languages take
root and stick around. We observe several forces that keep languages alive. In
the evolutionary model, these ‘forces’ sum to contribute to the overall fitness of
a language in a given niche.

Legacy Software. The amount of software in the world increases day by day. New
systems (and modules within systems) are created at a much faster rate than
they are deleted. Existing code that performs valuable business functions needs
to be updated and upgraded to provide additional functionality or to integrate
with other systems. Replacing a system wholesale is a major decision, and costly
for large systems. The need to tend to existing successful systems, using whatever
language they were originally written in, is a strong force in keeping languages
alive. Even though COBOL is often perceived as a dead language, as recently as
2009, it was estimated to have billions of lines of code in active use8 and some
of these surely remain, even if they are not widely advertised.
8 http://skeptics.stackexchange.com/questions/5114/did-cobol-have-250-billion-lines-

of-code-and-1-million-programmers-as-late-as-2 [sic].

http://skeptics.stackexchange.com/questions/5114/did-cobol-have-250-billion-lines-of-code-and-1-million-programmers-as-late-as-2
http://skeptics.stackexchange.com/questions/5114/did-cobol-have-250-billion-lines-of-code-and-1-million-programmers-as-late-as-2

The Next 7000 Programming Languages 261

Community. Enthusiasm and support for a particular programming language is
often fostered if there is an active and encouraging community around it. This
can be helpful in encouraging beginners, or in supporting programmers in their
daily tasks, by providing advice on technical problems as they come up. Lan-
guage communities, like any social group, tend to reflect the design parameters
of the language they discuss; some are seen as formal and academic and others
more down-to-earth.. For example, there is a saying in the Ruby community,
which has a reputation for being supportive and helpful: “Matz [the language
creator] is nice and so we are nice”.9 In contrast, the community that has grown
up around Scala is perceived to be much more academically focused, biased
towards more mathematical thinking and language, and sometimes perceived as
less welcoming to people from a “general developer” background. In his (some-
what polemical) ScalaDays 2013 keynote10, Rod Johnson gives his impressions
of the Scala community as being somewhere where “there do seem to be quite a
few people who aren’t highly focused on solving real world problems” and where
some members appear to have the opinion that “ignorance should be punished”.

Ease of Getting Started. In order for a new language to take hold, it helps if it
is easy for new programmers (either novices, or just newcomers to the language
in question) to get started quickly. The speed with which a new programmer
can write and run their first program depends on many things: the simplicity of
language design, clarity of tutorials, the amount one needs to learn before getting
started, and the support of tooling (including helpful error messages, a subject
taken to heart by languages like Elm). This in turn can affect the longevity of a
language—as this depends on a continued influx of new programmers.

Habitability. In his book Patterns of Software [12], Gabriel describes the char-
acteristic of habitability : “Habitability makes a place livable, like home. And
this is what we want in software—that developers feel at home, can place their
hands on any item without having to think deeply about where it is.” If a lan-
guage has widely adopted idioms, and projects developed in that language are
habitually laid out according to familiar structure then it easy for programmers
to feel at home. Languages that promote “one way to do things” may help to
engender this consistency. Habitability may also come from having a common
tool-ecosystem11. For example, if we download a Java project and find that it is
structured as a Maven12 project, then it is easy to locate the source, tests, depen-
dencies, build configuration, etc., if we are familiar with other Maven projects.
Similarly in modern Ruby projects we might expect a certain structure and the

9 https://en.wiktionary.org/wiki/MINASWAN .
10 https://www.youtube.com/watch?v=DBu6zmrZ 50 particularly from 21 min in.
11 Note that other uses of ‘ecosystem’ in this paper refer to the ecosystem of languages

competing for a programming niche, but the ‘tool-ecosystem’ refers to the toolset
available to support programming in a given language—we earlier noted that this
improved the fitness of a given language by behaving as a symbiote.

12 https://maven.apache.org/.

https://en.wiktionary.org/wiki/MINASWAN
https://www.youtube.com/watch?v=DBu6zmrZ_50
https://maven.apache.org/

262 R. Chatley et al.

use of Bundler13 to perform a similar role. These sort of tools are often only
de-facto standards, as a result of wide adoption, but consistent project layout,
build process, etc., provided by standard tools, reduces cognitive load for the
developer, and in turn may make a programmer feel more at home working in a
given language, especially when coming to work on a new project [14].

Libraries. The availability of libraries of reusable code adds to the ease of getting
things done in a particular language. Whether we want to read a file, invoke a
web service over HTTP, or even recognise car licence plates in a photograph, if
we can easily find a library to do so in a particular language, that language is
appealing for getting the job done in the short term. Some languages come with
rich standard libraries as part of their distribution. In other cases the prolifera-
tion of community-contributed libraries on sites like GitHub leads to a plethora
of options. When there are a large number of libraries available, it often becomes
part of the culture in the community centred around a particular language to con-
tribute. The plentiful supply of libraries begets the plentiful supply of libraries.
We note, however, that recent trends to rely on third-party libraries for even
the simplest of routines can lead to problems. For example, the removal of the
widely used ‘left-pad’ library from the ‘npm’ JavaScript package manager caused
a great deal of chaos.14

Tools. Although language designers may hope or believe that their new language
allows programming tasks to be solved in new, perhaps more elegant ways, it
is not the language alone that determines the productivity of a programmer at
work. A programmer needs to write and change code, navigate existing code
bases, debug, compile, build and test, deploy their code, and often integrate
existing components and libraries, in order to get their work done and to deliver
working features into the hands of their users. A programming language therefore
exists within a tool-ecosystem.

Java, for example, is a very popular language that is highly productive for
many development teams. This is not only down to the design of the language
itself—some might argue that it is in fact in spite of this, as Java is often seen
as relatively unsophisticated in terms of language features. It is also—indeed,
perhaps largely—due to the supply of good tools and libraries that are available
to Java developers. Anecdotally we have heard stories from many commercial
developers who have actively chosen to work in Java rather than working with
a more sophisticated language, due to the availability of powerful Java-focused
tools such as IntelliJ’s IDEA,15 with their rich support for automated refactoring
and program transformation, contrasted with the comparative lack of tool sup-
port for richer languages. This gap in tool support can even inhibit the uptake
of JVM-targeted languages such as Scala, something addressed with the recent
IntelliJ IDEA support for Scala and Java 9.

13 http://bundler.io/.
14 http://www.theregister.co.uk/2016/03/23/npm left pad chaos.
15 https://www.jetbrains.com/idea/.

http://bundler.io/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos
https://www.jetbrains.com/idea/

The Next 7000 Programming Languages 263

To some degree, tools can compensate for perceived deficiencies in a language,
and generally evolve faster than the language itself, because a change to a tool
does not have the same impact on existing software as a change to a language
specification does.

Support of Change. One might think that agile methods would favour dynami-
cally typed languages, and indeed part of their popularity is the sense that they
allow a developer to get something done without having to worry about a lot
of the “boiler-plate” associated with stricter and more verbose languages. But
there is a counter-pressure for statically typed languages when working on large
systems. Agile methods promote embracing change, with code bases evolving
through a continuous sequence of updates and refactorings [10]. These activities
of transforming a code base are more easily done when supported by tools, and
refactoring tools work better when type information is available [40]. However,
this is not a one-way street. The increased complexity of Scala’s type system
over Java makes it harder to create effective automated refactoring tools. Also
the additional sophistication of the compiler means that compared to Java the
compilation and build times are relatively long. This can lead to frustration when
developers want to make frequent small changes.

A workflow that involves making frequent small changes to a working sys-
tem requires a harness that developers can rely on to mitigate risk and to allow
sustainable progress. A practice commonly used by agile teams is test-driven
development (TDD) [3]. It is misleading to say that particular languages explic-
itly support TDD, but in a language like Java or C# with good tooling, we can
get a lot done working in a TDD fashion because the tools can generate a lot
of our implementation code for us based on tests and types—although this is
really just a mechanisation of mundane manual work, there is no real intelligent
synthesis at play.16 In dynamic languages we need tests even more, because we
have less assurance about the safety and correctness of our program from the
type system. Fortunately, some flavours of test—for example tests using mock
objects [25]—may be more convenient to write in dynamic languages as we do
not have to introduce abstractions to ‘convince’ the type system that a particu-
lar test double17 can be used in a type-compatible manner as a substitute for a
real dependency, given the late binding that is characteristic of such languages.

Supply of Talent. When building a new system, the choice of language is not
just a technical decision, but also an economic one. Do we have the developers
needed to build this system? If we need to hire more, or one day need to replace a
current staff member, how much would it cost to hire someone with the relevant
skills? Knowledge of some languages is easy to find, whilst others are specialist
niches. At the time of writing there is a good supply of programmers in the

16 This is in contrast to methods such as property-based testing, that synthesise tests
in a smart manner by exploiting type-system guarantees and programmer-defined
property specifications [7].

17 https://martinfowler.com/bliki/TestDouble.html.

https://martinfowler.com/bliki/TestDouble.html

264 R. Chatley et al.

job market who know Java, C#, JavaScript etc. There are comparatively few
Haskell, Rust or Erlang developers. This scarcity of supply relative to demand
naturally leads to high prices.

High Performance. Some languages (C and C++ in particular) are not going to
die in the immediate future because they are so performant. We return to the
longevity of C in Sect. 5.1 and speculate on the future of C and C++ in Sect. 6.1.
A design goal of the relatively new Rust language is to achieve C-like performance
without sacrificing memory safety, through type system innovations. In order to
achieve high performance, Rust in particular aims to provide static guarantees
of memory safety, to avoid the overhead of run-time checks.

An Important Niche. Some languages just solve an important class of problem
particularly well. Ada is barely used if we look globally, but it is very much
alive (particularly the SPARK subset of Ada) for building high-assurance soft-
ware [28]. The same is true for Fortran, but with respect to scientific computing.
Both languages have reasonably recent standards (Ada 2012 and Fortran 2008).

3.2 Incentives for Evolution

Technological Advances. Advances in technology make new applications possible
in principle, and languages adapt to make them possible—and feasible to build—
in practice. An early aim of Java was to be the language of the web, and the
mass adoption of the web as a platform for applications has led to sustenance and
growth of languages such as JavaScript and PHP. The fact that JavaScript is the
only programming language commonly supported by all web browsers has made
it a de-facto standard for front-end web developers. The rise of the iPhone and
its native apps saw a surge in Objective-C development as programmers created
apps, with Apple later creating the Swift language to provide a better developer
experience on iOS. Multi-core processor technology has led to parallelism being
supported, albeit in a fragmented manner, in many more languages than would
otherwise be the case.

Reliability and Security. As discussed in Sect. 2.3, many languages are now man-
aged, so that basic correctness properties are checked at run time, and such
that the programmer can be less concerned with memory allocation and deal-
location. This eliminates large classes of security vulnerabilities associated with
invalid memory access. It is common for language syntax and semantics to evolve
in support of program reasoning: through keywords for programmer-specified
assertions and contracts (particularly notable in the evolution of Ada, thanks
to its SPARK subset [28]18); via more advanced type systems, such as generics
(to avoid unsafe casts), types to control memory ownership (in Rust, for exam-
ple), and dependent types to encode richer properties (increasingly available in
18 Our point here is that some languages have evolved to provide support for contracts.

Contracts have also enjoyed first-class support from the inception of some languages,
e.g. Eiffel.

The Next 7000 Programming Languages 265

functional languages); by updating language specifications with more rigorous
semantics for operations that were previously only informally specified;19 and
by adding facilities for programmers to specify software engineering intent (an
example being the option to annotate an overriding method with @Override in
Java, or with the override specifier in C++, to fault misspelt overrides stati-
cally). As well as language evolution leading to improved reliability and security,
there is also the notion of language subsets that promote more disciplined pro-
gramming, or that provide more leverage for analysis tools, including a proposed
safe subset of C++20, the ECMAScript “strict” mode for JavaScript, and, again,
the SPARK subset of Ada.

In addition to the above points, which centre on enabling programmers to
avoid their own errors, it is also important to manage situations where external
failures occur: power loss, network loss, hardware failure and the like. Classi-
cally this was achieved by checkpointing and rollback recovery. But as systems
grow, especially in concurrency and distribution, there is increasing trend for
more-locally managed failure. The Erlang fail fast design style seems to work
effectively: tasks can be linked together, so that if one fails (for example an unan-
ticipated programming situation leading to an uncaught exception, but partic-
ularly useful for external failures) then all its linked tasks are killed, and the
creator can either re-start the tasks if the error is transitory, or clean up grace-
fully. Another inspiration is the functional-style absence of side effects, exploited
for example by Google MapReduce [8]. If a processor doing one part of the ‘map’
fails, then another processor can just repeat the work. This would be far more
complicated with side-effects and distributed rollback. An interesting project
along these lines was the Murray et al. [31] CIEL cloud-execution engine (and
associated scripting language Skywriting) where computational idempotence was
a core design principle.

Competition Between Languages. Some languages evolve via competition. For
example, many features of C# were influenced by Java; in turn, support for
lambdas in Java 8 seems to have been influenced by similar capabilities in C#,
and C++ was augmented with higher-order function support at roughly the
same time. In the multi-core world there is clear competition between CUDA
and OpenCL, with CUDA leading on advanced features that NVIDIA GPUs can
support, and OpenCL gradually adopting the successful features that can also be
implemented across GPU vendors. Competition-driven evolution demonstrates
the value to users of having multiple languages occupying the same niche.

Company and Community Needs. Several languages have been born, or evolved,
to meet company needs. Usually this occurs in scenarios where the companies
in question are large enough to benefit from the new or evolved language even
if it is only used internally, though many languages have found large external

19 One example is C++11 adding concurrency semantics for weak memory models; the
difficulty of this was illustrated by its unwanted “out of thin air” (OOTA) behaviour.

20 http://www.stroustrup.com/resource-model.pdf.

http://www.stroustrup.com/resource-model.pdf

266 R. Chatley et al.

communities. Notable examples include Microsoft’s extensions to C and C++,
the design of Go, Rust and Swift by Google, Mozilla and Apple, respectively,
and Hack as an extension of PHP by Facebook.21 Open source communities
have also produced influential language extensions—perhaps most notably the
various GNU extensions to C and C++.

3.3 Extinction due to Non-evolution

Languages become extinct when they are no longer used, but we must separate
“no longer used for new projects” (e.g. COBOL) from “(probably) no systems
using them left in existence” (e.g. Algol 60). (Of course community support for
historic languages and systems means that even these definitions are suspect.)
What interests us is the question of why a previously influential language might
become used less and less? There seem to be two overlapping reasons for this:
(i) revolutionary replacement: the concepts of the language were innovative,
but its use in the wider ecosystem was less attractive—other languages which
incorporated its features have now supplanted it; and (ii) loss of fitness: the
language was well-used in many large projects, but doubts about its continuing
ecological fitness arose. Algol 60 and arguably Smalltalk fits the first of these
criteria well, while Fortran, Lisp, C and arguably COBOL fit the second.

Languages in the latter category can avoid extinction by evolving. This is
most notably the case for Fortran, but C also fit this scheme, as does C++: new
features have been added to the languages in successive versions. Similarly Lisp
has evolved with Common Lisp, Racket and Clojure being modern forms. The
key issue here is backwards compatibility: old programs must continue to work
in newer versions of the language with at most minor textual changes. A popular
technique for removing old features felt to be harmful for future versions of the
language is to deprecate them—marking them for future deletion and allowing
tool-chains to warn on their use. This technique is used in the ISO standards for C
and Fortran (most recent standards in 2011 and 2008 respectively); Lisp dialects
have evolved more disparately, but are still largely backwards compatible.

It is worth noting here that Fortran’s evolution fits the plant-ecosystem model
quite well. However, the revolutionary replacement model is more akin to ‘arti-
ficial life’ or ‘genetically modified organisms’ in the way the existing genetic
features are combined into a new plant or programming language.

In closing this section, we note that Fortran (first standardised in 1958, most
recent standard in 2008, and Fortran 2015 [sic] actively in standardisation) seems
practically immortal for large-scale numeric code, such as weather forecasting
and planetary modelling. Anecdotally, it largely fights off C++ because of the
power that C++ provides for writing code that others cannot easily understand
or that contains subtle bugs. One example of this is that Fortran largely forbids
aliasing, which limits the flexibility of the language for general-purpose program-
ming, but reduces the scope for aliasing-related programmer errors, and aids

21 http://hacklang.org/.

http://hacklang.org/

The Next 7000 Programming Languages 267

compilers in generating efficient code. By contrast Algol, in spite of being per-
haps the most influential language of all time, has effectively become extinct—the
attempt to move from Algol 60 to Algol 68 did not prove effective in holding on
to its territory. It’s hard to pin down the exact reason: other languages devel-
oped while the Algol standard was effectively frozen awaiting Algol 68, the lack
of support for (or even community-belief in) separate compilation, the default
of call-by-name meaning that any sensible upgrade would fail to be backward-
compatible, etc.

There’s an interesting comparison here: “would you prefer to be immortal
or to be posthumously praised for spreading your genes around the world?” A
quote from Joe Armstrong also seems relevant here [41]:

People keep asking me “What will happen to Erlang? Will it be a popular
language?” I don’t know. I think it’s already been very influential. It might
end up like Smalltalk. I think Smalltalk’s very, very influential and loved
by an enthusiastic band of people but never really very widely adopted.

4 Range of Important Languages in 2017

Posing the question “What are the important languages of 2017?” gives a range
of answers from “well it’s obviously X, Y and Z” to “what do you mean by
important?”. While there are important legacy languages with millions lines
of existing code (Fortran, and perhaps COBOL and arguably even C), here we
pragmatically explore various recent programming language popularity rankings:
the RedMonk Programming Language Rankings (June 2016),22 the 2015 Top 10
Programming Languages according to IEEE Spectrum (July 2015),23 and the
TIOBE Index (February 2017).24

These are of course just a subset of available rankings; the rankings differ as
to how language importance is measured; data for the amount of code written is
hard to come by when much deployed code is not publicly available at the source
level (Wired reported in 2015 that “Google is 2 billion lines of code—and it’s
all in one place”25); and it unlikely that code duplication is accounted for when
judging how much code is associated with a particular language—a recent study
by Lopes et al. shows that accounting for duplication is challenging [24]. We
note that these rankings assess language importance based on volume of code,
rather than by assessing how influential a language is in terms of ideas (genes)
it contains, or introduces, that are used in later languages.

Nevertheless, we believe the data these rankings offer provides a reasonable
snapshot capturing at least the core set of languages broadly agreed to be in wide
use today. They are summarised in Table 1, with the IEEE Spectrum ranking
stopping at 10 and the other rankings at 20 (modulo a 20th-place tie).
22 http://redmonk.com/sogrady/category/programming-languages/.
23 http://spectrum.ieee.org/computing/software/the-2015-top-ten-programming-

languages.
24 http://www.tiobe.com/tiobe-index/.
25 https://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/.

http://redmonk.com/sogrady/category/programming-languages/
http://spectrum.ieee.org/computing/software/the-2015-top-ten-programming-languages
http://spectrum.ieee.org/computing/software/the-2015-top-ten-programming-languages
http://www.tiobe.com/tiobe-index/
https://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/

268 R. Chatley et al.

Table 1. Popular languages according to three sources (mid-2015–early 2017)

Position RedMonk (2016) IEEE Spectrum (2015) TIOBE (2017)

1 JavaScript Java Java

2 Java C C

3 PHP C++ C++

4 Python Python C#

5 (5=) C# C# Python

6 (5=) C++ R PHP

7 (5=) Ruby PHP JavaScript

8 CSS JavaScript Visual Basic

9 C Ruby Delphi/Object Pascal

10 Objective-C MATLAB Perl

11 Shell Ruby

12 R Swift

13 Perl Assembly language

14 Scala Go

15 Go R

16 Haskell Visual Basic

17 Swift MATLAB

18 MATLAB PL/SQL

19 Visual Basic Objective-C

20 (20=) Clojure Scratch

21 (20=) Groovy

We broadly partition the languages in these rankings into five categories:

– Mainstream: languages whose presence and approximate position in the rank-
ings comes as no surprise, and that we expect to be around for the foreseeable
future.

– Rising : languages that we perceive to have rapidly growing user communities,
with an associated buzz of excitement. The popularity of rising language is
likely to be recent, and expected to increase either directly, or indirectly
through influence on mainstream languages.

– Declining : languages that are still in active use, including for new projects,
but which we perceive to be on the decline, e.g. because they are less widely
used than mainstream languages, yet lack the buzz of excitement surrounding
rising languages.

– Legacy : languages that are largely used in order to maintain legacy systems,
and in which we expect very little new code is developed.

– Domain-oriented : languages that are key to important application domains,
but that one would not normally use to develop general-purpose software.

The Next 7000 Programming Languages 269

This partitioning into categories between them is skewed by our personal biases,
perspectives and experience; no doubt our allocations to rising and declining
will be controversial.

Mainstream. Firmly in the top ten of all three rankings, it is widely agreed that
the major imperative and object-oriented languages—C, C++, C# and Java—
are mainstream. These include the languages used to implement most systems
infrastructure (C/C++), a large body of enterprise applications (Java/C#), the
majority of desktop computer games (C++), and most Android apps (Java).
These languages are all statically typed. We also regard JavaScript, Python and
Ruby—all dynamically typed—as mainstream. JavaScript tops the RedMonk
ranking, Python is in the top 5 in all rankings, and Ruby is top-ten in all but
the TIOBE ranking, where it sits at 11th place.

Rising. We sense a great deal of excitement surrounding functional programming
languages, and languages with first class functional-programming features, thus
we regard Haskell, Clojure and Scala as rising. These three languages feature in
the lower half of the RedMonk chart, but do not appear on the TIOBE list. One
of the authors recalls being taught Haskell as an undergraduate student in 2000,
at which point there seemed to be little general expectation that the language,
though clearly important and influential, would become close to mainstream; the
situation is very different 17 years later. We also see the influence of Haskell and
functional programming in up-and-coming languages like Elm. Elm is written in
Haskell and has a Haskell-like syntax but compiles to HTML, CSS and JavaScript
for the browser, making it a candidate for a wide range of web-programming
tasks.

Swift is evidently rising as the language of choice for iOS development, in
part as a replacement for Objective-C. Swift’s syntax is clearly influenced by
languages like Ruby, although Swift is statically typed. As Swift has now been
open-sourced, we are seeing the community around it growing, and helping to
improve its tool-ecosystem.

With the exception of Swift, which enjoys good support in Apple’s Xcode,
when one compares the tool support for these rising languages to that for the lan-
guages we class as mainstream, the contrast is stark. If these languages continue
to rise, we expect and hope that better tooling will evolve around them.

Some languages that do not make these rankings, but which we regard as
rising, include: Rust, which has certainly generated a lot of academic excitement
in relation to its type system; F# (well-supported by Visual Studio), which
like Scala is multi-paradigm with strong functional programming support; and
Kotlin, which by being built together with its IDE might avoid the tools-shortage
risk of a new language. Another language with a syntax influenced by Ruby is
Elixir, which targets the Erlang virtual machine and promotes an actor model
of concurrency.

Declining. It seems that niches occupied by Objective-C, PHP and Perl are
gradually being dominated by Swift, JavaScript, and Python/Ruby, thus we

270 R. Chatley et al.

view these languages as declining. Similarly our impression is that Visual Basic
is a declining language, its niches perhaps being taken over by C#.

Legacy. We attribute the presence of Object Pascal (and its Delphi dialect) in
the top ten of the TIOBE ranking to the significant amount of such code being
maintained in legacy software, and speculate that this language is rarely used
for new projects.

Domain-Oriented. It is encouraging to see Scratch, an educational language,
mentioned in the TIOBE list; we class this as domain-oriented since the goal
of Scratch is to teach programming rather than for production development.
Among the languages used by people who often do not regard themselves as
programmers, R and MATLAB are probably the most widely used, with appli-
cations including data science and machine learning. We also class the query
language dialect PL/SQL as domain-oriented.

We do not have a feeling for whether Go—ranked top 20 by both RedMonk
and TIOBE—is rising or declining. Our impression is that it plays a useful role
in implementing server software, a niche that it may continue to capably occupy
without becoming mainstream. The same might be said of several languages
not ranked in Table 1: Erlang, which occupies an important distributed systems
niche for which it is widely respected; Fortran, often the language of choice for
scientists; VHDL and Verilog in processor design; and OpenCL and CUDA in
the parallel programming world, for example.

Of the remaining languages listed in Table 1, CSS is not a full-blown pro-
gramming language, and “Shell” and “Assembly language” span a multitude of
shell scripting and assembly languages for different platforms, which we do not
attempt to categorise. (As an aside, we are doubtful regarding the high rank of
“Assembly language” in the TIOBE ranking.)

5 The Elephants in the Room

Given the rich array of programming languages that have evolved over the past
half century, and in general the successful manner in which languages have
emerged or evolved to cope with technological change, we note three strange
facts: that C remains an extremely popular language despite its shortcom-
ings (Sect. 5.1), that dynamically typed languages are among the most popu-
lar programming languages despite decades of advances in static type systems
(Sect. 5.2), and that despite the rise of multi-core processing, support for paral-
lelism is patchwork across today’s languages (Sect. 5.3).

At first sight these conflict with our ‘selection of the fittest’ thesis, and indeed
perhaps we are even slightly embarrassed as computer scientists as to the state
of the real world. We return this issue in Sect. 6 where we discuss the role of
time, and inertia, in evolution.

The Next 7000 Programming Languages 271

5.1 The Popularity of C

Legacy aside, our view is that C has two main strengths as a language: its core
features are simple, and it offers high performance. The price for performance
is that virtually no reliability or security guarantees are provided. An erroneous
C program can behave in unpredictable ways, and can be vulnerable to attack.
Some of the most famous software vulnerabilities of recent years, including the
Heartbleed bug,26 arise from basic errors in C programs, and a great deal of
effort still goes into writing and deploying “sanitiser” tools to find defects in C
code, such as AddressSanitizer and MemorySanitizer from Google.27 Further,
despite having a simple core, the semantics of C are far from simple when one
considers the host of undefined and implementation-defined behaviours described
in the language specification. Indeed, decades since the language’s inception, top
programming language conferences are still accepting papers that attempt to
rigorously define the semantics of C [15,29], and recent programming models for
multi-core and graphics processors, such as OpenCL and Metal, have based their
accelerator programming languages on C.

Given that the majority of code written today does not need to perform
optimally, and given the advances in techniques such as just-in-time compilation
that in many cases allow managed languages to achieve performance comparable
to that of C, we ask: why does C remain so popular, and will this trend continue?

A major reason for C’s longevity is that it is used to develop all major
operating systems and many supporting tools. It is also typically the language
of choice for embedded programming, partly due to the language’s small memory
footprint, and also because C is usually the first language for which a compiler
targeting a new instruction set becomes available (the latter motivated by the
fact that such a compiler is required to compile an operating system for the
new target platform). Beyond compilers, the language is also well supported by
tools, such as debuggers, linkers, profilers and sanitisers, which can influence a
language’s selection for use.

Kell points out various fundamental merits to systems programming that C
brings, beyond it simply being a de-facto standard [18]. He argues that “the very
‘unsafety’ of C is based on an unfortunate conflation of the language itself with
how it is implemented”, and makes a compelling case that a safe implementation
of C, with sufficiently high performance for the needs of systems programming,
is possible. He also argues that a key property of C that many higher-level
languages sacrifice is its ability to facilitate communication with ‘alien’ system
components (including both hardware devices and code from other program-
ming languages). This flexibility in communication owes to the ability to linking
together object files that respect the same application binary interface, in C’s
use of memory as a uniform abstraction for communication. Kell concludes: “C
is far from sacred, and I look forward to its replacements—but they must not
forget the importance of communicating with aliens.”

26 http://heartbleed.com/.
27 https://github.com/google/sanitizers.

http://heartbleed.com/
https://github.com/google/sanitizers

272 R. Chatley et al.

In short, no other current language approaches the fitness of C (when mea-
sured along with its symbiotic tool-ecosystem) for the systems-programming
niche.

5.2 The Rise of Dynamically Typed Languages

Static type systems have the ability to weed out large classes of programmer-
induced defects ahead of time. In addition, as discussed in Sect. 3.1, static
types facilitate automated refactoring—key to agile development processes—
and enable advanced compiler optimisations that can improve performance. Yet
many of today’s most popular languages, including JavaScript, PHP, Ruby and
Python, do not feature static types, or make static types optional (and unusual
in practice).

In the case of JavaScript, we argue that its prevalence is driven by the web as a
programming platform, and web browsers as a dominant execution environment.
As the only language supported by all browsers, in a sense, JavaScript is to
browsers what C is to Unix. JavaScript has also seen broad uptake in server-side
development of recent times, with the Node.js platform. A major driver for this
is developer mindshare. Many developers already know JavaScript because of
previous work in the browser, so having a server environment where they can
code in the language they already know lets them transfer many of their existing
skills without having to learn Python, Ruby or PHP. In evolutionary terms, while
no language per se is favoured in the server-side world, the additional fitness of
JavaScript with its symbiote “programmer experience” has enabled it to colonise
this niche.

One reason for the popularity of dynamic languages in general is that they
tend to come with excellent library support, providing just the right methods
to offer a desired service. Representing structured data without a schema in
statically typed languages is generally more challenging (e.g. what types to use),
but recent work by Petricek et al. on inferring shapes for F# type providers is
promising [34].

A more fundamental reason may be “beginner-friendliness”. It is easy to
get some code up and running to power a web page using JavaScript; writing
a simple utility in Python is usually more straightforward than would be the
case in C (where one would need to battle with string manipulation), or in Java
(where one would need to decide which classes to create).

The importance of beginner-friendliness should not be underestimated. Many
people writing software these days are not trained computer scientists or software
engineers. As coding becomes a skill required for a large number of different
jobs, we have more and more programmers, but they may not have the time or
inclination to learn the intricacies of a complex languages—they just want to
get something done. Currently Python (supported by technologies like iPython
Notebooks) is popular with scientists and others just wanting to get going quickly
on some fairly simple computational task. This category of programmers seems
likely only to grow in the future, and as such the world will accumulate growing

The Next 7000 Programming Languages 273

amounts of fairly simple software, in languages that are comparatively easy for
non-specialists to work with.

The danger, historically exemplified by Facebook’s use of PHP, is that a sys-
tem that starts as a simple program in a dynamically typed language may grow
beyond practical maintainability. We question the extent to which dynamically
typed languages are suitable for building large-scale infrastructure that needs to
be maintained and refactored over many years by a changing team. Facebook’s
Hack language, which extends PHP with types in a manner that permits an
untyped code base to be incrementally typed, is one example where a valuable
code base without static types is being migrated to a typed form to enable faster
defect detection and better readability and maintenance.28 We also see similar
trends in the JavaScript world, for example in the TypeScript29 and Flow30

initiatives from Microsoft and Facebook respectively.
We can summarise that various features of dynamic languages—rapid proto-

typing, beginner-friendliness, avoidance of intellectually sound but challenging
type systems—adds to the fitness of such languages in niches that appreciate
these properties over others.

5.3 The Patchwork Support for Parallelism

As discussed in Sect. 2.7 under “Parallelism and the rise of multi-core”, the last
decade has seen a wealth of research papers and industrial programming models
to aid in writing parallel code, itself building on a long history of focused work by
the (previously niche) parallel programming community. Yet it seems that, from
a general purpose programmer’s perspective, progress has been limited. There
are a wide range of language features to support parallelism at different levels of
abstraction (see Sect. 2.7 for examples), but even a single abstraction level there
are many competing choices, both between and within languages. But despite,
and perhaps because of all this choice, it is far from clear to a programmer
without parallelism expertise, which language and mechanism to choose when
wishing to accelerate a particular application.

A seemingly reasonable programmer strategy might be to invoke paral-
lel versions of operations wherever it is safe to do so, e.g. defaulting to a
ParallelStream over a Stream in Java unless the parallel version is unsafe,
and leave it to the run-time system to decide when to actually employ paral-
lelism.31 This strategy is analogous to other strategies that are often followed
during software development, such as favouring the most general type for a func-
tion argument, making data immutable when possible, and limiting the visibility

28 https://code.facebook.com/posts/264544830379293/hack-a-new-programming-
language-for-hhvm/.

29 https://github.com/Microsoft/TypeScript.
30 https://github.com/facebook/flow.
31 Determining whether parallel execution is safe might be left to the programmer, as

in the case of parallel streams in Java, or might be facilitated by tool support or
guaranteed by language semantics (e.g. due to language purity).

https://code.facebook.com/posts/264544830379293/hack-a-new-programming-language-for-hhvm/
https://code.facebook.com/posts/264544830379293/hack-a-new-programming-language-for-hhvm/
https://github.com/Microsoft/TypeScript
https://github.com/facebook/flow

274 R. Chatley et al.

of module internals unless higher visibility is required. However, this “use par-
allelism wherever it would be safe” approach is, at present, näıve, and usually
leads to reduced performance for reasons of task granularity and memory hier-
archy effects when running multiple small threads. This demonstrates that we
have a long way to go before parallel programming becomes truly mainstream.

Currently it often seems that the many language concurrency primitives are
each fittest for a given niche, with no unifying model.

6 The Next 7000 Programming Languages

Is the Evolutionary Theory Wrong? The previous section observed three situa-
tions where languages have counter-fitness aspects (genes). We observe that this
is not unexpected; time and inertia are also important in translating evolution-
ary fitness to niche occupancy. Even if a species, or language, becomes less fit
than a competitor, its present dominance may still cause it to produce more
seeds in total than the fitter, but less dominant, competitor—even if these seeds
individually are less likely to thrive. Thus changes in fitness (e.g. an upgrading
of the important of security affecting our perceived fitness of C) are likely only to
change the second derivative of percentage niche-occupancy. Incidentally, recent
evidence seems to suggest that dinosaurs were in relative decline to mammals for
around 50 million years before the Chicxulub asteroid impact which completed
the task [39]. We simultaneously argue that Sect. 5 does correctly reflect niche
occupancy today, and at the same time, in this section propose predictions of
future niche occupancy based on current notions of fitness.

Emboldened by Landin’s success, we now make some predictions—starting
with the ‘elephants in the room’ of the previous section.

6.1 A Replacement for C/C++?

The short answer to “What will replace C/C++ in the light of its unsafe fea-
tures?” appears to be “Nothing in the short term”. One explanation for this is
that the C family of languages is so intimately bound to all major operating
systems that its replacement is unthinkable in the short term. One pragmatic
reason beyond simple inertia is that much of the system software tool chain
(compilers, debuggers, linkers, etc.) either directly targets C or is designed to be
most easily used in conjunction with a C software stack. The investment required
to re-target this tool chain is so vast that there is a strong economic argument
to continue using C.

Taking the idea of evolutionary inertia above, the nearest botanical analogue
is perhaps “How long would it take for giant redwoods (sequoia) to be supplanted
by a locally fitter competitor species?”, answered by “rather longer than it takes
moss to colonise a damp lawn”.

That having been said, there are innovations quietly chipping away at the
current “we’ll just have to put up with the insecurities of C/C++”.

The Next 7000 Programming Languages 275

One direction is languages such as Rust, that offer better safety guarantees
through types, as well the safe subset of C++ mentioned in Sect. 3.2.

Another direction is the concept of Unikernel (or ‘library OS’) exemplified
by MirageOS.32 MirageOS is coded in the managed functional-style language
OCaml and exploits its powerful module system. Experiments show that the
additional cost of a managed language (5–10% for low-level drivers) is mitigated
by the reduced need for context-switching to protect against pointer-arithmetic
in unsafe languages [26]. Could the Linux kernel be similarly re-coded? Can the
immediate performance penalty be compensated by more flexible and high-level
structuring mechanisms?

A second thrust is “let’s make C secure”. At first this seems impossible
because of pointer arithmetic. But using additional storage to represent pointer
metadata (e.g. base, limit and offset) at run time can give a pointer-safe C
implementation; this can be achieved via fat pointers, which change the pointer
representation itself and thus break compatibility with code that does not use
fat pointers [19,44],33 or via compile-time instrumentation methods that do not
change the representation of pointers and thus facilitate integration with un-
instrumented code [16,32,37]. Either way, dynamic bounds checking reduces the
attack surface in that buffer overflows and the like can no longer be exploited to
enable arbitrary code execution—in short the result is no worse (but no better
than) NullPointerException in Java. Recent work abstracts fat pointers to
capabilities and does this checking in hardware: the Cheri project, e.g. [6], has
a whole C tool-chain replacement (from FPGA-based hardware to compilers
and debuggers) for a hardware-agnostic capability extension instantiated in a
MIPS-like instruction set. The run-time cost of this appears in the order of 1%.
Intel’s MPX34 (Memory Protection Extensions) has a similar aim, but relative
performance data for whole operating systems on MPX is not yet available. As
discussed in Sect. 5.1, Kell also makes a compelling argument that a safe and
relatively performant implementation of C may be feasible [18].

6.2 From Dynamic to Static Types, to Verified Software

We envisage that gradual typing [1,43,46] will become increasingly prominent in
future languages, whereby static types can be incrementally added to an other-
wise dynamically typed program, so that full static typing is enabled once enough
types are present, with type inference algorithms still allowing types to be omit-
ted to some degree. This captures the “beginner-friendliness” and flexibility of
dynamic types, but facilitates a gradual transition towards the guarantees that
static types provide. Ideas along these lines are explored by Facebook’s Hack lan-
guage, as discussed in Sect. 5.2. Takikawa et al. recently studied the performance

32 https://github.com/mirage.
33 A subtlety is that the C standard currently requires pointers to occupy no more

space than the integer type intptr t. So often fat pointers need to use indirection
or bit-level packing techniques which are both expensive in software.

34 https://en.wikipedia.org/wiki/Intel MPX.

https://github.com/mirage
https://en.wikipedia.org/wiki/Intel_MPX

276 R. Chatley et al.

of gradual typing in the context of Racket, with current results suggesting that
work is needed to reduce the overhead of crossing a typed/untyped boundary at
run time, and that performance tended to dip as static types were introduced
to programs, unless they were introduced everywhere [45]. Still, it seems that
such performance issues can be solved via a combination of advanced type infer-
ence and different implementation choices, and furthermore types confer many
advantages besides performance, especially in relation to refactoring.

A gradual-typing spectrum provides increased benefits as developers invest in
writing more type annotations. As developers devote more time to writing richer
specifications they reap the benefits of stronger static and dynamic analysis and
verification. We can see this approach as part of a bigger picture of confidence
of correctness, given the many pressures to create more reliable software. Types
are merely one example of techniques to perform checks on correctness. In addi-
tion to such static analysis, we see the rise of dynamic checks and executable
specifications, from the automated tests that support test-driven development
and agile methods to formally verified software.

We see a unified whole, where types, tests and specifications are complemen-
tary, and can be developed before, during or after the software system (a form of
‘gradual verification’). As the system evolves, the degree of correctness checking
demanded can evolve too, and we foresee developments that make transitioning
along this spectrum a natural progression over the life of a system. A docu-
mented example of formal correctness requirements being added to a system
post-hoc is the Pentium 4 floating-point multiplier [17] (40,000 lines of HDL);
co-development of software and specifications are visible in the CompCert [23]
and CakeML [21] verified compiler projects.

6.3 Increased Fragmentation of Parallelism Support

We would like to optimistically predict that revolutions in programming lan-
guage, compiler and run-time system technology will resolve the situation of
patchwork support for parallelism discussed in Sect. 5.3. However, we fear that
this is wishful thinking, and that balkanisation may actually increase.

If a programmer is working in a very limited domain and does not require
flexibility for their application to evolve, they may benefit from a domain-
oriented language, such as MATLAB or Julia, for which there is good potential
for automatic parallelism—exploiting domain properties and the lack of hard-
to-parallelise language features—even if this has not been achieved yet. So by
using programming at higher levels of abstraction, thereby trading against lan-
guage flexibility, good and predictable parallel performance is possible. But if
a programmer does require the flexibility offered by more general languages
then the situation becomes more difficult and other trade-offs emerge. A func-
tional language may eliminate the problems of aliasing that make imperative and
object-oriented languages hard to parallelise, but performance is at the mercy
of decisions made by the compiler and run-time system, which can be hard to
control in a declarative setting and yet may need to be controlled to avoid brittle
performance changes as software evolves. A high-level object-oriented language

The Next 7000 Programming Languages 277

like Java provides features unrelated to parallelism for high-productivity pro-
gramming, and various libraries catering for parallelism at a relatively high level
of abstraction. But it can still be difficult to achieve high and predictable per-
formance without breaking this abstraction layer, or resorting to otherwise poor
software engineering practices that sacrifice modularity and compositionality. Of
course, there are lower-level languages such as OpenCL that enable fine-grained
performance tuning, but lead to software that is hard to maintain and evolve.

Our prediction is that in domains where exploiting parallelism is essential—
e.g. machine learning, computer vision, graph processing— communities will set-
tle on de-facto standard domain-specific languages and libraries that are a good
fit for the task at hand. These approaches will in turn be implemented on top
of lower-level languages and libraries providing access to underlying hardware
and implemented in languages such as OpenCL. We see the greatest potential
for parallelism support in higher-level general-purpose languages to be for dis-
tributed processing, where work can be partitioned at a sufficiently coarse level of
granularity to allow run-time systems to make decisions on parallel deployment
dynamically, without sacrificing parallel speedup in the process.

6.4 Error Resilience

As systems grow, and become more distributed, then structured approaches to
error resilience (coping with transient and permanent errors) will become more
important. Section 3.2 explored the Erlang fail-fast model (fail on unexpected
situations and expect your owner to fix things up) along with the suggestion that
functional-style idempotence is more likely to be fruitful in highly distributed
systems than classical imperative-style checkpoint and rollback.

6.5 Supporting Better Software Engineering Practices

We foresee a closer integration between languages and the tools that support
them. Rather than being developed separately, languages and tools will be devel-
oped as one in symbiosis. At the time of writing we are beginning to see a move
(back) towards tools being created together with languages. With languages like
Kotlin, we see an example of the requirement to provide excellent tool support
for working with a language being a primary driver for decisions in the design
of the language itself.

Programs and software systems will continue to grow in size, and with this
we foresee a change in how developers work with programs, a move away from
treating programs as text to be edited, and towards graphs to be transformed.
We may no longer edit individual lines of code, but encode and apply transfor-
mations, either in the form of refactorings (building on those currently supported
by sophisticated IDEs for Java and C#) or by writing code that writes (or edits)
code, such as those being developed by Atomist.35 This brings to mind the pos-
sibility of code being synthesised from a specification using AI techniques, which
we discuss further in Sect. 6.6.
35 https://www.atomist.com/.

https://www.atomist.com/

278 R. Chatley et al.

Software systems will continue to grow and so we foresee more explicit lan-
guage features for describing modular structures and componentisation. Java 9’s
module system is a good start in this direction, but it does not yet address the
issues of versioned, and independently developed, software components. Modu-
larity helps humans—whose brains sadly have not increased in computational
power at the same rate as the machines that we manufacture—to comprehend,
manage and change these large systems by thinking at appropriate levels of
abstraction. Alternatively, instead of enriching languages with more powerful
features, we can imagine a state where more developers get their work done
with simple languages supported by good tools. Although a code base written in
a more sophisticated language may be smaller, it may also be more difficult to
work with if the developer tools are less powerful. We foresee the speed of evolu-
tion of tooling exceeding that of the languages they support, with the result that
developers may well be able to get more done because they have better tools,
rather than because they have better building blocks.

6.6 Program Synthesis and AI

We predict strong potential for advances in artificial intelligence methods to
reduce the human effort associated with programming. In the near future one
can imagine routine learning being regularly deployed to provide smart auto-
completion and refactoring, learning from data on programmer habits collected
from users of a particular IDE. This might go further: automating those labo-
rious program overhauls that often take hours or days to complete, but dur-
ing which one can feel to be in auto-pilot mode. Nevertheless, making such
semantics-aware transformations would appear to go well beyond the pattern-
recognition tasks at which machine learning has been shown to excel. It seems
apparent that there is scope for effective program synthesis in suitably restricted
domains, such as the development of standard device drivers [38]. The prospect
of synthesising a correct implementation of a non-trivial class, given a precise
definition of its interfaces and a set of unit tests that it should pass, seems within
reach in the foreseeable future: recent work on synthesising programs from input-
output examples shows promise [2] and has gained widespread media attention.36

However, we regard software development in general as a creative process that
stretches human ingenuity to its limits, and thus do not predict general break-
throughs here unless human-level AI is achieved.

6.7 A Non-prediction

In discussing the three elephants in the room of Sect. 5 we might hope for,
although we do not explicitly predict it, general purpose languages with a unified
concurrency model, which are type-safe, offer a flexible balance between static
and dynamic typing, along with suitability for low-level programming. Indeed

36 https://www.newscientist.com/article/mg23331144-500-ai-learns-to-write-its-own-
code-by-stealing-from-other-programs/.

https://www.newscientist.com/article/mg23331144-500-ai-learns-to-write-its-own-code-by-stealing-from-other-programs/
https://www.newscientist.com/article/mg23331144-500-ai-learns-to-write-its-own-code-by-stealing-from-other-programs/

The Next 7000 Programming Languages 279

we might hope for a single universal language which is suitable for all niches, as
has been a recurring hope since Landin’s time.

However, the evolutionary model does not predict this. It does predict that
if a language is fitter for multiple niches then it will eventually colonise both.
It says nothing about the existence of such a language, and past attempts to
create universal languages do not add encouragement.

Some Final Words

While we hope to have provided some updated discussion and predictions follow-
ing Landin’s work half a century ago, these can only reflect the present structure
of languages and evolution is ongoing. We wonder what a follow-up article in
another 50 years would say.

Acknowledgements. We are grateful to Sophia Drossopoulou, Stephen Kell, Tom
Stuart, Joost-Pieter Katoen, Flemming Nielson and Bernhard Steffen for their useful
feedback on an earlier draft of this work.

Alastair Donaldson was supported by an EPSRC Early Career Fellowship
(EP/N026314/1).

References

1. Anderson, C., Drossopoulou, S.: BabyJ: from object based to class based program-
ming via types. Electr. Notes Theor. Comput. Sci. 82(7), 53–81 (2003). https://
doi.org/10.1016/S1571-0661(04)80802-8

2. Balog, M., Gaunt, A.L., Brockschmidt, M., Nowozin, S., Tarlow, D.: DeepCoder:
Learning to write programs. CoRR abs/1611.01989 (2016). http://arxiv.org/abs/
1611.01989

3. Beck, K.: Test Driven Development: By Example. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston (2002)

4. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd
edn. Addison-Wesley Professional, Boston (2004)

5. Brauer, W. (ed.): Gesellschaft für Informatik e.V. LNCS, vol. 1. Springer, Hei-
delberg (1973). https://doi.org/10.1007/978-3-642-80732-9. 3 Jahrestagung, Ham-
burg, Deutschland, 8–10 Oktober 1973

6. Chisnall, D., Rothwell, C., Watson, R.N., Woodruff, J., Vadera, M., Moore, S.W.,
Roe, M., Davis, B., Neumann, P.G.: Beyond the PDP-11: architectural support
for a memory-safe C abstract machine. SIGARCH Comput. Archit. News 43(1),
117–130 (2015). https://doi.org/10.1145/2786763.2694367

7. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: Odersky, M., Wadler, P. (eds.) Proceedings of the Fifth ACM
SIGPLAN International Conference on Functional Programming (ICFP 2000), 18–
21 September 2000, Montreal, Canada, pp. 268–279. ACM (2000). https://doi.org/
10.1145/351240.351266

8. Dean, J., Ghemawat, S.: MapReduce: a flexible data processing tool. Commun.
ACM 53(1), 72–77 (2010). https://doi.org/10.1145/1629175.1629198

9. Foster, N., Greenberg, M., Pierce, B.C.: Types considered harmful. Invited talk
at Mathematical Foundations of Programming Semantics (MFPS) (2008). http://
www.cis.upenn.edu/∼bcpierce/papers/harmful-mfps.pdf

https://doi.org/10.1016/S1571-0661(04)80802-8
https://doi.org/10.1016/S1571-0661(04)80802-8
http://arxiv.org/abs/1611.01989
http://arxiv.org/abs/1611.01989
https://doi.org/10.1007/978-3-642-80732-9
https://doi.org/10.1145/2786763.2694367
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/1629175.1629198
http://www.cis.upenn.edu/~bcpierce/papers/harmful-mfps.pdf
http://www.cis.upenn.edu/~bcpierce/papers/harmful-mfps.pdf

280 R. Chatley et al.

10. Fowler, M., Beck, K.: Refactoring: Improving the Design of Existing Code. Object
Technology Series. Addison-Wesley Longman Publishing Co., Inc., Boston (1999)

11. Gabriel, R.P.: Lisp: good news, bad news, how to win big (1991). https://www.
dreamsongs.com/WIB.html

12. Gabriel, R.P.: Patterns of Software: Tales from the Software Community. Oxford
University Press Inc., New York (1996)

13. Gabriel, R.P., White, J.L., Bobrow, D.G.: CLOS: integrating object-oriented and
functional programming. Commun. ACM 34(9), 29–38 (1991). https://doi.org/10.
1145/114669.114671

14. Garner, S.: Reducing the cognitive load on novice programmers. In: Barker, P.,
Rebelsky, S. (eds.) Proceedings of EdMedia: World Conference on Educational
Media and Technology, pp. 578–583. ERIC (2002)

15. Hathhorn, C., Ellison, C., Rosu, G.: Defining the undefinedness of C. In: Grove,
D., Blackburn, S. (eds.) Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, 15–17 June 2015, Portland,
OR, USA, pp. 336–345. ACM (2015). https://doi.org/10.1145/2737924.2737979

16. Jones, R.W.M., Kelly, P.H.J.: Backwards-compatible bounds checking for arrays
and pointers in C programs. In: AADEBUG, pp. 13–26 (1997). http://www.ep.liu.
se/ecp/article.asp?issue=001&article=002

17. Kaivola, R., Narasimhan, N.: Formal verification of the pentium R©4 floating-point
multiplier. In: Proceedings of the Conference on Design, Automation and Test in
Europe, DATE 2002, pp. 20–27. IEEE Computer Society, Washington, DC (2002).
http://dl.acm.org/citation.cfm?id=882452.874523

18. Kell, S.: Some were meant for C: the endurance of an unmanageable language. In:
Torlak, E., van der Storm, T., Biddle, R. (eds.) Proceedings of the 2017 ACM SIG-
PLAN International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software, Onward! 2017, 23–27 October 2017, Vancouver,
BC, Canada, pp. 229–245. ACM (2017). https://doi.org/10.1145/3133850.3133867

19. Kendall, A.S.C.: Bcc: runtime checking for C programs. In: USENIX Summer
Conference, pp. 5–16. USENIX (1983)

20. Kennedy, K., Koelbel, C., Zima, H.P.: The rise and fall of High Performance For-
tran: an historical object lesson. In: Ryder, B.G., Hailpern, B. (eds.) Proceedings of
the Third ACM SIGPLAN History of Programming Languages Conference (HOPL-
III), 9–10 June 2007, San Diego, California, USA, pp. 1–22. ACM (2007). https://
doi.org/10.1145/1238844.1238851

21. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implementa-
tion of ML. In: Jagannathan, S., Sewell, P. (eds.) The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2014, 20–21
January 2014, San Diego, CA, USA, pp. 179–192. ACM (2014). https://doi.org/
10.1145/2535838.2535841

22. Landin, P.J.: The next 700 programming languages. Commun. ACM 9(3), 157–166
(1966). https://doi.org/10.1145/365230.365257

23. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009). https://doi.org/10.1145/1538788.1538814

24. Lopes, C.V., Maj, P., Martins, P., Saini, V., Yang, D., Zitny, J., Sajnani, H., Vitek,
J.: Déjàvu: a map of code duplicates on github. In: PACMPL, vol. 1, no. OOPSLA,
pp. 84:1–84:28 (2017). https://doi.org/10.1145/3133908

25. Mackinnon, T., Freeman, S., Craig, P.: Endo-testing: unit testing with mock
objects. In: Succi, G., Marchesi, M. (eds.) Extreme Programming Examined, pp.
287–301. Addison-Wesley Longman Publishing Co., Inc., Boston (2001). http://dl.
acm.org/citation.cfm?id=377517.377534

https://www.dreamsongs.com/WIB.html
https://www.dreamsongs.com/WIB.html
https://doi.org/10.1145/114669.114671
https://doi.org/10.1145/114669.114671
https://doi.org/10.1145/2737924.2737979
http://www.ep.liu.se/ecp/article.asp?issue=001&article=002
http://www.ep.liu.se/ecp/article.asp?issue=001&article=002
http://dl.acm.org/citation.cfm?id=882452.874523
https://doi.org/10.1145/3133850.3133867
https://doi.org/10.1145/1238844.1238851
https://doi.org/10.1145/1238844.1238851
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/365230.365257
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/3133908
http://dl.acm.org/citation.cfm?id=377517.377534
http://dl.acm.org/citation.cfm?id=377517.377534

The Next 7000 Programming Languages 281

26. Madhavapeddy, A., Mortier, R., Rotsos, C., Scott, D., Singh, B., Gazagnaire, T.,
Smith, S., Hand, S., Crowcroft, J.: Unikernels: library operating systems for the
cloud. In: Proceedings of the Eighteenth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS 2013, pp.
461–472. ACM, New York(2013). https://doi.org/10.1145/2451116.2451167

27. Marlow, S.: Parallel and Concurrent Programming in Haskell. O’Reilly, Sebastopol
(2013)

28. McCormick, J.W., Chapin, P.C.: Building High Integrity Applications with
SPARK. Cambridge University Press, Cambridge (2015)

29. Memarian, K., Matthiesen, J., Lingard, J., Nienhuis, K., Chisnall, D., Watson,
R.N.M., Sewell, P.: Into the depths of C: elaborating the de facto standards. In:
Krintz, C., Berger, E. (eds.) Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2016, 13–17 June
2016, Santa Barbara, CA, USA, pp. 1–15. ACM (2016). https://doi.org/10.1145/
2908080.2908081

30. Mitchell, J.C.: Concepts in Programming Languages. Cambridge University Press,
Cambridge, October 2002

31. Murray, D.G., Schwarzkopf, M., Smowton, C., Smith, S., Madhavapeddy, A., Hand,
S.: CIEL: a universal execution engine for distributed data-flow computing. In:
Proceedings of the 8th USENIX Conference on Networked Systems Design and
Implementation, NSDI 2011, pp. 113–126. USENIX Association, Berkeley (2011).
http://dl.acm.org/citation.cfm?id=1972457.1972470

32. Nagarakatte, S., Zhao, J., Martin, M.M.K., Zdancewic, S.: SoftBound: highly com-
patible and complete spatial memory safety for C. In: Hind, M., Diwan, A. (eds.)
Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2009, 15–21 June 2009, Dublin, Ireland, pp.
245–258. ACM (2009). https://doi.org/10.1145/1542476.1542504

33. Perez, F., Granger, B.E., Hunter, J.D.: Python: an ecosystem for scientific com-
puting. Comput. Sci. Eng. 13(2), 13–21 (2011). https://doi.org/10.1109/MCSE.
2010.119

34. Petricek, T., Guerra, G., Syme, D.: Types from data: making structured data
first-class citizens in F#. In: Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2016, pp. 477–490.
ACM, New York (2016). https://doi.org/10.1145/2908080.2908115

35. Ritchie, D.: The development of the C language. In: Lee, J.A.N., Sammet, J.E.
(eds.) History of Programming Languages Conference (HOPL-II), Preprints, 20–23
April 1993, Cambridge, Massachusetts, USA, pp. 201–208. ACM (1993). https://
doi.org/10.1145/154766.155580

36. Ruby, S., Copeland, D.B., Thomas, D.: Agile Web Development with Rails 5.1.
Pragmatic Bookshelf, Raleigh (2017)

37. Ruwase, O., Lam, M.S.: A practical dynamic buffer overflow detector. In: Proceed-
ings of the Network and Distributed System Security Symposium, NDSS 2004,
San Diego, California, USA. The Internet Society (2004). http://www.isoc.org/
isoc/conferences/ndss/04/proceedings/Papers/Ruwase.pdf

38. Ryzhyk, L., Walker, A., Keys, J., Legg, A., Raghunath, A., Stumm, M., Vij, M.:
User-guided device driver synthesis. In: Flinn, J., Levy, H. (eds.) 11th USENIX
Symposium on Operating Systems Design and Implementation, OSDI 2014, 6–8
October 2014, Broomfield, CO, USA, pp. 661–676. USENIX Association (2014).
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/ryzhyk

39. Sakamoto, M., Benton, M., Venditti, C.: Dinosaurs in decline tens of millions of
years before their final extinction. Proc. Natl. Acad. Sci. 113(18), 5036–5040 (2016)

https://doi.org/10.1145/2451116.2451167
https://doi.org/10.1145/2908080.2908081
https://doi.org/10.1145/2908080.2908081
http://dl.acm.org/citation.cfm?id=1972457.1972470
https://doi.org/10.1145/1542476.1542504
https://doi.org/10.1109/MCSE.2010.119
https://doi.org/10.1109/MCSE.2010.119
https://doi.org/10.1145/2908080.2908115
https://doi.org/10.1145/154766.155580
https://doi.org/10.1145/154766.155580
http://www.isoc.org/isoc/conferences/ndss/04/proceedings/Papers/Ruwase.pdf
http://www.isoc.org/isoc/conferences/ndss/04/proceedings/Papers/Ruwase.pdf
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/ryzhyk

282 R. Chatley et al.

40. Schäfer, M.: Refactoring tools for dynamic languages. In: Proceedings of the Fifth
Workshop on Refactoring Tools, WRT 2012, pp. 59–62. ACM, New York (2012).
https://doi.org/10.1145/2328876.2328885

41. Seibel, P.: Coders at Work, 1st edn. Apress, Berkeley (2009)
42. Severance, C.: Javascript: designing a language in 10 days. Computer 45, 7–8

(2012)
43. Siek, J.G., Taha, W.: Gradual typing for functional languages. In: Proceedings of

the Scheme and Functional Programming Workshop, pp. 81–92 (2006)
44. Steffen, J.L.: Adding run-time checking to the portable C compiler. Softw. Pract.

Exp. 22(4), 305–348 (1992). https://doi.org/10.1002/spe.4380220403
45. Takikawa, A., Feltey, D., Greenman, B., New, M.S., Vitek, J., Felleisen, M.: Is

sound gradual typing dead? In: Bod́ık, R., Majumdar, R. (eds.) Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, 20–22 January 2016, POPL 2016, St. Petersburg, FL, USA, pp. 456–
468. ACM (2016). https://doi.org/10.1145/2837614.2837630

46. Tobin-Hochstadt, S., Felleisen, M.: Interlanguage migration: from scripts to pro-
grams. In: Tarr, P.L., Cook, W.R. (eds.) Companion to the 21th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2006, 22–26 October 2006, Portland, Oregon, USA, pp.
964–974. ACM (2006). https://doi.org/10.1145/1176617.1176755

47. Ungar, D., Chambers, C., Chang, B.W., Hölzle, U.: Organizing programs with-
out classes. Lisp Symb. Comput. 4(3), 223–242 (1991). https://doi.org/10.1007/
BF01806107

https://doi.org/10.1145/2328876.2328885
https://doi.org/10.1002/spe.4380220403
https://doi.org/10.1145/2837614.2837630
https://doi.org/10.1145/1176617.1176755
https://doi.org/10.1007/BF01806107
https://doi.org/10.1007/BF01806107

Multi-Mode DAE Models - Challenges, Theory
and Implementation

Albert Benveniste1, Benôıt Caillaud1, Hilding Elmqvist2, Khalil Ghorbal1(B),
Martin Otter3(B), and Marc Pouzet4

1 Inria, Rennes, France
{albert.benveniste,benoit.caillaud,khalil.ghorbal}@inria.fr

2 Mogram AB, Lund, Sweden
hilding.elmqvist@mogram.net

3 DLR-SR, Oberpfaffenhofen, Germany
martin.otter@dlr.de

4 ENS, Paris, France
marc.pouzet@ens.fr

Abstract. Our objective is to model and simulate Cyber-Physical Sys-
tems (CPS) such as robots, vehicles, and power plants. The structure
of CPS models may change during simulation due to the desired opera-
tion, due to failure situations or due to changes in physical conditions.
Corresponding models are called multi-mode. We are interested in multi-
domain, component-oriented modeling as performed, for example, with
the modeling language Modelica that leads naturally to Differential Alge-
braic Equations (DAEs). This paper is thus about multi-mode DAE sys-
tems. In particular, new methods are discussed to overcome one key prob-
lem that was only solved for specific subclasses of systems before: How
to switch from one mode to another one when the number of equations
may change and variables may exhibit impulsive behavior? An evalua-
tion is performed both with the experimental modeling and simulation
system Modia, a domain specific language extension of the programming
language Julia, and with SunDAE, a novel structural analysis library for
multi-mode DAE systems.

Keywords: Multi-Mode systems · Cyber-Physical Systems · CPS
Modia · Modelica · Differential algebraic equations · DAE
Differential index · Structural analysis · Operational semantics
Constructive semantics · Nonstandard analysis

1 Introduction

Modeling with block diagrams described with Ordinary Differential Equations
in state space form (ODE) has become a key pillar in the development of
Cyber-Physical Systems (CPS). Block diagrams, however, suffer from a lack
of modularity and reuse that is best illustrated in Fig. 1. This figure shows two
c© Springer Nature Switzerland AG 2019

B. Steffen and G. Woeginger (Eds.): Computing and Software Science, LNCS 10000, pp. 283–310, 2019.

https://doi.org/10.1007/978-3-319-91908-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91908-9_16&domain=pdf
https://doi.org/10.1007/978-3-319-91908-9_16

284 A. Benveniste et al.

Fig. 1. DAE (left) vs. ODE (right) based modeling.

models of the same system consisting of a simple model of an electrical motor
and of the rotational inertia of the motor. On the left hand side a (Modelica)
schematic/component diagram of the system is shown that connects physical
components through non-directed interactions resulting from the first princi-
ples of physics. On the right hand side the same model is shown as a block
diagram in which input/output oriented blocks are connected with a directed
wiring manually specified by the designer. Adding one more physical component
is straightforward in the schematic, whereas it may need a complete redesign in
the block diagram.

This should not come as a surprise, as the first principles of physics naturally
lead to considering acausal models such as the one in Fig. 1-left. Consider, for
example, the case of electric circuits. So-called circuit laws such as Kirchhoff
laws, are naturally expressed as balance equations: the algebraic sum of currents
in a network of conductors meeting at a point is zero; or, the sum of all the
voltages around a loop is equal to zero. Similarly, some components (such as,
e.g., resistors or capacitors) come with no input/output prespecified orientation.
A same circuit can be assigned different input/output status for its variables,
depending on which ones are declared as sources. The same situation arises in
mechanics or in thermodynamics. Engineers interested in multi-physics model-
ing have identified this fact since the 70’s by proposing bond graphs [17,31], in
which electric circuits, mechanical systems, and thermodynamical systems, are
abstracted to a common framework manipulating efforts, flows, and junctions.
To summarize, for systems made of a large number of interconnected compo-
nents, getting the usual input/output state space model (such as in Simulink
block diagrams) becomes intractable, whereas it remains manageable if acausal
models are supported.

In addition to being naturally described by an acausal model, a system may
have different modes for different reasons. One reason is the physics: mechanical
impacts where the bodies may remain in contact after a collision or an active
grasping/docking, idealized electrical or hydraulic switching elements, are exam-
ples of situations requiring different sets of equations for their modeling. Another
reason is the control of complex scenarios like repairing a satellite with robots,

Multi-Mode DAE Models - Challenges, Theory and Implementation 285

changing operations of a system like a power plant with start-up, normal opera-
tion and shut down. Finally, safety needs may lead to so-called degraded modes
in which the system dynamics may become very different (some components,
sensors or actuators getting down for example). Models of this kind are called
multi-mode models.

Fig. 2. A simple clutch with two shafts.

Acausal multi-mode models present, however, subtle difficulties at mode
changes. Consider for instance the case of an idealized clutch model, illustrated
in Fig. 2. The clutch possesses two modes: released (the two shafts rotate freely)
and engaged (the two shafts are in contact). Deriving acausal models from the
first principles is simple and rather elegant for each single mode alone. The
intuition tells us that, when the clutch gets engaged, the different velocities of
the two shafts will, in zero time, merge to a unique identical angular velocity
under impulsive torques. One also expects that the resulting common velocity
is entirely determined and depends only on the individual inertia and velocity
of each shaft, prior to engagement. Determining manually the restart conditions
is required if one resorts to using oriented block-diagrams like in Simulink. We
argue that such task is difficult for this simple example and becomes even impos-
sible for real-life models. Those restart conditions should rather be synthesized
automatically by the compiler and made available at run time to simulate the
model. This work advocates therefore the use of acausal modelling languages
since they

1. make the specification of large (single mode) Cyber Physical Systems more
modular, more elegant, and with better reuse;

2. are indispensable to synthesize proper restart conditions at mode changes,
for models where this cannot be done manually—the idealized clutch model
being a simple example.

It should also be clear that classical state space input/output formalisms (such
as Simulink block diagrams) do not address the above challenges. Neither does
the formalism of hybrid automata [1] used as the model of hybrid systems by
several verification tools such as Flow* or SpaceEx.

Causal input/output state space models are based on Ordinary Differential
Equations (ODE), of the form ẋ = f(x, u) where x is the state and u the input,
whereas acausal models à la Modelica are based on Differential Algebraic Equa-
tions (DAE) of the form f(ẋ, x, v) = 0 where x is a state and v an algebraic
variable, for which no input or output status can be a priori specified.

https://flowstar.org/
http://spaceex.imag.fr/documentation/publications/spaceex-scalable-verification-hybrid-systems-34

286 A. Benveniste et al.

In this paper we propose a theory to support the compilation of multi-mode
DAE based models in a systematic and mathematically sound way. We want to
reject some models that are in some sense spurious. And we want to synthesize
(whenever needed, not in all cases) the computation of the restart conditions
at mode changes. All of this will be performed at compile time, through a spe-
cial static analysis called the structural analysis, which is an important topic of
this paper. This structural analysis is an essential preprocessing step prior to
generating simulation code. We will illustrate our purpose by an example from
electro-mechanics that includes a clutch as one of its subsystems. The specifica-
tion, analysis, compilation, and simulation of this model will be illustrated using
the recently proposed experimental modeling language called Modia.

2 State-of-the-Art and Related Work

There exists an extensive body of work related to the numerical solution of
single-mode DAEs, especially [9], as well as to the modeling and simulation of
single-mode multi-domain models leading to DAEs1.

Mechanical systems featuring impulses are known since the 18th century. A
large literature about multi-body systems with contacts and impulses exists, for
example [25,26]. The current research focuses on simulating contacts between
many bodies using time stepping methods. Contact equations are usually
described approximately on velocity or acceleration level (if contact occurs, the
relative velocity or acceleration between the relevant bodies is constrained to
be zero). Since the constraints on position level are not explicitly taken into
account, typically a drift occurs that is usually not relevant for systems with
many contacting bodies but is not acceptable for general multi-mode DAEs.
An exception is [29], where constraints on position level are enforced. It is not
obvious how the specialized multi-mode methods for multi-body systems can be
generalized to any type of multi-mode DAE.

Also for electrical circuits with idealized switches, like ideal diodes, impulses
can occur. Again a large literature is available concentrating mostly on special-
ized electrical circuits such as piecewise-linear networks with idealized switches
[2,16,32]. Again, it is not obvious how to generalize methods in this specialized
area to general multi-mode DAEs.

The paper of Mehrmann et al. [20] contains interesting results regarding
numerical techniques to detect chattering between modes. It, however, assumes
that consistent reset values are explicitly given for each mode. Such an assump-
tion does not hold in general, especially for a compositional framework where
one wants to assemble pre-defined physical components.

In the PhD-thesis of Zimmer [33] variable-structure multi-domain DAEs are
defined with a special modeling language and a run-time interpreter is used that
processes the DAE equations at run-time, when the structure and/or the index is
changing. Limitations of this work are that impulsive behavior is not supported

1 See the extensive literature available in https://www.modelica.org/publications.

https://www.modelica.org/publications

Multi-Mode DAE Models - Challenges, Theory and Implementation 287

and that the user has to define the transfer of variable values from one mode to
the next mode explicitly, which is not practical for large models.

Describing variable structure systems with causal state machines is discussed
by Pepper et al. [24].

Elmqvist et al. [13,19] propose a high level description of multi-mode mod-
els as an extension to the synchronous Modelica 3.3 state machines by using
continuous-time state machines having continuous-time models as “states”.
Besides ODEs as used in hybrid automata, also acausal DAE models with phys-
ical connectors can be a “state” of a state machine. Such a state machine is
mapped into a form so that the resulting equations can be processed by stan-
dard symbolic algorithms supported by Modelica tools. The major restrictions of
this approach are that mode changes with impulsive behavior are not supported
and that not all types of multi-mode systems can be handled due to the static
code generation.

Benveniste et al. [3,5] tackle the problem of variable structure, varying index
DAEs from a fundamental point of view by using a low level description of DAEs
with a few language elements only and a precise mathematical description of the
semantics based on non-standard analysis. A proof-of-concept mockup, SunDAE,
was developed implementing this approach.

3 The Modia Language

Modelica [21] is a state-of-the-art modeling language for multi-domain model-
ing. Recently, an experimental language which is similar to Modelica and called
Modia [11,12] has been designed and implemented. Modia is a domain specific
language extension of Julia [8] by means of structured macros, that is, the Julia
parser is used to parse Modia models. The Modia language elements will be
introduced through a small set of examples.

Elementary Modia Constructs. A model of a rotating inertia can be defined as
follows (# start a comment until end of the line):

@model Inertia begin
J = 1
w0 = 0.0
w = Float(start = w0)
flange = Flange()
@equations begin

w = flange.w
J*der(w) = flange.tau

end
end

The @model macro has one section for declarations and one section for equations
and connections. The construct J = 1 defines the parameter J with default value
of 1. A variable w with a start value of w0 is introduced by w = Float(start =
w0). The construct flange = Flange() calls the constructor for Flange which
is defined as follows:

288 A. Benveniste et al.

@model Flange begin
w = Float() # Angular velocity
tau = Float(flow=true) # Torque

end

This model consists just of two variable declarations with type Float modeling
the interaction when the Inertia is mechanically coupled via a shaft to other
mechanical components. The attribute flow = true tells that if several shafts
are connected to flange, the internal and external torques are all summed to
zero.

The equation J*der(w) = flange.tau is Euler’s equation for the rotational
motion of the inertia. The operator der() denotes time derivative.

A model with two rigidly connected inertias can be defined as shown below:

@model TwoInertias begin
inertia1 = Inertia(J=0.1)
inertia2 = Inertia(J=0.4, w0=10.0)
@equations begin

connect(inertia1.flange, inertia2.flange)
end

end

Note that parameters are changed in the Inertia constructor call. The connect()
primitive models a physical coupling. In this case the semantics is:

inertia1.flange.w = inertia2.flange.w
inertia1.flange.tau + inertia2.flange.tau = 0

Note, that inertia2 has initial angular velocity of 10 rad/s, whereas inertia1 has
the default of 0. The result of simulation shows a constant angular velocity for
both inertias of 8 rad/s. Since the initial angular velocities are different there will
be a Dirac impulse in the torque to make them equal. The resulting joint angular
velocity is according to theory weighted as w = (J1∗w1+J2∗w2)/(J1+J2) = 8.

Advanced Modia Constructs. Modia has many other features, such as inheri-
tance, size and type inference, type declarations, component redeclarations, time
events, state event, and nested simulations. More information can be found in
[11,12]. It is possible to declare variables with specific SI units. As an exam-
ple, an electric Pin connector can be defined as shown below using predefined
variable constructors Voltage() and Current() with associated SI units (Volt and
Ampere):

@model Pin begin
v = Voltage()
i = Current(flow=true)

end

Multi-Mode DAE Models - Challenges, Theory and Implementation 289

Fig. 3. Schematics of MotorAndLoad model.

Modia Multi-mode Modeling: Running Example. We model in Modia a multi-
mode DAE system containing the idealized clutch introduced informally in
Sect. 1. The model has an electric motor, two load inertia and a clutch, see Fig. 3.
The electric motor model is based on a model of the electro-mechanical force
(emf). It has two Pin connectors (p and v) and one Flange connector. The spe-
cific equations for an emf are:

k*flange.w = p.v - n.v
flange.tau = -k*p.i

Note that a Capacitor is connected across the emf.
A simple Clutch model is used which is either engaged or not engaged. It is

modeled as two different set of equations:

@model Clutch begin
flange1 = Flange()
flange2 = Flange()
engaged = Boolean()

@equations begin
if engaged

flange1.w = flange2.w
flange1.tau + flange2.tau = 0

else
flange1.tau = 0
flange2.tau = 0

end
end

end

When the clutch is engaged, the angular velocities of the two flanges are the
same and the torques sum to zero. When not engaged, the torques are zero and
there are no constraints on the angular velocities. The definition of the input
engaged is made in the surrounding environment of the clutch:

clutch.engaged = time < 100 || time >= 300

The DAE index is changing depending on the state of the clutch. Furthermore,
Dirac impulses occur initially and when the mode changes to engaged. The tech-
niques needed to analyze and simulate such models are described in subsequent
sections.

290 A. Benveniste et al.

Fig. 4. Simulation results of the MotorAndLoad model.

The results of a simulation are shown in Fig. 4. The initial angular velocity of
inertia1 is 0 rad/s and 10 rad/s for inertia2. The capacitor is initially uncharged.
The upper two partly overlapping curves are the angular velocities of inertia1
and inertia2. When the clutch is disengaged, the angular velocity of inertia2 is
constant. The lower curve shows the voltage over the capacitor. Since the clutch
is engaged at initialization, Dirac impulses occur at time = 0 s. As a result, after
initialization the angular velocities of the two inertia are identical. The common
angular velocity at time = 0 s is not 8 rad/s as in the example TwoInertias, but
6.4 rad/s. The reason is that the capacitor acts in the same way as an additional
moment of inertia to inertia1. The effective inertia is J1′ = J1 + k2 ∗ C =
0.1 + 0.252 ∗ 2 = 0.225. Thus, the angular velocity at time=0 s becomes w =
(J1′ ∗w1+J2 ∗w2)/(J1′ +J2) = (0.225 ∗ 0+0.4 ∗ 10)/(0.225+0.4) = 6.4 rad/s.
There are no Dirac impulses at time = 100 s when the clutch disengages, but
again Dirac impulses at time = 300 s when the clutch engages again.

4 Simulating a Restricted Class of Multi-Mode DAEs

In this section, we propose a method to simulate a restricted class of multi-
mode DAE systems, encompassing in particular our example of Fig. 3 and its
simulation result in Fig. 4.

Throughout this paper, we use the classical notations ẋ and ẍ to denote the
first and second time-derivatives of a function of continuous time x : R �→ R.
When such a notation is not appropriate for readability reasons, we sometimes
write instead x′ and x′′. The notation for higher order derivatives is indicated
when needed. We write vectors and matrices in boldface. The transpose of a
matrix G is written GT .

Multi-Mode DAE Models - Challenges, Theory and Implementation 291

4.1 Problem Setting

The goal is to simulate the following class of multi-mode DAE systems:

if γ1(ẋ−
γ ,x−

γ , t) then f1(ẋ1,x1, t) = 0
elseif γ2(ẋ−

γ ,x−
γ , t) then f2(ẋ2,x2, t) = 0

...
else fm(ẋm,xm, t) = 0

(1)

where

– vector xγ of length nγ collects variables that are present in all modes and in
the predicates γi(. . .),

– vector xi of length ni collects all variables that are used in mode i (xγ is a
subset of xi), and

– γi ∈ R
nγ × R

nγ × R → Boolean, f i ∈ R
ni × R

ni × R → R
ni .

Hence the considered system switches between different modes, each described
by a DAE having ni equations and ni unknowns. The switching conditions are
predicates denoted by γi and depend on time and/or on the left limit of the
DAE variables assuming they exist and are finite, that is

x−
γ (t) =def lim

ε↘0
xγ(t − ε) and ẋ−

γ (t) =def lim
ε↘0

ẋγ(t − ε).

When changing from mode i to mode j it is assumed that the initial conditions
x−

γ are known from the previous mode. A concrete example will be given in
Sect. 4.3. we also refer to [13] for a more generic treatment. When changing
from one mode to another the set of equations that govern the dynamics of the
system may change. Thus, some variables may experience discontinuities or even
impulses. Throughout this section we assume that the system spends a strictly
positive duration in each mode in such a way that instants of mode changes are
cleanly isolated.

Note that the class (1) of multi-mode systems is not compositional as the
predicates xγ are global. We restricted ourselves to this class in order to simplify
the exposure below. This restriction is relaxed in the actual implementation in
Modia. For instance, @model Clutch in Sect. 3 has a local definition of the
predicate to engage or disengage the clutch and there is no global if-clause. In
Sect. 5, where an alternative approach is discussed, such restrictions are not
present.

4.2 Handling Mode Changes

In a mode i, an initial value problem f i(ẋi,xi, t) = 0 has to be solved. It is
well-known that only special classes of DAEs can be directly numerically inte-
grated [9]. For this reason, general DAEs might be first transformed in to a
DAE class where reliable integration methods exist. For nonlinear systems such

292 A. Benveniste et al.

a transformation means that equations of the DAE might need to be (analyti-
cally) differentiated. The best integration methods exist for ODEs ẋ = f̄(x, t).
However, transforming a DAE to this form requires in general to solve nonlinear
algebraic equation systems at every model evaluation and therefore the benefit
of ODE integration methods might get lost. For this reason, another approach
is used in this section where the transformation to a numerically solvable form
is performed without solving algebraic equation systems. In Assumption 1 we
define the target DAE class for this transformation:

Assumption 1. For each mode i of System (1), the DAE f i(ẋi,xi, t) = 0 has the
following form (we omit the index i for better readability)

fd(ẋ,x, t) = 0
f c(x, t) = 0 (2)

where J =

⎡
⎢⎣

∂fd

∂ẋ
∂f c

∂x

⎤
⎥⎦ is regular (that is, invertible). (3)

In (2), subscripts “d” and “c” are reminiscent of “dynamics” and “constraint”,
respectively. Condition (3) means that System (2) has differentiation index one.2

Transforming General DAEs to System (2, 3). If the model equations in a given
mode are not in the form (2, 3), they are transformed to it. This transfor-
mation is non-trivial and it is beyond the scope of this paper to explain the
details. Only a short overview is given here: Typically, the Pantelides algorithm
[23], or a variant like [27], is used to determine which equations of the original
DAE must be differentiated in order that the highest derivative variables can
be uniquely determined from the highest derivative equations. By differentiating
the corresponding equations analytically it is then possible to transform to ODE
form. Hereby, algebraic equation systems might need to be solved. In [22] a new
algorithm is proposed to transform every DAE that can be treated with the Pan-
telides algorithm to the form of Assumption 1 without solving algebraic equation
systems. This algorithm is a generalization of [15] that was developed for single-
mode multi-body systems. In Sect. 4.3 it is applied to multi-mode multi-body
systems.

Simulating System (2, 3). A number of methods exist for solving system (2, 3)
numerically. In particular, fixed or variable step-size BDF (Backward Differenti-
ation Formula) methods can be used [9]. In all cases, consistent initial conditions
have to be provided that fulfill (2) and the so-called latent equations

∂f c

∂x
(x, t) ẋ +

∂f c

∂t
(x, t) = 0 (4)

2 A DAE f (ẋ, x, t) = 0 has differentiation index n if one or more equations must
be differentiated n-times until the equations can be algebraically transformed to an
ODE form ẋ = f̄(x, t), see for example [30].

Multi-Mode DAE Models - Challenges, Theory and Implementation 293

obtained by differentiating the constraint f c(x, t) = 0, see [9,23]. Integration
methods, including BDF, assume that x is smooth. Therefore, standard integra-
tion methods cannot be applied if x is discontinuous at a mode change.

Computing Restart Values. We now propose a scheme for computing restart
conditions. More precisely, let tev be an instant of mode change of System (1),
meaning that one of the guards γi changes its value. The objective is to compute
consistent restart values

x+ = x(t+ev) =def lim
s↘tev

x(s) and ẋ+ = ẋ(t+ev) =def lim
s↘tev

ẋ(s) (5)

for the index one system (2, 3), given values

x− = x(t−ev) =def lim
s↗tev

x(s) (6)

just prior to entering the new mode. Note that, since x− are variable values in
the previous mode, they will not, in general, be consistent for the new mode,
that is the second equation of System (2) might not be satisfied by x−. Still,
these equations must be satisfied by the (yet unknown) x+. Since x(t) may be
discontinuous at tev , the derivative of x(t) may be a Dirac impulse.

To derive our method for computing the restart values, we first restrict the
class of systems with the following additional assumption. We then discuss the
general case.

Assumption 2. Assume DAE System (2) has the following special structure:

0 = A(xs, t)ẋ + b(x, t) (= fd(ẋ,x, t))
0 = f c(x, t) (7)

where xs collects the smooth elements of x, that is those being continuous and
of bounded variation around the mode change.3 Other elements of x might be
discontinuous. Furthermore, we assume that x,A(. . .), b(. . .) are continuous
functions of their arguments and remain bounded around the instant of mode
change.

Note that Assumption 2 does not forbid that the triple defining the dynamics
(7) actually varies with the mode i, that is has the form (Ai, bi,f c,i). Since
elements of x may be discontinuous, ẋ may have Dirac impulses. In (7) it is
therefore assumed that ẋ having potentially Dirac impulses appear linearly and
the linear factors are continuous functions without discontinuities.

Under Assumption 2, the mathematical solution of the restart problem can
be determined as follows: In a first step, since xs is smooth at the instant tev
of mode change, the matrix A(xs, tev) is immediately known once a change
has been detected at tev . To evaluate all the elements of x right after tev we

3 A function f : R �→ R is said to have bounded variation if it is the primitive of a
Lebesgue integrable function [10]. As a consequence,

∫ t+h

t
ḟ(s)ds → 0 when h → 0.

294 A. Benveniste et al.

proceed by integrating (7) over [tev − ε, tev + ε] using the well known properties
of Lebesgue integrals and Dirac measure. To this end, we decompose

x =
[

xs

xns

]
and A =

[
As Ans

]

where xns collects the nonsmooth entries of x that may experience disconti-
nuities at the instant of mode change and A is decomposed accordingly. The
following approximations hold, where the integrals

∫ tev+ε

tev−ε
mean

∫
[tev−ε,tev+ε]

:

∫ tev+ε

tev−ε

fd(ẋ,x, t)dt =
∫ tev+ε

tev−ε

(As(xs, t)ẋs + b(x, t)) dt

︸ ︷︷ ︸
≈0 by footnote 3

+
∫ tev+ε

tev−ε

Ans(xs, t)ẋnsdt

︸ ︷︷ ︸
ẋnsdt is a Dirac at tev

≈ Ans(xs, tev) (xns(tev + ε) − xns(tev − ε))
≈ A(xs, tev) (x(tev + ε) − x(tev − ε))

In the above two approximations, the first one follows from the property of the
Dirac measure and the fact that t �→ Ans(xs(t), t) is continuous, and the second
one follows from the fact that As(xs, tev) (xs(tev + ε) − xs(tev − ε)) ≈ 0.

This leads to proposing the following scheme for computing the restart values
x+ from x− at the instant tev of mode change, cf. Eqs. (5) and (6):

0 = A(xs, tev)(x+ − x−)
0 = f c(x+, tev) (8)

Since (7) may not hold at t−ev , and x+ − x− need not to be small, the Implicit
Function Theorem cannot be invoked to argue about the existence and unique-
ness of a solution around x−. Since the Jacobian ∂f

∂x+ of (8) is regular due to (3)
and Assumption 2, (8) can be numerically solved with a Newton-type method.
Fortunately, in many practical cases (such as a mechanical impact) the non-
linear part of f c(x, t) is often satisfied by x− and then only a linear equation
system needs to be solved for x+, in which case a unique solution exists, see
also Sect. 4.3. The physical interpretation of (8) is that we look for restart values
that are consistent for the new mode (second equation) and meet the integral of
fd(. . .) across the mode change (first equation).

In a modeling language such as Modelica or Modia, the model code has the
form (2), not the special form (7). It is therefore desirable to compute restart
values only with the form (2), without being forced to generate special code that
reveals the details of the equations as in (7). On the basis of Assumption 1, we
can nevertheless consider the following two systems of equations, where x+ are
the unknowns and h > 0 is small:

mixed explicit/implicit Euler implicit Euler

0 = hfd

(
x+ − x−

h
,x−, tev

)

0 = f c(x+, tev + h)

0 = hfd

(
x+ − x−

h
,x+, tev + h

)

0 = f c(x+, tev + h)

(9)

Multi-Mode DAE Models - Challenges, Theory and Implementation 295

Schemes (9) only require Assumption 1. Under Assumption 2, Schemes (9) take
the form

mixed explicit/implicit Euler implicit Euler

0 = A(xs, tev)(x+ − x−)
+h · b(x−, tev)

0 = f c(x+, tev + h)

0 = A(xs, tev + h)(x+ − x−)
+h · b(x+, tev + h)

0 = f c(x+, tev + h)

(10)

where we have used the fact that x−
s ≈ x+

s since xs is smooth. These schemes
reduce to (8) for h ≈ 0.

Thus, if Assumption 2 holds, the form (2) for the system model at mode i can
be used to numerically compute restart values for this mode: At the instant of the
mode change integrate (2) with either mixed explicit/implicit Euler or implicit
Euler schemes, from x− over a small step-size h, thereby scaling the dynamic
part of the model, fd(..), with h. The solution of the nonlinear equation system
(9) converges to the solution of the system (8).

Discussing the General Case. Schemes (9) can be applied to any index one
system. Such a brute force use without Assumption 2, however, raises questions
that we review now:

– Relaxing the continuity assumption on A(. . .), so that A(x, t) might have
discontinuous elements: As a result the first contribution in the decomposition
of the integral

∫ tev+ε

tev
fd(ẋ,x, t)dt is no longer negligible and it is unclear, from

the literature, whether a well-defined meaning to this term exists.
– Removing the linearity assumption on ẋ: The solution is no longer a Dirac

and it is again unclear whether a well-defined solution exists. It is not even
clear that h is the proper scaling factor for fd. Note that the linearity assump-
tion quite often holds for physical system models, since balance equations in
physics are linear in their derivatives.

To summarize, there is some evidence that precautions must be taken when
relaxing Assumption 2.

Completing Consistent Restart. After the consistent restart values x+ have been
computed, the corresponding consistent restart values of ẋ+ can be determined
with (4) and the first equation of (2), by solving the following non-linear equation
system in the unknowns ẋ+ (in case Assumption 2 holds, this is a linear equation
system with a regular Jacobian, so a unique solution exists):

fd(ẋ
+,x+, tev) = 0

∂f c

∂x
(x+, tev)ẋ+ + ∂f c

∂t
(x+, tev) = 0

(11)

Addressing Initialization. Note that the combined use of (9) and (11) provides
a method for consistent initialization: The initial mode i and guesses for x−

i,init

must be provided by the modeler. Afterwards, consistent values (ẋ+
i,init,x

+
i,init)

for the initialization are computed with (9, 11).

296 A. Benveniste et al.

4.3 A Class of Multi-mode Multi-body Systems Satisfying Assumptions 1
and 2

In this section we exhibit a practically useful class of systems satisfying Assump-
tions 1 and 2. We consider a multi-body system whose model at each mode i has
the following structure:

q̇ = v (m1)
M(q, t)v̇ + GT

i (q, t)λi = h(q,v, t) (m2)
0 = gi(q, t) (m3)

(12)

where M = MT is positive definite, and Gi =
∂gi

∂q
has full row rank. (13)

Equation (12) describes a multi-body system with generalized position coordi-
nates q, generalized velocity coordinates v and generalized constraint forces λi

due to the constraints (m3) of the ith mode. Both the constraints (m3) and
the constraint forces GT

i (q, t)λi can vary with the mode i. In particular the con-
straints can also be completely removed. M , however, remains invariant through
the different modes. Whenever a set of constraints is changing at a new mode,
impulses might occur. In case an impulse is due to an impact, it is assumed that
the impact is completely inelastic. We now show that Eq. (12) can be put to a
form satisfying Assumptions 1 and 2.

Equation (12) is first transformed to an index two DAE with the method of
Gear et al. [15]:

q̇ = v − GT
i (q, t)μi (ma

1)
M(q, t)v̇ + GT

i (q, t)λi = h(q,v, t) (m2)
0 = gi(q, t) (m3)
0 = Gi(q, t)v + g

(1)
i (q, t) (ṁ3)

(14)

with g
(1)
i (q, t) =

∂gi

∂t
. (15)

In Eq. (14) the constraint equation (m3) is differentiated once and new auxil-
iary variables μi are introduced so that the number of equations and unknowns
remain the same. (14) has the same solution as (12) because μi = 0 holds as we
explain now: Inserting (ma

1) in (ṁ3) yields:

0 = Gi(q̇ − GT
i μi) + G

(1)
i (16)

Subtracting the derivative of (m3) from (16) results in equation 0 = GiG
T
i μi.

Since Gi has full row rank according to assumption (13), GiG
T
i is regular and

therefore μi = 0.
As proposed by Gear [14], by using the substitutions (λint,i is the integral of

λi and μint,i is the integral of μi):

λ̇int,i = λi, μ̇int,i = μi (17)

Multi-Mode DAE Models - Challenges, Theory and Implementation 297

the DAE (14) which is index 2 in the variables q,v,λi,μi is transformed to the
following DAE which is index 1 in the variables q,v,λint,i ,μint,i :

q̇ = v − GT
i (q, t)μ̇int,i (mb

1)
M(q, t)v̇ + GT

i (q, t)λ̇int,i = h(q,v, t) (mb
2)

0 = gi(q, t) (m3)
0 = Gi(q, t)v + g

(1)
i (q, t) (ṁ3)

(18)

(18) has equation structure (7), with

x =

⎡
⎢⎢⎣

q
v

λint,i

μint,i

⎤
⎥⎥⎦ A =

[
I 0 0 GT

i (q, t)
0 M(q, t) GT

i (q, t) 0

]

b =
[−v

−h(q,v, t)

]
f c =

[
gi(q, t)
Gi(q, t)v + g

(1)
i (q, t)

]
.

(19)

The Jacobian (3) of (18) is (P is a permutation matrix to exchange (m3) and
(ṁ3) in order that the regularity of the Jacobian is at once visible):

J =

⎡
⎢⎣

∂fd

∂ẋ
∂f c

∂x

⎤
⎥⎦ = P

⎡
⎢⎢⎣

I 0 0 GT
i

0 M GT
i 0

0 Gi 0 0
Gi 0 0 0

⎤
⎥⎥⎦ (20)

As required by Assumption 1, this Jacobian is regular because M is positive
definite and Gi has full row rank. With reference to Assumption 2, it remains
to show that it is legitimate to take xs = q, which amounts to requiring that
q is continuous and has bounded variation around the instant of mode change.
Before an impact occurs, the normal distance dj to a constraint surface j is
defined as dj = gj(q, t) and dj > 0 when the multi-body system is not in
contact with the constraint surface. Contact occurs when dj = 0 and therefore
the constraint gj(q, t) = 0 at the time instant of the impact and q is continuous.
In the fully inelastic impact case, q has bounded variation because the multi-
body system remains in contact with the contact surface after the impact and
it is assumed that gj(q, t) is smooth. The scheme above can be easily extended
to elastic impacts. In such a case, q has bounded variation provided instants of
mode changes do not form a Zeno sequence.

4.4 Example: Ideal Clutch with Motor

We will show in this section how the example of Fig. 3 can be simulated with
the method developed in the previous sections. The modular description with
Modia is mapped to a set of about 25 equations that are first pre-processed
(such as performing alias elimination). To avoid overloading the development
with unnecessary details, we only show the results after this pre-processing is

298 A. Benveniste et al.

performed (these equations can also be easily derived manually from the cir-
cuit). In the following model, C, k, J,R are constants; u0(t), γ(t) are given time
functions; γ = T if the clutch is released and F if it is engaged:

R(i1 + i2) + u = u0 (sum of voltages in left loop)
Cu̇ = i1 (capacitor)
kω1 = u (emf)

τ1 = ki2 (emf)
J1ω̇1 = τ1 − τ2 (inertia1)
J2ω̇2 = τ2 (inertia2)

if γ then τ2 else ω1 − ω2 = 0 (idealized clutch)

(21)

All the following analysis could be performed with (21). To concentrate on the
essential details, the equations are further simplified by using the following rela-
tionships from (21), as well as the substitution τ̇int,2 = τ2

τ1 := J1ω̇1 + τ2
i2 := τ1/k = (J1ω̇1 + τ̇int,2)/k
i1 := Cu̇

(22)

and the equation system (21) can be simplified to the following four equations:

J1ω̇1 + τ̇int,2 + kCu̇ − k(u0 − u)/R = 0
J2ω̇2 − τ̇int,2 = 0

if γ then τ̇int,2 else ω1 − ω2 = 0 (23)
kω1 − u = 0

With x = [u ; ω1 ; ω2 ; τint,2]
T , (23) is in both modes an index one DAE of the

form (7):

γ = t (mode 1) :

A1 =

⎡
⎣

kC J1 0 +1
0 0 J2 −1
0 0 0 +1

⎤
⎦ b1 =

⎡
⎣

−k(u0 − u)/R
0
0

⎤
⎦ f c,1 = kω1 − u

γ = f (mode 2) :

A2 =
[

kC J1 0 +1
0 0 J2 −1

]
b2 =

[−k(u0 − u)/R
0

]
f c,2 =

[
kω1 − u
ω1 − ω2

]
(24)

With (8), or alternatively with (9) and h ≈ 0, restart values can be computed:

γ = f → t (assuming x− satisfies mode 2 with A2, b2,f c,2) :
ω+
1 = ω−

1 , ω+
2 = ω−

2 , u+ = u−

γ = t → f (assuming x− satisfies mode 1 with A1, b1,f c,1) :

ω+
1 = J1ω

−
1 + J2ω

−
2 + kCu−

J1 + J2 + k2C
, ω+

2 = ω+
1 , u+ = kω+

1

(25)

When the clutch is disengaging, the variables are continuous at the mode change.
When the clutch is engaging, the variables are discontinuous at the mode change
and Dirac impulses occur.

Multi-Mode DAE Models - Challenges, Theory and Implementation 299

4.5 Implementation of Multi-mode Features in Modia

The implementation of Modia is described in [12]. An extension of Modia to
support a restricted class of multi-mode DAE systems along the lines developed
in this section is currently under development. Since completely different sets
of equations can be present in different modes, the implementation is based on
just-in-time symbolic transformations and code generation of residue functions.
A dictionary from a Boolean vector of mode flags to functions is used as a cache
to avoid symbolic transformations and code generation in case the same modes
have been active before and a corresponding function is already available to
calculate the residues.

The final values of all variables from one simulation is extracted when a
mode change event happens. These are inputs to one very short implicit Euler
step with the residue function for the newly enabled modes in order to correctly
simulate possible impulses. The new values of the state vector is used to start a
new simulation until the next mode change.

5 Structural Analysis of Multi-Mode DAE Systems

In Sect. 4 we proposed an approach to analyze and simulate multi-mode DAE
systems based on a generalization of DAE theory.

In this section we propose an alternative approach, more computer science
oriented and detailed in [3] (as well as its companion technical report [5]), which
works for general multi-mode systems and uses a small number of principles.
The key ideas are as follows.

1. Mode changes may result in discontinuous jumps and, therefore, resets must
be performed in discrete computation steps. Hence, we first map the original
system to discrete time by using a first order Euler scheme. This brings to
discrete time both the reset actions and the dynamics within each mode,
hence the principles of index analysis uniformly apply, albeit in discrete time.
Also, a new principle of mode causality is invoked.

2. Mapping the dynamics to discrete time results in approximations. No approx-
imation, however, results if we interpret the Euler scheme via nonstandard
analysis [18,28] by using an infinitesimal time step. The analysis is then per-
formed over the nonstandard reals. A final standardization step is applied to
recover an effective numerical scheme.

To keep the exposure simple, we develop this on the example of ideal clutch with
motor, see Sect. 4.4. More precisely, we consider again (23) where, for simplicity,
we substitute τ̇int,2 by τ :

J1ω̇1 + τ + kCu̇ − k(u0 − u)/R = 0
J2ω̇2 − τ = 0
kω1 − u = 0 (26)

if γ then τ else ω1 − ω2 = 0

We first analyze separately the model for each mode of the clutch.

300 A. Benveniste et al.

5.1 Separate Analysis of Each Mode, in Discrete Time

We begin by providing the model for each mode. We highlight in blue the equa-
tions that are unique to the considered mode. Other equations are shared. In
the “released” mode, the two shafts are independent. In the “engaged” mode,
the velocities of the two shafts are algebraically related.

Following key idea 1, we replace derivatives by their first order explicit Euler
scheme, in discrete time with constant step size δ > 0. Let

ω•(t) =def ω(t + δ) (27)

be the forward time shift operator by an amount of δ. System (26) expands as:

(e1) : 0 = J1(ω
•
1 − ω1) + kC(u• − u)

0 = − δ.(τ − k(u0 − u)/R)
(e2) : 0 = J2(ω

•
2 − ω2) − δ.τ

(e3) : 0 = kω1 − u
(e4) : 0 = τ

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭
︸ ︷︷ ︸

System (26)-released

and

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(e1) : 0 = J1(ω
•
1 − ω1) + kC(u• − u)

0 = − δ.(τ − k(u0 − u)/R)
(e2) : 0 = J2(ω

•
2 − ω2) − δ.τ

(e3) : 0 = kω1 − u
(e5) : 0 = ω1 − ω2

︸ ︷︷ ︸
System (26)-engaged

(28)

Let us first focus on System (26)-released. The state variables are u, ω1, ω2 and
their respective values are known initially. The current step must determine the
values of the leading variables τ, u•, ω•

1 , ω
•
2 .

Towards this, we first form the incidence graph G of each system, which is a
nondirected bipartite graph having as vertices: the four leading variables, plus
the two systems of equations {(e1), (e2), (e3), (e4)} and {(e1), (e2), (e3), (e5)}. An
edge from an equation to a leading variable exists if and only if this variable is
involved in that equation. Incidence graphs for models (26-released) and (26-
engaged) are:

e1 —— ω•
1 , u

•, τ
e2 —— ω•

2 , τ
e3 ——
e4 —— τ

⎫
⎪⎪⎬
⎪⎪⎭

︸ ︷︷ ︸
System (26)-released

and

⎧
⎪⎪⎨
⎪⎪⎩

e1 —— ω•
1 , u

•, τ
e2 —— ω•

2 , τ
e3 ——
e5 ——︸ ︷︷ ︸

System (26)-engaged

Observe that, for both models, equation (e3) involves no leading variable: it is
a consistency equation, i.e., a constraint that must be satisfied as a result of
the execution of previous time steps. Once initialization is performed, (e3) is
indeed satisfied and can thus be seen as a fact for both modes. The same holds
for (e5) in the engaged mode. In turn these equations cannot be used, when
determining the leading variables from the state variables. In this case, for the
two systems (26), we have 4 variables but only 3 and 2 equations, respectively:
one cannot determine the leading variables as functions of the state variables by
using System (26). Since the considered models are time-invariant, every solution
has also satisfy the equations obtained by shifting forward any equation of the
model. Shifting forward equations that do not bring variables that are shifted

Multi-Mode DAE Models - Challenges, Theory and Implementation 301

more than originally present in the system, yields so-called latent equations. For
our two models, we add the latent equations, highlighted in blue:

(e1) : 0 = J1(ω
•
1 − ω1) + kC(u• − u)

0 = − δ.(τ − k(u0 − u)/R)
(e2) : 0 = J2(ω

•
2 − ω2) − δ.τ

(e3) : 0 = kω1 − u
(e•

3) : 0 = kω•
1 − u•

(e4) : 0 = τ
(e5)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
Eq. (29)-released

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(e1) : 0 = J1(ω
•
1 − ω1) + kC(u• − u)

0 = − δ.(τ − k(u0 − u)/R)
(e2) : 0 = J2(ω

•
2 − ω2) − δ.τ

(e3) : 0 = kω1 − u
(e•

3) : 0 = kω•
1 − u•

(e5) : 0 = ω1 − ω2

(e•
5) : 0 = ω•

1 − ω•
2

︸ ︷︷ ︸
Eq. (29)-engaged

(29)

The associated incidence graphs are augmented accordingly and we remove the
consistency equations:

e1 —— ω•
1 , u

•, τ
e2 —— ω•

2 , τ
e•
3 —— ω•

1 , u
•

e4 —— τ

⎫
⎪⎪⎬
⎪⎪⎭

︸ ︷︷ ︸
Eq. (29)-released

and

⎧
⎪⎪⎨
⎪⎪⎩

e1 —— ω•
1 , u

•, τ
e2 —— ω•

2 , τ
e•
3 —— ω•

1 , u
•

e•
5 —— ω•

1 , ω
•
2︸ ︷︷ ︸

Eq. (29)-engaged

(30)

In the two incidence graphs of (30), we show in red a pairing function e, i.e., a
bijection, from the set of variables, to the set of equations, such that (e(x), x)
is a edge of G for every leading variables x. This pairing function defines an
orientation for G as follows: for each edge (e(x), x) ∈ G, we set e(x) → x and
y → e(x) for every y �= x such that (e(x), y) is a edge of G. The minimal
cycles of the resulting directed graph form blocks of equations to be solved for
their assigned variables. The blocks are partially ordered by the directed graph.
According to [23], if a pairing function exists for its incidence graph, the system of
equations possesses, in a generic sense, a unique solution for its leading variables,
assuming consistent values for the state variables. “Generic” here means that the
statement holds outside some exceptional numerical values when the non-zero
coefficients of the Jacobian of this system of equations vary in a neighborhood.

The above reasoning applies in continuous time where the forward shift is
substituted back using differentiation. As far as structural analysis is concerned,
we can freely exchange continuous and discrete time using the correspondence
ω̇ ↔ ω•−ω

δ .

5.2 Global Discrete-Time Analysis

In this section, we handle each of the two modes as well as the mode changes
in a uniform way. Let’s consider now the discretized version of our two modes
System (26):

302 A. Benveniste et al.

(e1) : 0 = J1(ω•
1 − ω1) + kC(u• − u) − δ.(τ − k(u0 − u)/R)

(e2) : 0 = J2(ω•
2 − ω2) − δ.τ

(e3) : 0 = kω1 − u
(e4) : if γ do 0 = τ
(e5) : if not γ do 0 = ω1 − ω2

(31)

Notice how model (31) encompasses both the released and engaged modes, as
well as the mode changes, in the same uniform setting of discrete time systems.
This calls for using similar reasoning to determine the new values of the leading
variables regardless of whether the system is evolving in continuous mode or
is at an event of mode change. We now detail the how and when the different
involved equations are used.

1. Using (e1), . . . , (e3) Those three equations are active in all modes. Equa-
tion (e3) is useless, so we are left with 2 equations and 4 leading variables and
no subset of them can be evaluated using the 3 available equations only. We thus
have to evaluate the guard γ in order to know which equation among (e4) or
(e5) is active. We successively analyze the two cases below.

2-released. Case γ = t Equation (e4) is enabled and equation (e5) is dis-
abled. The reasoning proceeds exactly as for getting the model (29-released).
The difference is that we take the consistency equation (e3) as an assumption,
since its satisfaction results from the execution of the previous time step. The
resulting model is thus:

assuming : (e3) : 0 = kω1 − u
if γ = t do (29-released \ {(e3)}) (32)

where (29-released \ {(e3)}) means that equation (e3) is removed from system
29-released. Note that model (29-released) applies both within the “released”
mode and at the instant of mode change γ : f → t.

2-engaged. Case γ = f Equation (e4) is disabled and equation (e5) is enabled.
With reference to system (29-engaged), an important difference occurs: assuming
that the consistency equation (e5) results from having executed the previous time
step is not always valid (equation (e5) is guarded and can thus be disabled).
Consequently the following two sub-cases need to be considered:

Case ω1 = ω2 follows from previous time step. This corresponds to the case in
which the system was already in mode “engaged” at the previous time step.
The separate analysis developed for the “engaged” mode in Sect. 5.1 applies
with no change. The model, as augmented with the two latent equations
(e•

3, e
•
5) is (29-engaged), in which (e3, e5) are taken as assumptions:

assuming :
{

(e3) : 0 = kω1 − u
(e5) : 0 = ω1 − ω2

if γ = f do (29-engaged \ {(e3), (e5)})
(33)

Case ω1 = ω2 does not follow from previous time step. This arises if the system is
engaged at the current instant t, but was released at the immediate previous

Multi-Mode DAE Models - Challenges, Theory and Implementation 303

time step, t − δ, i.e., t is an instant of mode change γ : t → f. This yields
a new situation, not seen in Sect. 5.1. The engaged mode requires the consis-
tency equation ω1 = ω2, whereas ω1(t) and ω2(t) were both evaluated at the
previous time step t − δ, at which ω•

1(t − δ) = ω•
2(t − δ) was not enforced. As

a consequence, equation (e5) of System (31) is enabled. Unfortunately, (e5)
possesses no dependent variable and the values of the state variables ω1 and
ω2 were set at previous time step t − δ, with no guarantee that ω1(t) = ω2(t)
would result. System (31) is thus overdetermined at time t. A first idea would
be to reject this kind of model. This would be unfortunate as our original
model (26) was natural for our electromechanical system. To overcome this
issue, we invoke the following

Principle 1 (Mode Causality Principle). A guard must be evaluated before the
equation it controls.

This principle leads to shifting forward equation (e5) in model (29-engaged).
We expect this modification to be very mild since it consists in delaying the
satisfaction of the constraint by a small amount of time. Performing this yields:

assuming : (e3) : 0 = kω1 − u
if γ = f do (29-engaged \ {(e3), (e5)}) (34)

Systems (33) and (34) possess identical right hand sides but were obtained by
different reasoning—the fact that identical right hand sides were obtained is
incidental to this example. System (32, 33, 34) replaces the original System (31).

As a final remark, observe that the same analysis would work without changes
if the guard γ was a predicate in the state variables u, ω1, ω2.

The corresponding complete execution scheme is shown in Fig. 5. In this
figure, boxes are the states of the execution scheme and their content specifies the
configuration of guard, variables, and equations. For the guard and the variables:
v (resp. v) means v = t (resp. v = f). For equations, e (resp. e) means that e is
active (resp. disabled) and �e means that the body of e is assumed from previous
time step. Not mentioning a variable or an equation in a box means that this
variable is not evaluated yet and this equation is not solved yet; for shifted
equations added by the algorithm, however, we mention them underlined. The
transitions of the state machine indicate the actions performed when moving to
the next state. FS(e) indicates that e is shifted. PR(e) indicates that e is known
to be satisfied. LE(e•) indicates that we add e• as a latent equation. Blue (resp.
black) transitions belong to a continuous-time (resp. discrete-time) dynamics.
The red transition is impulsive. A semicolon is the sequential composition of
computations, and the + sign denotes enabled blocks of equations, ready to be
solved. The following comments are in order.

1. Observe first the parallel between the models sitting in the boxes of the
diagram of Fig. 5 on the one hand, and the mixed explicit/implicit scheme
(9) on the other hand. For this comparison, variables with superscript “+”
in (9) correspond to shifted variables in Fig. 5 and variables with superscript
“−” in (9) correspond to non shifted variables in Fig. 5.

304 A. Benveniste et al.

Fig. 5. Structural analysis of System (31): state machine describing the execution
scheme of one time step of System (31).

2. Our development relies on a small set of principles:
– We map the continuous time multi-mode System (26) to discrete time

System (31) by mapping derivatives ẋ to their explicit Euler scheme x•−x
δ .

– Our massaging of the equations only depends on the values taken by
the guards, and the assumption regarding the satisfaction/violation of
the consistency equations (here (e3), and (e5) for the engaged mode).
Otherwise, we make no distinction between instants of mode changes and
other instants: our treatment is uniform.

– Our massaging of the equations has two objectives: finding latent equa-
tions if needed, and shifting forward equations when required by the prin-
ciple of mode causality (Principle 1).

This set of principles is small, clean, and powerful enough to encompass gen-
eral systems with a structural analysis alike the one we developed here for
the clutch example. See [3] for a presentation of this approach for general
multi-mode DAE systems.

Multi-Mode DAE Models - Challenges, Theory and Implementation 305

Fig. 6. Actual simulation code for the clutch.

5.3 Effective Simulation Code

So far the execution scheme of Fig. 5 is not satisfactory, as it uses an explicit first
order Euler scheme. From the execution scheme of Fig. 5, however, the actual
simulation code shown on Fig. 6 is derived. Observe that it consists of

– a DAE model of index zero or one for each mode, and
– code for resetting the state variables at mode changes.

The model for each mode can be simulated, e.g., using a BDF method as pro-
posed in Sect. 4.2. Regarding the resets at mode changes, ω−

i is the previous
value of state variable ωi, which is the left limit of ωi when exiting a mode.
Similarly, ω+

i is the reset value for state variable ωi when entering the new
mode. Continuous-time dynamics are colored blue; non-impulsive (resp. impul-
sive) resets are colored black (resp. red). The dynamics in each mode are defined
by an over-determined index-1 DAE system consisting of an ODE system cou-
pled to an algebraic constraint. In the transition from mode γ to mode γ, variable
τ is impulsive, and its value is not computed—it is set to NaN (Not a Number).
Let us explain how the code of Fig. 6 is deduced from the execution scheme of
Fig. 5.

Nonstandard Analysis. First, we select the step size δ to be infinitesimal in the
sense of nonstandard analysis [18,28], of which we informally recall the back-
ground we need.

In nonstandard analysis, the set R of real numbers is extended with infinite
numbers, which are larger than any real number, and infinitesimal numbers,

306 A. Benveniste et al.

which are smaller (in absolute value) than any nonzero real number. The result-
ing set �

R is an extension of R that keeps its basic properties. In particular, it is
an ordered field. We will be writing x ≈ y if x − y is an infinitesimal. Any finite
element z ∈ �

R has a standard part, defined as the unique real number st(z)
such that z ≈ st(z). Any element of R is called standard.

If x(t) is a standard differentiable function of time, its derivative ẋ(t) satisfies
the property that, for any infinitesimal nonzero time step δ,

ẋ(t) ≈ x(t + δ) − x(t)
δ

. (35)

That is, taking an explicit first order Euler scheme with infinitesimal step size
yields an exact match for an ODE, up to an infinitesimal error. Formally, one
says that this Euler scheme standardizes as the solution of the ODE.

DAE Model for Each Mode. Each (blue) mode in Fig. 6 corresponds to a blue
cycle in Fig. 5. For instance, the equation

(e2) : 0 = J2(ω•
2 − ω2) − δ.τ

becomes (e2) : 0 = J2
ω•

2−ω2
δ − τ,

which, by Eq. (35), standardizes as the ODE (e2) : 0 = J2ω̇2 − τ . The reader is
referred to [3] for details about standardization.

Computing the Reset Values. As in the development of Sect. 4, one key contri-
bution of our approach is the reset code for the mode transitions. Let us now
explain how this part of Fig. 6 is derived from Fig. 5. Here the reasoning is dif-
ferent since we do not target a continuous time dynamics, but rather a finite
sequence of discrete time steps implementing the reset actions.

Let’s focus on the transition γ : t → f shown in red in Fig. 6, which originates
from the path sitting at the top, from the right- to the left blue cycle in Fig. 5. The
corresponding dynamics is (34) and we target a discrete time dynamics involving
the forward shift • and no differentiation. Hence, in Eq. (34), equations (e•

3), (e
•
5)

have the convenient form. In turn, one can no longer interpret (e1) or (e2) as
differential equations. We must rather regard them as difference equations. Since
they involve the infinitesimal parameter δ, standardization must be performed
with care. Indeed, due to the equation (e•

5) of (34) and since (e5) is not assumed,
the velocities ωi experience a discrete jump. By (e1) and (e2) and since δ is
infinitesimal, we infer that τ must be impulsive. This propagates throughout the
different equations of the system. For impulses, the rescaling

τ ′ =def δ.τ

of the system variables is applied, guided by the equations and the incidence
graph (30-right) of the system, see the impulse analysis developed in [3]. Using
this rescaling, the block of equations of (34) becomes

(e1) : 0 = J1(ω•
1 − ω1) + kC(u• − u) − τ ′ + δ.k(u0 − u)/R

(e2) : 0 = J2(ω•
2 − ω2) − τ ′

(e•
3) : 0 = kω•

1 − u•

(e•
5) : 0 = ω•

1 − ω•
2

(36)

Multi-Mode DAE Models - Challenges, Theory and Implementation 307

The term shown in blue involves state variables and is multiplied by the infinites-
imal δ. Zeroing this blue term in System (36) leaves us with a structurally regular
system that we can solve for its dependent variables τ ′, u•, ω•

1 , ω
•
2 . Solving (36)

yields in particular the reset values for the state variables u+ =def u•, and
ω+

i =def ω•
1 = ω•

2 . We recover in particular the formulas (25) from Sect. 4.4.

5.4 Constructive Semantics

The essential step in getting the final code of Fig. 6 was the construction of the
state machine of Fig. 5. This state machine is called the Constructive Semantics
of the original System (31). The notion of constructive semantics was first intro-
duced in the context of reactive synchronous programming languages [4,6,7],
where it played an important role in grounding compilation on solid mathe-
matical foundations. Essentially, a constructive semantics for a discrete time
dynamical system consists of:

1. A specification of the set of atomic actions, which are effective, non inter-
ruptible, state transformation operations. Executing an atomic action is often
referred to as performing a micro-step;

2. A specification of the correct scheduling of the set of micro-steps constituting
a reaction, by which discrete time progresses, from the current instant to the
next one.

The effect of atomic actions is to propagate knowledge regarding the statuses (not
evaluated, evaluated) and values of variables. The computation of the construc-
tive semantics of a synchronous program may succeed, and then the execution
code is generated. Or it may fail, and then the program is rejected. The decision
success/failure is formally sound, see [4,6,7].

For synchronous languages, atomic actions are restricted to either (i) the
evaluation of a single expression, or (ii) control flow operations.

In contrast, the class of atomic actions for multi-mode difference algebraic
equations systems comprises: (i) Evaluating a guard; (ii) Solving a block of
numerical equations; (iii) Equation management operations, such as shifting an
equation, adding a latent equation, or changing the status involved/not involved
of an equation at a given mode.

In [3] we develop in detail the constructive semantics for multi-mode DAE
systems. This allows us to formally define which model can be compiled and
then simulated, and which cannot. Models that are under- or overdetermined are
rejected. In addition, models which are not handled by the Principle 1 of mode
causality, are rejected as well. This approach is implemented in the SunDAE
proof of concept tool.

The standardization of the constructive semantics remains open in part
although its main principles have been clarified. The Standardization, however,
requires symbolic processing related to computer algebra.

308 A. Benveniste et al.

6 Challenges in DAE Based Modeling Languages

DAE based modeling languages are essential to the design of CPS. The devel-
opment of such languages raise a number of challenges.

The correct simulation of mode changes and the need for resetting state
variables is a first—mostly open—difficulty, particularly when impulses occur.
In this paper, we proposed two different approaches for addressing this issue.
The first approach relies on a transformation of the system model to a special
index one form, followed by the application of a new formula for resetting the
state variables. Arguments supporting this formula were given under additional
assumptions on the model. The second approach builds on the use of nonstan-
dard analysis, combined with the heritage of synchronous languages in computer
science, particularly on the concept of constructive semantics. The classes of
accepted/rejected models are well defined and simulation code is always pro-
duced for accepted models. In turn, the physical interpretation is understood
only for restricted classes of models.

A particular difficulty of DAE based modeling languages is the need for
sophisticated symbolic preprocessing of the model, called structural analysis.
The Pantelides algorithm for computing the latent equations of a (single-mode)
DAE model gave birth to a large body of literature since 1988. Our paper shows
that structural analyses are also essential to handle mode changes.

Structural analyses play also a central role in scaling-up to huge models
involving millions of equations. The community of High Performance Computing
has provided important related contributions, for single-mode DAE systems. Yet,
modularity in compilation and simulation remains open.

Overall, we see as a grand challenge the development of a DAE based model-
ing language and tool with the following features: DAE models with a very large
number of modes are supported; accepted/rejected models are formally charac-
terized; huge models are supported and can be handled in a modular way. We
see the new language Modia and the SunDAE library as good starting points
for tackling such challenges.

Acknowledgements. The authors want to thank Toivo Henningsson, Lund, Sweden for
the collaboration regarding Julia and the design of Modia, as well as the implementation
of instantiation and flattening.

References

1. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an
algorithmic approach to the specification and verification of hybrid systems. In:
Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991-1992. LNCS,
vol. 736, pp. 209–229. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57318-6 30

2. Barela, M.: A complementarity approach to modeling dynamic electric circuits.
Ph.D. thesis, University of Iowa (2016)

https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-57318-6_30

Multi-Mode DAE Models - Challenges, Theory and Implementation 309

3. Benveniste, A., Caillaud, B., Elmqvist, H., Ghorbal, K., Otter, M., Pouzet, M.:
Structural analysis of multi-mode DAE systems. In: HSCC, pp. 253–263. ACM
(2017)

4. Benveniste, A., Caillaud, B., Guernic, P.L.: Compositionality in dataflow syn-
chronous languages: specification and distributed code generation. Inf. Comput.
163(1), 125–171 (2000)

5. Benveniste,A., Caillaud, B., Pouzet, M., Elmqvist, H., Otter, M.: Structural anal-
ysis of multi-mode DAE systems. Research report RR-8933, Inria, July 2016

6. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Guernic, P.L., de Simone,
R.: The synchronous languages 12 years later. Proc. IEEE 91(1), 64–83 (2003)

7. Berry, G.: Constructive semantics of Esterel: from theory to practice (abstract).
In: Wirsing, M., Nivat, M. (eds.) AMAST 1996. LNCS, vol. 1101, p. 225. Springer,
Heidelberg (1996). https://doi.org/10.1007/BFb0014318

8. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to
numerical computing. SIAM Rev. 59(1), 65–98 (2017)

9. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial Value
Problems in Differential-Algebraic Equations. SIAM (1996)

10. Dunford, N., Schwartz, J.: Linear Operators, Part I, General Theory. Wiley-
Interscience (1958)

11. Elmqvist, H., Henningsson, T., Otter, M.: Systems modeling and programming in
a unified environment based on Julia. In: Margaria, T., Steffen, B. (eds.) ISoLA
2016. LNCS, vol. 9953, pp. 198–217. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-47169-3 15

12. Elmqvist, H., Henningsson, T., Otter, M.: Innovations for future Modelica. In: Jiri
Kofranek, F.C. (ed.) Proceedings of the 12th International Modelica Conference,
May 2017. http://www.ep.liu.se/ecp/132/076/ecp17132693.pdf

13. Elmqvist, H., Mattsson, S.-E., Otter, M.: Modelica extensions for multi-mode DAE
systems. In: Tummescheit, H., Arzèn, K.-E. (eds.) Proceedings of the 10th Inter-
national Modelica Conference, Lund, Sweden. Modelica Association, September
2014. http://www.ep.liu.se/ecp/096/019/ecp14096019.pdf

14. Gear, C.W.: Differential-algebraic equation index transformations. SIAM J. Sci.
Stat. Comput. 9(1), 39–47 (1988)

15. Gear, C.W., Leimkuhler, B., Gupta, G.K.: Automatic integration of euler-lagrange
equations with constraints. J. Comput. Appl. Math. 12, 77–90 (1985)

16. Heemels, W.P.M.H., Camlibel, M.K., Schumacher, J.M.: On the dynamic analysis
of piecewise-linear networks. IEEE Trans. Circ. Syst. I: Fundam. Theory Appl.
49(3), 315–327 (2002)

17. Karnopp, D., Margolis, D., Rosenberg, R.: System Dynamics: A Unified Approach.
Wiley, Hoboken (1990)

18. Lindstrøm, T.: An invitation to nonstandard analysis. In: Cutland, N. (ed.) Non-
standard Analysis and its Applications, pp. 1–105. Cambridge University Press,
Cambridge (1988)

19. Mattsson, S.-E., Otter, M., Elmqvist, H.: Multi-mode DAE systems with varying
index. In: Elmqvist, H., Fritzson, P. (eds.) Proceedings of the 11th International
Modelica Conference, Versailles, France. Modelica Association, September 2015.
http://www.ep.liu.se/ecp/118/009/ecp1511889.pdf

20. Mehrmann, V., Wunderlich, L.: Hybrid systems of differential-algebraic equations
- analysis and numerical solution. J. Process Control 19(8), 1218–1228 (2009).
Special Section on Hybrid Systems: Modeling, Simulation and Optimization

https://doi.org/10.1007/BFb0014318
https://doi.org/10.1007/978-3-319-47169-3_15
https://doi.org/10.1007/978-3-319-47169-3_15
http://www.ep.liu.se/ecp/132/076/ecp17132693.pdf
http://www.ep.liu.se/ecp/096/019/ecp14096019.pdf
http://www.ep.liu.se/ecp/118/009/ecp1511889.pdf

310 A. Benveniste et al.

21. Modelica: A unified object-oriented language for systems modeling. Language Spec-
ification, Version 3.4. Technical report, Modelica Association, April 2017. https://
www.modelica.org/documents/ModelicaSpec34.pdf

22. Otter, M., Elmqvist, H.: Transformation of differential algebraic array equations
to index one form. In: Kofranek, J., Casella, F. (eds.) Proceedings of the 12th
International Modelica Conference, May 2017. http://www.ep.liu.se/ecp/132/064/
ecp17132565.pdf

23. Pantelides, C.: The consistent initialization of differential-algebraic systems. SIAM
J. Sci. Stat. Comput. 9(2), 213–231 (1988)

24. Pepper, P., Mehlhase, A., Höger, C., Scholz, L.: A compositional semantics for
Modelica-style variable-structure modeling. In: 4th International Workshop on
Equation-Based Object-Oriented Modeling Languages and Tools (2011). http://
www.ep.liu.se/ecp/056/006/ecp1105606.pdf

25. Pfeiffer, F.: On non-smooth multibody dynamics. Proc. Inst. Mech. Eng. Part K:
J. Multi-body Dyn. 226(2), 147–177 (2012). http://journals.sagepub.com/doi/pdf/
10.1177/1464419312438487

26. Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts. Wiley,
Hoboken (2008)

27. Pryce, J.D.: A simple structural analysis method for DAEs. BIT 41(2), 364–394
(2001)

28. Robinson, A.: Nonstandard Analysis. Princeton Landmarks in Mathematics (1996).
ISBN 0-691-04490-2

29. Schoeder, S., Ulbrich, H., Schindler, T.: Discussion of the Gear-Gupta-Leimkuhler
method for impacting mechanical systems. Multibody Sys. Dyn. 31, 477–495 (2013)

30. Campbell, S.L., Gear, C.W.: The index of general nonlinear DAEs. Numer. Math.
72, 173–196 (1995)

31. Thoma, J.: Introduction to Bond Graphs and Their Applications. Pergamon Inter-
national Library of Science, Technology, Engineering and Social Studies. Pergamon
Press (1975)

32. Trenn, S.: Distributional differential algebraic equations. Ph.D. thesis, Tech-
nischen Universität Ilmenau (2009). https://www.db-thueringen.de/servlets/
MCRFileNodeServlet/dbt derivate 00018071/ilm1-2009000207.pdf

33. Zimmer, D.: Equation-based modeling of variable-structure systems. Ph.D. the-
sis, ETH Zürich, no. 18924 (2010). http://www.inf.ethz.ch/personal/fcellier/PhD/
zimmer phd.pdf

https://www.modelica.org/documents/ModelicaSpec34.pdf
https://www.modelica.org/documents/ModelicaSpec34.pdf
http://www.ep.liu.se/ecp/132/064/ecp17132565.pdf
http://www.ep.liu.se/ecp/132/064/ecp17132565.pdf
http://www.ep.liu.se/ecp/056/006/ecp1105606.pdf
http://www.ep.liu.se/ecp/056/006/ecp1105606.pdf
http://journals.sagepub.com/doi/pdf/10.1177/1464419312438487
http://journals.sagepub.com/doi/pdf/10.1177/1464419312438487
https://www.db-thueringen.de/servlets/MCRFileNodeServlet/dbt_derivate_00018071/ilm1-2009000207.pdf
https://www.db-thueringen.de/servlets/MCRFileNodeServlet/dbt_derivate_00018071/ilm1-2009000207.pdf
http://www.inf.ethz.ch/personal/fcellier/PhD/zimmer_phd.pdf
http://www.inf.ethz.ch/personal/fcellier/PhD/zimmer_phd.pdf

Language-Driven Engineering:
From General-Purpose to

Purpose-Specific Languages

Bernhard Steffen1(B), Frederik Gossen1,2, Stefan Naujokat1,
and Tiziana Margaria2

1 Chair for Programming Systems, TU Dortmund University, Dortmund, Germany
{steffen,stefan.naujokat}@cs.tu-dortmund.de

2 Lero - The Irish Software Research Centre, University of Limerick, Limerick, Ireland
{frederik.gossen,tiziana.margaria}@lero.ie

Abstract. In this paper, we present the paradigm of Language-Driven
Engineering (LDE), which is characterized by its unique support for
division of labour on the basis of Domain-Specific Languages (DSLs)
targeting different stakeholders. LDE allows the involved stakeholders,
including the application experts, to participate in the system develop-
ment and evolution process using dedicated DSLs, while at the same
time establishing new levels of reuse that are enabled by powerful model
transformations and code generation. Technically, the interplay between
the involved DSLs is realized in a service-oriented fashion. This eases a
product line approach and system evolution by allowing to introduce and
exchange entire DSLs within corresponding Mindset-Supporting Inte-
grated Development Environments (mIDEs). The impact of this app-
roach is illustrated along the development and evolution of a profile-
based email distribution system. Here we do not want to emphasize the
precise choice of DSLs, but rather the flexible DSL-based modulariza-
tion of the development process, which allows one to freely introduce
and exchange DSLs as needed to optimally capture the mindsets of the
involved stakeholders.

Keywords: Service orientation · Domain-specific languages
Mindset · DSLs as a service · Software development environments
Software evolution · Product lines · Code generation
Decision diagrams

1 Introduction

“Programming language research is short of its ultimate goal–provide software
developers tools for formulating solutions in the languages of problem domains.”:
This quote appeared in CACM [31] shortly before our final version deadline.
It ideally paves the way for establishing our vision and approach. We there-
fore decided to use the Language-Oriented Programming (LOP) approach of the
c© Springer Nature Switzerland AG 2019

B. Steffen and G. Woeginger (Eds.): Computing and Software Science, LNCS 10000, pp. 311–344, 2019.

https://doi.org/10.1007/978-3-319-91908-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91908-9_17&domain=pdf
https://doi.org/10.1007/978-3-319-91908-9_17

312 B. Steffen et al.

Fig. 1. (1) Piping & instrumentation diagram [107] (2) flow graph [107] (3) proba-
bilistic timed automata [81] (4) hierarchical scheduling systems [26] (5) OMG’s case
management CMMN [105] (6) EasyDelta pick and place DSL [21] (7) place/transition
net [79]

Racket team presented there as a means to highlight some essential features of
our Language-Driven Engineering (LDE) approach.

It is surprising how different these approaches are despite their similar nam-
ing and guiding vision: While our LDE approach aims at enriching typically
graphical domain languages1 like the ones shown in Fig. 1 in order to define
an external DSL for which full code can be generated, LOP aims at capturing
domain-specific features by establishing tailored internal domain-specific lan-
guages (there called embedded DSLs or eDSLs) on top of LISP/Racket (see,
e.g., Fig. 2).2

As a consequence, in the LOP approach the addressed software developers are
clearly programmers,3 while it is the goal of LDE to provide tailored (graphical)
languages that allow application experts without programming knowledge to act
themselves as software developers.

In order to set the scene for our LDE development, we structure the intro-
duction in four parts: a sketch of the vision, followed by a description of the
1 Which are very popular in practice, as “pictures are (often) worth a thousand words”.
2 The difference between internal and external DSLs can be sketched as follows: an

internal DSL is added (e.g. via API functionality) to a host language, which is usually
a general-purpose programming language, while an external DSL comes with an own
syntax that is completely independent of already existing languages.

3 Cf. Fig. 2 (reprinted from [16]) for an exemplary Racket eDSL, accompanied by a
simple graphical representation for communication with the reader.

Language-Driven Engineering 313

Fig. 2. A script in the Racket-based Video language (reprinted from [16]).

background, the discussed application scenario, and a summary of the contribu-
tions of this paper.

1.1 Vision and Approach

We envisage a development paradigm for bridging the (semantic) gap [82] of soft-
ware (system) engineering by allowing all stakeholders4 to solve their respective
tasks using domain/purpose-specific languages (DSLs) supporting their estab-
lished mindsets.5 Technically this requires Mindset-Supporting Integrated Devel-
opment Environments (mIDEs) that orchestrate the individual stakeholder-
specific artifacts and aggregate them to a whole from which entire software
systems are automatically generated.

The different mindsets of the involved stakeholders are the main reason for
the semantic gap. Making these mindsets precise and allowing orchestration
and aggregation of mindset-specific artifacts is a major challenge. Key to the

4 The various application experts involved, domain modelers, platform and GUI
experts, software architects, programmers, etc.

5 In the following, we assume the established notion of domain-specific languages to
also comprise the even more specific flavor of purpose-specific languages.

314 B. Steffen et al.

Fig. 3. Enhancing the Cinco framework with Cinco-developed graphical languages in
a bootstrapping fashion (reprinted from [80]).

proposed Language-Driven Engineering (LDE) approach is therefore a new class
of stakeholders whose task is to generate and maintain the required mIDEs. This
task comprises language and code generator design as well as the aggregation of
all aspects required to obtain mIDEs that support full code generation.

That multi-DSL design is very promising is also emphasized in [31] where
the authors state: “Large projects often employ a tower involving a few dozen
languages, all helping manage the daunting complexity in modern software sys-
tems.” In fact, we believe that the number of graphical DSLs used in the various
fields of application easily outnumbers their textual counterparts, and that it
is possible to enrich many of these DSLs to satisfy the LDE requirements (cf.
Fig. 1). Moreover, we envisage that bootstrapping (cf. [36,50]) will help over-
coming the major hurdle for LDE currently perceived: the construction of the
required mIDEs. Considering mIDE development as the domain of interest and
using dedicated mIDEs for developing and refining mIDEs imposes a natural con-
tinuous improvement cycle. Figure 3 sketches this cycle for Cinco, our mIDE
for generating mIDEs [80]: the meta-level family of DSLs used to develop the
essential aspects of mIDEs are used to create new DSLs for DSL development,

Language-Driven Engineering 315

Fig. 4. Horizontal composition of specialized modeling languages for data, processes
and GUI as provided by the DIME framework (reprinted from [79]).

which in turn can be fed back into the overall ecosystem of languages in a boot-
strapping fashion. Our experience with Cinco [79] is very encouraging.

The semantic requirements for allowing the orchestration and aggregation of
the artifacts written in stakeholder-specific languages are in general very com-
plex. This paper therefore concentrates on a service-oriented version of orches-
tration and aggregation of language artifacts as well as, at the meta-level, of
entire DSLs.

1.2 Background

There is consensus that modular system development should ideally support hor-
izontal composition, so that for example the composition of modules/procedures
should not depend on implementation details of the promised functionality, as
well as vertical refinement, so that for example refinement should be possible
without considering the global usage scenario, and also that evolution should be
decomposed into steps of local impact. The underlying motivation is a general
design principle: the more one can rely on things that do not change – called
Archimedean points in [102] – the better one can control in a separation of con-
cerns manner the change a development or evolution step imposes. In practice,
service-oriented development proved practical to support this goal [73,74]: it
does not even require a common implementation language.

316 B. Steffen et al.

Fig. 5. Vertical DSL-based refinement

Language-Driven Engineering 317

The Language-Driven Engineering (LDE) approach presented in this paper
hinges on the observation that a similar picture is found also at the meta level,
when developing mIDEs, for example using language workbenches [32]:

In a language engineering setting, horizontal composition refers to the devel-
opment of complementary modeling languages, e.g., for processes, data, and GUI.
As common practice for the implementation of different (same-level) procedures
of a program, the DSLs and mIDEs for modeling data or processes should only
be required to support the required meta-level interface, like for example the cre-
ate, read, update and delete operations that define the interplay between data
and process models. For instance, Fig. 4 illustrates how DIME [22,23], our mIDE
for graphical modeling of Web applications, uses in each model type dedicated
model elements that represent entities (in this case the thread entity) of other
(horizontal) same-level models, this way guaranteeing the type-correct relation
between models of the different languages.

Vertical refinement, on the other hand, addresses cascading domain-specific
languages that become increasingly more specific and therefore more powerful
and safer/easier to use for the corresponding stakeholder. This is illustrated
in Fig. 5, where for example the language for decision rule systems is used for
service-oriented refinement of the process language.

Finally, the evolution of mIDEs should – like in modular system design –
follow the locality principle. The consideration of DSLs as units of evolution and
exchange establishes a level of locality that is new and characteristic for LDE.
For example, in Sect. 4.2 a BDD-based DSL for modeling binary decisions is
(simply) replaced by variants of DSLs for fuzzy logic.

1.3 LDE Application Example

The essence and impact of the proposed service-oriented form of DSL compo-
sition, refinement, and evolution will be illustrated along the stepwise develop-
ment and evolution of a profile-based email distribution system (Sect. 2). Service-
oriented means here that DSLs are treated themselves as units of evolution and
exchange during a hierarchical mIDE development, i.e., DSLs are treated as ser-
vices themselves. For vertical refinement and evolution, the focus of this paper,
the situation is as follows:

– Vertical DSL refinement is illustrated in Fig. 5: the decision nodes of the
process model are refined in three hierarchical steps:
1. the decision nodes of the process model are refined using a DSL for Deci-

sion Rule Systems: a decision is expressed as rules in this DSL,
2. the leaf nodes of a Decision Rule System are refined by decision diagrams:

the domain concepts are expressed as a BDD over primitive concepts that
are domain-specific predicates, and

3. the internal nodes of the decision diagrams are refined by native calls
implementing the required predicates: a predicate is “evaluated” by exe-
cuting native Java code.

318 B. Steffen et al.

– Evolution is illustrated in Fig. 9 (cf. Sect. 4): it shows the extensive reuse
when changing the DSL for decision rules from Binary Decision Diagrams
(BDDs) to Algebraic Decision Diagrams (ADDs) [18] for fuzzy logic and to
n-ary decisions.

The setup is chosen to illustrate the role of the diverse DSLs addressing different
concerns, ranging from ease of use for the involved stakeholders to efficiency.
In fact, graphical process modeling languages have proved to be successful in
involving non-programmers, the graphical syntax diagram notation is convenient
for specifying logical combinations of arbitrary predicates, and decision diagrams
are a de facto standard for the efficient treatment of Boolean functions.

These quite diverse DSLs address a wide range of intents and mindsets of
professionals. E.g., (business) process experts are meant to directly ‘draw’ their
intended ‘workflows’, and rule designers should be able to combine elementary
decision rules to more complex ones without worrying about implementation
details or efficiency. Moreover, decision diagrams are an intuitive representation
for small predicates/rules, and also a scalable means to generate highly efficient
code via their underlying well-known minimization technology (cf. [1,90,91]).

Our goal is to provide all stakeholders with a means to express their desires
in terms of what they want to achieve (what/Requirement level), without wor-
rying about possible ways of realization (how/Implementation level). It should
be clear that the what level of one stakeholder may well be a how level for
another stakeholder. E.g., BDDs are certainly at the how level for process and
rule experts, while they are at the what level for someone who is responsible
for efficient rule implementation. Likewise, Java may well be the how level for
the rule implementors, whereas it is typically what level for someone who is
responsible for code generation.

The case study focuses on vertical refinement and DSL-based system evolu-
tion during the development of a basic email distribution system and highlights
the role of the service-oriented interplay between the various DSLs thus illustrat-
ing DSL-based refinement. Along Fig. 5, the provided dedicated DSLs address

1. process experts, here through a simple flow chart language to model under
which circumstances which email handling criteria should be applied (see
Sect. 3.1),

2. rule engineers, here through a simple predicate logic for modeling the required
email distribution criteria according to a given email profile (see Sects. 3.2 and
3.3),

3. algorithmic experts, for guaranteeing performance on the basis of BDD/ADD
technology,

4. programmers, to realize the profile extraction from incoming mails, e.g. in
Java (see Sect. 3.4), and also

5. meta-modeling experts, for providing the required mIDEs including their
required code generators, e.g. using the Cinco framework [79,80].

Subsequently, Sect. 4 illustrates the DSL-driven evolution process which is
designed to clearly separate concerns and to control potential feature interac-
tion in a two-dimensional fashion: At the meta level to generate the required

Language-Driven Engineering 319

new mIDEs and at the object level to use these mIDEs for modeling the new
functionality (cf. Fig. 9).

1.4 Contribution

The LDE paradigm proposed in this paper supports division of labour among
different stakeholders on the basis of stakeholder-specific languages. Key to this
approach is to accompany system development with the development of dedi-
cated mIDEs: the conceptual decompositions typical for system development are
coherently matched by the provision of adequate mIDEs for the stakeholders,
so that they can contribute to the actual system development in their mindset.
The required parallel maintenance of DSLs and system models is particularly
elegant as long as a service-oriented style of DSL composition, refinement, and
evolution is adopted.

LDE allows all the involved stakeholders, including the application experts,
to directly contribute to the system development and evolution using dedicated
DSLs for their level of expertise. This approach establishes three levels of reuse,
each supporting a specific kind of LDE stakeholder:

– mIDE-based development provides an intrinsic simplification that manifests
itself as a powerful form of IDE support that goes beyond the usual IDE sup-
port for generic programming. Being domain-specific, it can exploit domain
knowledge like “this has to run on a certain platform” to generate the
entire running system from a purely functional description developed with
a (stakeholder-specific) DSL. The task “get it to run on the platform” is
materialized as an mIDE artifact using another, dedicated DSL, and thus
can be simply stored and factored out for future reuse.

– DSLs are considered as units of reuse during mIDE construction. For example,
a DSL for GUI design may be reused independently of the platform (e.g., Web,
mobile phone, etc.) where the actual user application runs.

– mIDE development environments can be reused for the construction of DSLs
and further mIDEs. For example, our meta tooling suite Cinco [79] can be
(re)used to generate graphical domain-specific development tools, or even
entire mIDE. In particular, the DSL for DSL specification underlying Cinco
and its corresponding code generator have been reused over and over again.
This kind of reuse is particularly interesting for its bootstrapping effect: an
mIDE for code generation generated with Cinco may well become part of
Cinco itself, as described in [80] and illustrated in Fig. 3.

LDE is based on a very general notion of service: a service is a means to bridge
the various how/what gaps in system development, and it stands simply for
any form of aggregation of technical detail to a new (behavioral) unit that serves
a specific (user-defined) purpose or concern at the higher level. Typical examples
of such services are the decision functions of the email process, which are imple-
mented using DSLs for rule composition and predicate definition (cf. Sect. 3).

320 B. Steffen et al.

Such services allow for a more abstract level of system composition, where cer-
tain lower level concerns are already taken care of inside the service components.6

LDE goes a step further by considering DSLs as services themselves, namely
as meta-level services that can simply be used for mIDE design in order to
provide stakeholders with their mindset-specific mIDE. This way, the interplay
between different mindsets during system development and evolution can be
supported in a DSL as a Service fashion as illustrated in Sect. 4. The essence of
the corresponding system refinement and evolution happens indeed at the meta
level. For example, the change of mindset required when moving from Boolean
to fuzzy logic is entirely taken care of by a corresponding (service-oriented)
exchange of DSLs of the corresponding mIDE (cf. Sect. 4.2).

Whereas the elegance of achieving user-intended solutions is a consequence
of the purpose-specific what perspective, efficiency hinges on additional how
knowledge expressed in a language whose purpose is to support efficient imple-
mentation. BDDs and ADDs are good examples for such efficiency-oriented DSLs
with high potential to be frequently reused as a service.

Language-Driven Engineering (LDE) aims at enabling a new level of coop-
erative system development whose support does not end with the deployment
but continues throughout the systems’ life cycle by continuously providing all
the involved stakeholders with languages tailored to their own task and its cor-
responding mindset. The goal is a consequent separation of concerns that allows
developers to focus on required functionality, while trusting that the remain-
ing issues, like performance, security, or platform-specific anomalies, are already
taken care of or delegated to dedicated experts. As discussed in [79,107], provid-
ing dedicated DSLs allows the involved stakeholders, including the application
experts, to directly participate in the development process. For example, in the
project described in [107], experts in industrial fluid processing could be involved
thanks to a specialized DSL resembling piping and instrumentation diagrams,
and electrical engineers thanks to another specialized DSL expressing connec-
tivity on the basis of cabinet layouts familiar to them.

All the mIDEs of all DSLs used in our example are generated with the Cinco
meta-modeling framework [79], which is open source and available on GitLab7.
Also the ADD-Lib framework for dealing with decision diagrams is open source,
so readers may replicate entirely the development described in this paper8.

In the remainder of the paper, Sect. 2 sketches LDE along the above intro-
duced application scenario that we will use to illustrate the pragmatics and
impact of LDE, before Sect. 3 presents the pragmatics of system development
via DSL-based decomposition and Sect. 4 discusses the potential of system evo-
lution via DSL introduction and exchange. The paper closes after a discussion

6 This notion of service is more general than the very constrained notion proposed by
the Web service community, which is typically directly linked to the use of certain
specialized technologies and protocols, nor is it necessarily linked to the component
view of today’s popular service-oriented architectures.

7 https://gitlab.com/scce/cinco
8 Please see the LDE case study at [2].

https://gitlab.com/scce/cinco

Language-Driven Engineering 321

of related work and potential application fields in Sect. 5 with our conclusions
and future perspectives in Sect. 6.

2 Example-Based Sketch of LDE

We will show, how a simple service for the automatic extraction of urgent emails
from a stream of incoming emails using binary logic can be evolved in an LDE-
fashion towards an efficient distribution service based on fuzzy logic. Here, ver-
tical DSL-based decomposition will be used to improve the scalability and per-
formance of the basic email distribution system (cf. Sect. 3), and DSL-based
evolution will be useful for treating different variants of fuzzy rules (cf. Sect. 4).
Figure 5 summarizes the vertical decomposition using four DSLs:

1. At the top level, processes allow for a user-level definition of the business
logic. Such process descriptions are comparable to languages like BPMN [86]
and UML’s activity diagrams [85], but additionally provide full code gener-
ation. We use here a specialized variant of the process language from the
DIME framework [22] which provides fully model-based development of all
aspects of a multi-user single-page web application9. As the DIME processes
are the technological successors of the Service Logic Graphs (SLGs) of the
jABC framework [84,100], they comprise building blocks for the inclusion of
executable services, and these building blocks are connected according to their
flow of control. Included services provide functionality for, e.g., putting emails
into (named) baskets and email forwarding, as well as profile-based decision
services – the starting points for the vertical decomposition described next.

2. Decision services are components ‘simply used’ within the process layer. Of
course they could be directly implemented in code, however we aim for a user-
level definition of the decisions and introduce a domain-specific language that
allows to define Decision Rule Systems as compositions of Decision Rules.
These rules are again provided in a service-oriented fashion: Without needing
to know how exactly such rules are realized/implemented, users can combine
them with simple logic operators in a graphical language.

3. Binary decision diagrams [30] (BDDs), the level 3 components of Fig. 5, are
a common graphical language for decision modeling. They are intuitively
defined and understood, and form a research field on their own. Thus, algo-
rithms for optimization, minimization, etc. are widely available.

4. Rules (and their compositions) are based on a profile of the processed email,
which comprises various predicates resulting from the analysis of the email’s
body, header, and other metadata. We decide to break the chain of graphical
user-level languages at this point, and allow for the inclusion of arbitrary pred-
icate implementations given in Java: ‘general-purpose programming’ seems to
be now an adequate ‘domain’. Of course, we could have also included further
DSLs, e.g. using regular expressions to model text matching.

9 The full DIME framework comprises various languages for the web domain, all span-
ning the horizontal dimension of our LDE approach (cf. Fig. 4).

322 B. Steffen et al.

In addition to this vertical dimension, each level may as well have its own dimen-
sion of in-language hierarchy. For example, an executable service component in
a process can be a process itself; a rule in a rule system can be itself a compos-
ite rule system; a predicate/variable decision in a BDD can be another BDD,
and the implemented Java method has access to the full language potential of
structuring the program: method calls, classes, libraries, etc.

The second dimension, the DSL-based evolution, is characterized by a gen-
eralization of BDDs to Algebraic Decision Diagrams (ADDs) in order to ade-
quately treat fuzzy rules. This generalization can easily be extended to also com-
prise multi-basket capability. Our corresponding two-step definition of decision
functions defined as composite rules made of BDDs (cf. Sect. 3.2), which might
look a bit artificial in isolation, is ideal to illustrate the DSL-based what/how
interplay outlined above:

– It establishes a logical layer for hierarchical what-level reuse in a service-
oriented way: whatever library of domain-specific rules are available, this
layer supports their combination with the typical logical operators. In the
refined settings arising during the system evolution (cf. Sect. 4), this layer
will comprise more general algebraic operators.

– It establishes a how-level for performance optimization: logical combinations
of BDDs can be ‘partially evaluated’ to obtain a redundancy-free represen-
tation in terms of BDDs that guarantees that every embodied predicate is
evaluated at most once at runtime. The impact of this optimization is partic-
ularly striking for the refined setting where ‘fuzzy’ domain-specific predicates
(cf. Sect. 4.1) are represented as ADDs.

We will see that the service-oriented interplay between these two layers eases
the system evolution process by keeping the changes at the different modeling
layers and at the code generators to a minimum.

3 Vertical DSL-Based Decomposition

The pragmatics of vertical DSL-based decomposition concern in particular the
support of the service-oriented interplay between the involved DSLs in order to
establish a clear separation of concerns and of the cooperative development using
stakeholder-specific mIDEs. We discuss the 4 level stepwise refinement from the
top-level perspective of the global (distribution) process, via two DSL-supported
layers for decision rule definition to a programming layer for implementing so-
called native services. Besides easing the involvement of stakeholders with differ-
ent backgrounds, these four layers are meant to decouple/modularize the system
in such a way that the impact of later evolution steps is localized, an effect
discussed in Sect. 4.

Language-Driven Engineering 323

Fig. 6. Email handling process in DIME

3.1 The Global Email Distribution Process

The global process layer is conceived to allow the customers of the envisioned
email distribution system to describe their desires at a what level: the language
refers to notions from the user perspective and, in particular, it does not require
any programming knowledge. Process descriptions must also be precise enough
to enable full code generation once the service-oriented refinement at the other
three layers is complete. Figure 6 shows the DIME process model of the email
handling process. This model is self-explaining, and it can be even constructed
by non-programmers using DIME’s easy-to-use component libraries with little
training.

324 B. Steffen et al.

Fig. 7. IsEmailUrgent: a composed rule in the DSL for the composition of Binary
Decision Diagrams.

Customers are usually presented with palettes of ready building blocks and
use them in their process definition. A customer may also customize or extend the
DSL by ‘inventing’ new components, name them to reflect their domain-related
intention and perhaps add some documentation. Such atomic building blocks can
be directly used in a process model, and be refined and implemented later on.
In practice, process modelers start with the available palette of building blocks
and propose new building blocks only at need, a typical case during system evo-
lution. Such top-down/bottom-up interplay is characteristic for service-oriented
refinement and it occurs at all DSL layers.

Service-oriented refinement substitutes the building blocks definition with
one or more corresponding implementations, the key enabling mechanism of full
code generation. The following three subsections illustrate this refinement for
the decision services, in particular the building block that decides whether an
email is urgent. This refinement is organized in three levels of DSLs:

– Syntax diagrams for the (propositional) logical combination of elementary
decision rules,

– BDDs for the definition of elementary decision rules on the basis of elementary
predicates, and

– Java for the implementation of elementary predicates.

We will show how this service-oriented decomposition enables cooperative devel-
opment, supports reuse, and eases evolution.

Language-Driven Engineering 325

3.2 A DSL for Rule-Based Composition of Decision Services

The decision services occurring in the process model are defined by the corre-
sponding stakeholder as logical compositions of decision rules10 that are already
available or to be implemented later. Figure 7 shows the inner structure of the
“IsEmailUrgent” decision service as a logical composition of five decision rules.11

The syntax tree-like look of the DSL is easy to handle and to read, even for hier-
archical decision service definitions. In the corresponding propositional logic-
based mIDE, users specify their intents simply by drag and drop from compo-
nent libraries. If a new rule is needed, users may introduce a placeholder and
directly use them. Such placeholders are requests for new rules, to be handled
by the responsible experts who turn the ‘partial’ specification into a complete
specification for which full code can be generated.12

Using this mIDE to compose rules is quite easy after a short introduction.
Understanding the logical impact of the rule compositions on the other hand is
by no means trivial and requires expertise, or an adequate mindset. Our mIDE
helps building up this mindset by easing experimentation and providing imme-
diate feedback for the specifier, to check whether the intents were met. The deci-
sion services can be simulated and logical inconsistencies can be automatically
detected. In particular, the consistency check is a great help, as inconsistencies
in decision service definitions can be just flaws, but may also point to a major
misconceptions.

DSLs and their corresponding mIDEs are powerful means to factor out tasks
for a specific domain and provide support to solve them once and for all. This
support can be the stronger the more specific the DSL. E.g., while for a generic
programming language it is difficult to characterize inconsistency, for appropri-
ately defined DSLs, like the BDDs introduced in the next subsection for rule
definitions, this is very easy.

3.3 A Language for Efficient Decision Rule Implementation

Intuitively, decision rules are ‘if-then’ specifications13 that describe under which
circumstances which action/decision has to be taken. In the binary case decision
rules are formally Boolean predicates. In the evolution steps we will use more

10 In this basic setting, the decision rules are (predefined) predicates and the logical
combination considered in this section is just a simple means for a hierarchical spec-
ification of more complex predicates. Why we chose to call these predicates rules will
become clearer at the lower level and in view of evolution, in Sect. 4.

11 The composition model is obviously not minimal. Instead, it reflects the individual
user’s mindset. It will be optimized automatically during code generation.

12 In a pure top-down development from scratch, no library components are avail-
able: They must be introduced as part of the specification and subsequently refined.
In practice, after some time most of the required components can be drawn from
libraries and only a few need to be introduced.

13 Popular representatives of decision rules are Event Condition Action Rules [14,29]
or weighted rules [37].

326 B. Steffen et al.

general rules: Fuzzy rules, tailored to deal with uncertainty, and n-ary rules
supporting decisions with more than two outcomes.

In our example, we use as DSLs for rules definition Binary Decision Diagrams
(BDDs, [24])14 and corresponding generalizations. BDDs represent decision trees
as minimal directed acyclic graphs (DAGs) whose nodes are associated with
Boolean variables or predicates, whose two outgoing edges encode the outcome
of the predicate evaluation, and whose leaves are the Boolean constants TRUE
and FALSE, denoted by 1 and 0, respectively. Given a fixed order of the vari-
ables resp. predicates, BDDs are canonical normal forms. Formal definitions and
details are available in [30].

While huge BDDs have been used for decades as boolean encodings for
hardware verification, SAT solving, and similar machine-managed representa-
tion domains, small BDDs as those shown in Fig. 8 are well suited to establish
domain-specific libraries of (elementary) rules at the what level: the meaning of
these BDDs is intuitively clear also for unexperienced users.15 Once the imple-
mentation code for the involved elementary predicates is available, the BDDs
shown in Fig. 8 are sufficient to generate fully executable code for the composi-
tion of Fig. 7.

In the seminal paper [24], BDDs were established as an efficient data structure
for Boolean functions B

n → B, with efficient logical operators to evaluate a
complex formula to a single result BDD. The formula corresponding to the syntax
tree of Fig. 7 evaluates to the BDD shown in Fig. 11(a) using the BDD definitions
of the single predicates shown in Fig. 8. This evaluation technology allows one
to generate code whose performance can be hardly achieved via manual coding.
The canonical nature of the BDDs eases many frequent analyses: e.g., checking
functional equivalence of expanded BDDs reduces to rooted DAG isomorphy, and
inconsistent formulas are reduced to the one-node BDD FALSE, a particularly
handy property when dealing with large rule compositions.

3.4 Implementation of Elementary Predicates

Elementary predicates like those extracting certain characteristics from incom-
ing emails, may well be implemented in Java, here considered the ‘generic DSL’
for everything where there is no specific DSL support. An important feature
of service-oriented refinement is in fact that it allows one to link to program-
ming languages at any point during the refinement process without harm. In
facts, refinements typically end with implementations of elementary services in
a generic programming language. The level at which one decides to turn to
generic programming may change in the course of a larger project. For exam-
ple, one could later decide to introduce regular expressions for text matching
as a new DSL layer. Service-oriented refinement is ideal to support this form of
evolution.
14 BDDs earned their fame more on the how level, where they support amazing opti-

mizations, at a small scale they are quite intuitive even for unexperienced users.
15 We adopt the de facto standard graphical representation for BDDs where a solid

edge represents a node’s then-successor, and a dashed edge its else-successor.

Language-Driven Engineering 327

Fig. 8. Elementary classification services for urgent emails specified in the DSL for
Binary Decision Diagrams as BDD rules

4 DSL-Based Evolution

We already saw one DSL-based evolution step: the evolution to optimized BDDs
sketched in the transformation indicated by Fig. 9(a) illustrates that the how-
knowledge about the BDD-based decision rule realization can be used for opti-
mization purposes, by partially evaluating the expression that defines the logical
composition of the decision rules. The realization of this optimization is almost
for free: the rule partial evaluation step needs to be implemented as a new
code generator16, but the entire grey part remains unchanged, constituting an
Archimedean point.

16 This is quite simple, using available open source libraries [1,90,91].

328 B. Steffen et al.

Fig. 9. Three steps of DSL-based evolution: from the initial implementation to opti-
mized and fuzzy n-ary decisions. In this figure, SLA refers to a meta-level variant of
service-level agreement.

Language-Driven Engineering 329

Two restrictions of the modeling with propositional logic (and BDDs) that
can be quite severe in practice are addressable with evolution to new DSL spe-
cializations:

– Decision rules for our example are often not strict: criteria like keywords, sub-
jects, or origin are typically only indicators for urgency, and the more of such
indications apply, the stronger becomes the indication and the corresponding
decision support. Fuzzy rules are an adequate technique to address this issue,
and ADDs provide an efficient realization technology (how level) that only
requires very local changes (cf. Fig. 9(b)).

– Many applications mandate to decide between more than two alternatives. In
our example, to distinguish more levels of urgency of incoming email requests
requires generalization, for which ADDs turn out to provide the technology
of choice. In contrast to the previous two evolution steps, this generalization
also requires a change at the process level, as the decision service has now
more than two outgoing edges that need to be adequately connected in the
process graph (cf. Fig. 9(c)).

We will now sketch how ADDs generalize BDDs and then describe the two
evolution steps displayed in Fig. 9(b) and (c). They illustrate the principle of
service-oriented refinement with its corresponding high potential for reuse, inter
stakeholder cooperation, and Archimedean point-oriented evolution [102].

4.1 ADDs for Dealing with Uncertainty

BDDs are compact representations of decision structures based on Boolean alge-
bra:

Abool := (B, {∧,∨}, {¬})

yielding optimized evaluation structures for expressions over a set B that use the
binary operators ∧,∨ and the unary operator ¬.

It is straightforward to lift this pattern of evaluation structure to any alge-
braic structure consisting of a set S together with a carrier set of binary operators
Ob and a set of unary operators Ou, resulting in the Algebraic Decision Diagrams
(ADDs). The CUDD package [90,91] is a prominent C library that includes ADD
support. ADDs are mainly used for arithmetics, i.e., for algebraic structures
supporting integer computation (Z, {+, ∗}, {−}) or floating point computation
(Q, {+, ∗}, {−}).

In contrast, our evolution steps use two simple fuzzy logics given by the
following two algebras: a min - max algebra

Afuzzy := ([0, 1], {∧f ,∨f}, {¬f}) (1)
with a ∧f b := min(a, b) (2)

a ∨f b := max(a, b) (3)
¬fa := 1 − a (4)

330 B. Steffen et al.

Fig. 10. Classification services for urgent emails specified in a Fuzzy purpose-specific
language for Algebraic Decision Diagrams

and an algebra with a probabilistic interpretation of ∧, ∨, and ¬

Aprob := ([0, 1], {∧p,∨p}, {¬p}) (5)
with a ∧p b := ab (6)

a ∨p b := 1 − (1 − a)(1 − b) (7)
¬pa := 1 − a. (8)

Several other variants can deal with uncertainty, all with their specific strength
and weaknesses, and we do not claim this choice to be optimal. Instead, we want
to show that service-oriented refinement is an ideal means to switch between
such options depending on which variant is most adequate. Such a switch is
not just a matter of easing the development: each choice comes with a specific
mindset, and it is the role of DSLs to provide mindset-specific support.

Language-Driven Engineering 331

F
ig
.
1
1
.
G

en
er

a
te

d
A

lg
eb

ra
ic

D
ec

is
io

n
D

ia
g
ra

m
s

fo
r

a
n

em
a
il

cl
a
ss

ifi
ca

ti
o
n

se
rv

ic
e

a
s

co
m

p
o
se

d
b
y

th
e

m
o
d
el

in
F
ig

.7
.
F
ro

m
th

e
le

ft
to

th
e

ri
g
h
t:

S
ta

n
d
a
rd

B
o
o
le

a
n

L
o
g
ic

,
P

ro
b
a
b
il
is

ti
c

F
u
zz

y
L
o
g
ic

(T
h
re

sh
o
ld

ed
a
t

1 2
),

a
n
d

m
in

/
m

a
x

F
u
zz

y
L
o
g
ic

(T
h
re

sh
o
ld

ed
a
t

1 3
a
n
d

2 3
)

w
it

h
th

re
sh

o
ld

ed
m

in
/
m

a
x

lo
g
ic

co
m

p
a
re

d
to

st
a
n
d
a
rd

B
o
o
le

a
n

lo
g
ic

.
T

h
e

h
ig

h
li
g
h
te

d
p
a
th

d
efi

n
es

th
e

d
ec

is
io

n
m

a
d
e

fo
r

a
n

em
a
il

th
a
t

w
a
s

se
n
t

fr
o
m

a
se

n
d
er

in
th

e
a
d
d
re

ss
b
o
o
k

a
n
d

th
a
t

m
en

ti
o
n
s

“
d
ea

d
li
n
e”

b
u
t

n
o
t

“
ov

er
d
u
e”

.

332 B. Steffen et al.

4.2 Dealing with Uncertainty

Rules for decision support typically provide recommendations rather than strict
knowledge: certain senders or subjects of an email are often only indications
for, e.g., urgency. By allowing fuzzy rules as in Fig. 10, the values at the leaves
indicate the level of certainty. The corresponding evolution of our email handling
process is described in Fig. 9(c) and requires only little effort:

– the DSL for the rules is generalized to allow for more than two leaf nodes and
floating point values in [0, 1]. This is an easy task using Cinco.

– we do not intend to touch the structure for rule composition, so only the
semantics of the operators needs to be adapted to reflect the chosen variant of
fuzzy logic. In our current implementation this is done in Java, consistent with
our decision to end the DSL refinement at this level. However, we intend to
also provide a corresponding DSL as part of the ADD-Lib [1], our framework
for ADD-based modeling.

– the partial evaluation of the composition structure connecting the individ-
ual rules is implemented using the ADD-Lib [1] based on the CUDD library.
After discretization into two, respectively three categories it results in the
three kinds of ADDs shown in Fig. 11: (a) for the hard Boolean interpre-
tation discussed earlier, (b) for the probabilistic interpretation, and (c) for
the min/max interpretation. The only required change to the code generator
is the threshold-based discretization of the ADDs, in order to allow n-ary
branching in the process models.

– the decision to place the threshold-based interpretation of the leaf values in
the code generator requires a change of the process model only in case the
discretization distinguishes more than two categories.

Actually, we did not just evolve the email handling system, but also its corre-
sponding mIDEs: the described changes, which concern the rule DSL and the
threshold-based interpretation only, are, in fact, at the meta level. Using Cinco,
we are able to fully automatically generate the two new mIDEs for the min/max
and the probabilistic interpretation after slight variations of the meta model for
BDDs.

The Gain of Threshold-Based Decision. To illustrate the nature of explicit
uncertainty modeling for both the min/max and the probabilistic interpretation
we consider two scenarios: binary decisions with a threshold of 1/2 and a ternary
decision with thresholds 1/3 and 2/3 which models a separate treatment of
unclear cases. Figure 11 illustrates the impact for our example:

– The min/max interpretation does not add anything new to the binary case.
In fact, its aggregated decision diagram coincides with the BDD shown in
Fig. 11(a). In contrast, the probabilistic interpretation shows a difference (cf.
Fig. 11(b)), as, e.g., small uncertainties are amplified in conjunctions.

– The min/max interpretation makes a difference in the ternary case as shown
in Fig. 11(c). In fact, in the ternary case, our example path distinguishes all

Language-Driven Engineering 333

three interpretations, as the probabilistic interpretation would also result in
0.0 in this case.

Adequacy and mindset of these interpretations are quite different, and none
is universally superior to the others. Thus easing the context-specific choice is
important.

5 The LDE Landscape

Considering the history and context of the LDE approach, we sketch the roots
of LDE (Sect. 5.1), then discuss its related work (Sect. 5.2) and its connections
to the work presented in the other contributions of this volume (Sect. 5.3).

5.1 LDE: The Roots

The first direct experience with the power of DSL-based mindsets came with the
attempt to prove the optimality of an algorithm for partial redundancy elimina-
tion [77]. Thinking in terms of temporal logic and thereby directly in terms of
the desired (temporal) properties rather than in terms of fixpoint computations
as it was common at that time, radically changed the mindset. It led to a dras-
tically shortened proofs and later allowed us to elegantly solve two important
open related problems: the optimal reduction of register pressure [56–58,87],17

and an algorithm for eliminating all partial redundancies [94]. Essentially, this
was due to the compositionality of temporal logic specifications, in particular
concerning conjunction.

This context also bore the idea of introducing corresponding code genera-
tors [89,92,93]. Similar to our choice to use the well established CUDD tool for
the accompanying example of this paper, that code generator was based on a pre-
existing model checker. In fact, full code generation became a central objective
throughout all the further developments.

The idea of using components, called Service-Independent Building Blocks
(SIBs) by the ITU-T Standard [46,47], which can easily be recombined due
to the simplicity of their interfaces, was motived by the fast growing library
of special commands for the Concurrency Workbench [28]. SIBs, semantically
characterized using simple taxonomies for classification could profitably be used
to automatically synthesize tailored command sequences from small temporal
logic specifications [68,99], a technique later also used for automatic mediator
synthesis [67].

The SIB concept combined with taxonomic classification and model checking
also became the heart of a very successful industrial cooperation resulting in
the Siemens Nixdorf INXpress Service Definition Environment for Intelligent
Network value added services [97,98]. Their evaluation of our technology revealed

17 This algorithm, which can be generated from a four line CTL specification, is now
a standard for optimizing compilers, as it is both more efficient and more powerful
than its competitors.

334 B. Steffen et al.

a time to market reduction of the services of a factor 5! This success drove
us to transform our corresponding development environment, the METAFrame
tool [96], stepwise into a more general IDE for application development called
Application Building Center (ABC) and later jABC [100] when we moved from
the C++ implementation to Java.

The easy service-oriented definition and exchange of functionality turned out
to be a good way of communicating between the stakeholders [74]: with all the
stakeholders working on the same artifact (the One Thing as we called it [70,
101]) but at their dedicated level of abstraction defined by the underlying service
hierarchy18. jABC’s full code generation philosophy, which avoids typical round-
trip problems, maintained controllability during the entire life-cycle of a system
at the modeling level [62,71]. jABC’s model checking and model synthesis facility,
in addition, provided dedicated support for logically controlling evolution and
establishing product lines via their behavioural (temporal) properties [52,63].

The final enabling step for LDE was the move from DSLs defined via taxo-
nomically organized service libraries to Cinco, our framework for meta-model-
based generation of graphical mIDEs [78,79]. Cinco allows one to generate
entire mIDEs on the basis of enriched modeling languages used, e.g., in industry.
Figure 1 already sketched a few of such languages we have adopted and supported
in the past. The resulting mIDEs may be combined to form more complex mIDEs
supporting the cooperative development of all stakeholders involved using the
One Thing Approach.

5.2 Related Work

Two properties are characteristic for LDE and its corresponding mIDEs:

– It aims at enabling all the stakeholders (in particular the application experts)
to co-develop software without programming.

– It explicitly supports the multi-DSL-based cooperation of the individual
stakeholders.

To our knowledge, the related work can be partitioned into approaches that
address the first or the second characteristic.

Languages for Non-Programmers. Fowler, who coined the popular term
Language Workbenches [32], characterizes in [33, p. 34] the role of, in his case
textual, DSLs: “it’s not that domain experts will write the DSLs themselves; but
they can read them and thus understand what the system thinks it’s doing”.
On the other hand, several graphical languages became very successful in ded-
icated application domains, like MatLab/Simulink [75], ladder diagrams [49],
and Modelica [20,34]. The understanding that one should address application
experts with graphical notations is also shared by the developers of the kieler
framework [35]. They provide means to automatically generate domain-specific

18 The most recent version of the jABC supported even higher-order services [83,84].

Language-Driven Engineering 335

graphical views for textual DSLs realized in the Eclipse modeling context.19 We
therefore concentrate on graphical DSLs in this subsection.

Prominent frameworks for the development of graphical modeling languages
are MetaEdit+ [9,55], GME [12,64,65], Pounamu/Marama [8,39,108] or DeVIL
[54,88]. These powerful frameworks are designed for generating graphical IDEs,
including corresponding code generators, for a specified graphical DSL. The
aspect of coordinating stakeholders with different mindsets in a cooperative fash-
ion is not addressed. The same also applies to the Eclipse modeling ecosystem [38]
with the Rich Client Platform (RCP) [76] and the Eclipse Modeling Framework
(EMF) [103]. However, while there is good support for textual DSLs in Eclipse
(e.g. using the Xtext [13] framework), building graphical DSLs with GMF [6],
Graphiti [7], or even the Epsilon [4,5,59,60] project is very tedious.

In general, applying LDE is independent of any frameworks for the devel-
opment of domain-specific languages. However, as designing the LDE languages
and mIDEs required for a project is already a difficult task, Cinco explicitly
aims at maximum for a higher simplicity for their technical realization.

Language-Driven Development. The Language-Oriented Programming app-
roach (LOP) of the Racket team [31] is very similar to LDE concerning the second
property. In fact, Language-Oriented Programming :

– advocates multiple cooperating languages for a project,
– has a feature called FFI (foreign-function interface) similar to our notion of

native services, and
– uses a meta language ‘syntax parse’ to define languages

However, there are clear conceptual differences which limit the cooperation
with non-programmers: LOP is based on internal DSLs (called embedded DSLs,
eDSLs) based on a single base language (Racket [10], one of the successors to
Lisp [106]). In [16], the exemplary DSL code is accompanied with some sim-
ple graphical notation for readability (cf. Fig. 2), which suggests that also the
members of the Racket teams do not consider their DSLs as a vehicle for com-
munication with non-programmers.

Another approach to language-driven development is projectional edit-
ing [104] as most prominently provided by JetBrains’ Meta Programming Sys-
tems (MPS) [48]. However, also this approach clearly addresses programmers,
or even super-programmers, capable of mastering various (programming) lan-
guages.

19 While the kieler framework is indeed mature and powerful – so that it is by now
generalized as the Eclipse incubation project Eclipse Layout Kernel (ELK) [3] – its
primary goal is to provide views to better communicate with non-programmers, while
the actual (textual) models still require programmers or highly technical experienced
domain experts.

336 B. Steffen et al.

5.3 Volume-Related Interrelations

LDE has the potential to enter many disciplines. In this section, we briefly sketch
the interrelationship between LDE and the topics addressed in the other papers
of the Methods, Languages and Tools for Future System Development part of
this volume.

[20] is a good example for an approach based on its own elaborate DSL, Mod-
elica, and [27] clearly indicates that one language is not enough, even for generic
programming. The architecture presented in [61] which specifically addresses the
need for dealing with multiple (domain-specific) languages is quite close in spirit
to the LDE approach. It could profit from LDE-based language organization
presented in [81] as well as from dedicated languages for orchestrating different
analysis methods or abstractions along the lines presented in [69,95].

Also the approaches presented in the remaining papers could profit from
DSLs, e.g., as follows: [41] for specifying certain assertions or contracts, [43] for
specifying data flow analyses20, [25] for specifying test models, [42] for defin-
ing learning alphabets or representing the learning result, [40] for modularly
specifying the required code instrumentation, e.g. in an aspect-oriented fashion,
and [15,19,66] for conveniently specifying their enriched system structures. Cor-
responding mIDEs (could) then guide the development by exploiting the DSL’s
specifics, e.g., the interpretation of assertions, security predicates, time, or proba-
bilities. The corresponding code generators would transform the domain-specific
specification directly into input for the target tool or platform.

On the other hand, LDE could also profit from the approaches presented in
the other papers. In particular, all the involved analysis, verification and vali-
dation methods of [15,19,25,40–43,61,66] are good candidates for inclusion in
mIDEs in order to improve the development support and/or to control non-
functional constraints. Finally, [27] provides a wealth of observations and tech-
niques with potential to impact the future mIDE development.

6 Conclusions and Perspectives

We have presented Language-Driven Engineering (LDE) as a paradigm for sup-
porting division of labour on the basis of stakeholder-specific domain-specific
languages. LDE is unique in allowing all the involved stakeholders, including the
application experts, to directly participate in the system development and evo-
lution process, while at the same time establishing new levels of reuse enabled
via powerful transformations and code generation. We have illustrated how the
service-oriented interplay between the involved DSLs eases product lining and
system evolution through the introduction and exchange of entire DSLs together
with their corresponding mIDEs.

Conceptually, LDE follows the One Thing Approach [70,101] which is remi-
niscent of the model-view-control pattern in that it

20 In [92,93] this has profitably been done in temporal logic, cf. also Sect. 5.1.

Language-Driven Engineering 337

– provides stakeholders with simplicity-oriented [72] individual views that are
expressive enough to

– control their part of responsibility and aggregates all these views to a
– global, consistent model from which full code can be generated.

The striking new aspect of LDE is that the DSLs become first class citizens
of the system development, which establishes a new level for reuse, refinement
and evolution by evolving the underling mIDEs in order to resemble the domain
and purpose-specific structure currently of interest. As the mIDEs for all DSLs
are specifically generated, each stakeholder can get maximum support for his
tasks, while (accidental) misuse is reduced to a minimum. In a sense, the mIDE
functions here both as tool for maximum purpose-specific support, and as sand-
box that prohibits damage. In particular, purpose-specific support can be easily
enhanced by, e.g., integrating corresponding analysis and verification tools in a
service-oriented fashion. Figure 1 summarizes some of the graphical DSLs from
our recent industrial cooperations and student projects.

The practicality of this approach depends on the ease of DSL and mIDE
development guaranteed in our context by the Cinco framework which also
exploits itself service-oriented refinement. This allows, e.g., to exchange the vari-
ants of fuzzy logic simply by adapting the algebraic structure of the representing
ADDs. Everything else can remain unchanged as it is captured by ADD-Lib,
our ADD framework [1] which, in fact, has also been developed using the Cinco
framework. The major remaining hurdle is the development of the code genera-
tors for the various mIDEs. We are currently developing a dedicated Cinco tool
(an mIDE) for this purpose, which generalizes the approach presented in [51,53].

We are convinced that LDE with its growing tool stack has the potential to
radically change the way software will be written in the future, as it enables
the involved stakeholders to directly participate in the development process
using dedicated tools matching their mindset, and it also increases the mere
development performance due to its generative nature. Recommending dedi-
cated DSL development even for individual projects sounds unintuitive at first,
but we experienced an enormous leverage due to the bootstrapping effect, which
steadily improves the mIDE development performance: the meta-level libraries of
reusable components grow, and the Cinco-based mIDEs for e.g. program/DSL
analysis and code generation become directly part of the meta-level support. This
in turn increases the performance of Cinco-based mIDE and system develop-
ment. Even in cases where developing the first running version takes a little bit
longer with the LDE approach, this price has been paid off very early along the
system’s life-cycle.

With its new dimension of system development and evolution, LDE is an
exciting research area with yet to be explored potential and enormous practical
impact. It comprises and harmonizes many fields, like program and analysis and
verification, constraint-based synthesis, meta-modeling, code generation, test-
and learning-based validation, software product lines, system evolution, etc. In
fact, the holistic nature of LDE radically changed our own way of system devel-
opment, as it supports and motivates us to take the medicine we propose to

338 B. Steffen et al.

others. Essentially, the development of all our projects and tools, even the code
generation framework, follows the LDE paradigm. We invite everybody to share
this exciting experience with us in an open source platform [11].

As a new and encompassing modeling paradigm, LDE requires its own prag-
matics and expertise, e.g., to avoid a drift to excessive, ad hoc DSL generation.
We envisage instead new DSLs to resemble, instrument, and refine modeling
languages already used in established fields of application, leveraging their own
established mindsets. Examples are BNF for syntax definition [17], SQL for
data querying [45], or piping and instrumentation diagrams for e.g., modeling
the flow within fluid-processing machinery [44]. New DSLs are foreseen too, but
they should be developed with care, with a clear vision of their potential impact
in mind. As part of the continuous improvement cycle, we envision taxonomically
classified libraries of DSLs ready to be reused for the construction of new mIDEs.
The DSLs for decision diagrams presented in this paper are good candidates for
such a library.

Acknowledgments. This work was supported, in part, by Science Foundation Ireland
grant 13/RC/2094 and co-funded under the European Regional Development Fund
through the Southern & Eastern Regional Operational Programme to Lero - the Irish
Software Research Centre (www.lero.ie).

References

1. ADD-Lib. http://add-lib.scce.info
2. ADD-Lib LDE Case Study. http://add-lib.scce.info/language-driven-engineering-

case-study
3. Eclipse Layout Kernel. http://www.eclipse.org/elk/. Accessed 23 Mar 2018
4. Epsilon. http://www.eclipse.org/epsilon/. Accessed 10 Apr 2018
5. Epsilon EuGENia. http://www.eclipse.org/epsilon/doc/eugenia/. Accessed 10

Apr 2018
6. Graphical Modeling Framework (GMF) Tooling. http://eclipse.org/gmf-tooling/.

Accessed 10 Apr 2018
7. Graphiti - A Graphical Tooling Infrastructure. http://www.eclipse.org/graphiti/.

Accessed 10 Apr 2018
8. Marama. https://wiki.auckland.ac.nz/display/csidst/Welcome. Accessed 10 Apr

2018
9. MetaCase - Domain-Specific Modeling with MetaEdit+. http://www.metacase.

com. Accessed 10 Apr 2018
10. Racket. https://racket-lang.org/. Accessed 23 Mar 2018
11. SCCE - Service Centered Continuous Engineering. http://scce.info
12. WebGME. https://webgme.org/. Accessed 10 Apr 2018
13. Xtext - Language Engineering Made Easy! http://www.eclipse.org/Xtext/.

Accessed 10 Apr 2018
14. Almeida, E.E., Luntz, J.E., Tilbury, D.M.: Event-condition-action systems for

reconfigurable logic control. IEEE Trans. Autom. Sci. Eng. 4(2), 167–181 (2007)
15. Alur, R., Giacobbe, M., Henzinger, T., Larsen, K., Mikučionis, M.: Continuous-

time models for system design and analysis. In: Steffen, B., Woeginger, G. (eds.)
Computing and Software Science. LNCS, vol. 10000, pp. 452–477. Springer, Cham
(2018)

www.lero.ie
http://add-lib.scce.info
http://add-lib.scce.info/language-driven-engineering-case-study
http://add-lib.scce.info/language-driven-engineering-case-study
http://www.eclipse.org/elk/
http://www.eclipse.org/epsilon/
http://www.eclipse.org/epsilon/doc/eugenia/
http://eclipse.org/gmf-tooling/
http://www.eclipse.org/graphiti/
https://wiki.auckland.ac.nz/display/csidst/Welcome
http://www.metacase.com
http://www.metacase.com
https://racket-lang.org/
http://scce.info
https://webgme.org/
http://www.eclipse.org/Xtext/

Language-Driven Engineering 339

16. Andersen, L., Chang, S., Felleisen, M.: Super 8 languages for making movies
(functional pearl). In: Proceedings of the ACM on Programming Languages 1
(ICFP) (2017)

17. Backus, J.W.: The syntax and semantics of the proposed international algebraic
language of the Zurich ACM-GAMM conference. In: IFIP Congress, pp. 125–131
(1959)

18. Bahar, R., Frohm, E., Gaona, C., Hachtel, G., Macii, E., Pardo, A., Somenzi,
F.: Algebric decision diagrams and their applications. Formal Methods Syst. Des.
10(2), 171–206 (1997). https://doi.org/10.1023/A:1008699807402

19. Baier, C., Hermanns, H., Katoen, J.P.: The 10,000 facets of MDP model checking.
In: Steffen, B., Woeginger, G. (eds.) Computing and Software Science. LNCS, vol.
10000, pp. 420–451. Springer, Cham (2018)

20. Benveniste, A., Caillaud, B., Elmqvist, H., Ghorbal, K., Otter, M., Pouzet, M.:
Multi-mode DAE models - challenges, theory and implementation. In: Steffen,
B., Woeginger, G. (eds.) Computing and Software Science. LNCS, vol. 10000, pp.
283–310. Springer, Cham (2018)

21. Berg, A., Donfack, C.P., Gaedecke, J., Ogkler, E., Plate, S., Schamber, K.,
Schmidt, D., Sönmez, Y., Treinat, F., Weckwerth, J., Wolf, P., Zweihoff, P.: PG
582 - industrial programming by example. Technical report, TU Dortmund (2015).
http://hdl.handle.net/2003/34106

22. Boßelmann, S., et al.: DIME: a programming-less modeling environment for web
applications. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953,
pp. 809–832. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47169-
3 60

23. Boßelmann, S., Neubauer, J., Naujokat, S., Steffen, B.: Model-driven design of
secure high assurance systems: an introduction to the open platform from the
user perspective. In: Margaria, T., Solo, M.G.A. (eds.) The 2016 International
Conference on Security and Management (SAM 2016). Special Track “End-to-
end Security and Cybersecurity: from the Hardware to Application”, pp. 145–151.
CREA Press (2016)

24. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986)

25. Candea, G., Godefroid, P.: Automated software test generation: some challenges,
solutions, and recent advances. In: Steffen, B., Woeginger, G. (eds.) Computing
and Software Science. LNCS, vol. 10000, pp. 505–531. Springer, Cham (2018)

26. Chadli, M., Kim, J.H., Larsen, K.G., Legay, A., Naujokat, S., Steffen, B.,
Traonouez, L.M.: High-level frameworks for the specification and verification of
scheduling problems. Softw. Tools Technol. Transf. (2017)

27. Chatley, R., Donaldson, A., Mycroft, A.: The next 7000 programming languages.
In: Steffen, B., Woeginger, G. (eds.) Computing and Software Science. LNCS, vol.
10000, pp. 250–282. Springer, Cham (2018)

28. Cleaveland, R., Parrow, J., Steffen, B.: The concurrency workbench: a semantics-
based tool for the verification of concurrent systems. ACM Trans. Program. Lang.
Syst. 15(1), 36–72 (1993). https://doi.org/10.1145/151646.151648

29. Dittrich, K.R., Gatziu, S., Geppert, A.: The active database management system
manifesto: a rulebase of ADBMS features. In: Sellis, T. (ed.) RIDS 1995. LNCS,
vol. 985, pp. 1–17. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-
60365-4 116

30. Drechsler, R., Sieling, D.: Binary decision diagrams in theory and practice. Softw.
Tools Technol. Transf. (STTT) 3(2), 112–136 (2001)

https://doi.org/10.1023/A:1008699807402
http://hdl.handle.net/2003/34106
https://doi.org/10.1007/978-3-319-47169-3_60
https://doi.org/10.1007/978-3-319-47169-3_60
https://doi.org/10.1145/151646.151648
https://doi.org/10.1007/3-540-60365-4_116
https://doi.org/10.1007/3-540-60365-4_116

340 B. Steffen et al.

31. Felleisen, M., Findler, R.B., Flatt, M., Krishnamurthi, S., Barzilay, E., McCarthy,
J., Tobin-Hochstadt, S.: A programmable programming language. Commun. ACM
61(3), 62–71 (2018)

32. Fowler, M.: Language Workbenches: The Killer-App for Domain Specific Lan-
guages? June 2005. http://martinfowler.com/articles/languageWorkbench.html.
Accessed 10 Apr 2018

33. Fowler, M., Parsons, R.: Domain-Specific Languages. Addison-Wesley/ACM Press
(2011). http://books.google.de/books?id=ri1muolw YwC

34. Fritzson, P.: Principles of Object-Oriented Modeling and Simulation with Mod-
elica 2.1. Wiley, Hoboken (2004)

35. Fuhrmann, H., von Hanxleden, R.: Taming graphical modeling. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 196–210.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16145-2 14

36. Futamura, Y.: Partial evaluation of computation process - an approach to a
compiler-compiler. Syst. Comput. Controls 2(5), 45–50 (1971)

37. Gossen, F., Margaria, T.: Generating optimal decision functions from rule speci-
fications. Electron. Commun. EASST (to appear)

38. Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language (DSL)
Toolkit. Addison-Wesley, Boston (2008)

39. Grundy, J., Hosking, J., Li, K.N., Ali, N.M., Huh, J., Li, R.L.: Generating domain-
specific visual language tools from abstract visual specifications. IEEE Trans.
Softw. Eng. 39(4), 487–515 (2013)

40. Havelund, K., Rosu, G., Reger, G.: Runtime verification - past experiences and
future projections. In: Steffen, B., Woeginger, G. (eds.) Computing and Software
Science. LNCS, vol. 10000, pp. 532–562. Springer, Cham (2018)

41. Hähnle, R., Huisman, M.: Deductive software verification: from pen-and-paper
proofs to industrial tools. In: Steffen, B., Woeginger, G. (eds.) Computing and
Software Science. LNCS, vol. 10000, pp. 345–373. Springer, Cham (2018)

42. Howar, F., Jonsson, B., Vaandrager, F.: Combining black-box and white-box tech-
niques for learning register automata. In: Steffen, B., Woeginger, G. (eds.) Com-
puting and Software Science. LNCS, vol. 10000, pp. 563–588. Springer, Cham
(2018)

43. Huth, M., Nielson, F.: Static analysis for proactive security. In: Steffen, B., Woeg-
inger, G. (eds.) Computing and Software Science. LNCS, vol. 10000, pp. 374–392.
Springer, Cham (2018)

44. International Organization for Standardization: Diagrams for the chemical and
petrochemical industry - Part 1: Specification of diagrams. ISO 10628-1:2014,
September 2014. https://www.iso.org/standard/51840.html

45. International Organization for Standardization: Information technology -
Database languages - SQL - Part 1: Framework (SQL/Framework). ISO 9075-
1:2016, December 2016. https://www.iso.org/standard/63555.html

46. International Telecommunication Union: CCITT Recommendation I.312 / Q.1201
- Principles of Intelligent Network Architecture, October 1992. https://www.itu.
int/rec/T-REC-I.312-199210-I/en

47. International Telecommunication Union: ITU-T Recommendation Q.1211 - Intro-
duction to Intelligent Network Capability Set 1, March 1993. https://www.itu.
int/rec/T-REC-Q.1211-199303-I/en

48. JetBrains: Meta Programming System. https://www.jetbrains.com/mps/.
Accessed 10 Apr 2018

49. John, K.H., Tiegelkamp, M.: IEC 61131–3: Programming Industrial Automation
Systems: Concepts and Programming Languages, Requirements for Programming

http://martinfowler.com/articles/languageWorkbench.html
http://books.google.de/books?id=ri1muolw_YwC
https://doi.org/10.1007/978-3-642-16145-2_14
https://www.iso.org/standard/51840.html
https://www.iso.org/standard/63555.html
https://www.itu.int/rec/T-REC-I.312-199210-I/en
https://www.itu.int/rec/T-REC-I.312-199210-I/en
https://www.itu.int/rec/T-REC-Q.1211-199303-I/en
https://www.itu.int/rec/T-REC-Q.1211-199303-I/en
https://www.jetbrains.com/mps/

Language-Driven Engineering 341

Systems, Decision-Making Aids, 2nd edn. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-12015-2

50. Jones, N.D., Sestoft, P., Søndergaard, H.: Mix: a self-applicable partial evaluator
for experiments in compiler generation. LISP Symb. Comput. 2(1), 9–50 (1989)

51. Jörges, S.: Construction and Evolution of Code Generators - A Model-Driven
and Service-Oriented Approach. LNCS, vol. 7747. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36127-2

52. Jörges, S., Lamprecht, A.L., Margaria, T., Schaefer, I., Steffen, B.: A constraint-
based variability modeling framework. Int. J. Softw. Tools Technol. Transf.
(STTT) 14(5), 511–530 (2012)

53. Jörges, S., Margaria, T., Steffen, B.: Genesys: service-oriented construction of
property conform code generators. Innov. Syst. Softw. Eng. 4(4), 361–384 (2008)

54. Kastens, U., Pfahler, P., Jung, M.: The Eli system. In: Koskimies, K. (ed.) CC
1998. LNCS, vol. 1383, pp. 294–297. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0026439

55. Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit+ a fully configurable multi-user and
multi-tool CASE and CAME environment. In: Constantopoulos, P., Mylopou-
los, J., Vassiliou, Y. (eds.) CAiSE 1996. LNCS, vol. 1080, pp. 1–21. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61292-0 1

56. Knoop, J., Rüthing, O., Steffen, B.: Lazy code motion. In: Proceedings of the
ACM SIGPLAN 1992 Conference on Programming Language Design and Imple-
mentation (PLDI), pp. 224–234. ACM (1992)

57. Knoop, J., Rüthing, O., Steffen, B.: Lazy strength reduction. J. Program. Lang.
1, 71–91 (1993)

58. Knoop, J., Rüthing, O., Steffen, B.: Optimal code motion: theory and practice.
ACM Trans. Program. Lang. Syst. 16(4), 1117–1155 (1994)

59. Kolovos, D.S., Rose, L.M., Abid, S.B., Paige, R.F., Polack, F.A.C., Botterweck,
G.: Taming EMF and GMF using model transformation. In: Petriu, D.C., Rou-
quette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 211–225.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16145-2 15

60. Kolovos, D., Rose, L., Garćıa-Domı́nguez, A., Paige, R.: The Epsilon Book (2015).
http://eclipse.org/epsilon/doc/book/. Accessed 4 Feb 2015

61. Kordon, F., Leuschel, M., van de Pol, J., Thierry-Mieg, Y.: Software architecture
of modern model-checkers. In: Steffen, B., Woeginger, G. (eds.) Computing and
Software Science. LNCS, vol. 10000, pp. 393–419. Springer, Cham (2018)

62. Kubczak, C., Jörges, S., Margaria, T., Steffen, B.: eXtreme model-driven design
with jABC. In: CTIT Proceedings of the Tools and Consultancy Track of the Fifth
European Conference on Model-Driven Architecture Foundations and Applica-
tions (ECMDA-FA), vol. WP09-12, pp. 78–99 (2009)

63. Lamprecht, A.L., Naujokat, S., Schaefer, I.: Variability management beyond fea-
ture models. IEEE Comput. 46(11), 48–54 (2013)

64. Lédeczi, A., Maróti, M., Völgyesi, P.: The generic modeling environ-
ment. Technical report, Institute for Software Integrated Systems, Vanderbilt
University, Nashville (2003). http://www.isis.vanderbilt.edu/sites/default/files/
GMEReport.pdf

65. Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomasson, C., Nord-
strom, G., Sprinkle, J., Volgyesi, P.: The generic modeling environment. In: Work-
shop on Intelligent Signal Processing (WISP 2001) (2001)

66. Legay, A., Lukina, A., Traonouez, L.M., Yang, J., Smolka, S., Grosu, R.: Statisti-
cal model checking. In: Steffen, B., Woeginger, G. (eds.) Computing and Software
Science. LNCS, vol. 10000, pp. 478–504. Springer, Cham (2018)

https://doi.org/10.1007/978-3-642-12015-2
https://doi.org/10.1007/978-3-642-12015-2
https://doi.org/10.1007/978-3-642-36127-2
https://doi.org/10.1007/BFb0026439
https://doi.org/10.1007/BFb0026439
https://doi.org/10.1007/3-540-61292-0_1
https://doi.org/10.1007/978-3-642-16145-2_15
http://eclipse.org/epsilon/doc/book/
http://www.isis.vanderbilt.edu/sites/default/files/GMEReport.pdf
http://www.isis.vanderbilt.edu/sites/default/files/GMEReport.pdf

342 B. Steffen et al.

67. Margaria, T., Bakera, M., Kubczak, C., Naujokat, S., Steffen, B.: Automatic gen-
eration of the SWS-challenge mediator with jABC/ABC. In: Petrie, C., Margaria,
T., Zaremba, M., Lausen, H. (eds.) Semantic Web Services Challenge, pp. 119–
138. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-72496-6 7

68. Margaria, T., Meyer, D., Kubczak, C., Isberner, M., Steffen, B.: Synthesizing
semantic web service compositions with jMosel and Golog. In: Bernstein, A.,
Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan,
K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 392–407. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04930-9 25

69. Margaria, T., Nagel, R., Steffen, B.: jETI: a tool for remote tool integration.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 557–
562. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31980-1 38.
http://www.springerlink.com/content/h9x6m1x21g5lknkx

70. Margaria, T., Steffen, B.: Business process modelling in the jABC: the one-thing-
approach. In: Cardoso, J., van der Aalst, W. (eds.) Handbook of Research on
Business Process Modeling. IGI Global (2009)

71. Margaria, T., Steffen, B.: Continuous model-driven engineering. IEEE Comput.
42(10), 106–109 (2009)

72. Margaria, T., Steffen, B.: Simplicity as a driver for agile innovation. Computer
43(6), 90–92 (2010)

73. Margaria, T., Steffen, B.: Service-orientation: conquering complexity with XMDD.
In: Hinchey, M., Coyle, L. (eds.) Conquering Complexity, pp. 217–236. Springer,
London (2012). https://doi.org/10.1007/978-1-4471-2297-5 10

74. Margaria, T., Steffen, B., Reitenspieß, M.: Service-oriented design: the roots. In:
Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp.
450–464. Springer, Heidelberg (2005). https://doi.org/10.1007/11596141 34

75. MathWorks: Simulink. http://www.mathworks.com/products/simulink. Accessed
3 Apr 2018

76. McAffer, J., Lemieux, J.M., Aniszczyk, C.: Eclipse Rich Client Platform, 2nd edn.
Addison-Wesley Professional, Boston (2010)

77. Morel, E., Renvoise, C.: Global optimization by suppression of partial redundan-
cies. Commun. ACM 22(2), 96–103 (1979)

78. Naujokat, S.: Heavy Meta. Model-Driven Domain-Specific Generation of Gener-
ative Domain-Specific Modeling Tools. Dissertation, TU Dortmund, Dortmund,
August 2017. http://hdl.handle.net/2003/36060

79. Naujokat, S., Lybecait, M., Kopetzki, D., Steffen, B.: CINCO: a simplicity-driven
approach to full generation of domain-specific graphical modeling tools. Softw.
Tools Technol. Transf. (2017)

80. Naujokat, S., Neubauer, J., Margaria, T., Steffen, B.: Meta-level reuse for master-
ing domain specialization. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS,
vol. 9953, pp. 218–237. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-47169-3 16

81. Naujokat, S., Traonouez, L.-M., Isberner, M., Steffen, B., Legay, A.: Domain-
specific code generator modeling: a case study for multi-faceted concurrent sys-
tems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8802, pp. 481–
498. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45234-9 33

82. Naur, P., Randell, B. (eds.): Software Engineering: Report of a Conference Spon-
sored by the NATO Science Committee, Garmisch, Germany, 7–11 October 1968.
Scientific Affairs Division, NATO, Brussels 39 Belgium (1969)

83. Neubauer, J., Steffen, B.: Plug-and-play higher-order process integration. IEEE
Comput. 46(11), 56–62 (2013)

https://doi.org/10.1007/978-0-387-72496-6_7
https://doi.org/10.1007/978-3-642-04930-9_25
https://doi.org/10.1007/978-3-540-31980-1_38
http://www.springerlink.com/content/h9x6m1x21g5lknkx
https://doi.org/10.1007/978-1-4471-2297-5_10
https://doi.org/10.1007/11596141_34
http://www.mathworks.com/products/simulink
http://hdl.handle.net/2003/36060
https://doi.org/10.1007/978-3-319-47169-3_16
https://doi.org/10.1007/978-3-319-47169-3_16
https://doi.org/10.1007/978-3-662-45234-9_33

Language-Driven Engineering 343

84. Neubauer, J., Steffen, B., Margaria, T.: Higher-order process modeling: product-
lining, variability modeling and beyond. Electron. Proc. Theor. Comput. Sci. 129,
259–283 (2013)

85. Object Management Group: Unified Modeling Language. http://www.uml.org/.
Accessed 14 Mar 2018

86. Object Management Group (OMG): Documents Associated with BPMN Ver-
sion 2.0.1, September 2013. http://www.omg.org/spec/BPMN/2.0.1/. Accessed
10 Apr 2018

87. Rüthing, O., Knoop, J., Steffen, B.: Sparse code motion. In: Proceedings of the
27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL 2000), pp. 170–183. ACM (2000)

88. Schmidt, C., Cramer, B., Kastens, U.: Generating visual structure editors from
high-level specifications. Technical report, University of Paderborn, Germany
(2008)

89. Schmidt, D., Steffen, B.: Program analysis as model checking of abstract
interpretations. In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503, pp. 351–
380. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49727-7 22.
http://portal.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=760066

90. Somenzi, F.: Efficient manipulation of decision diagrams. Int. J. Softw. Tools
Technol. Transf. 3(2), 171–181 (2001). https://doi.org/10.1007/s100090100042

91. Somenzi, F.: CUDD: CU Decision Diagram Package Release 3.0.0. University of
Colorado at Boulder, December 2015

92. Steffen, B.: Data flow analysis as model checking. In: Ito, T.,
Meyer, A.R. (eds.) TACS 1991. LNCS, vol. 526, pp. 346–364.
Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54415-1 54.
http://www.springerlink.com/content/y5p607674g6q1482/

93. Steffen, B.: Generating data flow analysis algorithms from modal specifications.
Sci. Comput. Program. 21(2), 115–139 (1993)

94. Steffen, B.: Property-oriented expansion. In: Cousot, R., Schmidt, D.A. (eds.)
SAS 1996. LNCS, vol. 1145, pp. 22–41. Springer, Heidelberg (1996). https://doi.
org/10.1007/3-540-61739-6 31

95. Steffen, B., Margaria, T., Braun, V.: The electronic tool integration platform:
concepts and design. Int. J. Softw. Tools Technol. Transf. (STTT) 1(1–2), 9–30
(1997)

96. Steffen, B., Margaria, T., Claßen, A., Braun, V.: The METAFrame’95 environ-
ment. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 450–
453. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61474-5 100

97. Steffen, B., Margaria, T., Claßen, A., Braun, V., Reitenspieß, M.: An environment
for the creation of intelligent network services. In: Intelligent Networks: IN/AIN
Technologies, Operations, Services and Applications - A Comprehensive Report,
pp. 287–300. IEC: International Engineering Consortium (1996)

98. Steffen, B., Margaria, T., Claßen, A., Braun, V., Nisius, R., Reitenspieß, M.:
A constraint-oriented service creation environment. In: Margaria, T., Steffen, B.
(eds.) TACAS 1996. LNCS, vol. 1055, pp. 418–421. Springer, Heidelberg (1996).
https://doi.org/10.1007/3-540-61042-1 63

99. Steffen, B., Margaria, T., Freitag, B.: Module configuration by minimal model
construction. Technical report, Fakultät für Mathematik und Informatik, Univer-
sität Passau (1993)

http://www.uml.org/
http://www.omg.org/spec/BPMN/2.0.1/
https://doi.org/10.1007/3-540-49727-7_22
http://portal.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=760066
https://doi.org/10.1007/s100090100042
https://doi.org/10.1007/3-540-54415-1_54
http://www.springerlink.com/content/y5p607674g6q1482/
https://doi.org/10.1007/3-540-61739-6_31
https://doi.org/10.1007/3-540-61739-6_31
https://doi.org/10.1007/3-540-61474-5_100
https://doi.org/10.1007/3-540-61042-1_63

344 B. Steffen et al.

100. Steffen, B., Margaria, T., Nagel, R., Jörges, S., Kubczak, C.: Model-driven devel-
opment with the jABC. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS,
vol. 4383, pp. 92–108. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-70889-6 7

101. Steffen, B., Narayan, P.: Full life-cycle support for end-to-end processes. IEEE
Comput. 40(11), 64–73 (2007)

102. Steffen, B., Naujokat, S.: Archimedean points: the essence for mastering change.
In: Steffen, B. (ed.) Transactions on Foundations for Mastering Change I. LNCS,
vol. 9960, pp. 22–46. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46508-1 3

103. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Addison-Wesley, Boston (2008)

104. Voelter, M., Siegmund, J., Berger, T., Kolb, B.: Towards user-friendly projectional
editors. In: Combemale, B., Pearce, D.J., Barais, O., Vinju, J.J. (eds.) SLE 2014.
LNCS, vol. 8706, pp. 41–61. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-11245-9 3

105. Weckwerth, J.: Cinco Evaluation: CMMN-Modellierung und -Ausführung in der
Praxis. Master’s thesis, TU Dortmund (2016)

106. Weissman, C.: LISP 1.5 Primer. Dickenson Publishing Company Inc., Belmont
(1967)

107. Wortmann, N., Michel, M., Naujokat, S.: A fully model-based approach to soft-
ware development for industrial centrifuges. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2016. LNCS, vol. 9953, pp. 774–783. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-47169-3 58

108. Zhu, N., Grundy, J., Hosking, J.: Pounamu: a meta-tool for multi-view visual lan-
guage environment construction. In: 2004 IEEE Symposium on Visual Languages
and Human Centric Computing (2004)

https://doi.org/10.1007/978-3-540-70889-6_7
https://doi.org/10.1007/978-3-540-70889-6_7
https://doi.org/10.1007/978-3-319-46508-1_3
https://doi.org/10.1007/978-3-319-46508-1_3
https://doi.org/10.1007/978-3-319-11245-9_3
https://doi.org/10.1007/978-3-319-11245-9_3
https://doi.org/10.1007/978-3-319-47169-3_58
https://doi.org/10.1007/978-3-319-47169-3_58

Deductive Software Verification: From
Pen-and-Paper Proofs to Industrial Tools

Reiner Hähnle1(B) and Marieke Huisman2

1 Department of Computer Science, Technische Universität Darmstadt,
64295 Darmstadt, Germany

haehnle@cs.tu-darmstadt.de
2 Faculty EEMCS, Formal Methods and Tools, University of Twente,

7500 AE Enschede, The Netherlands
M.Huisman@utwente.nl

Abstract. Deductive software verification aims at formally verifying
that all possible behaviors of a given program satisfy formally defined,
possibly complex properties, where the verification process is based on
logical inference. We follow the trajectory of the field from its inception
in the late 1960s via its current state to its promises for the future, from
pen-and-paper proofs for programs written in small, idealized languages
to highly automated proofs of complex library or system code written in
mainstream languages. We take stock of the state-of-art and give a list
of the most important challenges for the further development of the field
of deductive software verification.

1 Introduction

Deductive software verification aims at formally verifying that all possible behav-
iors of a given program satisfy formally defined, possibly complex properties,
where the verification process is based on some form of logical inference, i.e.,
“deduction”. In this article we follow the trajectory of the field of deductive
software verification from its inception in the late 1960s via its current state to
its promises for the future. It was a long way from pen-and-paper proofs for
programs in small, idealized languages to highly automated proofs of complex
library or system code written in mainstream programming languages. We argue
that the field has reached a stage of maturity that permits to use deductive ver-
ification technology in an industrial setting. However, this does not mean that
all problems are solved. On the contrary, formidable challenges remain, and not
the smallest among them is how to bring about the transfer into practical soft-
ware development. Hence, the second contribution of this article is to present
an overview of what we consider the most important challenges in the area of
deductive software verification.

To render this article feasible in length (and to avoid overlap with other con-
tributions in this volume) we focus on contract-based, deductive verification of

c© Springer Nature Switzerland AG 2019

B. Steffen and G. Woeginger (Eds.): Computing and Software Science, LNCS 10000, pp. 345–373, 2019.

https://doi.org/10.1007/978-3-319-91908-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91908-9_18&domain=pdf
https://doi.org/10.1007/978-3-319-91908-9_18

346 R. Hähnle and M. Huisman

imperative and object-oriented programs. Hence, we do not discuss model check-
ing, SMT solvers, general proof assistants, program synthesis, correctness-by-
construction, runtime verification, or abstract interpretation. Instead, we refer
to the articles Runtime Verification: Past Experiences and Future Projections,
Software Architecture of Modern Model-Checkers, Statistical Model Checking, as
well as The 10,000 Facets of MDP Model Checking in this issue. We also do
not cover fully automated verification tools for generic safety properties (see the
article Static Analysis for Proactive Security in this issue for some aspects on
these). This is not at all to say that these methods or tools are unimportant or
irrelevant. On the contrary, their integration with deductive verification appears
to be highly promising, as we point out in Sect. 5.2 below.

This paper is organized as follows: in the next section we walk through a non-
trivial example for contract-based verification to clarify the scope and illustrate
some of the important issues. In Sect. 3 we sketch the main developments in the
field ca. up to the year 2000. In Sect. 4 we sketch the current state-of-art and we
discuss the two main approaches to deductive verification: symbolic execution
and verification condition generation. The core of the paper is Sects. 5 and 6,
where we discuss the main achievements and the remaining challenges of the
field, divided into technical and non-technical aspects. We conclude in Sect. 7.

2 An Example

Properties to be proven by deductive verification are expressed in a formal spec-
ification language. Ada was the first language that supported expressing formal
specification annotations directly as structured comments next to the program
elements they relate to [97]. As this proved to be natural and easy to use, this
was followed for other programming languages. Eiffel [99] propagated a contract-
based paradigm, where the prerequisites and obligations of each method1 are laid
down in a contract. This has the very important advantage that methods, as the
central abstraction concept to structure a program, have a direct counterpart in
formal specifications. Hence, specifications and programs follow the same struc-
ture. For most major imperative/object-oriented programming languages there
exist dedicated contract-based annotation languages (see Sect. 5.1).

We give an example of contract-based formal specification and verification of
a Java program with the Java Modeling Language (JML) and provide informal
explanations of JML specification elements; more details are in [66,85]. Consider
the Java method search() in Fig. 1 which implements binary search in a sorted
integer array. Its code is completely specified, so it can be compiled and run
from a suitable main() method.

The method contract (lines 1–7) specifies the intended behavior, whenever
search() terminates normally. The contract’s only requirement (line 2) is that
the input array is sorted (in JML all reference types are assumed to be non-
null by default, so this does not need to be spelled out). Sortedness is specified
with the help of a model method isSorted() that is not shown. The contract
1 We use Java terminology for what is also called procedure, function, subroutine, etc.

Deductive Software Verification 347

Fig. 1. Formal JML specification of a Java binary search method

says that whenever search() is called with a sorted, non-null array then the call
terminates and in the final state the property given in the ensures clause (lines 3–
5) is satisfied. In addition, the assignable clause (line 6) says that the execution
has strictly no side effects, not even creation of new objects. The contract is
valid for any input of unbounded size that satisfies the requirements.

We take a closer look at the ensures clause: line 3 is the guard of a conditional
term saying that the value v occurs as an entry of a. If true, an array index where
v is found is returned as the result, and -1 otherwise. We do not specify whether
the result is the smallest index, but make sure that is in a valid range.

The loop invariant (lines 14–16) specifies the valid range of the pivots and
says that v can never occur below index l or above r. To ensure termination
of search() it is sufficient to ensure termination of the loop. This is achieved
by the decreases clause (line 18), an expression over a well-ordered type that
becomes strictly smaller in each iteration.

348 R. Hähnle and M. Huisman

A central advantage of contract-based verification is compositionality and
scalability: after showing that a method satisfies its contract, each call to that
method can be replaced with its contract, instead of inlining the code. Specifi-
cally, if the callee’s requires clause is satisfied at the call point, then its ensures
clause can be assumed and the values of all memory locations of the caller, except
the assignable ones, are preserved. We illustrate the idea with a simple client
method, see Fig. 2.

Fig. 2. Formal JML specification of a Java client method

Method addIndex() searches for value v in a. If the entry was found at index
idx, then it is appended to the array contained in the field indices and returned.
The specification is surprisingly complex. First of all, as specified in the excep-
tional termination case (lines 14–19), an ArrayIndexOutOfBoundsException is
thrown if the array indices is full and the given value is found (line 16): in this
case the array has to be extended (line 17). The assignable clause (line 19) is
not strict, because a new exception object is created. Sortedness of parameter a
is necessary to ensure that the contract of search() can go into effect.

Deductive Software Verification 349

The specification case for normally terminating behavior (lines 5–12) of
addIndex() is similar to that of search(): in addition we require (line 6) that
a and indices are different arrays (Java arrays can be aliased) and that there
is still space for a new entry (next < indices.length). The latter could be
weakened by disjoining the condition that the value is found. The second ensures
clause (lines 10–11) is almost identical to the one of search() (we left out the
bounds on the result). The first ensures clause (lines 7–9) says that, if the value
is found then its index is appended to indices; otherwise, indices and next
are unchanged. We use the keyword \old to refer to a value in the prestate. This
is necessary, because next was updated in the method.

Typically, one also specifies class invariants that, for example, capture consis-
tency properties of the instance fields that all methods must maintain. In JML
any existing class invariants are implicitly added to all requires and ensures
clauses which helps to keep them concise. In the example, we maintain the
invariant that next is non-negative (line 1). Class invariants must be established
by all constructors (not shown here).

Discussion. Even our small example shows that precise contracts, even of seem-
ingly innocent methods, can become bulky. The specification of addIndex() is
about twice as long as its implementation. And, as pointed out, that specifica-
tion could be made even more precise. But without further information about
the call context it is hard to decide whether that is useful. A subtle question
is whether the annotation \result >= 0 && \result < a.length in line 4 of
Fig. 1 is needed at all: if it doesn’t hold then the expression a[\result] is not
well-defined in Java anyway. But most verifiers will not be able to deduce this by
themselves, because they treat such an expression as underspecified. The seman-
tics of most tools, including the JML standard, is not always unambiguous.

It is very easy to forget parts of specifications: in most cases, the first attempt
will not be verifiable. While developing the example we forgot a != indices in
line 6 of Fig. 2, a typical omission. Good feedback from the verification tool is
very important here. Vice versa, some of the specification annotations should be
automatically derivable, for example, the bounds. Note that reuse of specification
elements is essential to obtain concise and readable annotations.

It took about one hour (for an expert) to specify and verify the example
reproduced here. After finding the correct specifications, formal verification with
the system KeY [3] is fully automatic and takes about 6 s on a state-of-the-art
desktop, including the constructor and model methods not displayed. The most
complex method, search(), led to a proof tree with ca. 4,000 nodes and 27
branches. Interestingly, when we loaded the verified example in OpenJML [37],
we only had to rename some KeY-specific keywords such as \strictly nothing
(replaced by \nothing , and then most of the example could be verified directly.
The only specification that could not be verified was the exceptional behavior
specification of method addIndex, as OpenJML adds extra proof obligations to
every array access instruction, capturing that the index should be between the
bounds of the array, to ensure the absence of runtime errors.

350 R. Hähnle and M. Huisman

3 History Until LNCS 1750 (aka Y2000)

The Roots of Deductive Verification. The history of deductive software verifica-
tion dates back to the 1960s and 70s. Seminal work in this area is Floyd-Hoare
logic [48,61], Dijkstra’s weakest preconditions [42], and Burstall’s intermittent
assertions [31].

Floyd and Hoare introduced the notion of pre- and postcondition to describe
the behaviour of a program: a Hoare triple {P}S{Q} is used to express that if
program S is executed in an initial state σ, such that the precondition P holds
for σ, then if execution of S terminates in a state σ′, the postcondition Q holds
for the final state σ′. This relation is also called partial correctness (partial,
because termination is not enforced). Any pair of states (σ, σ′) for which the
Hoare triple holds, must be contained in the big-step semantics [110] of S. Floyd
and Hoare proposed a set of syntactic proof rules to prove the correctness of an
algorithm. One classical example of such a proof rule is the rule for statement
composition:

{P}S1{R} {R}S2{Q}
{P}S1;S2{Q}

This rule expresses that to prove that if S1;S2 is executed in a state satisfying
precondition P , if it terminates in a state satisfying Q, it is sufficient to find an
intermediate assertion R, such that R can be established as a postcondition
for the first statement S1, and is a sufficient precondition for S2 to establish
postcondition Q. Rules like this break up the correctness problem of a complete
algorithm into a correctness problem of the individual instructions.

Dijkstra observed that it is possible to compute the minimal precondition
that is necessary to guarantee that a program will establish a given postcon-
dition. This simplifies verification, because in this way, one does not have to
“invent” the intermediate predicate that describes the state between two state-
ments, but this can be computed. In particular, the weakest precondition wp for
a statement S1;S2 can be computed using the following rule:

wp(S1;S2, Q) = wp(S1,wp(S2, Q))

For other instructions, similar rules exist. A Verification Condition Generator
(VCG) is a deductive verification tool that produces proof obligations express-
ing that the specified precondition is stronger than the weakest precondition as
computed by the wp rules. For this approach to work, we require the presence of
loop invariants and method contracts for all methods called in the verified code,
which give rise to additional proof obligations.

VCGs in essence apply wp transformation rules backwards through the target
program, starting with the postcondition to be proven. However, it is also possi-
ble to verify a program in the forward direction of its control flow. Burstall [31]
proposed to combine symbolic execution with induction to show that a program
implies its postcondition (see also Sect. 4).

Deductive Software Verification 351

First Deductive Verification Tools. The early program verification techniques
were, to a large extent, a pen-and-paper activity. However, the limitations of
doing such proofs with pen-and-paper were immediately obvious, and several
groups started to develop tools to support formal verification. These efforts were
all isolated, and usually still required extensive user interaction. Nevertheless, the
correct application of the proof rules was checked by the system, and many obvi-
ous errors were avoided this way. It is not possible to give a complete overview
of early verification systems, but we mention some representative tools and their
main characteristics.

Tatzelwurm [41] was a VCG for a subset of UCSD Pascal. It accepted speci-
fication annotations in sorted first-order logic and used a tableau-based theorem
prover with a decision procedure for linear integer expressions to discharge ver-
ification conditions.

Higher-order logic theorem provers were frequently used to construct a ver-
ified program verifier. The soundness of the verification technique was proven
inside the theorem prover, and the program to be verified was encoded in the
logic of the theorem prover, after which the verified rules could be applied. This
approach was used for example in the Loop project, where Hoare logic rules were
formalized in PVS (later also Isabelle) to reason about Java programs [65,67],
the Sunrise project, which used a verification condition generator verified in HOL
for a standard while-language [64], by Von Oheimb who formalized a Hoare logic
for Java in Isabelle/HOL [126], and by Norrish, who formalized a Hoare logic
for C in HOL [105].

SPARK [112] and ESC [90] were among the first tools to directly implement
the weakest precondition calculus. Development of SPARK started in an aca-
demic setting, was further extended and refined in an industrial setting, and
is now maintained and marketed by AdaCore and Altran. SPARK realizes a
VCG for (a safety-critical subset of) Ada and is still actively developed [60].
The ESC (Extended Static Checker) tool originally targeted Modula-3, but was
then adapted to Java [88]. ESC was designed with automation in mind: it traded
off correctness and completeness with the capability to quickly identify possible
problems in a program, thus providing the programmer with useful feedback.

Another early implementation of the weakest precondition calculus was pro-
vided in the B Toolkit [113] that realized tool support for the B Method [1].
The B Method is based on successive refinement of a sequence of abstract state
machines—weakest precondition reasoning is used to establish invariants, pre-
conditions, and intermediate assertions for a state machine. The B Method is
one of the industrially most successful formal methods (see [93] for an overview),
however, it is not a deductive software verification approach and, for this reason,
not discussed further.

The KIV system [51] was the first2 interactive program verifier based on
dynamic logic, an expressive program logic that can be viewed as the syntactic
closure of the language of Hoare triples with respect to first-order connectives

2 The first verification system based on dynamic logic is reported in [95], but it was
based on an axiomatic calculus and had no further impact.

352 R. Hähnle and M. Huisman

and quantifiers [54]. It formalizes Burstall’s [31] approach as a dynamic logic
calculus whose rules mimic a symbolic interpreter [55]. Induction rule schemata
permit complete symbolic execution of loops. KIV is still actively being devel-
oped, and much effort has been put into automation, and an expressive spec-
ification language, using higher-order algebraic specifications [45]. It has been
used for verification of smart card applications and the Flashix file system.

ACL2 (A Computational Logic for Applicative Common Lisp) is a program
verification tool for Lisp [78]. As other members of the Boyer-Moore family of
provers, it has a small trusted core, and all other proof rules are built on top of
this trusted core and cannot introduce inconsistencies. Its main proof strategies
are based on induction and rewriting. The ACL2 prover is actively developed.
It has been used to verify properties of, for example, models of microprocessors,
microcode, the Sun Java Virtual Machine, and operating system kernels.

STeP, the Stanford Temporal Prover, used a combination of deductive and
algorithmic techniques to verify temporal logic properties of reactive and real-
time systems. It features a set of verification rules which reduce temporal prop-
erties of systems to first-order verification conditions and implements several
techniques for automated invariant generation [19].

4 From LNCS 1750 to LNCS 10000

A Deductive Verification Community. After the year 2000, we see a gradual
change from tools developed in isolation to a community of deductive software
verification tool developers and users. Within this community, there is active
exchange and discussion of ideas and knowledge. Effort has been put into stan-
dardizing specification languages, notably JML, now used by most contempo-
rary tools aiming at verification of Java. Further, the VS-Comp and VerifyThis3

program verification competitions have been established, where the developers
and users of various deductive verification tools are challenged to solve program
verification competition problems within a limited time frame [68]. After the
competition, participants present their solutions to each other, which leads to
substantial cross-fertilization.

Deductive Verification Architectures. As mentioned above, there are two main
approaches for the construction of deductive verification tools: VCG and sym-
bolic execution. Tools based on VCG use transformation rules to reduce an
annotated program to a set of verification conditions whose correctness entails
correctness of the annotated program. Tools that use symbolic execution collect
constraints on the program execution by executing the program with symbolic
variables. If the collected constraints can be fulfilled and imply the annotations
at each symbolic state, then the annotated program is correct. Both approaches
can be formalized within suitable program logics.

Kassios et al. [77] report that symbolic execution tends to be faster than
VCG, but the former is sometimes less complete and occasionally suffers from
3 http://www.verifythis.org/.

http://www.verifythis.org/

Deductive Software Verification 353

path explosion. However, the completeness issue seems to derive from the specific
architecture of the symbolic execution tool that was used in their study, which
relies on an inherently incomplete separation of heap reasoning and arithmetic
SMT solving. Path explosion, however, is clearly an issue for symbolic execution
of complex target code [39]. It was recently shown that it can be mitigated with
symbolic state merging techniques [117].

Long-Running Deductive Verification Projects. Several tools whose development
started around the year 2000 still exist currently, or evolved into new tools. We
sketch the development of some of these tools.

Work on the KeY tool [3] started in 1998 [53] and it has been actively devel-
oped ever since. Like KIV, KeY is based on symbolic execution formalized in
dynamic logic, but it extends the KIV approach to contract-based verification
of Java programs and uses loop invariants as a specific form of induction that is
more amenable to automation. KeY is not merely focused on functional verifica-
tion, but complements it with debugging and visualization [3, Chap. 11] or test
generation [3, Chap. 12]. It covers the complete JavaCard language [102] and
was used to identify a bug in the Timsort algorithm [39], the standard sorting
algorithm provided in the Oracle JDK, Python, Android, and other frameworks.

The development of ESC/Java [88] was taken over by David Cok and Joe
Kiniry, resulting in ESC/Java2 [38]. Initially, their goal was to bring ESC/Java
up-to-date, as well as to provide support for a larger part of JML and more Java
features. ESC/Java2 is not actively developed as a separate tool anymore, how-
ever, it formed the foundation for the static verification support in the OpenJML
framework [37]. Over the years, the proving capabilities of the static verification
support in OpenJML have been strengthened. Like ESC/Java, it still prioritizes
a high degree of automation, but soundness is not traded off anymore. OpenJML
offers not merely support for static verification, but also for runtime verification.

The original ESC/Java development team around Rustan Leino moved into
a different direction. In 2004, they presented Spec#, a deductive verification
tool for C# [11], which reused much of the philosophy of ESC/Java. In parallel
to the development of Spec#, the team also designed Boogie, as an intermedi-
ate language for static verification [10]. Boogie is a very simple programming
language, for which it is straightforward to build correct verification tools. To
provide support for more advanced programming languages, it is sufficient to
define an encoding into Boogie. Boogie is used as the intermediate verification
language for various programming languages, including Java (in OpenJML),
Java bytecode [86], and C# (in Spec#). After the work on Spec# and Boogie,
Leino took a slightly different approach: instead of developing a verification tool
for an existing programming language, he designed Dafny, which is a program-
ming language with built-in support for specification and verification [89], and
in particular supporting dynamic frames [76].

Another widely used intermediate language is Why3 [24] which nowadays is
used as a backend for SPARK 2014, the current version of SPARK/Ada [81], and
Frama-C, a tool for the verification of C programs [80], specified with the JML-
like language ACSL. Its original version (Why [47]) has been used as a backend

354 R. Hähnle and M. Huisman

for Krakatoa [98] (for Java programs) and Jessie (for C programs). Frama-C
provides more than mere deductive verification: it also supports runtime verifi-
cation, and it contains analysis tools such as a slicer and a tool for dependency
analysis. Much attention is given to the combination and interaction between
these tools, for example how testing can be used automatically to understand
why a proof fails [109]. Intermediate languages in the context of model checking
are discussed in the article Software Architecture of Modern Model-Checkers in
this issue.

A final example is the Infer tool [32], which supports fully automated deduc-
tive verification techniques to reason about memory safety properties of C pro-
grams. Infer uses separation logic, an extension of classical Hoare logic, which is
especially suited to reason about pointer programs. The development of separa-
tion logic resulted in the creation of a series of research prototype tools (Small-
foot, Space Invader, Abductor) as a way to automatically analyze memory safety
of programs. As the focus of Infer is on a restricted set of properties, specifica-
tions are not required (but it is possible to obtain the specs that infer derives
from the analysis). Infer is integrated in the Facebook code inspection chain,
and is used as one of the standard checks before code changes are committed.

All tools mentioned above have their specific strengths and weaknesses. How-
ever, they share that they target the verification of realistic programming lan-
guages, and have made substantial progress in this direction. Several of the
tools mentioned above are used in undergraduate teaching (both at Bachelor
and Master level). Importantly, this does not happen only at the universities of
the tools’ own developers, but also at other universities where lecturers find it
important to teach their students state-of-the-art techniques that can help to
improve software reliability.

There exist many verification case studies, where unmodified (library) code
was annotated and verified, and often bugs were discovered, see e.g. [39,79,
102,111,116]. Despite those success stories, there is a growing realization that
post-hoc verification and, in particular, specification, remains difficult and chal-
lenging, and that there always is a trade-off between the verification effort and
the level of reliability that is required for an application. A result of this realiza-
tion is that we see a shift of emphasis from proving correctness of an application
to bug-finding and program understanding.

5 Achievements and Challenges: Technical

5.1 Specification Languages

Deductive verification starts with specifying what should be verified, i.e., what
behaviour we expect from the implementation. This is where the specification
language comes into play.

In essence, expected program behaviour is described in the form of a method
contract: a precondition specifies the assumptions under which a method may be
called; a postcondition specifies what is achieved by its implementation, e.g., the

Deductive Software Verification 355

computed result, or its effect on the global state. Eiffel was the first mainstream
programming language that featured such method specifications [100].4

Achievements. For the deductive software verification community, the design
of JML, the Java Modeling Language [66,84], has been a major achievement.
Figures 1 and 2 in Sect. 2 illustrate typical JML specifications. JML features
method contracts, similar to Eiffel, but in addition provides support for more
high-level specification constructs for object-oriented programming languages,
such as class invariants, model elements, and history constraints [94]. One of the
important design principles of JML is that its notation is similar to Java. Prop-
erties in JML are basically Java expressions with Boolean types, and only a few
specific specification-only constructs such as quantification, and implication have
been added. As a result, JML specifications have a familiar look and feel, and
can easily be understood. JML is also used as a specification language for other
formal validation techniques, such as test case generation, and runtime asser-
tion checking, which further increases its usability in the software development
process.

JML is a rich specification language; complex specifications can be expressed
in it. It provides extensive support for abstraction in the form of a fully-fledged
theory of model specification elements, based on the idea of data abstraction
as introduced by Hoare [62]. The principles behind this are old, but JML turns
it into a technique that can be used in practice. Abstraction allows a clear
separation of concerns between specification language and implementation [33],
and increases portability of specifications.

The design of JML has been influential in the design of other specification lan-
guages for deductive verification, such as the ANSI/ISO C Specification Langage
(ACSL), which is used in the Frama-C project [80], and the Spec# specification
language for C# [11] and its spin-off Code Contracts [96].

Challenges. A central problem of deductive verification is that specifications can-
not be as declarative and abstract as one would like them, in order for verification
proofs to succeed. Specifications become polluted with intermediate assertions
and implementation properties that are necessary as hints for the verification
engine. This becomes problematic in the verification of large code bases and
is exacerbated by usage of off-the-shelf libraries. To improve the situation, we
believe attention should be given to address the following two challenges:

S.1 Provide specifications for widely-used APIs. At the very least, these should
describe under which circumstances methods will (not) produce exceptions.
For specific APIs, such as the standard Java collection library, also functional
specifications describing their intended behaviour are required. This task
is work-intensive and has little (direct) scientific reward. It is, therefore,
difficult to find funding to conduct the required work, see also challenge F.1.

4 However, Eiffel contracts were intended for runtime (rather than static) verification.

356 R. Hähnle and M. Huisman

S.2 Develop techniques to infer specifications from code in a (semi-)automated
manner. Many specification details that have to be spelled out explicitly,
actually can be inferred from the code (as illustrated in the example of
Sect. 2). There is work on specification generation [63,101], but it is not
integrated into deductive verification frameworks (see challenge I.9).

5.2 Integration

Integration aspects of formal verification appear on at least three levels. On the
most elementary level, there is the software engineering aspect of tool integration
and reuse. Then there is the aspect of integrating different methods and analyses
to combine their complementary strengths. Finally, there is the challenge to
integrate formal verification technology into an existing production environment
such that added value is perceived by its users. We discuss each aspect in turn
in the following subsections.

Tool Integration and Reuse. Software reuse is still considered to be a chal-
lenging technology in Software Engineering5 in general. Therefore, it is not sur-
prising that this is the case for formal verification in particular. The situation is
exacerbated there, due to the complexity of interfaces and data structures.

Achievements. One success story of tool reuse in deductive verification is cen-
tered around Boogie [10] (see also Sect. 4), an intermediate specification and
verification language and VCG tool chain, most often complemented by the
SMT solver Z3 [40] as its backend. Boogie is a minimalist language, optimized
for formal verification. It is used as a backend in several verification tool chains,
including Chalice [87], Dafny [89], Spec# [11], and VCC [36]. More recently, also
the intermediate verification language Silver [104], which has built-in support for
permission-based reasoning, reuses Boogie as one its backends. In addition, it
also comes with its own verification backend, an SE-based tool called Silicon.
Interestingly, Silver in turn, is used as a backend in the VerCors platform [8]
for reasoning about concurrent Java and OpenCL programs. Similarly, but with
less extensive reuse, the WhyML intermediate verification language is used in
the verification systems Frama-C [80] and Krakatoa [47]. Recently, a translation
from Boogie to WhyML was presented [5] that links both strands. The state-of-
art on tool integration in the model checking domain is discussed in the article
Software Architecture of Modern Model-Checkers in this issue.

Challenges. Intermediate verification languages are good reuse candidates,
because they are small and have a clear semantics. In addition, compilation
is a well-understood, mainstream technology with excellent tool support. This
makes it relatively easy to implement new frontends. On the other hand, tool
reuse at the “user level”, for example, for JML/Java or ACSL/C is much harder
to achieve and we are not aware of any significant case.
5 There is a whole conference series devoted to this topic, see https://en.wikipedia.

org/wiki/International Conference on Software Reuse.

https://en.wikipedia.org/wiki/International_Conference_on_Software_Reuse
https://en.wikipedia.org/wiki/International_Conference_on_Software_Reuse

Deductive Software Verification 357

I.1 Equip frontend (JML, Java, ACSL, C, . . .) as well as backend (Boogie, Silver,
Why, . . .) languages with precise, preferably formal, semantics. In the case
of complex frontend languages this involves identifying a “core” that must
then be supported by all tools.

I.2 Equip formal verification tools with a clear, modular structure and offer their
functionality in well-documented APIs. This is a work-intensive task with
few scientific rewards and, therefore, closely related to Challenge F.1.

I.3 Establish and maintain a tool integration community, to foster work on reuse
and increase its appreciation as a valuable contribution.6

Method Integration. Arguably, one of the largest, self-imposed stumbling
blocks of formal methods has been the propagation of monolithic approaches.
At least in deductive verification, it became very clear within the last decade that
software development, formal specification, formal verification, runtime verifica-
tion, test case generation, and debugging are not separate activities, but they
have to be done in concert. At the same time, formal specifications have to be
incrementally developed and debugged just as the pieces of code whose behavior
they describe. This is now commonly accepted in the community, even if the
infrastructure is not there yet; however, there are encouraging efforts.

Achievements. It is impossible to list exhaustively the flurry of papers that
recently combined formal verification with, for instance, abstract interpreta-
tion [117], debugging [58], invariant generation [82], software IDEs [92], testing
[109], to give only a few examples.

Most deductive verification tools (as well as proof assistants) provide an inter-
face to SMT solvers via the SMT-LIB [12] standard. There is growing interest in
formal verification from the first-order theorem proving community where tools
can be integrated via the TPTP standard [119]. There is also work towards the
exchange of correctness witnesses among verifiers [17].

An interesting recent trend is that specialized verification and static analysis
tools are being equipped with more general techniques. For example, the termina-
tion analysis tool AProVE [50] as well as the safety verification tool CPAchecker
[18] both implement a symbolic execution engine to improve their precision. We
observe that boundaries between different verification subcommunities that used
to be demarcated by different methods and tools are dissolving.

Challenges. In addition to the tool integration challenges mentioned above, on
the methodological level, questions of semantics and usability arise. To mention
just one example, there is a plethora of approaches to loop invariant generation,
see e.g., [46,63,114]. All of them come with certain limitations. They tend to be

6 Relating to formal methods-based software tools in general, the journal Software
Tools for Technology Transfer (STTT), as well as the conference Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS), were established as
dedicated venues to foster tool integration and maturation. The article [118] dis-
cusses the history and the challenges of this endeavor, see also I.7.

358 R. Hähnle and M. Huisman

driven by the technology they employ, not by applications and they are designed
as stand-alone tools. This makes their effective usage very difficult.

Another area from whose integration deductive verification could benefit is
machine learning, specifically, automata learning (see also the article Combining
Black-Box and White-Box Techniques for Learning Register Automata in this
issue).

I.4 Calls to auxiliary tools must return certificates, which must be re-interpreted
in the caller’s correctness framework. This is necessary to ensure correctness
arguments without gaps.

I.5 The semantic assumptions on which different analysis methods are based
must be spelled out, so that it is possible to combine different approaches in
a sound manner. Some work in this direction has been done for the .NET
static analyzer Clousot [35], but such investigations should be done on a
much larger scale.

I.6 There is a plethora of possible combinations of tools and methods. So far,
method and tool integration is very much ad hoc. There should be a sys-
tematic investigation about which combinations make methodological sense,
what there expected impact is, and what effort their realization would
require.

I.7 A research community working on method integration should be established.

Integration with the Software Production Environment. It is very diffi-
cult to integrate software verification technology into a production environment.
Some of the reasons are of a non-technical nature and concern, for example,
usability or the production context. These are explored in Sect. 6 below. Another
issue might be the lack of coverage, see Sect. 5.3. In the following, we concentrate
on processes and work flows.

Achievements. Our guiding question is: How can formal software verification be
usefully integrated into a software development process? The emerging integra-
tion of verification, test generation, and debugging aspects into single tool chains,
as described above, is an encouraging development. We begin to see deductive
verification tools that are intentionally presented as enhanced software develop-
ment environments, for example, the Symbolic Execution Debugger (SED) [56]
based on Eclipse or the Dafny IDE [91] based on MS Visual Studio.

Several verification tools support users in keeping track of open proof obli-
gations [59,80,91] after changes to the code or specification. This is essential to
support incremental software development, but not sufficient. To realize version-
ing and team-based development of verified software, it is necessary to general-
ize code repositories into proof repositories [30]: a commit computes not merely
changes, but a minimal set of new proof obligations that arise as a consequence
of what was changed.

Another issue is that most verification attempts fail at first. It requires often
many tries to render a complex verification target provable [39]. It is crucial
to provide feedback to the user about the possible cause behind a failed proof.

Deductive Software Verification 359

Systems, such as KeY [3], can provide symbolic counter examples, and SED [56]
computes symbolic backward slices from failure nodes in symbolic evaluation
trees. The system StaDy [109] goes beyond this and uses dynamic verification
to analyze failed proofs. The StaRVOOrS framework [34] generates optimized
runtime assertion monitors for the unprovable parts of a specification.

In the context of commercial software production one can question whether
functional verification is a worthwhile and realistic goal in the first place.
Arguably, for safety- and security-critical code, as well as for software libraries
used by millions, it is, but probably not for any kind of software. However, this
does not mean that formal verification technology is restricted to the niches men-
tioned above, because there are many relevant formal verification scenarios, in
addition to functional verification, notably: bug finding (discussed in Sect. 4) [15],
information flow [44], and symbolic fault injection [83].

Challenges. The nature of software development is mostly incremental and evo-
lutionary, and this must be accounted for by formal verification technology when
used in commercial production. This is not the case at the moment.

Perhaps the biggest obstacle in functional verification is the lack of detailed
enough specification annotations in the form of contracts and loop invariants.
Without contracts, in particular for library methods, deductive verification does
not scale. For some verification scenarios less precise annotations will do, but in
general this is a huge bottleneck [13].

I.8 Implement proof repositories that support incremental and evolutionary ver-
ification and integrate them with verification tools.

I.9 Integrate automated specification generation techniques into the verification
process.

5.3 Coverage

To make sure that deductive verification tools are practically usable, they need
to support verification of a substantial part of the programming language. This
means that for every construct of the programming language, verification tech-
niques need to be developed (or at least, clear boundaries have to be provided,
detailing what is covered, and what is not). Moreover, once the verification tech-
niques are there, all variations of the programming language construct need to
have tool support. Developing suitable verification techniques is typically a sci-
entific challenge, but ensuring that a tool supports all variations of a language
construct is mainly an engineering issue. If a language construct is not supported,
preferably the tool design is such that it gracefully ignores the non-understood
construct, and warns the user about this.

Achievements. State-of-the-art tools for deductive verification currently cover
a very large part of the sequential fragment of industrially-used languages. To
mention a few: OpenJML [37], KeY [3] and KIV [45] for Java, Frama-C [80],
VeriFast [72] and Infer [32] for C, AutoProof [120] for Eiffel, and SPARK [60]

360 R. Hähnle and M. Huisman

for Ada. These tools are mature enough to verify non-trivial software applica-
tions, and to identify real bugs in them, as discussed in Sect. 4. However, for
more advanced language features such as reflection, and recent features such as
lambdas in Java, verification technology still has to be developed (and thus, is
currently not supported by these tools).

To provide tool support for a realistic programming language entails verifica-
tion techniques such as reasoning about integer types (including overflow) [16],
reference types, and exceptions [70]. Some of these, for example, support to rea-
son about exceptions, became mainstream and are built into all modern deduc-
tive verification tools. In contrast, precise reasoning about integers, including
overflow, often clutters up specifications and renders verification much harder.
Therefore, many deductive verification tools abstract away from it, or provide it
as an optional feature.

There is active research to investigate how to extend support for deductive
verification to concurrent software. This opens up a whole new range of prob-
lems, because one has to consider all possible interleavings of the different pro-
gram threads. Pen-and-paper verification techniques existed already for a long
time [75,107], however, tool support for them remained a challenge.

The advent of concurrent separation logic [28,106] gave an important boost,
as it enabled modular verification of individual threads in a (relatively) sim-
ple way. This has given rise to a plethora of new program logics to reason
about both coarse-grained and fine-grained concurrency, see [29] for an overview.
Also variations of separation logic for relaxed memory models have been pro-
posed [121,124]. However, most of these logics still lack tool support.

In parallel to the theoretical developments, the basic ideas of concurrent sep-
aration logic, extended with permissions [25,26] started to find their way into
deductive verification tools. Existing tools such as VeriFast [72], VerCors [9,20]
and VCC [36] support verification of data race-freedom for different programming
languages, using both re-entrant locks [6] and atomic operations as synchronisa-
tion primitives [7,71]. Current investigations focus on the verification of functional
properties of concurrent software by means of abstraction [23]. In addition to Java
and C, the VerCors tool set also supports reasoning about OpenCL kernels, which
is using a different concurrency paradigm [22]. Also the KeY verifier provides some
support to reason interactively about data race freedom of concurrent applica-
tions [103]. This approach can be used in addition to VeriFast and VerCors, and
is in particular suitable to trace the source of a failing verification.

There also exist alternative verification techniques for concurrent software
that use a restricted setup to achieve their goals. In particular, Cave [123] auto-
matically proves memory safety and linearizability using an automated inference
algorithm for RGSep, a combination of rely-guarantee reasoning and separa-
tion logic [125]. Just as the Infer tool mentioned above, it achieves automa-
tion by restricting the class of properties that can be verified. Another alter-
native line of work is to investigate more restricted concurrency models that
allow near-sequential verification techniques. This is the approach advocated
in ABS [74] which supports cooperative multitasking with explicit scheduling
points [43].

Deductive Software Verification 361

Challenges. The main challenges with respect to coverage go into two different
directions: one is to cover more aspects of the programming languages already
supported; the other is to cover new classes of programming languages.

C.1 Precise verification of floating point numbers is essential for many algo-
rithms, in particular in domains such as avionics. There is preliminary
work [108], but a full-fledged implementation of floating point numbers in
deductive verification systems is not yet available. A promising recent break-
through is an automatable formal semantics for floating points numbers [27]
which found its way also into the SMT-LIB and the SMT competition.

C.2 Tool support for verification of concurrent software is still in its infancy.
We need further developments in two directions: (1) automated support of
functional properties of fine-grained concurrency, which does not require an
overwhelming amount of complex annotations, and can be used by non-
experts in formal verification, and (2) verification techniques for relaxed
memory models that resemble realistic hardware-supported concurrent exe-
cution models.

C.3 Reasoning techniques for programs that use reflection are necessary for
application scenarios such as the analysis of obfuscated malware, or of
dynamic software updates.

C.4 The rapid evolution of industrial programming languages (e.g., substantial
new features are added to Java every 2–3 years) is a challenge for tools that
are maintained with the limited manpower of academic research groups.
Translation to intermediate languages is one way out, but makes it harder
to provide feedback at the source level. Ulbrich [122] suggested a systematic
framework for combining deductive verification at the intermediate language
level with user interaction at the source level, but it has yet to be integrated
into a major tool.

C.5 Deductive verification technology is not merely applicable to software, but
also to cyber-physical systems, as they exhibit similar properties [52]. Com-
putational engineers are mainly working with partial differential equations
to describe their systems, and they implement these in C, MATLAB, etc.
There are some results and tools for deductive verification of hybrid sys-
tems [49]. Hybrid systems have been traditionally modeled with differen-
tial equations (see the article Multi-Mode DAE Models: Challenges, Theory
and Implementation in this issue) and automata-based techniques (article
Continuous-time Models for System Design and Analysis in this issue). It is
an open problem to find out how these different methodological approaches
relate to and could benefit from each other.

6 Achievements and Challenges: Non-technical

6.1 Usability

Research in formal verification is method- and tool-driven. As a consequence, the
effectiveness of a novel method or a new tool is usually simply claimed without

362 R. Hähnle and M. Huisman

justification or, at best, underpinned by citing execution statistics. The latter
are often micro benchmarks carried out on small language fragments. The best
case are industrial case studies which may or may not be representative and in
nearly all publications these are performed by the researchers and tool builders
themselves, not by the intended users.

To convince industrial stakeholders of the usefulness of a formal verification
approach, it is not only necessary to demonstrate that it can fit into the existing
development environment (see Sect. 5.2), but also to argue that one can solve
tasks more effectively or faster than with a conventional solution. This is only
possible with the help of experimental user and usability studies.

Achievements. There are very few usability studies around formal verification
tools. We know of an evaluation of KeY and Isabelle based on focus groups [14],
while the papers [21,57,69] contain user studies or analyses on API usage, prover
interfaces, and proof critics, respectively. There are a few papers that attempt to
construct user models or elicit user expectations, but [57] seems to be the only
experimental user study so far that investigated the impact of design decisions
taken in a verification system on user performance.

Challenges. To guide research about formal verification so that it has impact
on industrial practice, it is essential to back up claims on increased effectiveness
or productivity with controlled user experiments. This has been proven to be
beneficial in the fields of Software Engineering and Computer Security.

U.1 Claims about increased effectiveness or productivity attributed to new meth-
ods or tools should be backed up by experimental user studies.

U.2 Establish the paper category Experimental User Study as an acceptable kind
of submission in formal verification conferences and journals.

6.2 Funding

To support formal verification of industrial languages in real applications requires
a sustained effort over many years. As detailed in the previous sections, to spec-
ify and to reason about programs means that the semantics of the language they
are written in must be fully and deeply understood, solutions for inference and
its automation must be found, suitable specification abstractions must be dis-
covered. To formulate appropriate theoretical and methodological underpinnings
took decades and the process is still not complete for complex aspects such as
floating point types and weak memory models (Sect. 5.3).

The road from the first axiomatic descriptions of program logics (Sect. 3)
to the verification of software written in major programming language that is
actually in use was long, and we are by far not at its end. It takes a long view,
much patience, and careful documentation to avoid “re-invention of the wheel”
or even regression. Tool building is particularly expensive and can take decades.
To protect these large investments and to ensure measurable progress, long-term
projects turned out to be most suitable.

Deductive Software Verification 363

Achievements. There are several long-term projects in deductive software verifi-
cation that have sufficiently matured to enable industrial applicability (see also
Sect. 4). We mention ACL27, Boogie8, KeY9, KIV10, OpenJML11, SparkPro12,
and Why/Krakatoa13.

Challenges. Some of the long-term projects mentioned above are supported by
research labs with strong industrial ties (Altran, INRIA, MSR). Unfortunately,
neither the trend to embedded industrial research nor the current climate of
academic funding are very well suited for this kind of enterprise. The challenge
for ambitious projects, such as DeepSpec14, is their continuation after the initial
funding runs out. It is worrying that all existing long-term academic projects
on deductive software verification were started before 2000. Further detrimental
factors to long-time engineering-heavy projects are the publication requirements
for tenured positions in Computer Science as well as the unrealistic expecta-
tions on short-term impact demanded from many funding agencies. Successful
long-term research is not “disruptive” in its nature, but slowly and systemati-
cally builds on previous results. On the other hand, usability aspects of formal
verification are hardly ever evaluated.

F.1 The academic reward system should give incentives for practical achieve-
ments and for long-term success (see [4] for some concrete suggestions how
this could be achieved).

F.2 Large parts of Computer Science should be classified and treated as an Engi-
neering or Experimental Science with an according funding model. Specifi-
cally, there needs to be funding for auxiliary personnel (professional software
developers) and for software maintenance: complex software systems should
be viewed like expensive equipment, such as particle colliders. The base level
of funding should be that of an engineering or experimental science, not a
mathematical science.

F.3 Grant proposals should foresee and include funding to carry out systematic
experimental studies, also involving users. For example, money to reward
the participants of user studies must be allocated.

6.3 Industrial and Societal Context

The best prospects for industrial take-up of deductive verification technology is
in application areas that are characterized by high demands on software quality.

7 http://www.cs.utexas.edu/∼moore/acl2/.
8 https://github.com/boogie-org/boogie.
9 http://www.key-project.org/.

10 http://www.isse.uni-augsburg.de/en/software/kiv/.
11 http://www.openjml.org/.
12 http://www.adacore.com/sparkpro/.
13 http://krakatoa.lri.fr/.
14 https://deepspec.org/.

http://www.cs.utexas.edu/~moore/acl2/
https://github.com/boogie-org/boogie
http://www.key-project.org/
http://www.isse.uni-augsburg.de/en/software/kiv/
http://www.openjml.org/
http://www.adacore.com/sparkpro/
http://krakatoa.lri.fr/
https://deepspec.org/

364 R. Hähnle and M. Huisman

This is clearly the case for safety- and security-critical domains that are regulated
by formal standards overseen by certification authorities.

In many other application domains, however, timely delivery or new fea-
tures are considered to be more important than quality. A contributing factor
are certainly the relatively weak legal regulations about software liability. With
the ongoing global trend in digitalization, however, we might experience a surge
in software that can be deemed as safety- or security-critical, in particular, in
the embedded market (e.g., self-driving cars [2], IoT). On the other hand, that
market is partially characterized by a strong vendor lock-in in the form of mod-
eling tools such as MATLAB/Simulink, which have no formal foundations. An
interesting side effect of digitalization is the arrival of companies on the software
market that so far had no major stake in software. Here is an opportunity for
formal methods and formal verification, in particular, since software verification
tools are as well applicable to cyber-physical systems [52,73] (see Challenge C.5).

Formal specification and deductive verification methods are expressed rel-
ative to a target programming language. New features of languages such as
C/C++ or Java are not introduced with an eye on verifiability, making formal
verification and coverage unnecessarily difficult.

Achievements. The latest version of the DO-178C standard [115], which is the
basis for certification for avionics products, contains the Formal Methods Supple-
ment DO-333 that permits formal methods to complement testing. This makes
it, in principle, possible to argue that formal verification can speed up or decrease
the cost of certification.

The development of the concurrent modeling language ABS [74] demon-
strated that it is possible to design a complex programming language with many
advanced features that has an associated verification tool box with high cov-
erage [127], provided that analyzability and verifiability are taken into account
during language design.

Challenges. In order to ensure substantial impact of deductive software veri-
fication in society and industry, a coordinated effort is necessary to influence
standardization and certification activities.

ISC.1 Researchers from the formal verification area should become involved in
language standardization. In general, research in the fields of program-
ming languages and formal verification must be better coordinated.

ISC.2 Researchers from the formal verification area should become actively
involved in the standardization efforts of certification authorities.

ISC.3 Specific quality assurance measures for verification tools such as test cov-
erage, incremental testing, external validation, etc. should be developed
and applied. If deductive software verification should become usable in
certification activities, the software quality of the verification tools them-
selves is a critical issue.

Deductive Software Verification 365

7 Summary

We described the progress made in the area of deductive software verification.
Starting as a pen-and-paper activity in the late 1960s, deductive verification
nowadays is a mature technique and it can substantially increase the reliability
of software in actual production. Advanced tool support is available to reason
about the behaviour of complex programs and library code, written in main-
stream programming languages. Industrial applicability of deductive verification
is witnessed by several success stories.

However, there are many challenges that need to be addressed to make the
transfer from an academic technique to a technique that is a routine part of
commercial software development processes. We divided these challenges into
two categories: technical and non-technical. Technical challenges relate to what
properties can be verified, what programs can we reason about, how we can make
verification largely automatic, and how we provide feedback when verification
fails. Non-technical challenges relate to how we can fund all necessary engineering
efforts, how we can ensure that tool developers get sufficient scientific credits,
and how to convince industrial management that the extra effort needed for
verification will actually be beneficial. We hope that these challenges can serve
as an incentive for future research directions in deductive software verification.

Acknowledgements. We are grateful to Alastair Donaldson, Michael Leuschel, Peter
H. Schmitt and Bernhard Steffen, for carefully reading our paper and for their very
useful feedback. Many thanks to Richard Bubel for help with the preparation of the
example in Sect. 2.

References

1. Abrial, J.-R.: The B Book: Assigning Programs to Meanings. Cambridge Univer-
sity Press, Cambridge (1996)

2. Ackerman, E.: Hail, robo-taxi!. IEEE Spectr. 54(1), 26–29 (2017)
3. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P., Ulbrich, M.

(eds.): Deductive Software Verification-The KeY Book: From Theory to Practice.
LNCS, vol. 10001. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
319-49812-6

4. Alglave, J., Donaldson, A.F., Kroening, D., Tautschnig, M.: Making software
verification tools really work. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011.
LNCS, vol. 6996, pp. 28–42. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-24372-1 3

5. Ameri, M., Furia, C.A.: Why just boogie? Translating between intermediate
verification languages. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS,
vol. 9681, pp. 79–95. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
33693-0 6

6. Amighi, A., Blom, S., Darabi, S., Huisman, M., Mostowski, W., Zaharieva-
Stojanovski, M.: Verification of concurrent systems with VerCors. In: Bernardo,
M., Damiani, F., Hähnle, R., Johnsen, E.B., Schaefer, I. (eds.) SFM 2014. LNCS,
vol. 8483, pp. 172–216. Springer, Cham (2014). https://doi.org/10.1007/978-3-
319-07317-0 5

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-642-24372-1_3
https://doi.org/10.1007/978-3-642-24372-1_3
https://doi.org/10.1007/978-3-319-33693-0_6
https://doi.org/10.1007/978-3-319-33693-0_6
https://doi.org/10.1007/978-3-319-07317-0_5
https://doi.org/10.1007/978-3-319-07317-0_5

366 R. Hähnle and M. Huisman

7. Amighi, A., Blom, S., Huisman, M.: Resource protection using atomics. In: Gar-
rigue, J. (ed.) APLAS 2014. LNCS, vol. 8858, pp. 255–274. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-12736-1 14

8. Amighi, A., Blom, S., Huisman, M.: VerCors: a layered approach to practical
verification of concurrent software. In: 24th Euromicro International Conference
on Parallel, Distributed, and Network-Based Processing, PDP, Heraklion, Crete,
Greece, pp. 495–503. IEEE Computer Society (2016)

9. Amighi, A., Haack, C., Huisman, M., Hurlin, C.: Permission-based separation
logic for multithreaded Java programs. Logical Methods Comput. Sci. 11(1)
(2015)

10. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111,
pp. 364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192 17

11. Barnett, M., Leino, K.R.M., Schulte, W.: The spec# programming system: an
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T.
(eds.) CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30569-9 3

12. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: version 2.0. In:
Gupta, A., Kroening, D. (eds.) Proceedings of the 8th International Workshop on
Satisfiability Modulo Theories, Edinburgh, UK (2010)

13. Baumann, C., Beckert, B., Blasum, H., Bormer, T.: Lessons learned from micro-
kernel verification - specification is the new bottleneck. In: Cassez, F., Huuck,
R., Klein, G., Schlich, B. (eds.) Proceedings of the 7th Conference on Systems
Software Verification. EPTCS, vol. 102, pp. 18–32 (2012)

14. Beckert, B., Grebing, S., Böhl, F.: A usability evaluation of interactive theorem
provers using focus groups. In: Canal, C., Idani, A. (eds.) SEFM 2014. LNCS,
vol. 8938, pp. 3–19. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
15201-1 1

15. Beckert, B., Klebanov, V., Ulbrich, M.: Regression verification for Java using a
secure information flow calculus. In: Monahan, R. (ed.) Proceedings of the 17th
Workshop on Formal Techniques for Java-Like Programs, FTfJP, Prague, Czech
Republic, pp. 6:1–6:6. ACM (2015)

16. Beckert, B., Schlager, S.: Software verification with integrated data type refine-
ment for integer arithmetic. In: Boiten, E.A., Derrick, J., Smith, G. (eds.) IFM
2004. LNCS, vol. 2999, pp. 207–226. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24756-2 12

17. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: exchang-
ing verification results between verifiers. In: Zimmermann, T., Cleland-Huang, J.,
Su, Z. (eds.) Proceedings of the 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE, Seattle, WA, USA, pp. 326–337.
ACM (2016)

18. Beyer, D., Lemberger, T.: Symbolic execution with CEGAR. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 195–211. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47166-2 14

19. Bjørner, N., Browne, A., Colón, M., Finkbeiner, B., Manna, Z., Sipma, H., Uribe,
T.E.: Verifying temporal properties of reactive systems: a step tutorial. Formal
Methods Syst. Des. 16(3), 227–270 (2000)

20. Blom, S., Huisman, M.: The VerCors tool for verification of concurrent programs.
In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp.
127–131. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06410-9 9

https://doi.org/10.1007/978-3-319-12736-1_14
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/978-3-540-30569-9_3
https://doi.org/10.1007/978-3-319-15201-1_1
https://doi.org/10.1007/978-3-319-15201-1_1
https://doi.org/10.1007/978-3-540-24756-2_12
https://doi.org/10.1007/978-3-540-24756-2_12
https://doi.org/10.1007/978-3-319-47166-2_14
https://doi.org/10.1007/978-3-319-06410-9_9

Deductive Software Verification 367

21. Blom, S., Huisman, M., Kiniry, J.: How do developers use APIs? A case study in
concurrency. In: International Conference on Engineering of Complex Computer
Systems (ICECCS), Singapore, pp. 212–221. IEEE Computer Society (2013)

22. Blom, S., Huisman, M., Mihelčić, M.: Specification and verification of GPGPU
programs. Sci. Comput. Program. 95, 376–388 (2014)

23. Blom, S., Huisman, M., Zaharieva-Stojanovski, M.: History-based verification of
functional behaviour of concurrent programs. In: Calinescu, R., Rumpe, B. (eds.)
SEFM 2015. LNCS, vol. 9276, pp. 84–98. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-22969-0 6

24. Bobot, F., Filliâtre, J.-C., Marché, C., Paskevich, A.: Why3: shepherd your herd
of provers. In: Boogie 2011: First International Workshop on Intermediate Verifi-
cation Languages (2011)

25. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting
in separation logic. In: Palsberg, J., Abadi, M. (eds.) Proceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL, Long Beach, California, USA, pp. 259–270. ACM (2005)

26. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R.
(ed.) SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-44898-5 4

27. Brain, M., Tinelli, C., Rümmer, P., Wahl, T.: An automatable formal semantics
for IEEE-754 floating-point arithmetic. In: 22nd IEEE Symposium on Computer
Arithmetic, ARITH 2015, Lyon, France, pp. 160–167. IEEE (2015)

28. Brookes, S.: A semantics for concurrent separation logic. Theoret. Comput. Sci.
375(1–3), 227–270 (2007)

29. Brookes, S., O’Hearn, P.: Concurrent separation logic. ACM SIGLOG News 3(3),
47–65 (2016)

30. Bubel, R., Damiani, F., Hähnle, R., Johnsen, E.B., Owe, O., Schaefer, I., Yu, I.C.:
Proof repositories for compositional verification of evolving software systems. In:
Steffen, B. (ed.) Transactions on Foundations for Mastering Change I. LNCS,
vol. 9960, pp. 130–156. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-46508-1 8

31. Burstall, R.M.: Program proving as hand simulation with a little induction. In:
Information Processing 1974, pp. 308–312. Elsevier/North-Holland, Amsterdam
(1974)

32. Calcagno, C., Distefano, D.: Infer: an automatic program verifier for memory
safety of C programs. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R.
(eds.) NFM 2011. LNCS, vol. 6617, pp. 459–465. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20398-5 33

33. Cheon, Y., Leavens, G., Sitaraman, M., Edwards, S.: Model variables: cleanly
supporting abstraction in design by contract. Softw. Pract. Exp. 35, 583–599
(2005)

34. Chimento, J.M., Ahrendt, W., Pace, G.J., Schneider, G.: StaRVOOrS: a tool for
combined static and runtime verification of Java. In: Bartocci, E., Majumdar, R.
(eds.) RV 2015. LNCS, vol. 9333, pp. 297–305. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-23820-3 21

35. Christakis, M., Müller, P., Wüstholz, V.: An experimental evaluation of deliberate
unsoundness in a static program analyzer. In: D’Souza, D., Lal, A., Larsen, K.G.
(eds.) VMCAI 2015. LNCS, vol. 8931, pp. 336–354. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46081-8 19

https://doi.org/10.1007/978-3-319-22969-0_6
https://doi.org/10.1007/978-3-319-22969-0_6
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/978-3-319-46508-1_8
https://doi.org/10.1007/978-3-319-46508-1_8
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-319-23820-3_21
https://doi.org/10.1007/978-3-319-23820-3_21
https://doi.org/10.1007/978-3-662-46081-8_19

368 R. Hähnle and M. Huisman

36. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: a practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03359-9 2

37. Cok, D.: OpenJML: software verification for Java 7 using JML, OpenJDK, and
Eclipse. In: Dubois, C., Giannakopoulou, D., Méry, D. (eds.) 1st Workshop on
Formal Integrated Development Environment, (F-IDE). EPTCS, vol. 149, pp.
79–92 (2014)

38. Cok, D.R., Kiniry, J.R.: ESC/Java2: uniting ESC/Java and JML. In: Barthe, G.,
Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, pp. 108–128. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-30569-9 6

39. de Gouw, S., Rot, J., de Boer, F.S., Bubel, R., Hähnle, R.: OpenJDK’s
Java.utils.Collection.sort() is broken: the good, the bad and the worst case. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 273–289.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 16

40. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

41. Deussen, P., Hansmann, A., Käufl, T., Klingenbeck, S.: The verification system
Tatzelwurm. In: Broy, M., Jähnichen, S. (eds.) KORSO: Methods, Languages, and
Tools for the Construction of Correct Software. LNCS, vol. 1009, pp. 285–298.
Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0015468

42. Dijkstra, E.: A Discipline of Programming. Prentice-Hall, Upper Saddle River
(1976)

43. Din, C.C., Bubel, R., Hähnle, R.: KeY-ABS: a deductive verification tool for the
concurrent modelling language ABS. In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 517–526. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21401-6 35

44. Do, Q.H., Bubel, R., Hähnle, R.: Exploit generation for information flow leaks
in object-oriented programs. In: Federrath, H., Gollmann, D. (eds.) SEC 2015.
IAICT, vol. 455, pp. 401–415. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-18467-8 27

45. Ernst, G., Pfähler, J., Schellhorn, G., Haneberg, D., Reif, W.: KIV: overview and
verifythis competition. STTT 17(6), 677–694 (2015)

46. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz,
M.S., Xiao, C.: The Daikon system for dynamic detection of likely invariants. Sci.
Comput. Program. 69(1–3), 35–45 (2007)

47. Filliâtre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus platform for deductive
program verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol.
4590, pp. 173–177. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-73368-3 21

48. Floyd, R.W.: Assigning meanings to programs. Proc. Symp. Appl. Math 19, 19–31
(1967)

49. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an
axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp,
A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21401-6 36

https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-540-30569-9_6
https://doi.org/10.1007/978-3-540-30569-9_6
https://doi.org/10.1007/978-3-319-21690-4_16
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/BFb0015468
https://doi.org/10.1007/978-3-319-21401-6_35
https://doi.org/10.1007/978-3-319-21401-6_35
https://doi.org/10.1007/978-3-319-18467-8_27
https://doi.org/10.1007/978-3-319-18467-8_27
https://doi.org/10.1007/978-3-540-73368-3_21
https://doi.org/10.1007/978-3-540-73368-3_21
https://doi.org/10.1007/978-3-319-21401-6_36

Deductive Software Verification 369

50. Giesl, J., et al.: Proving termination of programs automatically with AProVE. In:
Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol.
8562, pp. 184–191. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08587-6 13

51. Hähnle, R., Heisel, M., Reif, W., Stephan, W.: An interactive verification system
based on dynamic logic. In: Siekmann, J.H. (ed.) CADE 1986. LNCS, vol. 230,
pp. 306–315. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-16780-
3 99

52. Kamburjan, E., Hähnle, R.: Uniform modeling of railway operations. In: Artho,
C., Ölveczky, P.C. (eds.) FTSCS 2016. CCIS, vol. 694, pp. 55–71. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-53946-1 4

53. Hähnle, R., Menzel, W., Schmitt, P.: Integrierter deduktiver Software-Entwurf.
Künstliche Intelligenz, pp. 40–41, December 1998

54. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. Foundations of Computing. MIT
Press, Cambridge (2000)

55. Heisel, M., Reif, W., Stephan, W.: Program verification by symbolic execution
and induction. In: Morik, K. (ed.) GWAI-87 11th German Workshop on Artifical
Intelligence. Informatik-Fachberichte, vol. 152, pp. 201–210. Springer, Heidelberg
(1987). https://doi.org/10.1007/978-3-642-73005-4 22

56. Hentschel, M., Bubel, R., Hähnle, R.: Symbolic execution debugger (SED). In:
Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 255–262.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3 21

57. Hentschel, M., Hähnle, R., Bubel, R.: An empirical evaluation of two user inter-
faces of an interactive program verifier. In: Lo, D., Apel, S., Khurshid, S. (eds.)
Proceedings of the 31st IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), Singapore, pp. 403–413. ACM Press, September 2016

58. Hentschel, M., Hähnle, R., Bubel, R.: The interactive verification debugger: effec-
tive understanding of interactive proof attempts. In: Lo, D., Apel, S., Khurshid,
S. (eds.) Proceedings of the 31st IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), Singapore, pp. 846–851. ACM Press, Septem-
ber 2016

59. Hentschel, M., Käsdorf, S., Hähnle, R., Bubel, R.: An interactive verification tool
meets an IDE. In: Albert, E., Sekerinski, E. (eds.) IFM 2014. LNCS, vol. 8739,
pp. 55–70. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10181-1 4

60. Hoang, D., Moy, Y., Wallenburg, A., Chapman, R.: SPARK 2014 and GNATprove:
a competition report from builders of an industrial-strength verifying compiler.
STTT 17(6), 695–707 (2015)

61. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580, 583 (1969)

62. Hoare, C.A.R.: Proof of correctness of data representations. Acta Informatica 1,
271–281 (1972)

63. Hoder, K., Kovács, L., Voronkov, A.: Invariant generation in vampire. In: Abdulla,
P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 60–64. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9 7

64. Homeier, P.V., Martin, D.F.: A mechanically verified verification condition gen-
erator. Comput. J. 38(2), 131–141 (1995)

65. Huisman, M.: Reasoning about Java programs in higher order logic with PVS and
Isabelle. Ph.D. thesis, University of Nijmegen (2001)

66. Huisman, M., Ahrendt, W., Grahl, D., Hentschel, M.: Formal specification with
the Java modeling language. In: Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R.,

https://doi.org/10.1007/978-3-319-08587-6_13
https://doi.org/10.1007/978-3-319-08587-6_13
https://doi.org/10.1007/3-540-16780-3_99
https://doi.org/10.1007/3-540-16780-3_99
https://doi.org/10.1007/978-3-319-53946-1_4
https://doi.org/10.1007/978-3-642-73005-4_22
https://doi.org/10.1007/978-3-319-11164-3_21
https://doi.org/10.1007/978-3-319-10181-1_4
https://doi.org/10.1007/978-3-642-19835-9_7

370 R. Hähnle and M. Huisman

Schmitt, P., Ulbrich, M. (eds.) Deductive Software Verification - The KeY Book.
LNCS, vol. 10001, pp. 193–241. Springer, Cham (2016)

67. Huisman, M., Jacobs, B.: Java program verification via a Hoare logic with abrupt
termination. In: Maibaum, T. (ed.) FASE 2000. LNCS, vol. 1783, pp. 284–303.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46428-X 20

68. Huisman, M., Monahan, R., Müller, P., Poll, E.: VerifyThis 2016: a program
verification competition. Technical report TR-CTIT-16-07, Centre for Telematics
and Information Technology, University of Twente, Enschede (2016)

69. Ireland, A., Jackson, M., Reid, G.: Interactive proof critics. Formal Asp. Comput.
11(3), 302–325 (1999)

70. Jacobs, B.: A formalisation of Java’s exception mechanism. In: Sands, D. (ed.)
ESOP 2001. LNCS, vol. 2028, pp. 284–301. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-45309-1 19

71. Jacobs, B., Piessens, F.: Expressive modular fine-grained concurrency specifica-
tion. In: Ball, T., Sagiv, M. (eds.) Proceedings of the 38th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL, Austin,
TX, USA, pp. 271–282. ACM (2011)

72. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens,
F.: VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In:
Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS,
vol. 6617, pp. 41–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20398-5 4

73. Jeannin, J., Ghorbal, K., Kouskoulas, Y., Gardner, R., Schmidt, A., Zawadzki,
E., Platzer, A.: Formal verification of ACAS X, an industrial airborne collision
avoidance system. In: Girault, A., Guan, N. (eds.) International Conference on
Embedded Software, EMSOFT, Amsterdam, Netherlands, pp. 127–136. IEEE
(2015)

74. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core
language for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 8

75. Jones, C.: Tentative steps toward a development method for interfering programs.
ACM Trans. Program. Lang. Syst. 5(4), 596–619 (1983)

76. Kassios, I.T.: The dynamic frames theory. Formal Asp. Comput. 23(3), 267–288
(2011)

77. Kassios, I.T., Müller, P., Schwerhoff, M.: Comparing verification condition gen-
eration with symbolic execution: an experience report. In: Joshi, R., Müller, P.,
Podelski, A. (eds.) VSTTE 2012. LNCS, vol. 7152, pp. 196–208. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-27705-4 16

78. Kaufmann, M., Moore, J.S.: Design goals for ACL2. In: Third International School
and Symposium on Formal Techniques in Real Time and Fault Tolerant Systems,
pp. 92–117 (1994)

79. Kiniry, J.R., Morkan, A.E., Cochran, D., Fairmichael, F., Chalin, P., Oostdijk,
M., Hubbers, E.: The KOA remote voting system: a summary of work to date.
In: Montanari, U., Sannella, D., Bruni, R. (eds.) TGC 2006. LNCS, vol. 4661, pp.
244–262. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75336-
0 16

80. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Formal Asp. Comput. 27(3), 573–609 (2015)

https://doi.org/10.1007/3-540-46428-X_20
https://doi.org/10.1007/3-540-45309-1_19
https://doi.org/10.1007/3-540-45309-1_19
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-642-27705-4_16
https://doi.org/10.1007/978-3-540-75336-0_16
https://doi.org/10.1007/978-3-540-75336-0_16

Deductive Software Verification 371

81. Kosmatov, N., Marché, C., Moy, Y., Signoles, J.: Static versus dynamic verifi-
cation in Why3, Frama-C and SPARK 2014. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2016. LNCS, vol. 9952, pp. 461–478. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-47166-2 32

82. Kovács, L.: Symbolic computation and automated reasoning for program analysis.
In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 20–27.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33693-0 2

83. Larsson, D., Hähnle, R.: Symbolic fault injection. In: Beckert, B. (ed.) Proceed-
ings of the 4th International Verification Workshop (Verify) in Connection with
CADE-21 Bremen, Germany, vol. 259, pp. 85–103. CEUR Workshop Proceedings
(2007)

84. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral
interface specification language for Java. Technical report 98-06y, Iowa State Uni-
versity, Department of Computer Science (2003). Revised June 2004

85. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P.,
Kiniry, J., Chalin, P., Zimmerman, D.M., Dietl, W.: JML Reference Manual,
May 2013. Draft revision 2344

86. Lehner, H., Müller, P.: Formal translation of bytecode into BoogiePL. Electr.
Notes Theor. Comput. Sci. 190(1), 35–50 (2007)

87. Leino, K.R.M., Müller, P., Smans, J.: Verification of concurrent programs with
Chalice. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) FOSAD 2007-2009. LNCS,
vol. 5705, pp. 195–222. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03829-7 7

88. Leino, K., Nelson, G., Saxe, J.: ESC/Java user’s manual. Technical report SRC
2000–002, Compaq System Research Center (2000)

89. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

90. Leino, K.R.M., Nelson, G.: An extended static checker for Modula-3. In:
Koskimies, K. (ed.) CC 1998. LNCS, vol. 1383, pp. 302–305. Springer, Heidel-
berg (1998). https://doi.org/10.1007/BFb0026441

91. Leino, K.R.M., Wüstholz, V.: The Dafny integrated development environment.
In: Dubois, C., Giannakopoulou, D., Méry, D. (eds.) Proceedings of the 1st Work-
shop on Formal Integrated Development Environment, F-IDE, Grenoble, France.
EPTCS, vol. 149, pp. 3–15 (2014)

92. Leino, K.R.M., Wüstholz, V.: Fine-grained caching of verification results. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 380–397.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 22

93. Leuschel, M., Falampin, J., Fritz, F., Plagge, D.: Automated property verification
for large scale B models with ProB. Formal Asp. Comput. 23(6), 683–709 (2011)

94. Liskov, B., Wing, J.: A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst. 16(1), 1811–1841 (1994)

95. Litvintchouk, S.D., Pratt, V.R.: A proof-checker for dynamic logic. In: Reddy, R.
(ed.) Proceedings of the 5th International Joint Conference on Artificial Intelli-
gence, pp. 552–558. William Kaufmann, Cambridge (1977)

96. Logozzo, F.: Practical verification for the working programmer with CodeCon-
tracts and abstract interpretation. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011.
LNCS, vol. 6538, pp. 19–22. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-18275-4 3

https://doi.org/10.1007/978-3-319-47166-2_32
https://doi.org/10.1007/978-3-319-47166-2_32
https://doi.org/10.1007/978-3-319-33693-0_2
https://doi.org/10.1007/978-3-642-03829-7_7
https://doi.org/10.1007/978-3-642-03829-7_7
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/BFb0026441
https://doi.org/10.1007/978-3-319-21690-4_22
https://doi.org/10.1007/978-3-642-18275-4_3
https://doi.org/10.1007/978-3-642-18275-4_3

372 R. Hähnle and M. Huisman

97. Luckham, D.C., von Henke, F.W.: An overview of Anna, a specification language
for Ada. IEEE Softw. 2(2), 9–22 (1985)

98. Marché, C., Paulin-Mohring, C., Urbain, X.: The KRAKATOA tool for certifica-
tionof JAVA/JAVACARD programs annotated in JML. J. Log. Algebr. Program.
58(1–2), 89–106 (2004)

99. Meyer, B.: Applying “design by contract”. IEEE Comput. 25(10), 40–51 (1992)
100. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall, Engle-

wood Cliffs (1997)
101. Mohsen, M., Jacobs, B.: One step towards automatic inference of formal spec-

ifications using automated VeriFast. In: ter Beek, M.H., Gnesi, S., Knapp, A.
(eds.) FMICS/AVoCS -2016. LNCS, vol. 9933, pp. 56–64. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-45943-1 4

102. Mostowski, W.: Fully verified Java Card API reference implementation. In: Beck-
ert, B. (ed.) Proceedings of the 4th Interenational Verification Workshop in con-
nection with CADE-21, Bremen, Germany. CEUR Workshop Proceedings, vol.
259. CEUR-WS.org (2007)

103. Mostowski, W.: Dynamic frames based verification method for concurrent Java
programs. In: Gurfinkel, A., Seshia, S.A. (eds.) VSTTE 2015. LNCS, vol. 9593,
pp. 124–141. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29613-
5 8

104. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure
for permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI
2016. LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49122-5 2

105. Norrish, M.: C formalised in HOL. Ph.D. thesis, University of Cambridge (1998)
106. O’Hearn, P.W.: Resources, concurrency and local reasoning. Theoret. Comput.

Sci. 375(1–3), 271–307 (2007)
107. Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs. Acta

Informatica J. 6, 319–340 (1975)
108. Paganelli, G., Ahrendt, W.: Verifying (in-)stability in floating-point programs

by increasing precision, using SMT solving. In: Bjørner, N., Negru, V., Ida, T.,
Jebelean, T., Petcu, D., Watt, S.M., Zaharie, D. (eds.) 15th International Sym-
posium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC
2013, Timisoara, Romania, 23–26 September 2013, pp. 209–216. IEEE Computer
Society (2013)

109. Petiot, G., Kosmatov, N., Botella, B., Giorgetti, A., Julliand, J.: Your proof fails?
Testing helps to find the reason. In: Aichernig, B.K.K., Furia, C.A.A. (eds.) TAP
2016. LNCS, vol. 9762, pp. 130–150. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-41135-4 8

110. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr.
Program. 60–61, 17–139 (2004)

111. Polikarpova, N., Tschannen, J., Furia, C.A.: A fully verified container library. In:
Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 414–434. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-19249-9 26

112. Praxis Critical Systems. SPARK–The SPADE Ada Kernel, 3.2 edition (1996)
113. Robinson, K.: The B method and the B toolkit. In: Johnson, M. (ed.) AMAST

1997. LNCS, vol. 1349, pp. 576–580. Springer, Heidelberg (1997). https://doi.org/
10.1007/BFb0000503

114. Rodŕıguez-Carbonell, E., Kapur, D.: Automatic generation of polynomial invari-
ants of bounded degree using abstract interpretation. Sci. Comput. Program.
64(1), 54–75 (2007)

https://doi.org/10.1007/978-3-319-45943-1_4
https://doi.org/10.1007/978-3-319-29613-5_8
https://doi.org/10.1007/978-3-319-29613-5_8
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-319-41135-4_8
https://doi.org/10.1007/978-3-319-41135-4_8
https://doi.org/10.1007/978-3-319-19249-9_26
https://doi.org/10.1007/BFb0000503
https://doi.org/10.1007/BFb0000503

Deductive Software Verification 373

115. RTCA. DO-178C, Software Considerations in Airborne Systems and Equipment
Certification, January 2012

116. Schellhorn, G., Ernst, G., Pfähler, J., Haneberg, D., Reif, W.: Development of
a verified flash file system. In: Ameur, Y.A., Schewe, K. (eds.) Abstract State
Machines, Alloy, B, TLA, VDM, and Z. LNCS, vol. 8477, pp. 9–24. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-43652-3 2

117. Scheurer, D., Hähnle, R., Bubel, R.: A general lattice model for merging sym-
bolic execution branches. In: Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM 2016.
LNCS, vol. 10009, pp. 57–73. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-47846-3 5

118. Steffen, B.: The physics of software tools: SWOT analysis and vision. Softw. Tools
Technol. Transf. (STTT) 19(1), 1–7 (2017)

119. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom.
Reason. 43(4), 337–362 (2009)

120. Tschannen, J., Furia, C.A., Nordio, M., Polikarpova, N.: AutoProof: auto-active
functional verification of object-oriented programs. In: Baier, C., Tinelli, C. (eds.)
TACAS 2015. LNCS, vol. 9035, pp. 566–580. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46681-0 53

121. Turon, A., Vafeiadis, V., Dreyer, D.: GPS: navigating weak memory with ghosts,
protocols, and separation. In: Black, A.P., Millstein, T.D. (eds.) Proceedings of
the ACM International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA, Portland, OR, USA, pp. 691–707. ACM
(2014)

122. Ulbrich, M.: Dynamic logic for an intermediate language: verification, interaction
and refinement. Ph.D. thesis, Karlsruhe Institute of Technology (2013)

123. Vafeiadis, V.: Automatically proving linearizability. In: Touili, T., Cook, B., Jack-
son, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 450–464. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14295-6 40

124. Vafeiadis, V., Narayan, C.: Relaxed separation logic: a program logic for C11
concurrency. In: OOPSLA 2013. ACM (2013)

125. Vafeiadis, V., Parkinson, M.: A marriage of rely/guarantee and separation logic.
In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp.
256–271. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74407-
8 18

126. von Oheimb, D.: Hoare logic for Java in Isabelle/HOL. Concur. Comput.: Pract.
Exp. 13(13), 1173–1214 (2001)

127. Wong, P.Y.H., Albert, E., Muschevici, R., Proença, J., Schäfer, J., Schlatte, R.:
The ABS tool suite: modelling, executing and analysing distributed adaptable
object-oriented systems. STTT 14(5), 567–588 (2012)

https://doi.org/10.1007/978-3-662-43652-3_2
https://doi.org/10.1007/978-3-319-47846-3_5
https://doi.org/10.1007/978-3-319-47846-3_5
https://doi.org/10.1007/978-3-662-46681-0_53
https://doi.org/10.1007/978-3-662-46681-0_53
https://doi.org/10.1007/978-3-642-14295-6_40
https://doi.org/10.1007/978-3-540-74407-8_18
https://doi.org/10.1007/978-3-540-74407-8_18

Static Analysis for Proactive Security

Michael Huth1(B) and Flemming Nielson2

1 Department of Computing, Imperial College London, London SW7 2AZ, UK
m.huth@imperial.ac.uk

2 Department of Mathematics and Computer Science,
Technical University of Denmark, 2800 Kongens Lyngby, Denmark

fnie@dtu.dk

Abstract. We reflect on current problems and practices in system secu-
rity, distinguishing between reactive security – which deals with vulner-
abilities as they are being exploited – and proactive security – which
means to make vulnerabilities un-exploitable by removing them from a
system entirely. Then we argue that static analysis is well poised to sup-
port approaches to proactive security, since it is sufficiently expressive to
represent many vulnerabilities yet sufficiently efficient to detect vulnera-
bilities prior to system deployment. We further show that static analysis
interacts well with both confidentiality and integrity aspects and discuss
what security assurances it can attain. Next we argue that security mod-
els such as those for access control can also be statically analyzed to
support proactive security of such models. Finally, we identify research
problems in static analysis whose solutions would stand to improve the
effectiveness and adoption of static analysis for proactive security in the
practice of designing, implementing, and assuring future ICT systems.

1 Introduction

In the past 10–15 years, we witnessed a very substantial and increasingly accel-
erated transformation of Information and Communications Technology (ICT),
the advent of smart phones and of digital social networks with global reach being
two prominent examples. In addition, the emergent so called Internet of Things
(IoT) and Cyber Physical Systems (CPS) are a recent but major development
which could be highly disruptive in sectors not traditionally associated with ICT.

All of these systems or systems of systems contain software as crucial ingredi-
ents. The reliability of such software is traditionally assured through systematic
testing as a best industrial practice. The limitations of this approach have been
widely recognized, and its effectiveness has been somewhat improved through
its combination with more formal techniques to validate critical software such
as device drivers, and complemented with a range of other techniques such as
manual code review. In fact, important formal methods such as type theories and
static analyses are mature technologies that are routinely integrated in compilers
and thus markedly improve the reliability of software – although programmers
and IT project managers may be oblivious to that fact.
c© Springer Nature Switzerland AG 2019

B. Steffen and G. Woeginger (Eds.): Computing and Software Science, LNCS 10000, pp. 374–392, 2019.

https://doi.org/10.1007/978-3-319-91908-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91908-9_19&domain=pdf
https://doi.org/10.1007/978-3-319-91908-9_19

Static Analysis for Proactive Security 375

Traditionally, commercial ICT software is deployed under a Caveat Emptor
regime: producers of software tend not to accept any liability should the execu-
tion of their software cause any damage, even when run as intended. This regime
was adopted for proprietary software but this ownership model was challenged
by the open-source and freeware movements, which see software production and
validation as a transparent, community-driven effort; the Linux operating system
being a prominent and most impactful outcome of such efforts. Caveat Emptor is
also not appropriate for software written for embedded systems, where software
bugs may cause physical harm or loss of life.

But all software can contain errors, which may represent security vulnera-
bilities that could realize privileged access to systems, services or information.
One may see such conceived wisdom as justification for the current liability
regime and software validation practice. Yet, this is being challenged by the
next wave of digitization that the IoT and CPS will bring about. For example,
smart cars will become increasingly autonomous, so critical software components
will have to meet very high correctness standards to ensure safety of passengers
and those within the car’s environment, and security vulnerabilities may be
exploited to corrupt safety mechanisms. Therefore, security – to name Confi-
dentiality, Integrity, and Availability – will no longer be an isolated concern but
one that impinges on safety, reliability, and other concerns of future IoT/CPS
systems. And liability models may shift: German law makers, e.g., are presently
considering to make car manufacturers or even programmers liable for accidents
caused by future, fully autonomous cars [7].

Standard engineering practice is tensioned by the increased blurring of system
security and system safety aspects. To illustrate, we may not be able to apply
redundancy and physical separation principles familiar from the aircraft industry
in the domain of smart cars, where consumers expect to interface with their
familiar devices such as smart phones and where cost and competitive pressure
constrain engineering and validation. But we may realize logical separation, say,
through security policies. The well known Jeep Cherokee hack [26], e.g., exploited
a vulnerability in the car’s entertainment system and the fact that the cellular
provider did not restrict communication with that system to the car’s internal
systems, giving remote attackers’ access to safety-critical components such as
brakes. A security policy or modified default configuration that an attacker could
not circumvent would have addressed this issue. These concerns extend to critical
infrastructure such as electricity grids (e.g. the cyberattack on the Ukrainian
power grid in 2015) and vital IT systems (e.g. the AnnaCry ransomware attack
that severely disrupted some hospital services in the UK in 2017) – turning
software reliability and resiliency into national security issues.

Security. The traditional understanding of security is that it is comprised of
three components. Confidentiality is intended to protect the disclosure of data
to third parties; it is intimately related to ensuring the privacy of citizens, and the
protection of intellectual property. Integrity is intended to ensure the trustwor-
thiness of data; it is intimately connected to ensuring the authentication of those
who modify data and the control state of IT systems. Availability is intended to

376 M. Huth and F. Nielson

ensure that systems remain operational even in the presence of an active adver-
sary, e.g. in a denial of service attack. Much of the research in security focuses on
achieving confidentiality and integrity while availability is substantially harder
to attain due to the physical components that form part of the IT systems.

A security management in which software gets patched routinely, as in the
so called Patch Tuesday, means owners of software are responsible for installing
updates regularly. Such practices led to a reactive approach to security: a security
problem in software gets discovered, a fix for the vulnerability is identified (if
possible), and that fix is shipped as a software update to all systems that run
that software. Moreover, this reactive approach is also used by the attacking
ecosystems, where vulnerabilities are discovered and sold in a layered market of
increasing capabilities: from a potential memory leak applicable to some systems
to Ransom as a Service with complete attack capabilities, financial accounts, and
so forth. This reactive approach is hardly satisfactory for security engineering,
and will not do in future IoT and CPSs for reasons already alluded to.

Proactive Security. In contrast, proactive security is an approach to system
security that uses a set of techniques to construct ICT systems or systems of
systems that have almost no vulnerabilities (and thereby dramatically reduce
the need for reactive security measures) and that incorporate exploit prevention
or at least exploit mitigation into all phases of system construction – including
design, implementation, and assurance activities.

Proactive security has been prominently advocated by Schell [50] in 2012.
The need for it seems even more pressing now than when its first notable devel-
opments in system security were made. The initial efforts of developing proactive
security facilitated the construction of IT systems living up to the demands of
the famous “Orange Book”, developed in the US with Schell as a leading con-
tributor. This formed the basis for the current Common Criteria [1] standard
that provides a systematic approach to the design and implementation of a vari-
ety of IT systems offering different levels of security guarantees. Schell laments
that the use of proactive techniques seems to have given way to the use of more
reactive techniques; in other words, that our current approach to system security
takes a passive rather than an active, proactive approach.

There are several explanations for the current predominance of reactive secu-
rity. Business pressures, such as time-to-market considerations, often demand the
rapid construction and validation of products based on common product fam-
ilies or user feedback as seen in code production for social networks [13]. The
construction of systems that meet the Common Criteria may be neither feasible
nor appropriate in such use contexts. Another factor is perhaps that security
engineering is rarely taught in the ICT and Computer Science curricula and
that there is a global skills gap in cybersecurity professionals.

Formal Methods. The Common Criteria standard offers a range of Evaluation
Assurance Levels that describe the amount of rigour exercised in the security
validation. To meet the higher Evaluation Assurance Levels, it is not expected
to formally validate the entire IT system in question, but it is emphasized that

Static Analysis for Proactive Security 377

its critical components must be validated through the rigorous use of formal
methods. We can see this as a form of risk management : only higher such levels
demand use of rigorous methods, and even for those higher levels is it too costly
or presently not feasible to formally validate full functional and non-functional
behaviour of complex IT systems – e.g. a code base of a few million lines of code.

But it is feasible to do such formal validation for critical components or code
units – e.g. a discrete controller for a safety-critical component. Another good
example of targeting a critical component with rigorous formal methods is the
validation of the micro-kernel seL4 [31], which was fully formally verified; and
one could then leverage the reliability and resiliency of that component to more
complex systems that critically rely on it, e.g. a drone [27]. And formal methods
are not confined to executable code: in [36], it is proposed to use generics and
functional programming to get more trustworthy implementation types from
UML models.

The Common Criteria don’t endorse particular formal methods. This, too, is
consistent with a risk-management approach to system assurance, which would
seek to use a combination of techniques that best meets the requirements and
constraints at hand. The formal methods used may range from validation carried
out by semi-automatic proof assistants such as Isabelle (used to verify the micro-
kernel seL4) and Coq (used in the verification/validation of a compiler [34]), to
validation carried out by fully automatic model checkers and SMT solvers, and
to validation using fully automatic and often very efficient static analysers.

Even if formal certification for Common Criteria is not sought, there is a
strategic advantage in using proactive system security: in case a system built still
contains exploits, the fact that is was built with that approach will enable a much
better understanding of where those exploits may occur and what capabilities
they may have, including what system components they may impact. In fact,
we may see the emergence of new certification standards that reflect specific
assurance needs of cyber physical systems and their application domains [5].

Static Analysis. Formal methods will continue to play an important role in future
certification schemes. Here we focus on the many methods from Static Analy-
sis or Program Analysis [43]. These techniques may use data-flow equations,
constraint systems, abstract interpretation, type systems, and type and effect
systems to mention just the most widely used ones here. A principal advantage
that Static Analysis offers, above and beyond what other approaches in Formal
Methods provide, is that its techniques typically realize analysis capabilities that
come with low computational complexity – usually polynomial time, sometimes
even linear time, rather than exponential time or worse. This makes them an
attractive choice for proactive security engineering, certainly as a “first line of
defence” that rules out certain security vulnerabilities at low computational cost
and at almost no development or production cost.

Static analyses gain this advantage by making abstractions of the systems
they analyze. This is typically an over-approximation of some precise analysis
result – whose full precision is typically non-computable. Such abstraction and
the compositional reasoning that this can support make Static Analysis a tool

378 M. Huth and F. Nielson

set for ensuring the security of entire systems or systems of systems – which
may span ICT, IoT, and CPS systems. Whilst it is a unique opportunity to
explore the potential of Static Analysis in the next generation of digital systems,
the challenge will be to engineer static analyses that make judicious trade-offs
between their effectiveness (that the over-approximation still provides useful
insights at the right level of abstraction, and with sufficient security assurances)
and their cost (that the computation of results has sufficiently low complexity
in terms of the scale of the system under analysis). Effectiveness here includes
that analysis findings are reported in a manner that is useful for those who need
to act on such results: ordinary programmers, modellers, and so forth. There is
little research on this aspect, which is argued in [13] to be critical for transfer
and adoption of static analysis in practice.

Overview. To meet this challenge, the development of security mechanisms for
system engineering (e.g. security policies), the development of effective yet eas-
ily usable Formal Methods (in particular of static analyses) need to go hand in
hand. In this paper, we will outline some key approaches, challenges, and fur-
ther considerations that mean to provoke thinking and future research in this
important area of security engineering for future digital systems. Admittedly,
our exposition reflects a certain scientific bias, as it is not our intent to be ency-
clopedic in our treatment of static analysis and (proactive) security. Our express
aim is, as already stated, to provoke thinking and to encourage new research in
this important space whose future systems stand to profoundly impact us all.

2 The Security Landscape: Setting the Scene

As stated above, Static Analysis (or Program Analysis) [43] is mainly concerned
with giving a sound over-approximation of the behaviour that a program may
exhibit upon execution. If the sound over-approximation does not exhibit any
malicious behaviour, this ensures that no malicious behaviour can arise during
program execution. Security is largely concerned with ensuring that programs
do not violate the confidentiality and integrity policies that are in place. Many
of the key considerations of security have a strong analogy to questions studied
in static analysis while some go a bit beyond. In this section, we will illustrate
this close relationship because it is the basis for why static analysis forms a good
foundation for ensuring proactive security – both for actual code and for the
models that arise during software development.

Let us begin by explaining one of the fundamental static analyses tradition-
ally used in compilers. Definition-use chaining aims at linking each definition of
a variable (or assignment to a variable) to those uses of the variable where the
value will be the one set at the definition (or assignment) point [43]. Soundness of
definition-use chaining requires that we do not miss any uses; precision requires
that we do not wildly over-approximate the set of uses.

To guard against errors in the formulation of the definition-use analysis
one should prove that the analysis always soundly over-approximates. The first

Static Analysis for Proactive Security 379

problem to be addressed is the informality of such a formulation, one needs to
be precise also for intricate features such as aliasing (where different variables
are names for the same entity in storage). Many approaches can be explored
to gain formality. Often, a good balance is found by using a so-called instru-
mented semantics [30], which explains actual code behaviour and keeps track
of additional information, for example at which program point a variable was
last defined. Then soundness of the definition-use analysis merely amounts to
over-approximating the observations that can be made using the instrumented
semantics.

For security, both confidentiality and integrity are guaranteed by assuring
that information in ICT systems or socio-technical systems flows only in the
intended and secure way. Control-flow integrity, e.g., ensures a program does
not deviate from its normal control flow in order to initiate a privilege escalation
attack. And the human decision of whether or not to open a certain web page
should protect the confidentiality of personal information.

A key approach to security is through the study of information flow in pro-
grams as pioneered by [17]. Whenever we have an assignment, x := · · · y · · · , the
value of y flows into x. We call this an explicit flow because the value of y is part
of what is stored into x; we also call it a direct flow because it happens as the
result of a single assignment. The analogy to definition-use chaining is imme-
diate. Whenever we have an assignment x := · · · y · · · at some program point,
definition-use chaining would be able to tell us which of the program points
defining y might influence the current definition of x.

Frequently, assignments are performed in bodies of conditionals, which
thereby influence the decision to perform an assignment. As an example, for
boolean variables x and y, there is hardly any difference to the behaviour of
the program if y then x := true else x := false with respect to that of the
program x := y. But the former has no explicit flow while the latter has.

The consideration of implicit flows takes care of this anomaly: there is an
implicit flow from y to x whenever an assignment to x occurs inside the scope
of a conditional that uses the variable y [17].

Apart from explicit and implicit flows, there are other and more suble forms
of covert flows (paraphrasing the notion of covert channels). They may arise due
to termination issues, timing issues, and dependencies between non-deterministic
or parallel computations. However, we shall concentrate on the direct flows com-
prised of explicit and implicit flows as illustrated, and on the transitive closure
of the direct flows – the latter traditionally referred to as indirect flows.

In our discussion of security concepts in Sect. 1, Confidentiality was explained
as preventing disclosure of data to third parties; this amounts to ensuring the
absence of indirect flow from the data to a use belonging to a non-trusted party.
Similarly, Integrity was explained as ensuring the trustworthiness of data; this
amounts to ensuring the absence of indirect flow to the data from a definition
belonging to a non-trusted party. In summary, simple considerations of explicit
and implicit indirect flows – which use modest generalisations of definition-use
chains – suffice for ensuring Confidentiality and Integrity.

380 M. Huth and F. Nielson

We are confident that approaches rooted in static analysis will continue to
be useful when security policies grow in complexity as demonstrated in later
sections. The main research challenge of static analysis is to ensure that the
sound over-approximation is sufficiently informative (in excluding behaviour that
cannot arise) while keeping the computational complexity at a manageable level
(preferably close to linear).

The composition of systems considered to be secure (in isolation) does, too
often, not result in a secure system. Running cryptographic security protocols
“on top of each other” is a case in point. It remains a research challenge to
facilitate the compositional construction of secure systems. While progress is
being made, it is still beyond the state of the art to do so in general – let alone
for IoT systems in which security, safety, and other concerns are co-dependent.

In the light of the lack of compositionality in security engineering, the low
computational complexity of many static analyses may come to the rescue: It
makes it feasible to perform whole-program analyses rather than attempting to
achieve compositionality.

3 Static Analysis of Security Models

Static analysis is also applicable to models of IT Systems, not only source
code or binaries. UML diagrams and access-control models are important exam-
ples thereof. Access-control models specify which subjects have access to what
resources, and under which circumstances. Prominent examples are Role-Based
Access Control (RBAC) [49], XACML (see e.g. [4]), and OAuth [2].

In RBAC, users are associated with one or more roles, and roles are associated
with access permissions: a user gets a permission if she has a role with such a
permission. This de-coupling facilitates scalability of specifications and change
management of permissions. The core RBAC model has also been extended in
numerous ways, for example with administrators who have permissions to make
role-user assignments. XACML is a policy language in which one can specify
the circumstances for granting access, based on attributes and their fine-grained
combination. OAuth, on the other hand, is a protocol that is widely used on the
web as it can give third-party applications limited access to an HTTP service,
for example by giving the third party an access token as in the User Managed
Access architecture of the Kantara initiative.

Instances of such access-control models specify the allowed and disallowed
access within a system. Therefore, we need to validate that such instances
capture intended access restrictions and permissions. Static analysis, and its
close cousin model checking [9,42,51,53], can proactively validate such intent for
instances of such access-control models. Extensions of RBAC, such as ARBAC
that also provides support for administration, can be statically analyzed to deter-
mine whether models meet specified security requirements – for example that
certain users or roles never gain certain access permissions (see e.g. [18,48]).
The algorithms used may explore the state space exhaustively (provided sets
of users, roles, and resources are finite) but are often too complex. While such

Static Analysis for Proactive Security 381

techniques may be seen to be static analyses, the static analysis tool box may be
more fruitfully applied by devising provably sound abstractions of access-control
models: for example, it may be possible to simulate role hierarchies through a
temporal sequence of administrative actions, and so a security analysis may then
be performed on a less complex simulation – an ARBAC system without role
hierarchies and lower computational complexity.

The XACML models contain policies that consist of access-control rules as
crucial ingredient. Validating an XACML model therefore benefits from statically
proving that policies meet certain specifications. This is particularly important
since languages such as XACML support access control in distributed, and poten-
tially open systems. Therefore, we need security guarantees on the composition
of policies and where a composition algebra may support a range of operators,
e.g., logical ones such as Conjunction, and control structures such as Conditional
Delegation. A prominent validation problem is to determine whether a policy has
anything to say on an access request of interest; if not, this under-specification
may be a potential vulnerability. Another validation problem is that the com-
position of policies may provide conflicting evidence for granting or denying an
access. We also want support for reliable change management: if one policy is
modified to another one, is the modified one a refinement of the original one in
that it preserves important grant and deny decisions?

The work on PBel [11], was motivated by such questions and designed a rule-
based policy-composition language in which basic rules where composed with
operators expressible in Belnap’s 4-valued logic (see e.g. [21]) and where these
operators are functionally complete for that logic. Validation problems such as
the ones discussed above, were then shown to be transformable into satisfiability
problems over the predicates used in rules within policies. The approach made
use of the 4-valued Belnap logic to capture not only grant and deny decisions,
but also conflicts and under-specifications. That paper took an atomic view of
predicates that build rules of PBel. But the semantics of PBel and its valida-
tion analyses would also work for richer predicates, for example those expressed
in quantifier-free first-order logic. A nice example and application of how to
interpret richer predicates for policy analysis in XACML is given in [47,55].

PBel was designed for studying the aforementioned problems, not for being
used in practice. However, there is an opportunity in influencing the design of
real-world access-control languages such that they support a formal and stati-
cally analyzable core, the full language is mere syntactic sugar of that PBel core,
and the full language is user-facing. Such an approach is familiar from program-
ming language design [52] and its benefits are clear: practical relevance since the
full language is what users (here policy writers and administrator) want, support
for proactive security through an analyzable core, and transfer of analysis from
a core representation to a semantically equivalent full-language policy.

In fact, a core language may even be extended or equipped with interfaces
to obtain a user-facing language that hides the concrete syntactic nature and
semantics of the core. This may be particularly useful if such details are irrel-
evant or incomprehensible to those who specify and manage access control. To

382 M. Huth and F. Nielson

illustrate, BelLog [54] is a datalog-like language for physical access control –
extended to Belnap logic: in a building with a fixed topology of rooms and
hallways, where each door has a digital lock, we seek simple policies for each
lock that – in their entirety – enforce building-wide security policies such as
“This room can only be accessed through previous entry into the lobby.” In
[54], it is shown how synthesis techniques for temporal logic can be adjusted to
BelLog so that a solution to the synthesis problem realizes all specified security
problems, and also maps this solution to local solutions for each digital lock.
Moreover, local solutions are simple formulas of first-order logic that are easy to
implement and enforce locally. One could imagine to extend this with synthesis
techniques rooted in satisfiability of the temporal logic CTL, so that it becomes
possible to specify and enforce security policies during the physical-layout design.

One challenge that we would then face, and that is often overlooked in aca-
demic research in static analysis, is that analysis results would have to be ren-
dered in a form that is intelligible and actionable to the stakeholders of the
application domain, in this example architects and physical security experts. As
[13] pointed out, there is already need for more work on this when stakeholders
are source code developers.

The case study in [28], e.g., considers this problem for a trust-aggregation
language in which rules represent “trust signals” that are interpreted as real
numbers. Such numbers are aggregated with composition operators, such as
maximum or weighted average, to reflect how an overall computed score of all
observed signals should support decision making. For example, whether or not
to rent out a car to a client at a certain rate may be informed by a weighting of
years of accident-free driving, the type of car, and so forth [29]. We then need to
validate the manner in which such scores are aggregated, e.g., to rule out that
this always supports the same decision. The tool developed in [28] reduced such
validation analyses to satisfiability problems that an SMT solver could solve. But
the reduction makes the evidence computed with such an automated theorem
prover not meaningful to those who wrote the aggregation policy. Fortunately, it
is possible to devise a static analysis over the semantics of the trust-aggregation
language that renders an over-approximated but sound version of this evidence –
and meaningful in terms of the aggregation semantics [28].

A good question in that context is what academics and practitioners can do to
encourage a better alignment of foundational work and practical R&D in security
engineering. One problem is that the value systems of academia and industry
are not well aligned. For example, research on user-facing analysis reporting may
find it hard to get into a top academic research conference. For another example,
excellent foundational work may only be adopted in industry if funnelled through
or integrated within industrial standards or if produced in-house.

4 Security Assurances: Information Leakage

Formal methods traditionally have promised to provide absolute guarantees of
correctness – to the extent of providing a mathematical and flawless proof. How-
ever, it is easier to motivate the use of formal methods in software development

Static Analysis for Proactive Security 383

if it is presented as a way of enhancing the quality of software against errors and
attacks. “Continuing the metaphor, we have found that software engineers more
readily grasp the concept and practical value [...] if we dub it exhaustively testable
pseudo-code.” [41, p. 71] Moreover, it has been argued that methods which seek
mathematical proof of program correctness can deliver such guarantees only for
mathematical abstractions and not for programs as causal models within oper-
ational environments [16,19,40]. While this may suggest principal limitations of
the reach of formal methods, the past decades have seen tremendous advances
in foundations and applications of formal methods for software verification.

Clearly, formal methods operate on an abstraction of the real world system
and it is a key lesson of security that abstractions pave the way for security holes.
“Abstraction is an important concept we cannot do without when designing and
understanding complex systems. [...] However, software security problems arise
when intuitive properties of an abstraction do not match its concrete implemen-
tation.” [23, p. 179] Indeed, even the hardware upon which software is executed
is an abstraction. As an example, it is generally believed that computer mem-
ories will retain their values until explicitly changed or until power is cut off.
However, cosmic radiation or even heat may make this abstraction invalid [25].

In the next three paragraphs we consider three key approaches to providing
assurances of the correct use of static analysis for ensuring the security of sys-
tems. One of these takes its origin in traditional ways of ensuring the correctness
of static analyses [43]. Another one goes back to techniques for establishing non-
interference results that show the absence of information flow [56]; for example
that no sensitive information is reaching unintended parties. The third app-
roach replaces the qualitative view with a quantitative one by characterising the
information leakage with respect to entropy [14]; this may support decisions of
whether the computed leakage is acceptable or not.

Instrumented Semantics. Whenever we employ a static analysis we should estab-
lish its correctness – especially when safety, security, and their interplay is at
stake. For some static analyses the notion of correctness is rather immediate,
such as when we are analysing the values of some variables or perhaps the com-
binations of values of all variables. Assuming that we deal correctly with the
bit strings that programs operate on – such as taking into account that integers
have a maximal value and that the multiplication of two positive 32-bit integers
is not necessarily positive – it is fairly obvious how to formalise correctness.

For other static analyses the notion of correctness is less immediate – this
is typical of situations in which we analyse the past or future behaviour of
programs. As a simple example, consider definition-use chaining where each def-
inition (or assignment) of a variable is linked to all the potential uses of the
value given to the variable at that point [43]. One way to formulate correct-
ness is to consider potentially infinite execution traces. A more amenable way
is to formulate an instrumented semantics that keeps track of certain elements
of the manner in which computations are performed as well as the results they
are intended to give. This suffices for proving the correctness of definition-use
chaining as was discussed in Sect. 2.

384 M. Huth and F. Nielson

More importantly, this set of techniques immediately generalises to han-
dling the correctness of explicit information flows – both for confidentiality and
integrity. These techniques can be augmented with considerations of the implicit
information flows that occur due to conditional branching [44] as discussed in
Sect. 2.

One advantage of the instrumented semantics approach is that the notion of
correctness, once formalised, usually has a rather direct intuition (with respect
to the overall security goals of the system), thereby reducing the risk for security
holes due to abstraction. Also, it is feasible to extend the instrumented semantics
approach with some of the more advanced security considerations such as declas-
sification and endorsement where the security policy is deliberately violated at
selected points [37].

An obvious disadvantage of the instrumented semantics approach is the pos-
sibility of basing correctness on an inadequate (read incorrect) instrumented
semantics. Especially when dealing with non-determinism and parallelism it may
be hard to correctly model the covert flows that arise.

Non-interference. The use of instrumented semantics is a qualitative approach
requiring inspection of the way in which computations are performed and results
produced. Another qualitative approach is that of non-interference, which only
inspects results produced. Specifically, suppose an attacker may want to learn
the values of some sensitive inputs to a program. The program satisfies non-
interference if any variation in the input values of sensitive variables would not
result in any observable difference in program outputs.

There are many different approaches to the formalisation of non-interference
and we cannot touch upon all of them. In [22], it was required that observations
on traces should be invariant under certain permutations of the actions in the
traces. In [56], a simulation based approach was taken but only for determinis-
tic and terminating programs. In [38], it was required that certain projections
of traces should be equal; while there are clearly differences in the formal def-
initions, there also is a substantial amount of similarity, e.g. the trace based
development of [38] reuses the proofs of the simulation based development of
[56] (see [38, p. 15]). In [57], it is required that two executions should produce
comparable sets of outcomes (thereby taking account of non-determinism) where
non-termination is made observable (so as to avoid masking covert channels due
to non-termination).

The main advantage of the non-interference approach is that we mitigate the
risk of basing correctness on an inadequate instrumented semantics. A disad-
vantage of the non-interference approach is that it is still open to security holes
due to abstraction since non-interference is usually established for models that
are more abstract than a traditional instrumented semantics. More importantly,
it is argued in [44, Sect. 8] that many formulations of non-interference fail to
maintain a distinction between confidentiality and integrity, which constitute
two of the key dimensions of the security landscape, and hence they fall short
of convincing the security engineer of their relevance. (In short, non-interference
is good at characterising the semantic influences but not whether they arise

Static Analysis for Proactive Security 385

due to confidentiality or integrity breaches.) Yet another disadvantage is that it
may prove futile to establish a non-interference result for what would seem to
be an acceptable security policy; this may arise because non-interference often
is “asking for too much”, and so in particular non-interference finds it hard to
adequately incorporate cryptography as a way to achieve secure systems.

Regarding our discussion of the lack of compositionality in Sect. 2, it is fair to
say that non-interference often just deals with the program in isolation whereas
more complex considerations (such as non-deducibility on computation [33]) are
required to regain some compositionality.

Entropy. For a more precise account of information leakage, one may consider
quantitative approaches based on entropy. The basic assumption is that we have
joint probability distributions available to characterise how sets of variables take
their values. Given such data we can then define the amount of information
that is derivable from an observation by its entropy. The assumption is that a
program variable x is now a random variable taking values in a finite set V .
Shannon’s Entropy H(x) is the expected value of information contained in each
observation of x. This is an information-theoretic measure that is non-negative,
additive for independent random variables, and monotone. Such intuitive prop-
erties characterize function H up to a constant. An important derived concept
is that of conditional entropy : H(x | y) denotes the portion of the entropy of
variable x that is independent from another random variable y.

There are two extreme cases of the conditional entropy H(x | y). One extreme
case is where x, y are aliases for the same entity. Then, we will always make the
same value observations for x and y: we obtain H(x | y) = 0 which indicates that
we learn nothing further if we learn the value of x, given that we already know
the value of y – the value of y determines the value of x. The other extreme case is
where x and y are truly independent; then, we get H(x | y) = H(x) – indicating
that our previous knowledge of y tells us nothing of x.

The advantage of this quantitative approach to information flow is its ability
to precisely quantify the amount of information H(x) −H(x | y) that might be
leaked due to information flow. This amount “should” be 0 if we have been able to
prove a non-interference result, and if it is even slightly larger than 0 it “should”
be impossible to establish a non-interference result. This suggests to accept a
system as secure if the conditional entropy is sufficiently close to 0. A current
disadvantage of this approach is that we have less tool support for analysing the
security of systems according to information-theoretic, quantitative measures.

Perspective. In our view, non-interference is both demanding too much (in not
permitting minute flows) and discriminating too little (in not distinguishing
between confidentiality and integrity) to be useful for validating the use of static
analysis in ensuring the security of systems. On the other hand, approaches
based on instrumented semantics should interact well with state of the art in
static analysis tools while methods based on entropy should be investigated as
they offer to provide stronger assurances, and they can lead to metrics for the
support of decision making in security engineering.

386 M. Huth and F. Nielson

5 Discussion

A static analysis is subject to potentially conflicting aims. It needs to be abstract
since many concrete properties of interest to it are undecidable for general pro-
grams and programming languages. Given that need for abstraction, it also needs
to be precise enough, so that it will often enough arrive at findings that are
digestible and useful to the analysts. But the static analysis should also be
sound. By this we mean that the analysis models all possible executions of the
program. This is important for security considerations: if some real executions
are missed by the analysis (e.g. because the meaning of a language construct may
depend on the implementation environment), these executions may be security
vulnerabilities that an attacker might exploit. Finally, the static analysis should
scale so that we can run it on large programs or code bases effectively.

The discussion around soundness superficially seems similar to a discourse
documented partly in [16,19]: the question of whether formal verification can
prove the correctness of an executing program with mathematical certainty. This
was posed at a time when it was very difficult to promote use of formal methods
into R&D and to get credibility for devising such methods. It is fair to say that
we have come a long way! Major ICT companies such as Amazon, Facebook,
and Microsoft are using a range of formal methods in tactical and strategic
ways, and this was made possible by persistent research and tool building of
formal-methods researchers in the past decades.

Formal methods such as static analysis are very useful for security engineer-
ing. First, if a static analysis fails to formally verify a property – such as the
absence of memory leaks – at a higher level of abstraction, then this can also
be a validation concern within the actual execution environment and so may
require code modifications.

Second, static analysis tools may help us understand the scope of unsound-
ness that may occur when transferring reasoning that is sound at one abstraction
layer to another one. For example, the work in [24,46] provides static analyses
with which we may understand the differences and input sensitivities of pro-
grams between an idealized execution with mathematical real numbers and a
finite-precision implementation of real numbers.

Third, code development operates at several abstraction layers and static
analyses can certainly validate higher such layers in isolation. For example, the
use of generics at the level of UML specifications [36] minimizes the risk of
type incompatibilities in implementations; the use of static analysis to validate
information flow of process models [6] is validating security properties of the
process design itself; and the use of automated theorem proving in examining
specified language standards such as those for Javascript [10] can flag up issues
of interest to the standardization committees.

Fourth, there may be a compelling business case for formally verifying specific
system components. For example, one may build an operating system in such a
way that only its small micro kernel ever runs in supervisor mode – meaning that
it runs at the most privileged level of the supporting hardware. There is then an
incentive in formally verifying such a micro kernel if it is planned to be used in a

Static Analysis for Proactive Security 387

variety of security- or safety-critical systems. As already discussed, this has been
done for the micro kernel seL4 [31]. A lot of the verification effort here went into
assuring that the kernel will interact correctly with its environment, for example
that the access control is correctly enforced, and that binaries of the kernel
correctly implement the C semantics of its source code. Change management
is a challenge for such efforts, and the authors discuss in [31] the degree of
severity with which different types of kernel code changes impact the overall
verification effort. The DARPA initiative [27] demonstrated that use of such a
formally verified micro kernel can significantly harden the security and resiliency
of systems that rely on it, for example a drone that white-hack teams can no
longer compromise.

The ability to deal with change is one of the main selling points of any
security validation method for software and executing systems in practice. The
paradigm shift from single to multi-core CPUs, and even the advent of GPU
and FPGA development environments provide exiting research opportunities for
language design, compiler technology, and static analysis as tools for producing
secure software on heterogenous or bespoke hardware. But they also challenge
conceived ideals and models of computation, such as memory consistency and
thread schedulings and force us to rethink the use of static analyses in this
setting. Technological innovations in isolation technology, such as Intel’s SGX
[15], also mean that static analyses for proactive security may have to be adjusted
to reflect such innovations and their isolation architectures.

Another important trend we see is the recognition that verification tools and
static analyzers should be the object of verification themselves. While this invites
an infinite logical regress, it makes perfect sense from an engineering perspective.
For example, Cadar and Donaldson predict in [12] that, by 2025, the analysis of
static analyzers and entire compilers will be common place. There are already
efforts at producing compilers that are provably correct within the abstraction
level of such reasoning; let us mention the CompCert project [34] that offers a
mathematical proof that the compiler introduces no bug in the convertion from
source code to binary, and the CakeML project which work on verifying system
implementations of substantial parts of Standard ML (see e.g. [32]). And there
is already some work on certifying the results of model checkers [39]. These
efforts are related to the need to better understand how static analyzes can
be adapted to best support code development within professional development
environments. We refer to [35] for a discussion of such needs.

We think that static analysis and its practical use can be furthered by use
of big data and data analytics. Static analysis and formal verification of a soft-
ware system will no doubt make that system more secure. But reactive security
mechanisms may be needed to improve the resiliency of that system at run-time;
for example, to prevent RowHammer attacks that aim to compromise security
by breaking an abstraction [8]. It then makes sense to base such a reaction on
available data for security vulnerabilities, the probability of them turning into
active security threats, and the system impact that exploits – which realize such
threats – may have. In fact, one may use formal techniques such as solvers or

388 M. Huth and F. Nielson

optimizers to reason about how best to devise such reactive security postures
and their evolution [20,45].

A static analysis tool may also use data and quantitative analytics to deter-
mine a “scheduling” of which bugs to report and why. For example, this may
inform the ordering or prioritizing of such reporting. Past exploit data, the poten-
tial impact path of a program point or stochastic assumptions about program
input may inform which bugs to report. Put in another way, if a security engi-
neer has time to look at 4 bugs, which ones should the static analysis present
to her? Such rankings may even include prioritizations based on risk appetite or
specific attack models. Indeed, we see such work already happening in the realm
of security operations centres (SOCs) and the use of data mining and artificial
intelligence in enterprise platforms (see e.g. [3]), where one concern is to under-
stand human behaviour and where “bugs” are now potentially suspicious human
behaviours that may be worth reporting: which ones to report may well depend
on a particular concern an analyst has.

6 Conclusion

For a long time, IT systems have been central to our society but they are becom-
ing increasingly complex, pervasive, and autonomous. This development offers
many benefits to society but also creates risks related to the safety and security
of societies relying on the correct functioning of their IT systems. Furthermore,
globalisation and the Internet of Everything mean that software is becoming
a commodity for which a system integrator may have little insight in the way
its code has been developed nor how it performs in corner cases that trade off
soundness and completeness of a static analysis.

Computer Science not only offers the software and algorithms making this
development of today’s IT systems possible – it also provides key methods and
techniques for ensuring the correct behaviour of complex and inhomogeneous IT
systems. Compositionality lies at the heart of a component-based approach to
the construction of IT systems. Formal methods may be used to harden critical
components. But too frequently the composition of secure components does not
result in a secure system (as was discussed for cryptographic protocols). Also,
compositional security seems an even harder goal when it comes to the IoT
systems of systems that will shape our future in the Internet of Everything.

Static analysis is noteworthy among the formal methods approaches in offer-
ing a variety of analyses of low computational complexity that therefore are
likely to scale to systems built out of many components. We have argued that
a number of security considerations related to confidentiality, privacy, integrity
and authenticity can be addressed using techniques from static analysis. These
techniques apply equally well to existing code, to access control policies, and to
designs (or models) of systems under development. Further advances in static
analysis are likely to go beyond the mere optimization of software in order to
fully tackle the challenge of proactively ensuring the security of complex IT/IoT
systems.

Static Analysis for Proactive Security 389

Acknowledgements. We expressly thank Marieke Huisman, Alan Mycroft, and
David Schmidt for their very useful comments on drafts of this paper. The first
author was supported in part by the UK EPSRC, through the grants EP/N023242/1,
EP/N02334X/1, and EP/N020030/1, and by funding from Intel Corporation. The sec-
ond author was supported in part by the IDEA4CPS Research Centre studying the
Foundations for Cyber Physical Systems funded by the Danish Research Foundation
for Basic Research (DNRF86-10).

References

1. Common criteria for information technology security evaluation. http://www.
commoncriteriaportal.org

2. OAuth 2.0. IETF OAuth WG. https://oauth.net/2/
3. Status today: Artificial intelligence that understands human behavior. https://

www.statustoday.com/
4. eXtensible Access Control Markup Language (XACML) Version 3.0. OASIS

Standard, 22 January 2013. http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-
spec-os-en.html

5. Framework for cyber-physical systems. Release 1.0, May 2016. US NIST, Cyber
Physical Systems Public Working Group

6. Accorsi, R., Wonnemann, C.: Static information flow analysis of workflow models.
In: INFORMATIK 2010 - Business Process and Service Science - Proceedings of
ISSS and BPSC, 27 September–1 October 2010 in Leipzig, Germany, pp. 194–205
(2010)

7. Adee, S.: Germany to create world’s first high-way code for driverless cars. Online
title, 21 September 2016. New Scientist

8. Aweke, Z.B., Yitbarek, S.F., Qiao, R., Das, R., Hicks, M., Oren, Y., Austin, T.M.:
ANVIL: software-based protection against next-generation rowhammer attacks. In:
Proceedings of the Twenty-First International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ASPLOS 2016, Atlanta,
GA, USA, 2–6 April 2016, pp. 743–755 (2016)

9. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

10. Bodin, M., Charguéraud, A., Filaretti, D., Gardner, P., Maffeis, S., Naudziuniene,
D., Schmitt, A., Smith, G.: A trusted mechanised JavaSript specification. In: The
41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2014, San Diego, CA, USA, 20–21 January 2014, pp. 87–100
(2014)

11. Bruns, G., Huth, M.: Access control via Belnap logic: intuitive, expressive, and
analyzable policy composition. ACM Trans. Inf. Syst. Secur. 14(1), 9:1–9:27 (2011)

12. Cadar, C., Donaldson, A.F.: Analysing the program analyser. In: Proceedings of
the 38th International Conference on Software Engineering, ICSE 2016, Austin,
TX, USA, 14–22 May 2016 - Companion Volume, pp. 765–768 (2016)

13. Calcagno, C., et al.: Moving fast with software verification. In: Havelund, K., Holz-
mann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 3–11. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-17524-9 1

14. Clark, D., Hunt, S., Malacaria, P.: A static analysis for quantifying information
flow in a simple imperative language. J. Comput. Secur. 15(3), 321–371 (2007)

15. Costan, V., Devadas, S.: Intel SGX explained. IACR Cryptology ePrint Archive
2016:86 (2016)

http://www.commoncriteriaportal.org
http://www.commoncriteriaportal.org
https://oauth.net/2/
https://www.statustoday.com/
https://www.statustoday.com/
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://doi.org/10.1007/978-3-319-17524-9_1

390 M. Huth and F. Nielson

16. DeMillo, R.A., Lipton, R.J., Perlis, A.J.: Social processes and proofs of theorems
and programs. Commun. ACM 22(5), 271–280 (1979)

17. Denning, D.E., Denning, P.J.: Certification of programs for secure information
flow. Commun. ACM 20(7), 504–513 (1977)

18. Ferrara, A.L., Madhusudan, P., Nguyen, T.L., Parlato, G.: Vac - verifier of admin-
istrative role-based access control policies. In: Biere, A., Bloem, R. (eds.) CAV
2014. LNCS, vol. 8559, pp. 184–191. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-08867-9 12

19. Fetzer, J.H.: Program verification: the very idea. Commun. ACM 31(9), 1048–1063
(1988)

20. Fielder, A., Panaousis, E.A., Malacaria, P., Hankin, C., Smeraldi, F.: Decision
support approaches for cyber security investment. Decis. Support Syst. 86, 13–23
(2016)

21. Fitting, M.: Bilattices and the theory of truth. J. Philos. Logic 18(3), 225–256
(1989)

22. Goguen, J.A., Meseguer, J.: Security policies and security models. In: 1982 IEEE
Symposium on Security and Privacy, Oakland, CA, USA, 26–28 April 1982, pp.
11–20 (1982)

23. Gollmann, D.: Computer Security, 3rd edn. Wiley, Hoboken (2011)
24. Goubault, E., Putot, S.: Static analysis of finite precision computations. In: Jhala,

R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 232–247. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4 17

25. Govindavajhala, S., Appel, A.W.: Using memory errors to attack a virtual machine.
In: 2003 IEEE Symposium on Security and Privacy (S&P 2003), Berkeley, CA,
USA, 11–14 May 2003, pp. 154–165 (2003)

26. Greenberg, A.: The Jeep Hackers are Back to Prove Car Hacking Can Get Much
Worse, 8 January 2018

27. Hartnett, K.: Computer Scientists Close In on Perfect, Hack-proof Code, 23
September 2016

28. Huth, M., Kuo, J.: Quantitative threat analysis via a logical service. Technical
report 2014/10, ISSN 1469–4174, Department of Computing, Imperial College Lon-
don (2014)

29. Huth, M., Kuo, J.H.-P.: On designing usable policy languages for declarative trust
aggregation. In: Tryfonas, T., Askoxylakis, I. (eds.) HAS 2014. LNCS, vol. 8533,
pp. 45–56. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07620-1 5

30. Jones, N.D., Nielson, F.: Abstract interpretation: a semantics-based tool for pro-
gram analysis. In: Handbook of Logic in Computer Science, vol. 4, pp. 527–636.
Oxford University Press (1995)

31. Klein, G., Andronick, J., Elphinstone, K., Murray, T.C., Sewell, T., Kolanski, R.,
Heiser, G.: Comprehensive formal verification of an OS microkernel. ACM Trans.
Comput. Syst. 32(1), 2:1–2:70 (2014)

32. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified imple-
mentation of ML. In: The 41st Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2014, San Diego, CA, USA, 20–21
January 2014, pp. 179–192 (2014)

33. Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Time and probability-based infor-
mation flow analysis. IEEE Trans. Softw. Eng. 36(5), 719–734 (2010)

34. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

https://doi.org/10.1007/978-3-319-08867-9_12
https://doi.org/10.1007/978-3-319-08867-9_12
https://doi.org/10.1007/978-3-642-18275-4_17
https://doi.org/10.1007/978-3-319-07620-1_5

Static Analysis for Proactive Security 391

35. Livshits, B., Sridharan, M., Smaragdakis, Y., Lhoták, O., Amaral, J.N., Chang,
B.-Y.E., Guyer, S.Z., Khedker, U.P., Møller, A., Vardoulakis, D.: In defense of
soundiness: a manifesto. Commun. ACM 58(2), 44–46 (2015)

36. Murphy, R.: Increasing assurance levels through early verification with type safety.
J. Cyber Secur. Inf. Syst. 3(2) (2015). https://www.csiac.org/journal-article/
increasing-assurance-levels-through-early-verification-with-type-safety/

37. Myers, A.C., Liskov, B.: A decentralized model for information flow control. In:
Proceedings of the Sixteenth ACM Symposium on Operating System Principles,
SOSP 1997, St. Malo, France, 5–8 October 1997, pp. 129–142 (1997)

38. Myers, A.C., Sabelfeld, A., Zdancewic, S.: Enforcing robust declassification and
qualified robustness. J. Comput. Secur. 14(2), 157–196 (2006)

39. Namjoshi, K.S.: Certifying model checkers. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 2–13. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44585-4 2

40. Nelson, D.A.: Deductive program verification (a practitioner’s commentary). Mind.
Mach. 2(3), 283–307 (1992)

41. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How amazon web services uses formal methods. Commun. ACM 58(4), 66–73
(2015)

42. Nielson, F., Nielson, H.R.: Model checking Is static analysis of modal logic. In:
Ong, L. (ed.) FoSSaCS 2010. LNCS, vol. 6014, pp. 191–205. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-12032-9 14

43. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999). https://doi.org/10.1007/978-3-662-03811-6

44. Nielson, H.R., Nielson, F.: Content dependent information flow control. J. Logical
Algebraic Methods Program. (2016, in press)

45. Livshits, B., Katz, O.: Toward an evidence-based design for reactive security poli-
cies and mechanisms. Technical report, November 2016

46. Putot, S.: Analyse statique de programmes et systèmes numériques. Tech. Sci.
Inform. 33(1–2), 159–162 (2014)

47. Kencana Ramli, C.D.P., Nielson, H.R., Nielson, F.: The logic of XACML. In:
Arbab, F., Ölveczky, P.C. (eds.) FACS 2011. LNCS, vol. 7253, pp. 205–222.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35743-5 13

48. Ranise, S., Truong, A., Armando, A.: Boosting model checking to analyse large
ARBAC policies. In: Jøsang, A., Samarati, P., Petrocchi, M. (eds.) STM 2012.
LNCS, vol. 7783, pp. 273–288. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38004-4 18

49. Samarati, P., de Vimercati, S.C.: Access control: policies, models, and mechanisms.
In: Focardi, R., Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 137–196.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45608-2 3

50. Schell, R.R.: Current cybersecurity best practices - a clear and present danger
to privacy. Keynote, ERCIM News 90 (2012). http://ercim-news.ercim.eu/en90/
keynote

51. Schmidt, D., Steffen, B.: Program analysis as model checking of abstract inter-
pretations. In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503, pp. 351–380. Springer,
Heidelberg (1998). https://doi.org/10.1007/3-540-49727-7 22

52. Schmidt, D.A.: The Structure of Typed Programming Languages. Foundations of
Computing Series. MIT Press, Cambridge (1994)

53. Steffen, B.: Data flow analysis as model checking. In: Ito, T., Meyer, A.R. (eds.)
TACS 1991. LNCS, vol. 526, pp. 346–364. Springer, Heidelberg (1991). https://
doi.org/10.1007/3-540-54415-1 54

https://www.csiac.org/journal-article/increasing-assurance-levels-through-early-verification-with-type-safety/
https://www.csiac.org/journal-article/increasing-assurance-levels-through-early-verification-with-type-safety/
https://doi.org/10.1007/3-540-44585-4_2
https://doi.org/10.1007/3-540-44585-4_2
https://doi.org/10.1007/978-3-642-12032-9_14
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-642-35743-5_13
https://doi.org/10.1007/978-3-642-38004-4_18
https://doi.org/10.1007/978-3-642-38004-4_18
https://doi.org/10.1007/3-540-45608-2_3
http://ercim-news.ercim.eu/en90/keynote
http://ercim-news.ercim.eu/en90/keynote
https://doi.org/10.1007/3-540-49727-7_22
https://doi.org/10.1007/3-540-54415-1_54
https://doi.org/10.1007/3-540-54415-1_54

392 M. Huth and F. Nielson

54. Tsankov, P.: Access control with formal security guarantees. Ph.D. thesis, Com-
puter Science, ETH Zurich (2016)

55. Turkmen, F., den Hartog, J., Ranise, S., Zannone, N.: Analysis of XACML policies
with SMT. In: Focardi, R., Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 115–
134. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46666-7 7

56. Volpano, D.M., Irvine, C.E., Smith, G.: A sound type system for secure flow anal-
ysis. J. Comput. Secur. 4(2/3), 167–188 (1996)

57. Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program
security. In: 16th IEEE Computer Security Foundations Workshop (CSFW-16
2003), Pacific Grove, CA, USA, 30 June–2 July 2003, p. 29 (2003)

https://doi.org/10.1007/978-3-662-46666-7_7

Software Architecture of Modern Model
Checkers

Fabrice Kordon1(B), Michael Leuschel2, Jaco van de Pol3,
and Yann Thierry-Mieg1

1 Sorbonne Université, CNRS UMR 7606 LIP6, 75005 Paris, France
{Fabrice.Kordon,Yann.Thierry-Mieg}@lip6.fr

2 Institut für Informatik, Univ. Düsseldorf, Universitätsstr. 1, Düsseldorf, Germany
leuschel@cs.uni-duesseldorf.de
3 Department of Computer Science,

University of Twente, Enschede, The Netherlands
J.C.vandePol@utwente.nl

Abstract. Automated formal verification using model checking is a
mature field with many tools available. We summarize the recent trends
in the design and architecture of model checking tools. An important
design goal of modern model checkers is to support many input lan-
guages (front-end) and many verification strategies (back-end), and to
allow arbitrary combinations of them. This widens the applicability of
new verification algorithms, avoids duplicate implementation of the anal-
ysis techniques, improves quality of the tools, and eases use of verification
for a newly introduced high-level specification, such as a domain specific
language.

1 Introduction

The evolution of model-based engineering and domain specific languages
(DSL [73]) in industrial practice has led to a proliferation of small executable
languages dedicated to a specific purpose. Model checking is a mature field [20]
with many technological solutions and tools that can guarantee behavioral cor-
rectness of such specifications.

However, due to the complexity of the problem in general, different model
checking tools are better at tackling different classes of systems, and it is difficult
for an end-user to know beforehand which technique would be most effective
for his or her specific model. It is thus highly desirable to embed such expert
knowledge in a tool that integrates several solution engines (e.g. partial order
reduction, decision-diagram based encoding, SAT/SMT techniques, etc.) behind
a unified front-end.

Ideally a modern model checker should be adaptive, able to transparently
select for a given model instance and a given property the best verification
strategy. This design goal forces the software architecture of model checkers to
evolve from tightly integrated or monolithic approaches to more open architec-
tures that rely on pivot representations to support both many languages and
many verification strategies.
c© Springer Nature Switzerland AG 2019

B. Steffen and G. Woeginger (Eds.): Computing and Software Science, LNCS 10000, pp. 393–419, 2019.

https://doi.org/10.1007/978-3-319-91908-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91908-9_20&domain=pdf
https://doi.org/10.1007/978-3-319-91908-9_20

394 F. Kordon et al.

The objective of this paper is to summarize the current situation of mod-
ern model checking tools in terms of architecture and usage to solve typical
industrial-like problems, where specifications may not be written in a traditional
verification language such as PROMELA [39], CSP [38], Petri nets [33], B [1] or
TLA+ [49].

Recent work also considers software verification (i.e. analyzing programs
directly at the code level). Program verification mainly relies on strong abstrac-
tions of programs to cope with the combinatorial explosion caused by analysis
at the instruction level, thus generating abstract models from software. This
abstraction process for software verification is not considered directly in this
paper; we focus on verification engines for model checking.

Another approach worth mentioning is the Electronic Tool Integration (ETI)
platform [69]. This platform focuses on integration of tools (rather than algo-
rithms) by providing a distributed coordination mechanism, enabling verification
tasks that would not be possible in a single tool. Its successor, jETI [56] uses
webservices technology and Eclipse support for seamless tool integration and
graphical user interfaces. While ETI focuses on integration and coordination of
existing tools, this paper focuses on integrating verification algorithms within a
single, modular tool.

Section 2 presents the current trends in architectures for model checkers;
Sect. 3 shows a first approach involving ProB and existing languages (e.g. Pro-
log, Java) while Sects. 4 and 5 are presenting updated visions (language based
and library based) of such an architecture when analyzing high-level languages.
Finally, Sect. 6 details two typical examples before a conclusion.

2 Trends on the Architecture for Model Checking

Model checkers exist now for more than three decades and have proven their
usefulness to understand and debug complex systems. However, their software
architecture is evolving, following a similar evolution as compilers, which were
once monolithic but are now structured for a better reuse of code.

Figure 1 depicts such an evolution. On the left (Fig. 1a) is the “traditional”
architecture, where a model checker is associated with a dedicated formalism

Fig. 1. Evolution of model checking tool’s architecture.

Software Architecture of Modern Model Checkers 395

and proposes its verification algorithm, possibly with numerous variants and
enhancements to perform its task efficiently. The most emblematic example is
Spin [39].

Unfortunately, such an architecture has several drawbacks. First, the single
entry point of the tool is the formalism it processes. Second, adapting the veri-
fication engine is also quite difficult since all the features of the input language
are exploited and become naturally twisted with the algorithms themselves.

Progressively, several attempts have tried to separate the verification engine
from the input formalism. Then, the notion of “pivot representation” naturally
arises as the interface to an “upper level” dealing with the input specification.
Below this “pivot representation”, is a set of “verification engines” being able to
process this pivot representation. Languages such as AltaRica [5], NUPN [31], or
FIACRE [11], as well as a tool like the model checking Kit [64], could be seen as
early attempts of this approach. Fixed-point equations have also been proposed
as pivot representation to generalize multiple model checking questions [68]. In a
similar fashion, the introduction of SMT-LIB [8] as a standard format for auto-
mated reasoning over data theories can be viewed as the successful introduction
of a pivot representation.

Such an architecture (Fig. 1b) is similar to the font-end + middle-end +
back-end architecture of current compilers. It has two main advantages. First,
it decouples the high-level specification language from its verification. Then, the
specification language designer may work independently from the verification
mechanics as long as they provide a sound and formal semantics to their nota-
tion. This is of particular interest when input languages are numerous, because
it does not hinder the access to efficient verification engines via the pivot rep-
resentation. The bridging of AADL with FIACRE for verification purposes is a
typical example of this interest [21].

The second important advantage is the emphasis on the fundamentals of the
semantics (expressed in the pivot representation) required to perform efficient
model checking, thus providing a better access to various verification technologies
(e.g. algorithms based on different approaches such as partial order reduction,
the use of decision diagrams, the use of SAT/SMT solvers, etc.).

Moreover, it avoids, when dealing with the analysis of high-level specification,
to choose between selecting (a priori) one verification technology, or performing
as many translations as the number of selected verification engines.

The modular architecture of Fig. 1b can be interpreted in several ways (see
Fig. 2):

– components may be linked together as object files and libraries, (see Fig. 2a),
as this is the case for LTSmin [42] or SPOT [26],

– components may collaborate via an intermediate language (see Fig. 2b), as
this is the case for ITS-Tools [71] (originally relying on enhanced decision
diagrams) or Boogie [6] (originally relying on SMT solvers).

In the library based vision of the modular architecture of model checking
tools, the pivot representation is materialized as an API. The role of such an

396 F. Kordon et al.

Fig. 2. The two interpretations of the modular architecture of model checkers

interface is to expose the internal structure of the pivot representation, so that,
efficient algorithms can be built on the one hand, while it remains easy to con-
nect a higher formalism module on the other hand. Basically, formalisms are
connected through adapters implementing the main semantic characteristics of
the input formalism like the definition of a state or the successor function.

The main advantages of the library vision are: (i) it isolates the algorithms
from the input pivot notation, allowing only access to relevant data structures,
and (ii) it easily allows to embed executable code in the input formalism (with
the necessary precautions to preserve the soundness of the input formalism
semantics) that can be executed during model checking. Insertion of such code
(e.g. data computation) is performed by the adapter.

Its main drawback is that one must cope with the existing data-structures
when adding a new verification technology. This may hinder the addition of
some new technology for which the existing data structures are not adapted
(like connecting SAT/SMT based algorithms alongside existing automata-based
ones).

In the language based vision of the modular architecture of model checking
tools, the pivot representation is a language itself. Such a language offers a
semantic support that is “agnostic” in the sense it can support various execution
models. Connection with high-level languages is done thanks to a transformation
into the pivot language, thus acting as an “assembly language” dedicated to
verification.

The main advantages of this vision are: (i) it provides a strict barrier between
high-level formalisms and the implemented verification modules that can use var-
ious relevant data structures suitable for the corresponding verification technol-
ogy, and (ii) it enables possible optimization at the pivot language level so that
the underlying selected verification algorithm features can be fully exploited. So,
it is easier to plug new verification engines based on very different theory since
adapted data structure can be then developed for this module only.

Unfortunately, it is quite complex to link executable code to a high-level
formalism (under the necessary precautions to preserve the soundness of the
input formalism semantics) without a heavy and complex support included in
the pivot language itself. Such a feature is used in tools like Spin [39] (monolithic
approach) or LTSmin [42] (modular/library based approach).

Software Architecture of Modern Model Checkers 397

Obviously, the two interpretations of the modular architecture can be com-
bined, thus exposing either a pivot language based on an API, or an API using a
pivot language to connect to some underlying verification technology. The next
section introduces some high-level logic based formalisms and investigates how
they can be mapped to an efficient model checking engine.

3 High-Level Logic-Based Input Languages

High-level logic-based languages, i.e., specification languages which are not nec-
essarily executable [36], can provide a convenient way to translate a wide variety
of domain specific formalisms. Logic and set theory pervade large areas of com-
puter science, and are used to express many formalisms, properties and concepts.
On the one hand this explains the popularity of SAT and SMT solvers: many
properties from wide areas of computer science can be expressed or compiled to
logic. Similarly, the dynamic behaviour of a wide variety of languages and for-
malisms can be easily expressed in terms of a state-based formal method using
logic and set theory.

Several formal methods have a common foundation in predicate logic, set
theory and arithmetic: B [1], Event-B [2], TLA+ [49], VDM and Z [66] are the
most commonly used ones. Their high abstraction level make them a target for
conveniently modelling a large class of systems to be validated. Indeed, the high
abstraction level helps avoiding errors in the modelling process and can lead to a
considerable reduction in modelling time [63]. These methods are also convenient
for expressing the semantics of domain specific formalisms and develop model
checking tools for them. E.g., the following tools use a translation to B to obtain
a model checking tool for the source formalism: UML-B [65], SAP choreography
[67], SafeCap [41], Coda [18].

One drawback of such a high-level input language is performance: determin-
ing the successor states of a given state may require constraint solving of logical
predicates with quantification over higher-order data structures. As a simple
example, we present the B encoding of derivation steps for a formal (possibly
context-sensitive) grammar with productions P over an alphabet A. It is maybe
not the most typical model checking example, but shows how easy one can trans-
late a mathematical definition such as a formal grammar derivation step [40] into
a high-level language like B. The B/Event-B model would just have a single event
with four parameters L,R, a, b defined as

event rewrite(L,R, a, b) =

when (L �→ R) ∈ P ∧ a ∈ seq(A) ∧ b ∈ seq(A) ∧ cur = a ˆ L ˆ b

then cur := a ˆ R ˆ b end

This is very close to the mathematical definition in theoretical computer science
books such as [40]. The main difference is the use of ˆ for concatenating sequences
and seq(A) for finite sequences over the set A. Executing this event within a

398 F. Kordon et al.

model checker, however, requires a limited form of constraint solving: to compute
the next state for a given value of cur, one needs to determine the possible
decompositions of cur into three substrings a, L, b such that L is a left-hand
side of a grammar production in P . E.g., given P = {N �→ [y,N, z]} and cur =
[x,N,N, x], there are two ways to execute the event, leading to two possible
successor states with cur = [x, y,N, z,N, x] and cur = [x,N, y,N, z, x].

In this section we will focus on B [1] and TLA+ [49], illustrated by the model
checkers ProB [50] and Tlc [76].

3.1 Monolithic Approach: Directly Encoding the Semantics

One approach for model checking a high-level specification language is exhib-
ited by the Tlc model checker. It directly encodes the operational semantics
expressed in Java in the model checker; i.e., it follows the classical monolithic
approach.

This leads to a quite efficient explicit state model checker (albeit slower than
e.g. Spin) where library functions can be directly written in Java. Tlc can be
parallelised, and can run in the cloud.

The disadvantage is that the model checker is really intertwined with the
TLA+ implementation and language and cannot be easily used for other lan-
guages, unless these are translated to TLA+. Tlc also cannot perform constraint
solving, meaning that the above rewrite specification cannot be handled. Such
specifications have to be re-written manually, so that left-to-right evaluation
leads to finite and reasonably efficient enumeration.

3.2 Prolog as an Intermediate Verification Language

From its conception, the animator and model checker ProB was designed to
target multiple specification languages and to use Prolog as a pivot language, or
more precisely as an intermediate verification language (cf. Sect. 4.1) for specify-
ing language semantics. As such, the B semantics (or rather a superset thereof,
denoted by B+ in Fig. 3, which is a pivot language in itself) is expressed using a
Prolog interpreter, which specifies the set of initial states, the successor relation
and the state properties.

Fig. 3. The Tlc and ProB model checkers

Software Architecture of Modern Model Checkers 399

This approach has a few advantages. It is easy to use the tool for other lan-
guages by providing an interpreter (or compiler). This is helped by the fact that
Prolog, aka logic programming, is quite convenient to express the semantics of
various programming and specification languages, in particular due to its sup-
port for non-determinism. E.g., the operational semantics rules of CSP [61] can
be translated into Prolog clauses [51]. Furthermore, within Prolog one can make
use of constraint logic programming for dealing with complex specifications, such
as the grammar rewriting specification above. Finally, it is relatively straight-
forward to combine or integrate several formalisms, as was done for CSP ‖ B
[17].

On the negative side, a Prolog interpreter will be slower (but easier to write)
than a C or Java interpreter or even a compiler. Also, complex Prolog code
such as the B interpreter of ProB, is not suited for analyses required for model
checking optimisations, e.g., dependence information for partial order reduction
or symmetry information. Within ProB such information is provided in an ad-
hoc manner per supported language. Better solutions to this will be shown later,
either by better pivot languages Sect. 4 or by the greybox approach Sect. 5.

Quite a few other tools also use Prolog as an intermediate input language.
E.g, the XMC model checker [60] provides an explicit-state CTL model checker,
targeting languages such as CCS via an interpreter or via translation. Techniques
such as partial evaluation [52] and unfold-fold transformations [29] can be used
for optimization, but also for a form of infinite state model checking. Finally,
constraint programming techniques can be used for various validation tasks [23,
24]. Similarly, in Horn-Clause Verification, SMT solvers are applied to Prolog or
Datalog like specifications [12,58].

3.3 Other High-Level Languages

There are many other high-level modelling languages. The languages VDM and
ASM are very similar in style to B and TLA+, and some translators between
these languages exist. The process algebra CSP [61] also features sets and
sequences as data types, but its operational semantics is quite different. The
successful FDR tool [62] is to some extent a monolithic model checker (or more
precisely refinement checker), even though it also performs an internal lineari-
sation. CSP has also been a popular target for domain specific formalisms such
as Casper [54] for security protocols or Circus [74]. For the latter there is also a
recent translation to CSP‖B [75], and Circus itself is sometimes the target for
other formalisms such as UML [16].

The toolset around mCRL, a process algebra with abstract datatypes, is
based on an internal linearisation technique [34]. In the mCRL toolset, linear
processes are viewed as an intermediate verification language (in the sense of
Sect. 4.1). Due to their flattened form, they can be subjected to further opti-
mization, and they are well-suited for adaptation to an on-the-fly API (in the
sense of Sect. 5).

400 F. Kordon et al.

We would also like to mention the PAT model checker [53,77]. Its conception
is similar to ProB but using C-Sharp instead of Prolog as an intermediate
language.

Finally, instead of validating high-level specifications, it is also quite com-
mon to work directly with programming languages such as Java or C. The Java
Pathfinder [35] tool translates a Java program to Promela for modelling with
the Spin model checker [39]. Here, only certain aspects of the programming lan-
guage are modelled (such as concurrency), abstracting away from other aspects.
Another successful tool is CBMC [45] for bounded model checking, which pro-
vides bit-precise modelling for C and checking specific properties such as buffer
overflows and exceptions. An alternative to model checking is abstract interpre-
tation, such as used by the ASTREÉ analyzer [22] which has been successfully
used for verification of C programs.

3.4 Summary

In summary, high-level logic-based languages are very popular for modelling and
for expressing domain specific formalisms. We have shown how an intermediate
pivot language like Prolog provides a good way to integrate formalisms, and
allows a model checker to target a variety of dialects and related formalisms.
The downside is performance: efficient model checking is very difficult to achieve
in Prolog, and some information like symmetry and dependence for partial order
reduction is difficult to extract from more involved Prolog representations. The
approaches in the following sections will provide solutions to this. Section 4 pro-
vides other internal representations, while Sect. 5 presents a greybox API app-
roach, which enables to connect a low-level model checking engine written in C
with interpreters for higher-level languages. In Sect. 6.1 we will actually show
how this has led to the latest generation model checking technique for B, by
combining ProB’s Prolog interpreter with LTSmin’s model checking C engine.

4 Using an Intermediate Language as a Pivot

As discussed in Sect. 2, the role of an intermediate representation is to allow sepa-
rate evolution of input languages with respect to model checking and verification
algorithms. This section focuses on approaches reifying this pivot representation
using an intermediate verification language (IVL). Section 4.1 presents the gen-
eral approach, while Sect. 4.2 details a specific instance of an IVL called Guarded
Action Language.

4.1 Intermediate Verification Language

An IVL is a language specifically designed to fit the role of pivot: rather than
a language particularly comfortable for end users, it is designed as a general
purpose input for a verification engine. The focus when designing an IVL is on
providing a small set of semantic bricks while preserving good expressivity. The

Software Architecture of Modern Model Checkers 401

end-user manipulates a user-friendly domain specific language (DSL) [73] that
is translated into the IVL prior to the actual model checking or verification.

Historically, most model checkers were built in monolithic fashion, with a
single supported input language and a single solution engine. This prevented
a lot of reuse of actual code between model checkers, similar algorithms being
reimplemented for each language. In this setting, to use a particular solver, you
need to translate manually or automatically your specification to the solver’s
language.

For instance Promela the language of Spin [39] has often been used as a
target for translation [15]. However it is a complex language with many semantic
idiosyncrasies such as the support for embedded C code or the behavior attached
to the atomic keyword. It also offers a wide variety of syntactic constructs, that
make direct modeling in Promela comfortable for end-users. These features make
life hard for a provider of a new algorithm or verification strategy. Because the
language is complex, the development cost of supporting Promela in a tool is
high. Many third-party tools for Promela analysis [42,71] only support a limited
subset of Promela (typically excluding C code, and/or dynamic task creation).

IVL in the Literature. Hence while Promela has been used as an IVL it is
not particularly well suited for that purpose, since it was not a design goal of
the language. However many recent verification efforts include the definition of
an intermediate languages, explicitly designed to be an intermediate verification
language (e.g. [5,6,11,71]).

The SMV language [19] was designed to support symbolic verification (using
either BDD or SAT based solvers) and serves as language based front-end to
these technologies. The semantics is synchronous and thus well adapted to mod-
eling of hardware components, but makes expression of asynchronous behaviors
cumbersome.

In Sect. 3.2 we have already discussed the use of Prolog as a pivot language,
and its limitations, e.g., related to partial order reduction or symmetry detection.

For program verification, the Boogie language (Microsoft) [6] is expressly
designed as an intermediate language, helping to bridge the gap from programs
to SMT based verification engines. Initially designed to support Spec#, i.e. anno-
tated .Net bytecode, it has been extended to cover a host of programming lan-
guages using this intermediate language approach. All of these input languages
thus benefit from improvements made to the verification engine (development of
interpolants, new verification conditions,. . .).

The standard format SMT-lib [7] for SMT problems is itself a pivot inter-
mediate language sharing many design goals with an IVL, but with a broader
scope than the pivot languages considered in this paper.

Focusing more on concurrent semantics and finite state systems, the Guarded
Action Language (GAL) [71] is an IVL that is supported by a decision diagram
based symbolic verification engine. It helps bridge the gap between asynchronous
and concurrent systems expressed in a variety of formalisms (Promela, Petri
nets, timed automata,. . .) and a symbolic expression of their transition relation.

402 F. Kordon et al.

Section 4.2 presents the design choices we made when defining this language and
the architecture of the ITS-tools model checker built around it.

Domain Specific Languages and Verification. This intermediate language
approach integrates well with current model-based industrial practice. It helps
solve two large stumbling blocks that prevent more widespread adoption of model
checking. Firstly, due to automated translations, the end-user is isolated from
ever needing to know about the specifics of how the verification is performed.
This reduces adoption cost since training software engineers to build formal mod-
els is a difficult task, and helps achieve the “push-button” promise of automated
verification. Secondly, the DSL models are developed with several purposes in
mind, that typically include code generation or simulation. This means the mod-
els developed have precise behavioral semantics necessary for analysis, and also
reduces the gap between what you prove correct (the formal model) and the
running system. Provided the translations are correct and consistent with one
another, the running system and the formal model both conform to the seman-
tics of the DSL. Verification of the more abstract DSL is however usually easier
than analyzing models extracted from actual implementations of the design.

Language Engineering. Language engineering using metamodeling technol-
ogy has evolved rapidly over the last two decades, pushed by the OMG consor-
tium and the development of the UML standard. Because UML is a particularly
complex language, with a very broad scope, new technologies for model defini-
tion and manipulations were defined based on the concept of metamodel. These
tools are now mature with industry strength quality (e.g. EMF [70]), and can
be applied to a variety of models and languages that bear no relationship with
UML.

In a model-centric approach, a metamodel is defined to describe a language,
where models are instances of this metamodel. Because the metamodel is itself
an instance of a metametamodel, common to all language definitions, powerful
tools can be engineered that take a language (a metamodel) as input.

Tools such as XText [28] make development of new languages easier, with a
full-blown modern end user experience (code completion, on the fly error detec-
tion...) available at a very low development cost.

Using model transformations to build formal models expressed in an IVL
can thus be done using several alternative technological paths [27], and is well-
understood by modern software engineers. This facilitates third-party adoption.

Technology Agnostic. The underlying verification engine is weakly con-
strained by an intermediate language approach. Model checking can use struc-
tural analysis, SAT technology, decision diagrams, explicit state. . . with solvers
implemented in any programming language.

Because an IVL offers a complete view of the semantics to the analysis tools
(in the absence of black-box behavior such as embedded code) it is still possible
to write property specific abstractions such as slicing and simplifications such as
constant removal. Such abstractions can usually be expressed as a transformation
to a simpler model expressed in the same language. Hence all analysis tools

Software Architecture of Modern Model Checkers 403

benefit from their existence. Section 5.3 will present how some of these issues
can be addressed using a greybox API (e.g. to provide partial order reduction),
but the abstractions that can be offered using an IVL are more powerful in
general.

Modular Decomposition. Support for modular definition of a specification
in the IVL is highly desirable. It helps support modular verification scenarios
where only part of the system is analyzed to prove system-wide properties. This
requires some weak hypothesis on how a component interacts with its environ-
ment to make compositional reasoning possible. The Mocha environment [4] uses
such compositional reasoning, thanks to founding the semantics with reactive
modules [3]. Other examples based on I/O automata [55], assume/guarantee con-
tracts for components [59], or asynchronous composition such as in CADP [32]
try to exploit compositional reasoning to provide simpler proofs.

4.2 GAL Within ITS-Tools

ITS-tools offers model checking (CTL, LTL) of large concurrent specifications
expressed in a variety of formalisms: communicating process (Promela, DVE),
timed specifications (Uppaal timed automata, time Petri nets) and high-level
Petri nets. The tool is focused on verification of (large) globally asynchronous
locally synchronous specifications. Its architectures is presented in Fig. 4.

Fig. 4. Instantiation of the modular architecture for ITS-tools

It leverages model transformation technology to support model checking of
domain specific languages (DSL). Models are transformed to the Guarded Action
Language (GAL), a simple yet expressive language with finite Kripke structure
semantics.

Guarded Action Language. GAL is a pivot language that essentially
describes a generator for a labeled finite Kripke structure using a C like syn-
tax. This simple yet expressive language makes no assumptions on the existence
of high-level concepts such as processes or channels. While direct modeling in
GAL is possible (and a rich eclipse based editor is provided), the language is
mainly intended to be the target of a model transformation from a (high-level)
language closer to the end-users.

404 F. Kordon et al.

A GAL model contains a set of integer variables and fixed size integer arrays
defining its state, and a set of guarded transitions bearing a label chosen from
a finite set. We use C 32 bit signed integer semantics, with overflow effects;
this ensures all variables have a finite (if large 232) domain. GAL offers a rich
signature consisting of all C operators for manipulation of the int and boolean
data type and of arrays (including nested array expressions). There is no explicit
support for pointers, though they can be simulated with an array heap and
indexes into it. In any state (i.e. an assignment of values to the variables and
array cells of the GAL) a transition whose boolean guard predicate is true can
fire executing the statements of its body in a single atomic step. The body of the
transition is a sequence of statements, assigning new values to variables using
an arithmetic expression on current variable values. A special call(λ) statement
allows to execute the body of any transition bearing label λ, modeling non-
determinism as a label based synchronization of behaviors.

Parametric GAL. specifications may contain parameters, that are defined
over a finite range. These parameters can be used in transition definitions, com-
pactly representing similar alternatives. They can also be used to define finite
iterations (for loop), and as symbolic constants where appropriate. Parameters
do not increase expressive power, the verification engine does not know about
them, as specifications are instantiated before model checking. The tool applies
rewriting strategies on parametric transitions before instantiation, in many cases
avoiding the polynomial blowup in size resulting from a naive parameter instanti-
ation. Rewriting rules that perform static simplifications (constant identification,
slicing, abstraction...) of a GAL benefit all input formalisms.

Model to Model Transformations. Model-driven engineering (MDE) pro-
poses to define domain specific languages (DSL), which contain a limited set
of domain concepts [73]. This input is then transformed using model transfor-
mation technology to produce executable artifacts, tests, documentation or to
perform specific validations. In this context GAL is designed as a convenient
target formally expressing model semantics. We thus provide an EMF [70] com-
pliant meta-model of GAL that can be used to leverage standard meta-modeling
tools to write model to model transformations. This reduces the adoption cost
of using formal validation as a step of the software engineering process.

Third-Party Support. We have implemented translations to GAL for several
popular formalisms used by third party tools. We rely on XText for several of
these: with this tool we define the grammar and meta-model of an existing for-
malisms, and it generates a rich code editor (context sensitive code completion,
on the fly error detection,...) for the target language. For instance, we applied
this approach to the Promela language of Spin [39] and the Timed Automata of
Uppaal [9].

For Promela, channels are modeled as arrays, processes give rise to control
variables that reflect the state they are in. A first analysis of Promela code is
necessary to build the underlying control flow graph (giving an automaton for
each process). There is currently no support for functions and the C fragment

Software Architecture of Modern Model Checkers 405

of Promela. The support for TA and TPN uses discrete time assumptions, and
will be detailed in Sect. 6.2.

Solution Engines. The main solution engine offered by ITS-tools is a symbolic
model checker relying on state of the art decision diagram (DD) technology. A
more recent addition is an SMT based encoding of GAL semantics, that enables
a bounded model checking/induction decision procedure for safety properties.
This SMT encoding also enables many static analysis tests such as computing
interference between events that enable precise partial order reductions. A bridge
from GAL to the PINS API (see Sect. 5) enables the many solution engines
offered by LTSmin.

GAL thus successfully plays the pivot role of an intermediate verification
language, allowing to separately choose the input language and the solution
engine for verification. This approach is, however, not always applicable, e.g.,
when embedded code is associated with a model or when executing the high-
level source language requires constraint solving not present in the intermediate
language (cf., Sect. 3.2). The API approach presented in the next section is one
solution for this problem.

5 The API Approach to Reusing Verification Engines

The focus in this section is on generic programming interfaces (API) between
formal specification languages and model checking algorithms. The underlying
wish is to reuse software implementations of model checking algorithms for spec-
ifications in different formal languages.

Semantically, the operational semantics of a specification language gives rise
to a transition system, with labels on states or transitions, or both. Model check-
ing algorithms can be viewed as graph algorithms over these transition systems.
Many model checking algorithms operate on-the-fly, intertwining state space
generation with analysis. In many cases, in particular when hunting for counter
examples, only a fraction of the complete state space is visited. To facilitate
this, the state space graph is often exposed to the algorithm through an API,
providing the functionality to compute the desired part of the graph.

Black-Box API. Clearly, a black-box view on states and transitions would
provide maximal genericity. Here states are opaque objects for the model checker
and it just needs a function to retrieve the initial state, and another one to
compute the next states of any given state. All information on the internal
structure of states and transitions are nicely encapsulated in language modules
specific to a formal language.

A prominent example of this approach is the Open/Caesar interface [30],
which allows the CADP toolset to operate on input models in various pro-
cess algebra-oriented languages, like Lotos, LNT, EXP and FSP. This facili-
tates the reuse of backend algorithms in CADP for model checking, bisimula-
tion checking and reduction, test generation, simulation and visualisation. The
Open/Caesar architecture also allowed to link external toolsets, for instance
μCRL and LTSmin.

406 F. Kordon et al.

Greybox API, Pins. The disadvantage of a black-box API is that it prohibits
many methods for mitigating the state space explosion. For instance, state space
compression techniques, symbolic model checking and partial-order reduction
require information on the structure of states and transitions. For this reason,
the toolset LTSmin [14,42] introduced a greybox API, called Pins, the Parti-
tioned Interface to the Next-State function, cf. Fig. 5. Here states are parti-
tioned in vectors of N chunks, and the transition relation is partitioned into
M subtransitions that operate on a part of the state vector. Depending on the
specification language and the intended granularity, chunks can represent state
variables, program counters, or subprocesses. Transitions could represent lines
or blocks of code, or synchronized communication actions. Finally, the language
frontend provides a static Dependency Matrix (DM) that declares which chunks
in the state vector are affected by a certain transition group. Thus, locality of
transitions is exposed to the model checking algorithms. See Table 1 for further
details.

Fig. 5. Original instantiation of the modular architecture in LTSmin

Table 1. Parameters and functions of the PINS greybox API

N Fixed length of the state vector

M Number of disjunctive transition groups

init() Function that returns the initial state vector

next(s, i, f) Function that calls back f on any successor of s
in transition group i

DM[M][N] Dependency Matrix of Booleans: DM[i][j] means
transition group i depends on variable j

In the sequel, we demonstrate how gradually exposing more structure enables
more and more model checking techniques to be applied, basically following the
historical development of the LTSmin toolset.

5.1 Distributed and Multi-core Model Checking

In distributed model checking, it must be frequently tested whether a locally
generated successor state already exists globally. This is usually solved by send-
ing (batches of) states over the network to the machine that “owns” them.

Software Architecture of Modern Model Checkers 407

Ultimately, the network bandwidth forms the performance bottleneck of this
approach. In this section, we show how partitioning the state vector enables
state space compression and leads to a reusable solution.

A distributed database and compression scheme was proposed for the μCRL
toolset [13], which reduced the bandwidth to roughly two integers per state. That
compression approach depends on (recursively) indexing the first and second half
of a state vector, thus forming a binary tree of databases. The leaves of this tree
consist of an index of algebraic data terms of μCRL. A piggy-backing scheme
ensured global consistency of all databases.

The original motivation of the LTSmin toolset [14] was to offer this approach
to multiple model checkers with their own specification languages, in particular
to Promela models in SPIN. There were three considerations to combine these
languages for distributed model checking: First, the interface had to support the
action-based process algebra μCRL, as well as the state-based Promela models
of SPIN. Also, besides the algebraic data-types of μCRL, it had to support
the direct machine integer-representation of SPIN models. Finally, the database
compression technique required access to various parts of a single state. These
considerations led to the greybox Pins interface (Table 1), supporting both state
and edge labels, and assuming and exposing a fixed-length state vector.

The separation provided by Pins turned out to be quite versatile for fur-
ther experimentation: Initially, we conceived to link the MPI/C code of the
distributed model checker directly to SPIN generated code, but this was deemed
to be too fragile. The Pins interface allowed to switch freely to NIPS-VM, a vir-
tual machine to interpret Promela models, and to SpinJa, a compiler for SPIN
models. Actually, these experiments can be viewed as instances of combining
a fixed API to various intermediate language representations in the spirit of
Sect. 4.

Currently, LTSmin supports an arbitrary number of edge and state labels,
allowing to handle for instance Mealy machines (input/output), probabilistic
automata (actions/probabilities) and games (actions/players). By now, several
more language modules have been constructed, enabling to reuse the same model
checking algorithms for DVE (DiViNE), PetriNets (PNML), mCRL2, Timed
Automata (Uppaal, cf. Sect. 6.2), B models (ProB, cf. Sect. 6.1), etc.

Finally, when we developed new multi-core algorithms, based on concurrent
hash tables in shared memory and concurrent tree compression [48], the Pins
interface allowed to effortlessly and directly carry out scalability experiments on
benchmark models from this large variety of specification languages.

5.2 Symbolic BDD-Based Model Checking

The effectiveness of state compression can be explained from the locality of
transitions, leading to the relative independence of the system components (e.g.
processes). Binary Decision Diagrams (BDD) provide even more opportunities
to compress sets of state vectors, by sharing common prefixes and suffixes. Can
we gain more than just a concise representation? Here we want to emphasize
that by exposing transition locality explicitly, we can also achieve computations

408 F. Kordon et al.

on sets of states. That is, we obtain the benefits of traditional symbolic model
checking for models that are only provided through an on-the-fly API, without
requiring a symbolic specification of the transition relation.

The main idea is that the static dependency matrix DM provided by Pins
allows to deduce much information from one next-state call, in particular when
the dependency-matrix is sparse (i.e., there is a lot of locality). Consider a state
vector x0, . . . , xn in which a transition group tk is enabled, that only affects
x0, . . . , xi, according to the DM. Then we can deduce the following two facts:

– All successors are of the form x′
0, . . . , x

′
i, xi+1, . . . , xn

– All states of the form x0, . . . , xi, yi+1, . . . , yn have successors from transition
group tk of the form x′

0, . . . , x
′
i, yi+1, . . . , yn.

The short pair x0, . . . , xi �→ x′
0, . . . , x

′
i can be stored in a local BDD Rk and

reused in relational product computations during further state space generation.
So, the Pins interface allows full-fledged symbolic model checking for explicit-

state specification languages (Promela, mCRL2, DVE, ProB, etc.) without the
need for manual symbolic encodings or automated model translations. The price
to pay is that every language module should define transition groups at some
level of granularity, and perform some kind of static analysis to identify the
dependencies on state variables. Rough overapproximations of the dependency
matrix are still correct, but more precise analyses expose more locality. This
effort has to be performed for every specification language only once, and a
precise analysis is rewarded by a more efficient model checker for that language.

Again, the Pins architecture proved to be very flexible, allowing experiments
with among others Multiway Decision Diagrams, List Decision Diagrams, and
also scalable multi-core implementations of decision diagrams [25] on a wide
variety of benchmark models in many specification languages.

Another lesson learnt was that exposing more information leads to more
efficient model checking. This seems obvious, but the sweet spot is not clear.
In [57] we experimented with splitting transition groups in guards and updates,
refining the Dependency Matrix to distinguish read- from write-dependencies.
This led to considerable performance gains in symbolic model checking.

Note that existing language modules wouldn’t profit from this refinement,
but at least they don’t break. Implementing the refined analysis for some speci-
fication language is incentivized by a more efficient model checking procedure.

5.3 Other Extensions as Pins2Pins Wrappers

So far we showed that the Pins-API allows combining multiple model check-
ing algorithms with multiple specification languages, increasing the efficiency
for the whole research community. We can take this one step further: a sin-
gle state space optimization technique could be reused for any model checking
algorithm and any specification language. This is supported by rewiring, using
so-called Pins2Pins-wrappers, as in Fig. 6, which remotely resemble Unix-pipes:
The original model is available on-the-fly to the Pins2Pins wrapper, which in

Software Architecture of Modern Model Checkers 409

Fig. 6. On-the-fly state space transformers provided as Pins2Pins-wrappers in LTSmin

turns provides the reduced state space in an on-the-fly manner to the actual
model checker. In reality, this involves a quite complicated rewiring of the call-
back mechanism.

We will discuss a couple of instances. A simple instance is transition-caching:
For highly expressive specification languages the next-state calculation will be
slow. In case of high locality (sparse Dependency Matrix), it could pay off to
have an intermediate caching layer that stores the results of all next-state calls
for future reuse. This cache has to be implemented once, and can be reused for
all models in all supported specification languages and for all model checking
algorithms. (Note that this is not helpful for the symbolic model checker, since
it already stores these transitions in the local BDDs Rk.)

A second example is reordering state variables and regrouping similar tran-
sition groups. It is well-known that the variable order greatly influences the
efficiency of symbolic model checking. We investigated if the information from
the read-write Dependency Matrix is sufficient to compute a good static vari-
able order. The Pins interface with its DM allowed to apply many bandwidth
reduction algorithms on matrices out-of-the box, and enabled us to compare
them experimentally across multiple specification languages and multiple deci-
sion diagram types [25]. At the same time, we noticed that having too many
transition groups leads to a considerable overhead. So the regrouping layer also
recombines several transition groups that indicate the same (or similar) depen-
dencies.

A third example is the computation of cross-products. For LTL model
checking, the cross-product with a Büchi automaton is conveniently provided
as a Pins2Pins-wrapper. For μ-calculus model checking, another Pins2Pins-
wrapper computes the product of an LTS and a Boolean Equation System,
resulting in a Parity Game (using the fact that LTSmin supports multiple edge
labels to encode players and priorities). A more generic product automata wrap-
per, that could support compositional model checking, is under construction.

Finally, we shortly discuss some experiments with partial-order reduction.
We investigated if the DM contains sufficient information to implement state
space reduction based on the stubborn-set approach to POR [72]. The bad news

410 F. Kordon et al.

is that the achieved reductions would be suboptimal: from the DM it can only be
deduced that two subtransitions are independent (e.g. tk doesn’t modify variables
that t� reads or writes). However, to achieve the full effectiveness of POR we had
to extend the DM with new matrices, basically indicating whether transition
groups can enable each other. More precisely, one can exploit refined guard
splitting: A new matrix indicates whether executing transition group t� could
enable or disable guard gi.

The good news is that extending PINS with information on enabling/
disabling relations between transition groups, allows the full reduction power
of stubborn-set POR method [47]. LTSmin comes up with a reasonable default
for the new POR-related matrices. Language modules that take the effort to
derive more precise transition dependencies are again rewarded with more effec-
tive state space reduction power. Thus, a partial-order reduction block can be
provided, which is suitable for all specification language modules implementing
Pins and potentially supports all model checking algorithms based on the Pins
interface.

One may wonder if this provides effective partial-order reduction for sym-
bolic model checking? Unfortunately, after partial order reduction all dependency
information is lost, so symbolic model checking on the reduced state space would
be correct, but not effective. Similarly, in the case of timed automata, all transi-
tions involve manipulating the clocks, so partial-order reduction of TA is correct,
but not effective. Positive cases, where POR is effective, are the explicit multi-
core model checking algorithms, both for safety and LTL properties, applied to
mCRL2, Promela, DVE, PNML, or B models.

6 Application Examples

This section shows how the variants of the modular approach (library-based or
language-based) can be instantiated in real situations.

6.1 ProB to LTSmin API: Linking High-Level Languages
with Other Model Checkers

In [10] we have presented a first integration of ProB with LTSmin. We thereby
managed to keep the full power of the constraint solving of ProB’s Prolog inter-
preter to compute successor states for complicated events (see Sect. 3). But we
also gained access to the symbolic model checking engine of LTSmin, to con-
struct a symbolic BDD-style representation of the reachable states. For some
experiments, this resulted in the reduction of the model checking time of an
order of magnitude or more. The crux lies in the fact that through the greybox
API, LTSmin gains information about read/write dependencies of events, which
is crucial to build up the symbolic representation of the state space. Note that
ProB’s representation of B’s datastructures are hidden to LTSmin: LTSmin does
not need to know about higher-order sets and relations, nor about symbolic rep-
resentations for infinite B functions, just to mention a few possible data values.

Software Architecture of Modern Model Checkers 411

All LTSmin needs to know is the variables of the B model and the read-write
dependencies. For example, suppose we have a state 〈x = 10, y = {{2}, {4}}〉
(where the variable y is a set of sets) and the event inc produces the single
successor state 〈x = 11, y = {{2}, {4}}〉. Given the information that inc reads
and writes only x, LTSmin knows, without having to query ProB, that the only
successor of 〈x = 10, y = {{1, 2}}〉 is 〈x = 11, y = {{1, 2}}〉.

On a technical side, the communication was achieved by ZeroMQ. In ongo-
ing work [44] the bridge has been extended to support partial order reduction
and parallel LTL model checking, again with sometimes impressive speedups
compared to ProB’s internal explicit state model checker.

6.2 Analysis of Timed Automata

Uppaal’s networks of timed automata are the de facto standard for the high-
level specification of real time systems, with a well-integrated tool support in the
Uppaal tool suite. For this reason, Uppaal is also used as a target of model trans-
formation, as an IVL. Uppaal’s efficient solver is based on zone based abstraction
with subsumption. However, due to its tight integration, Uppaal uses a mono-
lithic approach (Fig. 7a): all algorithms are tightly connected to Uppaal models,
and not available as open source components, except the DBM library, which
offers zone abstraction through Difference Bound Matrices.

We discuss two approaches to analyze Uppaal models using the API approach
(linking Uppaal to LTSmin) or the IVL approach (translating Uppaal models to
GAL specifications as in ITS-Tools).

LTSmin Approach. A bridge between Uppaal and LTSmin was devised, cf.
Fig. 7b, which supports full multi-core LTL model checking of Uppaal networks
of timed automata [46]. The advantage of this approach is that it maximizes code
reuse. It uses opaal to generate C-code from Uppaal models, which was adapted
to implement the Pins interface. Furthermore, the next-state function directly
calls the DBM-library. For LTSmin’s multi-core algorithms, a state vector just
contains an opaque pointer to a DBM to represent a symbolic time zone. In

Fig. 7. Three architectures for TA model checkers.

412 F. Kordon et al.

this way, Uppaal users obtain a scalable multi-core LTL model checker in a
transparent manner.

Two issues arise, however: First, timed automata based on timed zones have
abstract states, which require subsumption for efficient state space reduction.
This was solved by (again) extending the Pins interface with an extra function
(to reuse the DBM-library for checking subsumption of symbolic states). Another
issue is that time manipulation happens in every transition group, which leads
to a dense dependency matrix. Hence symbolic model checking and partial-order
reduction are not effective on timed automata.

ITS-Tools. The support for TA uses discrete time assumptions to be able
to model the semantics using GAL, as in Fig. 7c. Fortunately, analysis in the
discrete setting has been shown to be equivalent to analysis in a dense time
setting provided all constraints in the automata are of the form x ≤ k but not
x < k [37]. We thus can build a transition that represents a one time unit delay
and updates clocks appropriately. This transition is in fact a sequence of tests for
each clock, checking if an urgent time constraint is reached (time cannot elapse),
if the clock is active (increment its counter) or if it is inactive either because it will
be reset before being read again, or because it has reached a value greater than
any it could be tested against before a reset (do nothing). This test for inactive
clocks corresponds to an abstraction that preserves observable behaviors, but
prevents clock values from growing indefinitely, yielding an infinite state space.

Strengths. This discrete time approach is very effective to deal with systems
where the number of concurrently enabled locations or clocks grows, since in such
cases the classic explicit state with zones represented as DBM does not scale well.
However, when the maximum bounds on clocks grow, even decision diagrams
have trouble dealing with the state space explosion in the discrete setting. The
two approaches thus have good complementarity, allowing to address different
kinds of systems.

Weaknesses. Overall the main difficulty when developing support for timed
automata is that the classical dense time semantics of TA cannot be feasi-
bly encoded just using GAL which have discrete semantics. The correctness
of switching to discrete semantics was fortunately already established [37], but
in general mapping of arbitrary semantics to GAL is not always possible. It
is much easier to map arbitrary semantics to a language such as Prolog (see
Sect. 3.2) but this comes at the cost of verification power and efficiency. The dis-
crete time models have a very large state space, and cannot feasibly be analyzed
using non symbolic solution engines, so despite the pivot language approach,
the choice of this path limits the choice of the solution engine. However explicit
state approaches are of course still available on TA using the Uppaal verifier or
LTSmin.

7 Discussion

This paper summarizes the evolution of modern model checking tools in terms
of their architecture and usage to solve typical industrial-like problems, which

Software Architecture of Modern Model Checkers 413

are more and more stated using high-level, domain specific languages instead of
the “traditional” specification languages. Moreover, complementary techniques
are often used to solve particular situations. For example, explicit techniques
may scale less but algorithms to compute counter-examples are simpler. On the
contrary, symbolic techniques usually scale better but computation of a counter
example is not trivial.

To cope with such situations, an intermediate level has been introduced, the
pivot representation, which provides a modular architecture to link high-level
specifications with a backend for verification. This pivot representation can be
either a library offering an API, or a language itself. Both approaches co-exist
today and show their own advantages and drawbacks. This is of interest to enable
transparent activation of a given technique. This can be seen as a configuration
issue (choice of a technique/algorithm at a given stage of the verification process)
or to some preprocessing phase. It is thus particularly important to benefit from
a large portfolio of techniques available in a given environment, and linked to the
pivot representation. Such a situation is observed in the Model Checking Contest
[43] where some tools concurrently operate several techniques and retrieve results
from the first that finishes. Let us also refer to CIL that is used as an entry in
the software competition to operate various tools and techniques (or PNML that
has a similar role in the model checking contest).

In both approaches, the problem of translating counter examples back to the
user level exists. Due to their tight integration, monolithic architectures can also
offer an integrated user experience, which can be viewed as an advantage. For
modular approaches, it takes some effort to link between transformations (this is
typically supported by MDE-based approaches) but this is more difficult when
there are several translations (e.g. optimization phases).

Embedding external code is possible within the API-approach, as long as one
respects the absence of side effects. This is an attractive feature for verifying sys-
tems using complex data structures or libraries. The API approach also allows
to reuse existing implementations of the operational semantics of specification
languages. As a consequence, the transition relation is more opaque, isolating
verification algorithms from the actual representation. This possibly disables
some abstraction opportunities. We demonstrated how greybox API solutions
(PINS) disclose sufficient structural information to enable some important opti-
mizations, like state compression, partial-order reduction and decision-diagram
representations.

The use of a reified intermediate verification language as a pivot preserves the
semantics completely. This means that more solution engines remain available,
such as SMT solvers for encoding data abstractions. The translation needs to
be complete and true to the original semantics. This requires more effort, which
may be hard or impossible in some cases due to the semantic gaps in expressivity
when source and target languages differ too much (i.e., the translation of B to
SMV in fact generates the full state space during the translation). Potential loss
of the modular structure of specifications during the translation could also be

414 F. Kordon et al.

a drawback, since this structure contains useful information that can in general
be exploited by model checking heuristics.

The field of model checking is moving fast: new algorithms, improved data
structures and high-performance implementations are emerging all the time.
This also leads to new application domains, with their own domain-specific,
high-level modeling languages. Within these dynamics, intermediate representa-
tions provide some stability, by decoupling verification algorithms from high-level
specifications. This paper presents a decade of research in sophisticated interme-
diate representations, either as intermediate verification languages, or as on-the-
fly greybox interfaces. Despite an improved understanding of the relationship
between verification capabilities and features of the intermediate representation,
a “golden standard API”, or a “holy grail IVL” has not yet emerged. On the con-
trary, the building blocks of model checking architectures are also still in devel-
opment. Fortunately, the approaches that we have reported combine very well
from a methodological point of view. Several language translations and optimi-
sations can be composed; the resulting “flattened” specification is easily adapted
to an API; and several building blocks can be combined through plug-and-play
with the API. We demonstrated that through these successful combinations one
can obtain very efficient model checkers for high-level specification languages.

Acknowledgements. We would like to thank the many people who have worked
on the various verification tools such as LTSMin and ProB. In particular, we want
to thank Jens Bendisposto, Philipp Körner, Jeroen Meijer, Helen Treharne, Jorden
Whitefield for their work on the ProB to LTSmin API described in Sect. 6.1.

We also thank Stefan Blom, Michael Weber, Elwin Pater for setting up the archi-
tecture of LTSmin and Alfons Laarman, Tom van Dijk, Jeroen Meijer for recent devel-
opments on multicore and symbolic LTSmin.

On the ProB side we are grateful to many researchers and developers who have
contributed to the tool or its underlying techniques, notably Michael Butler, Joy Clark,
Ivaylo Dobrikov, Marc Fontaine, Fabian Fritz, Dominik Hansen, Sebastian Krings,
Thierry Massart, Daniel Plagge, David Schneider, Joshua Schmidt, Corinna Spermann.

We finally thank the many colleagues who contributed to the development and
algorithms for ITS-Tools, in particular, Béatrice Bérard, Denis Poitrenaud, Maximilien
Colange, Yann Ben Mäıssa, and many master students.

The third author has been partially funded from the 4TU NIRICT.BSR project on
Big Software on the Run.

References

1. Abrial, J.R.: The B-Book. Cambridge University Press, Cambridge (1996)
2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge

University Press, Cambridge (2010)
3. Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods Syst. Des. 15(1),

7–48 (1999)
4. Alur, R., Henzinger, T.A., Mang, F.Y.C., Qadeer, S., Rajamani, S.K., Tasiran,

S.: MOCHA: modularity in model checking. In: Hu, A.J., Vardi, M.Y. (eds.) CAV
1998. LNCS, vol. 1427, pp. 521–525. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0028774

https://doi.org/10.1007/BFb0028774
https://doi.org/10.1007/BFb0028774

Software Architecture of Modern Model Checkers 415

5. Arnold, A., Point, G., Griffault, A., Rauzy, A.: The altarica formalism for describ-
ing concurrent systems. Fundam. Inform. 40(2–3), 109–124 (1999)

6. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192 17

7. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard: version 2.6. Technical
report, Department of Computer Science, The University of Iowa (2017). www.
SMT-LIB.org

8. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: version 2.0. In: Gupta,
A., Kroening, D. (eds.) Proceedings of the 8th IW on Satisfiability Modulo Theo-
ries, Edinburgh, UK (2010)

9. Behrmann, G., David, A., Larsen, K.G., H̊akansson, J., Pettersson, P., Yi, W., Hen-
driks, M.: UPPAAL 4.0. In: QEST, pp. 125–126. IEEE Computer Society (2006)

10. Bendisposto, J., Körner, P., Leuschel, M., Meijer, J., van de Pol, J., Treharne, H.,
Whitefield, J.: Symbolic reachability analysis of B through ProB and LTSmin.
In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 275–291.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33693-0 18

11. Berthomieux, B., Bodeveix, J.P., Filali, M., Lang, F., Le Botland, D., Vernadat,
F.: The syntax and semantic of fiacre. Technical report 7264, CNRS-LAAS (2007)

12. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for
program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner,
B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp.
24–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23534-9 2

13. Blom, S., Lisser, B., van de Pol, J., Weber, M.: A database approach to distributed
state-space generation. J. Log. Comput. 21(1), 45–62 (2011)

14. Blom, S., van de Pol, J., Weber, M.: LTSmin: distributed and symbolic reachability.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 354–359.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 31

15. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifying multi-agent pro-
grams by model checking. Auton. Agent. Multi-Agent Syst. 12(2), 239–256 (2006)

16. Borges, R.M., Mota, A.C.: Integrating UML and formal methods. Electron. Notes
Theor. Comput. Sci. 184, 97–112 (2007). 2nd Brazilian Symposium on Formal
Methods (SBMF 2005)

17. Butler, M., Leuschel, M.: Combining CSP and B for specification and prop-
erty verification. In: Fitzgerald, J., Hayes, I.J., Tarlecki, A. (eds.) FM 2005.
LNCS, vol. 3582, pp. 221–236. Springer, Heidelberg (2005). https://doi.org/10.
1007/11526841 16

18. Butler, M.J., Colley, J., Edmunds, A., Snook, C.F., Evans, N., Grant, N., Marshall,
H.: Modelling and refinement in CODA. In: Derrick, J., Boiten, E.A., Reeves, S.
(eds.) Proceedings 16th International Refinement Workshop, Refine@IFM 2013,
Turku, Finland, 11 June 2013. EPTCS, vol. 115, pp. 36–51 (2013)

19. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 29

20. Clarke, E.M., Emerson, E.A., Sifakis, J.: Model checking: algorithmic verification
and debugging (turing award 2007). Commun. ACM 52(11), 74–84 (2009)

https://doi.org/10.1007/11804192_17
www.SMT-LIB.org
www.SMT-LIB.org
https://doi.org/10.1007/978-3-319-33693-0_18
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1007/978-3-642-14295-6_31
https://doi.org/10.1007/11526841_16
https://doi.org/10.1007/11526841_16
https://doi.org/10.1007/3-540-45657-0_29

416 F. Kordon et al.

21. Correa, T., Becker, L.B., Farines, J., Bodeveix, J., Filali, M., Vernadat, F.: Support-
ing the design of safety critical systems using AADL. In: 15th IEEE International
Conference on Engineering of Complex Computer Systems, ICECCS, pp. 331–336.
IEEE Computer Society (2010)

22. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The ASTREÉ analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp.
21–30. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31987-0 3

23. Delzanno, G., Podelski, A.: Model checking in CLP. In: Cleaveland, W.R. (ed.)
TACAS 1999. LNCS, vol. 1579, pp. 223–239. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-49059-0 16

24. Delzanno, G., Podelski, A.: Constraint-based deductive model checking. STTT
3(3), 250–270 (2001)

25. van Dijk, T., van de Pol, J.: Sylvan: multi-core decision diagrams. In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 677–691. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46681-0 60

26. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.:
Spot 2.0 — a framework for LTL and ω-automata manipulation. In: Artho, C.,
Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46520-3 8

27. Eclipse Project: Model-to-Model Transformation MMT, subproject of Eclipse
Modeling (2017). https://projects.eclipse.org/projects/modeling.mmt

28. Efftinge, S., et al.: XText (2017). http://www.eclipse.org/Xtext/
29. Fioravanti, F., Pettorossi, A., Proietti, M.: Verifying CTL properties of infinite-

state systems by specializing constraint logic programs. In: Proceedings of VCL
2001, Florence, Italy, September 2001

30. Garavel, H.: OPEN/CÆSAR: an open software architecture for verification, simu-
lation, and testing. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 68–84.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054165

31. Garavel, H.: Nested-unit petri nets: a structural means to increase efficiency and
scalability of verification on elementary nets. In: Devillers, R., Valmari, A. (eds.)
PETRI NETS 2015. LNCS, vol. 9115, pp. 179–199. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-19488-2 9

32. Garavel, H., Lang, F., Mateescu, R.: Compositional verification of asynchronous
concurrent systems using CADP. Acta Inf. 52(4–5), 337–392 (2015)

33. Girault, C., Valk, R.: Petri Nets for Systems Engineering - A Guide to Model-
ing, Verification, and Applications. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-662-05324-9

34. Groote, J.F., Ponse, A., Usenko, Y.S.: Linearization in parallel pcrl. J. Log. Algebr.
Program. 48(1–2), 39–70 (2001)

35. Havelund, K., Pressburger, T.: Model checking java programs using java pathfinder.
Int. J. Softw. Tools Technol. Transf. 2(4), 366–381 (2000). https://doi.org/10.1007/
s100090050043

36. Hayes, I., Jones, C.B.: Specifications are not (necessarily) executable. Softw. Eng.
J. 4(6), 330–338 (1989)

37. Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: Kuich,
W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 545–558. Springer, Heidelberg (1992).
https://doi.org/10.1007/3-540-55719-9 103

38. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

39. Holzmann, G.: Spin Model Checker, The: Primer and Reference Manual. Addison-
Wesley Professional, Boston (2003)

https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1007/3-540-49059-0_16
https://doi.org/10.1007/3-540-49059-0_16
https://doi.org/10.1007/978-3-662-46681-0_60
https://doi.org/10.1007/978-3-319-46520-3_8
https://projects.eclipse.org/projects/modeling.mmt
http://www.eclipse.org/Xtext/
https://doi.org/10.1007/BFb0054165
https://doi.org/10.1007/978-3-319-19488-2_9
https://doi.org/10.1007/978-3-319-19488-2_9
https://doi.org/10.1007/978-3-662-05324-9
https://doi.org/10.1007/978-3-662-05324-9
https://doi.org/10.1007/s100090050043
https://doi.org/10.1007/s100090050043
https://doi.org/10.1007/3-540-55719-9_103

Software Architecture of Modern Model Checkers 417

40. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Boston (1979)

41. Iliasov, A., Lopatkin, I., Romanovsky, A.: The SafeCap platform for modelling rail-
way safety and capacity. In: Bitsch, F., Guiochet, J., Kaâniche, M. (eds.) SAFE-
COMP 2013. LNCS, vol. 8153, pp. 130–137. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40793-2 12

42. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:
high-performance language-independent model checking. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 61

43. Kordon, F., Garavel, H., Hillah, L.M., Paviot-Adet, E., Jezequel, L., Rodŕıguez, C.,
Hulin-Hubard, F.: MCC’2015 – the fifth model checking contest. In: Koutny, M.,
Desel, J., Kleijn, J. (eds.) Transactions on Petri Nets and Other Models of Con-
currency XI. LNCS, vol. 9930, pp. 262–273. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53401-4 12

44. Körner, P.: An integration of ProB and LTSmin. Master’s thesis, Universität
Düsseldorf, February 2017

45. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 389–391. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8 26

46. Laarman, A., Olesen, M.C., Dalsgaard, A.E., Larsen, K.G., van de Pol, J.: Multi-
core emptiness checking of timed Büchi automata using inclusion abstraction. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 968–983. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 69

47. Laarman, A., Pater, E., van de Pol, J., Hansen, H.: Guard-based partial-order
reduction. STTT 18(4), 427–448 (2016)

48. Laarman, A., van de Pol, J., Weber, M.: Multi-core LTSmin: marrying modularity
and scalability. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.)
NFM 2011. LNCS, vol. 6617, pp. 506–511. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-20398-5 40

49. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, Boston (2002)

50. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45236-2 46

51. Leuschel, M., Fontaine, M.: Probing the depths of CSP-M: a new fdr-compliant
validation tool. In: Liu, S., Maibaum, T., Araki, K. (eds.) ICFEM 2008. LNCS,
vol. 5256, pp. 278–297. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-88194-0 18

52. Leuschel, M., Massart, T.: Infinite state model checking by abstract interpretation
and program specialisation. In: Bossi, A. (ed.) LOPSTR 1999. LNCS, vol. 1817,
pp. 62–81. Springer, Heidelberg (2000). https://doi.org/10.1007/10720327 5

53. Liu, Y., Sun, J., Dong, J.S.: PAT 3: an extensible architecture for building multi-
domain model checkers. In: IEEE 22nd International Symposium on Software Reli-
ability Engineering, ISSRE 2011, Hiroshima, Japan, 29 November–2 December
2011, pp. 190–199 (2011)

54. Lowe, G.: Casper: a compiler for the analysis of security protocols. J. Comput.
Secur. 6(1–2), 53–84 (1998)

55. Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed algo-
rithms. In: PODC, pp. 137–151. ACM (1987)

https://doi.org/10.1007/978-3-642-40793-2_12
https://doi.org/10.1007/978-3-642-40793-2_12
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/978-3-662-53401-4_12
https://doi.org/10.1007/978-3-662-53401-4_12
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-642-39799-8_69
https://doi.org/10.1007/978-3-642-20398-5_40
https://doi.org/10.1007/978-3-642-20398-5_40
https://doi.org/10.1007/978-3-540-45236-2_46
https://doi.org/10.1007/978-3-540-88194-0_18
https://doi.org/10.1007/978-3-540-88194-0_18
https://doi.org/10.1007/10720327_5

418 F. Kordon et al.

56. Margaria, T., Nagel, R., Steffen, B.: jETI: a tool for remote tool integration. In:
Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 557–562.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31980-1 38

57. Meijer, J., Kant, G., Blom, S., van de Pol, J.: Read, write and copy dependencies
for symbolic model checking. In: Yahav, E. (ed.) HVC 2014. LNCS, vol. 8855, pp.
204–219. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13338-6 16

58. Meyer, R., Faber, J., Hoenicke, J., Rybalchenko, A.: Model checking duration cal-
culus: a practical approach. Formal Asp. Comput. 20(4–5), 481–505 (2008)

59. Păsăreanu, C.S., Dwyer, M.B., Huth, M.: Assume-guarantee model checking of
software: a comparative case study. In: Dams, D., Gerth, R., Leue, S., Massink,
M. (eds.) SPIN 1999. LNCS, vol. 1680, pp. 168–183. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48234-2 14

60. Ramakrishnan, C.R., Ramakrishnan, I.V., Smolka, S.A., Dong, Y., Du, X., Roy-
choudhury, A., Venkatakrishnan, V.N.: XMC: a logic-programming-based verifica-
tion toolset. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp.
576–580. Springer, Heidelberg (2000). https://doi.org/10.1007/10722167 48

61. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall, Upper
Saddle River (1999)

62. Roscoe, A.W., Gardiner, P.H.B., Goldsmith, M.H., Hulance, J.R., Jackson, D.M.,
Scattergood, J.B.: Hierarchical compression for model-checking CSP or how to
check 1020 dining philosophers for deadlock. In: Brinksma, E., Cleaveland, W.R.,
Larsen, K.G., Margaria, T., Steffen, B. (eds.) TACAS 1995. LNCS, vol. 1019, pp.
133–152. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60630-0 7

63. Samia, M., Wiegard, H., Bendisposto, J., Leuschel, M.: High-level versus low-level
specifications: comparing B with Promela and ProB with spin. In: Proceedings
TFM-B 2009, pp. 49–61. APCB, June 2009

64. Schröter, C., Schwoon, S., Esparza, J.: The model-checking kit. In: van der Aalst,
W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 463–472. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-44919-1 29

65. Snook, C., Butler, M.: UML-B: a plug-in for the Event-B tool set. In: Börger,
E., Butler, M., Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, p. 344.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87603-8 32

66. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice-Hall, Upper Saddle
River (1992)

67. Stefanescu, A., Wieczorek, S., Schur, M.: Message choreography modeling. Softw.
Syst. Model. 13(1), 9–33 (2014)

68. Steffen, B., Claßen, A., Klein, M., Knoop, J., Margaria, T.: The fixpoint-analysis
machine. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 72–87.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60218-6 6

69. Steffen, B., Margaria, T., Braun, V.: The electronic tool integration platform:
concepts and design. STTT 1(1–2), 9–30 (1997)

70. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0, 2nd edn. Addison-Wesley Professional, Boston (2009)

71. Thierry-Mieg, Y.: Symbolic model-checking using ITS-tools. In: Baier, C., Tinelli,
C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 231–237. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 20

72. Valmari, A.: A stubborn attack on state explosion. Formal Methods Syst. Des.
1(4), 297–322 (1992)

73. Voelter, M., et al.: DSL Engineering - Designing, Implementing and Using Domain-
Specific Languages (2013). dslbook.org

https://doi.org/10.1007/978-3-540-31980-1_38
https://doi.org/10.1007/978-3-319-13338-6_16
https://doi.org/10.1007/3-540-48234-2_14
https://doi.org/10.1007/10722167_48
https://doi.org/10.1007/3-540-60630-0_7
https://doi.org/10.1007/3-540-44919-1_29
https://doi.org/10.1007/978-3-540-87603-8_32
https://doi.org/10.1007/3-540-60218-6_6
https://doi.org/10.1007/978-3-662-46681-0_20
http://dslbook.org/

Software Architecture of Modern Model Checkers 419

74. Woodcock, J., Cavalcanti, A., Freitas, L.: Operational semantics for model checking
Circus. In: Fitzgerald, J., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582,
pp. 237–252. Springer, Heidelberg (2005). https://doi.org/10.1007/11526841 17

75. Ye, K., Woodcock, J.: Model checking of state-rich formalism Circus by linking to
CSP ‖ B. STTT 19(1), 73–96 (2017)

76. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In: Pierre,
L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54–66. Springer, Hei-
delberg (1999). https://doi.org/10.1007/3-540-48153-2 6

77. Zhu, H., Sun, J., Dong, J.S., Lin, S.: From verified model to executable program:
the PAT approach. ISSE 12(1), 1–26 (2016)

https://doi.org/10.1007/11526841_17
https://doi.org/10.1007/3-540-48153-2_6

The 10,000 Facets
of MDP Model Checking

Christel Baier1, Holger Hermanns2, and Joost-Pieter Katoen3,4(B)

1 TU Dresden, Dresden, Germany
2 Saarland University, Saarbrücken, Germany

3 RWTH Aachen University, Aachen, Germany
katoen@cs.rwth-aachen.de

4 University of Twente, Enschede, The Netherlands

Abstract. This paper presents a retrospective view on probabilistic
model checking. We focus on Markov decision processes (MDPs, for
short). We survey the basic ingredients of MDP model checking and dis-
cuss its enormous developments since the seminal works by Courcoubetis
and Yannakakis in the early 1990s. We discuss in particular the manifold
facets of this field of research by surveying the verification of various
MDP extensions, rich classes of properties, and their applications.

1 Introduction

Markov decision processes (MDPs) have their roots in operations research and
stochastic control theory. They are frequently used for stochastic and dynamic
optimization problems and are widely applicable, see e.g., [151]. For instance,
in 1957 Bellman [23] introduced MDPs by considering the following problem: a
machine can produce either perfect or defective items and can breakdown requir-
ing repair. Breakdowns and producing defective items are random phenomena,
e.g., depending on the machine’s age. When to decide whether to inspect the
machine for a failure, or to just wait until a defective item is produced? If a
defective item is produced, does one repair, inspect other sources of failure, or
order new machine parts? These decisions depend amongst other on the costs of
repair, inspection, and producing defective parts. This setting is naturally mod-
elled as an MDP: the number of items produced so far is the state, breakdowns
and producing defective or perfect items are probabilistic moves, inspections
and repairs are decisions (a.k.a.: actions), and costs are modelled as rewards
associated to actions in a given state.

The central problem for MDPs [74] is to find a policy (or strategy) required
to determine what action to take in the light of what is known about the system
at the time of choice. The typical aim is to optimize a given objective, such as
minimizing expected cost until a given number of repairs, maximizing the prob-
ability of a system being operational for a large number of steps or minimizing
the long-run average costs. The former two are known as finite horizon objec-
tives, the latter as infinite time horizon objectives. These optimization problems
c© Springer Nature Switzerland AG 2019

B. Steffen and G. Woeginger (Eds.): Computing and Software Science, LNCS 10000, pp. 420–451, 2019.

https://doi.org/10.1007/978-3-319-91908-9_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91908-9_21&domain=pdf
https://doi.org/10.1007/978-3-319-91908-9_21

The 10,000 Facets of MDP Model Checking 421

can be cast as dynamic programming problems—Bellman equations—that are
typically solved by value or policy iteration [133], or reinforcement learning [142].

This paper surveys approaches to tackle MDP problems from the perspective
of probabilistic model checking (PMC) [17,107,113]. It determines for an MDP M
and a property specification ϕ, typically expressed as a formula in mathematical
logic or as a finite-state automaton, whether M satisfies ϕ. Under the hood, it
uses graph algorithms, value or policy iteration, compact data structures, etc. so
as to achieve a fully automated procedure. The use of logics enables to express
the classical finite and infinite time-horizon MDP objectives, but also (new)
intricate and complex objectives, or even mixtures thereof.

The power of PMC is that no matter how complex the logical guarantee,
it is automatically checked which states in the MDP satisfy it. Neither manual
manipulations of MDPs (or their high-level descriptions) are needed, nor exper-
tise on any of its analysis techniques is required. Effective abstraction, reduction,
and symbolic techniques curb the “curse of dimensionality” problem. Diagnostic
feedback is provided in case M does not satisfy ϕ, giving useful insight in the
reason of the refutation. More importantly though, is that PMC automatically
obtains an optimal policy for the specification ϕ as a by-product of the verifi-
cation procedure. PMC thus offers a flexible and powerful framework for MDP
analysis.

In addition to the original application areas of MDP analysis such as opera-
tions research and stochastic control theory, MDP model checking is employed
in several areas of computer science. Examples are randomized distributed algo-
rithms, robotics, security and communication protocols, dynamic resource man-
agement, multimedia protocols and many more. We briefly give an idea for the
first two.

For the class of randomized distributed algorithms, randomization provides
an elegant way to break the symmetry between identical processes. This is per-
haps best illustrated by the consensus problem: how to get a distributed network
of processors to agree on a common bit. In the setting where processors com-
municate in an asynchronous manner and only one processor might crash, there
is no distributed algorithm that solves this problem. This is the well-known
FLP impossibility result [77]. If, however, a process can make a decision based
on its internal state, its messages, and some coin-flip mechanism, consensus in
this setting is almost surely possible [24]. Randomized mutual exclusion and
leader-election algorithms naturally can be modelled as MDPs in which non-
determinism naturally models the concurrent evolution of processes [147].

Another emerging application area of MDP model checking is the field of
robotics. Robots have to perform tasks in uncertain environments (possibly
involving humans) and may operate with errors in their sensing and actu-
ation resulting in uncertainty when detecting and responding to its current
state. Robot movements are modelled as being non-deterministic, and planning
amounts to find an optimal control policy such that the robot achieves certain
tasks (like picking up objects in a given order) while traversing a safe trajectory.
A specification ϕ formally specifies which tasks are to be executed. In contrast

422 C. Baier et al.

to simulation, PMC offers formal guarantees about robot behaviour by provid-
ing bounds on how likely the robot satisfies its specification. As a by-product
of the model checking, an optimal robot strategy is synthesized that can be
used to construct controllers. PMC is applied in this context e.g., to analyze the
probabilistic behavior of a robot operating with errors in its sensing and actu-
ation [103] or to check whether robot swarms indeed behave as required [112].
More advanced applications of PMC include the analysis and repair of control
policies using parametric probabilistic models [131] and the generation of policies
using multi-objective model checking that ensure to achieve several objectives in
a given order of priority: maximize the probability of finishing a task; maximize
progress towards completion, if this is not possible; and minimize the expected
time or cost required [119].
Purpose and Organization of This Paper. This paper reflects on the developments
in MDP model checking and surveys its state-of-the-art. It is impossible to give
a complete treatment of all works and developments on MDP model checking;
this paper reflects the main directions and achievements from the perspective
of the authors. The paper is written in an informal manner; numerous citations
are provided to more detailed literature.

Section 2 introduces MDPs and the central problem in MDP model check-
ing: determining reachability probabilities. Section 3 discusses several facets of
MDPs such as costs, parametric probabilities, MDPs with intervals, MDPs with
random delays, and MDPs whose state is only partially observable. Section 4
presents the kind of property specifications that can be treated by MDP model
checking. Section 5 gives some insight in the techniques in tackling the state-
space explosion problem in MDP model checking. Finally, Sect. 6 concludes this
survey paper.

2 MDP Model Checking in a Nutshell

2.1 What are MDPs?

Markov decision processes (MDPs [102,133]) are transition systems in which in
any state a non-deterministic choice between a finite set of probability distri-
butions exists. On reaching a state s in an MDP, non-deterministically a dis-
tribution μ ∈ D(s) is selected, where D(s) is the set of available distributions
(over the MDP’s state space) in s. The next state is determined according to μ.
That is, state s′ is selected with probability μ(s′). It is assumed that D(s) �= ∅
for each state s. Every MDP for which |D(s)| = 1 in every state s, is a Markov
chain (MC, for short). Paths in an MDP are infinite alternating sequences of
pairs of states and distributions: (si, μi) where μi ∈ D(si) and μi(si+1) > 0, for
each i. A probability measure Pr on such paths can be defined using the cylin-
der set construction provided for each state si it is known which distribution μi

has been selected. This decision maker is a policy, also referred to as scheduler
or adversary, that in state si selects a distribution μ ∈ D(si). Several types of
policies do exist. Two ingredients are relevant: on the basis of which information

The 10,000 Facets of MDP Model Checking 423

does a policy make a decision, and does it use randomization to do so, or not.
Positional policies decide solely on the current state si and not on the history,
i.e., the prefix of the path until reaching si. Randomized positional policies select
μ ∈ D(si) with a certain probability. Deterministic policies select a fixed distri-
bution from D(si). History-dependent policies base their decision on the prefix
s0μ0s1μ1 · · · μi−1si. Such policies may thus depend on e.g., the states visited so
far, the actions taken so far, the frequency of visiting states, and the order in
which states have been visited. As a policy resolves the non-determinism in an
MDP, it yields an (possibly infinite-state) MC.

2.2 Reachability

One of the elementary questions in MDP analysis is whether a certain set T of
target states can be reached almost surely, i.e., with probability one. As the like-
lihood to reach T depends on how the non-determinism is resolved, one considers
minimal, or dually, maximal probabilities. Let Prmax

s (♦T) denote the maximal
probability to reach some state in T starting from s. That is, Prmax

s (♦T) is the
supremum over all possible policies to reach T under such policy. A graph anal-
ysis suffices to determine all states s for which this probability equals one. It
does so by iteratively eliminating all states for which Prmax

s (♦T) < 1. First all
states that cannot reach T are removed as well as their incoming transitions. All
states without outgoing transitions are then deleted. This is repeated as long as
no change is possible anymore. Also all states for which Prmax

s (♦T) = 0 can be
obtained by a polynomial-time graph analysis, and similar applies to minimal
reachability probabilities. Graph algorithms also suffice for checking whether any
ω-regular property holds almost surely [147].

Quantitative reachability amounts to check whether the probability to reach
T exceeds a threshold different from one, like 4/7. For a finite-state MDP, let
variable xs = Prmax

s (♦T) for state s. The following recursive characterization
will be helpful. If T is not reachable from s, then xs = 0; if s ∈ T , then xs = 1.
For all other cases:

xs = max
{ ∑

t∈S

P(s, μ, t) · xt | μ ∈ D(s)
}

where P(s, μ, t) denotes the probability to move from state s to t when select-
ing distribution μ in s. This is an instance of the Bellman equation. It is well
known that for every finite MDP, a deterministic positional policy does exist
that attains Prmax

s (♦T). Value or policy iteration, and linear programming are
computational techniques to obtain these policies. Linear inequation systems
are thus key for reachability objectives in finite-state MDPs. Value iteration
can be mildly amended such that it halts at the correct moment, i.e., when the
iteratively computed probabilities truly converge [88].

Example 1. Consider the following stochastic job scheduling problem: complete
n jobs on k identical processors under a pre-emptive scheduling policy. Once a
job completes, all k processors can be assigned any of the m remaining jobs.

424 C. Baier et al.

Pre-empted jobs need to be started from scratch. When n−m jobs are finished,
this yields

(
m
k

)
non-deterministic choices. A property of interest is: what is the

minimal expected time to complete all jobs? Or: what is the maximal probabil-
ity to complete all jobs within 10,000 steps? We consider the scenario as given
in [40] where the service time of job i is given by a negative exponential distribu-
tion with rate λi. (Here, we do not consider the timing yet; only the branching
probabilities induced by these dealsy matter.) This job-shop scheduling problem
can be naturally modelled as an MDP, where a state corresponds to the jobs
that still need to be executed, scheduling decisions are actions, and the discrete
probability distributions D(s) in state s are determined by the rates of the ser-
vice times of the jobs that are being scheduled. The MDP for four jobs and
two machines is indicated in Fig. 1. The initial state (left) contains all jobs, the
rightmost state represents the completion of all four jobs. Each transition corre-
sponds to a selection of two jobs that are scheduled. Probabilities are determined
as follows. If one of the scheduled jobs, say job i, finishes in a situation where
m jobs have not been processed yet, an event that happens with probability
pi,j = λi

λi+λj
(where j is the number of the other selected, but unfinished job),

m − 1 jobs remain, and a new selection is made. It is known that the largest-
expected-service-time-first-policy is optimal to minimize the expected time to
complete all jobs [40].

Fig. 1. Possible schedules for 4 jobs on 2 machines, modelled as an MDP.

3 The Manifold Facets of MDPs

This section considers several features of MDPs: costs (where each transition
incurs a certain cost), parameters (where probabilities are unknowns and given
as e.g., polynomials over a set of variables), partial observability (where the state
of an MDP is only partially visible), and continuous time (where state residence
times are governed by negative exponential distributions).

The 10,000 Facets of MDP Model Checking 425

3.1 Costs

Already in Bellman’s treatment [23], MDPs have been equipped with rewards
(a.k.a.: gains), or dually costs. Costs are associated to transitions and are con-
stant non-negative real values that are incurred on taking a transition. Thus,
on selecting distribution μ in state s a reward c(s, μ) is earned. The cumulative
reward of a finite path fragment in an MDP is the sum of all transition costs of
the transitions on that path fragment. Typical MDP objectives are the maximal
expected cost to reach a state in T (provided T can almost surely be reached), the
maximal long-run average cost, and so forth. These objectives can be easily cast
as Bellman equations and can be achieved by deterministic positional policies. If
a constraint is imposed on the cumulative cost, e.g., what is the minimal prob-
ability to reach a bad state with a cumulative reward below a given threshold,
finite-memory policies that keep track of the cumulative cost up to the decision
point, i.e., the current state, are needed. A simple cost function associates cost
one to each transition; in fact, the property “what is the maximal probability to
complete all jobs within 10,000 steps?” in Example 1 refers to the cumulative
cost in that case.

3.2 Parameters

In various circumstances, certain system quantities such as failure probabili-
ties, packet loss ratios, etc. are often not—or at the best partially—known. In
that setting, parametric MDPs where transition probabilities are specified as
polynomials over real-valued parameters are useful. The problem of parameter
synthesis is: Given a finite-state parametric MDP, what are all the parameter
values for which a given property exceeds (or is below) a given fixed threshold?
For the job-shop scheduling problem, an example of a synthesis problem is to
determine the unknown job durations such that all jobs can be completed with a
total expected duration of two days, say. Parameter synthesis typically amounts
to partition the parameter space into safe and unsafe regions. A safe region
contains all parameter valuations for which the property-of-interest is satisfied,
while the unsafe region is its complement. In practise, typically not a full cov-
erage can be achieved, but a large (say, >95%) coverage is aimed for. Existing
parameter synthesis techniques use heuristics and sampling [89], or obtain over-
approximations by replacing parametric transitions by non-deterministic choices
over extremal parameter values resulting in a two-player stochastic game that
is analyzed using standard means [134]. If for certain parameter regions, the
result is inconclusive, the region is refined, and the procedure is repeated until
a certain coverage is achieved. Parameter synthesis for parametric MDP models
of about 100,000 states and two to four parameters have been reported [134].
Recently, geometric programming has been proposed to treat parameter synthe-
sis for multi-objective parametric MDPs [51]; this provides a polynomial-time
algorithm to obtain approximations that are arbitrarily close. Several instances
of parametric Markovian models have been discussed in the literature, such as
bounded-parameter MDPs [83] and interval MDPs [96,98], MDPs where the

426 C. Baier et al.

transition probabilities are known to lie within certain upper and lower bounds.
This model is rooted in interval Markov chains introduced by Jonsson and Larsen
[104] in the context of a specification theory for probabilistic systems.

3.3 Partial Observability

Partially observable MDP (POMDPs, for short) models generalize MDPs by
relaxing the assumption that the state of the system is completely observable.
POMDPs play an important role in, e.g., mobile robot navigation, probabilistic
planning and multi-agent systems where each agent can access its own variables,
but cannot view the variables and locations of the other agents. A POMDP
models a decision process in which it is assumed that the system dynamics are
determined by an MDP, but the policy cannot directly observe the underlying
state. Instead a policy considers equivalence classes of states, states for which the
observations are equal, and base their decision on these equivalence classes rather
than on the states themselves. A POMDP thus is an MDP M equipped with
an equivalence relation over its states. de Alfaro [59] has shown that checking
whether for some policy the POMDP stays within a set T of target states is posi-
tive, is EXPTIME-complete. Many other model-checking problems for POMDPs
have shown to be undecidable using reductions from the emptiness (or other
undecidable problems) for probabilistic language acceptors, which can be seen
as “fully blind” POMDPs where all states have the same observable [6,12,123].
Let us give some simple examples for undecidable problems for POMDPs. Check-
ing the existence of a policy where the expected cost until reaching a goal state
exceeds some threshold is undecidable, and so are other policy-existence prob-
lems for alternative expected cost criteria such as discounted or long-run aver-
age cost objectives [123]. These results have been shown using reductions from
the emptiness problem for probabilistic finite automata. The inapproximability
results for probabilistic finite automata carry over to POMDPs with expected
total or long-run average costs [123]. However, there are several algorithms for
the analysis of POMDPs under finite-horizon objectives as well as approximation
algorithms for infinite-horizon discounted cost objectives [122] or expected cost
objectives for POMDPs with positive cost functions [46]. The decidability of the
value 1 problem that asks whether there are policies under which a reachability
property holds with probability arbitrarily close to 1, has been established for a
subclass of POMDPs [81].

Qualitative verification problems for MDPs, such as the problem to decide
the existence of a policy ensuring that a goal state will be visited infinitely
often almost surely, only depend on the graph structure of the MDP, but not on
the precise transition probabilities. This facilitates efficient graph algorithms for
checking qualitative verification problems in MDPs, possibly in combination with
automata-based approach to represent complex path properties. The situation
in POMDPs is different as such qualitative properties can depend on the transi-
tion probabilities. Indeed, the policy-existence problem for qualitative repeated
reachability properties where the task is to check whether for some policy some
state in T is visited infinitely often with positive probability is undecidable. This

The 10,000 Facets of MDP Model Checking 427

has been shown using reductions from the emptiness problem for probabilistic
Büchi automata [6,12]. However, decidability and EXPTIME-completeness has
been established for qualitative verification problems against ω-regular specifi-
cations when restricting to finite-memory policies [47].

3.4 Exponential Delays

Continuous-time MDPs [85] (CTMDPs, for short) are MDPs in which the state
residence time is governed by a negative exponential distribution. The rate of
this exponential distribution depends on the current state and the probability
distribution μ that is used to determine the next state. Accordingly, the average
residence time in state s under taking distribution μ is given by 1/r(s,μ). Rate
r(s, μ) thus determines the random residence time in state s provided distribu-
tion μ is selected in s by the policy. Paths in CTMDPs are infinite sequence
of triples (si, ti, μi) where ti denotes the residence time in state si given that
distribution μi has been selected. Policies in CTMDPs can decide on the basis of
the states visited and the selected distributions so far, but may also exploit the
elapsed time (in every state). This gives rise to uncountably many policies. It for
instance, makes a difference whether a policy decides on entering a state (early)
or on leaving a state (late) after delaying in that state. A categorisation of the
class of policies for CTMDPs is given in [127]. Costs can be added to CTMDPs
in the same vein as for MDPs except that the incurred cost linearly depends on
the state residence time. That is, on selecting action μ after residing t time units
in state s with cost rate c(s, μ), the cost c(s, μ)·t is incurred.

Example 2. Consider the stochastic job scheduling problem again (see Exam-
ple 1). Rather than considering time-abstract properties such as minimizing
the expected completion time, we are now interested in: what is the maxi-
mal/minimal probability to finish all jobs within a given deadline. This requires
to considering the timing behaviour of the job scheduling. Note that if jobs i
and j are currently being scheduled, and i finishes first, then the elapsed time
is determined by the rate λi. Due to the memoryless property of the exponen-
tial distribution, the remaining execution time of the pre-empted job j remains
exponentially distributed with rate λj .

Other Forms of Stochastic Delays. Probabilistic extensions of timed automata
exist [129]; they are known as probabilistic timed automata (PTA). Their edges
are discrete probability distributions over states. PTA are finite symbolic rep-
resentations of uncountable MDPs—as clock valuations are real values. Non-
determinism is inherited from timed automata. Computing reachability prob-
abilities in PTA is decidable via a region graph-like construction. Whereas in
PTA clocks are deterministic, stochastic timed automata [25] (STA) provide a
stochastic interpretation to clocks. In STA, unbounded clocks are interpreted
as negative exponential distributions, whereas bounded clocks obey a uniform
distribution. Stochastic interpretations of TA are also used in statistical model
checking [55].

428 C. Baier et al.

4 The Manifold MDP Properties

This section considers a spectrum of properties that can be addressed by MDP
model checking: probabilistic CTL, various variations of reachability objectives
(expected cost until reaching a target state, total cost until reaching such state,
quantiles, reachability with time deadlines, repeated reachability etc.), multiple
objectives that need to be fulfilled simultaneously, mean payoff and long-run
objectives, as well as energy/weight objectives, conditional probabilities. We also
briefly discuss obtaining permissive policies, and counterexample generation.

4.1 Probabilistic CTL

PCTL [27,93] is a variant of the well-known computation tree logic (CTL). It
replaces the universal and existential quantification over paths by an operator
that expresses a bound on the probability of all paths satisfying a path-formula.
In the setting for MDPs, the formula Φ = P>p(ϕ) asserts that regardless of the
resolution of the non-determinism, the likelihood of the set of paths satisfying
ϕ exceeds p. Formally, s |= P>p(ϕ) if and only if for all policies it holds that
Prσ

s (ϕ) > p, where Prσ refers to the probability measure under the policy σ
at hand. Stated differently, PCTL-formula P>p(ϕ) holds in state s whenever
Prmin

s (ϕ) exceeds p. Here, Prmin
s (ϕ) denotes the infimum of the probability of

the set of ϕ-paths under all policies. For finite MDPs, this corresponds to the
minimum over all policies, as a finite-memory policy suffices. A dual formulation
holds for P-formulas that have a probability upper bound. The model checking
of a finite MDP against a PCTL-formula Φ can be done using a recursive descent
over the parse tree of Φ. For each sub-formula of Φ the set of states is determined
that satisfy this sub-formula. For reachability objectives, and until-formulas—
reach a Φ2-state via Φ1-states only—this can be done using solving a linear
equation system whose size is proportional to the number of states in the MDP.
This yields a model-checking algorithm that is polynomial in the size of the
MDP M and linear in the size of the PCTL-formula Φ; for details we refer
to [17, Chap. 10.6].

4.2 Expected Costs Until Reaching a Target

For an MDP equipped with costs, a natural objective is to consider the expected
cost until reaching some target state in T . For an infinite path through an MDP,
let the cumulative cost until reaching T be defined as the sum of all costs until
reaching some state in T for the first time, and undefined in case such state
does not exist, i.e., the path does never reach T . A policy σ is said to be proper
if T will be reached almost surely under σ, i.e., Prσ

s (♦T) = 1 for all states s.
The expected reward for a state s under a given proper policy σ from which T
will almost surely be reached is then the weighted sum over all σ-paths from
s to T of their cumulative cost up to reaching T times their probability. If
there is at least one proper policy and all costs are non-negative, the minimal
expected cumulative costs are achieved by a deterministic positional policy and

The 10,000 Facets of MDP Model Checking 429

are computable in much the same way as extremal reachability probabilities by
linear programming techniques, policy or value iteration [26,58]. The supremum
of the expected cumulative costs until reaching T over all proper policies might be
infinite. If the costs are non-negative then the latter can be checked in polynomial
time. If the supremum is finite then a deterministic positional policy maximizing
the expected cumulative costs until reaching T exist and is computable again
using similar techniques as for extremal reachability probabilities [58].

4.3 Cost-Bounded Reachability

Whereas positional policies suffice for reachability (and long run) objectives,
step- or cost-bounded reachability objectives require finite-memory policies [97].
The same applies to ω-regular properties. For ♦≤k T , i.e., can a state in T be
reached while the accumulated costs are bounded by k, this can be intuitively
understood as follows. Consider a state with two choices: one that almost surely
leads to T but with high costs, and one that may lead to T directly with low
costs, but with a certain probability ends up in a state from which T can never
be reached. Then, depending on the cost bound left to reach T , an optimal policy
will decide for the (first) safe choice, whereas the remaining cost bound to reach
T is small, it picks the (second) unsafe strategy. Computing policies maximizing
the probability for a cost-bounded event ♦≤k T is known to be computationally
hard, namely PSPACE-hard even for acyclic MDPs [86]. An exponential-time
algorithm is obtained by using an iterative approach that successively computes
the values ps,i for the maximal probability to reach T with cost-bound i from
state s for i = 0, 1, . . . , k. For this, we can rely on a variant of the Bellman
equations

ps,i = max
{ ∑

t∈S

P(s, μ, t) · pt,max{i−c(s,μ),0} | μ ∈ D(s)
}

for s /∈ T and T reachable from s. If 0 < c(s, μ) is positive then the values
pt,max{i−c(t,μ),0} have been computed in a previous iteration. Zero-cost actions
can be treated using linear programming techniques [9].

4.4 Quantiles

In quantile objectives, one considers computing the minimal cost bound k such
that with probability at least p the target set T will be reached before the
cumulative costs exceeds k. Qualitative quantile objectives (i.e., p = 0 or p = 1)
can be determined in polynomial time, whereas an exponential-time algorithm
for quantitative quantile objectives (where p belongs to the open interval (0, 1))
exists that relies on the successive computation of cost-bounded reachability
probabilities [9,146]. Quantile objectives for MDPs with multiple cost functions
for several pay-off criteria have been considered in [137].

430 C. Baier et al.

4.5 Timed Reachability

In CTMDPs, policies that base their decision on the current state as well as the
total cumulative time so far, the so-called total-time positional deterministic poli-
cies are optimal for timed reachability objectives—given a set T of target states
and a deadline d, what is the maximal probability to reach T within d? This is
the continuous counterpart of a policy in MDPs for bounded reachability ♦≤k T
where the total number of steps taken so far is needed to achieve optimality.
PMC algorithms for timed reachability determine ε-close approximations of the
optimal total-time positional deterministic policy. Timed reachability objectives
can be tackled via a discretization yielding an MDP on which a corresponding
step-bounded reachability problem is solved using value iteration. The smallest
number of steps needed in the discretized MDP to guarantee an accuracy of ε

is λ2·d2

2ε , where λ is the largest rate of a state residence time in the CTMDP
at hand [128]. In a similar way, minimal timed reachability probabilities can be
obtained as well as their corresponding policies. Tighter bounds with slightly dif-
ferent discretization techniques have been obtained in [42,136]. A comparative
empirical study shows that a simple greedy algorithm, originally developed for
uniform models [16], can be lifted to the general setting, where it often outper-
forms all other approaches [44]. The duality between costs (at states) and time
is discussed in [15] thereby enabling the use of algorithms for timed reachabil-
ity for the purpose of computing cost-bounded reachability. Optimal policies for
multi-cumulative cost reachability properties in CTMDPs are treated in [79].

Example 3. Consider timed reachability for the job-shop scheduling problem of
Example 1 with exponential service times. That is, we focus on what is the prob-
ability to complete all jobs within a given deadline d? The results of applying this
discretization on the example with 4 jobs and two machines is shown in Fig. 2
where the deadline d is given on the x-axis and the reachability probability on
the y-axis. For equally distributed job durations, the maximal and minimal prob-
abilities coincide. Otherwise, the probabilities depend on the scheduling policy.
It turns out that the ε-optimal policy that maximizes the reachability proba-
bilities adheres to the SEPT (shortest expected processing time first) strategy;
moreover, the optimal ε-policy for the minimum probabilities obeys the LEPT
(longest expected processing time first) strategy.

4.6 Beyond Reachability

Repeated reachability events or persistence probabilities can be obtained by
considering maximal end-components [50,56], the MDP counterpart to bottom
strongly connected components in Markov chains. An end component E of an
MDP M is a sub-MDP of M whose induced graph is strongly connected. E is
called maximal if there is no other end component E ′ that contains E . A crucial
observation made by de Alfaro [56] is that under each policy σ, the limit of
almost all σ-paths constitutes an end component. Here, the limit of an infinite
path π is the set of state-distribution pairs that occur infinitely often in π. Thus,

The 10,000 Facets of MDP Model Checking 431

Fig. 2. Minimal and maximal reachability probabilities for finishing 4 jobs on 2
machines under a pre-emptive scheduling strategy.

maximal probability for a repeated reachability condition �♦T (“infinitely often
T”) is computable as the maximal probability to reach a maximal end component
containing at least one T -state.

Determining the maximal probability of an ω-regular property ϕ in an MDP
M amounts to determining the maximal probability to reach an accepting
end component in the product of M with a deterministic ω-automaton for
ϕ [21,50,56]. An accepting end component is an end component that satis-
fies the acceptance condition of the deterministic ω-automaton at hand. This
procedure involves a double-exponential blow-up caused by (1) transforming an
LTL formula into an ω-automaton, and (2) determinizing this automaton. In
fact, no algorithm of lower complexity can be expected as the question, whether
Prmax

M,s0
(ϕ) = 1 for a given MDP M with initial state s0 and LTL-formula ϕ, is

2EXPTIME-complete [50]. Recent practical advancements on converting LTL,
an important temporal logic for expressing a large class of ω-regular properties,
into deterministic ω-automata have been reported in [70].

4.7 Fairness

When using MDPs as an interleaving model for systems composed by several
probabilistic processes, establishing liveness properties often requires fairness
assumptions for the resolution of nondeterministic choices that rule out patho-
logical cases where, e.g., one process never performs an action. In this context,
one considers only fair policies, i.e., policies where a certain fairness assumption
holds almost surely. The analysis of MDPs under fair policies has been consid-
ered in the context of LTL and PCTL-like logics [14,21,148]. Suppose fair is a
realizable fairness assumption in the sense that there exists a fair policy τ such
that fair holds with probability 1 from each state under this policy τ . Then, a
fair policy maximizing the probability to reach a target T under all fair policies
is obtained by first computing a positional (possibly unfair) policy σ maximiz-

432 C. Baier et al.

ing the probability for ♦T from each state where the maximum is taken over
all policies. We then modify σ to a fair policy ν that behaves as σ until reach-
ing T , in which case it switches mode and behaves as τ from then on. Thus,
supσ fair Prσ

s (♦T) = maxσ fair Prσ
s (♦T) = Prmax

s (♦T), which shows that
realizable fairness is irrelevant for maximizing reachability probabilities. This
does not hold when the task to find a fair policy minimizing the probability for
reaching T . Consider, for example, an MDP with a state s that has two non-
deterministic alternatives: either stay in s via action α or to move to a target
state t ∈ T via action β (both with probability one). If we suppose strong fair-
ness for action β, i.e., each fair policy that visits s infinitely often with positive
probability needs to take eventually action β in state s. Then, the probability to
reach T from s is one under each fair policy, while Prmin

s (♦T) = 0. However, a
fair policy minimizing the probability for reaching T can be obtained using the
following fact (again we suppose realizability of the fairness condition):

min
σ fair

Prσ
s (♦T) = 1 − Prmax

s (¬T UF)

where F denotes the set of states u such that Prσ
u(♦T) = 0 for some fair policy σ

and where U denotes the until operator. This set F is computable using an anal-
ysis of the end components of the MDP and PCTL model-checking techniques.
Notions of fairness have also been used as an approximation of probabilistic
executions and used in the context of proof systems for establishing qualitative
linear-time properties for MDP-like models [132].

4.8 Mean Payoff and Other Long-Run Averages

Given a weighted MDP, i.e., an MDP with a cost function assigning (possi-
bly negative) integers, called weights, to the state-distribution pairs (s, μ) with
μ ∈ D(s), the mean payoff MP(π) of an infinite path π is defined as the limit
superior of the sequence wgt(π, n)/n where wgt(π, n) denotes the accumulated
weight of the first n state-distribution pairs in π. In finite-state MDPs, minimal
and maximal expected mean payoff always exist and are achieved by deter-
ministic positional policies. The minimal and maximal expected mean payoff
are computable in polynomial-time using linear programming techniques that
encode the long-run frequencies of the state-distribution pairs in randomized
positional policies [106,133]. MDPs with multiple mean-payoff objectives have
been studied in [34]. Other forms of long-run averages have been proposed by
de Alfaro [57] where finite-state automata serve to trigger so-called experiments
that monitor finite fragments of the paths generated by the MDP and evalu-
ate them in terms of a reward value. He presents polynomial-time algorithms
to check whether there is a policy σ ensuring that almost all σ-paths satisfy a
threshold condition for the long-run average reward, defined as the mean payoff,
but the limit average is taken over the number of experiments rather than the
number of transitions. These concepts have been further developed for reasoning
about long-run ratios in MDPs and related synthesis problems using standard
and fractional linear programming techniques [56,149].

The 10,000 Facets of MDP Model Checking 433

4.9 Multiple Objectives

The properties discussed so far focused on single objectives such as reachability,
timed/bounded reachability, expected costs, and long-run averages. In practice,
a system is subject to multiple objectives that are mutually influencing each
other, like quickly reaching a target is more costly. Multi-objective model check-
ing aims at achieving multiple objectives on MDPs at once and to facilitate
trade-off analysis by obtaining Pareto curves. Multi-objective decision making
for MDPs with discounting and long-run objectives has been well investigated;
for a recent survey, see [138]. Etessami et al. [72] consider verifying finite MDPs
with multiple ω-regular objectives. Other multiple objectives include expected
rewards under worst-case reachability [41,78], quantiles, long-run ratio objec-
tives, and conditional probabilities [10], multiple discounted rewards [49], mean
payoffs and stability [38], long-run objectives [33] and total average discounted
rewards under PCTL [143]. Combinations of safety properties and expected cost
objectives have been considered for MDPs with unknown cost function [105].

achievable

not achievable

2.6 2.7 2.8 2.9 3
0

0.2

0.4

0.6

0.8

Expected completion time

P
ro
b.

6
jo
bs

w
it
hi
n
1
ho

ur

Fig. 3. Approximate Pareto curve for stochastic job scheduling.

Example 4. Consider again the job-shop scheduling problem. In addition to
requiring that all jobs need to be completed within a given deadline with a
high probability, let us impose extra constraints, e.g., requiring a high prob-
ability to finish a batch of c jobs within a tight deadline (to accelerate their
post-processing), or having a low average waiting time. Figure 3, e.g., shows the
results of CTMDP multi-objective model checking for 12 jobs and 3 processors. It
approximates the set of points (t, p) for schedules achieving that (1) the expected
time to complete all jobs is at most t and (2) the probability to finish half of
the jobs within an is at least p. The red area indicates the set of points (t, p)
that cannot be attained by any policy, whereas the green area indicates the set
of points that are achievable by some policy; the white area is the “unknown”
area, due to the ε-approximation. Whereas for MDP model checking [72], the
set of achievable points is a convex area with finitely many corner points, for

434 C. Baier et al.

CTMDPs the convex area may have infinitely many corner points [135]. This is
why approximations of Pareto curves are obtained. Novel techniques for multi-
objective model checking and robust strategy synthesis of MDPs with uncertain
transition probabilities have also been discussed recently [91,139].

4.10 Energy and Other Weight Objectives

There is a close relation between the mean payoff and the energy objective, which
again is closely related to the termination condition in one-counter systems. The
energy condition imposes the constraint that the total cumulative weight never
drops below 0 (or another constant) and is typically considered in conjunction
with other ω-regular or weight conditions. In the case of MDPs the task is then
to find a policy σ such that almost all σ-paths satisfy both the energy condition
and the additional ω-regular or weight conditions. Energy-parity objectives in
MDPs are solvable in pseudo-polynomial time and the decision problem is in
NP ∩ coNP [48,125]. Even the pure energy objective is known to be reducible to
(non-probabilistic) two-player mean-payoff games [32], for which no polynomial-
time algorithms are known. Energy-MDPs with other side conditions have been
studied, e.g., in [39] where multiple expected mean payoff constraints have been
considered.

MDPs with the energy condition can also be seen as infinite-state MDPs
that operate with a counter [36], or equivalently, with stacks over an unary
stack alphabet, which again is closely related to the model of recursive MDPs
[35,73]. Although reasoning about temporal properties with weight constraints
is in general undecidable, even in the non-probabilistic case [29], the maximal or
minimal probabilities for LTL formulas with constraints for the weight accumu-
lated in windows of a fixed length are computable using a reduction to standard
LTL [19].

4.11 Conditional Probabilities

Reasoning about conditional probabilities (rather than unconditional ones) is
natural when the task is to analyze a system in specific (possibly rare) sce-
narios. For example, to analyze the impact and cost of error-handling mecha-
nisms, selected error scenarios can be used as conditions. For another example,
conditional probabilities and expectations are used to define the semantics of
probabilistic programs in terms of weakest pre-expectations or to define condi-
tional termination times [108]. They have also been used to formalize a notion
of anonymity [3] by the requirement that the probability for an observable does
not depend on the secret.

In purely probabilistic models, such as MC, conditional probabilities are com-
putable directly by their definition Pr(ϕ|ψ) = Pr(ϕ ∧ ψ)/Pr(ψ) as quotient of
“standard” probabilities. Such a simple approach is, however, not applicable in
MDPs when the task is to find a policy maximizing the probabilities for ϕ, under
the condition of a temporal property ψ. Suppose, e.g., that ϕ = ♦T and ψ = ♦A
are reachability properties. A crucial observation to construct an optimal policy

The 10,000 Facets of MDP Model Checking 435

is that after having reached T (resp. A), optimal policies maximize the proba-
bility to reach A (resp. T) [4,18]. This observation allows to transform the given
MDP M into a normal form MDP, which allows to assume that T ⊆ A. Sup-
pose now s0 is the initial state of M. By adding “reset transitions” s → s0 for
all states s in M with Prmin

M,s(♦A) = 0 as additional nondeterministic alterna-
tives, we obtain an MDP N such that the maximal conditional probability for
♦T , given ♦A, in M from s0 equals Prmax

N ,s0
(♦T). Intuitively, the reset transition

serve to “discard” all paths violating the condition ♦A and “re-distributing”
their probability mass to the paths satisfying ♦A. Thus, maximal conditional
reachability probabilities are reducible to maximal (unconditional) reachability
probabilities. This approach can be generalized for the case where the objective
ϕ and the condition ψ are ω-regular properties using deterministic ω-automata
for ϕ and ψ.

The techniques for maximal or minimal expected costs until reaching target
states sketched above seek for the optimum under all proper policies, i.e., policies
under which the target will be reached almost surely. However, such policies
need not to exist. Computing maximal conditional expected costs until reaching
a target under the condition that the target will indeed be reached is more
involved as positional policies are no longer powerful enough. [20] presents an
exponential-time algorithm to compute maximal conditional expected costs until
reaching a target and proves PSPACE-completeness for the threshold problem
in acyclic MDPs that asks whether the maximal conditional expectation meets
a given lower or upper bound.

4.12 Permissive Policies

Whereas MDP model checking typically generates a single policy that is optimal
with respect to a given objective, recently this has been extended to obtaining
multi-policies [66]. Such multi-policies specify multiple possible actions rather
than a single possible action. The aim is to synthesize multi-policies that are as
permissive as possible, which one can quantify by assigning penalties to actions.
These are incurred when a multi-policy disallows (does not make available) a
given action. Permissive controller synthesis aims to generate a multi-policy
that minimises these penalties, whilst guaranteeing the satisfaction of a specified
property ϕ. Randomised multi-policies are strictly more powerful than determin-
istic ones, and the permissive controller synthesis problem is NP-hard for either
class with upper bounds in NP and PSPACE, respectively. Practical methods for
synthesising multi-policies exploit mixed integer linear programming (MILP).

4.13 Counterexamples

If model checking MDP M against specification ϕ with upper bound p, say,
yields an affirmative result, then a formal guarantee is obtained that M sat-
isfies ϕ with probability at most p, regardless of how the non-determinism is
resolved. As a by-product, most model checkers offer the possibility to obtain a

436 C. Baier et al.

policy that maximizes the likelihood of ensuring ϕ. If however, the model check-
ing procedure yields a negative answer, then some diagnostic feedback would
be useful. PMC techniques have been therefore extended with the possibility
to obtain counterexamples. Such techniques obtain a sub-MDP of M whose
maximal probability to satisfy ϕ exceeds p. Whereas obtaining such sub-MDP
of minimal size is computationally hard (the corresponding decision problem is
NP-hard [45]) for ω-regular properties, good practical results have been obtained
using MILP [154].

5 Curbing State-Space Explosion

The often excessive size of the state space spanned by a concrete verification
problem is a major impediment to practicality across the entire spectrum of
verification methods, see e.g. [2,92]. This problem of state-space explosion also
affects negatively the basic probabilistic model checking procedures we discussed
thus far. A recent approach circumvents it by nevertheless explicitly enumerating
all states and transitions, but keeping only a minor portion thereof in main
memory at any time of the computation, storing the remainder almost exclusively
in secondary storage (usually an attached hard disk) [94]. Other, more conceptual
approaches consider abstraction and compression techniques for MDP models.
They indeed form an important area of probabilistic model checking research.
We can only present an abridged survey here, more detailed accounts can be
found for instance in [62]. Abstraction and compression techniques remove details
from concrete models provided these are not relevant to the property of interest.
In many cases, only this makes the analysis of the model feasible or at least
speeds up verification considerably. For real-world problems, abstraction and
compression is a prerequisite for successful verification.

5.1 Compress

Bisimulation Minimization. A popular compression technique is bisimulation
minimization [31]. Here, the states of the compressed system represent equiva-
lence classes with respect to a bisimulation equivalence, ensuring that the com-
pressed system, the quotient, is guaranteed to preserve all relevant properties.
The basis thereof is an algorithm to decide the respective relation, which in the
MDP setting is probabilistic bisimulation, a concept introduced by Larsen and
Skou [120] in the early nineties, and adapted to MDPs by Segala [141]. Prob-
abilistic bisimulation can be decided in polynomial time [11], and this extends
to interval MDPs [96,98] with bounded nondeterminism, as well as to weak
variations of bisimulation, i.e., to variations where internal steps are considered
compressable [145]. Minimality of the quotient construction requires some care
in the presence of probability, depending on the particular strong or weak bisim-
ulation employed [68].
Compositional Minimization. The relevant bisimulations are congruence rela-
tions, in the sense that they are compatible with the usual variants of parallel

The 10,000 Facets of MDP Model Checking 437

composition and other composition operators. This enables the application of
bisimulation minimization to components, which can turn out to be extremely
effective. Non-trivial examples are known where state spaces with 1.6 billion
states and 7 billion transitions can be compressed to a very small minimal
MDP [76] prior to model checking.
Distribution-Based Bisimulation. Weaker equivalences lead to better model com-
pression since they induce coarser partitions of the state space, but might
come with higher algorithmic complexity. Weak distribution bisimulation is
coarser than the aforementioned relations [69]. It is not defined as a rela-
tion between states, but instead between probability distributions on states.
Exponential-time algorithms deciding distribution-based bisimulations have
been proposed [67,99,140].
Symmetry. On the other hand, strong bisimulation equivalence is often induced
by symmetries in the model, which in turn are generally easier to identify
directly [65,115] instead of running a dedicated decision algorithm, albeit at
the price of a possibly non-minimal result.

5.2 Be Symbolic

In non-probabilistic systems, symbolic data structures such as binary decision
diagrams (BDDs) have been investigated successfully [43] to mitigate the state
explosion phenomenon. For probabilistic systems, multi-terminal binary decision
diagram (MTBDDs) [80], also called algebraic decision diagrams [5], have been
introduced as a data structure for representing and manipulating functions from
a finite set to values in an algebraic structure. In the context of probabilistic
systems, they have been first used for computing steady-state probabilities [87]
and PCTL model checking [8] for Markov chains and later extended for MDPs
[60]. Among others, [60] demonstrate that model construction and reachability-
based model checking is possible in a matter of seconds for certain classes of
systems consisting of up to 1030 states. While [60] follows a purely symbolic
approach, which causes the problem that the MTBDD-representation of the
probability vector can degenerate to a tree-like structure, [114,130] introduces a
hybrid approach using an MTBDD-representation of the MDP and an explicit
representation of the probability vector.
Symblicit Analysis. For certain problems, the benefits of explicit and of sym-
bolic analysis steps can be exploited in carefully crafted combinations, so-called
symblicit analysis approaches [28,90,153].
Tool Support. The probabilistic model checkers PRISM [114,116] and storm [63]
both support the hybrid approach, but also offer a purely symbolic MTBDD-
based engine, a purely explicit engine, as well as a sparse engine that generates
the model symbolically, but carries out the numerical computations using sparse
data structures. The storm model checker [63] also implements bisimulation-
based minimization algorithms applicable to MDPs.

438 C. Baier et al.

5.3 Abstract Safely

Most abstraction schemes are based on grouping states that are not necessarily
bisimilar. Abstract and original models are then no longer bisimilar but they
are related by a simulation relation. Abstraction is typically conservative in
the sense that affirmative verification results for abstract models carry over to
concrete models. That is to say, if the abstract model satisfies a property, the
concrete one does so too. Probabilistic simulation preserves a safe fragment of
PCTL [100]. The converse does not apply, as spurious negative results may occur
due to over-approximation in the abstraction. This however can be detected by
checking the result on the concrete model, which in turn can be exploited for
refining the abstract model.
Abstraction-Refinement. The use of abstraction-refinement for probabilistic sys-
tems has been pioneered by D’Argenio and coworkers [52,53]. In this approach
a first attempt is made to prove a reachability property on the coarsest imagin-
able abstraction of the system. If that verification fails, the system is successively
refined until a conclusive answer can be given.
Predicate and Game-Based Abstraction. The above concept has been taken up
in combination with predicate abstraction and counterexample guided refine-
ment [45,101], so as to form probabilistic counterexample-guided abstraction-
refinement. Another important variation of this concept employs game-based
abstraction [110,150]. Here, one player is representing the non-determinism that
is inherent in the MDP, while the other player controls the non-determinism
introduced by the abstraction, i.e., by the grouping of states into sets. The anal-
ysis of the resulting two-player stochastic game yields lower and upper bounds for
the reachability properties of the MDP. The tightness of these bounds indicate
the quality of the abstraction and form the basis of refinement. This typically
relies on disagreeing strategies for the individual players to make the abstrac-
tion more precise when required. Magnifying-lens abstraction [61] uses a similar
scheme, but rather considers the concrete states contained in an abstract state
in each step, thereby magnifying the state as needed.
Three-Valued Abstraction. Three-valued semantics, i.e., an interpretation in
which a formula evaluates to either true, false, or indefinite may help out. In
this setting, abstraction is conservative for both positive and negative verifica-
tion results. Only if the verification of the abstract model yields an indefinite
answer (“don’t know”), the validity in the concrete model is unknown. This has
been adopted to interval MDPs [109]. For a queueing system from performance
evaluation, (hand-crafted) three-valued abstraction shows that 10278 concrete
states (calculated analytically) can be reduced to 1.2 million states, while pre-
serving six decimals accuracy for timed reachability probabilities [111].
Other Approaches. A prominent technique to construct safe abstractions while
possibly working with an explicit-state representation is partial-order reduction.
This has effectively been lifted to the probabilistic setting [13,54,82] where it
exhibits similarities with confluence reduction approaches [95]. Another app-

The 10,000 Facets of MDP Model Checking 439

roach to perform abstraction for probabilistic automata [64] uses may and must
modalities, inspired by modal transition systems [121].

Fig. 4. Explicit MDP model checking

Example 5. We provide a glimpse of the effectiveness of several of the approaches
mentioned above, especially symbolic representations and bisimulation-based
compression.

Figure 4 provides a log-log scale plot of the total time (i.e., MDP construction
from a high-level description plus the MDP model checking time) against the
number of MDP states. It indicates the maximal size of the MDP that can
be constructed and solved within 10,000 s when using an explicit engine, i.e.,
sparse matrix representations of the MDP. The results are obtained for all MDP
case studies taken from the PRISM benchmark [117] suite. All MDPs model
randomized distributed algorithms as indicated in the legend. The largest solved
MDP instance within 10,000 s has about 130 · 106 states. The specifications are
(minimal and maximal) reachability probability and expected reward objectives.
Figure 5 provides a similar plot when carrying out the MDP model checking in
a fully symbolic manner using MTBDDs. All experimental results are obtained
using the storm model checker with accuracy 10−6 [63].

For most cases, the best results are obtained using a mixture of symbolic
and explicit engines—this is also referred to as hybrid or symblicit. In that case,
operations that can be done more efficiently using an explicit representation are
done explicitly, whereas remaining operations are done on a symbolic represen-
tations. Figure 6 indicates the model sizes that can be treated within 10,000 s.

440 C. Baier et al.

Fig. 5. Symbolic MDP model checking

The hybrid engine solves the largest problem instance of 2 · 109 states within
26 min.

As mentioned before, another important technique to curb the state-space
explosion problem is bisimulation minimization. The effect of this technique on
the MDP benchmark is indicated in Fig. 7. The reduction factor depends on
the specification ϕ. For some qualitative specifications even models of one state
remain. Reductions up to factor 10,000 are obtained. As indicated, for various
MDPs the minimization could not be completed within 10,000 s (TO) and 16 GB
RAM (MO).

6 Epilogue

The previous sections surveyed various techniques for the analysis of MDPs and
related policy synthesis questions. This survey is by far not complete and there
are many other research directions addressing the analysis of MDP-like models.
Let us mention a few more recent developments.

A promising new direction is to combine verification and learning techniques.
On the one hand, model checking examines all possible behaviours, in particular,
certain corner cases are detected. An interesting question is if this information
can be leveraged to train AI models in the sense that these corner cases are con-
sidered for the observed data. On the other hand, employing learning techniques
could improve PMC’s scalability. Initial results are promising. For instance, [37]
exploits reinforcement learning so as to avoid treating fragments of the state

The 10,000 Facets of MDP Model Checking 441

Fig. 6. Hybrid MDP model checking

Fig. 7. MDP reduction by bisimulation

442 C. Baier et al.

space that do almost not contribute to the probability of interest. For a mutual
exclusion protocol with 1013 states only less than 2,000 are visited by the method
ensuring a precision of 10−6. Another example is the iterative combination of
PMC and reinforcement learning to synthesize a safe policy whose expected
cost is low for an MDP with unknown costs [105] as well as in the context
of the compositional analysis of MDPs [75]. Learning has also been applied to
continuous-time MDP (using gradient ascent) [22]. The use of automata learning
techniques for probabilistic models [124] is also an interesting future direction.

Another future direction is the use of parallelization to exploit the presence
of multiple cores in modern computers for MDP model checking. It is fair to
say that this is still at its infancy. So far, determining maximal end components
in MDPs has been parallelized on GPGPUs [152], but apart from some initial
investigations in the setting of Markov chains [30], probabilistic computations
on MDPs seem not yet to be parallelized.

The treatment in this paper has primarily focused on finite-state MDPs.
A large variety of generalizations of infinite-state MDPs have been (and still
are) investigated. Timed automata equipped with discrete branching probabil-
ities give rise to uncountably large MDPs due to real-valued clocks. Using the
region construction technique from timed automata [1], the standard algorithms
for finite MDPs suffice for the analysis [118]. Model checking of (discrete-time)
uncountable MDPs is treated in [144]. Countably infinite variants of MDPs
include probabilistic lossy channel systems [7] where message losses have a prob-
abilistic behavior while the component finite-state processes behave nondeter-
ministically, one-counter MDPs [36], MDPs equipped with counters that can be
arbitrarily negative or positive, and recursive MDPs [71,73] (that subsume one-
counter MDPs). Recursive MDPs are equivalent to push-down MDPs. Deciding
whether there is a policy that yields termination probability one is undecidable
for recursive MDPs. Whereas in the finite-state setting, the least fixed point
(least non-negative) solution to a monotone system of linear equations is key
to MDP model checking, for termination probabilities of recursive MDPs these
equations are polynomial. Infinite MDPs are a natural operational model for
probabilistic programming with non-determinism [84,126].

Acknowledgement. The authors thank Matthias Volk (RWTH Aachen) for provid-
ing the scatter plots in this paper and Daniel Gburek (TU Dresden), Ernst Moritz
Hahn (University of Liverpool), and Vahid Hashemi (Saarland University) for vari-
ous useful comments. This work has been supported by the Excellence Initiative of
the German federal and state government through the cluster of excellence cfaed, the
Distinguished Professorship project APPA, the ERC Advanced Investigators Grant
695614 (POWVER), the CDZ project CAP (GZ 1023), the German Research Founda-
tion (DFG) through the CRC 912 (HAEC), the RTG 2236 UnRAVeL and the projects
BA 1679/11-1 and BA 1679/12-1.

The 10,000 Facets of MDP Model Checking 443

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

2. Alur, R., Giacobbe, M., Henzinger, T., Larsen, K., Mikucionis, M.: Continuous-
time models for system design and analysis. In: Steffen, B., Woeginger, G. (eds.)
Computing and Software Science. LNCS, vol. 10000, pp. 452–477. Springer, Cham
(2018)

3. Andrés, M.E., Palamidessi, C., van Rossum, P., Sokolova, A.: Information hid-
ing in probabilistic concurrent systems. Theor. Comput. Sci. 412(28), 3072–3089
(2011)

4. Andrés, M.E., van Rossum, P.: Conditional probabilities over probabilistic and
nondeterministic systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 157–172. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78800-3 12

5. Bahar, I.R., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E., Pardo, A.,
Somenzi, F.: Algebraic decision diagrams and their applications. Form. Methods
Syst. Des. 10(2/3), 171–206 (1997)

6. Baier, C., Bertrand, N., Größer, M.: On decision problems for probabilistic Büchi
automata. In: Amadio, R. (ed.) FoSSaCS 2008. LNCS, vol. 4962, pp. 287–301.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78499-9 21

7. Baier, C., Bertrand, N., Schnoebelen, P.: Verifying nondeterministic probabilistic
channel systems against ω-regular linear-time properties. ACM Trans. Comput.
Log. 9(1), 5 (2007)

8. Baier, C., Clarke, E.M., Hartonas-Garmhausen, V., Kwiatkowska, M., Ryan, M.:
Symbolic model checking for probabilistic processes. In: Degano, P., Gorrieri,
R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 430–440.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63165-8 199

9. Baier, C., Daum, M., Dubslaff, C., Klein, J., Klüppelholz, S.: Energy-utility quan-
tiles. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 285–
299. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06200-6 24

10. Baier, C., Dubslaff, C., Klüppelholz, S.: Trade-off analysis meets probabilistic
model checking. In: CSL-LICS, pp. 1:1–1:10. ACM (2014)

11. Baier, C., Engelen, B., Majster-Cederbaum, M.E.: Deciding bisimilarity and sim-
ilarity for probabilistic processes. J. Comput. Syst. Sci. 60(1), 187–231 (2000)

12. Baier, C., Größer, M., Bertrand, N.: Probabilistic ω-automata. J. ACM 59(1), 1
(2012)

13. Baier, C., Größer, M., Ciesinski, F.: Partial order reduction for probabilistic sys-
tems. In: QEST, pp. 230–239. IEEE Computer Society (2004)

14. Baier, C., Groesser, M., Ciesinski, F.: Quantitative analysis under fairness con-
straints. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 135–150.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04761-9 12

15. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Reachability in
continuous-time Markov reward decision processes. In: Logic and Automata His-
tory and Perspectives. Texts in Logic and Games, vol. 2, pp. 53–72. Amsterdam
University Press (2008)

16. Baier, C., Hermanns, H., Katoen, J.-P., Haverkort, B.R.: Efficient computation
of time-bounded reachability probabilities in uniform continuous-time Markov
decision processes. Theoret. Comput. Sci. 345(1), 2–26 (2005)

https://doi.org/10.1007/978-3-540-78800-3_12
https://doi.org/10.1007/978-3-540-78800-3_12
https://doi.org/10.1007/978-3-540-78499-9_21
https://doi.org/10.1007/3-540-63165-8_199
https://doi.org/10.1007/978-3-319-06200-6_24
https://doi.org/10.1007/978-3-642-04761-9_12

444 C. Baier et al.

17. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press, Cam-
bridge (2008)

18. Baier, C., Klein, J., Klüppelholz, S., Märcker, S.: Computing conditional probabil-
ities in markovian models efficiently. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 515–530. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54862-8 43

19. Baier, C., Klein, J., Klüppelholz, S., Wunderlich, S.: Weight monitoring with
linear temporal logic: complexity and decidability. In: CSL-LICS, pp. 11:1–11:10.
ACM (2014)

20. Baier, C., Klein, J., Klüppelholz, S., Wunderlich, S.: Maximizing the conditional
expected reward for reaching the goal. In: Legay, A., Margaria, T. (eds.) TACAS
2017. LNCS, vol. 10206, pp. 269–285. Springer, Heidelberg (2017). https://doi.
org/10.1007/978-3-662-54580-5 16

21. Baier, C., Kwiatkowska, M.Z.: Model checking for a probabilistic branching time
logic with fairness. Distrib. Comput. 11(3), 125–155 (1998)

22. Bartocci, E., Bortolussi, L., Brázdil, T., Milios, D., Sanguinetti, G.: Policy learn-
ing for time-bounded reachability in continuous-time Markov decision processes
via doubly-stochastic gradient ascent. In: Agha, G., Van Houdt, B. (eds.) QEST
2016. LNCS, vol. 9826, pp. 244–259. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-43425-4 17

23. Bellman, R.: A Markovian decision process. J. Math. Mech. 38, 679–684 (1957)
24. Ben-Or, M.: Another advantage of free choice: completely asynchronous agree-

ment protocols (extended abstract). In: PODC, pp. 27–30. ACM (1983)
25. Bertrand, N., Bouyer, P., Brihaye, T., Menet, Q., Baier, C., Größer, M., Jurdzin-

ski, M.: Stochastic timed automata. Log. Methods Comput. Sci. 10(4) (2014)
26. Bertsekas, D.P., Tsitsiklis, J.N.: An analysis of stochastic shortest path problems.

Math. Oper. Res. 16(3), 580–595 (1991)
27. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic

systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60692-0 70

28. Bohy, A., Bruyère, V., Raskin, J.-F.: Symblicit algorithms for optimal strategy
synthesis in monotonic Markov decision processes. In: SYNT. EPTCS, vol. 157,
pp. 51–67 (2014)

29. Boker, U., Chatterjee, K., Henzinger, T.A., Kupferman, O.: Temporal specifi-
cations with accumulative values. ACM Trans. Comput. Log. 15(4), 27:1–27:25
(2014)

30. Bosnacki, D., Edelkamp, S., Sulewski, D., Wijs, A.: Parallel probabilistic model
checking on general purpose graphics processors. STTT 13(1), 21–35 (2011)

31. Bouajjani, A., Fernandez, J.-C., Halbwachs, N.: Minimal model generation. In:
Clarke, E.M., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 197–203.
Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0023733

32. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite runs
in weighted timed automata with energy constraints. In: Cassez, F., Jard, C.
(eds.) FORMATS 2008. LNCS, vol. 5215, pp. 33–47. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85778-5 4

33. Brázdil, T., Brozek, V., Chatterjee, K., Forejt, V., Kucera, A.: Markov decision
processes with multiple long-run average objectives. Log. Methods Comput. Sci.
10(1) (2014)

34. Brázdil, T., Brozek, V., Chatterjee, K., Forejt, V., Kucera, A.: Two views on mul-
tiple mean-payoff objectives in Markov decision processes. Log. Methods Comput.
Sci. 10(1) (2014)

https://doi.org/10.1007/978-3-642-54862-8_43
https://doi.org/10.1007/978-3-642-54862-8_43
https://doi.org/10.1007/978-3-662-54580-5_16
https://doi.org/10.1007/978-3-662-54580-5_16
https://doi.org/10.1007/978-3-319-43425-4_17
https://doi.org/10.1007/978-3-319-43425-4_17
https://doi.org/10.1007/3-540-60692-0_70
https://doi.org/10.1007/BFb0023733
https://doi.org/10.1007/978-3-540-85778-5_4

The 10,000 Facets of MDP Model Checking 445

35. Brázdil, T., Brozek, V., Etessami, K., Kucera, A.: Approximating the termination
value of one-counter MDPs and stochastic games. Inf. Comput. 222, 121–138
(2013)

36. Brázdil, T., Brozek, V., Etessami, K., Kucera, A., Wojtczak, D.: One-counter
Markov decision processes. In: SODA, pp. 863–874. SIAM (2010)

37. Brázdil, T., Chatterjee, K., Chmeĺık, M., Forejt, V., Křet́ınský, J., Kwiatkowska,
M., Parker, D., Ujma, M.: Verification of Markov decision processes using learning
algorithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp.
98–114. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6 8

38. Brázdil, T., Chatterjee, K., Forejt, V., Kucera, A.: Trading performance for sta-
bility in Markov decision processes. J. Comput. Syst. Sci. 84, 144–170 (2017)

39. Brázdil, T., Kučera, A., Novotný, P.: Optimizing the expected mean payoff in
energy Markov decision processes. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA
2016. LNCS, vol. 9938, pp. 32–49. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46520-3 3

40. Bruno, J.L., Downey, P.J., Frederickson, G.N.: Sequencing tasks with exponential
service times to minimize the expected flow time or makespan. J. ACM 28(1),
100–113 (1981)

41. Bruyère, V., Filiot, E., Randour, M., Raskin, J.-F.: Meet your expectations
with guarantees: beyond worst-case synthesis in quantitative games. In: STACS.
LIPIcs, , vol. 25, pp. 199–213. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2014)

42. Buchholz, P., Hahn, E.M., Hermanns, H., Zhang, L.: Model checking algorithms
for CTMDPs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 225–242. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22110-1 19

43. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic
model checking: 10∧20 states and beyond. Inf. Comput. 98(2), 142–170 (1992)

44. Butkova, Y., Hatefi, H., Hermanns, H., Krčál, J.: Optimal continuous time Markov
decisions. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol.
9364, pp. 166–182. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24953-7 12

45. Chadha, R., Viswanathan, M.: A counterexample-guided abstraction-refinement
framework for Markov decision processes. ACM Trans. Comput. Log. 12(1), 1:1–
1:49 (2010)

46. Chatterjee, K., Chmelik, M., Gupta, R., Kanodia, A.: Optimal cost almost-sure
reachability in POMDPs. Artif. Intell. 234, 26–48 (2016)

47. Chatterjee, K., Chmelik, M., Tracol, M.: What is decidable about partially observ-
able Markov decision processes with ω-regular objectives. J. Comput. Syst. Sci.
82(5), 878–911 (2016)

48. Chatterjee, K., Doyen, L.: Energy and mean-payoff parity Markov decision pro-
cesses. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp.
206–218. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22993-
0 21

49. Chatterjee, K., Majumdar, R., Henzinger, T.A.: Markov decision processes with
multiple objectives. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS,
vol. 3884, pp. 325–336. Springer, Heidelberg (2006). https://doi.org/10.1007/
11672142 26

50. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42(4), 857–907 (1995)

https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-46520-3_3
https://doi.org/10.1007/978-3-319-46520-3_3
https://doi.org/10.1007/978-3-642-22110-1_19
https://doi.org/10.1007/978-3-642-22110-1_19
https://doi.org/10.1007/978-3-319-24953-7_12
https://doi.org/10.1007/978-3-319-24953-7_12
https://doi.org/10.1007/978-3-642-22993-0_21
https://doi.org/10.1007/978-3-642-22993-0_21
https://doi.org/10.1007/11672142_26
https://doi.org/10.1007/11672142_26

446 C. Baier et al.

51. Cubuktepe, M., Jansen, N., Junges, S., Katoen, J.-P., Papusha, I., Poonawala,
H.A., Topcu, U.: Sequential convex programming for the efficient verification of
parametric MDPs. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol.
10206, pp. 133–150. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54580-5 8

52. D’Argenio, P.R., Jeannet, B., Jensen, H.E., Larsen, K.G.: Reachability analysis
of probabilistic systems by successive refinements. In: de Alfaro, L., Gilmore, S.
(eds.) PAPM-PROBMIV 2001. LNCS, vol. 2165, pp. 39–56. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44804-7 3

53. D’Argenio, P.R., Jeannet, B., Jensen, H.E., Larsen, K.G.: Reduction and refine-
ment strategies for probabilistic analysis. In: Hermanns, H., Segala, R. (eds.)
PAPM-PROBMIV 2002. LNCS, vol. 2399, pp. 57–76. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45605-8 5

54. D’Argenio, P.R., Niebert, P.: Partial order reduction on concurrent probabilistic
programs. In: QEST, pp. 240–249. IEEE Computer Society (2004)

55. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. STTT 17(4), 397–415 (2015)

56. de Alfaro, L.: Formal verification of probabilistic systems. Ph.D. thesis, Depart-
ment of Computer Science, Stanford University (1997)

57. de Alfaro, L.: How to specify and verify the long-run average behavior of proba-
bilistic systems. In: LICS, pp. 454–465. IEEE Computer Society (1998)

58. de Alfaro, L.: Computing minimum and maximum reachability times in prob-
abilistic systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS,
vol. 1664, pp. 66–81. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48320-9 7

59. de Alfaro, L.: The verification of probabilistic systems under memoryless partial-
information policies is hard. In: Proceedings of 2nd International Workshop on
Probabilistic Methods in Verification (ProbMiV 1999), Research Report CSR-99-
9, pp. 19–32. Birmingham University (1999)

60. de Alfaro, L., Kwiatkowska, M., Norman, G., Parker, D., Segala, R.: Symbolic
model checking of probabilistic processes using MTBDDs and the Kronecker repre-
sentation. In: Graf, S., Schwartzbach, M. (eds.) TACAS 2000. LNCS, vol. 1785, pp.
395–410. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46419-0 27

61. de Alfaro, L., Roy, P.: Magnifying-lens abstraction for Markov decision processes.
In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 325–338.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73368-3 38

62. Dehnert, C., Gebler, D., Volpato, M., Jansen, D.N.: On abstraction of probabilistic
systems. In: Remke, A., Stoelinga, M. (eds.) ROCKS 2012. LNCS, vol. 8453, pp. 87–
116. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45489-3 4

63. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A storm is coming: a modern
probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63390-9 31

64. Delahaye, B., Katoen, J.-P., Larsen, K.G., Legay, A., Pedersen, M.L., Sher, F.,
Wasowski, A.: Abstract probabilistic automata. Inf. Comput. 232, 66–116 (2013)

65. Donaldson, A.F., Miller, A., Parker, D.: Language-level symmetry reduction for
probabilistic model checking. In: QEST, pp. 289–298. IEEE Computer Society
(2009)

66. Dräger, K., Forejt, V., Kwiatkowska, M.Z., Parker, D., Ujma, M.: Permissive
controller synthesis for probabilistic systems. Log. Methods Comput. Sci. 11(2)
(2015)

https://doi.org/10.1007/978-3-662-54580-5_8
https://doi.org/10.1007/978-3-662-54580-5_8
https://doi.org/10.1007/3-540-44804-7_3
https://doi.org/10.1007/3-540-45605-8_5
https://doi.org/10.1007/3-540-48320-9_7
https://doi.org/10.1007/3-540-48320-9_7
https://doi.org/10.1007/3-540-46419-0_27
https://doi.org/10.1007/978-3-540-73368-3_38
https://doi.org/10.1007/978-3-662-45489-3_4
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31

The 10,000 Facets of MDP Model Checking 447

67. Eisentraut, C., Hermanns, H., Krämer, J., Turrini, A., Zhang, L.: Deciding bisim-
ilarities on distributions. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R.
(eds.) QEST 2013. LNCS, vol. 8054, pp. 72–88. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40196-1 6

68. Eisentraut, C., Hermanns, H., Schuster, J., Turrini, A., Zhang, L.: The quest
for minimal quotients for probabilistic automata. In: Piterman, N., Smolka, S.A.
(eds.) TACAS 2013. LNCS, vol. 7795, pp. 16–31. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36742-7 2

69. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: LICS, pp. 342–351. IEEE CS (2010)

70. Esparza, J., Kret́ınský, J., Sickert, S.: From LTL to deterministic automata -
a safraless compositional approach. Form. Methods Syst. Des. 49(3), 219–271
(2016)

71. Etessami, K.: Analysis of probabilistic processes and automata theory. In: Hand-
book of Automata Theory. European Mathematical Society (2016, to appear)

72. Etessami, K., Kwiatkowska, M.Z., Vardi, M.Y., Yannakakis, M.: Multi-objective
model checking of Markov decision processes. Log. Methods Comput. Sci. 4(4)
(2008)

73. Etessami, K., Yannakakis, M.: Recursive Markov decision processes and recursive
stochastic games. J. ACM 62(2), 11:1–11:69 (2015)

74. Feinberg, E.A., Shwartz, A.: Methods and applications. In: Handbook of Markov
Decision Processes. Kluwer (2002)

75. Feng, L., Han, T., Kwiatkowska, M., Parker, D.: Learning-based compositional
verification for synchronous probabilistic systems. In: Bultan, T., Hsiung, P.-A.
(eds.) ATVA 2011. LNCS, vol. 6996, pp. 511–521. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24372-1 40

76. Fioriti, L.M.F., Hashemi, V., Hermanns, H., Turrini, A.: Deciding probabilistic
automata weak bisimulation: theory and practice. Form. Asp. Comput. 28(1),
109–143 (2016)

77. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

78. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Quantitative multi-
objective verification for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 112–127. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 11

79. Fu, H.: Maximal cost-bounded reachability probability on continuous-time
Markov decision processes. In: Muscholl, A. (ed.) FoSSaCS 2014. LNCS, vol.
8412, pp. 73–87. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-
54830-7 5

80. Fujita, M., McGeer, P.C., Yang, J.C.-Y.: Multi-terminal binary decision diagrams:
an efficient data structure for matrix representation. Form. Methods Syst. Des.
10(2/3), 149–169 (1997)

81. Gimbert, H., Oualhadj, Y.: Deciding the value 1 problem for �-acyclic partially
observable Markov decision processes. In: Geffert, V., Preneel, B., Rovan, B.,
Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 281–292.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04298-5 25

82. Giro, S., D’Argenio, P.R., Ferrer Fioriti, L.M.: Partial order reduction for proba-
bilistic systems: a revision for distributed schedulers. In: Bravetti, M., Zavattaro,
G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 338–353. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04081-8 23

https://doi.org/10.1007/978-3-642-40196-1_6
https://doi.org/10.1007/978-3-642-36742-7_2
https://doi.org/10.1007/978-3-642-24372-1_40
https://doi.org/10.1007/978-3-642-19835-9_11
https://doi.org/10.1007/978-3-642-54830-7_5
https://doi.org/10.1007/978-3-642-54830-7_5
https://doi.org/10.1007/978-3-319-04298-5_25
https://doi.org/10.1007/978-3-642-04081-8_23

448 C. Baier et al.

83. Givan, R., Leach, S.M., Dean, T.L.: Bounded-parameter Markov decision pro-
cesses. Artif. Intell. 122(1–2), 71–109 (2000)

84. Gretz, F., Katoen, J.-P., McIver, A.: Operational versus weakest pre-expectation
semantics for the probabilistic guarded command language. Perform. Eval. 73,
110–132 (2014)

85. Guo, X., Hernandez-Lerma, O.: Continuous-Time Markov Decision Processes:
Theory and Applications. Stochastic Modelling and Applied Probability, vol. 62.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02547-1

86. Haase, C., Kiefer, S.: The odds of staying on budget. In: Halldórsson, M.M.,
Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135,
pp. 234–246. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
47666-6 19

87. Hachtel, G.D., Macii, E., Pardo, A., Somenzi, F.: Markovian analysis of large
finite state machines. IEEE Trans. CAD Integr. Circ. Syst. 15(12), 1479–1493
(1996)

88. Haddad, S., Monmege, B.: Reachability in MDPs: refining convergence of value
iteration. In: Ouaknine, J., Potapov, I., Worrell, J. (eds.) RP 2014. LNCS, vol.
8762, pp. 125–137. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11439-2 10

89. Hahn, E.M., Han, T., Zhang, L.: Synthesis for PCTL in parametric Markov deci-
sion processes. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.)
NFM 2011. LNCS, vol. 6617, pp. 146–161. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-20398-5 12

90. Hahn, E.M., Hermanns, H., Wimmer, R., Becker, B.: Transient reward approxima-
tion for continuous-time Markov chains. IEEE Trans. Reliabil. 64(4), 1254–1275
(2015)

91. Hahn, E.M., Hashemi, V., Hermanns, H., Lahijanian, M., Turrini, A.: Multi-
objective robust strategy synthesis for interval Markov decision processes. In:
Bertrand, N., Bortolussi, L. (eds.) QEST 2017. LNCS, vol. 10503, pp. 207–223.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66335-7 13

92. Hähnle, R., Huisman, M.: Deductive software verification: from pen-and-paper
proofs to industrial tools. In: Steffen, B., Woeginger, G. (eds.) Computing and
Software Science. LNCS, vol. 10000, pp. 345–373. Springer, Cham (2018)

93. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Form.
Asp. Comput. 6(5), 512–535 (1994)

94. Hartmanns, A., Hermanns, H.: Explicit model checking of very large MDP using
partitioning and secondary storage. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.)
ATVA 2015. LNCS, vol. 9364, pp. 131–147. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-24953-7 10

95. Hartmanns, A., Timmer, M.: Sound statistical model checking for MDP using
partial order and confluence reduction. STTT 17(4), 429–456 (2015)

96. Hashemi, V., Hermanns, H., Song, L., Subramani, K., Turrini, A., Wojciechowski,
P.: Compositional bisimulation minimization for interval Markov decision pro-
cesses. In: Dediu, A.-H., Janoušek, J., Mart́ın-Vide, C., Truthe, B. (eds.) LATA
2016. LNCS, vol. 9618, pp. 114–126. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-30000-9 9

97. Hashemi, V., Hermanns, H., Song, L.: Reward-bounded reachability probability
for uncertain weighted MDPs. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI
2016. LNCS, vol. 9583, pp. 351–371. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49122-5 17

https://doi.org/10.1007/978-3-642-02547-1
https://doi.org/10.1007/978-3-662-47666-6_19
https://doi.org/10.1007/978-3-662-47666-6_19
https://doi.org/10.1007/978-3-319-11439-2_10
https://doi.org/10.1007/978-3-319-11439-2_10
https://doi.org/10.1007/978-3-642-20398-5_12
https://doi.org/10.1007/978-3-642-20398-5_12
https://doi.org/10.1007/978-3-319-66335-7_13
https://doi.org/10.1007/978-3-319-24953-7_10
https://doi.org/10.1007/978-3-319-24953-7_10
https://doi.org/10.1007/978-3-319-30000-9_9
https://doi.org/10.1007/978-3-319-30000-9_9
https://doi.org/10.1007/978-3-662-49122-5_17
https://doi.org/10.1007/978-3-662-49122-5_17

The 10,000 Facets of MDP Model Checking 449

98. Hashemi, V.: Decision algorithms for modelling, optimal control and verification
of probabilistic systems. Ph.D. thesis, Saarland University, Saarbrücken, Germany
(2017)

99. Hermanns, H., Krčál, J., Křet́ınský, J.: Probabilistic bisimulation: naturally on
distributions. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704,
pp. 249–265. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44584-6 18

100. Hermanns, H., Parma, A., Segala, R., Wachter, B., Zhang, L.: Probabilistic logical
characterization. Inf. Comput. 209(2), 154–172 (2011)

101. Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Gupta, A.,
Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 162–175. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-70545-1 16

102. Howard, R.A.: Dynamic Probabilistic Systems: Semi-Markov and Decision Pro-
cesses, vol. 2. Wiley, New York (1972)

103. Johnson, B., Kress-Gazit, H.: Analyzing and revising synthesized controllers for
robots with sensing and actuation errors. Int. J. Robot. Res. 34(6), 816–832 (2015)

104. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes.
In: LICS, pp. 266–277. IEEE Computer Society (1991)

105. Junges, S., Jansen, N., Dehnert, C., Topcu, U., Katoen, J.-P.: Safety-constrained
reinforcement learning for MDPs. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 130–146. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49674-9 8

106. Kallenberg, L.C.M.: Linear programming and finite Markovian control problems.
Math. Center Tracts 148 (1983)

107. Katoen, J.-P.: The probabilistic model checking landscape. In: LICS, pp. 31–45.
ACM (2016)

108. Katoen, J.-P., Gretz, F., Jansen, N., Kaminski, B.L., Olmedo, F.: Understanding
probabilistic programs. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Correct
System Design. LNCS, vol. 9360, pp. 15–32. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-23506-6 4

109. Katoen, J.-P., Klink, D., Leucker, M., Wolf, V.: Three-valued abstraction for
probabilistic systems. J. Log. Algebr. Program. 81(4), 356–389 (2012)

110. Kattenbelt, M., Kwiatkowska, M.Z., Norman, G., Parker, D.: A game-based
abstraction-refinement framework for Markov decision processes. Form. Methods
Syst. Des. 36(3), 246–280 (2010)

111. Klink, D., Remke, A., Haverkort, B.R., Katoen, J.-P.: Time-bounded reachability
in tree-structured QBDs by abstraction. Perform. Eval. 68(2), 105–125 (2011)

112. Konur, S., Dixon, C., Fisher, M.: Analysing robot swarm behaviour via proba-
bilistic model checking. Robot. Auton. Syst. 60(2), 199–213 (2012)

113. Kwiatkowska, M.Z.: Model checking for probability and time: from theory to
practice. In: LICS, p. 351. IEEE Computer Society (2003)

114. Kwiatkowska, M.Z., Norman, G., Parker, D.: Probabilistic symbolic model check-
ing with PRISM: a hybrid approach. STTT 6(2), 128–142 (2004)

115. Kwiatkowska, M., Norman, G., Parker, D.: Symmetry reduction for probabilistic
model checking. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp.
234–248. Springer, Heidelberg (2006). https://doi.org/10.1007/11817963 23

116. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

https://doi.org/10.1007/978-3-662-44584-6_18
https://doi.org/10.1007/978-3-662-44584-6_18
https://doi.org/10.1007/978-3-540-70545-1_16
https://doi.org/10.1007/978-3-662-49674-9_8
https://doi.org/10.1007/978-3-662-49674-9_8
https://doi.org/10.1007/978-3-319-23506-6_4
https://doi.org/10.1007/978-3-319-23506-6_4
https://doi.org/10.1007/11817963_23
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

450 C. Baier et al.

117. Kwiatkowska, M.Z., Norman, G., Parker, D.: The PRISM benchmark suite. In:
QEST, pp. 203–204. IEEE Computer Society (2012)

118. Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Automatic verification
of real-time systems with discrete probability distributions. Theoret. Comput.
Sci. 282(1), 101–150 (2002)

119. Lacerda, B., Parker, D., Hawes, N.: Optimal policy generation for partially satis-
fiable co-safe LTL specifications. In: IJCAI, pp. 1587–1593. AAAI Press (2015)

120. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput.
94(1), 1–28 (1991)

121. Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS, pp. 203–210. IEEE
Computer Society (1988)

122. Lovejoy, W.S.: A survey of algorithmic methods for partially oberserved Markov
decision processes. Ann. Oper. Res. 28(1), 47–65 (1991)

123. Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic plan-
ning and related stochastic optimization problems. Artif. Intell. 147(1–2), 5–34
(2003)

124. Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G., Nielsen, B.: Learning
deterministic probabilistic automata from a model checking perspective. Mach.
Learn. 105(2), 255–299 (2016)

125. Mayr, R., Schewe, S., Totzke, P., Wojitczak, D.: MDPs with energy-parity objec-
tives. In: LICS, pp. 1–12. IEEE Computer Society (2017)

126. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Monographs in Computer Science. Springer, New York (2005). https://doi.
org/10.1007/b138392

127. Neuhäußer, M.R., Stoelinga, M., Katoen, J.-P.: Delayed nondeterminism in
continuous-time Markov decision processes. In: de Alfaro, L. (ed.) FoSSaCS 2009.
LNCS, vol. 5504, pp. 364–379. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-00596-1 26

128. Neuhäußer, M.R., Zhang, L.: Time-bounded reachability probabilities in
continuous-time Markov decision processes. In: QEST, pp. 209–218. IEEE Com-
puter Society (2010)

129. Norman, G., Parker, D., Sproston, J.: Model checking for probabilistic timed
automata. Form. Methods Syst. Des. 43(2), 164–190 (2013)

130. Parker, D.: Implementation of symbolic model checking for probabilistic systems.
Ph.D. thesis, University of Birmingham (2002)

131. Pathak, S., Pulina, L., Tacchella, A.: Evaluating probabilistic model checking
tools for verification of robot control policies. AI Commun. 29(2), 287–299 (2016)

132. Pnueli, A., Zuck, L.D.: Verification of multiprocess probabilistic protocols. Distrib.
Comput. 1(1), 53–72 (1986)

133. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, New York (1994)

134. Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.-P.: Parameter
synthesis for Markov models: faster than ever. In: Artho, C., Legay, A., Peled, D.
(eds.) ATVA 2016. LNCS, vol. 9938, pp. 50–67. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46520-3 4

135. Quatmann, T., Junges, S., Katoen, J.-P.: Markov automata with multiple objec-
tives. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
140–159. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 7

136. Rabe, M.N., Schewe, S.: Finite optimal control for time-bounded reachability in
CTMDPs and continuous-time Markov games. Acta Inf. 48(5–6), 291–315 (2011)

https://doi.org/10.1007/b138392
https://doi.org/10.1007/b138392
https://doi.org/10.1007/978-3-642-00596-1_26
https://doi.org/10.1007/978-3-642-00596-1_26
https://doi.org/10.1007/978-3-319-46520-3_4
https://doi.org/10.1007/978-3-319-46520-3_4
https://doi.org/10.1007/978-3-319-63387-9_7

The 10,000 Facets of MDP Model Checking 451

137. Randour, M., Raskin, J.-F., Sankur, O.: Percentile queries in multi-dimensional
Markov decision processes. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015.
LNCS, vol. 9206, pp. 123–139. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-21690-4 8

138. Roijers, D.M., Vamplew, P., Whiteson, S., Dazeley, R.: A survey of multi-objective
sequential decision-making. J. Artif. Intell. Res. 48, 67–113 (2013)

139. Scheftelowitsch, D., Buchholz, P., Hashemi, V., Hermanns, H.: Multi-objective
approaches to Markov decision processes with uncertain transition parameters.
In: Casale, G., Marin, A., Petriu, D., Rossi, S., Van Houdt, B. (eds.) 11th Inter-
national Conference on Performance Evaluation Methodologies and Tools, VAL-
UETOOLS 2017, Venice, Italy (2017)

140. Schuster, J., Siegle, M.: Markov automata: deciding weak bisimulation by means
of non-näıvely vanishing states. Inf. Comput. 237, 151–173 (2014)

141. Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes.
Nord. J. Comput. 2(2), 250–273 (1995)

142. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT
Press, Cambridge (1998)

143. Teichteil-Königsbuch, F.: Path-constrained Markov decision processes: bridging
the gap between probabilistic model-checking and decision-theoretic planning.
In: ECAI. Frontiers in AI and Applications, vol. 242, pp. 744–749. IOS Press
(2012)

144. Tkachev, I., Mereacre, A., Katoen, J.-P., Abate, A.: Quantitative model-checking
of controlled discrete-time Markov processes. Inf. Comput. 253, 1–35 (2017)

145. Turrini, A., Hermanns, H.: Polynomial time decision algorithms for probabilistic
automata. Inf. Comput. 244, 134–171 (2015)

146. Ummels, M., Baier, C.: Computing quantiles in Markov reward models. In: Pfen-
ning, F. (ed.) FoSSaCS 2013. LNCS, vol. 7794, pp. 353–368. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-37075-5 23

147. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state pro-
grams. In: FOCS, pp. 327–338. IEEE (1985)

148. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification (preliminary report). In: LICS, pp. 332–344. IEEE Computer Society
Press (1986)

149. von Essen, C., Jobstmann, B., Parker, D., Varshneya, R.: Synthesizing efficient
systems in probabilistic environments. Acta Inf. 53(4), 425–457 (2016)

150. Wachter, B., Zhang, L.: Best probabilistic transformers. In: Barthe, G.,
Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 362–379. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-11319-2 26

151. White, D.J.: A survey of applications of Markov decision processes. J. Oper. Res.
Soc. 44(11), 1073–1096 (1993)

152. Wijs, A., Katoen, J.-P., Bosnacki, D.: Efficient GPU algorithms for parallel
decomposition of graphs into strongly connected and maximal end components.
Form. Methods Syst. Des. 48(3), 274–300 (2016)

153. Wimmer, R., Braitling, B., Becker, B., E., Hahn, M., Crouzen, P., Hermanns, H.,
Dhama, A., Theel, O.E.: Symblicit calculation of long-run averages for concurrent
probabilistic systems. In: QEST, pp. 27–36. IEEE Computer Society (2010)

154. Wimmer, R., Jansen, N., Ábrahám, E., Katoen, J.-P., Becker, B.: Minimal coun-
terexamples for linear-time probabilistic verification. Theor. Comput. Sci. 549,
61–100 (2014)

https://doi.org/10.1007/978-3-319-21690-4_8
https://doi.org/10.1007/978-3-319-21690-4_8
https://doi.org/10.1007/978-3-642-37075-5_23
https://doi.org/10.1007/978-3-642-11319-2_26

Continuous-Time Models for System
Design and Analysis

Rajeev Alur1, Mirco Giacobbe2, Thomas A. Henzinger2, Kim G. Larsen3,
and Marius Mikučionis3(B)

1 Department of Computer and Information Science,
University of Pennsylvania, Philadelphia, USA

2 Institute of Science and Technology Austria, Klosterneuburg, Austria
3 Department of Computer Science, Aalborg University, Aalborg, Denmark

marius@cs.aau.dk

Abstract. We illustrate the ingredients of the state-of-the-art of model-
based approach for the formal design and verification of cyber-physical
systems. To capture the interaction between a discrete controller and its
continuously evolving environment, we use the formal models of timed
and hybrid automata. We explain the steps of modeling and verifica-
tion in the tools Uppaal and SpaceEx using a case study based on
a dual-chamber implantable pacemaker monitoring a human heart. We
show how to design a model as a composition of components, how to
construct models at varying levels of detail, how to establish that one
model is an abstraction of another, how to specify correctness require-
ments using temporal logic, and how to verify that a model satisfies a
logical requirement.

1 Introduction

A cyber-physical system consists of computing devices communicating with one
another and interacting with the physical world via sensors and actuators.
Increasingly, such systems are everywhere, from smart buildings to medical
devices to autonomous cars. Model-based design offers a promising approach
for assisting developers to build cyber-physical systems in a systematic man-
ner [2,18,26]. In this methodology, a designer first constructs a model, with
mathematically precise semantics, of the system under design, and performs
extensive analysis with respect to correctness requirements before generating
the implementation from the model.

Models of cyber-physical systems need to capture both the controller—the
system under design, and the plant—the environment with continuously evolving
physical activities in which the system operates. This typically means a combina-
tion of block diagrams, state machines, and differential equations. Furthermore,
we need to define models formally , that is, in a mathematically precise man-
ner. The formal semantics allows us to answer questions such as, “what are the
possible behaviors of a component” and “what does it mean to compose two

c© Springer Nature Switzerland AG 2019

B. Steffen and G. Woeginger (Eds.): Computing and Software Science, LNCS 10000, pp. 452–477, 2019.

https://doi.org/10.1007/978-3-319-91908-9_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91908-9_22&domain=pdf
https://doi.org/10.1007/978-3-319-91908-9_22

Continuous-Time Models for System Design and Analysis 453

components” rigorously, and forms the basis for analysis tools. In this article
we do not attempt a survey of the rich literature on formal models and analysis
tools for cyber-physical systems, but aim to give an introduction to the subject
using a case study (see [13] for some recent surveys).

Medical devices offer an ideal test-bed for exploring the applications of for-
mal methods in system design due to their safety-critical nature, which demands
higher levels of reliability and rapidly growing complexity due to increased
autonomous operation [27]. We use a dual chamber implantable pacemaker to
illustrate the process of model construction and verification [10,22,28,30]. The
first step in modeling is to choose a modeling formalism depending on what
aspects of the system a designer wants to focus on. The control algorithm of the
pacemaker is best modeled as a composition of timed automata [5], while the rel-
evant features of the heart can be described as a network of hybrid automata [4].
We introduce these two formal models using the modeling tools Uppaal [8,25]
and SpaceEx [17], respectively.

To check that the design works correctly as intended, the designer first needs
to express the requirements capturing correctness in a mathematically precise
manner. We explain two common ways of formalizing requirements using the
pacemaker case study. The automata-based approach corresponds to designing
a monitor that observes the input/output behavior of the system and enters
an error state if an undesirable pattern is detected [29]. The temporal-logic-
based approach corresponds to writing down a formula in a specialized formal
logic—TCTL (Timed Computation Tree Logic) in our case [3], which captures
the desired correctness requirement. A model checker is then tasked with the
job of automatically checking that the system model satisfies the requirement,
and produce feedback in the form of a counterexample if this is not the case [12].
Model checkers for continuous-time systems need to symbolically explore the
infinitely many reachable states of the model. While symbolic algorithms have
been developed for both timed and hybrid automata, the existing technology is
more scalable for timed automata [7]. Hence, we construct a timed-automaton-
based model of the heart by suppressing many details of the hybrid model, and
show how the model checker Uppaal can then be used to verify requirements
of the pacemaker.

Since we created a simplified heart model for the purpose of verifying require-
ments of the pacemaker, we are faced with a new analysis problem, namely,
establishing a rigorous relationship between the two versions of the heart mod-
els. Showing that one model is a refinement or abstraction of another model is
another key step in model-based design, and is essential if we want to infer prop-
erties of the more complex model based on the analysis of the simpler one [6,11].

Related Work. In this paper, we use a dual chamber implantable pacemaker to
illustrate the modeling of control software and the physical world it interacts
with. Analyzing the behavior of the heart using formal methods was first pro-
posed in [30], and our modeling of a heart cell is based on the HH model with
linear differential equations from that paper. The modeling and model checking
of the control algorithm within a pacemaker first appears in [22], and we use

454 R. Alur et al.

the pacemaker model as well as abstracted heart model from that paper for our
case study. Note that there has been considerable research on formal modeling
and verification of the pacemaker. For instance, [10] develops a more precise
Simulink model of the heart cell from [30] with non-linear differential equa-
tions, and [28] describes a translator from Uppaal to Simulink/StateFlow
for this purpose.

Organization of the Paper. We begin with an overview of the heart and pace-
maker models in Sect. 2. Then, in Sect. 3, we use SpaceEx to construct an
abstraction of the heart, and, in Sect. 4, we use Uppaal to verify the whole
heart-pacemaker system. We conclude with future challenges in Sect. 5.

2 The Pacemaker Case Study

The human heart is an excellent example of a naturally occurring timed sys-
tem. It spontaneously generates electrical impulses that organize the sequence
of muscle contractions during each heart beat. The underlying timing pattern
of these impulses is key to the proper functioning of the heart. The implantable
cardiac pacemaker is a rhythm management device that monitors these patterns
and corrects them via external means when needed.

Controlled by the nervous system, a specialized tissue, called the sinoatrial
node, at the top of the right atrium periodically generates electrical pulses. These
pulses cause both atria to contract, forcing blood into the ventricles. The electri-
cal conduction gets delayed at the atrioventricular node, allowing the ventricles
to fill fully, but then spreads rapidly across the ventricular muscles, resulting in
their coordinated contraction, which pumps the blood out of the heart.

A common heart disease, called bradycardia, is due to failures in either
impulse generation or impulse propagation and results in slow heart rate, leading
to insufficient pumping of blood. Bradycardia can be treated by an implantable
pacemaker that monitors the heart rate and delivers timely external electrical
pulses to maintain an appropriate heart rate as well as atrio-ventricular coordi-
nation. Such a pacemaker usually has two leads fixed on the wall of the right
atrium and the right ventricle. Activation of local tissue is sensed by these leads,
and these sensing events act as inputs to the pacemaker. If these sensed events
do not occur in a timely manner, then the pacemaker responds by producing
pacing events that trigger electrical stimuli to the heart.

Figure 1 shows the pacemaker controller connected to a heart by two leads
(black lines) attached to the walls of the right atrium and the right ventricle
(blue area) from the inside. The sinoatrial pulses are propagated through the
neural cells (blue lines), which can both be measured and stimulated by the
pacemaker.

A modern pacemaker responds to a variety of heart conditions and can oper-
ate in different modes. We focus on two modes DDD and VDI and switching
between them. In the mode DDD, the pacemaker is pacing both the atrium
and the ventricle, both chambers are being sensed, and the pacemaker software

Continuous-Time Models for System Design and Analysis 455

Node

Right Atrium

Right Ventricle

Sinoatrial (SA)

Pacemaker

Fig. 1. A heart connected to a pacemaker.

responds to sensing by both activating and inhibiting further pacing, while in
the mode VDI, the pacemaker paces only the ventricle, senses both chambers,
and sensing causes inhibition of pacing.

2.1 Hybrid Automata: Modeling the Heart

To analyze the functionality of the pacemaker at design time, we need a model
that captures how a human heart generates the sensory events. We can view the
heart tissue as a network of cardiac cells, where the electric wave propagates
along neighbouring cells assuring coordinated contraction. At the cellular level,
the electrical signal is a change in the potential across the cell membrane, and is
caused by the flow of ions, such as sodium and potassium, between the inside and
outside of the cell. Mathematical modeling of the ionic processes corresponding
to cell excitation has been studied extensively in computational systems biology.
Typically, such a model is described using nonlinear differential equations, and
consists of multiple continuous state variables corresponding to quantities such
as voltage and ion concentrations and a large number of parameters.

A first step in modeling is to decide what level of detail is appropriate for
the analysis task. For the purpose of this case study, we use the model proposed
by [30], which is derived from the well-accepted Hodgkin-Huxley (HH) model
of cell excitation. It is based on the observation that change in voltage with
time that describes the cell excitation upon stimulation can be clearly separated
in distinct phases, namely, upstroke, repolarization and resting, such that in
each phase the dynamics can be captured by linear differential equations. This
behavior can then be described using hybrid automata.

Hybrid automata offer a formal model for systems that exhibit both discrete
and continuous behavior, such as the combination of heart cells (continuous
behavior) and a pacemaker (discrete behavior). Continuous state change can
be described by guarded differential equations, while discrete state change can
be specified by guarded difference equations. The guard (or “invariant”) of a
differential equation is a state predicate that specifies the condition under which

456 R. Alur et al.

the differential equation is active; the guard of a difference equation is a state
predicate that specifies the condition under which the difference equation is
enabled. Formally, a hybrid automaton is a graph whose vertices (or “modes”)
are annotated with sets of guarded differential equations, and whose edges (or
“mode transitions”) are annotated with sets of guarded difference equations [19].
A behavior of a hybrid automaton is a sequence of trajectory segments, where
each trajectory segment satisfies one of the mode equations and its invariant for
the duration of the segment, the last state of a segment satisfies one of the guards
of a transition equation, and together with the first state of the subsequent
segment, it satisfies the transition equation. Since from any initial state, there
may be several mode equations and transition equations to choose from, a hybrid
automaton can have many different behaviors (“nondeterminism”). Two or more
hybrid automata can be composed by using, in addition, synchronization labels
on the transitions.

Figure 2 shows the hybrid automaton describing the behavior of a heart cell.
It has two variables vx and vy for voltages over cell membrane, four modes
resting, stimulus, upstroke, and repolarization, and five synchronization
labels in0, in1, out0, out1, and get. The difference vx − vy models the trans-
membrane voltage potential of the cell, the labels in1 and in0 model rising
and falling edges of an input stimulus, and out1 and out0 of an output stim-
ulus, respectively. The label get indicates a spike peak of the cell voltage. The
parameters ax, ay, ist, by, cx, cy, dx, dy, VR, VT , and VO are constants and
are defined according to the specific cell instance. Initially, the cell is in resting
mode and vx and vy have any values that satisfy the invariant of resting, which
is 0 ≤ vx − vy ≤ VR. Afterwards, the values of vx and vy continuously evolve
according to the differential equation of resting which is given by v̇x = axvx
and v̇y = ayvy. The parameters ax and ay are such that ax < ay < 0 therefore
the voltage drops when in resting, and the continuous evolution progresses as
long as the variables satisfy the invariant 0 ≤ vx − vy ≤ VR. At any time, the

v̇x = axvx
v̇y = ayvy

0 ≤ vx − vy ≤ VT

v̇x = ist
v̇y = byvy

0 ≤ vx − vy ≤ VT

v̇x = cxvx
v̇y = cyvy

VT ≤ vx − vy ≤ VO

v̇x = dxvx
v̇y = dyvy

VR ≤ vx − vy ≤ VO

in1

in0

out1 vx − vy ≥ VTout0 vx − vy ≤ VR

get

vx − vy ≥ VO

resting stimulus

upstrokerepolarization

in0 in1

in1, in0in1, in0

Fig. 2. Hybrid automaton for the Hodgkin-Huxley model of a heart cell.

Continuous-Time Models for System Design and Analysis 457

automaton can either take a transition labelled by in0 and stay in resting or a
transition labelled by in1 and switch to stimulus. In stimulus, the dynamics is
governed by the flow v̇x = ist and v̇y = byvy for the parameters by < 0 < ist and
satisfies the invariant 0 ≤ vx − vy ≤ VT , thus making the voltage rise up to VT .
As long as the values satisfy the invariant 0 ≤ vx − vy ≤ VT the automaton can
either execute the transition labelled with in1 and stay in stimulus or take in0
and switch back to resting, while as soon as the variable values satisfy the guard
vx − vy ≥ VT it can take out1 and switch to upstroke. The trajectory of the
potential continues to progress in this manner, namely it evolves continuously
in modes and discontinuously on transitions. In the remaining modes upstroke
and repolarization the parameters are such that cx > cy > 0 > dy > dx. As a
result, we show in Fig. 3 a sample trajectory demonstrating how invariants and
guards relate to the automaton modes.

Fig. 3. Heart cell electrical potentials and modes (locations) over time.

The model of the whole heart consists of a composition of cells, which syn-
chronize according to their output and input stimuli. Figure 4 shows such an
example. The cells are organized in a linear fashion, where the labels out1 and
out0 of a cell synchronize with the input labels in1 and in0 of the next cell.
At the top of the network, we have the sinoatrial (SA) node, which is the cell
that takes through in1 and in0 the input stimulus of the heart, which can come
from its natural pacing or from the actuator of the pacemaker. The output labels
out1 and out0 of the SA node then trigger the input labels of a second cell. The
output of the second cell triggers the input of a third, and so on, creating a chain
of stimuli. The whole chain can be seen as divided in two main groups, namely
atrium and ventricle. The output of the cell at the boundary of the atrium then
produces the output of the whole atrium, which is connected to the cell at the
top of the ventricle, which is called atrioventricular (AV) node. The AV node
may take the pacing coming from the atrium or from the second actuator of the
pacemaker.

Hybrid automata synchronize transitions according to their labels, namely,
transitions whose labels are shared fire synchronously, while transitions whose
labels are not shared fire asynchronously. Figure 4 shows our naming scheme for
the synchronization of output and input simili between cells. In particular, we

458 R. Alur et al.

SA node

Atrium cell 1

Atrium cell 2

AV node

Ventricle cell 1

in1 in0

out1 out0

get

in1 in0

out1 out0

get

in1 in0

out1 out0

get

in1 in0

out1 out0

get

in1 in0

out1 out0

get

ch1[0] ch0[0]

ch1[1] ch0[1]

ch1[2] ch0[2]

ch1[3] ch0[3]

get[0]

get[1]

get[2]

get[3]

get[4]

Fig. 4. Interface of a composition of heart cells.

obtain synchronization between the transition labeled by out1 and in1 (resp.
out0 and in0) by renaming both to ch1[i] (resp. ch0[i]), where i is the index
of the upstream cell. Complementarily, we prevent the synchronization between
the transitions labeled by get by renaming each of them to get[i], where i is the
index of the respective cell. Figure 5 shows part of the reachable configurations
in the composition of two cells. Initially, both automata are in resting (Fig. 5,
top left). In the initial configuration, the first automaton can execute all its
available transitions (labeled by in1 and in0), while the second cannot execute
any (labeled by ch1 and ch0). This is because ch1 and ch0 are shared between
the two automata, and therefore can be executed only if both automata can. On
the other hand, in1 and in0 appear only in the first automaton, and therefore
they can be executed. As a result, in0 and in1 label asynchronous transitions,
where the first makes a self loop to the initial configuration, and the second
switches the first automaton to stimulus. The latter configuration (Fig. 5, top
right) enables a transition labeled by ch1, which is synchronous and switches
the first automaton to upstroke and the second to stimulus (Fig. 5, bottom
right). In its turn, this configuration enables an asynchronous transition labeled
by getA, and so on. The rest of the composition continues similarly.

Hybrid automata can be classified according to the generality of their guards,
differential equations, and difference equations. The more restrictive these equa-
tions are, the more feasible the analysis of the resulting behaviors. Assume that

Continuous-Time Models for System Design and Analysis 459

in1
in0

ch1
getA

ch0

in0 in1

in1,in0in1,in0

ch1
ch0

out1
getB

out0

ch0 ch1

ch1,ch0ch1,ch0

in1
in0

ch1
getA

ch0

in0 in1

in1,in0in1,in0

ch1
ch0

out1
getB

out0

ch0 ch1

ch1,ch0ch1,ch0

in1
in0

ch1
getA

ch0

in0 in1

in1,in0in1,in0

ch1
ch0

out1
getB

out0

ch0 ch1

ch1,ch0ch1,ch0

in1
in0

ch1
getA

ch0

in0 in1

in1,in0in1,in0

ch1
ch0

out1
getB

out0

ch0 ch1

ch1,ch0ch1,ch0

in1

in0

ch1

getA

ch0

in0 in1

in1,in0in1,in0

Fig. 5. Some configurations of a composition of two heart cells, where the events out1

and out0 of the left and in1 and in0 of the right cell are renamed, resp., to ch1 and
ch0, and get to getA and getB. The active modes in each configuration of two cells
are depicted by the black circles. The effect of an enabled transition is shown as a
transition between configurations.

x is a state vector. A hybrid automaton has piece-wise affine dynamics if all
mode invariants and transition guards have the form x ∈ U , all mode equations
have the form ẋ = Ax+v with v ∈ V , and all transition equations have the form
x′ = Bx + w with w ∈ W , for matrices A and B, and polyhedra U , V , and W .
The hybrid automaton has piece-wise constant dynamics if A = 0. It is a timed
automaton if A = 0 and V = 1. In a timed automaton, all state components
always advance at the rate of time; they represent “clocks”.

2.2 Timed Automata: Modeling the Pacemaker

The pacemaker monitors the pattern of events emitted by the heart and corrects
them via external means when needed. The pacemaker itself is composed of a
number of components, each of which is essentially a simple state-machine pro-
ducing output events triggered by timing constraints. This makes the formalism
of timed automata ideal for the description of these components.

Figure 6 shows the architecture block diagram of the entire model. The pace-
maker senses the voltage peaks of one cell from the atrium and one cell of the
ventricle through the events Aget and Vget (which are renaming of the respec-
tive get labels), and controls the heart by sending stimuli to the SA node and
the VA node though the labels AP and VP. In particular, upon the occurrence
of AP the timed automaton AP-to-A generates a pulse by sending an event i1
to the SA node and after some fixed time sending i0 indicating the end of the
stimulus pulse. Similarly, VP triggers VP-to-V which in its turn stimulates the
VA node. The events AP and VP are generated by the internals of the pacemaker,
which we introduce in this section.

460 R. Alur et al.

Fig. 6. Overview of the modeled processes: red arrows indicate pacing inputs to the
heart, and blue arrows are monitored output events from the heart.

Fig. 7. Ventricular refrac-
tory period (VRP).

To first informally explain the formalism of
timed automata and how they are modelled in the
tool Uppaal, we will use the VRP process shown in
Fig. 7. Uppaal timed automaton consists of loca-
tions and edges modeling its discrete states and dis-
crete transitions respectively. Locations and edges
have labels. For example, process VRP has an initial
location with a circle O inscribed, which has a name
label Idle. The location VRP has an invariant label
t<=TVRP meaning that the automaton may stay in VRP only while the clock t
value is less or equal to the value of the TVRP constant. Process VRP may stay in
location Idle for arbitrary amount of time because there is no invariant forcing
it to move, it also listens for synchronizations over channels Vget and VP. The
reception over channel Vget transitions it to inter, while the reception over VP
switches it directly to location VRP and reset the clock t. The location inter has
C inscribed to denote that it is committed and the automaton’s progress cannot
be interrupted neither by the time delay nor any other process, therefore it has to
move immediately by taking an edge transition to location VRP which is labeled
with synchronization VS! and update t=0 meaning that it emits a message on
channel VS and resets the clock t so the time is counted from zero in location VRP
up to the bound of TVRP. Then process VRP may move from location VRP back
to Idle but only when the guard t>=TVRP is satisfied, i.e. only after spending at
least the amount TVRP of time in location VRP. As a result, the state of a timed
automaton consists of its location and variable values, and there are two kinds

Continuous-Time Models for System Design and Analysis 461

of transitions between states: delay (when clock values increase while satisfying
the current invariant) and edge-transitions when clock values satisfy the guards,
synchronize, update the value and satisfy the target location invariant.

In addition to theoretical definition of timed automata Uppaal implements
a number of practical extensions which make the modeling task easier and more
succinct:

Integer variables. Apart from constants, most programming and modeling
languages use variable value manipulations. Likewise Uppaal allows bounded
integer variables to be used and combined with clock constraints. On one
hand, the value of an integer variable becomes an integral part of the state
of the system. On the other hand, the integer variable value can be used
as a constant in clock constraints because the integer variable value may
change only upon edge-transitions between the timed automata states. An
example of such integer use is demonstrated by TPVARP in Fig. 8d, where the
bound t<=TPVARP is changed by transition from PVARP to Idle. Interestingly,
the bounded integer variables do not increase the theoretical expressiveness
of timed automata, therefore all theoretical results still apply. For example,
we have compressed the representation of Counter and Duration in Fig. 8g
and f by encoding the fast? and slow? counting into local integer variables
i (originally [22] enumerated into a number of distinct locations).

Input-output synchronization. In contrast to non-directed multi-label syn-
chronizations in SpaceEx hybrid automata, the synchronizations between
Uppaal processes are directed in the sense that one process is sending with
exclamation mark (e.g. VS!) and the receiving process is listening with ques-
tion mark (VS? respectively). By default, channel synchronizations are hand-
shake, meaning that both sender and receiver must mutually agree for the
transition to take place. Handshake synchronizations happen only in pairs
of processes, i.e. only two processes may participate in the synchronization
at a time, and all possible pairs are considered non-deterministically when
multiple receivers are available.

Broadcast synchronization. In addition Uppaal supports broadcast syn-
chronization where one sender may synchronize with multiple receivers. In
contrast to handshake synchronization, the broadcast synchronization is non-
blocking in a sense that the sender is not required to wait for any receivers
and only the ready receivers participate in the synchronization. While the
broadcast synchronization can be emulated by adding receiving self-loops in
locations where the process does not implement the reception part, but in
practice it is more succinct way of modeling, allows partial order reduction
and verification is more efficient as the tool does not need to consider the
extra edges. All the synchronizations in the pacemaker study use broadcast
channels because non-blocking behavior is closer to how the independent pro-
cesses communicate and it is easier to include additional processes without
modifying the original behavior, which is useful in adding extra monitors for
diagnostics and verification.

462 R. Alur et al.

Urgency. Sometimes the modeled process needs to execute several transitions
without delaying in the locations between. We call such locations urgent and
draw a letter U inside to mark that time cannot progress in them.

Atomicity. The process in urgent location may still be interrupted by a transi-
tion in another process even though the time is not allowed to pass. Uppaal
implements a committed location with C inscribed in case an uninterrupted
(“atomic”) sequence of transitions is needed. Committed locations are use-
ful in connecting multiple channel synchronizations at the same time which
would be very cumbersome to model otherwise.

We have reconstructed the pacemaker model from [22] shown in Fig. 8. The
overview block diagram of the processes is shown in Fig. 6 where the heart is
represented by SA Node cell, two atrium and two ventricle cells. The cells can
be stimulated by ch1∗ and ch0∗ channels synchronizations denoting the start
and ending of the stimulus. The heart can be self-stimulating by a SA Node cell
or by a pacemaker by a signal over channel AP (Atrium Pulse). Normally the
atrium cells relay the signal to ventricle cells, but if the stimulus is too weak (or
too short), then the ventricle is stimulated by the pacemaker over VP (Ventricle
Pulse) channel. The pacemaker monitors the activity of the atrium and ventricle
by receiving from the signals over the corresponding channels Aget and Vget. All
channels used in Fig. 8 are of broadcast type, meaning that one sending event
can be sensed by zero or more receivers at once and the sending process is not
blocked by the absence of receivers.

Low Rate Interval (LRI, Fig. 8a) maintains the minimum heart rate by
providing pulses to the heart (AP! in DDD mode and VP! in VDI mode) if there
was no signal from atrium (AS?) after the last ventricle pulse for longer than
TLRI−TAVI time interval. The time interval is measured by the clock t which is
reset after the last ventricle pulse (by sensing either VS? or VP?). The LRI also
monitors the mode switching by reacting to inputs VDI? and DDD? and starts
pacing the ventricle (VP!) instead of atrium (AP!).

Atrioventricular Interval (AVI, Fig. 8c) maintains the maximum interval
between the atrium and ventricle activation by issuing ventricle pacing VP! if no
ventricular event received VS? within TAVI time after the last atrial event (AS?
or AP?). The interval is measured by the clock clk shared with Upper Rate
Interval (URI, Fig. 8b) which prevents pacing the ventricle too fast by resetting
clk upon ventricular event (VS? or VP?).

Postventricular Atrial Refractory Period (PVARP, Fig. 8d) converts
atrium events A_act? and Aget? into sensed event AS! and filters the sensed
noise during the blanking period (t<=PVAB) after the ventricular event followed
by a refractory period (t<=PVARP). The blocked events are converted to ABlock!
and AR! for advanced diagnostics.

Ventricular Refractory Period (VRP, Fig. 7) similarly translates the ven-
tricle peak events over Vget? into sensed events over VS! and filters out by not
re-transmitting for a time interval t<=TVRP after the last event.

We use the same set of constants as in the original publication [22]:
TAVI = 150, TLRI = 1000, TPVARP = 100, TVRP = 150, TURI = 400, TPVAB = 50.

Continuous-Time Models for System Design and Analysis 463

Fig. 8. Timed automata model of the pacemaker.

464 R. Alur et al.

3 Relating and Combining Models

Hybrid automata can be numerically simulated, or formally analyzed. While
simulation generates one behavior at a time, formal analysis can answer questions
about all possible behaviors of a hybrid automaton. The most basic behavioral
analysis question about a hybrid automaton is the reachability question. The
bounded reachability question asks, given two state sets S and T, and a time
bound t, if there is a behavior from a state in S to a state in T of total duration
no more than t. The unbounded reachability question asks, given two sets S and
T, if there is a behavior of any duration from a state in S to a state in T. In
general, both the bounded and unbounded reachability questions are formally
undecidable even for hybrid automata with piece-wise constant dynamics [21].
However, methods and tools have been developed for solving many interesting
instances of these problems [17,20]. Moreover, both questions can always be
answered algorithmically for the special case of timed automata [5].

Unfortunately, the heart-pacemaker model is not a timed automaton, as heart
cells fall in the class of hybrid automata with piece-wise affine dynamics, and
so does their composition with the pacemaker. On the other hand, if each cell
model was a timed automaton, the whole system would be a timed automaton,
and therefore the verification answer solvable. Can we model each cell with timed
automata, so that by verifying the resulting system we verify the original system
too? To this aim, we exploit the notion of abstraction: if the timed automaton
abstracts the original cell model, then any negative answer for the reachability
question in the abstract composed system implies the same negative answer
in the original composed system. In the following, we construct such a timed
automaton, we explain its relation with the original hybrid automaton, and
we demonstrate how to use SpaceEx to mechanically prove that the former
abstracts the latter.

3.1 A Timed Abstraction of the Heart Cell Model

We construct a timed automaton A with the same discrete structure of the heart
cell model in Fig. 2 and one clock variable. In the abstract model, the clock is
reset upon entering each mode, and the transition guards out of a mode are
chosen based on the duration of time spent in that mode. Figure 9 shows such
construction. The clock variable is t and the times Tout1, Tout0, and Tget bound
respectively the duration before the occurrence of the symbols out1, out0, and
get.

The abstraction has been constructed manually, by making the following
observations about the original model in Fig. 2. Initially the cell is in resting
mode, where vx−vy drops towards 0, therefore the invariant 0 ≤ vx−vy ≤ VT is
always satisfied. In mode resting the events in1 and in0 can occur at any time,
where in0 is ignored and in1 switches to stimulus. In stimulus the automaton
is also driven by the difference vx−vy which may increase and force automaton to
move to upstroke. The time bound Tout1 models the largest time where vx − vy
hits VT and satisfies the guard for out1, i.e., vx−vy ≥ VT . The symbol out1 may

Continuous-Time Models for System Design and Analysis 465

in1

t := 0

in0

t ≤ Tout1

t := 0 out1
t ≤ Tout1

t := 0

get

t ≤ Tget

t := 0

out0
t ≤ Tout0

t := 0

resting stimulus

upstrokerepolarization

in0

in1, in0

t ≤ Tout0

in1

t ≤ Tout1

in1, in0

t ≤ Tget

Fig. 9. Timed abstraction of the hybrid automaton in Fig. 2.

occur any time before Tout1, as well as in1 and in0 which may happen as long
as the invariant 0 ≤ vx − vy ≤ VT of stimulus is satisfied. Upon the occurrence
of out1 the value of vx − vy is exactly VT , the process switches to upstroke in
which it stays until the value of vx − vy hits exactly VO, whose time is modeled
by VO. Similarly, upon get the process switches to repolarization and stays
until it takes out0 when vx −vy hits VR, which must happen no later than Tout0

time.
Whether the timed automaton in Fig. 9 is an abstraction of the heart cell

model in Fig. 2 requires us to first rigorously define what we mean by abstraction,
namely, what are the features of the original system that are to be conserved
by the abstract system. Second, we need to instantiate the parameters Tout0,
Tout1, and Tget and prove that the so obtained timed automaton abstracts the
original hybrid automaton. We discuss these points in Sects. 3.2 and 3.3. For
the time being, the construction of the timed abstraction relies on the intuition
and the expertise of the designer. In this phase, the only formal requirement is
that the timed automaton needs to deterministic, so that in the next phase we
can construct its complement. A timed automaton is deterministic if at every
mode every pair of transitions with common symbol have disjoint guards [5].
The timed abstraction of Fig. 9 is deterministic simply because at every mode
each symbol has at most one switch.

3.2 The Timed Language of Hybrid Automata

A hybrid automaton A abstracts a hybrid automaton B when all observable
behaviors of the latter are also observable behaviors of the former. The observ-
able behaviors are the features of the system dynamics that we need to observe
in order to decide whether a specification is satisfied. The more detailed the
observable behaviors, the harder is constructing an abstraction, but the more
sophisticated are the properties that we can verify. For verifying properties such
as Tachycardia, Bradycardia, and so on, we want to observe sequences of labels
σ = σ0σ1 . . . with the exact times τ = τ0τ1 . . . at which each of these events

466 R. Alur et al.

has occurred. Each of such pairs of sequences (σ, τ) is called a timed word.
For instance, the word that repeats the pattern in1, out1, get, out0 is a timed
word when coupled with the times of staying respectively in modes resting,
stimulus, upstroke, and repolarization, repeatedly. The set of all the timed
words of the hybrid automaton H is called its timed language LH .

Abstraction with respect to timed languages can be phrased as timed lan-
guage inclusion, that is to say that the timed automaton A abstracts the hybrid
automaton H if LH ⊆ LA. Alternatively, one can prove that A abstracts H by
saying that there does not exist a timed word of H that is not a timed word
of A. This is indeed a reachability question for the composition of H with the
complement of A, which can be tackled by SpaceEx. To this aim, we first con-
struct the complement automaton for A, i.e., the timed automaton for which
all timed words from language LA end up in accepting mode (corresponding
to modes in the original automaton) and any other word end up hitting some
auxiliary rejecting mode. Then, we use SpaceEx to search for any timed word
of H that is rejected by the complement automaton of A, namely a word of their
composition that hits a rejecting mode of the latter. If no such word is found,
then we can conclude that A abstracts H.

in1

t := 0
in0

t ≤ Tout1

t := 0 out1
t ≤ Tout1

t := 0

get

t ≤ Tget

t := 0

out0
t ≤ Tout0

t := 0

r1

r2r3

r0

t > Tout1

in1, in0, out1

out0, get

t > Tget

in1, in0, get

out1, out0

t > Tout0

in1, in0, out0

out1, get

out1, out0, get

Σ Σ

ΣΣ

in0

in1, in0
t ≤ Tout0

in1

t ≤ Tout1

in1, in0
t ≤ Tget

Fig. 10. Complement of the timed abstraction in Fig. 9.

The timed abstraction A is deterministic. To complement a determin-
istic timed automaton we need first to add dummy transitions so to
make the automaton accept any timed word (on the same alphabet Σ =
{in0, in1, out0, out1, get}), yet remaining deterministic. Figure 10 shows the
result. From mode resting only in1 and in0 can be received, therefore we
add a dummy transition, i.e., a transition to a dummy mode, which receives
any other symbol, i.e., out1, out0, and get. From stimulus, in1, in0, and

Continuous-Time Models for System Design and Analysis 467

out1 can be received and can be received as long as t ≤ Tout1, therefore we
add a dummy transition with guard t > Tout1 that receives such events, so
as to ensure all guards of transitions with common symbol to be disjoint and
maintain the automaton deterministic. The symbols out0 and get cannot be
received at all from stimulus, therefore we add a dummy transition with uncon-
strained guard. Similarly, we make the same construction on modes upstroke
and repolarization. Finally, one can observe that every trajectory that ends
in any dummy mode corresponds to a timed word that is not in LA. The dummy
modes are those that recognise the complement language, thus we mark them
as rejecting modes.

In summary, we formulate the question of whether the timed abstraction in
Fig. 9 abstracts the heart cell model in Fig. 2 by asking SpaceEx whether the
composition of the heart cell model in Fig. 2 with the complement automaton in
Fig. 10 can reach any of the rejecting modes. The result is a reachability question
on hybrid automata with affine dynamics.

3.3 Verifying the Abstraction Using SpaceEx

SpaceEx is a modeling framework for the composition of hybrid automata that
collects several reachability analysis techniques, which are called scenarios. We
can divide the currently available scenarios in three main categories: simulation
based, support function based, and the polyhedra based scenarios. The simula-
tion based scenario generates time-bounded sample trajectories, and can be used
to reject an abstraction, but not to verify one. The support function and the poly-
hedra based scenarios perform reachability analysis by generating sequences of
polyhedra that over-approximate the whole space of reachable states and both
are possibly suitable for verifying an abstraction. In fact, when they answer
that all rejecting modes are unreachable, then the rejecting modes are actually
unreachable, and the abstraction is proven. The converse is not necessarily true
and, moreover, termination is not guaranteed either. For this reason, success-
fully concluding an abstraction proof requires several trial and error attempts in
tuning the parameters and the multiple heuristic options of SpaceEx.

We use the polyhedral based scenario which is also know as the PHAVer
scenario. The PHAVer scenario over-approximates the continuous flow of every
mode by piece-wise constant differential inclusions [16]. In other words, it turns
affine dynamics of the form ẋ = Ax+ v with v ∈ V into differential inclusions of
the form ẋ ∈ U , where U is a set the contains all values that the derivative ẋ can
possibly take. Both such transformation and the symbolic reachability analysis
on the so obtained hybrid automaton are then done by quantifier elimination,
e.g., by the Fourier Motzkin algorithm [4].

The main challenge is then to choose the time bounds Tout1, Tout0, and Tget.
Indeed, if we let vx and vy take arbitrary negative values it is impossible to
find finite bounds, therefore we add the extra invariant vx, vy ≥ 0 to all modes
of the heart cell. Then, we proceed as follows. First, we set all constants using
a set of values the original article [30], which we show in Table 1 (except for
ist, which is not specified there). Second, we decide a value for ist and third, we

468 R. Alur et al.

Table 1. The heart cell model parameters [30].

ax ay by cx cy dx dy VR VT VO

−0.98 −0.16 −0.16 15 1.4 −0.98 −0.16 10 10 83

search for tight enough values for Tout1, Tout0, and Tget until SpaceEx concludes
that all rejecting modes are unreachable. Table 2 shows a few attempts to prove
reachability of any of the rejecting modes r0, r1, r2, or r4. The parameters were
chosen manually, and SpaceEx converged on each of these proofs in less than a
second. The parameters for which none of the rejecting modes are reachable are
parameters for which the abstraction is verified.

Table 2. Attempts of proving that the timed automaton of Fig. 9 abstracts the hybrid
automaton of Fig. 2. The answer indicates the set of reachable rejecting modes in the
complement automaton of Fig. 5.

ist Tout1 Tout0 Tget Answer ist Tout1 Tget Tout0 Answer

10 1 1 1 {r3} 1 1 0.5 7.5 {r1}
10 1 1 10 ∅ 1 10 0.5 7.5 ∅
10 0.1 0.1 1 {r1, r2, r3} 100 10 0.5 7.5 ∅
10 1 0.5 10 ∅ 100 0.01 0.5 7.5 {r1}
10 1 0.5 7.5 ∅ 100 0.1 0.5 7.5 ∅

3.4 Abstraction Refinement

An abstraction captures specific aspects of the original model while it may ignore
others, and in some cases, an abstraction may be too coarse for proving a prop-
erty. For instance, the timed automaton of Fig. 9 captures the upper bounds of
the transition times for the labels out1, out0, and get, while it ignores the lower
bounds. Without a lower bound for the duration of an output stimulus, prop-
erties such as the efficient propagation of a signal through cells (see Sect. 4.3)
cannot be proven. In fact, often an abstraction requires to be adapted to the
property of interest. This is usually done incrementally, by adding a few impor-
tant details at a time, through a process of abstraction refinement. In the follow-
ing, we show how to refine our abstraction by exploiting the compositionality of
hybrid and timed automata.

The timed automaton of Fig. 11 captures the requirement that output stim-
ulus of a heart cell should last at least time Tstim. As previously, we compute
its complement, and we use SpaceEx to prove that for certain parameters of
the heart cell model, certain lower bounds are satisfied (see Table 3), in this
way obtaining a second abstraction for the original heart cell. We use the new
abstraction B to refine the previous abstraction A by composing them, obtaining

Continuous-Time Models for System Design and Analysis 469

out1

tlb := 0

out0

tlb ≥ Tstim

in0,in1 in1,in0,get

Fig. 11. Abstraction for the lower bound between out1 and out0.

the timed automaton in Fig. 12, which is again an abstraction of the original sys-
tem. Table 3 shows the proven parameters. In particular, for the original model
(parameters from Table 1, first line in Table 3) we cannot prove any lower bound
unless we reduce VR and additionally specify the global invariant that x and y
do not exceed a maximum voltage Vmax. For instance, with Vmax = 100 and
VR = 5, we have a lower bound of 0.86. The lower bound for the stimulus length
depends on Vmax, VR, and the coefficient dx, e.g., with dx = −0.83, we have
Tstim = 1.001.

In summary, we construct a sequence of time abstractions for a heart cell and
formally proved that they indeed abstract its timed language. The abstraction
question turns out to be a reachability question on a heart cell composed with
the complement of its timed abstraction, which is a rather small system. We
employ SpaceEx on this problem, and then we modify the heart-pacemaker
model by replacing each cell with the abstraction. The whole model is now a
timed automaton, which can be verified by Uppaal.

4 Verifying Temporal Requirements

Several behavioural properties of (composite) timed and hybrid automata models
may be expressed as simple reachability properties. This is already illustrated
previously in Sect. 3.2, where we saw that language inclusion between the “exact”
hybrid automaton model H of a heart cell and a proposed timed automaton
abstraction A could be stated as a simple reachability property of rejecting
locations in a product between H and the complement of A. However, it may
often be more convenient to express desired properties of a timed or hybrid
automaton directly as formulas of temporal logic, thus permitting properties to
be combined using boolean connectives. In fact the whole spectrum of temporal-
logic has been extended to the setting of timed labelled transition systems, with

Table 3. Proven parameters for upper and lower bound abstractions (Figs. 9 and 11)
w.r.t. different versions of a heart cell.

ax ay by cx cy dx dy VR VT VO Vmax ist Tout1 Tget Tout0 Tstim

−0.98 −0.16 −0.16 15 1.4 −0.98 −0.16 10 10 83 ∞ 10 1 0.5 7.5 0

−0.98 −0.16 −0.16 15 1.4 −0.98 −0.16 5 10 83 100 10 1 0.5 7.5 0.86

−0.98 −0.16 −0.16 15 1.4 −0.83 −0.16 5 10 83 100 10 1 0.5 19 1.001

470 R. Alur et al.

model checking suitably extended to timed automata, see e.g. [9]. In this section
we demonstrate how timed automata verification using Uppaal may be used in
establishing key properties of the pace-maker.

4.1 Timed Automaton of a Heart Cell in Uppaal

Figure 12 shows the Uppaal version of the heart cell timed automaton abstract
model of Fig. 9. The locations in the timed automaton match their correspond-
ing modes in the hybrid automaton and the timings are taken from Table 3 and
converted into microseconds as shown in Fig. 12b. Note that Tstim was deter-
mined as a minimum delay between out1! and out0! events, therefore we use
an extra clock t_lb to enforce this constraint. This lower bound on the repolar-
ization time turned out to be important to ensure a successful signal handover
as verified in Sect. 4.3.

Fig. 12. Abstract model of a heart cell.

4.2 Requirement Specifications

The model checker Uppaal supports verification of requirements expressed
within a fragment of Timed Computation Tree Logic (TCTL). Among TCTL
properties we consider here the following:

– A�ϕ, which is satisfied if any reachable state satisfies ϕ (Invariance),
– A�≤Tϕ, which is satisfied if any state reachable within T time-units satisfies

φ (Time-bounded Invariance),
– A♦ϕ, which is satisfied if on any path the properties ϕ is (eventually) satisfied

at some point (Eventual),
– A♦≤Tϕ which is satisfied if on any path the property ϕ is satisfied within T

time-units ϕ (Time-Bounded Eventual),

Continuous-Time Models for System Design and Analysis 471

Fig. 13. Gantt chart of state evolution of 10 cell automaton from Fig. 12.

– ϕ �≤T ψ, which requires than whenever a state is reached satisfying ϕ, then
any path from this state must eventually satisfy ψ – and within a total of T
time-units. Logically, the (time-bounded) leads-to property is equivalent to
A(ϕ ⇒ A♦≤Tψ) (Time-Bounded Leads-to).

For deterministic timed labelled transition systems, it may easily be shown that
all of the above properties – as they all quantify universally over execution
sequences out of a state – are preserved by language inclusion. Thus, if LH ⊆ LA

and A has been verified to satisfy a TCTL property ϕ of the above type, then
it may readily be concluded that the “exact” model H also satisfies ϕ.

Moreover, as demonstrated in [1] all of the above properties may be expressed
directly as a reachability property—i.e. invariance properties—of the given timed
automaton composed with a monitor corresponding to the property.

4.3 Healthy Heart Requirements

Figure 13 shows the state evolution of 10 heart cell timed automata connected
in series. In the beginning all cells are in resting (red bar), then the first cell is
stimulated and moves to stimulus (yellow bar). After a short while the first cell
stimulates the second one and moves to upstroke (green bar), then it moves to
repolarization (blue bar) and back to resting (red bar). The second cell then
stimulates the third and so on.

A healthy heart should propagate the signal all the way from SA node to
atrium and then ventricle. This requirement can be formulated as the following
leads-to property:

A�(ch1[0]! → A♦ ch1[N]!)

which says that for every stimuli of the first cell (ch1[0]!) we should eventually
observe the signal at the end of the chain (ch1[N]!), where N is the number of
cells. Uppaal verifies that this property holds when Tstim>Tout1, i.e. the lower
bound of being in repolarization is greater than the time spent in stimulus, and
the signal propagates successfully just like in the Gantt chart in Fig. 13b. It takes
0.2 s to verify an instance of four cells, 6.8 s for five and 28 min for six, which

472 R. Alur et al.

shows signs of the state space explosion in terms of the number of processes due
to non-deterministic behavior. Interestingly the property is not satisfied if the
cell stays in repolarization longer than in stimulus, i.e. Tstim>Tout1, because
the signaling cell may go from upstroke to repolarization, stop the stimulus
and bring the next cell back to resting, thus disrupting the signal. One such par-
ticular scenario is visualized in Fig. 13c: the stimulus of cell(2) is interrupted
by cell(1) by a quick move back to resting before cell(2) reaches upstroke,
hence cell(3) stays in resting and the signal is lost. We conclude that the
relation between maximum delay in stimulus and total delay in upstroke and
repolarization is crucial for correct signal propagation through heart cell net-
work.

In addition to checking the signal propagation we can also estimate the min-
imum and maximum delay time between the start and end of the signal by using
the duration monitor automaton and queries shown in Fig. 14. The infimum and
supremum queries instruct Uppaal to record the minimum and maximum val-
ues of clock t when the automaton in the corresponding locations Min and Max.
Note that the automaton always stays in location Max in between the from! and
till! events, therefore the supremum of t corresponds to the time duration
between those events. And the automaton visits Min when t has its maximum
value, therefore the infimum of t in Min corresponds to the shortest observed
duration between events.

In case of our chain of heart cell timed automata – using the above pattern
– the duration between ch1[0]! and ch1[N]! is found to be bounded by the
interval of [0, N]ms, where N is the number of cells in series. Due to congru-
ence properties of abstraction, this bound is guaranteed to be valid also for the
composition of hybrid heart cells in Fig. 5.

4.4 Abstraction of Cell Composition

Once we have estimated the duration of a signal travel through the chain of
cells, we can model the entire chain as one automaton re-transmitting the signal
with a delay. By replacing a chain of cells with one process we reduce the ver-
ification effort significantly without losing the precision. We model the atrium
and the ventricle as separate processes representing a sequence of individual
heart cells. Figure 15a shows a healthy atrium which relays its activation signal

Fig. 14. Estimating the delay between from! and till! events.

Continuous-Time Models for System Design and Analysis 473

to the recipient (ventricle and pacemaker) by delaying 150 ms. We model an
atrium which may loose a signal by taking an extra transition without notifying
the recipient in Fig. 15a to reflect abnormal behavior. The ventricle part of the
heart is modeled likewise. The sinoatrial node is responsible for triggering the
heart beating process and is modelled in Fig. 15b. In principle, healthy SANode
may beat with interval of 500–2000 ms (30–120 bpm), but a faulty one may beat
more or less frequently or stop beating altogether, thus we do not put any con-
straints to allow all possible (healthy and faulty) behavior to allow a pacemaker
to do its job, there the verification will cover all possible scenarios (failure may
occur at any time, in SANode, atrium or ventricle). The result is a sequence
of signals: the SANode stimulates atrium and atrium stimulates ventricle, but
atrium and ventricle may also be stimulated by a pacemaker, thus we also add a
pacing process which multiplexes the pacing events (AtrioP and VentriP) with
heart events (BeatP and Aget) into atrium (Aact) and ventricle (Vact) stimuli
as shown in Fig. 15c.

Fig. 15. Abstract heart model.

4.5 Pacemaker Requirements

The pacemaker is required not to issue ventricle pace events (VP!) for at least
TURI time units since the last ventricle pulse (VP!) or the ventricle sense (VS!)
events. This requirement can be formulated into the following TCTL property:

A�((VS! ∨ VP!) → A�≤TURI¬VP!)

This property expresses that the action VP! may only occur after a time-
separation of at least TURI time-units from a previous VP! of VS! action. Dually,
the requirement that the interval between two ventricular events (either VP! or
VS!) should be less than TLRI can be expressed as the following property:

(VS! ∨ VP!) �≤TLRI (VS! ∨ VP!)

which says that the actions VP! and VS! must occur with at most a time-
separation of TLRI time-units.

474 R. Alur et al.

Table 4. Resources used by Uppaal to verify properties from Fig. 16.

Pacemaker model URL LRL

Time Memory Result Time Memory Result

Basic DDD 0.01 s 5.37 MB OK 0.01 s 5.37 MB OK

DDD-VDI 129.57 s 248.26 MB OK 148.58 s 267.78 MB Not OK

Uppaal implements TCTL referring to system states rather than synchro-
nization events, therefore the above properties are converted into the event-
monitoring automata (Fig. 16a and b respectively) and the requirements are
reformulated in terms of monitoring automata locations and clock values. The
monitor transitions are labeled with VP? and VS? synchronizing with the cor-
responding events VP! and VS!, and the local clocks t are reset accordingly, so
that the value of the local clock t in locations interval and two_a corresponds
to the time duration between two successive events. The property then verifies
that the duration is within bounds U.t>=TURI and L.t<=TLRI.

The model with abstracted heart cell chain had too large state space to verify
due too many non-deterministic processes in the heart. Interestingly the unre-
stricted “random” heart model (as described in [22]) takes much less resources
as it does not need to remember the complex heart state. We used a heart model
with arbitrary rate (0,∞) which may beat at any time or not at all. Such heart
captures all possible heart behaviors and hence verification provides a much
stronger safety guarantee than with the more realistic and detailed heart model.
Table 4 shows that the basic DDD pacemaker model is simple enough that it
hardly takes any time to verify (0.01 s, 5.37 MB). The DDD-VDI pacemaker
includes counters and thus the behavior is much more complicated leading to
more verification effort (129.57 s, 248.26 MB). We found that the lower rate limit
property does not hold with TLRI bound on more complex DDD-VDI pacemaker
(the result is “Not OK”), but the basic DDD satisfies the lower rate limit with
twice as large 1500 bound, meaning that the pacemaker may delay longer before
pacing, but the bound is still reasonable (one pulse per 1.5 s).

Fig. 16. Automata and queries for timed properties from [22].

Continuous-Time Models for System Design and Analysis 475

5 Future Directions and Challenges

As illustrated by the case study presented in this paper, model-based design
and verification is a promising approach to the development of cyber-physical
systems in a principled manner, and the foundations of this methodology lie in
cross-fertilization of ideas from mathematical modeling and algorithmic analy-
sis. As systems keep getting more and more complex, and society increasingly
relies upon the internet of things, advances in tools for designing such systems
are crucial to ensuing the safe and reliable operation of systems. This calls for
continued research in core areas of formal methods such as identification of
analyzable design abstractions, analysis techniques, and scalability of tools. We
conclude this paper by highlighting some directions for future research.

Scalability: Given the computational intractability of the computational prob-
lems in formal verification, developing tools that can analyze real-world sys-
tems will always remain a challenge. The experience with tools such as Uppaal
demonstrates that small steps in advancing the scalability collectively contribute
towards impressive results over the long haul. For the verification of hybrid sys-
tems, tools based on robustness analysis offer promising opportunities [14,15].
Robust analysis means that results obtained should not be too sensitive with
respect to the actual quantities (timing, voltages, energy, etc.) used in the
underlying model. Efforts on identifying metrics that will ensure “continuity”
of various behavioral properties are currently being researched for a number
of quantitative modeling formalisms. As illustrated in Sect. 3, abstraction is an
effective way of reducing the complexity of a system, and developing techniques
for constructing abstractions automatically remains a challenge.

Quantitative Analysis: Traditionally, models and techniques used for estab-
lishing correctness and for evaluating performance have been disjoint. In our
pacemaker case study, beyond functional correctness of the control algorithm,
we are also interested in estimating, for instance, the average energy used by the
pacemaker. A promising new direction in formal methods research these days is
the development of probabilistic models, with associated tools for quantitative
evaluation of system performance along with correctness (see [23]).

Applications: Given the scalability challenges, formal methods for the design
and analysis of cyber-physical systems are not yet widely applicable. Thus, iden-
tifying application domains and problems where the current techniques and tools
can be applied effectively is itself a challenge that requires an understanding of
formal methods as well as the application domains. As our example of pace-
maker suggests, medical cyber-physical systems is a promising domain, and other
interesting recent case studies include an infusion pump and an artificial pan-
creas [27]. Another promising domain of application is ensuring the safety of
controllers used in autonomous vehicles [24].

Data-Driven Models: As our case study illustrates, a key step is the construc-
tion of the heart model. Mathematical models of physical systems are hard to
obtain, but increasingly, due to the rapid proliferation of sensors, lots of data is

476 R. Alur et al.

available. This leads to a new research question: given the pacemaker algorithm
and the property that we want to verify, can we construct a patient-specific model
of the heart derived from the sensory data obtained from a patient? Deriving
models suitable for formal analysis from data is a challenging, and relatively
unexplored, research area.

Acknowledgements. This research was supported in part by the Austrian Science
Fund (FWF) under grants S11402-N23(RiSE/SHiNE) and Z211-N23 (Wittgenstein
Award). This research has received funding from the Sino-Danish Basic Research Cen-
tre, IDEA4CPS, funded by the Danish National Research Foundation and the National
Science Foundation, China, the Innovation Fund Denmark centre DiCyPS, as well as
the ERC Advanced Grant LASSO.

References

1. Aceto, L., Bouyer, P., Burgueño, A., Larsen, K.G.: The power of reachability test-
ing for timed automata. In: Arvind, V., Ramanujam, S. (eds.) FSTTCS 1998.
LNCS, vol. 1530, pp. 245–256. Springer, Heidelberg (1998). https://doi.org/10.
1007/978-3-540-49382-2 22

2. Alur, R.: Principles of Cyber-Physical Systems. MIT Press, Cambridge (2015)
3. Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-time. Inf. Com-

put. 104(1), 2–34 (1993)
4. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T., Ho, P.-H., Nicollin, X.,

Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theoret. Comput. Sci. 138, 3–34 (1995)

5. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994)

6. Alur, R., Henzinger, T., Lafferriere, G., Pappas, G.: Discrete abstractions of hybrid
systems. Proc. IEEE 88(7), 971–984 (2000)

7. Behrmann, G., David, A., Larsen, K., Pettersson, P., Yi, W.: Developing uppaal
over 15 years. Softw. - Pract. Exp. 41(2), 133–142 (2011)

8. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9 7

9. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Ouaknine, J., Worrell, J.:
Model checking real-time systems. In: Clarke, E., Henzinger, T., Veith, H. (eds.)
Handbook of Model Checking. Springer, Heidelberg (2017)

10. Chen, T., Diciolla, M., Kwiatkowska, M., Mereacre, A.: Quantitative verification
of implantable cardiac pacemakers over hybrid heart models. Inf. Comput. 236,
87–101 (2014). Special Issue on Hybrid Systems and Biology

11. Clarke, E., Grumberg, O., Long, D.: Model checking and abstraction. In: Pro-
ceedings of 19th ACM Symposium on Principles of Programming Languages, pp.
343–354 (1992)

12. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(2000)

13. Derler, P., Lee, E.A., Sangiovanni-Vincentelli, A.L.: Modeling cyber-physical sys-
tems. Proc. IEEE 100(1), 13–28 (2012)

https://doi.org/10.1007/978-3-540-49382-2_22
https://doi.org/10.1007/978-3-540-49382-2_22
https://doi.org/10.1007/978-3-540-30080-9_7

Continuous-Time Models for System Design and Analysis 477

14. Duggirala, P.S., Fan, C., Mitra, S., Viswanathan, M.: Meeting a powertrain ver-
ification challenge. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9206, pp. 536–543. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4 37

15. Fainekos, G.E., Sankaranarayanan, S., Ueda, K., Yazarel, H.: Verification of auto-
motive control applications using S-TaLiRo. In: IEEE American Control Confer-
ence, pp. 3567–3572 (2012)

16. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. In:
Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31954-2 17

17. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

18. Henzinger, T.A., Sifakis, J.: The embedded systems design challenge. In: Misra, J.,
Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 1–15. Springer,
Heidelberg (2006). https://doi.org/10.1007/11813040 1

19. Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P.
(eds.) Verification of Digital and Hybrid Systems, vol. 170, pp. 265–292. Springer,
Heidelberg (2000). https://doi.org/10.1007/978-3-642-59615-5 13

20. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: a model checker for hybrid
systems. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 460–463. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-63166-6 48

21. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about
hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)

22. Jiang, Z., Pajic, M., Moarref, S., Alur, R., Mangharam, R.: Modeling and verifica-
tion of a dual chamber implantable pacemaker. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 188–203. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28756-5 14

23. Kwiatkowska, M.: Quantitative verification: models, techniques, and tools. In: Pro-
ceedings of ACM SIGSOFT Symposium on Foundations of Software Engineering,
pp. 449–458 (2007)

24. Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Safe and optimal adaptive cruise
control. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Correct System Design.
LNCS, vol. 9360, pp. 260–277. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-23506-6 17

25. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. J. Softw. Tools
Technol. Transf. 1(1–2), 134–152 (1997)

26. Lee, E.A.: What’s ahead for embedded software. IEEE Comput. 33, 18–26 (2000)
27. Lee, I., Sokolsky, O., Chen, S., Hatcliff, J., Jee, E., Kim, B., King, A., Mullen-

Fortino, M., Park, S., Roederer, A., Venkatasubramanian, K.: Challenges and
research directions in medical cyber-physical systems. Proc. IEEE 100(1), 75–90
(2012)

28. Pajic, M., Jiang, Z., Lee, I., Sokolsky, O., Mangharam, R.: Safety-critical medical
device development using the UPP2SF model translation tool. ACM Trans. Embed.
Comput. Syst. 13(4), 127:1–127:26 (2014)

29. Vardi, M., Wolper, P.: Reasoning about infinite computations. Inf. Comput.
115(1), 1–37 (1994)

30. Ye, P., Entcheva, E., Grosu, R., Smolka, S.A.: Efficient modeling of excitable cells
using hybrid automata. In: Proceedings of Computational Methods in System Biol-
ogy, pp. 216–227 (2005)

https://doi.org/10.1007/978-3-319-21690-4_37
https://doi.org/10.1007/978-3-319-21690-4_37
https://doi.org/10.1007/978-3-540-31954-2_17
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/11813040_1
https://doi.org/10.1007/978-3-642-59615-5_13
https://doi.org/10.1007/3-540-63166-6_48
https://doi.org/10.1007/978-3-642-28756-5_14
https://doi.org/10.1007/978-3-642-28756-5_14
https://doi.org/10.1007/978-3-319-23506-6_17
https://doi.org/10.1007/978-3-319-23506-6_17

Statistical Model Checking

Axel Legay1, Anna Lukina2(B), Louis Marie Traonouez1, Junxing Yang3,
Scott A. Smolka3, and Radu Grosu2

1 Inria Rennes – Bretagne Atlantique, Rennes, France
anna.lukina@tuwien.ac.at

2 Cyber-Physical Systems Group, Technische Universität Wien, Vienna, Austria
3 Department of Computer Science, Stony Brook University, Stony Brook, USA

Abstract. We highlight the contributions made in the field of Statistical
Model Checking (SMC) since its inception in 2002. As the formal setting,
we use a very general model of Stochastic Systems (an SS is simply a
family of time-indexed random variables), and Bounded LTL (BLTL) as
the temporal logic. Let S be an SS and ϕ a BLTL formula. Our survey
of the area is centered around the following five main contributions.
Qualitative approach to SMC: Is the probability that S satisfies ϕ greater

or equal to a certain threshold?
Quantitative approach to SMC: What is the probability that S satisfies

ϕ? Typically this results in a confidence interval being computed for
this probability.

Rare Events: What happens when the probability that S satisfies ϕ is
extremely small, i.e. it is a rare event? To make the SMC approach
viable in this setting, rare-event estimation techniques Importance
Sampling and Importance Splitting are deployed to great advantage.

Optimal Planning: Motivated by the success of Importance Sampling
and Importance Splitting in rare-event SMC, we explore the use
of these techniques in the context of optimal planning. In particu-
lar, we consider ARES, an optimal-planning approach based on a
notion of adaptive receding-horizon planning. We illustrate the util-
ity of ARES on the planning problem of bringing a flock of birds
(autonomous agents) from a random initial configuration to a V-
formation, an energy-conservation formation deployed by migrating
geese. Somewhat ironically, the performance of ARES can be evalu-
ated using (quantitative) SMC, as the problem to be solved is of the
form F (J ≤ θ); i.e. does an ARES-generated plan eventually bring
the flock to a configuration where the flock-wide cost function J is
below a given threshold θ?

Optimal Control: We show that the techniques we presented for optimal
planning in the form of ARES carry over to the control setting in
the form of Adaptive-Horizon Model-Predictive Control (AMPC).
We again use the V-formation problem for evaluation purposes. We
also introduce the concept of V-formation games, and show how the
power of AMPC can be used to ward off cyber-physical attacks.

c© Springer Nature Switzerland AG 2019

B. Steffen and G. Woeginger (Eds.): Computing and Software Science, LNCS 10000, pp. 478–504, 2019.

https://doi.org/10.1007/978-3-319-91908-9_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91908-9_23&domain=pdf
https://doi.org/10.1007/978-3-319-91908-9_23

Statistical Model Checking 479

1 Introduction

Quantitative models of computer systems include stochastic systems, whose state
transitions are equipped with a probability distribution. Stochastic systems in
turn include both discrete- and continuous-time Markov Chains. Our main inter-
est will be in computing the probability by which a stochastic system S satisfies a
given temporal-logic property ϕ. In contrast to the Boolean version of the model
checking problem, this quantitative model checking (QMC) problem allows one
to precisely determine how well S satisfies ϕ. When ϕ is a linear temporal logic
(LTL) formula, QMC serves as a way to measure the number of paths that satisfy
the formula.

The QMC problem is typically solved by a numerical approach that, like
state-space exploration, iteratively computes (or approximates) the exact mea-
sure of paths satisfying relevant subformulas. The algorithm for computing such
measures depends on the class of stochastic systems being considered as well as
the logics used for specifying the correctness properties. QMC algorithms for a
variety of such contexts have been discovered [1,8,9] and there are mature tools
(see e.g. [7,28]) that have been used to analyze a variety of systems in practice.

Despite the great strides made by numerical QMC algorithms, there are
many challenges. Numerical algorithms work only for systems that have certain
structural properties. Further, these algorithms have significant time and space
requirements, and thus scaling to large systems is a challenge. Also, the temporal
logics supported by these QMC algorithms are extensions of classical temporal
logics that are not particularly popular among engineers. Finally, numerical tech-
niques do not easily scale to extended stochastic models whose semantics also
depends on other quantities such as real-time or energy.

Another approach to QMC is to simulate the system for finitely many runs,
and use techniques from the area of statistics to infer whether the samples pro-
vide a statistical evidence for the satisfaction or violation of the specification [41].
The crux of this approach is that since sample runs of a stochastic system are
drawn according to the distribution defined by the system, they can be used to
obtain estimates of the probability measure on executions. These techniques are
known under the name of Statistical Model Checking (SMC).

The SMC approach enjoys many advantages. First, these algorithms only
require the system to be simulatable (or rather, sample executions be drawn
according to the measure space defined by the system). Thus, it can be applied
to a larger class of systems than numerical QMC algorithms, including black-box
systems and infinite-state systems. Second, the approach can be generalized to
a larger class of properties, i.e., Fourier transform-based logics [2,3]. Finally, the
algorithm is easily parallelizable, which can help scale to large systems. In cases
where the model-checking problem is undecidable or too complex, SMC is often
the only viable solution. As we shall see, SMC has been the subject of intensive
research. SMC algorithms have been implemented in a series of tools, including
Ymer [39], Prism [29], and UPPAAL [10]. Recently, we have implemented a series
of SMC techniques in a flexible and modular toolset called Plasma Lab [4].

480 A. Legay et al.

Despite the successes SMC has enjoyed, a serious obstacle in its applica-
tion is its poor performance in predicting the satisfaction of properties holding
with very low probability, so-called rare events (REs). In such cases, the number
of samples required to attain a high confidence ratio and a low error margin
explodes [16,42]. Two sequential Monte-Carlo techniques, importance sampling
(ISam) [12] and importance splitting (ISpl) [15], originally developed for statis-
tical physics [25], promise to overcome this obstacle. We discuss the important
role these techniques have come to play in the SMC arena and beyond, in par-
ticular, for the purposes of optimal planning and control of controllable MDPs,
a popular strategy-based probabilistic modeling formalism [14].

With this background in place, the following discussion summarizes the main
contributions of this chapter. It also serves as a guide to how the chapter is
organized.

– Section 2 provides definitions of the two basic ingredients of the SMC problem.
It presents a very general definition of stochastic system as a family of time-
indexed random variables, and it also introduces the temporal logic Bounded
LTL (BLTL), which is often used in the SMC setting.

– Section 3 describes SMC-based approaches to both the qualitative and quan-
titative stochastic verification problems [33,39]. The qualitative version is of
the form “How is the probability of property satisfaction related to a given
threshold?”, whereas the quantitative version asks the question “What is a
confidence interval for this probability?”

– Section 4 considers the impact of rare events on the performance of SMC. As
discussed above, we show how importance sampling and importance splitting
can be successfully used for the statistical model checking of rare-event prop-
erties. In particular, we consider command-based importance sampling which
is intended to reduce the computational burden imposed by ISam. Instead of
reiterating the process of choosing a good distribution, the command-based
approach considers parametrization over the syntax of stochastic guarded
commands. We thereafter investigate the application of importance splitting
with fixed and adaptive levels for rare-event probability estimation. These
approaches are implemented in the Plasma toolset, thereby allowing for a
thorough evaluation of their performance.

– Section 5 shows how the rare-event approach to SMC can be exploited for
the purpose of optimal plan synthesis for controllable MDPs. Specifically,
we present ARES, an efficient approximation algorithm for generating opti-
mal plans (action sequences) that take an initial state of an MDP to a state
whose cost is below a specified (convergence) threshold [30]. ARES uses Par-
ticle Swarm Optimization (PSO), with adaptive sizing for both the receding
horizon and the particle swarm. Inspired by Importance Splitting, the length
of the horizon and the number of particles are chosen such that at least one
particle reaches a next-level state, that is, a state where the cost decreases by
a required delta from the previous-level state.

– Section 6 demonstrates the utility of importance splitting and PSO in the
context of control, where we present a new formulation of model-predictive

Statistical Model Checking 481

control called Adaptive-Horizon MPC (AMPC). We show that under cer-
tain controllability conditions, an AMPC controller can bring a system to
an optimal state (WRT a given cost function) with probability 1. Somewhat
ironically, we provide statistical guarantees of the performance of AMPC and
ARES using SMC, the same approach that inspired our use of rare-event
techniques in the first place.

– Section 7 draws our conclusions and discusses future work in the area.

2 Formal Definitions

In this section, we introduce several formal definitions that will be used in the
rest of the chapter. We consider a set of states S and a time domain T ⊆ R. We
first introduce the general definition of a stochastic system.

Definition 1 (Stochastic system). A stochastic system over S and T is a
family of random variables X = {Xt | t ∈ T}, each random variable Xt having
range S.

The definition of a stochastic system as a family of random variables is quite
general and includes systems with both continuous and discrete dynamics. In this
work, we will focus our attention on a limited, but important, class of stochastic
system: stochastic discrete event systems, which we note S = (S, T). This class
includes any stochastic system that can be thought of as occupying a single state
for a duration of time before an event causes an instantaneous state transition
to occur. An execution for a stochastic system is any sequence of observations
{xt ∈ S | t ∈ T} of the random variables Xt ∈ X . It can be represented as a
sequence ω = (s0, t0), (s1, t1), . . . , (sn, tn). . . , such that si ∈ S and ti ∈ T , with
time stamps monotonically increasing, e.g. ti < ti+1. Let 0 ≤ i ≤ n, we denote
ωi = (si, ti), . . . , (sn, tn) the suffix of ω starting at position i. Let s ∈ S, we
denote Path(s) the set of executions of X that starts in state (s, 0) (also called
initial state) and Pathn(s) the set of executions of length n.

In [39], Younes showed that the set of executions of a stochastic system is a
measurable space, which defines a probability measure μ over Path(s). The pre-
cise definition of μ depends on the specific probability structure of the stochastic
system being studied.

Properties over traces of Sys are defined via the so-called Bounded Linear
Temporal Logic (BLTL). BLTL restricts Linear Temporal Logic by bounding
the scope of the temporal operators. The syntax of BLTL is defined as follows:

φ = φ ∨ φ | φ ∧ φ | ¬φ | F≤tφ | G≤tφ | φ U≤tφ | Xφ | α

∨,∧ and ¬ are the standard logical connectives and α is a Boolean constant
or an atomic proposition constructed from numerical constants, state variables
and relational operators. X is the next temporal operator: Xφ means that φ
will be true on the next step. F, G and U are temporal operators bounded by
time interval [0, t], relative to the time interval of any enclosing formula. We
refer to this as a relative interval. F is the finally or eventually operator: F≤tφ

482 A. Legay et al.

means that φ will be true at least once in the relative interval [0, t]. G is the
globally or always operator: G≤tφ means that φ will be true at all times in the
relative interval [0, t]. U is the until operator: ψU≤tφ means that in the relative
interval [0, t], either φ is initially true or ψ will be true until φ is true. Combining
these temporal operators creates complex properties with interleaved notions of
eventually (F), always (G) and one thing after another (U).

3 On Verifying Requirements: The SMC Approach

Consider a stochastic system (S, T) and a property φ. Statistical model checking
refers to a series of simulation-based techniques that can be used to answer two
questions: (1) Qualitative: Is the probability that (S, T) satisfies φ greater or
equal to a certain threshold? and (2) Quantitative: What is the probability that
(S, T) satisfies φ? Contrary to numerical approaches, the answer is given up to
some correctness precision. As we shall see later, SMC solves those problems
with two different approaches, while classical numerical approaches only solve
the second problem, which implies the first one, but is harder.

In the rest of the section, we overview the two first statistical model checking
techniques that were proposed in the literature. Let Bi be a discrete random
variable with a Bernoulli distribution of parameter p. Such a variable can only
take 2 values 0 and 1 with Pr[Bi = 1] = p and Pr[Bi = 0] = 1 − p. In our
context, each variable Bi is associated with one simulation of the system. The
outcome for Bi, denoted bi, is 1 if the simulation satisfies φ and 0 otherwise. The
latter is decided with the help of a monitoring procedure [18]. The objective of
an SMC algorithm is to generate simulations and exploit the Bernoulli outcomes
to extract the global confidence on the system.

In the next subsections, we present three algorithms used in the early works
on SMC to solve both the quantitative and the qualitative problems. Exten-
sion of those algorithms to unbounded temporal operators [17,34] and to nested
probabilistic operators exist [39]. As shown in [19] those extensions are debatable
and often slower. Consequently, we will not discuss them.

3.1 Qualitative Analysis Using Statistical Model Checking

The main approaches [33,39] proposed to answer the qualitative question are
based on hypothesis testing. Let p = Pr(φ), to determine whether p � θ, we
can test H : p � θ against K : p < θ. A test-based solution does not guarantee
a correct result but it is possible to bound the probability of making an error.
The strength (α, β) of a test is determined by two parameters, α and β, such
that the probability of accepting K (respectively, H) when H (respectively, K)
holds, called a Type-I error (respectively, a Type-II error), is less or equal to α
(respectively, β).

A test has ideal performance if the probability of the Type-I error (respec-
tively, Type-II error) is exactly α (respectively, β). However, these requirements

Statistical Model Checking 483

make it impossible to ensure a low probability for both types of errors simul-
taneously (see [39] for details). A solution to this problem is to relax the test
by working with an indifference region (p1, p0) with p0 � p1 (p0 − p1 is the
size of the region). In this context, we test the hypothesis H0 : p � p0 against
H1 : p � p1 instead of H against K. If the value of p is between p1 and p0 (the
indifference region), then we say that the probability is sufficiently close to θ so
that we are indifferent with respect to which of the two hypotheses K or H is
accepted. The thresholds p0 and p1 are generally defined in terms of the single
threshold δ, e.g., p1 = θ − δ and p0 = θ + δ. We now need to provide a test
procedure that satisfies the requirements above. In the next two subsections, we
recall two solutions proposed by Younes in [39,40].

Single Sampling Plan. This algorithm plays more a historical role rather than
to be used directly. However, it is still exploited in subsequent algorithms. To
test H0 against H1, we specify a constant c. If

∑n
i=1 bi is larger than c, then

H0 is accepted, else H1 is accepted. The difficult part in this approach is to find
values for the pair (n, c), called a single sampling plan (SSP in short), such that
the two error bounds α and β are respected. In practice, one tries to work with
the smallest value of n possible so as to minimize the number of simulations
performed. Clearly, this number has to be greater if α and β are smaller but also
if the size of the indifference region is smaller. This results in an optimization
problem, which generally does not have a closed-form solution except for a few
special cases [39]. In [39], Younes proposes a binary search based algorithm that,
given p0, p1, α, β, computes an approximation of the minimal value for c and n.

Sequential Probability Ratio Test (SPRT). The sample size for a single sampling
plan is fixed in advance and independent of the observations that are made.
However, taking those observations into account can increase the performance
of the test. As an example, if we use a single plan (n, c) and the m > c first
simulations satisfy the property, then we could (depending on the error bounds)
accept H0 without observing the n−m other simulations. To overcome this prob-
lem, one can use the sequential probability ratio test (SPRT in short) proposed
by Wald [36]. The approach is briefly described below.

In SPRT, one has to choose two values A and B (A > B) that ensure that
the strength of the test is respected. Let m be the number of observations that
have been made so far. The test is based on the following quotient:

p1m

p0m
=

m∏

i=1

Pr(Bi = bi|p = p1)
Pr(Bi = bi|p = p0)

=
pdm
1 (1 − p1)m−dm

pdm
0 (1 − p0)m−dm

, (1)

where dm =
∑m

i=1 bi. The idea behind the test is to accept H0 if p1m
p0m

≥ A,
and H1 if p1m

p0m
≤ B. The SPRT algorithm computes p1m

p0m
for successive values of

m until either H0 or H1 is satisfied; the algorithm terminates with probability
1 [36]. This has the advantage of minimizing the number of simulations. In [39],
Younes proposed a logarithmic based algorithm SPRT that given p0, p1, α and
β implements the sequential ratio testing procedure.

484 A. Legay et al.

SPRT has been largely used in the formal methods area. In this paper, we
shall show that the approach extends to a much larger class of problems than
the one originally foreseen.

3.2 Quantitative Analysis Using Statistical Model Checking
and Estimation

In the case of estimation, existing SMC algorithms rely on classical Monte Carlo
estimation. More precisely, they calculate a priori the required number of simula-
tions according to a Chernoff bound [31] that allows the user to specify an error
ε and a probability δ that the estimate p̂ will not lie outside the true value ±ε.
Given that a system has true probability p of satisfying a property, the Chernoff
bound ensures P(| p̂ − p |� ε) � δ. Parameter δ is related to the number of
simulations N by δ = 2e−2Nε2

[31], giving

N =
⌈
(ln 2 − ln δ)/(2ε2)

⌉
. (2)

4 Rare Events

SMC is a Monte Carlo method that takes advantage of robust statistical tech-
niques to bound the error of the estimated result (e.g., [31,36]). To quantify a
property, it is necessary to observe the property, where increasing the number of
observations generally increases the confidence of the estimate. Rare properties
are often highly relevant to system performance (e.g., bugs and system failures
are required to be rare) but pose a problem for statistical model checking because
they are difficult to observe. Fortunately, rare-event techniques such as impor-
tance sampling [24,26] and importance splitting [25,26,32] may be successfully
applied to statistical model checking.

Importance sampling and importance splitting have been widely applied to
specific simulation problems in science and engineering. Importance sampling
works by estimating a result using weighted simulations and then compensating
for the weights. Importance splitting works by reformulating the rare probability
as a product of less rare probabilities, conditioned on the levels that must be
achieved.

In this section, we summarize our contributions in terms of applying impor-
tance sampling and importance splitting to the SMC problem. We then discuss
their implementation within the Plasma toolset.

4.1 Command-Based Importance Sampling

Importance sampling works by simulating a probabilistic system under a
weighted (importance sampling) measure that makes a rare property more likely
to be seen [23]. It then compensates the results by the weights, to estimate
the probability under the original measure. When simulating Markov Chains,
this compensation is typically performed on the fly, with almost no additional
overhead.

Statistical Model Checking 485

Given a set of finite traces ω ∈ Ω and a function z : Ω → {0, 1} that returns
1 iff a trace satisfies some property, the importance sampling estimator is given
by

N∑

i=1

z(ωi)
df(ωi)
df ′(ωi)

.

N is the number of simulation traces ωi generated under the importance sam-
pling measure f ′, while f is the original measure. df

df ′ is the likelihood ratio.
For importance sampling to be effective it is necessary to define a “good”

importance sampling distribution: (i) the property of interest must be seen fre-
quently in simulations and (ii) the distribution of the simulation traces that
satisfy the property in the importance sampling distribution must be as close
as possible to the normalized distribution of the same traces in the original
distribution. Failure to consider both (i) and (ii) can result in underestimated
probability with overestimated confidence.

Since the main motivation of importance, sampling is to reduce the compu-
tational burden, the process of finding a good importance sampling distribution
must maintain the scaling advantage of SMC and, in particular, should not
iterate over all the states or transitions of the system. We, therefore, consider
parameterized importance sampling distributions, where our parametrization is
over the syntax of stochastic guarded commands, a common low-level modeling
language of probabilistic systems1.

Each command has the form (guard, rate, action). The guard enables the
command and is a predicate over the state variables of the model. The rate is
a function from the state variables to R>0, defining the rate of an exponential
distribution. The action is an update function that modifies the state variables.
In general, each command defines a set of semantically linked transitions in the
resulting Markov chain.

The semantics of a stochastic guarded command is a Markov jump process
(has discrete movements with random arrival times, i.e., a Poisson process).
The semantics of a parallel composition of commands is a system of concurrent
Markov jump processes. Sample execution traces can be generated by discrete-
event simulation. In any state, zero or more commands may be enabled. If no
commands are enabled the system is in a halting state. In all other cases, the
enabled commands “compete” to execute their actions: sample times are drawn
from the exponential distributions defined by their rates and the shortest time
“wins”. As showed in [20], this optimization can be performed, e.g., with the
cross-entropy method. The techniques also extend to real-time stochastic systems
(see [22]).

4.2 Importance Splitting

The earliest application of importance splitting is perhaps that of [24,25], where
it is used to calculate the probability that neutrons pass through certain shielding

1 http://www.prismmodelchecker.org/manual/ThePRISMLanguage/.

http://www.prismmodelchecker.org/manual/ThePRISMLanguage/

486 A. Legay et al.

materials. This physical example provides a convenient analogy for the more
general case. The system comprises a source of neutrons aimed at one side of a
shield of thickness T . The distance traveled by a neutron in the shield defines
a monotonic sequence of levels �0 = 0 < �1 < �2 < · · · < �n = T , such that
reaching a given level implies having reached all the lower levels. While the overall
probability of passing through the shield is small, the probability of passing from
one level to another can be made arbitrarily close to 1 by reducing the distance
between levels. Denoting the abstract level of a neutron as �, the probability
of a neutron reaching level �i can be expressed as P(� � �i) = P(� � �i | � �
�i−1)P(� � �i−1). Defining γ = P(� � �m) and P(� � �0) = 1, we obtain

γ =
m∏

i=1

P(� � �i | � � �i−1). (3)

Each term of (3) is necessarily greater than or equal to γ, making their estimation
easier.

The general procedure is as follows. At each level, a number of simulations
are generated, starting from a distribution of initial states that corresponds to
reaching the current level. It starts by estimating P(� � �1|� � �0), where the
distribution of initial states for �0 is usually given (often a single state). Simula-
tions are stopped as soon as they reach the next level; the final states becoming
the empirical distribution of initial states for the next level. Simulations that do
not reach the next level (or reach some other stopping criterion) are discarded. In
general, P(� � �i|� � �i−1) is estimated by the number of simulation traces that
reach �i, divided by the total number of traces started from �i−1. Simulations
that reached the next level are continued from where they stopped. To avoid a
progressive reduction of the number of simulations, the generated distribution of
initial states is sampled to provide additional initial states for new simulations,
thus replacing those that were discarded.

Score Function. The concept of levels can be generalized to arbitrary systems
and properties in the context of SMC, treating � and �i in (3) as values of a
score function over the model-property product automaton. Intuitively, a score
function discriminates good paths from bad, assigning higher scores to paths that
more nearly satisfy the overall property. Since the choice of levels is crucial to the
effectiveness of importance splitting, various ways to construct score functions
from a temporal logic property are proposed in [20].

Formally, given a set of finite trace prefixes ω ∈ Ω, an ideal score function
S : Ω → R has the characteristics S(ω) > S(ω′) ⇐⇒ P(|= ϕ | ω) > P(|= ϕ |
ω′), where P(|= ϕ | ω) is the probability of eventually satisfying ϕ given prefix
ω. Intuitively, ω has a higher score than ω′ iff there is more chance of satisfying
ϕ by continuing ω than by continuing ω′. The minimum requirement of a score
function is S(ω) ≥ sϕ ⇐⇒ ω |= ϕ, where sϕ is an arbitrary value denoting that
ϕ is satisfied. Any trace that satisfies ϕ must have a score of at least sϕ and any
trace that does not satisfy ϕ must have a score less than sϕ. In what follows we
assume that (3) refers to scores.

Statistical Model Checking 487

The Fixed-Levels Algorithm. The fixed-levels algorithm follows the general
procedure previously presented. Its advantages are that it is simple, it has low
computational overhead, and the resulting estimate is unbiased. Its disadvantage
is that the levels must often be guessed by trial and error, adding to the overall
computational cost.

In Algorithm 1, γ̃ is an unbiased estimate (see, e.g., [11]). Furthermore, from
Proposition 3 in [5], we can deduce the following (1 − α)-confidence interval:

CI =
[

γ̂/

(

1 +
zασ√

n

)

, γ̂/

(

1 − zασ√
n

)]

with σ2 �
m∑

i=1

1 − γi

γi
. (4)

Confidence is specified via zα, the 1 − α/2 quantile of the standard normal
distribution, while n is the per-level simulation budget. We infer from (4) that
for a given γ the confidence is maximized by making both the number of levels
m and the simulation budget n large, with all γi equal.

Algorithm 1. Fixed levels
Let (τk)1≤k≤m be the sequence of thresholds with τm = τϕ

Let stop be a termination condition
∀j ∈ {1, . . . , n}, set prefix ω̃1

j = ε (empty path)
for 1 ≤ k ≤ m do

∀j ∈ {1, . . . , n}, using prefix ω̃k
j , generate path ωk

j until (S(ωk
j) ≥ τk) ∨ stop

Ik = {∀j ∈ {1, . . . , n} : S(ωk
j) ≥ τk}

γ̃k = |Ik|
n

∀j ∈ Ik, ω̃k+1
j = ωk

j

∀j /∈ Ik, let ω̃k+1
j be a copy of ωk

i with i ∈ Ik chosen uniformly randomly

γ̃ =
∏m

k=1 γ̃k

In general, however, score functions will not equally divide the conditional
probabilities of the levels, as required by (4) to minimize variance. In the worst
case, one or more of the conditional probabilities will be too low for the algo-
rithm to pass between levels. Finding good or even reasonable levels by trial and
error may be computationally expensive and has prompted the development of
adaptive algorithms that discover optimal levels on the fly [6,20,21]. Instead
of pre-defining levels, the user specifies the proportion of simulations to retain
after each iteration. This proportion generally defines all but the final conditional
probability in (3).

Adaptive importance splitting algorithms first perform a number of simu-
lations until the overall property is decided, storing the resulting traces of the
model-property automaton. Each trace induces a sequence of scores and a corre-
sponding maximum score. The algorithm finds a level that is less than or equal
to the maximum score of the desired proportion of simulations to retain. The
simulations whose maximum score is below this current level are discarded. New

488 A. Legay et al.

simulations to replace the discarded ones are initialized with states correspond-
ing to the current level, chosen at random from the retained simulations. The
new simulations are continued until the overall property is decided and the pro-
cedure is repeated until a sufficient proportion of simulations satisfy the overall
property.

4.3 Rare Events: Comparison of Methods

In this section, we compare the two rare-event approaches with the Monte Carlo
approach.

Model. We consider a chemically reacting system that consists of a set of three
chemical reactions between five molecular species (A, B, C, D, E). These reac-
tions are the following:

A + B → C (5)
C → D (6)
D → E (7)

Initially, the system only contains species A and B. Then reactions start
according to a rate that depends on the number of reactants. We model this
system as a continuous time Markov chain (CTMC) using the Reactive Module
Language (RML), the input language of the tools Prism and Plasma Lab. The
code of the model, presented in Fig. 1, contains a single module component with
three transitions to model the three reactions. The quantities of each element
are modeled as an integer variable from 0 to 1000. A and B start with 1000
elements, while C, D, and E start at zero. A transition that models a chemical
reaction is composed of a guard, that is always true, a rate, e.g., a ∗ b, and a set
of updates, e.g., (a′ = a − 1). The rate of the transition defines the speed of the
reaction as the rate of an exponential distribution: the higher it is the faster will
be the reaction. An example of a simulation of this system is presented in Fig. 2.
It shows how the quantities of each species may evolve over time, where time is
presented as the number of steps (chemical reaction) performed by the system.

Property. We consider a bounded linear temporal logic formula as the property
of this system to be verified:

ϕ := F � 3000(d > 470)

It checks if a level of 471 for species D can be reached within 3000 steps. We
would like to estimate the probability of satisfying this formula. As we can see
in a typical simulation run of this system in Fig. 2, species D tends to reach a
maximum of 400 before being transformed into species E.

Model Checking. The first approach to compute the probability of ϕ would be
to use a probabilistic model checker like PRISM to compute its exact value.
However, this model checking problem is intractable due to the size of its state
space (1015).

Statistical Model Checking 489

ctmc

module chem
a : [0 . . 1 0 0 0] i n i t 1000 ;
b : [0 . . 1 0 0 0] i n i t 1000 ;
c : [0 . . 1 0 0 0] i n i t 0 ;
d : [0 . . 1 0 0 0] i n i t 0 ;
e : [0 . . 1 0 0 0] i n i t 0 ;
[] t r u e −> a∗b :

(a ’=a−1) & (b’=b−1) & (c ’=c+1)
;

[] t r u e −> c :
(c ’=c−1) & (d’=d+1) ;

[] t r u e −> d :
(d’=d−1) & (e ’=e+1) ;

endmodule

Fig. 1. CTMC model of chemical reactions
written in the Reactive Module Language

Fig. 2. Simulation of the evolution
of chemical species through time (in
number of steps)

Monte Carlo. Consider next the Monte Carlo statistical model checking app-
roach. We used Plasma Lab to run 1,000,000 simulations on an 8-core 2.6 GHz
computer. It took 839 s, but we were not able to find even one trace that satis-
fies the formula. To have an idea of the evolution of the probability according
to maximum value of species D checked by the property, we plot in Fig. 3 the
results of Monte Carlo analyses with 100,000 simulations for several values of
the maximum value from 350 to 450. As one can see, the probability to reach a
maximum greater than 400 of species D is very low. To estimate the probability
of reaching 471 we need to use statistical techniques for rare events.

Importance Splitting. Importance splitting works by splitting the verification of a
rare property into a sequence of less rare properties. For instance, in our problem,
any trace that eventually satisfies the formula ϕ, satisfies the formulas F <=
3000(d > 460), F <= 3000(d > 450), F <= 3000(d > 440), etc. Therefore, the
maximum value of d reached by a trace defines a natural notion of a level that
can be used to split the rare property into a sequence of less-rare properties.
We implement this decomposition in Plasma Lab by writing an observer that
computes the score of a trace, i.e., the maximum value of d along the trace.

We can then use the adaptive importance splitting of Plasma Lab to estimate
the probability of ϕ. The results are summarized in Table 1. We performed three
experiments of the algorithm with a different number of simulations (100, 200,
500). Each experiment is repeated 20 times and we report the average value of the
estimated probability, number of levels, and computation time. We also report
the standard deviation of the probability and the relative standard deviation
(quotient of standard deviation and average probability).

490 A. Legay et al.

Fig. 3. Probability estimation with Monte Carlo for a maximum value on D that ranges
from 350 to 450

Using this technique we are able to find traces that satisfy the property in
5 s with 1 core of a 2.6 GHz computer, using only a budget of 100 simulations.
However, we were not able to run the adaptive algorithm with a budget of 1000
as we ran out of memory. Indeed this algorithm is more memory-intensive than
classical Monte Carlo as it needs to keep in memory all the traces.

The relative standard deviation is a good measure of the performance of
the estimator. A reliable estimator should have a relative standard deviation
lower than 0.3. As can be seen, the relative standard deviation of our adaptive
estimator is much higher. It tends to decrease when increasing the number of
simulations, but using this algorithm we are limited by the memory.

Table 1. Results of the adaptive importance splitting algorithm

Nb. simulations 100 200 500

Nb. levels 116.6 121.2 127.9

Probability 6.02 × 10−11 9.46 × 10−11 2.07 × 10−10

Std. deviation 1.44 × 10−10 1.76 × 10−10 4.51 × 10−10

Relative std. deviation 2.39 1.86 2.18

Time (s) 5 14.6 55

The original importance-splitting algorithm uses a fixed number of levels.
This algorithm is less memory intensive because it only keeps in memory the final
states of the simulations. However, we must specify by hand the intermediate
levels that we want to reach. To minimize the variance of the estimator, we
should select as much as possible a set of levels whose conditional probabilities

Statistical Model Checking 491

are equal. We selected 32 levels of d between [380, 471] and ran the importance-
splitting algorithm for a different number of simulations. We report the results in
Table 2. They show that when increasing the number of simulations, we improve
the relative deviation of the results.

Table 2. Results of the fixed levels importance splitting algorithm

Nb. simulations 1000 2000 5000

Probability 1.35 × 10−10 1.28 × 10−10 9.83 × 10−11

Std. deviation 1.74 × 10−10 9.07 × 10−11 6.44 × 10−11

Relative std. deviation 1.28 0.706 0.655

Time (s) 30.7 47.3 114

Importance Sampling. In Plasma Lab, we implemented the importance sam-
pling algorithm for the Reactive Module Language. It requires adding sampling
parameters to the model in order to modify the rate of some transitions. To
produce a good result, the sampling parameters should have optimal values.
This is determined using the minimum cross-entropy algorithm. This algorithm
iteratively determines the values of the sampling parameters by running Monte
Carlo experiments and counting the number of times each transition is used.

To use importance sampling on our model, we replace it by the one in Fig. 4.
The three sampling parameters are named lambda. They are each associated
with a counter variable nb lambda. Parameters are initialized such that every
simulation satisfied the rare property ϕ.

We then use the minimum cross-entropy algorithm to determine the optimal
values of the parameters. In a run of the algorithm, we use 50 iterations to
determine the final values of the parameters. Fig. 5 illustrates the evolution of
the three parameters during a run of the algorithm. We ran the algorithm 10
times with 50 iterations and 1000 at each iteration. We report the results in
Fig. 6. In this problem, the algorithm provides the best results, with a relative
standard deviation lower than 0.3.

5 Importance Splitting/Sampling for Optimal Planning

In this section, we demonstrate how the incorporation of importance splitting
and importance sampling into SMC for the treatment of rare-event properties has
inspired planning algorithms for Markov decision processes (MDPs), a popular
modeling formalism for policy-based stochastic systems. The goal of Sect. 6 is
similar, but in this case for control algorithms. Planning and control often go
hand-in-hand, with planning focused on long-term system objectives (e.g., how
can an autonomous system get from point A to point B by following a sequence
of so-called waypoints), and with control focused on the sub-second decisions
the system must make in order to realize the planning objectives in question.

492 A. Legay et al.

ctmc samp l i ng

const doub l e lambda1 = 2 ;
const doub l e lambda2 = 1 ;
const doub l e lambda3 = 0 . 1 ;
g l oba l nb lambda1 : i n t i n i t 0 ;
g l oba l nb lambda2 : i n t i n i t 0 ;
g l oba l nb lambda3 : i n t i n i t 0 ;

module t e s t
a : [0 . . 1 0 0 0] i n i t 1000 ;
b : [0 . . 1 0 0 0] i n i t 1000 ;
c : [0 . . 1 0 0 0] i n i t 0 ;
d : [0 . . 1 0 0 0] i n i t 0 ;
e : [0 . . 1 0 0 0] i n i t 0 ;
[] t r u e −> { lambda1} a∗b : (a ’=a−1)&(b’=b−1)&(c ’=c+1)

& (nb lambda1 ’=nb lambda1+1) ;
[] t r u e −> { lambda2} c : (c ’=c−1)&(d’=d+1)

& (nb lambda2 ’=nb lambda2+1) ;
[] t r u e −> { lambda3} d : (d’=d−1)&(e ’=e+1)

& (nb lambda3 ’=nb lambda3+1) ;
endmodule

l a b e l ” ra t e l ambda1 ” = a∗b ;
l a b e l ” ra t e l ambda2 ” = c ;
l a b e l ” ra t e l ambda3 ” = d ;

Fig. 4. CTMC model of chemical reactions with sampling parameters

Fig. 5. Evolution of the three sampling
parameters during a run of the minimum
cross-entropy algorithm

Nb. sims. 1000
Prob. 1.50 × 10−10

Std. dev. 4, 03 × 10−11

Rel. std. dev. 0, 269
Time(s) 118

Fig. 6. Results of the importance
sampling algorithm with minimum
cross-entropy

Definition 2. A Markov decision process (MDP) M is a sequential deci-
sion problem that consists of a set of states S (with an initial state s0), a set of
actions A, a transition model T , and a cost function J . An MDP is determin-
istic if for each state and action, T : S ×A→ S specifies a unique state.

Statistical Model Checking 493

State

Cost

s0 s1

0

1

si si+3

i

i+1

State

Level

s0s1sisi+3 s∗

0

1

i

i+1

ϕ
m

Fig. 7. Left: If state s0 has cost �0 and its successor-state s1 has cost less than �1, then
a horizon of length 1 is appropriate. If, however, si has a local-minimum cost �i, one
has to pass over the cost ridge in order to reach level �i+1, and therefore ARES has to
adaptively increase the horizon to 3. Right: The cost of the initial state defines �0 and
the given threshold ϕ defines �m. By choosing m equal segments on an asymptotically
converging (Lyapunov) function (where m is empirically determined), one obtains on
the vertical cost-axis the levels required for ARES to converge.

The particular planning and control problems addressed here are concerned
with V-formation in a flock of birds, a quintessential example of emergent behav-
ior in a distributed stochastic system. V-formation brings numerous benefits to
the flock. It is primarily known for being energy-efficient due to the upwash ben-
efit a bird in the flock enjoys from its frontal neighbor. It also offers each bird
a clear frontal view, unobstructed by any flockmate. Moreover, the collective
spatial mass of a V-formation can be intimidating to potential predators.

5.1 The Optimal Plan Synthesis Problem

In [30] we presented ARES, a general adaptive, receding-horizon synthesis algo-
rithm that given an MDP and one of its initial states, generates an optimal
plan (action sequence) taking that state to a state whose cost is below a desired
threshold. To improve the probability of reaching a V-formation in a bird flock
via ARES-based planning, we considered this phenomenon as a rare event and
incorporated importance splitting into the core of the ARES algorithm. This
level-based approach allows ARES to steer the. We then use SMC system towards
the desired configuration to estimate this reachability probability.

Definition 3. The optimal plan synthesis problem for an MDP M, an
arbitrary initial state s0 of M, and a threshold ϕ, is to synthesize a sequence of
actions ai of length 1� i� m taking s0 to a state s∗ such that cost J(s∗)� ϕ.

ARES uses the particle swarm optimization (PSO) algorithm [27] at each
time step to incrementally generate a plan. Each particle in a PSO swarm is

494 A. Legay et al.

a realization of a random variable that is taken as a candidate optimal action
(acceleration) sequence which can be used to simulate M. The model is cloned
into Mk instances, k = 1, . . . , n, and a PSO swarm is assigned to each clone.
These clones are later considered as independent simulation runs in the fashion
of importance sampling.

This incremental approach to optimal-plan construction is in principle unnec-
essary, as one could generate an optimal plan in its entirety by calling PSO only
once and running it until the global optimum is found or time bound is reached.
Such an approach, however, is impractical, as each (transition-based) unfolding
of the MDP adds a number of new dimensions to the search space. Consequently,
to obtain adequate coverage of the monolithic optimal-plan search space, one
needs a very large number of particles, a number that is either going to exhaust
available memory or require a prohibitive amount of time to find an optimal
plan.

A simple solution to this problem is to use a short horizon, typically of size
two or three. This is indeed the current practice in model-predictive control
(MPC) [13]. This approach, however, has at least three major drawbacks. First,
and most importantly, it does not guarantee convergence and optimality, as one
may oscillate or become stuck in a local optimum. Second, in some of the steps,
the window size is unnecessarily large thereby negatively impacting performance.
Third, in other steps, the window size may not be large enough to guide the
optimizer out of a local minimum; see Fig. 7(left). One would therefore like to
find the proper window size adaptively, but the question is how can one do this?

5.2 Adaptive Receding-Horizon Synthesis of Optimal Plans

Inspired by the SMC-based importance splitting technique (ISp) described in
Sect. 4.2, we introduce the notion of a level-based horizon, where level �0 equals
the cost of the initial state, and level �m equals the target threshold ϕ. By using
an asymptotic cost-convergence function ranging from �0 to �m, and dividing its
graph into m equal segments, we can determine on the vertical axis a sequence
of levels ensuring convergence. See Fig. 7(right).

The asymptotic function ARES implements is essentially �i = �0 (m − i)/m,
but specifically tuned for each simulation of M. Formally, if simulation k, k =
1, . . . , n, has previously reached level Jk(si−1), then its next target level is within
the distance Δk = Jk(si−1)/(m− i+1). After passing the thresholds assigned to
the simulations, the values of the cost function in the current state si are sorted
in ascending order {Ĵk}n

k=1. The lowest cost Ĵ1 should be at least Δ1 apart from
the previous level �i−1 for the algorithm to proceed to the next level �i := Ĵ1.

The levels serve two purposes. First, they implicitly define a Lyapunov func-
tion, which guarantees convergence. If desired, this function can be explicitly
generated for all states, up to some topological equivalence. Second, the levels
�i help PSO overcome local minima; see Fig. 7(left). If reaching the next level
requires PSO to pass over a state-cost ridge, then ARES incrementally increases
the size of the horizon h, up to a maximum size hmax. For simulation k, passing

Statistical Model Checking 495

the thresholds Δk means that it reaches a new level, and the definition of Δk

ensures a smooth degradation of its threshold.
Another idea imported from the statistical model checking of rare-event prop-

erties is importance sampling (IS). In our context, it means that we maintain n
clones {Mk}n

k=1 of the MDP M (and its initial state) at any time t, and run
PSO for prediction horizon h on each h-unfolding Mh

k of M. This results in an
action sequence ah

k of length h (see Algorithm 2). This approach allows us to
call PSO for each simulation and desired horizon, with a very small number p of
particles per simulation.

To check which simulations have overcome their associated thresholds, we
sort the simulation traces according to their current cost, and split them into two
sets: the successful set, having the indexes I and whose costs are lower than the
median among all clones; and the unsuccessful set with indexes in {1, . . ., n} \I,
which are discarded. The unsuccessful ones are further replenished, by sampling
uniformly at random from the successful set I (see Algorithm 3).

The number of particles in PSO is increased to p = p + pinc if no simulation
trace reaches the next level, for all horizons chosen. When this happens, we reset
the horizon to one, and repeat the process. In this way, we adaptively focus our
resources on escaping from local minima. From the last level, we choose the
state s∗ with the minimal cost, and traverse all of its predecessor states to find
an optimal plan comprised of actions {ai}1�i�m that led MDP M to the optimal
state s∗. In our running example, we select a flock in V-formation and traverse
all its predecessor flocks. The overall ARES procedure is shown in Algorithm 4.

Proposition 1 (Optimality and Minimality). (1) Let M be an MDP. For
any initial state s0 of M, ARES is able to solve the optimal-plan synthesis
problem for M and s0. (2) An optimal choice of m in function Δk, for some
simulation k, ensures that ARES also generates the shortest optimal plan.

Proof (Sketch; see [30] for the details). (1) The dynamic-threshold function Δk

ensures that the initial cost in s0 is continually decreased until it falls below ϕ.
Moreover, for an appropriate number of clones, by adaptively determining the
horizon and the number of simulations needed to overcome Δk, ARES always
converges, with probability 1, to an optimal state, given enough time and mem-
ory. (2) This follows from convergence property (1), and from the fact that ARES
always gives preference to the shortest horizon while trying to overcome Δk.

Algorithm 2. Simulate (M, h, i, {Δk, Jk(si−1)}n
k=1)

foreach Mk ∈ M do

[ah
k , Mh

k] ← particleswarm(Mk, p, h); // use PSO to determine best next
action sequence for MDP Mk with RPH (receding prediction horizon) h
Jk(si) ← Cost(Mh

k ,ah
k , h); // calculate cost function if applying the

sequence of optimal actions of length h
if Jk(si−1) − Jk(si) > Δk then

Δk ← Jk(si)/(m − i); // new level-threshold

496 A. Legay et al.

Algorithm 3. Resample ({Mh
k , Jk(si)}n

k=1)

I ← Sort ascending Mh
k by their current costs; // find indexes of MDPs

whose costs are below the median among all the simulations
for k = 1 to n do

if k /∈ I then

Sample r uniformly at random from I; Mk ← Mh
r ;

else

Mk ← Mh
k ; // Keep more successful MDPs unchanged

Algorithm 4. ARES
Input : M, ϕ, pstart, pinc, pmax, hmax, m, n
Output: {ai}1�i� m // synthesized optimal plans

Initialize �0 ← inf; {Jk(s0)}n
k=1 ← inf; p ← pstart; i ← 1; h ← 1; Δk ← 0;

while (�i > ϕ) ∨ (i < m) do
// find and apply best actions with RPH h
[{ah

k , Jk(si), Mh
k}n

k=1] ←Simulate(M, h, i, {Δk, Jk(si−1)}n
k=1);

Ĵ1 ← sort(J1(si), . . . , Jn(si)); // find minimum cost among all
simulations
if �i−1 − Ĵ1 > Δ1 then

�i ← Ĵ1; // new level has been reached
i ← i + 1; h ← 1; p ← pstart; // reset adaptive parameters
{Mk}n

k=1 ← Resample({Mh
k , Jk(si)}n

k=1);
else

if h < hmax then
h ← h + 1; // improve time exploration

else
if p < pmax then

h ← 1; p ← p + pinc; // improve space exploration
else

break;

Take a clone in the state with minimum cost �i = J(s∗
i) � ϕ at the last level i;

foreach i do
{s∗

i−1,a
i} ← Pre(s∗

i); // find predecessor and corresponding action

We assess the rate of success in generating optimal plans in form of an (ε, δ)-
approximation scheme, for the desired error margin ε, and confidence ratio 1−δ.
Moreover, we can use the state-action pairs generated during the assessment (and
possibly some additional new plans) to construct an explicit (tabled) optimal
policy, modulo some topological equivalence. Given enough memory, one can
use this policy in real time, as it only requires a table lookup.

To experimentally validate our approach, we have applied ARES to the prob-
lem of V-formation in a flock of birds (with a deterministic MDP) as described
in [37,38]. The cost function to be optimized is defined as a weighted sum of

Statistical Model Checking 497

the (flock-wide) clear-view (CV), velocity alignment (VA), and upwash benefit
(UB) metrics. CV means that no bird’s frontal view is obstructed by a flockmate,
whereas VA is essential for maintaining formation (like V-formation) once it has
been reached. Regarding UB, by flapping its wings, a bird generates a trailing
upwash region off its wing tips; a bird flying in this region (left or right) can
save energy. Note that in V-formation, all birds but one (the leader) enjoy UB.

We ran ARES on 8000 initial states chosen uniformly at random, such that
they are packed closely enough to benefit from UB, but not too close to colliding.
We succeeded to generate a V-formation 95% of the time, with an error margin
of 0.05 and a confidence ratio of 0.99 computed using SMC. These statistics
improve significantly if we consider all generated states as independent initial
states. The fact that each state within a plan is independent of the states in all
other plans allows us to do this.

6 Importance Splitting for Optimal Control

As in Sect. 5 where our focus was on optimal planning, in this section, we show
how SMC-style importance splitting can be brought to bear on the problem of
optimal control. In particular, we present the AMPC algorithm, short for level-
based Adaptive-horizon Model-Predictive Control. We also consider stochastic
two-player reachability games on MDPs (between a controller and an attacker)
and demonstrate resiliency of AMPC control in this setting. As in Sect. 5, we con-
sider the problem of V-formation in a flock of B birds as a motivating example.

6.1 Adaptive-Horizon Model-Predictive Control

The AMPC algorithm performs step-by-step control of a given MDP M by
looking h steps ahead and predicting the next best state to move to [35]. We use
PSO to identify the potentially best actions ah in the current state achieving
the optimal value of the fitness function in the next state. The fitness function,
Fitness(M,ah, h) of ah is defined as the minimum fitness metric J obtained
within h steps by applying ah on M. Formally, we have

Fitness(M,ah, h) = min
1≤τ≤h

J(sτ
ah) (8)

where sτ
ah is the state after apply the τth action of ah on M. For horizon h, PSO

searches for the best sequence of 2-dimensional acceleration vector of length h,
thus having p = 2Bh parameters to be optimized. The number of particles used
in PSO is proportional to the number of parameters, i.e., p = 2βBh.

The pseudocode for the AMPC algorithm is given in Algorithm5. A novel
feature of AMPC is that, unlike classical MPC that uses a fixed horizon h, AMPC
adaptively chooses an h depending on whether it is able to reach a fitness value
that is lower than the current fitness by our chosen quanta Δi, ∀ i ∈ {0, . . . , m}.

AMPC is hence an adaptive MPC procedure that uses level-based horizons
introduced in Sect. 5, which was in turn inspired by the importance-splitting
technique introduced in Sect. 4.2. It employs PSO to identify the potentially

498 A. Legay et al.

Algorithm 5. AMPC: Adaptive Model-Predictive Control
Input : M, ϕ, hmax , m, B, Fitness
Output: {ai}1≤i≤ m // optimal control sequence

Initialize �0 ← J(s0); Ĵ ← inf; p ← 2βBh; i ← 1; h ← 1; Δ0 ← (�0 − ϕ)/m;

while (�i−1 > ϕ) ∧ (i < m) do
// find and apply first best action out of the horizon sequence of length h

[ah, Ĵ] ←particleswarm(Fitness, M, p, h);

if �i−1 − Ĵ > Δi ∨ h = hmax then
// if a new level or the maximum horizon is reached

ai ← ah
1 ; M ← Ma i

; // apply the action and move to the next state
�i ← J(s(M)); // update �i with the fitness of the current state
Δi ← �i/(m − i); // update the threshold on reaching the next level
i ← i + 1; h ← 1; p ← 2βBh; // update parameters

else
h ← h + 1; p ← 2βBh; // increase the horizon

best next actions. If the chosen actions improve (decrease) the fitness of the
next state J(sk+h), ∀ k ∈{0, . . . , m · hmax}, in comparison to the fitness of the
previous state J(sk) by the predefined Δi, the controller considers these actions
to be worthy of an optimal solution.

In this case, the controller applies the actions to each agent (bird) and tran-
sitions to the next state of the MDP. The threshold Δi determines the next level
�i = J(sk+̂h) of the algorithm, where ĥ ≤ h is the horizon with the best fit-
ness. The prediction horizon h is increased iteratively if the fitness has not been
decreased enough. Upon reaching a new level, the horizon is reset to one (see
Algorithm 5). Having the horizon ĥ > 1 means it will take multiple transitions
in the MDP in order to reach a solution with improved fitness. However, when
finding such a solution with ĥ > 1, we only apply the first action to transition
the MDP to the next state. This is explained by the need to allow the other
player (environment or an adversary) to apply their action before we obtain the
actual next state. If no new level is reached within hmax horizons, the first action
of the best ah using horizon hmax is applied.

The dynamic threshold Δi is defined as in [30]. Its initial value Δ0 is obtained
by dividing the fitness range to be covered into m equal parts, that is, Δ0 =
(�0 − �m) /m, where �0 = J(s0) and �m = ϕ. Subsequently, Δi is determined by
the previously reached level �i−1, as Δi = �i−1/(m − i + 1). This way AMPC
advances only if �i = J(sk+̂h) is at least Δi apart from �i−1 = J(sk).

This approach allows us to force PSO to escape from a local minimum, even
if this implies passing over a fitness-function ridge (see also Fig. 7(left), by grad-
ually increasing the exploration horizon h. We assume that the MDP is con-
trollable and that the set G of goal states is nonempty, which means that from
any state, it is possible to reach a state whose fitness decreased by at least Δi.
Algorithm 5 presents our approach.

Statistical Model Checking 499

Theorem 1 (AMPC Convergence). Let M = (S,A, T, J) be an MDP with
a positive and continuous fitness function J , and let G⊂ S be a nonempty set of
target states with G = {s |J(s) < ϕ}. If the transition relation T is controllable
with actions in A, then there is a finite maximum horizon hmax and a finite
number of execution steps m such that AMPC is able to find a sequence of
actions a1, . . . , am that brings a state in S to a state in G with probability one.

Proof. In each (macro-)step of horizon length h, from level �i−1 = J(sk) to level
�i = J(sk+̂h), AMPC decreases the distance to ϕ by Δi ≥ Δ, where Δ > 0 is
fixed by the number of steps m chosen in advance. Hence, AMPC converges to a
state in G in a finite number of steps for a properly chosen m. AMPC is able to
decrease the fitness in a macro step by Δi by the controllability assumption and
the fairness assumption about the PSO algorithm. Since AMPC is a randomized
algorithm, the result is probabilistic.

Note that AMPC is a general procedure that performs adaptive MPC using
PSO for dynamical systems that are controllable, come with a fitness metric,
and have at least one optimal solution.

6.2 Resiliency of the AMPC Algorithm

Inspired by the emerging problem of CPS security, we introduced the concept
of controller-attacker games [35]. A controller-attacker game is a two-player
stochastic game, where the two players, a controller and an attacker, have antag-
onistic objectives. A controller-attacker game is formulated in terms of an MDP,
with the controller and the attacker jointly determining the transition probabil-
ities.

Definition 4. Let M = (S,A, T, J, I) be an MDP. A randomized strategy σ
over M is a function of the form σ : S �→PD(A), where PD(A) is the set of
probability distributions over A. That is, σ takes a state s and returns an action
consistent with the probability distribution σ(s).

Definition 5. A controller-attacker game is an MDP M = (S,A, T, J, I)
with A = C × D, where C and D are action sets of the controller and the
attacker, respectively. The transition probability T (s, c × d, s′) is jointly deter-
mined by actions c ∈ C and d ∈ D.

We also introduced a class of controller-attacker games we call V-formation
games, where the goal of the controller is to maneuver the plant (a simple model
of flocking dynamics) into a V-formation, and the goal of the attacker is to
prevent the controller from doing so.

Let xi(t),vi(t),ai(t), and di(t) respectively denote the position, velocity,
acceleration, and displacement of the i-th bird at time t, 1 � i � B. The behavior
of bird i in discrete time is modeled as follows:

xi(t + 1) = xi(t) + vi(t + 1) + di(t)
vi(t + 1) = vi(t) + ai(t) (9)

500 A. Legay et al.

Controller
c(t) = σC (f1, s(t), J)

Attacker
d(t) = σD (f2, s(t), −J)

Plant

s(t + 1) = f(s(t), c(t), d(t))

c(t)

d(t)

s(t + 1)

Fig. 8. Controller-Attacker Game Architecture. The controller and the attacker use
randomized strategies σC and σD to choose actions c(t) and d(t) based on dynamics
f1 = f(s(t), c(t), 0) and f2 = f(s(t), 0, d(t)), respectively, where s(t) is the state at time
t, and f is the dynamics of the plant model. The controller tries to minimize the cost
J , while the attacker tries to maximize it.

The next state of the flock is jointly determined by the accelerations and the
displacements based on the current state following Eq. 9.

Controllers in V-formation games utilize AMPC, giving them extraordinary
power: we prove that under certain controllability conditions, an AMPC con-
troller can attain V-formation with probability 1.

Definition 6. A V-formation game is a controller-attacker game M = (S,
A, T , J , I), where S = {s | s = {xi,vi}B

i=1} is the set of states for a flock of
B birds, A = C ×D with the controller choosing accelerations a ∈ C and the
attacker choosing displacements d ∈ D, T and J are given in Eqs. 9 and 8,
respectively.

We define several classes of attackers, including those that in one move can
remove a small number R of birds from the flock, or introduce random displace-
ment (perturbation) into the flock dynamics, again by selecting a small number
of victim agents. We consider both naive attackers, whose strategies are purely
probabilistic, and AMPC-enabled attackers, putting them on par strategically
with the controller. The architecture of a V-formation game with an AMPC-
enabled attacker is shown in Fig. 8.

While an AMPC-enabled controller is expected to win every game with prob-
ability 1, in practice, it is resource-constrained : its maximum prediction horizon
and the maximum number of execution steps are fixed in advance. Under these
conditions, an attacker has a much better chance of winning a V-formation game.

In Sect. 5, we presented a procedure for synthesizing plans (sequences of
actions) that take an MDP to a desired set of states (defining a V-formation). The
procedure adaptively varied the settings of various parameters of an underlying
optimization routine. Since we did not consider any adversary or noise, there was
no need for a control algorithm. Here we consider V-formation in the presence of
attacks, and hence we developed a generic adaptive control procedure, AMPC,
and evaluate its resilience to attacks.

Our extensive performance evaluation of V-formation games uses statistical
model checking to estimate the probability that an attacker can thwart the

Statistical Model Checking 501

controller. Our results show that for the bird-removal game with 1 bird being
removed, the controller almost always wins (restores the flock to a V-formation).
When 2 birds are removed, the game outcome critically depends on which two
birds are removed. For the displacement game, our results again demonstrate
that an intelligent attacker, i.e. one that uses AMPC in this case, significantly
outperforms its naive counterpart that randomly carries out its attack.

Traditional feedback control is, by design, resilient to noise, and also certain
kinds of attacks; as our results show, however, it may not be resilient against
smart attacks. Adaptive-horizon control helps to guard against a larger class of
attacks, but it can still falter due to limited resources. Our results also demon-
strate that statistical model checking represents a promising approach toward
the evaluation of CPS resilience against a wide range of attacks.

7 Conclusions

The field of Statistical Model Checking (SMC) is now more than 15 years old,
and has experienced significant theoretical and practical development during
this time. In this chapter, we have presented a review of SMC as an efficient
technique for the model checking of stochastic systems, and presented three
algorithms representing both the quantitative and qualitative versions of SMC.
We also discussed one of the major challenges facing the SMC approach, namely
the treatment of rare events. Taking advantage of sequential Monte Carlo meth-
ods, we presented efficient procedures for rare-event probability estimation, and
illustrated their utility via our implementation in Plasma. We further demon-
strated the applicability of the SMC-inspired rare-event approach to tackling
plan- and control-synthesis problems for stochastic systems. Looking forward,
there are a wealth of challenges facing the SMC community, such as the verifica-
tion of cyber-physical systems, where SMC can play a crucial role in developing
robust and efficient algorithms.

References

1. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Model-checking algo-
rithms for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541
(2003)

2. Basu, A., Bensalem, S., Bozga, M., Caillaud, B., Delahaye, B., Legay, A.: Statistical
abstraction and model-checking of large heterogeneous systems. In: Hatcliff, J.,
Zucca, E. (eds.) FMOODS/FORTE - 2010. LNCS, vol. 6117, pp. 32–46. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13464-7 4

3. Basu, A., Bensalem, S., Bozga, M., Delahaye, B., Legay, A., Sifakis, E.: Verification
of an AFDX infrastructure using simulations and probabilities. In: Barringer, H.,
et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 330–344. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16612-9 25

4. Boyer, B., Corre, K., Legay, A., Sedwards, S.: PLASMA-lab: a flexible, dis-
tributable statistical model checking library. In: Joshi, K., Siegle, M., Stoelinga,
M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 160–164. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40196-1 12

https://doi.org/10.1007/978-3-642-13464-7_4
https://doi.org/10.1007/978-3-642-16612-9_25
https://doi.org/10.1007/978-3-642-40196-1_12

502 A. Legay et al.

5. Cérou, F., Del Moral, P., Furon, T., Guyader, A.: Sequential Monte Carlo for rare
event estimation. Stat. Comput 22, 795–808 (2012)

6. Cérou, F., Guyader, A.: Adaptive multilevel splitting for rare event analysis. Stoch.
Anal. Appl. 25, 417–443 (2007)

7. Ciesinski, F., Baier, C.: Liquor: a tool for qualitative and quantitative linear time
analysis of reactive systems. In: Proceedings of 3rd International Conference on
Quantitative Evaluation of Systems (QEST), pp. 131–132. IEEE (2006)

8. Ciesinski, F., Größer, M.: On probabilistic computation tree logic. In: Baier, C.,
Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of
Stochastic Systems. LNCS, vol. 2925, pp. 147–188. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24611-4 5

9. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42(4), 857–907 (1995)

10. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for statistical
model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22110-1 27

11. Del Moral, P.: Feynman-Kac Formulae: Genealogical and Interacting Particle Sys-
tems with Applications. Probability and Its Applications. Springer, New York
(2004). https://doi.org/10.1007/978-1-4684-9393-1

12. Doucet, A., de Freitas, N., Gordon, N.: Sequential Monte Carlo Methods in Prac-
tice. Springer, New York (2001). https://doi.org/10.1007/978-1-4757-3437-9

13. Garca, C.E., Prett, D.M., Morari, M.: Model predictive control: theory and practice
- a survey. Automatica 25(3), 335–348 (1989)

14. Gimbert, H.: Pure stationary optimal strategies in Markov decision processes. In:
Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 200–211. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-70918-3 18

15. Glasserman, P., Heidelberger, P., Shahabuddin, P., Zajic, T.: Multilevel splitting
for estimating rare event probabilities. Oper. Res. 47(4), 585–600 (1999)

16. Grosu, R., Smolka, S.A.: Monte Carlo model checking. In: Halbwachs, N., Zuck,
L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 271–286. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-31980-1 18

17. Younes, H.L.S., Clarke, E.M., Zuliani, P.: Statistical verification of probabilistic
properties with unbounded until. In: Davies, J., Silva, L., Simao, A. (eds.) SBMF
2010. LNCS, vol. 6527, pp. 144–160. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19829-8 10

18. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46002-0 24

19. Jansen, D.N., Katoen, J.-P., Oldenkamp, M., Stoelinga, M., Zapreev, I.: How fast
and fat is your probabilistic model checker? An experimental performance com-
parison. In: Yorav, K. (ed.) HVC 2007. LNCS, vol. 4899, pp. 69–85. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-77966-7 9

20. Jegourel, C., Legay, A., Sedwards, S.: Importance splitting for statistical model
checking rare properties. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS,
vol. 8044, pp. 576–591. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39799-8 38

21. Jegourel, C., Legay, A., Sedwards, S.: An effective heuristic for adaptive importance
splitting in statistical model checking. In: Margaria, T., Steffen, B. (eds.) ISoLA
2014. LNCS, vol. 8803, pp. 143–159. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-45231-8 11

https://doi.org/10.1007/978-3-540-24611-4_5
https://doi.org/10.1007/978-3-642-22110-1_27
https://doi.org/10.1007/978-3-642-22110-1_27
https://doi.org/10.1007/978-1-4684-9393-1
https://doi.org/10.1007/978-1-4757-3437-9
https://doi.org/10.1007/978-3-540-70918-3_18
https://doi.org/10.1007/978-3-540-31980-1_18
https://doi.org/10.1007/978-3-642-19829-8_10
https://doi.org/10.1007/978-3-642-19829-8_10
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/978-3-540-77966-7_9
https://doi.org/10.1007/978-3-642-39799-8_38
https://doi.org/10.1007/978-3-642-39799-8_38
https://doi.org/10.1007/978-3-662-45231-8_11
https://doi.org/10.1007/978-3-662-45231-8_11

Statistical Model Checking 503

22. Jégourel, C., Legay, A., Sedwards, S.: Command-based importance sampling for
statistical model checking. Theoret. Comput. Sci. 649, 1–24 (2016)

23. Kahn, H.: Stochastic (Monte Carlo) attenuation analysis. Technical report P-88,
Rand Corporation, July 1949

24. Kahn, H.: Random sampling (Monte Carlo) techniques in neutron attenuation
problems. Nucleonics 6(5), 27 (1950)

25. Kahn, H., Harris, T.E.: Estimation of particle transmission by random sampling.
In: Applied Mathematics. Series 12, vol. 5. National Bureau of Standards (1951)

26. Kahn, H., Marshall, A.W.: Methods of reducing sample size in Monte Carlo com-
putations. Oper. Res. 1(5), 263–278 (1953)

27. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of 1995
IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

28. Kwiatkowska, M.Z., Norman, G., Parker, D.: Prism 2.0: a tool for probabilistic
model checking. In: QEST, pp. 322–323. IEEE (2004)

29. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

30. Lukina, A., Esterle, L., Hirsch, C., Bartocci, E., Yang, J., Tiwari, A., Smolka, S.A.,
Grosu, R.: ARES: adaptive receding-horizon synthesis of optimal plans. In: Legay,
A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 286–302. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5 17

31. Okamoto, M.: Some inequalities relating to the partial sum of binomial probabili-
ties. Ann. Inst. Stat. Math. 10, 29–35 (1959)

32. Rosenbluth, M.N., Rosenbluth, A.W.: Monte Carlo calculation of the average
extension of molecular chains. J. Chem. Phys. 23(2), 356–359 (1955)

33. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob-
abilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp.
202–215. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-
9 16

34. Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic
systems. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
266–280. Springer, Heidelberg (2005). https://doi.org/10.1007/11513988 26

35. Tiwari, A., Smolka, S.A., Esterle, L., Lukina, A., Yang, J., Grosu, R.: Attacking the
V: on the resiliency of adaptive-horizon MPC. In: D’Souza, D., Narayan Kumar,
K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 446–462. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-68167-2 29

36. Wald, A.: Sequential tests of statistical hypotheses. Ann. Math. Stat. 16(2), 117–
186 (1945)

37. Yang, J., Grosu, R., Smolka, S.A., Tiwari, A.: Love thy neighbor: V-formation as a
problem of model predictive control. In: LIPIcs-Leibniz International Proceedings
in Informatics, vol. 59. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

38. Yang, J., Grosu, R., Smolka, S.A., Tiwari, A.: V-formation as optimal control. In:
Proceedings of Biological Distributed Algorithms Workshop 2016 (2016)

39. Younes, H.L.S.: Verification and planning for stochastic processes with asyn-
chronous events. Ph.D. thesis, Carnegie Mellon University (2005)

40. Younes, H.L.S.: Error control for probabilistic model checking. In: Emerson, E.A.,
Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 142–156. Springer,
Heidelberg (2005). https://doi.org/10.1007/11609773 10

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-662-54580-5_17
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/11513988_26
https://doi.org/10.1007/978-3-319-68167-2_29
https://doi.org/10.1007/11609773_10

504 A. Legay et al.

41. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 223–235. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45657-0 17

42. Zuliani, P., Baier, C., Clarke, E.M.: Rare-event verification for stochastic hybrid
systems. In: Proceedings of 15th ACM International Conference on Hybrid Sys-
tems: Computation and Control, HSCC 2012, pp. 217–226. ACM, New York (2012)

https://doi.org/10.1007/3-540-45657-0_17
https://doi.org/10.1007/3-540-45657-0_17

Automated Software Test Generation:
Some Challenges, Solutions, and Recent

Advances

George Candea1 and Patrice Godefroid2(B)

1 Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
2 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

pg@microsoft.com

Abstract. The automation of software testing promises to delegate
to machines what is otherwise the most labor-intensive and expensive
part of software development. The past decade has seen a resurgence in
research interest for this problem, bringing about significant progress.
In this article, we provide an overview of automated test generation for
software, and then discuss recent developments that have had significant
impact on real-life software.

Keywords: Software testing · Program analysis · Symbolic execution

1 Introduction

Software testing is generally used to assess the quality of a program, where “qual-
ity” can mean reliability, performance, usability, compliance, etc. depending on
context. The purpose of this assessment can be to debug the program, because
testing points out programming errors and ways to reproduce the program failure
they induce. Another purpose can be assessing whether the program is accept-
able to a client, because tests can reveal not only bugs but also gaps between
what the client wanted and what the developer thought she wanted. All in all,
software testing is a method for critiquing a program rather than demonstrating
its correctness. In Dijkstra’s words, “testing shows the presence, not the absence
of bugs” [45].

Testing a program consists of executing the program with a given set of inputs
and observing its behavior. Test automation entails running several tests in an
automated fashion, such as every night or every time a major change is made to
the program. Such automation requires one or more test cases, each consisting
of specific inputs to the program, and an automated means of validating the
outcome, often called a test oracle. Test cases can be written in a black-box
manner (where the test developer chooses scenarios solely based on knowledge
of what the program is supposed to do) or a white-box manner (where internal
knowledge of the program source code supplements the external knowledge in
choosing test scenarios). There exist many types of testing (e.g., unit, feature,
c© Springer Nature Switzerland AG 2019

B. Steffen and G. Woeginger (Eds.): Computing and Software Science, LNCS 10000, pp. 505–531, 2019.

https://doi.org/10.1007/978-3-319-91908-9_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91908-9_24&domain=pdf
https://doi.org/10.1007/978-3-319-91908-9_24

506 G. Candea and P. Godefroid

functional, system, regression) that fulfill various goals. Testing is complemen-
tary to other non-dynamic methods for checking program correctness, such as
visual code inspection or static program analysis.

The outcome of running tests is measured in various ways. For example,
counting how many tests succeed vs. fail is often a proxy metric for the program’s
code quality. Another example is test coverage, which measures the rigorousness
of testing, e.g., by computing what fraction of the program’s instructions were
executed during a test suite.

The fundamental challenge in thoroughly testing a program is that the num-
ber of possible inputs is large. For example, consider a program that takes four
64-bit integers and adds them up: there exist 2256 different combinations of inte-
gers that could be provided to this program. In contrast, scientists estimate that
the observable Universe has on the order of 2240 atoms [115]. A naive approach
of trying all inputs one by one would therefore not complete, so one must be
clever about picking test inputs.

This brings us to test generation, i.e., producing “interesting” inputs to test
software. There is an inherent trade-off between how long it takes to choose the
inputs vs. how long it takes to run the corresponding test and measure outcomes.
For example, if executing a program takes a long time, it makes sense to spend
time on smartly choosing inputs, so as to minimize the number of times the
program must execute during testing. However, if running the program is quick,
then taking a long time to choose inputs can be detrimental compared to running
the program many times with many inputs.

A good way to reduce the time spent choosing test inputs is to automate
the process. This observation gave rise to the field of automated test generation,
which is the subject of this article. We discuss the spectrum of techniques used
for automated test generation (Sect. 2) along with some of the challenges they
face when applied in practice (Sect. 3). We highlight two recent advances in
the engineering and application of these techniques: SAGE (Sect. 4) and S2E
(Sect. 5). While this article is by no means a survey of automated test generation
techniques, we do mention many approaches, techniques and tools throughout,
as well as in Sect. 6. We conclude with a few thoughts on future directions in
this field of research (Sect. 7).

2 Automated Test Generation: An Overview

Techniques for automatically generating test inputs lay along a spectrum that
has at one end blackbox random testing (Sect. 2.1) and at the other end whitebox
symbolic execution (Sect. 2.2). We now describe these two end-points.

2.1 Random Testing and Input Fuzzing

Perhaps the simplest form of automated test generation is to select program
inputs at random [92]. Various input probability distributions can be used, either

Automated Software Test Generation 507

uniform or biased towards some specific values believed to lead to interesting
corner cases, like 0, −1 or MAXINT for integer input values.

A more evolved form, called fuzz testing, consists of starting with well-formed
inputs and repeatedly modifying them, more or less at random, to produce new
inputs—this preserves the benefit of blackbox testing while increasing the prob-
ability of inputs found in this way being “interesting” (e.g., capable of getting
past the first layer of input parsing). This proved to be an effective way to find
crashes and security vulnerabilities in software, with some of the most notori-
ous security vulnerabilities having been found this way [27]. Fuzz testing (or
“fuzzing” for short) has become a standard fixture in most commercial software
testing strategies [1,75,91].

Key to the effectiveness of fuzzing is test quantity, i.e., the ability to gen-
erate and try out new inputs at high rate. Large-scale fuzzing efforts (such as
ClusterFuzz [5] that tests the Chromium web browser) test software round the
clock, using as many machines as are available. The number of bugs found is
limited by the number of CPU resources given to the fuzzer—intuition suggests
that the more tests the fuzzer gets to run, the more likely it is to find bugs.

The other key ingredient is test quality. First, testing many random inputs
in a blackbox fashion can at best discover shallow bugs, whereas picking inputs
smartly can penetrate deeper into the program code and reduce the number of
executions needed to find a bug. To improve the quality of generated inputs,
modern fuzzers use feedback from prior executions to steer input generation
toward those inputs that are more likely to uncover bugs. Second, detecting
anomalous behaviors automatically during the test runs increases the chances of
detecting the manifestation of a bug. Therefore, fuzzers check for a wide range
of “illegal behaviors,” with memory safety violations being the most popular.
The premise is that higher-quality tests are more likely to find bugs.

Most modern blackbox fuzzers, like AFL [119] or LibFuzzer [84], have moved
away from the initial “random testing” end-point of the spectrum: they operate
in a feedback loop, as shown in Fig. 1. They rely on instrumentation to detect
program features triggered by tests, e.g., a basic block being executed or a buffer
overflow. Whenever a feature is seen for the first time, the fuzzer reacts: it adds
the test to its corpus of interesting testcases, or reports a bug.

Different types of instrumentation can detect various features of inter-
est. For example, coverage bits detect when a particular edge in the control-
flow graph of the program is executed. When a coverage bit fires, the fuzzer
knows that it has found new code. A coverage counter similarly detects how
often an edge has been executed, and can signal to the fuzzer that it made
progress when exploring a loop. Safety checks detect abnormal conditions, alert-
ing the fuzzer that a bug has been found. Such checks can be either added
by developers in the form of assertions, or done automatically by tools such
as Purify, AppVerifier, Valgrind, UndefinedBehaviorSanitizer, ThreadSanitizer,
AddressSanitizer, FORTIFY SOURCE, AFL’s libdislocator, stack-protector, and
others [34,44,52,78,108,109]. Using safety checks increases the quality of tests,
and thus the number of bugs that fuzzers can detect. Without them, developers

508 G. Candea and P. Godefroid

Fig. 1. Typical workflow of a fuzzer driven by coverage feedback

need to hope that illegal behavior leads to a segmentation fault or other visible
exception. This does not always happen, particularly for tricky cases such as
use-after-free or buffer over-read bugs.

Ideally, a fuzzer should simultaneously have high test throughput and high
test quality, but unfortunately these two requirements conflict: obtaining good
feedback comes at the cost of throughput. Both detecting program misbehavior
and collecting code coverage information is done using program instrumentation,
which competes for CPU cycles with the actual instructions of the program
being tested. It is in fact not unusual for fuzzers to invest less than half of
their resources into executing code of the target program, and spend the rest on
improving test quality.

2.2 Test Generation with Symbolic Execution

At the other end of the spectrum, the most precise form of automatic code-
driven test generation known today is dynamic test generation with symbolic
execution.

Symbolic execution is a program analysis technique that was introduced in
the 70s (e.g., see [14,37,76,79,103]). Symbolic execution means executing a pro-
gram with symbolic rather than concrete values. Assignment statements are
represented as functions of their (symbolic) arguments, while conditional state-
ments are expressed as constraints on symbolic values. Symbolic execution can be
used for many purposes, such as bug detection, program verification, debugging,
maintenance, and fault localization [38].

Symbolic execution can be used to symbolically explore the tree of all compu-
tations the program exhibits when all possible value assignments to input parame-
ters are considered [79]. As an example, consider the simple program on the left of

Automated Software Test Generation 509

Fig. 2 and its computation tree on the right. This program takes an integer value
rpm as input. The set of possible values for program variable rpm is represented by
a symbolic value λ that can initially take on any integer value: this is represented
by the constraint λ ∈ Z. During symbolic execution of that program, whenever a
branch depending on λ is encountered, a new constaint is generated to capture how
to make that input-dependent branch condition evaluate to true (e.g., λ > 1000)
or false (e.g., λ ≤ 1000) respectively. By repeating this process going down the
tree, we obtain an execution tree annotated with conjunctions of input constraints
which characterize what input values are required in order to reach what parts of
the program. Those conjunctions of constraints are called path constraints, or path
conditions, and are shown in grey on the right of Fig. 2.

Fig. 2. Test generation for a simple program using symbolic execution.

In other words, for each control path p, that is, a sequence of control loca-
tions of the program, a path constraint φp is constructed that characterizes the
input assignments for which the program executes along p. All the paths can be
enumerated by a search algorithm that explores all possible branches at condi-
tional statements. The paths p for which φp is satisfiable are feasible and are
the only ones that can be executed by the actual program. The solutions to φp

characterize the inputs that drive the program through p. This characterization
is exact provided symbolic execution has perfect precision. Assuming that the
theorem prover used to check the satisfiability of all formulas φp is sound and
complete, this analysis amounts to a kind of exhaustive symbolic testing of all
feasible control paths of a program.

Work on automatic code-driven test generation using symbolic execution can
roughly be partitioned into two groups: static versus dynamic test generation.
Static test generation (e.g., [79]) consists of analyzing a program P statically, by
using symbolic execution techniques to attempt to compute inputs to drive P

510 G. Candea and P. Godefroid

along specific execution paths or branches, without ever executing the program.
In contrast, dynamic test generation (e.g., [22,23,31,62,68,80,98,107]) consists
of executing the program P starting with some concrete inputs, while perform-
ing symbolic execution dynamically, collecting symbolic constraints on inputs
gathered from predicates in branch statements along the execution, and then
using a constraint solver to infer variants of the previous inputs in order to steer
the next execution of the program towards an alternative program branch.

The key practical advantage of dynamic test generation compared to static
test generation is that the entire program does not need to be executed symbol-
ically for test generation. Imprecision in dynamic symbolic execution can easily
be alleviated using concrete values: whenever dynamic symbolic execution does
not know how to generate a constraint for a program statement depending on
some inputs, one can always simplify this constraint using the current concrete
values of those inputs. One can prove [60] that dynamic test generation is more
precise than static test generation mainly because of its ability to observe con-
crete values and record those in path constraints.

In practice, the key strength of symbolic execution is that it can generate
quality test inputs that exercise program paths with much better precision than
random testing or other blackbox heuristic-based test-generation techniques.
However, symbolic execution does not have perfect precision, constraint solvers
are typically not sound and complete, and programs can have (infinitely) many
control paths due to loops or recursion. Moreover, symbolic execution is complex
to engineer properly. We discuss these challenges in the next section.

3 Symbolic Execution Meets Practice: Challenges
and Solutions

In practice, automatic test generation using symbolic execution suffers from
several important limitations. This section discusses these challenges and various
solutions.

Fortunately, approximate solutions are sufficient in practice. To be useful,
symbolic execution does not need to be perfect, it must simply be “good enough”
to drive the program under test through program branches, statements and paths
that would be difficult to exercise with simpler techniques like random testing.
Even if a systematic search cannot typically explore all the feasible paths of large
programs in a reasonable amount of time, it usually does achieve better coverage
than pure random testing and, hence, can find new program bugs.

3.1 Exploring New Program Paths

Dynamic symbolic execution is used to systematically explore the execution tree
of a program. These paths are discovered incrementally and can be explored
independently “in parallel”: each inner node is a branching decision, and each
leaf is a program state that contains its own address space, program counter,
and set of constraints on program variables. In order to exercise a new program

Automated Software Test Generation 511

path during such a systematic search, the path constraint for this new path is
solved with a constraint solver. If the constraint is satisfiable, the solver returns
a satisfying assignment for every symbolic variable in the constraint, which is
then mapped to new program inputs. There are two main ways to explore new
program paths of a program.

One approach consists of running the program with some fixed concrete
inputs and performing dynamic symbolic execution along that execution (using
runtime instrumentation) until the program terminates or a specific limit is
reached. In this approach, exploring a different execution path requires re-
running the target program from the beginning with new concrete inputs. This
is the approach used in, e.g., [62,64,107].

A second approach consists in literally “forking” (using the fork system call)
the program state before branch decisions. This way, a new address space is
created for a copy of the program that now explores an alternate path through
the tree. Copy-on-write techniques can be used to efficiently deduplicate these
address spaces. This is the approach used in, e.g., [23,31].

The two approaches present different trade-offs. The first approach (DART-
style concolic execution) presents, on the one hand, the benefit of not having
to solve constraints at runtime to determine feasibility of execution paths and
requires less memory. On the other hand, it requires re-running the program
from scratch for every explored path. The second approach (KLEE-style sym-
bolic execution), on the one hand is able to efficiently explore paths in parallel,
without re-running the program, and enables flexible search strategies for decid-
ing which program paths to explore next (e.g., in the presence of loops) based
on a broad number of factors. On the other hand, it requires more CPU (in par-
ticular for solving constraints to determine path feasibility) and memory, which
limits scalability.

3.2 Interacting with the Environment

In theory, symbolic execution does not use abstraction and is therefore fully
precise with respect to predicate transformer semantics [46]: it generates “per-
path verification conditions” whose satisfiability implies the reachability of a
particular statement, so it generally does not produce false positives.

In practice, to test real-world programs, a symbolic execution engine must
mediate between the program and its runtime environment, i.e., external
libraries, the operating system, the thread and process scheduler, I/O inter-
rupt events, etc. Thus symbolic execution engines need to minimize the time
they spend executing the environment, while of course ensuring correct behavior
of the program.

Existing solutions roughly fall into two categories: they either concretize calls
to the environment and thus avoid symbolic execution of the environment alto-
gether, or they abstract the environment as much as possible using models with
varying degrees of completeness. We now discuss those two options.

Concrete Environment. The first modern symbolic execution engines [24,62,
107] executed the program concretely, and maintained the symbolic execution

512 G. Candea and P. Godefroid

state only during the execution of the program code itself. Whenever symbolic
execution is not possible, such as inside external library calls (possibly executed
in kernel-mode or on some other machine or process) or when facing program
instructions with unknown symbolic semantics, the program execution can still
proceed. This approach turns the conventional stance on the role of symbolic
execution upside-down: symbolic execution is now an adjunct to concrete execu-
tion. As a result, a specific concrete execution can be leveraged as an automatic
fall back for symbolic execution [62]. This avoids altogether symbolic execution
of the environment.

A benefit of this approach is that it can be implemented incrementally: only
some program statements can be instrumented and interpreted symbolically,
while others can simply be executed concretely natively. A tool developer can
improve the precision of symbolic execution over time, by adding new instruction
handlers in a modular manner.

The main drawback is that program behaviors that correspond to environ-
ment behaviors other than the ones seen in the concrete executions are not
explored.

Modeled Environment. This drawback can be addressed with another
approach: model the environment during symbolic execution. For example,
KLEE [23] redirects calls to the environment to small functions that understand
the semantics of the desired action well enough to generate reasonable responses.
With about 2,500 lines of code, they modeled roughly 40 Linux system calls, such
as open, read, and stat. These models are hand-written abstractions of actual
implementations of the system calls. Subsequently, [18] expanded the models for
KLEE to a full POSIX environment.

The benefit of this approach is that target programs can now be exposed to
more varied behaviors of the environment, and their reaction can be evaluated.
For instance, what does the program do whenever a write operation to a file fails
due to a full disk? A suitably written model for write can have a symbolic return
value, which will vary depending on success or failure of that operation. In fact,
one can write models that return different error codes for different failures, and
a symbolic execution engine can automatically test the program under all these
scenarios.

This approach has two main drawbacks. First, by definition, the model is an
abstraction of the real code, and it may or may not model all possible behaviors
of that code. (If the model was fully precise, it would be equivalent to the actual
implementation.) Second, writing models by hand is labor-intensive and prone
to error.

To mitigate these drawbacks, selective symbolic execution [31] does not
employ models but instead automatically abstracts the environment. In doing
so, it is guided by consistency models that govern when to over-approximate and
when to under-approximate. More details on this system appear in Sect. 5.

Automated Software Test Generation 513

3.3 Path Explosion

Symbolically executing all feasible program paths does not scale to large pro-
grams, because the number of feasible paths in a program can be exponential in
the program size, or even infinite if the program, such as a network server, has a
single loop whose number of iterations may depend on some unbounded input,
such as a stream of network packets. A program like the Firefox web browser has
more than 500,000 if statements; if just one thousandth of them were to have
both a then and an else branch that are feasible for some inputs, then Firefox
could be expected to have on the order of 2500 paths, which still far exceeds the
number of atoms in the observable Universe [115]. We now discuss solutions to
this path explosion problem.

A Generic Symbolic Execution and Search Algorithm. In order to present
different trade-offs, we describe the operation of a symbolic execution engine in
a more precise manner using the worklist-style Algorithm 1.

The algorithm is parameterized by a function pickNext for choosing the next
state to expand in a worklist, a function follow that returns a decision on whether
to follow a branch, and a relation ∼ that controls whether program states should
be merged or kept separate (more on this later). A program state is a triple
(�, pc, s) consisting of a program location �, the path condition pc, and the sym-
bolic store s that maps each variable to either a concrete value or an expression
over input variables. In line 1, the worklist w is initialized with a state whose
symbolic store maps each variable to itself (we ignore named constants, for sim-
plicity). Here, λx.e denotes the function mapping parameter x to an expression
e, with λ(x1, . . . xn).e mapping multiple parameters. In each iteration, the algo-
rithm picks a new state from the worklist (line 3).

On encountering an assignment v := e (lines 5–6), the algorithm creates a
successor state at the fall-through successor location succ(�) of � by updating the
symbolic store s with a mapping from v to a new symbolic expression obtained
by evaluating e in the context of s, and adds the new state to the set S. At every
branch (lines 7–11), the algorithm first checks whether to follow either path and,
if so, adds the corresponding condition to the successor state, which in turn is
added to S. A symbolic execution engine can decide to not follow a branch if
the branch is infeasible or would exceed a limit on loop unrolling. For assertions
(line 12–13), the path condition, the symbolic store, and the negated assertion are
put in conjunction and checked for satisfiability. Halt statements terminate the
analyzed program, so the algorithm just outputs the path condition—a satisfying
assignment of this condition can be used to generate a test case for the execution
leading to the halt.

In lines 16–21, the new states in S are merged with any matching states in
the worklist before being added to the worklist themselves. Two states match if
they share the same location and are similar according to relation ∼. Merging
creates a disjunction of the two path conditions and builds the merged symbolic
store from ite expressions that assert one or the other original value, depending
on the path taken (line 19).

514 G. Candea and P. Godefroid

Input: Choice function pickNext , similarity relation ∼, branch checker follow ,
and initial location �0.

Data: Worklist w and set of successor states S.

1 w := {(�0, true, λv.v)};
2 while w �= ∅ do
3 (�, pc, s) := pickNext(w); S := ∅;

// Symbolically execute the next instruction
4 switch instr(�) do
5 case v := e // assignment
6 S := {(succ(�), pc, s[v �→ eval(s, e)])};

7 case if(e) goto �′ // conditional jump
8 if follow(pc ∧ s ∧ e) then
9 S := {(�′, pc ∧ e, s)};

10 if follow(pc ∧ s ∧ ¬e) then
11 S := S ∪ {(succ(�), pc ∧ ¬e, s)};

12 case assert(e) // assertion
13 if isSatisfiable(pc ∧ s ∧ ¬e) then abort else S := {(succ(�), pc, s)}
14 case halt // program halt
15 print pc;

// Merge new states with matching ones in w
16 forall (�′′, pc′, s′) ∈ S do
17 if ∃(�′′, pc′′, s′′) ∈ w : (�′′, pc′′, s′′) ∼ (�′′, pc′, s′) then
18 w := w \ {(�′′, pc′′, s′′)};
19 w := w ∪ {(�′′, pc′ ∨ pc′′, λv.ite(pc′, s′[v], s′′[v]))};

20 else
21 w := w ∪ {(�′′, pc′, s′)};

22 print ”no errors”;
Algorithm 1. Generic symbolic execution of programs written in a simple
input language with assignments, conditional goto statements, assertions, and
halt statements. For simplicity, this algorithm is just intraprocedural; function
calls must be inlined. It can generate precise symbolic function summaries, if
invoked per procedure and with a similarity relation that merges all states
when the function terminates.

Search Heuristics for Program Loops. Bounded model checkers [36] and
extended static checkers [7,54,118] unroll loops up to a certain bound, which can
be iteratively increased if an injected unwinding assertion fails. Such unrolling
is usually performed by statically rewriting the control-flow graph, but can be
fit into Algorithm1 by defining follow to return false for branches that would
unroll a loop beyond the bound. By default, symbolic execution explores loops
as long as it cannot prove the infeasibility of the loop condition; in the case of
an unbounded loop, this can lead to an infinite number of unrollings.

Automated Software Test Generation 515

Modern symbolic execution typically performs loop unrolling and aims to be
smart about choosing which program state to explore next. Dynamic test gener-
ation as implemented in DART [62] starts with an arbitrary initial unrolling of
the loop (driven by an original concrete input) and explores different unrollings
in subsequent tests, driven by follow-on concrete inputs chosen by DART. In
other words, it implements pickNext to follow concrete executions, postponing
branch alternatives to be covered by a subsequent concrete execution. Simple
techniques like bounding the number of constraints injected at each program
location are effective practical solutions to limit path explosion [64]. Dynamic
test generation as implemented in KLEE [23] employs a search strategy imple-
mented in the function pickNext that biases the choice of program states from
the worklist against states that perform many repetitions of the same loop. For
example, a search strategy optimized for line coverage selects states close to
unexplored code and avoids states in deep loop unrollings.

While these code-coverage-based search heuristics do not change the number
of execution paths through a target program, they focus the search on differ-
ent parts of the program. In practice, these heuristics are important to explore
diverse parts of the program, to avoid being stuck in specific parts of the search
space, and hence to try to maximize code coverage and the number of bugs found
given a limited time and space budget.

Summaries and State Merging. In addition to search heuristics, one can
also reduce the number of paths to be explored by memoizing and merging pro-
gram states reached by different program paths. This general idea of analyzing
programs compositionally (e.g., [105]) is well-known in interprocedural static pro-
gram analysis and is key to make it scale to large programs (e.g., [21,29,43,70]).
In the context of static analysis, a merged state typically over-approximates
the individual states that are merged [43,88]; even if the resulting imprecision
can be reduced, it cannot be eliminated, thus leading to false positives (i.e.,
infeasible executions). In contrast, in the context of symbolic execution for test
generation, as a matter of principle, a merged state must precisely represent
the information from all execution paths subsumed by that state without any
over-approximation. In other words, while compositional static analysis typically
computes and memoizes “may” over-approximate function summaries, compo-
sitional test generation computes “must” under-approximate summaries [59].

For test generation, symbolic summaries can be computed at the block,
method, function or procedure level, or at arbitrary program points. These can
be computed incrementally, one interprocedural path at a time, and then bun-
dled together using disjunctions as shown in lines 17–22 of Algorithm1. The
advantage of this approach is that, instead of being symbolically re-executed
over and over again in different calling contexts, each intraprocedural path is
symbolically executed only once, and the results of that symbolic execution are
memoized using local input-preconditions and output post-conditions. A sym-
bolic summary for a procedure is then simply defined as the disjunction of the
summaries of its intraprocedural paths. Whenever a higher-level procedure foo
calls an already-summarized procedure bar, the summary for bar is re-used and

516 G. Candea and P. Godefroid

included in the current path condition of foo. The effect of re-using a symbolic
summary is thus to merge all the states that can be reached when the summa-
rized procedure returns. Such summaries can be computed in various ways, e.g.,
in an inner-most-first order [59] or lazily on-demand [3], and can also be used
together with “may” summaries generated with static analysis (e.g., [67]).

Unfortunately, the main drawback of using summaries and state merging
is that both symbolic execution and constraint solving become more complex
and expensive: summaries (i.e., disjunctions of sub-program paths) need to be
computed and memoized, which makes the path conditions (which now have
more disjunctions) harder to solve.

Therefore, various trade-offs have been proposed. Two extreme trade-offs
are (i) no state merging at all, i.e., complete separation of paths [23,24,62],
and (ii) complete static state merging, as implemented by verification condition
generators [7,36,77,118]. Static state merging combines states at join points after
completely encoding all subpaths, i.e., it defines pickNext to explore all subpaths
leading to a join point before picking any states at the join point, and it defines
∼ to contain all pairs of states. In search-based symbolic execution engines with
no state merging, pickNext can be chosen freely according to the search goal,
and ∼ is empty.

Some approaches adopt intermediate merging strategies. In the context of
bounded model checking (BMC), Ganai and Gupta [56] investigate splitting the
verification condition along subsets of paths; this moves BMC a step into the
direction of symbolic execution, and corresponds to partitioning the ∼ relation.
Hansen et al. [72] describe an implementation of static state merging in which
they modify the exploration strategy to effectively traverse the control-flow graph
in topological order and merge all states that share the same program location.
Alas, for two of their three tested examples, the total solving time increases
with this strategy due to the added load placed on the constraint solver by the
increased complexity of the merged path conditions.

Indeed, the challenge in state merging is that, while merging two program
states on the one hand may reduce the number of execution paths by an exponen-
tial factor, it could also increase the time the symbolic execution engine spends
solving the more complex constraints. The net effect can be positive or nega-
tive. [82] proposes a technique for deciding when merging two program states is
expected to be benefical vs. not. The approach uses a query count estimation
algorithm to compute, during symbolic execution, whether the performance ben-
efit resulting from the reduction in number of execution paths would outweigh
the increase in constraint solver time. Experiments showed that this approach
consistently achieved several orders of magnitude speedup over the then state of
the art.

An alternative to implementing state merging inside the symbolic execution
engine is to present this same engine with an equivalent variant of the target pro-
gram that is easier to symbolically execute. Whereas a usual compiler translates
programs into code that executes as quickly as possible on a target CPU, taking
into account CPU-specific properties, Overify [116] instead compiles programs

Automated Software Test Generation 517

to have the simplest possible control flow, using techniques like jump threading,
loop unswitching, transforming conditionally executed side-effect-free statements
into speculative branch-free versions, splitting objects into smaller ones to reduce
opportunities for pointer aliasing, and others. The net effect is that compiling
a program with the -Overify option reduces the time of exhaustive symbolic
execution by up to almost two orders of magnitude.

3.4 Efficient Constraint Solving

Another key component is the constraint solver being used to solve path con-
straints. Over the last decade, several tools implementing dynamic test gener-
ation for various programming languages, properties and application domains
have been developed. Examples of such tools are DART [62], EGT [22],
PathCrawler [117], CUTE [107], EXE [24], SAGE [64], CatchConv [93],
PEX [113], KLEE [23], CREST [20], BitBlaze [111], Splat [87], Apollo [4],
YOGI [67], Kudzu [106], S2E [31], and JDart [85]. The above tools differ by
how they perform dynamic symbolic execution (for languages such as C, Java,
x86, .NET), by the type of constraints they generate (for theories such as linear
arithmetic, bit-vectors, arrays, uninterpreted functions, etc.), and by the type of
constraint solvers they use (such as lp solve, CVClite, STP, Disolver, Yikes, Z3).
Indeed, like in traditional static program analysis and abstract interpretation,
these important parameters are determined in practice depending on which type
of program is to be tested, on how the program interfaces with its environment,
and on which properties are to be checked. Moreover, various cost/precision
tradeoffs are also possible while generating and solving constraints.

Fortunately, and driven in part by the test generation applications reported
in this article, the science and engineering of automated theorem proving has
made a lot of progress over the last decade as well. Notably, the last decade
witnessed the birth and rise of so-called Satisfiability-Modulo-Theories (SMT)
solvers [2,10,16,49,57,95], which can efficiently check satisfiability of complex
constraints expressed in rich domains. Such solvers have also become computa-
tionally affordable in recent years thanks to the increasing computational power
available on modern computers.

3.5 Parallelization and Testing as a Cloud Service

An orthogonal approach to speed up symbolic execution is parallelization of path
exploration on a cluster of machines, harnessing its aggregate CPU and mem-
ory capabilities (alternatively, one could imagine running a symbolic execution
engine on a supercomputer). One way to parallelize symbolic execution is by
statically dividing up the task among nodes and have them run independently.
However, when running on large programs, this approach leads to high work-
load imbalance among nodes, making the entire cluster proceed at the pace of
the slowest node—if this node gets stuck, for instance, while symbolically exe-
cuting a loop, the testing process may never terminate. In [18], a method is
described for parallelizing symbolic execution on shared-nothing clusters in a

518 G. Candea and P. Godefroid

way that scales well. Without changing the exponential nature of the problem,
parallel symbolic execution harnesses cluster resources to make it feasible to run
automated testing on larger systems than would otherwise be possible.

In essence, software testing reduces to exercising as many paths through
a program as possible and checking that certain properties hold along those
paths (no crashes, no buffer overflows, etc.). The advances in symbolic execution
lead naturally to the “testing as a service” (TaaS) vision [26,66] of (1) offering
software testing as a competitive, easily accessible online service, and (2) doing
fully automated testing in the cloud, to harness vast, elastic resources toward
making automated testing practical for real software. A software-testing service
allows users and developers to upload the software of interest, instruct the service
what type of testing to perform, click a button, and then obtain a report with the
results. For professional uses, TaaS can integrate directly with the development
process and test the code as it is written. TaaS can also serve as a publicly
available certification service that enables comparing the reliability and safety
of software products [25].

Having seen some key challenges in automated test generation and possi-
ble solutions, we now describe two recent systems that employ many of these
techniques: SAGE (Sect. 4) and S2E (Sect. 5).

4 Whitebox Fuzzing with SAGE

Whitebox fuzzing of file parsers [64] is a “killer app” for automatic test gener-
ation using dynamic symbolic execution and constraint solving. Many security
vulnerabilities are due to programming errors in code for parsing files and pack-
ets that are transmitted over the Internet. For instance, the Microsoft Windows
operating system includes parsers for hundreds of file formats. A security vul-
nerability in any of those parsers may require the deployment of a costly, visible
security patch to more than a billion PCs, i.e., millions of dollars [65]. Because
of the magnitude of this problem, Microsoft has invested significant resources to
hunt security vulnerabilities in its products, and provided the right environment
for whitebox fuzzing to mature to an unprecedented level.

Whitebox fuzzing extends dynamic test generation from unit testing to
whole-program security testing in three main ways: First, inspired by blackbox
fuzzing [55], whitebox fuzzing performs dynamic test generation starting from
one or several well-formed inputs, which is a heuristic to increase code coverage
quickly and give the search a head-start. Second, again like blackbox fuzzing,
the focus of whitebox fuzzing is to find security vulnerabilities, like buffer over-
flows, not to check functional correctness; finding such security vulnerabilities
can be done fully automatically and does not require an application-specific test
oracle or functional specification. Third, and more importantly, the main tech-
nical novelty of whitebox fuzzing is scalability: it extends the scope of dynamic
test generation from (small) units to (large) whole programs. Whitebox fuzzing
scales to large file parsers embedded in applications with millions of lines of code
and execution traces with hundreds of millions of machine instructions.

Automated Software Test Generation 519

Since whitebox fuzzing targets large applications, it must scale to long pro-
gram executions, and such symbolic execution is expensive. For instance, a single
symbolic execution of Microsoft Excel with 45,000 input bytes executes nearly a
billion x86 instructions. In this context, whitebox fuzzing uses a novel directed
search algorithm, dubbed generational search, that maximizes the number of new
input tests generated from each symbolic execution. Given a path constraint, all
the constraints in that path are systematically negated one-by-one, placed in a
conjunction with the prefix of the path constraint leading to it, and attempted
to be solved by a constraint solver. This way, a single symbolic execution can
generate thousands of new tests. (In contrast, a standard depth-first or breadth-
first search would negate only the last or first constraint in each path constraint,
and generate at most one new test per symbolic execution.)

Whitebox fuzzing was first implemented in the tool SAGE, short for Scalable
Automated Guided Execution [64]. SAGE was the first tool to perform dynamic
symbolic execution at the x86 binary level, which allows it to be used on any
program regardless of its source language or build process. It also ensures that
“what you fuzz is what you ship,” as compilers can perform source-code changes
which may impact security.

SAGE uses several optimizations that are crucial for dealing with huge exe-
cution traces with billions of machine instructions. To scale to such execution
traces, SAGE uses several techniques to improve the speed and memory usage
of constraint generation: symbolic-expression caching ensures that structurally
equivalent symbolic terms are mapped to the same physical object; unrelated
constraint elimination reduces the size of constraint solver queries by removing
the constraints which do not share symbolic variables with the negated con-
straint; local constraint caching skips a constraint if it has already been added to
the path constraint; flip count limit establishes the maximum number of times
constraints generated from a particular program branch can be flipped; using
a cheap syntactic check, constraint subsumption eliminates constraints logically
implied by other constraints injected at the same program branch (mostly likely
due to successive iterations of an input-dependent loop) [64].

Since 2008, SAGE has been running in production on hundreds of machines,
automatically fuzzing hundreds of applications in Microsoft security testing labs.
This is over 500 machine-years and the “largest computational usage ever for any
Satisfiability-Modulo-Theories (SMT) solver” according to the authors of the Z3
SMT solver [95], with over four billion constraints processed to date [13].

During this fuzzing, SAGE found many new security vulnerabilities (buffer
overflows) in many Windows parsers and Office applications, including image
processors, media players, file decoders, and document parsers. Notably, SAGE
found roughly one third of all the bugs discovered by file fuzzing during the
development of Microsoft’s Windows 7 [65], saving millions of dollars by avoiding
expensive security patches for nearly a billion PCs worldwide. Because SAGE
was typically run last, those bugs were missed by everything else, including static
program analysis and blackbox fuzzing.

520 G. Candea and P. Godefroid

In 2015, SAGE and other popular blackbox fuzzers used internally at
Microsoft were packaged into Project Springfield [91], the first commercial cloud
fuzzing service (renamed Microsoft Security Risk Detection in 2017). Customers
who subscribe to this service can submit fuzzing jobs targeting their own software
and benefit from the technology described in this article. No source code or sym-
bols are required. Springfield fuzzing jobs are easy to set up by non-experts, and
are processed using the same tools used for over a decade inside Microsoft, for
automatic job validation, seed minimization, fuzzing on many machines (lever-
aging the cloud) each running different fuzzing tools and configurations, and
then automatic analysis, triage and prioritization of the bugs found, with results
available directly on the Springfield web-site.

5 Selective Symbolic Execution with S2E

When the target of testing is not individual applications but systems code
(e.g., device drivers) or full system stacks (i.e., the operating system kernel
with drivers, libraries, and applications all together), the dominant consider-
ations become the interaction between the tested software and its environment
(Sect. 3.2) and scaling beyond a single application. These challenges motivated
the development of the S2E system [31].

S2E is a symbolic execution engine for x86 and ARM binaries. It is built
around a modified version of the QEMU [12] virtual machine, and it dynamically
dispatches guest machine instructions either to the host CPU for native execution
or to a symbolic execution engine (KLEE [23]) embedded inside S2E. Most
instructions do not access symbolic state, so they can run natively, while the
rest are interpreted symbolically.

The original use case for S2E was testing full system stacks with complex
environments (proprietary OS kernel, many interdependent libraries, etc.). An
accurate assessment of program behavior requires taking into account every rele-
vant detail of the environment, but making a priori the choice of what is relevant
is hard. So S2E offers “in-vivo” symbolic execution, in which the environment is
automatically abstracted on-the-fly, as needed. This is in contrast to “in-vitro”
symbolic execution, as done by symbolic execution engines and model checkers
that use stubs or models [8,23,97]).

Such in-vivo symbolic execution was used both in industrial and academic
settings. Engineers at Intel used S2E to search for security vulnerabilities in
UEFI BIOS implementations [11]. DDT [81] used S2E to test closed-source pro-
prietary Microsoft Windows device drivers, without access to the driver source
code or inside knowledge of the Windows kernel. DDT found memory leaks,
segmentation faults, race conditions, and memory corruption bugs in drivers
that had been shipping with Windows for many years. Network researchers used
S2E to verify the dataplane of software network routers [47] by using a form of
exhaustive symbolic execution on specific elements in the router without having
to model the rest of the router.

Automated Software Test Generation 521

The key design choice that enables in-vivo symbolic execution is to carefully
maintain a unified global state store that simultaneously captures both sym-
bolic and concrete execution state. An execution can thus alternate between
concrete and symbolic execution multiple times during the same run, without
losing desired correctness and precision. For example, when symbolically execut-
ing a driver in-vivo, the initial execution starts out concrete from userspace, is
concrete in the kernel, then switches to symbolic when entering the driver, then
back to concrete when the driver calls into the kernel, back to symbolic when
execution returns inside the driver, and so on. In this way, “interesting” pro-
gram paths are explored in the software of interest (the driver, in this example)
without symbolically executing the rest of the real environment.

The unified state store consists of machine state (memory, CPU registers and
flags, system clock, devices, etc.) that is shared between the symbolic execution
engine and the virtual machine. S2E is responsible for the transparent conver-
sions of concrete state to symbolic state and vice versa, governed by an execution
consistency model. For example, under a so-called “locally consistent execution”
model, when a driver calls kmalloc with a symbolic argument λ to allocate kernel
memory, S2E automatically picks a concrete value that satisfies the path con-
straint, say 64, and executes kmalloc concretely in the kernel. Once the kernel
returns the concrete 64-byte memory buffer, S2E returns to the driver a sym-
bolic two-valued pointer p = 0 | &buffer capturing the two possible outcomes
of the kmalloc call. S2E then augments the path constraint with λ = 64 and
continues symbolic execution in the driver. Depending on consistency model, if
λ is later involved in a branch condition with one of the branches made infeasi-
ble by the λ = 64 constraint, S2E can return to the original kmalloc call site to
re-concretize λ to an additional value that enables that branch, and repeat the
call.

Execution consistency models in S2E are analogous to memory consistency
models [94]. The traditional assumption about system execution is that the state
at any point in time is consistent, i.e., there exists a feasible concrete-execution
path from the system’s start state to the system’s current state. This is what
S2E calls “strictly consistent concrete execution,” and this is the strongest of all
execution consistency models. Relaxing this assumption results in the definition
of five additional consistency models [32], each offering different trade-offs. For
example, “strictly consistent unit-level execution” corresponds to the consistency
model that governs how DART [62] and EXE [24] handle the environment. The
“locally consistent execution” mentioned above is the one DDT [81] employed
for the interface between device drivers and the OS kernel.

An interesting concept in S2E is that of symbolic hardware. It corresponds
to “overapproximately consistent execution,” and allows virtualized hardware to
return unconstrained symbolic values. DDT [81] and SymDrive [104] used this
execution consistency model for the hardware interface, in order to test drivers
for hardware error paths that are difficult to exercise, and to make up for the
all-together absence of the hardware.

522 G. Candea and P. Godefroid

One of S2E’s optimizations is lazy concretization: concretize symbolic values
on-demand, only when concretely-running code is about to branch on a condition
that depends on that value. This makes it possible to carry a lot of data through
the layers of the system stack without conversion. For example, when a program
writes a buffer of symbolic data to the filesystem, there are usually no branches
in the kernel or the disk device driver that depend on the data per se, so S2E
can pass the buffer through unconcretized and write it in symbolic form to the
virtual disk, from where it can later be read back in its symbolic form, thus
avoiding the loss of precision inherent in concretization.

Over time, S2E turned into a general platform for software analysis, and saw
a number of surprising use cases. For example, RevNIC [30] employed “overap-
proximately consistent execution” to automatically reverse-engineer proprietary
Windows device drivers and produce equivalent drivers for different platforms.
In [32], S2E was used to develop a comprehensive performance profiler to mea-
sure instruction count, cache misses, TLB misses, and page faults for arbitrary
memory hierarchies along all paths of a program. A side effect of S2E’s design
as a virtual machine is that it can be used not only for proprietary software but
also for self-modifying, JITed, and/or obfuscated and packed/encrypted binaries.
This made S2E well suited for malware analysis in a commercial setting [41]. It
was also used to develop Chef [17], a tool for turning the vanilla interpreter of
a dynamically interpreted language (like Python) into a sound and complete
symbolic execution engine for that language. As a final example, two of the
seven systems competing in the finals of DARPA’s Cyber Grand Challenge in
2016 were based on S2E. This competition was an all-machine computer secu-
rity tournament, where each competing machine had to autonomously analyze
computer programs, find security vulnerabilities, fix them, and launch attacks
on other competitors. As part of Galactica (one of the DARPA competitors),
S2E launched 392 successful attacks during the competition, twice as many as
the competition’s all-around winner.

S2E is currently an open-source project [51] and is also at the heart of several
commercial cybersecurity products. S2E illustrates how automated test genera-
tion can morph into a variety of other forms of program analysis.

6 Other Approaches to Automated Test Generation

As mentioned in the introduction, this paper is not a survey on automatic test
generation. We do mention briefly here some other notable test-generation tech-
niques.

Model-Based Testing. Given an abstract representation of the program, called
model, model-based testing consists of generating tests by analyzing the model
in order to check the conformance of the program with respect to the model
(e.g., [114]). Such models are usually program specifications written by hand,
but they can also be generated automatically using machine-learning techniques
(e.g., see [69,102] and the article on automata learning in this volume [74]). In
contrast, the code-driven test-generation techniques discussed in this article do

Automated Software Test Generation 523

not use or require a model of the program under test. Instead, their goal is to
generate tests that exercise as many program statements as possible, including
assertions inserted in the code.

Grammar-Based Fuzzing. Most popular blackbox random fuzzers for security
testing support some form of grammar representation to specify the input format
of the application under test, e.g., Peach [99] and SPIKE [100], among many oth-
ers [112]. Such grammars are typically written by hand, and this process is labo-
rious, time consuming, and error-prone. Nevertheless, grammar-based fuzzing is
the most effective fuzzing technique known today for fuzzing applications with
complex structured input formats, like web-browsers which must take as inputs
web-pages including complex HTML documents and JavaScript code. Work on
grammar-based test input generation started in the 1970’s [71,101]. Test gener-
ation from a grammar is usually either random [40,89,110] or exhaustive [83].
Imperative generation [33,42] is a related approach in which a custom-made
program generates the inputs (in effect, the program encodes the grammar).
Grammar-based fuzzing can also be combined with whitebox fuzzing [61,86].

Search-Based Test Generation. Test generation can be viewed as a search
and optimization problem (e.g., how to maximize code coverage), and vari-
ous heuristics and search techniques have been proposed, for instance, using
genetic algorithms and simulated annealing (e.g., [90]). The fuzzing heuristics
using code-coverage feedback mentioned earlier are related to these techniques.
These techniques have also been applied to other software engineering problems,
including other testing-related problems such as test case minimization and test
case prioritization [90].

Exploit Generation. A targetted form of security testing is exploit generation:
given a program, automatically find vulnerabilities and generate exploits for
them. Systems like Mayhem [28] have used pre-conditioned symbolic execution
to find and exploit zero-day security bugs [6], and work prior to that augmented
such test generation with knowledge from security patches in order to reverse-
engineer the exploits against which those patches were defending [15].

Combinatorial Testing. Given a program and a set of input parameters, com-
binatorial testing aims at generating efficiently a set of test inputs which cover
all pairs of input parameters (e.g., [39]). Generalizations from pairs to arbitrary
k-tuples have also been proposed. In practice, these techniques are used pro-
vided the number of input parameters is sufficiently small, e.g., for configuration
parameters [39].

Concurrency Testing. Systematic testing techniques and algorithms have also
been proposed for concurrent software (e.g., [50,53,58,96]). Such techniques
explore the possible interleavings of multiple processes or threads using a runtime
scheduler with the goal of finding concurrency-related bugs such as deadlocks
and race conditions.

Runtime Verification. Runtime verification tools (e.g., [48,73]) monitor at
run-time the behavior of a program and compare this behavior against a

524 G. Candea and P. Godefroid

high-level specification, typically represented as a finite-state automaton or a
temporal-logic formula. These tools can be viewed as extensions of runtime
checking tools mentioned earlier (like Purify and AddressSanitizer), and are
complementary to test generation.

Program Verification. Over the past few decades, symbolic execution, con-
straint generation and automated theorem proving have also been developed
further in various ways for program verification, such as verification-condition
generation (e.g., [9,46]), symbolic model checking [19] and bounded model check-
ing [35]. Program verification aims at proving the absence of program errors,
while test generation aims at generating concrete test inputs that can drive the
program to execute specific program statements or paths. A detailed technical
comparison can be found in [63]. In practice, symbolic execution, constraint gen-
eration and solving are typically not sound and complete, and fully automatic
program verification remains elusive for large complex software.

7 Conclusion

This article presented an introduction and overview of automated test gener-
ation for software. We discussed how test generation using dynamic symbolic
execution can be more precise than static test generation and other forms of test
generation such as random, taint-based and coverage-heuristic-based test gen-
eration. This test generation approach is also more sophisticated, requiring the
use of automated theorem proving for solving path constraints. This machinery
is more complex and heavy-weight, but may exercise more program paths, find
more bugs and generate fewer redundant tests covering the same path. Whether
this better precision is worth the trouble depends on the application domain.

Research on automatic test generation has been carried out over many years
and is still an active area of research. The techniques described in this article have
been implemented in tens of tools. The application of those tools has, collectively,
found thousands of new bugs, many of them critical from a reliability or security
point of view, in many different application domains.

While this progress is significant and enoucouraging, there is room for further
improvements. Automated test generation tools have been successfully applied
to several application domains so far, but they are not being used routinely yet
by most software developers and testers. New application domains are arising
for which the techniques described here need significant rethinking. For exam-
ple the models automatically learned by machine-learning algorithms (e.g., used
in self-driving vehicles) are unlike regular programs, and so testing them auto-
matically requires new approaches. More work is required to further lower the
cost of automated test generation (e.g., in terms of computation and memory)
while increasing the value it provides (e.g., by providing actionable information
on how to fix the bugs instead of just providing test cases). Automated testing
can benefit from human insights (both in terms of providing test criteria and in
prioritizing test case search), and the potential of combining human intelligence

Automated Software Test Generation 525

with fuzzing and symbolic execution has yet to be realized. We also see oppor-
tunities for machine learning in automated testing, such as in learning input
grammars from examples and leveraging these grammars for generating tests.
Finally, the goal of automated test generation is to enable software engineers to
produce better software faster, and further research is required on how best to
integrate testing tools in software development processes, in particular modern
agile processes and continuous integration, and how to tighten the feedback loop
for fixing bugs.

References

1. Aizatsky, M., Serebryany, K., Chang, O., Arya, A., Whittaker, M.: Announcing
OSS-Fuzz: Continuous fuzzing for open source software (2016). https://testing.
googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html

2. Alberti, F., Ghilardi, S., Sharygina, N.: Decision procedures for flat array prop-
erties. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp.
15–30. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8 2

3. Anand, S., Godefroid, P., Tillmann, N.: Demand-driven compositional symbolic
execution. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol.
4963, pp. 367–381. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78800-3 28

4. Artzi, S., Kiezun, A., Dolby, J., Tip, F., Dig, D., Paradkar, A.M., Ernst, M.D.:
Finding bugs in web applications using dynamic test generation and explicit-state
model checking. IEEE Trans. Softw. Eng. 36(4), 474–494 (2010)

5. Arya, A., Neckar, C.: Fuzzing for security (2012). https://blog.chromium.org/
2012/04/fuzzing-for-security.html

6. Avgerinos, T., Cha, S.K., Hao, B.L.T., Brumley, D.: AEG: automatic exploit
generation. In: Network and Distributed System Security Symposium (2011)

7. Babic, D., Hu, A.J.: Calysto: scalable and precise extended static checking. In:
International Conference on Software Engineering (2008)

8. Ball, T., Bounimova, E., Levin, V., Kumar, R., Lichtenberg, J.: The static driver
verifier research platform. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 119–122. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14295-6 11

9. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111,
pp. 364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192 17

10. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

11. Bazhaniuk, O., Loucaides, J., Rosenbaum, L., Tuttle, M.R., Zimmer, V.: Symbolic
execution for BIOS security. In: USENIX Workshop on Offensive Technologies
(2015)

12. Bellard, F.: QEMU, a fast and portable dynamic translator. In: USENIX Annual
Technical Conference (2005)

13. Bounimova, E., Godefroid, P., Molnar, D.: Billions and billions of constraints:
whitebox fuzz testing in production. In: International Conference on Software
Engineering (2013)

https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://doi.org/10.1007/978-3-642-54862-8_2
https://doi.org/10.1007/978-3-540-78800-3_28
https://doi.org/10.1007/978-3-540-78800-3_28
https://blog.chromium.org/2012/04/fuzzing-for-security.html
https://blog.chromium.org/2012/04/fuzzing-for-security.html
https://doi.org/10.1007/978-3-642-14295-6_11
https://doi.org/10.1007/978-3-642-14295-6_11
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14

526 G. Candea and P. Godefroid

14. Boyer, R.S., Elspas, B., Levitt, K.N.: SELECT - a formal system for testing and
debugging programs by symbolic execution. SIGPLAN Not. 10, 234–245 (1975)

15. Brumley, D., Poosankam, P., Song, D., Zheng, J.: Automatic patch-based exploit
generation is possible: techniques and implications. In: IEEE Symposium on Secu-
rity and Privacy (2008)

16. Brummayer, R., Biere, A.: Boolector: an efficient SMT solver for bit-vectors and
arrays. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp.
174–177. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00768-
2 16

17. Bucur, S., Kinder, J., Candea, G.: Prototyping symbolic execution engines for
interpreted languages. In: International Conference on Architectural Support for
Programming Languages and Operating Systems (2014)

18. Bucur, S., Ureche, V., Zamfir, C., Candea, G.: Parallel symbolic execution for
automated real-world software testing. In: ACM EuroSys European Conference
on Computer Systems (2011)

19. Burch, J., Clarke, E., McMillan, K., Dill, D., Hwang, L.: Symbolic model checking:
1020 states and beyond. In: Symposium on Logic in Computer Science (1990)

20. Burnim, J., Sen, K.: Heuristics for scalable dynamic test generation. In: Interna-
tional Conference on Automated Software Engineering (2008)

21. Bush, W., Pincus, J., Sielaff, D.: A static analyzer for finding dynamic program-
ming errors. Softw. Practice Exp. 30(7), 775–802 (2000)

22. Cadar, C., Engler, D.: Execution generated test cases: how to make systems
code crash itself. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 2–23.
Springer, Heidelberg (2005). https://doi.org/10.1007/11537328 2

23. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Symposium on Operating
System Design and Implementation (2008)

24. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automati-
cally generating inputs of death. In: Conference on Computer and Communication
Security (2006)

25. Candea, G.: A software certification service. In: Symposium on Operating System
Design and Implementation (2008). “Research Vision” talk session

26. Candea, G., Bucur, S., Zamfir, C.: Automated software testing as a service. In:
Symposium on Cloud Computing (2010)

27. CERT: CERT database of security vulnerabilities (2017). http://www.cert.org/
vulnerability-analysis/knowledgebase/

28. Cha, S.K., Avgerinos, T., Rebert, A., Brumley, D.: Unleashing Mayhem on binary
code. In: IEEE Symposium on Security and Privacy (2012)

29. Chen, H., Dean, D., Wagner, D.: Model checking one million lines of C code. In:
Network and Distributed System Security Symposium (2004)

30. Chipounov, V., Candea, G.: Reverse engineering of binary device drivers with
RevNIC. In: ACM EuroSys European Conference on Computer Systems (2010)

31. Chipounov, V., Kuznetsov, V., Candea, G.: S2E: a platform for in-vivo multi-
path analysis of software systems. In: International Conference on Architectural
Support for Programming Languages and Operating Systems (2011)

32. Chipounov, V., Kuznetsov, V., Candea, G.: The S2E platform: design, imple-
mentation, and applications. ACM Trans. Comput. Syst. 30(1), 2 (2012). Special
issue: Best papers of ASPLOS

33. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: ACM SIGPLAN International Conference on Functional
Programming (2000)

https://doi.org/10.1007/978-3-642-00768-2_16
https://doi.org/10.1007/978-3-642-00768-2_16
https://doi.org/10.1007/11537328_2
http://www.cert.org/vulnerability-analysis/knowledgebase/
http://www.cert.org/vulnerability-analysis/knowledgebase/

Automated Software Test Generation 527

34. Clang Users Manual: Undefined behavior sanitizer (2017). http://clang.llvm.org/
docs/UsersManual.html

35. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using sat-
isfiability solving. Formal Methods Syst. Des. 19(1), 7–34 (2001)

36. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

37. Clarke, L.A.: A program testing system. In: ACM Annual Conference (1976)
38. Clarke, L.A., Richardson, D.J.: Applications of symbolic evaluation. J. Syst.

Softw. 5(1), 15–35 (1985)
39. Cohen, D.M., Dalal, S.R., Parelius, J., Patton, G.C.: The combinatorial design

approach to automatic test generation. IEEE Softw. 13(5), 83–88 (1996)
40. Coppit, D., Lian, J.: Yagg: an easy-to-use generator for structured test inputs.

In: International Conference on Automated Software Engineering (2005)
41. Cyberhaven Inc: Cyberhaven product line. http://cyberhaven.io/
42. Daniel, B., Dig, D., Garcia, K., Marinov, D.: Automated testing of refactoring

engines. In: Symposium on the Foundations of Software Engineering (2007)
43. Das, M., Lerner, S., Seigle, M.: ESP: path-sensitive program verification in poly-

nomial time. In: International Conference on Programming Language Design and
Implementation (2002)

44. Dhurjati, D., Kowshik, S., Adve, V.: Safecode: enforcing alias analysis for weakly
typed languages. In: International Conference on Programming Language Design
and Implementation (2006)

45. Dijkstra, E.W.: Notes on Structured Programming. In: Structured Programming.
Academic Press, Cambridge (1972)

46. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of
programs. Commun. ACM 18(8), 453–457 (1975)

47. Dobrescu, M., Argyraki, K.: Software dataplane verification. In: Symposium on
Networked Systems Design and Implementation (2014)

48. Drusinsky, D.: The temporal rover and the ATG rover. In: Havelund, K., Penix, J.,
Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 323–330. Springer, Heidelberg
(2000). https://doi.org/10.1007/10722468 19

49. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006). https://doi.org/10.1007/11817963 11

50. Edelstein, O., Farchi, E., Goldin, E., Nir, Y., Ratsaby, G., Ur, S.: Framework
for testing multi-threaded Java programs. Concurrency Comput.: Practice Exp.
15(3–5), 485–499 (2003)

51. EPFL and Cyberhaven Inc: S2E software distribution. http://s2e.systems/
52. Etoh, H.: Propolice: GCC extension for protecting applications from stack-

smashing attacks (2000). https://www.researchgate.net/publication/243483996
GCC extension for protecting applications from stack-smashing attacks

53. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: Symposium on Principles of Programming Languages (2005)

54. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for Java. In: International Conference on Programming
Language Design and Implementation (2002)

55. Forrester, J.E., Miller, B.P.: An empirical study of the robustness of windows NT
applications using random testing. In: USENIX Windows System Symposium
(2000)

http://clang.llvm.org/docs/UsersManual.html
http://clang.llvm.org/docs/UsersManual.html
https://doi.org/10.1007/978-3-540-24730-2_15
http://cyberhaven.io/
https://doi.org/10.1007/10722468_19
https://doi.org/10.1007/11817963_11
http://s2e.systems/
https://www.researchgate.net/publication/243483996_GCC_extension_for_protecting_applications_from_stack-smashing_attacks
https://www.researchgate.net/publication/243483996_GCC_extension_for_protecting_applications_from_stack-smashing_attacks

528 G. Candea and P. Godefroid

56. Ganai, M.K., Gupta, A.: Tunneling and slicing: towards scalable BMC. In: Design
Automation Conference (2008)

57. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-73368-3 52

58. Godefroid, P.: Model checking for programming languages using VeriSoft. In:
Symposium on Principles of Programming Languages (1997)

59. Godefroid, P.: Compositional dynamic test generation. In: Symposium on Prin-
ciples of Programming Languages (2007)

60. Godefroid, P.: Higher-order test generation. In: International Conference on Pro-
gramming Language Design and Implementation (2011)

61. Godefroid, P., Kiezun, A., Levin, M.Y.: Grammar-based whitebox fuzzing. In:
International Conference on Programming Language Design and Implementation
(2008)

62. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: International Conference on Programming Language Design and Implemen-
tation (2005)

63. Godefroid, P., Lahiri, S.K.: From program to logic: an introduction. In: LASER
Summer School (2012)

64. Godefroid, P., Levin, M., Molnar, D.: Automated whitebox fuzz testing. In: Net-
work and Distributed System Security Symposium (2008)

65. Godefroid, P., Levin, M., Molnar, D.: SAGE: whitebox fuzzing for security testing.
Commun. ACM 55(3) (2012)

66. Godefroid, P., Molnar, D.: Fuzzing in the cloud. Technical report MSR-TR-2010-
29, Microsoft Research, March 2010

67. Godefroid, P., Nori, A., Rajamani, S., Tetali, S.: Compositional may-must pro-
gram analysis: unleashing the power of alternation. In: Symposium on Principles
of Programming Languages (2010)

68. Gupta, N., Mathur, A.P., Soffa, M.L.: Generating test data for branch coverage.
In: International Conference on Automated Software Engineering (2000)

69. Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model generation by moderated
regular extrapolation. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS,
vol. 2306, pp. 80–95. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45923-5 6

70. Hallem, S., Chelf, B., Xie, Y., Engler, D.: A system and language for build-
ing system-specific static analyses. In: International Conference on Programming
Language Design and Implementation (2002)

71. Hanford, K.: Automatic generation of test cases. IBM Syst. J. 9(4) (1970)
72. Hansen, T., Schachte, P., Søndergaard, H.: State joining and splitting for the

symbolic execution of binaries. In: Bensalem, S., Peled, D.A. (eds.) RV 2009.
LNCS, vol. 5779, pp. 76–92. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-04694-0 6

73. Havelund, K., Rosu, G.: Monitoring Java programs with Java PathExplorer. In:
International Conference on Runtime Verification (2001)

74. Howar, F., Jonsson, B., Vaandrager, F.: Combining black-box and white-box tech-
niques for learning register automata. In: Steffen, B., Woeginger, G. (eds.) Com-
puting and Software Science. LNCS, vol. 10000, pp. 563–588. Springer, Heidelberg
(2018)

75. Howard, M., Lipner, S.: The Security Development Lifecycle. Microsoft Press
(2006)

https://doi.org/10.1007/978-3-540-73368-3_52
https://doi.org/10.1007/3-540-45923-5_6
https://doi.org/10.1007/3-540-45923-5_6
https://doi.org/10.1007/978-3-642-04694-0_6
https://doi.org/10.1007/978-3-642-04694-0_6

Automated Software Test Generation 529

76. Howden, W.: Symbolic testing and the DISSECT symbolic evaluation system.
IEEE Trans. Softw. Eng. 3(4) (1977)

77. Ivančić, F., Yang, Z., Ganai, M.K., Gupta, A., Shlyakhter, I., Ashar, P.: F-Soft:
software verification platform. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005.
LNCS, vol. 3576, pp. 301–306. Springer, Heidelberg (2005). https://doi.org/10.
1007/11513988 31

78. Jelinek, J.: Fortify source: Object size checking to prevent (some) buffer overflows.
https://gcc.gnu.org/ml/gcc-patches/2004-09/msg02055.html

79. King, J.C.: Symbolic execution and program testing. J. ACM 19(7) (1976)
80. Korel, B.: A dynamic approach of test data generation. In: IEEE Conference on

Software Maintenance (1990)
81. Kuznetsov, V., Chipounov, V., Candea, G.: Testing closed-source binary device

drivers with DDT. In: USENIX Annual Technical Conference (2010)
82. Kuznetsov, V., Kinder, J., Bucur, S., Candea, G.: Efficient state merging in sym-

bolic execution. In: International Conference on Programming Language Design
and Implementation (2012)

83. Lämmel, R., Schulte, W.: Controllable combinatorial coverage in grammar-
based testing. In: Uyar, M.Ü., Duale, A.Y., Fecko, M.A. (eds.) TestCom 2006.
LNCS, vol. 3964, pp. 19–38. Springer, Heidelberg (2006). https://doi.org/10.1007/
11754008 2

84. Libfuzzer–a library for coverage-guided fuzz testing. http://llvm.org/docs/
LibFuzzer.html

85. Luckow, K., Dimjašević, M., Giannakopoulou, D., Howar, F., Isberner, M., Kah-
sai, T., Rakamarić, Z., Raman, V.: JDart: a dynamic symbolic analysis frame-
work. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp.
442–459. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-
9 26

86. Majumdar, R., Xu, R.: Directed test generation using symbolic grammars. In:
International Conference on Automated Software Engineering (2007)

87. Majumdar, R., Xu, R.-G.: Reducing test inputs using information partitions. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 555–569. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 41

88. Mauborgne, L., Rival, X.: Trace partitioning in abstract interpretation based
static analyzers. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 5–20.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31987-0 2

89. Maurer, P.: Generating test data with enhanced context-free grammars. IEEE
Softw. 7(4) (1990)

90. McMinn, P.: Search-based software test data generation: a survey. Int. J. Softw.
Test. Verification Reliab. 14(2) (2004)

91. Microsoft: Project springfield. https://www.microsoft.com/springfield/
92. Miller, B., Fredriksen, L., So, B.: An empirical study of the reliability of UNIX

utilities. Commun. ACM 33(12) (1990)
93. Molnar, D., Wagner, D.: Catchconv: symbolic execution and run-time type infer-

ence for integer conversion errors. Technical report EECS-2007-23, U.C. Berkeley
(2007)

94. Mosberger, D.: Memory consistency models. ACM SIGOPS Oper. Syst. Rev.
27(1) (1993)

95. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

https://doi.org/10.1007/11513988_31
https://doi.org/10.1007/11513988_31
https://gcc.gnu.org/ml/gcc-patches/2004-09/msg02055.html
https://doi.org/10.1007/11754008_2
https://doi.org/10.1007/11754008_2
http://llvm.org/docs/LibFuzzer.html
http://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1007/978-3-662-49674-9_26
https://doi.org/10.1007/978-3-662-49674-9_26
https://doi.org/10.1007/978-3-642-02658-4_41
https://doi.org/10.1007/978-3-540-31987-0_2
https://www.microsoft.com/springfield/
https://doi.org/10.1007/978-3-540-78800-3_24

530 G. Candea and P. Godefroid

96. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. In: International Conference on Programming Language
Design and Implementation (2007)

97. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P.A., Neamtiu, I.: Finding
and reproducing Heisenbugs in concurrent programs. In: Symposium on Operating
System Design and Implementation (2008)

98. Offutt, A.J., Jin, Z., Pan, J.: The dynamic domain reduction procedure for test
data generation. Softw. Practice Exp. 29(2) (1999)

99. Peach fuzzer (2017). http://www.peachfuzzer.com/
100. Spike fuzzer (2017). http://resources.infosecinstitute.com/fuzzer-automation-

with-spike/
101. Purdom, P.: A sentence generator for testing parsers. BIT Numer. Math. 12(3)

(1972)
102. Raffelt, H., Merten, M., Steffen, B., Margaria, T.: Dynamic testing via automata

learning. Int. J. Softw. Tools Technol. Transf. 11(4) (2009)
103. Ramamoorthy, C., Ho, S.B., Chen, W.: On the automated generation of program

test data. IEEE Trans. Softw. Eng. 2(4) (1976)
104. Renzelmann, M.J., Kadav, A., Swift, M.M.: Symdrive: testing drivers without

devices. In: Symposium on Operating System Design and Implementation (2012)
105. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via

graph reachability. In: Symposium on Principles of Programming Languages
(1995)

106. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic
execution framework for javascript. In: IEEE Symposium on Security and Privacy,
pp. 513–528 (2010)

107. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
Symposium on the Foundations of Software Engineering (2005)

108. Serebryany, K., Bruening, D., Potapenko, A., Vyukov, D.: AddressSanitizer: a
fast address sanity checker. In: USENIX Annual Technical Conference (2012)

109. Serebryany, K., Iskhodzhanov, T.: ThreadSanitizer - data race detection in prac-
tice. In: Workshop on Binary Instrumentation and Applications (2009)

110. Sirer, E., Bershad, B.: Using production grammars in software testing. In: Con-
ference on Domain-Specific Languages (1999)

111. Song, D., et al.: BitBlaze: a new approach to computer security via binary analysis.
In: Sekar, R., Pujari, A.K. (eds.) ICISS 2008. LNCS, vol. 5352, pp. 1–25. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-89862-7 1

112. Sutton, M., Greene, A., Amini, P.: Fuzzing: Brute Force Vulnerability Discovery.
Addison-Wesley Professional, Boston (2007)

113. Tillmann, N., de Halleux, J.: Pex–white box test generation for .NET. In: Beck-
ert, B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-79124-9 10

114. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Int. J. Softw. Test. Verification Reliab. 22(5) (2012)

115. Villanueva, J.C.: How many atoms are there in the universe? (2015). http://www.
universetoday.com/36302/atoms-in-the-universe/

116. Wagner, J., Kuznetsov, V., Candea, G.: -OVERIFY: optimizing programs for fast
verification. In: Workshop on Hot Topics in Operating Systems (2013)

http://www.peachfuzzer.com/
http://resources.infosecinstitute.com/fuzzer-automation-with-spike/
http://resources.infosecinstitute.com/fuzzer-automation-with-spike/
https://doi.org/10.1007/978-3-540-89862-7_1
https://doi.org/10.1007/978-3-540-79124-9_10
http://www.universetoday.com/36302/atoms-in-the-universe/
http://www.universetoday.com/36302/atoms-in-the-universe/

Automated Software Test Generation 531

117. Williams, N., Marre, B., Mouy, P., Roger, M.: PathCrawler: automatic generation
of path tests by combining static and dynamic analysis. In: Dal Cin, M., Kaâniche,
M., Pataricza, A. (eds.) EDCC 2005. LNCS, vol. 3463, pp. 281–292. Springer,
Heidelberg (2005). https://doi.org/10.1007/11408901 21

118. Xie, Y., Aiken, A.: Scalable error detection using Boolean satisfiability. In: Sym-
posium on Principles of Programming Languages (2005)

119. Zalewski, M.: American Fuzzy Loop (2017). http://lcamtuf.coredump.cx/afl/

https://doi.org/10.1007/11408901_21
http://lcamtuf.coredump.cx/afl/

Runtime Verification Past Experiences
and Future Projections

Klaus Havelund1(B), Giles Reger2, and Grigore Roşu3

1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
klaus.havelund@jpl.nasa.gov

2 University of Manchester, Manchester, UK
3 University of Illinois at Urbana-Champaign, Urbana, USA

Abstract. The paper provides an overview of the work performed by
the authors since the year 2000 in the field of runtime verification. Run-
time verification is the discipline of analyzing program/system executions
using rigorous methods. The discipline covers such topics as specification-
based monitoring, where single executions are checked against formal
specifications; predictive runtime analysis, where properties about a sys-
tem are predicted/inferred from single (good) executions; fault protec-
tion, where monitors actively protect a running system against errors;
specification mining from execution traces; visualization of execution
traces; and to be fully general: computation of any interesting informa-
tion from execution traces. The paper attempts to draw lessons learned
from this work, and to project expectations for the future of the field.

1 Introduction

Runtime verification (RV) [10,32,41] has emerged as a field of computer science
within the last couple of decades. RV is concerned with the rigorous monitoring
and analysis of software and hardware system executions. The field, or parts
of it, can be encountered under several other names, including, e.g., runtime
checking, monitoring, dynamic analysis, and runtime analysis. Since only single
executions are analyzed, RV scales well compared to more comprehensive formal
methods, but of course at the cost of coverage. Nonetheless, RV can be useful
due to the rigorous methods involved.

The first and last author’s initial interest in RV started around 2000. We had
at that time explored software model checking with the Java PathFinder tool
[43,49]. Part of that work focused on exploring the spectrum from full formal
verification to more scalable testing. That investigation led to our interest in RV.
Our initial efforts were inspired by Doron Drusinky’s Temporal Rover system [30]
for monitoring temporal logic properties, and by the company Compaq’s work
on predictive data race and deadlock detection algorithms [36]. These algorithms
can detect the potential for a data race or deadlock by analyzing a run that does

K. Havelund—The research performed by this author was carried out at Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration.

c© Springer Nature Switzerland AG 2019

B. Steffen and G. Woeginger (Eds.): Computing and Software Science, LNCS 10000, pp. 532–562, 2019.

https://doi.org/10.1007/978-3-319-91908-9_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91908-9_25&domain=pdf
https://doi.org/10.1007/978-3-319-91908-9_25

Runtime Verification Past Experiences and Future Projections 533

not necessarily encounter the error. This paper reports on our own RV work,
with some references to related work that specifically inspired us or which we
find closely related, and discusses the lessons learned and our perspective on the
future of this field.

A particular software or hardware system to be monitored is from here on
referred to as the System Of Interest (SOI). We shall, due to our own lack of
experience in monitoring hardware systems, limit our focus to monitoring of
software systems, although for the majority of the discussion this distinction is
not important. An important part of RV is how to extract an execution trace
from an SOI, for example through manual logging or automated code instru-
mentation. This touches on the combination of static and dynamic analysis. We
are not dealing with how to obtain various executions, as in e.g. test case gen-
eration (another important topic covered e.g. in [18] in this volume). Runtime
verification can be used prior to deployment for testing purposes, referred to as
test oracles in [18], and during deployment for ensuring safety and security, e.g.
as part of a fault protection strategy.

As a more formal account, assume an SOI S, and assume that an execution
of S is captured as an execution trace σ = 〈e1, e2, . . . , en〉, which is a sequence
of observed events. Each event ei captures a snapshot of S’s execution state.
Monitors can be deeply embedded in the running system, able to access the full
state of the system, or they can observe from a “distance”, receiving execution
events (data records) from the running system. Assume the type E of events,
then the RV problem can be formulated as constructing a program M : E∗ → D,
which when applied to a trace σ, as in M(σ), returns some data value d ∈ D in
a domain D of interest. The problem can be generalized to computing a result
from multiple traces (as e.g. done in learning and statistical model checking),
giving M the type1 M : P(E∗) → D.

In specification-based RV, M can be generated from a formal specification
given in e.g. temporal logic, state machine notation, regular expressions, and d is
a value in the Boolean domain (d ∈ B), or some extension of the Boolean domain
as discussed in [12], indicating whether the trace conforms to the specification.
However, the field should be perceived broadly, e.g. d can be a visualization
of the execution trace, a learned specification (specification mining), statistical
information about the trace, an action to perform on the running system S, etc.

The body of the paper is largely organized according to the time periods
in which the research was performed. Section 2 describes the first systems we
developed, starting with monitoring propositional events, and transitioning to
monitoring of parametric events carrying data, focusing on expressive logics as
well as efficient monitoring algorithms based on trace slicing. Section 3 describes
our experiments with aspect-oriented programming as a natural way of combin-
ing RV and code instrumentation. Section 4 describes early rule-based systems,
as well as systems developed specifically targeting space mission applications.
Section 5 describes our experiments with internal DSLs defined as APIs in a
programming language. Furthermore, trace slicing is yet again pursued for an

1 For any set S, P(S) is the power set of S, containing all subsets of S as elements.

534 K. Havelund et al.

Fig. 1. The JPaX architecture.

expressive logic, and a system for Complex Event Processing (CEP) is devel-
oped, where the result of monitoring is a more complex data structure than just
a Boolean value. Section 6 covers mostly the entire period, and describes efforts
in predictive analysis, concerned with predicting anomalies in programs from
successful observed executions. Finally, Sect. 7 reflects on the presented work,
and provides thoughts on the future of the field of runtime verification.

2 2000–2005 - From Propositional to Parametric RV

2.1 Java PathExplorer

Architecture. Our first monitoring system, Java PathExplorer (JPaX) [47,48]
was a general framework for analyzing execution traces. It supported three
kinds of algorithms: propositional temporal logic conformance checking, data
race detection, and deadlock detection. Figure 1 shows JPaX’s architecture. A
Java program is instrumented (at byte code level) to issue events to the moni-
toring side, which is customizable, allowing the addition of new monitors. The
temporal logic monitoring module was originally based on a propositional future
time linear temporal logic, but was later extended to also cover past time.

Future Time LTL. The future time LTL monitoring used Maude to rewrite
formulas. Consider, e.g., the LTL formula p U q, meaning q eventually becomes
true and until then p is true. The implementation of JPaX was based on classical
equational laws for temporal operators, such as:

p U q = q ∧ ©(p U q) and �p = p ∧ ©(�p) (1)

Consider the sample formula �(green → ©(¬red U yellow)). Upon
encountering a green in a trace, the formula will be rewritten into the following

Runtime Verification Past Experiences and Future Projections 535

formula, which must be true in the next state: (¬red U yellow) ∧ �(green →
(¬red U yellow)). In Maude this was realized by a few simple rewrite rules,
including the following two for the until operator (E is an event and T is a trace,
the first rule handles the case of a trace consisting of only one event):

eq E |= X U Y = E |= Y .
eq E,T |= X U Y = E,T |= Y or E,T |= X and T |= X U Y .

Past Time LTL. Later, an efficient dynamic programming algorithm for mon-
itoring past time logic was developed [47]. Consider the following past time for-
mula: red → �green (whenever red is observed, in the past there has been a
green). The algorithm for checking past time formulas like this uses two arrays,
now and pre, recording the status of each sub-formula now and previously. Index
0 refers to the formula itself with positions ordered by the sub-formula relation.
Then for this property, for each observed event the arrays are updated as follows.

bool pre [0..3], now [0..3];

fun processEvent(e) { // Sub−formula:
now[3] := (event = red) // red
now[2] := (event = green) // green
now[1] := now[2] || pre [1] // PREV green
now[0] := !now[3] || now[1] // red −> PREV green
if !now[0] then output (‘‘ property violated ’’);
pre := now;

}

Data Races and Deadlocks. When used for bug finding, the effectiveness of
runtime verification depends on the choice of test suite. For concurrent systems
this is critical, due to the many possible non-deterministic execution paths. Pre-
dictive runtime analysis approaches this problem by replacing a target property
P with a stronger property Q such that there is a high probability that the
program satisfies P iff a random trace of the program will satisfy Q. Some of
the first such algorithms, which greatly inspired us, were implemented in Com-
paq’s Visual Threads tool [36] for analyzing multi-threaded applications in C and
C++. One such algorithm was the Eraser algorithm [68], for detecting potentials
for data races (where two threads can access a shared variable simultaneously).
It is often referred to as the lock set algorithm as each variable is associated with
a set of locks protecting it. Alternatively, the lock graph algorithm, would detect
“dining philosopher”-like deadlock potentials by building a simple lock graph
where a cycle indicates a deadlock potential. We continued this line of work in
a variety of ways. In [37] we explored the idea of letting a predictive analysis
guide a model checker towards data race and deadlock potentials. In [15] we aug-
ment the original lock graph algorithm to reduce false positive in the presence of
guard locks (locks that prevent cyclic deadlocks). Other forms of data races than

536 K. Havelund et al.

those detected by Eraser are possible. In [3] is described a dynamic algorithm for
detecting so-called high-level data races (races involving collections of variables).
Section 6 goes into more detail with research on predictive analysis.

2.2 Eagle

JPaX had a number of limitations. The perhaps most important was the propo-
sitional nature of the temporal logics. One could not, for example, monitor para-
metric events carrying data, such as openFile(“data.txt”). A second drawback
of JPaX was the separation between past time and future time temporal logic,
in two different logical systems. More generally, it seemed to us unfortunate
that one had to pick a particular logic amongst the many existing for writing
temporal properties, including past and future time temporal logic, extended
regular expressions, state machines, interval logics, real-time logics, data con-
straint logics, and statistical logics. It would be very attractive if a user could
define his/her own temporal logic from a small set of primitives. These thoughts
lead, during 2003, to the work on Eagle, first documented in [6]. Eagle was a
small and general logic having similarities with the μ-calculus.

The logic allowed the definition of new temporal operators which could be
parameterized with formulas and primitive data such as integers. In addition to
the standard Boolean operators, the logic includes: © f (next f),

⊙
f (previ-

ous f), f1 · f2 (concatenation: f1 on part of the trace and f2 on the remaining
part of the trace), f (now f), and N(f1 ,...,fn) (call N with arguments). A fun-
damental idea in Eagle was the option for a user to define temporal operators
using recursion similar to the equations in (1) on page 3. Such user-defined tem-
poral operators are defined as follows in Eagle:

min Until(Form f1 , Form f2) = f2 ∨ (f1 ∧ © Until(f1 ,f2))
max Always(Form f) = f ∧ © Always(f)

Note how the different operators are defined as respectively minimal and max-
imal fixpoints, reflecting the definition of liveness and safety properties respec-
tively. The difference in semantics appears at the boundaries of a trace where
remaining minimal terms evaluate to false whereas maximal terms evaluate to
true. These can now be used in writing monitors as follows:

mon M = Always(x > 0 ⇒ Eventually(y > 0))

Eagle handles data parameterized formulas through data parameterized rules.
Consider the first-order temporal logic formula (“whenever x > 0, then if we
name x’s value k, then eventually y = k”): �(x > 0 → ∃k . (x = k ∧ ♦y = k)).
This can be formulated in Eagle using a data parameterized rule as follows.

min yBecomes(int k) = Eventually(y = k)
mon M = Always(x > 0 ⇒ yBecomes(x))

The later Hawk system [27] was an attempt to tie Eagle to the monitoring of
Java programs with automated code instrumentation using aspect-oriented pro-
gramming, specifically AspectJ [57]. A similar (and simultaneous) integration of

Runtime Verification Past Experiences and Future Projections 537

parametric runtime verification (with LTL) and AspectJ was presented in the
J-LO tool [78]. Hawk supports two modal constructs inspired by dynamic logic:
the construct <e> F means that e can occurand the proposition F is true there-
after. The construct [e] F means that if e occurs, then F is true thereafter. As
a complete example, consider the following observer, monitoring that elements
put into a buffer eventually get taken out of the buffer:

observer BufferObserver {
var Buffer b ; var Object o ; var Object k ;

mon B = Always ([b?.put(o?)]
Eventually (<b.get() returns k?> (o == k))) .

}

2.3 JavaMOP

The same JPaX limitations that motivated the development of Eagle also stimu-
lated the apparition of monitoring-oriented programming (MOP) [21–23]. MOP
proposed that runtime monitoring be supported and encouraged as a fundamen-
tal principle of software development, where monitors are automatically syn-
thesized from formal specifications and integrated at appropriate places in the
program. Violations and/or validations of specifications can trigger user-defined
code at any points in the program, in particular recovery code, outputting/send-
ing messages, or raising exceptions. MOP has made three important early contri-
butions. First, it proposed specification formalism independence, allowing users
to insert their favorite or domain-specific requirements specification formalisms
via logic plugin modules. Second, it proposed automated code instrumentation
as a means to weave the monitoring checking code within the application; the
first version in 2003 used Perl for instrumentation [22], while the subsequent ver-
sions starting with 2004 [21] used AspectJ [57]. Finally, it proposed a formalism-
independent semantics and implementation for parametric specifications.

Parametric properties are properties with free variables, allowing us to
describe behaviors of collections of related objects. Consider, for example, the
following JavaMOP parametric property.

SafeLock(Lock l, Thread t) {
event acquire before(Lock l , Thread t):

call (∗ Lock.acquire ()) && target(l) && thread(t) {}
event release before(Lock l , Thread t):

call (∗ Lock. release ()) && target(l) && thread(t) {}
event begin before(Thread t):
execution(∗ ∗.∗(..)) && thread(t) && !within(Lock+) {}

event end after(Thread t):
execution(∗ ∗.∗(..)) && thread(t) && !within(Lock+) {}

cfg: S −> S begin S end | S acquire S release | epsilon

538 K. Havelund et al.

@fail { System.out. println ("Improper lock usage"); }
}

It has two parameters: a lock and a thread. The four event declarations declare
the parametric events of interest, and the property, in this case formalized using
the context-free grammar (CFG) plugin, states that each acquire and release
event should be paired in the same method. Any mismatched acquire or release
is considered to be a violation of the property. At violation we chose to report
an error message, but any Java code can be executed, e.g., recovery code. Note
that this property cannot be expressed using regular patterns or automata.

It is not trivial to monitor parametric properties efficiently. For the example
it is not uncommon in a multi-threaded Java program execution to see thou-
sands of threads created/terminated and thousands of synchronization locks
acquired/released by such threads dynamically. Conceptually, execution traces
are sliced according to each observed instance of the parameters, and each slice
is checked by its own monitor instance in a manner that is independent of the
employed specification formalism. The practical challenge is how to deal with
the potentially huge number of monitor instances.

JavaMOP proposed several optimizations, presented in [66] together with the
mathematical foundations of parametric monitoring. For example, we can ignore
parameter instances that can never reach the target monitor states (e.g., not
all threads use all locks). Also, some monitors can become unnecessary during
execution because the objects that can generate the triggering events have died;
such unnecessary monitors can and should be garbage collected.

A demo of JavaMOP is found at http://fsl.cs.uiuc.edu/JavaMOPDemo.html.
The academic JavaMOP project has been migrated into the commercial RV-
Monitor tool at http://runtimeverification.com/monitor. In addition to efficient
support for simultaneous monitoring of multiple specifications, a major innova-
tions of RV-Monitor is to separate instrumentation from the efficient monitor-
ing data-structures. The former can be done either manually or using AspectJ
(statically at compile time or dynamically as a Java agent), while the latter is
automatically generated as a library from the parametric specifications.

3 2005–2006 - Further Experimentation with AOP

Whilst initial runtime verification frameworks targeted Java, the RMOR
(Requirement Monitoring and Recovery) framework [38] targeted the monitoring
of C programs against state machines using a homegrown aspect-oriented frame-
work to perform program instrumentation. RMOR is implemented in OCaml
using CIL (C Intermediate Language), a C program analysis and transforma-
tion system, itself written in OCaml. Consider as an example an application for
uplinking data from a planetary rover to a space craft, and consider the prop-
erty: “It is illegal to have more than one connection opened at any time”. This
requirement can be formulated as follows.

http://fsl.cs.uiuc.edu/JavaMOPDemo.html
http://runtimeverification.com/monitor

Runtime Verification Past Experiences and Future Projections 539

monitor UplinkRequirement {
event OPEN = after call(main.c:open connection);
event CLOSE = after call(main.c:close connection);

initial state Closed {
when OPEN → Opened;

}

live state Opened {
when CLOSE → Closed;
when OPEN → error;

}
}

The Opened state is a live state as indicated by the modifier keyword live,
meaning a non-acceptance state. Other state modifiers include super states as
in hierarchical state charts. It is possible to provide a call-back handler function
to be called for each detected violation. However, RMOR is propositional.

In previous solutions (such as Hawk and MOP) we have seen monitors trans-
lated to aspects. A more radical approach is to take the view that monitors are
aspects. Some of our experiments went in the direction of what today is called
state-full aspects [1,80]. We proposed this line of work already in [34]. An (non-
finished) attempt in this direction was XspeC [50], designed to be an extension
of ACC (an aspect-oriented programming framework for C) with data parame-
terized monitoring using state machines. As an example, consider the property
of a C program that a file should be opened and eventually closed in that order.
When an already opened file is re-opened the attempt should be logged and
when the program terminates all opened files should be closed. The specification
in XspeC becomes as follows.

xspec OpenClose(char ∗file) {
pointcut open : call (void openfile (char∗)) && args(file);
pointcut close : call (void closefile (char∗)) && args(file);

state FileClosed {
after : open(file) → FileOpen;
after : close (file) ⇒ error ;

}

live state FileOpen {
after : open(file) ⇒ error { log(file); }
after : close (file) → FileClosed ;
before : end { closefile (file); }

}
}

540 K. Havelund et al.

The specification is parameterized with a file, meaning that it is intended to
track the behavior of a file. The intended semantics is similar to the semantics
of Tracematches [1] and MOP in that we consider a specification to denote an
infinite set of monitors, one for each file as indicated by the parameter to the
specification. The double arrow (⇒) denotes a transition that stays in the source
state (for continued verification), in contrast to the single arrow (→).

In [34] we discussed the idea (and similar work was proposed in HandlErr
[74]), to extend aspect-oriented programming in two ways: vertically and hori-
zontally. The pointcut languages originally supported, for example in AspectJ,
have been limited, reducing to method calls and assignment to variables. A verti-
cal extension consists of enriching the pointcut language to cover more concepts,
such as e.g. branching on a conditional, cycling through a loop, or acquiring
and releasing a lock. Some of the algorithms described in this paper analyz-
ing multi-threaded programs for data races and deadlocks, for example, cannot
use AspectJ for instrumentation since AspectJ does not support definition of
pointcuts catching lock acquisitions and releases in the general case. In [17] we
proposed extending AspectJ with new pointcuts: lock() and unlock(). A hor-
izontal extension consists of changing the definition of advice to incorporate
tracecuts. The ultimate extension of aspect-oriented programming is the prod-
uct of a horizontal and a vertical extension. In addition, static analysis (theorem
proving) can be invoked to prove stated properties. HandlErr e.g. allowed pre
and post conditions, invariants in aspects.

A much later work presented in [73] is the InterAspect system, an aspect-
oriented API in C for instrumenting C programs compiled with the GCC com-
piler infrastructure. InterAspect is implemented using the GCC plug-in API.
The system allows for specification of tracecuts using regular expressions, much
along the lines of MOP. InterAspect has access to GCC internals, which allows
one to exploit static analysis during the weaving process. Consider the following
file access property. Any access to a file object after the file has been closed is a
memory error which might not manifest itself as incorrect behavior during test-
ing. This can be formalized in InterAspect as the following “aspect” matching
an execution as soon as any read is performed on a closed file.

tc = tc create tracecut (); tc add param(tc,"file", aop t all pointer ());
tc declare call symbol (tc ,"open","(file)fopen()",AOP AFTER);
tc declare call symbol (tc ,"read","fread(?,?,?,file)",AOP BEFORE);
tc declare call symbol (tc ,"read_char","fgetc(file)",AOP BEFORE);
tc declare call symbol (tc ,"close","fclose(file)",AOP BEFORE);
tc add rule (tc ,"open (read | read_char)* close (read | read_char)");

4 2006–2010 - Missions and Rules

4.1 Commanding and Monitoring

One project, described in [14], was driven by a collaboration between JPL and
KSC (Kennedy Space Center) from where NASA’s rocket launches take place.

Runtime Verification Past Experiences and Future Projections 541

The project had as a goal to develop a DSL for commanding and monitoring all
aspects of a rocket launch platform in the moments up to a launch. The DSL was
implemented as a Python API. A program would, through a publish-subscribe
framework, command and monitor items distributed geographically across the
KSC launch site. The state can be understood as a collection of measurements,
representing data samples collected from sensors in the items, and distributed
throughout the system on a message bus. Each measurement maps a variable
name to a value. The DSL then provides a collection of functions for monitoring
the state (collection of measurements) of the entire system as it evolves over
time. From a temporal logic point of view, a trace is a sequence of collections of
measurements. Some of these functions are shown below.

def verify (C, [R], [S]): ...
def verify within (C, D, [R], [S]): ...
def verify subset within (N, C list , D list , [R], [S]): ...
def assert constraint (S, C, R, [D], [F]): ...
def conditional interrupt (S, C, R, [D], [F]): ...

The following symbols are used for arguments: C stands for a condition to be
verified and R stands for a reaction to be executed in case a condition gets
violated. Both C and R are assumed to be parameter-less functions. D stands
for a duration, expressed in seconds. S stands for a string, generally a name
associated with the verification operation for documentation purposes. N stands
for a natural number. Finally, F stands for a Boolean flag indicating whether
verification should be repeated in case of property violations. Arguments in
square brackets [...] denote optional arguments (this is not Python syntax).

The functions (the first three of which are blocking, waiting for the verifi-
cation to terminate) have the following meaning. verify verifies that the condi-
tion is true now. verify within verifies that the condition C eventually becomes
true within the time duration D. verify subset within verifies that at least N
of a list of conditions become true within given durations, provided as a sep-
arate list matching in length. assert constraint verifies that the condition is
continuously true throughout the duration. conditional interrupt is a variant
of assert constraint where if the condition at some point evaluates to true, the
calling application is interrupted (temporarily stopped) while the reaction is exe-
cuted. The DSL also provides functions for commanding items and interacting
with users at terminals. The team at KSC subsequently developed a tabular
DSL using spreadsheets, which is a form of external DSL built on top of the
(internal) Python DSL.

4.2 RuleR

RuleR [9] started life as a low-level event-based rule system into which other
temporal specification languages were supposed to be compiled for efficient trace
checking. The work was directly inspired by the complexity of the Eagle imple-
mentation. However, it then assumed a life of its own as a specification language.
RuleR preserves the interest in monitoring data via parametric events but also

542 K. Havelund et al.

achieves high expressiveness through the use of powerful low-level features. The
flavor of specifications in RuleR is different from those based on temporal logic
seen earlier as they tend to be more operational. For example, to monitor the
previous property �(x > 0 → ∃k . (x = k ∧ ♦y = k)) we would monitor events
x and y and whenever observing a relevant x event create an obligation to see a
future y event with that value. This is captured by the following rule system.

ruler M {
observes x(int), y(int);
always start{ x(n: int) & n>0 −> wait(n); }
state wait(n: int){ y(n) −> Ok; }
forbidden wait;
initials start ;

}
This monitor declares a set of events being observed and then two rules. Rules
are of the form

conditions → obligations

and define rewrite rules on sets of rule instances. If the set of rule instances
satisfy the conditions then the obligations should be applied to this set where an
obligation may add or remove a rule instance from the set. Importantly, the only
rules that can be applied are those that have a corresponding rule activation in
the current set. This extends to data parameterization. If wait(1) is not in the
current set then the event y(1) would not satisfy any conditions. Another aspect
of a rule is its modifier. In the above example the always modifier means that
a rule activation should be kept if its corresponding rule is applied to it, whilst
the state modifier indicates that it should be removed. The following evaluation
illustrates the above rule system applied to a sequence of events.

{start} x(5)−→ {start, wait(5)}
︸ ︷︷ ︸

A

y(5)−→ {start}
︸ ︷︷ ︸

B

x(1)−→ {start, wait(1)} end−→ ⊥

The final result is failure (⊥) as the wait rule is in the forbidden set, which
means that a trace ending with one of these rules in its set of rule activations is
not accepted. RuleR was given a finite-trace semantics with four verdicts. The
verdicts still true and still false are given if the rule system would accep-
t/reject the trace if it were to end at the current event, whilst the verdicts true
and false were reserved for traces where every extension would be accepted/re-
jected. For the above example, the A set of rule instances would be given the
verdict still false whilst the B set would be given still true. These multiple
verdicts support various translations of finite-trace linear temporal logics.

A more realistic example is the following rule system checking the proper
usage of Java iterators. Here the assert keyword requires that at least one of
the given rules is applied on each step. This allows, for example, the rule system
to detect failure on the event sequence consisting only of a next event.

Runtime Verification Past Experiences and Future Projections 543

ruler SafeIteratorCheck{
observes hasNext(obj), next(obj);
always Start{ hasNext(i :obj) −> Next(i); }
state Next(i :obj){ next(i) −> Ok; }
assert Start , Next;
initials Start ;

}
RuleR allowed for very complex rule systems that could be chained together
such that one rule system produced outputs for another rule system to consume
as input events. Rule systems could be combined sequentially, in parallel, and
conditionally. Another powerful feature was the use of non-determinism and rules
as data. However, it was difficult to find a practical need for such features.

4.3 LogScope

A project solidly rooted in an actual space mission was the development of the
LogScope temporal logic for log analysis [7]. The purpose of the project was to
assist the team testing the flight software for JPL’s Mars rover Curiosity, which
successfully landed on Mars on August 6, 2012. The software produces rich log
information. Traditionally, these logs are analyzed with complex Python scripts.
The LogScope logic was developed to support notions more comprehensible to
test engineers, including a very simple and convenient data parameterized tem-
poral logic, which was translated to a form of data parameterized automata,
which themselves can be used for specification of more complex properties that
the temporal logic cannot express. LogScope was furthermore implemented in
Python, allowing Python code fragments to be included in specifications, all in
order to integrate with the existing Python scripting culture at JPL.

As an example, consider the property “Whenever a flight software power
command is issued, before the next flight software command there should follow
a dispatch of that command on board, and then exactly one success of that com-
mand within 5 s. Before the dispatch there should be no dispatch failure, and in
between the dispatch and the success there should be no execution failure”. Com-
mands have names x and numbers y. This property can be specified as follows
in LogScope:

pattern Commands :
COMMAND{Type:"FSW", Name:x, Num:y} where {: x.startswith("PWR") :} ⇒

[
!EVR{DispatchFailure:x, Num:y},
EVR{Dispatch:x, Num:y, Time: t1},

!EVR{Failure:x, Num:y},
EVR{Success:x, Num:y, Time: t2} where {: t2 − t1 <= 5 :},

!EVR{Success:x, Num:y}
] upto COMMAND{Type: "FSW"}

A specification consists of one or more specification units, each of which is either
a temporal logic pattern (as above), or a parameterized automaton. A pattern

544 K. Havelund et al.

has a name, and is triggered by an event. When the event is observed in the log,
the consequence must be observed, optionally up to some other event, which
then limits the scope of the pattern. The consequence can be that an event
must eventually occur, or not occur, or it can be a list of consequences, enclosed
in either square brackets (as here) indicating the consequences must occur in
that order, or curly brackets (not shown) indicating that the consequences must
occur but any order is allowed. Note the lack of temporal operators as found in
classical LTL. The where-clauses can contain Python expressions inside {: . . . :}
brackets. The formula reflects the linear ordering of a time line [75], but textually
presented. In general the user can define Python functions at the beginning of a
specification file to be used in such predicates.

LogScope also allows testers to write properties as parameterized automata,
to which the temporal patterns are also translated. Just as events can be param-
eterized with values, so can states. Automata can furthermore be visualized,
which has shown to be useful for creators of patterns to confirm their meaning.
The automaton for pattern Commands above is the following.

automaton Commands {
always S1 {

COMMAND{Type:"FSW", Name:x, Num:y}
where {: x. startswith ("PWR") :} ⇒ S2(x,y)

}
hot state S2(x,y) {

EVR{DispatchFailure:x, Num:y} ⇒ error
EVR{Dispatch:x, Num:y, Time: t1} ⇒ S3(x,y,t1)

}
hot state S3(x,y,t1) {

EVR{Failure:x, Num:y} ⇒ error
EVR{Success:x, Num:y, Time:t2} where {: t2 − t1 <= 5 :} ⇒ S4(x,y)

}
state S4(x,y) {

EVR{Success:x, Num:y} ⇒ error
}

}

5 2010–2017 - Internal DSLs, Slicing, and CEP

5.1 TraceContract

TraceContract [8] is an internal Scala DSL (effectively an API) for monitor-
ing, based on a mixture of temporal logic and state machines. TraceContract,
although a research tool, was used for analysis of command sequences sent to
NASA’s LADEE (Lunar Atmosphere and Dust Environment Explorer) space-
craft throughout its mission. Consider the LogScope specification on page 12. In
order to specify this property in TraceContract we first define the event kinds,
for example as follows:

Runtime Verification Past Experiences and Future Projections 545

trait Event
case class Command(time:Int,kind:String,name:String,nr : Int) extends Event
case class DispatchFailure (time: Int ,name:String,nr : Int) extends Event
case class Dispatch(time: Int ,name:String,nr : Int) extends Event
case class Failure (time: Int ,name:String,nr : Int) extends Event
case class Success(time: Int ,name:String,nr : Int) extends Event

Events are commonly modeled as objects (instances) of case classes (A case
class allows pattern matching against its objects), all extending the Event trait
(similar to abstract class in Java). Each event type is parameterized with data
(the constructor parameters), which must be provided when creating an object
of the class. The following monitor corresponds to the LogScope monitor on page
12, but now expressed in the internal Scala DSL.

class Commands extends Monitor[Event] {
require {
case Command(, "FSW", x, y) if x. startsWith("PWR") ⇒

hot {
case DispatchFailure (, ‘x ‘, ‘y ‘) ⇒ error
case Dispatch(t1, ‘x ‘, ‘y ‘) ⇒ hot {
case Failure (, ‘x ‘, ‘y ‘) ⇒ error
case Success(t2, ‘x ‘, ‘y ‘) if t2 − t1 <= 5 ⇒

state { case Success(, ‘x‘, ‘y ‘) ⇒ error }
}

} upto { case Command(,"FSW", ,) ⇒ true }
}

}
Our property is defined as a class Commands extending the class Monitor, which is
parameterized with the event type, and which defines all the TraceContract DSL
functions (marked in blue) and constants (marked in red). The DSL functions
in this example all take as argument a Scala partial function enclosed in curly
brackets, and defined with case statements.

The call of the function require (when a Commands object is created) causes a
side-effect, namely storing the property represented by the partial function. Note
that quotes around names, as in ‘x‘ means: match the value previously bound to
x. The underscore ‘ ’ is the wildcard pattern that always matches. The monitor
can be instantiated and applied to a trace (a list of events). TraceContract offers
numerous additional constructs, including other kinds of anonymous states (e.g.
strong next), state machines with named states, linear temporal logic, and the
possibility to combine these with Boolean combinators (and, or, not). Mixed with
general Scala programming this becomes a very powerful paradigm. A simpler
version of TraceContract, but making states queryable facts (useful for expressing
past time properties), is presented in [39].

A few other internal runtime verification DSLs/APIs have been developed.
For example, a propositional Haskell DSL for linear temporal logic [79], and a
Java API re-implementing MOP’s trace slicing algorithms [16].

546 K. Havelund et al.

5.2 LogFire

Another example of an internal Scala DSL is LogFire [40]. LogFire is a rule-based
system similar to RuleR, but based on the Rete algorithm implemented in several
rule-based systems. LogFire was part of an investigation of the Rete algorithm’s
applicability for runtime verification. The algorithm maintains a network of facts
to avoid re-evaluating all conditions in each rule’s left-hand side each time the
fact memory changes. We modified the Rete algorithm in a couple of ways to
fit the runtime verification objective, including an indexing optimization and
introducing the distinction between events and facts. As an example of a rule-
system in LogFire consider safe use of Java iterators, where hasNext must be
called before any call of next. This property can be formalized in LogFire as
follows.

class HasNext extends Monitor {
val hasNext, next = event
val Safe = fact

"r1" − hasNext(’ i) → insert (Safe(’i))
"r2" − Safe (’ i) & next (’ i) → remove (Safe)
"r3" − next (’ i) & not(Safe (’ i)) → error

}
As in TraceContract, a monitor is defined as an extension of a class Monitor,
which defines the LogFire DSL features. The first two lines define the events
that are observed and the facts (Safe) that the rules will generate. The monitor
contains three named rules. Each rule has the form:

"name" − cond1(...) & ... & condn(...) → action

starting with a name (a string value), a conjunction of conditions, and an action
to execute (following the → symbol) in case the conditions evaluate to true. The
insert function adds a new fact to the fact database, and the function remove (id)
removes the fact id referred to on the left-hand side of the rule. The specification
should be self-explanatory. In [40] it is described how higher-level operators can
be defined in a few lines of code, generating rules automatically.

5.3 QEA

Quantified event automata (QEA) [5] and the associated MarQ tool [65] were
introduced to take advantage of the efficient trace slicing approach previously
introduced in the JavaMOP tool [63] (see Sect. 2.3) whilst dealing with some of
the limitations with respect to expressiveness. QEA consist of a list of quantifi-
cations and an automaton. Consider the following example specification of the
command property given on page 12. The specification begins with universal
quantification over the command name and number and then gives an automaton
structure similar to that of the LogScope monitor but the underlying semantics
are quite different.

Runtime Verification Past Experiences and Future Projections 547

qea(Commands){
forall (name, number)
accept skip(1){

command(name,number) → 2
}
next(2){

dispatchFailure (name,number) → Fail
dispatch(name,number,t1) → 3

}
next(3){

failure (name,number) → Fail
success(name,number,t2) if t2−t1 ≤ 5 → 4

}
accept skip(4){

success(name,number,t) → Fail
}

}
The semantics is defined in terms of slicing with respect to the quantified

variables. For a given name and number pair an input trace is projected to
preserve only events relevant to those values, giving a so-called trace slice. This
trace slice is checked with respect to the given automaton. This semantics allows
for efficient indexing structures that lookup the relevant part of the monitoring
data to update given an event. However, to make the above slicing framework
work incrementally is non-trivial as the values with which the trace is to be sliced
are being discovered as the slice is being observed. The QEA work formalizes the
notion of acceptance using quantification and extends2 the framework to allow
for existential quantification and local state via unquantified/free variables. The
two specifications below demonstrate these features.

qea(RoverCommand){
forall (q) exists (s) forall (r)
accept skip(start) {

declare (q, r) → inside
}
skip(inside) {

ping(r , s) → pinged
}
skip(pinged){

ack(s , r) → Success
}

}

qea(AuctionBidding) {
forall (i)
accept next(start){

list (i , r) do c := 0 → listed
}
accept next(listed){

bid(i ,a)
if a>c do c := a → listed

}
}

2 This is not a proper extension as some concepts expressible in the original framework
are no longer expressible. For example, partial matches or multiple verdicts. The
main reason is that the original framework was defined in terms of matching and
triggering advise whilst this framework is defined in terms of correctness.

548 K. Havelund et al.

The specification on the left is a variation of a property given in [44] and demon-
strates existential quantification. It specifies the property that for every quadrant
q there exists a satellite s such that every rover r in q has pinged s and received
an acknowledgement i.e. there is a known single point of contact in that quad-
rant. The specification on the right is from [5] and specifies that bids on an item
placed for auction should be strictly increasing. To support local state in a useful
way it was necessary to introduce the notion of variables that do not take part
in slicing (called free variables in this work).

Like RuleR, QEA has a four-valued semantics allowing for anticipatory
results i.e. there are false and true verdicts if all extensions of a trace have the
same verdict and still-false and still-true verdicts otherwise. An example where
false may be returned is where a quantification is purely universal and slice
enters a state from which no accepting state is reachable. Whilst the addition of
local state and arbitrary actions and guards on transitions can theoretically make
the expressiveness of QEA Turing-complete, overuse of such features can make
QEA unreadable, arguably rendering the usable expressiveness almost regular.
The automaton model means that specifications often capture low-level details.
This can lead to less readable specifications than in, e.g., temporal logic [45] and
a plug-in style approach as taken by JavaMOP may be beneficial in the future.

5.4 Nfer

Complex Event Processing (CEP) can be characterized as event abstraction,
where a stream of low-level events are aggregated and transformed into higher-
level events. CEP can be used for further analysis and/or human comprehension,
e.g. through visualization. We here briefly describe nfer [56], in part influenced
by our work on rule-based systems, and LogFire in particular. Consider the com-
mand example, where we monitor events such as Command(time,kind,name,nr),
Distpatch(time,name,nr), and Success(time,name,nr). Assume further that an
event Starvation indicates that a task on board the spacecraft is starved from
executing. We now want to highlight the situation where a starvation warning
is issued during a period where at the same time there is Earth communication
activity and data-fetch (from the cameras) activity. The following nfer specifi-
cation defines this scenario.

command :− Dispatch before Success
where Dispatch.name = Success.name & Dispatch.nr = Success.nr
map {name → Dispatch.name}

communication :− command where command.name = "COMM"
fetchdata :− command where command.name = "FETCH"
starvation :− Starvation during (communication intersect fetchdata)

The result of a applying an nfer specification to an event stream is a set of inter-
vals, tuples of the form (η, t1, t2,m) consisting of a name η, a start time t1, an end
time t2, and a map m holding data. The specification consists of four interval-
generating rules, each of the form: name :− body (a rule name followed by a rule
body). The semantics is similar to that of Prolog (hence the :− symbol): when

Runtime Verification Past Experiences and Future Projections 549

the body is true an interval is generated with that name. A difference from Prolog
is that rule bodies contain temporal constraints. The first rule defines an interval
describing the execution of a command as occurring between a command dis-
patch and a subsequent success where the command names and numbers match.
The resulting command interval will also have an associated map that maps x
to the command name. The next two rules named communication and fetchdata
define the intervals where communication and data fetching commands are exe-
cuted. The rule starvation captures the starvation occurring during the inter-
section of communication and data fetching. Other temporal operators (inspired
by Allen temporal logic), include: meet, coincide, start, finish , and overlap.
Rules can also access and explicitly reason about time values.

6 2003–2017 - Sound Predictive Runtime Analysis

An increasingly important class of runtime analysis algorithms are concerned
with predicting anomalies in programs from successful observed executions. Two
such early algorithms implemented in JPaX, one for predicting deadlocks and
another for predicting data-races, were discussed in Sect. 2.1. Both of those algo-
rithms are unsound, that is, they can and do report false positives. In contrast
to static analysis, in predictive runtime analysis a sound algorithm is one which
predicts only real errors, i.e., no false alarms. We discuss two categories of sound
algorithms, one based on vector-clocks and another based on SMT solving.

6.1 Vector-Clock Based Algorithms: From JMPaX to jPredictor

A series of sound predictive runtime analysis algorithms and tools have been
proposed for multi-threaded systems about a decade ago, based on vector
clocks [33,62] and on techniques proposed by the distributed systems debugging
community, e.g., [19,26,76]. The main idea is to instrument the multi-threaded
program to emit events timestamped by vector clocks, thus enabling the observer
to extract a partial order reflecting the causal dependency on memory accesses. If
any linearization of that inferred partial order leads to a violation of the desired
property then an error is reported to the user, with the meaning that there are
(likely different from the observed one, but definitely feasible) executions of the
multithreaded program which violate the requirements.

Our first vector-clock-based predictive runtime verification tool was Java
MultiPathExplorer (JMPaX) [70], briefly explained below. Consider the follow-
ing multi-threaded program (in pseudocode) over shared variables x, y and z,

Initially: x = −1; y = 0; z = 0;
thread T1{

x++;
y = x + 1;

}

thread T2{
z = x + 1;
x++;

}

550 K. Havelund et al.

together with a desired property “if (x > 0), then (x = 0) has been true in the
past, and since then (y > z) was always false.” Note that the shared variables
may correspond to physical actions and thus violations of this property may
result in potentially catastrophic system failures. This safety property can be
formally specified using a past-time LTL formalism (similar to that used for JPaX
in Sect. 2.1) but we keep the discussion informal here. A possible execution of
the program can yield the sequence of states (−1, 0, 0), (0, 0, 0), (0, 0, 1), (0, 1, 1),
(1, 1, 1), where the tuple (−1, 0, 0) denotes the state in which x = −1, y =
0, z = 0. This execution does not violate the desired property, so a normal
runtime monitor would not report a violation. However, JMPaX’ vector-clock
based algorithm will infer, from the same execution above and without access to
the actual code, that two other executions are possible (without false alarms) and
that one of them in fact violates the property, namely {x = −1, y = 0, z = 0},
{x = 0}, {y = 1}, {z = 1}, {x = 1}, which corresponds to the sequence of states
(−1, 0, 0), (0, 0, 0), (0, 1, 0), (0, 1, 1), (1, 1, 1).

The vector-clock technique employed in JMPaX essentially implements a
variant of Lamport’s happens-before causality adapted to multi-threaded sys-
tems. Our colleagues have extended the technique in various ways, essentially
demonstrating that increasingly more complex, yet more relaxed but still sound
causal models can be considered, this way improving the predictive capabil-
ity without reporting any false alarms; due to space constraints, we refer the
reader to [52,72] for a literature review. We have ourselves contributed by further
extending the technique to consider various kinds of Java-like synchronization
and communication primitives [69]. Finally, we noticed that in multi-threaded
systems one can go beyond the usual happens-before causality [71]: a write event
can be atomically grouped with all its corresponding subsequent read events, and
that such groups of events can be permuted atomically; similarly, blocks of events
in different threads protected by the same lock can be permuted atomically. As
shown in [69,71], these improvements led to significant increases in prediction
capability without jeopardizing soundness. However, without taking into account
information about the code of the program that generated the trace, that is with-
out static analysis, we were not able to improve the vector-clock-based predictive
runtime analysis algorithms any further.

jPredictor [25] was, to our knowledge, the first sound predictive runtime anal-
ysis system which combined static and dynamic analyses. Specifically, it imple-
mented sliced causality [24], a happen-before causality drastically but soundly
sliced by removing irrelevant causalities using semantic information about the
program obtained with an a priori static analysis. Consider, e.g., a simple and
common safety property for a shared resource, that any access should be authen-
ticated, and consider the following buggy program executed as shown:

Main Thread {
1. resource.authenticate();
2. flag = true;

}

Task Thread {

3. if(!flag) Thread.yield();
4. resource.access();

}

Runtime Verification Past Experiences and Future Projections 551

The main thread authenticates and then the task thread uses the authen-
ticated resource. They communicate via the flag variable. Synchronization is
unnecessary, since only the main thread modifies flag. However, the developer
makes a common mistake, using if instead of while in the task thread. Suppose
now that we observed a successful run of the program, as shown above. Tech-
niques based on traditional happen-before will not be able to find this bug, due to
the causality induced by the write/read on flag. But since resource.access()
is not controlled by if, sliced-causality techniques will correctly predict this
error from the successful execution. When the bug is fixed replacing if with
while, resource.access() is controlled by while (since it is a potentially non-
terminating loop), so no violation is reported.

jPredictor is also implemented using vector clocks, but as discussed in [25], we
were not able to obtain a faithful implementation. The vector-clock implementa-
tion was stronger than the sliced causality, thus maintaining soundness but poten-
tially failing to report violations that were theoretically possible. In spite of the
limitation, [25] experimentally showed that the combination of static and dynamic
information cut, on average, about 50% of the dependencies, thus increasing the
predictive capability of the technique exponentially. Unfortunately, probably due
to the complex nature of resulting technique and its implementation, to our knowl-
edge nobody continued to work in that direction. On the positive side, a new and
appealing direction took shape, discussed below.

6.2 Maximal Causality and SMT-Based Algorithms: RV-Predict

As mentioned above, the runtime verification community has developed increas-
ingly more complex and more relaxed sound causal models of multithreaded
system computations. A question naturally had arisen: is there an end to this
quest? That is, is there a maximal causal model that we can extract from an
observed trace, which cannot be surpassed? We answered this question positively
for sequentially consistent systems [67,72], essentially proposing a constructive
causal model and showing the following: (1) all programs which can produce
the observed execution can generate all traces in the model; and (2) for any
trace t not in the model there exists a program generating the observed trace
which cannot generate t. In other words, any sound and purely dynamic predic-
tive runtime analysis technique can only detect a subset of the violations that
the maximal causal model comprises (but albeit more efficiently). This result is
foundationally very important, because on the one hand it draws a line in the
sand w.r.t. how much sound predictive runtime analysis can go, and on the other
hand it shows that the limit can be achieved.

Consider, for example, an execution of the program in Fig. 2. The program
contains a race between lines (3,10) that may cause an authentication failure
of resource z at line 12, which in consequence causes an error to occur when
z is used at line 15. Supposing the execution follows an order denoted by the
line numbers, however, previous sound causal models cannot detect this race
because line 3 causally-precedes line 10, because the two lock regions contain
conflicting accesses to y. While how to best use static analysis to further enhance

552 K. Havelund et al.

initially x=y=0 resource z=0
Thread t1 Thread t2

1. fork t2
2. lock l

3. x = 1
4. y = 1
5. unlock l

6. { //begin
7. lock l
8. r1 = y
9. unlock l

10. r2 = x
11. if (r1 == r2)
12. z = 1 (auth)
13. } //end

14. join t2
15. r3 = z (use)
16. if (r3 == 0)
17. Error

Fig. 2. An example program with a race (3,10).

initially x=y=0 y is volatile
Thread t1 Thread t2

1. x = 1
2. y = 1

3. r1 = y while(y == 0);
4. r2 = x

Fig. 3. The two cases ➀ and ➁ produce the same read/write trace. However, (1,4) is
a race in case ➀ but not in case ➁.

the maximal causal model is a valid question and worth pursuing, we found
that the maximal causal model can already elegantly deal with information flow
information if execution traces are enriched to also emit control-flow-changing
(or branching) events [52]. Consider the scenario in Fig. 3 where y is volatile and
line 3 has two cases: ➀ r1 = y and ➁ while(y == 0). For case ➀, (1,4) is a race
on x; while for case ➁, it is not, because line 4 is control-dependent on the while
loop at line 3. However, without considering the control dependence between
operations, the dynamic execution traces for these two cases are identical. But
using the control flow information we can tell that, in case ➀, line 4 is not control-
dependent on line 3. In other words, regardless of what value line 3 reads, line 4
will always be executed. Therefore, we can safely drop the happens-before edge
from line 2 to line 3, which enables detecting the race (1,4). Similarly, we are
able to detect the race (3,10) in Fig. 2 by dropping the happens-before edge from
line 4 to line 8, because there is no control flow from line 8 to line 10 and hence
no need to ensure line 8 should read value 1 (written by line 4).

Runtime Verification Past Experiences and Future Projections 553

A. Happens-before (Φhb)
O1 < O2 < . . . < O5 ∧ O14 < . . . < O16

O6 < O7 < . . . < O13

O1 < O6 ∧ O13 < O14

B. Locking (Φlock) O5 < O7 ∨ O9 < O2

C. (3,10)Race (Φrace) O10 = O3

Fig. 4. Constraint modeling of the example execution in Fig. 2.

The maximal causal model is more mathematically involved than the previ-
ous causal models, and it is still unknown whether it can be implemented using
vector clocks. However, as Said et al. [67] first noticed, it is not very difficult
to represent the maximal causal model as a mathematical formula. Specifically,
we can associate to each event e in the trace one integer variable Oe, called its
order variable, and then use the semantics of the various concurrent objects and
control flow events to generate constraints over the order variables. For example,
all the events emitted by the same thread must follow the same order as emit-
ted (but can have other events interleaved), blocks protected by the same lock
cannot overlap, and so on. Finally, one adds constraints for the property one is
interested in; for a data-race, e.g., one says that the two involved events occur
at the same time. Figure 4 shows the constraints for the execution in Fig. 2.

The formula generated for a given trace therefore encodes all the ordering
constraints that must be satisfied by any permutations of the events in the same
trace in order to maintain soundness, as well as all the constraints that must
be satisfied in order for the property of interest to be matched by the predicted
trace. All is left now is to check the satisfiability of the resulting formula (e.g.
with a SMT solver). If not satisfiable, then we can conclude that the observed
execution trace has no evidence in it that the property is matched. If satisfiable,
then a solution of it is a counter-example showing that there indeed exists a
feasible execution of the system that match the property.

One might think that it is not practical to solve large formulae that can result
from large traces. However, with some additional engineering and optimizations,
the commercial RV-Predict tool (https://runtimeverification.com/predict) [52]
has demonstrated not only that it can detect concurrency errors that no other
predictive runtime analysis tools can, but also that it can do it at a relatively
acceptable performance.

7 Reflections and Future Perspectives on RV

Logics. The move from the early propositional temporal logics (such as JPaX) to
parametric temporal logics (such as Eagle and MOP) was important, leading to
an impressive community effort in researching logics and algorithms. The spec-
trum of specification logics has spanned many standard logics, such as automata,
regular expressions, (future as well as past) linear temporal logics, context-free

https://runtimeverification.com/predict

554 K. Havelund et al.

grammars, variations of the μ-calculus, process algebras, stream processing, and
rule-based systems. Most of these standard logics have had to be extended with
first-order features to handle the parametric case [46]. In addition to the first-
order trend, another trend has been the attempts to extend state machine nota-
tions with special states (such as the distinction between skip and next-states).
Several attempts have been made in combining logics, specifically regular expres-
sions and linear temporal logic, as in e.g. SALT [13]. These logics combine
sequencing (adopted from regular expressions) with temporal operators. The
LogScope language provided a formalism resembling a textual version of time
lines and without explicit temporal operators such as eventually. The MOP sys-
tem took a different view by providing a collection of different logics, such that
each property is written in “the logic that fits” that property. An interesting
logic framework is the modal μ-calculus, which e.g. is the basis for Eagle, where
temporal properties and recursion can be combined with “named states”. One
particular promising aspect of Eagle was the support for user-defined temporal
operators. Rule systems appear to be an interesting alternative to automata for
the data parameterized case. However, traditional rule programs are in many
cases not as readable as e.g. temporal logic. To improve this situation, they can
be extended with syntactic sugar, e.g. state machine concepts, as done in RuleR.
Rule systems can be powerful; for example, RuleR rules can take rules as argu-
ments as a way of modeling context-free grammars. In RuleR, rule programs can
be chained together with facts produced by one rule program becoming input
to another rule program. This is related to stream processing. The idea of an
event stream resulting in a set of facts/data can be viewed as Complex Event
Processing (CEP), and is especially realized in the nfer system. This is an inter-
esting avenue for future research. When formalizing a temporal property it can
be useful to first to draw a time-line on a piece of paper, and then plot in events.
This suggests that tool support for such a graphical time line approach might
lower the barrier for writing temporal properties. Timelines have been studied
in the context of model checking [75].

External versus Internal DSLs. Whether to develop a DSL as external or internal
is a non-trivial decision. An external DSL is usually cleaner and more directly
tuned towards the immediate needs of the user. In addition, they are easier
to process and therefore optimize for efficiency. However, the richer the DSL
becomes (moving towards Turing-completeness) the harder the implementation
effort becomes. An internal DSL can be very fast to implement and augment
with new (even user-defined) operators, and can provide an expressiveness that
would require a major effort to support in an external DSL. One also gains
the advantage of IDEs etc. for the host language. However, some concepts may
not be easily representable as an internal DSL. Also, a user will have to be a
programmer in the host language. In this respect, some programming languages
seem to be less of a barrier than others, e.g. Python is considered easy to learn.

A hypothesis is that monitoring logics used in practice will need to support
very expressive expression languages to process data, such as strings and numbers
that are part of the observed events. TraceContract is a shallow DSL in contrast

Runtime Verification Past Experiences and Future Projections 555

to LogFire, which is (mostly) a deep DSL. As a shallow DSL, TraceContract
relies on Scala’s type system. In contrast, for LogFire such a type system would
have to be implemented from scratch. Also, in LogFire names have to be symbols
or strings, which is somewhat annoying. LogScope was a compromise where the
core DSL was external but with “holes” where one could write Python code,
much like how parser generators such as yacc function. This was only possible
due to Python’s capabilities for evaluating a text string as a program (the eval-
function), and would not, e.g. be possible in Java or Scala.

Programming Languages. Temporal logic could become part of a programming
language assertion language. This could be seen as part of a design-by contract
approach also supporting pre/post conditions and class invariants. Libraries can
come equipped with such temporal assertions verifying their correct use. The
paper [20] in this volume discusses what to expect from future programming
languages, and specifically likewise mentions support for “richer specifications”
supported by stronger static and dynamic analysis. Adding such concepts to a
programming language would be easier if the language came equipped with syn-
tax extension/meta programming frameworks, a need we have often experienced
in our work.

Aspect-Oriented Programming. Aspect-oriented programming has been a pop-
ular way of instrumenting Java programs for runtime verification. Although
research in aspect-oriented programming seems to have slowed down, we do
believe that the ideas of vertical (enriching pointcut language) and horizontal
(stateful aspects) extensions of AOP are interesting, and should be part of a pro-
gramming language’s meta-programming environment. AOP is a natural host for
RV. That is, rather than using AOP to instrument for RV, RV can be consid-
ered as a natural extension of AOP. Note, however, that not all RV solutions
require such a close integration with a programming language; e.g. web service
monitoring does not require this form of integration.

RV Oriented Requirements Engineering. An intriguing thought is an approach
to requirements engineering where at least events become part of the formal
vocabulary, and where the implementation of the designed system is obliged
to generate logs of such events, which can then be monitored. Logging (and
monitoring) should become part of programming larger systems.

Algorithms. Concerning monitoring algorithms, the slicing-based algorithms, as
found in Tracematches, MOP, and QEA, have so far shown to be the most effi-
cient, initially at the cost of limited expressiveness, but in QEA extended to allow
for improved expressiveness. Experiments such as the use of the Rete algorithm
in LogFire, or the use of SMT [29] in MMT (Monitoring Modulo Theories) have
not shown the same degree of performance. We still think, however, that new
algorithms for parametric monitoring are of interest, especially since the original
limitations wrt. expressiveness can be considered a major issue. In [42] we e.g.
experiment with the use of BDDs for monitoring first-order past time temporal
logic, with interesting performance results.

556 K. Havelund et al.

Predictive Monitoring. The earliest examples of predictive algorithms for dead-
lock and data race detection from Compaq were very promising, and showed
to be exceptionally effective in practice. Later results using SMT have shown
tremendous potential.

Beyond Boolean. Specification-based runtime verification approaches tend to be
Boolean valued algorithms: determining whether a sequence of events satisfies a
temporally oriented specification. That is, M(σ) ∈ B (or some simple extension
B
+ of B). However, as stated in Sect. 1, runtime verification in its generality can

be considered as computing any kind of value, M(σ) ∈ D, for any domain D.
We already encountered the nfer system which computes intervals (D is the set
of intervals). In [35], a very early approach to computing values from a trace
driven by temporal formulas is described. In other approaches, the result is a
probability for a property to be satisfied, as in [77] (see discussion below). In
statistical model checking [58], see also [60] in this volume, a stochastic system is
executed multiple times, monitoring each execution against a temporal formula,
computing either the probability that the system satisfies a formula (quantitative
SMC), or determining whether the probability is greater than or equal to a
certain treshold (qualitative SMC).

Specification Mining and Inference. We consider the ‘mining’ or ‘learning’ of
specifications from traces to be a very promising field. Here we consider some
work in this area (including our own e.g. [59,64,77]) but do not make an attempt
to be complete. There exist general introductions to the topic [2,28,61]. In
[77], an approach named Runtime Verification with State Estimation (RVSE)
is described, which uses learning to estimate the probability that a trace with
missing events (gaps in the trace) satisfies a given temporal property. This idea
can, for example, be applied when monitoring overhead is reduced by sampling.
The strategy is to learn the nominal behavior (without gaps) of the system
as a Hidden Markov Model (HMM), and the later use this model to “fill in”
sampling-induced gaps in an observed trace. Two approaches have attempted
to use parametric trace slicing to learn parametric specifications. In [59], a
probabilistic automata learning algorithm was applied to trace slices to build
a hypothesis specification which was then heuristically refined. In [64] many pre-
defined patterns were checked against trace slices and then combined to form
ranked hypothesis specifications. Further work in both directions, and in spec-
ification mining in general, seems important to the field of runtime verification
as the lack of specifications is sometimes cited as a barrier to application of RV.
The above work was passive in the sense that it took as an input a given set
of traces. Another promising direction is the area of active automata learning
where queries may be given to build a (in some contexts) complete specification
of behavior. One of the more advanced instances of this approach [53] is the learn-
ing of register automata – an extension of finite automata where data values may
be communicated, stored and manipulated. In this sense, this work corresponds
to the parametric approaches mentioned above. Additionally, an approach is
described in the paper [51] in this volume for combining black-box (no access

Runtime Verification Past Experiences and Future Projections 557

to code) and white-box (access to code) techniques. These active learning tech-
niques are implemented in the well-known LearnLib tool [55]. Recent work [54]
has adapted the framework to handle the long traces encountered in RV.

Trace Visualization. Execution trace visualization is a subject that in our opin-
ion has promising potential, although our own work in this direction is limited
to [4] and nfer (where the intent is to visualize event hierarchies). The advantage
of visualization is that it can provide a free-of-charge abstract view of the trace,
from which a user potentially may be able to conclude properties about the
program, or at least the execution, without having to explicitly formulate these
properties. We can distinguish between two forms of trace visualization: still
visualization, where all events are visualized in one view, and animated visualiza-
tion. In [4], an extension of UML sequence diagrams with symbols is described for
representing still visualizations of the execution of concurrent programs. There
appears to be a relationship between still visualization and automated specifi-
cation mining. For example, a state machine learned from several runs can be
regarded as a still visualization, as well as a specification of its behavior during
those runs.

Combining Static and Dynamic Analysis. Full verification is of course preferred
over partial verification performed by a monitor. The combination of static and
dynamic verification can provide the best of both worlds: prove as much as is
feasible and verify the remaining proof obligations during runtime.

Runtime Enforcement and Fault Protection. In runtime enforcement [31], one
uses a monitor as a filter in front of a system, the target, receiving events from
another system, the source. In this preventive approach, only events satisfying
the property defined by the monitor will be let through to the target. In fault-
protection strategies, the goal is to recover the system once it has failed; see
e.g. [11] where this is called adaptive runtime verification. Here, two versions of
the program being monitored exist: the complex version (running by default)
and the simple version, and in case of a property violation the simple version
overtakes the complex version. The general problem of how to recover from a
bad program state is interesting and quite challenging. The ultimate solution to
this problem can be found in planning and scheduling systems, where a planner
creates a plan (straight-line program) to execute for a limited time period, an
executive executes the plan, and a monitor monitors the execution. Upon failure
detected by the monitor, a new plan (program) is generated online.

Summary. Searching for the most efficient monitoring algorithms, balanced with
expressiveness of logics, is an ongoing research topic. The field has studied and
produced an interesting set of temporal logics, that differ from logics produced
by the field of e.g. model checking, in part due to the different application sce-
nario, such as focus on single traces with data carrying events. This includes the
distinction between external and internal DSLs, AOP, and logics for computing
data (beyond the Boolean domain) from traces. Avoiding writing specifications,

558 K. Havelund et al.

as pursued in specification mining and predictive monitoring, is an interesting
line of research with a lot of potential. The integration of static and dynamic
analysis is another important line of research, that is in its infancy as well.
Finally, it would be interesting to pursue an integration of temporal logic in
programming languages as part of the assertion language.

References

1. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, O.,
de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: Adding trace matching with
free variables to AspectJ. SIGPLAN Not. 40, 345–364 (2005)

2. Ammons, G., Bod́ık, R., Larus, J.R.: Mining specifications. ACM Sigplan Not.
37(1), 4–16 (2002)

3. Artho, C., Havelund, K., Biere, A.: High-level data races. Softw. Test. Verification
Reliab. 13(4), 207–227 (2004)

4. Artho, C., Havelund, K., Honiden, S.: Visualization of concurrent program execu-
tions. In: 31st Annual International Computer Software and Applications Confer-
ence (COMPSAC 2007), vol. 2, pp. 541–546, July 2007

5. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quantified
event automata: towards expressive and efficient runtime monitors. In: Gian-
nakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68–84. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9 9

6. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verifica-
tion. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0 5

7. Barringer, H., Groce, A., Havelund, K., Smith, M.: Formal analysis of log files. J.
Aerospace Comput. Inf. Commun. 7(11), 365–390 (2010)

8. Barringer, H., Havelund, K.: TraceContract: a Scala DSL for trace analysis. In:
Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 57–72. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0 7

9. Barringer, H., Rydeheard, D.E., Havelund, K.: Rule systems for run-time monitor-
ing: from Eagle to RuleR. J. Logic Comput. 20(3), 675–706 (2010)

10. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime
verification. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification.
LNCS, vol. 10457, pp. 1–33. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-75632-5 1

11. Bartocci, E., Grosu, R., Karmarkar, A., Smolka, S.A., Stoller, S.D., Zadok, E.,
Seyster, J.: Adaptive runtime verification. In: Qadeer, S., Tasiran, S. (eds.) RV
2012. LNCS, vol. 7687, pp. 168–182. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-35632-2 18

12. Bauer, A., Leucker, M., Schallhart, C.: The good, the bad, and the ugly, but how
ugly is ugly? In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp.
126–138. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77395-
5 11

13. Bauer, A., Leucker, M., Streit, J.: SALT—structured assertion language for tem-
poral logic. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 757–775.
Springer, Heidelberg (2006). https://doi.org/10.1007/11901433 41

14. Bennett, M., Borgen, R., Havelund, K., Ingham, M., Wagner, D.: Prototyping a
domain-specific language for monitor and control systems. J. Aerospace Comput.
Inf. Commun. 7(11), 338–364 (2010)

https://doi.org/10.1007/978-3-642-32759-9_9
https://doi.org/10.1007/978-3-540-24622-0_5
https://doi.org/10.1007/978-3-642-21437-0_7
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-642-35632-2_18
https://doi.org/10.1007/978-3-642-35632-2_18
https://doi.org/10.1007/978-3-540-77395-5_11
https://doi.org/10.1007/978-3-540-77395-5_11
https://doi.org/10.1007/11901433_41

Runtime Verification Past Experiences and Future Projections 559

15. Bensalem, S., Havelund, K.: Dynamic deadlock analysis of multi-threaded pro-
grams. In: Ur, S., Bin, E., Wolfsthal, Y. (eds.) HVC 2005. LNCS, vol. 3875, pp.
208–223. Springer, Heidelberg (2006). https://doi.org/10.1007/11678779 15

16. Bodden, E.: MOPBox: a library approach to runtime verification. In: Khurshid,
S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 365–369. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-29860-8 28

17. Bodden, E., Havelund, K.: Aspect-oriented race detection in Java. IEEE Trans.
Softw. Eng. 36(4), 509–527 (2010)

18. Candea, G., Godefroid, P.: Automated software test generation: some challenges,
solutions, and recent advances. In: Steffen, B., Woeginger, G. (eds.) Computing
and Software Science. LNCS, vol. 10000, pp. 505–531. Springer, Heidelberg (2018)

19. Chase, C.M., Garg, V.K.: Detection of global predicates: techniques and their
limitations. Distrib. Comput. 11(4), 191–201 (1998)

20. Chatley, R., Donaldson, A., Mycroft, A.: The next 7000 programming languages.
In: Steffen, B., Woeginger, G. (eds.) Computing and Software Science. LNCS, vol.
10000, pp. 250–282. Springer, Heidelberg (2018)

21. Chen, F., D’Amorim, M., Roşu, G.: A formal monitoring-based framework for
software development and analysis. In: Davies, J., Schulte, W., Barnett, M. (eds.)
ICFEM 2004. LNCS, vol. 3308, pp. 357–372. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-30482-1 31

22. Chen, F., Roşu, G.: Towards monitoring-oriented programming: a paradigm com-
bining specification and implementation. In: Proceedings of the 3rd International
Workshop on Runtime Verification (RV 2003). Electronic Notes in Theoretical
Computer Science, vol. 89, no. 2, pp. 108–127. Elsevier Science Inc. (2003)

23. Chen, F., Roşu, G.: MOP: an efficient and generic runtime verification framework.
In: Object-Oriented Programming, Systems, Languages and Applications (OOP-
SLA 2007), pp. 569–588. ACM (2007). ACM SIGPLAN Notices

24. Chen, F., Roşu, G.: Parametric and sliced causality. In: Damm, W., Hermanns,
H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 240–253. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73368-3 27

25. Chen, F., Serbanuta, T.F., Rosu, G.: jPredictor: a predictive runtime analysis tool
for Java. In: ICSE (2008)

26. Cooper, R., Marzullo, K.: Consistent detection of global predicates. ACM SIG-
PLAN Not. 26(12), 167–174 (1991). Proceedings of the ACM/ONR Workshop on
Parallel and Distributed Debugging

27. d’Amorim, M., Havelund, K.: Event-based runtime verification of Java programs.
ACM SIGSOFT Softw. Eng. Notes 30(4), 1–7 (2005)

28. De la Higuera, C.: Grammatical inference: learning automata and grammars. Cam-
bridge University Press, Cambridge (2010)

29. Decker, N., Leucker, M., Thoma, D.: Monitoring modulo theories. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 341–356. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8 23

30. Drusinsky, D.: The temporal rover and the ATG rover. In: Havelund, K., Penix, J.,
Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 323–330. Springer, Heidelberg
(2000). https://doi.org/10.1007/10722468 19

31. Falcone, Y., Fernandez, J.-C., Mounier, L.: What can you verify and enforce at
runtime? Int. J. Softw. Tools Technol. Trans. 14(3), 349–382 (2012)

32. Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime verification. In: Broy,
M., Peled, D., Kalus, G. (eds.) Engineering Dependable Software Systems. NATO
Science for Peace and Security Series - D: Information and Communication Secu-
rity, vol. 34, pp. 141–175. IOS Press (2013)

https://doi.org/10.1007/11678779_15
https://doi.org/10.1007/978-3-642-29860-8_28
https://doi.org/10.1007/978-3-540-30482-1_31
https://doi.org/10.1007/978-3-540-30482-1_31
https://doi.org/10.1007/978-3-540-73368-3_27
https://doi.org/10.1007/978-3-642-54862-8_23
https://doi.org/10.1007/10722468_19

560 K. Havelund et al.

33. Fidge, C.J.: Partial orders for parallel debugging. In: Proceedings of the 1988 ACM
SIGPLAN and SIGOPS Workshop on Parallel and Distributed debugging, pp. 183–
194. ACM (1988)

34. Filman, R., Havelund, K.: Source-code instrumentation and quantification of
events. In: Foundations of Aspect-Oriented Languages (FOAL 2002), Enschede,
The Netherlands, April 2002

35. Finkbeiner, B., Sankaranarayanan, S., Sipma, H.: Collecting statistics over runtime
executions. Formal Methods Syst. Des. 27(3), 253–274 (2005)

36. Harrow, J.J.: Runtime checking of multithreaded applications with visual threads.
In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp.
331–342. Springer, Heidelberg (2000). https://doi.org/10.1007/10722468 20

37. Havelund, K.: Using runtime analysis to guide model checking of Java programs.
In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp.
245–264. Springer, Heidelberg (2000). https://doi.org/10.1007/10722468 15

38. Havelund, K.: Runtime verification of C programs. In: Suzuki, K., Higashino, T.,
Ulrich, A., Hasegawa, T. (eds.) FATES/TestCom -2008. LNCS, vol. 5047, pp. 7–22.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68524-1 3

39. Havelund, K.: Data automata in Scala. In: Proceedings of the 8th International
Symposium on Theoretical Aspects of Software Engineering (TASE 2014). IEEE
Computer Society (2014)

40. Havelund, K.: Rule-based runtime verification revisited. Int. J. Softw. Tools Tech-
nol. Trans. 17(2), 143–170 (2015)

41. Havelund, K., Goldberg, A.: Verify your runs. In: Meyer, B., Woodcock, J. (eds.)
VSTTE 2005. LNCS, vol. 4171, pp. 374–383. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-69149-5 40

42. Havelund, K., Peled, D.A., Ulus, D.: First order temporal logic monitoring with
BDDs. In: Formal Methods in Computer Aided Design (FMCAD), pp. 116–123.
IEEE (2017)

43. Havelund, K., Pressburger, T.: Model checking Java programs using Java
PathFinder. Int. J. Softw. Tools Technol. Transf. 2(4), 366–381 (2000)

44. Havelund, K., Reger, G.: Specification of parametric monitors. In: Drechsler, R.,
Kühne, U. (eds.) Formal Modeling and Verification of Cyber-Physical Systems, pp.
151–189. Springer, Wiesbaden (2015). https://doi.org/10.1007/978-3-658-09994-
7 6

45. Havelund, K., Reger, G.: Runtime verification logics - a language design perspec-
tive. In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A., Mardare,
R. (eds.) Models, Algorithms, Logics and Tools. LNCS, vol. 10460, pp. 310–338.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63121-9 16

46. Havelund, K., Reger, G., Thoma, D., Zălinescu, E.: Monitoring events that carry
data. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS,
vol. 10457, pp. 61–102. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
75632-5 3

47. Havelund, K., Roşu, G.: An overview of the runtime verification tool Java PathEx-
plorer. Formal Methods Syst. Des. 24(2), 189–215 (2004)

48. Havelund, K., Rosu, G.: Monitoring programs using rewriting. In: Proceedings of
the 16th IEEE International Conference on Automated Software Engineering (ASE
2001), pp. 135–143 (2001)

49. Havelund, K., Visser, W.: Program model checking as a new trend. STTT 4(1),
8–20 (2002)

https://doi.org/10.1007/10722468_20
https://doi.org/10.1007/10722468_15
https://doi.org/10.1007/978-3-540-68524-1_3
https://doi.org/10.1007/978-3-540-69149-5_40
https://doi.org/10.1007/978-3-540-69149-5_40
https://doi.org/10.1007/978-3-658-09994-7_6
https://doi.org/10.1007/978-3-658-09994-7_6
https://doi.org/10.1007/978-3-319-63121-9_16
https://doi.org/10.1007/978-3-319-75632-5_3
https://doi.org/10.1007/978-3-319-75632-5_3

Runtime Verification Past Experiences and Future Projections 561

50. Havelund, K., Wyk, E.V.: Aspect-oriented monitoring of C programs. In: The Sixth
IARP-IEEE/RAS-EURON Joint Workshop on Technical Challenges for Depend-
able Robots in Human Environments, Pasadena, CA, 17–18 May 2008

51. Howar, F., Jonsson, B., Vaandrager, F.: Combining black-box and white-box tech-
niques for learning register automata. In: Steffen, B., Woeginger, G. (eds.) Com-
puting and Software Science. LNCS, vol. 10000, pp. 563–588. Springer, Heidelberg
(2018)

52. Huang, J., Meredith, P., Rosu, G.: Maximal sound predictive race detection with
control flow abstraction. In: Proceedings of the 35th Annual ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI 2014), pp.
337–348. ACM, June 2014

53. Isberner, M., Howar, F., Steffen, B.: Learning register automata: from languages
to program structures. Mach. Learn. 96(1–2), 65–98 (2014)

54. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free app-
roach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11164-3 26

55. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 32

56. Kauffman, S., Havelund, K., Joshi, R.: nfer – a notation and system for inferring
event stream abstractions. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol.
10012, pp. 235–250. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46982-9 15

57. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–354. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45337-7 18

58. Larsen, K.G., Legay, A.: Statistical model checking: past, present, and future. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 3–15. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-47166-2 1

59. Lee, C., Chen, F., Rosu, G.: Mining parametric specifications. In: Proceedings of
the 33rd International Conference on Software Engineering, ICSE 2011, 21–28 May
2011, Waikiki, Honolulu, HI, USA, pp. 591–600 (2011)

60. Legay, A., Lukina, A., Traonouez, L.M., Yang, J., Smolka, S.A., Grosu, R.: Statis-
tical model checking. In: Steffen, B., Woeginger, G. (eds.) Computing and Software
Science. LNCS, vol. 10000, pp. 478–504. Springer, Heidelberg (2018)

61. Lo, D., Khoo, S.-C., Han, J., Liu, C.: Mining Software Specifications: Methodolo-
gies and Applications. CRC Press, Boca Raton (2011)

62. Mattern, F.: Virtual time and global states of distributed systems. In: Cosnard, M.,
et al. (eds.) Parallel and Distributed Algorithms: Proceedings of the International
Workshop on Parallel and Distributed Algorithms, pp. 215–226. Elsevier Science
(1989)

63. Meredith, P., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the MOP
runtime verification framework. J. Softw. Tools Technol. Transf. 14, 249–289 (2011)

64. Reger, G., Barringer, H., Rydeheard, D.: A pattern-based approach to paramet-
ric specification mining. In: 2013 IEEE/ACM 28th International Conference on
Automated Software Engineering (ASE), pp. 658–663, November 2013

65. Reger, G., Cruz, H.C., Rydeheard, D.: MarQ: monitoring at runtime with QEA.
In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 596–610.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 55

https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-319-46982-9_15
https://doi.org/10.1007/978-3-319-46982-9_15
https://doi.org/10.1007/3-540-45337-7_18
https://doi.org/10.1007/978-3-319-47166-2_1
https://doi.org/10.1007/978-3-662-46681-0_55

562 K. Havelund et al.

66. Roşu, G., Chen, F.: Semantics and algorithms for parametric monitoring. Logical
Methods Comput. Sci. 8(1), 1–47 (2012)

67. Said, M., Wang, C., Yang, Z., Sakallah, K.: Generating data race witnesses by
an SMT-based analysis. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi,
R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 313–327. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20398-5 23

68. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: a
dynamic data race detector for multithreaded programs. ACM Trans. Comput.
Syst. 15(4), 391–411 (1997)

69. Sen, K., Roşu, G., Agha, G.: Online efficient predictive safety analysis of mul-
tithreaded programs. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS,
vol. 2988, pp. 123–138. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24730-2 9

70. Sen, K., Rosu, G., Agha, G.: Runtime safety analysis of multithreaded programs.
In: Proceedings of ESEC/FSE 2003: European Software Engineering Conference
and ACM SIGSOFT International Symposium on the Foundations of Software
Engineering. ACM, Helsinki, September 2003

71. Sen, K., Roşu, G., Agha, G.: Detecting errors in multithreaded programs by gen-
eralized predictive analysis of executions. In: Steffen, M., Zavattaro, G. (eds.)
FMOODS 2005. LNCS, vol. 3535, pp. 211–226. Springer, Heidelberg (2005).
https://doi.org/10.1007/11494881 14

72. Şerbănuţă, T.F., Chen, F., Roşu, G.: Maximal causal models for sequentially con-
sistent systems. In: Qadeer, S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp.
136–150. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35632-
2 16

73. Seyster, J., Dixit, K., Huang, X., Grosu, R., Havelund, K., Smolka, S.A., Stoller,
S.D., Zadok, E.: InterAspect: aspect-oriented instrumentation with GCC. Formal
Methods Syst. Des. 41(3), 295–320 (2012)

74. Smith, D.R., Havelund, K.: Toward automated enforcement of error-handling poli-
cies. Technical report number: TR-KT-0508, Kestrel Technology LLC, August 2005

75. Smith, M.H., Holzmann, G.J., Etessami, K.: Events and constraints: a graphical
editor for capturing logic requirements of programs. In: 21st IEEE International
Requirements Engineering Conference (RE), Toronto, Canada, August 2001

76. Stoller, S.D.: Detecting global predicates in distributed systems with clocks. In:
Mavronicolas, M., Tsigas, P. (eds.) WDAG 1997. LNCS, vol. 1320, pp. 185–199.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0030684

77. Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka, S.A.,
Zadok, E.: Runtime verification with state estimation. In: Khurshid, S., Sen, K.
(eds.) RV 2011. LNCS, vol. 7186, pp. 193–207. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-29860-8 15

78. Stolz, V., Bodden, E.: Temporal assertions using AspectJ. In: Proceedings of the
5th International Workshop on Runtime Verification (RV 2005). Electronic Notes
in Theoretical Computer Science, vol. 144, no. 4, pp. 109–124. Elsevier Science Inc.
(2006)

79. Stolz, V., Huch, F.: Runtime verification of concurrent Haskell programs. In: Pro-
ceedings of the 4th International Workshop on Runtime Verification (RV 2004).
Electronic Notes in Theoretical Computer Science, vol. 113, pp. 201–216. Elsevier
Science Inc. (2005)

80. Walker, R., Viggers, K.: Implementing protocols via declarative event patterns.
In: Taylor, R., Dwyer, M. (eds.) ACM Sigsoft 12th International Symposium on
Foundations of Software Engineering (FSE-12), pp. 159–169. ACM Press (2004)

https://doi.org/10.1007/978-3-642-20398-5_23
https://doi.org/10.1007/978-3-540-24730-2_9
https://doi.org/10.1007/978-3-540-24730-2_9
https://doi.org/10.1007/11494881_14
https://doi.org/10.1007/978-3-642-35632-2_16
https://doi.org/10.1007/978-3-642-35632-2_16
https://doi.org/10.1007/BFb0030684
https://doi.org/10.1007/978-3-642-29860-8_15
https://doi.org/10.1007/978-3-642-29860-8_15

Combining Black-Box and White-Box
Techniques for Learning Register

Automata

Falk Howar1(B), Bengt Jonsson2, and Frits Vaandrager3

1 Dortmund University of Technology and Fraunhofer ISST, Dortmund, Germany
falk.howar@tu-dortmund.de

2 Department of Information Technology, Uppsala University, Uppsala, Sweden
3 Institute for Computing and Information Sciences,

Radboud University, Nijmegen, The Netherlands

Abstract. Model learning is a black-box technique for constructing
state machine models of software and hardware components, which
has been successfully used in areas such as telecommunication, bank-
ing cards, network protocols, and control software. The underlying the-
oretic framework (active automata learning) was first introduced in a
landmark paper by Dana Angluin in 1987 for finite state machines. In
order to make model learning more widely applicable, it must be further
developed to scale better to large models and to generate richer classes
of models. Recently, various techniques have been employed to extend
automata learning to extended automata models, which combine control
flow with guards and assignments to data variables. Such techniques infer
guards over data parameters and assignments from observations of test
output. In the black-box model of active automata learning this can be
costly and require many tests, while in many application scenarios source
code is available for analysis. In this paper, we explore some directions
for future research on how black-box model learning can be enhanced
using white-box information extraction methods, with the aim to main-
tain the benefits of dynamic black-box methods while making effective
use of information that can be obtained through white-box techniques.

1 Introduction

Model learning, also known as active automata learning, is a black-box technique
which constructs state machine models of software and hardware components
from information obtained by providing inputs and observing the resulting out-
puts. Model learning has been successfully used in several different application
domains, including

– generating conformance test suites of software components, a.k.a. learning-
based testing (e.g., [38,39]),

– finding mistakes in implementations of security-critical protocols (e.g., [3,16,
28–30,62]),

c© Springer Nature Switzerland AG 2019

B. Steffen and G. Woeginger (Eds.): Computing and Software Science, LNCS 10000, pp. 563–588, 2019.

https://doi.org/10.1007/978-3-319-91908-9_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91908-9_26&domain=pdf
https://doi.org/10.1007/978-3-319-91908-9_26

564 F. Howar et al.

– learning interfaces of classes in software libraries (e.g., [42]),
– checking that a legacy component and a refactored implementation have the

same behavior (e.g., [63]).

Active automata learning techniques are partly based on a landmark paper by
Angluin [6] showing that finite automata can be learned in the so-called Min-
imally Adequate Teacher (MAT) framework [6], using two types of queries. A
membership (or I/O) query asks what the output is in response to an input
sequence. An equivalence query asks whether a hypothesized state machine is
equivalent to the sought finite automaton; it is answered by yes if this is the
case, otherwise by a counterexample that distinguishes the hypothesized and
sought state machines.

Steffen et al. [38] made the important observation that the MAT framework
can be used for black-box learning of abstract and concise state machine models
of software components. They assume a software component, called the System
Under Learning (SUL), whose behavior can be described by (an unknown) state
machine, and which can always be brought back to its initial state. An I/O
query can now be implemented by bringing the SUL to its initial state and
then observing the outputs generated in response to the given input sequence.
Equivalence queries can be approximated using a conformance testing tool [9,52,
68] via a finite number of test queries to the SUL. Peled et al. [37,60] observed
that learning models can be used as a basis for model checking of black-box
components.

The most widely known algorithm for model learning of finite automata is
L∗ [6], which has, e.g., been implemented in the LearnLib framework [48]. A
key strength of model learning is that it aims to produce succinct models of the
externally observable behavior of the SUL. This allows it to extract simple mod-
els of complex software, especially if we choose the right perspective (e.g., focus
on a subset of a component’s functionality) and apply appropriate abstractions.
Examples are implementations of network protocols, which typically consist of
many thousands of lines of code, but after appropriate abstraction induce state
diagrams with at most a few dozen states, see e.g. [29,62].

There is certainly a large potential for application of model learning to many
different aspects of software development, maintenance and refactoring, espe-
cially when it comes to handling legacy software. We survey examples of existing
such applications in Sect. 3. To realize this potential, two major challenges must
be addressed: (1) currently, techniques do not scale well, and (2) they are not yet
satisfactorily developed for richer classes of models. Let us elaborate on these
challenges.

1. Concerning scaling, we note that the complexity of the currently most efficient
algorithm for active learning of finite-state models [50] has a cubic worst-case
time complexity in the size of the learned model. Another expensive compo-
nent of model learning is that sufficiently precise approximation of equivalence
queries in a black-box setting may require a number of membership queries
that is exponential in the number of states of the SUL.

Combining Black-Box and White-Box Techniques 565

2. Concerning richness of models, in many situations it is crucial for models
to also be able to describe data flow, i.e., constraints on data parameters
that are passed when the component interacts with its environment, as well
as the mutual influence between control flow and data flow. For instance,
models of protocol components must describe how different parameter values
in sequence numbers, identifiers, etc. influence the control flow, and vice versa.
Such models often take the form of extended finite state machines (EFSMs).
Recently, various techniques have been employed to extend automata learning
to EFSM models, which combine control flow with guards and assignments
to data variables [3,15]. Such techniques either rely on manually constructed
mappers that abstract the data aspects of input and output symbols into a
finite alphabet, or otherwise infer guards and assignments from observations
of test outputs. The latter can be costly, especially for models where control
flow depends on test on data parameters in input: in this case, learning an
exact guard that separates two control flow branches may require a large
number of queries. For instance, to infer that a branch is taken if an input
parameter is greater than 42 may take a number of membership queries.

One way to address these challenges is to augment model learning with white-
box information extraction methods, which are able to obtain information about
the SUL at lower cost than black-box techniques. When dealing with computer-
based systems, there is a spectrum of how much information we have about the
code. For third party components that run on separate hardware, we may not
have access to the code at all. Frequently we will have access to the executable,
but not anymore to the original code. Or we may have access to the code, but
not to adequate tools for analyzing it (this often happens with legacy compo-
nents). If we can construct a good model of a component using black-box learning
techniques, we do not need to worry about the code. However, in cases where
black-box techniques do not work and/or the number of queries becomes too
high, it makes sense to exploit information from the code during model learning.

In this article, we explore how existing approaches for model learning can be
improved by effective use of available white-box information about the SUL (the
full code, the executable,..), with the aim to maintain the benefits of black box
methods.1 We will develop three promising directions for future research:

1. In a black-box setting equivalence queries are approximated using a finite
number of test queries to the SUL. This is time consuming and often consti-
tutes a major bottleneck in model learning [65]. Moreover, the approximation
may be incorrect because, as Dijkstra observed, testing can be used to show
the presence of bugs, but never to show their absence. We have no guarantees
that a learned model is correct. In Sect. 6.1, we review a number of techniques

1 Of course, dynamic white-box techniques (for instance, based on symbolic execution)
or other static analysis white-box techniques can also be used to generate models
directly from code without using any active learning. Such models, however, will typ-
ically depend heavily on the internal structure of the SUL’s program, and programs
with the same observale behavior do not necessarily induce equivalent models.

566 F. Howar et al.

that use white-box information about the SUL to reduce the time required
to find discrepancies in a hypothesis model, or to prove the absence of such
discrepancies.

2. In Sect. 6.2, we discuss extensions of Angluin’s MAT framework with new
types of queries. A learner may for instance ask which previous values and
operations have been used by the SUL to compute some output value. Or she
may ask if some previous input value may subsequently be tested or output by
the SUL. Such queries may dramatically simplify the task for the learner, but
can often be simply answered by the teacher using off-the-shelf code analysis
tools. An example would be a query about which registers are needed in a
specific state or location.

3. Finally, access to the source code of a program or component can be used
to compute information about the component that can help saving queries
during learning. Information about which methods access internal variables
and read or write those variables, e.g., can be used to decide whether queries
can be reduced or even skipped. We discuss possible use cases for static code
analysis in Sect. 6.3.

In order to make the discussion of the paper concrete, we will place it in a simple
setting that is well-understood, namely register automata. Register automata
(and the related nominal automata) constitute an extension of finite automata
in which data values may be communicated, stored and manipulated. Recently,
black-box learning algorithms have been generalized from finite automata to
register automata [1,15,57].

Outline. We start by giving a brief overview to the field of model learning:
In the next section, we provide a short introduction to the underlying learning
setting and the practical challenges that arise when using automata learning
for generating models of program behavior. Section 3 discusses related work and
highlights cases in which learning has been applied successfully in practice. In
the second half of the paper we develop several proposals for leveraging white-
box analysis techniques in the concrete setting of learning register automaton
models: We introduce register automata in Sect. 4 and we discuss existing learn-
ing algorithms for register automata in Sect. 5. We conclude by presenting our
proposals in Sect. 6.

2 Inferring Models of Program Behavior

The general setting that we consider is illustrated in Fig. 1. We assume a SUL
that execute some program in the set Programs. The semantics of programs
is given by a function beh : Programs → Behaviors that describes the exter-
nal, observable behavior of the SUL when it runs a program. Two programs
P, P ′ ∈ Programs are deemed equivalent if they induce the same behavior: P ≡
P ′ ⇔ beh(P) = beh(P ′). We postulate that each program P ∈ Programs can be
described by a model model(P) from some universe Models. In general, a program
can be described by several models. The semantics of models is specified by a

Combining Black-Box and White-Box Techniques 567

Queries Programs Behaviors

Responses Models

beh

behM

modelresp

Fig. 1. Learning setting.

function behM : Models → Behaviors and we assume beh(P) = behM (model(P)).
Within the area of model-based testing, this assumption is commonly referred
to as the test hypothesis [11,31]. Two models M and M ′ are equivalent if they
induce the same observable behavior: M ≡ M ′ ⇔ behM (M) = behM (M ′).

Many instantiations of this general framework are possible. In the case of
reactive systems, for instance, the set Behaviors may consist of functions λ :
Σ∗ → Ω∗ from sequences of inputs to sequences of outputs that preserve the
prefix ordering (here denoted ≤) and the length of sequences, that is, for all
w,w′ ∈ Σ∗, w ≤ w′ ⇒ λ(w) ≤ λ(w′) and | λ(w) |=| w |. In this case, the set
Models naturally consists of (deterministic) Mealy machines with inputs Σ and
outputs Ω. For reactive systems in which inputs and outputs do not alternate
strictly, Behaviors may be defined as the class of prefix closed sets of suspension
traces and Models as the class of I/O transition systems [69,72].2

2.1 Model Learning

Model learning is relevant in situations where we do not know model(P), either
because we do not even know P , or because we know P but are somehow unable
to compute model(P) from P . In order to learn a model M with M ≡ model(P),
we postulate a collection Queries of queries that can be applied to the SUL. A
function resp : Queries × Programs → Responses specifies the result of apply-
ing a query to the SUL that is running some program. In the setting of Mealy
machines, for instance, Angluin’s MAT framework uses I/O queries and equiv-
alence queries. An I/O query consists of a sequence of inputs w ∈ Σ∗ and the
response is given by

resp(w,P) = beh(P)(w).

2 In fact, in the case of nondeterministic reactive systems, instantiations of our frame-
work may be defined for each equivalence from the linear time—branching time
spectrum of Van Glabbeek [33]. However, as far as we know, such instantiations
have not yet been studied in the literature on model learning.

568 F. Howar et al.

An equivalence query consists of an hypothesis H ∈ Models and the response
satisfies

resp(H,P) =
{
yes if behM (H) = beh(P)
no, w otherwise, where w ∈ Σ∗ and behM (H)(w) �= beh(P)(w).

The queries of the MAT framework are extensional : in order to answer them we
do not need access to the program, but only to its observable behavior. Formally,
for all programs P and P ′ and queries Q,

P ≡ P ′ ⇒ resp(Q,P) = resp(Q,P ′).

2.2 Abstraction

As stated in the introduction, the strength of model learning is that it can
produce simple models of complex systems. This, of course, depends on the
application of an appropriate abstraction. In the above description of model
learning, such an abstraction is hidden in functions beh and behM . While in
practice, behM usually is the semantics associated with the class of models that
is inferred by some learning algorithm, the function beh abstracts the actual
observable behavior of a program to the level of this semantics. Angluin’s MAT
framework, e.g., has been implemented for Mealy machine models over finite sets
of inputs and outputs [46], where behM is a mapping from sequences of inputs to
outputs. On the other hand, learning Mealy machine models of realistic software
components requires a test harness which translates the abstract sequences of
inputs to concrete seqeuences of method invocations on the component interface,
and abstracts concrete return values of invocations to abstract outputs.

The choice of a class of models requires the existence of a learning algo-
rithm for this class of models as well as the definition of a function beh that
abstracts concrete program executions to traces in the semantics of this class of
models. Defining such an appropriate abstraction beh oftentimes is not trivial as
it is required to be deterministic and determines the aspects of a component’s
behavior that becomes observable.

The extension of learning algorithms to richer classes of models is an effort
that has two positive impacts in this scenario: On the one hand, using more
expressive classes of models can help representing more interesting aspects of
a component’s behavior in a model. On the other hand, using more expres-
sive models can mitigate the laborious and often error-prone burden of defining
appropriate functions beh.

This has led to multiple lines of works that extend Angluin’s MAT framework
to richer classes of models — most notably classes that can describe control-flow
as well as data-flow or timing information. Extensions require finding right-
congruences for more expressive classes of automata. One principal challenge
that all these works face is that in a black-box setting, models can only be learned
from observable behavior. Inferring complex causal relations like data manipu-
lations or timed behavior quickly requires many queries and often has principle

Combining Black-Box and White-Box Techniques 569

Fig. 2. Models (left) and code (right) for a fictitious protocol component

limitations (e.g., the absence of a right-congruence) as has been shown for learn-
ing timed automata [36] models which cannot in general be determinized.

White-box access to a component can be beneficial for defining adequate beh
functions, for reducing the number of required tests as well as for alleviating
limitations on the expressivity of inferred models.

2.3 Example: A Protocol Component

We illustrate the above concepts using a small fictitious protocol component as
an example. The C-code for the component is shown in the right half of Fig. 2.
The component has two methods msg(uint32 t s, int d) and ack(), and one
internal field seq that is initialized to 0. The msg method is guarded to accept
only sequence numbers s in a certain window relative to seq. If the guard is
satisfied, the internal field seq is updated to the value of s. The method then
performs some operation on the payload data d that is not observable from the
outside of the component (values of d are not stored and no observable error can
occur while operating on d). The ack method returns the current value of seq.

When inferring a model of the behavior of the WindowProtocol component,
a class of models and a corresponding function beh has to be fixed that abstracts
the observable behavior of the component to the semantics of this class. The left
half of Fig. 2 shows four models of the behavior of this component at different
levels of abstraction, i.e., for different classes of models and different functions
beh. For the purpose of illustration, the models only cover the behavior of the
component under the msg(uint32 t s, int d) method. In each model, we con-
sider a behavior to be a sequence of calls to the msg(uint32 t s, int d) method
(at some level of abstraction), which does not trigger any failing assertion. The
model itself represents the set of such behaviors.

570 F. Howar et al.

The first model is the (huge) finite state automaton that results from using
(abstract) inputs msg(i) for all ints i and translating those to calls msg(i, d)
with some random fixed d. Each state of the model represents one concrete
valuation of the variable seq of the component. All states can be distinguished
since they accept pairwise different sets of invocations of msg(i) for Integer data
values i. Only accepting locations are shown. While this model is finite and
faithful to the behavior of the component, it is expensive to infer (due to the
size) and of limited explanatory value.

The second model is a much more concise finite state machine that can be
obtained by using the same learning algorithm as for the first model but with
a much more involved function beh that basically models the implementation of
the msg method and can concretize sequences of abstract msg(IN WINDOW)
inputs to consecutive concrete method invocations with sequence numbers in the
accepted respective windows. While the model is a perfect and concise documen-
tation of the behavior of the component, it can only be inferred and interpreted
with the help of an involved and state-dependent beh function.

The third model is a register automaton that can encode storing of method
parameters (p) in registers (x) and compares parameters and sums of registers
and constants for equality. We define register automata formally in Sect. 4. For
this preliminary discussion, please note that the register automaton has a single
accepting location that corresponds to all concrete accepting states in the first
model. The model has one hundred transitions that loop from this location for
all guards x + i = p where 1 ≤ i ≤ 100. Current learning algorithms for register
automata models [15] would need two inputs for producing such a model: a
grammar for terms allowed in equalities, e.g., t :: = x + c | p, and the set of
allowed constants c.

Finally, in the fourth model, the one hundred transitions of the third model
are merged into a single transition with a slightly more expressive guard, using
inequalities instead of equalities and the single constant 101. As in the above
case, a learning algorithm would need to be capable of inferring guards with
inequalities and receive the constant as an input.

The example shows the potential for application of white-box information
during model inference. Access to the source code of the component can be
used, e.g., to identify methods that do not change the state of the compo-
nent, to identify the required expressivity of guards or the necessary constants
in an automated fashion. White-box analyses can also be used to determine,
which parameters are stored in fields or to compute symbolic guards with fewer
executions.

3 Related Work and Applications

Active automata learning gained a lot of traction over the past few years as a
technique for inferring models of software components. One indication of the
growing attention is a recent article on model learning in the Communications
of the ACM [70]. In fact, the field and its applications have grown and diversified

Combining Black-Box and White-Box Techniques 571

to an extent that makes it impossible to provide a complete and comprehensive
overview here. Instead, we try to sketch the lines of work that target increased
expressivity of inferred models or the integration of white-box approaches. Addi-
tionally, we provide some examples of works that have shown positive results of
using learned models for the (formal) analysis of components and systems.

From DFA to More Expressive Models. Dana Angluin presented the MAT
model and a first learning algorithm (named L∗) in her seminal 1987 paper [6].
The L∗ algorithm infers deterministic finite automata models of unknown reg-
ular languages. Hungar et al. presented the first learning algorithm for Mealy
machine models in the MAT model [46]. Their work was motivated by the goal
of producing more natural models of input/output behavior as well as reducing
the cost of learning models.

Learning algorithms for Mealy machine models have been the basis for a
line of works that construct behP functions (so-called mappers) for inferring
models of infinite-state components. This approach is described explicitly for
the generation of models from protocol entities in [3].

However, defining mappers is an error-prone and laborious manual effort.
In [44] automated alphabet abstraction refinement is integrated with active
learning to overcome this problem. More recent works extend this approach
and combine automata learning with learning symbolic descriptions of transi-
tion structures, e.g., for models with large or infinite structured alphabets [56],
or for alphabets that expose an algebraic structure [25].

The above approaches essentially still infer finite state machine models.
Another different line of work aims at extending model learning to infinite state
models in which states are defined over sets of variables. The authors of [10]
present a technique for inferring symbolic Mealy machines, i.e., automata with
guarded transitions and state-local sets of registers. The presented technique
learns a Mealy machine over a large enough finite domain. In a post-processing
step, from this Mealy machine a symbolic version is constructed.

Howar et al. extend active automata learning in the MAT model to register
automata, which model control-flow as well as data-flow between data parame-
ters of inputs, outputs, and a set of registers [43]. Registers and data parameters
can be compared for equality. The authors demonstrate the effectiveness of their
approach by inferring models of data structures [42] and extend the expressivity
to allow for arbitrary data relations that meet certain learnability criteria [14,15].
Aarts et al. develop a slightly different approach for inferring register automata
models that can compare registers and data parameter for equality [1,5]. The
two approaches are compared in [2].

A more in-depth overview of works that extend active automata learning to
infinite state models is provided in [49].

Applications. After Peled et al. suggested active automata learning for making
black-box systems amenable to the application of formal methods [60], Hagerer
et al. pioneered the application of active automata learning for generating models
of components; components of a computer telephony system in their particular
case [38,39]. The models were used as a basis for testing the system. In recent

572 F. Howar et al.

years, generating models for testing has been continued by different authors for
several types of systems, e.g., for Event-B models [23,24], for graphical user inter-
faces of android applications [18,19], and for integration testing [64] of automo-
tive components. Meinke and Sindhu present LBTest, a tool for learning-based
testing for reactive systems, integrating model checking, active automata learn-
ing, and random testing [55].

Other applications target generating behavioral specifications of Web appli-
cations [61], the new biometric European passport [4], bot nets [12], and enter-
prise applications [73]. Margaria et al. showed that model learning may help to
increase confidence that a legacy component and a refactored implementation
have the same behavior [53]. Inspired by this work, Schuts et al. use inferred spec-
ifications and equivalence checking to assist re-engineering of legacy software in
an industrial context at Philips [63]. Sun et al. use active automata learning
in combination with automated abstraction refinement and random testing for
finding abstract behavioral models of Java classes [67].

An emerging area of applications is the learning-based analysis of safety or
security of components and systems: De Ruiter and Poll use active automata
learning for inferring models of TLS implementations and discover previously
unknown security flaws in the inferred models [62]. Xue et al. use active automata
learning for inferring behavioral models of JavaScript malware [74]. Fiterau
et al. use learning and model checking to analyze the behavior of different imple-
mentations of the TCP protocol stack and document several instances of imple-
mentations violating RFC specifications [29]. Using a similar approach, Fiterau
et al. show that also three different implementations of the SSH protocol violate
the RFC specifications [30]. Khalili et al. [51] use active automata learning to
obtain behavioral models of the middleware of a robotic platform. The models
are used during verification of control software for this platform.

Integration of White-Box Techniques. In [54], Margaria et al. investigate
the potential of what they call “domain-specific knowledge” for reducing the cost
of learning models. Their domain-specific knowledge, e.g., assumptions about
prefix-closedness of an unknown target language or the independence of inputs,
is a first example of the kind of information about a system that can be computed
by white-box techniques.

The first works that actually used white-box techniques to implement more
powerful queries explore combinations of active automata learning and differ-
ent forms of symbolic execution for producing expressive models of components.
Giannakopoulou et al. develop an active learning algorithm that infers safe inter-
faces of software components with guarded actions. In their model, the teacher
is implemented using concolic execution [32]. Cho et al. present MACE an app-
roach for concolic exploration of protocol behavior. The approach uses active
automata learning for discovering so-called deep states in the protocol behavior.
From these states, concolic execution is employed in order to discover vulnerabil-
ities [17]. Botinčan and Babić present a learning algorithm for inferring models of
stream transducers that integrates active automata learning with symbolic exe-
cution and counterexample-guided abstraction refinement [13]. They show how

Combining Black-Box and White-Box Techniques 573

the models can be used to verify properties of input sanitizers in Web applica-
tions. Their work is the first in this line of works that produces infinite-state
models that can store data values in a set of registers. Finally, Howar et al.
extend the work of [32] and integrate knowledge about the potential effects of
component method invocations on a component’s state to improve the perfor-
mance during symbolic queries [45]. The knowledge is obtained through static
code analysis.

Another (earlier) line of work uses active learning in model-checking contexts.
The moderate style of exploration that achieved by learning is used to mitigate
the problem of state space explosion (e.g. [22]). Recent advances in this area have
been made by finding active automata learning for expressive classes of models.
Learning algorithms are usually based quite directly on the classic L∗ algorithm.
The required extensions in expressivity of models are usually realized through
powerful teachers. For instance, Feng et al. present an algorithm for inferring
assumptions for probabilistic assume/guarantee reasoning [26,27].

4 Register Automata

In order to make the discussion of the paper concrete, we will place it in a setting
that is well-understood, namely register automata. These extend finite automata
with data values that may be communicated, stored and manipulated. In this
section, we introduce basic definitions of data languages and register automata
that generalize corresponding concepts for languages and finite automata.

In our setting, data languages and register automata are parameterized on
a vocabulary that determines how data can be examined, which in our setting
is called a theory. A theory is a pair 〈D,R〉 where D is an unbounded domain
of data values, and R is a set of relations on D. The relations in R can have
arbitrary arity. Known constants can be represented by unary relations.

Examples of simple theories include

– 〈N, {=}〉, the theory of natural numbers with equality; instead of the set of
natural numbers, we could consider any other unbounded domain, e.g., the
set of strings (representing passwords or usernames).

– 〈R, {<}〉, the theory of real numbers with inequality: this theory also allows
to express equality between elements.

Operations, such as increments, addition and subtraction, can in this frame-
work be represented by relations. For instance, addition can be represented by
a ternary relation p1 = p2 + p3. In the following, we assume that some theory
〈D,R〉 has been fixed.

Data Languages. We assume a set Σ of actions, each with an arity that deter-
mines how many parameters it takes from the domain D. For notational con-
venience, we will here assume that all actions have arity 1. A data symbol is a
term of form α(d), where α is an action and d ∈ D is a data value. A data word
is a sequence of data symbols. The concatenation of two data words w and w′ is

574 F. Howar et al.

denoted ww′. Two data words w = α1(d1) . . . αn(dn) and w′ = α1(d′
1) . . . αn(d′

n)
are R-indistinguishable, denoted w ≈R w′, if they have the same sequence of
actions, and R(di1 , . . . , dij) ⇔ R(d′

i1
, . . . , d′

ij
) whenever R is a j-ary relation

in R and i1, · · · , ij are indices among 1 . . . n, i.e., the sequence of data values
cannot be distinguished by any of the relations in R.

A data language L is a set of data words that respects R in the sense that
w ≈R w′ implies w ∈ L ↔ w′ ∈ L. We will often represent data languages as
mappings from the set of data words to {+,−}, where + stands for accept and
− for reject.

Register Automata. We assume a set of registers x1, x2, A parameterized
symbol is a term of form α(p), where α is an action and p a formal parameter.
A guard is a conjunction of negated and unnegated relations (from R) over the
formal parameter p and registers. An assignment is a simple parallel update
of registers with values from registers or the formal parameter p. We represent
an assignment which updates the registers xi1 , . . . , xim with values from the
registers xj1 , . . . , xjn or p as a mapping π from {xi1 , . . . , xim} to {xj1 , . . . , xjn}∪
{p}, meaning that the value of the register or formal parameter π(xik) is assigned
to the register xik , for k = 1, . . . , m. Using multiple-assignment notation, this
would be written as xi1 , . . . , xim := π(xi1), . . . , π(xim).

Definition 1 (Register automaton). A register automaton (RA) is a tuple
A = (L, l0,X , Γ, λ), where

– L is a finite set of locations, with l0 ∈ L as the initial location,
– X maps each location l ∈ L to a finite set X (l) of registers, and
– Γ is a finite set of transitions, each of form 〈l, α(p), g, π, l′〉, where

• l ∈ L is a source location,
• l′ ∈ L is a target location,
• α(p) is a parameterized symbol,
• g is a guard over p and X (l), and
• π (the assignment) is a mapping from X (l′) to X (l) ∪ {p}, and

– λ maps each l ∈ L to {+,−}. ��
Register automata are required to be completely specified in the sense that for
each location l ∈ L and action α, the disjunction of the guards on the α-
transitions from l is equivalent to true.

A restriction of register automata, as defined by Definition 1, is that transi-
tions do not allow to assign arbitrary expressions to registers, only the value of a
formal parameter or a register. A main reason for this restriction is to limit the
number of possibilities for inferring guards and assignments that match the result
of membership queries. As an example, suppose that a SUL accepts sequences
with increasing parameter values, e.g., offer(4) offer(5) offer(6) offer(7).
We could then learn a RA if the theory includes, e.g., the relation issucc, defined
by issucc(x, y) iff x + 1 = y. If assignments to registers would allow expressions
that include e.g., the +1 operator, or even arbitrary addition, then the learning
algorithm would have to choose between a potentially large number of different

Combining Black-Box and White-Box Techniques 575

guards and assignments on each transition, This would complicate the design
of a learning algorithm. On the other hand, we do not foresee any fundamental
difficulty in extending the theory for learning RAs in order to produce more
expressive classes of RAs; we conjecture that this could be done by making the
implementation of tree queries more advanced and extending the Nerode equiv-
alence (cf. Sect. 5.2). However, in order to focus on the conceptual extensions
needed to learn RAs, we have so far excluded expressions in assignments of
RAs.

The semantics of register automata is defined in the standard way. Let A be
an RA A = (L, l0,X , Γ, λ). A state of A is a pair 〈l, ν〉 consisting of a location l
and a valuation ν : X (l) → D of the registers X (l) of that location. A step of A,

denoted 〈l, ν〉 α(d)−−−→ 〈l′, ν′〉, transfers A from state 〈l, ν〉 to state 〈l′, ν′〉 on input
of the data symbol α(d) if A has a transition 〈l, α(p), g, π, l′〉 ∈ Γ , whose guard
is satisfied by d under valuation ν (i.e., ν |= g[d/p]), and whose assignment
produces the updated valuation ν′ (i.e., ν′(xi) = ν(xj) if π(xi) = xj , otherwise
ν′(xi) = d if π(xi) = p). A run of A over a data word w = α(d1) . . . α(dn) is a
sequence of steps of A

〈l0, ν0〉 α1(d1)−−−−→ 〈l1, ν1〉 . . . 〈ln−1, νn−1〉 αn(dn)−−−−→ 〈ln, νn〉
for some initial valuation ν0. The run is accepting if λ(ln) = + and rejecting if
λ(ln) = −. The word w is accepted (rejected) by A under ν0 if A has an accepting
(rejecting) run over w which starts in 〈l0, ν0〉.

Existing techniques for active learning of register automata only consider
RAs that are determinate, meaning that there is no data word over which it has
both accepting and rejecting runs. A nondeterministic but determinate RA can
be easily transformed into a deterministic RA by strengthening its guards. Note
that, unlike for finite automata, nondeterministic (and nondeterminate) RAs are
strictly more expressive than deterministic RAs (for instance, the universality
problem for nondeterministic RAs is undecidable [59]).

l0 l1 l2

offer(p) | true
x1:=p

poll(p) | p=x1
−

offer(p) | p≥x1
x1:=x1;x2:=p

offer(p) | p≤x1
x1:=p;x2:=x1

poll(p) | p=x1
x1:=x2

Fig. 3. Priority queue with capacity 2.

Example. As a simple example of a determinate register automaton, let us
consider a priority queue with capacity two. A priority queue stores a set of keys
from some totally ordered set. We will use the set of rational numbers as the set
of keys. We abstract from values that are stored along with keys. The interface
of the priority queue supports two operations:

576 F. Howar et al.

– offer inserts a given key into the priority queue. It succeeds if the queue is
not full;

– poll asks for the smallest key in the queue; the operation returns that key
and removes it; if the queue contains several copies of the smallest key only
one is removed. If the queue is empty, the operation does not succeed.

The interface consists of operations with input parameters and return values.
In order to represent it as a data language, we model sequences of successful
operations as data words. A successful offer is represented by the data symbol
offer(d), where d is the inserted key. A successful poll operation is represented
by the data symbol poll(d), where d is the returned value. A valid sequence
of operations is represented by the sequence of data symbols that represent its
successful operations.

The RA in Fig. 3 accepts the language which models a priority queue with
capacity two. The two keys are stored in registers x1 and x2, respectively, with
x1 ≤ x2, so that a successful poll operation always returns the value of x1.

For conciseness, we have omitted nonaccepting locations. Thus the RA in
Fig. 3 should be extended with a terminal non-accepting location; from each
location, there should be transitions to the non-accepting location for data sym-
bols that do not satisfy any of the existing guards. For instance, from l1 there
is a transition to the non-accepting location for poll(p) symbols where p �= x1.

5 Black-Box Learning of Register Automata

In this section, we summarize some of the proposed algorithms for learning
register automata. A number of such algorithms have been proposed, which
generalize the classical L∗ algorithm in some way. The obvious challenge for
such algorithms is that register automata is a much richer formalism than finite
automata. It is a challenge to devise techniques that can infer all the features
of an RA, including locations, registers, guards, and assignments, in a black-
box context, using only membership queries and counterexamples returned by
equivalence queries. The only a priori information available is the static interface
of the SUL, i.e., the set of actions that it can process, and a theory (i.e., set of
relations on the data domain) which is assumed to be expressive enough to model
the behavior of the SUL.

5.1 Learning Symbolic Automata

Let us first consider the subclass of symbolic automata, which are essentially
register automata without registers and assignments. Symbolic automata have
been studied in recent years as a tool for string processing, where transitions
are guarded by predicates of various theories [40,71]. They allow automata over
large or infinite alphabets to be expressed compactly.

For large finite domains of data values, symbolic automata are equivalent to
ordinary finite automata. However, a naive application of L∗ to such automata

Combining Black-Box and White-Box Techniques 577

will lead to an excessive number of membership queries, since queries must be
performed for each data value in the data domain. More efficient approaches
have been presented by Isberner et al. [47] and by Mens and Maler [56]. A
main idea is to associate to each transition a representative data value which
satisfies its guard. The hypothesis is that all data values that satisfy the guard
induce the same behavior in the SUL; formally this means that they lead to
the same residual languages. When such a hypothesis is refuted, typically as
a result of an equivalence query (i.e., two data values that satisfy the guard
lead to different residual languages), the algorithm splits the guard accordingly.
In [47,56], some predefined structure for splitting guards by need is assumed.
For instance, when the data domain is the set of integers, the algorithm could
prescribe that all membership queries initially be performed using a specific
integer (e.g., 0). If later, it turns out that different behavior is induced by a
negative number, a transition may be split into two, one for nonnegative and
one for negative numbers.

The approach of [47] has been shown to improve over naive L∗ by several
orders of magnitude on a set of benchmarks of moderate size. So far, the approach
has not been applied to learn symbolic automata of the form considered in,
e.g., [40,71] with its rich collection of predicates.

5.2 Learning Register Automata: The SL∗ Algorithm

The class of register automata with registers and assignments brings additional
challenges to the design of learning algorithms. For symbolic automata, which
do not have registers, the learning algorithm can still be based on the classical
definition of Nerode congruence for identifying locations. That is, two data words
are Nerode congruent if they induce the same future behavior (i.e., residual lan-
guage), and each congruence class corresponds to a location. In this case, the
main problem is to infer, for each state, a suitable partitioning of data symbols
that processed as input in that state, and map the partitioning onto guards on
outgoing transitions. For register automata, the future behavior from a location
(i.e., its residual language) depends also on the data values assigned to its regis-
ters. A learning algorithm must thus infer both (i) which registers are needed in
a location, and (ii) how to partition the set of data values in input data symbols
to produce guards on different outgoing transitions, in a way that depends on the
register valuation. Thus, the concept of residual language must be generalized
to a mapping from register valuations to future behaviors. Furthermore, since
assignments can permute registers, the concept of Nerode congruence must be
defined in such a way that it allows permutations of registers: different permu-
tations will result in different assignments to registers on incoming transitions.

As an illustration, the future behavior from location l2 in Fig. 3 depends
on two data values. A learning algorithm will infer that a word leading to l2
has two memorable data values; intuitively, an input value d is memorable if it
has an impact on the future behavior of the SUL: either d occurs in a future
output, or a future output depends on d (e.g., if d appears in a guard). A learning
algorithm will therefore create two registers: x1 and x2. Assume that location l1 is

578 F. Howar et al.

represented by the word offer(3). Initially, a learning algorithm may assume that
all outgoing offer -transitions from l1 can be represented by a single symbol, say
offer(5), and generate a single outgoing transition from l1 with the guard true.
A subsequent counterexample, e.g., of form, offer(3)offer(1)poll(1) will make
the learning algorithm realize that the future behavior after offer(3)offer(1) is
equivalent to that after offer(3)offer(5), if we are allowed to adapt the contents
of registers so that x1 is assigned the smaller value and x2 the larger value. The
learning algorithm will therefore split the transition guarded by true into two
different transitions, with a guard that compares the parameter of the current
data symbol to the value of the register, as in Fig. 3, and equip each transition
with a different assignment.

The above concepts are a basis for the SL∗ algorithm for learning register
automata [15]. In extends predecessor algorithms such as [6,47,56] by the concept
of tree queries, which are used in place of membership queries. The arguments
of a tree query is a prefix data word, and a set of so-called symbolic suffixes, i.e.,
data words with uninstantiated data parameters. The tree query returns a so
called symbolic decision tree (SDT), which has the form of an “RA-fragment”
which accepts/rejects suffixes obtained by instantiating data parameters in one
of the symbolic suffixes.

{x1}

offer(p)
true

poll(p)
p = x1

Fig. 4. Symbolic decision tree returned by tree query for prefix offer(3) and symbolic
suffixes {offer(p), poll(p)}

Let us illustrate this on the priority queue example for the prefix offer(3)
and the set of symbolic suffixes V = {offer(p), poll(p)}. The acceptance/rejection
of suffixes obtained by instantiating data parameters in V after offer(3) can be
represented by the SDT in Fig. 4. In the initial location, the value 3 from offer(3)
is stored in a register. We use the convention that register xi stores the ith data
value from the prefix. Thereafter, suffixes of form poll(d) are accepted if the data
value d equals the value stored in the register, and rejected otherwise (for each
action there is an implicit transition to a rejecting location with a guard that
is the conjoined negations of all accepting transitions). Suffixes of form offer(d)
are always accepted.

Tree queries can be implemented by performing several membership queries
and combining their results. A straightforward implementation of a tree query for
a prefix u and an uninstantiated suffix of form α(p) produces a set of maximally
refined but still satisfiable guards over registers xi, storing values from u, and

Combining Black-Box and White-Box Techniques 579

suffix parameter p without introducing additional constraints between registers.
For each such maximally refined satisfiable guard in the theory a membership
query for the concatenation of u and α(d) for some d that satisfies the guard is
sufficient to characterize the behavior for all data values satisfying this guard.
For instance, the SDT of Fig. 4 can be formed by combining the results of the
membership queries offer(3)offer(1) for guard (x1 > p), offer(3)offer(3) for
guard (x1 = p), offer(3)offer(5) for guard (x1 < p), and analogous membership
queries for suffix poll(p).

One reason for using the tree queries instead of simple membership queries
is that they allow to properly approximate a Nerode equivalence under which
words can be equivalent after permutation of data values. Suppose, for instance,
that we would only pose the membership query offer(3)offer(5)poll(3), which is
accepted; we then use the principles of [47,56] to infer that after offer(3)offer(5)
all symbols of form poll(p) are accepted. If then the membership query
offer(3)offer(1)poll(3) is rejected, we infer that after offer(3)offer(1) all sym-
bols of form poll(p) are rejected. We would then conclude that the prefixes
offer(3)offer(5) and offer(3)offer(1) are not Nerode equivalent and represent
different locations, although in the final automaton (see Fig. 3) they are repre-
sented by the same location. Thus, our preliminary approximation of the Nerode
equivalence would not overapproximate the “actual” Nerode equivalence. This
would destroy the partition-refinement structure of the L∗ algorithm, which
in turn is the basis for establishing convergence guarantees of the learning
algorithm.

5.3 Limitations and Extensions

Section 5.2 outlined the principles of a framework for extending active automata
learning to register automata [15]. This framework has been implemented in
RAlib [14], and used to infer register automata and register mealy machines
with simple theories, such as theories of numbers with equality and inequality.
In order to make it more generally usable, some limitations must be overcome,
of which we list some here.

– Richer theories with structured data types: The simple framework
outlined in the preceding sections can be used to infer register automata
models, whose registers are assigned scalar values, such as the priority queue
model in Fig. 3. Obviously, this model structure does not scale to modeling
priority queues of arbitrary size. For this, we need to work with theories
that can describe structure data, such as sequences, and operations on such
sequences. It remains to be seen whether the overall framework for learning
RAs outlined in this section will also function well with such structured data
type.

– Scalability: The realization of the ideas is still somewhat naive. For instance,
the number of membership queries used to realize a tree query is exponential
in the length of the prefix (and suffix) of the query. As explained in Sect. 5.2
this is motivated by the desire to stay within a partition refinement frame-
work, but there is still much room for optimizing this aspect of the algorithm.

580 F. Howar et al.

One way to address these limitations is to augment the learning algorithms with
white-box information extraction methods. Some directions will be discussed in
the next section.

6 Exploiting White-Box Techniques

We have discussed the potentially positive impact of exploiting white-box tech-
niques in automata learning in previous sections and have sketched the current
limitations and open questions when learning register automata models. We
conclude the paper by discussing directions for future research with a particular
focus on using white-box techniques to improve learning of expressive register
automata models while retaining the benefits of the black-box approach, i.e.,
concise and abstract models.

6.1 Improving the Equivalence Oracle

Black-box learning approaches, although effective in constructing hypothesis
models for finite state machines, typically have difficulties to find counterex-
amples for hypotheses with a large number of states and events [65]. If we have
direct access to the code or binary of the SUL, several additional techniques
become available to discover counterexamples for hypothesis models. There is a
range of white-box symbolic execution techniques, such as veritesting [7], con-
colic testing [35], and white-box fuzz testing [34] that can be adapted to find
counterexamples for hypothesis models. We survey some works that exploit this
idea.

Smetsers et al. [66] used American fuzzy lop (AFL)3 to efficiently obtain
counterexamples for hypothesis models. AFL is a fuzzer that uses compile-time
instrumentation and genetic algorithms to automatically discover test cases that
trigger new internal states in the targeted binary. By combining model learning
with AFL, Smetsers et al. were successful in the RERS 2016 challenge4, which
aims to compare verification techniques and tools.

The Psyco tool integrates active automata learning and dynamic symbolic
execution for generating component interfaces [32]. Recent work explores the
potential of using symbolic search on a component’s state space [58] for esti-
mating an upper bound on the length of counterexamples that can be found
during learning by Psyco. Fully symbolic and synchronized exploration of a
SUL and a conjectured model, i.e., checking the conjecture against the SUL,
would allow it to decide equivalence (assuming decidability of the correspond-
ing SMT encoding). The white-box learning algorithm Σ∗ [13] uses predicate
abstraction to construct models that overapproximate stream processing code
in order to answer equivalence queries.

3 http://lcamtuf.coredump.cx/afl/.
4 http://www.rers-challenge.org/2016.

http://lcamtuf.coredump.cx/afl/
http://www.rers-challenge.org/2016

Combining Black-Box and White-Box Techniques 581

6.2 Introducing New Queries

In a black-box setting, one important reason why many membership queries are
needed is that the learner cannot see directly whether a value is stored by the
SUL, or whether it is compared to other values in the guard of a transition.
The task of the learner is to figure this out using black-box experiments only.
In [15], learning algorithms are presented that accomplish this task for some
simple theories with equality and/or inequality. These algorithms have a high
query complexity, however, and it is not clear how they can be generalized to
richer theories. Consider, for instance, a trace offer(2) offer(3) offer(4) offer(4)
in a setting with equality, successor and addition. What guard was used on the
last transition? Is the last value required to be equal to the previous one? Or
is it the successor of the second value (3 + 1 = 4)? Or has it been obtained
by addition from the first value (2 + 2 = 4)? A number of works use forms of
symbolic execution for making symbolic constraints on execution paths visible
when performing tests on a component during membership queries. In this way,
a learner can observe directly which values are stored and which predicates are
tested in a trace. The idea is to replace membership queries (is word w in the
language?) by a symbolic version in which the reply consists not only of a yes/no
answer but also includes the complete symbolic run induced by input word w.
The white-box learning algorithm Σ∗ [13] is an example of an approach in which
the learner may pose “symbolic” membership queries.

A lightweight alternative for the use of symbolic executions is provided by
taint analysis. Dynamic taint analysis (also referred to as dynamic information
flow tracking) [8,20,21,41] is a technique in which code is instrumented in order
to mark and track data in a program at run time. Inputs to a program are
“tainted”, i.e. labeled with a tag. When the program executes, these tagged
values are propagated such that any new values derived from a tagged value
also carry a tag derived from these source input tags. Dynamic tainting, as
implemented for instance in Autogram [41], allows to precisely identify which
program inputs are stored, tested, or processed at any point in time.

In order to see how a learner may use tainting information, consider the
priority queue example of Fig. 3. Suppose the learner is using the SL∗ algorithm
of Sect. 5.2 and needs to construct a symbolic decision tree for the prefix offer(3)
and the set of symbolic suffixes V = {offer(p), poll(p)}. Suppose that taint
analysis reveals that the parameter of a call to offer is stored in some variable,
say x1, and that the return value of a subsequent call to poll is equal to the
value of this variable. Based on this information, the learner may deduce the
right branch of Fig. 5. After calls offer(3) offer(4), taint analysis tells that the
first parameter is stored in x1, the second parameter is compared with x1 in a
test p > x1, and then stored in x2. Based on this, the learner deduces the left
branch of Fig. 5, and infers that the tree is still incomplete. In order to complete
the tree, the learner performs calls offer(3) offer(2), where 2 is an arbitrary
value less than 3. Using taint analysis, the learner can now infer the third and
final branch in the tree.

582 F. Howar et al.

{x1}

offer(p)
p > x1

x2 := p

offer(p)
p < x1

x1 := p;x2 := x1

poll(p)
p = x1

Fig. 5. Symbolic decision tree constructed using dynamic taint analysis

It is interesting to compare the SDTs of Figs. 4 and 5. Whereas a black-
box tree query initially returns the incorrect decision tree of Fig. 4 for prefix
offer(3), and several additional tree queries (and even an equivalence query) are
required before a correct decision tree is found, a white-box tree query produces
the correct decision tree of Fig. 5 right away. This benefit comes at a price, as
application of taint analysis requires instrumentation of the code. According to
[41], their tainting framework for Java programs (which is not yet optimized)
runs approximately 100 times slower than the original, uninstrumented code.

A key benefit of taint analysis is that it enables the application of the SL∗

algorithm in settings with richer theories. The SL∗ algorithm crucially depends
on an oracle that answers tree queries. In [15] it is shown how a tree oracle can
be implemented via (black-box) membership queries for some commonly occur-
ring theories: the theory of equalities, the theory of equality and inequality over
rational (or real) numbers, and the theory of equality and inequality over inte-
gers. Every single tree query is mapped to an exponential number of membership
queries (in the number of data values in a queried word w) that identify relevant
relations between data values in w. Moreover, these tree oracle implementations
are nontrivial and their correctness proofs are involved. Computation of decision
trees and counterexample analysis becomes harder (or even impossible) when
more relations are added to the theory.

6.3 Computing Domain-Specific Information

The state of a component is usually maintained as valuations of internal vari-
ables. A static code analysis that produces, e.g., for a Java class, which methods
write internal variables, can help identifying methods that cannot alter the state
of a component before actually learning a model of the component. A compar-
ative analysis (reads and writes) can identify pairs of independent methods for
which the order of execution is irrelevant. Information of this kind can be used
to reduce the number of membership queries as has been shown in [45,54].

When inferring register automata, static code analysis can reveal important
information about a component.

Live Variables. Knowing about live variables can help deciding if values have
to become memorable or not in certain states without performing extensive
testing or expensive symbolic analysis.

Combining Black-Box and White-Box Techniques 583

Tests and Computations on Variables. Knowing that only certain tests are
performed on a variable can help when determining the theory that is used
for learning the behavior that is possibly associated with this variable. This
can help reducing the number of tests that have to performed when learning
models. On the other hand, knowledge about the set of computations that
can be used on parameters or register contents may enable learning more
expressive models that, e.g., describe application of cryptographic primitives
on parameters or internal fields.

Independent Parameters/Fields. If there are subsets of parameters and
fields that are independent, a learning algorithm does not have to perform
tests for inferring potential relations between these sets. The typing mecha-
nism that is presented in [14] allows to exploit this information during learn-
ing. Static code analysis could be used to compute it in a fully automated
approach.

The above list is not exhaustive but rather a starting point for future research.

In all three directions, initial positive results exist and indicate the potential that
lies in the application of white-box techniques for the implementation of more
performant learning algorithms, inferring more expressive classes of models.

7 Conclusion

We have outlined current techniques and applications for model learning, a.k.a.
active automata learning, and pointed at challenges for improving its scalability
and applicability to richer models. We then outlined proposals for exploiting
white-box techniques in order to overcome these limitations. We indicated some
approaches that have started in these directions, and we expect a significant
body of techniques to be developed over the next years.

References

1. Aarts, F., Fiterau-Brostean, P., Kuppens, H., Vaandrager, F.: Learning register
automata with fresh value generation. In: Leucker, M., Rueda, C., Valencia, F.D.
(eds.) ICTAC 2015. LNCS, vol. 9399, pp. 165–183. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-25150-9 11

2. Aarts, F., Howar, F., Kuppens, H., Vaandrager, F.: Algorithms for inferring register
automata. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8802, pp.
202–219. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45234-
9 15

3. Aarts, F., Jonsson, B., Uijen, J., Vaandrager, F.W.: Generating models of infinite-
state communication protocols using regular inference with abstraction. Formal
Methods Syst. Des. 46(1), 1–41 (2015)

4. Aarts, F., Schmaltz, J., Vaandrager, F.: Inference and abstraction of the biometric
passport. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6415, pp.
673–686. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16558-
0 54

https://doi.org/10.1007/978-3-319-25150-9_11
https://doi.org/10.1007/978-3-319-25150-9_11
https://doi.org/10.1007/978-3-662-45234-9_15
https://doi.org/10.1007/978-3-662-45234-9_15
https://doi.org/10.1007/978-3-642-16558-0_54
https://doi.org/10.1007/978-3-642-16558-0_54

584 F. Howar et al.

5. Aarts, F., Heidarian, F., Vaandrager, F.: A theory of history dependent abstrac-
tions for learning interface automata. In: Koutny, M., Ulidowski, I. (eds.) CONCUR
2012. LNCS, vol. 7454, pp. 240–255. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32940-1 18

6. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

7. Avgerinos, T., Rebert, A., Cha, S.K., Brumley, D.: Enhancing symbolic execution
with veritesting. In: Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, pp. 1083–1094. ACM, New York (2014)

8. Bell, J., Kaiser, G.: Phosphor: illuminating dynamic data flow in commodity JVMs.
In: Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA 2014, pp. 83–101.
ACM, New York (2014)

9. Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.: On
the correspondence between conformance testing and regular inference. In: Cerioli,
M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 175–189. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31984-9 14

10. Berg, T., Jonsson, B., Raffelt, H.: Regular inference for state machines using
domains with equality tests. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008.
LNCS, vol. 4961, pp. 317–331. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78743-3 24

11. Bernot, G., Gaudel, M.C., Marre, B.: Software testing based on formal specifica-
tions: a theory and a tool. Softw. Eng. J. 6(6), 387–405 (1991)

12. Bossert, G., Hiet, G., Henin, T.: Modelling to simulate botnet command and con-
trol protocols for the evaluation of network intrusion detection systems. In: Pro-
ceedings of the 6th Conference on Network and Information Systems Security,
SAR-SSI 2011, pp. 1–8. IEEE Computer Society (2011)

13. Botinčan, M., Babić, D.: Sigma*: symbolic learning of input-output specifications.
In: Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2013, pp. 443–456. ACM, New York
(2013)

14. Cassel, S., Howar, F., Jonsson, B.: RALib: a LearnLib extension for inferring
EFSMs. In: International Workshop on Design and Implementation of Formal Tools
and Systems, DIFTS 2015, Austin, Texas (2015). http://www.faculty.ece.vt.edu/
chaowang/difts2015/papers/paper 5.pdf

15. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Active learning for extended finite
state machines. Formal Asp. Comput. 28(2), 233–263 (2016)

16. Chalupar, G., Peherstorfer, S., Poll, E., de Ruiter, J.: Automated reverse engineer-
ing using Lego. In: Proceedings of 8th USENIX Workshop on Offensive Technolo-
gies (WOOT 2014), San Diego, California, Los Alamitos, CA, USA, August 2014.
IEEE Computer Society (2014)

17. Cho, C.Y., Babić, D., Poosankam, P., Chen, K.Z., Wu, E.X., Song, D.: Mace:
model-inference-assisted concolic exploration for protocol and vulnerability dis-
covery. In: Proceedings of the 20th USENIX Conference on Security, SEC 2011,
Berkeley, CA, USA, p. 10. USENIX Association (2011)

18. Choi, W.: Automated testing of graphical user interfaces: a new algorithm and
challenges. In: Proceedings of the 2013 ACM Workshop on Mobile Development
Lifecycle, MobileDeLi 2013, pp. 27–28. ACM, New York (2013)

19. Choi, W., Necula, G., Sen, K.: Guided GUI testing of android apps with minimal
restart and approximate learning. SIGPLAN Not. 48(10), 623–640 (2013)

https://doi.org/10.1007/978-3-642-32940-1_18
https://doi.org/10.1007/978-3-642-32940-1_18
https://doi.org/10.1007/978-3-540-31984-9_14
https://doi.org/10.1007/978-3-540-78743-3_24
https://doi.org/10.1007/978-3-540-78743-3_24
http://www.faculty.ece.vt.edu/chaowang/difts2015/papers/paper_5.pdf
http://www.faculty.ece.vt.edu/chaowang/difts2015/papers/paper_5.pdf

Combining Black-Box and White-Box Techniques 585

20. Clause, J., Li, W., Orso, A.: Dytan: a generic dynamic taint analysis framework.
In: Proceedings of the 2007 International Symposium on Software Testing and
Analysis, ISSTA 2007, pp. 196–206. ACM, New York (2007)

21. Clause, J., Orso, A.: Penumbra: automatically identifying failure-relevant inputs
using dynamic tainting. In: Proceedings of the Eighteenth International Sympo-
sium on Software Testing and Analysis, ISSTA 2009, pp. 249–260. ACM, New York
(2009)

22. Cobleigh, J.M., Giannakopoulou, D., Pasareanu, C.S.: Learning assumptions for
compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36577-X 24

23. Dinca, I., Ipate, F., Mierla, L., Stefanescu, A.: Learn and test for event-B – a
rodin plugin. In: Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M.,
Reeves, S., Riccobene, E. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 361–364. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-30885-7 32

24. Dinca, I., Ipate, F., Stefanescu, A.: Model learning and test generation for event-
B decomposition. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol.
7609, pp. 539–553. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34026-0 40

25. Drews, S., D’Antoni, L.: Learning symbolic automata. In: Legay, A., Margaria, T.
(eds.) TACAS 2017. LNCS, vol. 10205, pp. 173–189. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54577-5 10

26. Feng, L., Han, T., Kwiatkowska, M., Parker, D.: Learning-based compositional
verification for synchronous probabilistic systems. In: Bultan, T., Hsiung, P.-A.
(eds.) ATVA 2011. LNCS, vol. 6996, pp. 511–521. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24372-1 40

27. Feng, L., Kwiatkowska, M., Parker, D.: Automated learning of probabilistic
assumptions for compositional reasoning. In: Giannakopoulou, D., Orejas, F. (eds.)
FASE 2011. LNCS, vol. 6603, pp. 2–17. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-19811-3 2

28. Fiterău-Broştean, P., Howar, F.: Learning-based testing the sliding window behav-
ior of TCP implementations. In: Petrucci, L., Seceleanu, C., Cavalcanti, A. (eds.)
FMICS/AVoCS -2017. LNCS, vol. 10471, pp. 185–200. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-67113-0 12

29. Fiterău-Broştean, P., Janssen, R., Vaandrager, F.: Combining model learning and
model checking to analyze TCP implementations. In: Chaudhuri, S., Farzan, A.
(eds.) CAV 2016. LNCS, vol. 9780, pp. 454–471. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41540-6 25

30. Fiterău-Broştean, P., Lenaerts, T., Poll, E., de Ruiter, J., Vaandrager, F., Verleg,
P.: Model learning and model checking of SSH implementations. In: Proceedings
of the 24th ACM SIGSOFT International SPIN Symposium on Model Checking
of Software, SPIN 2017, pp. 142–151. ACM, New York (2017)

31. Gaudel, M.-C.: Testing can be formal, too. In: Mosses, P.D., Nielsen, M.,
Schwartzbach, M.I. (eds.) CAAP 1995. LNCS, vol. 915, pp. 82–96. Springer, Hei-
delberg (1995). https://doi.org/10.1007/3-540-59293-8 188

32. Giannakopoulou, D., Rakamarić, Z., Raman, V.: Symbolic learning of component
interfaces. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 248–
264. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33125-1 18

33. van Glabbeek, R.J.: The linear time – branching time spectrum I. The semantics
of concrete, sequential processes. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.)
Handbook of Process Algebra, pp. 3–99. North-Holland, Amsterdam (2001)

https://doi.org/10.1007/3-540-36577-X_24
https://doi.org/10.1007/3-540-36577-X_24
https://doi.org/10.1007/978-3-642-30885-7_32
https://doi.org/10.1007/978-3-642-34026-0_40
https://doi.org/10.1007/978-3-642-34026-0_40
https://doi.org/10.1007/978-3-662-54577-5_10
https://doi.org/10.1007/978-3-642-24372-1_40
https://doi.org/10.1007/978-3-642-19811-3_2
https://doi.org/10.1007/978-3-642-19811-3_2
https://doi.org/10.1007/978-3-319-67113-0_12
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/3-540-59293-8_188
https://doi.org/10.1007/978-3-642-33125-1_18

586 F. Howar et al.

34. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In:
Proceedings of the Network and Distributed System Security Symposium, NDSS
2008, 10th February - 13th February 2008, San Diego, California, USA. The Inter-
net Society (2008)

35. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
SIGPLAN Not. 40(6), 213–223 (2005)

36. Grinchtein, O., Jonsson, B., Leucker, M.: Learning of event-recording automata.
Theoret. Comput. Sci. 411(47), 4029–4054 (2010)

37. Groce, A., Peled, D., Yannakakis, M.: Adaptive model checking. Logic J. IGPL
14(5), 729–744 (2006)

38. Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model generation by moderated
regular extrapolation. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS,
vol. 2306, pp. 80–95. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45923-5 6

39. Hagerer, A., Margaria, T., Niese, O., Steffen, B., Brune, G., Ide, H.-D.: Efficient
regression testing of CTI-systems: testing a complex call-center solution. Ann. Rev.
Commun. Int. Eng. Consortium (IEC) 55, 1033–1040 (2001)

40. Hooimeijer, P., Veanes, M.: An evaluation of automata algorithms for string anal-
ysis. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 248–262.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4 18

41. Höschele, M., Zeller, A.: Mining input grammars from dynamic taints. In: Pro-
ceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering, ASE 2016, pp. 720–725. ACM, New York (2016)

42. Howar, F., Isberner, M., Steffen, B., Bauer, O., Jonsson, B.: Inferring semantic
interfaces of data structures. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS,
vol. 7609, pp. 554–571. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-34026-0 41

43. Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring canonical register
automata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol.
7148, pp. 251–266. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-27940-9 17

44. Howar, F., Steffen, B., Merten, M.: Automata learning with automated alphabet
abstraction refinement. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS,
vol. 6538, pp. 263–277. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-18275-4 19

45. Howar, F., Giannakopoulou, D., Rakamarić, Z.: Hybrid learning: interface gener-
ation through static, dynamic, and symbolic analysis. In: Proceedings of the 2013
International Symposium on Software Testing and Analysis, ISSTA 2013, pp. 268–
279. ACM, New York (2013)

46. Hungar, H., Niese, O., Steffen, B.: Domain-specific optimization in automata learn-
ing. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 315–327.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45069-6 31

47. Isberner, M., Howar, F., Steffen, B.: Inferring automata with state-local alphabet
abstractions. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol.
7871, pp. 124–138. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38088-4 9

48. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 32

49. Isberner, M., Howar, F., Steffen, B.: Learning register automata: from languages
to program structures. Mach. Learn. 96(1–2), 65–98 (2014)

https://doi.org/10.1007/3-540-45923-5_6
https://doi.org/10.1007/3-540-45923-5_6
https://doi.org/10.1007/978-3-642-18275-4_18
https://doi.org/10.1007/978-3-642-34026-0_41
https://doi.org/10.1007/978-3-642-34026-0_41
https://doi.org/10.1007/978-3-642-27940-9_17
https://doi.org/10.1007/978-3-642-27940-9_17
https://doi.org/10.1007/978-3-642-18275-4_19
https://doi.org/10.1007/978-3-642-18275-4_19
https://doi.org/10.1007/978-3-540-45069-6_31
https://doi.org/10.1007/978-3-642-38088-4_9
https://doi.org/10.1007/978-3-642-38088-4_9
https://doi.org/10.1007/978-3-319-21690-4_32

Combining Black-Box and White-Box Techniques 587

50. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free app-
roach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11164-3 26

51. Khalili, A., Natale, L., Tacchella, A.: Reverse engineering of middleware for ver-
ification of robot control architectures. In: Brugali, D., Broenink, J.F., Kroeger,
T., MacDonald, B.A. (eds.) SIMPAR 2014. LNCS (LNAI), vol. 8810, pp. 315–326.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11900-7 27

52. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines –
a survey. Proc. IEEE 84(8), 1090–1123 (1996)

53. Margaria, T., Niese, O., Raffelt, H., Steffen, B.: Efficient test-based model genera-
tion for legacy reactive systems. In: Proceedings of the 2004 Ninth IEEE Interna-
tional High-Level Design Validation and Test Workshop, HLDVT 2004, Washing-
ton, DC, USA, pp. 95–100. IEEE Computer Society (2004)

54. Margaria, T., Raffelt, H., Steffen, B.: Knowledge-based relevance filtering for effi-
cient system-level test-based model generation. Innov. Syst. Softw. Eng. 1(2), 147–
156 (2005)

55. Meinke, K., Sindhu, M.A.: LBTest: a learning-based testing tool for reactive sys-
tems. In: Sixth IEEE International Conference on Software Testing, Verification
and Validation, ICST 2013, Luxembourg, Luxembourg, 18–22 March 2013, pp.
447–454 (2013)

56. Mens, I.-E., Maler, O.: Learning regular languages over large ordered alphabets.
Log. Methods Comput. Sci. 11(3), 1–22 (2015)

57. Moerman, J., Sammartino, M., Silva, A., Klin, B., Szynwelski, M.: Learning nomi-
nal automata. In: Castagna, G., Gordon, A.D. (eds.) Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, 18–
20 January 2017, Paris, France, pp. 613–625. ACM (2017)

58. Mues, M., Howar, F., Luckow, K., Kahsai, T., Rakamaric, Z.: Releasing the
PSYCO: using symbolic search in interface generation for Java. ACM SIGSOFT
Softw. Eng. Notes 41(6), 1–5 (2016)

59. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite
alphabets. ACM Trans. Comput. Logic 5(3), 403–435 (2004)

60. Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. J. Automata Lang.
Comb. 7(2), 225–246 (2002)

61. Raffelt, H., Merten, M., Steffen, B., Margaria, T.: Dynamic testing via automata
learning. STTT 11(4), 307–324 (2009)

62. de Ruiter, J., Poll, E.: Protocol state fuzzing of TLS implementations. In: 24th
USENIX Security Symposium (USENIX Security 2015), Washington, D.C., pp.
193–206. USENIX Association, August 2015

63. Schuts, M., Hooman, J., Vaandrager, F.: Refactoring of legacy software using model
learning and equivalence checking: an industrial experience report. In: Ábrahám,
E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 311–325. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-33693-0 20

64. Shahbaz, M., Groz, R.: Analysis and testing of black-box component-based systems
by inferring partial models. Softw. Test. Verif. Reliab. 24(4), 253–288 (2014)

65. Smeenk, W., Moerman, J., Vaandrager, F., Jansen, D.N.: Applying automata
learning to embedded control software. In: Butler, M., Conchon, S., Zäıdi, F. (eds.)
ICFEM 2015. LNCS, vol. 9407, pp. 67–83. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-25423-4 5

66. Smetsers, R., Moerman, J., Janssen, M., Verwer, S.: Complementing model learning
with mutation-based fuzzing. CoRR, abs/1611.02429 (2016)

https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11900-7_27
https://doi.org/10.1007/978-3-319-33693-0_20
https://doi.org/10.1007/978-3-319-25423-4_5
https://doi.org/10.1007/978-3-319-25423-4_5

588 F. Howar et al.

67. Sun, J., Xiao, H., Liu, Y., Lin, S.W., Qin, S.: TLV: abstraction through testing,
learning, and validation. In: Proceedings of the 2015 10th Joint Meeting on Foun-
dations of Software Engineering, ESEC/FSE 2015, pp. 698–709. ACM, New York
(2015)

68. Tretmans, J.: A formal approach to conformance testing. Ph.D. thesis, University
of Twente, December 1992

69. Tretmans, J.: Model-based testing and some steps towards test-based modelling.
In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 297–326.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21455-4 9

70. Vaandrager, F.W.: Model learning. Commun. ACM 60(2), 86–95 (2017)
71. Veanes, M., Hooimeijer, P., Livshits, B., Molnar, D., Bjørner, N.: Symbolic finite

state transducers: algorithms and applications. In: POPL, pp. 137–150. ACM
(2012)

72. Volpato, M., Tretmans, J.: Active learning of nondeterministic systems from an ioco
perspective. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8802, pp.
220–235. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45234-
9 16

73. Windmüller, S., Neubauer, J., Steffen, B., Howar, F., Bauer, O.: Active continuous
quality control. In: Proceedings of the 16th International ACM Sigsoft Symposium
on Component-based Software Engineering, CBSE 2013, pp. 111–120. ACM, New
York (2013)

74. Xue, Y., Wang, J., Liu, Y., Xiao, H., Sun, J., Chandramohan, M.: Detection and
classification of malicious JavaScript via attack behavior modelling. In: Proceedings
of the 2015 International Symposium on Software Testing and Analysis, ISSTA
2015, pp. 48–59. ACM, New York (2015)

https://doi.org/10.1007/978-3-642-21455-4_9
https://doi.org/10.1007/978-3-662-45234-9_16
https://doi.org/10.1007/978-3-662-45234-9_16

Author Index

Agarwal, Pankaj K. 66
Alur, Rajeev 452
Aziz, Haris 48

Baier, Christel 420
Bekker, René 123
Benveniste, Albert 283
Binucci, Carla 85
Brandes, Ulrik 85
Brandt, Felix 48

Caillaud, Benoît 283
Candea, George 505
Chatley, Robert 250
Cook, William 27

Donaldson, Alastair 250
Dwyer, Tim 85

Elkind, Edith 48
Elmqvist, Hilding 283
Ezra, Esther 66

Fox, Kyle 66

Ghorbal, Khalil 283
Giacobbe, Mirco 452
Godefroid, Patrice 505
Gossen, Frederik 311
Gronemann, Martin 85
Grosu, Radu 478

Hähnle, Reiner 345
Halldórsson, Magnús M. 141
Havelund, Klaus 532
Henzinger, Thomas A. 452
Hermanns, Holger 420
Hoffart, Johannes 217
Howar, Falk 563
Huisman, Marieke 345
Huth, Michael 374

Jonsson, Bengt 563

Katoen, Joost-Pieter 420
Kordon, Fabrice 393

Larsen, Kim G. 452
Legay, Axel 478
Legenstein, Robert 184
Leuschel, Michael 393
Lukina, Anna 478

Maass, Wolfgang 184
Mandjes, Michel 123
Margaria, Tiziana 311
Mikučionis, Marius 452
Mutzel, Petra 85
Mycroft, Alan 250

Naujokat, Stefan 311
Nielson, Flemming 374

Otter, Martin 283

Papadimitriou, Christos H. 184
Pouzet, Marc 283
Pruhs, Kirk 161

Regan, Kenneth W. 200
Reger, Giles 532
Ron, Dana 105
Roşu, Grigore 532

Schaefer, Marcus 85
Schreiber, Falk 85
Skowron, Piotr 48
Smolka, Scott A. 478
Speckmann, Bettina 85
Spreij, Peter 123
Starreveld, Nicos 123
Steffen, Bernhard 239, 311
Suchanek, Fabian 217

Thierry-Mieg, Yann 393
Traonouez, Louis Marie 478

Vaandrager, Frits 563
van de Pol, Jaco 393
van Kreveld, Marc 85
Vempala, Santosh 184
von Hanxleden, Reinhard 85

Wattenhofer, Roger 141
Weikum, Gerhard 217
Williams, R. Ryan 9
Woeginger, Gerhard J. 3

Yang, Junxing 478

590 Author Index

	Geleitwort
	References

	Preface
	Organization
	Contents
	Computation and Complexity
	Computation and Complexity
	References

	Some Estimated Likelihoods for Computational Complexity
	1 Introduction
	1.1 Some Estimated Likelihoods for Some Major Open Problems

	2 Thoughts on Various Separations
	2.1 EXP with an NP Oracle Versus BPP
	2.2 NEXP vs P/poly
	2.3 LOGSPACE vs NP
	2.4 NP Does Not Have Fixed Polynomial-Size Circuits
	2.5 BPP is in Sub-Exponential Time
	2.6 P vs PSPACE
	2.7 P vs NP
	2.8 ETH: The Exponential Time Hypothesis
	2.9 NC1 versus TC0
	2.10 EXP vs NEXP
	2.11 SETH: The Strong Exponential Time Hypothesis
	2.12 NEXP vs CoNEXP
	2.13 NSETH: Nondeterministic SETH
	2.14 L vs RL

	References

	Computing in Combinatorial Optimization
	1 In the Beginning was n Factorial
	2 Dantzig, Linear Programming, and Cutting Planes
	3 Edmonds, Matchings, and Polynomial Time
	4 Sixty-Three Years of Progress
	5 Wish List of Research Directions
	5.1 Improving the Simplex Method
	5.2 Language of Algorithms
	5.3 Understanding Heuristic Algorithms
	5.4 Analysis of Exact Algorithms for Hard Problems
	5.5 Complexity of Cutting-Plane Methods

	References

	Computational Social Choice: The First Ten Years and Beyond
	1 Introduction
	2 Restricted Preference Domains
	3 Voting Equilibria and Iterative Voting
	4 Multiwinner Voting
	5 Probabilistic Social Choice
	6 Random Assignment
	7 Computer-Aided Theorem Proving
	8 Further Reading
	References

	Geometric Optimization Revisited
	1 Introduction
	2 Geometric Set Cover
	2.1 Greedy Algorithms
	2.2 Iterative Reweighing Scheme and -Nets
	2.3 Extensions

	3 Geometric Independent Set
	4 Maps Between Point Sets
	4.1 Transportation Maps
	4.2 Order Preserving Maps
	4.3 Extensions

	5 Discussion
	References

	10 Reasons to Get Interested in Graph Drawing
	1 Introduction
	2 Basic Research
	2.1 Computational Geometry
	2.2 Graph Theory: Canonical Orderings
	2.3 Complexity: A Real Analogue of NP in Graph Drawing
	2.4 Data Structures: SPQR-Tree

	3 Applications
	3.1 Information Visualization
	3.2 Software Engineering
	3.3 Model-Based Design
	3.4 Automated Cartography
	3.5 Social Sciences
	3.6 Molecular Biology

	References

	Sublinear-Time Algorithms for Approximating Graph Parameters
	1 Introduction
	1.1 Average Degree and Higher Moments of the Degree Distribution
	1.2 The Number of Connected Components
	1.3 Minimum Vertex Cover and Related Parameters
	1.4 Minimum Weight Spanning Tree
	1.5 Distance to Properties
	1.6 Organization

	2 Preliminaries
	3 Moments of the Degree Distribution
	3.1 Average Degree
	3.2 Higher Moments

	4 Minimum Vertex Cover and Maximum Matching
	4.1 Building on a Distributed Algorithm
	4.2 Building on a Random Ordering

	5 Minimum Weight Spanning Tree
	References

	Dynamic Erdős-Rényi Graphs
	1 Introduction
	2 Erdős-Rényi Graphs Under Regime Switching
	2.1 Generating Function
	2.2 Moments
	2.3 Diffusion Results Under Scaling
	2.4 Large Deviations Results Under Scaling

	3 Erdős-Rényi Graphs with Resampling
	3.1 Generating Function
	3.2 Moments
	3.3 Diffusion Results Under Scaling
	3.4 Large Deviations Results Under Scaling

	4 Numerical Illustration
	5 Discussion and Concluding Remarks
	References

	Wireless Network Algorithmics
	1 Introduction
	2 Physical Model
	3 Link Scheduling Algorithms
	4 Power Control
	4.1 A Measure of Interference Under Power Control
	4.2 Power Control Algorithm

	5 Bibliography
	6 Beyond the Physical Model
	6.1 Realistic Signal Propagation
	6.2 Advances in Technology

	7 Open Questions
	References

	Green Computing Algorithmics
	1 Introduction
	2 The Theory of Energy as Computational Resource
	3 Common Modeling Assumptions
	4 Online Convex Optimization
	4.1 Looking Backward
	4.2 Open Problems

	5 Energy Efficient Routing
	5.1 Looking Back
	5.2 The Open Problems

	6 Energy Efficient Circuit Design
	6.1 Looking Back
	6.2 Open Problems

	7 Online Scheduling of Power Heterogeneous Processors
	7.1 Open Problem

	8 Understanding Optimal Energy Tradeoff Schedules
	8.1 Looking Back
	8.2 Open Problem

	9 Conclusion
	References

	Brain Computation: A Computer Science Perspective
	1 Introduction
	2 History
	3 On Methodology
	4 Models of Memories and Cognitive Computation
	5 Open Questions
	6 Summary
	References

	Rating Computer Science via Chess
	1 Ratings
	2 Complexity and Endgame Tables
	3 The Machines: Software to Hardware to Software
	3.1 Search and Soundness
	3.2 Alpha-Beta
	3.3 Extensions and Heuristics

	4 Benchmarking Progress
	5 A ``Moore's Law of Games'' and Future Prospects
	References

	Knowledge Harvesting: Achievements and Challenges
	1 Introduction
	2 Achievements
	2.1 Knowledge Base Model
	2.2 Knowledge Gathering and Cleaning
	2.3 Knowledge Evolution and Quality

	3 Challenges
	3.1 Knowledge Base Coverage
	3.2 Commonsense, Rules and Socio-Cultural Knowledge

	4 Conclusion
	References

	Methods, Languages and Tools for Future System Development
	Methods, Languages and Tools for Future System Development
	1 Introduction
	2 Languages
	3 Verification Methods and Tools
	4 Validation: Testing and Beyond
	5 Conclusions
	References

	The Next 7000 Programming Languages
	1 Why Are Programming Languages the Way They Are? and Where Are They Going?
	1.1 Darwinian Evolution and Programming Languages
	1.2 Paper Structure

	2 What's New Since 1966?
	2.1 Tasks, Tools and Teams
	2.2 Systems Programming and the Rise of C
	2.3 Object-Orientation and the Rise of Java
	2.4 Web Programming, the Re-emergence of Dynamic Typing, and the Rise of JavaScript
	2.5 Functional Programming Languages
	2.6 Flexible Type Systems
	2.7 Parallelism and the Rise of Multi-core
	2.8 Domain-Oriented Programming Languages

	3 Observed Programming Language Evolution
	3.1 Factors that Keep Programming Languages Alive
	3.2 Incentives for Evolution
	3.3 Extinction due to Non-evolution

	4 Range of Important Languages in 2017
	5 The Elephants in the Room
	5.1 The Popularity of C
	5.2 The Rise of Dynamically Typed Languages
	5.3 The Patchwork Support for Parallelism

	6 The Next 7000 Programming Languages
	6.1 A Replacement for C/C++?
	6.2 From Dynamic to Static Types, to Verified Software
	6.3 Increased Fragmentation of Parallelism Support
	6.4 Error Resilience
	6.5 Supporting Better Software Engineering Practices
	6.6 Program Synthesis and AI
	6.7 A Non-prediction

	References

	Multi-Mode DAE Models - Challenges, Theory and Implementation
	1 Introduction
	2 State-of-the-Art and Related Work
	3 The Modia Language
	4 Simulating a Restricted Class of Multi-Mode DAEs
	4.1 Problem Setting
	4.2 Handling Mode Changes
	4.3 A Class of Multi-mode Multi-body Systems Satisfying Assumptions1 and 2
	4.4 Example: Ideal Clutch with Motor
	4.5 Implementation of Multi-mode Features in Modia

	5 Structural Analysis of Multi-Mode DAE Systems
	5.1 Separate Analysis of Each Mode, in Discrete Time
	5.2 Global Discrete-Time Analysis
	5.3 Effective Simulation Code
	5.4 Constructive Semantics

	6 Challenges in DAE Based Modeling Languages
	References

	Language-Driven Engineering: From General-Purpose to Purpose-Specific Languages
	1 Introduction
	1.1 Vision and Approach
	1.2 Background
	1.3 LDE Application Example
	1.4 Contribution

	2 Example-Based Sketch of LDE
	3 Vertical DSL-Based Decomposition
	3.1 The Global Email Distribution Process
	3.2 A DSL for Rule-Based Composition of Decision Services
	3.3 A Language for Efficient Decision Rule Implementation
	3.4 Implementation of Elementary Predicates

	4 DSL-Based Evolution
	4.1 ADDs for Dealing with Uncertainty
	4.2 Dealing with Uncertainty

	5 The LDE Landscape
	5.1 LDE: The Roots
	5.2 Related Work
	5.3 Volume-Related Interrelations

	6 Conclusions and Perspectives
	References

	Deductive Software Verification: From Pen-and-Paper Proofs to Industrial Tools
	1 Introduction
	2 An Example
	3 History Until LNCS 1750 (aka Y2000)
	4 From LNCS 1750 to LNCS 10000
	5 Achievements and Challenges: Technical
	5.1 Specification Languages
	5.2 Integration
	5.3 Coverage

	6 Achievements and Challenges: Non-technical
	6.1 Usability
	6.2 Funding
	6.3 Industrial and Societal Context

	7 Summary
	References

	Static Analysis for Proactive Security
	1 Introduction
	2 The Security Landscape: Setting the Scene
	3 Static Analysis of Security Models
	4 Security Assurances: Information Leakage
	5 Discussion
	6 Conclusion
	References

	Software Architecture of Modern Model Checkers
	1 Introduction
	2 Trends on the Architecture for Model Checking
	3 High-Level Logic-Based Input Languages
	3.1 Monolithic Approach: Directly Encoding the Semantics
	3.2 Prolog as an Intermediate Verification Language
	3.3 Other High-Level Languages
	3.4 Summary

	4 Using an Intermediate Language as a Pivot
	4.1 Intermediate Verification Language
	4.2 GAL Within ITS-Tools

	5 The API Approach to Reusing Verification Engines
	5.1 Distributed and Multi-core Model Checking
	5.2 Symbolic BDD-Based Model Checking
	5.3 Other Extensions as Pins2Pins Wrappers

	6 Application Examples
	6.1 ProB to LTSmin API: Linking High-Level Languages with Other Model Checkers
	6.2 Analysis of Timed Automata

	7 Discussion
	References

	The 10,000 Facets of MDP Model Checking
	1 Introduction
	2 MDP Model Checking in a Nutshell
	2.1 What are MDPs?
	2.2 Reachability

	3 The Manifold Facets of MDPs
	3.1 Costs
	3.2 Parameters
	3.3 Partial Observability
	3.4 Exponential Delays

	4 The Manifold MDP Properties
	4.1 Probabilistic CTL
	4.2 Expected Costs Until Reaching a Target
	4.3 Cost-Bounded Reachability
	4.4 Quantiles
	4.5 Timed Reachability
	4.6 Beyond Reachability
	4.7 Fairness
	4.8 Mean Payoff and Other Long-Run Averages
	4.9 Multiple Objectives
	4.10 Energy and Other Weight Objectives
	4.11 Conditional Probabilities
	4.12 Permissive Policies
	4.13 Counterexamples

	5 Curbing State-Space Explosion
	5.1 Compress
	5.2 Be Symbolic
	5.3 Abstract Safely

	6 Epilogue
	References

	Continuous-Time Models for System Design and Analysis
	1 Introduction
	2 The Pacemaker Case Study
	2.1 Hybrid Automata: Modeling the Heart
	2.2 Timed Automata: Modeling the Pacemaker

	3 Relating and Combining Models
	3.1 A Timed Abstraction of the Heart Cell Model
	3.2 The Timed Language of Hybrid Automata
	3.3 Verifying the Abstraction Using SpaceEx
	3.4 Abstraction Refinement

	4 Verifying Temporal Requirements
	4.1 Timed Automaton of a Heart Cell in Uppaal
	4.2 Requirement Specifications
	4.3 Healthy Heart Requirements
	4.4 Abstraction of Cell Composition
	4.5 Pacemaker Requirements

	5 Future Directions and Challenges
	References

	Statistical Model Checking
	1 Introduction
	2 Formal Definitions
	3 On Verifying Requirements: The SMC Approach
	3.1 Qualitative Analysis Using Statistical Model Checking
	3.2 Quantitative Analysis Using Statistical Model Checking and Estimation

	4 Rare Events
	4.1 Command-Based Importance Sampling
	4.2 Importance Splitting
	4.3 Rare Events: Comparison of Methods

	5 Importance Splitting/Sampling for Optimal Planning
	5.1 The Optimal Plan Synthesis Problem
	5.2 Adaptive Receding-Horizon Synthesis of Optimal Plans

	6 Importance Splitting for Optimal Control
	6.1 Adaptive-Horizon Model-Predictive Control
	6.2 Resiliency of the AMPC Algorithm

	7 Conclusions
	References

	Automated Software Test Generation: Some Challenges, Solutions, and Recent Advances
	1 Introduction
	2 Automated Test Generation: An Overview
	2.1 Random Testing and Input Fuzzing
	2.2 Test Generation with Symbolic Execution

	3 Symbolic Execution Meets Practice: Challenges and Solutions
	3.1 Exploring New Program Paths
	3.2 Interacting with the Environment
	3.3 Path Explosion
	3.4 Efficient Constraint Solving
	3.5 Parallelization and Testing as a Cloud Service

	4 Whitebox Fuzzing with SAGE
	5 Selective Symbolic Execution with S2E
	6 Other Approaches to Automated Test Generation
	7 Conclusion
	References

	Runtime Verification Past Experiences and Future Projections
	1 Introduction
	2 2000–2005 - From Propositional to Parametric RV
	2.1 Java PathExplorer
	2.2 Eagle
	2.3 JavaMOP

	3 2005–2006 - Further Experimentation with AOP
	4 2006–2010 - Missions and Rules
	4.1 Commanding and Monitoring
	4.2 RuleR
	4.3 LogScope

	5 2010–2017 - Internal DSLs, Slicing, and CEP
	5.1 TraceContract
	5.2 LogFire
	5.3 QEA
	5.4 Nfer

	6 2003–2017 - Sound Predictive Runtime Analysis
	6.1 Vector-Clock Based Algorithms: From JMPaX to jPredictor
	6.2 Maximal Causality and SMT-Based Algorithms: RV-Predict

	7 Reflections and Future Perspectives on RV
	References

	Combining Black-Box and White-Box Techniques for Learning Register Automata
	1 Introduction
	2 Inferring Models of Program Behavior
	2.1 Model Learning
	2.2 Abstraction
	2.3 Example: A Protocol Component

	3 Related Work and Applications
	4 Register Automata
	5 Black-Box Learning of Register Automata
	5.1 Learning Symbolic Automata
	5.2 Learning Register Automata: The SL* Algorithm
	5.3 Limitations and Extensions

	6 Exploiting White-Box Techniques
	6.1 Improving the Equivalence Oracle
	6.2 Introducing New Queries
	6.3 Computing Domain-Specific Information

	7 Conclusion
	References

	Author Index

