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Preface

Since the first edition in 2013, the International Workshop on Engineering Multi-Agent
Systems (EMAS) has been a reference venue where software engineering, MAS, and
artificial intelligence researchers can meet, discuss different viewpoints and findings,
and share them with industry.

Originally set up bymerging three separate historical workshops –AOSE, focusing on
software engineering aspects, ProMAS about programming aspects, and DALT about the
application of declarative techniques for the design, programming, and verification of
MAS – the overall purpose of EMAS is to facilitate the cross-fertilization of ideas and
experiences in the various fields to:

– Enhancing knowledge and expertise in MAS engineering and improving the state
of the art

– Defining new directions for MAS engineering that are useful to practitioners,
relying on results and recommendations coming from different but continuous
research areas

– Investigating how practitioners can use or need to adapt established methodologies
for the engineering of large-scale and open MAS

Like previous editions, the fifth edition of the workshop was co-located with
AAMAS (International Conference on Autonomous Agents and Multiagent Systems)
which in 2017 took place in Brazil, Sao Paulo. The previous editions were held in St.
Paul (LNAI 8245), in Paris (LNAI 8758), in Istanbul (LNAI 9318), and in Singapore
(LNAI 10093).

This year the EMAS workshop was held as a two-day event. In total, 18 papers were
submitted to the workshop and after a double review process, 11 papers were selected
for inclusion in this volume. All the contributions were revised by taking into account
the comments received and the discussions at the workshop. Among them, the paper
“Approaching Interactions in Agent-Based Modelling with an Affordance Perspective”
by Franziska Klügl and Sabine Timpf also appears in LNAI 10642 [Sukthankar G.,
Rodriguez-Aguilar J. (eds), AAMAS 2017 Ws Best Papers, LNAI 10642, 2017,
doi: 10.1007/978-3-319-71682-4_14], since it was selected as the best paper of the
workshop.

Finally, we would like to thank the members of the Program Committee for their
work during the reviewing phase, as well as the members of the EMAS Steering
Committee for their valuable suggestions and support. We also acknowledge the
EasyChair conference management system for its support in the workshop organization
process.

March 2018 Amal El Fallah-Seghrouchni
Alessandro Ricci

Tran Cao Son
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Towards Trusting Autonomous Systems

Michael Winikoff(B)

Department of Information Science, University of Otago,
Dunedin, New Zealand

michael.winikoff@otago.ac.nz

Abstract. Autonomous systems are rapidly transitioning from labs into
our lives. A crucial question concerns trust: in what situations will we
(appropriately) trust such systems? This paper proposes three necessary
prerequisites for trust. The three prerequisites are defined, motivated,
and related to each other. We then consider how to realise the prereq-
uisites. This paper aims to articulate a research agenda, and although
it provides suggestions for approaches to take and directions for future
work, it contains more questions than answers.

1 Introduction

The past few years have witnessed the rapid emergence of autonomous systems in
our lives. Whether in the form of self-driving cars on the road, Unmanned Aerial
Vehicles (UAVs) in the skies, or other, less media-grabbing forms, autonomous
systems have recently been transitioning from labs and into our lives at a rapid
pace.

A crucial question that needs to be answered before deploying autonomous
systems is that of trust : to what extent are we comfortable with trusting software
to make decisions, and to act on these decisions, without intervening human
approval?

This paper explores the question of trust of autonomous systems. Specifically,
it seeks to answer the question:

In what situations will humans (appropriately) trust autonomous
systems?

In other words, assume that we are dealing with a specific problem and its
context, where the context includes such things as the potential consequences
(safety, social, etc.) of the system’s behaviour. We then seek to know what pre-
requisites must hold in order for people to be able to develop an appropriate
level of trust in a given autonomous system that solves the specific problem. By
“appropriate level of trust” we mean that a system that is worthy of being trusted
becomes trusted, but a system that is not worthy of trust becomes untrusted.

We consider the question of trust from the viewpoint of individual people.
We choose to adopt this lens, rather than, say, considering the viewpoint of
society as a whole, for a number of reasons. Firstly, individual trust is crucial:
c© Springer International Publishing AG, part of Springer Nature 2018
A. El Fallah-Seghrouchni et al. (Eds.): EMAS 2017, LNAI 10738, pp. 3–20, 2018.
https://doi.org/10.1007/978-3-319-91899-0_1
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4 M. Winikoff

the viewpoint and policies of a society are clearly based on the viewpoints of the
individuals in the society1. Secondly, individuals are more familiar to us, and
hence easier to analyse. Finally, and most importantly, we can study individual
humans through various experiments (e.g. surveys). This allows us to seek to
answer the question of the prerequisites for trust using experimental methods
(e.g. social science, marketing, psychology).

Before proceeding to explore the prerequisites for trust, we need to briefly
clarify what this paper is not about, and indicate the assumptions that we are
making. This paper is about trusting autonomous systems (i.e. systems empow-
ered to make decisions and act on them). Although autonomous systems often
use Artificial Intelligence (AI) techniques, they are not required to be intelli-
gent in a general sense. Thus this paper is not about the issues associated with
trusting human-level AI, nor is it about issues relating to hypothetical super-
intelligence [31]. This paper is also not about the broader social consequences of
deploying autonomous systems. For example, the impact of AI and automation
on the patterns and nature of employment [4,12,46,47]. These are important
issues, and they do affect the extent to which a society will allow autonomous
systems to be deployed. However, they are out of scope for this paper, since they
require social rather than technological solutions.

We make two assumptions. Firstly, we assume that we are dealing with sys-
tems where the use of autonomy is acceptable. There are some systems where
human involvement in decision making is essential. For example, an autonomous
system that handed down prison sentences instead of a human judge may not
be socially acceptable. There is also a strong case for banning the development
of autonomous weapons2. We do note that cases where autonomy is unaccept-
able are not fixed, and may vary as trust develops. For instance, if it is shown
that software systems are able to make more consistent and less biased decisions
than human judges, then it may become acceptable to have autonomous software
judges in some situations. Secondly, in this paper we do not consider systems
that learn and change over time. Learning systems pose additional challenges,
including the potential inadequacy of design-time verification, and dealing with
emergent bias [5].

The sorts of systems that are within scope include autonomous UAVs, self-
driving cars, robots (e.g. nursebots), and non-embodied decision making software
such as personal agents and smart homes.

This paper is a “blue sky” paper in that it doesn’t provide research results.
Instead, it seeks to pose challenges, and articulate a research agenda. The paper
does provide some answers in the form of suggestions for how to proceed to
address the challenges, but largely it provides questions, not answers.

1 Although not all individual viewpoints receive equal prominence, which can lead to
government policies being out of step with the desires of the population.

2 http://futureoflife.org/open-letter-autonomous-weapons/.

http://futureoflife.org/open-letter-autonomous-weapons/
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1.1 Related Work

Whilst there is considerable literature devoted to the fashionable question of
trusting human-level or super-intelligent AI, there is considerably less literature
devoted to the more mundane, but immediate, issue of trusting autonomous (but
less intelligent) systems.

Fisher et al. [23] consider trust in driverless cars. Like us, they flag legal
issues and the importance of verification. This paper differs from their work in
considering legal factors in a broader context of recourse (where legal recourse is
only one of a range of options), and in considering additional factors relating to
formal verification. We also posit that explanation is important to trust. On the
other hand, they also consider human factors, such as driver attention, which
are relevant for cars that have partial autonomy, where the human driver needs
to be ready to take back control in certain situations.

Helle et al. [28] consider, more narrowly, challenges in testing autonomous
systems. They also reach the conclusion that formal verification is required, and,
like the earlier work of Fisher et al. [19,22,23], propose verifying the decision
making process in isolation. However, they also highlight the need to do com-
plete system testing to ensure that the system works in a real environment.
Where extensive real-world testing is impractical, they highlight virtual testing
(with simulations) as an approach that can help. Helle et al. also have other
recommendations that concern testing, such as using models, testing early and
continuously, and automating test generation.

A recent Harvard Business Review article [5] argued that “Trust of AI sys-
tems will be earned over time, just as in any personal relationship. Put simply, we
trust things that behave as we expect them to”. The article went on to highlight
two key requirements for trust: bias, and more generally algorithmic accountabil-
ity, and ethical systems. They argue that for AI to be trusted, there need to be
mechanisms for dealing with bias (detecting and mitigating). More relevant to
this paper, they go on to argue that bias is a specific aspect of the broader issue
of algorithmic accountability, and they argue that “AI systems must be able to
explain how and why they arrived at a particular conclusion so that a human
can evaluate the system’s rationale”. They further propose that this explanation
should be in the form of an interactive dialogue. They also argue that AI systems
should include explicit representation and rules that embody ethical reasoning
(see Sect. 3).

Abbass et al. [1] discuss the relationship between trust and autonomy, consid-
ering high-level definitions of concepts such as trust. The paper does not provide
clear answers to what is required for trust. Similarly, a meta-analysis of liter-
ature on factors affecting trust in human-robot interaction [26] found that the
most important factors affecting trust related to the performance of the robot
(e.g. behaviour, predictability, reliability). However, they did not provide a clear
picture of which specific factors, and also noted that further work was required,
since some factors were not adequately investigated in the literature.
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In parallel with the original version of this paper being written, a report on
Ethically Aligned Design [45] was being developed. This report is broader in scope
than this paper, but provides independent support for the points made here.

Finally, there is also a body of work on computational mechanisms to make
recommendations, and to manage reputation and trust between software agents
(e.g. [36,38]). However, this work focuses on trust of autonomous systems by
other software, rather than by humans. This makes it of limited relevance, since it
does not consider the complex psychological and social factors that inform human
trust. A human does not decide to trust a system using just a simple calculation
based on the history and evidenced reliability of the system in question.

The remainder of this paper is structured as follows. Section 2 introduces,
defines, and motivates the three prerequisites that we identify. Section 3 intro-
duces a fourth element (representing human values and using them in a reasoning
process), that we do not consider essential, but that supports the prerequisites.
Sections 4 and 5 discuss how to tackle the prerequisite of being able to explain
decisions, and verification & validation, respectively. We conclude in Sect. 6.

2 Prerequisites to Trust

We propose that there are three required prerequisites to (appropriately) trusting
an autonomous system:

1. a social framework that provides recourse, should the autonomous system
make a decision that has negative consequences for a person;

2. the system’s ability to provide explanations of its behaviour, i.e. why it
made a particular decision; and

3. verification & validation of the system, to provide assurance that the
system satisfies key behavioural properties in all situations.

However, we do not claim that these three prerequisites are sufficient. We do
argue that all three are necessary, but it may be that other prerequisites are also
necessary. Identifying other prerequisites to trust is therefore an important part
of answering the key question posed in Sect. 1.

A key message of this paper is that answering the key question requires a
broad programme of research that spans technological sub-questions (e.g. formal
verification, explanation) as well as social science sub-questions (e.g. when would
humans trust autonomous software, what sort of explanations are helpful), and
psychological sub-questions (e.g. how is trust affected by anthropomorphism,
and how do characteristics of software affect the extent to which it is ascribed
human characteristics).

The remainder of this section briefly outlines the three prerequisites. For each
prerequisite we briefly define what it is, and motivate the need for that prerequi-
site (“why”). We also draw out the relationships between the three prerequisites
(summarised in the diagram below). The subsequent sections consider for each
prerequisite how that prerequisite might be addressed. Note that for recourse
we only discuss “what” and “why” in this section, not “how” in a subsequent
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section. This is because the “how” is a social and legal question, and is out of
scope for this paper. On the other hand, Sect. 3 discusses value-based reasoning,
which is not an essential prerequisite (hence not in this section), but which can
support both verification & validation, and explanations.

V&V Recourse Explanations

Value-based reasoning

supports

used supports

2.1 Recourse: Law and Social Frameworks

We begin with the notion of recourse. In a sense, this prerequisite provides a
safety net. We know that no person or system is perfect, and that even given a
best possible set of practices in developing an autonomous system, it will have a
non-zero rate of failure. The notion of recourse is that if an autonomous system
does malfunction, that there is some way to be compensated for the negative
consequences. We therefore argue that recourse is a necessary prerequisite to
trust because it supports trusting a system that is less than 100% perfect, and
in practice no system is 100% perfect.

Although the term “recourse” may suggest a mechanism where an affected
individual uses the legal system to obtain compensation from another “person”
(for autonomous systems, likely the corporation that developed the system),
there are other possible social mechanisms that could be used, such as follow-
ing an insurance model. For example, a form of “autonomous cars insurance”
could cover people (pedestrians, cyclists, passengers, and other drivers) in the
event that an autonomous vehicle malfunctioned in a way that caused harm.
This insurance would ideally cover all people, and there are various models for
universal insurance that could be used. For instance, New Zealand has a national
comprehensive insurance scheme that automatically provides all residents and
visitors with insurance for personal injury (www.acc.co.nz).

Being able to establish a justification for compensation, be it via legal pro-
ceedings or as some sort of insurance claim, would require that autonomous
systems record enough information to permit audits to be undertaken, and the
cause of harm identified. The ability of an autonomous system to explain why
it made a decision can therefore support the process of seeking recourse by pro-
viding (part of) the evidence for harm.

While the existence of a recourse mechanism is identified as a prerequisite
for trust of autonomous systems, this area is not a focus of this paper, and we
do not discuss it further. More broadly, but also out of scope for this paper, are
issues relating to governance, regulation, and certification.

http://www.acc.co.nz
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2.2 Explanations

“. . . for users of care or domestic robots a why-did-you-do-that button
which, when pressed, causes the robot to explain the action it just took”
[45, p. 20]

A second prerequisite that we argue is essential to (appropriate) trust is the
ability of an autonomous system to explain why it made a decision. Specifically,
given a particular decision that has been made, the system is able to be queried,
and provide to a human user an explanation for why it made that decision. The
explanation needs to be in a form that is comprehensible and accessible, and
may be interactive (i.e. take the form of a dialogue, rather than a single query
followed by a complex answer).

There is a range of work, conducted in the setting of expert systems, rather
than autonomous systems, that considers what is required for experts to trust
systems. This work highlights explanation as an important factor in trust. For
example, Teach and Shortliffe [44] considered attitudes of physicians (medical
practitioners) towards decision support systems, including exploring the func-
tionality and features that such systems would require in order to be acceptable
to physicians. They noted (all emphasis is in the original) that

“An ability of a system to explain its advice was thought to be its most
important attribute. Second in importance was the ability of a system
to understand and update its own knowledge base. . . . Physicians did not
think that a system has to display either perfect diagnostic accuracy or
perfect treatment planning to be acceptable” (p. 550)

They go on to recommend (p. 556) that researchers should:

“Concentrate some of the research effort on enhancing the interactive capa-
bilities of the expert system. The more natural these capabilities, the more
likely that the system will be used. At least four features appear to be
highly desirable:
(a) Explanation. The system should be able to justify its advice in terms

that are understandable and persuasive. . . .
(b) Common sense. The system should “seem reasonable” as it progresses

through a problem-solving session. Some researchers argue that the
operation of the program should therefore parallel the physician’s rea-
soning processes as much as possible. . . .

(c) Knowledge representation. The knowledge in the system should be easy
to bring up to date, . . .

(d) Useability [sic] . . .”

they also recommend (p. 557) that researchers

“Recognize that 100% accuracy is neither achievable nor expected. Physi-
cians will accept a system that functions at the same level as a human
expert so long as the interactive capabilities noted above are a component
of the consultative process.”
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In other words, the system always being right was seen by physicians as being less
important, whereas the system being able to be understood was more important.

Stormont [43] considers trust of autonomous systems in hazardous environ-
ments (e.g. disaster zone rescue). He notes that while reliability is important,
“a more important reason for lacking confidence may be the unpredictability of
autonomous systems” [43, p. 29]. In other words, autonomous software can some-
times do unexpected things. This can be a good thing: in some cases a software
system may be able to find a good solution that is not obvious to a human. We
argue that this supports the need for explanations: if a system is able to behave
in a way that doesn’t obviously make sense to a human, but is nonetheless cor-
rect, then in order for the system to be appropriately trusted, it needs to be
able to explain why it made its decisions. These explanations allow humans to
understand and learn to trust a system that performs well. A difference between
Stormont and Teach & Shortliffe is that the latter argue for the system to mirror
human decision-making in order to be comprehensible (point (b) quoted above),
whereas Stormont sees the benefit of allowing software to find solutions that may
not be obvious to humans.

As noted earlier, providing explanations can support the process of building
a case for compensation. The provision of explanations can benefit from using
value-based reasoning (see Sect. 3).

2.3 Verification and Validation (V&V)

“It is possible to develop systems having high levels of autonomy, but it is
the lack of suitable V&V methods that prevents all but relatively low levels
of autonomy from being certified for use” [15, p. ix].

Before deploying any software system, we need to have confidence that the
system will function correctly. The strength of the confidence required depends
on the consequences of the system malfunctioning. For non-safety-critical soft-
ware, this confidence is obtained by software testing. However, autonomous sys-
tems can exhibit complex behaviour that makes it infeasible to obtain confidence
in a system via testing [51,53]. This therefore necessitates the use of formal meth-
ods as part of the design process.

While there may be situations where humans are willing to trust their lives
to systems that have not been adequately verified, we argue that this is a case of
excessive, and inappropriate, trust. If a system can potentially make a decision
that, knowingly, results in harm to a human, then we should have strong assur-
ance that this either does not occur, or occurs only under particular conditions
that are well understood, and considered acceptable. The need for confidence
in a system’s correct functioning, and, for autonomous systems, the need to use
formal methods, has been well-recognised in the literature (e.g. [15,17,23,28]).

3 Value-Based Reasoning

We have argued that recourse, explanations, and V&V are prerequisites that are
essential (but not necessarily sufficient) to having appropriate human trust in
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autonomous systems. In addition we now propose a fourth element: value-based
reasoning. We do not consider value-based reasoning to be an essential prereq-
uisite, but explain below why it may be desirable, and how it supports two of
the prerequisites. As noted earlier, a recent HBR article [5] argued that ethics
can, and should, be codified and used in reasoning. Similarly, van Riemsdijk
et al. [40] had earlier argued that socially situated autonomous systems (e.g. per-
sonal assistants and smart homes) should represent and use norms to reason
about situations where norms may conflict.

By value-based reasoning we mean that the autonomous system includes
a representation for human values (e.g. not harming humans), and that it is
able to conduct reasoning using these human values in order to make decisions,
where relevant. One (widely discussed) example is the use of ethical reasoning in
autonomous vehicles [6]. However, using human values in the reasoning process
can be beneficial not just in life-and-death situations. Consider a system that
takes care of an aged person, perhaps with dementia or Alzheimer’s disease.
There are situations where competing options may be resolved by considering
human values, such as autonomy vs. safety, or privacy vs. health. Perhaps the
elderly person wants to go for a walk (which is both healthy, and is aligned with
their desire for autonomy), but for safety reasons they should not be permitted
to leave the house alone. In this example, the system needs to decide whether to
allow the person it is caring for to leave the house, and, if so, what other actions
may need to be taken. The key point is that in different situations, different
decisions make sense. For instance, if a person is at a high risk of becoming lost,
then despite their desire for autonomy, and the health benefits of walking, they
should either be prevented from leaving, or arrangements should be made for
them to be accompanied.

Value-based reasoning can be used to support two of the prerequisites. Firstly,
we conjecture that the existence of a computational model of relevant human
values could be used as a basis for providing higher level, more human-oriented,
explanations of decisions. Secondly, in some situations, having an explicit model
of values (or, perhaps more specifically, ethics) would be required to be able to
verify certain aspects of an autonomous system’s behaviour, for instance that the
system’s reasoning and decisions take certain ethical considerations into account.
For example, a recent paper by Dennis et al. [20] proposes to use formal methods
to show that an autonomous system behaves ethically, i.e. that it only selects
a plan that violates an ethical principle when the other options are worse. For
instance, a UAV may select a plan that involves colliding with airport hard-
ware (violating a principle of not damaging property) only in a situation where
the other plans involve worse violations (e.g. collision with people or manned
aircraft).

In some situations doing value-based reasoning will not be feasible. For
instance, in a real autonomous vehicle, the combination of unreliable and noisy
sensor data, unreliable actuators, the inherent unpredictability of consequences
(partly due to other parties acting concurrently), and the lack of time to reason,
means that in all likelihood, an autonomous vehicle will not be able to make
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decisions using utilitarian ethical reasoning. On the other hand, there may be
applications (e.g. military) where software being able to conduct ethical reason-
ing would be considered to be very important [2].

Key research questions to consider in order to achieve value-based reasoning
are:

– What values should be represented, and at what level of abstraction?
– How should reasoning about values be done, and in particular, how does this

interact with the existing decision making process?
– How can values be utilised in providing explanations? And are such expla-

nations more accessible to people than explanations that do not incorporate
values?

– Given an agent with value-based reasoning, what sort of verification can be
done that makes use of the existence of values?

Cranefield et al. [14] present a computational instantiation of value-based rea-
soning that provides initial answers to some of these questions. Specifically, they
present an extension of a BDI language that takes simply-represented values into
account when selecting between available plans to achieve a given goal.

4 Explanations

As noted earlier, an important element in trust is being able to understand why
a system made certain decisions, leading to its behaviour. Therefore, there is a
need to develop mechanisms for an autonomous system to explain why it chose
and enacted a particular course of action.

Since explanations can be complex (e.g. “I performed action a1 because I was
trying to achieve the sub-goal g2 and I believed that b3 held . . .”), in order to be
comprehensible, they need to be provided in a form that facilitates navigation
of the explanation. This navigation can be in the form of a user interface that
allows the explanation to be explored, or by having the explanations take the
form of a dialog with the system (e.g. [13]).

Although there has been earlier work on explaining expert system recommen-
dations, which may be useful as a source of ideas, the problem here is different in
that we are explaining a course of action (taken over time, in an environment),
not a (static) recommendation. Consequently, we are not dealing with deductive
reasoning rules (as in expert systems), but with practical reasoning (although
more likely to focus on means-end-reasoning than on deliberation, i.e. the focus
is more likely to be on achieving rather than selecting goals).

Mechanisms for providing explanations obviously depend on the internal rea-
soning mechanism used and the representation of practical reasoning knowledge.
For instance, Broekens et al. [11] assume a representation in terms of a hierar-
chy of goals, also including beliefs and actions. If it turns out that explanations
in terms of goals and beliefs are natural for humans to understand (which we
might expect to be the case, since we naturally use “folk psychology” to reason
about the behaviour of other humans), then that may imply that we want to
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have the autonomous system represent its knowledge in the form of plans to
achieve its goals. However, it may also be possible to explain decisions made
by a non-goal-based reasoning process, by using a separate representation in
terms of goals. Although this would mean that the agent reasoning can use any
mechanism and representation, it introduces the potential for the actual reason-
ing and the goal representation used for explaining to differ. Finally, it is also
possible to provide explanations based solely on the observed behaviour of the
system (i.e. without having an accessible or useful internal representation of the
system’s decision making process), but this approach has drawbacks due to the
limited information available [25].

There has been some work on mechanisms for autonomous systems to pro-
vide explanations (e.g. [11,27,54]), but more work is needed. In particular, it
is important for future work to take into account insights from the social sci-
ences [35]. Although there may well be differences between how humans explain
behaviour and how we want autonomous systems to explain their behaviours, it
makes sense to at least be aware of the extensive body of work on how humans
explain behaviour, e.g. [34].

Harbers [27] assumes that there is a goal tree that captures the agent’s rea-
soning. The goal tree relates each goal to its sub-goals, and is indicated as being
an “or” decomposition, “all” decomposition, “seq” (sequence) decomposition, or
“if” decomposition. Each goal to sub-goal relationship is mediated by an optional
belief that allows the sub-goal to be adopted (e.g. the sub-goal “prepare the fire
extinction” is mediated by the belief “at incident location” [27, Fig. 4.4]). The
leaves of the tree are actions. The goal-tree is the basis for the implementation
of the agent (using the 2APL agent programming language). A number of differ-
ent explanation rules are considered. For instance, explaining an action in terms
of its parent goal, or in terms of its grandparent goal, or in terms of beliefs
that allowed the action to be performed, or in terms of the next action to be
done (e.g. “I did action a1 so I could then subsequently do action a2”). Harbers
reports on an experiment (with human subjects) using a simple fire fighting sce-
nario, where the tree of goals contains 26 goals, and where the agent executes
a sequence of 16 actions. The experiment aims to find out which explanation
rules are preferred. She finds that in general there is not a consistent preference:
for some actions a particular rule (e.g. the parent goal) is the commonly pre-
ferred explanation, whereas for other actions, the next action is the commonly
preferred explanation. Harbers proposed that an action ought to be explained
by the combination of its parent goal and the belief that allowed the action to
be performed (which was not an explanation rule used in her experiment), but
also defined two exceptional situations for which different explanations should
be used. Broekens et al. [11] report on a similar experiment, and also find that
there is not a single explanation rule that is the best for all situations.

One characteristic of the rules used by Harbers and by Broekens et al. is that
they are (intentionally) incomplete: given an action, each rule selects only part
of the full explanation. For instance, a rule that explains an action in terms of its
parent goal ignores the beliefs that led to that goal being selected. By contrast,
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Hindriks [29] defines (informal) rules that yield a more complete explanation.
More recently, Winikoff [54] builds on Hindriks’ work by systematically deriv-
ing formally-defined rules that are then implemented. Winikoff also explicitly
defines (but does not prove) a completeness result: that, given their derivation,
the rules capture all the explanatory factors. However, this work aims to sup-
port programmers debugging a system, rather than human end-users trying to
understand a system’s behaviour (presumably without a detailed understanding
of the system’s internals!). Additionally, the completeness of the rules comes at
a cost: the explanations are larger, and therefore harder to comprehend.

Finally, as mentioned in the previous section, it may be desirable to include
human value-based reasoning into the decision process, which then poses the
question of how to exploit this in the provision of explanations.

We therefore have the following research questions:

– How can an autonomous system provide explanations of its decisions and
actions?

– What forms of explanation are most helpful and understandable? Is it helpful
to structure explanations in terms of folk psychology constructs such as goals,
plans and beliefs?

– How can explanations be effectively navigated by human users? In what cir-
cumstances is it beneficial to provide an explanation in the form of a dialogue?

– What reasoning processes and internal representations facilitate the provision
of explanations? Does there need to be some representation of the system’s
goals?

– What is the tradeoff between using the same representation for both decision
making and explanation, as opposed to using a different representation for
explanation?

– How well can explanations be provided without a representation for the sys-
tem’s decision making knowledge and process (i.e. based solely on observing
the system’s behaviour)?

– How can explanations be provided that exploit the presence of representa-
tions of human values in the reasoning process? Are such explanations more
accessible to people than explanations that do not incorporate human values?

Note that we are assuming a setting where a system deliberates and acts
autonomously, and may be required to provide after-the-fact explanations (to
help a human understand why it acted in certain ways, or to provide evidence for
compensation, in the event of harm). However, another setting to be considered
is where autonomous software works closely with humans, as part of a mixed
team. In this sort of setting it is important not just to be able to explain after the
fact, but also to provide updates during execution so that team members (both
human and software) have sufficient awareness of what other team members are
doing, or are intending to do. Doing this effectively is a challenge, since a balance
needs to be struck between sharing too little (leading to inadequate awareness,
and potential coordination issues) or too much (leading to overloading human
team members with too much information). There has been some work that
has explored this issue (e.g. [33,42]). However, this is not related to trusting
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autonomous systems in a general setting, but to the effectiveness of working
with software in mixed human-agent teams.

5 Verification and Validation

We have already noted that we need to have a way of obtaining assurance that an
autonomous software system will behave appropriately, and that obtaining this
assurance will require formal methods. We now consider the challenges involved
in doing so, highlight some approaches, and pose research questions.

Work on techniques for verifying autonomous systems goes back at least
15 years (e.g. [56]). However, current state-of-the-art techniques are still only
able to verify small systems [7,17,19,21,22,37,56]. Given the work that has
been done, and the foundations provided by earlier work on verification of (non-
autonomous) software, continuing to improve verification techniques is important
future work, and eventually the techniques will be able to deal with realistically-
sized systems. A number of ideas have been proposed that reduce the complexity
of verification.

Firstly, Fisher et al. [19,22,23] have proposed to reduce the complexity of
verifying autonomous systems by focussing on verifying the system’s decision
making in isolation. The correct functioning of sensors and effectors is assessed
separately, which requires end-to-end testing, possibly involving simulation [28].
Verifying decision making not only improves efficiency, but also allows verifica-
tion to consider whether a bad decision is made in error (e.g. due to missing
information), or intentionally, which is an important distinction [3,32].

Secondly, Bordini et al. [8] have proposed using slicing to reduce the com-
plexity of verification. The basic idea is that given a particular property to be
verified, instead of verifying the property against the agent program, one first
generates a specialised version of the program that has been “sliced” to remove
anything that does not affect the truth of the property being verified. The prop-
erty is then verified against the “sliced” program. There is scope for further
work, including considering other forms of program transformation prior to ver-
ification. For instance, there is a body of work on partial evaluation3 [30] that
may be applicable.

Thirdly, there are various approaches that reduce the complexity of verify-
ing a large system by verifying parts of the system separately, and then com-
bining the verifications. One well-known approach uses assume-guarantee rules
(e.g. [24]). It would be useful to consider adapting this approach for use with
autonomous systems. In the case that the system’s decision making is represented
in terms of a hierarchy of goals, it may be that sub-goals provide a natural point
of modularity, i.e. that one can verify sub-goals in isolation, and then combine
the results.

3 Partial evaluation is the process of taking a program and some of its inputs and
producing a specialised program that is able to accept the remaining inputs and
compute the same results as the original program, but more efficiently.
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In addition to these research strands, which aim to make verification prac-
tical for real agent programs, there is another issue to consider: where does
the formal specification come from? Verification takes a property and
checks whether this property holds, but in order to be confident that a system
(autonomous or not) will behave appropriately, we need to be confident that the
collection of properties being verified adequately capture the requirements for
“appropriate behaviour” [41].

In some cases there may be existing laws or guidelines that adequately specify
what is “appropriate behaviour” for a given context, for instance, the Rules of
the Air4 describe how a pilot must behave in certain situations5, and can be used
as a source for properties to be verified [50]. However, sometimes such guidelines
do not exist, or they may be incomplete. For example, important constraints
may not be explicitly stated, if they are “obvious” to humans, such as that a
pilot should not accelerate in a way that exceeds human tolerances.

We therefore propose the development of a process for systematically deriv-
ing the properties to be verified from the system’s design and a collection of
high-level generic properties (e.g. “cause no harm”, “always ensure others are
aware of your intentions” - important for predictability). We assume that the
autonomous software is developed using a well-defined methodology [55] which
uses design models (e.g. goal model, interaction protocols) as “stepping stones”
in the development process that results in software. The properties to be verified
(“Formal Specification” in Fig. 1) are derived by taking (1) a collection of generic
high-level properties which apply to any system, expressed in an appropriate
notation, and applying (2) a well-defined process for deriving a fault model [48]
from the high-level properties and the system’s design models. We then need a
well-defined process (3) for deriving the required formal specification properties
from the fault model.

Design
Process

Design
Models

(1) Generic 
 High-Level 
 Properties

(2) Fault
Model

Software

Formal(3)

Model
Checker Yes/No

Fig. 1. Proposed process for systematically deriving properties to be verified

For instance, given a high-level property of “not harming people”, one might
examine the system’s design (along with information on its environment, and
domain knowledge regarding the consequences of various actions) to derive a
fault model that captures the specific ways in which the system’s decisions might
4 https://www.easa.europa.eu/document-library/regulations/commission-implement-

ing-regulation-eu-no-9232012.
5 For example, that when two planes are approaching head on and there is a danger

of collision, that the pilots should both turn to their right.

https://www.easa.europa.eu/document-library/regulations/commission-implementing-regulation-eu-no-9232012
https://www.easa.europa.eu/document-library/regulations/commission-implementing-regulation-eu-no-9232012
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lead to harming people. As an example, consider a robot assistant (“Care-O-
bot”) [49] that resides in a home along with an elderly person being cared for.
We would consider how harm to the person being cared for can occur in relation
to the system’s requirements. Since the system is responsible for managing med-
ication, we might identify that administering medication incorrectly, or failing
to remind the person to take their medication, are possible ways in which harm
can be caused. Similarly, the system failing to promptly seek help in the event
of an accident, adverse medical event or other emergency (e.g. fire, earthquake)
would be another way in which the person being cared for could be harmed.
This analysis process contextualises the threats to the high-level properties in
the circumstances of the system, and results in a fault model, which captures
specific ways in which the system at hand might violate the high-level properties.
We then need to have a way of deriving from the fault model specific properties
to be verified, in an appropriate formal notation. The collection of high-level
properties (1), process for deriving a fault model for a given system (2), and
method for deriving formal properties from the fault model (3) all need to be
developed, along with appropriate notations.

Finally, as noted in the previous section, the internal reasoning process
and associated representation matters. What sort of reasoning mechanisms
and knowledge representations should be used to facilitate verification? Fisher
et al. [22] have argued, in the context of verifying autonomous systems, that
the systems should be developed in terms of beliefs, goals, plans, and actions,
i.e. using a BDI (Belief Desire Intention) [39] agent-oriented programming lan-
guage such as Gwendolyn6 [18].

We therefore have the following research questions:

– How can agent program slicing be improved? What other forms of program
transformation (e.g. partial evaluation) could be used to reduce the complexity
of verification?

– Can the decision making process for a given autonomous system be verified in
a modular way, perhaps using assume-guarantee reasoning (e.g. [24])? If so,
can goals and sub-goals be used as a natural point to divide into independent
components for verification?

– How can the properties to be verified be systematically derived?
– Should autonomous agents be programmed using a notation that supports rep-

resentations for goals, beliefs, plans, and actions? If so, are existing BDI agent
programming languages adequate, or do they need to be extended, restricted,
or otherwise modified?

6 Discussion

In this paper we have considered the issue of trust, specifically posing the ques-
tion: “In what situations will humans (appropriately) trust autonomous sys-
tems?”
6 Other prominent BDI agent-oriented programming languages include Jason [9],

Jadex [10], JACK [52], and 2APL [16].
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We argued that there are three prerequisites that are essential in order for
appropriate trust in autonomous systems to be realised: having assurance that
the system’s behaviour is appropriate (obtained through verification & valida-
tion), having the system be able to explain and justify its decisions in a way that
is understandable, and the existence of social frameworks that provide for com-
pensation in the event that an autonomous system’s decisions do lead to harm
(“recourse”). We also discussed using computational representations of human
values as part of the decision making process in autonomous software, and how
this can support the other prerequisites.

However, while we have argued that these three prerequisites are necessary,
we are not in a position to claim that they are sufficient. Therefore, an over-
arching piece of research is to investigate experimentally the extent to which
humans are willing to trust various autonomous systems given the prerequisites,
and, especially, where people are not willing to trust a system, to identify what
additional prerequisite might be required in order to enable (appropriate) trust.

We have discussed paths towards achieving the two technical prerequisites,
and posed specific research questions, thereby defining a research agenda. There
is much work to be done, and I hope that this paper will help to spur further
discussion on what is needed to have appropriate trust in autonomous systems,
and encourage researchers to work on the problems and questions articulated.

Acknowledgements. I would like to thank the anonymous reviewers for their com-
ments, and Michael Fisher for discussions and pointers to literature.
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Abstract. Over the last years, the affordance concept has attracted
more and more attention in agent-based simulation. Due to its ground-
ing in cognitive science, we assume that it may help a modeller to capture
possible interactions in the modelling phase as it can be used to clearly
state under which circumstances an agent might execute a particular
action with a particular environmental entity.

In this discussion paper we clarify the concept of affordance and intro-
duce a light-weight formalization of the notions in a way appropriate for
agent-based simulation modelling. We debate its suitability for capturing
interaction compared to other approaches.

1 Introduction

A critical part of building an agent-based model is related to interactions between
agents, as well as between agents and other objects in their environment. There
is an inherent gap between formulating agents, their properties, individual goals
and/or behaviour at the micro level and the overall intended outcome observ-
able at a macro level. When running the simulation, the simulated agents – put
together and into an environment –, eventually generate this aggregated out-
come. Interaction hereby forms the element of the model that connects micro-
and macro level. Yet, one cannot easily foresee who will actually interact with
whom in the running simulation. Diverse methodologies for developing agent-
based simulation models propose different solutions to produce some form of
predictability of interactions, defining a systematic approach to formulations in
the model.

In this contribution we aim at clarifying the concept of an affordance so
that it becomes a helpful notion for general agent-based simulation model devel-
opment. We suggest a formalization that – if embedded into an appropriate
development methodology – can support a more reliable model development by
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explicitly representing potential interactions. Affordances have been seen as use-
ful in so diverse areas such as Human-Computer Interaction and Virtual Reality,
Robotics or spatially explicit agent-based simulation. Our goal is to develop a
concept that supports a modeller in capturing interactions, not in a way to be
able to automatically reason about them before running a simulation, but in
a way to make the modeller aware of the circumstances in which interactions
happen or not. Interactions that occur during a simulation run need to be fully
explainable. Analysis of interactions that actually happened during the simula-
tion, shall supporting understanding and thus quality control of the simulation
model. We argue that affordances – due to their grounding in cognitive science
theory – form a natural basis for guiding a modeller.

In the following we first set the scene by discussing how interactions are
handled when developing agent-based simulation models, this is followed by a
discussion of related work on affordances in agent-based simulation. We then
introduce our particular interpretation of the original affordance notion, define
affordances for use during simulation runtime and affordance schemata to be
specified during model definition. We illustrate how those notions can be applied
in a small example. The contribution ends with a discussion of challenges not
yet addressed and our future planned work.

2 Formulating Interactions

There are different perspectives that a modeller may consider when developing
with an agent-based simulation model. Depending on the particular methodology
applied, the set of perspectives is different. Yet, there is a core set containing
first, a model of the agents, and second, a model of the simulated environment
in which the agents are embedded. The third perspective aims at capturing
the interactions between the those elements of the model. A fourth perspective
deals with the simulation infrastructure containing information about scheduling
updates, time model, et cetera.

The perspective of a single agent is well understood - using techniques and
meta-models elaborated in diverse agent architectures such as rule-based systems
or BDI agents. The environmental perspective received much attention over the
last years, sometimes mixed with the infrastructural elements especially when
handling the environments’ update from the actions of the agents that should
happen in parallel. Yet, the interaction perspective in a general sense appears to
be neglected.

The Merriam-Webster dictionary shortly characterizes “interaction” as
“mutual or reciprocal action or influence”. In addition it distinguishes between
two forms of interaction: (1) Interaction as communication and (2) interaction
as mutual effect. The first form is often adopted in Agent-Oriented Software
Development when specification of agent interaction is reduced to specification
of protocols for exchanges of structured messages. The second form is more cur-
rent. Considering interactions is basically a first step to connect the micro-level
behaviour of agents to observations at the system or macro-level.
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2.1 Interaction in AOSE

It is not surprising that formulating and dealing with interactions is at the heart
of developing and analysing multi-agent systems. Basically from the beginning,
researchers analysed conditions and circumstances for interaction of all kinds of
agents – simple reactive to intelligent agents. Ferber [8] systematically analysed
interaction situations.

Organization models were spotlighted as a mean to structure societies of
agents. Hereby, the number of potential interaction partners is restricted to
agents within the group or to agents having adopted particular roles. The
basic idea behind those endeavours is to make system-level behaviour more pre-
dictable. Organizational notions hereby allow determining with whom to inter-
act, while what actually happens during interaction is formulated in a protocols.
Many meta-models were proposed for organizational models (such as [14] or [9]).

AUML [4] became the de facto standard for representing agent communi-
cation protocols as it provided more flexibility and a higher abstraction level
than plain UML sequence diagrams at that time. Meanwhile, the corresponding
UML2 diagrams offer similar features [5]. At a higher abstraction level interac-
tions and relations between agents can also be represented using UML Use Case
diagrams [7].

2.2 Interaction in Agent-Based Simulation

When specifying a particular behaviour with which an agent interacts or inter-
feres with another entity, it essential to understand in which context the interac-
tion will actually happen during runtime. This reads strange as one may assume
that only what is given during modelling, is actually happening during simula-
tion. However, this is just the case in models in which interaction situations are
fully given - e.g. the above mentioned pre-defined organizations exactly provide
such fully determined place. Yet this is not the case in general. In a simulation
with a kind of stigmergic interaction, an agent modifies an environmental entity,
another agent perceives the result and reacts to it. Interaction here consists of
action and perception in a decoupled way. Who actually reacts to the modifica-
tion is unclear, when the modeller determines the agent behaviour and potential
interaction. Stigmergic interaction may be an extreme example, but similar sit-
uations happen in all cases in which the agent behaviour definition contains
elements that are determined during runtime – when the agent interacts in a
particular situations with the entities that are actually there. This makes it so
difficult to handle interaction in agent-based simulation modelling.

Definition and simulation of interactions consequently forms a major source
of errors eventually leading to extensive debugging and analysing. Thus, it is a
highly critical element of a modelling methodology to get the interactions right
as early as possible. Their proper specification, documentation and analysis is
essential.

Over the years, several approaches have been published that suggest ways
of explicitly handling interactions when creating a model. Like in the AOSE
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case, particular organization-level models have been proposed, such as using
an institutional perspective as in the MAIA methodology [12]. Also integrating
a model of social networks, such as discussed in [2] provides a structure who
interacts with whom.

As in AOSE, UML Sequence diagrams that enable to formulate an interaction
as a sequence of messages, can be used to specify interaction in agent-based
simulation models [6]. For a higher abstraction level UML Use Case diagrams
may be used. But, the flexible element may concern the interaction partner.

A basic framework for supporting the modelling of interaction is presented
with the IODA approach [25]. In their methodology they propose to define inter-
actions explicitly in a way separated for the actual agent models. This is also
done when using explicit models of organizations, yet IODA is special as it
directly couples interaction to agent action. The central element of IODA is a
table that label how agents of one family interact with others. The label con-
nected to a program or script as well as some form of condition. Hereby, Kubera
et al. [24] also argue that everything can be an agent; so basically all actions
can be phrased as interaction. IODA is particularly apt for reactive agents. It
does not cover selection of interaction partners – all agents of a particular type
within a specified distance may interact.

In this contribution, we want to explore if the concept of affordances helps
to capture possible interactions in the modelling phase. Affordances also could
be used to select interaction partners during a running simulation. Before we
elaborate on our thoughts, we give an overview on what affordances actually are
supposed to be as well as how they are currently used in agent-based simulation.

3 Notions and Usages of Affordances

3.1 The Concept of Affordance

The notion of affordance is at the core of ecological psychology, brought for-
ward by Gibson [13]. Gibson defined affordances as action potentials provided
by the environment: “The affordances of the environment are what it offers the
animal, what it provides or furnishes, whether for good or ill”. For example,
a bench affords sitting to a human. The potential action of ‘sitting’ depends
on properties of the bench, properties of the human, and on the current activ-
ity the human is engaged in. Gibson put special emphasis on this reciprocity
between animal and environment, insisting that affordances are neither objec-
tive nor subjective. Thus, Stoffregen [32] defined affordances as “properties of
the animal-environment system [...] that do not inhere in either the environment
or the animal”.

In the context of cognitive engineering Norman [27] determines the usability
of environmental objects for a human carrying out a specific task by considering
not only the affordances but the “perceivable affordances” of objects and the ease
of perception for humans. Norman is dedicated the designing objects in such a
way that their affordances become immediately perceivable by a person engaged
in some task. Transferred to the context of modelling interactions a modeller
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needs to anticipate the affordances that will be needed within a specific action
context and that the agent should be able to perceive.

Affordances in robotics reasoning [3] are used for enabling robots to handle
unexpected situations. The moment an object is recognized as for example a
mug, the robot can retrieve what actions it affords from an object-affordance
database. Based on this the robot may adapt its plan to water plants using the
mug instead of another container which is not available. This approach requires
an extensive database which first needs to be assembled. Raubal and Moratz
[30] developed a functional model for affordance based agent, aiming at enabling
robots to perceive action-relevant properties of the environment. This research
clarifies the notions but stays at an abstract level of formalization. Although
they don’t name it“affordances” but services, [11] present an idea that is related
to both the robotics idea of affordances. They use an action planner to config-
ure a learning scenario an educational game. Appropriate objects providing the
services that are needed in the scenario are integrated into the scenario. This is
not a simulation application per se, but has some relation.

In Geographic Information Science the affordance concept has been used
extensively in order to model and understand human environmental perception
and cognition. Jordan et al. [20] created an affordance-based model of place,
discovering that the agent, the environment and the task of the agent need
to be modelled in order to be able to determine affordances of places. Raubal
[29] based his model of wayfinding in airports on an extended concept of affor-
dances, including social and emotional aspects, thus enabling agents to inter-
pret the meaning of environmental entities relevant to the task at hand. Jonietz
and Timpf [17,18] interpret affordances as a higher-order property of an agent-
environment system, which is determined by agent- and environment-related
properties termed capabilities and dispositions at a lower level. As in the previ-
ous modelling approaches, affordances are interpreted as properties that may be
modelled and not as something that emerges from the interaction between agent
and environment. However, the affordance concept emphasizes the central role of
action potentials and ties the afforded action and the respective environmental
entities in a pragmatic sense [15].

3.2 Affordances in Agent-Based Simulation Modelling

During the last years the concept of affordances has become popular in agent-
based simulation. Affordances were basically used to enable a modeller to for-
mulate some element in the simulated environment that the agents could use for
deciding about where to go next or what to do next.

There are a number of models that aim at reproducing how a human reasons
about its environment for achieving more realism. These models are highly moti-
vated by cognitive science. The basic assumption is that following hypotheses
how humans really think, the model can achieve a higher degree of structural
validity. Examples for those models are [28–30] or [17]. A formalisation focussing
on affordances as an emergent property based on a detailed model of spatially
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explicit environment as well as actions and relations in that environment can be
found in [1].

Other works interpret the notion of affordances more freely: Joo et al. [19]
propose affordance-based Finite State Automata. They use affordance-effect
pairs to structure the transitions between states of a simulated human. In an
evacuation scenario, an agent follows a given route to the exit, but checks every
step whether necessary affordances are fulfilled, using affordances to evaluate
different local options.

Kapadia et al. [21] use “affordance fields” for representing the suitability
of possible actions in a simulation of pedestrian steering and path-planning
behaviour. An affordance is hereby a potential steering action. The affordance
field is calculated from a combination of multiple fields filled with different kinds
of perception data. The agent selects the action with the best value in the affor-
dance field. A particular interesting approach is suggested by Ksontini et al. [23].
They use affordances in traffic simulation denoting virtual lanes as an occupy-
able space. Agents reason about what behaviour is enabled by the environmental
situation. The affordances offered by the environment are explicitly represented
by those virtual objects that offer driving on them. [22] labelled environmen-
tal entities with “affordances” such as “provides medication” as counterparts
of agent needs enabling the agents to flexibly search for interaction partners or
destinations.

In these approaches, affordances are used as more as rules, for representing
constraints or for identifying options. They serve as a tool for flexibly connecting
an agent to interaction partners. There is no intention to advance the research
in cognitive science.

3.3 Our Concept of Affordances

Affordances capture an emerging potential for interaction between an agent in
a particular mind set intending to carry out a particular action and an envi-
ronmental entity or ensemble of entities that the intended action involves. The
entities need to have specific dispositions that can match up with the capabilities
of the agent.

We use “affordance” as a kind of technical term capturing something that
would be not be capturable otherwise. We do no claim to formalize the psycho-
logical, cognitive-science view on how humans actually reason about affordances.
Our focus is on helping the modeller understand and think about interactions
between agent and environment. Affordance shall make the potential for inter-
action between an agent and its environment explicit. So, we let the affordance
stand per se for a potential interaction independent of how an agent selects its
actions during simulation runtime. One can see it as a “shortcut” for represent-
ing what the agent perceives as relevant for selecting an entity as an interaction
partner, without explicitly listing relevant features. In Gibson’s original affor-
dance idea there is no space for explicit selection between different affordances -
the potential for action is directly linked to action in a Boolean fashion.
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4 From Affordances to Interaction

Our aim is to deal with interactions in an explicit and flexible way using affor-
dances. Therefore, we need to differentiate between an affordance emerging for
a simulated agent while it“moves” through its environment, and between a rep-
resentation that is defined by the modeller as some kind of declarative pattern
from which the perception is generated. In principle, we assume that there is
something like an explicit, declarative model that the modeller creates which is
then interpreted or compiled for actually executing it during simulation runtime
when the agent actually “lives”. We call the run-time representations “affor-
dance”, and the modelling-time representation “affordance schema”.

For running the actual Agent-Based Simulation, there must be some process
to generate affordances. Theoretically, there is no emergence involved when a
simulated agent perceives simulated affordances, as everything is defined by the
modeller. Yet, from the point of view of the agent, an affordances may be in
deed unexpected. For a modeller an affordance cannot “emerge” surprisingly.

4.1 Affordance and Affordance Schema

We define an affordance as a relation between a potential action and an envi-
ronmental configuration. So, theoretically, it is neither a part of teh environmet,
nor a part of the agent, but connects both. The affordance becomes noticeable
by an agent a at a particular time point t during simulation. pAffa,t are all
affordances that the agent a can perceive at time t:

〈a, act, x〉 ∈ pAffa,t (1)

Such an affordance denotes the possibility of establishing a relation between
an agent a and an entity x with respect to action act. x may serve as an inter-
action partner, if the given action is executed. With the perception of the affor-
dance, the action becomes possible. Both, a and x are in a particular state at
the time point t. We apply an extended view on “state” that goes beyond pure
representation of kind-of metabolic values, but also contains activity, motiva-
tions and goals, beliefs, etc. We do not make assumptions on how this state
looks like in a particular model. We also need to assume that the agent a has an
explicit set of distinct, potential actions from which it selects one to perform in
its environment.

As given in the previous section, an affordance links a potential action to an
environmental constellation. Per se, such a constellation is not just a single entity
in a particular state, but contains context. For example, a bench affords sitting-
down just if the area to sit on is sufficiently stable (state of the bench entity).
Selection is influenced by the context of the entity - whether it is below a tree
casting shadow on it during sunny, too hot times or under a roof that protects it
from rain on a rainy day. We assume that all information that qualifies an entity
for offering a particular potential action is represented in its state; information
that makes it more or less qualified in comparison to other entities affording
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the same potential action is determined by its context. Preferences or degrees of
qualification are not considered in the classical affordance concept. In [16] this
classical view is extended by elaborating gradation of affordances. Nevertheless,
the selection of affordances depends on the particular way the agent reasons
about affordances which should be independent from the actual affordance. An
agent might follow the first affordance relation that it encounters or a random
one or might evaluate different options for determining which one to prefer.

This formalization is different from [31] who see an affordance as an acquired
relation between a combination of an environmental object with behaviour and
an effect of this behaviour. The idea of acquiring knowledge about an affordance
illustrates their robotics perspective.

Thus, we image an affordance as an explicit object (as a kind of data struc-
ture) during simulation runtime about which the agent reasons with respect to
carrying it out or not. Thus, there is a need for an higher-level data structure or
schema that enables to create such runtime affordance objects. Such a schema
must be more than a class in the object-oriented sense from which affordance
instances can be created. For being useful in modelling per se, the schema needs
to contain more contextually relevant information and conditions under which
the affordance actually “emerges”. We define such an affordance schema in the
following way:

〈AType, act, EType, hContext, sContext〉 (2)

Such an affordance schema can be seen as a “pattern” that can be used
to generate or determine affordances present in the agents environment1. An
affordance schema is specified during modelling, but does not necessarily exist as
an explicit data structure during simulation runtime. When a modeller specifies
such affordance schemata, she explicitly writes down under which circumstances
an interaction might happen between an agent of type AType performing action
act with an object of type EType. The action in the affordance can be a more
specific and parametrized version of the action given in the affordance schema.
The actual action representation may depend on the applied agent architecture.
The fourth and fifth elements hContext and sContext capture the circumstances
under which an affordance 〈a, act, x〉 can be really created for a being a kind
Of AType and x being a kind Of EType, offering the action. The difference
between hContext and sContext is that the former contains hard conditions
that enable the affordance - focussing on object and agent properties directly;
the latter contains weaker conditions or even just criteria that make a particular
constellation more favourable than others.

For example, in a park simulation (such as [33]), during a hot day, an
agent a enters a park that is equipped with a currently broken bench b1 in
the shadow, a clean bench b2 in the sun and a nice looking stone st1 under
shady trees. The agent a entering the park is tired and searches for a place
1 Our idea of an affordance schema is on a higher abstraction level than what W.

Kuhn called “Image Schema” in [26]. He describes an environmental constellation
using spatial categories and connects them to a process that they afford.
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to sit down (action sitDown). Thus, a scans the environment using the affor-
dance schema for sitDown and generates the following affordance objects:
〈a, sitDown, b2〉 and 〈a, sitDown, st1〉. It does not generate an affordance for
b1 because the bench is not apt for sitting on it due to the broken surface.
Depending on some form of ontology capturing environmental entities such
as benches or stones as entities with flat surfaces, the modeller has defined
the following affordance schema as a pattern to describe potential interac-
tions: 〈V isitor, sitDown,ObjectWithF latSurface, hConditions, sConditions〉.
Agent a is of type V isitor and requires for the action sitDown an entity of
type EntityWithF latSurface which is the superclass of benches, stones, etc.
However, not every one of those entities affords the action for a V isitor agent.
This is represented in hConditions which define under which circumstances
the environmental entity e affords the action sitDown: {stable(surface(e)),
height(surface(e)) < 110 cm), ...}. The set of soft conditions may contain for
example {inShadow(e)}. The conditions may also refer to other objects present
in the vicinity of e affecting whether and how well the entity e actually can afford
the given action.

It is important to stress that our definition of affordance and affordance
schema does not contain a description of the effect of the action it refers to. The
description as in the example just contained a label sitDown. What this means.
In simulation, we are dealing with an environment for the agents’ behaviour
that is part of the model - that means fully defined by the modeller. With the
environment the effect of actions is usually fully defined, even if a modeller follows
the conceptually cleaner distinction between agent action and environmental
reaction as described by [10].

Another essential aspect distinguishing the specification of affordances in
agent-based simulation versus robotics (and also agent-oriented software devel-
opment) is that actions in simulation may be defined at arbitrary levels of
abstraction – adapted to the abstraction level of the environment. For example
the action sitDown may not have a lower level correspondence when the agent
executes it. There might be no going towards, arching joints, lowering backs, or
whatever low-level commands are necessary to execute such an action. Abstrac-
tion levels might differ a lot between models describing the same phenomenon.
This is also the reason why we would not expect to be able to create a set of
“standard” affordances that can be used across many simulation applications.

Enabling a distinction between different environmental objects so that the
agent may prefer one to another is NOT part of the original affordance idea.
An affordance connects an environmental object to a potential action of the
agent. How the agent reasons is not part of the affordance. Thus, conditions are
intentionally only present on the affordance schema, i.e., the modelling level.
The runtime affordance depends on the simulated agents’ point of view within
the simulated environment. But somehow during simulation, there must be a
process generating the affordances that the agent then can select, etc. Thus, we
need to discuss processes of how the affordance schemata generate affordances
and determine the agents’ actual behaviour and interaction.
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4.2 Processes Around Affordances

In theory, an affordance emerges as a potential action for an actor with a par-
ticular motivation (goal, desire ...). In a simulation, it needs to be determined
either by the simulated agent itself or by some higher level process which may
not be manifested as an actor in the simulation. In Fig. 1 an abstract view is
visualized of how different elements of such a process can be connected.
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Fig. 1. Overview over processes related to affordance generation and usage.

Following Fig. 1 we need to elaborate partial processes relevant for creating
interactive agent behaviour from explicitly defined affordances:

– Mechanism that connects agent goals to actions that are apt to achieve the
agents’ goal or satisfy its motivation. This process element is responsible for
a pre-selection of actions from an action repertoire capturing what the agent
is able to do in general. The selected actions need to be connected to the
agents’ motivational concepts and perceptions/beliefs in a classical way: the
agent shall not select actions that it believes not to work in a particular
environment, etc.

– Potential actions are filtered based on the environment checking whether the
prerequisites for the actions are fulfilled or not. This is done by doing some
kind of “pattern matching” of affordance schemata to perceived environment.
This connects potential actions to environmental entities by generating (iden-
tifying) affordance relations.
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– Having established a set of realizable actions with potential interaction part-
ners, the agent can use the affordances connecting actions and entities to
evaluate which of the combinations are the preferable ones. Such a preference
relation between affordances (based on an evaluation of the context informa-
tion given on the modelling level) is then used to select the action that is
executed.

5 Illustrative Example: A Supermarket

Consider the following situation and process: The agent A has collected a number
of items in a supermarket and moves towards the cash points to pay. The agent
has sufficient money (in cash or on/with card). There exist two manned cash
points as well as one self-payment counter machine: {CashierRight, Cashier-
Middle, AutoCashier}. Of the two manned cash points, only CashierRight is
actually busy. CashierMiddle misses the cashier agent. Each of the working cash
points has a queue of agents waiting for their turn: In front of CashierRight
there are 4 persons queuing up, in front of AutoCashier only another person is
waiting for the current person to finish. So it is highly probably that A will be
served earlier when queueing up at the electronic cash point. A strongly prefers
to interact with humans, yet is under time pressure.

5.1 Description of Interaction with Affordances

When A approaches the cash point area with the intention of doing the action
Pay2Leave, A perceives the three cashiers and immediate sees that only two are
available for the intended action.

〈A,Pay2Leave, CashierRight, CondCashierRight,now〉
〈A,Pay2Leave,AutoCashier, CondAutoCashier,now〉

with CondCashierRight,now = {queue(CashierRight, 4), female(CashierRight),
young(CashierRight), friendly(CashierRight)} describing the configuration of
the particular cashpoint at time now. The configuration of AutoCashier is
CondAutoCashier,now = (queue(AutoCashier, 1)).

There is no affordance for CashierMiddle as it is actually not working due
to the missing cashier. Both affordances have particular properties that describe
the current configuration the agent evaluates for making a decision for one of the
interaction partner CashierRight or AutoCashier. The agent needs to evaluate
whether it prefers to wait for the interaction with a nice human cashier or wants
to go for the faster automated way. The Pay2Leave action may have a particular
implementation for each of the interaction partners specified as a communication
protocol as given below.

While this describes a simulation run-time situation, the modeller defines
affordances schemata to specify the interaction. In this example case, the relevant
affordance schema may look like that:

〈SHOPPER,Pay2Leave, CASHpOINT, Prereq, PrefCriteria〉
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The affordance schema contains the following elements: first, a combination of
agent type SHOPPER and a particular action/activity that the agent wants
to do: Pay2Leave. Hereby, Pay2Leave ∈ ActionRepertoire(SHOPPER), that
means the action must be part of the default – as defined on the class level –
action repertoire of any shopper agent. A as an instance of a SHOPPER has this
action in its action repertoire. CASHPOINT is an abstract class from which the
classes of MANNED−CASHPOINT AND AUTOMATED−CASHPOINT
are inheriting. Both types can afford the Pay2Leave action of the shopping agent.
Yet, additional conditions must be fulfilled. These conditions and criteria depend
on the concrete type of CASHPOINT (see Table 1).

Table 1. Prerequisites and conditions in cashier scenario

AType Conditions Preference criteria

MANNED − CASHPOINT manned(C) Queue, Friendliness ...

AUTOMATED − CASHPOINT functioning(C),
available(A,card)

Queue

For achieving a fully functional model clearly a lot of elements are missing. We
just focus on a small number of potential interactions. Additional interactions
could be between A and diverse products that A wants to buy. Hereby each
product affords to be taken and put into the cart. Before we continue discussing
our approach, we have a look how the corresponding formulations would look
like when using ways of specification as introduced in Sect. 2.

5.2 Description of Interaction with IODA or MAIA

In the following we intend to give a general impression of two rather extreme
alternatives to formulate interactions: IODA [25] aiming more at simulation of
emergent phenomena and MAIA [12] following an explicit organization-oriented
approach. We do neither give full models, nor the does our description describe
exactly the same part of the model. Thus, a lot of context is missing which
would be necessary to precisely apply these two methodologies for developing
agent-based simulations.

The central element of designing this scenario with IODA [25] is to define
the interaction matrix as shown in Table 2.

The table specifies that elements of one agent “family” interact with an ele-
ment of another. For example, a Customer agent may initiate an interaction with
a Cashier agent, if the distance between them is lower than 3 units. “Pay&Pack”
is hereby a label for a sequence of actions describing the actions of the involved
entities during the interaction. The model specifies what happens during an
interaction, under which circumstances the interaction is triggered and what
type of agents are involved. What is actually done is represented as a sequence
of actions executed by the contributing agents. How the actual interaction is
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Table 2. Raw Interaction Matrix in the supermarket scenario following IODA [25].
In following the steps of the overall methodology, interactions would be detailed and
selection process is specified, etc.

Source Target

Shelf Customer Employee Cashier

Customer TakeGoods
(d= 0)

WaitBehind
(d = 2)

AskForHelp
(d = 2)

Pay&Pack
(d= 3)

Employee ReFill (d= 0)

Cashier RequestPayment
(d = 3)

selected is determined by the actual agent architecture. Initially, Kubera et al.
assumed reactive agents, that means agents that more or less directly connect
perception to action without reasoning about explicit representations of agent
goals.

As introduced above, MAIA [12] forms a framework for agent-based sim-
ulation based on the formalization of a particular organizational model. It is
especially apt for social models.

In a simulation reproducing how humans behave in a supermarket, one may
assume two types of agents: Customers as individual actors and the supermarket
as a composite actor, bringing together all its employees that temporally take
over a particular role, such as ReFiller or Cashier. Agents may have particular
attributes, such as contents of the shopping chart or entries on the shopping list.
The roles have an associated objective, such as acquire and pay all items on the
shopping list. There may be dependencies between roles based on dependencies
between objectives - captured also in institutional settings. When adopting a
role, an agent also gets capabilities that basically correspond to possible activi-
ties or actions that the agent with that role is able/permitted to perform. For the
specification of interactions the set of rules and conventions that govern agent
behaviour to be specified by institutional statements is particularly interesting.
There are different types of those statements for describing which behaviour can
be expected by an agent and what happens if the agent does not fulfil the expec-
tations: not following a rule results in sanctions, a norm is behaviour without
sanctions if not followed. The weakest notion of an institutional statement is
shared strategy. In Table 3 we give a few examples of institutional statements
of a customer actor in the supermarket scenario.

These elements set up the constitutional structure of the model. In addition,
the modeller needs to specify the physical context (environmental model) and
the operational environment, which describes how an agent influences the overall
system state. A simulation has an action arena which contains so called action
situations. The latter basically describes some kind of plan structure organizing
atomic actions in an institutional context for an agent exhibiting a particular
role. Interactions between different agents takes place within an entity actions.
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Table 3. Institutional Statements defining the expectations on how customer agents
behave

Type of statement Statement

Rule A customer always has to pay the goods before leaving

Norm A customer has to wait in line behind earlier customers

Shared strategy Customers start to pack directly after the cashier accounted
for a good

. . . . . .

So, actually what happens during interaction is hidden quite deeply in the overall
model specification.

In Sect. 2 we mentioned that UML can be used to formulate interactions.
How this could look like at a rather high abstraction level is shown in Fig. 2.

Customer Other
Customer Cashier

place in queue behind and wait
Hand-over products

tell price and request payment
Payment

loop

un l at front of queue

Hand-over products
tell price and request payment

Payment

Pack and Go

your turn now

one posi on nearer to cashier

Fig. 2. Protocol-like definition of interactions between waiting customers and the
cashier handling one after the other.

One can see that the different frameworks and approaches actually focus
on different problems. Our affordance/affordance schema concepts actually con-
centrate on the selection of the interaction partner in a more flexible, yet less
predictable way as in more organization-oriented approaches. One may interpret
it as more specific and apt for agents that actually reason about their next action
than in the IODA methododology.
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6 Discussion and Conclusion

In this contribution we clarified the notion of affordances and introduced affor-
dance schemata showing that such a distinction is necessary when distinguishing
between what happens during simulation runtime and what a modeller explic-
itly formulates. We put those concepts into an interaction modelling context.
The questions remain whether these concepts can be really useful, what to do
such that they become useful and how to evaluate their usefulness? The current
stage of our research is quite preliminary, as we first wanted to clearly agree on
what we actually model when specifying affordances. The current contribution
thus cannot be more than a discussion paper. For creating a methodology we
would need to make assumptions on meta-models formulating a context such
that we can formalize every detail necessary to fully support the complete mod-
elling and simulation process. Based on such a meta-model we could then create
tools that directly support modelling - and as we explicitly approach interactions
hopefully support model analysis in an improved way. However, we are not sure
whether yet another methodology provides a good idea. What we actually want
to achieve is to propose a suitable language that supports a modeller when for-
mulating interactions. It should help the modeller to stay aware of when, if and
under which circumstances interactions happen and which agents with which
particular features participate in the interaction.
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Abstract. Context-aware systems are capable of perceiving the phys-
ical environment where they are deployed and adapt their behavior,
depending on the available information and how it is processed. Ambi-
ent Intelligence (AmI) represents context-aware environments that react
and respond to the requirements of people. While different models can be
used to implement adaptive context-aware systems, BDI multiagent sys-
tems are especially suitable for that, due to their belief-based reasoning.
Different BDI architectures, however, use different reasoning processes,
therefore providing different adaptability levels. In each architecture,
contextual information is adherent to a specific belief structure, and the
context-related capabilities may vary. We propose a framework that can
be used by BDI agents in a multi-architecture scenario in order to modu-
larly acquire context-aware capabilities, such as learning, additional rea-
soning abilities, and interoperability. When this framework is combined
with an existing BDI agent, the result is an augmented agent.

Keywords: Context-aware systems · AmI · Multiagent systems
BDI · Contextual planning · Learning

1 Introduction

Ambient Intelligence (AmI) [1] is a term originally created by the European
Commission in 2001 [2] and represents the merging between physical environ-
ments and information technology, where embedded electronic devices can per-
ceive and respond to the presence of people. When electronic devices or systems
capture and use information on the surrounding environment to perform their
functions, the interactions between these systems and the individuals present in
the environment can be modified and refined in order to adapt and respond in
a specific manner. The adaptability level attained by these systems and devices
c© Springer International Publishing AG, part of Springer Nature 2018
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depend on how the surrounding environment information is collected, and the
information collection process usually involves different technologies: electronic
sensors (temperature, etc.), wireless networks, and human-centered interfaces
are among them.

There are a few aspects, however, that need to be addressed to make this
adaptability possible. One of these aspects refers to the information structure:
it is necessary that information from the environment can be described and
structured in order to be used by the adaptability process involved. Devices
and systems capable of capturing this information and use it to adapt their
functions accordingly are called context-aware systems [3], while information
from the environment itself can be referred to as context [4]. Context can be
represented and used in different ways – usually depending on which information
dimensions or aspects are relevant to the context-aware system or device using
it [5,6]. Different systems, however, present different data needs - both in terms
of structure and relevance. Another aspect is the level of complexity involved
when these systems interact among themselves. The addition or subtraction of
another context-aware system can trigger a certain level of cooperation, which
impacts the adaptability process.

Agent architectures are among the ones that can be used by context-aware
systems [7]. The belief-desire-intention (BDI) architecture [8] is of particular
interest due to its inherent use of contextual information. In fact, the context
about the environment in which a BDI agent is situated is represented in its
beliefs. Beliefs are used to determine its intentions - what the agent has cho-
sen to do, and how committed it is to that choice [9]. However, different BDI
architectures use different belief structures - therefore, translating context into
beliefs is a problem highly dependent on the agent’s internal architecture. Thus,
deploying agents implemented according to different BDI architectures into the
same environment can become a challenging problem.

Deploying multiple BDI architectures into multiple environment present chal-
lenges related to all interactions between the agents and the environments.
Establishing communication between different agents can be achieved through
the use of a common communication protocol1. Nevertheless, existing agents
deployed to new environments may require changes in its belief structure in
order to process the new context structure. Adapting an existing agent to a new
environment is not only a matter of abstracting the available information, but
also making sense of it - which also impacts the planning process used by the
agent. When the same agents are used across different environments, multiple
abstractions are required, resulting in a scalability problem.

Adding new functionalities to one specific agent could also require modifi-
cations in the other agents, as well as in the related environments (i.e., deploy-
ing coordination systems). Functionalities such as collective learning, experience
sharing, or context-based planning mechanisms such as CPS-L [10] demand even
more complexity to be added to the integration model used by the different
agents.

1 http://www.fipa.org/specs/fipa00001/.

http://www.fipa.org/specs/fipa00001/
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With these considerations in mind, we propose a framework that can be used
by different BDI agent architectures in order to augment them with context-
aware capabilities. The objective of this framework is to serve as an initial step
towards solving the problem of creating a multi-BDI environment that can be
used in AmI scenarios. The initial version of this framework consists of two
modules. The first module addresses the considerations regarding contextual
information, augmenting the agent with context-aware capabilities through the
use of multiple information sources and structures. The second module (CPS)
is an adaptation of the aforementioned CPS-L, which makes the agent capable
not only of learning from its previous experiences, but of sharing these experi-
ences among other agents. When these modules are combined with an existing
BDI agent, the result is an augmented agent, with modular and inter-operable
context-aware and learning capabilities. In the next sections we will refer to BDI
agents simply as “agents”.

It is important to mention that this framework does not replace or externalize
the belief reasoning process. Depending on the deployment environment, context
information may not be available all the time. In this case, the use of a context
module may relieve the agent from continuously monitoring the environment.
Context can be cached, preprocessed, and delivered to the agent, ready to be
used in its reasoning process. Similarly, the CPS module makes the planning
process more efficient by selecting in advance which plans are feasible. Agents
are treated as black boxes, and the framework facilitates the integration between
different contexts and agent architectures.

This paper is organized as follows: Sect. 2 details the general considerations
used when constructing the proposed model. The augmented agent model is
presented in Sect. 3, and the framework constructed from this model is detailed
in Sect. 4. In Sect. 5, we present the augmented agent implementation. Section 6
describes the application of a proof-of-concept in order to illustrate our work.
Discussions and related work on the modeling and use of AmI agents and systems
is presented in Sect. 7. In Sect. 8 we present our conclusions on the proposed
model.

2 General Considerations

Since the framework is intended to be used in conjunction with different BDI
architectures deployed into context-aware scenarios, we focused our efforts on
understanding the origins, limitations, and aspects related to the processing of
the contextual information before it is used by the agent. The process of physi-
cally gathering contextual information is not part of the scope of this work, nor
is comparing existing BDI architecture implementations. We divided our consid-
erations into (i) the context itself (the presentation and relevance of contextual
information available); (ii) processing contextual information before delivering it
to the agent; and (iii) the BDI agent planning process, since one of the proposed
modules is related to it.
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2.1 Context

Contextual information can be collected and distributed differently. It can also
be detailed and organized in different levels, depending on its intended use.
Different constraints can also determine its distribution model, such as inter-
operability with a preexistent communication model or bandwidth limitations.
Therefore, the process of collecting and distributing context data can be bro-
ken into (i) Gathering (what is measured and how it is done), (ii) Aggregation
(consolidation of collected data into information), (iii) Representation (structure
used to represent the information), and (iv) Transmission (protocols and data
contracts used in communication).

Aggregation is the most relevant aspect related to context, since information
can be organized in different ways, depending on its purpose. This organization
can also differ across different information dimensions. Mobile devices, for exam-
ple, use different sensors to gather data mostly related to physical environment
aspects, such as localization and acceleration. Information on the social informa-
tion dimension is limited or non-existent. On the other hand, identification cards
can retain organizational data – such as role in the company, unique identifica-
tion record, and clearance level. In this case, the social information dimension is
more detailed than in the previous one, while the physical information dimension
is almost non-existent.

Different information dimensions can be used in different cases, mostly
depending on what is being captured by which sensors. As a term, “information
domain” is broadly used to refer to different aspects and purposes of informa-
tion organization [11]. Generally speaking, information domains can be used to
represent deterministic sets of information that are different among themselves
in both content and organization [12]. Depending on how the information is
organized, the content - or what is being represented - can be determined by its
own representation. An ontology, for example, can be defined as a set of terms
of interest in an information domain, along with the relationships among these
terms [13].

In the scope of this work, context can be comprised of different information
domains. Sensor data gathered and aggregated by an internal sensor network,
for example, can be considered as an information domain within a given envi-
ronment. Another information domain could be represented by user preferences
stored and organized in a mobile device. When the user is in the environment,
the contextual information is composed by both information domains - which
can be used by an agent in its reasoning process.

Since our ultimate goal is to simplify the use of context by agents, it is impor-
tant that we can be able to separate the information into different, treatable sets.
These sets must be identified - in order to be distinguishable among themselves
- and have a clear structure representation of the information they contain. Rep-
resenting the information involves not only the data structure used, but also
how the information is described. Various expressions can be used by differ-
ent domains to convey information, which requires different processing rules for
each domain. Data structures can also differ across domains. A sensor gateway,
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for example, can provide information in different formats – e.g. a hierarchically
structured database (XML), a single text file or a serialized (binary) structure. A
given format, however, doesn’t necessarily determine how the information itself
is described: XML files use named elements to separate data, while a text file
may require syntactic interpretation.

2.2 Information Processing

Occasionally, information processing may be required before the agent can use
the contextual information available. It is not uncommon for an agent to use
discretized beliefs for its reasoning process. For instance, instead of relying on raw
geographical information such as GPS coordinates, an agent may use determined
known locations within a limited region (buildings, zones, rooms) on its planning
process.

While associating discretized information and parametrized data may seem
trivial, it has to be done at some point - and it is necessary to be taken into
account in the framework modeling process. As an advantage, isolating the infor-
mation processing from the agent implementation is beneficial in terms of over-
all implementation and change management. Different information domains may
require different parametrization implementations for the same discretized infor-
mation set, which may require different effort levels.

Another information process aspect to be taken into account is learning.
Despite being able to reason over beliefs related to the environment in which they
are situated, not all BDI architectures possess specific mechanisms or functional-
ities that allow agents to learn from past experiences or to adapt to new, different
situations. Our approach towards learning is directly related to the contextual
planning system, since the learning process is used as a tool for determining the
best course of actions based on previous experiences. In a broader perspective,
different learning processes can be used with different sets of experiences.

A specific learning process can be different according to which part of the
context is relevant to the actions related to the experiences being processed. In
that sense, separating the contextual information translation into beliefs from the
agent architecture allows the implementation of learning functionalities associ-
ated with different information domains. While fuzzy techniques may be used to
determine “hot” and “cold” temperatures, different algorithms may be applied
to displacement information in order to establish optimal routes according to
associated context conditions, for example.

Generally speaking, processing contextual information before delivering it to
the agent means that its belief base is no more a pure reflection of the context
as it exists; instead, it is a filtered perception of the surrounding environment.
In that sense, it can be seen as a contextual filter to the agent. From the agent’s
perspective, having such filter allows for abstracting anything other than its own
internal reasoning process. From an architectural perspective, this filter allows
for other processing modules to use the refined contextual information separately
from the agent.
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2.3 Planning

The planning process used by a BDI agent is an algorithm that uses the infor-
mation it possesses in order to generate a sequence of actions. These actions will
eventually allow the agent to achieve specific goals (intentions to which the agent
is committed). Planning algorithms usually adhere to the following behavior:

• The agent receives information about the environment, which is used to
update its own beliefs;

• Desires are updated according to a given criteria (i.e., achievability), and
intentions are generated from the updated beliefs and desires;

• A sequence of existing actions (plan) is assembled in order to achieve the gen-
erated intentions. The assembly process is part of the reasoning process, but
the existing actions must be provided beforehand (usually by the programmer
that implemented the agent). Plans can be composed by a single action, which
also means that plans can be composed of sub-plans.

After the plans are generated, the agent executes them and observes their
consequences (a new environment observation), updating its plans through the
same process if necessary.

While different existing BDI implementations are based on this model (such
as JADEX and Jason), it can also be modified in order to achieve different goals.
In that sense, Chaouche et al. [14] proposed a planning management mechanism
to be used in conjunction with contextual information in order to optimize the
agent’s planning process. This mechanism was intended to function as a pre-
dictive service, using contextual information in order to verify which actions
(among the existing actions known by the agent) are feasible. That would allow
the planning mechanism - denominated Contextual Planning System (CPS) - to
propose an optimal plan to be executed by the agent.

As we mentioned before, the framework proposed in this work is intended to
be used with existing BDI architectures. Because of that, it is not our intention
to re-implement the agent’s reasoning process, or to replace it with our own rea-
soning mechanism. However, the CPS mechanism was originally intended to be
used in AmI-related scenarios, which involves a high level of context awareness.
This is interesting from the context-aware perspective, since the mechanism uses
contextual information to determine the feasibility of the agent’s actions. With
that in mind, we decided to adapt this mechanism into our framework to be used
as an aid to the agent. The CPS framework module will be explained in further
detail in the next paragraphs.

3 Augmented Agents Model

With the aforementioned considerations in mind, we propose the following model
for an augmented agent (Fig. 1). We adopted a modular design to accommodate
different BDI architectures within the proposed model.
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Fig. 1. Augmented agent model in perspective

All contextual information (context) is modeled as a set of different informa-
tion domains, structured as described before. The module responsible for trans-
lating the contextual information received and applying any processing required
before delivering it to the agent is called Context Filter. The CPS module,
responsible for verify the feasibility of plans for the agent, is also shown. All
modules share an embedded database.

The Information Broker is responsible for orchestrating the other modules,
as well as retrieving the BDI state from the agent and providing it with the
generated plans and the expected events. These events are the result of the
context filtering, and they are presented as the agent would expect from an
external perception.

This modular design brings benefits to new implementations, such as loose
coupling, orchestration, re-usability, and parametrization. Loose coupling is
guaranteed through the separation of the framework modules from the agent
implementation. While the context processing module can handle several infor-
mation domains, the processed contextual information is delivered to the agent
in a form that it already expects. It also allows for the different modules to
be orchestrated through the implementation of a central communication and
process coordinator. Also, any module changes or new module implementations
remain transparent to the agent.

Using an internal database also facilitates re-usability and parametrization.
Specifications related to information domains and learning algorithms can be re-
used across existing framework deployments, for example. Additionally, param-
eters can be modified or transferred to another agent. Historical data can also
be persisted and used to further increase the agent’s capabilities.

Modularizing and implementing an extensible generic outer layer to be used
by different agent architectures is a relatively complex task. While modularizing
a software layer and assigning responsibilities to its different components can be
done by the use of existing process patterns or established models, implementing
new modules within an existing system may be much more challenging. Orches-
tration schemes must be designed for change, and the information flow must be
flexible enough in order to be altered with minimal effort. As mentioned before,
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there may also be limitations related to computational costs and deployment
environments.

Design requirements were defined to instantiate the proposed model consid-
ering the aforementioned aspects. These requirements are listed in Table 1:

Table 1. Design requirements for the proposed model

Requirement Description

R1 Loose-coupled component modularization within the framework should
be used whenever possible

R2 The framework should fit an internal database to be used by each of
the modules in a on-need basis. Any persisted data should be
retrievable, modifiable, and shareable

R3 Different information sources and processing rules should be supported
in order to allow for multiple, heterogeneous information domains. The
addition of new information domains to an existing process should be
as parametrized as possible

R4 Different learning algorithms should be supported within the CPS. The
use of CPS or its learning algorithms should also be optional, since
computational constraints on existing systems may prevent its
practical use

R5 Module orchestration should be as simplified as possible. While the
addition of new modules may not exempt new code implementation,
the inter-module dependency should be kept at a minimal

Providing an internal database (R2) allows for a higher level of abstraction
between the Information Broker and the orchestrated models. The database uses
and its relationship with the other modules will be described in the following
paragraphs, along with details on each of the modules presented.

The third requirement (R3) involved defining the context structure to be used
by the framework. While accounting for different information domains within a
context is relatively simple, there’s the matter of establishing a structure model
for a single information domain. For that purpose - and with the considerations
presented in mind - we defined the following structure:

• Identification: refers to a local identifier for the information domain, unique
for a given environment. While it is important for the agent to distinguish
between different information domains, it is reasonable to assume that a global
unique identifier may prove difficult to be implemented.

• Grammar: represents the language used within the information domain.
Due to the considerations above, choosing a grammar over a simple refer-
ence matrix for representing the language used within the information domain
allows for more flexible information usage scenarios.

• I/O: refers to communication metadata associated with the information
domain, such as data structure (XML, text, binary) and channel endpoints
(REST endpoints, etc.).



46 A. Casals et al.

In the information domain structure presented above, it is important to notice
that identifying communication metadata have certain advantages for the frame-
work as a whole. As mentioned before, processing the contextual information
before handling it to the agents is also part of the objective of the proposed
framework. In scenarios where computational power or bandwidth is limited,
for example, having this information available at a higher level may represent
substantial gains in terms of communication efficiency and data processing.

It is also important to mention that in order to abide to the desired level
of abstraction, the BDI architecture taken into consideration is as generic as
possible [15]. The agent represented in the next section is an adaptation from
the BDI architecture model presented in [16].

4 Framework Architecture

The next paragraphs detail the proposed framework architecture, along with
each of its components. These components, once combined, produce the struc-
ture shown in Fig. 2. As a framework, its intended structure is meant to be
implemented in different programming languages.

Fig. 2. Augmented framework in detail

4.1 Context Filter

The context filter is responsible not only for processing various information
domains but also for extracting relevant information to be used by the agent
and the other modules. This component is needed in order to capture the con-
textual information organized according to the information domains structure,
thus making it possible for the internal mechanism to process this information
accordingly. From a design perspective, the Context Filter responsibilities can
be aggregated in two sub-modules, named Translator and Updater.
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All contextual information is delivered by the Information Broker to the
Translator, which transforms it into a common internal structure that can be
used by the system. This process requires the use of information domain map-
pings, which contain individual grammar definitions that are used by an internal
parser. Each information domain is mapped to a specific grammar, describing its
structure and the information it possesses. Using a generic parser in association
with a parametrized grammar allows for the framework to process new infor-
mation structures without the need for implementing new code. In other words,
new information domains can be added to the framework by the parametrization
of new grammars. The result of the process done by the Translator sub-module
is the translated context.

Once the translated context is produced, the Updater sub-module persists it
in the database. Different internal structures can be used to store the translated
context; it is important, however, that it can be accessed and used by the frame-
work’s different modules if necessary. While rules and environment variables such
as location and temperature may be persisted immediately, identifying and per-
sisting experiences may require access to historical data. Location information,
for example, can be compared to older data to determine the time it took for an
agent to move from one place to another.

4.2 CPS

We used the original CPS-L structure as reference when designing this module.
CPS-L was originally presented as a planning process method to be used by an
agent to select feasible plans from its current set of intentions. These plans are
the result of a selection process based on analyzing the current context associated
with the agent, as well as its current set of intentions. This process also requires
a revision of any restrictions that might be associated with each of the actions
allowed to be performed by the same agent.

The CPS-L planning process also incorporates a guidance component that
can learn from past experiences. This component uses experiences from previ-
ously executed actions to predict the outcome of the analyzed plans, and there-
fore influencing the planning process.

In addition to the planning process, we also used the original concepts related
to plans. The original planning system describes the agent plans as a composition
of sub-plans called Intention plans. These sub-plans are separated according to
the agent’s intentions, in a manner that each of them is dedicated to the achieve-
ment of one specific intention. They can be decomposed into several Elementary
plans, which compose the set of all plans that can be executed by an agent. In
that sense, all agent plans can be ultimately decomposed into a subset of the set
of Elementary plans.

As stated before, our objective was not to propose a new context planning
system; instead, our intention is to use it as-is in order to demonstrate how
different context-related abilities can be incorporated into existing BDI archi-
tectures. We present the structure of the CPS module, comprised by the following
components: (i) Plan Factory, (ii) EPlans, and (iii) Guidance.
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Plan Factory is the component that builds the plan to be executed by the
agent. This plan is a composition of Elementary plans, built in a manner that
different compositions can potentially lead to the same plan result. Additionally,
Elementary plans can be associated with contextual restrictions, allowing for
viability verification according to environment conditions. All Elementary plans
are stored in a library named EPlans, which resides in the embedded database.

Guidance is the component that uses the experiences contained in the
database to affect the whole plan generation process. That way, not only the
feasibility of a plan can be verified, but also an optimal plan can be chosen
among other multiple viable plans. All experiences are associated with an action
and a set of contextual variables.

4.3 Information Broker

The Information Broker module concentrates two main responsibilities: (i)
orchestrating the other auxiliary modules, deciding and triggering their use when
necessary; and (ii) delivering information (plans and events) to the agent.

Orchestrating the auxiliary modules is done through the use of a mapped
information flow - each module is activated when needed, if needed. Delivering
processed information to the agent requires knowing how it should receive this
information. This is done by using grammars and auxiliary parametrization,
making it possible to connect the framework to different agent architectures
with minimal effort.

5 Implementation

We implemented a proof-of-concept implementation for the framework using
Java. Our programming language choice was based on the availability of existing
libraries that could be used by the different modules. In order to maintain its
modular nature, each module of the framework was implemented separately. The
information flow was done through the use of common interfaces. A simplified

Fig. 3. Simplified UML diagram for the implementation
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UML diagram of the implementation is shown in Fig. 3. Other implementation
details related to each of the modules and its sub-modules are described below.

5.1 Context Filter

Although the framework modularity allows for different functionalities to be
implemented as modules, the context filter must always be present. This mod-
ule is responsible for the most part of the data transformations involved in the
framework - including persisting data in the database. For this reason, we tried
to keep its implementation as parametrized as possible, allowing it to be reused
in future work. All sub-modules were also implemented with the same consider-
ations in mind.

Each information domain is represented in the system as a pair of metadata
(identification, original data structure) and associated grammar. Therefore, mul-
tiple information domains can be registered within the module through the use
of parametrization. In order to translate multiple parametrized grammars (rep-
resenting different information domains) into a common structure we embedded
a language parser generator into the Translator sub-module, called ANTLR2.
Since the responsibilities of the Updater sub-module include not only persisting
the translated context in the database but also identifying and persisting experi-
ences when required, we used the Active Record pattern3 in its implementation.

5.2 CPS

We re-factored a previous proof-of-concept related to the original CPS-L when
implementing this module. Refactoring this code involved adapting it to use the
common information interfaces and the embedded database contained in the
framework. It is also important to mention that this code uses a Java-based
Prolog engine called tuProlog4 in its planning process.

5.3 Embedded Database

Centralizing the orchestration of different modules while allowing for them to
directly access the embedded database raises concerns on data integrity and
database concurrency. In order to minimize these problems and to simplify our
implementation, we use an embedded database library called MapDB5. This
library allows the persistence of Java native collections directly in the memory,
while mapping the database into a Java object that is managed by the JVM.
Persisted objects can then be accessed as follows:

File dbFile = Utils.embeddedDbFile();
DB db = DBMaker.fileDB(dbFile).closeOnJvmShutdown().make();
Locations storedLocations = db.get("locations");

2 http://www.antlr.org.
3 https://www.martinfowler.com/eaaCatalog/activeRecord.html.
4 https://sourceforge.net/projects/tuprolog/.
5 http://www.mapdb.org.

http://www.antlr.org
https://www.martinfowler.com/eaaCatalog/activeRecord.html
https://sourceforge.net/projects/tuprolog/
http://www.mapdb.org
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5.4 Information Broker

As mentioned before, we implemented common information interfaces to be used
by all modules. Therefore, every message passing through this module (before
reaching the agent) used the same structure. In order to deliver the processed
context (events and plans), we had to take into account the data structure used
by the agent. Also, to be able to test different agent architectures, we addressed
this problem through the use of a structure similar to the one used in the Trans-
lator sub-module.

6 Application

Having the proof-of-concept implemented, our next step was to test it against
an application scenario. We considered a situation involving moving an agent
from one place to another, while abiding to a predefined set of restrictions. Two
different information domains data structures were used to define the context.
The first information domain was used to provide information referencing the
location in GPS coordinates. Information about time and temperature was pro-
vided by the second information domain. Temperature and time were provided
in a comma-separated values format (CSV), while GPS coordinates were associ-
ated to identifiers. Each of the information domains were mapped to grammars
so the information could be translated by the internal parser. The information
on GPS coordinates is shown below, along with its associated grammar:

//GPS coordinates as received by the Information Broker:
LAT:-23.557164;LON:-46.730234
//Grammar used by the translator:
grammar CoordinatesID;
coordinates: id COLON latitude SEMICOLON id COLON longitude;
id: TEXT;
latitude: COORDINATE;
longitude: COORDINATE;
COORDINATE: (’-’)? [0-9][0-9] ’.’ [0-9][0-9][0-9][0-9][0-9][0-9] ;
SEMICOLON: ’;’ ;
COLON: ’:’ ;
TEXT: [a-zA-Z]+ ;

All required parser classes are created by the ANTLR library, allowing the Trans-
lator to retrieve the relevant contextual information for each information domain:

//class CoordinatesIDParser parser generated by ANTLR
String sLatitude = parser.CoordinatesContext.latitude.getText();
Double latitude = Double.parseDouble(sLatitude);

In order to discretize GPS coordinates into known locations we used a reverse
geocoding process, which returns the nearest known location from a given set
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of coordinates. We adapted an existing library6 to make it inter-operable with
our embedded database. This process was implemented in the Updater sub-
module.Using reverse geocoding allowed us to discretize any set of coordinates
as follows:

//Double latitude, longitude;
String location = storedLocations.findNearest(latitude,longitude);

All functionalities necessary to compute experience involving the movement from
one location to another (duration, points of origin and destiny, restrictions in
place) were also implemented within the Updater sub-module. We used only
one learning module to process the experiences within the CPS module. The
learning algorithm was based on minimal movement duration over the five most
recent experiences. Two different agent architectures were used in conjunction
with the same framework implementation in order to test its re-usability (plans
and events output). Since our goal was to assure that the processed context and
plans were being propagated to the agents accordingly, benchmarking the agents
was not a part of this work.

The agent architectures used as adjacent structures to the framework were:
JASON7 and BDI4JADE8. While JASON uses an AgentSpeak-based syntax to
represent plans and beliefs, BDI4JADE is a pure Java implementation of a BDI
architecture. This allowed us to test how plans and beliefs could be delivered to
different agent architectures.

Our success criteria for this test was based on: (i) correct translation from
the information domains data; (ii) correct calculations for the experiences; (iii)
successful CPS processing; and (iv) successful delivery of processed context and
plans to the two different agent architectures. All of them were met, and the test
was concluded with success. A repository containing all the files used as inputs
by the framework are available in a public repository9, as well as the generated
plans and beliefs for both agent architectures.

7 Discussion and Related Work

The present work aims at serving as an initial step towards solving the problem
of deploying different existing agents into multiple environments. The proposed
framework accomplishes that by (i) providing means to add extra functionality
to existing agents and (ii) implementing a generic contextual translating matrix
to be used in conjunction with different vocabularies used by agents.

In terms of implementation, it is worth mentioning that some aspects of the
framework may demand different levels of effort from the programmer. Using a
parametrized grammar mechanism to properly capture contextual information,

6 https://github.com/AReallyGoodName/OfflineReverseGeocode.
7 http://jason.sourceforge.net/.
8 http://www.inf.ufrgs.br/prosoft/bdi4jade/.
9 http://gitlab.com/casals/AAF/.

https://github.com/AReallyGoodName/OfflineReverseGeocode
http://jason.sourceforge.net/
http://www.inf.ufrgs.br/prosoft/bdi4jade/
http://gitlab.com/casals/AAF/
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for example, is beneficial from the interoperability perspective since it allows
different information structures to be used by the framework. On the other hand,
modeling and implementing a grammar that properly describes the environment
or a specific information domain may not be a trivial task. For that reason,
specific technologies or tools may be more or less adequate to implement the
proposed framework. The study and comparison of such techniques, however,
was not part of the present work.

This framework is not presented as an agent-based modeling tool or another
agent architecture. Context processing is presented as a mandatory component
model in the framework, since it is required for all subsequent processes. At the
same time, we used the CPS module as an illustration of how existing function-
alities could be easily adapted and used by other BDI architectures. Enhancing
the CPS planning process or proposing an alternative to it were both out of the
scope of this work.

Adding extra functionalities to agents is usually done by extending its archi-
tecture, bounding the extension to a specific agent programming language [17,18]
- a monolithic approach in terms of implementation. While this solution tends
to be more efficient, it is not scalable in a scenario where multiple agent archi-
tectures must be modified in order to receive a new functionality or capability.

Besides being an extra functionality by its own, context processing is also
dealt with in different ways. Dealing with various contexts requires multiple con-
text models, which must be implemented somewhere between the environment
per se and the deployed agent. Different models may be implemented in different
manners, which may lead to interoperability issues when the system is required
to process multiple models at the same time. Using information domains is a
way to preemptively solve this problem, while maintaining the context modeling
process parameterizable enough to facilitate new implementations.

Integrating existing agents with other heterogeneous systems is also a matter
solved by the use of a parameterizable translation mechanism. While there are
obvious drawbacks in terms of required computational power, new communica-
tion modules can be implemented and make use of the translation matrix in
place. Using a parser tree generator allows for new domain-specific languages to
be implemented through the use of structured grammars, minimizing develop-
ment efforts.

Providing a framework to support context-aware applications is not a novel
idea. Most implementations, however, are bound to specific deployment environ-
ments or vocabularies [19–22]. Frameworks such as JCAF [21] and CoBrA [22]
are deployed as middleware or publisher/subscriber services, requiring additional
infrastructure resources and the use of a centralized communication structure.
Being limited to a vocabulary also means that the context is translated into a
fixed structure. Using this structure with an existing agent would require another
translation process to be implemented. In the case of Intel’s Context-Sensing
SDK10, the abstraction layer between the application and the information

10 https://software.intel.com/en-us/context-sensing-sdk.

https://software.intel.com/en-us/context-sensing-sdk
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capturing is also limited, restricted to the sensors available and their information
data structures.

Our proposal intends to overcome these concerns. Using a framework
attached to the agent instead of relying on a central coordination point sim-
plifies its deployment, and re-configuring the communication flow is no longer
necessary. Its modularity also allows the deployment of augmented agents with
different capabilities to the same environment. Dividing the context into sep-
arated information domains and parameterizing their structures also simplifies
the adaptation process that occurs when an environment is subject to changes
such as the addition or removal of information sources.

On another perspective, CArtAgO11 provides a workspace for abstracting the
environment that addresses the heterogeneity problem. This concept, however,
is structurally different from the model proposed. Our work is in its initial stage,
but this difference will become more clear in the future.

It is also important to mention that our application scenario was based on a
real-world problem, involving a situation where different logistic constraints are
imposed either by a set of rules (opening/closing hours) or restrictions related
to different people (agents). While no benchmarking or comparisons were done
at this time, it is our intention to use this work as a basis to further experiment
on scenarios related to real-world problems, thus providing possible solutions for
existing problems.

8 Conclusion and Future Work

In this paper we presented a framework to add context-aware functionalities
when combined with multiple existing BDI architectures. The contribution of
this work resides in (i) proposing a context awareness extensibility model to be
used in conjunction with multiple BDI architectures and (ii) proposing a context
processing mechanism to be used with different context representations.

From a software engineering perspective, the first contribution promotes scal-
ability and re-usability. Parametrization and modularization are used to mini-
mize the implementation effort involved in extending an existing BDI architec-
ture. Functionalities already implemented can be re-used as modules attached to
different agents, and the parameterization mechanism simplifies the deployment
of an augmented agent to different environments. Using an embedded database
also provides means to the implementation of more robust functionalities.

The second contribution allows for the simplified capturing and processing
of contextual information originated from different sources. We also presented
an implementation and subsequent experimentation of the proposed framework
in order to properly evaluate its feasibility.

Both the extensibility and the context processing mechanisms were success-
fully tested within the defined parameters. As we mentioned before, the proof-
of-concept implementation presents drawbacks related to the use of available

11 http://cartago.sourceforge.net/.

http://cartago.sourceforge.net/
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computational resources. The study of these limitations, however, was not part
of the scope of this work. Future research will include new functionality modules
and the evolution of the framework towards a solution for multi-BDI environ-
ments in AmI scenarios, as well as experiments involving the use of different BDI
agent architectures and studying the identified limitations.
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Abstract. This paper introduces two concepts of module, for agent soci-
eties and inter-societal agent systems. The first concept defines modules
on the basis of agent organizations, the second, on the basis of whole
agent societies. The former serves the modularization of agent societies.
The latter, the modularization of inter-societal agent systems. Both are
shown to serve as agent-based modules for conventional software systems.
The two concepts are first defined formally and, then, illustrated generi-
cally with the help of an informally proposed module language for agent
societies. Finally, a case study sketches a concrete example of the use of
agent organizations for the modular construction of agent societies.

1 Introduction

It’s a long time that agent technology endeavors to enter the main stream of
Software Engineering, without much success. The area of agent-oriented software
engineering developed models, methodologies and techniques that remained, for
the most part, without communication with the corresponding models, method-
ologies and techniques for conventional software systems. Effective integration
of agent systems into conventional software systems, when successful, seems to
have been achieved on a case-by-case basis.

We claim that this lack of integrability and interoperability, between agent
systems and conventional software systems, is due to the lack of a proper notion
of modularity for agent systems.

Thus, in this paper, we introduce an approach to the modularization of agent
systems, based on the notions of agent organizations and agent societies as
modules.

The paper shows both that agent organizations (more generally, organization
units) may serve as modules for agent societies and for conventional software
systems, and that agent societies, on their turn, may serve as modules for both
inter-societal agent systems [1], as well as for conventional software systems.

The paper is organized as follows. Section 2 briefly reviews the general notion
of software module adopted in conventional Software Engineering. It also reviews
the usual ways to define software modules in programming languages and sys-
tems.
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Section 3 reviews the concept of agent society adopted in the paper, and
presents the concept of inter-societal agent system. Also, the way agent societies
can be construed as modules for inter-societal agent systems is indicated.

Section 4 introduces the way organization units may be construed as modules
for agent societies.

Section 5 shows some ways the notion of artifact may be used to allow for
organization units and agent societies to be integrated, as modules, in conven-
tional software systems.

Section 6 introduces a toy module language for agent societies and inter-
societal agent systems, and makes use of it to give three abstract examples of
use of organization units and agent societies as modules.

Section 7 explores, on the other hand, a more concrete case study, namely, a
basic model for marketing-supply chains.

Section 8 briefly discusses related work. Section 9 is the Conclusion.
A detailed formal presentation of the types of organizational concepts

adopted in this paper can be found in the technical report of the Society Mod-
eling Language (SML) [2], which is the agent society modeling language used in
the sketchy examples given in this paper.

The toy module language introduced in Sect. 6 has also the purpose of com-
plementing SML with modular concepts.

2 Modules and the Modularization of Software Systems

2.1 The Concept of Software Module

Since at least [3], the notion of structured programming became a dominant
requirement in the programming-in-the-small range of activities of Software
Engineering. Since at least [4], the notion of module, embodying combined prin-
ciples of encapsulation (or, information hiding) and hierarchical structuring,
became a serious requirement in the programming-in-the-large activities.

We picture the general notion of software module as in Fig. 1. The overall
module (M) is shown to be composed of sub-modules (M1 to M6), each sub-
module endowed with an interface (I), shown split in various parts, for graphical
convenience). As usual, modules represented at the same graphical level are taken
to be located at the same hierarchical (logical) level1.

The interface of the overall module M is taken to be composed of the inter-
faces of all the sub-modules that have interfaces connecting to the external envi-
ronment (Env), as shown by the relation between Fig. 1(a) and (b).

The external environment Env may be composed of other software modules
or other types of elements (e.g., hardware equipments).

1 Alternatively, we may graphically represent the different hierarchical levels by the
recursive nesting of sub-modules, as in the example in Fig. 4.
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Fig. 1. A picture of the general notion of software module: (a) internal structure, (b)
external structure.

2.2 Alternative Ways to Computationally Construe the Concept
of Software Module

There are two main alternative ways to computationally construe the concept of
software module. One seamlessly integrates the concept of module into the core
of a single programming language, disguising it as a programming concept for
the programming-in-the-small techniques.

The other, explicitly directed to the programming-in-the-large techniques,
construes the concept of module in terms of directives for compilers and program
linkers, making it almost independent of the different programming languages
with which the modules may be programmed2.

In this paper, for simplicity, we follow the first way, through a simple notation
that is added to the agent society modeling language SML (which is presented
here informally, through examples), and which we use to define both types of
agent-based modules (organizations and agent societies).

2.3 Modules and Multiagent Systems

AI programming, with its tendency to depend on declaratively (functionally or
logically) structured programming languages, beginning with languages LISP,
Prolog, etc., was born very close to the framework of structured programming,
in its programming-in-the-small tasks.
2 See, e.g., [5] for an example of the first way, and [6] for an example of the second

way, the latter specifically regarding the modularization of Java-based systems.
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But it seems that AI never realized the requirements determined by the
modularization requirements of Software Engineering, in its programming-in-
the-large tasks.

A first attempt in that direction seems to have been given with the notion of
agentification [7], where agents were proposed as the basic constituent modules
of agent systems (see also [8]).

It happens, however, that the complexity of the functional interfaces of agents
(the variety of their possible ways of interacting with the external context) has
always prevented the adoption of agents as the modular units of those systems.
And, to the best of our knowledge, no alternative notion of agent-based module
has become widely used, since then.

Thus, indispensable as the notion of module has become for the good practices
of Software Engineering, it is no surprise that agent technology has not yet been
integrated into the mainstream technology of large-scale software systems.

In this paper, we propose notions of modules for multiagent systems that
may help to open the way for such integration.

3 Agent Societies and Inter-societal Agent Systems

In our work, we have been defining agent societies and inter-societal agent sys-
tems as shown presently [1,9–11]3.

Definition 1. An agent society is a time-indexed structure AgSoct =
(Popt,Orgt,MEnv t,SEnv t) where, at each time t:

– AgSoct is the state of the agent society at that time;
– Popt is the state of the populational structure of the agent society, at that

time, that is, the state of the structure composed by the agents that inhabit
the society, and their behaviors and interactions;

– Orgt is the state of the organizational structure of the agent society, at that
time, which we detail below;

– MEnv t is the state of the material environment of the agent society, at that
time, that is, the state of the structure composed by the material objects of
the society, and the causal links between them;

– SEnv t is the state of the symbolic environment of the agent society, at that
time, that is, the state of the structure composed by the symbolic objects of
the society, the symbolic links between them, and the relations the symbolic
objects maintain with material objects.

In what follows, we concentrate on the organizational structure of the agent
societies, which we define as:

Definition 2. The organizational structure of an agent society AgSoct is a
time-indexed structure Orgt = (Orgt

ω,Orgt
μ,Orgt

Ω) where, at each time t:

3 For compatibility with previous papers, we keep the time-indexed form of the defi-
nitions that follow, even though that would not be strictly necessary in this paper.
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– Orgt
ω is the state of the micro-organizational structure of the agent society,

that is, the state of the structure composed by the organizational roles that the
agents of the populational structure perform in the society, and the behaviors
and interactions performed by those organizational roles;

– Orgt
μ is the state of the meso-organizational structure of the agent society,

that is, the state of the structure composed by the organization units that
the organizational roles of the micro-organizational structure constitute in the
society, and the behaviors and interactions performed by those organization
units;

– Orgt
Ω is the state of the macro-organizational structure of the agent society,

that is, the state of the structure composed by the organizational sub-systems
that the organizations of the meso-organizational structure constitute in the
society (in the form of inter-organizational networks), and the behaviors and
interactions performed by those organizational sub-systems.

Figure 2 gives a general picture of the architecture of agent societies that
conform to the above two definitions. The dashed vertical arrows denote the
implementation relations between the various components of the agent society.
The double-headed horizontal arrows denote interactions. The dotted trapezoids
indicate the structural scope of their corresponding organizational sub-systems.

The figure does not show the access relations to the material environment by
the organizational components of the agent society (organizational roles, orga-
nization units, etc.).

Organizations can be defined as maximal organization units, that is, organi-
zation units that do not belong as sub-units in other organization units.

Organizational sub-systems are implemented by inter-organizational net-
works, constituted by the organizations of the society. And the society as a
whole is implemented by its networks of organizational sub-systems.

On the structure given in Definition 1, we impose the following constraints:

– that agent societies be open, in the sense that agents and organizations may
freely enter and leave them;

– that the organizational structure of an agent society be persistent, in the sense
that it should persist in time, independently of which agents, or organizations,
enter or leave the society4.

In addition, we define a particular type of agent society, namely, interoperable
agent societies, that is, agent societies endowed with means that allow them to
interact with each other.

In this paper, we consider a particular type of interaction means for agent
societies, namely, import-export channels. And we call import-export agent soci-
eties the agent societies endowed with import-export channels.

Figure 3(a) illustrates the idea of import-export agent societies. Figure 3(b)
shows a simple system constituted by import-export agent societies. We call
inter-societal agent system, such type of system.
4 Up to a minimum size of the society’s population and a minimally functioning orga-

nizational structure, which are to be determined on a case by case basis.
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Fig. 2. Sketch of the architecture of agent societies.

Fig. 3. An import-export agent society (a), and an inter-societal agent system (b).
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Formally, we have the following:

Definition 3. An import-export agent society (or, ie-agent society) is a time-
indexed structure ie-AgSoct = (AgSoct, ImpChnlst,ExpChnlst) where, for each
time t:

– AgSoct is the state of the agent society that constitutes ie-AgSoct;
– ImpChnlst is the set of import channels of ie-AgSoct;
– ExpChnlst is the set of export channels of ie-AgSoct.

Also, we have:

Definition 4. An inter-societal agent system is a time-indexed structure
IntSocAgSyst = (IE-AgSoct, IE-Connt), where, for each time t:

– IE-AgSoct is a non-empty set of ie-agent societies;
– IE-Connt is a relation between import and export channels, so that for each

pair (ec, ic) ∈ IE-Connt it happens that ec is an export channel of an ie-agent
society and ic is an import channel of an ie-agent society.

Notice that:

– in Fig. 3(b), the relation IE-Connt is denoted by the set of dashed arrows;
– we leave undefined the way the import and export channels of ie-AgSoct con-

nect to the internal structure of AgSoct;
– for simplicity, we take that the connections between export and import chan-

nels are limited to one-to-one connections;
– agent societies may serve as modules for inter-societal agent systems, with the

elements of IE-Conn serving as module connectors.

Finally, we remark that the concept of ie-agent societies as modules supports
the free entering and leaving of agent societies into/from inter-societal agent
systems.

4 Organization Units as Modules for Agent Societies

Organization units can be construed as modules for agent societies. In this paper,
we take that the organization units of agent societies communicate with each
other through input or output ports. And, for simplicity, we assume that the con-
nections between input and output ports are limited to one-to-one connections.

Also, we take that certain roles within each organization unit (module) serve
as interface roles, regulating the exchange of elements (data, objects, etc.) that
go between organization units through the input-output ports.

A basic organization unit that can serve as a module for agent societies is,
then, formally defined as follows:

Definition 5. An organization unit is a time-indexed structure OrgUnt =
(ORt, Interf t, Inpt,Out t), where, at each time t:
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– OrgUnt is the overall state of the organization unit;
– ORt is the set of organizational roles that compose OrgUnt;
– Interf t ⊆ ORt is the interface of OrgUnt, that is, the set of organizational

roles responsible for the interactions that the organization unit performs with
external elements (agents, other organization units, etc.);

– Inpt ⊆ Port is the set of input ports of OrgUnt, that is, the set of ports
that OrgUnt uses to receive (material and/or symbolic) objects from external
elements (agents, other organization units, etc.);

– Out t ⊆ Port is the set of output ports of OrgUnt, that is, the set of ports that
OrgUnt uses to send (material and/or symbolic) objects to external elements
(agents, other organization units, etc.).

For the sake of space, we omit here the definition of non-basic organiza-
tion units (i.e., organization units recursively composed of other organization
units [2]). But see Fig. 4, picturing an agent society as an interconnected set
of organization units, which has the general form of a hierarchically structured
inter-organizational network.

Notice that within each basic organizational unit, the interface roles are
separated from the other roles by the dotted vertical lines, with the interface
of the non-basic organization unit Org1 being constituted by the whole basic
organization unit Org12.

Fig. 4. A network of organization units that serve as modules for an agent society (the
dashed lines separate the interface components of the organization units).

5 Organization Units and IE-Agent Societies as Modules
for Conventional Software Systems

A natural way exists for construing organization units (in particular, maximal
organization units, that is, full-fledged organizations) and ie-agent societies as
modules for conventional software systems, if one takes input-output ports and
import-export channels as artifacts (for the concept of artifact see, e.g., [12]).
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5.1 Artifacts

Figure 5(a) illustrates the main features of artifacts, as they are implemented
in the CArtAgO platform [13]. The internal state of an artifact is accessed (for
reading and writing) by means of the operations available on the artifact’s inter-
face. Modifications in the internal state of the artifact may also be observed
externally by means of observable events generated by the artifact5.

Fig. 5. General view of an artifact and its encapsulation, supporting its appearance as
a conventional object.

Figure 5(b) illustrates how an artifact may be encapsulated so as to appear
as a conventional object to the user (e.g., a conventional software) that accesses
it through the left interface, while still operating in the standard artifact way to
the user (e.g., an agent) that accesses it through the right interface.

5.2 Integrating Organization Units and IE-Agent Societies,
as Modules, in Conventional Software Systems

Organization units (in particular, full-fledged organizations) and ie-agent soci-
eties may be easily integrated into conventional software systems by realizing
their input-output ports and import-export channels through artifacts that are
encapsulated in the form suggested in Fig. 5(b).

More specifically, the organization units and ie-agent societies should inte-
grate to the conventional software systems by presenting to them the conven-
tional object side of those encapsulated artifacts.

Then, the encapsulated input-output ports and import-export channels con-
tinue to appear to the internal components (agents, roles, etc.) of such organi-
zation units and ie-agent societies with their usual artifact interfaces, as if they
were not encapsulated, while appearing to the conventional software system as
conventional objects that can be operated in the usual way.

5 The observable events of an artifact, in the JaCaMo platform [14], appear as imme-
diate perceptions for the agents that performed the special operation focus on that
artifact.
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org-unit modules:
org-unit OU1:

output ports:
OP1 -> ...
...

roles R1,...,Rn
role behaviors:

R1 -> ...
...
Rn -> ...

role interactions:
R1 x R2 -> ...
...
Rm x Rn -> ...

accesses:
Ri -->> OP1

org-unit OU2:
input ports:

IP1 -> ...
...

roles R1,...,Rn
role behaviors:

R1 -> ...
...
Rn -> ...

role interactions:
R1 x R2 -> ...
...
Rm x Rn -> ...

accesses:
Rj -->> IP1

agent society AgSoc1:
population:

ag1, ag2, ..., agm
organization units:

OU1
OU2

connections:
OU1.OP1 >--> OU2.IP1

implementation:
OU1.R1 --> ag1
...
OU1.Rn --> agk
...
OU2.R1 --> agn
...
OU2.Rn --> agm

Fig. 6. Sketch of the declaration of an agent society, with organization units as modules.

Notice that the integration in the reverse direction, allowing for conven-
tional software systems to be integrated as modules in agent systems, is a pro-
cedure that is already largely employed (e.g., it is a standard technique in the
multiagent-oriented programming paradigm of the JaCaMo platform [14]).

6 Informal Definition of a Toy Module Language
for Agent Systems

To illustrate the notion of organization units and ie-agent societies as modules,
we introduce here, in an informal way, the definition of a toy module language
for agent systems (see, e.g., [5] for the concept of module language).

Figure 6 sketches the declaration of an agent society, with organization units
as modules. Definitions of roles, role behaviors and role interactions (which are
assumed to be described according to the notation of the SML society modeling
language [2]) are local to the modules. But roles can be externally accessed, to
be implemented by the agents of the population of the agent society. Input and
output ports are connected to each other by means of connection declarations.

Figure 7 sketches the declaration of an inter-societal agent system, with ie-
agent societies as modules.
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org-unit modules:
...

ie-ag-soc modules:
ie-ag-soc ie-AgSoc1:

export-channels:
EC1 -> ...

population:
...

organization units:
...

connections:
...

implementations:
...

ie-ag-soc ie-AgSoc2:
import-channels:

IC1 -> ...
population:

...
organization units:

...
connections:

...
implementations:

...
inter-societal agent system ISAS1:

ie-agent societies:
ie-AgSoc1
ie-AgSoc2

connections:
ie-AgSoc1.EC1 >---> ie-AgSoc2.IC1

Fig. 7. Sketch of the declaration of an inter-societal agent system, with ie-agent soci-
eties as modules.

Figure 8 illustrates the integration of two ie-agent societies into a conven-
tional software system. The conventional software system is a search server, that
searches the web on the basis of a combination of two societies of search agents.

7 A Case Study: Marketing-Supply Chains

In this section, we make use of the toy module language, which was informally
defined in the previous section, to sketch the modular declaration of a basic agent
society model for general marketing-supply chains (see, e.g., [15]). In addition,
we sketch the specialization of such model for the particular case of marketing-
supply chains for beer, which we call beer chains.

For convenience, we extend the toy module language with a type system,
which is also defined here in an informal way.

Figure 9 presents the basic agent society model for general marketing-supply
chains. Figure 10 sketches type declarations for the constitution of organizational
units as modules. Figure 11 sketches the declaration of the whole model in the
typed toy modular language.

Figure 12 presents a simple agent society model for beer chains. Figure 13
sketches the declaration of the corresponding agent society model.



Two Concepts of Module 67

system WebSearch:
org-unit modules:

...
ie-ag-soc modules:

ie-ag-soc ie-AgSoc1:
import-channels:

IC1 -> ...
export-channels:

EC1 -> ...
...

ie-ag-soc ie-AgSoc2:
import-channels:

IC1 -> ...
export-channels:

EC1 -> ...
...

ie-AgentSocieties:
ie-AgSoc1
ie-AgSoc2
connections:

ie-AgSoc1.EC1 >---> ie-AgSoc2.IC1
main:

procedure LookForUserCommand:
...

procedure InformResultToUser(Res):
...

cycle forever:
cmd <- LookForUserCommand()
export cmd to ie-AgSoc1.IC1
import res from ie-AgSoc2.EC2
InformResultToUser(res)

Fig. 8. Sketch of the integration of two ie-agent societies, as modules, in a conventional
software system.

Some remarks:

– For simplicity, no io-port is explicitly shown in the figures.
– The declaration of the agent society model for the beer chains makes use of

the types of organizational units, which were defined above.
– Some adaptation of those types for the particular case of the beer chains

was needed, however, and a type redefinition mechanism, loosely inspired by
the Eiffel programming language [16], was assumed to operate in the typed
modular language (for instance, in the redefinition of the Intermediary type
allowing the introduction of the two output ports that are necessary in the
Distributor type of the beer chain).

– That marketing-supply chains can be construed as inter-organizational net-
works, but without ever reaching the status of organizational sub-systems,
allows their agent society models to be declared just up to the organizational
meso level (Orgμ in the architecture of agent societies). This is reflected explic-
itly in the model shown in Fig. 13, which contains just the org-meso declara-
tion, not the org-macro one.

– For convenience, SML allows the declaration to do without an explicit mention
of the organizational micro level (org-micro), which is taken to be implicitly
declared in the meso level declaration.
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Fig. 9. A basic agent society model for general marketing-supply chains.

module types:
org-unit type Supplier:

output ports:
OutSupply -> ...

roles SuppProducer, SuppPackager,
SuppDeliverer

role behaviors:
SuppProducer -> ...
SuppPackager -> ...
SuppDeliverer -> ...

role interactions:
SuppProducer x SuppPackager -> ...
SuppPackager x SuppDeliverer -> ...

accesses:
SuppDeliverer -->> OutSupply

org-unit type Producer:
input ports:

InSupply -> ...
output ports:

OutProduct -> ...
roles SuppReceiver, ProdProducer,

ProdDeliverer
role behaviors:

SuppReceiver -> ...
ProdProducer -> ...
ProdDeliverer -> ...

role interactions:
SuppReceiver x ProdProducer -> ...
ProdProducer x ProdDeliverer -> ...

accesses:
SuppReceiver -->> InSupply
ProdDeliverer -->> OutProduct

org-unit type Intermediary:
input ports:

InProduct -> ...
output ports:

OutProduct -> ...
roles ProdReceiver, ProdStorager,

ProdDeliverer
role behaviors:

ProdReceiver -> ...
ProdStorager -> ...
ProdDeliverer -> ...

role interactions:
ProReceiver x ProdStorager -> ...
ProdStorager x ProdDeliverer -> ...

accesses:
ProdReceiver -->> InProduct
ProdDeliverer -->> OutProduct

org-unit type Consumer:
output ports:

InProduct -> ...
roles ProdReceiver, ProdConsumer
role behaviors:

ProdReceiver -> ...
ProdConsumer -> ...

role interactions:
ProdReceiver x ProdConsumer -> ...

accesses:
ProReceiver -->> InProduct

Fig. 10. Sketch of the declaration of types of organization unit-based modules for agent
society-based models of marketing-supply chains.

8 Related Work

Modularity is an issue that has been explored in the multiagent systems area at
various architectural levels. For instance:

– at the intra-agent architectural level : Dastani et al. [17,18], Hindriks [19];
– at the inter-agent behavioral and interactional level : Jamroga et al. [20], Ricci

and Santi [21];
– at the intra-organizational level : Oyenan et al. [22].

To the best of our knowledge, [23] was the first to treat modularity at the inter-
organizational level, with the idea of organizations as system modules.

Regarding the particular issue of interoperability, a direction has been
explored in the literature, concerning the so-called interoperability of organi-
zational models. Coutinho and Sichman [24] provided the first extensive analysis
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ag-soc PrdMrktChain:
population:

ag1, ..., ag11
org-meso:

org-unit modules:
supplier : Supplier
producer : Producer
intermediary : Intermediary
consumer : Consumer

connections:
supplier.OutSupply >--> producer.InSupply
producer.OutProduct >--> intermediary.InProduct
intermediary.OutProduct >--> consumer.InProduct

implementation:
supplier.SupProducer --> ag1
supplier.SupPackager --> ag2
supplier.SupDeliverer --> ag3
producer.SupReceiver --> ag4
producer.ProdProducer --> ag5
producer.ProdDeliverer --> ag6
intermediary.ProdReceiver --> ag7
intermediary.ProdStorager --> ag8
intermediary.ProdDeliverer --> ag9
consumer.ProdReceiver --> ag10
consumer.ProdConsumer --> ag11

Fig. 11. Sample declaration of a basic agent society model for marketing-supply chains
using the types of organization unit-based modules defined in Fig. 10.

Fig. 12. An agent society-based model for beer chains (final clients not shown).

of the possibilities concerning that approach. Aldewereld [25] (see in particu-
lar [26]) furthered the issue. From our point of view, however, such efforts should
better be seen as concerning the compatibility of organizational models, rather
then the interoperability of agent systems (and surely not the interoperability of
agent-based and conventional software systems).

Regarding the adaptation of software engineering concepts, techniques and
methodology to agent technology, the literature is vast, under the acronym AOSE
(Agent Oriented Software Engineering), and requires no review here. We notice,
however, the usual AOSE approach is mostly centered around the idea of agents
as system modules and, as the present paper attempts to show, the agent level
is an architectural level that is too low to support the modular interoperability
between agent-based and conventional software system: the higher architectural
levels of organization units and agent societies seem to be better ones.
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ag-soc BeerChain:
import types: Supplier, Producer, Intermediary, Consumer
redefine Producer as Brewery:

role behaviors:
SuppReceiver -> ...
ProdDeliverer -> ...

input ports:
InMalt -> ...
InBarley -> ...
InWater -> ...

output ports:
OutBeer -> ...
OutSewage -> ...

accesses:
SupplyReceiver -->> InMalt, InBarley, InWater
ProdDeliverer -->> OutBeer, OutSewage

redefine Intermediary as Distributor:
role behaviors:

ProdDeliverer -> ...
output ports:

OutBeer1 -> ...
OutBeer2 -> ...

accesses:
ProdDeliverer -->> OutBeer1, OutBeer2

org-meso:
org-units:

malt-supplier, barley-supplier,
water-supplier : Supplier

brewery : Brewery
distributor : Distributor
sewage-plant : Consumer
beer-shop, restaurant : Intermediary

connections:
malt-supplier.OutSupply >--> brewery.InMalt
barley-supplier.OutSupply >--> brewery.InBarley
water-supplier.OutSupply >--> brewery.InWater
brewery.OutBeer >--> distributor.InProduct
brewery.OutSewage >--> sewage-plant.InProduct
distributor.OutBeer1 >--> BeerShop.InProduct
distributor.OutBeer2 >--> Restaurant.InProduct

Fig. 13. Sketch of the declaration of an agent society-based model for beer chains,
using the types of organization unit-based modules defined in Fig. 10.

9 Conclusion

In this paper, we have proposed a means to construe organization units as mod-
ules for agent societies, and organization units and import-export agent societies
as modules for conventional software systems. In particular, having agent based-
modules capable of performing services for the systems where they are integrated,
the proposal allows for agent societies to serve as an architectural foundation for
service-oriented computing systems [27].

At the conceptual level, the proposed construal of organization units as mod-
ules imply the introduction of input-output ports as means for the organiza-
tion units to communicate with their external contexts, and the introduction of
import-export channels as corresponding means for agent societies.

At the implementation level, in order to have a definite way to sketch a mod-
ule language for agent societies, we have assumed that input-output ports and
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import-export channels are realized by artifacts. This allows those communica-
tion means to be suitably encapsulated, so that they can appear as conventional
objects, making possible that organization units and ie-agent societies be inte-
grated, as modules, into conventional software systems.

We remark, however, that such particular form of interface is not essential
for the general concept of modularization proposed here: what is essential is
some mechanism of encapsulation capable of hiding of the internal structure of
organizations (and of ie-agent societies) from the software environment where
they are to be inserted.

Finally, we stress that on the basis of modular techniques similar to the
one introduced here, allowing the seamless integration of agent systems into
conventional software systems, it may happen that agent technology finally finds
a place for its own within mainstream Software Engineering.
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Abstract. One of the challenges in developing multi-robot systems is
the design of appropriate coordination strategies in such a way that
robots perform their operations efficiently. In particular, efficient coordi-
nation requires judicious task allocation. Without appropriate task allo-
cation, the use of multi-robot systems in complex scenarios becomes
limited or even unfeasible. Real-world scenarios usually require the use
of heterogeneous robots and task fulfillment with different structures,
constraints, and degrees of complexity. In such scenarios, decentralised
solutions seem to be appropriate for task allocation, since centralised
solutions represent a single point of failure for the system. During the
allocation process, in decentralised approaches, there are often commu-
nication requirements, as participants need to share information. Main-
taining data integrity, resilience, and security in data access are some
of the important features for this type of solution. In that direction,
we propose an architecture for dynamic and decentralised allocation of
tasks built on the idea of having communication and coordination in a
multi-agent system through a private blockchain.

Keywords: Task allocation · Multi-robot systems
Multi-agent systems · Blockchain

1 Introduction

One of the challenges in developing multi-robot systems today is the design of
coordination strategies in such a way that robots perform their operations effi-
ciently [21]. Without such strategies, the use of multi-robot systems in complex
scenarios becomes limited or even unfeasible.

An important aspect considered in coordination problems is task alloca-
tion [11,21]. There are several features that should be considered by a mechanism
for allocating tasks to multiple robots in real-world scenarios such as considering
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the heterogeneity of robots, the impact of individual variability to assign specific
roles to individual robots, and the definition and allocation of different types of
tasks. This is particularly true for disasters such as flooding [17].

During a rescue phase in a flooding disaster, teams are called into action
to work in tasks such as locating and rescuing victims [13]. Such teams are
normally organised by a hierarchy model [15], with individuals playing different
roles during a mission. Task fulfillment during the rescue stage poses a number
of risks to the teams. Using robots in a coordinated way to help the teams may
minimise those risks.

Our work on task allocation has been inspired by the typical tasks in flood-
ing disaster rescue. In particular, we needed an architecture for a dynamic and
decentralised task allocation mechanism that takes into account different types
of tasks for heterogeneous robot teams, where robots can play various different
roles and carry out tasks according to the roles they can play. Although the
actual flooding rescue tasks we are dealing with is not the focus of this paper,
the architecture we presented here was inspired and is being developed for such
a disaster response application, in particular in case of flooding disasters.

In order to manage the information exchanged during the allocation process,
our architecture proposes the use of Blockchain Technology [14]. Blockchain
is becoming increasingly popular as it provides data integrity, resilience, user
confidence, fault-tolerant storage (decentralisation), security, and transparency,
among other features. The use of blockchain as a technology to manage infor-
mation is an innovative aspect of the proposed architecture and seems to be a
promising way to deal with issues of consistency, integrity, security, and so on.

The main contribution of our work is therefore an architecture for dynamic
and decentralised allocation of tasks built on the idea of having communication
and coordination through a private blockchain. The architecture should support
a dynamic and decentralised task allocation mechanism that considers different
types of tasks to heterogeneous robot teams, where robots can play different
roles and carry out tasks according to the roles they play. We use the term agent
to refer to the main control software of an individual robot, so our multi-robot
system is effectively treated as a multi-agent system.

The paper is organized as follows. Section 2 provides the background on
blockchain and task allocation. Section 3 presents the proposed task alloca-
tion architecture. Section 4 discusses a particular case study. Section 5 describes
related works. Finally, in Sect. 6 we conclude.

2 Background

2.1 Multi-Robot Task Allocation (MRTA)

Task allocation among multiple robots (and more generally among multiple
agents) consists of identifying which robots should perform which tasks in order to
achieve cooperatively as many global goals as possible and in the best possible way.
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Market-based approaches have been largely studied for use in multi-robot
task allocation. In these approaches, the robots are usually designed as self-
interested [4] and have an individual utility function which quantifies how much a
task contributes to the robots’ objective when executed by it. The utility function
can combine several factors (such as payoff to be received, the costs incurred,
etc.) [6]. The global team utility can be quantified as a combination of the
individual utilities. A common mechanism used in market-based approaches are
called Auctions [4]. When allocating tasks through auctions, the robots provide
bids, which are usually computed based in the utility values. The robot with
the highest utility value for each task wins the task. In other words, the robots
need to have information about the tasks and share information (bids) with each
other.

Tasks: Different type of tasks can be used to address tasks in real-world sce-
narios, which cannot be adequately represented by only one type of task due to
their complex structures and other domain-specific characteristics. In this paper
we are considering the following type of tasks defined in [22]:

– Atomic task (AT): A task is atomic if it cannot be decomposed into subtasks.
– Decomposable simple task (DS): A task that can be decomposed into a set of

atomic subtasks or other decomposable simple tasks as long as the different
decomposed parts have to be carried out by the same robot.

– Compound task (CT): Task that can be decomposed into a set of atomic or
compound subtasks. When each of the subtasks need to be allocated to a
different robot we call it CN task (N subtasks that need exactly N robots).
When there are no constraints, the subtasks can be allocated to one up to M
robots, where M is the number of subtasks (CM tasks).

2.2 Blockchain

In 2008, Satoshi Nakamoto published a paper presenting an electronic peer-
to-peer cash system, called Bitcoin [14]. His proposal is based on removing a
third party, allowing two willing parties to transact directly. Bitcoin is the first
truly decentralised global currency system, and it is based on hash algorithms
and asymmetric cryptography. Since the network is decentralised, it relies on a
network of volunteer nodes to collectively implement a replicated ledger. This
public ledger tracks all transactions and the balance of all system accounts.

This public ledger, also known as blockchain, is applied in Bitcoin context
to avoid a double spending problem, as well as giving publicity to all transac-
tions. The transactions performed in the Bitcoin network are grouped in order
to create a block with several transactions. Figure 1 shows a version of a block
content. The block is divided into four main structures: Size - the size of the
block, in bytes; Header - is composed of version, which is a software/protocol
version, merkle tree root is a hash of the merkle tree root of block’s transaction,
difficulty is this block target that should be achieved throughout proof-of-work,
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previous block hash a hash value from the previous block in the chain, timestamp
block creation time and a nonce which is a counter used for the proof-of-work
algorithm; Transaction counter identifies how many transactions are stored
in the current block and Content block where all block transactions are stored.

Fig. 1. Blockchain block structure

The previous block hash field, in the block header, is used to create a link
between a new block and its predecessor, i.e., the hash of the previous block is
stored in the previous block hash field of the new block, thus creating a chain.
That is the reason for the public ledger to be called blockchain. The link between
blocks is also the way how the historical information has its integrity ensured.

Since the blockchain is decentralised, each node in the Bitcoin network keeps
a copy of the ledger where all transactions are stored, thus improving the
blockchain resilience. Since each node has a copy of all transactions and every
node is able to create a new transaction, a mechanism should be applied to avoid
malicious nodes to be able to change information. In order to define which node
is able to create a block and insert it into the blockchain, a consensus algorithm
is applied. The Bitcoin blockchain uses a proof-of-work consensus algorithm [18].

Proof-of-work (PoW) is an algorithm that produces a block hash value which
identifies the block. The operation to produce this piece of information, is very
high cost in terms of CPU and power. In contrast to validate the produced
information is a very cheap operation. In Bitcoin, the work consists of creating
a block hash that is compliant with some rules, for example, the hash must
have the N first digits consisting of zeroes. So any client that wants to insert a
new block into the blockchain, must change the nonce field in the block header
until its block hash value matches the defined zeroes. In order to solve this
puzzle, brute-force is used, where the client must repeat the process until they
find the solution, leading to a problem related to consuming CPU and power.
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This led some researchers to identify the use of different consensus algorithm
like Proof-of-Stake [23].

The consensus algorithm is a real need in the public blockchain, in order to
establish an organized way to the block insertion. This consensus criteria could
be softer when running the blockchain in a controlled environment like in a
private corporate network. Hardjono [9] in his research proposes a permissioned
blockchain applied to the Internet of Things context, where only some nodes
(defined by the sensor manufacturer) are able to write data to the blockchain.
In contrast, every network node is able to read the information available in the
blockchain.

Based on the characteristics of the blockchain we can highlight its attributes:
Data Integrity ; Resilience; Decentralisation; Transparency ; Immutability.

3 The Task Allocation Architecture

In this section we describe our architecture for dynamic and decentralised allo-
cation of tasks, which is built on the idea of having communication and coordi-
nation through a private blockchain. Considering a market-based task allocation
approach where an organisation provides tasks to the agents, the organisation
and the agents share information with each other in a dynamic process.

In our architecture, the sharing of information regarding the allocation pro-
cess, either among agents, or among the organisation and the agents, is per-
formed through the blockchain. The idea is to have blockchain acting as a decen-
tralised database allowing the sharing of information. Due to its decentralised
attribute, the blockchain is replicated to every participant, which ensures the
architecture resilience.

In order to understand the proposal, first we present a general view of a
basic task allocation process considering that the robots are part of an organ-
isation. Next we describe the basic agent and organisation structures used in
the architecture. Then we provide a detailed description about the interaction
of the organisation and the agents with blockchain. Finally we describe our task
allocation mechanism and how it uses blockchain.

3.1 Task Allocation Process – Overview

Figure 2 shows the parts considered in a task allocation process. Initially, we
consider the existence of an organisation that is responsible for announcing the
tasks that need to be carried out by the agents in a given mission. We use the
term agent to refer to the main control software of an individual robot of any
kind. The tasks provided by the organisation can be requested by the agents
available for the mission. Finally, the environment is the place where agents
carry out the tasks.
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Fig. 2. Task allocation process – overview.

Regarding the process itself, it is initially considered that an organisation
has a set of agents to carry out a mission and that these agents are waiting for
the tasks they will be asked to carry out (the agents start executing having no
assigned tasks). At a certain moment, the organisation announces a set of tasks.
When a new set of tasks is noticed, the agents begin the allocation process based
on the architecture we introduce in this paper.

When the agents finish the task allocation process, those with allocated tasks
start to carry them out. At the end of the allocation process, there might be
agents without allocated tasks as well as tasks that could not be allocated to
any suitable/available agent. Such results depend on the constraints indicated
and the features of available agents.

3.2 Basic Agent and Organisation Architecture

Figure 3 shows the main aspects considered in the organisation and agent
architecture. Initially, we consider agents based on the Belief-Desire-Intention

Fig. 3. Basic organisation and agent architectures.
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(BDI) architecture [16]. The BDI architecture was used because it is widely
used in several approaches. However, the proposed architecture could be easily
integrated with other agent architectures, since its components preserve some
independence from the other mechanisms of the agent itself.

Figure 3 shows a (BDI) agent with the addition of the components of our
architecture. The task allocation mechanism interacts with the plan library, the
belief base, and the intention base in order to have inputs for the allocation
process and it also interacts with the desire base by adding new desires (goals)
related to the tasks allocated to the agent. There is also an interaction between
the task allocation mechanism and the blockchain controller component in order
to get shared information and also to share information with other participants in
the task allocation process. The blockchain controller is responsible for managing
the interactions with the blockchain.

The organisation interacts with its own blockchain controller to add infor-
mation related to the tasks that need to be carried out by the agents, as well as
the available roles in the organisation (with capabilities required by each role).

Simply put, the organisation uses the blockchain to share information about
the tasks that need to be carried out and the available roles in the organisation as
well as the capabilities needed to play each role. The agents use the blockchain to
share information such as their bids for the tasks during the allocation process.
A detailed description of the interaction between the organisation and agents
through the blockchain controller is described in the next section.

3.3 The Blockchain Controller

Here we introduce the actions which allow organisations and agents to commu-
nicate and coordinate through blockchain. To make the description easier we
will use the term entities to refer to organisation and agents. The blockchain
controller provides a set of actions to allow the entities to manage and share
information through the blockchain although not all are currently used in our
task allocation process. The proposal is supposed to be generic enough to be

Fig. 4. Conceptual model for the interaction through blockchain.
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useful for other solutions and not just for task allocation. Figure 4 shows these
actions, which are shortly described below.

– Create/share/join blockchain: The following actions can be performed
by the entities to manage the blockchain.
• createBlockchain: instantiates a new blockchain for the entity which exe-

cuted this operation;
• shareBlockchain: allows to share a blockchain with other entities;
• joinBlockchain: allows an entity to join and focus on a blockchain in

order to obtain and share information through that blockchain;
• stopPerceivingBlockchain: allows an entity to stop receiving new trans-

actions added to a blockchain. The entity is still able to access the
blockchain data and adding new transactions to it.

• deleteBlockchain: removes the blockchain from the entity that exe-
cuted it.

• duplicateBlockchain: create a private copy of the blockchain for an
entity’s own use.

– Use operation: An operation represents a set of instructions to allow entities
to access transaction data. The following operation can be performed by the
entities to add new transactions to the blockchain.
• insertTransaction: allows to insert a new transaction into a blockchain.

– Perceive/observe transaction: The transaction represents information
shared by some entity.
• perceiving transaction: every time a new transaction is added to the

blockchain the entities will be able to perceive it (entities that are sharing
that blockchain). The stopPerceivingBlockchain action is used to stop
perceiving.

3.4 The Task Allocation Mechanism

In this section, we describe our task allocation mechanism and how it interacts
with the blockchain controller. Each agent in the organisation executes the task
allocation mechanism, shown in Fig. 5, characterising a decentralised solution.

Simply put, each agent initially perceives through the blockchain controller
the tasks that need to be carried out. Based on the perceived tasks the agent
identifies, through task allocation mechanism, the tasks it can carry out based
on the roles it can play in the organisation, which are also perceived through
the blockchain. The agent then identifies the tasks it will try to allocate to itself
and calculates its bids for those tasks. The agent then communicate its bids
putting that information in the blockchain through the blockchain controller (i.e.,
executes the insertTransaction operation). The bids added to the blockchain
will be perceived by all other agents who will then check if some of the bids
improve on its own bid for a task it allocated to itself. If that is the case, the
agent withdraws that task from the list of its pre-allocated tasks and then checks
which task it will bid for next, to replace the task it relinquished. These steps are
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Fig. 5. The task allocation model.

Fig. 6. Conceptual model for the main aspects in our task allocation process.

repeated until all agents agree on the allocation, that is, until the tasks allocated
to all agents do not undergo any further modifications.

Figure 6 presents a model with the main concepts of the proposed task allo-
cation mechanism. As shown in the figure, we assume that an agent can have
different capabilities that can be related to its type of locomotion (e.g., the pos-
sibility of sailing or flying) or even to the resources available to the agent (i.e.,
the robot’s payload such as cameras, sensors, etc.). An agent may play one or
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more roles. The roles are defined by the organisation the agents belong to and
each role is related to a set of capabilities that an agent needs to have in order
to play that role. The organisation is also responsible for defining the tasks that
are required in a given mission.

As described in Sect. 2, a task can be atomic, simple decomposable or com-
pound. Compound tasks have a list of subtasks that can be, in turn, atomic or
compound (this way it is possible to create a complex hierarchy of tasks, which
increases the applicability of this approach to different scenarios). Similar struc-
tures are also possible for decomposable simple tasks. Atomic tasks will not be
directly considered in the proposed mechanism (they will be indirectly regarded
as subtasks of both compound tasks and simple decomposable tasks). The tasks
require one or more agents able to play particular roles to carry them out. That
is, agents may not be able to carry out certain tasks if they cannot play the
required role. We consider that each agent has a maximum number of tasks that
can be allocated to itself. This constraint may be related, for example, to the
amount of energy (fuel) available to the robot. This may vary among robots as
well as it may vary while the tasks are being carried out.

A version of the task allocation mechanism without the use of blockchain
technology has been implemented and runs in BDI agents developed in JaCaMo
framework. The algorithms that constitute the mechanism are detailed in [1],
where initial results, obtained from Monte-Carlo simulations, demonstrate that
the proposed mechanism seems to scale well, as well as provides near-optimal
allocations.

Figure 7 shows the average results of simulations using our framework, vary-
ing the number of agents (from 5 to 35) when allocating 24 tasks. Figure 7(a)
shows that the performance of the proposed solution improves and is closer to
the optimal solution (i.e., 100%) as we increase the number of agents. Figure 7(b)
shows a small standard deviation in all simulations (comparing with the optimal
solutions). The average execution time of these simulations was 4 seconds for
each simulation with 5 agents up to 15 s with 35 agents. In [1], tests with up to
60 tasks were also performed with similar results.

Fig. 7. Simulation results by varying the number of agents.
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4 Case Study: Allocating Tasks in a Flooding Scenario

This section describes the use of our architecture through a case study on a
flooding scenario. We chose this scenario because it represents a real multi-robot
application scenario with several constraints that need to be considered by the
software architecture, such as the heterogeneity of the robots, the impact of
individual variability to assign specific roles and the accomplishment of different
types of tasks. According to Murphy, there are several tasks that can be per-
formed or assisted by robots during flood disasters [12]. One of the key tasks
to be accomplished is to obtain situational awareness of the affected region [13].
This task involves mapping the affected areas, where the robots are allocated to
obtain images of a region. In order to accomplish this task, in this case study, the
robot needs to have flight capability and a camera to obtain the images. Another
important task in flood disasters is the collection of water samples for analysis,
such as verifying the level of water contamination [17]. To perform this task, the
robot must have navigation capability and be able to collect water samples. In
this case study we will focus on these two specific tasks.

Consider an organisation that needs to work on a flooding disaster by per-
forming tasks such as mapping areas and collecting water samples for analyses.
The organisation has three robots available to help in those tasks: one USV
(Unmanned Surface Vehicle) and two UAVs (Unmanned Aerial Vehicle), which
we will call respectively USV1, UAV1, and UAV2. USV1 has sailing capabil-
ity and resources to collect water samples while UAV1 and UAV2 have flying
capabilities and cameras to take images. The predicates below represent the
information each robot has about itself.

USV1 : capabilities([sail, waterCollector])
UAV1 : capabilities([fly, camera])
UAV2 : capabilities([fly, camera])

In the organisation, there are two possible roles to be played: mapper and
collector. In order to play the mapper role, a robot must have the capability
to fly and must have a camera to take pictures. For the collector role, robots
must have the capability to navigate and resource to collect water samples. The
predicates below represent this information.

role(mapper, [fly, camera])
role(collector, [sail, waterCollector])

Considering the flooding scenario, the organisation has defined the following
tasks to be performed. The predicates below are composed of (and in this par-
ticular order): the task identifier, the task name, the region where the task is to
be performed, and the role a robot needs to perform that task.

task(t1, collectWater, regionA, collector)
task(t2, takeImage, regionA,mapper)
task(t3, takeImage, regionB,mapper)
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Considering the above, we describe now how the task allocation process
works using blockchain. First, the organisation creates a new blockchain using
the createBlockchain action. This action returns an identifier for the created
blockchain. To facilitate the explanation, consider that the identifier returned
by the action is bcTaskAlloc1.

The organisation then can share the blockchain with the available robots
using the action shareBlockchain, using as parameter the name of the
blockchain being shared and a list of the robots with which it should be shared.
The following action shares the blockchain bcTaskAlloc1 with the robots in the
organisation.

shareBlockchain(bcTaskAlloc1, [USV 1, UAV 1, UAV 2]);

After that, each robot will have a copy of the shared blockchain bcTaskAlloc1.
The organisation then uses the insertTransaction operation to share role and
task information with the robots through the blockchain. The following opera-
tions are used to share information about the mapper and collector roles.

insertTransaction(role(mapper, [fly, camera]));
insertTransaction(role(collector, [sail, waterCollector]));

Block 1 in Fig. 8 represents the role information added to the blockchain by
the organisation. The blockchain technology is responsible for synchronising the
role information with the copy of the blockchain available in the robots. Once
the robots’ blockchains are updated with the new transactions, the blockchain
controller in each robot will generate a percept to the robot about the new
information. Each robot is now able to identify which roles it can play in the
organisation. USV1 identifies it can play role collector while UAV1 and UAV2
identify they can only play the mapper role.

The following operations are used to share information about the tasks.

insertTransaction(task(t1, collectWater, regionA, collector));
insertTransaction(task(t2, takeImage, regionA,mapper));
insertTransaction(task(t3, takeImage, regionB,mapper));

Block 2 in Fig. 8 represents the task information added to the blockchain
by the organisation. Again, the blockchain is responsible for synchronising the
information with the blockchain in the robots, and the blockchain controller in
each robot will generate percepts for the robot when the new information is
added to the blockchain. Each robot is now able to identify the tasks available
in the organisation and the ones it can bid for based on the roles it can play.
USV1 realises it can bid only for task t1, while UAV1 and UAV2 realise they
can bid for tasks t2 and t3. With information about the roles and the tasks, the
robots are able to start the allocation process.
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Fig. 8. Example of our blockchain content.

We also assume that all robots start bidding at the same time, each one
inserting a new transaction within their copy of the blockchain. The following
operations represent the bids from each robot. In order to calculate a bid, each
robot uses inputs from the plan library as well as the belief and intention bases.

USV1 operation : insertTransaction(bid(t1, 5, USV 1));
UAV1 operation : insertTransaction(bid(t2, 5, UAV 1));
UAV2 operation : insertTransaction(bid(t2, 4, UAV 2));

Each operation will add the transaction to the blockchain in the respec-
tive robot. The blockchain in each robot is responsible for synchronising the
information about the bids with the blockchain in the other robots and also in
the organisation blockchain. Block 3 in Fig. 8 represents the bidding informa-
tion after the synchronisation. For each new transaction updated in the robot’s
blockchain, the blockchain controller will generate a percept to the robot (infor-
mation about the current bids). Each robot is now able to identify if it has lost
to another robot some of the tasks for which it placed bid (i.e., when another
robot has provided a higher bid). In our scenario, UAV1 and UAV2 provided
bids for the same task t2. Since UAV1 bid for task t2 is higher than UAV2 bid
for the same task, the UAV2 will provide a bid to another task as specified in
the following operation.

UAV2 operation : insertTransaction(bid(t3, 3, UAV 2));
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The operation will add the transaction to the blockchain in the respective
robot which again will be synchronised with the other robots and the organisa-
tion, generating percepts to the robots. Block 4 in Fig. 8 represents the bidding
information after the synchronisation.

Assume that robots agreed on the allocated tasks and the allocation finished
after this last bid. Thus, USV1 won the bid for task t1, UAV1 won for task t2,
and UAV3 won for task t3. The information about the allocated tasks will be
added to the belief base, as well as new desires (goals) will be added to the desire
base of each robot, so that they can start the execution of the allocated tasks
with the support of their architectural components.

5 Related Work

There are several works on task allocation, some of them aim at allocating an ini-
tial set of tasks to a set of robots as in [3,11,19], while others focus on allocating
tasks that arise during the execution of other tasks as in [20].

Regarding the tasks, most of the solutions available in the literature, such as
the ones presented in Gernert [7] and Settimi [19], focus only on atomic tasks,
unlike our proposal, which comprises other types of tasks as well. Das [3] and
Luo [11] are examples of work that deal with subtasks in some way.

In Gernert [7], the authors propose a decentralised mechanism for task allo-
cation along with an architecture that focuses on exploring disaster scenarios.
However, in the solution, as in many others, the robots can carry out any task,
i.e. heterogeneity and capabilities are not considered. There are also works like
Settimi [19] and Das [3], where heterogeneous robots and their capabilities are
considered in the task allocation.

In Gunn [8] is described a framework for allocating new tasks discovered by
robots in the missions. It proposes the use of heterogeneous robots organised in
teams. The robot with the best computational resources is responsible for the
allocation process. Thus, it could be said of that there is still a single point of
failure within each team, so it is not exactly a decentralised solution like ours.

To the best of our knowledge, there are no studies using blockchain in the
task allocation process either for multi-robot or multi-agent systems. In this way,
we introduce as related work the use of blockchain in other applications.

Blockchain technology was first applied to the Bitcoin currency in 2008, but
since then it was used in several other different applications. Ferrer’s research [5]
describes possibilities in the use of blockchain to improve three aspects related to
a swarm robotic system: security through blockchain digital signature, public and
private keys; distributed decision making where the blockchain can be applied
to handle collective map building, obstacle avoidance and reach agreements;
swarm control behavior differentiation considering linking several blockchains in
a hierarchical manner, which would allow robotic swarm agents to act differently
according to the blockchain being used.

In a different context, Lee [10] uses blockchain to control the manufacturer
firmware version installed in its devices. The idea is to create a blockchain
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where all devices are connected through a peer-to-peer network. Through this
blockchain each device can check its firmware version and, once identified the
need for update, it requests to the node that has the most recent version.

As Lee proposes a blockchain change, focused on control and distribution of
firmware version, Bogner’s [2] research uses the blockchain applied in a Ethereum
cryptocurrency. In his work the blockchain is used to handle device renting in
Internet of Things context. For example if a user wants to rent a bike in a station,
he just performs an operation transferring the rent value, and when the transfer
is persisted in the blockchain, the station releases the bike.

In our research we identified that blockchain could be applied to solve prob-
lems in areas that are note directly related to currency. That motivates the cur-
rent work in order to bring blockchain technology to handle the task allocation
problem in the multi-agent context.

6 Conclusions

In this paper, we have presented an architecture for dynamic and decentralised
allocation of tasks built on the idea of having communication and coordination in
a multi-agent system through blockchain. The architecture was inspired by and
is being developed for such an application in a multi-institution project funded
by the government to address disaster response, in particular in case of flooding.
Considering that real-world scenarios like flooding disasters typically require the
use of heterogeneous robots and task fulfillment with different complexities and
structures, our architecture takes into account the allocation of different types
of tasks for heterogeneous robot teams, where robots can play different roles and
carry out tasks according to their capabilities.

Our architecture takes advantage of the blockchain technology which is a
promising way to deal with issues such as consistency, data integrity, resilience,
security, decentralisation, transparency, and immutability. For example, using
blockchain in our architecture allows all the participants to share the same knowl-
edge about the task allocation process. Since all information about the allocation
is stored in the blockchain, new robots can be added to the process at any time.
The organisation (or some agent) can share the blockchain with the new robots,
which will have access to the data previously stored in the blockchain. That
allows the robots to synchronise their knowledge about the allocation process
and so to participate in it. Security is also an important aspect for task allocation
in flooding scenarios since the robots can be target of threats and attacks and
that may impact in the search and rescue of victims. Blockchain uses an encryp-
tion scheme based on asymmetric cryptography which ensures the security to
the information stored.

The use of blockchain as a technology to manage task allocation information
is an innovative aspect of our architecture and seems to be useful also in other
problems in multi-agent systems.
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Abstract. Argumentation schemes are common patterns of arguments
used in everyday discourse, as well as in contexts such as legal and scien-
tific argumentation. The use of argumentation schemes may depend on
the (social) context of the participating actors, the roles that they play
in society, and so on. Based on this idea, this work proposes a concep-
tual and practical framework that combines argumentation schemes and
social organisations in multi-agent systems. In our framework, the agents’
social context constrains the usage of argumentation schemes and their
associated critical questions. The framework has been developed on top
of an existing multi-agent systems development platform, and we argue
that our approach has advantages over traditional uses of argumentation
schemes such as requiring less communication in multi-agent systems.

1 Introduction

Argumentation schemes are patterns for arguments (or inferences) representing
the structure of common types of arguments used both in everyday discourse
as well as in special contexts such as legal and scientific argumentation [33].
Clearly, different social contexts enable the use of various different argumen-
tation schemes, based on the state of the environment (e.g., a university, a
court, a hospital), the roles played by the participating actors, and the relations
between their roles (e.g., professors and students, judges and lawyers, doctors
and patients, etc.).

Characteristics of social contexts such as organisational roles and environ-
ment states are well-defined components in frameworks for the development of
multi-agent systems, in particular those that follow an organisation-centred app-
roach. Such approaches typically assume the explicit specification of an organ-
isation as part of the system, where global constraints are publicly defined so
that heterogeneous and autonomous agents can follow when playing some role
within the (open) multi-agent system [14].

This work proposes to use the group structures, social roles, social plans,
and social norms, usually available in such frameworks, as sources of possible
extra elements for the specification of argumentation schemes to be used in
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agent dialogues for negotiation, coordination, deliberation, etc. Furthermore, by
extending the normative infrastructure of such systems, we are able to ensure
that agents make appropriate use of the argumentation schemes depending on
their social context, as specified using our approach to argumentation schemes
in organisation-centred agent platforms.

Among the many organisational models for agents, for example [9,10], the
MOISE model [14] is a well-known practical approach, which has been integrated
with the CArtAgO platform [28], used to develop a shared environment, and the
Jason platform [6], used to develop autonomous agents. The resulting framework,
called JaCaMo [5], provides support for the development of complex multi-agent
systems covering the three main dimensions of such systems (the organisation,
the agents, and the environment). In this paper, we make our proposal practical
by extending the JaCaMo platform. In the resulting framework, called SocARG,
argumentation-based agent interaction becomes a fourth dimension that we add
to multi-agent system specifications. As it is closely connected to the organisation
specification, in this paper we focus our formalisation on the combination of these
two dimensions of multi-agent specifications used in our JaCaMo extension. The
main contribution of this work is the framework SocARG we propose, including how
the different components of such specifications are integrated and the benefits it
brings to multi-agent system development.

2 Argumentation Schemes

Besides the familiar deductive and inductive forms of arguments, argumentation
schemes represent forms of arguments that are defeasible1. This means that an
argument may not be strong by itself (i.e., it is based on disputable inferences),
but they may be strong enough to provide evidence that warrant rational accep-
tance of its conclusion [32]. Conclusions from argumentation schemes can be
inferred in conditions of uncertainty and lack of knowledge. This means that we
must remain open-minded to new pieces of evidence that can invalidate previ-
ous conclusions [33]. These circumstances of uncertainty and lack of knowledge
are, inevitably, characteristics of multi-agent systems, which deal with dynamic
environments and organisations [35].

The acceptance of a conclusion from an instantiation of an argumentation
scheme is directly associated with the so-called critical questions. Critical ques-
tions may be asked before a conclusion from an argument (labelled by an argu-
mentation scheme) is accepted, and they point out to the disputable information
used in that argument. Together, the argumentation scheme and the matching
set of critical questions are used to evaluate a given argument in a particular
case, considering the context of the dialogue in which the argument occurred [33].

Arguments instantiated from argumentation schemes, and properly evalu-
ated by means of their critical questions, then can be used by agents in their
reasoning and communication processes. In both situations, other arguments,
probably instantiated from other argumentation schemes, are compared in order
1 Sometimes called presumptive, or abductive as well.
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to arrive to an acceptable conclusion. After an argument to be instantiated
from an argumentation scheme and evaluated by its set of critical questions,
the process follows the same principle of any argumentation-based approach,
where arguments for and against a point of view (or just for an agent’s internal
decision) are compared until eventually arriving to a set of the acceptable ones.

In regards to conflict between arguments, we can consider the existence of
two types, according to [33]: (i) a strong kind of conflict, where one party has a
thesis to be proved, and the other part has a thesis that is the opposite of the
first thesis, and (ii) a weaker kind of conflict, where one party has a thesis to be
proved, and the other part doubts that thesis, but has no opposite thesis of his
own. In the strong kind of conflict, each party must try to refute the thesis of the
other in order to win. In the weaker form, one side can refute the other, showing
that their thesis is doubtful. This difference between conflicts are inherent from
the structure of arguments, and can be found in the work of others, e.g. [22].

To exemplify our approach, we adapted the argumentation schemes Argument
from Position to Know from [34] to a multi-agent (organisational) platform, so
that for example roles that agents play in the system can be referred to within
the scheme. Consider the Argument from role to know in multi-agent systems
(role to know for short):

“Agent ag is currently playing a role R (its position) that implies knowing
things in a certain subject domain S containing proposition A (Major
Premise). ag asserts that A (in domain S) is true (or false) (Minor
Premise). A is true (or false) (Conclusion)”.

The associated critical questions are: CQ1: Does playing role R imply know-
ing whether A holds? CQ2: Is ag an honest (trustworthy, reliable) source? CQ3:
Did ag assert that A is true (or false)? CQ4: Is ag playing role R?

The argumentation scheme introduced above can be represented in the Jason
multi-agent platform as a defeasible inference as follows (based on [20,21]):

def_inf(Conclusion,[role(Agent,Role), role_to_know(Role,Domain),
asserts(Agent,Conclusion),about(Conclusion,Domain)])
[as(role_to_know)].

where the agents are able to instantiate such argumentation schemes with the
information available to them in their belief bases and to evaluate the accept-
ability of the conclusion based on the interactions among such instantiated argu-
ments [20].

Formally, in our framework, an argumentation scheme is a tuple
〈SN , C,P, CQ〉 with SN the argumentation scheme name (which must be
unique in the system), C the conclusion of the argumentation scheme, P
the premises, and CQ the associated critical questions. Considering the
example above, the corresponding components are SN = role to know,
C = Conclusion, P = asserts(Agent,Conclusion), role(Agent,Role),
role to know(Role,Domain) and about(Conclusion,Domain), CQ =
〈cq1, role to know(Role, Conclusion)〉, 〈cq2, honest(Agent)〉, 〈cq3, asserts
(Agent, Conclusion)〉 and 〈cq4, role(Agent, Role)〉.
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3 The MOISE Model

In this section we describe the MOISE model based on the work presented in
[14], where the authors describe a set of computational tools that supports the
development and programming of such organisation-centred systems, providing
also a middleware, where agents (developed using Jason [6]) can perceive and
act upon the organisation. In this context, our work proposes the representation
of argumentation schemes at a social level, so that they can be adapted to the
social context of such organisation-based systems.

The MOISE organisational model [14] has three main specifications: the
structural, functional, and normative specifications. The structural specification
(SS) has three levels: (i) the behaviour that agents are responsible for when
they adopt a role (individual level); (ii) the acquaintance, communication, and
authority links between roles (social level); and (iii) the aggregation of roles into
groups (collective level) [14]. The functional specification (FS) is composed of a
set of schemes, each scheme being similar to a goal decomposition tree, which
represent how a multi-agent system usually achieves its social (organisational)
goals. A scheme states how such goals are decomposed (as high-level social plans)
and allocated to the agents (through so-called missions). Finally, the normative
specification (NS) that explicitly states what is permitted and obligatory to
agents playing roles within the organisation. The specification describes the per-
missions and obligations of roles in respect to missions specifically (for example,
the permission permission(ri,mi) states that an agent playing role ri is allowed
to commit to mission mi) [14]. Therefore, a formalisation of the basics of the
MOISE model can be done through a tuple 〈SS,FS,NS〉 where (based on [4]):

– The structural specification (SS) is represented as a tuple 〈R,�, rg〉 with R a
set of roles, � the inheritance relation between roles, including communication
link (linkcom), authority link (linkaut), and acquaintance link (linkacq), and
rg the organisation root group specification.

– The functional specification (FS) is represented as a tuple 〈M,G,S〉 with M
the set of missions, consisting of groupings of collective or individual goals, G
is the set of the collective or individual goals to be satisfied, and S is the set
of social schemes, tree-like structures of plans for goals.

– The normative specification (NS) contains a set of tuples 〈id, dm, r,m〉 with
id a norm identifier, dm a normative modality (obligation or permission), r
is the role concerned by the normative modality, and m is a mission. This
specification can be read as “any agent playing role r has dm to commit to
mission m”.

4 The SocARG Model

In this section, we propose a formal specification for multi-agent systems called
SocARG, including a new dimension which allows the specification of argumenta-
tion schemes that can be used during interaction/reasoning within an instanti-
ated multi-agent system. As part of our framework, we also extend usual norma-
tive specifications in order to specify constraints over the use of argumentation
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schemes (and their instantiated arguments) in the system, considering the roles
and context of agents. Further, we describe a series of relations between the
types of specifications in our approach.

Formally, SocARG is a tuple 〈SS,FS,AS,NS〉, with SS the structural speci-
fication, FS the functional specification, AS the argumentation-scheme specifi-
cation, and NS the normative specification. This formalisation, as described, is
inspired in the MOISE organisational model. However, note that our proposal is
not tied to the organisational specifications of MOISE, any specification of (open)
multi-agent systems using those same concepts (groups, roles, social plans, sets
of goals allocated to agents, and simple norms) can be used to combined with
our argumentation-scheme specifications for open multi-agent systems.

The specification of argumentation schemes in SocARG is independent from
the other organisational specifications, but it is particularly connected to the
normative specification which links the structural, functional, and argumentation-
scheme specifications. In the argumentation-scheme specification, the argumenta-
tion schemes and their corresponding critical questions are defined. After that,
in the normative specification, we can specify which argumentation schemes and
corresponding critical questions can be used by agents depending on the roles they
play in the multi-agent system and the communication links between such roles,
both declared in the structural specification. The usage of argumentation schemes
and critical questions can also consider the context of the social goals, which are
associated with the functional specification. The links between the specifications
present in SocARG are represented in Fig. 1.

For example, the argumentation scheme Argument from role to know in multi-
agent systems, introduced in Sect. 2, is specified in the XML file that specifies
the multi-agent systems in SocARG. The code in XML is presented below.

<argumentation_scheme_specification>

<argumentation_scheme id="as1" name="role_to_know">

<conclusion language="Prolog" content="Conclusion"/>

<premise language="Prolog" content="role(Agent,Role)"/>

<premise language="Prolog" content="role_to_know(Role,Domain)"/>

<premise language="Prolog" content="asserts(Agent,Conclusion)"/>

<premise language="Prolog" content="about(Conclusion,Domain)"/>

<critical_questions>

<critical_question id="cq1" content="role_to_know(Role,Conclusion)"/>

<critical_question id="cq2" content="honest(Agent)"/>

<critical_question id="cq3" content="asserts(Agent,Conclusion)"/>

<critical_question id="cq4" content="role(Agent,Role)"/>

</critical_questions>

</argumentation_scheme>

</argumentation_scheme_specification>

In our current implementation of SocARG, argumentation schemes are defined
in XML, but other languages such as AML (Argument Markup Language), intro-
duced in [26], could be used instead. This is possible because the high-level lan-
guage is interpreted by a form of “management infrastructure”, like the one
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Fig. 1. SocARG links between specifications.

developed in [13]. This interpretation by a management infrastructure allows
agents developed in different agent-oriented programming languages to partici-
pate in the open system and become aware of such specifications (argumentation
schemes, norms, goals, etc.) through this interface.

In order to make explicit the use of argumentation scheme in the normative
specification, the MOISE normative specification was extended2 to the form of
〈id, dm, p, scope〉, where the scope can assume two forms: (i) do(m) consider-
ing the execution of a mission m (the usual case in MOISE model), and (ii)
use(as, cons) referring the use of an argumentation scheme as and its respective
constraints cons. The normative specification in XML is extended as well, to
include the scope declaration, which allows us to determine if the norm refers
to a mission or to the use of an argumentation scheme. When doing so one can
specify whether that use is permitted or not, including the constraint related to
the critical questions and context. An example is presented in the XML code
below.

<normative-specification>

<norm id="n1" type="obligation" role="r1">

<scope type="do" mission="m1"/>

</norm>

<norm id="n2" type="permission" role="r1">

<scope type="use" arg_scheme="as1">

<context m_id="m1">

<except cq_id="cq1" content="role_to_know(r2,Conclusion)"/>

</scope> </norm>

</normative-specification>

The specification of constraints in the normative specification is a common
practice in the development of open multi-agent systems, given that agents are
supposed to be able to reason about the normative specification when they
are playing some role in the multi-agent system. That is, with this approach
the agents are almost directly able to reason about the argumentation schemes

2 That extension was inspired by [4].
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constraints as well. Another important point is that the multi-agent organisation,
considering the extended normative specification, is able to monitor the use
of arguments (instantiated by the argumentation schemes) among the agents.
The main specification brings up some relations to the other (organisational)
specifications in SocARG. Although the argumentation schemes, the structural
and the functional specifications are independent and connected through the
normative specification, as shown in Fig. 1, we can define some relations between
such specifications, as detailed in the next sections.

4.1 Argumentation Schemes and the Structural Specification

The relation between the argumentation-scheme and the structural specifications
is established, for the most part, in the normative specification, where the roles
(from the structural specification) are linked to the argumentation schemes (in
the argumentation-scheme specification) that are permitted/obligatory for each
role. An indirect, but important, relation between the argumentation-scheme
and the structural specifications is induced by the communication link between
agents. Before any consideration of an agent having permissions/obligations to
use certain argumentation schemes, clearly it will not use arguments instan-
tiated from argumentation schemes (or any other kind of argument) towards
agents with which it has no communication link. This consideration does not
describe anything about the normative specification. Any agent can violate the
norms in order to communicate to other agent using arguments. However, this
communication is not possible without the communication link, because the
infrastructure layer is supposed not to allow the exchange of messages by agents
without communication link.

Another relation between the argumentation-scheme and the structural speci-
fications is the declaration of groups, where it is possible to specify the cardinality
of each role within each group. The relation comes from the definition of groups
where agents can make extensive use of argumentation in order to achieve the
system’s goals. This is a direct relation with the permissions/obligation that each
member of the group has to use argumentation schemes and the communication
link between the members of the group.

Definition 1 (Argumentative Groups). A group gr is an argumentative
group iff there are agents agi, agj ∈ gr playing some roles ri, rj ∈ SSR

and gr ∈ SSrg, where 〈ni, dm, ri, use(asi, consi)〉, 〈nj , dm, rj , use(asj , consj)〉
∈ NS, dm ∈ {permission, obligation}, and linkcom(ri, rj) ∈ SS�.

Note that we do not require the roles of the agents to be different, because
we could have a role in the group with cardinality greater than one, and agents
from the same role could argue within the group in that system.

Other relations can arise from the argumentation-scheme and the structural
specifications, which will depend on the domain. For example, the argumenta-
tion scheme described in Sect. 2 is directly related to the roles specified in the
structural specification. Any argument instantiated from this scheme should be
consistent with some concrete role from the structural specification.
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Definition 2 (Consistent Argumentation Schemes). We define a consis-
tent argumentation scheme, related to the multi-agent system specification, if all
components mentioned in the scheme, involving components of the multi-agent
system (e.g., roles, groups, etc.) are defined in the structural specification. For-
mally, considering an argumentation scheme 〈SN , C,P, CQ〉, the argumentation
scheme is consistent when ∀p ∈ {C ∪ P ∪ CQ}, if p is a reference to social
components, then p ∈ SS.

4.2 Argumentation Schemes and the Functional Specification

Similarly to the structural specification, the relation between the argumentation-
scheme and the functional specification is established, for the most part, in
the normative specification. For example, the normative specification, shown in
Sect. 4, allows us to define the contexts where the argumentation schemes could
be used in order to achieve particular goals or missions (from the functional
specification). Thus, the functional specification is used to restrict the use of
argumentation schemes, therefore any argumentation scheme that the agent role
has permission/obligation to use could be used to achieve the goals the agent
has committed to achieve, but argumentation schemes with context restrictions
can be used only within a particular mission as specified.

Definition 3 (Contextual Argumentation Schemes). Contextual Argu-
mentation Schemes are those argumentation schemes that can be used only
in a particular context (to achieve a particular goal, following a particular
mission, etc.). Formally, an argumentation scheme is contextual for a mis-
sion mi if 〈as, ϕ,P, CQ〉 ∈ AS and 〈ni, dm, ri, use(as, cons)〉 ∈ NS with
dm ∈ {permission, obligation}, and 〈mi〉 ∈ cons for some mi ∈ FSM.

Contextual argumentation schemes are useful to restrict some types of argu-
mentation schemes depending on the contexts determined by the functional spec-
ification. For example, formal dialogues could use stronger types of arguments as
in the Argument from role to know in multi-agent system introduced in Sect. 2,
while some other dialogues could use weaker argumentation schemes. Therefore,
depending on the organisational goal to be achieved by the agents, they could
be restricted by the normative specification to use only arguments instantiated
from the schemes that are adequate for that context. Further, in some scenarios,
the agents could be obliged to use some specific types of arguments.

4.3 Argumentation Schemes and the Normative Specification

In previous sections, we have described the argumentation-scheme specification
and how the normative specification links it to the others (i.e., structural and
functional specifications), including some indirect relations. However, besides
the normative specification being used to link the schemes to the other specifi-
cations, it has itself some relations with the argumentation-scheme specification.
In particular, we can introduce the notion of Norm-Conforming Argumentation.
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Definition 4 (Norm-Conforming Argumentation). A Norm-Conforming
Argumentation is an argumentation process (e.g., an ongoing instance of an
argumentation-based dialogue protocol) that does not violate the normative spec-
ification, i.e., the participating agents only use arguments and critical questions
instantiated from argumentation schemes that the agents are permitted to use,
and satisfying also other constraints on such permissions, e.g. that the agents
are playing the roles associated with the permission. Formally, considering a dia-
logue D = {mov0,mov1, . . . ,movn}, we denote as movrole

i the role of the agent
that made that move, and we use movcnti for the content of that message. The
dialogue D is considered a norm-conforming dialogue if and only if ∀movi ∈
D,∃〈n, dm,movrole

i , use(as, cons)〉 ∈ NS, dm ∈ {permission, obligation},
〈as, ϕ,P, CQ〉 ∈ AS, movcnti ∈ {{ϕ} ∪ P ∪ CQ} and movcnt

i �∈ cons. When
the argumentation schemes used are contextual, they further need to satisfy the
constraints in Definition 3.

The normative system used to regulate the behaviour of autonomous entities
(agents) is not the aim of our work. Therefore, we will not discuss the internals
of a normative system here. For our purposes, it suffices to understand that there
is some normative system regulating the behaviour of the agents, enforcing the
agents to follow the norms, for example by applying sanctions in order to try
and stop agents from acting in (socially) undesirable ways [3].

We assume multi-agent systems where agents use standard languages to com-
municate and to represent arguments. Argumentation-based dialogues can be
created based on a set of performatives (also called locutions or speech-acts)
that the agents can use, and a protocol defining which moves/performatives are
allowed at each step of the protocol based on some form of constraints [16,17,19].
One way to support agents in engaging in norm-conforming argumentation-based
dialogues is defining a protocol that restrains the violation of norms, which are
followed or not by agents in an autonomous way. In order to guide the definition
of protocols that do not violate the normative specification of the SocARG model,
we introduce some definitions below. We start by defining norm-conforming
claims.

Definition 5 (Norm-Conforming Claims). A claim uttered by an agent
ag is considered norm-conforming if it is instantiated from an argumentation
scheme permitted to the role played by ag. Formally: a claim ψ is norm-
conforming iff 〈as, ψ,P, CQ〉 ∈ AS and 〈ni, dm, role(ag), use(as, cons)〉 ∈ NS
with dm ∈ {permission, obligation}.

Beside norm-conforming claims, we introduce also norm-conforming ques-
tions. When agents have permission to instantiate argumentation schemes for
creating new arguments, there might be certain constraints related to use the
critical questions to which the agents should conform as well.

Definition 6 (Norm-Conforming Questions). A question ϕ for some claim
ψ asked by an agent ag is considered norm-conforming if and only if it is
instantiated from an argumentation scheme permitted for the role played by ag,
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and there are no exclusions for ϕ specifically in that permission. Formally:
a question ϕ is a norm-conforming question for ψ iff 〈as, ψ,P, CQ〉 ∈ AS,
where 〈cqi, ϕ〉 ∈ CQ, and 〈nj , dm, role(ag), use(as, cons)〉 ∈ NS with dm ∈
{permission, obligation} and 〈cqi, ϕ〉 �∈ cons.

5 Benefits of the SocARG Model

There are some clear benefits in using our approach, most of them resulting from
the extended normative specification, and the shared argumentation schemes. In
this section, we discuss the main benefits of our approach, including an example
of how our approach makes protocols more efficient, by means of reducing the
number of messages exchanged by agents.

Firstly, we argue that there are some benefits which come from the defini-
tions presented in previous sections (namely Definitions 1, 3, 4), whereby we
are able to specify, in the SocARG specification: (i) groups of agents that are
able to argue; (ii) contexts in which they could argue; and (iii) to guide agents
to argue according to norm constraints. In (open) multi-agent systems, having
this kind of “control” in the multi-agent specifications is rather valuable, given
that different application domains could require different constraints in regards
to communication. As an example, we could mention multi-agent applications
recently developed on mobile systems. Normally, such application domain has
to restrict communication over the mobile network, using an architecture based
on personal and server agents, where (i) personal agents are only responsible
for collecting user information, sending it to corresponding server -side agents,
and to interact with users by means of an interface, and (ii) server agents are
responsible for most of the processing, decision-making, and (normally intensive)
communication with others users’ server agents. Examples of such systems are
found in [2,11,30]. Our approach allows for grouping agents and making them
argumentative groups or not, depending on the application needs. Further, our
approach allows specifying the contexts in which certain kinds of arguments
could be permitted or prohibitted, thus making the use of arguments specific for
particular tasks in a multi-agent coordinated activity.

Secondly, besides of the benefits related to the control of communication, our
approach encourages argumentation schemes (reasoning patterns) to be shared
knowledge within an agent system. Such an approach allows us to assume a
more rational position for an agent in argumentation-based dialogues, where they
are able to answer more critical questions by themselves. This occurs given the
consideration of social/organisational components in the argumentation schemes,
where such components are common knowledge to all agents.

In order to demonstrate such improvement in agent communication, we
present a simple and restrict protocol3, and we demonstrate how it works in
our approach. Although the protocol is simple and restrictive, it could be seen
as “a part of” protocols based on argumentation schemes, therefore the benefits,
we will demonstrate here, are valid for other (more realistic) protocols as well.
3 We took inspiration from the protocol presented in [23].
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Fig. 2. A simple protocol.

In this simple protocol, each dialogue starts with claiming a certain proposi-
tion (assert p), which is a conclusion from an argument 〈P, p〉sni

instantiated
from an argumentation scheme, here called sni, available for all agents, i.e.,
〈sni, p,P, CQ〉 ∈ AS, with P and CQ the instantiated sets of premises and crit-
ical questions for that scheme, respectively. Then, the claim can be conceded
(concede p) or challenged (why p). A challenge can be replied to with an argu-
ment 〈P, p〉sni

. Arguments can be replied to by conceding its conclusion p, or
questioning the argument by the critical questions pointed out by the scheme
– i.e., question cqi for any cqi ∈ CQ. Questions can be answered appropriately
(answer cqi), or the initial proposition can be retracted (retract p). Although
we are not interested in the properties of such protocol (it was presented just to
show the benefits of our approach in regards to message exchange requirements),
it is easy to note that dialogues end when all critical questions were answered
appropriately, the agent concedes to the initial claim, or when the initial claim
is retracted, i.e., when the agent is unable to answer any critical question ade-
quately. The protocol is illustrated in Fig. 2, in which the white circles represent
the beginning of a dialogue, grey circles represent intermediate moves, and black
circles represent the end of a dialogue.

Dialogues following the protocol introduced above will have: (i) in the best
case, 2 message exchanged, and (ii) in the worse case, 4 + 2|CQ|. For example,
if an agent instantiates the argumentation scheme Argument from role to know
we presented, and starts a dialogue: (i) in the best case, the agent will only just
assert the claim A (a propositional content) and the other agent engaged in such
dialogue will concede to A (2 messages exchanged); and (ii) in the worst case,
the agent will assert A, the other agent will challenge A, it will argue that A was
asserted by an agent ag who is currently playing the role R that implies knowing
things in the subject S, which contains proposition A, therefore A is true (so
far, 3 messages exchanged). After that, the other agent will question CQ1, the
agent that started the dialogue will answer, the other agent will question CQ2,
and so on. There will be 4 questions and answers (8 messages exchanged). After
all critical questions being answered, the other agent will concede to A, totalling
12 exchanged messages.

With argumentation schemes being shared by all agents in that soci-
ety/organisation, and such argumentation schemes making references to
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components of the organisation, such as roles, authority link, etc., agents are
(rationally) able to identify critical questions for which they already have the
answer. For example, in the argumentation scheme Argument from role to know,
the critical question CQ4: “Is ag playing role R?” is an information that
comes from the organisation, and all agents are aware of that, therefore such
question message does not need to be exchanged. Of course, this benefit is
inherent from the shared knowledge, and although our approach encourages
such shared knowledge, it comes from organisation-based approaches that are
typically used in multi-agent systems rather than from our framework. However,
in open multi-agent systems, even with agents knowing such information, they
could still autonomously question that, overloading the system unnecessarily. In
this respect, our approach allows us to specify which agents are able to use such
argumentation schemes (which is needed for them to argue), but constraining
the use of critical questions which refer to organisational structure/components.
For example as in 〈n1, permission, ag, use(as1, cons)〉 ∈ NS, with n1 the norm
identifier, as1 the argumentation scheme identifier, the argumentation scheme
Argument from Position to Know, and cons an exception for not using the criti-
cal question CQ4. In this case, continuing our example, the worst-case dialogue
will have 10 messages exchanged (for that simple protocol), considering a norm-
conforming dialogue.

The agents are able to violate the norms in order to benefit themselves or
according to their intentions, and the normative system is supposed to apply
sanctions when this occurs. This topic is not the subject of this paper, and we
argue that normative systems could be efficiently modelled in order to constrain
undesired agent behaviour. In such cases, agents will have just norm-conforming
argumentation-based dialogues, making/asking only norm-conforming claims
and questions. Therefore, the argumentation-based communication will occur
just as specified in the SocARG model, allowing a complete specification for multi-
agents systems able to use argumentation techniques, which are already known
for improving and enriching communication in such systems [1,15,18,24,25,31].
Such specification allows more “control” over the communication that will occur
in such systems. Further, it is possible to improve argumentation-based dialogues
by means of high-level constraints for using the argumentation schemes, as well
as by the shared knowledge, as argued above.

6 Example

As an example, we use a hospital scenario. The structural specification (SS)
of our scenario includes roles (R) doctor, nurse (both extending the role
of employees) and patient. They compose the hospital root group speci-
fication (rg). The role doctor has an authority link towards role nurse, i.e.,
linkaut(doctor,nurse) ∈ �. Further, all roles have a communication link, i.e.,
linkcom(employees,patient), linkcom(patient,employees) ∈ �.

The functional specification (FS) has only one scheme with the top-level
goal to cure the patient, as show in Fig. 3, which is decomposed into the par-
allel goals of recover health and attend patient, where attend patient is
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Fig. 3. Functional specification diagram.

decomposed into sequential goals to examine and medicate the patient. The
components mentioned above specify the goals G and the tree-like structure S in
the functional specification of the organisation. The missions M are associated
with the goals, for example the mission medicate patient refers to the goal
medicate, examine patient to examine, and so on.

In order to save space and for simplicity, we consider only the argumentation
scheme from role to know in the argumentation schemes specification, which
was presented in Sect. 2 and its XML format was listed in Sect. 4. As described
above, the links between the structural, functional, and argumentation schemes
is given by the normative specification. For our scenario, we have the following
normative specification N :

〈n1, obligation, employees, do(attend patient)〉,
〈n2, obligation, doctor, do(examine patient)〉,
〈n3, obligation, nurse, do(medicate patient)〉,
〈n4, obligation, patient, do(recover health)〉.
〈n5, permission, doctor, use(as1, [context(examine patient)])〉,
〈n6, permission, nurse, use(as1, [context(medicate patient),

except(cq1, role to know(doctor, Conclusion))])〉,
〈n7, permission, patient, use(as1, [context(recover health),

except(cq1, role to know(doctor, Conclusion)),

except(cq1, role to know(nurse, Conclusion))])〉.
The norms n1, n2, n3, and n4 impose organisational obligations for the agents
playing each role to commit themselves to some organisational goal, while norms
n5, n6, and n7 give permissions to use a particular argumentation scheme in the
organisation, in particular contexts and with some restrictions. For example, a
nurse can use arguments from role to know, but it is supposed not use the critical
question cq1 instantiated with agents playing the role of doctor, considering
that the doctor is in a particular role which could not be questioned to be in a
position to know or not about medical knowledge expressed in that environment
(the hospital). Of course, the nurse may well choose to construct arguments
contrary to the doctor’s point of view, or criticise premises, but they would not
question that the doctor is in a position to know.
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7 Related Work

Hübner et al., in [12], propose to extend the MOISE model to a fourth dimen-
sion called dialogic dimension which is focused in the communication between
roles. That work defines the protocols used for communication between roles.
The authors argue that communication is one of the main tools that agents
have to coordinate their actions at the social level, the specification of the
exchanges/communications between roles could be a tool for the regulation of
the exchanges between agents. They suggest the specification of communica-
tion between roles (which agents adopt in the organisation) at the organisa-
tional level. The dialogic dimension, proposed in [12], extends the MOISE model
inspired by the theoretical PopOrg model [7,8].

Boissier et al., in [4], put forward the idea that the normative specification
should include also the control of communication modes in the organisation.
Therefore, the authors propose to extend the normative organisation model of
MOISE in order to specify the interaction modes between agents participating
within the organisation. That work aims to allow the multi-agent organisation
monitors the interaction between agents, and to make the agents able to rea-
son over the communication modes, similarly to the way they do with norms.
The proposal aims to unify a model for interaction called EASI [29] and an
organisation model, enriching the MOISE organisation modelling language with
a new and independent dimension connected to the other ones by the normative
specification.

Reed and Walton, in [27], propose a formal representation and implemen-
tation of argumentation schemes in multi-agent systems. The main aims of the
paper are: (i) to allow individual agent to reason about arguments, as well as to
develop arguments that employ schemes, and (ii) to explore the communication
structure that can be built up around those schemes. The authors find it fun-
damental to demonstrate concrete implementations, showing that the claimed
advantages of schemes can be achieved in practice (while the implementation
makes specific choices regarding the development, the formal component guar-
antees the broader applicability of the approach).

Our work differs from all these. Similarly to Hübner et al. [12] and Boissier
et al. [4], we use the MOISE model specification as a guide to our formalisation
(although as we said any other organisational model could provide the informa-
tion about roles, goals, social plans, etc. that we need) but more importantly to
implement our approach. However, we focus on argumentation schemes, which
can be instantiated by agents for reasoning and communication, differently from
[12] and [4] that are concerned with usual protocols and communication modes
from EASI [29], respectively, but neither is based on argumentation.

Further, our work differs from Reed and Walton’s [27] in that we do not aim
at defining particular protocols for argumentation-based dialogues using argu-
mentation schemes, but rather to extend multi-agent development frameworks
with the possibility of argumentation schemes being specified in an integrated
way with cognitive autonomous agents and complex multi-agent organisations.
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However, we argue that our framework can support protocols as well (as indeed
done by others as discussed above with the argumentation base), perhaps more
complex protocols given the links with other dimensions of the system. Combin-
ing protocols—for example the protocol from [27] itself—with our framework is
indeed one of the future directions of our research.

8 Conclusion

In this work, we introduced the SocARG model for multi-agent system
specification. The SocARG model extends multi-agent specifications with an
argumentation-scheme dimension that is strongly connected with the organi-
sational dimension of a multi-agent platform. Our formalisation is inspired by
MOISE organisational model [14], which has structural, functional, and norma-
tive specifications for multi-agent systems, and is the standard organisational
model within the JaCaMo framework [5] that we choose to make the work in
practice. However, the idea of referring to roles, groups, goals, social plans,
etc. when defining acceptable uses of argumentation schemes can be applied
to any organisational model that provides similar abstractions. In the SocARG

model, the normative specification is extended in order to link the argumentation
schemes to the other specifications. This allows the functional, structural, and
argumentation-scheme specification to be independent from each other, being
linked mostly through the normative specification. Further, we have defined
some direct and indirect relations from the argumentation-scheme specification
to the other elements of multi-agent organisations and platforms. Also, we have
described the benefits our approach brings to multi-agent systems development,
the main of them: (i) more control in the argumentation-based communication;
and (ii) the possibility to constrain agent’s moves (in dialogues) by means of the
normative specification, turning protocols, when norm-conforming conducted,
more efficient.

Our view of argumentation schemes in multi-agent system specifications is
flexible to allow agents to decide, in an autonomous way, whether to violate
or not the norms, in particular norms about respecting the proposed uses of
the argument schemes for their interaction. This is an important characteristic,
considering the great challenge to manage communication in open systems. As
future work, we intend to develop applications based on the SocARG model, defin-
ing different argumentation schemes and analysing the interaction among the
arguments instantiated from these different schemes for both reasoning and com-
munication purpose. Also, we intend to define protocols for argumentation-based
dialogues based on such approach of using argumentation schemes, which for the
best of our knowledge, is an underexplored area and potentially interesting.
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Abstract. This paper deals with distribution aspects of endogenous
environments, in this case, distribution refers to the deployment in sev-
eral machines across a network. A recognized challenge is the achievement
of distributed transparency, a mechanism that allows the agent working
in a distributed environment to maintain the same level of abstraction
as in local contexts. In this way, agents do not have to deal with details
about network connections, which hinders their abstraction level, and the
way they work in comparison with locally focused environments, reducing
flexibility. This work proposes a model based on hierarchical workspaces,
creating a distinctive layer for environment distribution, which the agents
do not manage directly but can exploit as part of infrastructure services.
The proposal is in the context of JaCaMo, the Multi-Agent Programming
framework that combines the Jason, CArtAgO, and MOISE technologies,
specially focusing on CArtAgO, which provides the means to program
and organize the environment in terms of workspaces.

Keywords: Distributed environments · Endogenous environments
Environment programming · JaCaMo framework

1 Introduction

Traditionally, agents are conceived as entities situated in an environment, which
they can perceive and modify through actions, also reacting to changes in it
accordingly [16]. Not only that, but the agents’ main goal is to achieve an envi-
ronment desired state. Furthermore, some goals of the agents can be character-
ized as achievable environment states. This conception of environment, as the
locus of agents rationality, i.e., their perception, action, reaction, interaction, and
goal orientation, stays true in current Multi-Agent Systems (MAS) development.

Two general perspectives are adopted when defining the concept of envi-
ronment in MAS: exogenous, and endogenous [14]. The exogenous perspective
is rooted in Artificial Intelligence, conceiving the environment as the external
world, separated from the actual MAS, which can be only perceived and acted
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upon by agents. An example of this conception can be found in EIS [1]. In
contrast, the endogenous perspective, grown in the context of Agent-Oriented
Software Engineering (AOSE) [10], conceives the environment as a first class
abstraction for MAS engineering [17], that not only can be perceived and acted
upon, but it can also provide services and tools for the agents to aid them in
their tasks, and as such, it is designed and implemented as part of the whole
system. An example of this conception is found in CArtAgO [13].

From a Software Engineering point of view, environments can also be of two
types: local, and distributed. In the local case, the entirety of the environment
is centralized in a single process, being the easiest case for implementation.
Distributed environments, on the other hand, entail multiple processes, possibly
across a network, running the environment, which involves various challenges
in the implementation and conceptualization side. In this work, we expose the
idea that, from the agents point of view, there should not be any difference
between local and distributed environments, the right level of abstraction should
be encouraged instead, identifying this as distributed transparency.

Distribution is not a new topic in MAS, multiple technologies, such as
JADE [2], have a mature support for it, but it is mostly centered in agent com-
munication and interaction, not on the endogenous conception of environment.
In this regard, JaCaMo [4] illustrates better what is expected as support for
developing endogenous distributed environments. Even so, the lack of distributed
transparency can be observed, in the fact that both, agents and programmers,
need to be aware of the differences between local and distributed environments,
in order to handle them correctly.

Scalability and fault tolerance are also issues when dealing with distribution,
a flexible configuration is required in order to deploy the system in different
settings, allowing it to grow or change as network problems arise. A good example
of a distributed deployment system for JADE is [6]. Returning to the case of
JaCaMo, there is no support for fault tolerance, and it lacks proper configuration
facilities for distributed deployment.

This work proposes an extension to the Agents & Artifacts model of JaCaMo
for modeling distributed transparent environments, while giving insights of how
to address distributed deployment and fault tolerance. The outcome is an imple-
mented JaCaMo-oriented infrastructure and Agent API that gives support to
the mentioned requirements, while extending the dynamics and possibilities of
MAS programming in general.

This paper is organized as follows. Section 2 briefly introduces the JaCaMo
framework, addressing its distributed model. Section 3 introduces the problems
present in the JaCaMo distributed model, presenting a proposal to solve them,
first in an intuitive and informal manner, and then formally. Section 4 fea-
tures different aspects of the implementation, such as the general architecture,
and configuration and deployment. Section 5 discusses a case study that shows
how the new JaCaMo-oriented implementation approach compares to current
JaCaMo, giving code examples. Being a work in progress, Sect. 6 discusses



Distributed Transparency in Endogenous Environments: The JaCaMo Case 111

various topics regarding future work, including proper evaluation and fault
tolerance implementation. Finally, Sect. 7 closes this paper with a conclusion.

2 Background

Although the discussion here is about endogenous environments in general, we
adopt the JaCaMo [4] framework to implement our proposed model and guide
our discussion, this is due the fact that, from the best of our knowledge, it has
the most mature implementation of endogenous environments for MAS. As such,
a brief introduction of this framework is presented in this section. JaCaMo is
the result of the composition of three technologies for MAS: Jason [5] (taken as
a proper name inspired by Greek mythology), CArtAgO [13] (Common ARTi-
fact infrastructure for AGents Open environments), and MOISE [9] (Model of
Organization for multI-agent SystEms).

Jason provides the means for programming autonomous agents. It is an agent
oriented programming language that entails the Belief-Desire-Intention (BDI)
approach, it is based on the abstract language AgentSpeak(L) [12]. Apart from
its solid BDI theoretical foundations, the language offers several facilities for
programming Java powered, communicative MAS. Communication in Jason is
based on Speech Acts, as defined in KQML [7].

CArtAgO provides the means to program the environment, following an
endogenous approach where the environment is part of the programmable sys-
tem. In CArtAgO terms, the aspects that characterize a model for environment
programming are the following [14]: (1) Action model: how to perform actions
in the environment. (2) Perception model: how to retrieve information from the
environment. (3) Environment computational model: how to represent the envi-
ronment in computational terms. (4) Environment data model: how to share data
between the agent and environment level to allow interoperability. (5) Environ-
ment distributed model: how to allow computational distributed environments.
Aspects 1–3 are directly supported by artifacts [11], which are dynamical sets of
computational entities that compose the environment and encapsulate services
and tools for the agents. Artifacts are organized and situated in workspaces,
which essentially are logical places (local or remote) where agents center their
attention and work. Aspect 5 is supported by workspaces, but also partially by
artifacts, as artifact actions can be executed remotely. Aspect 4, on the other
hand, depends on the underlying agent programming language used and is not
directly related to artifacts or workspaces.

MOISE provides the means to create agent organizations, which have the aim
to control and direct agent autonomy in a general purpose system. To this end,
it is possible to specify tree aspects: (i) Structural, consisting on the different
agent groups and roles that take part in the organization; (ii) Functional, defined
by social schemes, missions, and goals which direct the agent behaviour toward
organization ends; and finally (iii) Normative, defined though norms that bind
roles to missions, constraining agent’s behaviour when entering a group and
playing a certain role.
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2.1 JaCaMo and CArtAgO Distribution Model

As mentioned earlier, environment programming in JaCaMo is provided by
CArtAgO, considering distribution in its model. At the higher level, distribu-
tion is achieved through workspaces, which serve as logical places where agents
may center their attention, and where artifacts are situated. Agents can create,
join, and quit workspaces. If an agent is in a workspace, it can use the artifacts
situated there.

At the low level, nodes enable distribution. A node is a CArtAgO process
that can be remote, where workspaces can be spawned. When a JaCaMo MAS
is deployed, it is contained in a default node, that node is also the default for
agents, which consider it as it’s local context, so workspaces created in that node
are also local workspaces, but workspaces created in different nodes are consid-
ered remote workspaces. The distinction between remote and local workspace is
not only conceptual, but also syntactical, requiring IP and port information at
the agent level to manipulate remote workspaces. Figure 1 depicts the current
CArtAgO environment model from the workspaces and nodes perspective. From
the figure, it is apparent the fact that there is no connection between nodes,
and in consequence between workspaces in different nodes, needing to explicitly
know the IP address and port of each node.

Fig. 1. Current CArtAgO environment model depicting multiple nodes and workspaces
deployed.

More concretely, the following code snippet shows the difference in the
JaCaMo API for the local and remote versions of join workspace, taking as a basis
Fig. 1 where default node represents the local node, and node2 a remote one:

1 joinWorkspace("main", WspId1);
2 joinRemoteWorkspace("workspace2", "192.168.0.2:8091", WspId2);
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3 Proposal

Environment programming in JaCaMo comes with various shortcomings regard-
ing distributed settings, being the most important the fact that local and remote
workspaces are defined and treated differently, which derives in the following
problems: (i) There is not distributed transparency for agents, being forced to
directly manipulate network information, making network distinctions between
workspaces. (ii) The underlying environment topology is difficult to represent
and exploit by the agents as it does not follow any structure or workspace
relations beyond the sharing of the same node. All of these problems have the
consequence of reducing the abstraction level in which agents work, impacting
flexibility and environment exploitation as well.

Another problem is the lack of proper configuration facilities to allow the
inclusion of remote workspaces information at deployment time, meaning that
host information for remote workspace spawning need to be hard-coded on
the agent programs or externally supported. To spawn a remote workspace, a
CArtAgO node needs to be running on the destination host, and there is not any
integrated facility to manage them automatically when needed. Furthermore, the
current distributed implementation does not exhibit any degree of fault toler-
ance, this is specially important for possible network connection problems that
may arise in a distributed system.

In this section, a proposal to solve the identified problems is presented. A sep-
aration between environment and infrastructure is suggested. The environment
is represented as a hierarchical tree structure, which represents the topology. In
this tree, each node is a workspace which actual physical placement on the dis-
tributed system is irrelevant. Workspaces may be deployed in different physical
places, but for the agents point of view, it only matters their placement in the
topology tree. A workspace may be the logical parent of another one, multiple
workspaces can be in the same physical place, and there is no restriction about
how the topology may be organized, e.g.; workspaces on the same physical place
may be on different branches. This allows to organize environments as it is usu-
ally done in CArtAgO, but in a more structured way, also supporting remote
workspaces transparently.

In a practical sense, each workspace in the tree is represented by a path
starting at the root workspace (main), these paths brings the notion of logi-
cal placement that agents require to organize and exploit their environment. We
adopt a Unix-like path format to represent this placement, but using a “.” instead
of a “/”, following Java package syntax. These paths are used by the agents to
execute environment related actions, such as creating new workspaces or join-
ing one. From the proposed JaCaMo API, there is no difference between local
and remote actions related to workspaces. For example, returning to the code
snippet presented in Sect. 2.1 for joining local and remote workspaces, which it
is related to Fig. 1; with the proposal, a workspace topology would be created, a
possibility is to have workspace2 and workspace3 as direct descendants of the
root workspace main, with this setting the associated code snipped is as follows:
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1 joinWorkspace("main", WspId1);
2 joinWorkspace("main.workspace2", WspId2);

As in current CArtAgO, agents may work in multiple workspaces at the
same time, but the concept of current workspace is dropped since all the joined
workspaces should be considered the current working context. Nevertheless,
agent may specify the target workspace for an action. A new introduced concept
is the home workspace of an agent, which it is the workspace where the agent is
initially deployed, serving as a relative reference to other places in the topology,
providing a default place for the agent, and also serving as the default workspace
to execute actions when a target workspace is not specified.

On regard of the infrastructure, a layer is added to manage distribution, this
layer provides the required services for the agents to exploit their distributed
environment. These services include: (i) Workspace management, so agents can
create, join, and quit workspaces no matter their physical placement; (ii) Topol-
ogy inspection, so agents can reason about the current topology organization
and do searches concerning workspaces; (iii) Workspace dynamics observation,
so agents can know when other agents manage workspaces, or when workspaces
disconnect and reconnect after a network problem; (iv) Disconnection and fault
tolerance to manage and recuperate from network problems, which it is currently
left as future work, but initially designed as presented in Sect. 6.2. We believe
that the set of mentioned services do not only bring distributed support, but
also enhance the dynamics of MAS in general, extending its possibilities.

3.1 Formal Description

JaCaMo assumes an endogenous approach to MAS, i.e., the environment is an
explicit part of the system:

Definition 1. A MAS is composed by a set of agents (Ags), their environment
(Env), and an infrastructure (Infr) running both of them:

MAS = {Ags, Infr,Env}

The set of agents is composed by n ≥ 1 agents:

Ags = {a1, . . . , an}

Each agent, as usual, is composed by beliefs, actions, and other elements equal to:

ai = {Bels,Acts, . . . }

By default, when created, an agent includes minimally:

ai = {{joined(home)}, {join, quit, create}, . . . }

which means that every agent believes he has joined a home workspace, and has
actions to join, quit, and create workspaces.



Distributed Transparency in Endogenous Environments: The JaCaMo Case 115

Fig. 2. The intended view of an endogenous environment.

Figure 2 illustrates the intended view of the environment in this proposal.
First, the environment, properly speaking, is a tree of workspaces, expressing
a kind of spatial relation among workspaces, e.g., the kitchen 1 is at the home
1. Second, nodes and hosts are not part of the environment, but are defined as
part of the infrastructure of the MAS, nevertheless, workspaces keep information
about its corresponding physical node.

The infrastructure is a layer hidden to the agents, that gives the low level
support to distribution, formally defined as:

Infr = {Nodes,Hosts}

where:

– Nodes = {node1, . . . , nodek} is a set of CArtAgO nodes, i.e.; processes,
possibly remote, where workspaces can be created. Each nodei is a tuple
〈ni, SWsps, hi, port〉, where ni is an unique identifier for the node; SWsps
is the set of spawned workspaces in the node, containing at least a default
workspace for the node; hi is an identifier of the host computer where the
node exists; and port is the host port used by the node process.

– Hosts = {host1, . . . , hostp} is the set of available computer devices on the
distributed system. Each hosti is a tuple 〈hi,HNodes, ip〉, where hi is a host
unique identifier, HNodes ⊆ Nodes is a set of hosted nodes, and ip is the IP
address of the computer.

Formally, the environment Env is defined as a graph:

Env = {W,E}
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where:

– W = {w1, . . . , wi} is a finite, non-empty set of i ≥ 1 workspaces that contain
artifacts. Each wi = 〈idW, name, ni〉, where idW is an unique identifier for
the workspace, name is a logical name, and ni is a reference to the CArtAgO
node in Infr that contains wi. The node element establishes a connection
between the environment and the infrastructure, in order to forward agent
actions to the destined physical place.

– E ⊂ W 2 is a set of edges over the workspaces, such that Env is minimally
connected, i.e., it is a rooted tree that represents the environment topology.

For instance, following Fig. 2, Env = {W,E}, and considering for simplicity only
the name of each wi, such that:

– W = {main, home1, home2, living1, kitchen1, living2, kitchen2}
– E = {{main, home1}, {main, home2}, {home1, living1}, . . . }
The expression w1.w2 . . . .wn denotes a path on Env, if:

– wi ∈ W for i = 1, . . . , n;
– {wi−1, wi} ∈ E for i = 2, . . . , n.

Abusing a little bit of the notation, we can write w1. . . . .wn ∈ Env.
For instance, main.home1.living1 ∈ Env. Some useful operations over paths,
include:

– last(w1.w2. . . . .wn) = wn

– butlast(w1.w2. . . . .wn−1.wn) = w1.w2. . . . .wn−1

– add(w,w1.w2. . . . .wn, Env) = w1.w2. . . . .wn.w. This involves adding w to W ,
and {wn, w} to E in Env.

– del(w,w1.w2. . . . .wn.w,Env) = w1.w1. . . . .wn. This involves deleting w from
W , and {wn, w} from E in Env.

In what follows, the transition rules related to environment agent actions are
described, workspaces denote paths in the environment.

Joining a Workspace. An agent can ask himself about the workspaces he has
currently joined: agBels |= joined(w), if and only if, w is a workspace currently
joined by the agent. Recall that by default agBels |= joined(home). An agent
can join different workspaces concurrently, so that agBels |= joined(Ws) unifies
Ws with a list of the workspaces joined by the agent. Two transition rules define
the behavior of the action join. First, an agent can join a workspace w, if and
only if w is a path in the environment Env and it is not believed to be already
joined:

(join1)
join(w) | w ∈ Env ∧ agBels 	|= joined(w)

〈ag,Env〉 → 〈ag′, Env〉
s.t. ag′

Bels = agBels ∪ {joined(w)}
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Second, nothing happens if an agent tries to join a previously joined workspace:

(join2)
join(w) | agBels |= joined(w)

〈ag,Env〉 → 〈ag,Env〉
Any other use of join fails.

Quiting Workspaces. An agent can quit the workspace w if he believes he
had joined w. The agent forgets such belief.

(quit1)
quit(w) | agBels |= joined(w)

〈ag,Env〉 → 〈ag′, Env〉
s.t. ag′

Bels = agBels \ {joined(w)}

If the agent tries to quit a workspace he has not joined yet, nothing happens:

(quit2)
quit(w) | agBels 	|= joined(w)

〈ag,Env〉 → 〈ag,Env〉

Creating Workspaces. An agent can create a workspace w, if it is not a path
in the environment, but butlast(w) is one:

(create1)
create(w) | w 	∈ Env ∧ butlast(w) ∈ Env

〈ag,Env〉 → 〈ag,Env′〉
s.t. Env′ = add(last(w), butlast(w), Env)

Observe that the result of creating a workspace must be propagated to the
rest of the agents in the MAS. This could be done by the infrastructure, or
broadcasting the add operation. The actual node where the workspace is going
to be created is decided by the infrastructure following a policy, by default
the infrastructure spawns the workspace on the same node where its parent
workspace is running.

Trying to create an existing workspace does nothing:

(create2)
create(w) | w ∈ Env

〈ag,Env〉 → 〈ag,Env〉

4 Implementation

The model introduced on Sect. 3 is open enough to allow different implemen-
tations. This section presents a practical possibility, intended to be integrated
with JaCaMo. The core implementation and main design choices are related to
the general architecture, configuration and deployment.
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4.1 General Architecture

The architecture to support agent services is based on the concept of Node,
which refers to the Nodes element in Infr, as presented in Sect. 3.1. Nodes rep-
resent independent CArtAgO processes, possibly remote, running on a given host
(Hosts element in Infr), and associated to a port. Nodes are the main abstrac-
tion to manage workspaces (W element in Env), and as such, they provide all
the necessary tools to create, join, and quit workspaces, as well as the means
to communicate with other nodes in order to maintain a consistent workspace
topology, and properly dispatch topology related events. The workspace topol-
ogy corresponds to the E element in Env. A NodeArtifact is the gateway used
by an agent to interact with the node services and to observe the distributed
environment. There is a NodeArtifact in each workspace, and every agent has
access to one of them, which one depends on its home workspace, which in turn
it is intended to be on the same node as the agent process.

Nodes communicate between each other following a centralized approach:
one node is designated as the central node, this is usually the node deployed by
default by JaCaMo, so every change on the topology is inspected and approved by
a single node, and the associated actions and events are dispatched from there.
This centralized approach makes possible to maintain a consistent topology,
avoiding run conditions. To exemplify node communication, the workflow for
creating a new workspace is the following:

– An agent that wants to create a workspace issues the action to its correspond-
ing NodeArtifact, passing a tree path.

– The artifact checks if the tree path is consistent with the topology tree, if it
is, it sends a request to the central node.

– The central node issues a request to the end node where the workspace is
actually going to exist. By default, it chooses as end node the same one as the
parent workspace from the path given.

– The end node creates the workspace and returns control to the central node.
– The central node makes the corresponding changes to the workspace topol-

ogy and communicates the success to the original requesting node. It also
dispatches a create and tree change event to the other nodes, so agents can
perceive them.

As the node model is centralized, there exists the concern of a single point of
failure, that is why all nodes maintain redundant information about the topology,
so it is possible to recuperate from a central node dropping, as any node can
take the role of central node. The topology structure is also lightweight, which
speeds up the tree synchronization among nodes, this synchronization is only
required when there is a change in the topology. This redundancy also allows
to boost the efficiency of operations such as joining and quitting workspaces,
since those operations only need to read from the topology, so the local copy is
used in those cases. Communication with the central node is only required in
cases where a change in the topology is issued. We believe that in traditional
environment management, it is more common for the agents to join and quit
workspaces than to create new ones.
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4.2 MAS Configuration and Deployment

To ease the deployment of the distributed infrastructure is a goal of our overall
proposal, this means to be able to configure and launch the desired hosts, nodes,
and workspaces that will take part in the MAS from the start. It is also possible to
manually add new nodes after deployment. The idea is to extend the deployment
of JaCaMo, where only workspaces are considered. JaCaMo uses a text file known
as the JCM file to configure the deployment of the MAS. The intention is to
further include fields in this file to also configure host, and nodes for distributed
systems; and add the facilities to automatically launch CArtAgO nodes in remote
machines through a daemon service.

The changes to the JCM file include:

– Host configuration: assign a logical name and IP address to each host.
– Node configuration: assign a logical name for the node, i.e.; the name of the

default workspace; the related host name; and optionally a port number.
– Workspaces configuration: relate each workspace to a specific node.
– Lib file: the path to a jar file containing all the necessary files to launch

CArtAgO nodes. This includes custom artifacts binaries, third party libraries,
custom classes binaries, and any configuration file. This file is intended to be
shared among all nodes.

5 Case Study

In order to show how to exploit the proposed distributed model and implemen-
tation, and how it compares to the current version of JaCaMo, a small case
study is presented in this section. This case study pretends to show the new
proposed agent API, and the flexibility of the proposed model, focusing mainly
on workload distribution, which is one of the aspects that can be enhanced, but
other aspects such as fault tolerance, reactiveness on environment changes, and
more complex agent organizations and dynamics are also possible.

The case study consists on constantly fetching current weather information
for every city in a country, and with that information, construct weather predic-
tion models for each city, so the models could be consulted by end users through
a user interface. The construction of each model is an online learning [3] task
that can be heavy on the computational side, so work distribution is desirable.
To simplify the distributed setting, assume that the cities of the country are
divided in west-cities and east-cities, one computer is in charge of the models
from the west-cities, and another one from the models of the east-cities; fur-
thermore, information fetching needs to be quick and constant, and also the end
user searching service, so one computer takes care of both. The described setting
yields a total of three different computers in the distributed system.

Workflow is modeled through 3 agent programs: fetcher, which fetches
weather information and forwards it to a destination depending the type of
city; learner, which task consists on creating online weather prediction models
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for each city with the data provided by the fetcher agent; and finally, a searcher
agent, which attends end user requests to retrieve information from the learned
models.

When implementing this case study in current JaCaMo some problems will
arise: the IP addresses of the different computers should be hard-coded in the
agent programs; every CArtAgO node representing a remote workspace should
be manually started in every computer on the distributed setting; startup plans
should be implemented in order to focus the attention of each agent in its des-
ignated place; when the searcher agent has to collect information about learned
models to attend a petition, it necessarily has to ask learner agents about its
location, not only considering the workspace but also the ip address where the
workspace is, making also necessary to distinguish between local and remote
workspaces when the agent intend to return the result to the end user. A better
solution using our new approach that solves all the mentioned problems, and
better exploits the environment is presented next.

– A possible JACAMO configuration file for this example, following the idea
from Sect. 4.2, is the following. For the sake of clarity, artifact related config-
uration, and MOISE related organization is not shown.

1 mas weather {
2 host c1 {
3 ip: 192.168.0.2
4 }
5 host c2 {
6 ip: 192.168.0.3
7 }
8 node west {
9 host: c1

10 port: 8080
11 }
12 node east {
13 host: c2
14 port: 8080
15 }
16 agent fetcher : fetcher.asl {
17 home: main
18 }
19 agent west_learner : learner.asl {
20 home: main.west
21 }
22 agent east_learner : learner.asl {
23 home: main.east
24 }
25 agent searcher : searcher.asl {
26 join: main.central
27 }
28 lib_file : /home/system/wheather.jar
29 }

Note that workspaces main, main.west, and main.east are implicitly cre-
ated as they are the default workspaces for the nodes, e.g.; main is the node
deployed by default by JaCaMo. It is also possible to assign the node’s default
workspace to a custom path if needed.
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In our proposed model, agents refer to workspaces only through their path
in the environment, giving in this way a more structured sense of placement.
As in UNIX file system paths, tree paths can be considered absolute or relative.
A path is relative from the home workspace of the agent, any path that does not
start with the root workspace (main) is considered relative, whereas any other
path is considered absolute.

A simplified version of the agent programs is presented next.

– fetcher:

1 // creations and initializations omitted
2 +!fetch : true <-
3 getData(Data);
4 category(Data , Cat);
5 if(Cat == "west") {
6 .send(west_learner , tell , add(Data));
7 }
8 else {
9 .send(east_learner , tell , add(Data));

10 };
11 !fetch.

– learner:

1 // initialization of agent omitted
2 +add(Data): true <-
3 getCity(Data , City);
4 .concat(".", City , Path); //from home
5 createWorkspace(Path); //does nothing if already present
6 joinWorkspace(Path);// does nothing if already joined
7 // creations and initializations omitted
8 addData(Data)[wsp(Path)]; //route action to wsp
9 induceModel[wsp(Path)].

– searcher:

1 +search(Query) : true <-
2 //Query is just the name of the city
3 .concat(".*", Query , RegExp);
4 searchPaths("main", RegExp , [H | T]);
5 .length ([H | T], Len);
6 if(Len > 0) {
7 joinWorkspace(H);
8 getForecast(Forecast)[wsp(H)];
9 quitWorkspace(H);

10 sendReply(Forecast);
11 }.

Some of the actions from the agent programs correspond to the API of the
proposed model, such actions are described as follows.

– joinWorkspace(+WspPath,−WspId): the agent adds a specified workspace
to its joined workspaces list, obtaining a workspace ID.

– quitWorkspace(+WspPath): removes a specified workspace from its joined
workspaces.

– createWorkspace(+WspPath): creates a new workspace on the specified
path. By default, the workspace will actually be spawned on the same
CArtAgO node as the parent workspace derived from WspPath, this allows
workload management for workspaces.
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– searchPaths(+PointPath,+RegExp,−WspsPathList): returns a list with
the workspaces that follow a certain regular expression, the search is restricted
to the subtree given by PointPath. This action exemplifies how the topology
organization may be exploited.

It is worth mentioning that the actual API is more extensive, including per-
ception, events, and more actions related to the environment. For example, it
is possible for the agents to react to the creation of a new workspace through
the event created(WspPath), or analyze and exploit the current topology orga-
nization through the perception topology tree(List) where List is of the form:
[main, [subNode1, [subsubNode1, [...], subsubNodem]], ..., [subNoden]].

As the example shows, agents do not concern about computer distribu-
tion, they simply work with workspaces: learner agents organize their work in
workspaces that can be on different computers; and the searcher agent can reach
any workspace directly, not relying on agent communication, but directly acting
through the knowledge of the topology. Deployment is also greatly enhanced
since the distributed setting is properly configured beforehand, and the launch-
ing of nodes is automatic.

6 Discussion and Future Work

As a work in progress, our proposal still lacks a proper treatment of different
aspects such as evaluation, and fault tolerance. This sections briefly discusses
and outlines these topics, which are considered as immediate future work.

6.1 Evaluation

Our proposed model, while introduced in some formal way, still needs a proper
formal evaluation, for this end, the adoption of a more formal representation
such as the ones proposed in [8,15] seem to be required.

Concerning performance evaluation, with the adopted centralized model, it
is required to asses scalability issues that may arise as nodes are added to the
MAS. In case of finding such problems, we can still improve some of the required
subprocess, as the synchronization of the topology among all nodes, and event
propagation, which could be distributed.

6.2 Fault Tolerance

Given the proposed architecture, connection loss is the same as node dropping,
and as such it directly impacts the topology tree structure used by agents as
all the corresponding workspaces are also lost. An intuitive idea of how fault
tolerance could be implemented following our design choices is described next.

Following the overall node organization introduced in Sect. 4.1, all nodes
maintain a keepalive connection with the central node, and a ordered list of
connected nodes. If a node losses connection, then the central node issues the
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corresponding dropping event to the rest of the nodes, and modifies the topology
tree structure accordingly. The disconnected node tries to establish a connection
with the rest of the nodes, following the order of the connected nodes list, this
being useful on the case that several nodes lost connection or the central node
dropped. With the available nodes (it may be only one), the node in the upper
position on the connected nodes list is designated as the new central node, issuing
the corresponding disconnection events and creating a new tree node structure
where every default workspace from the nodes is on the same level. The new
central node keeps trying to reconnect to the original central node for a period
of time.

When successfully reconnecting, the original central node will try to return
the topology to the way it was before the problem, but sometimes that would not
be possible, e.g.; when one of the nodes keep missed. It is strongly recommended
that every default workspace corresponding to a node is mounted on the same
upper tree level of the tree, that way when reconnecting, the tree structure
will keep consistent with the way it was before, otherwise the tree topology may
vary in an unexpected manner, which can be problematic on certain applications.
After the node tree structure is recreated, the reconnecting nodes return to work
with the original central node, and the central node triggers the corresponding
reconnection events.

7 Conclusion

The introduced model is a step forward to improve environment programming
for MAS, it addresses issues related to distribution, which are important for
a wide variety of applications. We see distributed transparency as the most
important contribution of this work, as Multi-Agent Systems are intended to
raise the level of abstraction in software development, as compared with other
industry established programming paradigms such as POO. Proper abstraction
levels for aspects such as concurrency management are already accomplished,
but distributed computing is still an important topic to improve.

With a solid foundation for distributed environment programming, it is pos-
sible to address new challenges like MAS interoperability, which refers to the
integration and collaboration of independent Multi-Agent Systems. An exten-
sion to the proposed model and implementation is envisaged to support MAS
interoperability features, such as MAS composition where two different MAS
can fuse together to extend the scope of their work; and also MAS attachment,
where a mobile MAS can temporally join a MAS in order to exploit services.
These features bring new possibilities to the dynamics of MAS in general, and
are also interesting from the software engineering point of view as they allow an
upper level of flexibility and scalability.
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Abstract. To keep up with current technological developments, the
engineering of multi-agent systems (MAS) has to provide solutions to:
(i) support large scale systems, (ii) cope with open systems, and (iii) sup-
port humans in the loop. In this paper, we claim that the World Wide
Web provides a suitable middleware for engineering MAS that address
these challenges in an integrated manner. Even though approaches to
engineer Web-based MAS have already been explored in the MAS com-
munity, existing proposals do not achieve a complete integration with the
Web architecture. We approach this problem from a new angle: we design
the agent environment as a hypermedia application. We apply REST, the
architectural style of the Web, to introduce a resource-oriented abstrac-
tion layer for agent environments that decouples the application environ-
ment from its deployment context. Higher-level environment abstractions
can then be implemented on top of this lower-level abstraction layer. To
demonstrate our approach, we implemented a multi-agent application
for the Internet of Things in which software agents can seamlessly navi-
gate, use and cooperate in an environment deployed over multiple Web
services (e.g., Facebook, Twitter) and constrained devices.

Keywords: Agent environments · Service-oriented computing
REST · Web architecture · Web of Things · Internet of Things

1 Introduction

Over the last decade, the agent environment has gained broad recognition as
a first-class abstraction in multi-agent systems (MAS) [41]: it is a key compo-
nent designed and programmed with clear-cut responsibilities, such as mediating
interaction among agents and access to the deployment context (e.g., physical
devices, digital services). The increased emphasis on agent environments in MAS
also raises new challenges to be addressed. Three research topics of growing
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importance are to design agent environments that [40]: (i) support large scale
systems, (ii) can cope with open systems in which components are deployed and
evolve at runtime, and (iii) support humans in the loop.

If we are to examine existing software systems based on the above crite-
ria, the World Wide Web is arguably the most scalable, versatile, and human-
centric software system deployed on the Internet. In fact, the Web was specifically
designed to be an Internet-scale and long-lived system in which components can
be deployed and can evolve independently from one another at runtime [13].
More recently, on account of its architectural properties, the Web is emerging as
the application layer for the Internet of Things (IoT), an initiative known as the
Web of Things (WoT) [23,42]: physical devices are integrated into the Web such
that software clients can access them in a uniform manner using Web standards.
The WoT vision is rapidly being implemented through combined standardization
efforts of the W3C WoT Working Group1, the IETF Constrained RESTful Envi-
ronments Working Group2, and the IRTF Thing-to-Thing Research Group3. The
World Wide Web is turning into a middleware for most systems envisioned on
the Internet, and its huge success comes from its carefully designed architectural
properties.

In this paper, we take a deep look into the rationale behind the modern
Web architecture. Our claim is that we can apply the same rationale to address
the three above-mentioned research topics in an integrated manner. The novelty
of our approach is to design the agent environment as a hypermedia applica-
tion. We apply REST [14], the architectural style of the Web, to introduce a
resource-oriented abstraction layer for agent environments that decouples the
application environment4 from its deployment context. This abstraction layer
is based on socio-technical networks (STNs) [2], that is dynamic networks of
humans, software agents and artifacts interrelated in a meaningful manner via
typed relations. We use STNs to address HATEOAS, one of the architectural
constraints that is really central to REST and the modern Web architecture.5 To
the best knowledge of the authors, this proposal is the first approach to engineer
MAS that are completely aligned with the Web architecture.

This paper is structured as follows. Section 2 presents the REST architec-
tural style and discusses related work on engineering Web-based MAS. Section 3
presents our approach in further detail. Section 4 presents an implementation
of this approach to develop a multi-agent application for the IoT in which soft-
ware agents can seamlessly navigate and use an agent environment deployed over
Facebook, Twitter, and multiple constrained devices.

1 http://www.w3.org/WoT/WG/.
2 http://datatracker.ietf.org/wg/core/.
3 http://datatracker.ietf.org/rg/t2trg/.
4 That is to say, the part of the environment designed and programmed for the appli-
cation at hand [41].

5 In previous publications, STNs have been applied as a means to bring the multi-
agent paradigm to IoT application development [4], and to enhance discoverability
across otherwise siloed IoT environments [3].

http://www.w3.org/WoT/WG/
http://datatracker.ietf.org/wg/core/
http://datatracker.ietf.org/rg/t2trg/
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2 Background and Related Work

In Sect. 2.1, we present the key principles behind REST and the architectural
properties they induce. Note that our presentation is at a high level of abstrac-
tion and introduces informally multiple terms and concepts that are commonly
used in the relevant scientific literature on REST and the architecture of the
Web. We refer interested readers to [13,14,26] for more precise definitions and
technical details. In Sect. 2.2, we focus our attention on existing approaches to
engineer Web-based MAS. We conclude that none of the existing approaches are
completely aligned with the REST architectural style.

2.1 The REST Architectural Style

Representational State Transfer (REST) is an architectural style for distributed
hypermedia systems [14]. REST was designed to meet the needs of the Web as an
Internet-scale system in which the overall performance is dominated by network
communication rather than computation-intensive tasks [13]: component inter-
actions consist of large-grain data objects transferred over high-latency networks
that span across geographical and organizational boundaries. To this end, REST
was designed to minimize latency and network communication, and at the same
time maximize the independence of components and the scalability and visibility
of component interactions [13,14]. These combined characteristics transformed
the Web into an Internet-scale, open, and long-lived system.

REST in a Nutshell. REST is defined as a coordinated set of architectural
constraints [14]. When applied to a software architecture, REST constrains
only those portions of the architecture considered to be essential for Internet-
scalability and openness [13]. In particular, REST focuses on the semantics
of component interactions, in contrast to other architectural styles that focus
on the semantics of components. REST can thus be used in conjunction with
component-based specifications, such as the FIPA Abstract Architecture [15] or
the reference model for agent environments proposed in [41].

Interaction in a REST-style system follows the request-response pattern: a
client (e.g., a Web browser) issues a request, a server processes the request and
returns a response. REST components (i.e., origin clients, intermediaries, origin
servers) interact by transferring representations of resources. A resource is the
key abstraction of information in REST, where “any information that can be
named is a resource” [14]. The interaction is stateless, which improves the scal-
ability of server implementations, and performed through a uniform interface
that hides the heterogeneity of component implementations. When combined,
the stateless interaction and uniform interface constraints enable the use of
intermediaries that can interpret requests almost as well as their intended recip-
ients. Intermediaries can then be deployed along the request-response path, for
instance, to cache and reuse interactions, to distribute the workload across mul-
tiple servers, to enforce security or to encapsulate legacy systems [14], which are
all important concerns in an Internet-scale, open, and long-lived system.
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Hypermedia-driven Interaction. To achieve a uniform interface between
components, interaction in REST is driven by hypermedia, a constraint a.k.a.
Hypermedia As the Engine of Application State (HATEOAS) [14]. Without
hypermedia-driven interaction, browsers would be tightly coupled to origin
servers and unable to seamlessly navigate an open Web.

To best illustrate hypermedia-driven interaction, consider a typical Web
application composed of multiple hyperlinked Web pages. This application is
a finite state machine: each page represents a state and hyperlinks between
pages represent transitions between states. Given the URI of one of the pages,
a client can dereference the URI to retrieve an HTML representation of that
page. This action thus triggers a transition to a new application state, and if
the transition is completed successfully the client can now choose from a new
set of Web pages (i.e., new reachable states). Both the next reachable states and
the knowledge required to transition to those states are conveyed to the client
through hypermedia retrieved from the origin server (e.g., via HTML forms).

In other words, given a URI as an entry point into a Web application, stan-
dard Web transfer protocols and representation formats (a.k.a. media types), the
client should be able to discover new resources and how to use those resources
at runtime. The client is thus loosely coupled to the origin server via standard-
ized knowledge: it does not hard-code URIs or individual requests. This is an
important difference from how most existing Web services work today.

HATEOAS is essential to achieve a uniform interface, which in turn is a
central feature in REST [14]. The uniform interface allows components to be
deployed and to evolve independently from one another, which is an important
feature in an Internet-scale, open, and long-lived system.

2.2 Engineering Web-Based MAS

In this section, we discuss approaches to use the Web as an infrastructure for
distributed MAS. These approaches fall broadly in one of two categories: they
use the Web either as a transport layer, or as an application layer. To the best
knowledge of the authors, none of the existing approaches fully complies with
the REST principles presented in the previous section.

The Web as a Transport Layer. Systems that use the Web as a transport
layer make limited use of its architectural properties, existing infrastructure and
future extensions (see Sect. 6.5.3 in [14] for a detailed discussion).

The Foundation for Intelligent Physical Agents (FIPA) investigated the inte-
gration of software agents with Web services [21]. One of the main Web-related
results stemming out of the standardization efforts is a FIPA specification for
using HTTP as a transport protocol for messages exchanged among agents [16].
FIPA-compliant platforms that implement this specification include JADE [12],
SPADE [22] and SEAGENT [11].

WS-* Web services also use the Web as a transport layer [33]. Given their
widespread adoption in the early 2000s, the WS-* standards have had a strong
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influence on multi-agent research in service-oriented computing [18,24,25,39]. A
number of MAS platforms support direct integration with WS-* Web services
(e.g., [5,11,34]), while others rely on a gateway component to mediate interac-
tions between agent services and Web services (e.g., [20,30,32,37]).

The Web as an Application Layer. More recent approaches to engineer
Web-based MAS are based on REST-like Web services (commonly referred to as
“RESTful”), which typically use HTTP as an application protocol (see [33]), but
do not use hypermedia and thus do not support hypermedia-driven interaction.
As a result, clients and origin servers are tightly coupled to one another, which
is an important limitation when engineering Internet-scale, open systems.

In [9], the authors propose an approach to automatically translate agent ser-
vices to Web services (and vice-versa), with the aim to support both the WS-*
standards and REST. The generated REST-like Web services, however, are not
resource-oriented and do not support hypermedia-driven interaction. In other
proposals, REST-like Web services are used for agent communication. In [1],
agents implement interaction protocols (e.g., FIPA Contract Net Protocol [17])
by creating and manipulating resources on a Web server. A more general app-
roach to REST-inspired agent communication is taken in [36]: agents use message
repositories to create graphs of messages following predefined interaction pro-
tocols. Note that the links among messages can help address the HATEOAS
constraint, but details on the APIs exposed by the message repositories are not
available (e.g., if they are hypermedia-driven).

Radigost [29] implements the FIPA abstract architecture and exposes most
of the system functionality through a REST-like Web service. A gateway compo-
nent allows agents hosted on other platforms to exchange messages with Radigost
agents. However, the HATEOAS constraint is not addressed.

REST-A [19] provides a REST-like approach to design agent environments:
agents perform actions on resources in their environment using a set of CRUD
(create, read, update, delete) operations over HTTP. However, the HATEOAS
constraint is not addressed.

To conclude, to the best knowledge of the authors, existing approaches
to engineer Web-based MAS are either agnostic to REST, or do not support
hypermedia-driven interaction. In both cases, this implies that they cannot fully
inherit the architectural properties of the Web, such as Internet-scalability and
openness.

3 Hypermedia-driven Agent Environments

In this section, we use hypermedia and HATEOAS to design the agent environ-
ment as a hypermedia application. Our proposal goes beyond the state-of-the-art:
the resulting agent environment fully conforms to REST, and a MAS deployed
in this environment is able to exploit the existing Web infrastructure and to
inherit its architectural properties (see Sect. 4).
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Fig. 1. Layers of an agent environment: the resource-oriented abstraction layer decou-
ples the application environment from its deployment context.

As illustrated in Fig. 1, we introduce a resource-oriented abstraction layer
that decouples the application environment from its deployment context. We
present our approach in further detail in Sect. 3.1. Then, in Sect. 3.2 we focus
our discussion on achieving a uniform interface between the application envi-
ronment, which would typically run on a MAS platform, and its deployment
context (e.g., physical devices, digital services). This uniform interface enables
agents to interact with their environment while being agnostic to the underlying
infrastructure.

3.1 Resource-Oriented Agent Environments

Our approach to design the proposed resource-oriented abstraction layer for
agent environments relies on socio-technical networks (STNs), which were
defined formally in [2]. STNs are grounded in multi-agent research, based on
semantic Web technologies, and aligned with the Web architecture.

In the following, we first present the core abstractions introduced by the STN
model [2]. Then, we show how they map to Web resources, and finally discuss
the development of application environments on top of these abstractions.

Socio-technical Networks. Socio-technical networks (STNs) are dynamic net-
works of humans and things (e.g., physical devices, digital services) interrelated
in a meaningful manner via typed relations (e.g., friendship, ownership, prove-
nance, colocation). STNs are situated in environments that span across the
physical-digital space. Humans and things that are actively trying to influence
the environment are modeled as agents, and things that passively augment the
environment with new capabilities as artifacts. Agents can enter or leave STNs
and “rewire” their networks in pursuit of their goals.

The agent and artifact abstractions have their roots in the Agents & Arti-
facts meta-model [31] and are motivated by the separation of concerns principle.
First, these abstractions separate exhibited behavior from the actual entities,
which allows developers and end-users to conceive of humans and heterogeneous
things in a uniform manner. Second, agents and artifacts simplify the design
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of multi-agent applications by providing a clear separation between the logic
that manipulates the environment and the logic that augments the environment.
Third, agents and artifacts provide a modular approach to multi-agent applica-
tion development when designed and implemented as loosely coupled compo-
nents meant to be deployed and to evolve independently from one another at
runtime.

Typed relations enable the dynamic discovery of agents and artifacts at run-
time. For instance, say David owns a smart TV that can aggregate movie recom-
mendations from other smart TVs owned by David’s friends. If David becomes
friends with Bob, an explicit representation of this relation (e.g., via Facebook
or Twitter) enables David’s smart TV to discover Bob and any smart TVs he
might own.

From STNs to Web Resources. An STN is reflected in the digital world
by means of digital artifacts hosted by STN platforms. For instance, a lightbulb
is a physical artifact that can have a digital counterpart hosted by an STN
platform. The digital lightbulb represents the physical lightbulb and reflects its
state. A software agent can then turn on or off the physical lightbulb by updating
the state of the digital lightbulb. Similarly, if a human agent turns on or off
the physical lightbulb, its state is reflected by the digital lightbulb and can be
perceived by software agents.

Human and software agents can also be represented by digital artifacts, such
as the user accounts they may hold on various STN platforms. User accounts
are the agents’ proxies in STNs: it is assumed that the entity acting through a
user account is acting on behalf of the agent who holds the account.

To deploy STNs on the Web, we map all entities in an STN (e.g., agents,
physical artifacts, digital artifacts, STN platforms) to Web resources described
in the Resource Description Framework (RDF) [10]. RDF is the data model
of the Semantic Web and a natural choice for our purposes. We provide a Web
ontology6, called hereafter the STN ontology, that developers can use to describe
the various entities and relations among them in conformance with the proposed
STN model [2]. Developers can further extend the STN ontology with domain-
and application-specific knowledge.

STN-based Application Environments. A key feature that STNs bring to
agent environments is the dynamic discovery of agents and artifacts via crawl-
ing. This feature is central to Internet-scale and open MAS that can evolve over
time. The state of a MAS is reflected in the resource-oriented abstraction layer,
for instance whenever an agent joins or leaves the system, or whenever an arti-
fact is created or deleted. Agents can navigate and act on the STN-based layer
via environment abstractions (see Fig. 1), which would typically run on a MAS
platform. For MAS platforms that do not support environment abstractions, the
manipulation of the STN-based layer can simply be hidden behind the agents.

6 http://w3id.org/stn/.

http://w3id.org/stn/
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Note that crawling STNs at scale would be inefficient, but STN-based appli-
cation environments can provide agents with more efficient discovery mechanisms
built on top of the proposed abstraction layer. By analogy, the Web enables the
discovery of Web pages, but manually browsing the Web to search for a specific
Web page is inefficient. Most people would generally start with a search engine
to focus their search.

Another point worth emphasizing is that an STN-based application envi-
ronment is not limited to its underlying STNs or even the Web: it can contain
entities that are not reflected in its underlying STNs, and it can integrate non-
Web components. For instance, the application environment we present in Sect. 4
includes an artifact that connects to a cloud-based MQTT broker7 in order to
retrieve sensor readings from a Texas Instruments SensorTag8. The MQTT-based
artifact is hidden behind the agent using it and not represented in the STN.

3.2 A Uniform Interface for STN-Based Agent Environments

To decouple the application environment from its deployment context, it is nec-
essary to achieve a uniform interface between the origin clients (e.g., MAS
platforms, Web browsers) that access and manipulate digital artifacts, and the
STN platforms that host the digital artifacts. The “hallmark” of achieving this
uniform interface is that the resource-oriented abstraction layer is driven by
hypermedia (see Sect. 2.1 for details): given the URI of a Web resource as an
entry point into this layer, the origin client should then be able to seamlessly
navigate and manipulate STNs using standard Web transfer protocols and media
types, while being agnostic to the underlying STN platforms.

To achieve this uniform interface, we apply REST’s interface constraints9 to
STN platforms. We reformulate these constraints as follows:

– Identification of digital artifacts: digital artifacts hosted by an STN platform
are always identified via URIs such that they can be referenced globally and
independent of context.

– Manipulation of digital artifacts via representations: clients interact with STN
platforms by exchanging representations of digital artifacts, such as an RDF
serialization of the artifact’s current or intended state.

– Messages exchanged between clients, STN platforms, and any intermediaries
in-between are self-descriptive.

– Interaction between clients and STN platforms is driven by hypermedia.

We further detail the last two interface constraints in what follows.

7 Message Queuing Telemetry Transport (MQTT) is an application-level protocol for
the IoT.

8 http://www.ti.com/sensortag.
9 See [13] for more details on the interface constraints in REST.

http://www.ti.com/sensortag
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Self-descriptive Messages. In REST, components exchange representations
of resources via self-descriptive messages: messages are self-contained10, message
semantics are defined by standard methods (e.g., the ones defined by HTTP
or CoAP [38]) and media types (see [13] for further details), responses pro-
vide explicit cache directives etc. Components must be able to reliably interpret
exchanged messages using standardized knowledge. Any implementation-specific
details about raw resources must remain hidden behind the uniform interface.

When it comes to choosing media types for digital artifacts, developers would
generally have three options: (i) if applicable, reuse a standard media type,
(ii) define a new media type, or (iii) use standard RDF serialization formats,
such as Turtle or JSON-LD, with domain- or application-specific ontologies for
describing digital artifacts.

The first option, reusing existing media types, promotes interoperability. The
second option, defining new media types, can be particularly useful to meet
domain-specific requirements, but the new media types have to be adopted to
achieve interoperability. For instance, in Web of Things (WoT) applications it
can be useful to define concise representation formats for lightweight processing
on constrained devices. Lastly, using standard RDF serialization formats might
be preferable for general purpose applications, but this approach assumes that
clients understand the ontologies used to describe digital artifacts.

Hypermedia-driven Interaction. To support hypermedia-driven interaction,
an STN platform must expose a hypermedia-driven API. There are multiple
solutions already available for this purpose. The STN ontology provides two
modules that developers can use to expose hypermedia-driven APIs for STN
platforms (see [2] for more details).

STNs provide several elements to enhance hypermedia-driven interaction
both within and across STN platforms (see [3] for a detailed discussion):

– the social network metaphor enables the discovery of agents;
– the stn:holds11 relation, defined in the STN Ontology, enables the discovery

of user accounts held by agents in various STNs;
– the stn:hostedBy relation enables the discovery of STN platforms and any

hypermedia-driven APIs they may expose.

However, most existing Web services, such as Facebook and Twitter, expose
non-hypermedia APIs. Nevertheless, both Facebook and Twitter can bring sig-
nificant value to STN-based agent environments, as shown in Sect. 4. To support
our approach, we thus have to provide solutions to integrate non-hypermedia
APIs into the hypermedia-driven STN-based layer. We addressed this problem
in [3].

To conclude, in this section we introduced a resource-oriented abstraction
layer for agent environments. This layer is based on STNs, which are used to
10 Note that interaction is stateless between requests, so a component does not need

to go beyond a single message to understand it.
11 We use stn: as a prefix bound to the URI: http://w3id.org/stn/core#.

http://w3id.org/stn/core
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bring humans in the loop and to tackle the HATEOAS constraint. By fully
conforming to REST, the STN-based abstraction layer inherits architectural
properties such as Internet-scalability and openness. Therefore, the proposed
abstraction layer addresses in an integrated manner all three research challenges
in the engineering of agents environments that motivate our work.

4 Implementation and Evaluation

To demonstrate our approach, we implemented an STN-based agent environ-
ment for the IoT that is deployed over multiple heterogeneous Web services and
constrained devices. Software agents running in independent application envi-
ronments are able to seamlessly navigate and act on the underlying distributed
STN in order to discover and interact with one another and with human agents.

This section is structured as follows. First, we present the application scenario
in Sect. 4.1. Then, in Sect. 4.2 we present the implemented system. Finally, in
Sect. 4.3 we discuss the workings and limitations of this proof of concept.

4.1 Application Scenario

David owns multiple smart things, such as a wristband, a mattress cover, light
bulbs and curtains.12 These things are able to produce, share and consume con-
textual information about David and his bedroom. For instance, when David
falls asleep, both the wristband and the mattress cover can produce this infor-
mation with various certainty levels and share it with the other things. David
also uses a digital calendar service to keep track of important events. If there is
an upcoming event scheduled and the calendar knows that David is still asleep,
it cooperates with other things discovered at runtime in attempts to wake him
up (e.g., via vibration alarms on his wristband, opening the curtains to allow
natural light to enter the room). David’s things are also context-aware: it makes
little sense to open the curtains if the outside light level is below 100 lux (S.I.),
which is the equivalent of an overcast day13. If all attempts fail and the sched-
uled event has high priority (e.g., a morning flight), the calendar crawls David’s
online distributed social graph in order to discover and contact friends that can
wake him up. To avoid unnecessary contact attempts, the calendar must first
discover which of David’s friends are already awake.

In this scenario, human and software agents work together towards a com-
mon goal: to wake up David. The calendar is able to discover and interact with
other agents in an open system. In doing so, the calendar has to navigate and
use an agent environment deployed over multiple heterogeneous platforms (e.g.,
Facebook, Twitter) and constrained devices (see Fig. 2), a requirement that is
essential in Internet-scale systems. If all software agents’ attempts to wake up
David fail, the calendar delegates this goal to human agents, who are thus brought
12 All connected objects used in our application scenario resemble products already

available to end-users.
13 http://www.engineeringtoolbox.com/light-level-rooms-d 708.html.

http://www.engineeringtoolbox.com/light-level-rooms-d_708.html
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into the loop at runtime and become part of the system. Therefore, this appli-
cation scenario emphasizes all three research topics that motivate our work.

4.2 System Overview

To evaluate the above scenario, we implemented the system in Fig. 2. Mul-
tiple application environments developed using the JaCaMo platform [7] are
“glued” together via an STN distributed across Facebook, Twitter, and multiple
instances of our own implementation of an STN platform. Software agents run-
ning in these application environments use the STN platforms to communicate
with one another, and use Twitter to communicate with humans. We modeled
each of David’s things and the calendars of each of David’s friends as BDI agents
developed in Jason [8].

In what follows, we first present in further detail the deployment context,
then the STN-based layer, and finally the application environments (see Fig. 2).

Fig. 2. Experiment setup: an STN-based agent environment deployed over multiple
heterogeneous platforms and constrained devices.

Deployment Context. The deployment context is distributed across multiple
heterogeneous platforms and constrained devices.

We used Facebook and Twitter to deploy David’s online social graphs. These
platforms expose non-hypermedia APIs. The clients used in our implementation
are preconfigured with the authorization tokens required to access these APIs.

To host STNs for David, each of his friends, and their things, we used multiple
instances of an STN platform. These platforms are used to store and manage
relations and as message brokers. The STN platforms expose hypermedia-driven
APIs (see [4] for more technical details).

We implemented David’s lights using a Philips Hue lightbulb. The lightbulb
communicates with a bridge via ZigBee Light Link, and the bridge exposes a
non-hypermedia HTTP API for controlling the lightbulb.14

14 For more details: http://www.developers.meethue.com/documentation/how-hue-
works.

http://www.developers.meethue.com/documentation/how-hue-works
http://www.developers.meethue.com/documentation/how-hue-works
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We implemented the outside light sensor using a Texas Instruments (TI)
SensorTag. The TI SensorTag communicates with a smartphone via Bluetooth
Low Energy, which in turn pushes the sensor readings to a cloud-based MQTT
broker15. MQTT clients can then subscribe to this broker to receive real time
sensor readings (see details in Sect. 4.2).

To implement the wristband, mattress cover, and window curtains, we emu-
lated CoAP devices using the Californium (Cf) framework [27]. Following the
typical setup used in constrained RESTful environments (CoRE), these devices
register their resources with a CoRE Resource Directory16, which allows them to
be discovered dynamically at runtime. We used Cf-RD17 to deploy the resource
directory.

STN-Based Layer. In our experiment setup, David has an stn:connectedTo
social relation to a friend on his STN platform, two other friends on Facebook,
and follows two users on Twitter. We used Facebook’s test harness and regular
Twitter accounts to set up David’s social graphs on these platforms.

The description of David’s user account on his STN platform advertises the
user accounts he stn:holds on Facebook and Twitter, which makes them dis-
coverable and allows agents to navigate into these networks. To enable agents
to navigate out of Facebook and Twitter, David’s friends advertise their URIs
as their personal websites, an attribute field available on most social platforms.

Once all data is lifted to RDF (see [3] for technical details), software agents
have a uniform RDF-based view of the distributed STN and are decoupled from
its underlying heterogeneous platforms (see Fig. 2).

Application Environments. The application environments programmed for
this scenario provide agents with CArtAgO artifacts [35] that they can use to
manipulate STNs and to interact with devices.

The STN artifacts are environment abstractions that encapsulate parsers
for interpreting RDF descriptions of STN platforms, and HTTP clients used to
issue requests constructed at runtime based on these descriptions. The platform
descriptions are discovered at runtime via the stn:hostedBy relation and pro-
vide all the knowledge required to interface with the platforms, which includes
metadata about the platform’s API (e.g., supported authentication protocols
and media types) and descriptions of supported STN operations.

The device artifacts provide agents with wrappers for devices in their deploy-
ment context. The Philips Hue artifact is a wrapper over an HTTP client that
accesses the Philips Hue bridge in the local network, whereas the TI SensorTag
artifact is a wrapper over an MQTT client that communicates with an MQTT
broker in the cloud. Similarly, the artifacts for CoAP devices are wrappers
over CoAP clients that access the emulated devices. These artifacts are created

15 In our implementation, we used HiveMQ: http://www.hivemq.com/.
16 https://tools.ietf.org/html/draft-ietf-core-resource-directory-09.
17 https://github.com/eclipse/californium.tools.

http://www.hivemq.com/
https://tools.ietf.org/html/draft-ietf-core-resource-directory-09
https://github.com/eclipse/californium.tools
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dynamically at runtime based on the resource types discovered via the CoRE
resource directory.

4.3 Proof of Concept

The application scenario runs in multiple stages. First, David’s agents get boot-
strapped into the STN layer via preprogrammed behavior. Their entry point
is David’s URI, which they use to declare David as their owner by creating
stn:ownedBy relations. In doing so, the agents are acting on the distributed
STN in an autonomous and reliable manner in order to make themselves discov-
erable. Then, they can crawl the STN to discover and subscribe to to all other
agents stn:ownedBy David.

Once interconnected, agents interact using the FIPA Contract Net Proto-
col [17]: the calendar agent publishes a call for proposals to wake up David via
his STN platform, and the wristband, lights and window curtains agents reply
with proposals. The agents use a shared communication language (in our imple-
mentation, the one provided by Jason) and a shared vocabulary for describing
the state of the environment. The window curtains agent decides to join the inter-
action based on the readings of the outside light sensor. All wake-up attempts
eventually fail in our implementation.

Next, the calendar agent crawls David’s online distributed social graph to
discover friends that also stn:owns calendar agents, where the entry point in
the distributed STN is once again David’s URI. We described this crawling
process in detail for a similar scenario in [3]. Once David’s calendar discovers
the other calendar agents in our system (see Fig. 2), it asks each of them if
their owner is asleep. For each friend that is awake, the calendar then searches
for an stn:UserAccount they stn:hold on an stn:Platform that implements
the stn-ops:SendDirectMessage operation. The only friend who satisfies this
criteria is Mike, who is awake and holds an account on Twitter, which implements
the required operation. The calendar sends Mike a direct message on Twitter to
wake up David.

This proof of concept application demonstrates that we can successfully apply
our approach to engineer agent environments that address the three research
topics that motivate our work in an integrated manner. Note that the agent
environment used in this application integrates two of the most used online
social platforms in a seamless manner.

The STN artifacts are decoupled from the platforms that host the distributed
STN in our experiment. The device artifacts are still tightly coupled to the
deployment context (see Fig. 2), but they are hidden behind agents. However,
these artifacts can also be decoupled using the same approach. First, they have
to be linked in the distributed STN to become discoverable, and then they have
to translate the higher-level semantics of operations defined by a domain-specific
model (e.g., a general model for light bulbs) to the lower-level semantics of a
WoT protocol used by the devices’ APIs.
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5 Conclusions and Outlook

The World Wide Web is arguably the most scalable and versatile software sys-
tem deployed on the Internet [13], and most other software systems today revolve
around the Web. This huge success comes from the architectural properties of
Web, which was specifically designed as an Internet-scale and long-lived sys-
tem in which components can be deployed and can evolve independently from
one another. Precisely because of its design goals, key architectural principles
and ubiquity in people’s lives, in this paper we claimed that the Web provides
a suitable middleware for agent environments that (i) support large scale sys-
tems, (ii) can cope with open systems, and (iii) support humans in the loop,
three important and current research topics in the engineering of agent environ-
ments [40].

Our approach is to apply the REST architectural style to design the agent
environment as a hypermedia application. We refer to such environments as
hypermedia-driven agent environments to emphasize the use of hypermedia-
driven interaction, which is central to REST. To achieve hypermedia-driven
interaction, we introduce a resource-oriented abstraction layer for agent environ-
ments that decouples the application environment from its deployment context.
Higher-level environment abstractions can then be implemented on top of this
lower-level abstraction layer. The novelty of our approach is the use of socio-
technical networks (STNs) and hypermedia-driven APIs as a means to address
the HATEOAS constraint. By analogy with how the Web enables the discov-
ery of Web pages, STNs enable the discovery of agents and artifacts in agent
environments on the Web.

We consider the impact of the contribution presented in this paper to be
twofold. On the one hand, it addresses important research topics in engineering
MAS. On the other hand, it enables the transfer of MAS technology to the
development of Web-based systems in a manner that is completely aligned with
the Web architecture. We consider the latter to be an important step towards
achieving the vision of a Semantic Web, as originally described in [6].

The engineering of hypermedia-driven agent environments raises a number
of new research challenges to be addressed. For instance, most Web services pro-
vide terms of usage, privacy policies, data licensing information, API rate lim-
iting policies etc. All these policies are typically specified in a human-readable
documentation intended for developers, who then have to hardcode the policies
into their applications. If autonomous agents are to be completely decoupled
from their environments and any Web services discovered at runtime, then they
have to be aware of such policies and able to reliably interpret them. Another
interesting problem in Internet-scale agent environments is searching for digi-
tal artifacts and other resources. Hypermedia-driven agent environments enable
discovery via crawling, but crawling at scale by each individual agent would be
inefficient. Search engines for agent environments, similar to existing Web search
engines, would help mitigate this problem.
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22. Gregori, M.E., Cámara, J.P., Bada, G.A.: A jabber-based multi-agent system plat-
form. In: Proceedings of the Fifth International Joint Conference on Autonomous
Agents and Multiagent Systems, pp. 1282–1284. ACM (2006)

23. Guinard, D., Trifa, V., Wilde, E.: A resource oriented architecture for the web of
things. In: Internet of Things (IOT), pp. 1–8. IEEE (2010)

24. Huhns, M.N.: Agents as web services. IEEE Internet Comput. 6(4), 93 (2002)
25. Huhns, M.N., Singh, M.P.: Service-oriented computing: key concepts and princi-

ples. IEEE Internet Comput. 9(1), 75–81 (2005)
26. Jacobs, I., Walsh, N.: Architecture of the World Wide Web, Volume One, W3C

Recommendation. W3C Recommendation, World Wide Web Consortium (W3C),
15 December 2004

27. Kovatsch, M., Lanter, M., Shelby, Z.: Californium: Scalable cloud services for the
internet of things with coap. In Internet of Things (IOT), International Conference
on the, pp. 1–6. IEEE (2014)
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Abstract. We are interested in the development of a language, called
PLACE, that allows to program agents as well as their environments.
Agents’ actions are durative and different priorities can be associated
with the goals of agents. The agents autonomously achieve their goals
by using the planning mechanism built in the language. The planning
mechanism ensures the achievement of higher priority goals before the
lower priority goals, but allows to perform low priority actions in parallel
to the high priority actions. Plans are repaired if unanticipated changes in
the environment cause the plan to become unfeasible. The environment
is modeled visually to help the user simulate the behavior of agents and
see the execution of agents’ plans.

Keywords: Agent oriented programming · Temporal planning
Plan repairing · Environment modeling

1 Introduction

Over the years software agents has proved to be an appropriate paradigm for
the development of complex systems that are distributed in nature and require
autonomy. In order to tackle the inherent complexity of such systems, three dif-
ferent abstractions have been defined i.e. the agents, the environments and the
organizations. This separation of abstractions has lead towards the development
of Agent Oriented Programming (AOP) Languages (see e.g. [1–3]), Environment
Oriented Programming (EOP) Languages (see e.g. [4,5]), and Organization Ori-
ented Programming (OOP) Languages (see e.g. [6,7]). This paper contributes
to the AOP languages as well as to the EOP languages by proposing a lan-
guage PLACE (Planning based Language for Agents and Computational Envi-
ronments) that not only facilitates the user to program the agents but also allows
him to program the environment as per his requirements. A platform is also
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developed that allows PLACE agents and different environment entities to be
distributed on different hosts and allows user to visually monitor the interaction
of agents with the environment.

PLACE has a syntactic structure close to the Belief-Desire-Intention (BDI)
based AOP languages. Most of the BDI based languages (see e.g. Jason [1],
3APL [3]) do not incorporate look-ahead planning. Sometimes the execution
of actions without planning results in the inability to achieve the goals as the
actions may not be reversible and the executed actions may have used the limited
resources. Moreover conflicts could arise among simultaneously executing plans
and redundant actions may also be ignored. So, last few years have seen a shift
towards the look-ahead planning based approach for a BDI language (see e.g. [8–
10]), but these languages do not take into account the duration of agents’ actions,
neither do they consider the uncertainty of the environment. These systems
assume that the agents’ actions are instantaneous and that the effects produced
on the environment are only those which are produced by the agent’s actions. But
these assumptions are unrealistic for the development of real world applications.
So, PLACE tries to fill this gap by using a look-ahead planning based approach,
where the agents’ actions are durative, priorities have been assigned to goals
and plans are repaired if unprecedented changes in the environment cause the
plan to become unfeasible. A planning based approach also allows to coordinate
the plans of multiple agents which is otherwise difficult in a BDI model, as the
BDI model in its definition is a single agent model and it is the responsibility of
the programmer to explicitly state the preconditions in order to avoid conflicts
among multiple agents.

Plan synthesis in PLACE is done by using the Hierarchical Task Network
(HTN) planning [11] techniques. Specifically, we adapt an HTN planner JSHOP2
[12] for computing the plans of agents. HTN planning, as explored by [13], is
a natural candidate for planning in the BDI style programming languages. A
temporal converter procedure then converts a totally ordered plan generated by
JSHOP2 into a parallel position constrained plan1, where each action is assigned
a time stamp and multiple actions can be executed in parallel if possible. The
agents have the ability to execute the plans and monitor the execution. Moreover
agents are continuously waiting for new tasks from the user, and if the new
task requires immediate achievement, the agent preempts the execution of the
task currently being executed and immediately plans for and achieves the new
task. An important point is that those actions of the current plan that can
be executed in parallel with the higher priority task are not postponed, they
are executed in parallel and only those actions are postponed which can not
be executed in parallel. For this purpose we use the Proactive-Reactive Plan
Merging algorithm that we had originally proposed in [14]. The agent constantly
monitors the execution of the plans and a plan mender component is added to
the language that is used to repair the plan if some unexpected changes in the
environment cause the failure of original plan.

1 Position constrained plans specify the exact start time for each action, whereas order
constrained plans just specify the precedence constraints between actions.



144 M. A. Hashmi et al.

In our framework it is easier for the user to monitor the execution of the
agents, because the agents’ environment is modeled visually. Our environment
modeling approach has some similarities with the model of artifacts proposed
in [5]. One important difference of our approach to theirs is the fact that in
their model an artifact is a physical or computational entity in the environment
e.g. a printer, a sensor, a web-service, but in our framework an artifact is the
conceptual or logical entity e.g. a train, a room, a city. Another notable difference
is that while [5] provides Java APIs for programming the environments, we are
presenting a new language with its own syntax and semantics.

Rest of the paper is organized as follows. Section 2 presents some related work.
Section 3 discusses the environment modeling and syntactic aspects of PLACE.
Planning related issues (planning, plan execution, plan repairing and merging)
are presented in Sect. 4. A case study is presented in Sect. 5 which elaborates
different planning and environment modeling concepts presented in the paper.
Section 6 concludes the paper.

2 Related Work

2.1 Planning Based AOP Languages

Sardina et al. [8] proposed a conceptual framework and agent programming
language CanPlan for incorporating HTN planning into a BDI like AOP lan-
guage. This work is triggered by an earlier work of the authors [13] where they
discussed about the similarities among BDI systems and HTN planning frame-
work. CanPlan provides flexibility to the programmers about when to choose
full look-ahead planning. The proposed language extends the high level formal
agent language Can (Conceptual Agent Notation) [15] by adding more con-
structs to the language in order to incorporate HTN planning. The additional
formal operational semantics for such constructs have been proposed. An impor-
tant construct that has been added to the language Can is Plan. If P is a BDI
method body, then Plan(P) in simple words mean, ‘plan for P offline, searching
for a complete hierarchical decomposition.’ So the BDI agent using Plan has to
perform a full look-ahead search before the execution commences.

Lesperance et al. [9] takes into account the uncertainty in the environment
by proposing contingent planning model in an AOP language. They propose
to compute plan, in advance, for different possibilities that can arise during
execution of the plan. IndiGolog [16] is another language, in the context of
situation calculus, that supports planning by including a deliberation module.

In [10], De Silva et al. proposes a classical first principles planning approach
for BDI languages to find the plans that are not currently available in the plan
library. The plans generated by their approach are called hybrid plans, and may
contain abstract operators that can be mapped back to the goals, thus allowing
the agent to execute the plan using its BDI plan library. Another framework
incorporating classical planning in a BDI language is presented in [17]. It extends
the X-BDI [18] model to use the propositional planning algorithms for performing
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means-end reasoning. It is a rather theoretical work concerning the mapping of
BDI internal mental states to a STRIPS like notation and back.

In another work [19], Chaouche et al. proposes a concrete software architec-
ture in the domain of Ambient Intelligence, that incorporates contextual plan-
ning in order to synthesize plans for agents taking into consideration the current
and future context. In [20] they take this work forward by endowing the agents
with the ability to learn the future context from the previous experiences of
actions.

2.2 Environment Modeling in AOP Languages

Environment modeling is a core ingredient for any agent oriented programming
language. Researchers in multi-agent systems community have long been working
on the lines of AEIO approach (Agent, Environment, Interaction, Organization)
given in [21]. Any agent oriented programming language should be able to repre-
sent the agents and environment and most importantly the interaction between
agents and the environment in which they reside.

An Action and Perception model sense-plan-act (SPA) for the exogenous
environments has been proposed in [22] where the interaction of an agent with
its environment is a three step process. In the first step the agent perceives
its environment updating its beliefs, in the second step it plans the actions to
be carried out and lastly it performs the actions causing the environment to be
changed. This work is inspired by the author’s previous work of simpA [23] which
is agent-oriented approach for programming concurrent applications on top of
Java. simpA is a theoretical framework which is later implemented in the form
of CArtAgO [5]. CArtAgO has introduced a computational notion of artifacts
called A&A (Agent and Artifact) to design and implement agent environments.
Artifact based environment modeling has been successfully used for designing
multi-agent systems for data mining domains [24]. CArtAgO is an annotation-
based framework built on top of the basic Java environment. On the principles of
artifacts [25] has proposed a unified interaction model with Agent Organization,
and Environment.

Another approach is presented by [26] to model the Multi-Agent Based Social
Simulations (MABS) in which a virtual environment is partitioned into areas
called cells and is supported by an underlying autonomic software system consist-
ing of specialized agents called controllers and coordinators. Controllers manage
specific cells while coordinators monitor and guide controllers in the execution
of their tasks. In such an approach the abstraction level for underlying com-
plex environment is provided. This approach is somewhat similar to previously
discussed artifact based approach, the difference is that the management of arti-
facts or cells is handled through dedicated agents. Another variation of designing
intelligent environments is proposed by [27] in which the designer is interested
in delegating a part of the agent’s tasks to its body.

For context-aware agents [28] has proposed a model for the interaction
between context-aware virtual agents and the environment. This work empha-
sizes the use of extensible agent perception module, allowing agents to perceive
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their environment through multiple senses. Perception combination for an agent
is further investigated in [29] which proposes a multi-sense perception system
for virtual agents situated in large scale open environments for the DIVA [30]
project.

There are many different models for environment representation which are
in use. There is a strong need to establish the uniformity of the environment’s
representation and the agents. In order to bridge this gap, [31] have proposed
an interface for the environment which is discrete in space (grid-world) and
time (step-wise evolution). This is an extra layer introduced between environ-
ments and agents so that different platforms could be able to interact with same
environment. This new language is called Interface Intermediate Language (IIL)
providing a conventional representation for actions and percepts. Another such
approach is presented by [32] for the modeling of Agent-Environment Interac-
tions in adaptive MAS. In this work, the interaction levels are further broken
down in multiple abstraction layers.

There are many other computational frameworks for environment modeling.
AGRE [33] integrates the AGR (Agent-Group-Role) organizational model with
a notion of environment. In AGR the agents are considered to be working in
groups in a space which contains them. AGRE is based on MadKit platform [34].
Problem with the AGR is that it is only suitable for geometrical environments.
Logic based frameworks are also introduced such as GOLEM [35] to represent
environments for situated cognitive agents. But these frameworks do not account
for the mobility of the agents as the environment is modeled through objects.
Logic based environments are well suited for game intelligence.

Fig. 1. PLACE Meta-Model

3 Syntax and Environment Modeling in PLACE

In PLACE we are concerned with two aspects of the environment programming:
physical and logical. In the physical aspect we are concerned with the actual
deployment of the agent i.e. the host and the network on which the agent is
deployed etc. For this purpose, we have borrowed some ideas from AOP language
CLAIM [2]. Like CLAIM, we have a central system in PLACE to which all the



Planning Based Language for Agents and Computational Environments 147

Listing 1.1. PLACE Agent Definition
defineAgent agentName {

knowledge = null; | { (knowledge ;)+ }
goals = null; |{ (goal;)+ }
actions = null; | { (action)+ }
activities = null; | { (activity)+ }
environment = null; | { environmentName }
agentIn = null; | { artifactName }
artifacts = null;| { (artifactName ;)+ }

}

Listing 1.2. PLACE Artifact Definition
defineArtifact artifactName {

parent = null; | {artifactName}
connectedTo = null; | { (artifactName [{ notBreakable }];)+ }
environment = null; | { environmentName }
properties = null; | { (property [{ notChangeable }][ observableTo = {(

artifactName ;) +}];)+ }
operations = null; | { (operation)+ }

}

hosts are connected. The deployment of agents is then inside those hosts. The
agents can join environment at any host. Physical mobility is possible for agents
from one host to another, but in the visual modeling this physical mobility is
transparent to the user, because he is more concerned with the logical mobility.
In the logical aspect of environment, we are concerned with the environment as
perceived by the user i.e. the user is perceiving the agent inside a train in the
Paris city. For this purpose, our work has some similarities with the Agent and
Artifact (A & A) meta-model of environment [5]. Artifact is an entity which
presents the functionalities and knowledge to the agents. Figure 1 shows the
meta model of the PLACE environment modeling. An environment in PLACE
can contain multiple artifacts and agents within it. One artifact can contain
multiple artifacts and can host multiple agents but an agent can be situated
only in one artifact.

There are three different building blocks of PLACE language i.e. Agents,
Artifacts and Environments. Following sections describe these three aspects of
PLACE in detail.

3.1 Agents in PLACE

An agent is defined as shown in Listing 1.1. Its components are described as
follows:

• knowledge of the agent is what it believes about the world at a certain
moment. It can be described with the help of first order propositions contain-
ing a name and list of arguments. Initially the knowledge can be empty or
given by the programmer but it evolves over time as the agent executes its
planned actions.
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• goals represent current goals of the agent. The designer can give goals in the
form of the tasks to be performed. Goals can be of high priority or low priority
and it is the responsibility of planning and reasoning mechanism to ensure
that high priority goals are achieved before low priority goals. A goal can be
defined as:
goal = {proposition [, high |, low ]}

• actions in PLACE are the primitive tasks that an agent is capable of carry-
ing out. Actions are the way through which an agent can interact with the
environment and manipulate it. If the agent has desired knowledge at the
time of execution of an action, then the action adds/removes some knowl-
edge to/from agent’s belief base, hence modifying agent’s beliefs. Actions in
PLACE are durative in nature. Some actions are pre-defined in the language
e.g. an agent can move from one artifact to another by using the pre-defined
action move(?source, ?destination). An action can be defined as:
action = actionSignature {

[preconditions=precondition]
[add_effects= {proposition (,proposition)+ }]
[del_effects= {proposition (,proposition)+ }]
[duration=number;]

}
Precondition is a collection of knowledge that an agent must have at the
time of action’s execution. A precondition can be a function that returns a
boolean, a condition about agent’s knowledge, a condition about being in a
particular artifact, a condition about possession of an artifact, a condition
about an artifact being inside another artifact, a condition about connection
of an artifact to another artifact or a conjunction of any of these:
precondition = function(args) | hasKnowledge(knowledge) | agentIn(artifactName)

| hasArtifact(artifactName) | artifactIn(artifactName, artifactName)
| connectedTo(artifactName, artifactName) | and(precondition (,precondition)+)

• activities are the short plans that a designer can provide to the agent. Unlike
actions, activities do not add or delete any knowledge in agent’s knowledge
base.
activity = activitySignature {

[preconditions= precondition]
do { ActivityActionSequence }

}
Activity’s precondition is somewhat different from an action’s precondition.
Here the developer can use and, or and not operators and in any nested way
he wants. The do element of an activity is the sequence of action or activity
calls in the form of messages, that is in fact the short plan that designer is
supposed to provide.

• environment represents the environment in which agent is situated. PLACE
agent can only be the part of a single environment at any time but the agent’s
designer can change the information of the environment in one of its actions
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to move agent from one environment to another if the agent is required to
perform its tasks in multiple environments.

• agentIn represents the name of artifact in which the agent is currently situated.
• artifacts are the artifacts currently possessed. When an agent moves from one

place to another, it moves with all the artifacts that he currently possesses.

3.2 Artifacts in PLACE

Listing 1.2 shows, how an artifact can be defined in PLACE. Artifacts in PLACE
environment present operations, properties and observable properties. Its com-
ponents are described as follows:

• parent describes the artifact in which the artifact is currently situated.
• connectedTo represents a list of artifacts to which the artifact is connected.

In order to model the static parts of the environment, a connection can be
labeled notBreakable for the cases where designer wants to forbid agents from
breaking connections.

• properties of an artifact is the knowledge which is directly accessible to the
agent which is currently situated in that artifact. An artifact’s property can
be labeled notChangeable to forbid any agent from modifying it. Observable
properties are accessible to all those agents which are situated in those arti-
facts to which the property is observable, by using the label observableTo.

• operations are the way for an artifact to expose its functionalities. Any agent
attached to the artifact can perform the operation unless the artifact allows
certain operations to some specific agents with the help of a keyword agents.
On the agent’s part, a boolean function allowed is used to check whether an
agent is allowed to perform a certain operation or not.
operation = operationSignature {

[agents=agentName (,agentName)+]
[concurrent=number | agentName (,agentName)+]
[preconditions=precondition]
[add_effects_artifact= {proposition (,proposition)+ }]
[del_effects_artifact= {proposition (,proposition)+ }]
[add_effects_agents= {proposition (,proposition)+ }]
[del_effects_agents= {proposition (,proposition)+ }]
[duration=number;]

}

Operations has one-to-one mapping with actions of agent if the agent is sit-
uated inside the artifact. Operations are the only way through which an
artifact’s properties can be changed. Agents can also move the artifacts by
changing their parent information, if such operation is allowed to the agent by
the artifact. Sometimes an operation can only be performed concurrently by
two or more than two agents. This is achieved through keyword concurrent.
It can be the number of agents, or the names of agents that should per-
form a certain operation concurrently. Concurrency issues can quickly arise
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Listing 1.3. PLACE Environment Definition
defineEnvironment environmentName{

properties = null; | { (property ;)+}
operations = null; | { (operation)+}

}

in such meta-model as multiple agents are linked to the same artifact and
they can perform the operations concurrently. In order to resolve this issue,
the operations of PLACE environment are thread locked and only one agent
can perform operation at any given time. When the designer uses keyword
concurrent inside an operation, the thread locked capability is turned off and
the environment designer is supposed to provide preconditions accordingly.

When an operation is performed over an artifact, some facts are added/re-
moved from the knowledge of those agents who are performing that operation.
This is specified by keywords add_effects_agents and del_effects_agents.
Moreover some properties of the artifact may also get changed, this is speci-
fied by keywords add_effects_artifact and del_effects_artifact.

3.3 Environment in PLACE

An environment can be defined as shown in Listing 1.3. Environment presents
global knowledge to all the agents situated in the environment as the form of
environment properties, through keyword properties. It is like a shared memory
for the agents to facilitate them in communicating in decentralized manner. The
global knowledge can only be accessed by the keyword global. Agents knowl-
edge is thus a union of its own knowledge, global knowledge provided by the
environment, artifact’s knowledge and the knowledge of the artifacts which are
observable from the artifact in which the agent is situated. One advancement in
PLACE from the earlier version is that now the environment can also offer oper-
ations to the agent’s designer. A designer now have the flexibility to design the
global operations on the environment which would be available to all agents if
the operation’s agent property is left blank. For the cases in which designer wants
to write global operations for some selected agents, he can do so by mentioning
the names of the agents in individual environment operation.

3.4 Deployment and Visual Environment Modeling

The physical deployment is concerned with how the agents and artifacts are
distributed among hosts on the network as shown in Fig. 2 (right), whereas the
logical deployment deals with how the agents perceive the environment. It shows
the whole system hosted on one virtual machine as shown in Fig. 2 (left). The
physical mobility of agents in between hosts is hidden from the user. The logical
deployment of agents and artifacts is represented by an Environment Graph,
and can be viewed by user at any time during the execution of agent on the
Graphical User Interface of PLACE. In an environment graph, the artifacts are
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Fig. 2. Physical and Logical Deployment of PLACE Agents and Environment

represented with circle notations whereas agents are represented with a standard
user like figure. The connected artifacts are shown with the help of a straight
solid line e.g. Artifact1 and Artifact2 are connected. An agent can also possess
artifacts which is shown with the help of a directed solid line e.g. Agent A is
holding Artifact3. If an artifact is in the possession of an agent then it can
only be connected with those artifacts which are in the possession of same very
agent. An artifact’s observable properties are shown with an oval connected to
the artifact with a solid line. An artifact’s observable properties can be observed
by the agents from other artifacts to which these properties are observable to e.g.
Agent B is inside Artifact2 and it can see the Artifact1’s observable properties.
These properties are linked with the artifacts with a dashed line.

Fig. 3. PLACE Planning Work Flow

4 Planning for PLACE Agents

Planning is the core component of PLACE agents. Agents once launched in
an environment are supposed to act intelligently without the intervention of
designer. PLACE is equipped with built-in planning capability which is reusable
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and extendable in its nature. Figure 3 shows a work flow of PLACE planning
process. At first the agent invokes an HTN planner to create a total order plan. A
total order plan is the plan which is computed to generate a sequence of actions
in exact order in which they are to be carried out in order to achieve the goals.
For the purpose of total order planning we have chosen JSHOP2 planner in our
framework. The reason to choose JSHOP2 for PLACE agents is two fold. Firstly,
it is an HTN planner and the domain and problem information from PLACE
can easily be translated to the domain and problem information required by
JSHOP2 planner due to the similarities among HTN and BDI agent architectures
[13]. Secondly, JSHOP2 plans in the same order in which the actions would be
executed later e.g. JSHOP2 knows at each step the current state of the agent.
PLACE agents are reactive in nature making them responsive to any change in
environment. At any stage if a change occurs in the environment or the agent is
given a new goal, the planner can then incorporate that change easily.

The actions in PLACE are temporal in nature e.g. each action has associative
time duration. In second phase of the planning, the total order plan is converted
into a parallel position constrained plan where each action is assigned a time
stamp and multiple actions can be executed in parallel if possible. Temporal
converter takes a total order plan as an input and specifies the start time for
each action in such a way that the actions which can be carried out in parallel
are scheduled with overlapping time windows.

After the planning is completed the sequence of actions generated is now
passed to the executioner which launches a separate thread for each action at its
start time. If the action’s condition is met then the action is executed e.g. add
effects are added and delete effects are deleted from agent’s knowledge base and
control returns to executioner with success message. If the condition is not met
due to some influence of another agent or designer then the control is shifted to
plan repair module.

The main idea of plan repair algorithm is that if the state of world has
been changed by some unanticipated event, and the preconditions of an action
A no longer hold in the world, remove this action from the plan and try to
compute a temporal plan from the current actual world state to a state where
all the necessary effects of A hold. So, Plan Mender algorithm uses the well-
known planner Sapa [36] to compute a temporal plan from the current actual
world state to a state which has all the necessary effects of A. If such a plan is
possible, it is returned as a replacement for the removed action. Otherwise, in
the next iteration, the next action B of plan is also removed and algorithm tries
to compute a plan for the achievement of the goals of the previous iteration,
minus the preconditions of B, union the necessary effects of B. If such a plan
is possible, it is returned as a replacement for the actions A and B. This gap is
gradually widened, unless a plan is found or there is no more action to remove
from the plan.

It is worth noting that the agent is receiving the goals on the fly and using the
same procedure of planning for each goal. If the returned plan is for some reactive
goal, it is merged at the beginning of agent’s global plan. We had presented a
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(a) Case Study Initial State

(b) Case Study Execution

Fig. 4. Case Study

plan merging algorithm in [14], so here we are just making use of that algorithm
without going into its details. If the returned plan is for some low priority goal,
it is appended at the end of agent’s global plan.

When all the planned actions are executed then the process of a single agent
planning and execution terminates, and the agent waits for new goals.

5 Case Study

In order to demonstrate the capabilities of environment modeling and plan-
ning in PLACE, lets consider the case study presented in Fig. 4(a). There are
three agents AgentX, AgentY and AgentZ in the environment. Moreover, there
are seven artifacts representing places, namely Home, Thokar, Liberty, Fortress,
Defence, Daewoo and Office. In addition, there are two artifacts representing
vehicles, namely Train and Bus. AgentX is situated at Home and its goal is
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Listing 1.4. PLACE: Environment & Artifacts Representation
defineEnvironment HomeOffice {

properties = null;
operations = null;

}

defineArtifact Thokar{
environment = {HomeOffice}
connectedTo = {Liberty ,Home}
parent = null;
properties = {trainDepartureTime(this , 15){obseravableTo ={Home }};}
operations ={

sellTicket (?a){
preconditions = {agentIn (?a,this)}
add_effects_agents = {hasTrainTicket()}

}
}

}
defineArtifact Train{

environment = {HomeOffice}
connectedTo = null;
parent={ Thokar}
operations ={

driveTo (?s,?d,?a){
agents = {AgentY}
preconditions = {

and(agentIn (?a,this),
artifactIn(this ,?s),
trainDepartureTime (?s,?t),
>=(java.currentTime () ,?t))

}
add_effects_artifact = {artifactIn(this ,?d)}}

}
}

}

to be in Office. The Train is situated in Thokar. AgentY is a driver which is
present inside the Train and only he can drive train to stations Liberty, Fortress
and Defence. Similarly Daewoo is a bus-stand which has a Bus situated inside
it and AgentZ is its driver who can drive the bus to Defense.

A snippet of code for artifacts Train and Thokar is given in Listing 1.4 and a
snippet of code for AgentX is given in Listing 1.5. While the AgentX is at Home
it can see the knowledge of train departure time as the artifact Thokar has an
observable knowledge trainDepartureTime to Home artifact.

At home the AgentX has three options to start its travel. It can move to
the train station Thokar from where it can board the train after purchasing the
ticket, or it can move to the bus-stand Daewoo and board the bus, or it can move
to the train station Liberty and board the train from there if it has missed the
train from Thokar. The agents AgentY and AgentZ are the driver agents which
can move train and bus respectively. The activities of AgentX, that would help
him in planning, are not shown for space reasons.

Suppose the AgentX generates a plan to move to Thokar and then to the
Train, and AgentY moves the Train from station Thokar to Liberty then to
station Fortress and Defence, from where the AgentX can move to its Office. The
AgentX’s execution of the plan upto Liberty is shown in Fig. 4(b) as shaded path.
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Listing 1.5. PLACE: Agent Representation
defineAgent AgentX{

agentIn = {Home}
artifacts = null;
environment = {HomeOffice}
knowledge = null;
goal = {{ agentIn(this ,Office)};}
actions = {
moveTo(?s,?d){

preconditions ={and(agentIn(this ,?s), connectedTo (?s,?d))}
add_effects ={ agentIn(this ,?d)}
}

}
}

Let us consider a scenario in which the station Fortress is under construction
and the Train cannot continue its journey, then at this point the AgentX calls
the Plan Mender to repair the plan. A new plan is given to AgentX to move
from Liberty to Daewoo and then go to Defense by Bus.

6 Conclusion

We have presented an AOP language that endows agents with the capability
to plan ahead and also facilitates the user to visualize the behavior of agents
through environment modeling. The presented language is called PLACE (Plan-
ning based Language for Agents and Computational Environments). Agents are
able to create temporal plans. Execution monitoring and plan repairing compo-
nents are added. A balance between deliberation and reactivity has been estab-
lished and the agents are able to turn their attention while planning to the newly
arrived reactive goals. Currently, PLACE is not handling the goals with dead-
lines. Moreover, the time duration for an action is static i.e. it is not dependent
on other parameters e.g. distance. We are working on these improvements in the
language. We are also investigating the use of heuristics to guide the search for
better plans in lesser time.
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Abstract. It is our claim that the adoption of software engineering reuse
techniques can leverage MAS development, mostly when we consider
similar applications belonging to the same domain. MAS-Product Line
(MAS-PL) raises as an interesting approach that uses Software Product
Line Engineering (SPLE) techniques and AOSE to manage the common-
alities (similarities) and variabilities (differences) of such MAS applica-
tions. Although MAS present specific characteristics that could be con-
sidered when describing the system variability, existing work on MAS-PL
is devoted to deal with MAS variability considering only domain-specific
issues. Moreover, the adoption of variability models such as feature mod-
els should be considered for describing both Generic and Specific MAS
variability. We propose a MAS-PL approach to address the aforemen-
tioned issues by representing Generic MAS variability according to MAS
concepts such as agents, environment, interaction and organization, and
Specific MAS variability according to a specific application domain.

We evaluate the approach by deriving a family of agents that perform
jobs in the Multi-Agent Contest environment.

Keywords: Software Product Line Engineering
Software engineering reuse · Feature model · Variability

1 Introduction

Multi-Agent Systems (MAS) provide an interesting approach for developing soft-
ware systems in several domains such as resource and information management,
process control and simulation of complex systems. Nevertheless, since engineer-
ing MAS is a complex task that is not entirely controlled by a process which is
accepted by the software industry, MAS are still not part of the mainstream of
enterprise application development [17]. In this paper, we propose to introduce
a new MAS-PL approach to improve the reuse during MAS development.
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AOSE provides several templates and reuse patterns to facilitate MAS devel-
opment [10,18] and speed up the MAS adoption in software industry. However,
most existing AOSE approaches are not suited to the development of similar
applications (a.k.a MAS families). These kinds of applications present similari-
ties (i.e. commonalities) and differences (i.e. variabilities).

Indeed, managing such applications remains a difficult task because even if
the core architecture is reusable, the variability management is mainly achieved
by making code changes.

As the facts mentioned above lead to a considerable waste of time, cost and
effort, and make the MAS implementation a difficult task, it is important to
provide a solution based on the idea of capitalizing the MAS implementation
expertise. Thus, managing MAS variability in MAS families is a key solution
to such a capitalization, and has become one of the main challenges in AOSE.
SPLE comes out as an interesting solution to manage MAS variability at dif-
ferent levels such as in design models, implementation of agents and so on. It
provides a solution to speed up industrial adoption of MAS, and leverages such
an adoption [23].

Several MAS-PL approaches have been proposed [3,11,21,22] to apply SPL
concepts to MAS development. Those MAS-PL approaches introduce the notion
of variability for a reuse issue within a MAS family. They are often built as
an extension of existing methods, what make them easily adopted. However,
most existing approaches introduce different notations and stereotypes to specify
variability, what concerns only specific domains.

It is our claim that a MAS-PL approach should address both the variabil-
ity concerning a specific application domain, and the variability referring to
the MAS domain, which concerns MAS concepts that emerge from MAS meta-
models and tools.

In addition, we believe that specifying variability by using only variability
models (e.g. feature model) is more interesting than using a variety of models
(e.g. roles’ variation model) or introducing new notations (e.g. extensions of MAS
design models) for the same purpose. Example of that is proposed by Peña et al.
[24], where three kinds of models are used to specify variability: feature model,
roles variation model, and plans variation model. In our view, roles and plans
variation could be specified using a single variability model, such as a feature
model.

We propose a new MAS-PL approach that follows the general SPLE Frame-
work [1]. This approach relies on two types of features (resp. two types of reusable
artifacts): the Generic MAS features (resp. artifacts) and the Specific MAS fea-
tures (resp. artifacts). This will concretely serve to promote different types of
reuse in MAS.

Those features result from a refinement process that is based on a variability
analysis of distinct domains. Generic MAS variability analysis scopes the domain
of existing MAS methods, meta-models, architectures and tools, while Specific
MAS variability analysis scopes a specific application domain.
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This paper is organized as follows: Sect. 2 presents a background, dealing
with MAS-PL related work and motivations. Section 3 gives an overview of our
MAS-PL approach; while Sects. 4 and 5 give more details about the approach
and illustrate it with simple examples of the multi-agent contest case study.
Section 6 describes and discusses some results about the evaluation of our app-
roach through the multi-agent contest product line. Finally, Sect. 7 summarizes
the contributions and proposes some perspectives for future work.

2 Background and Related Work

2.1 Software Product Line Engineering Framework

SPLE represents one of the most interesting paradigms in software reuse and
development. It reconciles both production and standardization with customiza-
tion in software engineering, and it considerably reduces development cost, time
and effort. The general SPLE framework proposed by Apel et al. [1] is repre-
sented in Fig. 1 with its two levels: Domain and Application Engineering. The
framework includes four activities: domain analysis, domain implementation,
requirement analysis, and product derivation.

Fig. 1. SPLE Framework and its main activities [1].

Domain Analysis allows to scope the domain (which products should be
covered by the product line), and to specify the relevant features that should
be implemented as reusable artifacts. The results of domain analysis are usually
documented in a Feature Model (FM) [1]. The FM describes features and their
relationships (parent-child) in a hierarchical tree. Features express the common-
ality and variability among the products within a product line (see examples
in Fig. 3).

Domain Implementation allows to develop reusable artifacts that corre-
spond to identified features. There are many kinds of relevant artifacts in SPLE
(including implementation, test, and documentation artifacts) [1].

Requirement Analysis considers a user’s requirements to produce a cus-
tomized configuration, by selecting the desired features.

Product Derivation aims at deriving the product according to the config-
uration provided by the requirement analysis.
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2.2 Related Work

MAS-PL approaches emerged from the idea of applying SPLE approaches into
AOSE ones. The first efforts on MAS-PL arose on the mid of the 2000’s first
decade. Peña et al. [23] argue that both AOSE and SPLE approaches are based
on similar concepts in the first activities of domain engineering. For instance,
both of them use models in the domain analysis activity: SPLE uses feature
models and AOSE uses MAS meta-models. Unlike AOSE, SPLE covers com-
mon and variable features analysis of the software family. Most existing AOSE
approaches do not consider implementation activity, while SPLE also relies on
implementing reusable assets.

MAS-PL approaches differ according to the SPLE phases they cover: Domain
and Application Engineering. Most approaches propose to extend AOSE meth-
ods by integrating SPLE concepts and techniques.

In this context, Dehlinger et al. [11] propose Gaia-PL to extend GAIA. They
provide requirement specification pattern to capture changing design configura-
tion (variation points) in agents and potential reuse of requirement specification;
with no detail about the domain implementation activity.

Nunes et al. [21,22] propose to extend PASSI [9], to cover the whole devel-
opment process from requirements to code. They endow PASSI’s UML models
with stereotypes to model and document agent variability, and they propose
implementation guidelines to help MAS developers. Moreover, they propose the
modularization of the fine-grained variability (agent architecture) allowing a
better specificity of the features [20]. For instance, they introduce decomposi-
tion of the goals that gives more specific plans. Although the decomposition of
goals ensures alternative or optional features, reuse is only possible for a specific
domain application.

Peña et al. [24] propose to enrich MaCMAS (Methodology for analyzing
Complex Multi-Agent Systems) with software product lines to model and evolve
MAS. They use UML to model a MAS-PL and focus on building the core archi-
tecture (common features). MaCMAS captures views of the system at different
abstraction levels. The core architecture of the system is represented by a trace-
ability model, and a set of role models. The model is evolved with variations and
constraints. They specify the commonality and variability in a feature model.

MAS-PL approaches that cover the Application Engineering phase propose
mainly MAS derivation approaches that extend derivation tools like in [8] where
they propose to use multi-level models to support the configuration knowledge
specification and automatic product derivation of MAS-PL.

Among MAS-PL approaches that cover both SPLE phases, SelfStarMAS
proposes a process for the development of self-adaptive agents in Internet of
Things (IoT), and extends it by a Dynamic SPL based approach, that presents
the advantage of behaviour agent adaptation at runtime [3]. The approach is
interesting, but remains specific to IoT domain.

Even though many approaches have been proposed, some limitations can be
clearly identified:
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– The use of multiple notations and stereotypes in UML diagrams to model
variability is more difficult to adopt than using feature modeling notations
only, what is more recommended by the SPLE [1];

– Using colors while introducing crosscutting features and spreading variability
specification along different kinds of models may prevent their adoption, since
any change on features must be propagated to all models;

– Some approaches focus on building the core architecture of MAS families and
neglect variabilities. Some others focus on the domain analysis activity and
do not give details on the domain implementation;

– Reusing feature models and artifacts, when developing a new family of appli-
cations, is unfeasible since the specified variability is domain-specific in all
approaches.

As a solution to those limitations, we propose a new MAS-PL approach with
one category of variability models: feature model; and two kinds of features:
generic MAS features and application specific features. In the next section, we
introduce our MAS-PL approach.

3 Overview of Our MAS-PL Approach

Our approach proposes to develop MAS families by following the general SPLE
framework [1] and reusing MAS concepts (see Fig. 2).

Our approach splits the Domain Analysis (resp. Domain Implementation)
activity of the domain engineering phase into two activities: (1) Generic MAS
domain analysis (resp. Generic MAS domain implementation) and (2) Specific
MAS domain analysis (resp. Specific MAS domain implementation). This dis-
tinction between Generic MAS domain and Specific MAS domain aims at cap-
italizing the expertise of using MAS methods, models and implementations, by
reusing both Generic MAS features and Domain specific ones.

First, during the Generic MAS domain analysis activity, we analyze the
MAS knowledge in terms of generic MAS concepts which are involved in MAS
approaches like GAIA [7], and PASSI [9]. Then, we represent Generic MAS
concepts in terms of commonalities (similarities) and variabilities (differences)
among MAS approaches, organized so that they refer to Agent, Environment,
Interaction and Organization features. Our approach relies on AOSE methods,
to enable reusing most common concepts and assets, and to provide flexibility
to MAS designers and developers by using the features they need. For instance,
the Role concept that is provided by GAIA [7], PASSI [9] and AGR [14] can be
placed as a child-feature component of the Organization feature. To illustrate
the activity, we analyze the belief-desire-intention (BDI) model [16], some orga-
nizational models like Moise+ [19], and so on. This activity produces a Generic
MAS FM.

Second, Specific MAS domain analysis activity documents similarities and
variabilities among the members of a specific MAS family. We illustrate this
activity with the multi-agent contest example1. This activity produces a Specific
1 https://multiagentcontest.org/.

https://multiagentcontest.org/
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Fig. 2. Overview of our MAS-PL approach

MAS FM. Unlike existing MAS-PL approaches that build MAS specific FM from
scratch, our approach proposes to build it by reusing the Generic MAS FM.

Third, Generic MAS implementation activity involves implementing Generic
reusable MAS artifacts, that do not rely on any specific MAS family. They
implement Generic MAS features and are composed of Agent, Environment,
Interaction and Organization artifacts. Those artifacts often come from existing
tools and frameworks.

Finally, Specific MAS implementation activity produces Specific MAS
reusable artifacts. Specific MAS implementation relies on Generic MAS imple-
mentation. Artifacts are adapted to the specific MAS family.

Application engineering activities concern both MAS requirement analysis
and derivation. According to the MAS requirements, MAS variants are speci-
fied by selecting a valid configuration from the Specific MAS FM. The specified
product that represents the MAS application variant is then derived. As we
are interested in Composition-Based implementation approaches [1] instead of
Annotation-Based ones, we need a Composer to derive the product. This deriva-
tion activity is done by FeatureHouse composer [2] that generates MAS variants
automatically by composing reusable artifacts. We illustrate our approach by
Contest Agent Variants based on configurations produced during the Applica-
tion Engineering phase.
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4 MAS Domain Engineering

This section describes the proposed domain engineering phase based on activities
and their outputs.

4.1 Generic MAS Domain Analysis

In this first activity, we analyze MAS models’ commonalities and variabilities to
build the Generic MAS FM which is a compact representation of MAS concepts.
We therefore define the features that are often shared by MAS applications.

Our idea is to produce a common FM (see Fig. 3) based on that generic rep-
resentation and to use the Vowels paradigm [12] to organize these features. The
Vowels paradigm considers that MAS are composed of (1) Agents (Vowel A),
which refers to the description of internal architectures of the system processing
entities; (2) Environment (Vowel E), which refers to domain-dependent elements
for structuring external interaction among the system entities; (3) Interaction
(Vowel I), which refers to elements for structuring internal interaction among
the system entities; and (4) Organization (Vowel O), which refers to elements
for structuring entities within the MAS. We do not include the User (Vowel U)
dimension that is considered in the Vowels extension to explicitly take into
account the user.

Fig. 3. Generic MAS feature model

Agent Features: Agent architectures provide solutions to structure agents
and define their functionalities in order to enable them to act and to interact
in a dynamic environment. Most existing architectures follow the perception-
action loop. We thus propose three categories of features: Perception, Architec-
ture (Internal Architecture) and Action. For the Internal Architecture, we con-
sider both categories: Reactive and Deliberative [13]. While deliberative agents
follow Perception-Deliberation-Action cycle, reactive agents follow Perception-
Stimulus-“Re”action one. Hybrid architectures can also be defined by combining
the previous ones (selecting both Deliberative and Reactive features).
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Deliberative agents need a knowledge model to provide them a repre-
sentation about their environment, and their own knowledge. The Knowl-
edge representation feature represents knowledge representation such as Belief
and Ontology.

The BDI model [16] includes three mental attitudes: Beliefs, Desires and
Intentions. Whenever the agent has a BDI architecture, all of Belief, Goal, and
Plan features are mandatory.

The Utility feature of our Generic MAS FM represents an option used to
endow Goal Based agents with an utility measure for evaluating the level of
success when reaching the goal, to obtain Utility Based agents.

Environment Features: Agents are situated in an environment that used to
be domain dependent and generally spatial. That environment represents many
aspects that conceptually do not belong to agents themselves such as in a soft-
ware infrastructure on which the MAS is deployed, or in a representation of
physical environment. City maps used for situated agents can be mentioned as
an example. We represent the agent Environment product line by two envi-
ronment features: the Deployment Environment which is mandatory and the
optional Physical Environment since the physical world is not always represented
in MAS.

Interaction Features: Interaction provides a way to ensure coordination of
agents’ activities. Agents’ interaction can be Direct or Indirect. In direct inter-
action, agents exchange messages to coordinate their behaviour and achieve the
global goal. In indirect interaction, agents use the environment to share infor-
mation and coordinate their actions. For example, ants use the pheromone to
coordinate. In this paper, we focus only on direct interaction that is regulated by
interaction protocols. The Interaction protocol feature is therefore mandatory.
Interaction protocols were introduced into MAS to facilitate the specification
and the implementation of interaction between agents. According to FIPA2 def-
inition, an interaction protocol is a common pattern of communication (a pre-
defined sequence of messages). Thus the specification and the implementation
of the Protocol could be independent of the scope and of the agent internal
architecture. Several interaction protocols have been proposed: request proto-
col, bargaining, auction and Contract Net Protocol (CNP), among others. Our
Generic MAS FM includes some of them with a possible feature selection.

Organization Features: In MOISE+ model [19], the organization is seen under
three points of view: Structural, Functional, and Normative. We propose to
model the MAS Organization product line by the root Organization feature
that includes two-child features: the norm optional feature; and the mandatory
structure feature to represent all possible organization structures.

Ferber et al. proposed the first organizational model Agent-Group-Role
(AGR) [14], to highlight the importance of organizational concepts like ’groups’.
The Role concept is used in most existing MAS organizational meta-models while

2 http://fipa.org/.

http://fipa.org/
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the Group concept is used only in some of them such as AGR and AGRE [15].
So, the Group feature is optional while the Role feature is mandatory.

The last mandatory feature that concerns the structure is the Topology, that
has two alternative child features: Centralized and Decentralized organizations
described with other child features.

4.2 Specific MAS Domain Analysis

During this activity, we analyze MAS commonalities and variabilities of a specific
MAS family (e.g. Multi-Agent Contest) to produce a Specific MAS FM to refine
the Generic MAS FM. The refinement process is achieved by adding Specific
features to solve the problem. These specific features are placed hierarchically
under the generic features they are specializing.

We propose as an example, the Multi-agent Contest specific domain in order
to illustrate the rest of the activities of our approach. We will refer to Specific
MAS features as Contest MAS features. Contest agents’ teams move around
the streets of a realistic city, having the goal of earning money by completing
jobs. Teams should then decide how to navigate on the city map, and where
to get the resources to assembly, buy and deliver items considering targets like
shops, warehouses, charging stations, and storage facilities. Tournament points
are distributed according to the amount of the money a team owns at the end
of the simulation.

Figure 4 depicts three examples of possible Contest MAS FM. The two cat-
egories of features are separated by a red line. The examples show what MAS
product line designers should do to refine the Generic MAS FM. However, before
doing it, Contest MAS features should be detected by the domain variability
analysis.

For instance, since the provided Contest environment is mandatory, the Con-
test mandatory feature cityMap should be added to Contest features. After, the
corresponding Generic MAS feature is refined. The result is presented in Fig. 4
on (c) where cityMap refines the Physical Environment feature. Another exam-
ple represented on (a) concerns Agent variability. The specific BuyItem Goal
feature refines the Mono Goal for specific items acquisition goal. This first ver-
sion of the Specific MAS FM represents the simplest one, and considers only
agents that achieve one goal. But, as our approach is incremental, this simplest
version of the Specific MAS FM can be also refined in turn. The left side of Fig. 5
depicts another version of the Specific MAS FM which refines the simplest one.
This refinement allows to support other versions of agents. For example, both
of DeliverItem Goal and Charging Goal Contest specific optional Features refine
the generic Multi Goal feature by specifying agents that have to achieve items
delivering and charging goals. When considering other generic variabilities such
as Organization ones, the process remains the same. The last example (see Fig. 4
on (b)) proposes possible roles of the organization of a team in Contest. This
aspect considers the structural point of view of the organization, and is rela-
tive to the Structure feature. Thus, the Role generic MAS feature is refined by
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Fig. 4. Examples of the Contest Specific MAS FM that refines the Generic MAS FM:
(a) Contest Agent refinement, (b) Contest Organization refinement and (c) Contest
Environment refinement

Contest specific roles such as Buyer and Carrier that will take part in all Con-
test Team Variants. While TruckGroup feature is an option to consider groups’
organization.

4.3 Generic MAS Implementation

The following activity concerns the Generic MAS reusable artifacts implementa-
tion. The MAS implementation is often based on existing frameworks. Artifacts
correspond to components provided by those frameworks. In this paper, we con-
sider APLTK (A Toolkit for Agent-Oriented Programming) [4] to illustrate the
feasibility of the approach in the implementation side. The set of reusable arti-
facts can be then enriched by considering other frameworks such as JaCaMo [6].

Agent Artifacts: Agent reusable artifacts implement Agent features. Although
we could not raise variability concerns related to Belief, both Goal and Plan can
present variability depending on the choosing BDI algorithms.

The three algorithms we use to illustrate our approach are those proposed by
Wooldridge [16]. The variability among these algorithms lies on the cardinality
of the sets of B, D and I. The first algorithm represents the simplest version. It
corresponds to mono-Goal agents. While the second algorithm concerns agents
that have to achieve multiple goals. The last algorithm proposes to enrich the
library of plans during the execution.

Goal and Plan variabilities can then be expressed by the following features:
Mono Goal, Multi Goal, Mono Plan and Multi Plan.



Towards a MAS-PL Engineering Approach 171

Most BDI model implementations use brf (belief revision function), ogf
(option generation function), filter and asf (action selection function). How-
ever, the algorithm variability has an impact on these functions. For instance, if
we consider BDI Mono Goal implementation, agents use neither the ogf function
nor the filter one. Mono Plan agents do not need a function to select a plan.

We implement the Mono Goal feature with reusable artifacts, composed of
the functions proposed in the simplest algorithm of Wooldridge [16] : (i) getting-
Percepts(): to execute the get-next percept, (ii) createBeliefsFromPercept(): to
create and update the agent beliefs, it represents the brf() function; (iii) checkAll-
BeliefsForInsertGoal(): for the agent deliberation to correspond to the deliber-
ate() function, and (iv) performActionGoal(): to select a plan and execute it.

Environment Artifacts: The general view of the environment considers that
agents are part of the environment, which can provide for example means
or resources for agent communication. However, environment standardization
should be done by separating both concepts. Behrens et al. [5] proposed a generic
approach for connecting agents to environment, and considered reusable environ-
ment artifacts that are as much independent of a specific environment structure
as possible. For example, we reuse EIS (Environment Interface Standard) API
[5], that represents possible reusable environment artifacts, which are mapped
to the Physical Environment feature. EIS reduces the implementation effort for
connecting to the environments (e.g. Unreal Tournament UT3 and UT2004 gam-
ing environments, and the Multi-Agent Contest).

Interaction Artifacts: The reusable Interaction artifacts concern mainly
the Interaction protocols. FIPA standard Interaction artifacts are available to
the programmer through abstractions to develop FIPA-compliant MAS. Some
reusable FIPA implementations are provided by MAS frameworks such as the
CNP implementation in JADE. Thus, we reuse JADE API3 that includes role
behaviors for FIPA standard protocols. For example, the CNP-Initiator imple-
ments the initiator role in a FIPA-Contract-Net or Iterated-FIPA-Contract-Net,
while the CNP-Participant corresponds to the responder role. These two imple-
mentations are mapped to the CNP feature.

Organization Artifacts: Some concepts of the Generic MAS FM which are
linked to the organization such as Roles may be implemented by reusable arti-
facts at the implementation level. For instance, in JADE API, the classes imple-
menting the behaviours can represent roles that are reusable.

4.4 Specific MAS Implementation

During the last activity of Domain Engineering, Specific MAS reusable artifacts
implement Specific MAS features by reusing Generic MAS artifacts.

Figure 5 summarizes the four activities of the Domain Engineering. It illus-
trates a Contest MAS reusable artifact which is at the right side bottom of

3 http://jade.tilab.com/doc/api/.

http://jade.tilab.com/doc/api/
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Fig. 5. An example of a Contest MAS reusable artifact obtained through the four
Domain Engineering activities

the figure. This Contest artifact implements the BuyItem Goal Contest feature,
by reusing the PerformActionGoal() function that is mapped to the Mono Goal
feature.

5 MAS Application Engineering

This section will present application engineering activities, and illustrate them
with Contest Agent configuration and derivation.

5.1 Requirement Analysis

During this activity, to obtain customized MAS, each requirement is analyzed
to detect which features have to be selected from the Specific MAS FM, to fill
that requirement and constitute a configuration.

Table 1 gives some examples of Contest requirements. The first requirement
that corresponds to the Contest Agent Variant CAV1, is fulfilled by the given
configuration presented on (a) in Fig. 6. All selected features are represented
on (b) through a set of literals. Consequently, the non selected features are
excluded from the configuration. The other requirements correspond to Contest
Team Variants that consider some organizational aspects. For instance, unlike
CTV3, to fill the requirements of CTV1, we must include features such as the
Non Hierarchical feature, and exclude others such as the Hierarchical one.

5.2 Product Derivation

For a valid configuration, the MAS variant derivation activity is automatically
achieved by a composer, such as FeatureHouse.
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Fig. 6. An example of (a) a Contest Agent Configuration (b) its propositional expres-
sion and (c) the derived Contest Agent Variant

Table 1. Examples of multi-agent Contest requirements

Contest variants Requirements

CAV1 A Car Contest Agent Variant that has to achieve one goal, by
executing an acquisition job (buying items in a shop). The agent
has no charge utility concerning its battery, and has to execute
one Plan (find a shop, move to it, and buy the items)

CTV1 A Contest Team Variant (CTV) that looks only for priced jobs.
The team is organized according to a non hierarchical topology
without including groups structures

CTV2 A Contest Team Variant that looks only for priced jobs. The
team is organized according to a non hierarchical topology, with
the possibility of structuring into groups of cars and trucks. The
groups are supervised by group supervisors

CTV3 A Contest Team Variant that looks for both priced and
auctioned jobs, and that is organized according to hierarchical
topology without including groups structures

CTV4 A Contest Team Variant that looks for both priced and
auctioned jobs, and that is organized according to hierarchical
topology, with the possibility of structuring into groups of cars
and trucks. The groups are supervised by group supervisors
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Figure 6 gives on (c) the derived code relative to the configuration on (a).
For more details, interested readers can access our link4.

6 Evaluation

Evaluation Objectives: The main objectives of our evaluation are to show the
feasibility of our approach to derive MAS variants and to deduct the rate of
reuse improvement our approach brings.

In order to evaluate our approach, we first derived several Contest Agent Vari-
ants and deployed them in the MAS Contest environment. Second, we involved
groups of students to derive Contest Agent Variants by following the SPLE
framework without relying on the generic MAS features and artifacts that we
proposed. After, we compared students’ Contest feature models and implemen-
tations with ours.

Contest Agent Variants Derivation: The implementation of our approach
adopted the Feature IDE tool5 to specify the feature models, and to create
agent configurations. FeatureHouse composer was used to derive Contest Agent
Variants.

The first version of the product line involves neither interaction nor orga-
nization aspects of the team, and considers only agents that have to complete
their priced jobs. More details are available on the Contest website under the
Contest 2016 example6.

The case study offers more than 5948 possible configurations, as shown on
the upper left side in Fig. 6. We present among them ten (10) of the derived
and simulated Contest Agent Variants. The variants are labeled from CAV1
(Contest Agent Variant) to CAV10. Table 2 represents the relative configurations
of each variant that includes both Generic and Contest MAS features labeled
respectively GMF and CMF.

CAV1 and CAV2 have the minimal feature configurations that involve a total
of six mandatory features. CAV1 corresponds to the simplest agent (see Fig. 6).
CAV3 to CAV10 represent variants with a maximum number of eight possible
selected features. These variants follow the second BDI algorithm [16]; and differ
on their charging utilities. According to those variabilities, more or less methods
and lines of code are derived. We calculate them by using eclipse Metrics7.

The percentage of reused features and methods show the two main advantages
of our approach. Indeed, the originality of our approach is the possibility to reuse
Generic MAS features and artifacts. The percentage of reused features ranges
from 25% to 33%, while the percentage of reused implemented methods ranges
from 7% to 10.18%.

The above results correspond to the rate of reuse improvement our approach
offers. The results show also the advantage of using software product lines in our
4 http://www-desir.lip6.fr/∼boufedji/emas17.html.
5 https://marketplace.eclipse.org/content/featureide.
6 http://multiagentcontest.org.
7 http://eclipse-metrics.sourceforge.net.

http://www-desir.lip6.fr/~boufedji/emas17.html
https://marketplace.eclipse.org/content/featureide
http://multiagentcontest.org
http://eclipse-metrics.sourceforge.net
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approach. There is a development time saving of about 354 lines of code, and
25 methods from CAV1 to CAV10. We can also compare variants according to
their strategies using utilities. Indeed, when using our approach, we can compare
Contest agents’ performances easily since the agents are derived automatically
and can be deployed faster. For example, through simulations, we could distin-
guish between the best and the worst charging utilities. We could also make the
agents variants play together.

Table 2. Some metrics for ten derived Contest Agents Variants

MAS-PL Features
GMF CMF Metrics
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CAV1 x x x x x x 6 1506120 33 7
CAV2 x x x x x x 6 1565120 33 7
CAV3 x x x x x x x x 8 1523108 25 10.18
CAV4 x x x x x x x x 8 1654127 25 9
CAV5 x x x x x x x x 8 1760130 25 8.46
CAV6 x x x x x x x x 8 1799133 25 8.27
CAV7 x x x x x x x x 8 1850133 25 8.27
CAV8 x x x x x x x x 8 1821130 25 8.46
CAV9 x x x x x x x x 8 1815133 25 8.27
CAV10 x x x x x x x x 8 1860133 25 8.46

The second version of the product line involves some interaction and organi-
zation aspects of the team. Due to space restrictions we did not include the table.
The product line includes four variants labeled from CTV1 (Contest Team Vari-
ant) to CTV4. Their configurations correspond to the requirements presented
in Table 1. The results show a feature reusing rate that ranges from 27.27%
to 30.76%. These variants which consider organization and interaction features
presents a higher rate of reused features compared to the agent variants pre-
sented above.

Involving Students: Groups of students were involved in this activity. None of the
groups was familiar with SPL concepts. The students were asked to model, imple-
ment and derive Contest multi-agent variants by following the SPLE framework
that we use in our approach. However, we did not provide them the starting
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points proposed by our approach, to compare their results with the ones we
obtained by relying on both generic MAS FM and artifacts. As a result, we
could distinct three categories of groups: CAT1, CAT2 and CAT3.

CAT1 represents groups that failed on detecting domain-independent vari-
ability. The category presents the worst results regarding Contest Agent Vari-
ants. Indeed, 44.44% of the students belong to this category.

The students focused only on domain specific variability, what let them build
only domain specific features and artifacts.

CAT2 includes groups that detected domain-independent variability, but did
not include it in the feature model. It presents a rate of about 33.33%. This
intermediate category succeeded in detecting reusable generic MAS features, but
did not exploit them in the feature model. For example, they thought about MAS
organizational variabilities such as centralized or decentralized organizations; but
did not consider these aspects in possible configurations.

CAT3 concerns groups that detected domain independent variability and
introduced it in the feature model. It was the most successful category, but it
represents the lowest rate of 22.22% of the students.

However, the total number of reusable features does not exceed eight, and
include Interaction and Organization features.

The results brings out the advantages of our approach. It can provides CAT1
a starting point to support domain-independent variability. Moreover, it allows
CAT2 to exploit the detected features to derive more multi-agent variants. In
addition, it provides CAT3 more reusable features and artifacts than those
detected. Our approach provides to all categories more possible configurations,
which implies more variants.

All these facts lead to increase the number of Contest Agent Variants, save
time and effort to the whole categories through the whole process.

Our MAS-PL approach uses of known notations covering both design and
implementation aspects, what would facilitate its use and its adoption by MAS
developers. Moreover, since it provides a generic MAS FM, MAS designers and
developers will not build feature models nor develop the source code from scratch.

However, our approach has some limits. Indeed, it does not consider all orga-
nizational artifacts, most variability is specific to contest and the total number
of reusable artifacts which should be increased.

But, we prospect to enrich our work with a more refined MAS variability.
Currently, we are studying self-organizational aspects of the system. We also
prospect to evaluate our approach through other specific domains. We project
to evaluate it by students as well.

7 Conclusion

In this paper, we proposed a first version of a new MAS-PL approach for the auto-
matic derivation of MAS variants according to MAS requirements. Our MAS-PL
approach follows the SPLE framework in both domain and application engineer-
ing phases. It relies on two types of features (resp. two types of reusable artifacts):
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the Generic MAS features (resp. artifacts) and the Specific MAS features (resp.
artifacts). The features of the Generic MAS feature model and those of Specific
MAS feature model are organized according to the Vowels paradigm.

Our MAS-PL approach deals with known notations and covers both the
design and implementation aspects. So, it is easy to use by MAS developers.
Moreover, it is incremental, the Specific MAS FM can be refined as many times
as needed to deal with more specific MAS variability.

We illustrated the different activities of our MAS-PL approach by simple
examples issued from the Multi-Agent Contest 2016. We derived a Contest prod-
uct line of agents that includes variants that have been simulated in the Multi-
Agent Contest environment. We compared those variants according to some
metrics. The result shows that our approach is promising. We also compared
these results to those obtained by students without using the Generic MAS fea-
tures and artifacts we proposed. This comparison brought out the value of our
Generic MAS features and artifacts in practice.

As for further on-going research work, we are concentrating on an interest-
ing perspective which would allow us to obtain more variability to enrich both
Generic MAS FM and artifacts. We intend, for instance, to introduce interac-
tion mechanisms such as ant-based algorithms. We also prospect to evaluate our
approach by groups of students to compare their results to those presented in
this paper. Another perspective is to suggest to researchers and MAS developers
to use our approach when implementing Multi-Agent System Product Lines in
different domains. The feedback would help us improve our work to serve the
technological development and advances.
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Abstract. Multiagent systems (MAS) can vary in several ways: by involving
different agents, distinct interaction patterns, various forms of agent organizations
and environments. One promising approach to consider this variability in MAS
is the use of the concept of Multiagent System-Product Line (MAS-PL). The idea
is to implement a family of MAS that belong to the same domain, instead of a
single MAS. However, there is still a lack of methodological support to develop
MAS-PL. This paper tackles this problem with a rigorous respect of software
product line principals. We propose an automated approach, the Meduse for
MAS-PL, to generate families of MAS-PL methods that offer software product
line best practices integrated with existing MAS development approaches to
support MAS-PL development. To illustrate, we present a case study involving
a family of MAS-PL methods that extends Gaia and Tropos.

Keywords: Multiagent systems · Software product line · Variability · Method

1 Introduction

Managing variability in Multiagent systems (MAS) has been identified during the last
years as one of the main issues within Agent-Oriented Software Engineering (AOSE)
[2, 10, 18, 19]. Indeed, the intrinsic properties of MAS, such as modularity, make them
variability-rich systems. The notion of software variability is defined as the ability of a
software system to be changed, customized or configured for use in a particular context
[25]. Therefore, AOSE approaches should consider this variability to design and develop
not only a single MAS, but families of systems at the same time.

More than twenty AOSE methods have been proposed by the MAS community to
support MAS development [6]. Each of them proposes a set of development activities
for analyzing, designing, and implementing the typical MAS components: agents, envi‐
ronment, interaction, and organization [12]. Gaia [26] and Tropos [3] are among the
most popular AOSE methods. However, they only proposed to design and develop a
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single MAS variant at time. Especially, they do not propose in their initial definition any
explicit activity to manage variability and develop families of systems rather than a
single system. One promising approach for tackling this limitation has been already
identified by the MAS community since the early 2000’s through the concept of Multi‐
agent System-Product Line (MAS-PL) [10]. Instead of considering a single MAS, MAS-
PL aims to organize a family of multiagent systems according to their similarities (i.e.,
commonalities) and differences (i.e., variabilities) in order to build MAS customized
according to specific needs. MAS-PL reuses concepts proposed by Software Product
Line Engineering (SPLE), which is a systematic approach for variability management
proposed by the Software Engineering community [1, 8].

Although already introduced into the AOSE community, there is still a lack of meth‐
odological support to implement MAS-PL. As we will see in Sect. 2, among the more
than twenty AOSE methods, only few of them support the specificities of MAS-PL, e.g.
Gaia-PL [11], Peña et al. [19], and Nunes et al. [18]. Nevertheless, in these methods the
proposed extensions are very light and do not cover all Software Product Line activities.
Moreover, they are tailored to develop MAS families in specific domains and may not
be suited for MAS families in diverse domains.

This paper tackles the mentioned issues by proposing Meduse for MAS-PL, an
automated approach that provides steady methodological support for MAS-PL devel‐
opment by integrating SPLE best practices with several existing AOSE methods. Indeed,
this approach results from cooperation between AOSE and SPLE research teams: we
capitalize all knowledge on SPLE activities in a way that such activities can be auto‐
matically incorporated into AOSE existing methods as a set of SPLE best practices in
order to develop MAS families in diverse domains. The proposed approach follows
Method Engineering techniques [4, 14] and is built upon the Meduse framework [7]. To
illustrate our approach we present a case study that shows how we can provide MAS-
PL methods that take into account SPLE best practices to extend two popular AOSE
methods, Gaia and Tropos.

The paper is organized as follows: Sect. 2 presents background and motivations.
Section 3 presents our approach for dealing with method extensions to develop MAS-
PL. Section 4 illustrates such an approach using a case study. Finally, Sect. 5 concludes
this work and discusses future work.

2 Background and Motivations

In this section we present some basic notions related to SPLE and MAS-PL methods
that are essential for understanding the main aspects of our approach, as well as a moti‐
vating example based on Tropos.

2.1 Multiagent System Product Line Methods

MAS-PL methods reuse concepts of SPLE for MAS families’ development. Before
discussing existing MAS-PL methods, we will briefly introduce the general SPLE
framework. Figure 1 shows its four main activities - domain analysis, domain
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implementation, requirement analysis, and product derivation - organized in the Domain
and Application Engineering levels, as well as in the Problem and Solution spaces [1].

Domain Analysis: This activity aims to define the scope of the problem to be tackled
and explicitly specify commonality and variability between products that are included
in the product line. The results of domain analysis are usually documented in a variability
model. Several formalisms have been proposed to specify such a variability model.
Among them, we distinguish Feature Model [16] and Decision Model [23]. The former
derives from the work on Feature Oriented Domain Analysis (FODA) [16], while the
latter has its roots on the Synthesis method [5, 23].

A feature consists of a distinctive user-visible characteristic of a software product
line, used to represent identifiable functional abstractions that shall be present in the
final product [16]. It usually encompasses commonalities and variabilities. A feature
model describes relationships between features, and formally specifies which feature
selections are valid. This is made by hierarchically organizing features in a tree, where
edges are used to represent parent-child relationships (see next section, Fig. 3). These
parent-child relationships could be of the following types: mandatory (the child feature
must be present in a product whenever its parent appears); optional (the child feature
may be present when its parent appears); alternative (exactly one child feature must be
present when the parent feature appears); or (at least one child feature must be present
whenever the parent feature appears). Moreover, a set of cross-branch constraints is used
to indicate dependencies between features pertaining to different tree branches. Finally,
in order to establish their consistency feature models can be described through a set of
propositional formulas. Thus, a Satisfiability (SAT) solver tool can be used to determine
the feature model consistency, i.e. if it will generate at least one valid product, or whether
a given product is valid.

Decision Model is another way of modelling variabilities. In this kind of models,
decisions describe the variabilities available in a product line, and specify the set of
choices during product derivation. Therefore, taking a decision involves analyzing
multiple options and then selecting those that better reflect the customers’ needs.

Fig. 1. Software Product Line Engineering general framework [1]
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Domain Implementation: In this activity the commonalities and variabilities previ‐
ously specified are developed as a set of reusable artifacts (also called assets) and organ‐
ized according to the specified variability model.

Among the domain implementation approaches we can cite Delta-oriented Program‐
ming [20, 21], a compositional and modular approach to manage variability based on
modifications applied to a core product, which is transformed into another variant of the
product line by incrementally applying a set of delta modules that propose additions,
removals, or alterations of elements. A condition is a propositional constraint attached
to every delta module through a when clause and it determines for which features the
specified modifications are to be carried out. Therefore, conditions create the connection
between the modifications prescribed in delta modules and the features. A list of delta
modules and attached conditions determines the modifications required to implement
different products of the product line, as well as the order in which such modifications
shall be applied. Indeed, such a list groups delta modules in ordered partitions and parti‐
tions can be partially ordered, i.e., while the order of partitions is fixed, deltas in the
same partition can be applied in any order. Finally, the core product can be an empty
product.

Requirement Analysis: During this activity needs of a specific customer are consid‐
ered in order to select the required variabilities (e.g. feature selection), also called a
configuration [1]. Therefore, the variability model is instantiated according to the
customer requirements.

Product Derivation: Once we have a selection of the required variabilities repre‐
senting customer needs, the product derivation activity aims to generate (or derive) the
product itself. As underlined by Apel et al. [1], depending on the implementation
approach this activity can be automated. For compositional approaches as Delta-oriented
Programming, the idea is to use what is referred as composer to derive product variants.

Extending AOSE methods to support MAS-PL should consider the integration of
the different SPLE activities discussed above. As mentioned early, there are just a few
MAS-PL methods. Each of them extends particular AOSE method(s) to integrate SPLE
activities. However, this integration is often partial and it only concerns some of the
SPLE activities previously presented. For instance, Nunes et al. propose a Domain
Engineering method to develop MAS-PL that uses PLUS [13] as the SPLE approach,
and PASSI [9] combined with MAS-ML [22] as AOSE method.

Peña et al. propose the use of MaCMAS [19] and UML to define the core architecture
of a MAS-PL. Their method only considers the Domain Engineering level and it adopts
MaCMAS models in several levels of abstraction to guide the building of the MAS-PL
variability model. In the same way as Nunes and colleagues, Pena and colleagues’
approach results into a single MAS-PL, instead of a family one. Dehlinger and Lutz [10,
11] propose an approach that combines SPLE techniques and Gaia. The method is called
Gaia-PL and it is devoted to the Domain Engineering level of a software product line.
Their goal was reusing requirements specifications and a heuristic is provided to guide
the building of the feature model. Nevertheless, the proposed MAS-PL approaches may
not support different application domains than the ones presented as running example.
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2.2 Motivating Example

We consider the Tropos method as a running example to discuss the current methodo‐
logical limitations in the MAS-PL development: MAS-PL methods propose a partial
integration of SPLE activities with particular AOSE methods.

Tropos offers a set of development phases to deal with requirements gathering as
well as to analyze, design, and code two MAS components: agents and interaction.
Figure 2 depicts the five subsequent phases of Tropos, from requirement to implemen‐
tation phases. We follow the standard notations of the Software and System Process
Engineering Meta-model (SPEM) [17], which is the de facto standard for representing
development methods [15].

Fig. 2. The Tropos phases using the SPEM notations.

As initially proposed, Tropos only considers the phases that are related to the devel‐
opment of a single MAS without any methodological support for MAS-PL development.
To be suitable for MAS-PL development, the original phases of Tropos (see Fig. 2)
should be extended by integrating the SPLE activities. For instance, we need to add the
domain analysis phase to specify variability. In addition, we also need to include activ‐
ities that are related to domain implementation and product derivation. Many interesting
issues can be considered in this context:

• How can we integrate the different SPLE activities with the Tropos method of Fig. 2,
concerning both MAS-PL domain and application engineering levels?

• How can we provide MAS-PL methods based on Tropos for developing MAS fami‐
lies in diverse domains?

• As early discussed in Sect. 2.1, there are two kinds of formalisms to specify the
variability model during SPLE domain analysis: Feature Model and Decision Model.
Then, how can we manage these different integration possibilities into Tropos?

• How can we automatically generate a new MAS-PL method based on Tropos and
SPLE best practices according to project needs?
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The next section presents how our approach deals with these issues. As we will show,
Meduse for MAS-PL can automatically generate variants of MAS-PL method based on
Tropos, as well as based on other AOSE methods like Gaia or PASSI. Moreover, it
offers a set of activities based on SPLE best practices that are ready to be fully integrated
with these AOSE methods. Finally, our approach provides MAS-PL methods for devel‐
oping MAS families in diverse domains.

3 From MAS Methods to MAS-PL Methods with Meduse

In this section we present the Meduse for MAS-PL approach. In few words, it is an
automated approach to generate methods for developing MAS-Product Lines that
provides a steady methodological support following SPLE best practices. Besides, it
promotes the reuse of existing AOSE methods, by extending them to explicitly support
MAS-PL development according to project needs. Finally, to speed up this extension
Meduse for MAS-PL capitalizes all knowledge on SPLE activities proposed in [1],
providing SPLE best practices ready to be used for MAS development.

To achieve such a goal our approach takes advantage of Method Engineering tech‐
niques. Moreover, it is based on the Meduse framework, which itself adopts SPLE tech‐
niques. Therefore, Meduse for MAS-PL uses SPLE principles in two levels. First, SPLE
techniques are used in a meta-level fashion to generate method variants to develop MAS-
PL. Second, these method variants are used to develop MAS product lines and then to
generate MAS applications, i.e. product variants. Since our approach is based on the
Meduse framework, we start presenting it.

3.1 Meduse in a Nutshell

Meduse Framework is a general approach to generate software development methods.
Meduse adopts SPLE techniques to manage method variability, as well as to automati‐
cally derive method variants. Moreover, it adopts Method Engineering principles to
manage reusable method artifacts, so-called method fragments, which consist of stand‐
ardized building blocks based on a coherent part of method [14]. Method variants are
built upon these fragments.

Figure 3 presents the big picture of the Meduse framework, showing from the method
domain analysis to the final method variant, which is automatically generated according
to project needs. First, Meduse proposes to represent method domain knowledge in terms
of similarities and differences among variants of a same method family by means of a
feature model.

Second, during method domain implementation these method’s commonalities and
variabilities are developed as a set of method fragments, and organized according to the
feature model. In order to do that Meduse proposes reusable method fragments together
with a compositional approach based on Delta-oriented programming (see Sect. 2).
Thus, method derivation relies on the application of delta modules over an empty
method: the modification proposed by a delta module consists of the additions and/or
removals of reusable method fragments from the method variant. Therefore, one can
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define the partially-ordered sequence in which method fragments will appear in the
method variant, since delta modules are grouped in fixed-ordered partitions, and
modules in the same partition can be applied in any order.

Third, method variants are specified through a method configuration, which consists
of a set of features selected according to project needs. Finally, Meduse proposes a tool –
the Meduse Composer - that automatically derives the specified method variant: it takes
the empty method as starting point of the work breakdown structure and incrementally
adds or removes method fragments according to the modifications specified in the delta
modules connected with the selected features through attached conditions. Figure 3
depicts the final method variant automatically generated by the Method Variant Deriva‐
tion activity.

3.2 Managing MAS-PL Method Family with Meduse

After introducing the Meduse framework we present the Meduse for MAS-PL approach
in details.

Figure 4 illustrates how we can implement a family of MAS-PL methods and auto‐
matically generate method variants. As previously mentioned, our approach applies
SPLE principles in two levels: to develop a family of MAS-PL methods and then to
develop MAS product lines themselves. First, a method family for MAS-PL is specified
in terms of commonalities and variabilities among methods. Second, method family
implementation is speeded up with a set of reusable method fragments offered by the
Meduse for MAS-PL approach. Such fragments concern SPLE best practices and are
ready to be integrated to AOSE methods. Third, a particular method for developing MAS
product lines is configured over the method’s commonalities and variabilities available
in the method family, and then this final method is automatically generated and used to
support the development of MAS product lines.

Fig. 3. A big picture of Meduse framework
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Fig. 4. Generating method variants for developing MAS product lines

Specifying Commonalities and Variabilities for a Family of MAS-PL Methods
MAS-PL method variants are generated through method families where the MAS-PL
methodological knowledge is represented as method commonalities and variabilities by
means of a feature model. Thus, on one hand features represent the various AOSE
methods that may be extended, like Tropos, Gaia, or PASSI. On the other hand, features
represent a large set of SPLE activities and related techniques that may be chosen as
best practices to develop MAS-PL. Examples of such activities are those described by
the general SPLE framework proposed in [1] (see Sect. 2). One of the main advantages
of using feature models to specify a MAS-PL method family is that we can use SAT
solver tools to determine whether such a feature model is consistent, i.e. if at least one
valid method configuration exists, and whether or not a given configuration is valid.
Therefore, a valid MAS-PL method variant is guaranteed.

Reusing/Building and Organizing Method Fragments for MAS-PL Method Family
The first step of the MAS-PL Domain Implementation consists of reusing and/or
building a set of method fragments that implements the commonalities and variabilities
encompassed by a family of MAS-PL methods. In order to speed up this implementation,
we have capitalized all knowledge on SPLE activities proposed in [1] as a set of reusable
method fragments. Therefore, Meduse for MAS-PL offers several reusable fragments
that provide detailed guidance to develop MAS-PL based on SPLE best practices. These
fragments were sourced from FODA, Synthesis, and the Apel et al. approach, and are
ready to be integrated to existing AOSE methods. For instance, some of these reusable

An Automated Approach to Manage MAS-Product Line Methods 187



fragments deal with feature and decision models, while others deal with the analysis of
a particular MAS application over a MAS product line, and the generation of the final
code of this MAS application. All of these method fragments encompass fine-grained
elements, like tasks, work products, and roles. Figure 5 illustrates four of them: Define
MAS-PL Decision Model, Define MAS-PL Feature Model, Perform MAS Application
Requirement Analysis, and Generate MAS Product Code. For instance, the first is
sourced from Synthesis and encompasses two tasks: Define Domain Scope and Define
Decision Model. Such tasks are performed by the System Analyst role and produce
Domain Definition and Decision Model as work products, respectively.

Fig. 5. Example of four method fragments provided by Meduse for MAS-PL

On the other hand, fragments related to AOSE may be provided by existing method
fragment’s libraries, like the Medee framework [6] that offers more than a hundred
fragments sourced from popular AOSE methods. Moreover, method fragments may be
also built from scratch whenever the method domain analysis identifies a new feature
not yet implemented as reusable asset, related both to AOSE or SPLE.

The second step of the MAS-PL Domain Implementation consists of specifying delta
modules that describe the modification to be applied to a method variant by incremen‐
tally adding or removing method fragments. These delta modules are then associated
with the conditions in which they should be applied. As explained in Sect. 2, these
conditions create the connection between the modifications prescribed in delta modules
and the feature model. Finally, delta modules are put together in an ordered list and then
are ready to be applied during the generation of a particular MAS-PL method variant.
Nevertheless, before such a generation we have to configure this method.
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Configuring a Particular MAS-PL Method
To configure a particular MAS-PL method we should analyze the project at hand needs
and express them through a selection of the AOSE and SPLE development activities
among those provided by the MAS-PL method family. In order to result in a valid method
configuration such a selection must take into account the relationships specified in the
feature model. As previously explained, Meduse for MAS-PL proposes the use of SAT
solver tools to determine whether a given configuration is valid.

For instance, we may select Tropos as the AOSE method to be extended by inte‐
grating SPLE activities to guide the analysis, design, and implementation of a MAS
product line concerning the development of several agents, their roles and interactions.
Moreover, these SPLE activities may also guide the requirement analysis and derivation
of the final MAS application.

Generating a MAS-PL Method Variant
Finally, the final MAS-PL method is automatically generated by the Meduse Composer
and can be used to support the development of MAS product lines.

The following steps are performed by the Meduse Composer tool. First, it finds all
delta modules that shall be applied to the MAS-PL method variant, i.e., those delta
modules attached to a condition evaluated to true for the configuration. For instance, a
condition defined as the propositional formula Tropos and Decision Model is evaluated
to true whenever a method configuration includes these two features, and therefore all
delta modules attached to this condition are taken into account during method derivation.
Second, that tool generates an empty MAS-PL method variant and then adds and/or
removes reusable method fragments from that variant according to the modification
proposed by the selected delta modules, always respecting the order defined by the list
of modules.

We have developed a prototype implementation of Meduse for MAS-PL, in which
we adopted FeatureIDE [24] as tool to specify the feature model and to create method
configurations, as well as SPEM and Eclipse Process Framework (EPF)1 to manage
method fragments, delta modules, and the derived method variants. Interested readers
may access the Meduse for MAS-PL website2 to see available reusable method frag‐
ments sourced from several SPLE approaches, and method variants for MAS-PL devel‐
opment automatically derived during the case study presented in the next section.

4 Creating MAS-PL Method Family: A Case Study

In this section we present a case study that shows how we can use our approach to extend
two AOSE methods - Gaia and Tropos - to support MAS-PL development following
SPLE best practices. It consists of creating a MAS-PL method family and then deriving
several method variants.

The scope of this method family is defined as follows. It aims at providing methods
to develop MAS product lines based on Gaia or Tropos. Moreover, such method family

1 https://eclipse.org/epf/.
2 https://pages.lip6.fr/Tewfik.Ziadi/EMAS17/.

An Automated Approach to Manage MAS-Product Line Methods 189

https://eclipse.org/epf/
https://pages.lip6.fr/Tewfik.Ziadi/EMAS17/


would offer two techniques for modeling MAS variabilities - feature model and decision
model - as well as it would deal with the development of four MAS components: Agent,
Environment, Interaction, and Organization. Finally, this method family would involve
both Domain and Application Engineering levels to provide a full SPLE development
cycle: from MAS-PL Domain Analysis to the MAS-PL Product Derivation. It should
be noted that another scope definition, for instance involving different MAS components
or other AOSE methods, like PASSI, is also possible and would give rise to a different
MAS-PL method family.

The resulting feature model contains eighteen features, where eleven of them repre‐
sent the similarities among the method variants pertaining to such a family, while the
remainder seven features represent how such method variants may vary. To implement
the method family we reused a set of method fragments sourced from Gaia and Tropos,
as well as those provided by the Meduse for MAS-PL approach concerning FODA,
Synthesis, and Apel et al. Finally, the Meduse Composer was used to derive the twenty
possible variants. The remainder of this section describes this case study in detail.

4.1 Feature Model for a MAS-PL Method Family

As aforementioned, similarities and differences among the method variants of our MAS-
PL method family were specified through the feature model presented in Fig. 6. This
feature model is composed of eighteen features and one constraint
(𝖾𝗇𝗏𝗂𝗋𝗈𝗇𝗆𝖾𝗇𝗍 𝗏 𝗈𝗋𝗀𝖺𝗇𝗂𝗓𝖺𝗍𝗂𝗈𝗇 =>𝖦𝖺𝗂𝖺). The root of that diagram is labelled with
MAS_PL_Method to represent a MAS-PL development method. It has three mandatory
child features: MASComponent, MASMethod, and SPLEngineering.

Fig. 6. A feature model diagram for a MAS-PL method family

MASComponent has two mandatory and two optional child features – Agent and
Interaction, Environment and Organization - respectively, because in this case study we
consider that a MAS-PL method must cover at least the development of agents and their
interaction, and may cover also environment and organization development. Thanks to
the unique constraint defined in this model, whenever a method variant includes the
features Environment or Organization it must include Gaia as MASMethod, because
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Gaia deals with the development of the four MAS components, while Tropos, the
optional MAS-Method child feature, takes into account only the development of Agent
and Interaction.

Moreover, SPLEngineering has the two SPLE levels as child features: DomainEn‐
gineering and ApplicationEngineering. The former is a mandatory feature while the
latter is an optional one because in this case study we consider that a MAS-PL method
must propose at least the Domain Engineering level. The DomainEngineering feature
has three mandatory child features – Analysis, Design, Implementation – which corre‐
spond to the three domain development phases proposed by Apel et al. Additionally,
Analysis offers two alternative child features - FeatureModel and DecisionModel - that
represent the choice of SPLE techniques to model MAS variability. Therefore, exactly
one of these techniques must be present in a MAS-PL method variant.

Finally, whenever a MAS-PL method includes the ApplicationEngineering feature
it must include its two child features: ProductAnalysis and ProductDerivation. It should
be observed that such a feature model corresponds to the previously described scope. A
diverse scope would give rise to a different feature model.

4.2 Domain Implementation for a MAS-PL Method Family

While similarities and differences among the method variants of the MAS-PL method
family were specified through a feature model, we used reusable fragments and Delta-
oriented programming to implement such features. Therefore, the implementation of
that MAS-PL method family comprised a set of reusable method fragments organized
in a list of delta modules. Method fragments were sourced from the two AOSE methods
considered in our scope, Gaia and Tropos. Concerning SPLE approaches, we have
reused those reusable fragments provided by the Meduse for MAS-PL approach.

The rest of this section describes how we reused method fragments and implemented
delta modules, starting with method fragments.

Method Fragments for MAS-PL Family
In order to deal with SPLE activities and techniques we reused ten of the set of fragments
provided by Meduse for MAS-PL. These fragments were sourced from FODA (for
feature model), Synthesis (for decision model), and Apel et al. (for SPLE domain and
application activities). Besides, method fragments sourced from Gaia and Tropos were
provided by the Medee Framework: (i) six fragments sourced from Gaia were used to
guide the analysis and design of agents, environment, interaction, and organizations; (ii)
five fragments sourced from Tropos were used to analyze and design agents and inter‐
action. Summing up, this case study involved twenty-one method fragments.

Figure 7 shows two examples of these method fragments, one sourced from Tropos
(Gather MAS-PL Requirement with Tropos) and other sourced from Synthesis (Define
MAS-PL Decision Model).
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Fig. 7. Examples of two method fragments for a MAS-PL method family, sourced from Tropos
(left) and Synthesis (right).

Delta Modules for MAS-PL Method Family
A list of eleven delta modules were implemented to specify the modifications to be
applied during the derivation of MAS-PL method variants according to a given method
configuration.

Figure 8 (left) illustrates four of these delta modules, D-TroposFMAnalysis, D-
GaiaDMAnalysis, D-TroposDMAnalysis, and D-GaiaFMAnalysis, as well as the
comprised method fragments of the first two delta modules. Note that two of these frag‐
ments correspond to those depicted in Fig. 7, namely Gather MAS-PL Requirement with
Tropos and Define MAS-PL Decision Model fragments.

Fig. 8. A partial representation of the List of Delta modules containing method fragments (left),
and the list of Delta modules and attached conditions (right)

Moreover, the list of delta modules determines the order in which such delta modules
must be applied during method derivation (see Fig. 8 right). As explained before, delta
modules were attached to conditions which allow their connection with combinations
of features. For instance, a MAS-PL method variant would include the four method
fragments defined in the D-TroposFMAnalysis delta module whenever the Tropos and
FeatureModel features were selected to configure the MAS-PL method variant.
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Method Configuration and Derivation of MAS-PL Method Variants
After implementation, the MAS-PL method family is ready to give rise to method
variants according to a given method configuration. As shown in Table 1 (left), the
eighteen features proposed in this case study offered twenty possible MAS-PL method
configurations, four of them based on Tropos and sixteen based on Gaia.

For instance, Configuration 1 is among the smallest MAS-PL method configurations
and encompasses eleven features: MAS component, Agent, Iteration, MAS Method,
Tropos, SPL Engineering, Domain Engineering, Analysis, Feature Model, Design,
Implementation. On the other hand, Configurations 19 and 20 encompass sixteen
features and therefore are among the largest ones. The remaining possible configurations
encompass sets ranging from twelve to fifteen features.

Table 1. MAS-PL method configurations and derived MAS-PL method variants.
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MAS-PL Method Variants

The derivation of a MAS-PL method variant consists of incrementally applying to
an empty method the modifications specified by the delta modules attached to valid
conditions in a given configuration. Such a derivation was automatically achieved by
the Meduse Composer as follows:

(i) Finding all delta modules that shall be applied to the MAS-PL method variant, i.e.
those modules attached to a condition evaluated to true for the given configuration.
For example, for Configuration 1 the delta module D-TroposFMAnalysis (see
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Fig. 8 right) shall be selected, since its attached condition (Tropos and
FeatureModel) is evaluated to true.

(ii) Generating the method variant by applying the modification proposed by the
selected delta modules respecting the order defined by the list of delta modules.

All the twenty MAS-PL method variants presented in Table 1 (right) have been
derived and are available in the Meduse for MAS-PL website. Two of these method
variants are depicted in Fig. 9: Tropos-PL Variant 1 and Gaia-PL Variant 16. The simi‐
larities among these variants are highlighted in red: the two method fragments belonging
to Domain Design phase and the entire Domain Implementation phase.

Fig. 9. Two MAS-PL method variants based on Tropos (left) and Gaia (right), highlighting in
red the common fragments among them. (Color figure online)

Tropos-PL Variant 1 is among the smallest variants: it encompasses only the Domain
Engineering Iteration, which is composed of three phases and eleven activities. It
proposes modeling MAS-PL variabilities using a feature model during Domain Analysis
Phase. Moreover, it deals with agent and interaction development during Domain Design
Phase. On the other hand, Gaia-PL Variant 16 is among the largest variants: it covers
both the Domain and Application Engineering Iterations and includes the four MAS
components, i.e. agent, environment, interaction, and organization. It proposes modeling
MAS-PL variabilities using a Decision Model, and encompasses five phases that, in their
turn, are composed of sixteen activities.

It should be observed that our approach can generate several extensions for the same
AOSE method. For instance, the SPLE domain analysis may vary according to the
formalism adopted to specify the variability model: feature model or decision model.
Therefore, Fig. 10 illustrates two Tropos based MAS-PL method variants generated by
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our approach. In addition to the Tropos-PL Variant 1, we also generated the Tropos-PL
Variant 4 that uses the decision model instead of feature model and also covers all
activities of the SPLE application engineering level.

Fig. 10. Two MAS-PL method variants based on Tropos – the smallest (left) and the largest
(right) - highlighting in green the variability among them. (Color figure online)

5 Conclusion

This paper introduced Meduse for MAS-PL, an automated approach that aims at
providing steady methodological support for MAS-PL development. This approach
results from a close collaboration between MAS and SPLE researchers and applies SPLE
principles in two levels: to develop a family of MAS-PL methods and then to develop
MAS product lines.

Meduse for MAS-PL automatically generates methods for MAS-PL based on
existing AOSE methods, by extending them to explicitly support MAS-PL development
according to project needs. Moreover, to speed up this extension Meduse for MAS-PL
capitalizes all knowledge on SPLE activities proposed in [1], providing SPLE best
practices ready to be used for MAS-PL development. Therefore, it promotes the reuse
of both AOSE methods and SPLE best practices. Indeed, and as illustrated by the
presented case study, our approach provides a set of reusable method fragments sourced
from several SPLE development approaches that are ready to be automatically incor‐
porated to AOSE methods.

We validate our approach by the generation of twenty MAS-PL methods that extend
Gaia and Tropos. However, its principals can be applied to all AOSE methods. Some
of the method variants generated during the case study were used by Master students in
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the University Pierre et Marie Curie (Paris 6). Those students apply these MAS-PL
methods to support the development of teams to the multiagent contest3. They consider
the use of the proposed MAS-PL methods to generate several multiagent teams. This
experience shows that the generated methods are promising. We plan to propose to
several groups of students another project and some criteria to measure the quality of
those methods.
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