
Lars Braubach · Juan M. Murillo
Nima Kaviani · Manuel Lama
Loli Burgueño · Naouel Moha
Marc Oriol (Eds.)

 123

ASOCA, ISyCC, WESOACS, and Satellite Events
Málaga, Spain, November 13–16, 2017
Revised Selected Papers

Service-Oriented
Computing –
ICSOC 2017 WorkshopsLN

CS
 1

07
97

Se
rv

ice
s S

cie
nc

e

Lecture Notes in Computer Science 10797

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK Takeo Kanade, USA
Josef Kittler, UK Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland John C. Mitchell, USA
Moni Naor, Israel C. Pandu Rangan, India
Bernhard Steffen, Germany Demetri Terzopoulos, USA
Doug Tygar, USA Gerhard Weikum, Germany

Services Science
Subline of Lectures Notes in Computer Science

Subline Editors-in-Chief

Athman Bouguettaya, RMIT University, Melbourne, Australia

Michael P. Papazoglou, University of Tilburg, The Netherlands

Subline Editorial Board

Boualem Bentallah, Australia Paul Maglio, USA
Murthy Devarakonda, USA Klaus Pohl, Germany
Carlo Ghezzi, Italy Stefan Tai, Germany
Chi-Hung Chi, Tasmania Yuzuru Tanaka, Japan
Hani Jamjoom, USA Christopher Ward, USA
Ingolf Krueger, USA

More information about this series at http://www.springer.com/series/7408

Lars Braubach • Juan M. Murillo
Nima Kaviani • Manuel Lama
Loli Burgueño • Naouel Moha
Marc Oriol (Eds.)

Service-Oriented
Computing –

ICSOC 2017 Workshops
ASOCA, ISyCC, WESOACS, and Satellite Events
Málaga, Spain, November 13–16, 2017
Revised Selected Papers

123

Editors
Lars Braubach
Hochschule Bremen
Bremen
Germany

Juan M. Murillo
University of Extremadura
Cáceres
Spain

Nima Kaviani
IBM Cloud Labs
San Jose, CA
USA

Manuel Lama
University of Santiago de Compostela
Santiago de Compostela
Spain

Loli Burgueño
University of Malaga
Málaga
Spain

Naouel Moha
University of Quebec at Montreal
Montréal, QC
Canada

Marc Oriol
Universitat Politècnica de Catalunya
Barcelona
Spain

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-91763-4 ISBN 978-3-319-91764-1 (eBook)
https://doi.org/10.1007/978-3-319-91764-1

Library of Congress Control Number: 2018944398

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0003-4961-4030
http://orcid.org/0000-0001-7195-6155
http://orcid.org/0000-0002-7779-8810
http://orcid.org/0000-0003-1928-7024

Preface

This volume presents the proceedings of the scientific satellite events that were held in
conjunction with the 2017 International Conference on Service-Oriented Computing,
which took place in Málaga, Spain, November 13–16, 2017. Since the first edition in
Trento in 2003, ICSOC has become a leading conference in the rapidly evolving areas
of service research.

The satellite events provide venues for specialist groups to meet, to generate focused
discussions on specific sub-areas within service-oriented computing, and to engage in
community-building activities. These events helped significantly enrich the main
conference by both expanding the scope of research topics and attracting participants
from a wider community. The selected scientific satellite events were organized around
three main tracks, including a workshop track, a PhD symposium track, and a
demonstration track.

The interest in the ICSOCs 2017 workshop track was high and from eight workshop
proposals three were finally selected. The workshop track included a wide range of
topics that fall into the general area of service computing. A special focus this year was
on cloud computing and the Internet of Things, also reflected in the titles of workshops.
These technology trends in combination with novel application domains led to
inspiring research results.

– ASOCA 2017: the Second Workshop on Adaptive Service-Oriented and Cloud
Applications

– ISyCC 2017: the Second Workshop on IoT Systems Provisioning and Management
for Context-Aware Smart Cities

– WESOACS 2017: the 13th International Workshop on Engineering
Service-Oriented Applications and Cloud Services.

The workshops were held on November 13, 2017. Each workshop had its own
chairs and Program Committee who were responsible for the selection of papers. The
overall organization for the workshop program, including the selection of the workshop
proposals, was carried out by Lars Braubach and Juan M. Murillo. The ICSOC PhD
Symposium is an international forum for PhD students to present, share, and discuss
their research in a constructive and critical atmosphere. It also provides students with
fruitful feedback and advice on their research approach and thesis. The PhD Sympo-
sium Track was chaired by Loli Burgeño and Naouel Moha.

The ICSOC Demonstration Track offers an exciting and highly interactive way to
show research prototypes/work in service-oriented computing (SOC) and related areas.
The Demonstration Track was chaired by Nima Kaviani and Manuel Lama.

We would like to thank the workshop, PhD symposium, and demonstration authors,
as well as keynote speakers and workshop Organizing Committees, who together
contributed to this important aspect of the conference.

We hope that these proceedings will serve as a valuable reference for researchers
and practitioners working in the SOC domain and its emerging applications.

January 2018 Lars Braubach
Juan M. Murillo
Nima Kaviani
Manuel Lama
Loli Burgueño
Naouel Moha

Marc Oriol

VI Preface

ICSOC 2017 Organization

General Chair

Carlos Canal University of Málaga, Spain

Program Chairs

Michael Maximilian IBM Cloud Labs, USA
Antonio Vallecillo University of Málaga, Spain
Jianmin Wang Tsinghua University, China

Steering Committee Liaison

Jian Yang Macquarie University, Australia

Steering Committee

Boualem Benatallah UNSW, Australia
Fabio Casati University of Trento, Italy
Bernd J. Krämer FernUniversität in Hagen, Germany
Winfried Lamersdorf University of Hamburg, Germany
Heiko Ludwig IBM, USA
Mike Papazoglou Tilburg University, The Netherlands
Jian Yang Macquarie University, Australia
Liang Zhang Fudan University, China

Workshop Chairs

Lars Braubach Hochschule Bremen, Germany
Juan M. Murillo University of Extremadura, Spain

Demonstration Chairs

Nima Kaviani IBM and Curatio.me, USA
Manuel Lama University of Santiago de Compostela, Spain

Industry Chairs

Flavio de Paoli University of Milano-Bicocca, Italy
Antonio Ruiz University of Seville, Spain

Panel Chairs

Schahram Dustdar Technical University, Vienna, Austria
Michael Sheng University of Adelaide, Australia

PhD Symposium Chairs

Loli Burgueño University of Málaga, Spain
Naouel Moha Université du Qüebec à Montréal, Canada

Finance Chair

Bernd J. Krämer FernUniversität in Hagen, Germany

Local Organization Chair

Ernesto Pimentel University of Málaga, Spain

Local Organization

Jose M. Álvarez Palomo University of Málaga, Spain
Francisco Durán University of Málaga, Spain
Nathalie Moreno University of Málaga, Spain
Alejandro Pérez Vereda University of Málaga, Spain
Mónica Trella University of Málaga, Spain

Publication Chair

Marc Oriol Universitat Politècnica de Catalunya, Spain

Publicity Chairs

Guadalupe Ortiz University of Cádiz, Spain
Juan Manuel Vara Rey Juan Carlos University, Spain
Genoveva Vargas-Solar CNRS, France

Web Chairs

Javier Berrocal University of Extremadura, Spain
J. Manuel

García-Alonso
University of Extremadura, Spain

VIII ICSOC 2017 Organization

Workshop on Adaptive Service-Oriented and Cloud Applications

Mohamed Jmaiel CRNS, Sfax, Tunisia
Ismael Bouassida

Rodriguez
ReDCAD, University of Sfax, Tunisia

Khalil Drira LAAS-CNRS and University of Toulouse, France

Workshop on IoT Systems Provisioning and Management
for Context-Aware Smart Cities

Sami Yangui Concordia University, Montreal, Canada
Mohamed Mohamed IBM Almaden Research Center, CA, USA
Javier Berrocal University of Extremadura, Spain
Luca Foschini University of Bologna, Italy

Workshop on Engineering Service-Oriented Applications
and Cloud Services

Andreas S. Andreou Cyprus University of Technology, Cyprus
Luciano Baresi Politecnico di Milano, Italy
George Feuerlicht University of Technology Sydney, Australia
Winfried Lamersdorf University of Hamburg, Germany
Guadalupe Ortiz University of Cadiz, Spain
Christian Zirpins Karlsruhe University of Applied Sciences, Germany

ICSOC 2017 Organization IX

Contents

Adaptive Service-Oriented and Cloud Applications

A BRS Based Approach for Modeling Elastic Cloud Systems. 5
Khaled Khebbeb, Hamza Sahli, Nabil Hameurlain, and Faiza Belala

Detecting Customer Queue “at-risk” Behaviors Based on Ethograms
to Minimize Overall Service Dissatisfaction . 18

Magali Dubosson, Emmanuel Fragnière, Nathalie Junod,
and Bettina Willaerts

What, Where, When, How and Right of Runtime Adaptation
in Service-Oriented Systems . 30

Leah Mutanu and Gerald Kotonya

An End-to-End Security Model for Adaptive Service-Oriented Applications . . . 43
Takoua Abdellatif and Marius Bozga

Runtime Migration of Applications in a Trans-Cloud Environment 55
Jose Carrasco, Francisco Durán, and Ernesto Pimentel

Verification of the Consistency of Time-Aware Cyber-Physical Processes . . . 67
Imen Graja, Slim Kallel, Nawal Guermouche, and Ahmed Hadj Kacem

Model Checking of Cost-Effective Elasticity Strategies
in Cloud Computing . 80

Rawand Guerfel, Zohra Sbaï, and Rahma Ben Ayed

QoS-Driven Self-adaptation for Critical IoT-Based Systems 93
Arthur Gatouillat, Youakim Badr, and Bertrand Massot

IoT Systems Provisioning and Management for Context-Aware
Smart Cities

BiAgent-Based Model for IoT Applications: Case of a Collision
Avoidance System. 111

Souad Marir, Roumeissa Kitouni, Zakaria Benzadri, and Faiza Belala

Seamless Interactions on the Internet of Things. A Spotify-Based Proof
of Concept . 124

Jose Garcia-Alonso, Javier Berrocal, Carlos Canal,
and Juan M. Murillo

A Feedback-Based Adaptive Service-Oriented Paradigm for the Internet
of Things . 137

Yuji Dong, Kaiyu Wan, and Yong Yue

QoS Prediction for Reliable Service Composition in IoT 149
Gary White, Andrei Palade, and Siobhán Clarke

Checking and Enforcing Security Through Opacity in Healthcare
Applications . 161

Rym Zrelli, Moez Yeddes, and Nejib Ben Hadj-Alouane

Power-Based Device Recognition for Occupancy Detection 174
Azkario Rizky Pratama, Widyawan, Alexander Lazovik,
and Marco Aiello

Cognitive Determination of Policies for Data Management in IoT Systems. . . 188
Aly Megahed, Samir Tata, and Ahmed Nazeem

A Research Perspective on Fog Computing . 198
David Bermbach, Frank Pallas, David García Pérez, Pierluigi Plebani,
Maya Anderson, Ronen Kat, and Stefan Tai

Workshop on Engineering Service-Oriented Applications
and Cloud Services

Lessons Learned from Evaluating Workflow Management Systems 215
Jörg Lenhard, Vincenzo Ferme, Simon Harrer, Matthias Geiger,
and Cesare Pautasso

Sustainable WAsTe Collection (SWAT): One Step Towards Smart
and Spotless Cities . 228

Daniel J. Rosa-Gallardo, Guadalupe Ortiz, Juan Boubeta-Puig,
and Alfonso García-de-Prado

Designing Suitable Access Control for Web-Connected Smart
Home Platforms . 240

Sebastian Werner, Frank Pallas, and David Bermbach

Integrating Smart Devices as Business Process Resources – Concept
and Software Prototype . 252

Robert Wehlitz, Ingo Rößner, and Bogdan Franczyk

Architecting Enterprise Applications for the Cloud: The Unicorn
Universe Cloud Framework . 258

Marek Beranek, Marek Stastny, Vladimir Kovar, and George Feuerlicht

XII Contents

A Knowledge Carrying Service-Component Architecture for Smart
Cyber Physical Systems: An Example Based on Self-documenting
Production Systems . 270

Christopher Haubeck, Winfried Lamersdorf, and Alexander Fay

Experiences on Migrating RESTful Web Services to GraphQL 283
Maximilian Vogel, Sebastian Weber, and Christian Zirpins

Using Risk Patterns to Identify Violations of Data Protection Policies
in Cloud Systems . 296

Stefan Schoenen, Zoltán Ádám Mann, and Andreas Metzger

Towards Setting Up a Collaborative Environment to Support
Collaborative Business Processes and Services with Social Interactions 308

Andrea Delgado, Laura González, and Daniel Calegari

Toward an Interactive Mobility Assistant for Multi-modal Transport
in Smart Cities . 321

Christian Kuster, Nils Masuch, and Fikret Sivrikaya

PhD Symposium

Meeting IoT Users’ Preferences by Emerging Behavior at Run-Time. 333
Daniel Flores-Martin

A Proposition for a Design Method of Service Systems 339
Blagovesta Kostova

A Model-Driven Approach to Continuous Delivery of Cloud Resources. 346
Julio Sandobalin

SLA-Driven Governance for RESTful Systems . 352
Antonio Gamez-Diaz, Pablo Fernandez, and Antonio Ruiz-Cortes

Towards Adaptive Monitoring Services for Self-Adaptive
Software Systems . 357

Edith Zavala

An Approach to Predictive Analysis of Self-Adaptive Systems
in Design Time. 363

Patrícia Araújo de Oliveira, Francisco Durán, and Ernesto Pimentel

Paving the Way for a Real-Time Context-Aware Predictive Architecture 369
David Corral-Plaza, Guadalupe Ortiz, and Juan Boubeta-Puig

Contents XIII

Demonstration

OpenTOSCA Injector: Vertical and Horizontal Topology Model Injection . . . 379
Karoline Saatkamp, Uwe Breitenbücher, Kálmán Képes,
Frank Leymann, and Michael Zimmermann

Optimizing Service Delivery with Minimal Runtimes 384
Katharina Gschwind, Constantin Adam, Sastry Duri,
Shripad Nadgowda, and Maja Vukovic

Semantic Data Mediator: Linking Services to Websites 388
Dennis Wolters, Stefan Heindorf, Jonas Kirchhoff, and Gregor Engels

ARGON: A Tool for Modeling Cloud Resources . 393
Julio Sandobalin, Emilio Insfran, and Silvia Abrahao

Ubiquity: An Extensible Framework for Persistence
in Container Environments . 398

Mohamed Mohamed, Robert Engel, Amit Warke, and Heiko Ludwig

Distributed Video Analytics Across Edge and Cloud Using ECHO 402
Aakash Khochare, Pushkara Ravindra, Siva P. Reddy,
and Yogesh Simmhan

Author Index . 409

XIV Contents

Adaptive Service-Oriented
and Cloud Applications

ASOCA: Second Workshop on Adaptive
Service-Oriented and Cloud Applications

Mohamed Jmaiel1, Ismael Bouassida Rodriguez1, and Khalil Drira2

1 CRNS, Sfax, Tunisia
2 LAAS-CNRS and Univ. de Toulouse, France

{mohamed.jmaiel,bouassida}@redcad.org

khalil@laas.fr

Introduction

The ASOCA 2017 workshop was held in conjunction with the 15th International
Conference on Service Oriented Computing (ICSOC 2017) on November 13–16, 2017
in Málaga, Spain. This workshop was focused on the adaptation and reconfiguration
issues of the Service-oriented and cloud applications and architectures. It was inter-
esting to see different distributed and centralized approaches on how reconfigurable
SOA can repair itself when different execution problems occurs or on monitoring
software systems for decision making. Moreover, different technologies were discussed
for ensuring non-functional requirements and for the management of different auto-
nomic properties. Some of these works were applied to distributed systems,
Cyber-Physical Systems, Internet of Things and Cloud environments. We received 13
submissions, out of which 8 were accepted:

– Verification of the Consistency of Time-aware Cyber-Physical Processes.
– What, Where, When, How and Right of Runtime Adaptation in Service-Oriented

Systems.
– A BRS Based Approach for Modeling Elastic Cloud Systems.
– Model checking of cost-effective elasticity strategies in Cloud computing.
– Detecting customer queue “at-risk” behaviors based on ethograms to minimize

overall service dissatisfaction.
– An end-to-end security model for Adaptive Service-oriented applications.
– Runtime Migration of Applications in a Trans-Cloud Environment.
– QoS-Driven Self-Adaptation for Critical IoT-Based Systems.

We would like to thank the authors for their submissions, the program committee
for their reviewing work, and the organizers of the ICSOC 2017 conference for their
support which made this workshop possible.

Workshop Organization

Program Chairs

Mohamed Jmaiel CRNS, Sfax, Tunisia
Ismael Bouassida

Rodriguez
ReDCAD, University of Sfax, Tunisia

Khalil Drira LAAS-CNRS and Univ. de Toulouse, France

Web and Publicity Chair

Emna Feki ReDCAD, FSEGS, University of Sfax, Tunisia

Program Committee

Abderrahim Ait Wakrime Télécom SudParis, France
Salah Sadou IRISA, University of South Brittany, France
Cecilia Rubira Unicamp, Brazil
Ilia Petrov TU Darmstadt, Germany
Dimka Karastoyanova Kuhne Logistics University, Germany
Uwe Zdun University of Vienna, Austria
Cinzia Cappiello Politecnico di Milano, Italy
Ian Gorton SEI, USA
Youakim Badr INSA-Lyon, France
Amal Gassara CRNS, Tunisia
Tom Guerout LAAS-CNRS, France
Djamal Benslimane Lyon 1 University, France
Mohamed Mosbah LaBRI - University of Bordeaux, France
Mohamed HadjKacem University of Sfax, Tunisia
Mouna Rekik University of Sfax, Tunisia
Ilham Kitouni Constantine2-Abdelhamid Mehri University, Algeria
Yamine Ait Ameur IRIT/INPT-ENSEEIHT, France
Claudia Raibulet University of Milano-Bicocca, Italy
Imen Lahyani ENIS, Tunisia
Marcos Da Silveira LIST- Luxembourg Institute of Science and Technology,

Luxembourg
Cedric Pruski LIST- Luxembourg Institute of Science and Technology,

Luxembourg
Isabelle Borne University de Bretagne Sud, France
Flavia Delicato Federal University of Rio de Janeiro (UFRJ), Brazil
Volker Gruhn Universitat Duisburg-Essen, Germany

Philippe Roose LIUPPA, France
Layth Sliman EFREI, France
Carlos E. Cuesta Rey Juan Carlos University, Spain
Slim Kallel ReDCAD, University of Sfax, Tunisia
Ernesto Exposito Univ. De Pau, France
Sami Yangui University Concordia, Canada
Samir Tata Research – Almaden, USA
Samir Medjiah LAAS-CNRS, France
Michael Mrissa University De Pau, France
Elisa Yumi Nakagawa University of Sao Paulo, Brazil
Thais Batista UFRN, Brazil

4 Workshop Organization

A BRS Based Approach for Modeling Elastic
Cloud Systems

Khaled Khebbeb1,2(&), Hamza Sahli1, Nabil Hameurlain2,
and Faiza Belala1

1 LIRE, Constantine 2 University – Abdelhamid Mehri, Constantine, Algeria
{khaled.khebbeb,hamza.sahli,

faiza.belala}@univ-constantine2.dz
2 LIUPPA, University of Pau, Pau, France

{nabil.hameurlain, khaled.khebbeb}@univ-pau.fr

Abstract. Elastic behaviors enable Cloud Systems to auto-adapt to their
incoming workloads, by provisioning and releasing computing resources, in a
way to ensure a controlled compromise between performance and cost-saving
requirements. However, due to the highly fluctuating workloads tendencies, it
makes it difficult to predict how a cloud system would behave and to provide
precise auto-adaptation action plans. In this paper, we propose a BRS (short for
Bigraphical Reactive Systems) based approach to provide a formal description
for cloud systems structures and their elastic behaviors using bigraphs and
bigraphical reaction rules. In addition, elasticity strategies are introduced to
encode cloud systems’ auto-adaptation policies. Proposed approach is illustrated
and evaluated through an example.

Keywords: Cloud computing � Elasticity controller � Strategies
Bigraphical reactive systems

1 Introduction

Cloud computing is a novel paradigm [16] that has gained a great interest in both
industrial and academic sectors. It consists of providing a set of virtualized resources
(servers, virtual machines, services, etc.) as on-demand services. These resources are
offered by cloud providers according to three fundamental service models: infras-
tructure as a service (IaaS), platform as a service (PaaS), and software as a service
(SaaS). The cloud has many characteristics that make it very attractive such as high
availability, flexibility and cost effectiveness. However, the most appealing feature for
cloud users, and what distinguishes the cloud from the other models, is the elasticity
property [23]. In cloud systems [11], elasticity allows to efficiently control resources
provisioning according to workload fluctuation, in a way to maintain an adequate
quality of service (QoS) while minimizing operating cost. Such behavior is imple-
mented by an elasticity controller, an entity usually based on a closed control loop [22],
that decides of the elasticity actions to be triggered (scaling up/down actions [13]).

In the last few years, many academic researches for providing elastic management
at different cloud scopes were proposed such as [1, 6, 10, 14, 21]. However, a little

© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 5–17, 2018.
https://doi.org/10.1007/978-3-319-91764-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_1&domain=pdf

attention has been given to modeling and describing the cloud systems’ elasticity
controller and its behaviors. In fact, this task can be particularly challenging as these
behaviors rely on many overlapping factors such as the available resources, current
workload, etc. Managing these dependencies significantly increases the difficulty of
modeling cloud systems’ elasticity controller. To address this challenge, formal
methods characterized by their efficiency, reliability and precision, present an effective
solution to deal with all of these aspects.

In this paper, we aim to take a first step towards providing a formal modeling
approach that reduces the complexity of designing cloud systems and the elasticity
controller behavior. Precisely, we adopt bigraphical reactive systems (BRS) [17, 18] as
a semantic framework for specifying structural and behavioral aspects of elastic cloud
systems. We use bigraphs and bigraphical reaction rules to address both aspects.
Reaction rules describe the elastic behavior of a cloud system at service and infras-
tructure levels according to multiple adaptation rules that are executed by the elasticity
controller.

The remainder of the paper is structured as follows. In Sect. 2, we introduce the
elasticity controller and identify its components and role in the management of cloud
elasticity. We briefly introduce, in Sect. 3, the BRS formalism, apply its modeling
approach to specify elastic cloud systems and describe their elastic behaviors my means
of adaptation rules. An example of the elasticity management is proposed and evalu-
ated in Sect. 4. In Sect. 5, we review the state of art on formal specification of elastic
cloud systems and the use of BRS. Finally, Sect. 6 summarizes the paper and discusses
future work.

2 The Elasticity Controller

In elastic cloud systems, resources provisioning can be adjusted by an elasticity con-
troller. It decides the adaptation rules to be triggered, in order to scale the cloud system,
in such a way that resource provisioning matches the minimum requirements, as clo-
sely as possible. This is done with taking into account many factors as the available
resources, current workload, system state, etc. [23]. Structurally, the elasticity con-
troller is usually considered as a closed control loop derived from the IBM’s autonomic
control loop known as MAPE for Monitoring, Analyse, Planification and Execution
[22]. In [14, 19], the controller is considered to be constituted by different entities, that
interact with each other, to implement the main phases of the control loop. Monitoring
and Execution phases are usually considered to be handled by entities that monitor the
system (by the means of sensors) and apply actions (using effectors) that the Planifi-
cation decides, according to flaws that the Analyse identifies.

In our previous work [19], we have provided a cloud systems’ design structured in
three parts: the front-end, the back-end and the elasticity controller. In this paper, we
focus on the elasticity controller and the managed back-end that we see as the cloud
hosting environment, i.e., servers, virtual machine instances (VMs) and service
instances. We abstract the front-end part through the incoming requests which the
cloud system receives from clients.

6 K. Khebbeb et al.

The challenging part here is how to implement a logic that enables the elasticity
controller to ensure auto-adaptation behaviors over a managed cloud system. This is
accomplished by triggering adaptation rules according to particular conditions, which
represent elasticity anomalies to repair. In the next Section, we will adopt a bigraphical
approach to model both structural and behavioral aspects of the back-end and the
elasticity controller. We introduce elasticity strategies to describe the elasticity con-
troller’s behavior by means of bigraphical reaction rules.

3 Formalizing Elastic Cloud Systems with BRS

3.1 BRS Overview

Bigraphical reactive systems (BRS) are a recent formalism introduced by Milner [18],
for modeling the temporal and spatial evolution of computation. It provides a graphical
model that emphasizes both connectivity and locality. A BRS consists of a set of
bigraphs and a set of reaction rules, which define the dynamic evolution of the system
by specifying how the set of bigraphs can be reconfigured.

Graphical Notation and Interface. Figure 1 depicts an example of a bigraph repre-
sentation. Dashed rectangles denote regions describing separate parts of the system.
Nodes are depicted by circles and represent the physical or logical components of the
system. Each node has a type, called control, denoted by the labels A and B. A
signature is the set of controls of a bigraphs. A node can have zero, one or many ports
which represent possible connections. Ports are depicted by bullets. In the example,
connections are represented as links, depicted by curvy lines, which may connect ports
and names (x, y and z). They can be considered as (potential) links to other bigraphs.
Sites, modeled with gray squares, encode parts of the model that have been abstracted
away. A bigraph’s B possibilities to interact with its external environment are visible
through its interface. For example, B: 0 ! < 2, {x, y} > indicates that B has zero sites,
two regions and its names are x and y. Note that a bigraph also has algebraic notations
that are equivalent to the graphical ones. For instance, merge product F | G denotes the
juxtaposition of bigraphs F and G which is then placed inside a single region. Nesting
operation F.G allows to place bigraph G inside F and parallel product (||) term may be
used to compose bigraphs by juxtaposing their roots and merging their common names.
More details about Bigraphs can be found in [17].

Bigraphs Sorting. Classification of controls and links for a bigraph is performed using
sorts. A sorting discipline is a triple R ¼ H;K;Uf g; where H is a non-empty set of
sorts, K is a signature, and U is a set of formation rules. A formation rule is a set of

properties a bigraph has to satisfy. Disjunctive sorts are written as cab, expressing that a
node can either be of sort a or sort b.

Bigraphical Reactive Systems. A Bigraphical Reactive System (BRS) consists of a
set of bigraphs representing the state of the system, and a set of reaction rules, defining
how the system evolves (by going from one state to another). A reaction rule Ri is a
pair (R, R’), where redex R and reactum R’ are bigraphs that have the same interface.
The evolution of a system St is derived by checking if R is a match in St (as reference to

A BRS Based Approach for Modeling Elastic Cloud Systems 7

bigraph matching [4]) and by substituting it with R’ to obtain a new system St’. This is

made with triggering the suitable reaction rule Ri. The evolution is noted St!Ri St’.

3.2 A BRS Model for Elastic Cloud Systems

An elastic cloud system is represented by a bigraph CS involving all cloud architectural
elements. The bigraph CS is obtained by the parallel composition of the hosting
environment (back-end) and the elasticity controller bigraphs (noted B and E) [19]. The
sorting logic introduces mapping rules and expresses all the constraints and formation
rules, that CS needs to satisfy, to ensure proper and precise encoding of the cloud
semantics into BRS concepts. Formal definitions are given in what follows.

Definition 1. Formally, a bigraph CS modeling a elastic cloud system is defined as
follows.

CS ¼ ðVCS;ECS; ctrlCS;CS
P;CSLÞ : ICS ! JCS

• VCS and ECS are sets of nodes and edges of the bigraph CS.
• ctrlCS : VCS ! KCS a control map that assigns each node v 2 Vcs with a control

k 2 Kcs.
• CSP ¼ ðVCS; ctrlCS; prntCSÞ : mCS ! nCS is the place graph of CS where prntCS :

mCS]VCS ! VCS] nCS is a parent map. mCS and nCS are the number of sites and
regions of the bigraph CS.

• CSL ¼ ðVCS;ECS; ctrlCS; linkCSÞ : XCS ! YCS represents link graph of CS, where
linkCS : XCS]PCS ! ECS] YCS is a link map, XCS and YCS are respectively inner
and outer names and PCS is the set of ports of CS.

• ICS ¼ mCS;XCSh i and JCS ¼ nCS; YCSh i are the inner and outer interfaces of the
cloud system bigraph CS.

Definition 2. The sorting discipline associated to CS is a triple RCS ¼ HCS;KCS;f
UCSg; where HCS is a non-empty set of sorts. KCS is its signature, and UCS is a set of
formation rules associated to the bigraph. Table 1 gives for each cloud concept the
mapping rules for BRS equivalence. This consists of the control associated to the
entity, its arity (number of ports), its associated sort and graphical notation. Sorts are
used to distinguish node types for structural purposes and constraints while controls
identify states and parameters a node can have. For instance, a server noted SE has

Fig. 1. Example of a bigraph

8 K. Khebbeb et al.

control SEL when it is overloaded and SEU when unused. A client request, noted qc, is
addressed to a service category identified by the parameter “c”. Also, all nodes rep-
resenting servers are of sort e and all requests from all clients are of sort q.

Table 2 gives the formation rules Ui that bring construction constraints over the
BRS specification.

Formation rules give structural constraints over the BRS model. Rule U0 specifies
that servers are at the top of the hierarchical order of the deployed entities in back-end
bigraph. Rules U1–3 give the structural disposition of a hosting environment where a
server hosts VMs, a VM runs service instances and a service instance handles requests.
All connections are port-to-port links to illustrate possible communication capabilities
between the different cloud entities. In U6–7, we use the name w, for workload, to
illustrate the connection the cloud system has with its abstracted front-end
part. A server is linked to its hosted entities, that represent the resources virtualiza-
tion (VMs), and a VM is linked to the service instances it is running.

The back-end is managed by the elasticity controller through c-name edges for
control. The entities are monitored by the Monitor node that captures events the
Evaluator analyses and then triggers actions that the Effector applies. U11 states that
the monitor, effector and evaluator entities are always linked. Figure 2 represents a
bigraph example which expresses a back-end of a cloud system where two servers
(SE), two VMs and two service instances (S) are deployed. V-edges stand for virtu-
alization and s-edges for services. The elasticity controller bigraph is connected to the
back-end with c-name. Squares numbered 1–6 are sites representing parts of the system
that are abstracted away.

In Rules U4–5 and 9, active elements may take part is reactions while passive ones
won’t. The possible adaptation rules the elasticity controller can take over a cloud
system to manage its elasticity will be presented in the next Section.

Table 1. Controls and sorts for the bigraph CS

Cloud element Control Arity Sort Bigraph Gr. Notation

Server SE 3 e B Rounded box
Overloaded server SEL 2 e B Rounded box

Unused server SEU 2 e B Rounded box

Virtual machine VM 2 v B Rounded box
Overloaded VM VML 2 v B Rounded box

Unused VM VMU 2 v B Rounded box

Service instance S 1 s B Circle
Service instance with a parameter c Sc 1 s B Circle
Overloaded service instance SL 1 s B Circle

Unused service instance SU 1 s B Circle

Request q 0 q B Diamond
Request with a parameter c qc 0 q B Diamond
Evaluator EV 1 o E Circle
Monitor MO 2 m E Circle
Effector E 2 f E Circle

A BRS Based Approach for Modeling Elastic Cloud Systems 9

3.3 The Elasticity Controller’s Behavior

The behavior of the elasticity controller is given as bigraphical reactive rules expressing
the dynamicity of an elastic cloud system. In our previous work [19], we defined
multiple possible horizontal, vertical, migration and marking actions that the elasticity
controller may use to reshape a cloud system at multiple levels.

In this Section, we redefine a set of reaction rules that model the horizontal actions
over the cloud hosting environment (servers, VMs and service instances). In addition,
we introduce some elasticity strategies that the elasticity controller uses to manage a
cloud’s elasticity. Table 3 gives the defined actions.

Table 2. Conditions of formation rule UCS for the bigraph CS

Rule description

U0 All children of a 0-region (hosting environment part) have sort e
U1 All children of an e-node have sort v
U2 All children of an v-node have sort s
U3 All children of an s-node have sort q
U4 All cevs-nodes are active
U5 All q-nodes are atomic
U6 In a e-node, one port is always linked to a w-name, another port is always linked to a

c-name and the other may be linked to v-nodes
U7 In a v-node, one port may be linked to e-nodes and the other may be linked to s-nodes
U8 All children of a 1-region (elasticity controller part) have sort 1, where 1 2 {o, m, f}
U9 All com f-nodes are atomic
U10 cmf-nodes are always linked to a c-name
U11 An o-node is linked to cmf-nodes, m-node is linked to bof -nodes and f-node is linked to

bof -nodes

Fig. 2. An example of cloud system bigraph CS

10 K. Khebbeb et al.

Reaction rules Ri express the possible actions that can be applied over a cloud
system. A reaction is triggered when the left-hand side of the rule, that defines a bigraph
(redex), is a match (or occurs) in CS [4]. The redex bigraph is replaced by the right-hand
side of the reaction that represents the reactum bigraph. Sites nested within different
entities (servers, VMs and services) expressed with d, are used to abstract the elements
that are not included in the reaction. The specified rules define the horizontal scale
elasticity actions, at different cloud levels, for provisioning (R1–3) and de-provisioning
(R4–6) resources by scaling-out and scaling-in the hosting environment.

Elasticity Strategies. The defined reaction rules are not sufficient to express the logic
that enables the elasticity controller to manage a cloud system’s elasticity. This logic is
provided through elasticity strategies that implement the elasticity controller. A strategy
describes a behavior to be adopted to manage the elastic behavior in the system. It
consists of a set of actions that are triggered in case the specified conditions become
true and takes the form [13] IF condition (s) THEN actions(s). In our model, we can
encode the strategy conditions by Bilog predicates [9], while the actions are modelled
by bigraphical reaction rules. For instance, a strategy that executes the condition
ðCS �uÞ takes the form below.

strat : if CS �u then R

Where u is a predicate and Bu its bigraph encoding where CS �u is true iff Bu is a
match in CS. In what follows, we present some strategies with bigraphical
representation.

Table 3. Reaction rules modeling elasticity actions in the cloud

Reaction rule Algebraic form

Duplicate a service instance R1 ¼def SE:ððVM:ðSc:d00Þjd0ÞjdÞjid
! SE:ððVM:ðSc:d00ÞjðS0cÞjd0ÞjdÞjid

Duplicate a VM instance R2 ¼def SE:ððVM:ðS:d00Þjd0ÞjdÞjid
! SE:ðððVM:ðS:d0Þjd0ÞjðVM0ÞÞjdÞjid

Turn on a new server R3 ¼defðSE:d) id ! ðSE:d)j jðSE0Þjid
Consolidate a service instance R4 ¼def SE:ððVM:ðSc:d000ÞjðS0c:d00Þjd0ÞjdÞjid

! SE:ððVM:ðSc:d00Þjd0ÞjdÞjid
Consolidate a VM instance R5 ¼def SE:ðððVM:ðS:d000Þjd00ÞjðVM0:d0ÞÞjdÞjid

! SE:ððVM:ðS:d00Þjd0ÞjdÞjid
Turn off a server R6 ¼defðSE:d)jðSE0:d0Þ id ! ðSE:dÞj jid

A BRS Based Approach for Modeling Elastic Cloud Systems 11

Strategy 1: Hosting Environment Provisioning
When the cloud workload increases by receiving growing number of client requests,
the hosting environment needs to scale-out in a way to ensure availability along with
performance. Strategy 1 can be expressed with three complementary actions that
operate at service and infrastructure level as shown in Table 4.

The predicate u1 expresses that service instances of a certain category are over-

loaded and need to scale-out. The bigraph Bu1 ¼defðSE1:ðVM1: ðS1Lc1:d1ÞjðS2Lc1:d2ÞÞÞ is
one possible expression of the predicate for instance. Reaction rule R1 is triggered to
create a new service instance of the category c1. At infrastructure level, when
ðCS �u2Þ is true, the elasticity controller replicates VM instances by triggering rule R2
and new servers are turned online by triggering R3, when ðCS �u3Þ is true. Also, u2
and u3 can for example be encoded using bigraphs Bu2 ¼defðSE1:ðVM1L: ðd1Þj
VM2L:ðd2ÞÞ; respectively Bu3 ¼defðSE1L:ðd1ÞjSE2L:ðd2ÞÞ:

Strategy 2: Hosting Environment De-provisioning
When workload drops, the hosting environment is likely to be over-provisioned and
has to scale-in. Elasticity controller performs this behavior at service and infrastructure
levels by applying strategy 2 as defined is Table 5.

For instance, if bigraph Bu4 ¼defðSE1:ðVM1:ðS1:d1ÞjðS2UÞÞÞ is a match in CS, it
means that condition ðCS �u4Þ is true and the controller triggers reaction rule R4. The

resulting bigraph would be B0 ¼defðSE1:ðVM1:ðS1:d1ÞÞÞ.
Note that more strategies can be specified to perform load-balancing and vertical

scale elasticity using the remaining mechanisms defined in [20].

4 Tool Support

The approach presented is this paper is supported by MoveElastic, a framework
introduced in [20], for modeling and verifying elastic cloud systems. The framework is
based on the integration of the bigraphical cloud system model in Maude, an imple-
mentation of Rewriting Logic [7, 8]. It enables the specification and execution of elastic
behaviors along with the formal verification of elasticity properties.

Table 4. Strategy 1 definition

Level Condition Action

Service ðu1Þ Service instances are overloaded ðR1Þ Replicate service instance
Infrastructure ðu2Þ VMs are overloaded ðR2Þ Replicate VM instance

ðu3Þ Servers are overloaded ðR3Þ Turn a new server online

Table 5. Strategy 2 definition

Level Condition Action

Service ðu4Þ Service instance is unused ðR4Þ Consolidate service instance
Infrastructure ðu5Þ VM is unused ðR5Þ Consolidate VM instance

ðu6Þ Server is unused ðR6Þ Turn server offline

12 K. Khebbeb et al.

In the following example, we will present a qualitative evaluation of the two
defined strategies through a simple use case.

Example. We present an example of a cloud system to illustrate how the elasticity
controller ensures the elastic behavior of a managed cloud system. Consider a voting
service running in a private cloud system, with one online server hosting two VM
instances and each VM is running five service instances. We consider arbitrary capacity
thresholds for each hosting entity (server,VMand service instance). E.g., a server can host
up to 4 VM instances, a VM can run up to 10 service instances and a service instance can
receive up to 50 client requests at a time. Note that each entity is marked overloaded if its
upper threshold is reached and is marked unused when its load reaches zero. Consider an
arbitrary workload activity showing a progressive peak of 2500 client requests (phase 1)
then slowly drops (phase 2).Graphs shown inFigs. 3, 4 and5give the evolution,within 10
time units, of the cloud system as it provisions when the workload rises and de-provisions
when it drops. Reconfigurations when the system scales-out/in are actions the elasticity
controller triggers when the thresholds are reached.

This scenario shows the high reactivity [24] that the elasticity controller provides.
We can see that workload variations have no impact over performance and that
infrastructure costs are well controlled. During phase 1, the growing demand is rapidly
handled in such a way that the actual capacity slightly overpaces it, this enables
eventual further requests to be directly handled before any adaptation is required.
Figures 3, 4 and 5 show that the system’s processing capacity is never fully achieved
and is always half used at the least. Moreover, unnecessarily provisioned resources are
rapidly released during phase 2 to prevent from high financial impacts.

From observing the graphs, we can deduce that the elasticity controller operates
according to two action plans. The plans AP1 and AP2 below show the controller’s
behavior during phase 1 and phase 2 and correspond to strategy 1 and strategy 2. The
symbol � indicates zero or more applications of an action or a sequence of actions.

AP1 ¼ R1� ! R2ð Þ� ! R3ð Þ � AP2 ¼ R4� ! R5ð Þ� ! R6ð Þ�

It is interesting to see how the cloud system evolves and how elasticity is provided
in a cross layered management (infrastructure and service levels). This example is very
simple, but it perfectly shows how complex can be the management of even a small
cloud system with a single application running with a weak recorded activity com-
paring to the reality.

Fig. 3. Service instances provisioning

A BRS Based Approach for Modeling Elastic Cloud Systems 13

5 Related Work

There have been multiple research studies in the literature using formal methods to
specify cloud systems’ elastic behaviors. In [3], authors have proposed a formalization
based on the CLTLt(D) temporal logic, of several concepts and properties related to the
behavior of elastic cloud systems. Qualitative properties of cloud systems have been
formally introduced and detailed, such as Elasticity and Resources management, and
have been evaluated using an automated verification tool. In this work, precise cloud
composition has been abstracted and cloud resources are seen as virtual machines.
Authors of [2] have adopted a Petri nets formalization to describe cloud-based business
processes’ elastic behaviors. Elastic strategies for routing, duplicating and consoli-
dating cloud components at service scope have been provided and compared in terms
of reliability and performances. In their work, authors focus on the application layer of
a cloud configuration and the infrastructure details are not addressed in the model.

In our previous work [19], we introduced a formal approach based on bigraphical
reactive systems for modeling both structural and behavioral aspects of elastic cloud
systems. Precisely, cloud elastic behaviors are represented in terms of client/application
interactions and elasticity methods at distinct levels using bigraphical reaction rules.

In this paper, we have focused on the back-end part of a cloud system to specify
two strategies that describe the elasticity controller behaviors my means of bigraphical
reaction rules. The defined strategies can be combined to provide a cross-layered

Fig. 4. VMs provisioning

Fig. 5. Servers provisioning

14 K. Khebbeb et al.

elasticity in such a way that the auto-adaptation stability requirements are ensured [25].
This can be made by applying priority levels between and inside the strategies to avoid
loops and rules multi-triggering issue. Besides, model-checkers associated to BRS,
such as BigMC1, can be used to verify safety and liveness properties. We consider the
BRS formal framework to be suitable in terms of modeling capabilities and we have
attempted to illustrate its potential at cloud service and infrastructure levels.

Also, several studies have shown the efficiency and the potential of the BRS Theory
to encode and describe complex considerations and behaviors. In [15], authors use BRS
as a framework to model Multi Agent Systems. They describe how properties and
desiderata for a given BRS specification can be expressed by means of spatial and
temporal logics. Precisely, by combining a temporal logic like CTL on top of Bilog,
which is a spatial logic for bigraphs [9]. This would enable property-aware matchings
and rewritings of bigraphs using tools like BigRED [12] and LibBig2. In [5], an
extension of BRS called stochastic BRS with sharing (SBRS) is used to model the
802.11 wireless networks protocol. Authors show that conditional reaction rules can be
specified to describe very precise matching reactions using Bilog predicates. Our goal is
to provide a precise property-aware modeling and validation using these solutions.

6 Conclusion

In this paper, we have provided a view of cloud systems including all cloud compo-
nents that are involved in elastic behaviors. The structural and behavioral aspects of
elastic cloud systems have been formalized using the Bigraphical Reactive Systems
formalism. Precisely, we use bigraphs to express the structural aspects and bigraphical
reactive rules to express the behavioral ones. These behaviors implement the elasticity
controller and have been formally expressed by means of two elasticity strategies, for
provisioning and de-provisioning cloud systems at service and infrastructure levels.
The introduced concepts are illustrated through an example of a managed cloud system
where the elastic behaviors are evaluated.

In this present work, we attempt to take a first step towards the formalization of
cloud systems elastic behaviors. In the next step, we plan to enlarge our specifications
to provide a cross-layered elasticity management of a cloud configuration (at service
and infrastructure scopes). Furthermore, we aim to evaluate and experiment our
strategies using the MoveElastic framework over cloud examples and case studies.
Finally, our objective is to provide a complete executable and verifiable formalization
of elastic cloud systems.

1 Bigraphical Model Checker available at http://bigraph.org/bigmc/
2 A Java library for extensible BRS available at http://mads.uniud.it/wordpress/downloads/libbig/

A BRS Based Approach for Modeling Elastic Cloud Systems 15

http://bigraph.org/bigmc/
http://mads.uniud.it/wordpress/downloads/libbig/

References

1. Ali-Eldin, A., Tordsson, J., Elmroth, E.: An adaptive hybrid elasticity controller for cloud
infrastructures. In: 2012 IEEE Network Operations and Management Symposium, Maui, HI,
pp. 204–212 (2012)

2. Amziani, M.: Modeling, evaluation and provisioning of elastic service-based business
processes in the cloud. Other [cs.OH]. Institut National des Télécommunications (2015).
English. <NNT: 2015TELE0016>

3. Bersani, M., Bianculli, D., Dustdar, S., Gambi, A., Ghezzi, C., Krstić, S.: Towards the
formalization of properties of cloudbased elastic systems. In: Proceedings of the 6th
International Workshop on Principles of Engineering Service-oriented and Cloud Systems –
PESOS 2014, Hyderabad, pp. 38–47 (2014)

4. Birkedal, L., Christoffer Damgaard, T., Glenstrup, A.J., Milner, R.: Matching of Bigraphs.
Electr. Notes Theor. Comput. Sci. 175(4), 3–19 (2007)

5. Calder, M., Sevegnani, M.: Modeling IEEE 802.11 CSMA/CA RTS/CTS with stochastic
bigraphs with sharing. Form. Asp. Comput. 26(3), 537–561 (2014)

6. Chatziprimou, K., Lano, K., Zschaler, S.: Runtime infrastructure optimisation in cloud IaaS
structures. In: CloudCom, vol. 1, pp. 687–692 (2013)

7. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All
About Maude – A High-Performance Logical Framework: How to Specify, Program and
Verify Systems in Rewriting Logic. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-71999-1

8. Clavel, M., Duran, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J., Talcott, C.: Maude
Manual, Version 2.6 January 2011

9. Conforti, G., Macedonio, D., Sassone, V.: Spatial logics for bigraphs. In: Caires, L., Italiano,
G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580,
pp. 766–778. Springer, Heidelberg (2005). https://doi.org/10.1007/11523468_62

10. Copil, G., Moldovan, D., Truong, H.-L., Dustdar, S.: Multi-level elasticity control of cloud
services. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274,
pp. 429–436. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45005-1_31

11. Dustdar, S., Guo, Y., Satzger, B., Truong, H.: Principles of elastic processes. IEEE Internet
Comput. 15, 66–71 (2011)

12. Faithfull, A., Perrone, G., Hildebrandt, T.T.: Big red: a development environment for
bigraphs. In: Selected Revised Papers from the 4th International Workshop on Graph
Computation Models (GCM 2012) (2012).https://journal.ub.tu-berlin.de/eceasst/article/view/
835/829

13. Galante, G., Bona, L.: A survey on cloud computing elasticity. In: 2012 IEEE Fifth
International Conference on Utility and Cloud Computing, Chicago, Il, pp. 263–270 (2012)

14. Letondeur, L.: Planification pour la gestion autonomique de l’élasticité d’applications dans le
cloud. Computer Science [cs], Thesis. Joseph Fourier University (2014). French

15. Mansutti, A., Miculan, M., Peressotti, M.: Multi-agent systems design and prototyping with
bigraphical reactive systems. In: Magoutis, K., Pietzuch, P. (eds.) Distributed Applications
and Interoperable Systems, DAIS 2014. Lecture Notes in Computer Science, vol. 8460.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43352-2_16

16. Mell, P., Grance, T.: The NIST Definition of Cloud Computing, SP 800–145. National
Institute of Standards & Technology, Special Publication (2011)

17. Milner, R.: Bigraphs and their algebra. Electron. Notes Theor. Comput. Sci. 209, 5–19
(2008)

16 K. Khebbeb et al.

http://dx.doi.org/10.1007/978-3-540-71999-1
http://dx.doi.org/10.1007/978-3-540-71999-1
http://dx.doi.org/10.1007/11523468_62
http://dx.doi.org/10.1007/978-3-642-45005-1_31
https://journal.ub.tu-berlin.de/eceasst/article/view/835/829
https://journal.ub.tu-berlin.de/eceasst/article/view/835/829
http://dx.doi.org/10.1007/978-3-662-43352-2_16

18. Milner, R.: The Space and Motion of Communicating Agents. Cambridge University Press,
Cambridge (2009)

19. Sahli, H., Hameurlain, N., Belala, F.: A bigraphical model for specifying elastic cloud
systems and their behaviour. Int. J. Parallel Emergent Distrib. Syst. (2016). https://doi.org/
10.1080/17445760.2016.1188927

20. Sahli, H.: Modélisation des Systèmes élastiques Cloud: vers la Vérification Formelle de leur
Comportement. Informatique ubiquitaire. Thesis of Constantine 2. Abdelhamid Mehri
University (2017). French

21. Trihinas, D., Sofokleous, C., Loulloudes, N., Foudoulis, A., Pallis, G., Dikaiakos, M.D.:
Managing and monitoring elastic cloud applications. In: Casteleyn, S., Rossi, G., Winckler,
M. (eds.) ICWE 2014. LNCS, vol. 8541, pp. 523–527. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-08245-5_42

22. Jacob, B.: A Practical Guide to the IBM Autonomic Computing Toolkit. IBM, International
Technical Support Organization, Raleigh (2004)

23. Herbst, N., Kounev, S., Reussner, R.: Elasticity in cloud computing: what it is, and what it is
not. In: Proceedings of the 10th International Conference on Autonomic Computing.
USENIX, San Jose (2013)

24. Dupont, S., Lejeune, J., Alvares, F., Ledoux, T.: Experimental analysis on autonomic
strategies for cloud elasticity. In: Proceedings of 2015 IEEE International Conference on
Cloud and Autonomic Computing (ICCAC), Cambridge, USA, pp. 89–90, September 2015

25. Sama, M., Elbaum, S.G., Raimondi, F., Rosenblum, D.S., Wang, Z.: Context-aware adaptive
applications: fault patterns and their automated identification. IEEE Trans. Softw. Eng. 36
(5), 644–661 (2010)

A BRS Based Approach for Modeling Elastic Cloud Systems 17

http://dx.doi.org/10.1080/17445760.2016.1188927
http://dx.doi.org/10.1080/17445760.2016.1188927
http://dx.doi.org/10.1007/978-3-319-08245-5_42
http://dx.doi.org/10.1007/978-3-319-08245-5_42

Detecting Customer Queue “at-risk”
Behaviors Based on Ethograms to Minimize

Overall Service Dissatisfaction

Magali Dubosson1, Emmanuel Fragnière1,2(&), Nathalie Junod1,
and Bettina Willaerts1

1 HES-SO, Service Design Lab,
Le Foyer - Techno-Pôle 1, 3960 Sierre, Switzerland

magali.dubosson@hefr.ch, emmanuel.fragniere@hevs.ch,

nathalie.junod@hesge.ch, bwillaerts@gmail.com
2 University of Bath, Bath BA2 7AY, UK

Abstract. Every service encounter corresponds to a “queue network” in which
a system of waiting lines is connected to servers. We posit that each production
service type (e.g., restaurant, airport) requires an adapted queue design in order
to maximize attributes salient to customers (i.e., their primary elements of
perceived value) in today’s globalized service environment. While the queues
have been studied from many angles, a scientific contribution based on a human
ethology approach proposing the early identification of “at-risk” behaviors to
regulate queue dynamics seems to be novel. To remedy this shortcoming, the
large-scale food distribution sector has been chosen for the application of a
naturalistic observation approach to describe in detail the behavior of customer
queues. Sixteen immersion episodes were conducted in the months between
May and June 2016. Using RQDA, we analyzed the immersion transcripts and
identified typical customer queue behavioral patterns. Then, we developed an
ethogram containing what we considered to be “at-risk” queue behaviors. This
ethogram can ultimately be used as an anticipatory indicator in the context of
feedforward management controls. Feedforward control, as opposed to classical
feedback controls, is based on the early detection of risks and the implemen-
tation of mitigation before damage occurs. While this approach requires human
attention and expertise (which can be labor-intensive), there is also potential for
human ethology to assist managers with supportive or complementary
automation. Indeed, the factual description of behaviors contained in our
ethogram can easily be coded with modern technology like facial expression and
body recognition technologies.

Keywords: Enterprise risk management � Human ethology � Service science
Waiting line management

© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 18–29, 2018.
https://doi.org/10.1007/978-3-319-91764-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_2&domain=pdf

1 Context

For centuries humankind has shown no lack of imagination toward reducing distances;
in particular, with the development cars, planes and even rockets. It must be observed,
however, that queues still exist and are part of our daily lives. At the time of the
instantaneousness of the Internet, the rule of “Anytime, Anywhere, Any device” takes
on its full meaning, and customers seem less ready to wait. Indeed, according to a study
conducted by IFOP (www.ifop.com - based on a sample of 1000 people aged 18 and
over), no less than 30% of French consumers would abandon a purchase just because of
a checkout queue. Consequently, “balking” or “reneging” behaviors and feelings of
frustration and injustice have an impact in terms of costs for the company and can
create a negative perception of the service offered to the client. The design of suitable
queues therefore seems to be an element to be considered. In this paper we see how
human ethology precepts can contribute to better queue management. Various queuing
systems adopting the FIFO (First In First Out) logic have emerged alongside the
traditional queue, which is known as the multiple-queue configuration. The serpentine
queue also warrants mention. It is a single queue leading at the end to multiple servers.
Another important type of file configuration, the queue with ticket-number, is also
known as the virtual queue configuration. A first line leads to a ticket dispenser. Then,
each client waits until his/her turn. More recently, the virtual ticket number has gained
popularity thanks to the Internet where physical presence is not required anymore. This
research aims to manage the annoyances associated with customer queues through
human ethology methodologies. The queuing behaviors identified during immersions
are collected in an ethogram, by sensorial qualification. On the basis of naturalistic
observation, queue ethograms are established. The goal is then to be able, in real time,
to prevent risks of overflow, general dissatisfaction, and also generally to promote a
better perception of value offered by the final service. The entirety of the fieldwork,
based on participative observations, was carried out according to the methods of human
ethology in the food retail sector. A first “exploratory” field phase, including four
immersions, allowed the observer to become familiar with the dynamics of the points
of sale. In addition to a brief observation of the queues, the customer’s purchasing
context was also examined. The second “in-depth” field phase, consisting of sixteen
immersion episodes (10 min each), enabled us to identify typical behaviors of clients in
the queues. This inventory of behaviors was made possible thanks to the development
of an observation grid and the processing of its data with the RQDA program.
Thereafter, an ethogram was created to highlight certain behaviors identified as
potentially “at risk”. This paper is organized as follows. In Sect. 2, we propose a simple
explanation about of queuing theory, as well as human ethology adapted to this con-
text. In Sect. 3, we propose a brief literature review of queuing theory and related
developments in the psychology of waiting lines. We also explain the main principles
of human ethology in the context of customer queues. In Sect. 4, we present the
methodology employed to gather data through naturalistic observation. In Sect. 5 we
propose an ethogram of at-risk queue behavior based on fieldwork analysis. We con-
clude by indicating research limitations as well as further research directions.

Detecting Customer Queue “at-risk” Behaviors Based on Ethograms 19

http://www.ifop.com

2 Queuing and Human Ethology

It was in the beginning of the 20th century that the Danish engineer Agner Krarup
Erlang (1878–1929) developed the mathematical theory of waiting lines (called
queuing theory). His mathematical models were applied for the first time to assessing
the very long queues of white-collar workers who wanted to take skyscraper lifts to
their offices. Erlang was not only interested in quantitative models to evaluate waiting
time and queue length, but also in the perception of time spent in the queue (qualitative
aspects, such as talking with a colleague, reading a newspaper or enjoying a bagel and a
coffee, may create the impression that the perceived wait time is shorter than the actual
wait time). Unfortunately, today, the two approaches (quantitative and qualitative) are
too often treated separately. On the one hand, quantitative approaches coupled with
Monte-Carlo simulation techniques now allow computers to calculate a range of
indicators to manage the queue from an essentially operational point of view. For
example, when wait times in the queue are considered too long, these models can
accurately assess the number of additional cashiers needed in order to return to a
reasonable wait time. On the other hand, qualitative approaches allow us to grasp
behavioral aspects of the queue. The most studied behaviors are: a priori impatience
(“balking”) and a posteriori (“reneging”), which lead to the abandonment of the queue
if it is perceived as too long, as well as the passage from one queue to another
(“Jockeying”) in order to reduce the waiting time. For example, jockeying is a typical
behavior of the traditional queue and typically creates feelings of injustice within the
queue. The serpentine queue eliminates the possibility of “jockeying” on the other
hand. However, it is subject to more frequent abandonment behaviors when the queues
are very long. The same applies to the queue with ticket-number. First, we consider the
traditional queue that consists of several queues each leading to a counter. Next, we
consider the single line leading to several cashiers, also called serpentine, which
consists of a single queue leading to several cashiers. The last queue configuration we
consider is the queue with ticket, also called the virtual queue. A first line leads to the
ticket dispenser. Then, people take their places in the waiting room and go to a specific
window as soon as the electronic bulletin board invites them. All three queue con-
figurations apply the so-called FIFO (First In First Out) rule. The term “human
ethology”, is defined as the study of human behavior without relying on questions or
discussion but through sole observation from the outside. Eibl-Eibesfeldt [1] is known
to be the first scientist to have systematically explored human ecosystems with methods
and concepts of animal ethology. In the 1970s, he created a repertoire of the most
universal human behaviors. Basic facial and gestural expressions, appearing to be
found in all human societies, have thus been categorized. He also highlighted the
invariance of certain behaviors such as frowns related to the expression of anger or in
opposition, eyebrow shrugging (frowning), as a sign of friendly welcome. The energy
leading to a given behavior is put in place by two different triggering systems that can
be seen as the dual causes of behaviors:

• Behavior of endogenous origin (internal stimulations). This is defined very well
through the notion of drive, referring to everything that is of physiological origin.

20 M. Dubosson et al.

• Behavior of exogenous origin (external stimulations). The exogenous origin con-
cerns the environment and includes the spatio-temporal dimensions proper to it, but
also the presence and activities of other individuals or groups of individuals.

These fundamental aspects are part of a “stimulus-response” pattern of cause and
effect. Still, in order to understand the notion of behavior, a theoretical contribution can
be made with regard to innately acquired behaviors. In the majority of cases, these are
closely intertwined in the behaviors observed. Indeed, these coexist in our brain and are
dictated by two parts of the brain. In the case of innate behaviors, they are located in the
paleo-cortex (reptilian brain), while the acquired behaviors find their seat in the neo-
cortex. We can thus define two main types of behaviors:

• Inborn Behaviors. Innate behaviors are dependent on the hereditary heritage of the
species and are registered in the genes. These are all instinctive behaviors. Among
these are the expression of emotions, a baby’s instinctive behaviors, walking, and
basic social recognition or communication behaviors. These are dictated by the
reptilian brain.

• Acquired Behavior. The acquired behaviors result from various learning and
experiences acquired during the ontogenesis of the individual.

Take the example of escalators in London. It is known that users are placed on the
right side of the escalator one after the other so that the people pressed for time can take
the left side. This behavior has been learned and is not innate. Let us take another
example of queuing behavior that is no longer learned, but is innate. A given queue
system is configured as a traditional queue (multiple queues in parallel). We know that
as 90% of people are right-handed, the right queues have a natural tendency to fill more
strongly than those on the left. It is as if most of us are driven by our right hand (this is
the case when we shop). Now that these basic notions directly related to behavior have
been developed, we can clarify what we mean by:

• Typical behavior of queues. One of the objectives of this work is the observation of
typical behaviors of queues. By this we mean observing typical behavioral patterns
that occur repeatedly in queues during field observations. [2] provides an example
of a naturalistic observation approach employed to understand skiers’ behaviors in
cable cars queues in order to improve their overall satisfaction.

• At-risk queue behaviors. Once observing the set of standard behaviors of queues,
one of the tasks will be to highlight the at-risk behaviors. By the notion of risk
behaviors we mean behaviors that may have a negative impact on the issuer of the
behavior or on its direct or indirect environment and which can also impact the
image of the service provider.

3 Literature Review

Below is an overview of research that takes into account some behavioral aspects of
queues. Maister [3] was one of the first authors to discuss the psychology of queues. [4]
emphasized the importance of the control process and the announcement of wait times

Detecting Customer Queue “at-risk” Behaviors Based on Ethograms 21

in order to maintain a sense of justice in the queue. [4] proposes a variety of stress
reduction mechanisms, such as providing clients with a wait-time forecast, or offering
clients fast-pass options. These practical suggestions can help managers reduce per-
ceived waiting time, improve the customer’s waiting experience, and generally
improve the management of the queue. [5] demonstrates that some elements, such as
music or queue structure, if properly managed, can have a positive impact on per-
ception of service expectation and satisfaction. The paper concludes with a compre-
hensive model, including all the elements that the authors judge to affect overall
perceptions of service expectations. [6] shows that music or perfume can reduce the
level of discomfort during a wait. The overall satisfaction level of the service therefore
increases with the insertion of external stimuli during a queue. [7] highlights the
importance of the relationship between the structure of the queue and the attitudes of
clients. The authors suggest that individuals who wait in a serpentine queue system are
more awakened than those waiting in a multiple queue system (i.e. traditional).

The authors also question the perceived anxiety about whether the service will be
delivered according to expectations. [8] developed an econometric model to explain
wait in services. The authors show that some independent variables such as the human
factor and visual elements have a significant influence on the perception of clients’
expectations. [9] describes waiting as a psychological experience. The authors of this
paper find that the traditional queue can produce a sense of injustice, even if from an
objective point of view there is no inequality. The authors showed that when the client
perceives the service provider has control over the wait time, longer wait times will be
more unpleasant. [10] examines the difference between actual wait times and wait times
as perceived by the consumer, based on a case study. It becomes clear that there are
different ways to reduce this difference, and that depending on the emotional state of
clients, the perceived wait time may be longer or shorter. It is important to note that
with the advent of new technologies and the Internet, qualitative research has also
focused on the perception of waiting for online services with, for example. [11] studied
the wait time tolerated when consulting websites. [12] highlighted through their study
that a service involving a feeling of discrimination can lead to frustration and a sense of
helplessness to the client. Finally, Hall [13], who developed proxemics, used to say that
individuals tend to create an emotionally strong zone around themselves, which may
also be described as an individual perimeter of security, like a bubble.

4 Methodology

There are two types of approaches in ethology to collect data: naturalistic observation
and experimental manipulation. The naturalistic observation is made in a natural
environment or in a reconstitution of it. Experimental manipulation is carried out in the
laboratory and attempts to control all induced variables. Here, we solely employ nat-
uralistic observation as an exploratory approach to discover behavioral patterns related
to customer queues. The working tools used in naturalistic observation are primarily
paper/pencil, but also photos, videos or even voice recordings. The basics of inquiry are
always based on the following three precepts: to remain at a descriptive level, to
determine what is observed and to develop an ethogram (catalog of behaviors in a

22 M. Dubosson et al.

certain context). The research was carried out with customers attending supermarkets.
The framework for large-scale food retailing was chosen for several reasons. Indeed,
this sector is represented by large players daily engaged in a major competitive battle.
Offering essential goods, these places have become essential and have to cope regularly
with the large flow of customers. The clients waiting in line were observed by a unique
person (one of the authors of this paper) according to the methods of human ethology.
The idea of an ethological approach consists in a direct observation, with an outside
and non-interactive observer, of the different behaviors encountered within the human
species, here of the clients. Ethology, whose general characteristics have been devel-
oped in the previous section, seems to be a relevant and meaningful discipline for the
researcher who wishes to understand the ecosystem of queues with the intention of
describing related behaviors in a precise manner. The objectives mentioned in the
preceding point can be achieved by the following three human ethological precepts:
staying at a descriptive level; determining what is observed; developing an Ethogram.
The subjects observed are the customers making their purchases in the selected outlets
and who take part in a queue to pay a cashier for what they have bought. The observer
is part of the group of customers waiting in line so as to be able to collect precise
information concerning the queues and ensure that the observer is not encumbered by a
visual obstacle. It is a participatory approach. The proximity to the group allows for
better listening to the environing noise. Typically, the quality of the observations
gathered depends on the mode of recording. Indeed, if the use of a video camera makes
it possible to view the events later and to have a very fine screening, this technique
offers only a two-dimensional view of the events and often requires additional lighting.
Moreover, this type of equipment can have a disruptive role, especially with humans.
A less expensive and simpler technique is used in this research: paper and pencil. It is
well accepted in the field of ethology that paper and pencil are a relevant approach to
make live observations and remain quite valid without requiring the intervention of
more complex tools [14]. So, in sum, here are the main characteristics of the fieldwork
undertaken for this study. We worked in two different locations (a small store and a
large store). In both cases, queue configurations corresponded to the traditional line
system; that is, multiple queues. The sampling technique adopted was “centration
successive” (focal sampling): observation began as soon as the client entered the queue
and continued until the client left the queue [15]. Sixteen immersion episodes (eight per
store) were conducted, at 10 min each, on four Saturday afternoons (known to be four
busy days). An observation grid containing pre-identified categories of queue behaviors
was developed during a preliminary phase conducted in several commercial centers
before the 16 formal immersion episodes. The transcripts of the 16 immersions epi-
sodes were encoded in the RQDA software (RQDA - R package for computer assisted
qualitative data analysis) that allowed the grouping of similar data by coding the data in
categories. This was used to produce tables containing typically observed queue
behaviors.

In this case, there the two supermarkets observed will remain anonymous. This type
of approach allows an in-depth understanding of the behaviors of individuals in relation
to the complexity of the environment. Practically, the overall research design can be
summarized in the three following phases:

Detecting Customer Queue “at-risk” Behaviors Based on Ethograms 23

Phase 1: Pre-immersion. The first step consists of a phase of exploratory observation
or reconnaissance observation carried out according to unstructured sampling tech-
niques. In this case, the most important and interesting elements were observed in the
supermarket. This first exploratory stage allows for control of the environment studied,
but also a familiarization of the observer with the main lines of behavior of the clients
in the context of a queue, which allows a first “slimming”. At this stage, it is the
purchasing context of the customer that is taken into account and not just the queue
item leading to a cash register. The advantage of this approach is not to carry out a
reductive analysis limited only to the observation of the individual when he/she is in
the queue, but rather to adopt a more global approach integrating the aspects related to
the context in which the client has previously evolved.

Phase 2: In-depth Phase. The second phase consists of field observation work
focusing on the behaviors present in the queues. This phase is possibly based on certain
points highlighted during the previous phase, the exploratory phase. With regard to
observations in the checkout queues, the client is considered observable for the typical
behavior of the queues from the moment that the client goes to a queue until he/she
leaves the cashier after collecting and paying for his/her purchases. Once these sixteen
immersion episodes were completed, accurately collected and described observations
were encoded into the computer for processing. The encoding and analysis of the data
from the observation grids was carried out from the data processing system “RQDA-R
package for computer assisted qualitative data analysis.” Indeed, this software allows
for the regrouping of similar data thanks to the coding of the data.

Phase 3: Realization of the Ethogram. Before developing this third step, it was first
necessary to develop the term ethogram in order to have a complete understanding of
the chosen methodology. Let us first recall that the ethological method differs from
other methodological approaches, in particular by the importance it places upon the
descriptive phase of the observation. This step involves the development of an etho-
gram that can also be seen as a repertory comprising the characteristic behaviors of an
individual within a specific framework. In this inventory, behaviors are classified or
deconstructed according to previously established behavioral categories. The imple-
mentation of an ethogram involving various risk behaviors allows for the implemen-
tation of appropriate managerial recommendations.

5 Findings

The analysis of the immersion transcripts has provided many detailed insights
regarding queue behaviors. In this section, we present a summary of this analysis.
Then, we illustrate the method by which we developed an ethogram of “at-risk” queue
behaviors based on this analysis, which is in turn intended for decision-making pur-
poses. There are several scenarios for arriving in a traditional queue. Some customers
go directly to the cashier closest to them as soon as they leave the department, even if it
is not the fastest queue. The majority of this type of customer is often distracted by a
ringing mobile phone, a telephone conversation, listening to music, or sending mes-
sages. Other customers mark a brief stop with a head swing from left to right in order to

24 M. Dubosson et al.

choose the queue they want to take part in (more marked in the large store). In the
majority of cases, the client will take part in the queue that includes the fewest clients or
the queue that is shortest in length. Some customers make detours without pause and
head to a particular check-out counter. There are also customers who simply follow the
customer who precedes them. The fluidity of the queue decreases during periods of
high attendance at the check-out counter. In the off-peak period, too many check-out
counters are open. The opening of an extra check-out counter is not always clearly
communicated, and some customers are not even aware of it. Indeed, the green lights
above the check-out counters are not very visible, and some cashiers do not system-
atically offer oral invitation to the customer to go to a newly opened queue when this is
the case. Regarding specific observations conducted in the small store, arrival in the
queue was sometimes more complex. The client did not always understand whether it
was a single or multiple queues leading to several check-out counters. The queues took
on the movement of an accordion, and their “rhythm” was dependent on the different
periods of business activity and client behavior. Indeed, it has been often observed that
the client moved from a “rest” state to an “active” state within the same queue. The
customer took action to deposit his/her goods on the carpet, on receipt of goods as soon
as they had been scanned, and also when paying for his/her purchases. The customer
thus went through several implicit stages and was solicited periodically. Various
behaviors can be observed at different stages of the same queue and for the same client.
Most of the time, the client seems lonely, but some social behaviors may also appear.
Various external events animated the ecosystem of the queue positively as well as
negatively. No major incidents were noted. The customer often seemed to be “watching
his/her back,” looking at the moves of his/her eyes to the left and to the right. This was
especially the case when a certain safety zone (in terms of distance between people)
was not respected. Some clients also prepared their wallet, payment card, vouchers,
etc., in advance. The shape of the traditional queue was generally a straight line.
However, when an unforeseen element had to be taken into account, it became
immediately more disordered. Signaling was good but did not easily allow the cus-
tomer to leave the queue for one reason or the other (being regularly cluttered with
shopping carts or shopping baskets of customers and thus making it difficult to
maneuver). The client then had to clear a path to leave the queue. In Table 1, we
present a formalized way of describing queue behavioral patterns based on our analysis
along with frequencies (i.e., subjective probabilities). Then, based on formalized tables
such as Table 1, we developed an ethogram (see Table 2) containing queue behaviors
that we consider to be at-risk behaviors in terms of the overall service value perception.
There are several forms of ethograms. However, most include a first column with the
name of a typical behavior, followed by a column describing this behavior more
accurately.

The value of our approach is really related to the logic of a preventive control (see
below) in which mitigation triggers are based on the ethogram. The last methodological
element used in this research project was preventive control (feedforward control) [16]
for addressing human risks [17]. Preventive control allows the indicators coming from
the ethogram to trigger the “mitigations” necessary to reduce emotional risks in the
queue. According to the IIA (Institute of Internal Auditors, www.theiia.org), control
means any action taken by management, the board or other parties to enhance risk

Detecting Customer Queue “at-risk” Behaviors Based on Ethograms 25

http://www.theiia.org

management and increase the likelihood that established objectives and goals will be
achieved. Control corresponds to an essential part of management and is comprised of
four critical components: planning, organization, employee involvement and control
(assuring the first three components). Risk control is a three-step process: 1. Definition
of the objective; 2. Measuring the achievement of the target within the time limit; 3.
The managerial corrective phase (do nothing if goal is reached, reconsider objective if
too ambitious, set up risk mitigation treatments to increase the likelihood of achieving
the objective). When control is corrective (i.e. feedback control), the managerial cor-
rective phase is triggered on the basis of an objective measurement of the achievement

Table 1. Extract of inventoried behaviors ranked according to their frequency.

Category Description of observed behaviors Frequency

Reneging The customer informs the cashier of being in a hurry and leaves
the line without completing his/her purchases.
The client leaves the queue because it does not advance fast
enough and observes the other queues.

Rare

Overtaking The customer leaves the line without informing the customers
he/she plans to return later, then passes in front of the other
customers.

Rare

Surveillance The client seems to open his eyes and stretch his head to the left
to assess the progress of the queue.
The client keeps his/her bust straight.
Customer turns head from left to right.
The customer observes the maneuvers of the previous customer.

Likely

Table 2. An ethogram describing “at-risk” queue behaviors.

Category Behavior Description of expected behaviors

Distraction Looking
around

The client observes how the queue is moving.
The client stares at the service provider.

Boredom Getting
impatient

The client glances at his watch repeatedly.
The client taps fingers on the conveyor belt.
The client taps foot on the ground.

Switching
lines

The client leaves his queue and takes part in another queue.

Dissatisfaction Giving up The client abandons the queue and leaves the store.
Frustration Assaulting The client verbally assaults another client because the latter

misunderstands the signaling of the queue.
Avoiding The client returns to the end of the queue without

complaining.
Nervousness Getting

upset
Under queue pressure, the client frowns.

Fussing The client scratches his head.
The client plays with his car keys.
The client actively searches in his bag.

26 M. Dubosson et al.

of the result; hence afterwards. When the control is anticipated (i.e. feedforward
control), the actual measurement of the achievement of the result is replaced by a
forecast of it. The actions of the corrective phase can therefore be taken more quickly,
even before the deadline for achieving the target has been reached. A feedforward
control can be presented as a process in three steps, as in the following example
implementing the ethogram:

(1) Determining an objective related to the customer queue (e.g., maintaining a “re-
laxed” queue during rush hours);

(2) Analyzing indicators from the ethogram (e.g., diagnosis of too much nervousness
in the queue);

(3) Triggering “mitigation” according to the level of the indicators (e.g., distributing
glasses of water and orange juice in order to lower the “emotional temperature”
and to get back to normal state).

Risk controls are easily programmed, thanks to their linear structure. However, the
feedforward control compared to the feedback control is trickier since the anticipative
indicators usually come from an expert. In our case, it would come from the ethogram,
so it could be automated.

6 Conclusion and Further Research

The purpose of this research is to identify early signals to avoid a sudden increase of
emotional temperature related to recurrent annoying experiences when waiting in line.
The originality of this work is that at-risk queue behaviors were studied through human
ethology. Ethology is the study of the behavior of living things (animal or human) in
their “natural ecology”. This discipline focuses on all of the factors that induce certain
behaviors (stimuli, innate, learned…). Through naturalistic observation, we attempted
to identify the typical behavior of customer queues: it was accomplished through
observation of typical behaviors of queues occurring several times during our field
observations. In view of this, the objectives set out in this paper were to observe
different queues and to inventory the various behaviors, in order to be able to detect risk
behaviors typically associated with waiting lines. Thanks to this early detection of
at-risk behaviors, managers are able to implement adapted solutions to return the queue
to a normal state. The fieldwork took place as follows: identification of the different
types of queues, identification of analyzed behaviors, and grouping of these in an
ethogram by sensorial qualification. Once these steps were completed, various emo-
tional and physical mitigation tools were proposed. While we discovered that some
clients were easily distracted, our observations also pointed out that not only can
impatient behavior have a contagious effect on the rest of the queue, it may also lead to
other risk behaviors such as change of queue or abandonment. Faced with these results,
various managerial recommendations have been put in place to improve the manage-
ment of queues. These include taking into account the context in which the customer
makes his purchases, as well as the design of a single, personalized queue that meets
the needs of the company. The organization of training seminars in human ethology to
better understand customer behavior [18] also complements the proposed solutions, in

Detecting Customer Queue “at-risk” Behaviors Based on Ethograms 27

order to better know and manage the problematic object of this study. Finally, we show
how preventive controls (feedforward controls) based on at-risk queue behavior
ethograms can be easily implemented to practically mitigate the typical physical and
emotional responses observed in the queues in order to avoid too sudden a climb in
“emotional temperature”. The main limitations of this work are that naturalistic
observation corresponds to exploratory research and that the ethogram produced is not
validated. So, our findings cannot be generalized. Nevertheless, this approach has
enabled us to discover things that we are personally experiencing every day, and that if
well addressed in a practical manner could improve the lives of customers. We intend
in the future to study more collective behaviors, and not just individual behaviors
observed in the queue, such as mimicry, contagion or crowd effects. Moreover, it
would also be interesting to study the possible occurrence of new behaviors following
the massive introduction of digitization in many outlets. This work could be comple-
mented by a comparison between digital and traditional. We also intend to develop a
research collaboration with an institute specializing in facial expression and body
recognition technologies in order to automate our approach.

References

1. Eibl-Eiblsfeldt, I.: Human Ethology. Aldine de Gruyter, New York (1999)
2. Fragnière, E., Gaillet, V., Nanchen, B., Ramseyer, R.: Using ethological approaches to

understand skiers’ behavior in cable cars queues in order to improve overall satisfaction: an
empirical study conducted in the Swiss Alps. In: Za, S., Drăgoicea, M. (eds.) IESS 2017.
LNBIP, vol. 279, pp. 421–430. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56925-3_33

3. Maister, D.: The psychology of waiting lines. In: Czepiel, J.A., Solomon, M.R. (eds.) The
Service Encounter: Managing Employee/Customer Interaction in Service Businesses. D. C.
Heath and Company, Lexington Books, Lexington (1985)

4. Naumann, S., Miles, J.: Managing waiting patients’ perceptions: the role of process control.
J. Manag. Med. 15(5), 376–386 (2001)

5. Baker, J., Cameron, M.: The effects of the service environment on affect and consumer
perception of waiting time: an integrative review and research propositions. J. Acad. Mark.
Sci. 24(4), 338–349 (1996)

6. McDonnell, J.: Music, scent and time preferences for waiting lines. Int. J. Bank Mark. 25(4),
223–237 (2007)

7. Rafaeli, A., Barron, G., Haber, K.: The effects of queue structure on attitudes. J. Serv. Res. 5
(2), 125–139 (2002)

8. Choongbeom, C., Atul, S.: Assessing the relationship between waiting services and customer
satisfaction in family restaurants. J. Qual. Assur. Hosp. Tour. 13(1), 24–36 (2012)

9. Van Riel, A.C.R., Semeijn, J., Ribbink, D., Bomert-Peters, Y.: Waiting for service at the
checkout: negative emotional responses, store image and overall satisfaction. J. Serv. Manag.
23(2), 144–169 (2012)

10. Whiting, A., Donthu, N.: Closing the gap between perceived and actual waiting times in a
call center: results from a field study. J. Serv. Mark. 23(5), 279–288 (2009)

11. Nah, F.: A study on tolerable waiting time: how long are web users willing to wait? Behav.
Inf. Tech. 23(3), 153–163 (2004)

28 M. Dubosson et al.

http://dx.doi.org/10.1007/978-3-319-56925-3_33
http://dx.doi.org/10.1007/978-3-319-56925-3_33

12. Klinner, N.S., Walsh, G.: Customer perceptions of discrimination in service deliveries:
construction and validation of a measurement instrument. J. Bus. Res. 66(5), 651–658
(2013)

13. Hall, E.T.: The Hidden Dimension. Anchor Books, New York (1966)
14. Lehner, P.N.: Handbook of Ethological Methods, 2nd edn. Cambridge University, New

York (1996)
15. Altmann, J.: Observational study of behavior: sampling method. Behaviour 49, 227–265

(1974)
16. Fragnière, E., Sullivan, G.: Risk Management: Safeguarding Company Assets. Crisp, USA

(2007)
17. Fragnière, E., Junod, N.: The emergent evolution of human risks in service companies due to

control industrialization: an empirical research. J. Financ. Transform. 30, 169–177 (2010)
18. Vargo, S.L., Maglio, P.P., Akaka, M.A.: On value and value co-creation: a service systems

and service logic perspective. Eur. Manag. J. 26(5), 145–152 (2008)

Detecting Customer Queue “at-risk” Behaviors Based on Ethograms 29

What, Where, When, How
and Right of Runtime Adaptation

in Service-Oriented Systems

Leah Mutanu1(&) and Gerald Kotonya2

1 School of Science and Technology, United States International University,
Nairobi, Kenya

lmutanu@usiu.ac.ke
2 School of Computing and Communications,

Lancaster University, Lancaster, UK
gerald@comp.lancs.ac.uk

Abstract. Software as a Service reflects a “service-oriented” approach to
software development that is based on the notion of composing applications by
discovering and invoking network-available services to accomplish some task.
However, as more business organizations adopt service-oriented solutions and
the demands on them grow, the problem of ensuring that the software systems
can adapt fast and effectively to changing business needs, changes in their
runtime environment and failures in provided services has become an increas-
ingly important research problem. Dynamic adaptation has been proposed as a
way to address the problem. However, for adaptation to be effective several
other factors need to be considered. This paper identifies the key factors that
influence runtime adaptation in service-oriented systems, and examines how
well they are addressed in 29 adaptation approaches intended to support
service-oriented systems.

Keywords: Service-oriented � Runtime adaptation � Validation

1 Introduction

Service-Oriented Architecture (SOA) provides the conceptual framework for realizing
service-oriented systems (SOS’s) by supporting dynamic composition and reconfigu-
ration of software systems from networked software services [1]. Rosen [2] identifies
the key motivations for SOA as agility, flexibility, reuse, integration and reduced cost.
However, the need to ensure that the systems can adapt quickly and effectively to
changing business needs, changes in system quality and changes in their runtime
environment is an increasingly important research problem [3]. Effective adaptation
ensures the system remains relevant in a changing environment and is an accurate
reflection of user expectations.

Taylor [4] defines dynamic adaptation as the ability of a software system’s func-
tionality to be changed at runtime without requiring a system reload or restart. Taylor
points out that there is an increasing demand for non-stop systems, as well as a desire to
avoid annoying users. However, current approaches for supporting runtime adaptation

© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 30–42, 2018.
https://doi.org/10.1007/978-3-319-91764-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_3&domain=pdf

in service-oriented systems differ widely with respect to the nature of systems they
support, the types of system changes they support and their underlying model of
adaptation [5, 6]. In addition, it is also unclear how these approaches address the
important issue of ensuring the adaptation is effective. A growing consensus amongst
researchers is that runtime adaptation in SOA should incorporate a validation element
[16, 18].

In their research roadmap for self-adaptive systems, Lemos et al. [7] emphasize the
need for feedback control in the life cycle of self-adaptive systems, and the need to
perform traditional design-time verification and validation at runtime. In another sur-
vey, Salehie et al. [45] note that testing and assurance are probably the least focused
phases in the engineering of self-adaptive software. Papazoglou et al. [18] echo this
view. They note that the bulk of research in adaptive service-oriented systems has
focused largely on dynamic compositions. Adaptation validation goes beyond verifying
that the adaptation conforms to its operational specification. Validation is concerned
with verifying the acceptability of an adaptation, often from the point of view of the
system user – i.e. is it the right adaptation for the problem as opposed to whether it is
specified right? Validation assesses the effectiveness of an adaptation. Because user
requirements are constantly changing, a self-validation process would enable the
adaptation system to self-assess and self- evolve in order to remain relevant.

This paper identifies the key factors that influence adaptation in service-oriented
systems, and uses them to review 29 approaches intended to support runtime adaptation
in service-oriented systems. The survey presented in this paper compliments and
extends existing surveys on adaptation by examining runtime adaptation from a dif-
ferent, but useful perspective and extending the review to incorporate validation as key
factor. The paper is organised as follows, Sect. 2 identifies the factors that influence
adaptation and a review of current adaptation approaches. Section 3 proposes an
integrated solution. Section 4 provides some concluding thoughts and a look ahead.

2 Factors that Influence Adaptation

Most of the work on self-adapting software systems takes inspiration from control
theory and machine learning. Control-theory splits the world into a controller and a
plant. The controller is responsible for sending signals to the plant, according to a
control law, so that the output of the plant follows a reference (the expected ideal
output). Figure 1 shows a typical control loop. Although it is difficult to anticipate
when and how change occurs in software systems, it is possible to control when and
how the adaptation should react to change.

Fig. 1. Dynamic physical system

What, Where, When, How and Right of Runtime Adaptation 31

Dynamic adaptive systems require information about the running application as
well as control protocols to be able to reconfigure a system. For example, keeping web
services up and running for a long time requires collecting of information about the
current state of the system, analyzing that information to diagnose performance
problems or to detect failures, deciding how to resolve the problem (e.g., via dynamic
load-balancing or healing), and acting on those decisions. Figure 2(a) shows the control
process for a software system equivalent of the physical system shown in Fig. 1. The
controller maps onto an adaptation process that reconfigures the runtime system to
address the changing needs in its application context. Figure 2(b) show how the
adaptation process can be improved using validation. Validation tracks, assesses and
adjusts adaptations to ensure that they reflect user expectations.

Lemos et al. [7] highlight the importance of understanding the factors that influence
adaptation. They posit that this helps in the comprehension of how software processes
change when developing self-adaptive systems. The key challenges with current
approaches include defining models that can represent a wide range of system prop-
erties, the need for feedback control loops in the life cycle of self-adaptive systems and
self-validation. The nature and quality of runtime adaptation in service-oriented sys-
tems is influenced by system changes (i.e. adaptation triggers), the nature of the
application and the logical area where it executes (i.e. application context), the strategy
used to reconfigure the system in a particular change context (i.e. adaptation model),
and the effectiveness of the adaptation (i.e. validation). Together, these factors, rep-
resent the what, where, when and how, and right of runtime adaptation. It is also
important to note that these factors constantly shift and evolve making it difficult to
specify adequate adaptation rules in advance.

Fig. 2. Dynamic software system

32 L. Mutanu and G. Kotonya

2.1 Change Trigger (What)

A change trigger represents what causes adaptation and the reason for it. Change
triggers are a function of changes in the business environment, service failure, and
changes in the system quality and its runtime environment.

• Business Environment Triggers. Changes in the business environment that the
system supports may trigger adaptation. This may be caused by changes in user
requirements, business rules or platform. Zeng [8] describes an adaptation approach
that accepts changes in user requirements and business rules on the fly and com-
poses services to address them. Similarly Cubo [6] describes an approach that uses
changes in the system context and platform to trigger adaptation.

• Service Quality Triggers. Failures in provided services, for example, incompati-
bilities, network outages and poor quality, can trigger adaptation. The quality of a
service-oriented system depends not only on the quality of service (QoS) provided
by services, but on the interdependencies between services and resource constraints
imposed by the runtime environment. This type of corrective adaptation is typical of
self-healing systems. Robinson et al. [10] describe an approach that uses a
consumer-centred, pluggable brokerage model to track and renegotiate service
faults and changes. The framework provides a service monitoring system, which
actively monitors the quality of negotiated services for emergent changes, SLA
violations and failure. A similar approach, The Personal Mobility Manager,
described in [29] emphasizes the need for automatic system diagnosis to detect
runtime errors. It helps car drivers find the best route in or between towns, by
suggesting optimal combinations of transportation according to local situations,
such as traffic level, weather conditions and opening hours.

• Runtime Environment Triggers. Changes in the runtime system can also trigger
adaptation. Interacting services may impose dependability as well as structural
constraints on each other (e.g. performance, availability, cost, and interface
requirements). Dustdar et al. [9] describe a self-adaptation technique for managing
the runtime integration of diverse requirements arising from interacting services,
such as time, performance and cost. Swaminathan et al. [5] propose an adaptation
approach based on self-healing as a means for addressing runtime system errors.
Runtime resource contentions between services in the orchestration platform can
result in significant falls in service quality. This emergent quality of service is
difficult to anticipate before system composition, as resource demands are often
dynamic and influenced by many factors. Newman and Kotonya [11] proposes a
resource-aware framework that combines resource monitoring with dynamic service
orchestration to provide a runtime architecture that mediates resource contentions in
embedded service-oriented systems.

Effective adaptation must address the real cause rather than the symptom. Taiani
[13] describes this as a key challenge in adaptive fault tolerant computing. Moyano et al.
[14] describe a system that monitors service failure and runtime environment triggers.
These are changes in hardware and firmware, including the unpredictable arrival or
disappearance of devices and software component. For example, a low memory trigger
may be the result of an SLA violation or runtime environment resource failure.

What, Where, When, How and Right of Runtime Adaptation 33

The resolution to the problem might involve replacing the service with a more efficient
alternative or optimizing the runtime environment, or both. It is important that the
adaptation process is not only able to find a good fit for the problem, but the right fit.

2.2 Application Context (Where)

An application context defines nature of the application and the logical area where it
executes. It helps us understand where adaptation takes place and the constraints
involved. Cubo et al. [6] discuss the importance of creating adaptive systems sensitive
to their application context (i.e. domain, location, time and activity). Tanaka and Ishida
[32] identify an input language and a target language as the application context for a
language translation application. Most of the approaches surveyed in this paper were
concerned with specific application contexts. Zeng et al. [8], for example, describe a
runtime approach for supporting business change in the automotive industry. Newman
[11] describes an adaptation framework for embedded resource-constrained environ-
ments. Baresi et al. [15] describes an adaptation framework for a smart home system. In
their description for the DigiHome architecture Romero et al. [41] discuss the inte-
gration of multi-scale entities. In the DigiHome scenario, they consider several
heterogeneous devices that generate isolated events, which can be used to obtain
valuable information and to make decisions accordingly. They make use of Complex
Event Processing (CEP), to find relationships between a series of simple and inde-
pendent events from different sources, using previously defined rules. In their work
Romero et al., use several heterogeneous devices that generate isolated events to obtain
valuable information and to make decisions accordingly.

A few other approaches, including Swaminathan et al. [5], Cardellini et al. [16], and
Zeng et al. [17] propose generic application contexts, but they only provide sketchy
implementation details. Some approaches promote context variability. For example,
Swaminathan et al. describe a context-independent, self-configuring, self-healing
model for web services. However, the author provides no information about the
implementation or evaluation of the model. Huang et al. [20] describe an approach for
developing self-configuring services using service-specific knowledge. They evaluate
their approach on three different systems (i.e. a video streaming service, an interactive
search service, and a video-conference service). However, it is evident from their
discussion that the context needs to be known before the application is deployed.

2.3 Adaptation Model (When and How)

An adaptation model shows when the adaptation process is carried out and how the
model is implemented in relation to the system it manages. A decision on when to
conduct adaptation is arrived at depending on when the adaptation requirements are
known as well as the availability of the requirements for adaptation. If the requirements
are known before the system is running then adaptation can take place at design-time,
for instance introducing support for a new network communication protocol, or adding
new attributes to a data model. However, if the requirements are only known after the
system has started executing then adaptation will take place at runtime. This is the
typical situation in ubiquitous and mobile computing scenarios. The availability of the

34 L. Mutanu and G. Kotonya

requirements for adaptation, such as system resources can also determine when to
conduct adaptation. For example, if the resources are available online then dynamic
adaptation can be conducted; otherwise it can be pushed to a later time when they will
be available.

Support for adaptation is required statically, where the applications could be taken
offline and adapted, and dynamically where going offline is not an available option. An
adaptation model may be implemented to carry out adaptation at design-time or at
runtime. Most of the work reviewed in Table 1 focuses on runtime approaches to
adaptation. There is no apparent attempt to integrate design-time adaptation approaches
with runtime adaptation despite some of the benefits presented by design-time adap-
tation. Papazoglou et al. [18] and Baresi et al. [3] identify the key techniques that can
be used to achieve runtime adaptation as self-configuring, self-healing, and
self-optimizing techniques.

• Self-Configuring is the automatic re-composition of services to adapt to changes in
the service environment. The work of [19, 8, 21] describe self-configuring adap-
tation techniques.

• Self-Optimizing is the automatic re-composition of services to improve quality of a
service. The work of [9, 17, 13] describes self-optimizing adaptation techniques.

• Self-Healing is the automatic re-composition of services to address a service failure.
Self-healing techniques detect system malfunctions and initiate policy based cor-
rective actions without disrupting the runtime environment [18].

Romay’s [21] review of self-adaptation techniques in SOA reveals that current
research focuses largely on self-configuring techniques. There is very little research on
self-optimizing or self-healing techniques. Bucchiarone et al. [22] note that focusing on
only one technique limits the effectiveness of the approach.

2.3.1 Predictive vs. Reactive Models
Adaptation can also occur in response to anticipated changes (predictive) or in response
to change trigger (reactive). Tanaka and Ishida [32] propose a model that focuses on
predicting the executability of services (i.e. if a message request will cause execution
failure). Unfortunately they provide limited detail on the implementation and evalua-
tion of their approach. Wang et al. [24] proposes a predictability model based on the
Q-Learning algorithm using the Markov Decision Processes (MDP). They explain that
human oriented services are rarely predictable. They point out that many service
properties keep changing in a manner that prior knowledge of these changes may not be
available. Instead they suggest incorporating reinforced learning in adaptation tech-
niques to ensure that adaptation techniques remain relevant. Their model uses a
decision process that maximizes the expected sum of rewards. While predictive
adaptation shows some promise, there is very little research on them.

2.3.2 Model Implementation – Embedded vs. Pluggable
In embedded adaptation, the process of monitoring and re-composition are an integral
part the adaptive system. In pluggable approaches, data is collected from the running
target system with non-invasive probes that report the raw data to an adaptation module
that is plugged onto the system. Most of the adaptation approaches in Table 1 are

What, Where, When, How and Right of Runtime Adaptation 35

embedded, limiting their portability. The work of Zeng et al. [8] and Cubo et al. [6] are
typical examples of this. Garlan et al. [23] state that the use of external control
mechanisms for self-adaptivity is a more effective engineering solution than localizing
the solution. A pluggable engine can be reused across different systems.

Table 1. Summary of adaptation approaches

Adaptation trigger Adaptation model

Approach Runtime
environment

Service
quality

Business
environment

Predictive
(P)
Reactive
(R)

Embedded
(E)
Pluggable
(P)

Design-time
support (D)
Runtime support
(R)

Validation Application
Context
(G = Generic
S = Specific)

Zeng et al. [8] 〇 〇 ◒ R E R 〇 S

Swaminathan [5] 〇 ◒ ◒ R N/A R 〇 G

Cubo et al. [6] 〇 〇 ● R E R 〇 S

Huang et al. [20] 〇 〇 ◒ R E R 〇 S

Dustdar et al. [9] ◒ 〇 ◒ R E R 〇 S

Autili et al. [28] ◒ 〇 ◒ R E R ◒ S

Cardellini et al.
[16]

◒ ◒ ◒ R P R ◒ G

Lorenzoli et al.
[29]

〇 ◒ 〇 R P R 〇 S

He et al. [30] 〇 ◒ 〇 R E R ◒ S

Mateescu et al.
[31]

〇 〇 ◒ R P R 〇 S

Zeng et al. [17] ● ◒ ● P E R 〇 G

Robinson et al.
[10]

〇 ● 〇 R P R 〇 S

Tanaka et al. [32] 〇 〇 ● P E R 〇 S

Siljee et al. [33] 〇 ● ● R E R 〇 S

Orriens et al. [34] 〇 〇 ● R E R 〇 S

Wang et al. [24] 〇 〇 ● R E R 〇 S

Sliwa et al. [35] 〇 〇 ● R E R 〇 S

Lin et al. [36] 〇 〇 ● R E R 〇 S

Ivanovic et al. [12] ● ● ● P E R 〇 S

Hussein et al. [37] 〇 ◒ 〇 R P R 〇 S

Hirschfield et al.
[38]

〇 ● 〇 R E R 〇 S

Tosic et al. [39] 〇 ◒ 〇 R P R 〇 S

Maurer et al. [40] 〇 ● 〇 R P R 〇 S

Romero et al. [41] 〇 〇 ● R P R 〇 S

Li et al. [42] ◒ ◒ 〇 R P R 〇 S

Newman et al.
[11]

● 〇 〇 R P R 〇 S

Motahari-Nezhad
et al. [43]

〇 〇 ● R E R 〇 S

Cugola et al. [44] 〇 ● 〇 R E R 〇 S

Andre et al. [46] ◒ ◒ ◒ R P R 〇 G

Key
● - Supported
◒ - Weakly Supported
〇 - Not Supported N/A - Not Applicable

36 L. Mutanu and G. Kotonya

2.4 Adaptation Effectiveness (Right)

A typical adaptation process uses a predefined decision model to select an appropriate
adaptation in response to a change trigger. This relationship is often stored as a set of
fixed adaptation rules. However, the dynamic nature of service-oriented systems means
these factors are constantly changing, which makes it difficult to specify adequate
adaptation rules a priori. This is further complicated by the likelihood of competing
adaptation requests. This means that rules used to inform adaptation decisions cannot
be static and must constantly evolve to remain relevant. Most approaches that support
runtime adaptation are based on rules that reconfigure systems based on fixed decision
points. This means that most adaptations in service-oriented systems are responses to
change rather than anticipation. One way to address the problem is through the vali-
dation of adaptation decisions. Validation serves two key roles. First, it provides a
mechanism for assessing the effectiveness of an adaptation decision i.e. how well a
recommended adaptation addresses the concerns for which the system is reconfigured.
Secondly it provides us with insights into the nature of problems for which different
adaptations are suited.

Most autonomic systems are underpinned by IBM’s Monitoring, Analysis, Plan-
ning, and Execution model (MAPE) [47]. However, while the model is evident in many
self-adaptive frameworks for SOA, it lacks a runtime mechanism for supporting val-
idation. The analysis phase of the MAPE model performs reasoning based on the
details provided by the monitoring phase. The goal is to arrive at a decision on whether
adaptation is required. The planning phase then identifies the appropriate adaptation
and the execution phase changes the behavior of the managed resource. The entire
process is based on predefined rules.

None of the approaches surveyed in this paper provided integral support for vali-
dation. However, several researchers underscored its centrality to effective adaptation
[18, 45]. Skalkowski et al. [25] describe how a clustering algorithm can be used to
provide automatic recognition of similar system states and grouping them into subsets
(called clusters). Schumann and Gupta [26] propose a validation method to calculate
safety regions for adaptive systems around the current state of operation based on
Bayesian probabilities. Canfora et al. [27] propose regression testing to check the
evolution of service–oriented systems.

2.5 Summary

Table 1 shows our results of surveying 29 approaches that provide runtime adaptation
for SOS’s. It is important to mention that the survey was intended to be representative
rather than exhaustive. The approaches were careful selected to provide a good cov-
erage of current adaptation approaches. Each approach is reviewed it terms of the
nature and extent of support for change triggers, adaptation model, validation and
application context. Most of the approaches provide limited support for runtime and
service quality triggers. However, they provide comparatively good support for busi-
ness environment triggers. Only Ivanovic et al. [12] describes an approach for sup-
porting all three adaptation triggers. In their work they talk of the computational cost of
service networks as being dependent on internal and external factors. They recognize

What, Where, When, How and Right of Runtime Adaptation 37

that triggers for adaptation are due to overlapping factors that are both internal and
external to the service. Of the approaches reviewed, only provide support for adaptation
validation. However, the support is very limited. There is poor support for diversity
with most approaches designed to support specific application contexts. This limitation
may be related to the fact that most of the approaches are embedded.

3 Support for Validation in Runtime Adaptation

We have developed a consumer-centred, pluggable runtime adaptation framework that
integrates and extends the strengths of current approaches to support validation [48].
Figure 3 shows the architecture of the framework. The sensor sub-system is responsible
for monitoring the system for changes and for the initial decision phase of the adap-
tation process. When a system change or changes match the conditions specified on a
sensor, the sensor manager invokes the adaptation process by passing it the change
information. The adaptation manager is responsible for assessing the request and
recommending a suitable adaptation solution.

The validation sub-system uses machine-learning algorithms to assess past adap-
tation decisions and to modify the rules that inform the decisions. Figure 3 shows the
validation process. We use clustering algorithms to assess and refine the adaptation
decisions and deep learning to review and improve the long-term accuracy of pre-
dictions. Our framework uses the past behavior of consumers rather than their opinion

Fig. 3. Adaptation framework with support for validation

38 L. Mutanu and G. Kotonya

to gauge reputation and quality of feedback. If similar users in the recent past have
repeatedly accepted a particular adaptation decision then the decision is most likely
valid. The user is not prompted for feedback and therefore they cannot intentionally
manipulate the feedback they provide. Decision logs record the change triggers
received and the adaptation decision made. Machine learning algorithms then assess the
user adaptation decisions against adaptation triggers and form, and refine rules that
inform future adaptation decisions.

4 Conclusions

The paper has discussed the importance of runtime adaptation in SOS’s and identified
the factors that influence it. These factors describe the what, where, when and how and
right of adaptation. Specifically adaptation triggers tell us what cause adaptation, the
application context tells us where to adapt, the adaptation models tell us when and how
to adapt and validation tells us how effective the adaptation is.

We have used these factors to review the current state of runtime adaptation in
service-oriented systems. Our survey reveals that most of the approaches provide
patchy support for the key factors that influence adaptation. Most adaptation approa-
ches are tied to particular application contexts, focus on specific aspects changes and
are embedded in the application they manage. It is also clear that there is limited
empirical evidence to indicate the effectiveness of the approaches reviewed. Lastly, we
have provided a possible solution that integrates and extends the strengths of current
approach to support validation. We believe this paper makes a significant contribution
towards understanding and addressing a challenging problem.

References

1. Erl, T.: SOA Principles of Service Design. Prentice Hall, Upper Saddle River (2008)
2. Rosen, M., Lublinsky, B.K., Smith, T., Balcer, M.J.: Applied SOA: Service-Oriented

Architecture and Design Strategies. Wiley, Hoboken (2008)
3. Baresi, L.: Self-adaptive systems, services, and product lines. In: Proceedings of the 18th

International Software Product Line Conference SPLC, Florence, Italy, September 15–19,
pp. 2–4 (2014)

4. Taylor, R.N., Medvidovic, N., Oreizy, P.: Architectural styles for runtime software
adaptation. In: European Conference on Software Architecture, Joint Working IEEE/IFIP
Conference European Conference on Software Architecture, Cambridge, pp. 171–180
(2009)

5. Swaminathan, R.K.: Self configuring and self healing web services. In: Complex Software
Systems, CECS IT project report, Part of the Special Projects Group. University of Waterloo,
Waterloo (2008)

6. Cubo, J., Canal, C., Pimentel, E.: Supporting context awareness in adaptive service
composition. In: Proceedings of 1st Workshop on Autonomic and SELF-Adaptive Systems
(WASELF 2008), (JISBD 2008), pp. 64–73, SISTEDES, Gijón, Spain (2008)

What, Where, When, How and Right of Runtime Adaptation 39

7. de Lemos, R., et al.: Software engineering for self-adaptive systems: a second research
roadmap. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software engineering
for self-adaptive systems II. LNCS, vol. 7475, pp. 1–26. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-35813-5_1

8. Zeng, L., Benatallah, B., Lei, H., Ngu, A., Flaxer, D., Chang, H.: Flexible composition of
enterprise web services. Electron. Mark. 13(2), 141–152(12) (2003)

9. Dustdar, S., Goeschka, K., Truong, H., Zdun, U.: Self-adaptation techniques for complex
service-oriented systems. In: 5th International Conference Next Generation Web Services
Practices, pp. 37–43 (2009)

10. Robinson, D., Kotonya, G.: A runtime quality architecture for service-oriented systems. In:
Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 468–
482. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89652-4_35

11. Newman, P., Kotonya, G.: Managing resource contention in embedded service-oriented
systems with dynamic orchestration. In: Proceedings of 10th International Conference on
Service Oriented Computing, pp. 435–449 (2012)

12. Ivanovic, D., Carro, M., Hermenegildo, M.: Towards data-aware QoS-driven adaptation for
service orchestrations. In: IEEE International Conference on Web Services, pp. 107–114
(2010)

13. Taiani, F., Fabre, J.: Some challenges in adaptive fault tolerant computing. In: 12th European
Workshop on Dependable Computing, Toulouse, France, p. 3 (2009)

14. Moyano, F., Baudry, B., Lopez, J.: Towards trust-aware and self-adaptive systems. In:
Fernández-Gago, C., Martinelli, F., Pearson, S., Agudo, I. (eds.) Trust Management VII.
IFIPTM 2013, IFIP Advances in Information and Communication Technology, vol. 401,
pp. 255–262. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38323-6_20

15. Baresi, L., Guinea, S., Pasquale, L.: Service-oriented dynamic software product lines.
Computer 45, 42–48 (2012)

16. Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F., Mirandola, R.: Towards
self-adaptation for dependable service-oriented systems. In: de Lemos, R., Fabre, J.C.,
Gacek, C., Gadducci, F., ter Beek, M. (eds.) Architecting Dependable Systems VI. LNCS,
vol. 5835, pp. 24–48. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
10248-6_2

17. Zeng, L., Lingenfelder, C., Lei, H., and Chang, H.: Event-Driven quality of service
prediction. In: Proceedings of the 6th International Conference on Service-Oriented
Computing, pp. 147–161, Sydney (2008)

18. Papazoglou, M.P., Traverso, P., Distar, S., Leymann, F.: Service oriented computing: state
of the art and research challenges. IEEE Comput. Soc. 40, 38–45 (2007)

19. Madkour, M., El Ghanami, D., Maach, A., Hasbi, A.: Context-aware service adaptation: an
approach based on fuzzy sets and service composition. J. Inf. Sci. Eng. 29, 1–16 (2013)

20. Huang, A., Steenkiste, P.: Building self-configuring services using service specific
knowledge. In: Proceedings of the IEEE International Symposium on High Performance
Distributed Computing, pp. 45–54. IEEE Computer Society, Washington DC, USA (2004)

21. Romay, M., Fernández-Sanz, L., Rodríguez, D.: A systematic review of self-adaptation in
service-oriented architectures. In: Proceedings of the Sixth International Conference on
Software Engineering Advances, Barcelona, Spain, pp. 331–337 (2011)

22. Bucchiarone, A., Marconi, A., Mezzina, C.A., Pistore, M., Raik, H.: On-the-fly adaptation of
dynamic service-based systems: incrementality, reduction and reuse. In: Basu, S., Pautasso,
C., Zhang, L., Fu, X. (eds.) Service-Oriented Computing, ICSOC 2013. LNCS, vol. 8274,
pp. 146–161. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45005-1_11

40 L. Mutanu and G. Kotonya

http://dx.doi.org/10.1007/978-3-642-35813-5_1
http://dx.doi.org/10.1007/978-3-540-89652-4_35
http://dx.doi.org/10.1007/978-3-642-38323-6_20
http://dx.doi.org/10.1007/978-3-642-10248-6_2
http://dx.doi.org/10.1007/978-3-642-10248-6_2
http://dx.doi.org/10.1007/978-3-642-45005-1_11

23. Garlan, D., Schmerl, B., Chang, J.: Using gauges for architecture-based monitoring and
adaptation. In: Proceedings of Working Conference on Complex and Dynamic System
Architecture, Brisbane, Australia (2001)

24. Wang, H., Zhou, X., Zhou, X., Liu, W., Li, W., Bouguettaya, A.: Adaptive service
composition based on reinforcement learning. In: Maglio, P.P., Weske, M., Yang, J.,
Fantinato, M. (eds.) Service-Oriented Computing, ICSOC 2010. LNCS, vol. 6470, pp. 92–
107. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17358-5_7

25. Skałkowski, K., Zieliński, K.: Automatic adaptation of SOA systems supported by machine
learning. In: Camarinha-Matos, L.M., Tomic, S., Graça, P. (eds.) Technological Innovation
for the Internet of Things, DoCEIS 2013, IFIP Advances in Information and Communication
Technology, vol. 394, pp. 61–68. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-37291-9_7

26. Gupta, P., Schumann, J.: A tool for verification and validation of neural network based
adaptive controllers for high assurance systems. In: Proceedings of High Assurance Software
Engineering (HASE). IEEE (2004)

27. Canfora, G., Di Penta, M.: SOA: testing and self-cheking. In: Proceedings of the
International Workshop on Web Services Modeling and Testing, pp. 3–12, Palermo, Italy,
June 2006

28. Autili, M., et al.: A development process for self-adapting service oriented applications. In:
Krämer, B.J., Lin, K.J., Narasimhan, P. (eds.) Service-Oriented Computing – ICSOC 2007.
LNCS, vol. 4749, pp. 442–448. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-74974-5_41

29. Lorenzoli, D., Mussino, M.P., Sichel, A., Tosi, D.: A SOA based self-adaptive personal
mobility manager. In: Proceedings of IEEE International Conference on Services Comput-
ing, pp. 479–486 (2006)

30. He, Q., Yan, J., Jin, H., Yang, Y.: Adaptation of web service composition based on
workflow patterns. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) Service-Oriented
Computing – ICSOC 2008. LNCS, vol. 5364, pp. 22–37. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89652-4_6

31. Mateescu, R., Poizat, P., Salaün, G.: Adaptation of service protocols using process algebra
and on-the-fly reduction techniques. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.)
Service-Oriented Computing – ICSOC 2008. LNCS, vol. 5364, pp. 84–99. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-89652-4_10

32. Tanaka, M., Ishida, T.: Predicting and learning executability of composite web services. In:
Bouguettaya, A., Krueger, I., Margaria, T. (eds.) Service-Oriented Computing – ICSOC
2008. LNCS, vol. 5364, pp. 572–578. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-89652-4_48

33. Siljee, J., Bosloper, I., Nijhuis, J., Hammer, D.: DySOA:making service systems self-adaptive.
In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 255–268.
Springer, Heidelberg (2005). https://doi.org/10.1007/11596141_20

34. Orriens, B., Yang, J., Papazoglou, M.: A rule driven approach for developing adaptive
service oriented business collaboration. In: Benatallah, B., Casati, F., Traverso, P. (eds.)
Service-Oriented Computing - ICSOC 2005. LNCS, vol. 3826, pp. 182–189. Springer,
Heidelberg (2005). https://doi.org/10.1007/11596141_6

35. Sliwa, J., Gleba, K., Amanowicz, M.: Adaptation framework for web services provision in
tactical environment. In: Military Communications and Information Systems Conference,
Wrocław, Poland, pp. 52–67 (2010)

36. Lin, K., Zhang, J., Zhai, Y., Xu, B.: The design and implementation of service process
reconfiguration with end-to-end QoS constraints in SOA. In: Service Oriented Computing
and Application, pp. 157–168. Springer, Heidelberg (2010)

What, Where, When, How and Right of Runtime Adaptation 41

http://dx.doi.org/10.1007/978-3-642-17358-5_7
http://dx.doi.org/10.1007/978-3-642-37291-9_7
http://dx.doi.org/10.1007/978-3-642-37291-9_7
http://dx.doi.org/10.1007/978-3-540-74974-5_41
http://dx.doi.org/10.1007/978-3-540-74974-5_41
http://dx.doi.org/10.1007/978-3-540-89652-4_6
http://dx.doi.org/10.1007/978-3-540-89652-4_10
http://dx.doi.org/10.1007/978-3-540-89652-4_48
http://dx.doi.org/10.1007/978-3-540-89652-4_48
http://dx.doi.org/10.1007/11596141_20
http://dx.doi.org/10.1007/11596141_6

37. Hussein, M., Gomaa, H.: An architecture-based dynamic adaptation model and framework
for adaptive software systems. In: 9th IEEE/ACS International Conference, pp. 165–172
(2011)

38. Hirschfeld, R., Kawamura, K.: Dynamic service adaptation. In: Proceedings of Distributed
Computing Systems Workshops, pp. 290–297 (2004)

39. Tosic, V., Ma, W., Pagurek, B., Esfandiari, B.: Web Service Offerings Infrastructure (WSOI) -
a management infrastructure. In: Proceedings of NOMS. IEEE/IFIP Network Operations and
Management Symposium, Seoul, South Korea, pp. 817–830 (2004)

40. Maurer, M., Brandic, I., Emeakaroha, V., Dustdar, S.: Towards knowledge management in
self-adaptable clouds. In: Fourth International Workshop of Software Engineering for
Adaptive Service-Oriented Systems (SEASS 2010), Miami, Florida, USA, pp. 527–534
(2010)

41. Romero, D., Hermosillo, G., Taherkordi, A., Nzekwa, R., Rouvoy, R., Eliassen, F.: The
Digihome service-oriented platform. Softw.: Pract. Exp. 43(10), 1205–1218 (2013)

42. Li, G., Liao, L., Song, D., Wang, J., Sun, F., Liang, G.: A self-healing framework for
QoS-aware web service composition via case-based reasoning. In: Ishikawa, Y., Li, J.,
Wang, W., Zhang, R., Zhang, W. (eds.) Web Technologies and Applications, APWeb 2013.
LNCS, vol. 7808, pp. 654–661. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-37401-2_64

43. Motahari-Nezhad, H.R., Bartolini, C., Graupner, S., Spence, S.: Adaptive case management
in the social enterprise. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) Service-Oriented
Computing, ICSOC 2012. LNCS, vol. 7636, pp. 550–557. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34321-6_39

44. Cugola, G., Ghezzi, C., Pinto, L.S., Tamburrelli, G.: Adaptive service-oriented mobile
applications: a declarative approach. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.)
Service-Oriented Computing, ICSOC 2012. LNCS, vol. 7636, pp. 607–614. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34321-6_46

45. Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and research challenges. ACM
Trans. Auton. Adapt. Syst. 4(2), 14 (2009)

46. Andre, F., Daubert, E., Gauvrit, G.: Towards a generic context-aware framework for
self-adaptation of service-oriented architectures. In: International Conference on Internet and
Web Applications and Services (ICIW 2010), pp. 309–314 (2010)

47. Arcaini, P., Riccobene, E., Scandurra, P.: Modeling and analyzing MAPE-K feedback loops
for self-adaptation. In: Proceedings of the 10th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS 2015, pp. 13–23. IEEE
Press (2015)

48. Mutanu, L., Kotonya, G.: Consumer-centred validation for runtime adaptation in
service-oriented systems. In: IEEE 9th International Conference on Service-Oriented
Computing and Applications (SOCA 2016), pp. 16–23 (2016)

42 L. Mutanu and G. Kotonya

http://dx.doi.org/10.1007/978-3-642-37401-2_64
http://dx.doi.org/10.1007/978-3-642-37401-2_64
http://dx.doi.org/10.1007/978-3-642-34321-6_39
http://dx.doi.org/10.1007/978-3-642-34321-6_46

An End-to-End Security Model for Adaptive
Service-Oriented Applications

Takoua Abdellatif1(&) and Marius Bozga2

1 Tunisia Polytechnic School, SERCOM,
University of Carthage, 2078 La Marsa, Tunisia

Takoua.Abdellatif@ept.rnu.tn
2 Univ. Grenoble Alpes, CNRS, 38000 Grenoble, France

Marius.Bozga@imag.fr

Abstract. In this paper, we present E2SM, an End-to-End Security Model and
a set of algorithms to protect data confidentiality in complex adaptive
Service-Oriented Applications (SOA). Starting from initial and intuitive busi-
ness security constraints’ settings, E2SM synthesizes a complete security con-
figuration that is formally verified. E2SM is adapted to dynamic security
constraints’ modifications and to services’ architecture reconfiguration. Thanks
to its compositional verification, only impacted services’ security is rechecked
which makes E2SM suitable to adaptive and scalable SOA.

Keywords: Configuration synthesis � Security formal checking
SOA � Adaptation

1 Introduction

SOA applications are generally built from existing services and based on standard tools
for service composition like Web Services (WS) [1]. These applications are deployed in
various domains like e-health systems, e-commerce and social networks. They
exchange critical information between mistrusted parties and networks and have to
preserve people’s privacy and business data confidentiality. Several standards and tools
[2–4] are currently used to secure WS communications. They are generally based on
access control policies that focus on point-to-point communications. Nevertheless,
end-to-end security is required and implies tracking information flow through all the
system services and analyzing data dependencies. Typically, forwarding confidential
data to unauthorized services has to be detected. Consequently, data dependence has to
be tracked and explicitly exposed; otherwise, security composition can induce security
leaks called interference [5].

An application free of this problem is said to satisfy the non-interference property
[8]. To check that a WS satisfies non-interference, a classical technique consists in
classifying WS data with respect to its security level and verifying that data with
low-level security constraint (like public data) is not influenced or calculated from any
data with high-level security constraint (like confidential data). Furthermore, the

© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 43–54, 2018.
https://doi.org/10.1007/978-3-319-91764-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_4&domain=pdf

security classification model has to consider authorization rules and trust between
services and consider the network not unique as potential attacker. Indeed, current SOA
applications are generally composed of loosely coupled services that come from dif-
ferent providers. Tracking data flow to non-authorized services is not an easy task in a
distributed system [6].

Standard orchestration languages like BPEL (Business Process Execution Lan-
guage) [7] are practical to build complex composed WS and to track their execution for
reliability reasons mainly. Nevertheless, these languages, as well as WS security
standards, provide no way to define data security classification and to check
non-interference property. There is a clear need for a new security model and a
practical tool that helps administrators setting intuitive security configuration param-
eters and synthesizes automatically the whole security configuration. The tool has to be
robust proving formally that the security configuration satisfies security policies. It has
to be scalable, that is, when the number of services’ activities is huge or when the
number of composed services is important, security configuration is calculated within
an acceptable reasonable time. Furthermore, security configuration has to be adaptable
to special cases like emergency where security constraints have to be relaxed. For
example, in a home gateway application, if a fire is detected, the information has to
reach a remote monitor service in a short time even though such information is not
protected with cryptography encryption. More generally, a compromise between
security constraints and functionality needs has to be found and relaxing some infor-
mation secrecy is sometimes needed to reach this compromise. This feature is called
declassification and is still a hard problem in security research field and is rarely
implemented in real applications like SOA [9, 10]. Another aspect of adaptation is
when the system architecture is modified. Typically, removing or adding new services
or modifying some security configuration settings may require the security configu-
ration synthesis that has to be executed rapidly not to slow down the adaptation time.

In this paper, we propose E2SM (End-to-End Security Model), a security model for
composed and adaptive SOA applications constructed as a composition of BPEL
processes. The main idea of E2SM is to abstract BPEL processes to a set of graphs to
show data dependencies and starting from a few initial configuration settings, the whole
system configuration is generated while checking its non-interference property.
Non-interference checking is modular: to check that a hierarchical BPEL process is
secure, it is sufficient to check that each involved BPEL process is secure. Furthermore,
E2SM assists users (service designers, developers or administrators) to set-up business
oriented security constraints at a high level, checks constraints coherence and syn-
thesizes a complete secure configuration. If the user’s security constraints induce
non-secure configuration, the user is guided to correct his initial configuration by
relaxing some constraints or modifying his initial configuration. Dynamically, E2SM
checks any security re-configuration. It tracks the affected service parts and regenerates
the new security configuration in acceptable time. Our solution is practical since users
do not need to be security experts, robust since the security model and algorithms are
based on a formal modeling, scalable thanks to the compositional checking and
adaptable to SOA dynamic reconfiguration.

The rest of the paper is structured as follows. Section 2 describes program
dependence graphs as abstractions for BPEL workflows. Section 3 presents the security

44 T. Abdellatif and M. Bozga

model and E2SM configuration synthesis algorithms. Section 4 evaluates E2SM
mainly the algorithm performance. Section 5 presents related work and Sect. 6 con-
cludes the paper and presents its perspectives.

2 Dependence Graph Abstraction

In this section, we describe program dependence graphs (PDG) as abstraction for BPEL
processes for data tracking and the system dependence graphs (SDG), our extension to
PDG to abstract composed BPEL processes.

2.1 Program Dependence Graphs

Program dependence graphs (PDG) are a standard tool to model information flow
through a program [11]. Graph nodes represent program statements or expressions.
A data dependence edge, represented with an arrow, x ! y means that statement x
assigns a variable which is used in statement y (without being reassigned underway).
A control dependence edge x ! y means that the mere execution of y depends on the
value of the expression x (which is typically a condition in an if- or while-statement).
A path x ! �y means that information can flow from node x to node y. Contrarily, if no
path exists from node x to y, it is guaranteed there is no information flow from x to y. To
identify all statements influencing a node y, the backward slice is defined as
BS yð Þ ¼ xjx ! �yf g. PDG is classically used in imperative languages like Java [8, 11].
We implemented in a previous work [18] a PDG generator for BPEL processes. A BPEL
process is composed mainly of two types of activities, that are (1) basic activities, such
as receive, reply, invoke, assign, throw, exit, and (2) structured activities, such as
sequence, if, while, repeat − until, pick, f low. First, a BPEL control dependence
sub-graph is constructed where nodes represent BPEL activities and edges represent
possible execution sequences of the activities. This is applicable mainly for condition
activities like < if…. > or < switch… >. For example, a control flow edge x ! y means
that the activity represented by y may execute immediately after the execution of the
activity represented by x. Second, a data dependence analysis is performed attributing
the system variables to their activities and based on a Definition-Use relation. For each
ordered pair (nd, nu), where a statement called nd contains a definition of a variable v and
used in a statement nu, a data dependence is identified [12]. For example, Fig. 1.
illustrates the graphical representation of the BPEL process of a laboratory service
deployed on a cloud. It receives a patient medical record and following the record type,
it forwards the record to the radio laboratory service or the blood laboratory service. The
activities are indexed with their node number.

For example, node (01) corresponds to the receive BPEL activity and node
(02) corresponds to the copy instruction of the assign activity. In (01), variable in-
put_from_reception is used and in (02) this variable is copied to the newly defined
record variable. Since there is a Definition-Use relation between the two activities w.r.t
input from reception variable, a graph edge is created between node (01) and (02).
Similarly, there is an edge between nodes (01) and (03). Node (04) corresponds to a
structured if activity where variable record type is used. The Definition-Use relation

An End-to-End Security Model for Adaptive SOA 45

with respect to variable record_type allows creating the edge between (02) and (04).
On the other hand, a control dependence creates the edge between (04) and (05) and
between (04) and (05) due to the condition activity at node (04).

2.2 System Dependence Graphs

For composed BPEL processes, SDG describes the information flow for the entire
system. To build it, we consider the PDG of all services and connect them with binding
edges. Each binding edge corresponds to an inter-service connection: the source is the
sender output endpoint and the sink is the destination service endpoint. Furthermore,
for each primitive service, we construct a restricted PDG with nodes corresponding to
input and output variables and edges joining the input nodes to the output nodes they
depend on. Variable dependence in atomic services can be identified either using
classical program dependence graphs [13] or using a description of the service
behavior. In the worst case, we consider that all service outputs depend on all service
inputs. Hereafter, we give a formal definition of SDG.

Definition 1 (System Dependence Graph). Let WSS be a WS system composed of n
services Sið Þi¼1;n. For each service Si, let Gi ¼ ðNi;EiÞ be its associated PDG. The
system dependence graph G ¼ N;Eð Þ is constructed as follows: N ¼ [i¼1;n Ni and
E ¼ Einter [ð[i¼1;nEiÞ where Einter is the set of edges corresponding to inter-service
bindings.

Fig. 1. Graphical representation of the Laboratories BPEL and the correspondent PDG

46 T. Abdellatif and M. Bozga

3 E2SEM Security Model

Many security annotation models are proposed in the literature [5]. Nevertheless, DLM,
the decentralized label model [14] initially proposed for Java programs, is more
appropriate for distributed services with mutual distrust. We extend DLM for SOA and
we define non-interference for BPEL-based workflows. Afterwards, we propose two
algorithms for non-interference checking and configuration synthesis.

3.1 Decentralized Label Model

The essentials of DLM are objects containing information to protect, principals and
labels. Objects can be variables, storage locations or input/output communication
channels receiving/sending data. Principals are persons or programs that own or access
pieces of system information. To express confidentiality policy, labels are associated to
objects and a principal can be owner initiating the information or reader authorized to
access that information. A label general structure is L ¼ o1 : r11; r12; � � � ; o2 :f
r21; r22; � � � ; � � � ; on : rn1; rn2; � � �g where oi are owners and rij are readers. For example,
in a clinical SOA, the medical record can be labeled L = {patient : clinic, doctor} which
indicates that the patient principal allows the clinic and the doctor to access his infor-
mation. Labels are ordered using the no more restrictive than relation, represented by �
symbol. Given two labels L1 and L2, we have L1�L2 if and only if owners of L1 are
included in L1 and, for a given owner, the readers of L2 are included in those of L1. For
example, if L1 = {clinic : doctor1} and L2 = {patient : doctor1, doctor2}, we have
L2�L1. During program computation, when information is labeled with L1 and L2,
respectively, the result should have the least restrictive label that maintains all the flow
restrictions specified by L1 and L2. This least restrictive label, the join of L1 and L2
(written as L1[L2), is constructed so that owners is the union of L1 and L2 owners and
the reader set for each owner in L1 and L2 is the intersection of their corresponding
reader sets. For example, let us suppose that a medical record is composed of two parts
so that the first part is labeled L1 = {patient : doctor1} and the second one is labeled
L2 = {patient : doctor1, doctor2}. The medical record has to respect both constraints
and then only doctor1 is allowed to read the medical record content with label L1 [
L2 = {patient : doctor1}. Note that security labels represent a lattice (L,�) [14] where L
denotes the finite set of labels that is partially ordered by�. We denote by * the weakest
principal used to annotate public information. For example, label {p : *} indicates that
information is owned by principal p which allows all principals access its information.

Principals can delegate their information ownership to other principals with regard
to a trust relation. According to trust hierarchy, information can be relabeled in a safe
way following two forms. In the first form, label ownership is changed. A label’s owner
O can be replaced by owner O’ so that O trusts O’. The second form of relabeling is
declassification, which allows relaxing security constraints in a safe way. The infor-
mation is copied in a fresh variable and relabeled to a less restrictive security label. This
is allowed only by data owner or by another principal trusted by the owner. The new
label is usually calculated from the information label by adding readers (more prin-
cipals are allowed to access information) or removing some policies (owners with their
respective readers), which imposes less reading constraints on that information.

An End-to-End Security Model for Adaptive SOA 47

For example, in the Fig. 1. use-case, the patient record labeled L = {patient: labora-
tory} does not allow initially neither the blood-Lab or the radio-Lab to read data.
Nevertheless, since these labs are trusted by the patient, they can be added as readers
and L is declassified to L2 = {patient:laboratory, blood-Lab, radio-Lab}.

Since we have two kinds of services in SOA, managed and external services, we
extend DLM with required and provided labels. Required labels are immutable labels
that represent external constraints, typically third-party service requirements that can-
not be changed by the administrator. Provided labels are labels set on managed
resources and can be modified by the administrator when needed.

3.2 PDG-Based Non-interference Checking

Let N be the set of PDG nodes, X the set of program variables and L the set of security
labels. Let S : N[X ! L be a function assigning security labels L to nodes in N[X
defined as follows. For a program statement represented by a node n, if a variable v is
defined (that is, assigned) in that statement, then S nð Þ ¼ S vð Þ. For example, in Fig. 1.,
we have S 01ð Þð Þ ¼ S input from receptionð Þ. If no variable is assigned in the state-
ment represented by the node n, then S nð Þ ¼ [iLi where Li represents the security
label of ith variable used in that statement [11]. Non-interference property is satisfied in
annotated PDG with S if and only if for every edge x ! y it holds S xð Þ�S yð Þ.
Classically, non-interference is iteratively checked starting from specific nodes called
slicing criteria that we define hereafter. For a statement of interest represented by a
node x, the backward slice BS(x) extracts those statements that potentially have an
influence onto that statement. This later is called the slicing criterion. In our work, we
define slicing criteria are the nodes that have required labels. Typically, a slicing
criterion is a node representing an endpoint to an external service and imposing its
security constraint. Consequently, required security label specifies a limit so that only
information having a smaller security label may reach that statement. Inversely, pro-
vided labels can be assigned to any node in PDG. Formally, provided labels are defined
by a partial function P : N[X ! L[f?g. Similarly, required security is defined as a
partial function R : N[X ! L[f?g. In this model, the security label S(n) of every
node n must moreover satisfy: P nð Þ�S nð Þ�R nð Þ whenever P(n) and/or R(n) are
defined. In this extended model, the non-interference property in an annotated PDG can
be verified as follows.

Proposition 1 (Non-interference checking - version 1). In a PDG with P and R the
functions assigning respectively the provided and required security labels, the
non-interference property holds if the following condition is satisfied: 8n 2 dom Rð Þ,
8x 2 dom Pð Þ \BS nð Þ, P xð Þ�R nð Þ. Considering actual security labels S, the next
proposition provides an alternative way for checking non-interference [11].

Proposition 2 (Non-interference checking - version 2). In a PDG with P and R the
functions assigning respectively provided and required security labels, non-interference
property is satisfied if the following condition holds: 8n 2 dom Rð Þ, S nð Þ�R nð Þ.

48 T. Abdellatif and M. Bozga

Starting from an initial annotation for provided and required security levels R and
P, Algorithm 1 calculates the actual security configuration S using an iterative method.
Algorithm 1 can be considered as a flavor of the classical Bellman-Ford algorithm. The
number of iterations depends on relabeling occurrence which depends itself on the
number of vertices, the graph connectivity and the initial label distribution.

Regarding declassification, specific nodes are selected to be declassification nodes
[15]. A declassification node d has a security label S(d) and a required security label R
(d) so that the relation S dð Þ�R dð Þ is not satisfied. Declassification implies that the user
authorizes lowering S(d) to R(d). Non-interference with declassification holds if for
each path from node x to y where the relation S xð Þ�S yð Þ is not true, there is a
declassification node d on the path with S xð Þ�R dð Þ and S dð Þ�S yð Þ (assuming that
there is no other declassification node on that path) [11]. Therefore, information flow
control with declassification is no longer transitive. For confidentiality checking with
declassification, a simple solution is to represent declassification nodes as barriers
where slicing stops [16]. Barrier slices are defined as follows.

Definition 2 (Barrier slice). Let G ¼ N;Eð Þ be a PDG, C a slicing criterion and B the
set of barrier nodes. The barrier slice BS(C, B) for the slicing criterion C is the set of
nodes on which a node n 2 C (transitively) depends via a path that does not contain any
node of B [16].

Checking confidentiality with declassification implies checking non-interference
considering barrier slices instead of backward slices where the barrier nodes are
composed of the declassified nodes and the entry node (corresponding to the entry
point in the program). The slicing criterion is composed of the join of nodes with
required labels and declassified nodes. Consequently, Proposition 1 can be adapted
considering slices with barriers as follows.

An End-to-End Security Model for Adaptive SOA 49

Proposition 3 (Non-interference with declassification checking). In a PDG with P and
R the partial functions assigning respectively the provided and required security labels,
D a set of declassified nodes, e the root of the PDG (corresponding to the entry point of
the program) and B a barrier node set where B ¼ D[ef g. Non-interference with
declassification is satisfied if the following condition holds:

8 n 2 dom Rð Þ [D; 8x 2 dom Pð Þ \BS nf g; Bð Þ; P xð Þ�R nð Þ

Based on this definition, we propose Algorithm 2 that helps users checking and
building secure configurations with declassification. Algorithm 2 calls the checkTrust
(S, L1, L2) function that, for each service S and labels L1 and L2, verifies the
declassification condition based on trustfulness between principals.

Proposition 4. The algorithm Secure configuration checking accepts secure configu-
rations and rejects non-secure ones.

Proof. Let S be the computed configuration. For each node x with required security,
we have one of the following conditions: either S(x) � R(x) or x is a declassified node.
Otherwise, the algorithm stops. By definition, we have a secure PDG and then S is a
secure configuration.

3.3 SDG-Based Non-interference Checking

To deal with system security, we extend the definition of security configuration defined
for single WS (see Definition 1) to WS composition. A security system configuration is
an assignment of security labels to variables and nodes within all the PDG of services
composing the WS system.

Definition 3 (Security system configuration S). Let WSS be a WS system composed of
a set of n services Sið Þi ¼ 1; n. For each service Si, let Gi ¼ Ni;Eið Þ be the associated
PDG and let Xi the set of its variables. Let Einter be the set of edges corresponding to
inter-service bindings. Let L be the set of labels, X the set of all service variables and N
the set of all PDG nodes associated to WSS. We define a security configuration for a
WS system as a mapping S : X[N ! L that associates security labels to variables and
nodes. Moreover, we require the following three matching conditions amongst the
different categories, for all i, j: (1) 8v 2 Xi; 8nv 2 Gi, v defined at nv) S vð Þ ¼ S nvð Þ,
(2) 8v 2 Xi; 8nv 2 Gi, v used in nv) S vð Þ�S nvð Þ and (3) 8n 2 Gi; 8m 2 Gj,
n;mð Þ 2 Einter) S nð Þ ¼ S mð Þ:

The two first conditions correspond to security configuration definition for a single
service. The third condition states that the nodes corresponding to binding edges have
the same security label since they hold the same information. By analogy to secure
PDG, we define now a secure SDG as a composition of secure PDG. For SDG, we have
two kinds of barrier slices: internal barrier slices inside PDG joining input variable
nodes to output variable nodes and external barrier slices that correspond to
inter-service bindings. For internal slices, since PDG are assumed to be secure, we have
the guarantee that information does not flow from high level labels to low level labels
except for declassification nodes. For external slices, the security enforcement ensures a

50 T. Abdellatif and M. Bozga

matching between labels of inter-service nodes connecting PDG. Furthermore, in SDG,
there is no room to declassification since it was treated locally to each PDG and for
each declassified node ni, its actual security label was assigned to its required one, that
is S nið Þ ¼ R nið Þ.
Definition 4 (Secure SDG). Let G ¼ N;Eð Þ be an SDG of a WS system and Gi ¼
Ni;Eið Þ the set of PDG of services composing the system for 1� i� n. We say that G is
secure iff 81� i� n, Gi is a secure PDG.

We define an end-to-end secure system as a system where information do not flow
from high-level sources to lower level destinations except for special destinations
where the user authorizes information declassification. Information dependence is
detected thanks to PDG for BPEL activities and for atomic service programs.

Definition 5 (End-to-end secure WS System). Let WSS be a WS system comprising a
set of composed WS services and let S the security configuration of the system. We say
that WSS is end-to-end secure if for all y, x two variables, y depends on x implies
S xð Þ�S yð Þ.
Proposition 5. Let WSS be a WS system and G its associated SDG. If G is secure then
WSS is end-to-end secure.

Proof. We prove the proposition by induction on the number n of composed services
the information flows through. Consider the basic case where n = 1. This means that
information flows inside a single composed service. Let us consider any two variables y
and x so that y depends on x. That means, there exist a path in the PDG from a node nx
to a node ny where respectively x and y are defined. Since the PDG is secure, we have
SðnxÞ�SðnyÞ. By matching variable and node labels, we have S xð Þ�S yð Þ. Consider
now that the proposition is true for any WS system composed of n−1 services for some
n > 1. We prove that it is true for n composed services. Let S1,.., Sn be the system
services, G1; ::;Gn their PDGs supposed secure and consider that information flows
from variables x to y, which moreover belong to separate services S1 and Sn. Let z be
the output variable calculated from x inside S1. Since, G1 is secure, we have

S xð Þ�S zð Þ ð1Þ

Suppose that z is further received by S2. By the induction hypothesis, the system
composed of n−1 services S2; ::; Sn is end-to-end secure. Then

S zð Þ�S yð Þ ð2Þ

(1) and (2) implies S xð Þ�S yð Þ. As a conclusion, the proposition is true for a WS
system with any number n of composed services. As illustrated in Algorithm 1, inside
each process, the binding between the process and the service endpoints it commu-
nicates with, is checked before checking security inside the process. Applying the
previous proposition, this ensures that the system is end-to-end secure.

An End-to-End Security Model for Adaptive SOA 51

3.4 Non-interference Runtime Checking

At run time, non-interference re-checking occurs when a label value changes corre-
sponding to a security constraint modification. The non-interference checking and
configuration synthesis is executed for the concerned process. If the label of a binding
edge changes, the other edge’s label is updated and then the affected service has its
security configuration re-checked and synthesized. The same logic is applied when a
structural re-configuration occurs in the SOA. Indeed, adding or removing a service to
the application implies adding or removing a binding and this may induce modifica-
tions to edge labels.

4 E2SM Evaluation

Scalability is ensured thanks to the composed checking and security configuration
synthesis that can be performed in a parallel way. For the algorithm’s performance
evaluation, we generate a single source graph so that the number of vertices ranges
from 5 to 4000 vertices and generates edges in a probabilistic way. We use
Erdos-Renyi model to generate edges. So edges are generated with a probability p
where p is set to three values: 0.1 for weakly connected graph, 0.5 for moderated
connected graph and 1 for full connected graph. Without loss of generality, we consider
two security levels : secret and public. We distribute randomly public and private labels
on graph edges and do not consider required labels not to stop the program iteration
before visiting all edges.

Figure 2. shows the average
time obtained after repeating the
program execution 10 times.
The bench is executed on a
Mac OS version 10.8.5 with
processor 1.3 GHz Intel Core i5
and 4 GB of Memory. The
execution time increases with
the number of vertices in the
PDG and with the number of
connectivity. We clearly see that
the execution time is very
acceptable and does not exceed
1 s for 4000 vertices and a fully
connected PDG.

Adaptability to special cases is ensured thanks to the declassification feature,
which allows a controlled relaxation of security constraints. E2SEM declassification
can be extended to other kinds of declassification like temporal declassification [9].
Regarding system’s reconfiguration by adding or removing a service, thanks to the
compositional verification, there is no need to recheck the whole newly obtained
application, only affected processes have their security configuration re-checked and
synthesized.

Fig. 2. Performance evaluation of configuration’s syn-
thesis program

52 T. Abdellatif and M. Bozga

5 Related Work

Our work is related to information flow security solutions for SOA. SEWSEC [17] is an
end-to-end security tool for WS security. Compared to SEWSEC, our work allows not
only non-interference checking but also security configuration synthesis, provides a
formal security model and deals with adaptation. In [18], a security configuration
synthesis is provided but the adopted model does not deal with declassification and
adaptation. Similarly, in [19], information flow security is applied to component-based
systems. Nevertheless, component code is required for label propagation, no formal
model is provided and adaptation is not considered. Information flow control is also
treated for event-based communications like those described in BPEL [20, 21]. For data
dependence tracking, systems are modeled as Petri-nets [22, 23] or propagation graphs
from workflow’s log data [24]. A language based information flow is proposed in [25]
to check non-interference but declassification and adaptation are not supported. In [26,
27], authors deal with chained services with no centralized orchestration service
composing them. A recent work extends BPEL-orchestration engine [28] and requires
BPEL processes’ annotation whereas we propose a more practical approach with
minimal configuration effort and configuration synthesis.

6 Conclusion

In this paper, we propose a robust security model to protect confidential data in
complex business applications. Even though, we concentrate on BPEL, the work is
applicable to other types of SOA composition languages. They only need to be mapped
to program dependency graphs. We are currently implementing E2SM associated tool
and experimenting it to secure e-health real SOA application.

References

1. Walsh, A.E.: UDDI, Soap and WSDL: The Web Services Specification Reference Book.
Prentice Hall Professional Technical Reference, Englewood Cliffs (2002)

2. Web services security: Soap message security 1.1, February 2006. http://docs.oasis-open.
org/wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf

3. Bajaj, S., et al.: Web services policy framework (wspolicy), March 2006. http://specs.
xmlsoap.org/ws/2004/09/policy/ws-policy.pdf

4. Della-Libera, G., et al.: Web services security policy language (ws-securitypolicy), July
2005. http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf

5. Goguen, J.A., Meseguer, J.: Security policies and security models. In: 1982 Proceedings of
the IEEE Symposium on Security and Privacy (1982)

6. Zdancewic, S.: Challenges for information-flow security. In: Proceedings of the 1st
International Workshop on the Programming Language Interference and Dependence, pp. 5–
19 (2004)

7. Alves, A., et al.: Web services business process execution language version 2.0, April 2007.
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

8. Ferrante, J., Ottenstein, K., Warren, J.: The program dependence graph and its use in
optimization. ACM Trans. Program. Lang. Syst. 9, 319–349 (1987)

An End-to-End Security Model for Adaptive SOA 53

http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://specs.xmlsoap.org/ws/2004/09/policy/ws-policy.pdf
http://specs.xmlsoap.org/ws/2004/09/policy/ws-policy.pdf
http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

9. Sabelfeld, A., Sands, D.: Dimensions and principles of declassification. J. Comput. Secur.
255–269 (2009)

10. Myers, A., Sabelfeld, A., Zdancewic, S.: Enforcing robust declassification. In: Computer
Security Foundations Workshop, p. 172 (2004)

11. Snelting, G., Robschink, T., Krinke, J.: Efficient path conditions in dependence graphs for
software safety analysis. ACM Trans. Softw. Eng. Methodol. 15(4), 410–457 (2006)

12. Mao, C.: Slicing web service-based software. In: International Conference Service-Oriented
Computing and Applications (SOCA) (2010)

13. Giffhorn, D., Hammer, C.: Precise analysis of Java programs using JOANA, pp. 267–268
(2008)

14. Myers, A.C., Liskov, B.: Protecting privacy using the decentralized label model. ACM
Trans. Softw. Eng. Methodol 9, 410–442 (2000)

15. Hammer, C., Krinke, J., Nodes, F.: Intransitive noninterference in dependence graphs. In:
Second International Symposium on Leveraging Applications of Formal Methods Verifi-
cation and Validation, pp. 119–128 (2006)

16. Krinke, J.: Slicing, chopping, and path conditions with barriers. Softw. Qual. J. 12, 339–360
(2004)

17. Zorgati, H., Abdellatif, T.: SEWSEC: a secure web service composer using information flow
control. In: 6th International Conference on Risks and Security of Internet and Systems,
Timisoara, Romania. IEEE (2011)

18. Ben Said, N., Abdellatif, T., Bensalem, S., Bozga, M.: A robust framework for securing
composed web services. In: Braga, C. (eds.) FACS 2015. LNCS, vol. 9539, pp. 105–122.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28934-2_6

19. Abdellatif, T., Sfaxi, L., Robbana, R., Lakhnech, Y.: Automating information flow control in
component-based distributed systems. In: ACM Sigsoft International Symposium on
Component-Based System Engineering CBSE. ACM (2011)

20. Bartolini, C., Bertolino, A., Marchetti, E., Parissis, I.: Data flow-based validation of web
services compositions: Perspectives and examples. Training 298–325 (2008)

21. Bartolini, C., Bertolino, A., Marchetti, E., Parissis, I.: Data flow-based validation of web
services compositions: perspectives and examples. In: de Lemos, R., Di Giandomenico, F.,
Gacek, C., Muccini, H. (eds.) WADS 2007. LNCS, vol. 5135, pp. 298–325. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85571-2_13

22. Busi, N., Gorrieri, R.: A survey on non-interference with petri nets. In: Desel, J., Reisig, W.
(eds.) ACPN 2003. LNCS, vol. 3098, pp. 328–344. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-27755-2_8

23. Busi, N., Gorrieri, R.: Structural non-interference, in elementary and trace nets. Math. Struct.
Comput. Sci. 19, 1065–1090 (2009)

24. Accorsi, R., Wonnemann, C.: Static information flow analysis of workflow models. In:
BPSC (2010)

25. Hutter, D., Volkamer, M.: Information flow control to secure dynamic web service
composition. In: Clark, J.A., Paige, R.F., Polack, F.A.C. (eds.) SPC 2006. LNCS, vol. 3934,
pp. 196–210. Springer, Heidelberg (2006). https://doi.org/10.1007/11734666_15

26. Wei, S., I-Ling, Y., Bhavani, T., Elisa, B.: The SCIFC model for information flow control in
web service composition. In: 2009 IEEE International Conference on Web Services, pp. 1–8
(2009)

27. She, W., Yen, I.L., Thuraisingham, B.: Enhancing security modeling for web services using
delegation and pass-on. In: 2008 IEEE International Conference on Web Services, pp. 545–
552 (2008)

28. Demongeot, T., Totel, E., Le Traon, Y.: Preventing data leakage in service orchestration. In:
IAS (2011)

54 T. Abdellatif and M. Bozga

http://dx.doi.org/10.1007/978-3-319-28934-2_6
http://dx.doi.org/10.1007/978-3-540-85571-2_13
http://dx.doi.org/10.1007/978-3-540-27755-2_8
http://dx.doi.org/10.1007/978-3-540-27755-2_8
http://dx.doi.org/10.1007/11734666_15

Runtime Migration of Applications
in a Trans-Cloud Environment

Jose Carrasco, Francisco Durán(B), and Ernesto Pimentel

Dept. Lenguajes y Ciencias de la Computación, Universidad de Málaga,
Málaga, Spain

{josec,duran,ernesto}@lcc.uma.es

Abstract. Making an application independent of the cloud provider
where it is going to be deployed is still an open issue. In fact, cloud
agnostic software development still presents important challenges to be
solved, and one of them is the problem of runtime migration of com-
ponents already deployed on a given provider to a different one. Even
more difficult is dealing with the interoperability issues when the migra-
tion also implies a change of service level (i.e., from IaaS to PaaS, or
vice versa). This paper presents an algorithm for the parallel migration
of cloud applications. The migration is performed component-wise, in
the sense that each component of the application to be migrated may
be deployed on a specific service on a specific provider, and be moved
to a different provider, possibly changing the service level between IaaS
and PaaS of each of them individually. Since the migration of compo-
nents with state pose additional difficulties, we only consider stateless
components. Our solution relies on three of the key ingredients of the
trans-cloud approach: a unified API, agnostic topology descriptions, and
mechanisms for the independent specification of providers. We show how
our approach solves some of the current interoperability and portabil-
ity issues of cloud environments, and allows us to provide a solution for
migration. We present an implementation of our proposed solution and
illustrate it with a case study and experimental results.

1 Introduction

In recent years, as an answer to market demands, Cloud Computing has expe-
rienced a growth in goals and capabilities [14]. In this quick evolution of the
technology, vendors have developed their own cloud solutions by providing dif-
ferent approaches, where different functionalities are provided by different APIs
following diverse business models. In fact, as a consequence of this heterogeneity,
cloud developers will often be locked-in specific services from cloud providers,
since many interoperability and portability restrictions are found when different
vendors’ solutions want to be used.

Recent proposals, like those in [9,11,13], take advantage of new advances in
the management of topologies of applications that have been deployed on cloud
to solve most of the interoperability issues related to application deployment.
c© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 55–66, 2018.
https://doi.org/10.1007/978-3-319-91764-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_5&domain=pdf

56 J. Carrasco et al.

Among these emerging solutions, we find platforms with the capability of allow-
ing developers to find the best alternative for the deployment of each component
of their applications. The last step in this direction is the possibility of deploying
applications combining services from IaaS and PaaS levels, possibly by different
vendors in trans-cloud environments [6]. In fact, as we can see in, e.g., [1,5,12],
the decision of what vendor or service level to use to distribute the components
during an application deployment is not trivial. It is indeed a challenge, because
of the multitude of cloud offerings. Migration of individual components or entire
applications may indeed be unavoidable over time, because of changes in the
offered services, prices, security policies, or simply because a provider just stops
providing its services. Once developers can take advantage of the features of
different kinds of services, they will be interested as well in optimizing the cloud
resources usage and improve their applications’ performance.

If component deployment reconfiguration is a complex task, doing it at run-
time, trying to minimize down times is even more challenging. Migration is still
an unresolved topic which has been widespread studied by both academia and
industry (see, e.g., [10,16]). To migrate some components of a running cloud
application, it is necessary to orchestrate the entire cloud context, such as ser-
vices and bound resources, to reach the expected movement of the components
services but taking into account the possible interoperability and portability
problems. In fact, migration opens a lot of new key issues related to cloud
resources, application components, and their management. We can find several
proposals (see, e.g., [2,3,8]) on the live migration of cloud application’s compo-
nents, focusing on the movement of running application components between dif-
ferent vendors. However, these solutions focus with one service level (cf. [3,8,15]).

In [7] we proposed an orchestration algorithm to migrate a single applica-
tion’s stateless component between different providers in an agnostic way, what
means that it is not bound to any service level, either IaaS or PaaS, of any
particular provider. In this new proposal we go one step further and extend the
aforementioned tool by proposing a new algorithm to reach the component-wise
migration of entire applications. Since the migration of components with state
pose additional difficulties, we only consider stateless components. The algo-
rithm performs the migration in parallel and agnostically, by moving just the
necessary application’s components to respective target services, independently
of the target providers and abstraction levels, either IaaS or PaaS.

This extension is built over trans-cloud concepts [6]. Specifically, the solution
in [6] uses the TOSCA standard to model agnostic applications’ topologies, which
do not use any specifics of the target providers over which they will be deployed.
The information related to the cloud service level, IaaS or PaaS, is added by
means of a policy-based mechanism independent of the topology description.
The trans-cloud environment processes these specifications and uses an homog-
enization API, which unifies IaaS and PaaS services of different vendors, to
orchestrate the deployment over the required cloud services.

By relying on the trans-cloud infrastructure operations such as stop, re-start,
move and re-connect are used on the necessary components independently of the

Runtime Migration of Applications in a Trans-Cloud Environment 57

service level, IaaS or PaaS, the cloud technology or any other dependencies. The
algorithm receives a set of components of an application that has to be migrated
and their target locations. It operates on the application’s components following
concurrent policies, working in parallel.

The rest of this paper is structured as follows. Preliminaries about trans-
cloud deployment and its current implementation are presented in Sect. 2. The
proposed migration algorithm for stateless components is described in Sect. 3.
Details on the implementation of the algorithm are presented in Sect. 4, together
with some experimental results. Finally, Sect. 5 conclude the paper and presents
some plans for future work.

2 An Overview of Trans-Cloud

In this section we provide an overview of trans-cloud and its main capabilities.
These concepts are illustrated with a running case study, which will be later
used to show the use of the our proposal in Sect. 3 and to evaluate it in Sect. 4.

2.1 A Trans-Cloud Environment

Trans-cloud significantly reduces the portability and interoperability related
issues. It allows developers to deploy their application by using available ven-
dors’ services and resources, at IaaS or PaaS levels, releasing them from the usual
infrastructure limitations while defining their applications. The trans-cloud app-
roach relies on three main ideas: agnostic topology descriptions, target services
specifications, and a unified API.

For the agnostic specification of applications’ topologies we use the TOSCA
standard,1 which allows us to provide full-detailed specifications of application
components, how they are inter-related and their respective configurations. To
manage the selected cloud services to deploy applications’ components, we use
Apache Brooklyn, which defines a common interface for the homogeneous treat-
ment of different cloud vendors and their services.

The description of target services needs a mechanism to agnostically specify
the target cloud services which will be managed from the Unified API. To do
this, we use locations, which represent cloud services on which to perform the
deployment, both for IaaS and PaaS services. As we will see in the coming
sections, locations are defined independently of the topologies, what allows us
to change target services just by changing the corresponding locations.

The trans-cloud tool presented in [6] builds on the Brooklyn-TOSCA open
project for enabling an independent specification of the used services, and on the
Apache Brooklyn project to provide a common API for the unified management
of IaaS and PaaS services. Figure 1 shows an overview of the proposal in [6]. A
description of how the extension of Brooklyn was carried out to support PaaS
providers can be found in [7].
1 TOSCA (Topology and Orchestration Specification for Cloud Applications) is an

OASIS standard for the description of cloud applications and their relationships.

58 J. Carrasco et al.

Fig. 1. Trans-Cloud approach

Fig. 2. Brooklyn-TOSCA Softcare’s topology

Although the current official release of Brooklyn only handles IaaS services, as
can be seen in Fig. 1, Brooklyn’s API was extended in [6] with new mechanisms
for the management of PaaS services. Our extension takes advantage of the
genericity and flexibility of Brooklyn’s API, which has the independency between
application descriptions and cloud services used in their operation as one of its
goals. Initially, CloudFoundry-based platforms, like Pivotal Web Services, IBM
Bluemix, etc., were integrated, to prototype the PaaS support, and to allow
components to be deployed using both IaaS and PaaS.

As we will see in the following section, the trans-cloud approach provides
a set of useful basic mechanisms to build an agnostic algorithm to reach the
migration of application’s component. Application components are specified in
an agnostic way and their control, with operations like stopping, restarting,
starting in a new location, can be delegated to the aforementioned unified API,
which handles any application component independently of the kind of service
where it will be running, either IaaS and PaaS.

2.2 The Softcare Case Study

Softcare is an application for the social inclusion of elderly people and for the
management of their medical problems. The application, developed by originally
developed at Atos [4], is a cloud-based clinical, educational, and social applica-
tion, based on state-of-the-art technology.

As depicted in Fig. 2, the application is composed of seven modules: four
web modules over respective Tomcat servers (note the Tomcat icons), and
three MySQL databases (note the database icons). The SoftcareDashboard

Runtime Migration of Applications in a Trans-Cloud Environment 59

Listing 1.1. Softcare’s TOSCA description
1 t o s c a d e f i n i t i o n s v e r s i o n : to sca s imple yaml 1 0 0 wd03
2 . . .
3 t opo l ogy t emp la t e :
4 node templa te s :
5 SoftcareDashboard :
6 type : org . apache . brooklyn . en t i t y . webapp . tomcat . TomcatServer
7 . . .
8 r equ i r ement s :
9 − endpo i n t c on f i g u r a t i o n :

10 node: SoftcareWS
11 . . .
12 − endpo i n t c on f i g u r a t i o n :
13 node: Forum
14 . . .
15 − endpo i n t c on f i g u r a t i o n :
16 node: Multimedia
17 . . .
18 SoftcareWS:
19 type : org . apache . brooklyn . en t i t y . webapp . tomcat . TomcatServer
20 . . .
21 r equ i r ement s :
22 − endpo i n t c on f i g u r a t i o n :
23 node: SoftcareDB
24 . . .
25 SoftcareDB:
26 type : org . apache . brooklyn . en t i t y . database . mysql . MySqlNode
27 . . .
28 . . .
29 groups :
30 add compute l oca t i ons :
31 members: [SoftcareDB , ForumDB, MultimediaDB , Forum]
32 p o l i c i e s :
33 − brooklyn . l o c a t i o n : aws−ec2 :eu−west−1
34 add web l o ca t i on s :
35 members: [SoftcareDashboard , SoftcareWS , Multimedia]
36 p o l i c i e s :
37 − brooklyn . l o c a t i o n : s o f t l a y e r : l o n 0 2

component provides the main graphical user interface, and depends on the Forum,
Multimedia and SoftcareWS modules. Forum adds a forum service to the web
platform, Multimedia is responsible for managing the offered multimedia con-
tent, and SoftcareWS contains the application’s business logic. The databases
ForumDB, MultimediaDB and SoftcareDB store, respectively, the forum’s mes-
sages, the multimedia content, and the rest of the application’s data.

Given a TOSCA YAML description with the appropriate location specifica-
tion, the Brooklyn system will create suitable entities to manipulate each module.
Listing 1.1 shows a Softcare’s TOSCA YAML topology schema, where just some
elements are described to illustrate the agnostic-based application description.
We can see how this mechanism allows the separation between topology descrip-
tion and the providers specification. In lines 29–37, we see that the components
are deployed on AWS (Ireland’s cluster) and SoftLayer (London’s cluster), both
of them IaaS services.

If we used the TOSCA YAML in Listing 1.2 instead, the components that
were targeting SoftLayer would now be deployed on Pivotal (PaaS). The only
change between these YAMLs is the target location for some of the modules, with
no modification on the original topology or the description of the components.

60 J. Carrasco et al.

Listing 1.2. Adding new locations to web modules
1 t o s c a d e f i n i t i o n s v e r s i o n : to sca s imple yaml 1 0 0 wd03
2 . . .
3 groups :
4 add compute l oca t i ons :
5 members: [SoftcareDB , ForumDB, MultimediaDB , Forum]
6 p o l i c i e s :
7 − brooklyn . l o c a t i o n : aws−ec2 :eu−west−1
8 add web l o ca t i on s :
9 members: [SoftcareDashboard , SoftcareWS , Multimedia]

10 p o l i c i e s :
11 − brooklyn . l o c a t i o n : p ivota l−ws

3 Migration Algorithm

Our migration algorithm, specified in Algorithm1, is completely agnostic, it is
just a process orchestrator. Given the abstractions provided by the trans-cloud
management tool, and the way application, components and their relations are
modeled and handled by it, the migration algorithm is reduced to a minimum.
Thus, the management of each concrete application component and bound cloud
resource can be delegated to a generic API which hides the complexity of man-
aging different cloud providers. For example, the stop(component) operation is
in charge of stopping a component regardless of where it is running, either on
an IaaS or PaaS service, and the resources it is using.

The migration algorithm is in charge of providing a thread-based parallelized
operational plan for the migration of each stateless component to the specified
target locations. To minimize waiting times, the algorithm follows a distributed
approach. Decisions are made on a component basis, so that each component
checks its own dependencies and moves forward in its specific task as soon as
possible. The algorithm simultaneously operates on all specified components
by following a multithreaded strategy, controlled by the application of a set of
rules to detect dependencies between component and cloud resources, and then
ensuring the integrity of the application during the migration process.

During the execution of the algorithm, we differentiate two phases: the stop
phase, where all necessary components—components to be migrated and all
other components depending on them—are stopped and cloud resources are
released, and the start phase, where affected components are re-deployed in
desired locations, stopped components are re-started, and connections are re-
established. To maximize concurrency during these phases, actions on compo-
nents are bundled on tasks, namely, STOP TASK (lines 16–28) and START TASK
(lines 30–45). For example, a task for stopping a component will contain the
necessary operations to stop the component and release its resources. Once a
set of tasks have been generated, they will be executed in parallel using the
parallelExecution() operation of the executor object.

The operation MIGRATE(a,cls) takes as inputs an in-memory representation
of an application’s topology, a, and a map cls that associates to each of the
components of the application to be migrated its target location. The set of keys
of this map (cls.keys()) represents the components to be migrated.

Runtime Migration of Applications in a Trans-Cloud Environment 61

Algorithm 1. Migration Algorithm
1 Input a: application
2 Input cls: component-location map to migrate
3
4 procedure MIGRATE(a, cls)
5 stopTasks = empty list of tasks
6 for c in findComponentsWithNoDeps(a, cls.keys())
7 stopTasks.add(STOP TASK(a, c, cls))
8 executor(stopTasks).parallelExecution()
9

10 startTasks = empty list of tasks
11 for c in cls.keys()
12 startTasks.add(START TASK(a, c, cls))
13 executor(startTasks).parallelExecution()
14 end
15
16 function STOP TASK(a, component, cls): Task
17 return new Task() {
18 stopParentTasks = empty list of tasks
19 for c in parents(a, component)
20 stopParentTasks.add(STOP TASK(a, c))
21 executor(stopParentTasks).parallelExecution()
22
23 if component in cls.keys()
24 stopAndReleaseResources(component)
25 else
26 stop(component)
27 }
28 end
29
30 function START TASK(a, component, cls): Task
31 return new Task() {
32 if isReadyToStart(component) {
33 if component in cls.keys()
34 start(component, cls.get(component))
35 else
36 re-start(component)
37 re-establishRelations(component, a)
38
39 startParentTasks = empty list of tasks
40 for c in parents(a, component)
41 startParentTasks.add(START TASK(a, c, cls))
42 executor(startParentTasks).parallelExecution()
43 }
44 }
45 end

Before migrating a component, it is necessary to stop all its input depen-
dencies. For example, if we wanted to migrate a back-end server, which
is being used by a set of front-end components, we should ensure that
all the components connected to the back-end have been stopped before-
hand. The stop phase of the algorithm proceeds recursively on the ances-
tors of each component of the application (parents(a,component)), start-
ing with the set of components with no dependencies in the set of compo-
nents to stop (findComponentsWithNoDeps(a,cls) in line 6), which results
in a top-down strategy. Given stop tasks for each of the components in
the hierarchy, the concurrent executor will launch each of them in parallel.
The stopping task on a component concludes with the invocation of either

62 J. Carrasco et al.

the stopAndReleaseResources(component) (line 24) or the stop(component)
(line 26) operations, depending on whether the component in question is one of
the components to be migrated or not. These two operations belongs to the trans-
cloud API, and will take care of the specificities of the providers and services
used. The only difference between them relies on the releasing of the resources
used. Those components to be migrated will have new resources bound, and the
stopAndReleaseResources operation is used on them.

Once all necessary components have been stopped, the target components
have to be re-deployed in the new locations. Then, all stopped components,
those migrated and their ancestors, must also be either started or re-started.
In this phase, if a component has all its dependencies fulfilled (checked by the
isReadyToStart(component) operation, line 32), the following stand-up opera-
tions are applied to it: (1) start/re-start, (2) re-establishment of its connections,
and, finally, (3) re-start of its ancestors. The recursive invocation to the ances-
tors re-starting results in a bottom-up traversing strategy on the dependency
structure, which means that a component will only be re-started after all its
input dependencies are satisfied. This procedure ensures the topology’s integrity
and avoid unexpected behavior during the migration. If a specific component
has not migrated, it just need to be re-started using the services already bound.
If it is one to be migrated, it will be started on the new target location. In both
cases, the task concludes re-establishing the relations of the component. Again,
all these operations are performed with invocations to the trans-cloud API.

4 The Tool in Practice

In this section, we briefly illustrate how our trans-cloud approach can be used
to deploy the application’s components on different services simultaneously, and
how the migration algorithm can be applied to move some of these components
to the specified target locations. We use the Softcare case study introduced in
Sect. 2.2 to illustrate the tool and its use. The implementation and the rest
of the documentation are available at github, from https://github.com/scenic-
uma/brooklyn-dist/tree/trans-cloud-app-migration.

4.1 Application Deployment

Our extension of Brooklyn adds to Brooklyn the required mechanisms to sup-
port the deployment of components on PaaS vendors, following the trans-cloud
concepts. We focus here on the use of Brooklyn-TOSCA and how, thanks to the
Brooklyn’s plugin, our proposal supports TOSCA-based topology descriptions
to be managed by the extended Brooklyn.

In order to deploy an application using our trans-cloud tool, first we need
to provide a TOSCA-based topology specification, with all the details on the
application topology, its components and how they are related, their properties,
configurations, etc. Then, since the trans-cloud mechanisms have been totally
integrated under the API in the customized Brooklyn version, we may use the

https://github.com/scenic-uma/brooklyn-dist/tree/trans-cloud-app-migration
https://github.com/scenic-uma/brooklyn-dist/tree/trans-cloud-app-migration

Runtime Migration of Applications in a Trans-Cloud Environment 63

Fig. 3. Deployment of the Softcare application using its TOSCA specification

default Brooklyn Web Console2 to deploy our applications using their TOSCA
YAML descriptions. For example, given the complete TOSCA YAML descrip-
tion of the case study presented in Sect. 2.2 (an excerpt with its structure is
given in Listing 1.1), we may use Brooklyn’s Web Console to deploy the Softcare
application on AWS EC2 and SoftLayer as shows the snapshot in Fig. 3.

Once the TOSCA YAML is loaded in Brooklyn’s Blueprint Composer, we
may click on the deploy button. If so, the topology is processed by the extended
Brooklyn (by means of Brooklyn-TOSCA) and the application is deployed using
the selected cloud services and resources, AWS EC2 Oregon’s Cluster and Soft-
layer London’s Cluster.

4.2 Migration Request

As explained in previous sections, the extended version of Brooklyn provides
support for the component-wise migration of applications. Precisely, the migra-
tion may operate on as many stateless components of an application as desired.

2 Deployment Official documentation https://brooklyn.apache.org/v/latest/start/
blueprints.html.

https://brooklyn.apache.org/v/latest/start/blueprints.html
https://brooklyn.apache.org/v/latest/start/blueprints.html

64 J. Carrasco et al.

Although the migration algorithm was developed as an independent orchestra-
tor, since it is included in the customized Brooklyn, we may now apply the
migration process to any application which has been deployed (and is therefore
being managed) by Brooklyn. Moreover, by the agnosticity of our TOSCA-based
application descriptions, we may migrate then without any changes on the appli-
cation topologies or their descriptions.

Continuing with our case study, and assuming that the Software application
has previously been deployed as indicated in the previous section, we explain here
how the application can be migrated. Precisely, we show how some of its state-
less components, namely SoftcareDashboard and Forum, are moved to different
services. To perform the component-wise migration of an application we must
just provide the target locations of the components to be migrated. We could,
of course, change the location of all the components of an application. Here we
migrate just two of them: SoftcareDashboard is moved from SoftLayer’s dat-
acenter in London to Amazon EC2, and Forum is moved from Amazon EC2 to
Pivotal Web Services. Notice that whilst the first migration involves two IaaS
providers, the Forum component is moved from IaaS to PaaS.

Fig. 4. Migration process launch

Thus, the algorithm just requires a map associating the components to be
migrated to the target locations. These locations are selected from a catalog of
available datacenters. Figure 4 shows a snapshot of the Brooklyn Web Console
with the pop-up window to specify the migration to execute. We can see on the
left a tree with the Softcare components running as deployed in the cloud as
deployed in the previous section. At the center of the figure we can see the pop-
up window with the invocation of the migration process. As value the migration
task receives the map configuration with the desired location targets.

Once the map with the target locations has been provided, the migration
algorithm is executed by clicking on the Invoke button. The algorithm is applied
according to its specification in Sect. 3. First, Forum is selected to be stopped. The

Runtime Migration of Applications in a Trans-Cloud Environment 65

stop operation on SoftcareDashboard is suspended, since it is a direct ancestor
of Forum. Thus, the algorithm first tries to stop the Forum component, but since
its ancestors must be stopped before, the SoftcareDashboard is then stooped.
Once SoftcareDashboard is not running, Forum is stopped. Because both
SoftcareDashboard and Forum are to be migrated, every bound cloud resources
are also released. Then, the re-start process begins. The SoftcareDashboard
component cannot start directly, because one of its dependencies (Forum) is not
ready. Hence, Forum is started first on pivotal-ws. Finally, once Forum has been
re-deployed and all its relations have been re-established, SoftcareDashboard is
deployed on AWS. After each start and re-start operation, all necessary relations
are re-established to maintain the expected application behavior.

5 Conclusions

An agnostic algorithm to orchestrate the migration process for the stateless
component of applications in cloud environments have been proposed. The algo-
rithm allows the parallel migration of several components of an application, and
it only needs the mapping of components to be migrated to new locations, inde-
pendently of the service level (IaaS or PaaS) used both in the source and the
target provider. This is possible because the algorithm is based on trans-cloud
mechanisms also provided as part of this work. Thus, the proposed algorithm
is vendor, technology and service-level agnostic. The migration process is fully
automated, and is available on an extended version of Apache Brooklyn. The
only required external intervention to carry out the migration is just a migration
request to initialize the process.

As future work, we plan to extend our algorithm in several ways, in particular
to optimize downtimes. The current version of the algorithm is based on first
stopping the components to be migrated, and then starting or re-starting them.
To minimize the downtimes we will re-engineer the definitions of lifecycles in
Brooklyn to allow the deployment and starting of migrated components before
stopping then.

Acknowledgements. This work has been partially supported by Spanish
MINECO/FEDER projects TIN2014-52034-R and TIN2015-67083-R; and Univ.
Málaga, Campus de Excelencia Internacional Andalućıa Tech.

References

1. Androcec, D., Vrcek, N., Kungas, P.: Service-level interoperability issues of plat-
form as a service. In: World Congress on Services (SERVICES), pp. 349–356. IEEE
(2015)

2. Binz, T., Leymann, F., Schumm, D.: CMotion: a framework for migration of appli-
cations into and between clouds. In: International Conference on Service-Oriented
Computing and Applications (SOCA), pp. 1–4. IEEE (2011)

3. Boyer, F., Gruber, O., Pous, D.: Robust reconfigurations of component assemblies.
In: International Conference on Software Engineering (ICSE), pp. 13–22 (2013)

66 J. Carrasco et al.

4. Brogi, A., Carrasco, J., Cubo, J., Nitto, E.D., Durán, F., Fazzolari, M., Ibrahim,
A., Pimentel, E., Soldani, J., Wang, P., D’Andria, F.: Adaptive management of
applications across multiple clouds: the SeaClouds approach. CLEI Electron. J.
18(1) (2015)

5. Brogi, A., et al.: SeaClouds: a European project on seamless management of multi-
cloud applications. ACM SIGSOFT SEN 39(1), 1–4 (2014)

6. Carrasco, J., Cubo, J., Durán, F., Pimentel, E.: Bidimensional cross-cloud man-
agement with TOSCA and Brooklyn. In: 9th IEEE International Conference on
Cloud Computing (CLOUD), pp. 951–955 (2016)

7. Carrasco, J., Durán, F., Pimentel, E.: Component-wise application migration in
bidimensional cross-cloud environments. In: CLOSER 2017 - Proceedings of the
7th International Conference on Cloud Computing and Services Science, Porto,
Portugal, 24–26 April 2017, pp. 259–269 (2017)

8. Durán, F., Salaün, G.: Robust and reliable reconfiguration of cloud applications.
J. of Systems and Software 122, 524–537 (2016)

9. Grozev, N., Buyya, R.: Inter-cloud architectures and application brokering: taxon-
omy and survey. Softw. Pract. Exper. 44(3), 369–390 (2014)

10. Jamshidi, P., Ahmad, A., Pahl, C.: Cloud migration research: a systematic review.
IEEE Trans. Cloud Comput. 1(2), 142–157 (2013)

11. Kritikos, K., Plexousakis, D.: Multi-cloud application design through cloud service
composition. In: 8th International Conference on Cloud Computing (CLOUD), pp.
686–693. IEEE (2015)

12. Moustafa, A., Zhang, M., Bai, Q.: Trustworthy stigmergic service composition and
adaptation in decentralized environments. IEEE Trans. Serv. Comput. 9(2), 317–
329 (2016)

13. Paraiso, F., Haderer, N., Merle, P., Rouvoy, R., Seinturier, L.: A federated multi-
cloud PaaS infrastructure. In: Chang, R. (ed.) 5th International Conference on
Cloud Computing (CLOUD), pp. 392–399. IEEE (2012)

14. Youseff, L., Butrico, M., Silva, D.D.: Toward a unified ontology of cloud computing.
In: Grid Computing Environments Workshop (GCE), pp. 1–10 (2008)

15. Zeginis, D., D’Andria, F., Bocconi, S., Cruz, J.G., Martin, O.C., Gouvas, P.,
Ledakis, G., Tarabanis, K.A.: A user-centric multi-PaaS application management
solution for hybrid multi-cloud scenarios. Scalable Comput. Pract. Exp. 14(1),
17–32 (2013)

16. Zhao, J.-F., Zhou, J.-T.: Strategies and methods for cloud migration. Int. J. Autom.
Comput. 11(2), 143–152 (2014)

Verification of the Consistency
of Time-Aware Cyber-Physical Processes

Imen Graja1(B), Slim Kallel1, Nawal Guermouche2,3, and Ahmed Hadj Kacem1

1 ReDCAD Laboratory, University of Sfax, Sfax, Tunisia
imen.graja@redcad.org

2 CNRS, LAAS, 7 avenue du colonel Roche, 31400 Toulouse, France
3 Univ de Toulouse, INSA, LAAS, 31400 Toulouse, France

Abstract. Cyber-physical systems (CPS) represent an emerging type
of distributed systems that integrate a multitude of physical elements
and software applications into large networks of interconnected compo-
nents. Ensuring that such systems meet their timing requirements is
essential, especially with time-sensitive applications. To deal with this,
suitable ways to specify and verify distributed CPS applications includ-
ing their timing requirements are needed. Current CPS modeling solu-
tions specify CPS as inter-organizational processes using existing process
modeling languages. However, the existing process modeling languages
mostly focus on web-based workflow and are not directly compatible with
CPS. Modeling processes in CPS requires the consideration of cyber ele-
ments, physical elements, and their non-functional properties such as
time-related and physical properties. Given an inter-organizational CPS
processes model with considering structural and non-functional proper-
ties, implicit conflicts may arise. To deal with this issue, we propose an
approach for modeling and verifying inter-organizational cyber-physical
processes associated with temporal properties. To do that, we provide
an extended version of BPMN that supports CPS concepts and prop-
erties. Then, we define a set of transformation rules to automatically
transform the inter-organizational processes model into a constraint sat-
isfaction model. Thereafter, we analyze the generated model to check its
consistency.

Keywords: Cyber-physical systems · Temporal properties
Inter-organizational processes · Constraint satisfaction problem

1 Introduction

Cyber-physical systems (CPS) enable the development of complex real-world
applications through the integration of computation, communication, control,
and physical activities. Embedded computers and networks monitor and control
physical functionalities. These functionalities when executed affect the physical
world and computations. The design of such systems, therefore, rise new design
challenges such as the composition of the cyber and physical functionalities [1].
c© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 67–79, 2018.
https://doi.org/10.1007/978-3-319-91764-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_6&domain=pdf

68 I. Graja et al.

Solutions for this challenge have been proposed to represent the software and
hardware functionalities of CPS in the form of interoperable services [2].

A CPS service can be either a cyber or physical service. Cyber-computational
resources, which reside either in static or dynamic host computers in CPS
network, provide cyber services. Physical devices (sensors or actuators) pro-
vide physical services that monitor or make changes in the real-world envi-
ronment. Hence, CPS is more complex than web-based applications [3] that
only consider software services. In fact, the services offered by cyber-physical
resources and computational resources differ in their non-functional properties.
The non-functional properties characterize the abstract behavior of CPS and
define restrictions on their real-time execution [4]. Since CPS can be applied in a
variety of domains - such as medical, transportation, smart home, etc. - we differ-
entiate between two types of non-functional properties; the domain-independent
and domain-dependent properties. The domain-independent properties repre-
sent general desirable features of different domains, such as the execution time
and the cost of executed functionality. The domain-dependent properties, on the
other hand, stem from peculiar features of the specified domain and regard its
components functionalities. For example, the dimensions of space are important
characteristics for many transport systems.

Time-related properties are domain-independent constraints on the CPS
behavior over time. They are crucial for the correct functioning of the CPS.
In addition, time-related properties can be affected by some physical proper-
ties. For example, the velocity can affect the arrival time of a flying drone. The
physical properties are the constraints on the environment, physical entities,
devices or their behavior in CPS. In fact, the specification of physical properties
is related to the application domain of the system. To resume, modeling cyber-
physical processes requires capturing important particular CPS aspects such as
cyber elements, physical elements and their non-functional properties.

The characteristics of the CPS processes and their associated non-functional
properties are arguably more difficult to capture in business process model-
ing [5,6]. To overcome such limitation, in our previous work, we proposed
BPMN4CPS [7,8]; a CPS-aware BPMN 2.0 extension with CPS aspects. Our
aim is to allow designers to accurately and efficiently model CPS processes. We
introduced additional concepts to represent the process logic, different types of
activities, CPS resources, real-world elements, time related properties and phys-
ical properties. Given a set of inter-organizational CPS processes modeled using
BPMN4CPS, it is important to set up a verification technique for checking the
consistency of the model against the specified properties, i.e., the constraints of
each process comply with the different constraints of the different processes.

The modeling of inter-organizational processes is a complex and error-prone
step that introduces inconsistencies or errors to the processes, e.g., “dead-
lock”. In fact, many approaches have addressed this problem and have pro-
posed some solutions for the verification of the structural correctness of the pro-
cesses [9] and the satisfaction of the time-related properties [10–12]. However, as
described before, CPS activities are constrained by physical restrictions. These

Verification of the Consistency of Time-Aware Cyber-Physical Processes 69

physical properties, which affect greatly the cyber-physical behavior, have not
been treated yet, when verifying such processes. In this context, when studying
the possible impact of the specified structural, time-related and physical proper-
ties on the inter-organizational CPS processes, we found that implicit conflicts
may arise that makes the model inconsistent.

To address these issues, we define a novel verification approach based on
a constraint satisfaction model to enable the verification of inter-organizational
CPS processes. In order to achieve that, we propose a set of transformation rules
for the mapping of BPMN4CPS into a constraint satisfaction model.

In this paper, we begin in Sect. 2 by presenting a review of related liter-
ature. We introduce our motivating example in Sect. 3. Then, Sect. 4 presents
BPMN4CPS. Next, in Sect. 5, we propose our verification approach. In Sect. 6,
we describe our BPMN4CPS tool, and we illustrate its use to model and verify
the CPS processes. Finally, Sect. 7 concludes the paper.

2 Related Work

Models play an essential role in the design of cyber-physical systems because
they allow a designer to analyze, verify, and detect defects of the system early
and efficiently. To address this need, researchers have proposed several verifi-
cation approaches. Unlike the existing verified models, the BPMN4CPS allows
specifying a very rich set of structural, time-related, and physical properties.

In the service oriented computing research field, the authors, in [3,13],
describe the CPS functionalities as services to facilitate the composition task.
The authors specify the composition of the CPS services as a CPS workflow
pattern, which is a sequence of actions that move the system from the ini-
tial state to the desired goal. Since physical properties may impact the oper-
ation of the services and affect their availability and functionality, the proposal
in [14,15] effectively support the specification of the physical properties. The
above approaches consider the structural, physical and some time-related prop-
erties. Recently, authors use BPMN to model CPS processes. In [6], the authors
extend BPMN to model resources of the real-world entities that perform CPS
activities and specify resource-related non-functional properties such as the per-
formance and reliability for each component. In order to model self-adaptive
workflows for cyber-physical systems. Seiger et al, in [16,17], present a process-
based framework in which the abstract system behavior is modeled using BPMN.
Furthermore, to consider real-world context situations, in [18], the authors intro-
duce SmartPM which is a framework for automated process adaptation in case of
unanticipated exceptions. In fact, in the above approaches, the designer uses the
BPMN to define the process control flows among a set of tasks. These approaches
show the strong need for modeling complex collaborative behavior of distributed
CPS and expressing both sets of structural properties and complex flows of data
(event-based) within high-level CPS processes. Despite the fact that these mod-
els consider structural, physical and some time-related properties, however, they
do not take into account a detailed set of richer time-related properties that

70 I. Graja et al.

can affect the composition of cyber and physical functionalities, as well. Most
importantly, these approaches do not apply any verification guidelines for the
analysis of the correctness of the workflow. In short, the use of BPMN was only
for CPS modeling needs, so verifying the correctness of such models have not
been investigated.

Some modeling approaches focus on the specification of CPS using mathe-
matical languages to be checked. To this end, formal verification of CPS, such
as a model checking technique, is widely used with the aim of verifying dif-
ferent goals. The authors, in [19], propose a probabilistic approach to formally
describe and analyze the reliability and cost-related properties of a composed
set of services in IoT. Formal techniques have also been applied to verify the
deadlock, livelock [2], reachability and safety [20–22] of a cyber-physical model.
In particular, in service-oriented or business systems, works have shown the
importance of the temporal consistency analysis, by applying either static (e.i.,
at-design-time) [11,23] or dynamic (at-run-time) [24] verification. These tempo-
ral verification approaches check whether a temporal violation occurs or not,
based on formal methods. Nevertheless, these approaches are limited to dis-
cover only some time-related inconsistencies, and they do not consider other
eventual physical-related conflicts that can arise when concurrent behavioral
cyber-physical processes interact together (i.e., inter-organizational processes).
In general, the model checker examines all possible system scenarios to iden-
tify if a given model truly satisfies certain properties. However, they may not
be capable to prove physical property and to find their possible values. Hence,
this technique is insufficient to handle our problem that consists of verifying
and finding the possible combinations of the different attribute values [25]. This
problem can be solved through using the constraint satisfaction problems. A
constraint satisfaction problem is a mathematical specification to represent and
solve a combinatorial problem. This technique has been used for scheduling prob-
lems [26], service selection problems [27], etc. and it can address our verification
requirements.

3 Motivating Example

When a hurricane, earthquake, or other natural disaster strikes, lives depend on
the response, delivery of supplies and assistance on time. The disaster recovery
systems is a communication between the search system and the delivery sys-
tem. The designer specifies such behavior using two inter-organizational cyber-
physical processes, as shown in Fig. 1. First, the search system encompasses a set
of sensor drones, installed car cameras and outdoor cameras that monitor the
environment. The sensor drones are equipped with wireless routers and anten-
nas to set up a WiFi network in the damaged area. Other water-level sensors
installed in the scene, collect information about the environment. The cyber part
of such system allows the analysis and the communication with the delivery sys-
tem. Second, the delivery system encompasses a set of delivery drones and self
driving vehicles that carry supplies to the damaged location. The cyber part of

Verification of the Consistency of Time-Aware Cyber-Physical Processes 71

[1-2s]

[1
-2
s]

5-20s

Deadline(P1)<=400s

BE>= BC

Fig. 1. Processes of the disaster recovery systems

such system allows displaying incoming requests on a map using Google earth,
and compute an optimal mission plan.

Before executing such systems, using BPMN4CPS, the designer models their
collaborative behavior, with considering some time-related and physical require-
ments. The aim is to verify the correctness of the behavior and whether or not
the execution will satisfy the specified properties. The associated time related
properties are as follows:

– The duration of each activity in the process, such as the duration of carrying
items (i.e., movement-of-the-drone) activity is between 100 to 600 s.

– The detect-water-level activity has a recurrent behavior that must be repeated
every 10 s and no more that 5 times. The aim is to check if the level is
increasing.

– The start time of the match-delivery-equipment activity must be between 5
to 20 s from the finish time of the display-on-google-earth activity.

– The communication is synchronous and takes 1 to 2 s.
– The deadline of the collaborative behavior is 400 s.

In addition, the designer specifies as physical properties; (1) a constraint on the
drones battery consumption that must ensure its return to the depot after deliv-
ering the items, and (2) a global physical property that represents a relationship
between two physical attributes in different processes. The first property is spec-
ified as a must happen at finish time property. The second property indicates

72 I. Graja et al.

that the drone has to be far away from the water covered region. So, the posi-
tion of the executed water-level sensors must be different from the position of
the drone: Pdrone �= PWaterS . We note that the position is P (xi, yi) or a whole
area, according to the designer specification. Next, we will give a brief overview
of the BPMN4CPS.

4 BPMN4CPS: A BPMN Extension for Modeling
Time-Aware CPS Processes

In order to enable the modeling of CPS processes, we proposed, in [7], an
extended version of BPMN. The proposed extensions introduce new key concepts
related to the CPS functional and non-functional properties. We also supply
the modeler with the possibility to visually specify these different CPS aspects
and non-functional properties [8]. In what follows, we present the CPS concepts
supported by BPMN4CPS, and we describe the newly improved and refined
concepts.

4.1 Modeling CPS Aspects

For modeling CPS, we introduce additional concepts, with the purpose of spec-
ifying the logic of the CPS processes, CPS activity types, resource roles and
real-world elements.

Logic of CPS processes: the CPS application runs on different types of enti-
ties, which their behavior can be seen as three distinct participants. The created
process model is later used to derive the code that will be executed by the CPS.
For such reasons, supporting the deployment of the process requires to split
the process model into a cyber, physical and control parts. These parts of the
process have to be separated and handled differently. Hence, we proposed the
three processes logic, that allows the designer to model the CPS behavior as a
collaboration of three process participants. We also introduce a new extension
that forces the modeler to specify the cyber-physical system as a single process
structured in three parts.

CPS activity types: there are three types of tasks in CPS: the cyber, manual
and physical task. The cyber and the physical tasks have different sub-types of
tasks. The cyber task can be a web-based, cloud-based or embedded task, while
the physical task can be either a sensor’s task or actuator’s task.

CPS resources: in our previous work, we proposed the device performer only
as an extension, while in CPS both cyber and physical resources are equally
important. Therefore, in CPS model, the performer can be Computing Performer
for cyber tasks or Device Performer for physical tasks.

Real-world environment and physical entities: this extension has been pro-
posed to support the specification of the real-world environment (RWE), as an
empty pool, which is a participant containing the different physical entities that
can be affected or monitored by a physical task.

Verification of the Consistency of Time-Aware Cyber-Physical Processes 73

4.2 Modeling Time-Related and Physical Properties

In [8], we proposed an extension of BPMN4CPS to support time-related and
physical properties. First, we consider the following time-related properties:

– Start and finish time of an activity.
– Duration of an activity as the minimum and maximum time taken to be

executed.
– Recurrent activity or set of activities, that is restricted by a number of execu-

tion, and either an interval of time between two starts or an interval of time
in which the behavior can be executed.

– Temporal-dependency between the start/finish and start/finish of two differ-
ent activities.

– Communication time between two activities in two different processes.
– Deadline, which is the time taken to execute one process or a set of collabo-

rative processes.

Second, we consider the following physical properties:

– Must happen at the start or finish time of an activity.
– Must happen during the execution of an activity.
– Must happen in a bound time.
– Must happen in an infinite time.
– Global physical properties that allow the specification of constraints on the

whole collaborative behavior such as the relationship between two or more
physical attributes from different activities and processes.

5 Verification of the Consistency of the CPS Processes

The verification approach we propose relies on a constraint satisfaction model.
In order to achieve that, we define a set of mapping rules that transform the
BPMN4CPS model into a constraint satisfaction problem (CSP) [28]. We remind
you that verification of collaborative CPS processes aims to assert that the differ-
ent constraints of the involved processes do not give rise to conflicts, i.e., incon-
sistencies, which can be an obstacle towards their collaboration. The constraint
programming is a technique that takes its features from different domains such
as the operational research and the artificial Intelligence. This technique helps
solving real combinatorial problems. Using the constraint satisfaction problems,
we can specify various parameters as variables and express the dependencies
between collections of variables as a set of constraints. The goal of this tech-
nique is to define the possible values of all the decision variables, while all the
specified constraints are satisfied.

The mapping process starts first by transforming the structural, time-related
and physical properties of each cyber-physical process into a set of variables and
constraints. Then, we map the properties related to the communication and
global behavior of the collaborative CPS processes into a set of constraints. This
mapping is based on a set of transformation depicted in Fig. 2. Unfortunately,

74 I. Graja et al.

Fig. 2. Transformation rules

in this paper, due to space limitations, we did not introduce all the rules such as
those that associate a domain for each variable and those that transform other
structural dependencies between activities (e.g., the multi-choice structure).

Verification of the Consistency of Time-Aware Cyber-Physical Processes 75

We note that we consider some assumptions that need to be considered when
modeling the systems. First, we propose to consider quantitative attributes.
Qualitative physical attributes can be also supported since they can be rep-
resented as quantitative attributes based on Boolean metrics. Second, studying
the recurrent behavior of a set of activities is a complicated step that requires
some restrictions. To do that, we assume that first the cycle does not contain
any communicating activities such as the send or receive activity. Finally, the
activities in the cycle do not belong to any other cycle. This assumption ensures
that the model does not contain overlapping cycles.

5.1 Transformation Rules for a Cyber-Physical Process

In our previous work [8], we proposed a set of constraints for a cyber-physical
process only. However, this proposal lacks considering the cycle and the differ-
ence between multi-choice and parallel structure. Therefore, in this paper, we
extend our previous work to address these issues. To do so, we present the trans-
formation rules that must be applied to each process, in order to generate the
set of needed variables and constraints. These rules are those from R1 to R8

given in the Fig. 2. In particular, the R1 and R2 allows the transformation of
physical properties to a set of constraints. These constraints are related to the
application domain. Therefore, we define the physical properties associated with
the case study. These properties can be either specified by the designer or they
can be automatically extracted from a domain model.

5.2 Transformation Rules for Collaborative CPS Processes

To verify the consistency of the communicating cyber-physical processes, in [29],
we proposed a new set of constraints that allow the verification of the structural,
time-related, physical and synchronization properties. However, the proposed
mapping of the cycle is a very complex process that needs to transform each
execution trace of the cycle to a set of variables and dependencies between these
variables. In fact, this operation is very hard to achieve especially with very
complex processes. In addition, the proposed constraints on the communication
time do not differentiate between synchronous and asynchronous communica-
tions. Therefore, in this paper, we propose new transformation rules that are
efficient to generate better and accurate results as given in Fig. 2. In particular,
the rule R9 allows the specification of the synchronous communication between
processes, guarantees that the communication time is satisfied, and specifies that
the process remain blocked until the operation completes. Whereas, the rule
R10 transforms the asynchronous communication that is a non-blocking commu-
nication. Finally, we solve the transformed mathematical set of combinatorial
problems to check for consistency.

6 Experimentation: BPMN4CPS Tool

We implement BPMN4CPS as a plug-in for Eclipse, which is an extension of the
BPMN2 Modeler. The implementation starts by extending BPMN to supports

76 I. Graja et al.

1

2

Fig. 3. BPMN4CPS plugin

Fig. 4. Result of the consistency verification

CPS aspects. Second, we extend BPMN4CPS to support time-related and phys-
ical properties. Hence, the plug-in allows designers to model the CPS processes
and their collaborative behavior constrained by time-related and physical prop-
erties [30]. Third, to verify the consistency of the model, we add another feature
to the BPMN4CPS plug-in that allows the automatic mapping of the processes
model to a constraint satisfaction problem written in Java. To do that, we inte-
grate the Choco solver [28] into the BPMN4CPS plug-in. In Fig. 3, we show a
screen-shot of BPMN4CPS. Our tool allows the designer to model CPS pro-
cesses, specify global properties and verify the model, as depicted by label ❶
in Fig. 3. We also extend the palette to include the different CPS concepts and
properties, such as the cyber tasks, as shown by label ❷ in Fig. 3.

Based on the quality characteristics defined in ISO 9126, and the most used
criteria and metrics for evaluating methods and tools inspired from [31,32], we
evaluate our approach and the developed BPMN4CPS plug-in. We prove the
functionality, usability and effectiveness of our proposed approach. If we go back
to the motivating example, the application of the transformation rules allows

Verification of the Consistency of Time-Aware Cyber-Physical Processes 77

us to generate the constraint satisfaction model and automatically analyze the
specified model. Based on the generated results as given in Fig. 4, we can prove
that the model of the disaster recovery systems is consistent, and it ensures the
satisfaction of its specified requirements.

7 Conclusion

This paper studied the verification of the consistency of inter-organizational
cyber-physical processes with a focus on their time-related and physical prop-
erties. We presented BPMN4CPS, which is an extension of BPMN 2.0 to sup-
port CPS aspects and relevant properties, namely, the physical and time-related
properties. Next, we described a novel verification approach that checks the
consistency of the model. To accomplish the verification, we proposed a set of
transformation rules that map the modeled CPS processes into a constraint sat-
isfaction model. The resulting model can be solved in order to verify the consis-
tency of the inter-organizational cyber-physical processes. Finally, we described
the BPMN4CPS tool, and we evaluated our approach through an example of dis-
aster recovery systems. We are currently working on BPMN4CPS plug-in and
adding a number of additional features, such as support for complex physical
properties. In the future, we intend to apply a dynamic (at-run-time) verifica-
tion to analyze the temporal consistency.

Acknowledgments. This work has been co-funded by a FEDER-FSE 2014-2020 fund
of the Region Midi-Pyrenees and the European Union and also by French Government
(program: investment for future) in the project: Smart Services for Connected vehiCles-
S2C2.

References

1. Huang, J., Bastani, F.B., Yen, I.L., Zhang, W.: A framework for efficient service
composition in cyber-physical systems. In: International Symposium on Service
Oriented System Engineering, SOSE 2010, pp. 291–298 (2010)

2. Wang, P., Xiang, Y., Zhang, S.H.: Cyber-physical system components composition
analysis and formal verification based on service-oriented architecture. In: Inter-
national Conference on e-Business Engineering, ICEBE 2012, pp. 327–332. IEEE
(2012)

3. Wan, K., Alagar, V.: A resource-centric architecture for service-oriented cyber
physical system. In: Park, J.J.J.H., Arabnia, H.R., Kim, C., Shi, W., Gil,
J.-M. (eds.) GPC 2013. LNCS, vol. 7861, pp. 686–693. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38027-3 74

4. Lohmann, D., Schroder-Preikschat, W., Spinczyk, O.: Functional and non-
functional properties in a family of embedded operating systems. In: International
Workshop on Object-Oriented Real-Time Dependable Systems, WORDS 2005, pp.
413–420 (2005)

5. Meyer, S., Sperner, K., Magerkurth, C., Debortoli, S., Thoma, M.: Internet of
Things architecture IoT-a project deliverable D2.2 concepts for modelling IoT-
aware processes (2012). http://www.meet-iot.eu/deliverables-IOTA/D2 2.pdf

https://doi.org/10.1007/978-3-642-38027-3_74
http://www.meet-iot.eu/deliverables-IOTA/D2_2.pdf

78 I. Graja et al.

6. Bocciarelli, P., D’Ambrogio, A., Giglio, A., Paglia, E.: A BPMN extension for mod-
eling cyber-physical-production-systems in the context of industry 4.0. In: Interna-
tional Conference on Networking, Sensing and Control, ICNSC 2017. IEEE (2017)

7. Graja, I., Kallel, S., Guermouche, N., H. Kacem, A.: BPMN4CPS: a BPMN exten-
sion for modeling cyber-physical systems. In: IEEE International Conference on
Enabling Technologies: Infrastructures for Collaborative Enterprises, WETICE
2016, pp. 152–157 (2016)

8. Graja, I., Kallel, S., Guermouche, N., Kacem, A.H.: Modeling and verification of
temporal properties in cyber-physical systems. In: IEEE Consumer Communica-
tions & Networking Conference, CCNC 2017 (2017)

9. van der Aalst, W.M., ter Hofstede, A.H.: Verification of workflow task structures:
a petri-net-baset approach. Inf. Syst. 25(1), 43–69 (2000)

10. Du, Y., Tan, W., Zhou, M.: Timed compatibility analysis of web service compo-
sition: a modular approach based on petri nets. IEEE Trans. Autom. Sci. Eng.
11(2), 594–606 (2014)

11. Han, R., Liu, Y., Wen, L., Wang, J.: Probability timing constraint WF-nets and
their application to timing schedulability analysis of workflow management sys-
tems. In: World Congress on Computer Science and Information Engineering, CSIE
2009 (2009)

12. Du, Y., Tan, W., Zhou, M.: Timed compatibility analysis of web service compo-
sition: a modular approach based on petri nets. IEEE Trans. Autom. Sci. Eng.
11(2), 594–606 (2013)

13. Huang, J., Bastani, F., Yen, I.L., Jeng, J.J.: Toward a smart cyber-physical space:
a context-sensitive resource-explicit service model. In: Computer, Software and
Applications Conference, COMPSAC 2009, pp. 122–127. IEEE, Seattle (2009)

14. Zhu, W., Zhou, G., Yen, I.L., Bastani, F.: A PT-SOA model for CPS/IoT services.
In: International Conference on Web Services, ICWS 2015, New York, pp. 647–654.
IEEE, June 2015

15. Zhao, Y., Dong, J., Huang, J., Zhang, Y., Yen, I.L., Bastani, F.: Service life cycle
tools and technologies: methods, trends and advances. In: Abstract Service for
Cyber Physical Service Composition. Information Science Reference, pp. 303–322
(2012)

16. Seiger, R., Huber, S., Schlegel, T.: Toward an execution system for self-healing
workflows in cyber-physical systems. Softw. Syst. Model. 17(2), 551–572 (2016)

17. Seiger, R., Huber, S., Schlegel, T.: PROtEUS: an integrated system for process
execution in cyber-physical systems. In: Gaaloul, K., Schmidt, R., Nurcan, S.,
Guerreiro, S., Ma, Q. (eds.) CAISE 2015. LNBIP, vol. 214, pp. 265–280. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-19237-6 17

18. Marrella, A., Mecella, M., Halapuu, P., Sardina, S.: Automated process adaptation
in cyber-physical domains with the smartPM system. In: IEEE International Con-
ference on Service-Oriented Computing and Applications, SOCA 2015, pp. 59–64,
October 2015

19. Li, L., Jin, Z., Li, G., Zheng, L., Wei, Q.: Modeling and analyzing the reliability and
cost of service composition in the IoT: a probabilistic approach. In: International
Conference on Web Services, ICWS 2012, Honolulu, pp. 584–591 (2012)

20. Arney, D., Pajic, M., Goldman, J.M., Lee, I., Mangharam, R., Sokolsky, O.: Toward
patient safety in closed-loop medical device systems. In: International Conference
on Cyber-Physical Systems, ICCPS 2010, New York, pp. 139–148. ACM (2010)

https://doi.org/10.1007/978-3-319-19237-6_17

Verification of the Consistency of Time-Aware Cyber-Physical Processes 79

21. Li, T., Tan, F., Wang, Q., Bu, L., Cao, J.N., Liu, X.: From offline toward real time:
a hybrid systems model checking and CPS codesign approach for medical device
plug-and-play collaborations. IEEE Trans. Parallel Distrib. Syst. (TSMCA) 25(3),
642–652 (2014)

22. Banerjee, A., Gupta, S.K.S.: Spatio-temporal hybrid automata for safe cyber-
physical systems: a medical case study. In: International Conference on Cyber-
Physical Systems, ICCPS 2013, New York, pp. 642–652. ACM (2013)

23. Li, J., Fan, Y., Zhou, M.: Timing constraint workflow nets for workflow analysis.
IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 33(2), 179–193 (2003)

24. Liu, X., Wang, D., Yuan, D., Wang, F., Yang, Y.: Throughput based temporal
verification for monitoring large batch of parallel processes. In: International Con-
ference on Software and System Process, ICSSP 2014, New York. ACM (2014)

25. Krishna, S.N., Trivedi, A.: Hybrid automata for formal modeling and verification
of cyber-physical systems. J. Indian Inst. Sci. 93(3) (2015)

26. Barták, R., Salido, M.A., Rossi, F.: Constraint satisfaction techniques in planning
and scheduling. J. Intell. Manuf. 21(1), 5–15 (2010)

27. Guidara, I., Guermouche, N., Chaari, T., Jmaiel, M., Tazi, S.: Time-dependent
QoS aware best service combination selection. Int. J. Web Serv. Res. 12(2), 1–25
(2015)

28. Prud’homme, C., Fages, J.G., Lorca, X.: Choco Documentation. TASC, INRIA
Rennes, LINA CNRS UMR 6241, COSLING S.A.S. (2016)

29. Graja, I., Kallel, S., Guermouche, N., Kacem, A.H.: Towards the verification of
cyber-physical processes based on time and physical properties. Int. J. Bus. Syst.
Res. (2017)

30. Graja, I., Mechim, A., Kallel, S., Guermouche, N., Kacem, A.H.: Demonstrating
BPMN4CPS: modeling and verification of cyber-physical systems. In: IEEE Con-
sumer Communications & Networking Conference, CCNC 2017 (2017)

31. Kitchenham, B., Pickard, L., Pfleeger, S.L.: Case studies for method and tool
evaluation (1995)

32. Sacha, K.: Software engineering: evolution and emerging technologies. In: Evalua-
tion of Software Quality. IOS Press (2005)

Model Checking of Cost-Effective
Elasticity Strategies in Cloud Computing

Rawand Guerfel1(B), Zohra Sbäı1,2, and Rahma Ben Ayed1

1 Université de Tunis El Manar, École Nationale d’Ingénieurs de Tunis,
BP. 37 Le Belvédère, 1002 Tunis, Tunisia

{Rawand.Guerfel,zohra.sbai,rahma.benayed}@enit.rnu.tn
2 College of Computer Engineering and Science,

Prince Sattam Bin Abdulaziz University, PO Box 151,
Al-Kharj 11942, Kingdom of Saudi Arabia

Abstract. Cloud computing is a revolution in how computing power is
delivered to business. It offers different measured services to clients who
require them by writing a simple request. These requests are becoming
more and more complex so that services need to be composed to meet
them. Additionally, these Cloud composite business services (CCBSs)
need to be elastic, i.e. their number should be replicated or reduced
according to the number of their user demands. Ensuring these two
operations is done according to a well-defined strategy. We are inter-
ested in this paper in cost-effective elasticity one. Applying this strategy
on CCBSs gives birth to a system that needs to be checked to insure
that SLA constraints, such as deadline specified by the user, are not vio-
lated. In this paper, we present a formal model using Timed Coloured
Petri nets to model, check and compare between these strategies before
implementing them in real Cloud.

Keywords: Cloud computing composition · Cloud elasticity
Cost-effective strategy · SLA · Formal model
Timed Coloured Petri Net

1 Introduction

Cloud computing is a as a service model where different resources and data
such as servers, switches, storage, applications and services are accessed over the
internet. It is a model that enables ubiquitous on demand access to a shared
pool of configurable computing resources which can be rapidly provisioned and
released with minimal management effort.

There are basically three layers to the Cloud that are used differently based
on what they offer. The first layer is Infrastructure as a Service (IaaS) which
offers virtual systems that can be connected using internet. The second layer is
Platform as a Service (PaaS) which is a proof model for running applications
without the hassle of maintaining the hardware and software infrastructure at
c© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 80–92, 2018.
https://doi.org/10.1007/978-3-319-91764-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_7&domain=pdf

Model Checking of Cost-Effective Elasticity Strategies in Cloud Computing 81

the company. The last layer is Software as a Service(SaaS) which is a delivering
way of application as a service. Using this layer, one is not obliged to install and
maintain software [13].
Nowadays, user requirements are becoming more and more complex that some-
times, a single Cloud business service cannot meet user requests. It needs to
communicate and to be combined with other business services to respond to
user demands. In this case, we are treating the composition mechanism in Cloud
computing, an already discussed issue in our previous works [3,4].

The challenge with these composite Cloud services is that they should be elas-
tic [6]. Indeed, elasticity is one of the most important characteristic that Cloud
computing offers to its users. More precisely, it allows the providers to adapt
in term of numbers to the user demands in a transparent way. We distinguish
two types of elasticity. The first type is vertical elasticity which is related to the
scaling up or down of resources of a specific Cloud service without modifying
its number (e.g.: the power or the capacity of servers). The second type is hori-
zontal elasticity which is related to the removing or the adding of Cloud service
instances. In our work, we are interested in horizontal elasticity. More precisely,
in horizontal elasticity type, when the number of user demands for the CCBS
increases, the provider has to replicate as many copies of service instances as this
number. Similarly, when the number of user demands decreases, the provider has
to delete the unused copies of service instances. Replicating and deleting actions
are done according to an elasticity-strategy.

Executing elasticity strategies on composite Cloud business service does not
necessarily imply the replication or the deleting of the whole composite service.
Indeed, according to some indicators, we can apply these operations on only
some of the services involved in the composition. This gives birth to a system
composed of different services that interconnect and communicate between each
other. Users access should be well organised so that the system will not suffer
from some problems such as deadlock, conflit, etc.

Let’s also note that when applying and choosing an elasticity strategy, one
has to take into account two major factors which are: the deadline parameter
specified by the user and the gained cost for the Cloud provider. Indeed, on the
one hand, SLA has to be ensured. More particularly, when applying an elasticity
strategy, we have to check that the deadline is not violated so the provider does
not pay a penalty. On the other hand, we should make sure that the elasticity
maximizes the cost gained by the provider. This leads to the use of what is
known by “cost-effective elasticity strategy”.

It is in this context that our work is oriented. Indeed, we propose to check the
validity of the model obtained when executing cost-effective elasticity strategies
on composite Cloud business services. This model should ensure the non-violence
of the user deadline constraint. To do so, we use formal modelling. More precisely,
we use Coloured Petri nets (CPN) [8]. CPN allow us to assign time and data
information to each service, so that we can assign cost to each service. Besides,
CPN offers us the possibility to differentiate between multiple users. Indeed,

82 R. Guerfel et al.

coloured tokens are associated with data that could be used as specific ID for
each user.

The reminder of this paper is structured as follows. We start the Sect. 2 with
presenting the system model by giving some important definitions. Then, we
give a motivation example based on two existing strategies. Then, we move to
the Sect. 3 to model the elasticity strategy using CPN tool [14]. Also, in this
section, an algorithm of generation of CCBS model in CPN is detailed. To valid
this model, we check some properties detailed in Sect. 4. Afterwards, we refer,
in Sect. 5, to related works. In Sect. 6, we present conclusions and expose some
future works.

2 Cost-Effective Elasticity Strategy of Composite Cloud
Business Services

Cloud services should be characterized by one of the most important benefic
offered by the Cloud computing which is: elasticity. In fact, by rapid elasticity,
the Cloud can dynamically allocate or deallocate resources based on the customer
configurations [6]. As we already mentioned, this work focuses on horizontal
elasticity.

Horizontal elasticity of composite Cloud business services means adapting
the number of this composite service to the number of user demands. Many
indicators exist to help the provider know when to apply the elasticity strat-
egy namely: the number of user demands, the maximum/minimum number of
active sessions, number of user request per unit of time, etc. In our work, we are
interested in elasticity strategies that are based on these two indicators:

– the maximum and minimum number of user demands that each service can
hold.

– the cost gained when applying the elasticity strategy.

2.1 System Model

Ensuring the elasticity of composite Cloud business services is an important and
necessary step. To do so, many strategies have been proposed. To execute the
necessary actions, most of them are based on the number of users accessing the
CCBS as an elasticity indicator. However, we are interested in ones that add the
cost factor when deciding to process these actions.

In this section, we give some important definitions.

Definition 1 (CBS definition): A CBSi is defined with the tuple
(namei,max-thresi,min-thresi, Resp-Ti, costi, Rep-Costi) where:

• namei: is the name of CBSi

• max-thresi: is the maximum threshold of CBSi

• min-thresi: is the minimum threshold of CBSi

• Resp-Ti: is the response time of CBSi

Model Checking of Cost-Effective Elasticity Strategies in Cloud Computing 83

• costi: is the cost of the CBSi

• Rep-Costi: is the cost of replication action of the CBSi

Definition 2 (CCBS definition): A CCBS0 is a combination of n CBSoi ;
where i ∈ 1..n ; and has the following structure:

CCBS0 = (CBS01, CBS02, ..., CBS0n)
= (< name01,max − thres01,min − thres01, Resp − T01, cost01,

Rep − Cost01 >, ..., < name0n,max − thres0n,min − thres0n,

Resp − T0n, cost0n, Rep − Cost0n >)

Definition 3 (CCBS’s response time): The response time of one CCBSi,
noted by Resp-Ti, is the sum of the response time of all its CBSs. It is defined
as follows:

Resp−Ti =
n∑

j=1

Resp−Tij ;

Where n is the number of CBSs that compose the CCBS.

Before accessing these services, a SLA is defined between the user and the
provider. In this SLA, users specify some constraints that should be valid such
as: the availability, the deadline, the budget, the penalty, etc. Some of these
parameters are treated in this paper and detailed in the following definition.

Definition 4 (User requirement): A user requirement is given as follows:
UR=(name, dead, budget, penalty); knowing that:

– Name: is the name of either the CCBS or the CBS. In fact, the user can
access to just one Cloud business service.

– Dead: is the maximum time given to the provider to respond to the user
requirement.

– Budget: is the price offered to the provider if the service is given before Dead.
– Penalty: is the penalty to be paid by the provider if the request is given after

Dead, the parameter specified by the user.

2.2 Motivation

Let’s suppose that we have four Cloud business services CBS11, CBS12, CBS13

and CBS14 composing the CCBS1.
Each CBS is defined as follows:

CBS11 = (CBS11, 30, 5, 0.3, 0.2, 0.25)
CBS12 = (CBS12, 35, 5, 0.4, 0.35, 0.45)
CBS13 = (CBS13, 40, 3, 0.5, 0.55, 0.7)
CBS14 = (CBS14, 21, 6, 0.2, 0.15, 0.2)

84 R. Guerfel et al.

Let’s suppose that this CCBS is required by multiple users in the same time. So,
an elasticity strategy must be applied.

Let’s suppose that at time t1, 20 users want to access to CCBS. Note that
the deadline of 2 users are not respected.

Then, at time t2, 20 other users want to access to CCBS. All deadlines are
respected but only 15 users are a cost gain for the provider perspective.

Finally, at time t3, 25 users leave.
To make the necessary decision, an elasticity strategy has to be applied.

In fact, our work is based on two essential elasticity strategies detailed in the
following.

Elasticity strategy 1 [5]:
First of all, the provider checks in every unit of time (e.g. second) the maximum
and the minimum threshold of each CBS. If the maximum one is reached, then,
he calculates the cost benefit when applying a replication action. If the cost
is a gain for the provider perspective, then, a replication action is processed.
Else, he waits for more users having a higher budget. Let’s note that if the
minimum threshold of one CBS is reached, then, a deletion action of this service
is automatically done. Indeed, the provider has nothing to lose when executing
this action. In this strategy, they supposed that all deadlines specified by users
are already checked.
Applying this strategy to the previous scenario gives the following result :
At time t1,accept only 18 users. Here, no service will be replicated.
At time t2, accept only 15 users. In this case, CBS11 and CBS14 reach their
maximum thresholds and have to be replicated to CBS21 and CBS24.
At time t3, eliminate 25 users. CBS21 and CBS24 reach their minimum thresh-
olds and have to be removed and replaced by CBS11 and CBS14.

Elasticity strategy 2 [7]:
In this strategy, the provider checks in every unit of time if the deadlines specified
by users are respected. If 90% of users have a response time lower than their
deadlines, so, accept the other 10% of users whatever the penalty to be paid and
do the replication action. Else, if less than 90% have a response time lower than
their deadlines, the provider does not accept them and waits for other users that
satisfy this condition.
Applying this strategy to the previous scenario gives the following result:
At time t1,accept 20 users. Here, no service will be replicated.
At time t2, accept all the 20 users. In this case, CBS11, CBS12 and CBS14

reach their maximum thresholds and have to be replicated to CBS21, CBS22

and CBS24.
At time t3, eliminate 25 users. CBS21, CBS22 and CBS24 reach their minimum
thresholds and have to be removed and replaced by CBS11, CBS12 and CBS14.

Model Checking of Cost-Effective Elasticity Strategies in Cloud Computing 85

3 Formal Modeling of Elasticity of CCBS

The specification of complex systems play an important role in their reliability
control. Indeed, they serve as reference for system implementation. The use of
formal methods [2] is then the best way to assist the design and validation of
these specifications.

More specifically, we use CPN which are an extension of Petri nets(PN).
Indeed, PN are used to model the dynamic behavior of discret systems. They
are composed of two types of objects which are: places, that represent the states
of the system and contain information represented by tokens, and transitions
which represent the events of the system. Places and transitions are related by
arcs. However, with PN, it is impossible to model similar behaviors using a single
condensed representation. This limitation of PN does not allow us to differentiate
between users. That’s why we use CPN.

Actually, CPN offer three types of extension which are: extension with time,
extension with data and extension with hierarchy. Since we can represent users
with tokens, the extension with data allows us to assign information specified by
users in their requirements. The extension with time allows to assign a commun
time to the group of users demanding the CCBS at the same moment. This helps
us organize and differentiate between different users.

Below is the formal definition of CCBS using CPN.

Definition 3: CCBSi is a CPN (P, T,C,E,M0) where:

• P is the set of places. They represent the states of the CBSs composition.
• T is the set of transitions. Each transition represents a CBS.

Note that: P ∪ T = φ and P ∩ T = φ
Each transition has a specific price (the cost of the service). So, we assign to
each transition a variable pri indicating its price if it is not replicated, else,
the price of its replication.
For example, the price of the transition Ti1 is defined as follows: val pri1 = 0.4;

• C is the set of colours. It defines for every place its colour domain. In our
proposal, every place has as type “Info” defined as follows:

• colset Info = product U*RE*RE timed; knowing that:
• colset U = index us with 0..n; : every token belonging to CCBSi has the

value us(i). us(i) represents the set of users that can be handled by one
CCBSi.

• colset RE = REAL; : an integer type. The first RE represents the number
of users that can be handled by one CCBS, and the second one represents
the sum of their budgets.

Let’s note that Info is timed to indicate the evolution of the process through
time. For example, the token (u(1), 25, 26)@1 indicates that at time 1, we
have 25 users whose budget is 26.

• E is an arc expression function. The colour of each arc must be the same
colour of the place to which the arc is entering or outgoing.

86 R. Guerfel et al.

It is defined as follows: (us,nb,bd) knowing that these variables are declared
as follows:
var us: U; var nb,bd: RE; us, nb and bd represent respectively users ID, their
number and their budgets.

• M0 is the initial marking of the net. It describes, in a net, how coloured tokens
are situated in different places at a specific time of the execution.

Notation: Let N be a CPN representing CCBSi, p ∈ P, t ∈ T and k is the
defined arc colour. We note:

• •t = {p ∈ P | W− > 0}: Input places of t.
• t• = {p ∈ P | W+ > 0}: Output places of t.
• Pre : P × T → {k, 0}. If an arc links Pm to Tn, then, Pre(Pm, Tn) =

(us, nb, bd), else, Pre(Pm, Tn) = 0.
• Post : P × T → {k, 0}. If an arc links Tn to Pm, then, Post(Pm, Tn) =

(us, nb, bd-prin ∗ nb), else, Post(Pm, Tn) = 0.

After having defined the modeling of each CCBS, we move now to explain the
modeling of elasticity strategies, using the Algorithm 1.

In fact, when a transition Tik of one CCBSi is not replicated and used from
another CCBSj , i.e. Tjk ← Tik, then, two cases exist:

• Tik is the first transition of the CCBSi, i.e., Tik ← Ti1. In this case, we
create a transition named T linkj having as input place Pi0 of CCBSi and
output place Pj0 of CCBSj . Then, use the non-replicated transition Tj1 from
CCBSj and link it to the input places of the next transition of CCBSi. This
is given by the steps 6–17 in the Algorithm 1.

• Tik is any transition of the CCBSi, except the first one. In this case, we link
the previous transition of Tik to the input places of Tjk. Then, Tik is linked
to the input places of the next transition of Tik, which is Ti(k+1). Steps 24 to
36 of the Algorithm 1 model this replication.

Let’s note that the replication of only one transition requires the creation of a
new CCBS.

The deletion action of just one transition implies the deletion of its input
places. Its output places will be linked to the same non-replicated transition.
However, if all the CCBS will be deleted because of the decrease in number
of user demands, then, all its transitions and places will be deleted and the
rest of users will be assigned to the previous existing CCBSs. By applying this
algorithm, the modeling of the strategies 1 and 2 using CPN Tool is represented
by the Fig. 1.

Model Checking of Cost-Effective Elasticity Strategies in Cloud Computing 87

4 Verification of Elasticity Strategies

4.1 Formal Analysis of the Proposed System Modeling

The use of formal methods for software and hardware design is motivated by the
welling to achieve the appropriate mathematical analysis, which can contribute
to the reliability and robustness of a design. This guarantees safe operation of
these critical designs. Indeed, the first question that may arise after designing our
model is if this model checks the specification and if it is correct and coherent. It
therefore seems essential to check our graph. To do so, we use formal verification.

Indeed, our composition model is a combination of many CCBSs. Each one
of them is a CPN having a specific initial marking. A case in one CCBS starts
with a token located in the initial place. After a series of steps, this token evolves
towards a final marking that should be located in the final place. So, an impor-
tant property to be checked in this model is the reachability property. In fact,
we must ensure that from such an initial marking, it must be possible to reach
the final place. This is what we call the reachability property of the marking
of output places from the marking of input places [11].

Fig. 1. Modeling of elasticity strategy using CPN tool

Moreover, we should check the absence of dead transitions in every CCBS.
That is to say, all transitions can be enabled. This is called the absence of
deadlock property [12].

In order to express specific properties and verify them, first of all, a gener-
ation of state graph must be processed. CPN tool automatically generates and
calculates this state graph using a strongly connected components (SCC) graph.
Then, we can express properties and query them so that CPN tool checks them.
In our case, two properties are checked which are:

88 R. Guerfel et al.

Algorithm 1. Modelling of CCBSs replication using CPN
1: for CCBSi in CCBSLi do
2: Pi0 ← P10;
3: Pim ← P1m;
4:

∑p
k=1 Tik =• Pi0

5: for j=1 to p do
6: if (Tik ∈ S2) then
7: Pre(Pi0, Tik) = (us, nb, bd);
8: else if (Tik is used from CCBSl) then
9: Pre(Pi0, T linkl) = (us, nb, bd);

10: Post(Pk0, T linkl) = (us, nb, bd);
11: Tik ← Tlk;
12: T •

lk ← (T •
lk +• Ti(k+1));

13: Post(•Ti(k+1), Tlk) = (if us = u(i) then 1‘(us, nb, bd-prlk ∗ nb)
14: else empty);
15: Post(•Tl(k+1), Tlk) = (if us = u(l) then 1‘(us, nb, bd-prlk ∗ nb)
16: else empty);
17: end if
18: end for
19: for k=(p+1) to n do
20: if (Tik ∈ S2) then
21: Tik ← Replication of (Tlk);
22: •Tik ← Replication of (•Tlk);
23: Pre(•Tik, Tik) = (us, nb, bd);
24: else if (Tik is used from CCBSl) then
25: T •

i(k−1) ←• Tlk;
26: Post(•Tlk, Ti(k−1)) = (us, nb, bd-pri(k−1) ∗ nb);
27: Tik ← Tlk;
28: if (T •

lk! = Plm) then
29: repeat step 12-16;
30: else
31: T •

lk ← (T •
lk + Pim);

32: Post(Pim, Tlk) = (if us = u(i) then 1‘(us, nb, bd-prlk ∗ nb)
33: else empty);
34: Post(Plm, Tlk) = (if us = u(l) then 1‘(us, nb, bd-prlk ∗ nb)
35: else empty);
36: end if
37: end if
38: end for
39: end for

• Reachability: This property consists in checking if all output places are reach-
able. Indeed, the reachability of output places confirms that the process of each
CCHS is successfully done. CPN tool offers us a simulation palette to check the
execution of different tokens situated in the initial places. Our model was sim-
ulated more than 100 times to check if output places are reached. All of these
simulations have showed the success reachability of the four output places.

Model Checking of Cost-Effective Elasticity Strategies in Cloud Computing 89

However, this not enough to confirm that output places are always reachable
from the initial marking. So, a query for each output place was executed to
confirm this property. The expression of this query is as follows: SccReach-
able’(p1,p2) ; knowing that:

p1: is the initial state of the model, i.e., when input places are marked.
p2: is the final state of a specific CCBS, where the output place of CCBS

is marked and all other places do not contain the token of the current CCBS.
This query returns either false is the final node is not reachable or true with
the specific path if the final node is reachable.
The state of different places is detected from the SCC graph. Let’s note that
the initial state is 1 and the final states of CCBS1, CCBS2 are respectively:
73 and 87 So, two different queries must be checked which are: SccReach-
able’(1,73) and SccReachable’(1,87). Both of these two queries were success-
fully checked and the result is shown in Fig. 2.

• Absence of deadlock: A deadlock corresponds to a CPN marking in which no
more transition is allowed. So, there must be no dead transitions. This can
be checked in CPN tool using the following query: ListDeadTIs(). When
executing this query, we can have two possible results: even a list of dead
transitions or an empty list. In our model, this query returned an empty list,
as shown in Fig. 2, a result that confirms the non-existence of deadlock.

Fig. 2. Formal verification of CCBSs using CPN tool

Thus, we can confirm that the proposed modelling is valid. It does not contain
any deadlock and reaches always the final states.

5 Related Work

Cloud Elasticity is a highly studied topic. Several mechanisms have been pro-
posed to ensure it. However, we focus on works which were proposed to minimize
the cost when applying elasticity.

90 R. Guerfel et al.

Liu et al. [9] proposed an algorithm allowing them to minimize the cost
of used SaaS by decreasing the unused Virtual machines from the IaaS. This
algorithm aims at not violating the performance provided to the final user.

Wu et al. [15] proposed a system that maximizes the accepted number of users
requesting a certain SaaS. This is done by an efficient placement of requests on
Virtual machines offered by different IaaS providers. In fact, they proposed an
algorithm that maximises the use of already initiated VMs so that many users
can access them after being classified according to the waiting time. This solution
is a cost benefic for the provider perspective.

Han et al. [5] have also focused on cost reduction when applying an elastic
scaling approach of multi-tier applications in Cloud computing. Indeed, they
proposed an approach that detects the bottlenecks in a class of these applications
so that they can accordingly scale up and down resources at these points.

The above cited works are dealing with the vertical elasticity whereas we are
handling horizontal one. Besides, the proposed models were not checked, which
is a very important task to ensure their validity.

However, Narkos et al. [10] proposed a model, based on Markov Decision
Chain, allowing the automatic elasticity by increasing and decreasing the num-
ber of Virtual machines. Indeed, the action that should be processed to ensure the
elasticity operation is checked and expressed using PCTL. Besides, the reach-
ability property is checked in this model using PRISM tool. This work treats
also the vertical elasticity, which is not the case for our work. Moreover, we are
handling the composite Cloud services and not the atomic Cloud services.

It is in this sens that the work of Amziani et al. [1] is oriented. Indeed, they
proposed a controller to check the behavior of service-based business process in
the Cloud when applying elasticity operations. The controller is modeled by high
level Petri nets. Time and maximum and minimum thresholds of one service are
the main indicators of elasticity actions. Their work was a start point for us but
our work differs from them in three main points which are:

• Additionally to the threshold, our approach focuses on cost when applying
elasticity actions.

• Our approach checks the validity of the obtained model before comparing
between strategies.

• The modeling that we propose allows even the modeling of just one Cloud
service in case it is required atomically.

6 Conclusion

Cloud computing has proven to be more secure, more reliable, more scalable
and more affordable than traditional IT. These are some of the Cloud charac-
teristics that made it widely used in many fields. As a result, many sectors of
this field used the Cloud architecture to offer their services that must be com-
posed to perfectly meet the demand of their users, whose number is more and
more increasing. So, a replication of the composite service, called CCBS, must
be processed to answer to user queries at the same time. Some strategies were

Model Checking of Cost-Effective Elasticity Strategies in Cloud Computing 91

proposed in this context. Our contribution in this paper was to check the valid-
ity of these strategies using formal models and to compare between them. To do
so, our composition was modeled using CPN and was validated by checking the
reachability and the absence of deadlock properties.

However, CPN tool does not allow us to check specific properties. So, as a
future work, we propose to check soundness and temporel properties using a
suitable tool. Besides, we intend to test this mechanism with real CBSs and to
implement a tool allowing the automatic execution of elasticity actions.

References

1. Amziani, M., Melliti, T., Tata, S.: Formal modeling and evaluation of service-based
business process elasticity in the cloud. In: 22nd IEEE International Conference
on Collaboration Technologies and Infrastructure (WETICE 2013), pp. 284–291.
Hammamet, Tunisia, June 2013

2. André, P.: Methodes formelles et a objets pour le developpement du logiciel: etudes
et propositions (1995)

3. Guerfel, R., Sbäı, Z., Ayed, R.B.: On service composition in cloud computing: a sur-
vey and an ongoing architecture. In: IEEE 6th International Conference on Cloud
Computing Technology and Science, CloudCom 2014, Singapore, 15–18 December
2014, pp. 875–880 (2014)

4. Guerfel, R., Sbäı, Z., Ayed, R.B.: Towards a system for cloud service discovery
and composition based on ontology. In: Núñez, M., Nguyen, N.T., Camacho, D.,
Trawiński, B. (eds.) ICCCI 2015. LNCS (LNAI), Part II, vol. 9330, pp. 34–43.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24306-1 4

5. Han, R., Ghanem, M.M., Guo, L., Guo, Y., Osmond, M.: Enabling cost-aware and
adaptive elasticity of multi-tier cloud applications. Future Gener. Comput. Syst.
32, 82–98 (2014)

6. Herbst, N.R., Kounev, S., Reussner, R.H.: Elasticity in cloud computing: what it
is, and what it is not. In: Proceedings of the 10th International Conference on
Autonomic Computing (ICAC 13), pp. 23–27. USENIX, San Jose (2013)

7. Islam, S., Lee, K., Fekete, A., Liu, A.: How a consumer can measure elasticity for
cloud platforms. In: Proceedings of the 3rd ACM/SPEC International Conference
on Performance Engineering, ICPE 2012, pp. 85–96. ACM, New York (2012)

8. Jensen, K.: Coloured petri nets: a high level language for system design and analy-
sis. In: Rozenberg, G. (ed.) ICATPN 1989. LNCS, vol. 483, pp. 342–416. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-53863-1 31

9. Liu, Z., Wang, S., Sun, Q., Zou, H., Yang, F.: Cost-aware cloud service request
scheduling for saas providers. Comput. J. 57(2), 291–301 (2014)

10. Naskos, A., Stachtiari, E., Gounaris, A., Katsaros, P., Tsoumakos, D.,
Konstantinou, I., Sioutas, S.: Cloud elasticity using probabilistic model check-
ing. CoRR, abs/1405.4699 (2014)

11. Sbäı, Z., Barkaoui, K., Boucheneb, H.: Compatibility analysis of time open work-
flow nets. In: International Workshop on Petri Nets and Software Engineering
(PNSE 2014), CEUR Workshop Proceedings, vol. 1160, pp. 249–268, June 2014.
http://ceur-ws.org/Vol-1160/

12. Sbäı, Z., Guerfel, R.: CTL model checking of web services composition based on
open workflow nets modeling. IJSSMET 7(1), 27–42 (2016)

https://doi.org/10.1007/978-3-319-24306-1_4
https://doi.org/10.1007/3-540-53863-1_31
http://ceur-ws.org/Vol-1160/

92 R. Guerfel et al.

13. Inc Sun Microsystems.: Introduction to cloud computing architecture. Technical
report, June 2009

14. CPN tool. http://cpntools.org/
15. Wu, L., Garg, S.K., Buyya, R.: SLA-based admission control for a software-as-a-

service provider in cloud computing environments. J. Comput. Syst. Sci. 78(5),
1280–1299 (2012)

http://cpntools.org/

QoS-Driven Self-adaptation for Critical
IoT-Based Systems

Arthur Gatouillat1(&), Youakim Badr1, and Bertrand Massot2

1 Univ Lyon, INSA Lyon, LIRIS, UMR5205, Lyon, France
{arthur.gatouillat,youakim.badr}@insa-lyon.fr

2 Univ Lyon, INSA Lyon, INL, UMR5270, Lyon, France
bertrand.massot@insa-lyon.fr

Abstract. The Internet-of-Things, which designates the interconnection of
numerous physical devices, is a growing research direction faced with many
challenges. One of these challenges is to provide constant quality-of-service
despite IoT devices being used in a constantly changing physical environment.
In order to answer this problem, we introduce a quality-of-service driven
self-adaptation framework, which can simultaneously handle changing adapta-
tion strategies, monitoring infrastructure and physical environment while
guaranteeing constant quality-of-service. Because of its formal guarantees, our
system is particularly suited for the control of critical IoT-based systems, and we
thus demonstrated its practicality by applying it to an e-health case-study where
the safety of the monitored patients must be assured.

Keywords: Self-adaptive systems � Adaptive IoT � Controller synthesis

1 Introduction

The Internet-of-Things (IoT) enables the interconnection of virtually every object of the
physical world, such as a variety of sensors, actuators, robots or wearable devices. This
interconnection of various physical-world devices into IoT systems, coupled with the
strong hardware constraints of IoT devices, mandates the study of adaptation strategies
to deal with devices failure, especially when dealing with critical systems (e.g.
healthcare systems). To deal with such requirements, self-adaptation software and
autonomic frameworks were proposed [1–4]. In particular, self-adaptive software
systems (SAS), which deal with distributed applications in changing environments,
normally require human supervision to sustain despite changes during their executions.
These systems rely on a closed feedback loop to adjust themselves to changes. Based
on observed context variables and thresholds, they monitor themselves, their context
and entities from the target system environment to decide when and how to apply
adaptation strategies in order to ensure expected behavior (i.e., functional requirements)
and guarantee quality of services (i.e., non-functional requirements) [5].

In the context of the Internet-of-Things, self-adaptation is a salient property of
smart objects. It allows them to be self-configured and adapted to extreme conditions
while ensuring the target system objectives such as comfort, automation, security and
safety goals. Self-adaptation mechanisms driven by adaptation goals modify smart

© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 93–105, 2018.
https://doi.org/10.1007/978-3-319-91764-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_8&domain=pdf

objects behavior dynamically. However, the IoT is a dynamic and global network
infrastructure, in which “things” are expected to be autonomous and self-configurable.
This feature that the IoT should strive to achieve is not a trivial task since adaptation
goals may also evolve continuously during run-time due to changes in functional or
non-functional requirements and contextual information. These changes affect observed
variables, their thresholds and even alter the monitoring logic when context variables
are added or deleted. As a result, when adaptation goals change at run-time, both
monitoring and self-adaptation mechanisms may become inapplicable because either
the adaptation mechanism deals with outdated goals, or the monitoring mechanism
addresses monitoring requirements that are irrelevant to the actual adaptation goals.

In this paper, we present a discrete controller synthesis system that ensures
self-adaptation behavior based on quality-of-service properties (QoS) of smart objects
during their run-time. Our system is resource-aware and ensures simultaneously the
separation of concerns of adaption objectives, context monitoring and adaptation
strategies. By such, our system makes possible to guarantee the service level agreement
(SLA) which defines the level of smart object services as expected by end-users
expressed them as constrains on non-functional properties. Without loss of generality,
our system focuses on the safety quality as a crucial non-functional property in the
context of healthcare monitoring to detect heart malfunctions with wearable sensors
(heart rate sensor and electrodermal activity sensor) and ambient sensors (occupancy
detection sensor, noise sensor, etc.). In this context, we model the safety quality as a
qualitative property in the SLA of wearable and ambient sensors. The safety quality is
initialed defined as the resource-awareness factor of wearable sensors in response to
their battery consumption levels. During the execution, the safety quality may be
renegotiated by adding resilience as an additional new factor. This new contracted
factor states that the defected objects are subsumed by alternative smart objects (same
types) or inferring their observed values through data collected from other smart objects
(different types). Yet another adaptation of the safety property may include the
health-awareness factor, which enables the detection of critical health crisis from
contextual information, medical sensor values, and patient history patterns. Our dis-
crete controller synthesis system implements a dynamic monitoring approach that
deploys, at run-time, new context gatherers and new monitoring requirements for new
quality properties. These elements are automatically generated from the non-functional
quality-of-service properties in the SLA and deployed at run-time without interrupting
the target system execution or the adaptation mechanism.

The remaining of the paper is organized as follows. In Sect. 2, we present related
works. Before introducing our discrete controller synthesis system, we briefly introduce
a motivation case-study dealing with safety quality in wearable sensors in Sect. 3. In
Sect. 4, we present our QoS-driven self-adaptation approach which is based on the
DYNAMICO reference model [3] and includes SLA and stated-based failure ontolo-
gies. These ontologies along with knowledge-based rules are used to generate
non-functional device labeled transition graphs and to generate our discrete controller
synthesis system as described in Sect. 5. In Sect. 6, we present our implementations
and conclude our work in Sect. 7.

94 A. Gatouillat et al.

2 Related Works

The work detailed in this paper is located at the intersection of three distinct but related
communities: home automation, classical control theory and software auto-adaptation.

The home automation community deals with the integration of smart devices such
as sensors, actuators and gateways into houses in order to better monitor and control
living environments. Home automation is a broad concept, including smart home and
ambient intelligence (AmI), which generally refers to architectures, practices, and
controllers for proper management of the home life-cycle to address home safety,
energy efficiency, entertainment, ambiance, assisted living, fall detection, elderly care
or patient monitoring [6]. Controllers are key components of home automation.
Rule-based controllers have been widely explored in an AmI context and more par-
ticularly in the context of remote health-monitoring: fuzzy rules were mixed with case
reasoning in [7] to provide both home-automation and health monitoring to elderly
patients. Ontology-derived rules are also used in coordination with rule engines to
provide functional intelligent building behavior [6]. Rule-based framework in the
context of remote monitoring where explored by [8] to provided assistance in
decision-making for healthcare providers. Many contributions in the field of rule-based
home automation have focused on the management of functional properties, but they
lack consideration of system non-functional properties and adaption to situation where
some sensors are failing but the system must still perform. The main concern of these
contributions is the functional coordination of distributed sensors and actuators,
instrumenting a house in order to achieve predefined goals. A rule language approach
allows, thanks to its relative expressiveness, the specification of control objectives that
can then be executed using rules engines.

The software adaptation community deals with the integration of strategies
enabling better handling of changing digital and physical environment to modular
software systems. These contributions can be divided into three categories: contribu-
tions which consider the adaptation of classical control frameworks to software sys-
tems, contributions which consider the use of monitor analyzer planner executor and
knowledge feedback (MAPE-K) loops [9] as the basic building block to enable soft-
ware adaptation, and finally contributions combine classical control and MAPE-K
loops to implement adaptive software solutions.

When only classical control solutions are applied to adaptation problems, the main
research challenge resides in the accurate state space modelization of software pro-
cesses. MPC-based [10] and PID-based [11] adaptation framework were able to pro-
vide results in terms of software adaptation. However, we believe that the cumbersome
modeling process that must occur for each software system is not suitable for IoT
applications. Indeed, self-adaptation for the IoT must be able to handle potentially very
heterogeneous devices, that are not easily modeled using state space representations.
Indeed, the feedback loop modelization of classical control systems does not provide
good modularity, as elements of the feedback loop are not standard, and can vary
between systems. Standardization of the feedback loop elements is provided by the
MAPE-K self-adaptation framework.

QoS-Driven Self-adaptation for Critical IoT-Based Systems 95

MAPE-K is considered as a gold-standard for self-adaptive systems [3, 4, 12]. The
idea behind the MAPE-K control scheme is to define autonomic elements defining an
adaptation loop from monitors (i.e. sensors) to executors (i.e. actuators) that perform
system reconfiguration using knowledge shared between all the feedback loop ele-
ments. Because this feedback loop is only a reference model, multiple implementations
have been studied such as agent-based implementations [12] or using formal frame-
works such as FORMS [4]. However, such control feedback loops are purely software
based, and are not appropriate for the control of hybrid software-hardware systems such
as IoT systems. Contributions considered the mixed use of classical control loops and
MAPE-K control loops to enable software systems with self-adaptation properties. This
is the case of DYNAMICO [3], an architectural reference model equipped to deal with
changing system requirements and monitoring infrastructure thanks to separation of
concerns. In this architecture, three independent MAPE-K loops are interconnected
using classical control feedback loops in order to deal with changing system objectives,
changing monitoring framework and system adaptation. This reference model is
however oriented at purely software self-adaptive systems, and mandates some mod-
ifications to be used in the context of hybrid IoT systems. Another field of interest
when it comes to control theory is discrete controller synthesis (DCS). In this field,
discrete models of target to-be-controlled systems are used to build
correct-by-construction discrete controllers [13]. Such control strategy has been suc-
cessfully used in the IoT context for functional adaptation of simple home-automation
systems [1]. The control objectives in this contribution are given as first order-logic
rules, and some non-functional concerns are integrated under the form of controlled
energy consumption. The strategy behind such control framework is to divide the
systems into a set of controllable and non-controllable states, and to use the control-
lable states to guarantee system objectives fulfilment given non-controllable states.
Originally, such discrete control systems were built using synchronous programming
languages such as SIGNAL [13] or BZR [1, 14, 15]. Event-condition-action rules
based discrete controller synthesis was explored, more particularly using an
event-condition-action (ECA) rules based high level description language to BZR
translation to perform controller synthesis [16, 17]. Asynchronous controller synthesis
methods in the context of cloud-based autonomic manager was studied using the LNT
framework [18]. The main advantage about these contributions is that the controller
verification part can be avoided because controller synthesis is assumed to produce a
correct controller. Table 1 summarizes all the contributions described in this section.

Table 1. Related contribution synthesis.

Community Concerns Tools Papers

Self-adaptive
software

Enabling software to feature adaptive
behavior to changing environment

MAPE-K,
DYNAMICO,
FORMS

[3, 4, 9, 12]

Discrete controller
synthesis

Build correct controllers using
discrete models of controlled systems

BZR/Heptagon,
LNT, Signal

[1, 14–18]

96 A. Gatouillat et al.

Our contribution is at the center of all the before-mentioned contributions since it
adapts the DYNAMICO reference model to the context of IoT and uses MAPE-K and
classical feedback control loops to enable the capability of dealing with changing
system objectives and monitoring infrastructures. By using a state-chart model of
non-functional properties and high-level ECA-rules, we generate IoT system con-
trollers with well-established DCS tools such as the Heptagon/BZR toolbox.

3 Motivation Case-Study

We consider the surveillance of a patient at risk of myocardial infarction recurrence as a
motivation case study. In this context, the patient requires continuous monitoring of
physiological parameters to detect potential recurrences and to urge a rapid medical
response if a heart failure is detected. Continuous monitoring is achieved using
wearable wireless sensors, which are battery powered, resulting in different resources
constraints. In addition, the living environment of the patient is instrumented with
sensors and actuators that are either continuously powered or battery powered. As the
case of most IoT-based applications, connected objects are strongly constrained in
terms of resources: all sensing and actuation devices feature limited computing abilities
(CPU frequency up to a few hundreds of megahertz), storage (up to a few megabytes)
and volatile memory (up to a few hundreds of kilobytes). Constrained resources also
imply limitations in terms of communication protocol, which must be lightweight in
order to avoid the introduction of processing overhead and limit energy consumption.

In this case-study, we particularly focus on the robust detection of heart mal-
functions, and the triggering of emergency medical response if such a situation occurs.
There are two main robustness requirements: the avoidance of false positive detection
of heart malfunction (i.e., the system detects a cardiac malfunction while there is none),
but more importantly the detection of cardiac failure even if the system does not
operate at full capacity.

Considering self-adaptive properties of such a system, this case-study is of par-
ticular interest: the adaptation goal is to ensure the safety property while satisfying
quality of service of a continuous and reliable monitoring. To satisfy the safety goal,
the adaptation strategy is based on the resource-awareness factor, resilience factor (i.e.,
substitution of defected objects with alternatives) and healthcare awareness factor such
the request for medical assistance (i.e., myocardial infarction detection) or technical
intervention (i.e., abnormal values). Consequently, a safety-enabled smart home is
implemented to support self-adaptation objectives based on resources consumption,
resilience and external assistance. The adaptation strategies (i.e., the mechanisms that
affect the target system) consist of modifying smart sensor parameters based on
resource monitoring, substituting defected objects with alternatives or inferring their
values from nearby smart-objects as well as call for medical assistance when detecting
abnormal values. The context variables mandating observation are battery levels,
absence or abnormal values, exceeding medical thresholds that define myocardial
infarction.

In the following sections, we limit ourselves to examples using only three sensors:
the battery-operated heart rate (HR) and heart rate variability (HRV) sensor,

QoS-Driven Self-adaptation for Critical IoT-Based Systems 97

the battery-operated electrodermal activity (EDA) sensor, and the continuously pow-
ered occupancy sensor. The cardiac risk is thus evaluated by a cardiac health estimation
service including inputs:

– Continuous streams of HR and HRV values (optimal mode)
– Continuous streams of EDA values with instantaneous or average HR values

(failsoft mode)
– Continuous streams of presence values (critical mode)

Depending on these inputs, the monitoring controller uses its internal cardiac health
estimator model to infer cardiac health status and request medical help for cardiac
malfunctions. Different cardiac health estimation models are out of scope since we only
focus on how the controller is self-adapted to provide estimators with correct inputs at
all time, and how it triggers external tiers notification, if deemed necessary.

4 QoS-Driven Self Adaptation

4.1 Managing Changing SLA and Monitoring Environment

Purely functional and static adaptation was successfully studied in IoT [1, 17]. How-
ever, insuring that IoT-based systems behaves as specified under changing control
objectives of non-functional properties and limited resource-awareness is a relatively
unexplored research field. The DYNAMICO reference model [3] provides a prominent
solution to design and implement self-adaptive software systems where both adaptation
and monitoring infrastructures are enabled with self-adaptive capabilities using three
types of feedback-loops:

– The objectives feedback loop, which governs changes in adaptation goals, also
called control objectives (e.g. SLAs);

– The target system adaptation feedback loop, which regulates the target system
requirements satisfaction and the preservation of the adaptation properties;

– The dynamic monitoring feedback loop, which infers context variables from the
contracted quality of service (QoS) conditions and adapts the architectural recon-
figuration of the monitoring infrastructure to implement the monitoring logic
associated with context variables.

DYNAMICO characterizes the separation of concerns and interactions among
different types of feedback loops. Despite its prominent advantages, DYNAMICO
implementations (i.e., SMARTERCONTEXT monitoring infrastructure with the
QoS-CARE/FRASCATI middleware) are not relevant to distributed smart-objects with
limited resources.

Based on the based on the DYNAMICO reference model, we propose an
IoT-targeted self-adaptive system, including a distributed adaptation infrastructure and
the controlled IoT system, consisting of gateways, each of which interacts with one or
more devices or sensors (see Fig. 1). Gateways invoke device services to get their data
streams, adjust their functional parameters, monitor their non-functional properties
and perform adaptation operations when deemed necessary, as defined in their SLAs.

98 A. Gatouillat et al.

More precisely, the IoT-based self-adaptive system relies on a SLA for each sensor,
and a global SLA for the system as a whole to respectively set adaptation objectives
and deploy monitors to gateways to observe each sensor’s QoS. Monitors informs the
discrete controller with events to decide whether that a self-adaption strategy should be
applied to meeting end-users’ SLAs. The adaptation infrastructure in Fig. 1 illustrates
the causal relationships between adaptation objectives, monitors and discrete controller,
and interactions between different feedback loops.

Interactions (i) between the objectives feedback-loop and the adaptation
feedback-loop (the monitoring feedback-loop resp.): These interactions feed the ref-
erence control input computed by the objectives controller to the adaptation loop and
the monitoring loop. For instance, in our use-case, the first resource-aware adaptation to
be considered is related to the sensors’ battery levels by which the reference input will
thus be under the form BatteryLevel >20%. This reference will be used by the adap-
tation feedback loop as an element to be analyzed to decide potential adaptation, and by
the monitoring feedback loop as a reference input for context monitoring.

Interactions (ii) between the Monitoring Feedback Loop and the Objectives
Feedback Loop: These interactions characterize the detection of the need of a change in
the control objectives by the monitoring feedback loop to be fed to the control
objectives feedback loop. In our use case, if the battery is drained, and if the cardiac
status monitoring must be inferred using other environmental sensors. This mandates a
change of control objectives that must be decided by the objectives feedback-loop.

Interactions (iii) between the Monitoring Feedback Loop and the Adaptation
Feedback Loop: These interactions feeds adaptation-triggering events from the moni-
toring loop to the adaptation loop. For instance, the consistent and more rapid than
normal decrease of the battery level can be used as an event to trigger faster adaptation

Fig. 1. An IoT-based self-adaptive system based on the DYNAMICO reference model

QoS-Driven Self-adaptation for Critical IoT-Based Systems 99

of the system and a quicker adoption of a battery-saving fail-soft mode in order to
extend the duration of quasi-optimal system behavior.

Interactions (iv) between the Adaptation Feedback Loop and the Monitoring
Feedback Loop: These interactions feed the internal context from the adaptation loop to
the monitoring loop. This interaction can be used to insure system consistency after
adaptation. For instance, in our use case and if the HR sensor has to be subsided by
position sensor for health monitoring, this interaction is used to ensure that the position
sensors are all in a functional state after the adaptation, thus insuring global system
safety.

Figure 2 describes the self-adaptation meta rules of the target IoT system behavior
in response to changes in the SLAs (i.e. control objectives’ changes) through inter-
action (i) and to changes in the monitoring infrastructure (e.g. sensor removed from
network) through interaction (ii).

4.2 Non-functional Device Labeled Transition Systems

As illustrated in Fig. 3(a), we propose an ontology to describe the global SLA for the
IoT target system. Each non-functional property (i.e., safety) is thus defined in terms of
QoS factors (resource-awareness, resilience, healthcare awareness) each of which has
constraints expressed as service level objectives (SLO) and has a corresponding
monitor deployed on the gateway of the sensors related to each QoS factor. We also
propose a failure-adaptation ontology to describe the system global safety in terms of
resources (i.e., low battery), resilience (unattached sensor, interrupted communication),
abnormal data due to critical heart failures or hardware failures (digital/analog failures).

A building block of our IoT-based self-adaptive system is the description of
non-functional behaviors of each sensor using labeled state transition systems
(LTS) based on the failure-adaption strategies’ ontology. In fact, each state corresponds
to a failure and transitions refer to adaptation strategies to ensure safety non-functional
property of the target IoT system. This description allows the expression a qualitative
quality-of-service in terms its quantitative factors which are observed with monitors at
run-time and makes a correlate with appropriate adaptation strategies in case of failures.
It also provides a discrete behavior using states and transitions, making possible to use
toolbox (i.e., Heptagon/BZR) for synthesizing discrete controllers.

Fig. 2. Self-adaptation meta rules

100 A. Gatouillat et al.

Generally speaking, a LTS is defined as a quadruple (S, L, !, sin), where S is a set
of states, L a set of transition labels, ! � S � L � S is a transition relation between
two states, and sin is an initial state. The set of transition labels is defined as
L = (events, actions, \), where \ � events � actions.

LTSs enable an accurate system description, where non-functional and
non-controllable variables are members of the set events, and services calls are included
in the set actions. This syntactic separation of non-functional and functional variables
enables better expressivity: the statement “e\a” can be interpreted as the control of
event e by service a when event e during the firing of the transition. When no control
service is provided for a given transition, it implies the non-controllability of the given
transition. Battery operated ‘smart’ sensors are purely uncontrollable (because the
system cannot automatically charge the battery, external human intervention is required
for this operation). Figure 4 describes the non-functional behavior of the heart-rate
sensor used in our case study. It features both purely event-based and event\action
transitions. It is worth noticing that while some non-functional states can be
self-detected by the sensor itself (such as the low-battery state or the unattached state),
some other can only be inferred by the controller on a more global view (e.g. the analog
malfunction state, which is accessed through the abnormalValue transition event).
Because of space limitation, we will not detail what is considered as an abnormal value,
nor will we detail the LTS of other sensors, which are assumed to be similar to the
heart-rate sensor. The choice of LTS as a model of computation (MoC) of IoT-based
devices was motivated by the genericity of this MoC, and because IoT-based devices
traditionally present a discrete state-based behavior (e.g. a sensor can be on, measuring,
off, etc.). Consequently, both personal and external-tier devices can be represented
using this MoC.

4.3 Rule Based Modelization of Control Objectives and SLA

Since our self-adaptive approach is based on the DYNAMICO reference model, we
express the control objectives in terms of rules. Rule-based definitions of objectives is
declarative and easily express desired control objectives by end-users. The discrete
controller (see Fig. 1) will be provided with rule-based control objectives to decide
whether non-functional properties are guaranteed. Please note that SLA non-functional
properties are considered to be control objectives and they are provided as inputs to the

Fig. 3. (a) Global QoS ontology (b) Failure-adaption strategies ontology

QoS-Driven Self-adaptation for Critical IoT-Based Systems 101

self-adaptive system. A rule refers to a condition-assertion statement and is defined as
follows:

Figure 5 briefly illustrates couple of rules for safety non-functional property. The
goal of these rules is to make sure that if either of the cardiac sensor is not operating
normally or the EDA sensor is shut down, the position sensor is turned on to allow a
better health status estimation.

5 Synthesizing the Discrete Controller

The labeled transition system description of each sensor in terms of functional and
nonfunctional properties leads to a set of distributed systems that run concurrently. In
this context, these descriptions are equivalent to BZR control contracts, that are com-
posed of three elements: an assumption (keyword assume), an enforcement (keyword
enforce) and a declaration of controllable variables (keyword with). Reader may
refer to [14] for a complete description the Heptagon/BZR language. In our work, we
propose to generate the discrete controller by firstly mapping label transition descrip-
tions of all sensors into a Heptagon/BZR programs and secondly synthesizing them into
a discrete controller. Indeed, input of sensor services can be seen as controllable vari-
ables where rules can easily be converted into first-order logic enforcements. Because
Heptagon is a synchronous programming language, the synchrony of our target
IoT-system must be clearly defined. In our context, the synchrony hypothesis states:

Fig. 4. Non-functional LTS of the Heart Rate sensor

Fig. 5. Control objectives for a resilient cardiac monitoring

102 A. Gatouillat et al.

given a system, a set of inputs and a set of outputs, the system must be able to compute
all of its outputs between two occurrences of inputs changes events [19].

Considering our use-case where computational abilities of gateways (used as
centralized controllers) are much greater than computational resources of sensors, the
IoT target system tends to behave as a synchronous system. Indeed, because of their
gateway processing speeds, controllers running on gateways will be able to process all
sensor events before receiving new events. Please note that while this kind of behavior
is true for smaller IoT systems such as our wearable and ambient system (made of tens
of devices), this assumption might not hold for much bigger IoT-based systems made
of thousands of devices, considering the mass of generated events is much higher.

6 Implementation and Simulation Results

As a preliminary simulation, the LTS of the cardiac parameters sensor introduced in
Fig. 4 was encoded into BZR along with the LTS of both the position and EDA sensors.
A rule set, including rules introduced in Fig. 5, were translated into BZR contracts, and
were then used to successfully synthesize a controller using SIGALI. The simulation was
performed using the simulator included with the Heptagon/BZR compiler, which
demonstrates a correct behavior of the controlled IoT-system with respect to the pro-
vided control objectives. Figure 6 is a chronogram presenting the behavior of our
controlled system in terms of normal states. For example, we can easily see that both rule
r1 and r2 are respected. In fact, when the cardiac sensor leaves the normal mode (i.e. it
goes into any of other failure or shutdown states), the position sensor is turned on.
Similarly, when the EDA sensor leaves the normal state (i.e. it is turned off, since this
sensor is modeled as a binary-state sensor), the position sensor stays on.

7 Conclusion and Perspectives

In this paper, we introduce a QoS-driven approach to self-adaptive IoT systems based
on the DYNAMICO adaptation reference model and non-functional properties. Our
IoT-based system relies on a set of rules and labeled state transitions to generate a
discrete controller synthesis. Current ongoing work focuses on better sensor modeling
by decoupling functional and non-functional behavior into distinct but interacting LTS
to have better separation of concerns (non-functional LTS typically appearing in the
monitoring feedback loop, while the functional LTS represents system functional
adaptation). Integration of a domain specific rule-based language is also under

Fig. 6. Excerpt of the simulation chronograms

QoS-Driven Self-adaptation for Critical IoT-Based Systems 103

investigation. This will enable us to express control objectives and thus improve
separation of concerns between objectives feedback loop and the adaptation feedback
loop.

Acknowledgement. This work is generously supported by Auvergne-Rhône-Alpes Region
research grant.

References

1. Zhao, M., Privat, G., Rutten, É., Alla, H.: Discrete control for the internet of things and smart
environments. In: 8th International Workshop on Feedback Computing, San Jose, CA, USA,
25 June 2013

2. Zhao, M., Privat, G., Rutten, E., Alla, H.: Discrete control for smart environments through a
generic finite-state-models-based infrastructure. In: Aarts, E., et al. (eds.) AmI 2014. LNCS,
vol. 8850, pp. 174–190. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-319-
14112-1_15

3. Villegas, N.M., Tamura, G., Müller, H.A., Duchien, L., Casallas, R.: DYNAMICO: a
reference model for governing control objectives and context relevance in self-adaptive
software systems. In: de Lemos, R., Giese, H., Müller, H.A. (eds.) Software Engineering for
Self-Adaptive Systems II. LNCS, vol. 7475, pp. 265–293. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-35813-5_11

4. Weyns, D., Malek, S., Andersson, J.: FORMS: a formal reference model for self-adaptation.
In: Proceedings of the 7th International Conference on Autonomic Computing, pp. 205–214
(2010)

5. Villegas, N.M., Müller, H.A., Tamura, G., Duchien, L., Casallas, R.: A framework for
evaluating quality-driven self-adaptive software systems. In: Proceedings of the 6th
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems, pp. 80–89 (2011)

6. Bonino, D., Corno, F.: Rule-based intelligence for domotic environments. Autom. Constr.
19, 183–196 (2010)

7. Yuan, B., Herbert, J.: Context-aware hybrid reasoning framework for pervasive healthcare.
Pers. Ubiquit. Comput. 18, 865–881 (2014)

8. Augusto, J.C., McCullagh, P., McClelland, V., Walkden, J.A.: Enhanced healthcare
provision through assisted decision-making in a smart home environment. In: 2nd Workshop
on Artificial Intelligence Techniques for Ambient Intelligence (2007)

9. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36, 41–50
(2003)

10. Angelopoulos, K., Papadopoulos, A.V., Silva Souza, V.E., Mylopoulos, J.: Model predictive
control for software systems with CobRA. In: Proceedings of the 11th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems, pp. 35–46
(2016)

11. Peng, X., Chen, B., Yu, Y., Zhao, W.: Self-tuning of software systems through dynamic
quality tradeoff and value-based feedback control loop. J. Syst. Softw. 85, 2707–2719 (2012)

12. Arcaini, P., Riccobene, E., Scandurra, P.: Modeling and analyzing MAPE-K feedback loops
for self-adaptation. In: Proceedings of the 10th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, pp. 13–23 (2015)

13. Marchand, H., Bournai, P., Borgne, M.L., Guernic, P.L.: Synthesis of discrete-event
controllers based on the signal environment. Discret. Event Dyn. Syst. 10, 325–346 (2000)

104 A. Gatouillat et al.

http://dx.doi.org/10.1007/978-3-319-14112-1_15
http://dx.doi.org/10.1007/978-3-319-14112-1_15
http://dx.doi.org/10.1007/978-3-642-35813-5_11

14. Delaval, G., Marchand, H., Rutten, E.: Contracts for modular discrete controller synthesis.
ACM Sigplan Not. 45, 57–66 (2010)

15. Delaval, G., Rutten, E., Marchand, H.: Integrating discrete controller synthesis into a
reactive programming language compiler. Discret. Event Dyn. Syst. 23, 385–418 (2013)

16. Cano, J., Delaval, G., Rutten, E.: Coordination of ECA rules by verification and control. In:
Kühn, E., Pugliese, R. (eds.) COORDINATION 2014. LNCS, vol. 8459, pp. 33–48.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43376-8_3

17. Cano, J., Rutten, E., Delaval, G., Benazzouz, Y., Gurgen, L.: ECA rules for IoT
environment: a case study in safe design. In: Proceedings of the 8th International Conference
on Self-Adaptive and Self-Organizing Systems Workshops, pp. 116–121 (2014)

18. Abid, R., Salaün, G., De Palma, N.: Asynchronous synthesis techniques for coordinating
autonomic managers in the cloud. Sci. Comput. Program. 146, 87–103 (2017)

19. Gamatié, A.: Synchronous programming: overview. In: Designing Embedded Systems with
the SIGNAL Programming Language, pp. 21–39. Springer, New York (2010). https://doi.
org/10.1007/978-1-4419-0941-1_2

QoS-Driven Self-adaptation for Critical IoT-Based Systems 105

http://dx.doi.org/10.1007/978-3-662-43376-8_3
http://dx.doi.org/10.1007/978-1-4419-0941-1_2
http://dx.doi.org/10.1007/978-1-4419-0941-1_2

IoT Systems Provisioning
and Management for Context-Aware

Smart Cities

Introduction to the 2nd Workshop on IoT
Systems Provisioning and Management

for Context-Aware Smart Cities ISYCC’17

The ISYCC’17 workshop was held in conjunction with the 15th International Con-
ference on Service Oriented Computing (ICSOC 2017) on November 13–16, 2017 in
Malaga, Spain. This workshop offered an exciting and highly interactive opportunity to
show research prototypes in the Internet of Things, (Mobile) Cloud Computing, Dis-
tributed and Cloud-Aware IoT systems, Context-Awareness and (Mobile) Crowd-
sensing. It was also interesting to see how researchers are applying these paradigms in
real environments and situations within a smart city, such as smart transportation,
pollution, smart tourism, well-being. We received 15 submissions, out of which 8 were
accepted. This workshop clearly showed interesting research efforts in the field and
offered the ability to fruitful discussions:

• BiAgent-based Model for IoT Applications : Case of a Collision Avoidance System
• Seamless interactions on the Internet of Things. A Spotify-based proof of concept
• A Feedback-based Adaptive Service-Oriented Paradigm for the Internet of Things
• QoS Prediction for Reliable Service Composition in IoT
• Checking and Enforcing Security through Opacity in Healthcare Applications
• Power-Based Device Recognition for Occupancy Detection
• Cognitive Determination of Policies for Data Management in IoT Systems
• A Research Perspective on Fog Computing

We would like to thank the authors for their submissions, the program committee
for their reviewing work, and the organizers of the ICSOC 2017 conference for their
support which made this workshop possible.

Organization

Workshop Program Chairs

Javier Berrocal University of Extremadura, Spain
Luca Foschini University of Bologna, Italy
Mohamed Mohamed IBM Research, USA
Sami Yangui Concordia University, Montreal, Canada

Workshop Committee

Mohamed Abu-Lebdeh Concordia University, Canada
Sabeur Aridhi University of Lorraine, France
Nejib Belhadj-Alouane University Tunis ElManar, Tunisia
Sami Bhiri University of Monsatir, Tunisia
Juan Boubeta-Puig University of Cádiz, Spain
Carlos Roberto De Rolt Universidade do Estado de Santa Catarina, Brazil
Ahmad Dhaini American University of Beirut, Lebanon
Walid Gaaloul Telecom SudParis, France
Jaime Galán-Jiménez University of Extremadura, Spain
José García-Alonso University of Extremadura, Spain
Michele Girolami Italian National Research Council, Italy
Tarek Hamrouni University of Manouba, Tunisia
Mohamad I Jaber American University of Beirut, Lebanon
Nikko Mäkitalo University of Helsinki, Finland
Carla Mouradian Concordia University, Canada
Stefan Nastic TU Wien, Austria
Romain Rouvoy University of Lille, France
Peter Ruppel Technische Universität Berlin, Germany
Ahmed Samet Oxford Brookes University, UK
Samir Tata IBM Research, USA
Victoria Torres Polytechnic University of Valencia, Spain
Mauro Tortonesi University of Ferrara, Italy
Asma Trabelsi Université d’Artois, France
Zhangbing Zhou China University of Geosciences, China
Javier Cubo University of Malaga, Spain
Andrea Delgado Universidad de la República, Uruguay
Alfonso Garcia-de-Prado University of Cádiz, Spain
Laura González Universidad de la República, Uruguay
Sam Guinea Politecnico di Milano, Italy
Kai Jander University of Hamburg, Germany

Mark Little Red Hat, UK
Massimo Mecella SAPIENZA Università di Roma, Italy
Giovanni Quattrocchi Politecnico di Milano, Italy
Wolfgang Reisig Humboldt-University Berlin, Germany
Norbert Ritter University of Hamburg, Germany
Damina Tamburri DEIB Politecnico di Milano, Italy
Erik Wittern IBM T.J. Watson Research Center, USA

110 Organization

BiAgent-Based Model
for IoT Applications

Case of a Collision Avoidance System

Souad Marir(B), Roumeissa Kitouni, Zakaria Benzadri, and Faiza Belala

LIRE Laboratory, Department of Software Technologies and Information Systems,
University of Constantine 2 Abdelhamid Mehri, Constantine, Algeria

souadmarir94@gmail.com, kitouni.romaissa@gmail.com, benzadri@gmail.com,
faiza.belala@univ-constantine2.dz

Abstract. The Internet of Things (IoT) consists in connecting every
aspect of daily and professional life to a common infrastructure, in order
to improve considerably the efficiency of otherwise unthinking objects.
The huge scale on which they operate, as well as the lack of adequate
standards and infrastructures makes the development of IoT applica-
tions a task of gradually growing complexity. The objective of this work
is to define a formal model with BiAgents (Bigraphical Agents) for IoT
applications, based on a suggested generic multi-layered architecture.
We show how bigraphs support the structural aspects modelisation of
these applications while the agents specify their analytical and deci-
sional aspects. We proceed then to the edition and execution of our
model using the bigraph implementation tool (RCTool4Bigraphs), and
through the exploitation of its model-checker, we formally verify its most
critical property. As a practical example, we study the case of a Collision
Avoidance System.

Keywords: Advanced driver assistance systems ·
Bigraphs · BiAgents · Collision Avoidance System
Formal Specification · Internet of Things · RCTool4Bigraphs

1 Introduction

The Internet of Things (IoT) is the vision of a world where each entity has
a physical or virtual representation, as well as a presence on existing or future
interoperable networks. These entities interact through specific protocols in order
to offer and consume services. They can generally perceive their environment and
affect it.

The development of IoT applications becomes each year more complex and
challenging. This is due to, among others, the need of ensuring interconnectiv-
ity and supporting a huge scale of interconnected devices. An important point
to consider is that this type of application relies to a great extent on shared
infrastructure and protocols (the Internet in the most common case). A poorly
c© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 111–123, 2018.
https://doi.org/10.1007/978-3-319-91764-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_9&domain=pdf

112 S. Marir et al.

designed application may thus not only result in poor behaviour, but also in
damaging the infrastructure or hindering other applications. To fully exploit
the widely recognized mathematical formalism potential in analysing, design-
ing and implementing IoT complex systems (with which human users and dif-
ferent devices interact), well-defined development approaches are required. To
address this issue and specifically to model the IoT applications at different
levels of abstraction, a new incremental approach is proposed. In fact, to date
in literature, several approaches for the development of IoT applications have
been proposed. It is possible to recognise some operational approaches based
on multi-agent frameworks [1] to support the implementation of IoT systems.
Nevertheless, no well-formalized approach able to support analysis, design and
implementation phase of IoT applications development is currently available.
In this paper, we address such issue by suggesting a systematic comprehensive
approach.

In the beginning, we give a generic layered architecture for IoT applications
allowing a separation of concerns mastering thus their complexity. Then, this
architecture constitutes an intermediate model for the formal one. This latter
is based on a judicious combination of bigraph model [2] and agents, allowing
to describe either aspects of an IoT application with precision as well as a high
level of abstraction. The defined model may support both IoT system’s structure
and its behaviour. Indeed, Bigraphs give a way to represent structural aspects
according to two axis: locality (place graph) and connectivity (link graph). In
addition, a mechanism is provided to express the evolution of Bigraphs, called the
Reaction Rules. This makes it possible to describe the behaviour and the states
of a dynamically evolving system. Aside from the two previously mentioned
aspects of structure and behaviour, IoT applications are also characterized by
cognitive aspects, like awareness of the environment and the ability to affect it.
Intelligent agents may maintain these aspects, while providing an ideal tool for
the specification of communication and context aware interactions. The paper
contribution is twofold, on one hand we propose a formal approach for IoT
applications in order to master their complexity, on the other hand we extend
the BiAgents definition given in [3] for the modelling of this kind of systems.

The rest of this paper is structured as follows. In Sect. 2, we make a summary
of the useful concepts for the comprehension of this work’s main contribution.
Section 3 introduces our multi-layered generic architecture, as well as our case
study, the Collision Avoidance System. Section 4 presents our proposed BiAgent-
based model for IoT applications while illustrating it with a realistic example.
In Sect. 5, we establish a synthesis of related works that use formal methods to
model IoT applications. Finally, conclusion and future direction of this work are
drawn.

BiAgent-Based Model for IoT Applications 113

2 Basic Concepts

This section introduces the different formal concepts we use to model the IoT.

2.1 Bigraphs

In Bigraphs theory [2], a bigraph structure facilitates the understanding and
design of complex systems. Its formal notation guarantees a safety regarding the
correction of the modelling. In addition, the reaction rules clearly specify the
dynamics of the modelled system.

A bigraph structure is the combination of two graphs (see Fig. 1):

– The place graph is in the form of a forest of trees each having a root called a
“region”. It has a control function that assigns each node a control1. It can
also contain sites that are abstractions in which we can insert other bigraphs.

– The link graph is used to represent relationships and connectivity in a system.
It has the structure of a hypergraph.

Fig. 1. Example of a bigraph [2]

Definition 1. A bigraph [2] is a tuple of form: G = (V,E, ctrl, prnt, link) :
〈m,X〉 → 〈n, Y 〉 where 〈m,X〉 and 〈n, Y 〉 are the inner and outer faces of G.
V and E are respectively, a final set of nodes and a final set of hyperedges.
ctrl :V → K is the control function which assigns a control to each node. prnt
represents the parent function. link is the function that represents the different
links contained in the bigraph.

A reaction rule [4] has the form R → R′ where R is known as the bigraph
redex and R′ the reactum one. If we write B → B′, this means that there is
a reaction rule that can be applied to B and give B′, conversely if we write
B �→ B′, this means that there is no possible reaction rule for B to get B′.

Definition 2. A Bigraphical Reactive System (BRS) is defined by the set
of bigraphs representing the different states of the system obtained from the initial
bigraph, and the set of reaction rules applied successively.
1 A number of ports.

114 S. Marir et al.

2.2 BiAgents

Bigraphical Agents [1] are defined by a physical structure and a logical structure.
The physical structure is modelled by the formalism of bigraphs and the logical
one by agents.

Definition 3. The physical structure [3] of a BiAgent is defined as a tuple
B = (B,R,U, B0, F) where B is the space of bigraphs, R is the set of reaction
rules, U is the control space such as U ⊆ R×VB, with VB the set of bigraph nodes.
B0 is the initial bigraph. Before defining F , dec3 is a function which gives a valid
decomposition of a bigraph into three bigraphs such as dec3(B) = (B′, B′′, B′′′)
and B is the composition B′ ◦ B′′ ◦ B′′′. VR is the set of redex’s nodes and VR′

is the set of reactum’s rules. F is the transition function that, from the current
bigraph and from a control action, gives a new bigraph: F : B × U → B. It is
defined as follows by considering C as the context of R′ and d the parameters of
R′ : F (B, (R → R′, h)) = C ◦ R′ ◦ d if ∃ dec3 such as dec3(B) = (C,R, d) and
h ∈ VR and h ∈ VR′ . If not, F is undefined.

Definition 4. The logical structure [3] of a BiAgent is defined as a tuple
a = (O,U , host0, obs, ctr,mgrt) where O is the agent’s observation space such
as O ⊆ B. U is the control space such as U = Ra×VB. host0 ∈ VB is the node that
hosts the agent initially. obs is the observation function, obs : B × VB → O ctr
is the control function with which an action can be executed, ctr : O → U . mgrt
is the migration function that, with the host of the agent and an observation,
provides the next host, mgrt : VB × O → VB.

2.3 Trace

Definition 5. In a Bigraphical Reactive System, a trace [5] is a sequence of
bigraphs 〈a1, a2, ...〉 such that for each ai and ai+1, There is a reaction rule ai →
ai+1. If there are two traces s and t and the last element of s is the redex of a reac-
tion rule whose reactum is the first element of t, the composite trace exists and
begins with all the elements of s followed by all the elements of t, in this case t is
an extension of s. We denote Tr(A) the set of all traces for a given BRS A.

We use traces to make a history of the different events that happen in the

system modelled. We can note t = B0

R1≺ B1

R2≺ B2

R3≺ B3 with R1, R2 and R3
the reaction rules that allow the transition from a bigraph to another. On this
basis, a BiAgent can be an agent with a memory by using, as an observation
space, a set of traces of bigraphs instead of using a set of bigraphs. If we have a
system that contains x agents, we can have x traces, each one representing the
course of actions of a particular agent; we call each of these traces a projection.

Definition 6. We represent the flow of agents in space through a projection
ta of a trace t defined as follows:

ta = (pa0 , h
a
0) ≺ (pa1 , h

a
1) ≺ ...

where each pai is a projection of the bigraph Bi Which holds only the node in
which the host is located ha

i .

BiAgent-Based Model for IoT Applications 115

3 A Layered-Architecture for IoT Applications

Nowadays, we are witnessing a radical evolution of the current Internet in a
network of interconnected objects that not only collects information from the
environment (detection) and interacts with the physical world (action/control),
but also uses existing Internet standards to provide services for information
transfer, analytic, applications and communications [6]. In this context, an IoT
application is the set of software and hardware that enables a smart behaviour
from an ordinary object. In other words, it is a functional system whose aim is to
collect data, process it and emit some output that is relevant to its intended task.
Specifically, we can summarize the main characteristics of IoT applications as
follows [7,8]: Interconnectivity, Heterogeneity, Dynamic changes, Scale, Security
and Connectivity.

In the present work, the software part of an IoT application will be our main
focus; we give a multi-levels architecture of the Connected Objects applications
and discuss its implication for the objects communications in terms of the traffic
that will be generated. Figure 2 shows the given architecture knowing that an
IoT application could be specified according to four layers:

Fig. 2. Multi-layered architecture for an IoT application

Physical Layer. It represents the system’s hardware. In particular, we focus
our interest on input and output hardware, as they are the mean to interact
with and to receive signals from the environment.

Abstraction Layer. It is a low-level layer which implements all interaction pro-
tocols with the components within the Physical Layer (in the form of imple-
mentable driver modules). In addition, this layer offers an interface through
which the application interacts with the physical components. The main rea-
son we choose to represent this layer is the diversity of the used hardware for
this kind of systems as well as the lack of standards. We need this layer to

116 S. Marir et al.

be provided with basic intelligence to analyse input at a low level and decide
where to send it; we represent this by an agent that manages this particular
layer: the Abstraction agent.

Communication Layer. Since communication is an essential part of every IoT
system, we choose to dedicate a separate layer to it. This layer is divided into
two sublayers: Internal Communication (ICL), which is the set of protocols
used for interaction between all layers within a system, and External Com-
munication (ECL), which is the set of protocols used to communicate with
separate, external systems. The intelligent entity managing this layer is the
Communication agent, which verifies the correctness of package formats and
sends them to the right destination.

Application Layer. This most high-level layer is the actual IoT application.
It is again divided into two sublayers: Generic Support for all non-functional
aspects which are common to a large spectrum of applications, and Specific
Support which is the handling of the most particular aspects of a system.
Decisions on the global behaviour of the application are ultimately issued by
this layer’s smart entity: the Application agent.

Each of the previously mentioned agents are conceived according to a control-
loop model as shown in Fig. 3.

Fig. 3. Principle of an agent control loop

Illustrative Example

The case we will study in this section is that of a Collision Avoidance System
(CAS) [9] as implemented in a car. It can detect a stationary natural obstacle
and issue a warning to the driver and to an external server so as to warn those
who might take the same road. It can also detect a moving obstacle (like a
pedestrian) or receive a warning from an external server; in either of these cases,
it will simply produce a warning for the driver.

By applying the proposed multi-layered architecture (of Fig. 2) to the CAS
example of this section, we obtain the structure in Fig. 4;

– In the Physical Layer, one radar and two cameras (one in the front, one in
the rear) are used to get raw information on the environment. A vibrator and
speakers are used to issue warnings to the driver. A network card is used to
communicate with other similar systems through a trusted server. To each
kind of these components, an interface in the Abstraction Layer is associated.

– In the Communication Layer, we specify the subsystems that constitute
the two sublayers. The verification subsystem in the ECL checks whether
a received package is from a trusted server or needs to be destroyed.

BiAgent-Based Model for IoT Applications 117

– The Application layer was extended with all functional and non-functional
high-level software components that specify the actual application behaviour.

Fig. 4. Multi-layered architecture applied to the Collision Avoidance System

The major components of our proposed architecture for CAS example are
used for an easy management and development of this application by both users
and programmers. The re-usability and genericity of this approach allow the
designer to generate models for any IoT application. In the following we describe
the choices that have been taken to satisfy these requirements; we are interested
by the formal description and verification issues. Particularly, we show how we
generate a formal definition of IoT applications, based on the theory of bigraphs.

4 : A BiAgent-Based Model for IoT

The generic architecture presented earlier represents an intermediate phase
towards the development of an appropriate formal model based on BiAgents
[3]. Indeed, our model may have two distinct but complementary views: the
physical view (the layers) that define the place the connectivity of components
of an IoT application and the logical view (the agents) that manages these lay-
ers by obtaining information, analysing it and take an action according to the
given information. We detail in the following sections the proposed Bigraphical

Agents Model for the IoT according to its two structures (physical
structure and logical structure).

118 S. Marir et al.

Definition 7 (Physical Structure). The physical structure of

model is defined as following:

BIoT = (B,R,U, B0, F)

– B is the set of bigraphs modelling the chosen IoT application.
– R is the set of reaction rules describing its behaviour.
– U ⊂ VB × R is the set of controls representing the potential actions recording

to a single node with VB the set of nodes of every B ∈ B.
– B0 ∈ B is the bigraph representing the initial state of the IoT system modelled.
– F is the control function defining the transition between a bigraph and another

according to a control ui ∈ U.

Definition 8 (Logical Structure). The logical structure of

model is defined by a set of adaptive agents aIoT, each agent a(i)IoT
has the following format:

a
(i)
IoT = (O,U ,D, host0, obs, an, ctr,mgrt)

with:

– O ⊂ B is the observation space.
– U is the control space which represents the possible agent’s actions.
– D is the decision space obtained after the agent’s analysis.
– host0 is the agent’s initial host.
– the function of observation obs which provides an observation o ∈ O using a

bigraph and the host of the observant agent: obs(b, h) = o.
– the analysis function that, with an observation or a set of observations and a

host, analyses this host or its sons and returns a positive or negative decision:
an(o, h) = α ∈ D.

– The control function which gives the next succession of rules to be executed,
each according to a node, using the result of an analysis: ctr(α) = u ∈ U .

– The migration function that provides the next host of the agent according to
the current host and an observation: mgrt(o, h) = h′.

CAS Example Application

Let us take again the CAS example (Collision Avoidance System) and try to
define their structures (physical and logical), as well as its behaviour while illus-
trating the BAM4IoT definitions.

The Physical Structure of CAS example is given by the tuple

BCAS = (B,R,U, B0, F)

– B = {B0, ..., B20} is the set of all bigraphs resulting from the application of
the defined reaction rules.

BiAgent-Based Model for IoT Applications 119

Table 1. Collision avoidance system reaction rules

Rule ID Description

R0 A sensor device (radar) determines the presence of an
input (pedestrian)

R1 The information is sent to the ICL (Internal
Communication Layer) in the purpose of beeing formatted

R2 The information is formatted according to the Internal
Communication Protocols (ICP) and its path is traced

R3 The formatted information is transmitted to the system
(GS)

R5 The system looks for internal data on known dangers that
may correspond to the extracted information

R6 An action corresponding to the detected danger is
requested

R7 The action is transmitted to the Internal Communication
System (ICS) to be carried out on the Current System (CS)

– R = {R0, R1, R2, R3, R4, R5, R6, R7}. A summary of these reaction rules is
given in Table 1.

– VB the set of nodes of every B ∈ B with VB = VSS �VI �VF � VE � VES �VS .
– U the set of every possible couple made of reaction rules and nodes: R × VB.
– B0 ∈ B is the bigraph representing the system’s initial state BSDC (Fig. 5).
– F is the control function that defines the transition from a bigraph to another

through a particular control. If a rule isn’t applicable to the node to which it
is associated in the control ui ∈ U, F is undefined.

The Logical Structure of CAS example is given by a set of three agents:
AppAg, ComAg, AbsAg, each one manages changes of the corresponding root
(layer) [10]. For lack of space, we explain only the following agent, which is
judged the more relevant (see [10] for more details):

AppAg = (OAppAg
,UAppAg

,DAppAg
, hostAppAg

0 , obsAppAg
, anAppAg

, ctrAppAg
,mgrtAppAg

)

with:

– OAppAg

= {B6, B8, B10}
– UAppAg

= {(R5, IE), (R7, IE)}
– DAppAg

= {αApp
1 }

– hostAppAg

0 = 2

– obsAppAg

(B, h) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

obsApp
1 if B = B6 and h = 2

obsApp
2 if B = B8 and h = FA

obsApp
3 if B = B8 and h = FS

obsApp
4 if B = B8 and h = GS

obsApp
5 if B = B10 and h = IE

120 S. Marir et al.

– anAppAg

(o, h) = αApp
1 if o = {obsApp

1 , obsApp
2 } and h = GS

– ctrAppAg

(α) = {(R6, IE), (R7, IE)} if α = αApp
1

– mgrtAppAg

(o, h) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

FA if o = obsApp
1 and h = 2

FS if o = obsApp
2 and h = FA

GS if o = obsApp
3 and h = FS

IE if o = obsApp
4 and h = GS

2 if o = obsApp
5 and h = IE

In addition to this definition, we can visualize a system’s behaviour through
the use of traces and projections. This will illustrate all state changes that hap-
pen alternatively to the physical structure (CAS reaction rules) and to the logical
structure (an agent’s migration). Describing an application through the use of
this extended model serves the main purpose of preventing non-deterministic
behaviour. As a matter of fact, there is no way to guarantee a consistent execu-
tion path with Bigraphical Reactive Systems alone. A reaction rule’s applicability
is decided through a pattern matching and could be applicable without it being
semantically appropriate. The control function on the other hand always asso-
ciates to a given analysis (of the current state) an applicable and semantically
appropriate set of actions. Figure 5 shows a scenario of detection of pedestrian.
After applying CAS reaction rules (R0 to R7), the system arrives at a final state
representing the action performed.

Fig. 5. The BAM4IoT of collision avoidance system BCAS

For validation purpose, we exploit the RCTtool4Bigraphs (an extended and
generic version of a tool that has been already proposed in [11] and [12]) to check

that our specification satisfies an important property. Figure 6 shows

BiAgent-Based Model for IoT Applications 121

Fig. 6. Model checking results of the Action-Attainability property.

model checking results of the Action-Attainability property; we conclude that the
entered specification verifies the desired property.

5 Related Work

In their paper about high-level application development in IoT [13], authors
mention three main approaches for developing IoT applications: Middleware,
Programming framework and Model-Driven Development (MDD). The latter,
which is most relevant for our current work, consists of describing the applica-
tions as high-level abstract models, and then using these models according to
some research ways (code generation, formal analysis, etc.).

Few works in the literature have focused on the use of formal methods
to design and specify such applications by supporting the characteristics of
complex, distributed and auto-adaptive systems. For instance, authors of [1]
based their framework for the IoT on agents, focusing on self-adaptive and
self-organizing aspects of the applications. On the other hand, graph-based for-
malisms are usually favoured to support the description of interrelation as well
as dynamic configuration. The work cited in [14] tried to combine the advan-
tages of both formalisms and proposed a hybrid one using complex networks, a
graph-based formalism, as well as agent-based modelling for the IoT. The idea
of creating a formal model out of many different methods stems from their indi-
vidual failure to keep up with the ever-growing complexity of modern systems,
and the decreasing accuracy with which they can describe IoT applications.

In the same thought, our proposed approach combines: (1) Bigraphs to
describe geographical dispersion, connectivity and dynamic changes; and (2)
Agents to model communications and context-aware interactions in IoT appli-

cations. In particular, the proposed formal model gives an unified
way to describe IoT applications so as to result in a deterministic, understand-
able specification. Moreover, we used a practical tool (RCTool4Bigraphs [11,12])
to verify an IoT-related property (Action-Attainability property).

122 S. Marir et al.

6 Conclusion

A recurring challenge in the development of IoT applications is managing their
complexity. To overcome this, we have set ourselves the main objective of apply-
ing one of the most appropriate mathematical formalisms. Our attention has
turned to the bigraphs and the agents. A judicious combination of these two for-
malisms allowed to consider the two aspects inherent to this type of applications;
the associated physical object/virtual intelligence pair.

We have chosen to develop first, a layered architecture to simplify the descrip-
tion of IoT applications and its instantiation according to a case study: Collision
Avoidance System (CAS). Then, we were able to validate the physical structure

of the extended formal model with a model-checking tool of bigraphs
(RCTool4Bigraphs).

We propose, in the future works, to give our model a way for objects (agents)

to communicate by extending the definition of the agents in with
a suitable function. Obviously, a tool around the bigraphs that supports the
virtual or logical aspect of the systems is an unavoidable solution.

References

1. do Nascimento, N.M.: Fiot: an agent-based framework for self-adaptive and self-
organizing applications based on the internet of things. Inf. Sci. 378, 161–176
(2017)

2. Milner, R.: The Space and Motion of Communicating Agents. Cambridge
University Press, Cambridge (2009)

3. Pereira, E., Kirsch, C., Sengupta, R.: Biagents-a bigraphical agent model for
structure-aware computation. Cyber-Physical Cloud Computing Working Papers,
CPCC Berkeley (2012)

4. Perrone, G.: Domain-Specific Modelling Languages in Bigraphs. Ph.D. thesis, IT
University of Copenhagen Copenhagen, Denmark (2013)

5. Perrone, G., Debois, S., Hildebrandt, T.: Bigraphical refinement. arXiv preprint
arXiv:1106.4091 (2011)

6. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (IoT): a
vision, architectural elements, and future directions. Future Gener. Comput. Syst.
29(7), 1645–1660 (2013)

7. Patel, K., Patel, S.: Internet of Things-IOT: definition, characteristics, architecture,
enabling technologies. application & future challenges. IJESC 103, 62–84 (2016)

8. Vermesan, O., Friess, P.: Internet of Things - From Research and Innovation to
Market Deployment. River Publishers, Aalborg (2014)

9. Advanced Driver Assistance Systems (ADAS) — TOSHIBA Storage & Electronic
Devices Solutions Company (2017)

10. Marir, S., Kitouni, R.: Combinaison des agents et des bigraphes pour la
modélisation des applications iot. Master’s thesis, Université Constantine 2
Abdelhamid Mehri (2017)

11. Benzadri, Z.: Spécification et Vérification Formelle des Systèmes Cloud. Thesis,
Université Constantine 2 - Abdelhamid Mehri, October 2016

http://arxiv.org/abs/1106.4091

BiAgent-Based Model for IoT Applications 123

12. Benzadri, Z., Bouanaka, C., Belala, F.: Big-CAF: a bigraphical-generic cloud archi-
tecture framework. Int. J. Grid Utility Comput. 8, 222–240 (2016)

13. Patel, P., Cassou, D.: Enabling high-level application development for the internet
of things. J. Syst. Softw. 103, 62–84 (2015)

14. Batool, K., Niazi, M.A.: Modeling the internet of things: a hybrid modeling app-
roach using complex networks and agent-based models. Complex Adapt. Syst.
Model. 5(1), 4 (2017)

Seamless Interactions
on the Internet of Things.

A Spotify-Based Proof of Concept

Jose Garcia-Alonso1(B), Javier Berrocal1, Carlos Canal2, and Juan M. Murillo1

1 University of Extremadura, Caceres, Spain
{jgaralo,jberolm,juanmamu}@unex.es
2 University of Málaga, Málaga, Spain

canal@lcc.uma.es

Abstract. As the number of devices connected to the Internet of Things
increases, so increases the interactions required between users and those
devices and systems. In a world where non-technically inclined users live
surrounded by Internet of Things systems, the barriers to entry for the
use of these technologies should be as low as possible. In these circum-
stances, the Situational-Context is a new computational model to allow
Internet of Things software to automatically adjust its behaviour to the
context of its users. In this paper we present a Spotify-based proof of
concept of the Situational-Context. The users of this system can seam-
lessly agree on the music played in a public environment without direct
interaction between them or with the system. With this proof of concept
we address some of the main challenges raised by the implementation of
the Situational-Context as well as demonstrate the benefits it provides
to Web of Things systems in terms of simplified user interaction and
improved context adaptation.

Keywords: Internet of Things · Context-Aware · Interactions

1 Introduction

The capabilities of embedded devices keep increasing every year, leading to the
development of a huge variety of smart things. These devices are connected to
the Internet and provide a virtual representation of themselves. Other devices
can interact with these virtual representations creating the Internet of Things
(IoT) [11]. One of the main goals of this paradigm is to simplify people life by
making the technology work for them, either providing more information for
decision-making or facilitating the accomplishment of some tasks.

Predictions estimate that, by 2020, there will be 50 to 100 billion of these
devices connected to the Internet [24]. However, if we analyse the current state of
how people interact with them, the benefits provided will not be as groundbreak-
ing as expected. With the aim of increasing the usability of smart things, the

c© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 124–136, 2018.
https://doi.org/10.1007/978-3-319-91764-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_10&domain=pdf

Seamless Interactions on the Internet of Things 125

behaviour of these systems usually depends on the users preferences and their
context, which can shift considerably over time. Therefore, manually configuring
an increasing number of smart things connected to daily life activities needs too
much attention. Specially, taking into account that every change of the users’
context or preferences needs a reconfiguration of the smart devices. This manual
control of IoT systems, that is acceptable when working with a small number of
devices, will became a burden for users involved in dozens of systems.

Accordingly, solutions are needed to transparently and effortlessly integrate
people’s needs, moods and preferences into the connected world of the IoT. In
the literature we can find research works dealing with gathering and processing
the contextual information of users in order to create more comprehensive virtual
profiles [10]. Nevertheless, an accurate and comprehensive virtual profile is not
enough. Techniques to adapt the system behaviour to the context are also nec-
essary. Currently, researchers are working on techniques such as Dynamic Com-
position [5] or Context Oriented Programming (COP) [14]. These techniques
allow developers to predefine different behaviour of an application depending
on the identification of specific contextual information. They concur that the
information and/or variables triggering the adaptations is detailed within the
source code of the applications. Thus, the adaptation capabilities are limited
to the set of predefined contexts. However, the variability of this information is
very large and is difficult to identify and express every plausible situation in the
development phase.

To address this situation, we have proposed the concept of Situational-
Context [2] as a way to analyse the conditions that exist at a particular time and
place; and how this analysis can be used to predict, at run-time, the expected
behaviour of IoT systems. In this paper, we present a first implementation of the
Situational-Context model. Specifically, a Spotify-based application that allows
users to seamlessly agree on the music played in a public environment without
direct interaction between them or with the system. This proof of concept allows
us to showcase the main benefits provided by the Situational-Context.

The rest of the paper is structured as follows. Section 2 presents the moti-
vations that lead to the development of this work and details the Situational-
Context model to provide a clear view of its characteristics. Section 3 describes
the developed application focusing on the benefits provided by the Situational-
Context model. Section 4 lists the most relevant works related to the one present
here. Finally, Sect. 5 presents some conclusions and future works.

2 Situational Context

In the IoT usually several devices are orchestrated to build complex systems [17].
However, as the IoT is more integrated into people daily activities this orches-
tration becomes more complex, since systems should dynamically adjust to the
needs of each individual and the specific circumstances of each moment and
place.

In this sense, there are different researchers focused on the identification of
people’s context and its use to adjust applications behaviour. So far, this context

126 J. Garcia-Alonso et al.

was manually set by the user. With the aim of improving the user experience
and reducing the effort required to set these preferences, different approaches,
such as Ambient Intelligence [6] and Context-Aware [15], have been defined to
semi-automatically identify them.

In the last few years, the increased computing and storage capabilities of
mobile devices, allowed the authors of this paper to propose a new context-aware
computing model, named People as a Service (PeaaS) [12]. This model uses the
user’s mobile device to gather, store and compute the contextual information
in order to construct his/her virtual profile. Thus, in the orchestration of smart
things, profiles can be used to make better adaptations. In a further step, the
Internet of People (IoP) [20] propose an infrastructure and a manifesto for IoT
systems that support this proactive adaptations. Recent research also allowed us
to prove the situations under which these models also reduces the consumption
of mobile resources [3].

PeaaS defines that a profile is divided into at least two different facets. A
Basic Profile containing the dated raw contextual information with the user’s
status, the relationships with other devices and its history. And a Social Profile,
which contains the results of high level inferences performed over the Basic
Profile.

A specific characteristic of this computing model is that the virtual profile
stored in the mobile device can also be provided as a service to other applications,
to third-party companies or to other devices. Thus, the surrounding devices can
reuse it to adapt themselves to the user’s preferences.

One of the main goals of inferring high level information is to better adapt
the applications and the surrounding devices’ behaviour to the users. Currently,
there are different paradigms proposing languages and frameworks to define
the situations under which the applications or the devices can be adapted and
how this adaptation should be. For instance, the Context Oriented Program-
ming paradigm provides an additional dimension to standard programming tech-
niques to dynamically switch among the behaviours associated with each con-
text, such as bandwidth availability, WiFi connection, battery level, etc. [26].
The Dynamic Composition paradigm goes a step forward when the interactions
between devices cannot be identified at the development stages. It allows devel-
opers to implement the application behaviour and interactions without defining
the specific devices involved [13].

Therefore, currently there are a lot of proposals for building more compre-
hensive virtual profiles, better detailing the needs of each individual, her status,
personality, desires, etc. However, the techniques for developing systems adapt-
able to the users’ profiles requires to predefine in the development phase the
relationships between contextual data and the different behaviours or actions
that can be triggered. This limits the customization of applications and makes
it difficult to obtain IoT systems totally responsive to the users’ virtual profiles.
In addition, in IoT environments, the number of devices with which a user can
interacts with, the frequency at which these interactions occur and, above all,
the social aspect of these interactions raise the need of paradigms focused on

Seamless Interactions on the Internet of Things 127

identifying at run-time the behaviours and interactions that should emerge from
the concrete situations and how the system should be able to respond in an
ad-hoc way to them.

Recently, we have been working on a new concept called Situational-
Context [2]. The Situational-Context is a way to analyse the conditions that
exist at a particular time and place in order to predict, at run-time, the expected
behaviour of IoT systems. To that end, first, the Situational-Context adds two
new subsets of information to the virtual profile defined in PeaaS. The Goals
detailing the status of the environment desired by the entity. And the Skills or
capabilities that an entity is endowed with, in order perform actions capable of
modifying the environment and aimed at achieving Goals.

Taking into consideration that in most IoT systems there are different entities
(things and people). And that each of them has its own virtual profile. We
define the Situational-Context as the composition of the virtual profiles of all
the entities involved in a particular situation. The result of composing the virtual
profiles is the combined history of the entities ordered in a single timeline, the
result of high level inferences performed over the combined virtual profiles, the
set of Goals of the entities and their Skills. From the combined information of
the Situational-Context, strategies to achieve Goals based on the present Skills
are identified. These strategies will guide the prediction of the interactions that
must emerge from the context. Therefore, the Situational-Context provides a
higher level of automation of smart things with people.

Furthermore, the Situational-Context is a dynamic abstraction of the com-
bined profiles of the entities involved in a situation and, therefore, evolves and
changes through time. To analyse the instantaneity of this context, we use the
concept of Configuration. A Configuration is the unified and stable view of the
virtual profiles of the devices involved in the situation at a specific point in time.
When changes in the environment happen, the Configuration is no longer sta-
ble and must be updated. Thus, a new Configuration must be defined from the
updated/new virtual profiles of the devices. Thus, the Situational-Context can
also be seen as a succession of Configurations.

In order to better explain this concept, let us use a simple example of a
living room in which there is a small party with several people and a smart HIFI
system (Fig. 1a). All of them, through their mobile device, have a virtual profile
containing a Basic Profile (with, for example, information about the music they
usually play, their location, etc.), a Social Profile (with their musical interests in
each specific location) and their Goals (e.g. to listen specific music styles). The
smart HIFI system has its own virtual profile with a Basic Profile (containing,
for example, the music it has played), a Social Profile (with the music styles that
are usually played), the Goals (e.g. to save energy) and its Skills (e.g. to play
music). The Situational-Context would be the composition of the virtual profiles,
as Fig. 1b shows. From this composed profile, the strategy with the actions that
the entities should execute to satisfy the goals are identified. Concretely, the
music style and, even, the concrete songs that the HIFI system should play
would be detected.

128 J. Garcia-Alonso et al.

Fig. 1. Example of the Situational-Context.

However, this concept has some open challenges: which device or devices
should compute the Situational-Context? How the contextual information can
be exchanged? How common Goals should be agreed for a specific configura-
tion when the devices involved have different or, even, opposed Goals? How the
strategies to achieve Goals should be identified? The following section details a
proof of concept for the Situational-Context that provides a possible solution for
each of the above challenges.

3 Spot&Joy: A Spotify-Based Situational-Context
Application

In this section we describe the Spot&Joy application. This application allows its
users to seamlessly control the music played in public environments and it was
developed following the Situational-Context model. The application is designed
to be used in different scenarios like a small private party in a house, a waiting
room with ambient music, or a night club. Figure 2 shows the architecture of
Spot&Joy.

As can be seen in the figure, the Spot&Joy application is formed by two main
components: the user component and the player component. The user component
is in charge of choosing the music based on each user preferences and context and
is run by the users smartphones. The player component is in charge of playing
the music chosen by the users and, therefore, it must be executed by a device
with the skill to play music. Different devices could execute this component, for
example a smartphone connected to a set of Bluetooth speakers, a professional
set-top box or a smart speaker connected to the internet. In the next sections
we describe in detail each of this components.

Seamless Interactions on the Internet of Things 129

Fig. 2. Spot&Joy architecture.

3.1 Spot&Joy User

The Spot&Joy user component, developed as an Android application, allows
users to choose the music that would be played in public environments. To per-
form this task the system uses the well known Spotify music-streaming service.
In particular its Web API [1].

The first time the application is run by a user she must provide her Spotify
credentials to be able to use the API. Once the user is logged in Spotify she can
use the application as a normal Spotify client, listening to her playlists, searching
for different kinds of music, etc.

Additionally, under the Spotify client, the Spot&Joy application integrates
several Situational-Context features. Simply by installing the application, the
device in which is installed acquires the goal to control the music played in
Situational-Context enabled public environments. This goal is registered in the
User Goals component of the architecture. This means that, whenever the users
find herself in a situation where there is a device with the skill to play music,
the played music will be affected by the preferences of the user. The task of
detecting the situations in which the goal can be satisfied is performed by the
Situational-Context Engine module.

In order to gather and process the context and preferences of the user, the
Spot&Joy application integrates a PeaaS implementation [12], called nimBees.
NimBees [21] is a commercial mobile push notification platform composed by
an API for mobile applications, which stores the users’ profile and allows appli-
cations to receive segmented push notifications, and a backend, which manages
the sent notifications. Once the push notification is sent and reaches the mobile
device, the API decides if the owner is an appropriate recipient for that message.
This notifications are used to detect the different devices and to exchange the

130 J. Garcia-Alonso et al.

musical preferences among them. For this proof of concept, the basic and social
profile used for the computation of the Situational-Context is limited to the
musical preferences of the users, stored in the form of Spotify playlists, and the
basic contextual information associated to each playlist playback (geographical
position and moment in time).

With this information the Spot&Joy detects when the user is in a situation
where the music can be controlled, by the presence of a device with the skill
to play music, and uses the profile of the user built by PeaaS to propose the
playlist that better adapts to the user context. The Spot&Joy player receives
the proposed playlist, computes all the users’ playlists and determines the music
that would be played at every moment.

3.2 Spot&Joy Player

The Spot&Joy player plays the music chosen by the users. To perform this
task the system also uses the Spotify API included in the architecture and,
therefore, the user that control the Spot&Joy player needs to provide a valid
Spotify credentials.

Once the system has access to Spotify its management is delegated to the
users. The device running the Spot&Joy player would expose the skill to play
music in the Device Skills component of the architecture. This skill would be
detected by the smartphones that have installed the Spot&Joy user application.
Each of these users would send their preferred playlist to the Situational-Context
Engine component of the player device. The communications between the user
devices and the player devices are performed directly, without depending on an
external server.

As detailed in Sect. 2, the Situational-Context changes through time. In the
case of the Spot&Joy player it changes whenever a user sends a playlist. When
that happens a new Configuration is computed and it controls the music played
until the Configuration is changed by the presence of a new user or by the absence
of one of the previous users.

For this proof of concept, the computation of a stable Configuration of the
Situational-Context is relatively simple and satisfy the following rules:

1. If there is no user present in a Situation there would be no music played.
2. When the first user joins the system, her suggested playlist would be played

completely and then the Spotify recommendation system would be used to
play similar music.

3. When an additional user joins the system, the songs contained in her sug-
gested playlist would be added to a pool containing all the songs suggested
by the users.

4. When a user leaves the system, the songs contained in her suggested playlist
would be removed from the pool.

5. Whenever the pool of songs changes, the order in which the songs would be
played is reorganized according to the following algorithm.

Seamless Interactions on the Internet of Things 131

(a) The songs in the pool are first prioritized by its number of appearances
in the pool.

(b) Songs with the same number of appearances are prioritized by the time
their first appearance has been in the pool.

(c) Songs added to the pool by a user would be penalized when a song sug-
gested by that same user is played.

(d) Whenever a song is played all its appearances would be removed from the
pool.

(e) If the pool is empty and there are users in the system, the previously
played songs would be used as seeds for the Spotify recommendation
system.

By following these rules the Spot&Joy player provides a shared playlist that
tries to satisfy all the users involved in the system. At the same time, the use of
the Spot&Joy application allow users to seamlessly affect the system behaviour
to better satisfy their musical preferences and taking their context into account.

3.3 Situational-Context Challenges

As mentioned in Sect. 2, the Situational-Context concept raises some open chal-
lenges. The development of the proof of concept presented in this work has
allowed us to address them. In this section we describe the adopted solution
for each challenge as well as some insights for future developments under the
Situational-Context model.

Which Device or Devices Should Compute the Situational-Context?
There are several options to address this challenge. Computations can be per-
formed in one of the devices physically present in the situation, but they can also
be performed in a remote server or using a mixed approach. For the Spot&Joy
proof of concept we decide to compute the Situational-Context in a physically
present device for several reasons. First, because the smart devices computa-
tional capabilities are more than enough to compute the Situational-Context.
Second, because by avoiding the use of an external computational entity the
system becomes more reliable. And third, because it simplifies the development
process since there is no need to develop an additional component for the remote
entity.

This approach, however, it is not optimal for every situation. For developing
an application following the Situational-Context model several factors must be
taken into account before deciding where the Situational-Context must be com-
puted. These factors mainly revolve around the resources consumption in the
present devices, like battery or data traffic, versus the resource consumption in
remote computational entities. A detailed study about the best approach to be
used for developing these kind of application was presented in [3].

132 J. Garcia-Alonso et al.

How Contextual Information can be Exchanged?
For the implementation of the proof of concept presented here we used an ad-hoc
solution. Spotify playlists and sets of songs are exchanged between the different
entities using the communications mechanisms present in the PeaaS implemen-
tation, specifically the use of push notifications. These messages contain the
identifiers assigned by Spotify to each playlist and song.

While this solution may be enough for a proof of concept, is far from a
generic solution that can be used in the implementation of the Situational-
Context model. More research is needed in order to identify the best approach
to share contextual information between the entities present in a situation.

How Common Goals Should be Agreed for a Specific Configuration
when the Devices Involved have Different or, Even, Opposed Goals?
The rules used by the Spot&Joy player in order to negotiate with the users the
music to be played were detailed in Sect. 3.2. Again, this is an ad-hoc algorithm
for this proof of concept. However, this algorithm can be generalized as a nego-
tiation strategy that can be used in other implementations of the Situational-
Context model.

Specifically, the implemented strategy can be used in any situations where
users have a set of tasks that should be processed by a specific device. This
task could be songs to played, as in Spot&Joy, but they can also be photos to
be shown in a digital frame, computational tasks that have to be executed in a
more powerful device, etc. In order to process this tasks, the device processing
them needs three elements. A pool or queue of tasks where the tasks sent by
users and their details are stored, a prioritization strategy that classify the tasks
by the order in which they should be executed and a user management mecha-
nism that reorder the tasks pool whenever a user enters or leaves the situation.
With these elements the strategy can be reused in different Situational-Context
computations.

How the Strategies to Achieve Goals should be Identified?
As mentioned in the previous point, the strategy for the Spot&Joy player was
created ad-hoc. The idea behind it was to take into account the musical prefer-
ences of each user.

As the Situational-Context model matures, more general strategies to achieve
goals would be available. And, therefore, a system would be needed to identify
the most efficient strategies for each goal and situation. More research is needed
regarding this challenge. However, we are developing an initial approach based on
the users feedback. When more than one strategy is available to achieve a goal,
the users would be asked to rate the success of the strategy in accomplishing
such goal. This feedback can be provided manually but can also be gathered
automatically from their profiles.

Seamless Interactions on the Internet of Things 133

4 Related Works

In the last few years, a lot of researchers have been working on computing the raw
contextual information of a user in order to make high level context deductions.
In [10], the authors indicate that the user context can be expressed as a com-
bination of the user’s activity, light conditions, social setting and geographical
location. So, they propose a system to gather the user contextual information.
This information is sent to a cloud environment to perform high level inferences.
Then, it is the reused to adapt the interface of an app to the user environment.

There are other works focused on a more social perspective, computing and
sharing the contextual information. In [23] the authors propose a system that
can automatically recognize the high-level context of the users, i.e. activities,
emotions, and relationships with other users. Once computed, this information
is shared in a mobile social network so that other users and devices can take it
into account.

In [9], the authors focused on improving the Location-Based Services using
contextual information. To that end, the authors propose to combine the contex-
tual information of different users (including their tastes, preferences, activities,
social interactions, etc.) and point of interest located within a specific geospacial
range in order to promote venues that could be interesting for them.

In addition, in the Context-Aware [15], Ubicomp [4], User Modeling [16]
and Ambient Intelligence [19] areas, there are others works related with the
computing of different contextual information in order to adapt the devices’
behaviour.

There are works focused on managing people contextual information with the
aim of improving their experience in multi-device systems [7]. In [18] the authors
indicate that in order to enable context-awareness for distributed applications,
new architectural styles are needed to support the gathering and interpretation
of disseminated context attributes. Therefore, they propose a context-aware mid-
dleware based on the client-server architecture. Nevertheless, the use of a central
server requires a high communication between the devices and the server, both
for storing new information and for consulting the virtual profile [3].

In [25] the authors indicate that ubiquitous computing advocates the con-
struction of massively distributed systems that can be deployed in heterogeneous
devices. These systems should take into account the users’ context, adapting
themselves to different situations. Therefore, they propose a middleware facili-
tating the development of context-aware agents.

In [22] the authors focused on the Ambient Intelligence environment. They
indicate that this environment covers a large number of devices and people. So,
in order to achieve a better scalability, they have defined a generic middleware
layer for transferring contextual information between devices.

Finally, at the business side and more related with the proof of concept
presented in this paper, the application Flo Music [8] allows people to create

134 J. Garcia-Alonso et al.

social playlists. These playlist can be used to sync nearby smartphones in order
to define the songs that should be played. They can be played on a smartphone
with a speaker plugged in or can be streamed to all smartphones connected
to the playlist and played on all of them. Although this application does not
automatically identify the songs that should be added to the playlist depending
on the users’ preferences, it proofs that the industry has a great interest in
combining the users’ preferences and needs in order to further automate different
social activities.

5 Conclusions and Future Work

Current IoT applications can be implemented to have a specific behaviour
depending on the users’ preferences and context. However, this adaptation is
limited to the behaviours defined in the development phase. In the future these
applications shall be fully self-adaptive and able to completely change their
behaviour, at run-time, to cover the needs of any user or any group of users,
and to use the capabilities of the new devices included in the system.

Here, we present the first implementation of the Situational-Context model in
the form of a Spotify based proof of concept. The goal of this implementation is
to demonstrate how the different challenges presented by the Situational-Context
can be addressed and, also, to show the kind of applications that can be built
under this model.

However, there is still much research needed around the Situational-Context
model. We are focusing our next efforts on generalizing the solutions for the
different challenges and analysing the impact of different communication tech-
nologies, such as LTE Direct, WIFI-Aware, etc.

Acknowledgments. This work was supported by the Spanish Ministry of Econ-
omy, Industry and Competitiveness (TIN2014-53986-REDT, TIN2015-67083-R and
TIN2015-69957-R (MINECO/FEDER)), by 4IE project (0045-4IE-4-P) funded by the
Interreg V-A España-Portugal (POCTEP) 2014-2020 program, by the Department of
Economy and Infrastructure of the Government of Extremadura (GR15098), and by
the European Regional Development Fund.

References

1. Spotify Web API. https://developer.spotify.com/web-api/
2. Berrocal, J., Garcia-Alonso, J., Canal, C., Murillo, J.M.: Situational-Context:

a unified view of everything involved at a particular situation. In: Bozzon, A.,
Cudre-Maroux, P., Pautasso, C. (eds.) ICWE 2016. LNCS, vol. 9671, pp. 476–483.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-38791-8 34

3. Berrocal, J., Garcia-Alonso, J., Vicente-Chicote, C., Hernández, J., Mikkonen, T.,
Canal, C., Murillo, J.: Early analysis of resource consumption patterns in mobile
applications. Pervasive Mob. Comput. 35, 32–50 (2016)

4. Caceres, R., Friday, A.: Ubicomp systems at 20: progress, opportunities, and chal-
lenges. IEEE Pervasive Comput. 1, 14–21 (2011)

https://developer.spotify.com/web-api/
https://doi.org/10.1007/978-3-319-38791-8_34

Seamless Interactions on the Internet of Things 135

5. Chen, G., Li, M., Kotz, D.: Data-centric middleware for context-aware pervasive
computing. Pervasive Mob. Comput. 4(2), 216–253 (2008)

6. Cook, D.J., Augusto, J.C., Jakkula, V.R.: Ambient intelligence: technologies, appli-
cations, and opportunities. Pervasive Mob. Comput. 5(4), 277–298 (2009)

7. Denis, C., Karsenty, L.: Inter-usability of multi-device systems: a conceptual frame-
work. Multiple user interfaces: Cross-platform applications and context-aware
interfaces, pp. 373–384 (2004)

8. FLO Music (2017). http://www.flomusic.com/
9. Gasparetti, F.: Personalization and context-awareness in social local search: state-

of-the-art and future research challenges. Pervasive Mob. Comput. 38, 446–473
(2016)

10. Gronli, T.M., Ghinea, G., Younas, M.: Context-aware and automatic configura-
tion of mobile devices in cloud-enabled ubiquitous computing. Pers. Ubiquitous
Comput. 18(4), 883–894 (2014)

11. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a
vision, architectural elements, and future directions. Future Gener. Comput. Syst.
29(7), 1645–1660 (2013)

12. Guillen, J., Miranda, J., Berrocal, J., Garcia-Alonso, J., Murillo, J.M., Canal, C.:
People as a service: a mobile-centric model for providing collective sociological
profiles. IEEE Softw. 31(2), 48–53 (2014)

13. Heo, S., Woo, S., Im, J., Kim, D.: IoT-map: IoT mashup application platform for
the flexible IoT ecosystem. In: International Conference on the Internet of Things,
pp. 163–170. IEEE (2015)

14. Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented programming. J.
Object Technol. 7(3), 125–151 (2008)

15. Hong, J.Y., Suh, E.H., Kim, S.J.: Context-aware systems: a literature review and
classification. Exp. Sys. App. 36(4), 8509–8522 (2009)

16. Kobsa, A.: Generic user modeling systems. User Model. User-Adap. Inter. 11(1–2),
49–63 (2001)

17. Kovatsch, M.: CoAP for the web of things: From tiny resource-constrained devices
to the web browser. In: ACM Conference on Pervasive and Ubiquitous Computing
Adjunct Publication. ACM, New York, pp. 1495–1504 (2013)

18. Löwe, R., Mandl, P., Weber, M.: Supporting generic context-aware applications for
mobile devices. In: IEEE International Conference on Pervasive Computing and
Communications Workshops (PERCOM Workshops), pp. 97–102, March 2013

19. Marzano, S.: The new everyday: Views on ambient intelligence. 010 Publishers,
Rotterdam (2003)

20. Miranda, J., Makitalo, N., Garcia-Alonso, J., Berrocal, J., Mikkonen, T., Canal,
C., Murillo, J.: From the internet of things to the internet of people. IEEE Internet
Comput. 19(2), 40–47 (2015)

21. NimBees. http://www.nimbees.com/
22. Olaru, A., Florea, A.M., Fallah Seghrouchni, A.: A context-aware multi-agent sys-

tem as a middleware for ambient intelligence. Mob. Netw. Appl. 18(3), 429–443
(2012). https://doi.org/10.1007/s11036-012-0408-9

23. Park, H.S., Oh, K., Cho, S.B.: Bayesian network-based high-level context recog-
nition for mobile context sharing in cyber-physical system. Int. J. Distrib. Sens.
Netw. 7(1), 650387 (2011)

24. Perera, C., Liu, C.H., Jayawardena, S., Chen, M.: Context-aware computing in the
internet of things: A survey on internet of things from industrial market perspec-
tive. CoRR (2015)

http://www.flomusic.com/
http://www.nimbees.com/
https://doi.org/10.1007/s11036-012-0408-9

136 J. Garcia-Alonso et al.

25. Ranganathan, A., Campbell, R.H.: A middleware for context-aware agents in ubiq-
uitous computing environments. In: Endler, M., Schmidt, D. (eds.) Middleware
2003. LNCS, vol. 2672, pp. 143–161. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-44892-6 8

26. Salvaneschi, G., Ghezzi, C., Pradella, M.: Context-oriented programming: a soft-
ware engineering perspective. J. Syst. Softw. 85(8), 1801–1817 (2012)

https://doi.org/10.1007/3-540-44892-6_8
https://doi.org/10.1007/3-540-44892-6_8

A Feedback-Based Adaptive
Service-Oriented Paradigm
for the Internet of Things

Yuji Dong1,2(B), Kaiyu Wan2, and Yong Yue2

1 University of Liverpool, Liverpool L69 3BX, UK
yuji.dong@liverpool.ac.uk

2 Xi’an Jiaotong Liverpool University, Suzhou 215123, China
{kaiyu.wan,yong.yue}@xjtlu.edu.cn

Abstract. With integrating physical devices into digital world, Internet
of Things (IoT) have presented tremendous potential in various differ-
ent application domains such as smart cities, intelligent transportation,
smart home, healthcare and industrial automation. However, current IoT
solutions and usage scenarios are still very limited because of the diffi-
culty in sensing the context in continuously changing environments and
adaptation to the changes accordingly. The complex dynamic interac-
tions between system components and physical environments are a bit
challenging especially when there are other concerns such as scalabil-
ity and heterogeneity. To solve this problem, a novel adaptive service-
oriented paradigm is proposed to support IoT from a low-level viewpoint.
The paradigm can overcome some disadvantages of REST (Representa-
tional State Transfer) architecture style in the IoT. Two classical exam-
ples are illustrated using the proposed paradigm by adding an extra con-
straint based on REST to improve system states verification and enhance
the functionality in modelling physical processes.

1 Introduction

IoT are envisioned to integrate the physical world into computer-based systems.
Recent years, with the advanced technique development on sensors, networking
and data processing etc., IoT have illustrated great potential in various different
fields [12]. However, even after decades of research on system aspects of the IoT,
developing IoT based systems is still facing many challenges on the high level
system requirements like scalability, inter-operability and fault tolerance [19].
Moreover, most of current IoT applications are coping with data collecting and
processing without involving many complex physical behaviours, because current
IoT solutions and usage scenarios are still very limited in modeling complex
behaviours in continuously changing physical environment.

Context adaptation plays an important role in continuously changing physi-
cal environment. Recent years, because of the rapid development of mobile com-
puting and big data, there are plenty of context-sensitive data in the IoT sys-
tems, therefore the context-awareness in IoT draws a lot of research attention.
c© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 137–148, 2018.
https://doi.org/10.1007/978-3-319-91764-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_11&domain=pdf

138 Y. Dong et al.

For example, there are many investigation on context-awareness in models [25],
architectures [7] and middlewares [6]. On the other hand, adaptation is more dif-
ficult than context-awareness. It is usually solved by constructing the feedback
loop [2] at different abstracting level like architectures [5], behaviour models [4]
and frameworks [22].

REST (Representational State Transfer) is a widely used architecture style
and also popular in the IoT fields because of its low entry barrier and scalability
merits. However, the REST architecture style was particularly designed for dis-
tributed hypermedia systems and it sometimes does not fit IoT requirements. In
particular, it is difficult for REST to provide complex operations and high level
abstraction, while in the IoT systems, the physical behaviours usually need com-
plex behaviour models which REST cannot provide. Therefore two main issues
arise, i.e., system states verification and physical behaviours implementation,
which we will discuss in more details in the Sect. 2.

To address these two issues, we propose the Feedback-based Adaptive Service-
Oriented Paradigm (FASOP) which can apply at the programming language level
to support context adaptation in the IoT systems. Furthermore, the FASOP can
be used to add more constraints in order to use the REST style in the IoT
systems to overcome these two limitations.

The rest of the paper is organised as follow. Section 2 explains the motivation
of the proposed approach. Then the definition and description of the FASOP is
presented in Sect. 3. In Sect. 4, the FASOP is applied in the REST as an extra
constraint. Section 5 illustrates a simple implementation of the FASOP and the
two cases discussed before are implemented with the FASOP to express the
advantages in Sect. 6. Finally, Sect. 7 compares some related works and Sect. 8
gives the conclusion and future work.

2 Motivation

The REST architecture style is one of the most successful architectures designed
for Web applications with the requirements including low entry barrier, extensi-
bility, distributed hypermedia, anarchic scalability and independent deployment
[11]. Many features of the REST architecture style can also benefit the IoT
system requirements like low entry barrier, decentralization, scalability, robust-
ness and easy deployment. For example, Guinard proposed the resource oriented
architecture for the web of things based on REST principles [13]. Furthermore,
many existing tools and techniques have supported the REST architecture style,
therefore it is easy to integrate with current web technologies. As a result, it has
been widely used in many IoT systems such as Intelligent Buildings [9], Smart
Homes [15], Smart Grids [17] and Smart Cities [20]. Among the 39 available IoT
platforms that are surveyed in [18], only 7 platforms do not have REST API.

However, using REST architecture style in the IoT systems may cause two
problems in the system states verification and physical behaviours implementa-
tion. Below we will use two examples to explain them respectively.

A Feedback-Based Adaptive Service-Oriented Paradigm for the IoT 139

2.1 Issue of System States Verification

To address the issue of system state verification, a scenario in the Smart Home is
used to explain how the REST style may cause a wrong system states verification.

The scenario is to turn on/off a lamp in a room. Assume there is a controller
for a lamp in the room, and it has two operations switchOn and switchOff. The
typical model and design with RESTful interface for this scenario could be as
Fig. 1. Based on the HTTP standards, if the response status code is “200 OK”,
the operation successes, and if the response status code is “5xx”, the operation
failed with service side error.

However, the problem is that even if the response of the status code “200
OK” is obtained, the whole operation cannot guarantee to be successful. The
returned “200 OK” only means the controller has been successfully triggered,
but the lamp may still be off for some unknown reasons, for example, due to the
network problem, so the returned status code cannot reflect the real situation.

This kind of problems can be fixed by other fault tolerance mechanisms in
middlewares, however, it makes the solution more complex with extra require-
ments on techniques and tools. Especially, some methodologies may break the
constraints in the REST style, and make it more difficult to model the system
states and behaviours.

This paper intends to provide a paradigm with feedback mechanism for better
system states verification in the IoT systems, so the services developed in the
IoT systems, especially in REST style, can be more accurate and reliable.

Fig. 1. Model and design with RESTful interface to turn on/off a lamp

2.2 Issue of Physical Behaviours Implementation

The second issue of physical behaviours implementation is a big problem for
developing REST style services in the IoT systems. More specifically, any imple-
mentation of continuously physical behaviours with REST style services can be
difficult, because the REST style services have limited operations (GET, POST,
PUT, DELETE) that cannot fully match the continuously changing physical
behaviours. Below we use a scenario of braking a car to explain the limitation.

140 Y. Dong et al.

Assume we need a braking service, which can brake a car based on current
conditions and decisions. This scenario cannot be modelled by a simple state
machine. The dynamic physical behaviours of the car can be expressed as follow:

ṡ =
ds

dt
= v, v̇ =

dv

dt
= a (1)

where s represents the passage within time t with the velocity v, and a is the
acceleration. From the REST style services development point of view, we need
the GET methods for three variables, s, v and a first, and a POST method to
call the brake service with parameters a and v and expected passing distance s.

However, it is impossible to ignore all disturbances and uncertainties in the
physical environments, so calling a simple brake service with parameters a and v
and expected passing distance s may cause unpredictable effects, that is, the real
passing distance s′ is far from s. Furthermore, it is very difficult to map the phys-
ical braking device to the braking service because quantitatively describing the
action is hard. To overcome the limitations of the open-loop controller, control
theory introduces feedback and a closed-loop controller that can use feedback to
control states or outputs of a dynamic system, and the Fig. 2 indicates the phys-
ical behaviour. However, the traditional REST style services cannot perfectly
implement this model.

Fig. 2. The model for braking service

The paradigm proposed in this paper can also be used to enhance the func-
tionalities of the REST to support more complex operations in physical world
in a natural way, because it fits the mathematical form of calculus.

3 Feedback-Based Adaptive Service-Oriented Paradigm

In the SOA based IoT systems, we distinguish three types of different services,
i.e., Virtual Service, Perceptive Service and Actuating Service. The three types
are evaluated by the interactive patterns from the service providers to the phys-
ical environment.

Virtual Service. Most of traditional software services are virtual services with
no interaction with physical environment. Even in IoT systems like smart
home, most of services are still virtual services which can store temperature
data or convert temperature from one unit to another, for example.

A Feedback-Based Adaptive Service-Oriented Paradigm for the IoT 141

Perceptive Service. Perceptive Services are usually provided by sensors and
responsible for detecting the physical environment. The perception provided
from the perceptive service can be temperature, pressure or vision etc.

Actuating Service. Actuating Services are expressed as services executing real
actions in the physical environment. For example, in smart home, turning
on/off a light or air condition are actuating services.

An interface I of a service SP , denoted by Is is defined by a signature and
a behavioral model. In the IoT, for any given Actuating Service, its interface
Iac can be specified by context, signature and behavioral model. Context defines
information depending on service requesters and service environment. Signature
corresponds to operation profiles provided by the actuating service. Behavioral
model is represented by Petri nets to describe the adaptive pattern.

Definition 1 (Context). We define the context as a typed relation [24], a set
of ordered pairs of (d, x) where d is a dimension, Td is the type of d and x : Td.
Let D denote the set of all possible dimensions, and T = Td|d ∈ D be the set of
types associated with the dimensions. A context c is a finite relation {f(d, x)|d ∈
D ∧ x : Td}. The degree of the context c is |dom c|.
Definition 2 (Signature). A Signature is a set of operation profiles. An oper-
ation profile is the description of an operation containing the name of an oper-
ation, with its argument types and its return type. For the actuating service
interface Iac, its signature is defined by a tuple < Oas, Ops, Γ >, where Oas is
a set of operation profiles provided by the actuating service and Ops is a set of
dependent operation profiles provided by other perceptive services. Γ is the func-
tion Γ : Oas → Ops. For any single operation profile oas ∈ Oas, it has a set
of callable operations from other perceptive services Ops′ ⊆ Ops and Ops′ �= ∅,
which is defined as γ ∈ Γ : oas → Ops′

, Ops′ �= ∅.
Definition 3 (Behavioral Model). The behaviour in the service can be mod-
elled as a Petri net SN = < P, T, F, i, o >, where P and T are disjoint sets of
places and transitions. Places represent states that contain tokens with multiple
attributes, and transitions represent activities that can be guarded; transitions
are fired when all the tokens in the corresponding input places arrive. Places and
transitions are connected through arcs.

Definition 4 (Service Interface). A service interface is a tuple < CP, S,B >,
where: CP is a context profile, and S is a signature with its corresponding
behaviour model B.

The behavioural model of FASOP is represented as a Petri net to indi-
cate the atomic operation in Actuating Services. As shown in the left side of
Fig. 3, before applying the paradigm, t1 is a transition provided by the Actu-
ating Service and p1, p2 are pre-condition and post-conditions of t1 respec-
tively. From the process point of view, if the operation in t1 is a function call
< result : func(params...) >, then p1 is to map the function name func and

142 Y. Dong et al.

p1

t1

p2

p′
1

t′1 p′
2

t′2

p′
3t′3

p′
4

apply the
paradigm

from another
perceptive service

Fig. 3. The Petri Net behavioural model for an actuating service

parameters (params...), and p2 is to check the return value result. However, if
the < result : func(params...) > has any action in physical environment, it is
nearly impossible to guarantee all post-conditions from the programming lan-
guage level, because the post-conditions of t1 may contain some physical effects
that cannot be detected by the Actuating Service itself.

In our approach, the proposed paradigm is a mechanism with feedback mech-
anism to solve this problem at the programming language level. Feedback control
is a central element of control theory, and the importance in self-adaptive sys-
tems has already been discussed in [2].

Among the three types of the services in IoT, the feedback loop can be
constructed by Actuating Services and Perceptive Services. A service signa-
ture explicitly exposed by a Actuating Service is a set of operations that need
to declare reachable Perceptive Services with specific operations. For a single
operation profile, it is expressed as shown in Table 1. Then, any service call to
funcAS has to pass all required parameters including context information and
at least one extra service call as an available Perceptive Service. The behavioural
model is at the right side of the Fig. 3. The service call at t1 is changed from
< result : func(params...) > to < result : func(params..., PS.funcPS, t) >,
which contains another function funcPS from another Perspective Service and
the latency time t which is the waiting time to get the feedback perceptions. In
this way, the verification for post-conditions is more reasonable, since the post-
conditions with physical properties can be verified through the perceptions of
the physical environment by the Perceptive Services. With this new paradigm,
the place p′

2 can verify whether the operation func is operated successfully and
place p′

4 can eventually check if the operation func has desired behaviours based
on the perceptions. In Fig. 4, a sequence diagram shows the detailed processes
from the implementation perspective.

A Feedback-Based Adaptive Service-Oriented Paradigm for the IoT 143

observe(t)

env(context)

envChange

op(context,env(context),t)

result

sysComponent: actuation: perception:

Fig. 4. Sequence diagram for calling a actuating service

Table 1. A Single operation format in actuating service

Operation name funcAS

Parameters p1, p2, ..., pn

Available operations PS1.op1, PS2.op1, PS2.op2, ..., PSi.opj

4 Extending REST for the IoT Based on FASOP

In [10], an example of using REST-based architecture server to control a robot
is presented. The author concluded that REST sometimes is inconvenient com-
pared to other RPC style web services because it does not have any function-
alities like callbacks to support complex modelling with the states. The key
problem is that keeping all required information in a single request to model
physical behaviour while keeping stateless interactions is difficult. In physical
environment, most of the continuously physical behaviours are modelled based
on differential equations so it needs at least two states to express a continuous
physical behaviour. Therefore at least two states in the response are needed to
model the physical behaviours in any single request. With the FASOP, any sin-
gle service call to an Actuating Service actually becomes a transaction, so all
required information can be wrapped up to model physical behaviours within
one request. This paradigm can be simply converted to an extra constraint for
the REST and the new constraint is expressed as follow:

– Any operation from the Actuating Services has to operate in a complete
feedback loop containing the perception to physical environment and the
response need to have at least two states of the requested entity.

The high-level model we use for IoT systems is based on [16], which is defined
as a tuple RS = 〈R, I,B, η, C,D,∼, OPS,RETS〉, where R is a set of resources;
I is a set of resource identifiers; B ⊆ I is a finite set of root identifiers; η : I → R is
a naming function, mapping identifiers to resources. C is a set of client identifiers
and D is a set of data values, with an equivalence relation ∼⊆ (D ×D); OPS is

144 Y. Dong et al.

a finite set of methods; and RETS is a finite set of return codes. The detailed
model is similar as the model provided by [21], where the only difference is for
modelling services for actuators.

Resource identifiers are modelled as URIs, represented as the following
scheme:

URI = scheme : [//host[: port]][/]path[?query][#fragment]

The descriptions of a service can be obtained by sending a GET to a partic-
ular resource via URI. Most of the service calls are at protocol level via message
delivery and the main difference is on the Actuating Service calling. The request
to an Actuating Service needs to contain at least one available Perspective Ser-
vice operation.

5 Implementation Methods

In this section, we will use Java web service to express a simple implementation
of this paradigm.

Based on the former definition in Sect. 3, the services in the IoT systems are
concluded as: Virtual Service, Perceptive Service and Actuating Service. Since
Virtual Service is just normal web service, we develop two extra interfaces: Per-
ceptiveService and ActuatingService. To hide many network details, we assume
all the services can remotely call another service from a different device based on
RPC framework or Actor model [1]. Figure 5 indicates a basic example of these
two interfaces.

Fig. 5. The basic class diagram of the two physical interfaces

The main purpose of the interface design is to do type checking in the devel-
opment. By using annotation in Java, we can restrict the developer to include at
least one PerceptiveService as a parameter in any Actuating Service annotated
by @WithFeedback. However, the type checking at this level needs to remotely
call a method, if you want to use the JAX RS (Java API for RESTful Web Ser-
vices) [14] standard to develop REST style services, the parameters are all String
type for the services mapped from the URI, thus you cannot do type checking

A Feedback-Based Adaptive Service-Oriented Paradigm for the IoT 145

to confirm the PerceptiveService as a parameter. In this case, you need to check
the PerceptiveService in the function of the service.

The implementation is only a lightweight version of the FASOP implementa-
tion, because we need to extend the HTTP or CoAP (Constrained Application
Protocol) to fully support the FASOP, which is considered as a part of future
work.

6 Case Studies

In this section, we use the two examples in the motivation section to illustrate
the advantages of the FASOP.

6.1 Turn On/Off a Lamp in the Smart Home

For the scenario in the Smart Home to turn on/off a lamp in a room, the issue
is that the response status code cannot express the correct system status. To
solve this problem, we use the FASOP to modify the original approach and the
changes are as follow:

Function: switchOn() → switchOn(PerspectiveService,t)
URI: /room1/controller1/switchOn
→ /room1/controller1/switchOn/?perceptiveservice=lightsensor&time=1 s
Method: POST
The implementation details are expressed in Fig. 6. In this implementation, the
successful status code correctly reflects a guaranteed successful confirmation.

Fig. 6. Implementation sample of using FASOP to turn on a lamp

6.2 Brake an AutoDriving Car

Compared to the traditional REST style development, the FASOP can help to
transfer the physical behaviour model to software development in a more natural
way. Below we use the example introduced in Sect. 2 to explain how the FASOP
can help to transfer physical behaviour model to software development.

146 Y. Dong et al.

Based on the Eq. 1, in a very short time Δt = t′ − t, we have the following
form of the equation:

ṡ =
ds

dt
=

s′ − s

t′ − t
= v, v̇ =

dv

dt
=

v′ − v

t′ − t
= a =

s′ − s

(t′ − t)2

With the traditional REST style service development, it is very difficult to
quantitatively evaluate and analyze acceleration. However, the FASOP can fit
the closed-feedback model, thus the exact acceleration value can be easily eval-
uated via the distance and time. Furthermore, we can continuously change the
acceleration via braking physically and all effect can be evaluated though the
service in real-time. The function of this braking service can be as follow:
Function: braking(PerspectiveService,t)
URI: /car/brake/braking/?perceptiveservice=distancesensor&time=1 ms
Method: POST
In any moment, with this braking service, we can also predict the future pass-
ing distance sf during the time period tf . The predication can be based on:
s = v ∗ t − a∗t2

2 if the acceleration keeps the same.

7 Related Works

There are many researches on the development of the IoT systems to support
context-awareness and adaptation. In [23], a platform is developed as Con-
textServ to simplify the development of context-aware Web services adopt-
ing high-level modelling language. In [3], a design for adaptation approach is
proposed to support the development, deployment and execution of systems
in dynamic environments by exploiting service refinement and re-configuration
techniques. In [22], the MAPE-K feedback loop is used to support a synchroniza-
tion and adaptation mechanism for real world process as a process-based frame-
work. It uses a different perspective from combining processes’ virtual world and
real world effects to build self-adaptive IoT systems. The work can achieve a high
level of autonomy and resilience against failures for physical world process. In
[8], the authors provide the methodology of using model-based service oriented
architecture with service composition to support self-adaptation. The work is
solid and also provides fault tolerance mechanism. In [4], the service adaptation
is achieved using service composition for automatic reconfiguration based on the
rich interface specifications. Following this idea, they used the Discrete Time
Markov Chains in a language to describe the impact of adaptation tactics and
the assumption about the environment.

Our approach is a paradigm that can be used in the current service based
technologies, especially for a widely used style of REST. Because of the special
constraints of the REST style, the REST style services are not very suitable
for context-adaptation in the IoT system. Compared to others’ work, we used a
different perspective of designing the Feedback-based Adaptive Service-Oriented
Paradigm to support context-adaptation in service development, especially for

A Feedback-Based Adaptive Service-Oriented Paradigm for the IoT 147

REST style service development which rarely supported the context-adaptation.
Furthermore, we proved that this paradigm can overcome two issues in using
REST style services in the IoT systems.

8 Conclusion and Future Work

The two issued caused by using the REST style services in the IoT systems are
from the lack of developing the complex behaviour models in the REST style.
To overcome the problem, we proposed the Feedback-based Adaptive Service-
Oriented Paradigm to provide the context-adaptation ability at low level for
service development, therefore the REST style services can implement complex
behaviour processes based on the context-adaptation.

The implementation in this paper is a simplified version to use the current
web technologies. To fully implement the FASOP in the REST style, we plan to
develop a protocol by extending the HTTP or CoAP (Constrained Application
Protocol) based on REST model. In addition, in the future we will also develop
and deploy this paradigm in some real IoT systems.

References

1. Agha, G.A.: Actors: A model of concurrent computation in distributed systems.
Technical report, Massachusetts Inst of Tech Cambridge Artificial Intelligence Lab
(1985)

2. Brun, Y., Di Marzo Serugendo, G., Gacek, C., Giese, H., Kienle, H., Litoiu, M.,
Müller, H., Pezzè, M., Shaw, M.: Engineering self-adaptive systems through feed-
back loops. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J.
(eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 48–70.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02161-9 3

3. Bucchiarone, A., De Sanctis, M., Marconi, A., Pistore, M., Traverso, P.: Design
for adaptation of distributed service-based systems. In: Barros, A., Grigori, D.,
Narendra, N.C., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol. 9435, pp. 383–393.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48616-0 27

4. Camara, J., Canal, C., Salaün, G.: Behavioural self-adaptation of services in ubiq-
uitous computing environments. SEAMS 9, 28–37 (2009)

5. Cámara, J., Lopes, A., Garlan, D., Schmerl, B.: Adaptation impact and environ-
ment models for architecture-based self-adaptive systems. Sci. Comput. Program.
127, 50–75 (2016)

6. Caporuscio, M., Raverdy, P.G., Issarny, V.: ubiSOAP: a service-oriented middle-
ware for ubiquitous networking. IEEE Trans. Serv. Comput. 5(1), 86–98 (2012)

7. Chen, H., Finin, T., Joshi, A., Kagal, L., Perich, F., Chakraborty, D.: Intelligent
agents meet the semantic web in smart spaces. IEEE Internet Comput. 8(6), 69–79
(2004)

8. Cubo, J., Canal, C., Pimentel, E.: Model-based dependable composition of self-
adaptive systems. Informatica 35, 51–62 (2011)

9. Dinh, N.T., Kim, Y.: Restful architecture of wireless sensor network for building
management system. KSII Trans. Internet Inf. Syst. (TIIS) 6(1), 46–63 (2012)

https://doi.org/10.1007/978-3-642-02161-9_3
https://doi.org/10.1007/978-3-662-48616-0_27

148 Y. Dong et al.

10. Esteller-Curto, R., Cervera, E., del Pobil, A.P., Marin, R.: Proposal of a rest-
based architecture server to control a robot. In: Sixth International Conference
on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), pp.
708–710, July 2012

11. Fielding, R.T.: Architectural styles and the design of network-based software archi-
tectures. Ph.D. thesis, University of California, Irvine (2000)

12. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a
vision, architectural elements, and future directions. Future Gener. Comput. Syst.
29(7), 1645–1660 (2013)

13. Guinard, D., Trifa, V., Wilde, E.: A resource oriented architecture for the web of
things. Internet of Things (IOT) 2010, 1–8 (2010)

14. Hadley, M., Sandoz, P.: Jax-rs: JavaTM api for restful web services. Java Specifi-
cation Request (JSR) 311 (2009)

15. Kim, S., Hong, J.Y., Kim, S., Kim, S.H., Kim, J.H., Chun, J.: Restful design and
implementation of smart appliances for smart home. In: Ubiquitous Intelligence and
Computing, IEEE 11th Intl Conf on and IEEE 11th Intl Conf on and Autonomic
and Trusted Computing, and IEEE 14th Intl Conf on Scalable Computing and
Communications and Its Associated Workshops (UTC-ATC-ScalCom), pp. 717–
722. IEEE (2014)

16. Klein, U., Namjoshi, K.S.: Formalization and automated verification of RESTful
behavior. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
541–556. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1 43

17. Meloni, A., Atzori, L.: A cloud-based and restful internet of things platform to
foster smart grid technologies integration and re-usability. In: IEEE International
Conference on Communications Workshops (ICC), pp. 387–392. IEEE (2016)

18. Mineraud, J., Mazhelis, O., Su, X., Tarkoma, S.: A gap analysis of internet-of-
things platforms. Comput. Commun. 89, 5–16 (2016)

19. Mukhopadhyay, S.C. (ed.): Internet of Things. SSMI, vol. 9. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-04223-7

20. Paganelli, F., Turchi, S., Giuli, D.: A web of things framework for restful appli-
cations and its experimentation in a smart city. IEEE Syst. J. 10(4), 1412–1423
(2016)

21. Prehofer, C.: Models at rest or modeling restful interfaces for the internet of things.
In: IEEE 2nd World Forum on Internet of Things (WF-IoT), pp. 251–255. IEEE
(2015)

22. Seiger, R., Huber, S., Heisig, P., Assmann, U.: Enabling self-adaptive workflows for
cyber-physical systems. In: Schmidt, R., Guédria, W., Bider, I., Guerreiro, S. (eds.)
BPMDS/EMMSAD -2016. LNBIP, vol. 248, pp. 3–17. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-39429-9 1

23. Sheng, Q.Z., Pohlenz, S., Yu, J., Wong, H.S., Ngu, A.H.H., Maamar, Z.: Con-
textserv: A platform for rapid and flexible development of context-aware web
services. In: Proceedings of the 31st International Conference on Software Engi-
neering, pp. 619–622. ICSE’09, IEEE Computer Society, Washington, DC (2009).
https://doi.org/10.1109/ICSE.2009.5070570

24. Wan, K.: A brief history of context. Int. J. Comput. Sci. Issues 6(2), 33–42 (2009)
25. Yanwei, S., Guangzhou, Z., Haitao, P.: Research on the context model of intelligent

interaction system in the internet of things. In: International Symposium on IT in
Medicine and Education (ITME), vol. 2, pp. 379–382. IEEE (2011)

https://doi.org/10.1007/978-3-642-22110-1_43
https://doi.org/10.1007/978-3-642-22110-1_43
https://doi.org/10.1007/978-3-319-04223-7
https://doi.org/10.1007/978-3-319-39429-9_1
https://doi.org/10.1109/ICSE.2009.5070570

QoS Prediction for Reliable Service
Composition in IoT

Gary White(B), Andrei Palade, and Siobhán Clarke

School of Computer Science and Statistics, Trinity College Dublin, Dublin, Ireland
{whiteg5,paladea,siobhan.clarke}@scss.tcd.ie

Abstract. An Internet of Things (IoT) environment should respond
to users’ requirements by providing access to a number of component
services, which can be used to create applications. To meet quality of
service (QoS) requirements, these applications must be able to auto-
matically adapt to changes in the QoS of their component services. In
this paper we show how matrix factorisation (MF) based collaborative
filtering can be used in a self-managing, goal-driven service model for
task execution in the IoT. QoS prediction enables the goal-driven model
to make adaptation decisions, allowing execution paths to dynamically
adapt. This reduces failures and lessens re-execution effort for failure
recovery. Results based on a QoS dataset show the suitability of the pro-
posed mechanism in IoT, where providers are mobile and QoS values of
services can change.

1 Introduction

The development of Internet of Things (IoT) technology has made it possible
to connect various smart objects together through a number of communication
protocols. The number of connected devices is predicted to grow to between 26
and 50 billion connected devices by 2020 [1,2]. These devices will lead to a wide
variety of services from multiple sources such as home applications, surveillance
cameras, monitoring sensors and actuators [3]. These services could potentially
be used in applications in many different domains including smart cities, home
automation, industrial automation, medical aids and many others [4].

IoT applications make use of these services typically through a Service Ori-
ented Architecture (SOA), where the services from the devices are discover-
able, accessible and reusable in an IoT environment [5,6]. An application can be
created by a combination of multiple services and flexible service composition,
which is useful to tackle potentially complex requests. There are a number of
challenges associated with the environment’s openness and dynamism, such as
flexible service composition for services maintained by different hosts and adapt-
able composites to create a new service composition when the network topology
changes the QoS of services in the environment. To address these challenges,
existing works in service composition have used goal-driven reasoning mecha-
nisms to achieve the user’s complex goal, and classic AI backward-chaining to
map the request to services available in the environment [7,8].
c© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 149–160, 2018.
https://doi.org/10.1007/978-3-319-91764-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_12&domain=pdf

150 G. White et al.

Apart from the functional requirements, a key requirement for service com-
position and adaptation in the IoT is to choose the correct set of services,
which can also satisfy the non-functional requirements [9]. Traditional compo-
sition approaches assume that the QoS values are already known, however in
reality user side QoS may vary significantly due to unpredictable communica-
tion links, mobile service providers moving out of range and the heterogeneous
provider environment [10]. Collaborative filtering uses the QoS values from other
users in the environment to make predictions for candidate services [11,12]. This
allows for more accurate selection of the best service based on the non-functional
requirements such as response time and throughput [13]. This can happen either
before, or during the execution, if the QoS of the currently executing service
begins to degrade. This is especially important for safety critical services such
as those in healthcare, which have strict QoS requirements and where a service
failing can have a serious impact.

In this paper we propose an approach for the self-management of dependable
systems using collaborative filtering and goal oriented service composition [7],
and present our initial results on an established QoS dataset. The remain-
der of the paper is organised as follows: Sect. 2 describes the background and
related work, Sect. 3 presents the QoS-driven service composition and execution.
Section 4 describes the experimental setup and Sect. 5 presents the results of the
experiments. Section 6 outlines the conclusions and future work based on the
results of the paper.

2 Background and Related Work

2.1 Decentralised Service Execution

Service composition is used to create complex applications based on available
services provided by the devices in the environment. Dynamic service compo-
sition becomes increasingly difficult in IoT where there are a large number of
available service providers, which rely on battery-powered, resource-constrained
and potentially mobile devices to provide their services [14]. These devices can
dynamically change their state due to poor wireless links, awake/sleep duty
cycles or battery shortage [3]. In such an environment, a centralised mecha-
nism is a single point of failure, which affects the reliability of the compo-
sition [15]. Recent works have used decentralised composition models to dis-
tribute the reconfiguration decisions across composition participants at runtime
to improve the resilience and performance of the composition [7].

In previous work, we define a service composition mechanism that uses a
goal-driven reasoning approach to model the capabilities of service providers
in the environment and dynamically bind their offered services to an abstract
composition request [8]. Apart from functional requirements and resilient execu-
tion, a service composition mechanism needs to satisfy the users’ non-functional
requirements. This requires QoS management to select the best set of concrete
services in a composition and to replace these services if the QoS requirements
of the application are not satisfied [16]. Most QoS-aware service composition

QoS Prediction for Reliable Service Composition in IoT 151

approaches assume that the QoS values of service candidates are already known
and usually are provided directly by service providers or through third-party
registries (e.g., UDDI) [17]. A service provider cannot give user-specific QoS as
it can vary based on the user location and time of invocation [10]. Users can
store their user-side QoS in the service registry and use the QoS values from
other users in the environment to make predictions for unknown QoS values by
collaborative filtering.

2.2 QoS Prediction

Traditional QoS prediction approaches in IoT have focused on the QoS predic-
tion of currently executing services through time-series analysis [18–20]. These
approaches rely on the user executing the service to generate the values, which
can be used for time-series prediction. However, they make no estimates for the
QoS values of candidate services, which could be switched to at runtime. This
is a problem in IoT as due to the large number of candidate services it would
be too time consuming to invoke even a subset of the functionally equivalent
services during a runtime service composition.

An alternative approach to predicting QoS, inspired from recommender sys-
tems, is to use QoS information of similar users to make predictions about the
QoS from possible services, by collaborative filtering [11,21]. These approaches
use matrix factorisation to allow the user to receive QoS predictions of services
that they have not invoked, based on QoS values from similar users. Using the
QoS from other similar users gives more information about candidate services,
which can be chosen either at design time or during runtime service execution.
This also has the additional benefit that we can gather the QoS information with-
out harming the performance of the infrastructure with needless invocations of
services to retrieve QoS values.

Some existing service composition approaches use collaborative QoS pre-
diction in a cloud environment and only consider web services [21,22]. Other
mechanisms have used QoS prediction at design time to estimate changes in the
QoS values at runtime [23]. We propose that these approaches can be used at
the edge of the network in a heterogeneous IoT environment with services from
a number of different devices.

3 QoS-Driven Service Composition and Execution

Figure 1 shows our middleware architecture, which is introduced in this section
with focus on the Service Composition & Execution Engine and the QoS
Monitor [8]. The main components are the Request Handler (RH), the Service
Registration Engine (SRE), the Service Discovery Engine (SDE), the QoS Moni-
tor and the Service Composition & Execution Engine (SCEE). The RH establishes
a request/response communication channel with the user and forwards the request
to the other middleware components. The SRE registers the available services in
the environment. The SDE uses the backward-planning algorithm to identify the

152 G. White et al.

Fig. 1. Middleware architecture

concrete services, which can be used to satisfy the request and sends this list of
services to the SCEE. The QoS monitor is used to monitor these services and can
predict possible candidate services to switch to if one of the services begins to
degrade, using the prediction engine. The SCEE will use these services to create
a response for the request. This process as well as how it manages the execution
in a dynamic IoT environment is explained in the following section.

3.1 Service Composition and Execution

The SCEE is responsible for the composition and execution of services discovered
by the SDE. Figure 2b illustrates a list of available services in the environment
identified to satisfy a user request, which was received from the RH. These
services are retrieved by the RH from the environment in Fig. 2a, with services
provided from different service types including web services (WS), wireless sensor
networks (WSN), and autonomous service providers (ASP), who are independent
mobile users with intermittent availability. The SCEE creates a list of service
flows based on the concrete service providers received from the SDE. The flows
are then merged based on the service description. If two or more services in the
flow have the same input, the SCEE creates a guidepost to enable the invocation
of one of these services based on QoS requirements (see Fig. 2b).

An execution guidepost G = {Rid, D} is a split-choice control element of the
composition process and maintains a set of execution directions D for a composi-
tion request Rid. These execution directions will be referred to as branches. Each
element in the set D is defined dj = {id, w, q} where j ≤ |D|. The set w repre-
sents the services in the branch and id represents the identifier of the branch. The
value q reflects the branch’s aggregated QoS values [7], which can be calculated
according to predefined formulas [24]. The branch that maximises/minimises an
objective function will be selected by the guidepost during execution.

QoS Prediction for Reliable Service Composition in IoT 153

Fig. 2. Sample QoS data

In this work, we consider the response time and throughput of each branch.
The formula in Eq. 1 calculates the response time by aggregating the response
time value of each component service in a sequential flow [24]. In this formula,
rti is the response time of service i. The throughput value is calculated using
the formula in Eq. 2, which selects the lowest throughput min(thi) offered by
the services in a sequential flow [24]. These formulas require the response time
and throughput values of each service component in the flow to calculate the
aggregate values. It is possible that these values could not be calculated if the
required QoS data is missing or is out-of-date.

Response T ime (RT) =
n∑

i=1

rti (1)

Throughput (T) = min(thi) (2)

To address this problem, the QoS monitor uses QoS prediction to predict
QoS values across each branch stored in the guidepost. Figure 2b shows the
flows created by the SCEE for User 4 (U4 in Fig. 3). The response time values
recorded during service discovery phase were 0.34 s for service provider WS2,
0.34 s for WS1 and 0.23 s for ASP1. The response time values for WSN1 and
ASP3 were not recorded. When the execution reaches Guidepost G, we can only
aggregate the response time values for Branch 1 (Part 1 in Fig. 2b), which is
not optimal. If the composition selects the branch with the lowest reported QoS
values, it will select Branch 3, which is also not optimal. Only when we use the
predicted values for the missing service QoS does the composition choose the
optimal Branch 2 (Part 2 in Fig. 2b).

154 G. White et al.

3.2 Collaborative QoS Prediction

Accurate QoS prediction of candidate services is a fundamental component of
goal driven service composition. Incorrect predictions may cause compositions
and adaptations to have worse QoS, which could lead to SLA violations. On-line
prediction approaches have been proposed to detect service failure and QoS devi-
ations of the currently executing services [25,26]. Other approaches propose to
collecting QoS values by invoking the candidate services, but this is not scalable
in IoT due to the large amount of candidate services [27].

Fig. 3. Demonstration of QoS prediction in IoT

To provide QoS values on m IoT services for n users, one needs to invoke
at least n × m services, this is almost impossible in an IoT environment where
we expect a large number of services and users. Without this QoS information,
the service execution engine cannot select the optimal components based on
their QoS and must make a choice based on whatever QoS values are available.
This leads to choosing potentially non-optimal services, which can cause service
degradation at runtime and service execution errors. Figure 4 shows that the
same service can have different values even for the same quality factors such
as response time and throughput for different users and comes from a real life
dataset [10].

We use collaborative filtering, which identifies users who share similar charac-
teristics (e.g., location, response time, etc.) to make predictions of what QoS they
will receive when executing a service. The QoS value of IoT service s observed
by user u can be predicted by exploring the QoS experiences from a user similar
to u. A user is similar to u if they share similar characteristics, which can be
extracted from their QoS experiences on different services by collaborative filter-
ing. By sharing local QoS experience among users these approaches can predict
the QoS value of a range of IoT services including ASP, web services and WSN
even if the user u has never invoked the service s before [28].

We give a demonstration based on a subset of the implementation in Fig. 2a,
where we have a number of different service providers, who are able to pro-
vide functionally equivalent services from heterogeneous devices. We model this
as a bipartite graph G = (U ∪ S,E), such that each edge in E connects a
vertex in U to S. Let U = {u1, u2, ..., u4} be the set of component users and

QoS Prediction for Reliable Service Composition in IoT 155

S = {ASP1, ASP2, ...,WSN2} denote the set of IoT services and E (solid lines)
represent the set of invocations between U and S. Given a pair (i, j), ui ∈ U and
cj ∈ S, edge eij corresponds to the QoS value of that invocation. Given the set
E the task is to predict the weight of potential invocations (broken lines).

We visualise the process of matrix factorisation for the demonstration in
Fig. 3b, in which each table entry shows an observed weight in Fig. 3a. By using
the latent factor model [29] a number of algorithms first factorise the sparse
user-component matrix and then use V TH to approximate the original matrix,
where the low-dimensional matrix V denotes the user latent feature space and
the low-dimensional matrix H represents the low-dimensional item latent feature
space. The latent feature space represents the underlying structure in the data,
computed from the observed features using matrix factorisation. As the matrices
V and H are dense it is then possible to use a neighbourhood-based collaborative
method, as shown in Fig. 3c.

0 100 200 300
User ID

0

5

10

15

20

R
es
po
ns
e
T
im

e
(s
)

Service 1
Service 2
Service 3

(a) Response Time for Users

0 100 200 300
User ID

0

20

40

60

80

T
hr
ou
gh
pu

t
(k
bp

s)

Service 1
Service 2
Service 3

(b) Throughput for Users

Fig. 4. Sample QoS data

4 Experimental Setup

4.1 Dataset Description

Invoking thousands of IoT services in the wild is difficult because some of the ser-
vices may have limited range and may not be publicly available on the Internet.
To evaluate the prediction quality of these approaches, we use a QoS dataset,
which consists of a matrix of response time and throughput values for 339 users
by 5,825 services [10], which would be provided by the monitoring component.

4.2 Metrics

The predictive composition process uses the predicted values generated through
collaborative filtering to choose the optimal flow. The composition process with-
out the predicted values has access to the percentage of QoS values given by the

156 G. White et al.

matrix density. Once the optimal flow has been selected we report the actual
values based on the original data. Two metrics are considered in this work:
response time and throughput. The response time for each branch is aggregated
using Eq. 1. The branch which has the lowest response time is used in the com-
position. The throughput value for each branch is aggregated using Eq. 2. The
branch which has the highest throughput is used in the composition.

4.3 Performance Comparison

We compare the performance of the flow generated using the predicted values
from the CloudPred collaborative filtering algorithm to the flow generated using
no predicted values [11]. We show the optimal service composition to compare
how each of the compositions approach the optimal solution. To evaluate this, we
divided the available set of 5,825 services for each user into sub-sets of services
each of size 50. We used each sub-set to create branches that can be used in a
guidepost. The number of services in a branch was set to 20. The value of each
branch was calculated by aggregating the QoS value assigned to each service
in the branch. These values were stored in the guidepost and used for branch
selection during composition execution. The branch selection uses a function,
which minimises the response time and maximises the throughput. This allows
the branch with the smallest response time to be selected and follow the execu-
tion of the guidepost. We conducted the experiment for a number of different
matrix densities from 10% to 90% to show how the results of both approaches
change as they get access to more data about the users. The results are shown
for 1 user and an aggregation of 100 different users.

5 Results

Figure 5a and b illustrate the response time of service composition, with and
without prediction, for 1 and 100 users. In Fig. 5a we see the response time results
for a number of different matrix densities for one user. In this case the prediction
composition shows a large improvement compared to the composition that has
no prediction. As the matrix density increases we can see that the composition
without prediction gets closer to the optimal value as it has access to more QoS
values. Figure 5b shows the response times for the service flows averaged over
100 users. This graph follows the same trend as one user with a larger difference
in response time between the composition approaches.

Figure 5c and d show how QoS prediction affects the throughput of the com-
posed services. Figure 5c shows the results for one user, when the density is
less than 20% the prediction approach shows a clear improvement with a greater
throughput value. However at 30% density, we see that composition without pre-
diction actually performs better than the predictive approach. When the matrix
density is greater than 40%, both approaches are able to find the optimal com-
position. Figure 5d shows the throughput values averaged over 100 users. In this
case, we can see that the predictive approach has a much larger throughput

QoS Prediction for Reliable Service Composition in IoT 157

10% 20% 30% 40% 50% 60% 70% 80% 90%
Matrix Density

0

20

40

60

80
Fl
ow

R
es
po
ns
e
T
im

e
Response Time 1 User

No prediction
Prediction
Optimal

(a)

10% 20% 30% 40% 50% 60% 70% 80% 90%
Matrix Density

0

20

40

60

80

100

Fl
ow

R
es
po
ns
e
T
im

e

Response Time 100 Users
No prediction
Prediction
Optimal

(b)

10% 20% 30% 40% 50% 60% 70% 80% 90%
Matrix Density

0

10

20

30

40

50

60

Fl
ow

T
hr
ou
gh
pu

t

Throughput 1 User

No prediction
Prediction
Optimal

(c)

10% 20% 30% 40% 50% 60% 70% 80% 90%
Matrix Density

0

10

20

30

40

50

Fl
ow

T
hr
ou
gh
pu

t

Throughput 100 Users

No prediction
Prediction
Optimal

(d)

Fig. 5. Impact of prediction on service composition flows

value than the approach without prediction when the density is less than 80%.
When the matrix density is greater than this, the composition without prediction
improves and almost reaches the optimal throughput value.

5.1 Threats to Validity

To assess the validity of the results, we take into account areas where bias
could have been introduced, following the guidelines introduced by Peterson and
Gencel [30]. In particular, we consider the interpretive validity and repeatability
of the experiments.

Interpretive Validity. The interpretive validity is the extent to which the con-
clusions from the experiments are reasonable given the data. In the results section
we present the results for each of the matrix densities to allow the reader to val-
idate the conclusions. We show the results for an individual user as well as an
aggregation of 100 users to show a comprehensive evaluation of the approaches.

Repeatability. Repeatability allows for the complete repetition of the experi-
ment to verify the results and requires detailed reporting of the research method.

158 G. White et al.

In the experimental setup section, we give a detailed description of the data, met-
rics and the approaches that were used. In Sect. 3 we describe the goal-driven
composition algorithm and collaborative filtering algorithm, which allows for the
repeatability of the experiment to validate the results. The goal-driven service
composition mechanism was introduced by Chen et al. [7] and an implementa-
tion of this mechanism in an IoT scenario is presented in our previous work [8].
This should enable future proposals to reproduce our results and develop new
QoS prediction models for service composition in a decentralised setting based
on our source code, which is available on request. In future work we will test the
prediction composition in a real life environment, which although reducing the
repeatability will increase the internal validity of the results.

6 Conclusion and Future Work

The results of the experiments have a number of interesting conclusions, which
can be used to outline future work. The results from the response time dataset
are encouraging with predictive composition showing clear improvement over all
the matrix densities. For the throughput dataset, the predictive approach showed
clear improvement for low matrix densities (<= 80%) when averaged over 100
users, but for densities greater than this, the composition without prediction
values produced better results. There is a clear difference in the response time
and throughput results, with the response time for the predictive composition
approach selecting close to the optimal flow for most densities. When averaged
over 100 users, the throughput results for the predictive composition do not get
closer to the optimal value as the density increases. This can be attributed to
the different data scales, which can introduce larger errors for the throughput
predictions [28], that can result in selecting the wrong branch.

In IoT, because of the large number of services available, we would expect
that only a small percentage would have relevant, up-to-date QoS information
in the time period required (e.g., within 15 min). This makes the results for low
matrix densities from 10%–30% particularly important, as they illustrate that
we need only a small number of users in the environment to report values to
achieve almost optimal results.

As future work, we will evaluate the overhead introduced by the QoS pre-
diction mechanism when dynamically composing IoT services in a real-world
environment. We also aim to investigate a number of alternative techniques for
preprocessing the data and conducting similarity comparison between the users
and the different types of service providers (e.g. data smoothing, clustering,
PCA, etc.).

Acknowledgments. This work was funded by Science Foundation Ireland (SFI)
under grant 13/IA/1885.

QoS Prediction for Reliable Service Composition in IoT 159

References

1. Bauer, H., Patel, M., Veira, J.: The internet of things: Sizing up the opportunity.
McKinsey (2014)

2. Evans, D.: The internet of things: How the next evolution of the internet is changing
everything. Cisco Internet Bus. Solut. Group 1, 14 (2011). CISCO White paper

3. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Inter-
netof things: a survey on enabling technologies, protocols, and applications. IEEE
Commun. Surv. Tutor.17(4), 30, Fourthquarter (2015)

4. Bellavista, P., Cardone, G., Corradi, A., Foschini, L.: Convergence of MANET and
WSN in IOT urban scenarios. IEEE Sens. J. 13(10), 3558–3567 (2013)

5. Ibrahim, N., Mouel, F.L.: A survey on service composition ware in pervasive envi-
ronments. arXiv preprint arXiv:0909.2183 (2009)

6. Raychoudhury, V., Cao, J., Kumar, M., Zhang, D.: Middleware for pervasive com-
puting: a survey. Pervasive Mob. Comput. 9(2), 177–200 (2013). Special Section:
Mobile Interactions with the Real World

7. Chen, N., Cardozo, N., Clarke, S.: Goal-driven service composition in mobile and
pervasive computing. IEEE Trans. Serv. Comput. PP(99), 1 (2016)

8. Cabrera, C., Li, F., Nallur, V., Palade, A., Razzaque, M., White, G., Clarke, S.:
Implementing heterogeneous, autonomous, and resilient services in IOT: an experi-
ence report. In: 2017 IEEE 18th International Symposium on a World of Wireless,
Mobile and Multimedia Networks (WoWMoM), IEEE (2017)

9. Metzger, A., Chi, C.H., Engel, Y., Marconi, A.: Research challenges on online
service quality prediction for proactive adaptation. In: 2012 First International
Workshop on European Software Services and Systems Research - Results and
Challenges (S-Cube), pp. 51–57, June 2012

10. Zheng, Z., Zhang, Y., Lyu, M.R.: Investigating qos of real-world web services. IEEE
Trans. Serv. Comput. 7(1), 32–39 (2014)

11. Zhang, Y., Zheng, Z., Lyu, M.R.: Exploring latent features for memory-based qos
prediction in cloud computing. In: 2011 IEEE 30th International Symposium on
Reliable Distributed Systems, pp. 1–10, October 2011

12. Zhu, J., He, P., Zheng, Z., Lyu, M.R.: Online QOS prediction for runtime service
adaptation via adaptive matrix factorization. IEEE Trans. Parallel Distrib. Syst.
PP(99), 1 (2017)

13. White, G., Nallur, V., Clarke, S.: Quality of service approaches in IOT: a sys-
tematic mapping. J. Syst. Softw. 132, 186–203 (2017). http://www.sciencedirect.
com/science/article/pii/S016412121730105X

14. Palade, A., Cabrera, C., White, G., Razzaque, M., Clarke, S.: Middleware for
internet of things: a quantitative evaluation in small scale. In: 2017 IEEE 18th
International Symposium on a World of Wireless, Mobile and Multimedia Networks
(WoWMoM). IEEE (2017)

15. Bronsted, J., Hansen, K.M., Ingstrup, M.: Service composition issues in pervasive
computing. IEEE Pervasive Comput. 9(1), 62–70 (2010)

16. Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli, G.:
Dynamic QoS management and optimization in service-based systems. IEEE
Trans. Softw. Eng. 37(3), 387–409 (2011)

17. Zheng, Z., Ma, H., Lyu, M.R., King, I.: Collaborative web service qos prediction
via neighborhood integrated matrix factorization. IEEE Trans. Serv. Comput. 6(3),
289–299 (2013)

http://arxiv.org/abs/0909.2183
http://www.sciencedirect.com/science/article/pii/S016412121730105X
http://www.sciencedirect.com/science/article/pii/S016412121730105X

160 G. White et al.

18. Ye, Z., Mistry, S., Bouguettaya, A., Dong, H.: Long-term qos-aware cloud service
composition using multivariate time series analysis. IEEE Trans. Serv. Comput.
9(3), 382–393 (2016)

19. Amin, A., Grunske, L., Colman, A.: An automated approach to forecasting qos
attributes based on linear and non-linear time series modeling. In: 2012 Proceed-
ings of the 27th IEEE/ACM International Conference on Automated Software
Engineering, pp. 130–139, September 2012

20. Amin, A., Colman, A., Grunske, L.: An approach to forecasting qos attributes of
web services based on ARIMA and GARCH models. In: 2012 IEEE 19th Interna-
tional Conference on Web Services, pp. 74–81, June 2012

21. Lo, W., Yin, J., Deng, S., Li, Y., Wu, Z.: An extended matrix factorization app-
roach for QOS prediction in service selection. In: 2012 IEEE Ninth International
Conference on Services Computing, pp. 162–169, June 2012

22. Zheng, Z., Lyu, M.R.: Collaborative reliability prediction of service-oriented sys-
tems. In: Proceedings of the 32nd ACM/IEEE International Conference on Soft-
ware Engineering, vol. 1, pp. 35–44. ACM (2010)

23. Li, M., Huai, J., Guo, H.: An adaptive web services selection method based on
the QOS prediction mechanism. In: 2009 IEEE/WIC/ACM International Joint
Conferences on Web Intelligence and Intelligent Agent Technologies, WI-IAT 2009,
vol. 1, pp. 395–402. IEEE (2009)

24. Ben Mabrouk, N., Beauche, S., Kuznetsova, E., Georgantas, N., Issarny, V.:
QoS-aware service composition in dynamic service oriented environments. In:
Bacon, J.M., Cooper, B.F. (eds.) Middleware 2009. LNCS, vol. 5896, pp. 123–142.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10445-9 7

25. Wang, C., Pazat, J.L.: A two-phase online prediction approach for accurate and
timely adaptation decision. In: 2012 IEEE Ninth International Conference on Ser-
vices Computing, pp. 218–225, June 2012

26. Geebelen, D., et al.: Qos prediction for web service compositions using kernel-
based quantile estimation with online adaptation of the constant offset. Inf. Sci.
268, 397–424 (2014). New Sensing and Processing Technologies for Hand-based
Biometrics Authentication

27. Jiang, B., Chan, W.K., Zhang, Z., Tse, T.H.: Where to adapt dynamic service
compositions. In: Proceedings of the 18th International Conference on World Wide
Web, WWW 2009, NY, USA, pp. 1123–1124. ACM, New York (2009)

28. White, G., Palade, A., Cabrera, C., Clarke, S.: Quantitative evaluation of QOS
prediction in IOT. In: 3rd International Workshop on Recent Advances in the
Dependability Assessment of Complex Systems, June 2017

29. Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. Nips 1(1), 1–2
(2007)

30. Petersen, K., Gencel, C.: Worldviews, research methods, and their relationship
to validity in empirical software engineering research. In: Software Measurement
and the 2013 Eighth International Conference on Software Process and Product
Measurement (IWSM-MENSURA), pp. 81–89, October 2013

https://doi.org/10.1007/978-3-642-10445-9_7

Checking and Enforcing Security Through
Opacity in Healthcare Applications

Rym Zrelli1(B), Moez Yeddes2, and Nejib Ben Hadj-Alouane1

1 OASIS Reasearch Lab (ENIT), University of Tunis El Manar, Tunis, Tunisia
rym.zrelli@gmail.com

2 OASIS Reasearch Lab (INSAT), University of Carthage, Tunis, Tunisia

Abstract. The Internet of Things (IoT) is a paradigm that can tremen-
dously revolutionize health care thus benefiting both hospitals, doc-
tors and patients. In this context, protecting the IoT in health care
against interference, including service attacks and malwares, is challeng-
ing. Opacity is a confidentiality property capturing a system’s ability to
keep a subset of its behavior hidden from passive observers. In this work,
we seek to introduce an IoT-based heart attack detection system, that
could be life-saving for patients without risking their need for privacy
through the verification and enforcement of opacity. Our main contribu-
tions are the use of a tool to verify opacity in three of its forms, so as
to detect privacy leaks in our system. Furthermore, we develop an effi-
cient, Symbolic Observation Graph (SOG)-based algorithm for enforcing
opacity.

1 Introduction

Real-world usage of IoT in health-care necessitates the dealing with new security
challenges. In fact, and since this type of application would handle medical and
personal information, their employment carries serious risks for personal privacy.
Accordingly, it is paramount to protect any sensitive data against deduction
by third-parties to avoid the compromise of privacy. The most common secu-
rity preservation practice is the use of cryptographic techniques. However, these
techniques do not provide perfect security as the inference of critical information
from non-critical ones remains a possibility. The discovery of vulnerabilities of
simple crypto-systems like that of the Needham-Schroeder public key protocol
[10] proved that cryptography is not enough to guarantee the privacy of informa-
tion. Furthermore, the various techniques available are computationally inten-
sive. This is why they cannot be immediately adopted in IoT where the network
nodes are powered by battery. To facilitate the adoption of IoT in health-care, we
need formal (preferably automated) verification of security properties. Formal
verification ensure that the system’s design conforms to the desired behavior.
Information flow properties are the most formal security properties. In fact, var-
ious ones have been defined in the literature including non-interference, intran-
sitive non-interference and others (e.g. secrecy, and anonymity). Interested in
c© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 161–173, 2018.
https://doi.org/10.1007/978-3-319-91764-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_13&domain=pdf

162 R. Zrelli et al.

confidentiality properties, we consider opacity, a general information flow prop-
erty, to analyze IoT privacy in a heart attack detection system. Opacity’s main
interest is to formulate the need to hide information from a passive observer. It
was first introduced in [12] and was later generalized to transition systems [4]. It
has since, been studied several times allowing the formal verification of system
models. Its wide study led to the birth of several variants as well as verifica-
tion and enforcement techniques. If classified according to the security policy,
then we are dealing with simple, K-step, initial, infinite as well as strong and
weak opacity alongside their extensions (e.g., K-step weak and K-step strong
opacity). The efforts of these studies also made possible not only opacity verifi-
cation, but also its assurance via supervision [5], [14] or enforcement [7]. Several
IoT-based solutions [1,8] for healthcare are known in the literature to deal with
privacy issues. A key limitation of these studies is that they have been using
cryptographic methods.

In this paper, we wish to show the practical use of our SOG-based approach
and the relevance of the use of opacity in the real world through the synthesis
of an opaque IoT-based heart attack detection system. Building on the SOG-
based verification approach developed in [3], the purpose is to verify opacity
in three of its forms (simple, K-step weak opacity and K-step strong opacity)
to detect security violations in our synthesized system. Then to contribute an
algorithmic approach that enforces simple opacity by padding the system with
minimal dummy behavior.

This paper is organized as follows: Sect. 2 establishes all necessary basic
notions including the SOG structure and the opacity property. In Sect. 3, we
detail the case study. In Sect. 4, we illustrate the practical usefulness of the opac-
ity verification approach in the heart attack detection system. Section 5 details
our proposed approach to enforce simple opacity. Finally, we conclude in Sect. 6,
and list some potential future works.

2 Preliminaries

2.1 Petri Nets, WF-net and oWF-nets

To model the services under consideration in our case study, we use Petri nets. A
service can be considered as a control structure describing its behavior in order
to reach a final state. We can represent it using a Workflow net, a subclass of
Petri nets. A WF-net satisfies two requirements: it has one input place i and
one output place o, and every transition t or place p should be located on a
path from place i to place o. To model the communication aspect of a service,
we can use open Work-Flow nets which is enriched with communication places
representing the (asynchronous) interface. Each communication place represents
a channel to send or receive messages to or from another oWF-net.

Definition 1 (oWF-net [11])
An open Work-Flow net is defined by a tuple N = (P, T, F,W,m0, I, O,mf):

Checking and Enforcing Security 163

– (P, T, F, W) is a WF-net;
• P is a finite set of places and T a finite set of transitions;
• F is a flow relation F ⊆ (P × T) ∪ (T × P);
• W : F → N is a mapping allocating a weight to each arc.

– m0 is the initial marking;
– I is a set of input places and O is a set of output places (I ∪ O: the set of interface

places).
– mf is a final marking.

Having the same semantics as Petri nets, the behavior of WF-nets and oWF-nets
can be represented by Labeled Transition Systems (LTS).

2.2 Labeled Transition System

An LTS is defined as follows:

Definition 2 (Labeled Transition System)
A Labeled Transition System is a 4-tuple G = (Q, qinit, Σ, δ):

– Q: a finite set of states;
– qinit: the initial state;
– Σ: actions’ alphabet;
– δ : Q × Σ → Q: the transition function where: q, q′ ∈ Q and σ ∈ Σ, δ(q, σ) = q′

meaning that an event σ can be executed at state q leading to state q′.

The language of an LTS G is defined by L(G) = {t ∈ Σ∗, q0
t−→ qf}. An LTS can

be considered as an automaton where all states are accepting final states.
To reflect the observable behavior of an LTS, we specify a subset of events

Σo ⊆ Σ and Σ − Σo = Σu where Σo is the set of events visible to a given
observer and Σu is the set of events which are invisible to said-observer. The
behavior visible is defined by the projection PΣo

from Σ∗ to Σ∗
o that removes

from a sequence in Σ∗ all events not in Σo. Formally, Po: Σ∗ → Σ∗
o is defined:

⎧
⎪⎨

⎪⎩

PΣo
(ε) = ε;

PΣo
(u · σ) =

{
PΣo

(u) if σ /∈ Σo;
PΣo

(u) · σ otherwise.
Where:σ ∈ Σ and u ∈ Σ∗.

2.3 Opacity

Opacity’s main interest is in capturing the possibility of using observations and
prior-knowledge of a system’s structure to infer secret information. It reflects a
wide range of security properties. Opacity’s parameters are a secret predicate,
given as a subset of sets or traces of the system’s model, and an observation
function. This latter captures an intruder’s abilities to collect information about
the system. A system is, thus, opaque w.r.t. the secret and the observation
function, if and only if for every run that belongs to the secret, there exists
another run with a similar projection from the observer’s point of view and that
does not belong to the secret [5,6,9]. In this paper, we focus on 3 opacity variants
as defined in [6]: simple, K-step weak and K-step strong opacity.

164 R. Zrelli et al.

Definition 3 (Simple opacity [6])
Given an LTS G = (Q, q0, Σ, δ) with Σo ⊆ Σ is the set of observable events and S ⊆ Q
is the set of secret states. The secret S ⊆ Q is opaque under the projection map PΣo

ou (G, PΣo) − opaque iff: ∀u ∈ LS(G), ∃v ∈ L(G) : (v ≈Σo u) ∧ (v /∈ LS(G)).

While simple opacity deals with the non-discloser of the fact that the system
is currently in a secret state, K-step weak opacity ensures that the system wasn’t
in a secret state K observable events ago, and K-step strong opacity formulates
the need to make sure that, K-steps backwards, the system does not end, and
have not crossed any secret states.

2.4 Symbolic Observation Graph

The SOG is an abstraction of the reachability graph. It is constructed by explor-
ing a system’s observable actions which are used to label its edges. The unobserv-
able actions are hidden within the SOG nodes named aggregates. The definition
of an aggregate and that of the SOG are given in the following:

Definition 4 (Aggregate)
Given an LTS G = (Q, q0, Σ, →, δ) with Σ = Σo ∪ Σu. An aggregate a is a non empty
set of states satisfying: q ∈ a ⇔ Saturate(q) ⊆ a where: Saturate(q) = {q′ ∈ Q : q

w−→
q′and w ∈ Σ∗

u}.

Definition 5 (Deterministic SOG)
A deterministic SOG(A) associated with an LTS G = (Q, q0, Σo ∪ Σu, δ) is an LTS
(A, a0, Σo, Δ) where:

1. A a finite set of aggregates with:
(a) a0 ∈ A is the initial aggregate s.t. a0 = Saturate(q0);
(b) For each a ∈ A, and for each σ ∈ Σo, ∃q ∈ a, q′ ∈ Q : q

σ−→ q′ ⇔ ∃a′ ∈ A :
a′ = Saturate({q′ ∈ Q, ∃q ∈ a with q

σ−→ q′}) ∧ (a, σ, a′) ∈ Δ;
2. Δ ⊆ A × Σo × A is the transition relation.

3 Motivating Scenario

Heart disease is the first cause of morbidity and mortality in the world, account-
ing for 28.30% of total deaths each year in Tunisia alone [13]. Investment in
preventive health care such as the use of IoT monitoring devices may help lower
the cost of processing and the development of serious health problems. Inte-
grating clinical decisions with electronic medical records could decrease medical
errors, reduce undesirable variations in practice, and improve patient outcomes.

Our case study considers IoT integration with cloud computing. We use a
connected bracelet, fog nodes, a private and a public Cloud, and a mobile applica-
tion, which together form a medical application. This latter provides continuous
monitoring of the vital data of a given patient. Regular or routine measure-
ments could help to detect the first symptoms of heart malfunction, and makes
it possible to immediately trigger an alert. The vital information collected by the

Checking and Enforcing Security 165

bracelet includes cardiac activity, blood pressure, oxygen levels and, tempera-
ture. As mentioned earlier, we consider an IoT application in a hybrid cloud/fog
environment. The cloud [16] is considered as a highly promising approach to
deliver services to users, and provide applications with low-cost elastic resources.

Public clouds provide cheap scalable resources. Making it useful for analyzing
the patient’s data which would be costly as it requires extensive computing and
storage resources. However, we must take into account that storage of health
records on a public environment is a privacy risk. To avoid such security leaks,
we could deploy the application on a secure private cloud. But seeing this latter’s
limited resources, this may degrade the overall performance. To prevent this, the
workflow can be partitioned between a private cloud and a public one. Therefore,
the confidential medical data will be processed on the private cloud. Other work-
flow actions can be deployed on the public cloud dealing with anonymized data.
The use of a cloud-based framework poses the problem of delay when sending
and receiving data between the objects and geographically far cloud resources
thus jeopardizing the patients’ well-being given that triggering timely responses
is the purpose of this data. To resolve this issue, data gathering can be moved
from the cloud domain to that of the fog [2]. Bringing this action closer to the
connected object shortens the transmission time, and reduces the amount of
data transferred to the cloud. The proposed workflow is described as follows:

– A patient may register via the mobile app by entering his information. This infor-
mation include personal data and medical history (personal and family medical
histories, surgical history, drug prescriptions, and the doctors’ notes).

– The patient’s medical history is then transmitted to the private cloud. After recep-
tion, this latter anonymizes the data by stripping off all that could identify the
patient leaving only medical data, which it sends to the public cloud.

– The public cloud receives the anonymized data, and proceeds to the classification
attaching to each medical file a class.

– The patient is equipped with a measuring bracelet connected to the processing
components (Fog nodes). The data sent to the fog domain is a set of vital data
recorded over a period of time.

– The fog node collects the data then compares it to its predecessors, searching for
any vital signs changes. When the node determines that a change has occurred, it
sends the data to the private cloud.

– The private cloud links the gathered data with the patient, transmitting this data
and the class ascribed to the patient, to the public cloud.

– The public cloud reads the data, analyzes it, and then provides results. When the
risk of heart attack is detected, it immediately notifies the patient’s app.

4 Modeling and Verification

The case study contains five services, namely, a connected bracelet (Br), a fog
node (Fog), a private cloud (CPr), a public cloud (CPub), and a smartphone
application (App). Figure 1 depicts the oWF-nets of the Br, Fog, CPr, CPub
and the App, respectively. We note that the transitions entailing the sending

166 R. Zrelli et al.

Fig. 1. Case study oWF-nets.

Checking and Enforcing Security 167

(respectively reception) of a messages are indicated by adding a ! (respectively
a ?) mark. In this case study, we want to illustrate the ability of the SOG-
based verification approach to meet privacy demands. The first step is to create
the underlying LTS of each oWf-net. Secondly, we identify the observable and
unobservable actions of each net as well as the secret states. Then, we build the
SOG models from each net’s LTS verifying, at the same time, their opacity.

The Br workflow (Fig. 1(a)) starts by collecting data (T1), which will then
be sent to the closest Fog node. Next it creates the message comprising the data
(T2) and sends this message (T3?). Not having any security requirements for the
bracelet, thus, there is no need to check its opacity.

The Fog WS (Fig. 1(b)) has an internal set of operations, and a set of external
cooperative ones. After receiving the data (T1!), we consider two scenarios. The
first is when the Fog communicates for the 1st time with the bracelet (T3). In
this case, it sends a request (T5?) to the App to retrieve data from the patient’s
medical history. Then, it will receive these data through (T6!). The second sce-
nario begins by selecting the last recorded data (T4). The next step is to compare
(T7) the data retrieved by one of the mentioned scenarios with the data sent by
the Br. When the node detects a change in values (T9), it will immediately trans-
mit the data to CPr (T10?). If there is no change (T8), the Fog doesn’t perform
any processing. Finally, the new data will be stored locally in the Fog (T11). To
ensure the privacy of fog secret information, we define the secret state S = {S6}
which is related to receiving patient’s medical history. To conform with the secu-
rity needs, the observable transitions of the Fog are Σo = {T1!, T5?, T6!, T10?},
while the unobservable part is Σu = {T2, T3, T4, T7, T8, T9, T11}. Using this data,
we proceed to the opacity verification which is done while creating the SOG-
abstraction of the model. We get the SOG in Fig. 2(a) and we can conclude that
the fog’s SOG is both simple, and K-step weakly and strongly opaque.

The CPr workflow (Fig. 1(c)) contains two scenarios. The first one starts by
receiving the data of a registered patient (T1!). The CPr subsequently proceeds
with the recording (T2) and the anonymization (T3) of the received data. The
anonymised data will then be transmitted to the CPub (T4?). After receiving
(T5!) the class, this latter is associated with the patient (T6). The second sce-
nario starts when the CPr receives (T7!) the data sent by the Fog. The CPr
combines the data with the patient by searching for its ID (T8). If the ID can-
not be found (T9), the CPr sends a request to the App so that the patient
re-enter his information (T10?). Thereafter, it receives the requested data (T11!)
and it pursues the first scenario. For the second case, when the ID is found,
the CPr transmits the data and the class to which the patient belongs to the
CPub (T13?). Afterwards, the CPr receives and records respectively 3 types of
messages, each one belongs to an alert type: low (T14! & T15), medium (T16!
& T17) and high (T19! & T20). To protect the privacy of patients, the CPr
need to hide the update procedure performed on the patient’s personal infor-
mation. It must keep secret the states related to the patient registration (S4

& S16) and the anonymization of his data (S7 & S21). It is also required to
withhold secret the states related to sending alerts (S22 & S23). So the set of

168 R. Zrelli et al.

Fig. 2. The SOGs of the case study WSs.

secret states for the CPr is S = {S1, S3, S4, S7, S16, S21, S22, S23}, where S1

stands for the marking related to the reception of the data sent by the fog,
while S3 reflects that related to patient ID search. The observable transitions of
the CPr are Σo = {T1!, T4?, T5!, T7!, T10?, T11!, T13?, T14!, T16!, T18?, T19!, T21?},
while the unobservable ones are Σu = {T2, T3, T6, T8, T9, T12, T15, T17, T20}. With
this configuration, we conduct the verification and get the SOG in Fig. 2(b).
Thus, the CPr workflow is not opaque and is not k-step weakly and strongly
opaque. Indeed, the two secret states S22 and S23, each belonging to an aggre-
gate that doesn’t hold other non-secret states. An attacker can then disclose
secret information after the traces T7T13T16T18 and T7T13T19T21. The CPr ser-
vice is therefore unsafe and needs to be improved. Taking into account that the
CPub is available for public use, we don’t have secrets to be hidden from an
external observer. So, we will only describe the CPub actions (Fig. 1(d)) and we
won’t proceed the opacity verification. The first set of CPub actions concerns the
internal operations which include the processing of the data sent by the CPr: the
classification (T2) and the prediction (T5) which aims to detect the risk of heart
attack. As regards the external operations, the CPub receives two messages from
the CPr. The first one (T1) includes the anonymised data and the second (T4)
includes the data collected by the Br and the class to which the patient belongs.
In response to the received messages, the CPub sends the classification result to
the CPr (T3) and sends 3 types of alerts according to the prediction results: T6

for the low alert, T7 for the medium alert and T8 for the high alert.
The last service is that of the App (Fig. 1(e)). The set of its internal opera-

tions are the notification (T9) and the application to register (T1) which allows

Checking and Enforcing Security 169

a new patient to deposit his information. After registration, the provided infor-
mation will be sent (T2) to the CPr. The App shares patient information with
the Fog (T3! & T4?) when this latter communicates for the first time with the
Br. It also shares the medical history with the CPr (T5! & T6) when it fails to
find the patient ID. At the end, the App receives two types of alerts (T7? for
the medium and T8? for the high) when the risk of a heart attack is detected.
The App must be opaque with regards to its set of secret states when dealing
with either the CPr or the Fog. To match these needs the observable transi-
tions are Σo = {T2?, T3!, T4?, T5!, T6?, T7!, T8!}, while the unobservable ones are
Σu = {T1, T9}. The set of secret states are S = {S2, S6, S7, S9, S10, S11}, with
S2 is related to the request to register a patient, S6 is that related to sending
patient data, S7 is that triggered due to the sending of personal information of
a new patient, S11 is related to sending the medical history, and finally S9 and
S10 reflect the secrets associated with sending the notification. Conducting the
opacity verification, we obtain the SOG depicted in Fig. 2(c). We say that the
App SOG is not opaque, and it is not K-step weakly, and strongly opaque.

5 SOG-Based Enforcement of Opacity

In this section, we describe the opacity enforcement problem introducing algo-
rithms to secure the heart attack detection system. Considering a language L
and a secret language L(ϕ) ∈ L, when opacity fails of a secret ϕ for a finite
system S, we provide an effective method to synthesize automatically a system
S′ obtained by minimally modifying the system S so that the secret ϕ is opaque
for S′. To synthesize S′, we focus on language modification. If a secret language
L(ϕ) is not opaque for a system behavior described by the language L(S), we
can modify the behavior by padding it with dummy behaviors. We can then
extend the language by computing a minimal super-language of L. In [15], the
author has derived an algorithm to compute min

∏ϕ
super to assist the designer

develop a system that satisfies the opacity property for a secret language.

Theorem 1. [15] Let a language L defined on an alphabet Σ = Σo ∪Σu and a static
projection πO defined above on the same alphabet and a secret ϕ ⊆ L, then:

min
∏ϕ

super
(L) = L ∪ (πo(ϕ)\(πo(ϕ) ∩ πo(L\ϕ)))

The proposed approach builds upon the SOG structure to check the system’s
opacity. If the system is not opaque, the SOG construction allows for detection
of all opacity violations provided as a counterexample. These counterexamples
will later be used to improve the system security (opacity) by locating the paths
leading to the disclosure of private information and performing necessary changes
that would render it opaque. Then we compute the minimal super-language that
provides us with the restricted language to be added in order to modify the
system behavior. For each incident of opacity violation, we match a trace among
the calculated super-language and an unobservable event will be added to this
trace. In order to opacify the system, we apply the backtracking method. We
implement adjustments where needed to the SOG and the LTS and we thus
return to the starting model, the Petri net.

170 R. Zrelli et al.

5.1 The SOG-Based Algorithm for the Verification of Simple
Opacity

The use of SOG-based algorithm in the verification of simple opacity proved
efficient [3]. This is due to the symbolic representation of the aggregates, and to
the on-the-fly verification. The SOG construction is stopped when the property
is proven unsatisfied and a trace (counterexample) that violates the opacity is
supplied. To adopt this algorithm for our enforcement approach, we will bring
necessary modifications to it.

Algorithm 1. SOG-based Opaci-
fication

Procedure: SOG-based Opacification
((P, T, F, W), mo, mS , Σo ∪
Σu)

1 Vertices V ; Edges E;

2 Aggregate a, a′;
3 Stack st, CounterExample;
4 Incidence Matrix C;
5 begin
6 (Q, qinit, Σ, δ) ←

BuildReachabilityGraph(P, T, F, W, mo);

7 S ← mS ;
8 a ← Saturate({qinit});
9 if (a ⊆ S) then

10 CounterExample.Push(ε, a, ε, a);
11 end
12 V ← a;E ← ∅;
13 trace ← ∅;
14 st.push ((a, EnableObs(a)));
15 while (st 	= ∅) do
16 (a, enb) ← st.Top();
17 if (enb 	= ∅) then
18 st.Pop();
19 else
20 t ←

RemoveLast(st.Top.Second());

21 a′ ← Img(a, t);

22 a′ ← Saturate(a′);
23 if (Treated(a’)) then
24 E ← E ∪ t;

25 Save(a
t−→ a′);

26 else
27 if (a′ ⊆ S) then
28 Trace = Print

CounterExample();

29 CounterExample.

Push(trace, a, t, a′);

30 end

31 V ← V ∪ {a′};
32 E ← E ∪ t;

33 Save(a
t−→ a′);

34 st.Push(a′, EnableObs(a′));

35 end

36 end

37 end
38 if (CounterExample 	= ∅) then
39 Opacification();
40 end

41 end

Algorithm 2. Opacification
Procedure: Opacification()

1 begin
2 minSL =

ComputationMinSL(L();
3 while (CounterExample 	= ∅) do
4 (trace, a, t, a′) ←

CounterExample.Top();

5 if (NotTreated(a′)) then
6 foreach u in minSL do
7 if (u = trace) then

/* SOG
Opacification
*/

8 qnew =
new State();

9 a′ ← a′ ∪ {qnew};
10 Save(a

t−→ a′);
/* LTS

Opacification
*/

11 q ←
CounterExample.Top.Fourth();

12 tnew ←
new UnobservableTransition();

13 Q ← Q ∪ qnew;
14 Σu ← Σu ∪ tnew;
15 δ(q, tnew) =

qnew;
/* Petri net

Opacification
*/

16 pnew ←
newPlace();

17 P ← P ∪ pnew;
18 T ← T ∪ tnew;
19 p ← getPlace();
20 F ← F ∪(p, tnew);
21 F ←

F ∪ (tnew, pnew);
22 W ← W ∪

{((p, tnew) �−→
1), ((tnew, pnew) �−→
1)};

23 C(pnew, tnew) ←
W (tnew, pnew) −
W (pnew,tnew);

24 end

25 end

26 end
27 CounterExample.Pop();

28 end

29 end

Checking and Enforcing Security 171

Taking into account that we are trying to opacify Petri nets, the first modifi-
cation needed to the algorithm presented in [3] consists in replacing the input by
a Petri net-modeled system. The petri net has 2 sets of transitions: observable
and unobservable actions, and a set of secret marking subsequently representing
the states judged to be secret in the LTS. We add in line 3 a Stack, namely
CounterExample with all the standard functions (push, pop and top), whose
elements are quadruples composed by the counter-examples, a transition t, an
actual aggregate a and an aggregate a′, successor of a by t. Then, the algorithm 1
starts by constructing (line 6) the reachability graph which represents the LTS.
Once other changes have been made (i.e. line 10 & 29), when the opacity is
violated, neither the verification nor the construction of the SOG stops. All the
paths leading to the disclosure of privacy are stacked into CounterExample.
Once all nodes are explored and the SOG construction is finished, and if the
stack is not empty we proceed to opacification.

5.2 The Opacification Proposed Algorithm

The opacification algorithm has a pretty straightforward mechanism. It begins by
computing the minimal super-language. The next step consists in recuperating
(line 4) the first elements of the stack (CounterExample). Next, the algorithm
goes through the foreach loop which takes each word of the calculated super-
language. If such a word is equivalent with the trace recuperated from the stack,
then we proceed to opacify the SOG. We begin by creating (line 8) a new state
qnew that we will add (line 9) into the aggregate a′. At line 11, we pass to
opacify the LTS. We retrieve the last state q included in the aggregate a′. A
new unobservable transition tnew will be created. Then, the algorithm inserts
(line 13) the new state qnew to the LTS states, adds (line 14) the new transition
tnew to the set of unobservable events Σu, and defines the transition function
between q, tnew and qnew. Starting from line 16, the algorithm performs the
Petri net opacification by creating, at first a new place pnew and adding it to the
set of places. It also adds the transition tnew to the set of transitions. To specify
the flow relation between p, tnew and pnew, the algorithm adds an arc for each
relation and assigns to each arc a weight. Afterwards, it modifies the incidence
matrix. Finally, the algorithm pops the stack and restarts the operations until
the final emptying of the stack presenting the ending test of the while loop.

Being a particular type of Petri nets, oWF-nets require different method of
opacification. When fetching the place p (the execution of getP lace), we have to
exclude the output places. Furthermore, oWF-nets require only one final place
po. So, following the addition of the unobservable transition tnew, we must escape
adding the new place. And a flow relation will be added between tnew and po.
Other specific case that may be necessary, when the place returned by getP lace
is a destination place, we require further changes on the oWF-net. The first step
is to retrieve the transition that following its crossing marked the output place.
Step two is to delete the flow relation between t and po. The following step is to
create a new place pnew and to add the unobservable transition tnew. Then, we

172 R. Zrelli et al.

create the flow relations between t, pnew, tnew and po. For the application of the
opacification function on our case study, see in this paper [17].

6 Conclusion and Future Work

In this paper, we used opacity, a generalization of many security properties,
as a means to track the information flow in an IoT-based medical application.
We introduced a model to analyze the behavior of an IoT-based heart attack
detection system discussing how an observer may infer personal patient infor-
mation. Our work aims at detecting security leaks, using SOG-based algorithms
for the on-the-fly verification of opacity variants (simple, K-step weak, and K-
step strong opacity). We have also proposed a novel, SOG-based approach for
opacity enforcement of Petri net-modeled systems. The main contribution of this
work is to propose an efficient algorithm for enforcing simple opacity by padding
the system with minimal dummy behavior. In our future research, we will explore
the same idea of enforcement for other opacity variants such as K-step weak and
K-step strong opacity. We also hope to extend this work to take into account dif-
ferent types of enforcement, such as supervisory control for opacity and finding
the supremal sub-language, instead of computing the minimal super-language.

References

1. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw.
54(15), 2787–2805 (2010)

2. Bonomi, F., Milito, R.A., Zhu, J., Addepalli, S.: Fog computing and its role in the
internet of things. In: Proceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing, MCC@SIGCOMM 2012, Helsinki, Finland, August 17,
2012. pp. 13–16 (2012). https://doi.org/10.1145/2342509.2342513

3. Bourouis, A., Klai, K., El Touati, Y., Ben Hadj-Alouane, N.: Checking opacity
of vulnerable critical systems on-the-fly. Int. J. Inf. Technol. Web Eng. (IJITWE)
10(1), 1–30 (2015)

4. Bryans, J.W., Koutny, M., Mazaré, L., Ryan, P.Y.A.: Opacity generalised to tan-
sition systems. Int. J. Inf. Secur. 7, 421–435 (2008)

5. Dubreil, J.: Monitoriting and Supervisory Control for Opacity Properties. Ph.D.
thesis, University of Rennes 1, November 2009

6. Falcone, Y., Marchand, H.: Various Notions of Opacity Verified and Enforced at
Runtime. Technical report INRIA (2010)

7. Falcone, Y., Marchand, H.: Runtime enforcement of K-setp opacity. In: 52nd IEEE
Conference of Decision and Control, pp. 7271–7278, December 2013

8. Li, M., Yu, S., Zheng, Y., Ren, K., Lou, W.: Scalable and secure sharing of personal
health records in cloud computing using attribute-based encryption. IEEE Trans.
Parallel Distrib. Syst. 24(1), 131–143 (2013)

9. Lin, F.: Opacity of discrete event systems and its applications. Automatica 47(3),
496–503 (2011)

10. Lowe, G.: An attack on the needham-schroeder public-key authentication protocol.
Inf. Process. Lett. 56(3), 131–133 (1995)

https://doi.org/10.1145/2342509.2342513

Checking and Enforcing Security 173

11. Massuthe, P., Reisig, W., Schmidt, K.: An operating guideline approach to the soa.
Ann. Math. Comput. Teleinform. 1, 35–43 (2005)

12. Mazaré, L.: Using unification for opacity properties. In: Proceedings of WITS
(Workshop on Information Technology and Systems), vol. 4, pp. 165–176 (2004)

13. World Health Organization: May 2014. http://www.worldlifeexpectancy.com/
tunisia-coronary-heart-disease, consulté le 14/02/2017

14. Saboori, A., Hadjicostis, C.N.: Opacity-enforcing supervisory strategies via state
estimator constructions. IEEE Trans. Automat. Contr. 57(5), 1155–1165 (2012).
https://doi.org/10.1109/TAC.2011.2170453

15. Yeddes, M.: Enforcing opacity with orwellian observation. In: 13th International
Workshop on Discrete Event Systems, WODES 2016, Xi’an, China, 30 May–1
June, 2016, pp. 306–312 (2016). https://doi.org/10.1109/WODES.2016.7497864

16. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research
challenges. J. Internet Serv. Appl. 1(1), 7–18 (2010)

17. Zrelli, R., Yeddes, M., Ben Hadj-Alouane, N.: Checking and enforcing security
through opacity in healthcare applications (2017)

http://www.worldlifeexpectancy.com/tunisia-coronary-heart-disease
http://www.worldlifeexpectancy.com/tunisia-coronary-heart-disease
https://doi.org/10.1109/TAC.2011.2170453
https://doi.org/10.1109/WODES.2016.7497864

Power-Based Device Recognition
for Occupancy Detection

Azkario Rizky Pratama1,2(B), Widyawan2, Alexander Lazovik1,
and Marco Aiello1

1 Distributed Systems Group, Johann Bernoulli Institute for Mathematics
and Computer Science, University of Groningen, Groningen, The Netherlands

{a.r.pratama,a.lazovik,m.aiello}@rug.nl
2 Department of Electrical Engineering and Information Technology,

Universitas Gadjah Mada, Yogyakarta, Indonesia
widyawan@ugm.ac.id

Abstract. Each person using electrical devices leaves electricity finger-
prints in the form of power consumption. These can be very useful for
understanding the context of that person in, for instance, a smart office. A
device that is highly correlated with the presence of a person in an office is
the computer monitor; the correlation is in the range 83–96%. Therefore,
it is useful to recognize from an aggregated power load the portion that is
due to computer monitors. In this paper, we propose an event-based device
recognition approach. After studying several predictors and features for
device classification, we build a prototype for the classification. We evalu-
ate the approach with actual power measurement of seven office monitors
used by four workers in an office environment. Our experiments show that
the approach is feasible and the per-day accuracy ranges in the range 69–
80% for seven and five physical devices, respectively.

Keywords: Device recognition · Load disaggregation
Occupancy detection · Appliance recognition

1 Introduction

Smart buildings operate efficiently by being aware of their actual use and envi-
ronmental conditions [1]. One of the biggest challenges to achieve smart buildings
is the automatic classification of human activities and state within the building.
Low intrusive approaches are generally preferred due to privacy and economic
concerns [2]. The aggregated measurement of power consumption is an important
feature to consider for context mining and human activity classification.

Human presence detection is one of the necessary components in a smart
building system to provide a custom service, specific to present occupants. Some
common examples are automated lighting and HVAC (heating, ventilation, and
cooling) systems that automatically tune their operations on the users’ occu-
pancy [3]. These systems require the environment contexts (such as human pres-
ence) to be updated accordingly. Since the context of the building is highly
c© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 174–187, 2018.
https://doi.org/10.1007/978-3-319-91764-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_14&domain=pdf

Power-Based Device Recognition for Occupancy Detection 175

dynamic, we need to keep the building systems up to date, in order to assure
composed services achieve building operation objectives, such as providing occu-
pant satisfaction and efficient energy consumption. Furthermore, for privacy and
performance reasons, the processing of such context should happen at the edge
of the network, before further sending selected data and knowledge to cloud
infrastructures. Such a fog computing paradigm supports the demands of quick
and efficient data processing while having connected service-based systems. In
the present work, we do not focus on the service-oriented architecture and cloud
components, as they are rather standard, while instead we focus on the IoT
and Smart Building aspects. In particular, we investigate the feasibility of load
disaggregation from a unique power consumption reading with the final goal of
correctly classifying the human presence in an office. We collect large amounts
of data using a global power meter/smart meter. These meters are increasingly
installed by utilities, are relatively inexpensive, and do provide basic energy
readings with reasonable sampling rates. Such an approach opens the possibility
of recognizing personal occupancy using global room-level or department-level
meters. In other terms, by recognizing particular devices associated to a particu-
lar person, we obtain the reduced-size, finer-grain occupancy information which
further can be forwarded to the cloud for capturing the bigger picture about
building occupancy. The chosen office devices for the present study are com-
puter monitors as there is evidence that most of the time people are in offices
they are engaged in computer related activities. E.g., in the US, workers spend
on average of more than six hours per day at the computer and an additional
hour at home [4]. A first indication that the computer use is closely related to
office presence and work.

To learn which approach works best, what values to provide to our models,
and to evaluate the performance of the approach, we experimented for two and a
half months in our own offices at the University of Groningen. We collected power
consumption data using global power meters. We deployed power meters in a
single point measurement in incoming electrical line as well as per-appliance
plugs to collect ground truth information and observe characteristics of every
monitor screen. To make the approach more flexible and portable, we define
synthetic aggregate data by applying superposition of several monitors that are
owned by the same person in an office. The rationale for this choice is that no
significant differences are found between the synthetic signals and the compos-
ite loads measurement on the electrical line. From each device, we extract and
explore several features that possibly characterize turning on/off events. Such
descriptors are used to train classification models to infer which are the active
devices at any time. We develop a device recognition approach which is based
on event detection. Events are triggered when potential switching occurs.

176 A. R. Pratama et al.

The contribution of the present work can be summarized as follows:

1. We propose a novel device recognition system (specifically, computer moni-
tors) based on energy load disaggregation;

2. We compare and identify meaningful features to describe switching events of
monitor instances recovered from a single electricity measurement (i.e. active
power);

3. We evaluate experimentally the approach; and
4. We propose the concept of virtualdevice to detect multi appliances running

simultaneously and improve the recognition performance.

The remainder of the paper is organized as follows. The overview of previous,
related work is provided in Sect. 2. We describe the system’s design and imple-
mentation in Sect. 3. Experimental setup and evaluation are provided in Sect. 4.
In Sect. 5, experimental results are reported and discussed. Finally, conclusions
are drawn in Sect. 6.

2 Related Work

Diverse sensor types have been used to obtain occupancy context both in res-
idential and commercial buildings. These include RFID, passive infrared PIRs,
door sensors, GPS, WiFi, temperature, humidity, and other environmental sen-
sors [3,5,6]. Binary occupancy detection, based on electricity consumption has
also been proposed, e.g. [7,8]. Lu et al. make use of historical occupancy and
indication of human presence (through PIR and door sensors) to infer occu-
pancy states in homes [3]. By using a Hidden Markov Model, they show that
88% occupancy accuracy can be achieved. In this work, we aim to address the
more general case of multiple people detection, rather than individual home
occupancy inference.

Load disaggregation, also referred to as device separation, deals with the
identification of consumptions of individual devices from a global electricity con-
sumption signal. The most common approach is based on recognizing appliance
signatures. Liang et al. define two signature forms [9]. First, a signature can be
recognized in snapshot form: an observation of load behavior at any fixed time
intervals. Second, the signature can be formed as delta form: taking parameter
changes into account when a state transition occurs.

In [10], the authors observe appliance switching events to learn characteristic
of several devices in an office, such as monitors and printers. They observe and
describe the behavior of several type of monitors, without trying to supervise
models and classify the fresh data. Low power appliances recognition using 120
changing states of appliances is presented in [11]. The performance shown is
90% and 76% for individual and multiple appliance recognition, respectively. To
achieve these results feature-rich, high-resolution power meters were employed.
Due to National regulations on smart meters [12], to keep the study realistic with
standard installations, in the present study we decide to utilize generic power
meters with only active power measurement capability.

Power-Based Device Recognition for Occupancy Detection 177

An effort to classify personal occupancy in the office was developed by [13].
The authors deploy one power measurement on each work desk and classify
whether the respective occupant is present, away, or in standby. By using two
weeks worth of data, they show 93% accuracy with a KNN-based classification
method.

3 Design and Implementation

Smart and energy-aware buildings [1], rely on a number of components, such as
a context inference and repository component, an AI Planning and Scheduling
one, and an orchestrator one [14]. Figure 1 shows an architecture derived from
our previous work. The present contribution aims at offering improved context
information which is in turn essential to determine the current state of the
building. The context is inferred on-site to enable efficient data processing and
reduce the amount of data to be transported to the cloud. The current state
of the building, possibly with the bigger picture of how the persons occupy the
building (e.g. processed in the cloud), affect the plan composing. The plans then
go to the orchestrator which is responsible for the actuation and for evaluating
possible failures or execution deviations, in turn affecting the context again.

Fig. 1. Software architecture of a smart building, derived from [14].

The context is a point in a possibly infinite feature space of relevant building
context variables. The move from one point to another one is defined as an event.
In the specific case of load disaggregation, an event is a significant peak or slope
occurring in power consumption waveforms. These are typically associated with a
device (electricity load) switch going from ON to OFF, or vice-versa. We develop
a mechanism to detect candidate events using thresholds and validate them
according to empirical data (i.e., 10 W difference, 60 s between two consecutive
events). These values are derived from previous experimentation. In particular,

178 A. R. Pratama et al.

the watt-difference parameter is based on the study of monitors of different
brands and types with the lowest power consumption for them positioned at
12 W. The time interval parameter is based on the fact that people typically
work in burst higher than one minute. The precise processing is presented as
Algorithm 1.

Algorithm 1. Event detection from an aggregated data
1: procedure Event detection and Event validation
2: X ← aggregateddata
3: set window in moving windows
4: get events:
5: compute range in a window
6: if range > wattThreshold then
7: if durationBetweenEvent > durationThreshold then
8: event ← window
9: get delta power :

10: compute mean after and before an event
11: ΔP ← (meanafter − meanbefore)
12: validate events:
13: if ΔP > wattThreshold then
14: validatedEvent ← event

For each combination of validated events, we extract the relevant features.
Inspired by the field of dynamic systems [15] and statistics [8], we consider: rise-
time, overshot, steady level, variable variance, and mean of absolute difference,
described as follows.

Delta P (ΔP) is the difference of average power before a detected event and
average power after the event. We consider five samples for both before and
after events; illustrated as black arrows in Fig. 2.

Steady level is the value of a device (or set of devices) in a stable state;
represented as dashed line in Fig. 2.

Rise time is the time needed for a transition from 10% to 90% of the reference
levels; represented as a grey shaded rectangle in Fig. 2.

Overshoot is the percentage of the difference between state levels. It is defined
as Eq. 1, where ymax is the maximum value (indicated by downward-pointing
triangle in Fig. 2), level(sk) is the steady state level, and |A| is the amplitude
[16].

Overshoot =
(ymax − level(sk))

|A| 100% (1)

Mean of Absolute Difference (MAD) captures the ripples during a device’s
active period, Eq. 2 [8].

MAD =
1

N − 1

N∑

i=2

|yi − y(i−1)| (2)

Power-Based Device Recognition for Occupancy Detection 179

Variance measures how far a set of values are spread out from the steady level,
i.e.:

var =
1

N − 1

N∑

i=1

|yi − ȳ|2 (3)

Features such as Power Level, MAD, and Variance satisfy the criterion of
so-called additive features [9], therefore it is possible to compute the delta value
of an event; see Algorithm 2.

Fig. 2. Example of a day worth of feature values

Algorithm 2. Feature extraction from aggregated data
1: procedure Feature extraction
2: get features between validatedEvents:
3: for all combination validatedEvents do
4: compute {RiseTime; Overshoot; Level; Peak; MAD; Variance};

5: get delta features
6: Δfeatures ←(

Levelt; MADt; V art
)
t
t−1;

The extracted features contribute to the classification of the event and new
context state. Several classification methods are possible:

k-Nearest Neighbor is one of the simplest learning techniques that works by
finding the predefined number of labeled samples nearest to a query and
predict the class label with the highest votes [17].

Naive Bayesian is a simple probabilistic classifier that assumes features are
independent given a class label [18]. We choose this technique with an
assumption that each feature contributes independently to the probability
of class labels, regardless of any correlations between the features.

Neural network is a nonlinear statistical model for regression or classification,
typically represented by a network diagram [19]. It works by deriving hidden
features Z from linear combination of the inputs X and then modeling the
target classification Y as a function of linear combination of the Z.

Due to the flexibility of the input features and the easy extensibility of the
network structure, we choose single layer Neural networks and extend to multiple
layers, as illustrated in Fig. 3.

180 A. R. Pratama et al.

Fig. 3. Multiple hidden layer, with two inputs and three hidden layers.

We further define virtualdevice as a combination of two or more physical
devices belonging to a specific person. virtualdevice are useful when the compos-
ing devices change their state concurrently. In the present setup, virtualdevice
is denoted by device index number 24, 25, and 26.

4 Evaluation

To evaluate the approach, we experiment in our own offices located in Groningen
on the fifth floor of the Bernoulli building on the Zernike Campus of the Uni-
versity of Groningen. The experiment took place from the 13th to the 31st of
March 2017 and from the 17th April to the 22nd June 2017.

Setup. We consider two office rooms occupied by four people (PhD students).
To collect the ground truth, we equip all electric devices of the rooms with
Plugwise Circle, the single power consumption sensors from Plugwise1. Each
Circle utilizes the wireless ZigBee protocol. We use Raspberry Pi2 to pool the
data from the plugs and forward them to a server for processing.

We sample data at 10 s intervals to assure there is enough time for the pooler
to receive data from all plugs. Furthermore, this value is set to comply with
the Dutch National regulation on smart meters [12]. If due to some failure, we
miss a reading, we keep the previous valid one. This approach is common to
mimic the constant consumption of simple devices, such as LCD monitors [13].
We then analyze the recorded data to attest the system performance. From each
individual power load, we extract features of events for teaching learning models
and construct ground truths from known switching events. We supply two weeks
data to train models and use two months fresh data to examine the classification
performance of the models. The details of number training and testing set is
summarized in Table 1. From the table there is an indication that the number of
training instances depends on the considered training labels. It can also be seen
that the number of test data relies on target devices. The more target devices
are included, the more frequent occupant presence should be detected. Thus the
number of available test instances is also increased.

The actual presence of people to populate the ground truth is taken manually,
based on paper based diary and human observation.
1 https://www.plugwise.com.
2 https://www.raspberrypi.org/.

https://www.plugwise.com
https://www.raspberrypi.org/

Power-Based Device Recognition for Occupancy Detection 181

Table 1. Summary of number of training and testing set

No #instances #training-
labels

Target devices

Training Test

1 252 78 (10 days) 8 [4;10]

2 252 160 (27 days) 8 [4;7;10]

3 252 188 (27 days) 8 [4;5;7;10]

4 252 298 (31 days) 8 [4;5;7;10;14]

5 252 274 (31 days) 8 [4;5;7;10;14;(24)]

6 317 241 (31 days) 10 [4;5;7;8;10;11;14;(24;25;26)]

Metrics: Event Detection. To evaluate the experiment, we measure how
accurate the proposed approach is in classification. We resort to standard met-
rics, such as Precision, the rate of True Positive over all events detected by
system regardless the truth, and Sensitivity, the proportion of real events that
are correctly identified.

Metrics: Device Classification. The precision of classification is defined on
the basis of the actual beloning of devices identified by the k most-probable
classe to the correct class. We use the average of how many classes are correctly
inferred, Eq. 4, using k = 2 with an constant weight.

Accuracyperday =
1

nevents

nevents∑

i=1

(y = ŷ1 ∩ y = ŷ2) (4)

The average, overall accuracy, can then be computed as Eq. 5:

Accuracyaverage =
1

ddays

ddays∑

d=1

accuracydayd (5)

5 Results and Discussion

Following (Algorithm 1), we perform device detection on the acquired data set.
The result is shown in Table 2. The devices mentioned in the table are monitor
screens (i.e., monitor 4 and 5; 7; 10; and 14 belong to Worker W1, W2, W3, and
W4, respectively) and a virtualdevice (i.e., device 24 which is a combination of
device 4 and 5). The number of days shows how many days these devices are
used or activated during observation. The best performance of event detection is
when the system only detects two devices. The precision and sensitivity reaches
87.9% and 97.3%, respectively. As the number of involved devices increases, the
performance declines, reaching 70% precision and 89% sensitivity. A significant

182 A. R. Pratama et al.

Fig. 4. Visualization of seven device classes.

drop occurs when device 14 is added to the aggregated power, while adding
other devices gradually changes the performance by just 1%. Device 14 worsen
the overall event detection. The reason for this is in the short interval transitions
that occur in the dataset for this device (i.e., 2 consequent transitions, ON-OFF-
ON, in less than 5 min), thus resulting in possible undetected events.

Table 2. Device events detection.

No #days Devices Precision Sensitivity

1 10 [4;10] 0.879 0.97333

2 27 [4;7;10] 0.87361 0.94193

3 31 [4;7;10;14] 0.71002 0.92854

4 31 [4;5;7;10;14] 0.71575 0.85877

5 31 [4;5;7;10;14;(24)] 0.70157 0.8912

Events-extracted features can be visualized using t-Distributed Stochastic
Neighbor Embedding, Fig. 4 [20]. The features taken into account for the analysis
are ΔP , steady level, rise time, overshoot, mean of absolute difference, and
variance. One can be observe the challenge of device classification; in fact, classes
are not easily separable.

We compare several feature sets and three different techniques to classify
particular devices. We also observe the significance of number of recognized
devices, starting from two (devices 4 and 10) and up to six devices (physical
devices 4,5,7,10,14, and virtual device 24). The comparisons are summarized in
Fig. 5.

Feature set 1 considers the difference in power before and after an event (ΔP).
The accuracy is 32% and 45% using NeuralNet and NB techniques, respectively.

Power-Based Device Recognition for Occupancy Detection 183

Fig. 5. Comparison of feature sets.

For these methods, the performance seems not to be affected by the number of
devices. By using the same feature, the accuracy with kNN reaches 50%. How-
ever, increasing the number of appliances does result in considerably decreasing
performance using kNN.

The rise time and overshoot in Feature set 2 also give fluctuations in terms of
per-day accuracy, depending on the number of devices to be classified, i.e., 15–
21%; 10–34%; and 10–60% for NeuralNet, NB, kNN, respectively. This feature
set brings the lowest performance compared to the other sets. It is also shown
that the performance of kNN and NB method depends on the number of device.
The higher number of devices considered, the less performance can be achieved.
With respect to NeuralNet, it shows stable results below 21% accuracy with this
feature set.

The combination of steady-level, MAD, and Variance in Feature set 3 delivers
the highest performance among the other feature combinations, up to 81%, 74%,
and 84% for the NeuralNet, NB, and kNN, respectively. It is worth noting that
these results would degrade as the number of classification device increases,
reaching 62% for both NeuralNet and kNN, and 56% for NB. Our proposed
concept of virtualdevice can improve the performance by 16%, 16%, and 11%
for NeuralNet, NB, and kNN, respectively, by introducing virtualdevice to the
classification models. Such improvements are presented as an upward trend from
the 4th- to 5th-bar for three models in Feature set 3, in Fig. 5.

Feature set 4—a combination of Feature set 2 and 3—does not deliver a better
result than the others. However, the average performance of NN outperforms NB
and kNN in recognizing of 6 devices by 14% and 33%, respectively. This result
is in accordance with the result of experiment with feature set 3 where the
NeuralNet slightly outperforms the others.

In addition to physical devices, it is useful to also consider virtual ones, result-
ing from the combination of measurements from physical ones. In the evaluation,
let us consider seven physical devices owned by four people (three have multiple
screens). By introducing three virtual devices (i.e., 24, 25, 26), we classify these

184 A. R. Pratama et al.

Fig. 6. Simultaneous devices classification

devices with Feature set 4 in a modified network structure, as shown in Fig. 3.
The device recognition result is shown in Fig. 6.

Device set 1 that consists of five physical devices can be recognized correctly
with 63.81% accuracy per-day. By adding one virtual device that represents two
devices activated almost simultaneously, 80.1% accuracy per-day is achieved.
The accuracy of recognizing device set 2 with seven physical devices drops sig-
nificantly to 28.65% accuracy per-day. By introducing three virtual devices rep-
resents six devices, the performance improves, reaching 69.13% accuracy per-day.

5.1 Relation of Monitor Screen Activation and Occupancy

The observation of occupancy during working hours (set from 8 am to 9 pm, due
to the different working times of individuals) is shown in Table 3. The monitors
reveal the accurate occupancy of people up to 96.8%. It is lower, about 83.5%,
for the person who is present at the office for 4 days of a week observation. The
reason is that the monitor needs to wait its timeout to automatically put on
sleep mode after plugged out from the laptop/sources. This does not happen to
worker W1 and W2 due to different hardware specifications.

Table 3. Occupancy accuracy over a 5-min interval

Worker Presence days Accuracy

W1 7d 96.7949

W2 5d 89.8718

W5 4d 83.4936

5.2 Discussion

Based on the evaluation in an actual office space, we conclude that the proposed
event detection approach has very promising performance. It achieves 90% sensi-
tivity with a 70% precision. In other words, the system is good at the detection
of the actual events, yet of all inferred events, some are misread. In fact, the

Power-Based Device Recognition for Occupancy Detection 185

system misinterprets oscillations on the waveform as switching events. This hap-
pens as the considered devices have a low-power consumption, making harder to
discern the events from common, regular fluctuations.

The Feature set 2 (rise time and overshoot) are not describing the devices very
well. The reason could be in the time required for the positive-going transition
not being captured by the 10 s data sampling. On the contrary, Feature set 3
shows the best performance among the others. This set is applicable to the three
methods with comparable results, up to 84% accuracy per-day. The combination
of Feature set 2 and 3 does not contribute to improving the performance of kNN,
NB, and NeuralNet. However, with the same features, the classification works
better in multiple hidden layers network (Fig. 3) than in single hidden layer
network.

The classification performance of kNN suffers from the dependencies of the
number of devices. It can be moderately dropped as a number of considered
devices increase. Conversely, the performance of NeuralNet and NB is more
robust to the number of involved devices. This is because kNN works by finding
the nearest labeled sample. As the sample of training set during 2 weeks does
not cover very well for all devices, the results of kNN become worse.

Based on our empirical observation during a week, the personal occupancy
classification shows acceptable performance in relation to the monitor activation.
However, some factors might affect the relation, such as whether the person is
working using electrical devices, a personal habit to consistently deactivate the
device while being away, and hardware configuration (auto sleep mode).

6 Concluding Remarks

Even with simple aggregated power consumption, it is possible to recognize
device usage and turn that information into building-user context knowledge.
We have proposed an approach based on neural networks and evaluated over ten
days in an actual office. We used various power features, such as ΔP , steady
power level, rise time, overshoot, MAD, and variance.

The experimental evaluation shows that it is possible to recognize low-power
devices from composite energy loads, achieving 84%, 81%, and 74% accuracy
per-day using kNN, NeuralNet, and NB, respectively. The kNN performance will
show a downward trend as the number of devices increased, while NeuralNet and
NB seem more robust in the addition a number of devices. We notice that steady-
level, MAD, and Variance features give a good description to the classifiers while
adding rise time and overshoot features not always give a positive impact. It is
also validated that the proposed virtualdevice can improve the performance by
40% in the recognition of 10 classes (7 physical devices and 3 virtual devices),
reaching 69.13%.

Acknowledgement. Azkario Rizky Pratama is supported by the Indonesia Endow-
ment Fund for Education (LPDP). This research has been partially sponsored by the
EU H2020 FIRST project, Grant No. 734599, FIRST: vF Interoperation suppoRting
buSiness innovaTion.

186 A. R. Pratama et al.

References

1. Nguyen, T.A., Aiello, M.: Energy intelligent buildings based on user activity: a
survey. Energy Build. 56, 244–257 (2013)

2. Nguyen, T., Aiello, M.: Beyond indoor presence monitoring with simple sensors,
pp. 5–14 (2012)

3. Lu, J., Sookoor, T., Srinivasan, V., Gao, G., Holben, B., Stankovic, J., Field, E.,
Whitehouse, K.: The smart thermostat: Using occupancy sensors to save energy
in homes. In: Proceedings of the 8th ACM Conference on Embedded Networked
Sensor Systems, SenSys 2010, pp. 211–224 (2010)

4. Microsoft: Us workers spend 7 hours on the computer a day on aver-
age (2013). https://www.onmsft.com/news/microsoft-us-workers-spend-7-hours-
computer-day-average. Accessed 26 Sep 2017

5. Scott, J., Bernheim Brush, A., Krumm, J., Meyers, B., Hazas, M., Hodges, S.,
Villar, N.: Preheat: controlling home heating using occupancy prediction. In: Pro-
ceedings of the 13th International Conference on Ubiquitous Computing, Ubi-
Comp, pp. 281–290 (2011)

6. Koehler, C., Ziebart, B.D., Mankoff, J., Dey, A.K.: Therml: occupancy prediction
for thermostat control. In: Proceedings of the 2013 ACM International Joint Con-
ference on Pervasive and Ubiquitous Computing, UbiComp, pp. 103–112 (2013)

7. Mamidi, S., Chang, Y.-H., Maheswaran, R.: Improving building energy efficiency
with a network of sensing, learning and prediction agents. In: Proceedings of the
11th International Conference on Autonomous Agents and Multiagent Systems,
AAMAS 2012, vol. 1, pp. 45–52 (2012)

8. Jin, M., Jia, R., Spanos, C.: Virtual occupancy sensing: using smart meters to
indicate your presence. IEEE Trans. Mob. Comput., 16(11) (2017)

9. Liang, J., Ng, S.K.K., Kendall, G., Cheng, J.W.M.: Load signature study—Part I:
basic concept, structure, and methodology. IEEE Trans. Power Deliv. 25, 551–560
(2010)

10. Kalluri, B., Kondepudi, S., Wei, K.H., Wai, T.K., Kamilaris, A.: Opld: towards
improved non-intrusive office plug load disaggregation. In: 2015 IEEE International
Conference on Building Efficiency and Sustainable Technologies, pp. 56–61 (2015)

11. Zoha, A., Gluhak, A., Nati, M., Imran, M.A.: Low-power appliance monitoring
using factorial hidden Markov models. In: 2013 IEEE Eighth International Con-
ference on Intelligent Sensors, Sensor Networks and Information Processing, pp.
527–532 (2013)

12. P1 companion standard, March 2014. http://www.netbeheernederland.nl/
upload/Files/Slimme meter 15 32ffe3cc38.pdf. Accessed 08 Feb 2017

13. Akbar, A., Nati, M., Carrez, F., Moessner, K.: Contextual occupancy detection for
smart office by pattern recognition of electricity consumption data. In: 2015 IEEE
International Conference on Communications (ICC), pp. 561–566 (2015)

14. Georgievski, I., Nguyen, T.A., Nizamic, F., Setz, B., Lazovik, A., Aiello, M.: Plan-
ning meets activity recognition: service coordination for intelligent buildings. Per-
vasive Mob. Comput. 38, 110–139 (2017)

15. Franklin, G.F., Powell, J.D., Emami-Naeini, A.: Feedback Control of Dynamic
Systems, 7th edn. Pearson Prentice Hall, Upper Saddle River (2009)

16. IEEE standard for transitions, pulses, and related waveforms - redline. IEEE Std
181–2011 (Revision of IEEE Std 181–2003) - Redline, pp. 1–71 (2011)

17. Shakhnarovich, G., Darrell, T., Indyk, P.: Nearest-Neighbor Methods in Learning
and Vision: Theory and Practice. The MIT Press, Cambridge (2006)

https://www.onmsft.com/news/microsoft-us-workers-spend-7-hours-computer-day-average
https://www.onmsft.com/news/microsoft-us-workers-spend-7-hours-computer-day-average
http://www.netbeheernederland.nl/_upload/Files/Slimme_meter_15_32ffe3cc38.pdf
http://www.netbeheernederland.nl/_upload/Files/Slimme_meter_15_32ffe3cc38.pdf

Power-Based Device Recognition for Occupancy Detection 187

18. Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, 2nd edn. Springer, New York (2009)

19. Demuth, H.B., Beale, M.H., De Jess, O., Hagan, M.T.: Neural Network Design,
2nd edn. Martin Hagan, USA (2014)

20. van der Maaten, L., Hinton, G., Bengio, Y.: Visualizing data using t-SNE. J. Mach.
Learn. Res. 9, 2579–2605 (2008)

Cognitive Determination of Policies
for Data Management in IoT Systems

Aly Megahed(B), Samir Tata, and Ahmed Nazeem

IBM Research - Almaden, 650 Harry Rd, San Jose, CA 95120, USA
{aly.megahed,stata}@us.ibm.com, ahmed.nazeem@ibm.com

Abstract. Internet of Things (IoT) has emerged as a very hot area in
the past few years. Managing data in IoT systems is still a challenging
research topic, particularly when one aims at determining the correct set
of decisions to take given some trigger events in an IoT system. The state
of the art in determining such actions and corresponding policies is ad-
hoc, based on significant human intervention. In this work, we propose
a cognitive automated approach for policy and action determination in
IoT systems that uses historical data to learn the best set of actions to
take and involves an mathematical optimization module that chooses the
optimal set of actions to pursue given the limited resource capacity in
the system. Our system requires minimal human intervention and thus
could be very beneficial in today’s IoT frameworks.

1 Introduction

Internet of Things (IoT) refers to networks of objects, machines, vehicles, and
other physical systems with embedded sensing, computing, and communication
capabilities [18]. These devices sense and then share real-time information about
the physical world. IoT is growing at a highly increasing rate. For example,
according to a study by Gartner ([32]), it is believed that, by 2020, there would
be 25 Billion connected things. Such connected things produce massive amounts
of monitored data produced by sensors and devices. That is why data man-
agement has been evolved as one of the recent challenges for IoT systems. Data
management policies are one of the main techniques to ensure collecting, manag-
ing and disseminating data is performed in a systematic, planned and managed
way [37]. Examples of such policies include:

– Applying face detection algorithms to the recorded videos in places where a
robbery happened,

– Applying algorithms to focus on car plate recognition when an accident hap-
pens in a smart city,

– Calling the fire department when a fire is detected with a detailed request of
the number of trucks, appropriate number of fire fighters and required tools.

Depending on the context of the IoT system, data management policies are
added to/removed from the IoT system. A naive approach would rely on human
c© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 188–197, 2018.
https://doi.org/10.1007/978-3-319-91764-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_15&domain=pdf

Cognitive Determination of Policies for Data Management in IoT Systems 189

intervention expertise to add/remove policies. Doing so is inefficient and error-
prone in many applications. Thus, there is a need for a cognitive system that
determines which policies to adopt whenever changes are triggered in the system
with as minimal human input as possible. This is what we develop in this paper.
That is, we present a cognitive method that automatically determines the appro-
priate policies in an IoT system, by analytically manage the input data and use
historical policies and data to learn appropriate actions.

This paper is organized as follows. First, we present the state of the art in
Sect. 2. Then, in Sect. 3, we present our methodology for action recommenda-
tion for policy-based data management in IoT systems. We lastly present our
conclusions and directions for future work in Sect. 4.

2 State of the Art

Data management in IoT systems typically begins with monitoring the data.
There has been multiple works in the literature on data monitoring [2]. Four
main monitoring approaches exist, namely sampling and filtering-based moni-
toring (see, for example, [39]), probing-based monitoring (see, for example, [19,
20]), diagnosis-based monitoring (see, for example, [25,27]), and performance-
based monitoring (see, for example, [10,14]).

In [39], the authors presented an adaptive monitoring framework for IoT
devices. The system adapts the frequency of the monitoring as well as the
amount of data going through the system. Their system increases the monitor-
ing frequency when the value of monitored metrics gets to a certain pre-specified
threshold and decreases it when a quality of service violation is unlikely to hap-
pen. The authors developed a monitoring approach that uses probing and is
passive in nature.

In [25], the authors adopted a diagnosis-based monitoring approach based,
where system faults are identified and then the metric monitoring is adapted
accordingly. In [14], the authors developed a method for integration, validation,
and description of metrics of software project performance. Katsaros et al. [21]
proposed an architectural approach that combines virtualization and physical
levels for monitoring data collection, where many open source solutions were
combined (e.g. Lattice [11], Ganglia [23], Nagios [15]) so as to get one holistic
application covering different layers. They used collectors for data extraction
from different virtual and physical layers, and then data externalization to the
upper layer using an external data collector. They also proposed a monitoring
manager that acts as an orchestrator of the whole monitoring system. That man-
ager controls and provides the required interfaces to add or consume monitoring
information.

In [7], the authors proposed a tool, for distributed systems, for monitoring
resources that enhances high-performance computing. The tool extracts both
the application and resource state, and assigns new resources and/or shut down
unused ones based on these states. This happens during the runtime of the
application or in future usages. Data collectors are used to collect the data

190 A. Megahed et al.

from resources and then the data is stored in a distributed database. Later, a
statistical analysis is performed to take decisions on the resource assignment in
the application, i.e., whether to keep it as the latest assignment or manually
reconfigure it.

As for more specific data management literature on IoT, there has been some
recent literature. For example, in [40], the authors formulate some deign princi-
ples for IoT data management. They developed optimization algorithms aimed
at producing coherent IoT ecosystems, by means of publish/subscribe middle-
ware and linked data that span over cloud infrastructures and mobile networks.
In [13], the authors proposed a distributed data service for data collection and
processing in IoT systems. They mentioned that their main goal is to enable
multiple and different IoT middleware systems to share common data services
that is coming from a loosely-coupled provider. To that end, they specified the
corresponding techniques for data collection, filteration, storage, and aggregation
to allow for efficient real-time data querying.

Padiya et al. [29] addressed the challenge of handling massive sensor data
in an interactive fashion via Resource Description Frameworks (RDF). They
compared multiple RDF storage mechanisms such as triple store, vertically par-
titioned table, horizontally partitioned table, column store, among others. They
also represented a set of metrics that were designed to take decision for choosing
the appropriate RDF data storage technique a priori for IoT systems. In [1], the
authors present a survey for data management solutions proposed for IoT or sub-
systems of IoT. They discussed the different design primitives that they claim to
be most important to address in an IoT management solution and showed how
they were approached by the proposed solutions. Additionally, they proposed
a data management framework for IoT that incorporates the aforementioned
design elements and acts as a seed for a comprehensive IoT data management
solution.

Gubbi et al. [18] present a cloud centric vision for the world-wide implemen-
tation of IoT. They proposed a cloud implementation based on the interaction of
private and public clouds and concluded that there is a need for expanding on the
convergence of wireless sensor networks. In a previous work [38], we proposed
an adaptive monitoring approach in IoT systems, where a metric value-based
change or an environmental one triggers the need to choose which metrics to
monitor and at what frequency. While an approach for doing this metric moni-
toring management was presented, no mention of action policies was discussed.
A slightly similar work with an application in healthcare can be found in [4].

As one can see, all the previous works dealing with data management in IoT
systems do not consider the issue of the determination of policies governing the
IoT system. To the best of our knowledge, the only related literature is that
concerned with security and control policies, rather than action policies, which
is the focus of our work here. For examples on the latter policy focus, we refer
the reader to the papers in [33,36]. It seems that action policies has been done in
an ad-hoc and/or manual manner in the current state of the art. Thus, there is a
need to fill this gap in the literature, as well as practical systems, via providing

Cognitive Determination of Policies for Data Management in IoT Systems 191

a methodology that handles automated cognitive action recommendation for
different events that are monitored within an IoT system. This is what we provide
next in this work.

3 Methodology

Figure 1 illustrates the overview of our methodology, where the first step (defined
in details in Sect. 3.1) constitutes a recommendation model that gets trained on
historical pre-defined/hypothetical events-conditions-actions data. Such a model
can then be used for new events-conditions to recommend the actions for such
events-conditions. Only in case the recommended actions are not incorporated
with a high confidence, they might need some expert validation. The expert val-
idation step is detailed in Sect. 3.2 along with the update of the historical data
as per the expert input. We then prioritize the actions recommended by the sys-
tem in the step detailed in Sect. 3.3 using a model that learns such prioritization
from historical data. Lastly, since the system is typically resource-constrained,
an optimization mode that chooses the optimal final set of feasible actions to
execute, trying to maximize the system utility by giving more resources for the
actions with higher priority. We detail this optimization model in Sect. 3.4.

Fig. 1. Overview of our overall methodology

3.1 Recommendation of Action Given an Event-Condition

We assume that we are given a set of event-condition-action triplets. That is, for
each given historical or hypothetical event, we are given a condition and a cor-
responding action. An example of elements of that set in our IoT context would

192 A. Megahed et al.

be a robbery (event) that happens at a bank (condition) with the corresponding
actions being calling the police and focusing the cameras of the smart cities on
plates of cars surrounding the bank. Now, what we want to achieve in this step
of our methodology is that whenever a new event-condition happen, the system
is able to automatically recommend the best action to take.

In order to achieve this, we develop a classification model that classifies the
events-conditions to the corresponding actions. We refer the reader to [6,17,26]
for extensive analysis of machine learning classification. We note that the events-
conditions are typically text data and thus, in order to do such classification, we
need to first perform some text mining in order to retrieve the features of these
events-conditions. This can be done as follows: We convert each event-condition
to a bag of words. This text is transformed in order to get label indexers. The
label indexers fit on the whole dataset. Additionally, we develop feature indexers
that automatically identify categorical features and have them indexed. Then,
we are ready to build the classification model that gets trained on such historical
data to predict the recommended action. Several machine learning techniques
can be used for each of the two steps. For the text mining, we refer the reader
to recent review in [35]. An example of a traditional, but yet very popular,
algorithm for the kind of text mining that could fit our purpose here is Term
Frequency-Inverse Document Frequency (TF-IDF) [22]. The idea behind TF-
IDF is that a numerical statistic is calculated to reflect how important a word
is in a corpus. Its value increases proportionally to the number of occurrences of
a word in the document, but is often offsetted by the frequency of the word in
the corpus. The purpose of this is to adjust for the fact that some words appear
very frequently in general. We refer the reader to the reference in [31] for details
on how TF-IDF works.

Examples of machine learning classifiers along with their references are Deci-
sion Trees [30], Random Forests [8], K-Nearest Neighbor Classification [12], Sup-
port Vector Machines [34]), Logistic Regression [24], Naive Bayes [28], and Gra-
dient Boosting Machine (GBM) classifier [9]. We also refer the user to recent
similar applications of data mining and classification in [3,5]. Figure 2 illustrates
that whole methodology of action recommendation for a given event-condition.

3.2 Validating the Learned Actions and Updating the Historical
Data

Machine learning classifiers, like the ones we proposed to use in the previous
subsection, typically output a score of confidence in the classification assignment.
Assuming that the user of our system determines a threshold for the minimum
accepted confidence (e.g., 50%), we program the following in our system: If the
threshold of assigning an action to an event-condition is equal or above that
threshold, then we just apply it. If it is lower, then we let an expert validate
that recommended actions of low confidence. This would typically happen when
the model encounters new classes of events and conditions pairs.

In the latter case, after the expert review, the expert would either confirm
the recommended action or they would update/change it. Note that such expert

Cognitive Determination of Policies for Data Management in IoT Systems 193

Fig. 2. Illustration of our action recommendation methodology

validation is minimal compared to ad-hoc prior systems where the expert defines
all the policies manually. Lastly, the expert recommend actions are used to
update the historical events/conditions/actions data to improve the learning
model in the future recommendations.

3.3 Learning the Priority of Events-Conditions

The objective of this step is to prioritize the actions recommended by the recom-
mender discussed in Sect. 3.1. We need to do such prioritization because there
are typically limited resources in the systems and thus, we might need to do
a subset of the recommended actions. Therefore, we want to prioritize these
actions so that the ones that the system finally chooses to perform have the
highest possible collective priority.

We assume that we are given sets of previous actions and their impor-
tance. For example, an action of calling the fire department when a fire occurs
is obviously more important than the action of turning off the air condition-
ing in a building given a certain temperature. That importance could either
be a score/weight of importance of each action or a binning classification

194 A. Megahed et al.

(e.g., classifying each action in one of five bins, where the first bin corre-
sponds to most important actions, the second one is less important, . . ., etc.).

Now, the way our prioritization works is similar to our recommendation.
That is, we perform some text mining on the actions and the classify them into
the importance classes. The classification could be a multi-label classification in
case the historical data are labeled into bins, or if could be a binary classification
in case the prioritization is in the form of a weight for each action. In the latter
case, the score that the model gives for each action corresponds to the predicted
weight of such action.

After we prioritized the actions, we note that we cannot just simply rank them
in order of the predicted priority and keep fulfilling the capacity of the resources
that we have with the ones with the highest weight until that capacity is fulfilled.
We cannot do that because, first the resources might be multi-dimensional (e.g.,
CPU, RAM, network bandwidth, and storage of the devices used for the data flow
in our IoT system), and secondly, even if it were one-dimensional (i.e., just one
resource type), using such greedy algorithm might not make an optimal use of
the available resource capacity. Thus, we formulate a mathematical optimization
model in the next section in order to optimally choose the final set of actions
that can be feasibly performed.

3.4 An Optimization Module for the Final Action Recommendations

Let the set of resources be R and the set of recommended actions be A. We
denote the utilization of each action a ∈ A from each resource r ∈ R by uar,
and the capacity of resource r ∈ R by cr. We also denote the priority/weight of
action a ∈ A by wa. Lastly, our only set of variables here are the ones related
with whether we will choose action a ∈ A to be executed or not. We let Xa be
such variables, where Xa is 1 if action a ∈ A is chosen, and 0 otherwise. Now,
we formulate our mathematical optimization model as follows:

max
∑

a∈A

wa.Xa (1)

s.t.
∑

a∈A

uar.Xr ≤ cr, ∀r ∈ R (2)

Xr ∈ {0, 1} (3)

Where objective function 1 maximizes the sum of the weights of the actions
that are to be chosen. Note that such weight is the score of the action, in case
the output of the priority learning step is the weight, and it is the reciprocal of
the priority/bin case the given priority is the corresponding bin. Constraint 2
ensures that the total utilization of all chosen actions from each resource is less
than or equal to the total capacity of that resource. Lastly, constraint 3 ensures
that each of our variables is either zero or one.

Model (1–3) is an integer programming model, which might not be easy
to solve. However, we note that its structure is a multidimensional knapsack

Cognitive Determination of Policies for Data Management in IoT Systems 195

problem, which is well studied in the operations research literature. We refer the
reader to the review article in [16] for efficient ways of solving such model.

4 Conclusions and Directions for Future Work

In this paper, we proposed a cognitive system for action recommendation action
recommendation for policy-based data management in IoT systems. That is,
whenever an event-condition happens in an IoT system, we showed how our
system can be used to recommend the optimal set of actions to execute, given
the resource constraints of the system, and with minimum human intervention.

There are several directions for future work. First, an implementation of our
system with a real-world IoT use case would show the effectiveness of our app-
roach. Second, investigation of different machine learning algorithms in the rec-
ommendation and priority determination steps would be helpful in determining
which ones are most appropriate for our proposed system. Lastly, one direc-
tion for future research to our work is incorporating uncertainty in the observed
events and conditions, and designing a system that would recommend actions
before such certainty is realized.

References

1. Abu-Elkheir, M., Hayajneh, M., Ali, N.A.: Data management for the Internet of
Things: design primitives and solution. Sensors 13(11), 15582–15612 (2013)

2. Aceto, G., Botta, A., de Donato, W., Pescapé, A.: Cloud monitoring: a survey.
Comput. Netw. 57(9), 2093–2115 (2013)

3. Asthana, S., Megahed, A., Becker, V., Nakamura, T., Gajananan, K.: A cognitive
prioritization for reports generated in resource constrained applications. In: 2017
IEEE International Conference on Services Computing (SCC), pp. 418–425. IEEE
(2017)

4. Asthana, S., Megahed, A., Strong, R.: A recommendation system for proactive
health monitoring using IoT and wearable technologies. In: 2017 IEEE Interna-
tional Conference on Artificial Intelligence and Mobile Services (AIMS), pp. 14–21.
IEEE (2017)

5. Asthana, S., Strong, R., Megahed, A.: Healthadvisor: recommendation system
for wearable technologies enabling proactive health monitoring. arXiv preprint
arXiv:1612.00800 (2016)

6. Bishop, C.: Pattern Recognition and Machine Learning. Springer, New York (2007)
7. Brandt, J., Gentile, A., Mayo, J., Pebay, P., Roe, D., Thompson, D., Wong, M.:

Resource monitoring and management with OVIS to enable HPC in cloud com-
puting environments. In: IEEE International Symposium on Parallel Distributed
Processing, May 2009

8. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
9. Chen, T., Guestrin, C.: XGBoost: A scalable tree boosting system. In: Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 785–794. ACM (2016)

10. Cheng, Y., Chen, W., Wang, Z., Yu, X.: Performance-monitoring-based traffic-
aware virtual machine deployment on NUMA systems. IEEE Syst. J. PP(99)
(2015)

http://arxiv.org/abs/1612.00800

196 A. Megahed et al.

11. Clayman, S., Galis, A., Mamatas, L.: Monitoring virtual networks with Lattice.
In: Network Operations and Management Symposium Workshops, April 2010

12. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. The-
ory 13(1), 21–27 (1967)

13. Cruz Huacarpuma, R., de Sousa Junior, R.T., de Holanda, M.T., de Oliveira
Albuquerque, R., Garćıa Villalba, L.J., Kim, T.H.: Distributed data service for
data management in internet of things middleware. Sensors 17(5), 977 (2017)

14. Doraisamy, M., bin Ibrahim, S., Mahrin, M.N.: Metric based software project per-
formance monitoring model. In: Proceedings of the IEEE International Conference
on Open Systems (ICOS). IEEE, August 2015

15. Entreprises, N.: Nagios Documentation (2014). http://www.nagios.org/
documentation

16. Fréville, A.: The multidimensional 0–1 knapsack problem: an overview. Eur. J.
Oper. Res. 155(1), 1–21 (2004)

17. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. SSS.
Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

18. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (IoT): a
vision, architectural elements, and future directions. Future Gener. Comput. Syst.
29(7), 1645–1660 (2013)

19. Jeswani, D., Natu, M., Ghosh, R.K.: Adaptive monitoring: a framework to adapt
passive monitoring using probing. In: Proceedings of the 8th International Confer-
ence on Network and Service Management, CNSM 2012, pp. 350–356. International
Federation for Information Processing, Laxenburg, Austria (2013)

20. Jeswani, D., Natu, M., Ghosh, R.K.: Adaptive monitoring: application of probing
to adapt passive monitoring. J. Netw. Syst. Manag. 23(4), 950–977 (2015)

21. Katsaros, G., Gallizo, G., Kübert, R., Wang, T., Fitó, J.O., Henriksson, D.: A
Multi-level architecture for collecting and managing monitoring information in
cloud environments. In: Leymann, F., Ivanov, I.I., van Sinderen, M., Shishkov, B.
(eds.) Proceedings of the Third International Conference on Cloud Computing and
Services Science, CLOSER. SciTePress (2011)

22. Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge
University Press, Cambridge (2014)

23. Massie, M.L., Chun, B.N., Culler, D.E.: The ganglia distributed monitoring system:
design, implementation, and experience. Parallel Comput. 30(7), 817–840 (2004)

24. Montgomery, D.C., Runger, G.C.: Applied Statistics and Probability for Engineers.
Wiley, Hoboken (2010)

25. Munawar, M.A., Reidemeister, T., Jiang, M., George, A., Ward, P.A.S.: Adaptive
monitoring with dynamic differential tracing-based diagnosis. In: De Turck, F.,
Kellerer, W., Kormentzas, G. (eds.) DSOM 2008. LNCS, vol. 5273, pp. 162–175.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87353-2 13

26. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press,
Cambridge (2012)

27. Natu, M., Sethi, A.S.: Probabilistic fault diagnosis using adaptive probing. In:
Clemm, A., Granville, L.Z., Stadler, R. (eds.) DSOM 2007. LNCS, vol. 4785, pp.
38–49. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75694-1 4

28. Ng, A.Y., Jordan, M.I.: On discriminative vs. generative classifiers: a comparison of
logistic regression and naive Bayes. In: Advances in Neural Information Processing
Systems 2, pp. 841–848 (2002)

29. Padiya, T., Bhise, M., Rajkotiya, P.: Data management for Internet of Things. In:
Region 10 Symposium (TENSYMP), pp. 62–65. IEEE (2015)

http://www.nagios.org/documentation
http://www.nagios.org/documentation
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-3-540-87353-2_13
https://doi.org/10.1007/978-3-540-75694-1_4

Cognitive Determination of Policies for Data Management in IoT Systems 197

30. Quinlan, J.R.: C4.5: Programs for Machine Learning. Elsevier, New York (2014)
31. Ramos, J., et al.: Using TF-IDF to determine word relevance in document queries.

In: Proceedings of the First Instructional Conference on Machine Learning, vol.
242, pp. 133–142 (2003)

32. Rivera, J., van der Meulen”, R.: Gartner says 4.9 billion connected ’things’ will be
in use in 2015 (2014). http://www.gartner.com/newsroom/id/2905717

33. Roman, R., Najera, P., Lopez, J.: Securing the internet of things. Computer 44(9),
51–58 (2011)

34. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Reg-
ularization, Optimization, and Beyond. MIT press, Cambridge (2002)

35. Sharma, K., Sharma, A., Joshi, D., Vyas, N., Bapna, A.: A review of text mining
techniques and applications. Int. J. Comput. (IJC) 24(1), 170–176 (2017)

36. Sicari, S., Rizzardi, A., Grieco, L.A., Coen-Porisini, A.: Security, privacy and trust
in Internet of Things: the road ahead. Comput. Netw. 76, 146–164 (2015)

37. Tata, S., Megahed, A., Mohamed, M., Nazeem, A., El Harouni, A.: Data collection
and management in IoT environments: challenges and future directions. In: 2017
IEEE International Congress on Big Data (BigData Congress). IEEE (2017)

38. Tata, S., Mohamed, M., Megahed, A.: An optimization approach for adaptive mon-
itoring in IoT environments. In: 2017 IEEE International Conference on Services
Computing (SCC), pp. 378–385. IEEE (2017)

39. Trihinas, D., Pallis, G., Dikaiakos, M.D.: AdaM: An adaptive monitoring frame-
work for sampling and filtering on IoT devices. In: IEEE International Conference
on Big Data. IEEE Computer Society, Los Alamitos, CA, USA (2015)

40. Zarko, I.P., Pripuzic, K., Serrano, M., Hauswirth, M.: IoT data management meth-
ods and optimisation algorithms for mobile publish/subscribe services in cloud
environments. In: 2014 European Conference on Networks and Communications
(EuCNC), pp. 1–5. IEEE (2014)

http://www.gartner.com/newsroom/id/2905717

A Research Perspective
on Fog Computing

David Bermbach1(B), Frank Pallas1, David Garćıa Pérez2, Pierluigi Plebani3,
Maya Anderson4, Ronen Kat4, and Stefan Tai1

1 TU Berlin, Information Systems Engineering Research Group, Berlin, Germany
{db,fp,st}@ise.tu-berlin.de

2 Atos Spain SA, Atos Research and Innovation, Barcelona, Spain
david.garciaperez@atos.net

3 Politecnico di Milano, Milan, Italy
pierluigi.plebani@polimi.it

4 IBM Research Haifa, Haifa, Israel
{mayaa,ronenkat}@il.ibm.com

Abstract. State-of-the-art applications are typically deployed on top
of cloud services which offer the illusion of infinite resources, elastic
scalability, and a simple pay-per-use billing model. While this is very
convenient for developers, it also comes with relatively high access
latency for end users. Future application domains such as the Inter-
net of Things, autonomous driving, or future 5G mobile apps, however,
require low latency access which is typically achieved by moving com-
putation towards the edge of the network. This natural extension of the
cloud towards the edge is typically referred to as Fog Computing and has
lately found a lot of attention. However, Fog Computing as a deployment
platform has not yet found widespread adoption; this, we believe, could
be helped through a consistent use of the service-oriented computing
paradigm for fog infrastructure services. Based on this motivation, this
paper describes the concept of Fog Computing in detail, discusses the
main obstacles for Fog Computing adoption, and derives open research
challenges.

Keywords: Fog Computing · Cloud computing · Edge computing

1 Introduction

Today’s state-of-the-art applications are typically deployed on top of cloud ser-
vices, thus, leveraging cost benefits, ease-of-use, elastic scalability, and the illu-
sion of infinite resources [12]. While cloud services come with these obvious
benefits, they also have a major disadvantage: cloud data centers are centralized
and, thus, typically far from the end user resulting in high access latencies. This
is sufficient for many application domains such as enterprise or web applications
but not for more modern application domains such as autonomous driving, Inter-
net of Things (IoT)-based platforms, or 5G mobile applications. Therefore, these
c© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 198–210, 2018.
https://doi.org/10.1007/978-3-319-91764-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_16&domain=pdf

A Research Perspective on Fog Computing 199

applications are typically deployed on edge devices. However, while such edge
devices offer low access latencies due to their physical proximity to end users,
they also come with limited resources and are subject to availability problems.

In this situation, an obvious approach is to use both cloud services and edge
nodes at the same time to achieve low latency while having access to scalable, infi-
nite resources. This paradigm, which has recently emerged as a natural extension
of Cloud Computing, is typically referred to as Fog Computing [4,13]. Beyond
the benefits already discussed, Fog Computing also promises better privacy to
end users: While current, cloud applications collect personal data need in a cen-
tral place, future Fog applications can keep detailed personal data at the edge,
transferring only aggregated or properly anonymized data to the cloud.

These obvious advantages of Fog Computing and the public attention it cre-
ated notwithstanding, there has so far been surprisingly little adoption of the
paradigm for actual applications. We believe that there are several reasons for
this, chief among which we see a lack of edge service offerings: managing edge
nodes manually is a gruesome task and requires massive upfront investments –
the exact opposite of cloud services with their convenience focus and pay-as-you-
go model. Also, it is still not completely clear what Fog Computing actually is.

This paper aims to shed some light on Fog Computing and its role in service-
oriented computing (SOC). To this aim, we firstly provide a definition of Fog
Computing and the involved concepts relevant to SOC. Secondly, we identify
the main obstacles for widespread fog adoption and describe a number of funda-
mental research challenges. For this reason, this paper should, thus, be seen as
a call to action and as an overview of challenges that we as researchers should
tackle.

This paper is structured as follows: In Sect. 2, we give an overview of state-
of-the-art Fog Computing (along with its competing definitions as well as its
benefits and opportunities). Afterwards, in Sect. 3, we identify and discuss obsta-
cles for widespread fog adoption. In Sect. 4, we describe research challenges that
result from these obstacles before concluding.

2 From Cloud to Fog Computing

Fog computing has been initially introduced in the telecommunication sec-
tor [4] when researchers and practitioners realized how the role of the final users
changed from consumers of information to prosumers (producers and consumers
at the same time). In fact, the original paradigm on which the Web is based
assumes that the core of the network is in charge of providing information that
will be consumed at the edge. Prosumers with mobile devices or IoT sensors,
however, generate immense data quantities at the edge of the network.

So, what precisely is Fog Computing and how can it be distinguished from
Edge Computing? Edge Computing is exclusively about computation at the edge
of the network without any notion of cloud services. Depending on the source,
Fog Computing is either the same as Edge Computing [20] or is defined as the
amalgam of cloud, edge, and any intermediary nodes in between (this could be

200 D. Bermbach et al.

Fig. 1. Deployment overview of Fog Computing

Fig. 2. Overview of roles in Fog Computing

small- to medium-sized data centers within the core network of the network
provider) [21]. In this paper, we take the latter perspective. See also Fig. 1 for a
high-level deployment overview of Fog Computing.

To realize its full potential, Fog Computing must be more than creating a data
center in the box, i.e., Cloudlets [19], to bring the cloud closer to data producers.
Instead, Fog Computing must be seen as a “resource layer that fits between
the edge devices and the cloud data centers, with features that may resemble
either.” [25]. As also pointed out by the OpenFog Consortium [13], the goal of
Fog Computing is to provide a set of methods and tools to create a continuum
between edge and cloud. For this, Fog Computing technologies especially need to
enable fluid data movement between cloud services and edge, in both directions,
while satisfying application constraints in terms of quality of service (QoS). Such
data movement may also be accompanied by movement of computation – both
in the same way and in a complimentary fashion compared to data movement.

With the advent of Fog Computing, applications based on this paradigm can
exploit the advantages of both the edge and cloud environments. With specifi-
cally tailored frameworks, e.g., [17], developers can leave it to the Fog Comput-
ing layer to automatically handle data and computation placement. Based on
such dynamic data and computation movement, applications can provide new
functionality or new QoS levels (e.g., significantly lower latency) and use novel
ways for dynamically balancing tradeoffs. The lack of such capabilities has so far
hindered the emergence of technologies such as autonomous and interconnected
driving, large-scale IoT, etc., which should significantly profit from fog adoption.

A Research Perspective on Fog Computing 201

While Cloud Computing is largely centered around a service concept, this
is not (yet) the case for the edge as we will also discuss in the next sections.
However, we firmly believe that the SOC paradigm might prove valuable for
widespread fog adoption. In this context, we envision the following roles (see
also Fig. 2): Already today, cloud service providers offer access to cloud infras-
tructure services. Edge service providers may do the same for edge resources.
Fog service providers, in contrast, offer service-based access to fog infrastructure
resources – in this capacity, fog service providers may act as resellers. Alterna-
tively, two or more of these roles may be held by the same organization. Finally,
Fog application providers rent resources through fog infrastructure services to
offer their application to clients. We explicitly use the broad term “client” as
this may include IoT devices, mobile phones, or any other end user.

However, there are several obstacles and yet unsolved research challenges
that need to be faced in order to actually pave the way for a broad adoption of
Fog Computing. In literature, some other papers already made the attempt to
identify these challenges. For instance, even if it does not mention Fog Comput-
ing, Dı́az et al. [6] analyses the challenges when considering the integration of
IoT and cloud services, thus, in a scenario close to Fog Computing. Yet, [5] pro-
poses a Fog Computing definition close to ours and also identifies some possible
applications as well as research challenges mainly concerning the infrastructural
level, while in this paper we are taking a broader perspective also considering the
application level. Finally, in [20], even if mainly focused on the Edge Comput-
ing, a list of challenges are introduced with more emphasis on the programming
models.

As already mentioned, the goal of the paper is to consider Fog Computing as
an environment in which both cloud and edge resources are used as application
service deployment environments. Obstacles to the adoption of Fog Computing,
and the related research challenges arising when trying to overcome to those
obstacles, necessarily include the design, deployment, and management of com-
plex and distributed systems, as discussed in the following sections.

3 The Main Obstacles for Adoption of Fog Computing

Broadly, obstacles for a wide adoption of Fog Computing can be categorized as
inherent, e.g., available technology or physical constraints, and external obsta-
cles, e.g., privacy legislation. In this section, we will give an overview of both.

3.1 Inherent Obstacles

As inherent obstacles we see those that result from the very idea of using fog
resources. Specifically, these can be technical constraints such as a given limit of
computational power, logical constraints such as having tradeoffs in distributed
systems, or simply market constraints such as the fact that there are currently
no managed edge services.

202 D. Bermbach et al.

O1: No Edge Services. While the cloud is conveniently usable with its service-
based consumption model, there are currently no edge infrastructure services
where compute or storage capacity could be provisioned on-demand. We believe
that managed edge services are bound to enter the market sooner or later; pos-
sibly even as fog services in cooperation of cloud providers and network carriers.
Currently, Amazon is taking first steps in that direction through their Green-
grass “service”1 which provides software for edge devices. However, since there
is currently no way to really “rent” on-demand edge capacity, this means that
fog application providers currently need to build, manage, and run their own
physical edge “boxes” including cloud integration.

O2: Lack of Standardized Hardware. While there are some ready-to-use,
off-the-shelf edge “boxes”, these come in a variety of flavors, e.g., regarding com-
pute power. Alternatively, Raspberry Pis, BeagleBoards, or custom solutions can
be used. This leads to a broad heterogeneity of edge node hardware which has
two effects: First, software stacks need to be adapted or may not even run every-
where. Systems that can actually run everywhere are unlikely to fully tap the
potential of the respective hardware resources. Second, application architectures
need to be able to deal with such diverse resource capacities. This requires highly
modularized applications that can deliver some or all service features depending
on the nodes where they are running.

O3: Management Effort. Since Fog Computing is mainly about bringing data
and computation closer to end users, dense fog deployments will result in very
high numbers of fog nodes. These all need to be managed, e.g., when scaling,
installing updates, or updating configurations. As there is currently no man-
aged fog infrastructure service, this management effort is left with application
providers. In comparison small on-premise data centers, this requires immense
effort.

O4: Managing QoS. Complexity of systems typically increases with the num-
ber of nodes in the system and their geographical distribution. This is due to
issues and faults – ranging from simple ones such as network latencies, message
reordering, or message loss to complicated faults such as network partitioning
or byzantine failures. Usually, systems can cope with these issues but they still
affect QoS and their tradeoffs. In large-scale geo-distributed systems, all these
issues become more pronounced and faults happen more often – simply based
on probabilities and the increased number of distributed nodes.

At the same time, fog application domains such as IoT or autonomous driv-
ing actually have stronger quality requirements on infrastructure services as
the potential impact of “things going wrong” is much more severe and affects
the physical world. E.g., faults in a social network may lose a private message;

1 aws.amazon.com/greengrass.

http://aws.amazon.com/greengrass

A Research Perspective on Fog Computing 203

identical faults could result in injuries and deaths if they affect safety-critical
functionality of autonomous cars.

O5: No Network-Transparency. Distributed systems research has always
tried to hide distribution, i.e., that applications will run as if they were run-
ning on a single machine. Over the years, more and more of these transparencies
needed to be sacrificed in favor of other QoS goals. What has still remained hid-
den so far is the network layout; e.g, cloud services expose some basic high-level
information on their setup and distribution (e.g., availability zones and regions
in AWS) and heavily rely on network virtualization. However, in Fog Comput-
ing, the interconnection of nodes on a logical level can no longer be done in
arbitrary ways as the underlying networks are, in fact, more or less hierarchical;
e.g., two geographically near edge nodes may be connected directly, on the next
higher hierarchy level, at the Internet backbone level or anywhere in between.
In geo-distribution, this results in edge-to-edge latencies that are magnitudes
apart. Therefore, fog application services can no longer be based on high-level
abstractions describing distance notions (e.g., an AWS region). Instead, they
need to be aware of actual network topologies unless they can cope with unex-
plainable performance variance across nodes. For manageability reasons, this
calls for the introduction of novel, more fine-grained topology abstractions that
can be handled inside application services.

3.2 External Obstacles

Beyond the inherent obstacles already discussed, there are also influence factors
resulting from external entities such as government agencies or attackers.

O6: Physical Security. Traditional data centers can employ arbitrarily com-
plex measures for physical access control including but not limited to onsite secu-
rity staff. Typically, this is subject to audit and certification to assert that their
physical security measures are up to par. For fog nodes widely distributed across
a basically hostile environment, this is impossible. Here, physical security may
mean to attach an edge box to the top of a street light’s pole (instead of at eye
level) or surrounding it with a fire-resistant coating to counter vandalism. What
is less obvious, though, is that potential attackers gain a physical attack vector
into a software system which enables an entire set of so far theoretic attacks.
Even though there are existing approaches to comparable problems from other
fields – e.g., for tamper-proofing smart energy meters or for protecting mod-
ern cars against software manipulations – these are typically addressing highly
specific risks that are well-known in advance. Also, such approaches have only
been used in specialized embedded systems yet. They can, thus, not be directly
applied to heterogeneous, multi-purpose fog nodes. Nonetheless, they might pro-
vide valuable inspiration and direction for addressing physical security in Fog
Computing; e.g, one could design fog nodes so that they can detect tampering
to then shut down the node, move and wipe all data, and notify the authorities.
Application services, in turn, need to be able to cope with such behavior.

204 D. Bermbach et al.

O7: Legal and Regulatory Requirements. In many application domains,
e.g., in health care, there are legal and regulatory requirements that mandate
data to be held in certain physical locations. Also, storage and processing facili-
ties must demonstrably meet certain requirements. While cloud data centers can
be certified if they exist in the respective region, this seems impractical for edge
nodes. Furthermore, data privacy regulation such as the EU’s GDPR [9] also
include aspects like transparency, i.e., the data subjects’ right to know where
their personal data is stored. In liquid fog-based applications, this is challeng-
ing to prove as the application may not even know the data location due to
virtualization.

4 Open Research Challenges in Fog Computing

While we as a research community cannot start a managed edge infrastructure
service, we can support fog adoption through research efforts on the research
challenges presented in this section. Even though there are interdependencies
between these challenges, they can be broadly categorized regarding the role
that they mainly affect: fog infrastructure service providers or fog application
providers. In a third group are management challenges such as failure handling
or security and privacy aspects which fog application providers are primarily but
not exclusively responsible for. In this section, we will present this non-conclusive
list of main challenges following the above-mentioned ordering structure; where
possible we also point out possible avenues for addressing them.

4.1 Fog Service Providers

While our research is unlikely to directly result in fog infrastructure services,
there are still a number of open research challenges that potential fog service
providers need to face once they decide to enter the market.

RC1: New Abstractions. One of the main goals of using a SOC model is
to hide implementation or runtime details. In the case of fog resources, geo-
distribution, physical locations, and sometimes the node type actually matter.
Still, fog application providers seem ill equipped to deal with services that expose
individual edge locations and capacities. What we need is some middle ground
that exposes enough details on distribution and physical locations so that appli-
cations can work with it but are not overwhelmed by it. We believe that the
event-driven programming model of typical (serverless) Function as a Service
(FaaS) [18] offerings naturally lends itself to this: Applications can use policies
to define properties on various levels, e.g., for the case of location, based on den-
sity for a given region, everywhere within a given region, or based on concrete
coordinates, which are then used by the fog FaaS offering to deploy functions
accordingly. Of course, other programming models are also an option – however,
a serverless approach seems like an easy-to-use abstraction that allows control
over deployments while not forcing unnecessary details on application developers.

A Research Perspective on Fog Computing 205

RC2: Capacity Management. One of the main properties of cloud services
is the illusion of infinite resources [12]; for edge nodes, in contrast, upholding
this illusion becomes impossible. Essentially, in an edge node there is a limited
set of resources that is available to fog service consumers. In the cloud, resource
pooling across a large customer base and inside gigantic data centers helps cloud
providers even out natural demand variability. In Edge Computing, the limited
capacity of nodes does not allow this: edge nodes will alternate between states of
idleness and periods with more demand than they can handle. However, offload-
ing processing and data to adjacent nodes or intermediary nodes is bound to
impact QoS. This leads to the following three main questions for fog service
providers:

1. How shall scarce capacity be distributed across applications in periods of high
demand?

2. Shall fog service providers deny requests that cannot be fulfilled or shall they
fulfill them partially, e.g., on other nodes, resulting in poorer QoS behavior?

3. How shall fog service providers size their edge and intermediary nodes if
demand is unknown before deployment?

We believe that auctioning-based approaches (comparable to virtual machine
spot markets [14]) can help us tackle the first two questions. E.g., an application
could submit different price bids for specific groups of nodes (e.g., a specific edge
node compared to an intermediary node with slightly higher latencies). When-
ever demand exceeds capacity, this allows fog service providers to auction off
free capacity to the highest paying bidder. If bids reflect individual utilities, this
results in an (economically) optimal distribution of capacity where optimizations
can be decided locally. Of course, our community could develop more complex
mechanisms, e.g., distributions based on QoS requirements etc.

Regarding the third question, we believe that fog service providers should
strive to design modular edge nodes where additional capacity can be added or
removed incrementally, e.g., a rack of Raspberry Pis.

4.2 Fog Application Providers

There is a number of key differences between cloud-native and fog-native appli-
cations. Beyond dealing with abstractions offered by (potential) fog service
providers, application services need to be able to run in a widely distributed
setup (resulting in new modularization challenges), must be able to dynamically
adapt to new environments (meaning a unique “fluidity” challenge), and must
consider – on an architectural level – how to integrate various fog nodes ranging
from high performance cloud machines to Raspberry Pi-based edge nodes.

RC3: Modularization. State-of-the-art modularization of applications typi-
cally follows a microservice-based approach [11] where each microservice repre-
sents a vertical cut through the application stack. This means that a microser-
vice will usually have its own storage layer and may even use its own technology

206 D. Bermbach et al.

stack. This modularization is largely driven by organizational decisions, i.e., a
company organized into small DevOps teams will assign part of the functionality
to each of the teams who will then be responsible for developing and running
that microservice. Service-oriented architectures, in contrast, were mainly driven
by technical design goals such as reusability, less by organizational factors. Now,
in future fog applications, it may make sense to still follow a microservice-based
approach (or it may not – depending on the organizational structure of the devel-
oper group), but within a microservice not all parts of the stack may run on all
nodes, also considering that replication in the deployment suddenly becomes
widely distributed. What we envision is that the vertical cuts of microservices
are cut horizontally into smaller slices that can be distributed. For instance, an
application service may decide to keep some basic presentation and application
logic plus a caching layer at the edge and persistently store data on cloud nodes.
For this, we need further research on how to slice microservices into even smaller
pieces that can be replicated, shuffled around, and distributed widely.

RC4: Fluidity. Novel fog applications will have to be designed in a way that
openly embraces a notion of fluidity: application modules will be interrupted
frequently, will move between fog nodes, and maybe cloned at any time for
such reasons as limited edge capacity, moving client devices, cost optimizations,
or changing QoS requirements. Part of fluidity is also the ability to deal with
varying resource capacity in nodes, e.g., when moving from a high performance
cloud node to a small edge node. A convenient way to address this fluidity
challenge is to strictly separate stateful and stateless components – an approach
also (originally) taken with containers such as Docker [7]. The same paradigm
can also be found in serverless FaaS deployments where applications are broken
down into short-lived, stateless tasks that interact with a stateful storage tier.
Research should focus on application designs that can cope with such degrees of
fluidity.

4.3 Cross-Cutting Concerns

Failure handling primarily falls into the domain of application developers; how-
ever, depending on the actions of prospective fog service providers, failure han-
dling activities can be severely affected. E.g., applications that use bare resources
will have to employ fundamentally different mechanisms than applications that
run on top a fog-based FaaS offering. Finally, as in Cloud Computing [10], secu-
rity and privacy aspects are obvious candidates for further research challenges.

RC5: Graceful Degradation and Fault-Tolerance. Fault-tolerance is
already challenging in the cloud – fog services with more nodes, wider dis-
tribution, and more complex and dynamic interdependencies between compo-
nents make this even harder. At the same time, fog application domains such
as autonomous driving or IoT tend to have more stringent QoS requirements
as unhandled failures are bound to have physical effects. Based on this, it is

A Research Perspective on Fog Computing 207

of utmost importance to handle and hide failures where possible and to sup-
port graceful degradation, e.g., in the form of a “safe mode”, when not. How
this can be achieved in fog applications or infrastructure services is still unclear.
Suitable safeguards that monitor necessary requirements and notify in case of
violations might be alternatives as well as compensation and data interpolation
mechanisms. E.g., in autonomous driving, a fog storage service should aim to
underestimate distances between cars when forced to in the presence of missing
data as an overestimating interpolation may result in accidents. Here, research
should work on identifying failure detectors or use case-driven compensation
mechanisms.

RC6: Benchmarking and Testing. Realistic benchmarking [3] and testing
are already challenging for cloud services: Both can easily be executed under
controlled conditions (much work in benchmarking is dedicated to creating con-
trolled environments) whereas interesting behavior, e.g., [1,2,16] may only be
observable in realistic conditions, i.e., at scale and in a regular deployment while
running a production workload. For fog-based applications, additional influence
factors like heterogeneous hardware (potentially under control by different legal
entities), wide geo-distribution, and only occasionally (re)occurring failure sit-
uations (possibly resulting from unforeseeable events in the “physical world”)
are added to the melee of challenges. In short, it becomes completely impossible
to accurately emulate a production system for testing purposes since the cost
of running such a setup is prohibitive and a second set of comparable resources
may not even exist. Future research in this area should focus more on continuous
benchmarking [24] and testing where both are executed during a build process:
starting from a small isolated test setup to test basic QoS and functionality,
gradually rolling out the software to the target environment. In short, the dif-
ferences between benchmarking and testing on the one side and monitoring on
the other side will gradually be blurring. Research should try to identify how
this can be done in practice without impairing production systems. Furthermore,
more research needs to be directed towards benchmarking fault-tolerance and
related qualities.

RC7: Attack-Agnostic Services. Fog Computing also raises a number of
security challenges, mainly how to provide appropriate security in an essentially
hostile environment. Besides technical mechanisms, this might also require novel
views to the weighing between acceptable risks and the costs of countermea-
sures. Especially with regard to the physical attack vectors omnipresent in the
context of edge nodes, it seems highly worthwhile to put more effort on coping
with attacks instead of avoiding them. We, thus, see the design of “attack-
agnostic” services that accept certain attacks as unpreventable and implement
measures for detecting and reacting to them (particularly to safeguard data)
as a promising strand of research. Integrating such approaches into established
security approaches for distributed service systems is another research question.
Finally, the limited capabilities of edge nodes may also restrict the applicability

208 D. Bermbach et al.

of security mechanisms widely adopted today: Encryption overheads – all too
often already mistaken as virtually nonexistent [15] – may suddenly become
restricting factors in the context of constrained edge nodes and. Also, the use
of well-established concepts for access management and enforcement may prove
inappropriate due to the common unreachability of centralized components, call-
ing for novel schemes tailored to the specific givens in fog scenarios [23].

RC8: Compliance with Privacy Legislation. For privacy, Fog Computing
provides both opportunities and challenges. Fulfilling data privacy requirements
that give data subjects the right to know and to control where their personal data
resides is particularly challenging in such a widely distributed, ever-changing
network. Other regulations, e.g., regarding auditability or the physical placement
of data are also difficult to address – possibly through information flow control,
e.g., [22], if it can be implemented with little overhead.

On the other hand, Fog Computing also provides a number of opportunities,
e.g., data could be aggregated or anonymized on edge nodes before forwarding
it to a “central” cloud service, i.e., sensitive, detailed data may not even leave
the direct vicinity of the data subject [8]. Similarly, the processing of sensitive
personal data may be relocated away from centralized data lakes to the place
of data collection, serving privacy goals like data minimization and purpose
limitation.

5 Conclusion

While Cloud Computing can today be considered well established, modern appli-
cation domains such as IoT, autonomous driving, or even mobile applications
trying to tap the full potential of future 5G networks require an extension of
the cloud towards the edge, thus, naturally leading to the new Fog Computing
paradigm. In Fog Computing, application services run on both edge nodes (with
low latency access but very limited resource capabilities) and in the cloud (with
higher access latency but practically unlimited resources) as well as on possi-
ble intermediary nodes. Fog Computing as a new paradigm is a yet virtually
unexplored field that offers a number of open research challenges.

In this paper, we started by describing what Fog Computing actually is –
also in comparison to Edge Computing and Cloud Computing. Afterwards, we
described the main obstacles for widespread fog adoption, distinguishing inherent
and external challenges. An example for inherent challenges is the current lack
of an edge service model which leads to a “build your own infrastructure” trend
with all its undesirable implications; examples for external challenges are physical
security or regulations. Building on these identified obstacles, we then described
open research questions that arise for either (potential) fog service providers or
fog applications running on top of such services. We also identified a number of
cross-cutting concerns which fall into the domain of fog service consumers and
application providers but are strongly affected by fog service provider actions,
e.g., fault-tolerance, security, privacy, but also benchmarking and testing.

A Research Perspective on Fog Computing 209

All in all, this paper aims to identify a research agenda in Fog Computing
where we, as service-oriented computing researchers, as well as other research
communities can contribute. Where feasible, we also pointed out specific direc-
tions that we believe might prove useful for overcoming the named obstacles or
for addressing the resulting research questions.

Acknowledgments. This work has been supported by the European Commission
through the Horizon 2020 Research and Innovation program under contract 731945
(DITAS project).

References

1. Bermbach, D., Tai, S.: Benchmarking eventual consistency: Lessons learned from
long-term experimental studies. In: Proceedings of IC2E. IEEE (2014)

2. Bermbach, D., Wittern, E.: Benchmarking web API quality. In: Bozzon, A., Cudre-
Maroux, P., Pautasso, C. (eds.) ICWE 2016. LNCS, vol. 9671, pp. 188–206.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-38791-8 11

3. Bermbach, D., Wittern, E., Tai, S.: Cloud Service Benchmarking. Measuring Qual-
ity of Cloud Services from a Client Perspective. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-55483-9 1

4. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
internet of things. In: Proceedings of MCC. ACM (2012)

5. Dastjerdi, A.V., Buyya, R.: Fog computing: helping the internet of things realize
its potential. Computer 49(8), 112–116 (2016)

6. Dı́az, M., Mart́ın, C., Rubio, B.: State-of-the-art, challenges, and open issues in
the integration of internet of things and cloud computing. J. Netw. Comput. Appl.
67, 99–117 (2016)

7. Ernst, D., Bermbach, D., Tai, S.: Understanding the container ecosystem: A tax-
onomy of building blocks for container lifecycle and cluster management. In: Pro-
ceedings of WoC. IEEE (2016)

8. Esposito, C., Castiglione, A., Pop, F., Choo, K.K.R.: Challenges of connecting edge
and cloud computing: a security and forensic perspective. IEEE Cloud Comput.
4(2), 13–17 (2017)

9. European Parliament and European Council: Regulation 2016/679 - general data
protection regulation - GDPR (2016)

10. Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson, D.,
Rabkin, A., Stoica, I.: Above the clouds: A berkeley view of cloud computing.
University of California, Berkeley, Technical report (2009)

11. Lewis, J., Fowler, M.: Microservices: a definition of this new architectural term.
ThoughtWorks (2014). Accessed 1 Jun 2017. http://martinfowler.com/articles/
microservices.html

12. Mell, P., Grance, T.: The NIST definition of cloud computing. NIST Special Pub-
lication 800-145 (2011)

13. OpenFog Consortium Architecture Working Group: OpenFog Architecture
Overview (2016). Accessed 8 Aug 2017. http://www.openfogconsortium.org/ra

14. Ouyang, X., Irwin, D., Shenoy, P.: Spotlight: An information service for the cloud.
In: Proceedings of ICDCS. IEEE (2016)

15. Pallas, F., Bermbach, D., Müller, S., Tai, S.: Evidence-based security configurations
for cloud datastores. In: Proceedings of SAC. ACM (2017)

https://doi.org/10.1007/978-3-319-38791-8_11
https://doi.org/10.1007/978-3-319-55483-9_1
https://doi.org/10.1007/978-3-319-55483-9_1
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
http://www.openfogconsortium.org/ra

210 D. Bermbach et al.

16. Pallas, F., Günther, J., Bermbach, D.: Pick your choice in hbase: Security of per-
formance. In: Proceedings of BigData. IEEE (2016)

17. Plebani, P., Garcia-Perez, D., Anderson, M., Bermbach, D., Cappiello, C., Kat,
R.I., Pallas, F., Pernici, B., Tai, S., Vitali, M.: Information Logistics and Fog Com-
puting: The DITAS Approach. In: Proceedings of CAISE Forum. CEUR (2017)

18. Roberts, M.: Serverless architectures (2016). Accessed 1 Jun 2017. http://
martinfowler.com/articles/serverless.html

19. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for VM-based
cloudlets in mobile computing. IEEE Pervasive Comput. 8(4), 14–23 (2009)

20. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges.
IEEE Internet Things J. 3(5), 637–646 (2016)

21. Shi, W., Dustdar, S.: The promise of edge computing. Computer 49(5), 78–81
(2016)

22. Singh, J., Pasquier, T.F.J.M., Bacon, J., Diaconu, R., Powles, J., Eyers, D.: Big
Ideas paper: Policy-driven middleware for a legally-compliant Internet of Things.
In: Proceedings of MIDDLEWARE. ACM (2016)

23. Stojmenovic, I., Wen, S., Huang, X., Luan, H.: An overview of fog computing and
its security issues. Concurr. Comput. Pract. Exp. 28(10), 2991–3005 (2016)

24. Tai, S.: Continuous, trustless, and fair: changing priorities in services computing.
In: Lazovik, A., Schulte, S. (eds.) ESOCC 2016. CCIS, vol. 707, pp. 205–210.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72125-5 16

25. Varshney, P., Simmhan, Y.: Demystifying fog computing: Characterizing archi-
tectures, applications and abstractions. CoRR (2017). http://arxiv.org/abs/1702.
06331

http://martinfowler.com/articles/serverless.html
http://martinfowler.com/articles/serverless.html
https://doi.org/10.1007/978-3-319-72125-5_16
http://arxiv.org/abs/1702.06331
http://arxiv.org/abs/1702.06331

Workshop on Engineering
Service-Oriented Applications

and Cloud Services

Introduction to the 13th International
Workshop on Engineering Service-Oriented

Applications and Cloud Services
(WESOACS’17)

Andreas S. Andreou1, Luciano Baresi2, George Feuerlicht3,
Winfried Lamersdorf 4, Guadalupe Ortiz5, and Christian Zirpins6

1 Cyprus University of Technology
andreas.andreou@cut.ac.cy

2 Politecnico di Milano
luciano.baresi@polimi.it
3University of Economics, Prague
george.feuerlicht@vse.cz

4University of Hamburg
lamersdorf@informatik.unihamburg.de

5University of Cádiz
guadalupe.ortiz@uca.es

6Karlsruhe University of Applied Sciences
christian.zirpins@hs-karlsruhe.de

The International Workshop on Engineering Services-Oriented Applications and
Cloud Services (WESOACS) is a long-established forum (formerly known as WESOA)
for innovative ideas from research and practice in the field of software engineering for
modern service-oriented application systems. This year, the 13th meeting took place on
13th November in Malaga, Spain.

Service-oriented applications play an important role in many areas, such as
enterprise computing, cloud computing, and the Web. While there is agreement on the
main principles for designing and developing application systems based on distributed
software services, methods and tools that support the development of such applications
are still the subject of intense research. These research topics include software service
life cycle development methodologies, service-oriented enterprise architectures,
service-oriented analysis and design, and in particular service engineering technologies
for cloud computing environments in general, and more specifically for current trends
in cloud-based applications such as intelligent cyber-physical systems.

Currently, there is a shift in this area to so-called “DevOps” approaches of software
development in which software service development and operations are continuously
and inextricably linked to achieve faster application delivery with automated release
and deployment. Agile processes, microservices, continuous delivery, containers and
cloud technologies are just some of the popular topics that contribute to the current IT
transformation in this context.

The WESOACS technical program included ten research papers in four thematic
sessions. The first one grouped recent developments in architectures of cloud frame-
works (George Feuerlicht, University of Economincs, Prague) and for pattern-based
control of privacy policies in the cloud (Stefan Schönen, University of Duisburg-
Essen). In addition, case studies on current workflow management systems (Jörg
Lenhard, Karlstad University) and on migration between web service API technologies
(Maximilian Vogel, University of Applied Sciences Karlsruhe) were presented.

A focus of this year’s contributions was on service-oriented development of in-
telligent systems. This included work on access control of web-based smart home
platforms (Sebastian Werner, TU Berlin), collaborative environments for business
processes with social interaction (Andrea Delgado, University of Uruguay) and inter-
active assistance systems for multimodal mobility in smart cities (Christian Kuster, TU
Berlin).

In addition, new approaches to the development of software services for cyber-
physical systems were discussed. Here, participants presented approaches for event
processing of sensor data for sustainable waste management (Juan Boubeta-Puig,
University of Cadiz), knowledge-based service components in production systems
(Christopher Haubeck, University of Hamburg) and the control of intelligent devices
by business process management systems (Robert Wehlitz, University of Leipzig).

In the course of the one-day workshop, the participants had ample opportunity for
professional exchange and networking, so that the 13th edition of the event can once
again be regarded as a complete success.

Introduction to the 13th International Workshop 213

Organization

Workshop Organizers

Andreas S. Andreou Cyprus University of Technology, Cyprus
Luciano Baresi Politecnico di Milano, Italy
George Feuerlicht University of Economics, Prague
Winfried Lamersdorf University of Hamburg, Germany
Guadalupe Ortiz University of Cadiz, Spain
Christian Zirpins Karlsruhe University of Applied Sciences, Germany

Program Committee

Juan Boubeta-Puig University of Cádiz, Spain
Alena Buchalcevova University of Economics, Prague, Czech Republic
Javier Cubo University of Malaga, Spain
Andrea Delgado Universidad de la República, Uruguay
Alfonso Garcia-de-Prado University of Cádiz, Spain
Laura González Universidad de la República, Uruguay
Sam Guinea Politecnico di Milano, Italy
Kai Jander University of Hamburg, Germany
Mark Little Red Hat, UK
Massimo Mecella SAPIENZA Università di Roma, Italy
Giovanni Quattrocchi Politecnico di Milano, Italy
Wolfgang Reisig Humboldt-University Berlin, Germany
Norbert Ritter University of Hamburg, Germany
Damina Tamburri DEIB Politecnico di Milano, Italy
Erik Wittern IBM T.J. Watson Research Center, USA

Acknowledgements.We wish to thank all authors for their contributions, the program committee
members whose expert input made this workshop possible as well as the ICSOC’17 workshop
co-chairs Lars Braubach and Juan M. Maurillo. G. Ortiz thanks for support from the
MINECO/FEDER Funds through project TIN2015-65845-C3-3-R.

Lessons Learned from Evaluating
Workflow Management Systems

Jörg Lenhard1(B), Vincenzo Ferme2, Simon Harrer3, Matthias Geiger3,
and Cesare Pautasso2

1 Department of Mathematics and Computer Science,
Karlstad University, Karlstad, Sweden

joerg.lenhard@kau.se
2 Software Institute, Faculty of Informatics, USI, Lugano, Switzerland

{vincenzo.ferme,cesare.pautasso}@usi.ch
3 Distributed Systems Group, University of Bamberg, Bamberg, Germany

{simon.harrer,matthias.geiger}@uni-bamberg.de

Abstract. Workflow Management Systems (WfMSs) today act as ser-
vice composition engines and service-oriented middleware to enable the
execution of automated business processes. Automation based on WfMSs
promises to enable the model-driven construction of flexible and easily
maintainable services with high-performance characteristics. In the past
decade, significant effort has been invested into standardizing WfMSs
that compose services, with standards such as the Web Services Business
Process Execution Language (WS-BPEL) or the Business Process Model
and Notation (BPMN). One of the aims of standardization is to enable
users of WfMSs to compare different systems and to avoid vendor lock-in.
Despite these efforts, there are many expectations concerning portabil-
ity, performance efficiency, usability, reliability and maintainability of
WfMSs that are likely to be unfulfilled. In this work, we synthesize the
findings of two research initiatives that deal with WfMSs conformance
and performance benchmarking to distill a set of lessons learned and best
practices. These findings provide useful advice for practitioners who plan
to evaluate and use WfMSs and for WfMS vendors that would like to
foster wider adoption of process-centric service composition middleware.

Keywords: Workflow management systems · Standards
Lessons learned · Evaluation research · Benchmarking
Service composition

1 Introduction

Workflow management systems (WfMSs) are a core middleware technology
for engineering service-oriented applications and for building service orchestra-
tions [21]. Recently, WfMSs are being adapted to cloud computing environments
to enable the development of scalable and elastic service-oriented systems.

c© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 215–227, 2018.
https://doi.org/10.1007/978-3-319-91764-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_17&domain=pdf

216 J. Lenhard et al.

The most critical part of a WfMS is probably the language in which a user
can implement applications and services (i.e., workflows), that run on top of a
WfMS. Selecting an unsuitable language or one that cannot easily be transferred
to another system can have severe implications for a user, such as an inability
to express business requirements or vendor lock-in [2]. This situation has been
addressed by global standardization consortia. To this end, several organizations
proposed workflow standards, as for example OASIS with the Web Services Busi-
ness Process Execution Language (WS-BPEL) [20], or OMG with the Business
Process Model and Notation (BPMN) [16].

Workflow standards [16,20] define the language that can be used to imple-
ment workflows and the lifecycle of workflow instances. They are meant to clarify
the exact scope, building blocks, constraints, and semantics of the language in
a precise and unambiguous fashion. As a result, users may select a WfMS with
respect to the standard it supports. Unfortunately, in many real-world systems,
this assumption is flawed. For example: (1) the quality of standards is often
not as high as expected. Especially the BPMN 2.0 standard has been shown to
contain many inconsistencies, ambiguities, and editorial flaws [2,9]. (2) A certi-
fication process is not available for any of the standards. As a consequence, any
WfMS vendor can claim compliance to a standard without providing proof of
this claim. Thus, many vendors just claim support for a standard [8]. (3) Even
in the cases where standards provide an unambiguous specification, WfMSs do
not necessarily follow that specification, but only implement parts of it [8,12].
The standard-support related flaws, also lead to performance evaluation pitfalls
in WfMSs, such as: (1) the execution performance of the same workflows differs
significantly between WfMSs [22] and (2) the miscellaneous usage and implemen-
tations of workflow languages are obstacles for the construction of a standard
benchmark [23].

As a consequence of the aforementioned flaws, the selection of a suitable
WfMS constitutes a challenging task in practice. This paper aims to provide
guidance for practitioners (e.g., users and vendors of WfMSs) by highlighting
key issues during WfMS evaluation. The material is a cumulative report based
on findings we collected over a period of more than five years of experience and
derived through independent research initiatives regarding WfMSs1. The novelty
in this work comes from the aggregation of these results in a joint fashion as
lessons learned and we aim at answering the following research questions:

RQ1 Which are the most common expectations and pitfalls during the usage of
standard-based WfMSs for automated service composition?

RQ2 How does a practitioner experience the consequences of these pitfalls, in
particular regarding the behavior and performance of the WfMS, and how
can the pitfalls be addressed?

To answer these questions and to support an easy understanding and trans-
fer to practice, we formulate the aggregated knowledge as lessons learned.

1 BenchFlow - http://benchflow.inf.usi.ch and Betsy - https://github.com/uniba-dsg/
betsy.

http://benchflow.inf.usi.ch
https://github.com/uniba-dsg/betsy
https://github.com/uniba-dsg/betsy

Lessons Learned from Evaluating Workflow Management Systems 217

We mainly look at situations in which a WfMS is integrated into a more complex
environment and is used as a service by many other systems.

This paper is based on an extended abstract [5], which motivates the report-
ing of lessons learned and briefly mentions a set of five lessons. Here, we report
on an extended set of lessons learned, providing additional evidence and details
gained with a larger set of WfMSs.

In the next section, Sect. 2, we discuss related work. Thereafter, in Sect. 3,
we outline the process followed to derive lessons learned, the schema for their
presentation in this paper, and the set of resulting lessons. Section 4 concludes
the paper with a summary and an outline for future research directions.

2 Related Work

In this section, we discuss work related to our lessons learned, related workflow
languages, and benchmarking approaches.

Two of the most prominent languages for modeling and executing workflows
related to services and also relevant to our work here are WS-BPEL [20] and
BPMN 2.0 [16]. The two languages serve similar goals but differ in their expres-
sive power and the language constructs they provide: WS-BPEL is dedicated to
the orchestration of web services [20], whereas BPMN 2.0 supports service invo-
cations and message exchanges, but also human activities [16]. Here, we focus
on automated workflows only and the human aspects of BPMN 2.0, such as
collaborative process modeling, are deliberately out of scope.

Closely related to this paper is the work by Bianculli et al. [1]. The authors
propose SOABench as an approach for evaluating the performance of WS-BPEL
WfMSs. Here, our focus is broader, since we also take BPMN 2.0 into account
and are not limited to the evaluation of performance efficiency aspects only,
but cover other characteristics of software quality as well. Furthermore, Wohed
et al. [27] evaluate several WfMSs and older versions of BPMN and BPEL for
their support for workflow patterns. We also leverage workflow patterns in our
work [8,12,22], but evaluate newer versions of said workflow languages. Similarly,
Garcês et al. [7] present a survey of open source WfMSs. However, the authors
address the problem from a different direction. They derive comparison criteria
a priori from the workflow reference model and evaluate these criteria. The key
difference to this work is that we present lessons learned, i.e., we did not derive
a priori criteria but did a post-hoc study based on the observations made during
our evaluations. Moreover, the set of systems evaluated is quite different from the
systems we consider here. The same applies to Delgado et al. [3] who also build
on similar quality models as we do here, but take a more generic stance. The
authors state themselves in their study that they differ from our work in many
aspects, such as the systems to be evaluated. Being similar to benchmarking
methods and tools, approaches for test generation and testbed generation for
service-oriented systems, such as [19], are related to our work. For instance,
López et al. [19] propose a framework for black-box and property-based testing
of web services. Although this framework is intended to test actual applications
running on WfMSs, it could be leveraged to evaluate WfMSs as well.

218 J. Lenhard et al.

3 Findings and Lessons Learned

A commonly accepted classification of research papers in software engineering is
presented in the work by Wieringa et al. [26]. Using this classification, our work
qualifies as evaluation research. More precisely, we aim at increasing knowledge
by combining existing findings derived from multiple research groups into a com-
mon view. This can be achieved by a joint specification of lessons learned [26,
p. 105].

The lessons learned presented in this work are based on cumulative research
results, data collection, and experience derived by using and benchmarking dif-
ferent workflow language standards and WfMSs in a number of empirical stud-
ies [4,6,8,9,11–14,17,22,23]. We conducted these studies over a period of several
years independently of each other in separate groups, different environments, and
with a different evaluation focus. To generate the lessons learned presented here,
the group of authors met in person and in video conferencing sessions over an
extended period of time. We discussed key lessons that we learned independently
through our research in WfMSs evaluation and captured the ones that we learned
jointly. The resulting list of lessons was prioritized through a joint voting pro-
cess and the top lessons are presented in this paper. This research process is very
similar to the way in which pattern languages are being developed.

The BPMN 2.0 WfMSs we consider in this paper are Activiti, Bonita,
Camunda, and jBPM, which according to the vendor’s websites, are widely used
in the industry. In total, we attempted the evaluation of 47 BPMN 2.0 WfMSs,
but most of them could not be integrated into our evaluation approaches due
to various reasons such as licensing issues, missing standard compliance, or the
unavailability of management APIs [8]. For WS-BPEL, our lessons learned are
based on the usage of Apache ODE, OpenESB, bpel-g, Orchestra, Petals ESB,
and three commercial WfMSs whose names we are not allowed to disclose due
to licensing. We decided to include pseudonymized results for the commercial
WfMSs in this paper, although we acknowledge that this is less informative. The
data collected are publicly available on an interactive dashboard2. To continu-
ously survey the standard-compliant WfMSs landscape, we created a Wikipedia
page for BPMN 2.0 WfMSs3 which is kept up-to-date by public contributors and
ourselves. In addition to helping practitioners in their decision-making, the dash-
board and the Wikipedia pages help with improving transparency by reporting
the actual state of the WfMSs ecosystem back to the vendors. To document the
lessons learned, we use the following structured schema:

Expectation: Users of WfMSs have a number of expectations that are often
perceived as true in practice and that are communicated in this fashion by
WfMS vendors.

Observation: Although many of the expectations towards WfMSs can be ful-
filled, some cannot. This also applies to aspects of considerable importance.

2 http://peace-project.github.io, last visited at September 27, 2017.
3 https://en.wikipedia.org/?curid=43305615, last visited at September 27, 2017.

http://peace-project.github.io
https://en.wikipedia.org/?curid=43305615

Lessons Learned from Evaluating Workflow Management Systems 219

In the observations sections, we present and discuss existing evidence that
an expectation is not met. Furthermore, we report cases in which it is met.

Consequence: Not meeting a certain expectation has consequences, which are
discussed in this part of the schema.

Fig. 1. Findings categorized using the ISO/IEC 25010 Quality Model

The final list of lessons identified in this study comprises seven items. For
some of them, we identified WfMSs that avoid the pitfalls by following what
we consider a good approach. For structuring purposes, we categorized these
lessons using the ISO/IEC 25010 quality model [15] as shown in Fig. 1. Accord-
ing to this quality model, the lessons we defined can be grouped with respect to
functional suitability, performance efficiency, usability, reliability, maintainabil-
ity, and portability. The ISO/IEC 25010 standard provides two more categories,
namely, compatibility and security, that were not considered in this work, since
we did not experience pitfalls specific to these categories. More specifically, a
dedicated evaluation of security properties is not part of our initiatives and not
planned for future work. Nevertheless, an evaluation dedicated to this property
might very well discover new pitfalls.

3.1 Functional Suitability Findings

Lesson 1: Dynamic Reconfiguration
Expectation: WfMSs are expected to support dynamically changing environ-
ments and flexible dynamic service bindings [25]. This entails the reconfigura-
tion of workflow instances at runtime when they interact with late-bound exter-
nal systems and alternative service providers. It should be possible to pass the
address of a service to a workflow instance and the instance should be able to
redirect its communication channels to this service. As an example, in a workflow
that processes orders, a buyer could send the address of his own web service to
the workflow instance so that he will be notified when the order is complete.

Observation: In WS-BPEL, dynamic reconfiguration is possible in a standard
conformant way, by updating the endpoint of specified partner links. However,
one out of three proprietary WfMSs evaluated in [12] and four out of five open
source WfMSs, namely, Apache ODE4, OpenESB, Orchestra, and Petals ESB,
4 The developers of ODE fixed this in a later version.

220 J. Lenhard et al.

evaluated in [11,12] do not support standard-conformant dynamic reconfigura-
tion and only bpel-g does so. We did not check non-standard vendor-specific
extensions which could provide similar functionality. In BPMN 2.0, dynamic
reconfiguration is defined only in an abstract way, but no WfMS actually sup-
ports it based on the standard.

Consequence: Because of the lack of dynamic reconfiguration, the creation of
self-adapting systems is hindered in WS-BPEL WfMSs. Instead of changing the
channels within the workflow, each external web service needs to be encapsulated
through a proxy service which itself can be dynamically reconfigured, leading to
higher development and maintenance costs [25]. In BPMN 2.0 WfMSs, it is not
possible to implement dynamic reconfiguration in a standards-based fashion.

3.2 Performance Efficiency Findings

Lesson 2: Parallel Process Execution
Also affects the functional suitability.

Expectation: One of the major advantages of workflow languages is that one can
specify the control-flow of workflows in a declarative way. Then, any WfMS that
implements the execution semantics of the workflow language should execute
instances of these workflows by following the specified control-flow definitions.
When modeling parallelism, the user expects that the underlying WfMS will
execute the constructs that are marked as parallel to each other in a concurrent
manner. Parallelism can be expressed with various control flow constructs in
both standards. Using WS-BPEL [20] it is possible to define parallel execution
using the forEach and flow constructs. Moreover, eventHandlers are always exe-
cuted in parallel for a workflow scope that is attached to them. BPMN 2.0 [16]
provides a similar variety of constructs for expressing parallelism. The most
commonly used one is the splitting parallelGateway that acts as a fork operation
and causes the parallel execution of the connected branches. Other possibili-
ties are the use of inclusiveGateways, eventBasedGateways, or the definition of
MultiInstanceLoopCharacteristics for tasks and sub-processes.

Observation: In [11,12], we studied the behavior of WS-BPEL [20] workflow
models containing the parallel forEach element. The research was conducted for
five open source (Apache ODE, bpel-g, OpenESB, Orchestra, and Petals ESB)
and three proprietary WS-BPEL WfMSs. The results showed that two open
source (OpenESB, Petals ESB) and one proprietary WfMSs ignored the parallel
semantics on the flow and forEach elements and one (Orchestra) on the forEach
element only, silently resulting in a sequential execution.

Likewise, we evaluated three open source BPMN 2.0 WfMSs [22], namely
Camunda, Activiti and jBPM regarding their support for workflow patterns.
These patterns are considered as pieces of functionality that should be easily
expressible in any workflow language. We tested the WfMSs against five fun-
damental control-flow workflow patterns, two of which contain parallelism. The
results show that all benchmarked WfMSs implement parallelism in a pseudo-
parallel, non-deterministic way, which is also reported in another study [8].

Lessons Learned from Evaluating Workflow Management Systems 221

jBPM uses a random execution order of the parallel elements, while Camunda
and Activiti always execute the parallel elements in the order in which they
are defined in the workflow model. Moreover, jBPM shows a significant drop in
performance if the parallelism construct is used [22].

Consequence: Due to pseudo-parallel execution, it is not possible to speed
up the execution of independent control-flow branches by using the language
constructs dedicated to parallelism. Apart from the performance aspect, this is
also problematic as in some situations the functional correctness might depend
on a truly parallel execution. For instance, several workflow patterns, such as
multiple instances without a priori runtime knowledge, build on truly parallel
execution, and thus, “the lack of truly parallel execution in a WfMS is the biggest
obstacle to pattern support” [12, p. 111].

3.3 Usability Findings

Lesson 3: Correctness Checking during Deployment

Expectation: Both workflow languages, WS-BPEL [20] and BPMN 2.0 [16],
define constraints regarding the correctness of modeled workflows. WS-BPEL
explicitly lists 94 rules named static analysis rules, which describe issues that
should be detected by any standard compliant WfMS. Thus it is to be expected
that WfMSs are capable of detecting invalid workflow models at deploy time.

Observation: Deploying invalid workflows that violate static analysis rules or
BPMN 2.0 constraints revealed that most WfMSs are not capable of this kind of
detection [8,14]. Regarding WS-BPEL WfMSs, we evaluated several systems for
their coverage of static analysis rules [14]. Ignoring the reference implementation
of BPEL which we do not consider here, we found that a single WfMS (Ope-
nESB) performs no detection at all, and the rest have a highly varying detection
rate of at most 75%. For BPMN 2.0, a common omission can be found in the
missing validation of timer conditions. None of the three WfMSs benchmarked
in [22], namely Camunda, Activiti, and jBPM, validated timer conditions at
deploy-time, although there is a mandatory definition of the format [16].

Consequence: As invalid workflows are not rejected on deployment, errors are
not detected early in the development process. Thus, errors may be hidden for a
long time in production use only to be found later, which is costly. Invalid work-
flows may fail at runtime creating runtime errors in the WfMSs. To make things
worse, in some cases the workflows do not crash observably, but instead complete
with non-deterministic results. If the used WfMS is weak in detecting violations
of standard-defined rules, the users creating workflows for deployment should
consider using external tools for validating the workflows prior to deployment.

Lesson 4: Availability of Management APIs
Expectation: In production, WfMSs are usually part of a more complex soft-
ware ecosystem and typically interact with other services. They are also inte-
grated more and more into a continuous integration and delivery lifecycle [24].

222 J. Lenhard et al.

It is to be expected that WfMS vendors provide management APIs [4] to support
continuous integration and delivery.

Observation: Only four (Camunda, Bonita, jBPM, and Activiti) out of a set
of 47 BPMN 2.0 WfMSs which we analyzed allow an automatic deployment
and execution of workflows through a REST API [8]. Camunda and Activiti
expose complete REST APIs to the clients so that the interaction with those
WfMSs is straightforward. Bonita and jBPM provide partial support for inter-
action through the provided REST APIs. For example, the former misses the
possibility to log into the API, forcing the user to log in using the so-called Web
REST API5, while the latter misses an API to deploy workflows, leading to the
need for a workaround. Out of the remaining 43 WfMSs, many require human
interaction with a user interface at various stages. Examples range from a manual
import of standard-compliant BPMN 2.0 workflows prior to deployment, over
manual deployment using a web front-end, to manual creation of new workflow
instances. In contrast, the WfMSs supporting WS-BPEL do not support REST
APIs, but require file handling or other APIs (ODE, bpel-g, Orchestra, Petals
ESB) [10,11]. One (OpenESB) even lacks a remotely accessible API.

Consequence: Given the limitations or lack of the WfMSs’ APIs, it is often
hard or impossible to integrate the products in a fully automated continuous
integration lifecycle. For instance, it is often not possible to quickly detect errors
introduced in revisions of existing workflows by automated tests. This hinders the
application of agile development methods that rely on short feedback loops [24].

3.4 Reliability Findings

Lesson 5: Isolation of Instance Execution
Expectation: Workflow instances should be executed in a sandbox. Users expect
that instances cannot influence each other only because they are executed in the
same environment. Moreover, faulty instances should not have an impact on the
stability and integrity of the WfMS itself. Facilities need to be in place to restrict
hostile instances from breaking out of their runtime environment, overloading the
WfMS performance-wise, or taking down the entire WfMS [13,18]. Furthermore,
the WfMS should also try to minimize performance interference of, and between,
different workflow instances [18].

Observation: For some Apache ODE versions, we observed that individ-
ual workflow instances are able to jeopardize the execution of other workflow
instances or even severely affect the underlying WfMS stability. If a process
instance enters a state of busy waiting, the resulting CPU load crashes the
whole WfMS [12]. In the case of BPMN 2.0 WfMSs, we found that single ver-
sions of Activiti, jBPM, and Camunda were crashing due to memory leaks if the
executed workflows are using infinite loops to execute script tasks. Moreover,

5 http://documentation.bonitasoft.com/?page=rest-api-overview#toc2, last visited
at September 27, 2017.

http://documentation.bonitasoft.com/?page=rest-api-overview#toc2

Lessons Learned from Evaluating Workflow Management Systems 223

the default configurations of Activiti and Camunda were not stable when using
workflows containing loops and 1500 concurrently interacting users [22].

Consequence: The effect of missing isolation during workflow instance execu-
tion is similar to a single process crashing a complete operating system. It is
obvious that this should not happen. The WfMSs should be safe from possible
crashes of workflows instances, protecting other running instances. This can be
achieved, for example, by detecting excessive resource usage (e.g., RAM, CPU,
I/O) and suspending the critical workflow instances. Another complementary
approach could be the usage of independent WfMS installations for different,
independent sets of workflows instances. This is facilitated as the WfMSs ven-
dors are starting to support virtualization techniques such as Docker containers.

3.5 Maintainability Findings

Lesson 6: Evolution Towards Improvement
Also affects performance efficiency and functional suitability.

Expectation: WfMSs should improve and evolve over time towards a higher
degree of maturity. When upgrading to a newer version, users expect that it will
be better than the previous one. For WfMSs, usual expectations are improve-
ments in (i) functionality available to the users, (ii) number of language features
supported, (iii) performance and (iv) reductions of workflow instances execution
cost.

Observation: In [8], we investigated the evolution of the three BPMN 2.0
WfMSs Camunda, Activiti, and jBPM over the period of three years. All the
three WfMSs evolved in terms of functionality available. Besides the evolution
in functionality, we also discovered regressions over the years. For example,
in the cases of Activiti and jBPM there were features that stopped working
after upgrading to the next release. What is more, all three WfMSs made only
marginal progress in the support of more BPMN 2.0 features. Also, research in
performance benchmarking of the Activiti and Camunda WfMSs revealed that
over the versions the performance of the WfMSs decreased [6]. In particular,
the time needed by the WfMSs to execute single workflow instances constantly
increased over time, by approximately 8% per year.

Consequence: There are two consequences for users: (1) they should be careful
when upgrading to a newer version as regressions (in terms of supported features
and performance) are possible, and (2) users should not expect that language
feature support (especially for BPMN 2.0) will increase from version to version.
This creates the necessity for users to benchmark WfMSs extensively before
deciding about adopting newer versions.

224 J. Lenhard et al.

3.6 Portability Findings

Lesson 7: Standards-based Portability

Expectation: One of the goals of standardizing workflow languages and WfMSs
is to establish a commonly agreed set of functionality and a serialization format
for specifying the workflows that enables their portability [16,20]. Given that a
standard is supported by multiple WfMSs, users should be able to move work-
flows implemented in the standard between any of these systems. This protects
from vendor lock-in. Moreover, the execution semantics of a standards-based
workflow should be identical on any WfMS supporting the standard.

Observation: In the absence of certification authorities, standard acronyms
are rather hollow. For instance, there are many vendors that state to support
BPMN 2.0. In [8], we tested 47 products stating to implement BPMN 2.0 and
discovered that only three of them (Activiti, Camunda, and jBPM) were able
to import, deploy, and execute workflows expressed directly in the standardized
execution format. Instead, many vendors rely on custom serialization formats, as
for example Bonita6, and only provide a subset of the visual BPMN 2.0 shapes
for modeling.

Even if execution using a standardized language is supported in principle,
this support is often limited to selected features of the language. Details of
feature support are reported in [11,12] for WfMSs using WS-BPEL and in [8] for
WfMSs using BPMN 2.0. Essentially, for both standards, the number of language
features that is commonly supported by a large majority of the tested WfMSs
is limited to around 40% of the features defined in the respective standards.
The supported features are limited to the basic part of the standards, such as
enabling sequential execution, conditional branching, and basic looping.

Consequence: Modeling a workflow in compliance to a standard does not guar-
antee that the workflow can be executed by a WfMS. The situation is further
complicated by the fact that some vendors serialize workflows with custom lan-
guage extensions specific to their product, which introduces vendor lock-in.

3.7 Summary

We presented seven lessons for which we formulated common expectations and
discussed good approaches and potential pitfalls [RQ1]. In Table 1, we summarize
these lessons learned. The table reports the findings for all the WfMSs providing
sufficient APIs [4], as discussed in lesson 3.3, enabling us to automate the analysis
producing the data on which most of the findings are based on. We use a trivalent
rating that classifies WfMSs as using a good approach (+), containing a pitfall
(−), or partially containing a pitfall (∼). As evident from the table, each WfMS
has advantages and disadvantages and no single WfMS provides a good approach
for all of the discussed lessons.

6 http://documentation.bonitasoft.com/?page=build-a-process-for-deployment, last
visited at September 27, 2017.

http://documentation.bonitasoft.com/?page=build-a-process-for-deployment

Lessons Learned from Evaluating Workflow Management Systems 225

Table 1. Summary of the Findings: + (good approach), − (pitfall present), ∼ (pitfall
partially present), n/a (no observations)

WfMS 1. Dynamic

Reconfigu-

ration

2. Parallel

Execution

3. Correct-

ness

Checking

4. Manage-

ment

APIs

5. Instance

Isolation

6. Improved

Evolution

7. Standard

Portability

BPMN

Activiti n/a − [8,22] ∼ [8,22] + [8] ∼ [22] ∼ [6,8] ∼ [8]

Bonita n/a n/a n/a ∼ n/a n/a −
Camunda n/a − [8,22] ∼ [8,22] + [8] ∼ [22] ∼ [6,8] ∼ [8]

jBPM n/a − [8,22] ∼ [8,22] ∼ [8] + [22] ∼ [8] ∼ [8]

WS-BPEL

ODE +[11] + [12] ∼ [14] + [10] − [12] n/a ∼ [11]

OpenESB −[11] − [12] −[14] − [10] + [12] n/a ∼ [11]

bpel-g +[11] + [12] ∼ [14] + [10] + [12] n/a ∼ [11]

Orchestra − [11] ∼ [12] ∼ [14] + [10] + [12] n/a ∼ [11]

Petals ESB − [11] − [12] ∼ [14] + [10] + [12] n/a ∼ [11]

3 Commerc. ∼ [12] ∼ [12] n/a n/a + [12] n/a ∼ [12]

The aggregated results highlight the relationship between workflow stan-
dards, WfMSs, and the user expectations that follow from this relationship. To
answer RQ1, we identified pitfalls in the areas of functional suitability, perfor-
mance efficiency, usability, reliability, maintainability, and portability. Despite
the existing standards, expectations about the available functionality or porta-
bility of workflow models are often not fulfilled. The usability of WfMSs in terms
of correctness checking and available APIs is limited in many cases and new ver-
sions do not necessarily lead to improvements. Lastly, scalability and workflow
instance isolation can be problematic.

As consequences for users, referring to RQ2, this study shows that thorough
research and evaluation before selecting a WfMS is inevitable despite the exis-
tence of workflow standards. It is unlikely to find a system that actually supports
a complete standard and the danger of vendor lock-in is still real. Even when only
updating a WfMS, a careful evaluation is needed because of potential regressions
in terms of supported features or performance characteristics.

4 Conclusion and Future Work

In this paper, we presented a catalog of lessons learned regarding the usage of
WfMSs, synthesized from findings obtained by two independent research initia-
tives over a five-year period. This synthesis uncovers a number of common expec-
tations and pitfalls in WfMSs usage. No WfMS we investigated follows only good
approaches, but they all lack important aspects. Most prominently, the stan-
dard conformance, and thus the portability of workflows, is severely hampered,
despite the claimed support for standards. In this regard, it can be diagnosed
that standards have largely failed their target of a harmonized WfMSs landscape.
Ultimately, a WfMS selection will require a prioritization approach that ranks
features according to their importance for the intended specific usage scenario.
Based on such a ranking, the presented results can support the selection.

226 J. Lenhard et al.

In conducting this study, we also learned lessons about aggregating bench-
marking results as lessons learned. We have found the aggregation of lessons
feasible and valuable despite the fact that our initiatives were focused on differ-
ent quality attributes, i.e., conformance and performance, even if this meant we
had to discard lessons that were important in one area, but not present in the
other.

References

1. Bianculli, D., Binder, W., Drago, M.L.: Automated performance assessment for
service-oriented middleware: a case study on BPEL engines. In: 19th WWW,
Raleigh, North Carolina, USA, pp. 141–150, April 2010

2. Börger, E.: Approaches to modeling business processes: a critical analysis of
BPMN, workflow patterns and YAWL. Softw. Syst. Model. 11(3), 305–318 (2012)

3. Delgado, A., Calegari, D., Milanese, P., Falcon, R., Garćıa, E.: A systematic app-
roach for evaluating BPM systems: case studies on open source and proprietary
tools. In: Damiani, E., Frati, F., Riehle, D., Wasserman, A.I. (eds.) OSS 2015.
IAICT, vol. 451, pp. 81–90. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-17837-0 8

4. Ferme, V., Ivanchikj, A., Pautasso, C., Skouradaki, M., Leymann, F.: A container-
centric methodology for benchmarking workflow management systems. In: 6th
CLOSER, Rome, Italy (2016)

5. Ferme, V., Lenhard, J., Harrer, S., Geiger, M., Pautasso, C.: Workflow manage-
ment systems benchmarking: unfulfilled expectations and lessons learned (extended
abstract). In: 39th ICSE Companion, Poster Track (2017)

6. Ferme, V., Skouradaki, M., Ivanchikj, A., Pautasso, C., Leymann, F.: Perfor-
mance comparison between BPMN 2.0 workflow management systems versions.
In: Reinhartz-Berger, I., Gulden, J., Nurcan, S., Guédria, W., Bera, P. (eds.)
BPMDS/EMMSAD -2017. LNBIP, vol. 287, pp. 103–118. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-59466-8 7

7. Garcês, R., Jesus, T., Cardoso, J., Valente, P.: Open source workflow manage-
ment systems: a concise survey. In: BPM & Workflow Handbook. Future Strategies
(2009)

8. Geiger, M., Harrer, S., Lenhard, J., Wirtz, G.: BPMN 2.0: the state of support
and implementation. Future Gener. Comput. Syst. 80, 250–262 (2017)

9. Geiger, M., Wirtz, G.: BPMN 2.0 serialization - standard compliance issues and
evaluation of modeling tools. In: 5th EMISA, September 2013

10. Harrer, S., Lenhard, J.: Betsy-a BPEL engine test system. Technical report 90,
Otto-Friedrich Universität Bamberg, July 2012

11. Harrer, S., Lenhard, J., Wirtz, G.: BPEL conformance in open source engines. In:
5th IEEE SOCA, pp. 237–244, December 2012

12. Harrer, S., Lenhard, J., Wirtz, G.: Open source versus proprietary software in
service-orientation: the case of BPEL engines. In: Basu, S., Pautasso, C., Zhang,
L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 99–113. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-45005-1 8

13. Harrer, S., Nizamic, F., Wirtz, G., Lazovik, A.: Towards a robustness evaluation
framework for BPEL engines. In: 7th IEEE SOCA, pp. 199–206, November 2014

14. Harrer, S., Preißinger, C., Wirtz, G.: BPEL conformance in open source engines:
the case of static analysis. In: 7th IEEE SOCA, pp. 33–40, November 2014

https://doi.org/10.1007/978-3-319-17837-0_8
https://doi.org/10.1007/978-3-319-17837-0_8
https://doi.org/10.1007/978-3-319-59466-8_7
https://doi.org/10.1007/978-3-642-45005-1_8

Lessons Learned from Evaluating Workflow Management Systems 227

15. ISO/IEC: ISO/IEC 25010:2011; Systems and software engineering - Systems and
software Quality Requirements and Evaluation (SQuaRE) - System and software
quality models (2011)

16. ISO/IEC: ISO/IEC 19510:2013 - Information technology - Object Management
Group Business Process Model and Notation (2013). v2.0.2

17. Lenhard, J., Wirtz, G.: Portability of executable service-oriented processes: metrics
and validation. Serv. Oriented Comput. Appl. 10(4), 391–411 (2016)

18. Leymann, F.: BPEL vs. BPMN 2.0: should you care? In: Mendling, J., Weidlich,
M., Weske, M. (eds.) BPMN 2010. LNBIP, vol. 67, pp. 8–13. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-16298-5 2

19. López, M., Ferreiro, H., Francisco, M.A., Castro, L.M.: Automatic generation of
test models for web services using WSDL and OCL. In: Basu, S., Pautasso, C.,
Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 483–490. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-45005-1 37

20. OASIS: Web Services Business Process Execution Language (2007). v2.0
21. Peltz, C.: Web services orchestration and choreography. Computer 36(10), 46–52

(2003)
22. Skouradaki, M., Ferme, V., Pautasso, C., Leymann, F., van Hoorn, A.: Micro-

benchmarking BPMN 2.0 workflow management systems with workflow patterns.
In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694,
pp. 67–82. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5 5

23. Skouradaki, M., Roller, D.H., Leymann, F., Ferme, V., Pautasso, C.: On the road
to benchmarking BPMN 2.0 workflow engines. In: 6th ACM/SPEC ICPE, pp.
301–304. ACM (2015)

24. Thiemich, C., Puhlmann, F.: An agile BPM project methodology. In: Daniel, F.,
Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 291–306. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40176-3 25

25. Tsai, W.T., Song, W., Paul, R., Cao, Z., Huang, H.: Services-oriented dynamic
reconfiguration framework for dependable distributed computing. In: COMPSAC,
pp. 554–559 (2004)

26. Wieringa, R., Maiden, N., Mead, N., Rolland, C.: Requirements engineering paper
classification and evaluation criteria: a proposal and a discussion. RE 11(1), 102–
107 (2006)

27. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M., Russell,
N.: On the suitability of BPMN for business process modelling. In: Dustdar,
S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 161–176.
Springer, Heidelberg (2006). https://doi.org/10.1007/11841760 12

https://doi.org/10.1007/978-3-642-16298-5_2
https://doi.org/10.1007/978-3-642-45005-1_37
https://doi.org/10.1007/978-3-319-39696-5_5
https://doi.org/10.1007/978-3-642-40176-3_25
https://doi.org/10.1007/11841760_12

Sustainable WAsTe Collection (SWAT):
One Step Towards Smart and Spotless Cities

Daniel J. Rosa-Gallardo1, Guadalupe Ortiz1(&), Juan Boubeta-Puig1,
and Alfonso García-de-Prado2

1 Department of Computer Science and Engineering, University of Cádiz,
Avda. de la Universidad de Cádiz 10, 11519 Puerto Real, Cádiz, Spain

dani.rosagallardo@alum.uca.es,

{guadalupe.ortiz,juan.boubeta}@uca.es
2 Department of Computer Technology and Architecture, University of Cádiz,

Avda. de la Universidad de Cádiz 10, 11519 Puerto Real, Cádiz, Spain
alfonso.garciadeprado@uca.es

Abstract. For decades, urban areas have been faced with the huge challenge of
waste disposal and collection. Even though developed countries have tackled this
matter from multiple perspectives, some issues remain unsolved when talking
about sustainable smart cities. In particular, waste collection and transportation
routes are mostly planned statically, without bearing in mind real-time container
capacity, as well as other unexpected events which might be of interest – for
example, a blocked container lid or fire inside the container. In this paper, we
propose a service-oriented sustainable solution to these problems based on the
use of novel technologies which will provide us with real-time information and
instant notifications of any issues related to waste containers and their collection.
This way, thanks to the offered real-time services for the Internet of Things, local
governments and official bodies will save resources and time. Even more, citizens
will also have easy access to such services and information and therefore will
benefit from real-time awareness about the container status.

Keywords: Sustainable waste management � Prevention � Internet of Things
Sensors � Service-oriented architecture � Mobile application

1 Introduction

Currently, there is a great focus on the development of smart cities and, specifically,
sustainable smart cities. Not only is it a current day research area, but it is also a priority
for governments, environmental protection agencies and even European commissions
[1]. Furthermore, citizens have become aware of the importance of living in a sus-
tainable world, but they need the means to be able to cooperate in the process.

Within this field, waste collection topic has always been socially excluded. Due to
the unpleasant sight waste containers might present, many towns are replacing them by
underground ecological islands with waste collection facilities. These solve the prob-
lem of bad odors that were present near a traditional waste container. However,

© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 228–239, 2018.
https://doi.org/10.1007/978-3-319-91764-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_18&domain=pdf

underground containers do not solve the problem when waste is not collected fre-
quently enough, or when there is an unexpected amount of waste disposal.

In general, whichever type of container is used, there are frequent unpleasant and
even dangerous situations due to waste disposed outside the container. The reason is
that the mechanism established by councils for waste collection mostly consists of a
fixed weekly schedule with a fixed route to be followed every day, regardless of how
full or empty the containers are; besides, there is almost no monitoring on waste
containers. This causes three main problems, among others: (1) money is wasted when
collecting waste from empty or almost empty containers; (2) both residents and
neighborhoods are affected when not collecting waste from full containers; (3) dan-
gerous or unsuitable situations are not detected.

In the past some works about forecasting models for waste collection were pub-
lished [2]; however forecasting is not always accurate and do not provide information
about unpredictable facts. Now, some emerging proposals can be found on waste
containers’ fill level monitoring [3, 4]: they mostly focus only on providing optimized
routes to the collection company office. Nevertheless, they do not provide additional
real-time alerts to other interested parties nor dynamic updated routes to the track driver
application based on alerts which might happen when the track is already on the way.
To solve this problem, we propose SWAT: an Internet-of-Things (IoT)-based hardware
infrastructure and software architecture for Sustainable WAsTe Collection. SWAT will
monitor and provide us with waste islands information in real time and will send
notifications about their status to any interested parties, such as the Fire Brigade. Please
note that even though we refer to containers in ecological islands throughout the paper,
the proposal is applicable to any type of waste container.

The remainder of the paper is organized as follows: First of all Sect. 2 explains the
required background on Event-Driven Service-Oriented Architecture (ED-SOA) and
Complex Event Processing (CEP) to facilitate the understanding of this paper, and
presents related work. Then our solution SWAT is described in detail in Sect. 3.
Afterwards SWAT evaluation and discussion are presented in Sect. 4 and 5, respec-
tively. Finally, conclusions are drawn in Sect. 6.

2 Background

In this section, the software technologies particularly relevant for this paper scope are
explained, as well as an overview on other waste management solutions is given.

2.1 Event-Driven Service-Oriented-Architecture

Service-oriented architecture (SOA) is a logical way of designing a software system to
provide services to either end-user applications or to other services distributed in a
network, via published and discoverable interfaces [5]. The essential goal of a SOA is
to enable general-purpose interoperability among existing technologies and extensi-
bility to future enhancements. In particular, in this paper we will make use of
REpresentational State Transfer (REST) services [6].

Sustainable WAsTe Collection (SWAT) 229

On the other hand, Event-Driven Architectures (EDAs) promote the detection of
events and the subsequent intelligent reaction to them [7]. Currently, the integration of
EDA and SOA is known as Event-Driven SOA or SOA 2.0. SOA 2.0 will ensure that
services do not only exchange messages between them, but also publish events and
receive event notifications from others. For this purpose, a highly distributable com-
munication and integration backbone is required. This functionality is provided by an
Enterprise Service Bus (ESB), a middleware application that provides interoperability
between different communication protocols and which can be used as an integration
platform that enables existing applications to be exposed as services [5]. Mule [8] is
one well appreciated ESBs because of its integration with cloud platforms and multiple
tools and scenarios. SOA 2.0 leans on CEP, a technology that allows the analysis and
correlation of large volumes of data as explained subsequently.

2.2 Complex Event Processing

CEP is a cutting-edge technology which provides powerful techniques for processing
and correlating events to detect relevant situations (complex events) in real time. An
event can be defined as anything that happens or could happen [9]. We can have simple
events —they are indivisible and happen at a point in time— and complex events,
which contain more semantic meaning summarizing a set of other events. Besides,
events can be derived from other events by applying or matching event patterns, that is,
templates where the conditions describing the situations to be detected are specified.
Such event patterns are defined using specific languages developed for this purpose
known as Event Processing Languages (EPLs). In this scope, a CEP engine is the
software used to match these patterns over continuous and heterogeneous event
streams, and to raise alerts about the complex events created when detecting such event
patterns. In this paper we make use of Esper [10], which is a well-known open source
CEP engine, written in Java, what facilitates its use in multiple platforms.

2.3 Summary of Existing Approaches

Some cities are starting to propose smart approaches in order to provide sustainable
waste collection systems as is being done in one district of Los Angeles [11]. BigBelly
company propose the use of their intelligent containers which compress the waste and
send a message to the collectors’ telephone when they need emptying [12]; currently a
pilot is being performed in New York. Dugdhe et al. depict a proposal for suggesting a
schedule for waste collection trucks [4]. More mature is Enevo research project funded
by the European Commission’s Horizon 2020 program [3], a solution combining
fill-level monitoring and dynamic route planning to eliminate inefficiencies and costs
associated with inflexible static waste collection routes. We can also find some mobile
applications which encourage citizens to recycle providing them information about the
waste type and where to find the appropriate container [13].

However, as far as we are aware, none of them has supplied appropriate infras-
tructure to provide real-time information not only about container fill level but also
other unexpected events, such as a blocked container lid, unsuitable material disposal
or a fire, which might be of great interest for governments and official bodies as well as

230 D. J. Rosa-Gallardo et al.

for the citizens. Besides, SWAT consider that the truck driver will carry a mobile
application which will be updated in real time, even during the waste collection route,
so any unexpected issue can be dealt with immediately. Moreover, existent solutions
provide and notify their status to management offices only, whereas our proposal
considers that citizens play a key role in the sustainable waste collection process.

3 SWAT: Sustainable WAsTe Collection

In this section, we are going to show a high-level overview of SWAT infrastructure and
proposed architecture to easy the comprehension of the remaining subsections. Then
we get into details: firstly we describe the hardware infrastructure, secondly we explain
the management module and then the software clients are described; finally we make
clear how alerts are detected and how actions are risen automatically.

3.1 SWAT Infrastructure and Architecture

Figure 1 represents a schematic view of the developed prototype for SWAT infras-
tructure. On the left hand side, we can see the board and sensors to be installed in waste
containers; that is, the hardware requirements. On the right hand side, we can see the
mobile devices which will receive a notification when a certain action is required
regarding waste containers; that is, the software clients. Finally, the central part of the
diagram shows all Internet-based communications and the management software
module. The operation proceeds as follows:

1. Waste containers equipped with the hardware infrastructure and corresponding
sensors will provide information concerning how full the container is, if any
obtrusive element is blocking it, as well as information about the temperature and

Fig. 1. Sustainable WAsTe Collection schematic view

Sustainable WAsTe Collection (SWAT) 231

air opacity inside the container. This information will be constantly sent through the
Internet to the server where the management software module is installed. The
information is also sent to an IoT platform where any interested party – a citizen or
an environmental agency, for instance – can check container status in real time.

2. When the sensors’ information from waste containers reaches the management
software module, the latter processes and stores such information, detecting any
situation which requires an action (such as a fire or a full container) in real time.

3. When actions are required, notifications and alerts are sent to the relevant man-
agement office/body (firefighters, waste collection company, et cetera).

Regardless of the special actions required on risen alerts, before the waste collec-
tion employee starts his daily collection, the system provides him with the optimal
route according to container status information, which can be automatically updated
during the route if any additional alert is detected.

3.2 Hardware Infrastructure

The aim of the hardware infrastructure implemented is to acquire and send the fol-
lowing data from each ecological island: temperature, unsuitable waste, fill level,
blocked lid, smoke presence and battery status. For this purpose, we used a Raspberry
Pi B+ as the central unit to be connected to the implemented circuit and plugged
sensors (see left-hand side of Fig. 2). The Raspberry Pi obtains the sensor measure-
ments and sends the data to the management software module every 10 min. The most
relevant elements connected to the circuit are:

• Temperature sensor: it measures the temperature inside the container. We have used
TMP35 temperature integrated circuit, which provides an output voltage linearly-
proportional to the Centigrade temperature of 10 mV/°C.

• Dust/Smoke sensor: it measures air opacity in the container. We have used sensor
GP2Y1010AU0F which is an optical air quality sensor, designed to sense dust
particles: it is based on an infrared emitting diode and a phototransistor which are
diagonally arranged to allow the sensor to detect the reflected light of dust in air.

• Limit switch sensor: it detects container lid blockages. It is a limit switch connected
to mass and to a pull up resistor.

Fig. 2. Hardware infrastructure and container mock-up

232 D. J. Rosa-Gallardo et al.

• Ultrasonic transducer sensor: it detects how full the container is. We used Ultra-
sonic ranging module HC - SR04: sending a pulse input and measuring pulse signal
back, we can calculate the waste level in the container.

• Lithium polymer (LIPO) battery: it provides energy to the circuit in case of power
failure or cloudy weather. The 7.4v and 3200 mA LIPO battery used provides more
than enough battery to feed the circuit, since the system load in text mode with the
minimum required services and consumes less than 200 mA. Please note that the
higher consume of the system is when sensors information is submitted; to mini-
mize it we send the information from all sensors at the same point in time.

• Solar cell: it charges the battery. We used an 8.5 V solar cell, which feeds the
system charging batteries when there is a feeding failure and at night. Also, we
needed to use a LM7805 voltage regulator in between the solar cell and the LiPo
battery.

Besides, as shown on the right hand side of Fig. 2, we implemented a scaled
container mock-up and installed the software infrastructure on it in order to test the
system’s functionality.

3.3 Management Software Module

The architecture proposed and implemented for the administration software module is
shown in Fig. 3. It is composed of an ESB, a REST Application Programming Inter-
face (API), a CEP engine, an SQL Database, a Not-Only SQL (NoSQL) Database, an
E-mail service and a Google Firebase service. Let us describe each element in detail:

• ESB. As previously explained an ESB eases communication between several
devices and software modules in heterogeneous systems [5]. In this approach, we
use the ESB to transform and route the information reaching the system from the

Fig. 3. Management module architecture

Sustainable WAsTe Collection (SWAT) 233

sensors in the hardware infrastructure to the CEP engine and to the event
consumers.

• REST API. This is a set of functions that can be invoked, according to REST
principles. In this case, a REST API will be used as the interface to external
software for the management module, i.e. other software can interact with the ESB
through this API. Some of the services offered by the API are:
– The collector truck employee will be able to obtain the optimal route for waste

collection from his software client. Please bear in mind we use Google maps to
provide the optimal route; our contribution is knowing -according to the real
time container waste level- which containers should be visited.

– The hardware infrastructure may post the data taken from all container sensors.
– A citizen could get information about the closest container not damaged or full.

• CEP engine. As previously explained, the CEP engine allows us to analyze and
correlate a high number of information events with the aim of detecting relevant or
critical situations (alerts) in real time [9]. In this case, we detect when there might be
a fire in the container and when it is full or blocked, based on the information
provided by the sensors and routed to the CEP engine by the ESB, and we send the
corresponding alert to the official body in charge.

• SQL Database. As could not be otherwise, we will use a relational database to store
the information about local agencies, container location, alerts available in the
system, et cetera.

• NoSQL Database. We will use it to store simple events coming from the hardware
infrastructure (sensor measurements) and complex events coming from the CEP
engine (detected situations of interest). The reason to have an additional NoSQL
database is to facilitate the scalability of the system, so that a growing number of
sensors connected to the system would not decrease its performance.

• An email service. Any type of alert will be sent to the licensed agency.
• Firebase Service. Firebase is a Google platform which provides several facilities for

mobile applications (https://firebase.google.com/). In this case we make use of their
facility for mobile notification submission. Mobile devices of the corresponding
agency or official body will be sent a notification. Firebase could have also been
used to store the relational database information, but we opted for an external
database to keep it in the local server.

Therefore, the process is as follows:

1. Sensing data reach the system through the REST API.
2. These data flow through the ESB.
3. The sensing data are transformed into events: (a) events are sent to the CEP engine;

(b) events are stored in the NoSQL database.
4. Alerts are detected in the CEP engine (according to previously predefined patterns):

(a) notifications/alerts are sent to the corresponding management office/body and
corresponding actions are automatically taken; (b) complex events are stored in the
NoSQL database.

5. The information in the databases can be consulted through the REST API.

234 D. J. Rosa-Gallardo et al.

https://firebase.google.com/

3.4 Software Clients

Two Android mobile applications were developed: one for official bodies and another
one for the maintenance and collector company, with the following uses in mind:

• Emergency and maintenance bodies (police, firefighters and maintenance staff) will
have a mobile application which receives the Firebase alerts sent from the man-
agement software. In Fig. 4, the first and second image show the main menu from
such application and a received alert, respectively.

• Maintenance alerts can be sent to the second mobile application, aimed at the waste
collection licensed company. It is also used, for example, to obtain the optimal
waste collection route, as shown in the fourth image of Fig. 4; the main menu of
this application is shown in the third image.

3.5 SWAT Alerts and Actions

All ecological islands will send their data to the management module every 10 min.
However, in order to avoid feasible fire or unsuitable container use among readings, a
specific process will be checking their status every 5 s, in order to raise the alarm as
soon as possible, if necessary. This means that if such data are sensed, the alert is sent
to the management module at once.

Let us explain now what exactly our system will detect, how we define what we
wish to detect and what will we do upon every triggered alert.

SWAT Alerts
The management module contemplates 4 critical situations, as summarized below:

• PotentialDust (Alert level 1): it detects unreasonable air opacity, that is, the density
of dust or smoke in the air.

• PotentialFire (Alert level 2): it detects fire in the container.

Fig. 4. Official bodies and waste collector employee software client

Sustainable WAsTe Collection (SWAT) 235

• PotentialLowBattery (Alert level 3): it detects when the ecological island’s battery
level is not enough for proper functioning.

• PotentialBlockedLid (Alert level 4): it detects container lid blockages.

The definition of such situations to be detected in the CEP engine can be done
manually by coding the patterns; alternatively, those who are not expert on program-
ming languages but have knowledge about the matter of the patterns in question, can
use our graphical intuitive interface created for this purpose, called MEdit4CEP [14].
This tool is capable of automatically transforming the modeled event patterns into
Esper EPL code. Moreover, this interface allows us to deploy patterns into the system
automatically: we only need to graphically define and add the new desired patterns. At
http://dx.doi.org/10.17632/z6pzv33xhy.1 we can find an example of how the event
pattern for detecting potential low battery (PotentialLowBattery) in an ecological island
has been modeled and automatically transformed into EPL code by using MEdit4CEP.

We would like to highlight that this management module can be extended to detect
new critical situation types: we only need to implement the new patterns coding them
manually or graphically with MEdit4CEP and deploying them in the CEP engine.

SWAT Actions
The actions to be taken when the explained alert situations are detected follow:

• Alert Level 1: inappropriate material disposal, such as construction waste. The
police department is notified by a mobile notification using Firebase.

• Alert Level 2: there is fire in the container. The firefighters and police department
are notified by a mobile notification using Firebase.

• Alert Level 3: low battery level. The maintenance service is notified by a mobile
notification using Firebase.

• Alert Level 4: blocked container lid. The maintenance service is notified by a
mobile notification using Firebase.

With the built mock-up, we have only been able to test a limited number of
functionalities and situations. In order to test the system in depth and see if alerts were
raised appropriately, we implemented a daemon that simulates the values taken from
every sensor from several island and sends continuous data to the management module.
Besides, we send it to an IoT platform with the purpose of making it available to
additional clients and applications: this way, anyone could use these data in their
software clients and citizens could check it from their Internet browsers, for instance to
see whether the container where they are going to dispose of their garbage is full.

4 Evaluation

Our prototype is constantly sending data to a channel in ThingSpeak IoT platform; in
particular this channel can be followed at https://thingspeak.com/channels/72664,
where we can see our ecological island battery level, temperature, dust level, fill level
and if the lid is blocked or not, as well as the location of the container.

In order to demonstrate the feasibility of the solution proposed in this paper, SWAT,
we have carried out some performance tests concerning the amount of data supposed to

236 D. J. Rosa-Gallardo et al.

http://dx.doi.org/10.17632/z6pzv33xhy.1
https://thingspeak.com/channels/72664

be managed by medium and big-sized cities around the world. The full software
architecture was deployed in a workstation with i3-540 (4 M cache, 3.6 Ghz), 8 GB of
RAM memory and SATA2 hard drive and we have used an emulator to generate the
messages sent to the system. Since a medium-sized city can have around 5000 con-
tainers, we tested the system, receiving 5000 messages every 10 min – every message
contains 5 sensor measurements. We used ESB and database consoles to monitor this
simulated data in real time. We checked that the system perfectly supported this load of
events and responded in less than a millisecond with the corresponding complex events
detected as well as the corresponding notifications; thereby, the alerts were launched in
due time according to the values entering the system. As a big-sized city can approxi-
mately have around 20000 or 30000 containers, we also tested the system managing
30000 messages every 10 min and this worked appropriately.

Regardless of the number of containers expected to be dealt with by the system, we
proceeded with additional performance tests to check how the system managed bigger
amounts of data. We tested the system sending big amounts of events and increasing
the number of events per minute submitted to the system (test set 1, 2 and 3 with
13300, 26700 and 53800 events per minute, respectively). As we can see in Fig. 5,
even though we increased the submission speed over 50000 events per minute as well
as the total amount of submitted events; the system continued running perfectly,
detecting the corresponding relevant events.

As a result, we consider the system is highly scalable. Of course, we could use
enterprise editions rather than community ones for implementation software as well as
more powerful workstations or even distribute several components of the system in
different machines to scale it around the world.

5 Discussion

The proposed software architecture makes use of emerging technologies which provide
the platform with significant advantages, namely (1) being able to process and analyze
the data coming from several garbage ecological islands in real time, (2) being able to

0

50000

100000

0

500000

1000000

1 2 3

E
ve

nt
s

pe
r

m
iu

te

E
ve

nt
s

Test set

Submitted Events Detected Relevant Events

Fig. 5. Results of the performance tests

Sustainable WAsTe Collection (SWAT) 237

therefore detect and notify the corresponding alerts to the interested parties in real time.
There are further benefits from using this software platform:

• The system is highly scalable, what means that a garbage collection company
having containers in multiple locations – in the same or different cities – might deal
with all of them using the same platform.

• The fact of being able to be notified of the status of every container in real time
implies a save of resources and budget for all the parties: the garbage collection
company will optimize the routes and save on fuel and employees, consequently
they will be able to offer better prices for their services to the local governments,
which will therefore also save on their budget dedicated for these purposes.
Moreover, the citizens will be happier with their local governments and with their
cities. Besides, fires will be detected earlier, and notified to all the interested parties,
avoiding further personal and material damages. Last but not least, avoiding the
accumulation of garbage outside the containers, will avoid the subsequently insa-
lubrity and unhealthiness for the citizens and city in general.

• The system is also easily extendable thanks to the use of the ESB and therefore it
could be integrated in the future with other relevant rising approaches, for instance
to improve the promotion of appropriate waste disposal [15], or to include addi-
tional prevention policies.

• Since the device to be installed in the container is considerably cheap (less than 10
euros plus the cost of the solar cell if power supply if not available), the company
which is in charge of waste collection could save big money in fuel when
rescheduling the route according to the necessities of the containers.

In our near future work, we will complete our software architecture with the
integration of other event consumers, such as actuators, social network services and a
mobile application for the citizens. These consumers will be easily integrated into our
architecture thanks to the ESB, which helps to increase the flexibility of heterogeneous
environments. On the one hand, the use of actuators will become a benefit since some
mechanical actions could then be taken at ecological islands when detecting specific
event patterns. For instance, the actuator motor would force the container mouth to
close or open in two situations: (1) close the mouth when the container is full, to
prevent citizens from trying to introduce more waste, which can lead to clogging of the
hydraulic system openness, and (2) open the mouth to ventilate the container in case of
fire. On the other, the integration of the architecture with social network services like
Twitter will permit twitting the detected alerts in an account to which interested citizens
might subscribe. Even more, the mobile application will permit the users to check and
receive notifications about the status of the nearby containers at any time as well as to
provide information about them to the system – a citizen might detect for instance some
accumulation of waste put down around the container by an antisocial citizen, which
would not be detected by the sensors.

238 D. J. Rosa-Gallardo et al.

6 Conclusion

SWAT is an Internet-of-Things (IoT)-based hardware infrastructure and software
architecture for Sustainable WAsTe Collection that will save waste collection com-
panies’ money and will prevent neighborhoods from suffering incommodities caused
by full or damaged waste containers. SWAT will monitor and provide us with waste
container information in real time, as well as alerting maintenance and official bodies
when actions are required. Therefore, SWAT can help to pave the way to future smart
sustainable cities and can make citizens aware and involved in this long journey.

Acknowledgements. The authors thank the support from the Spanish Ministry of Science and
Innovation and the European Union FEDER Funds through the project TIN2015-65845-C3-3-R
and TIN2014-53986-REDT/TIN2016-81978-REDT.

References

1. European Commission: Market Place of the European Innovation Partnership on Smart
Cities and Communities. https://eu-smartcities.eu/

2. Abbasi, M., El Hanandeh, A.: Forecasting municipal solid waste generation using artificial
intelligence modelling approaches. Waste Manag. 56, 13–22 (2016)

3. Enevo: Optimising Waste Collection. https://www.enevo.com/
4. Dugdhei, S., Shelar, P., Jire, S., Apte, A.: Efficient waste collection system. In: Presented at

the 2016 International Conference on Internet of Things and Applications (IOTA), January
2016

5. Papazoglou, M.P.: Web Services and SOA: Principles and Technology. Pearson Education,
Essex (2012)

6. Burke, B.: RESTful Java with JAX-RS 2.0. O’Reilly, Beijing (2013)
7. Taylor, H., Yochem, Y., Phillips, L., Martinez, F.: Event-Driven Architecture: How SOA

Enables the Real-time Enterprise. Addison-Wesley, Boston, London (2008)
8. MuleSoft: Mule ESB. http://www.mulesoft.org/
9. Luckham, D.C.: Event Processing for Business: Organizing the Real-Time Enterprise.

Wiley, Hoboken (2012)
10. EsperTech: Esper - Complex Event Processing. http://www.espertech.com/esper/
11. Los Ángeles Department of Public Works: Waste Management. http://dpw.lacounty.gov/

landing/wasteManagement.cfm
12. BigBelly: Big Belly Solar. http://bigbelly.com/
13. Bonino, D., Alizo, M.T.D., Pastrone, C., Spirito, M.: WasteApp: Smarter waste recycling for

smart citizens. In: Presented at the International Multidisciplinary Conference on Computer
and Energy Science (SpliTech), July 2016

14. Boubeta-Puig, J., Ortiz, G., Medina-Bulo, I.: MEdit4CEP: a model-driven solution for
real-time decision making in SOA 2.0. Knowl. Based Syst. 89, 97–112 (2015)

15. Guo, H., Hobbs, B.F., Lasater, M.E., Parker, C.L., Winch, P.J.: System dynamics-based
evaluation of interventions to promote appropriate waste disposal behaviors in low-income
urban areas: a Baltimore case study. Waste Manag. 56, 547–560 (2016)

Sustainable WAsTe Collection (SWAT) 239

https://eu-smartcities.eu/
https://www.enevo.com/
http://www.mulesoft.org/
http://www.espertech.com/esper/
http://dpw.lacounty.gov/landing/wasteManagement.cfm
http://dpw.lacounty.gov/landing/wasteManagement.cfm
http://bigbelly.com/

Designing Suitable Access Control
for Web-Connected Smart

Home Platforms

Sebastian Werner(B), Frank Pallas, and David Bermbach

Information Systems Engineering Research Group, Technische Universität Berlin,
Berlin, Germany

{sw,fp,db}@ise.tu-berlin.de

Abstract. Access control in web-connected smart home platforms
exhibits unique characteristics and challenges. In this paper, we therefore
discuss suitable access control mechanisms specifically tailored to such
platforms. Based on a set of relevant scenarios, we identify requirements
and available technologies for fulfilling them. We then present our expe-
riences gained from implementing access control meeting the identified
requirements in OpenHAB, a widely used smart home platform.

Keywords: Access control · IoT · Smart home

1 Introduction

The Internet of Things (IoT) has been finding more and more adoption in the last
few years and is seeing continuous growth. Gartner, for instance, expects 20.4
billion connected “things” to be in use by 2020 [10]. A particularly popular area
in the IoT are the so-called smart homes where sensors and smart appliances are
connected using often rule-based approaches to increase comfort for the home
inhabitants.

Today, smart home platforms like OpenHAB1 often run in isolated networks
not connected to the public Internet. However, we expect this to gradually get
replaced by more open deployments that include external services on the web
and in the cloud, e.g., if-this-then-that (IFTTT)2 or Amazon’s Machine Learning
service3, through web APIs, e.g., for weather data, or even using devices such as
Google Home4 or Amazon Echo. For such deployments, however, access control
is a crucial feature of the smart home platform both to protect the inhabitants’
privacy but also to protect them from malicious attacks [8,14]. When the possi-
bility of tampering with the physical world exists, security becomes even more
important – some recent events underline this [2,17].
1 openhab.org.
2 ifttt.com.
3 aws.amazon.com/machine-learning.
4 madeby.google.com/home.

c© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 240–251, 2018.
https://doi.org/10.1007/978-3-319-91764-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_19&domain=pdf
https://www.openhab.org/
https://ifttt.com/
https://aws.amazon.com/machine-learning/
https://madeby.google.com/home

Designing Suitable Access Control 241

While access control is obviously highly important in smart home platforms,
there are a number of characteristics of such systems that make it hard or at least
non-optimal to simply reuse access control strategies from other domains, e.g.,
from file systems or mail servers. Therefore, we make the following contributions
in this paper:

1. We identify smart home usage scenarios particularly relevant for access con-
trol and use those to derive unique requirements for access control in future
smart home platforms.

2. We use OpenHAB, a widely used smart home platform, as a case study and
first analyze its current access control approach. Building on these rather
lacking techniques, we then describe our efforts of retrofitting OpenHAB with
access control features that are ready for future deployments in open, web-
based environments.

3. We identify key lessons learned for both users of current as well as developers
of future smart home platforms.

This paper is structured as follows: We describe relevant usage scenarios in
smart home environments and identify core requirements for access control in
such systems in Sect. 2. Afterwards, in Sect. 3, we give a brief overview of the
OpenHAB platform, describe its current access control approach and our efforts
in making said platform ready for open, web-based deployments. Building on
this, we discuss our observations and lessons learned in Sect. 4 before concluding
in Sect. 5.

2 Access Control in Smart Home Systems

In matters of access control, IoT Systems and, in particular, smart home plat-
forms differ significantly from other systems in various respects, leading to spe-
cific requirements that have to be met. While “basic use cases” of smart home
platforms are often perceived trivial in matters of access control – all members
of a family living in a house have full control, for example – things change sig-
nificantly when “non-regular” use cases and scenarios come into play. Some such
scenarios shall thus be briefly outlined in the following.

2.1 Relevant Usage Scenarios

One scenario that any smart home platform will sooner or later have to address
properly comprises guests staying within the covered premises [13]. This may
include private visitors as well as hotel- or AirBnB-like settings. In any such
case, guests should, for example, be able to control and program the behavior
of their windows’ blinds as well as to monitor and control the temperature of
their respective room during their stay but have no access to similar functions
for other private rooms. Also, there might be a need to allow guests to read
the status of shared devices like the temperature sensors in the hallway or to

242 S. Werner et al.

dynamically connect the smart home platform with external services (for receiv-
ing personalized email notifications or traffic forecasts, for example). Besides the
core functionality required to implement all these aspects, associated processes
of user enrollment, provisioning of access rights, etc. should of course also be as
uncomplicated and “frictionless” as possible.

Another common scenario refers to external trust persons legitimately
sojourning in the covered area – e.g., cleaning or nursing staff or simply different
friends of the inhabitants looking after plants. As such persons are commonly
trusted to physically enter the premises and thus to have physical access to most
devices located within (e.g., lamps, window blinds, heating, ...), it makes no sense
to prevent them from having the same access in the digital domain. However,
providing them with respective access on the basis of pre-known identities may
often prove challenging: In the case of cleaning or nursing staff, for example,
the actual persons legitimately present within the premises often differ unpre-
dictably, depending on dynamic schedules and ad-hoc substitutions. Using their
physical presence itself is therefore a more promising starting point for suitable
access control mechanisms. Alternatively, an approach more in line with the pro-
cess used for providing physical access itself – the cleaning company is trusted,
thus provided with a key and authorized to hand over this key to its personnel
– may also serve as blueprint for suitable access control here. A combination
of several approaches may also be needed from time to time: for instance, staff
may start out with limited privileges simply based on their employment relation
and physical access to certain areas but may acquire additional rights over time
based on increased trust at a personal level.

With increasing interconnection of things, services, and APIs, it also becomes
more and more important to provide suitable access control to an open, specif-
ically non-closed smart home platform. For instance, hitting a dash button to
order some products also has monetary effects on the owner’s bank account –
controlling who can invoke external APIs should not be disregarded. Also, while
external services can be integrated through invocation and polling, sometimes
such third party services will have to trigger events in the smart home system.
For instance, one might define a set of rules on IFTTT or FRED [5] that analyzes
current wind measurements and controls window blinds to protect them from
permanent damage. Or one could use an external service that offers precisely that
functionality. Last but not least, there is a number of separate home automation
gadgets, e.g., Google Home or Amazon Echo, or even simply a smartphone. Inte-
grating such devices requires the necessary access control logic to grant extensive
but not unlimited rights to those devices. All in all, this means that fine-grained
access control with intelligent learning and delegation logic must not be limited
to human users but also needs to extend to external services, platforms, and
APIs.

Finally, the core problem that strict and highly elaborate access control mod-
els often prevent dynamic reactions to unforeseen situations will in all likelihood
become increasingly prominent in the smart home context. Assuming a scenario
where a person in need of care does not respond to calls on the door, it might

Designing Suitable Access Control 243

be reasonable if, for example, police officers could request temporary access to
an in-house camera or to the door lock from, e.g., the person’s children living in
another city. Alternatively, it might also be reasonable to allow certain parties
like emergency services to “override” access restrictions in a controlled man-
ner that can be thoroughly examined afterwards. In any case, “preparing for
the unanticipated” will be of utmost importance for suitable and usable access
control in smart homes – not only in cases of emergency.

2.2 Technical Requirements and Mechanisms

Based on the above scenarios, we have identified a number of core requirements
for access control in web-enabled smart home platforms. In this Section, we
present these requirements and briefly discuss mechanisms we believe to be use-
ful for addressing them. All requirements and mechanisms identified below are
intended to be non-exclusive, allowing for multi-condition access control com-
bining multiple criteria from the same category as well as from different ones.

Frictionless Usage: Smart home scenarios pose a particular need for smooth-
ness. Especially in the living context, smart technologies should not be perceived
as separate “add-ons” but must rather be embedded or “woven into” [18] estab-
lished behavioral patterns and habits. Guests – in a hotel as well as in a private
context – should not feel bothered by a need to familiarize with smart compo-
nents or by cumbersome setup or “enrollment” procedures. Necessary manage-
ment efforts should also be low on the operator’s side. This is particularly true for
access control mechanisms, where repeated commissioning and decommissioning
of users and fine-grained assignment of rights could easily raise significant over-
heads. For all our considerations below, ensuring frictionless usage is thus a core
design goal. Furthermore, frictionless usage may also be supported by specifically
targeted mechanisms of self-learning etc.5

Fine-Grained Access Control: One core requirement that can be identified
from the above scenarios is the need for fine-grained access control. It must be
possible to provide different parties with different access rights for monitoring
and control on a per-resource (devices, software components and services) level.
To lower the efforts necessary for specifying and managing respective access
rights, device grouping should also be possible. In terms of concrete mecha-
nisms, this requirement resembles functionality already provided by most mod-
ern access control schemes. With minor adaptations, established mechanisms for
fine-grained access control should thus be transferable to the smart home domain
at reasonable effort.

Temporary Permissions: As motivated by the guest-related scenario, tempo-
rariness of access rights plays a more prominent role in the smart home context
than it typically does in other domains. Even though granted access rights might
5 Manifold further approaches could be thought of here. Kim et al. [13], for instance,

also experimented with automated rights assignment based on social network and
phone records analysis.

244 S. Werner et al.

always be revoked manually, directly issuing them for a limited timeframe would
thus be of particular value for smart home platforms, also serving the goal of
frictionless usage. Technology-wise, access tokens with limited validity periods
are widely used in practice for comparable purposes. These might be used in
combination with pre-existing user accounts (e.g., when access rights have been
temporarily escalated and activities must be attributable to the respective user)
or as a completely isolated modality of authentication, depending on the intended
use case.

Context-Driven Permissions: The existence and relevance of physical con-
text is one of the main specifics distinguishing access control in smart homes from
other application domains. In the smart home domain, any device as well as any
user striving for access has a physical presence and context which can serve as a
foundation for access control concepts specific to smart home scenarios. In the
above-mentioned case of cleaning or nursing staff legitimately being in a house,
for example, any evidence proving that a user actually is within certain premises
may be deemed a sufficient basis for granting access to all devices located in these
premises [13]. Sufficiently reliable proofs for being in a certain room might, for
example, be based on ultrasonic sound [7] or indoor light [11] used to transfer
secrets to the client device. Independently from the concrete mechanisms used,
however, we see permissions based on physical context – a particular form of
attribute-based access control [16,19] – as an important component of suitable
access control for smart home and IoT scenarios.

Rights Delegation: Scenarios like the one referring to cleaning or nursing staff
above also motivate a need for rights delegation. Instead of access being granted
based on physical access (which particularly proves impractical in the case that
door locks are also managed by the access control system), rights delegation
could also be used: The cleaning company would then be granted access to cer-
tain devices, combined with the possibility to “hand over” these access rights to
its employees. Such capabilities for rights delegation may also serve the overall
goal of frictionless usage and the need to “prepare for the unanticipated”, as it
allows to dynamically align access rights to changing needs. Rights delegation
can be implemented in various ways, ranging from role delegation [1] to certifi-
cate driven solutions [4]. With a particular focus on IoT, rights delegation can
be implemented through capability-based delegation [3], attribute-based access
control, or through adaptations of the OAuth protocol [9].

On-request Access Provisioning by Authorized Parties: Closely coupled
with the basic need for rights delegation is the requirement of being able to
explicitly request access. As laid out in the scenario with a non-responding
person and as obviously given in many less dramatic situations, actual access
needs in smart home environments can hardly be foreseen completely but rather
often emerge and need to be fulfilled ad-hoc. Beyond pure rights delegation,
well-defined mechanisms for requesting not yet existing access from autho-
rized persons and for respective “on-request delegation”6 are thus an important
6 Elsewhere, this model is also called “ask for permission” [13].

Designing Suitable Access Control 245

building block of “preparing for the unanticipated”. In addition to those mech-
anisms already used for basic rights delegation, techniques for on-request dele-
gation can build upon established concepts such as authentication proxies [15]
or dynamic consent [12].

Break-Glass Overrides: Another approach of “preparing for the unantici-
pated” is the concept of break-glass access control. In this model, emergency
access to resources (like, in the example above, the camera within a non-
responding person’s flat) is possible as soon as the “breaking” party (e.g., a
police officer) can be reliably identified and appropriate notifications about the
act of breaking are sent out to trigger ex-post evaluations. Having their roots in
healthcare and disaster management, break-glass override mechanisms are highly
relevant whenever strict access restrictions could potentially lead to significant
harm in unanticipated situations. They might thus be of particular relevance in
the smart home context whenever reasonable emergency access would today be
achieved my means of physical destruction, for example. Technically, break-glass
mechanisms can be implemented on top of or natively integrated into existing
access control mechanisms [6], whereas the ability to actually perform an emer-
gency access might be given to anybody or limited to a well-defined set of parties.
Blockchain technology might be helpful for implementing non-disputable break-
glass logs.

3 Case Study: OpenHAB

In the following, we discuss openHAB, the IoT framework we used to prototyp-
ically implement some of the mechanisms described in Sect. 2.2. We first give a
brief overview of openHAB, its architecture and how it handles access control
in its default configuration. Afterwards, we delineate how we extended its access
control mechanisms to better meet the requirements we developed in Sect. 2.

3.1 System Overview

As a case study, we chose the OpenHAB project, mainly because it represents a
typical IoT eco system and unlike most others is open source. OpenHAB is an
extension of the Eclipse SmartHome project and explicitly built for easy inte-
gration of new devices, protocols, and services. Most of its components interact
through a pub/sub event stream, the “Open Home Automation Bus”.

The project also comes with a modern interface and one of the most exhaus-
tive and fastest-growing repositories for device bindings and third party integra-
tions on the market, which together led to a growing community of users.

The framework is based on Java and composed of a set of OSGi (Open
Service Gateway Initiative) services and components. Its architecture can be
broken down into three major component groups: (1) the core: including the
message bus, configuration storage, logging; (2) binding provider: responsible for
communicating with devices and services; (3) user interfaces and user services,
including the rule engine employed to run user-defined code and the REST

246 S. Werner et al.

Fig. 1. Overview of the OpenHAB System Architecture. Showing the Eclise
SmartHome Core (left) and the OpenHAB specific extensions (right) as well as common
modules.

interface that can be utilized by external services. Figure 1 shows a more detailed
view of the OpenHAB architecture.

Any extension to OpenHAB is added as an OSGi binding, which can access
every other service within the OpenHAB runtime including all data stored within
the system without any constraints.

3.2 Access Control in OpenHAB

OpenHAB has a very basic access control system, which only allows a single
user/password combination to be set. If set, the respective user becomes the
only entity able to access any and all of the openHAB features. By default,
however, setting a user/password combination is neither enforced nor at least
suggested. Having only one single account clearly limits openHAB’s usability for
more complex use cases as presented in Sect. 2.1.

Furthermore, OpenHAB enforces access control only in the third group of
components (user interfaces), while bindings and user-defined rules can access
any internal service or any other resource on the local or public network with-
out providing any means of authentication. Even though clearly fostering the
easy development and addition of new types of services and system resources as
OpenHAB components, such a full-access paradigm is obviously unsuitable for
more complex settings with hundreds or thousands of controlled devices, with the
platform being interconnected with multiple external services, and with external
users potentially being able to connect their own devices and external services:
Under the current concept, just one exploitable or unexpectedly behaving com-
ponent could suffice to compromise or disturb the whole installation. Together
with the risk-prone dynamic update or addition of components inherent to the
OSGi concept, this sums up to a security concept and subsystem that is every-
thing but “production-ready” beyond rather trivial use cases in closed networks.
Finally, none of the advanced requirements identified in Sect. 2.2 is currently
fulfilled by OpenHAB.

Designing Suitable Access Control 247

3.3 Extending Access Control

Given OpenHAB’s above-mentioned shortcomings, we set out to fix its core
security model and to prototypically implement mechanisms for meeting the
requirements identified in Sect. 2.2. For doing so, we had to overhaul most parts
of OpenHAB’s existing access control mechanisms and retrofit our own. To ease
management effort and heighten practical usability in non-trivial use cases, we
added a way to group devices in multiple overlapping security groups, established
a way to record the use of each device, and introduced a rudimentary user
registry.

In order to concentrate on the internal processes of the access control sys-
tem, we confined our development efforts to an installation with only the REST
interface being active. With our extensions, all access control information is
transmitted using a mechanism based on JSON web token (JWT) in a custom
HTTP-header. For use cases involving attribute-based access control, a client
can either compute these tokens (based on context information, for example) or
listen for a local broadcast token. Each response from our system can also con-
tain a new token for the client to use, like a generated identifier that is similar
to an automatically generated username.

Implementing Fine-Grained Access Control: Based on the just discussed
infrastructure functionality, we implemented fine-grained access control by
exploiting the already existing metadata infrastructure of OpenHAB. It pro-
vides a set of tags for each device; we use these tags to identify relationships
between devices. Once an entity can prove access to a device, the user might
also be granted access to other devices with similar tags. We use the groups
and device capabilities encoded in these tags to assess the risk of unauthorized
access. In the absence of other authentication information, the calculated risk is
used to make access decisions. To fully support fine-grained access control, we
also do not enforce access control simply at the user interface but at the core
components responsible for issuing commands to devices.

Implementing Rights Delegation: We implemented rights delegation mainly
by relying on the above-mentioned user management; it holds rights that each
user accumulates over time. Delegation then is handled by linking the delegated
sets of rights to a new user (thus following a user-driven approach to prevent
uncontrolled onward delegation). The original rights holder can still use these
rights, revoke or modify delegations, and delegate the same rights to further
users.

Implementing Temporary, Context-Driven, and On-request Permis-
sions: We used attributes codified in tokens to determine if a user could access
a resource. Each attribute must also be signed, which allows the system to ensure
that an attribute could not be manipulated. These attribute tokens can encode
location information as well as context information. Once a request is issued to
the system, these attributes are evaluated by the respective controller classes.
All attributes are evaluated individually for each device affected by the request.
Depending on the evaluation outcome, it might be that the response only con-
tains a filtered set of information. A controller might also decide only to perform

248 S. Werner et al.

a subset of the actions that were requested. Using similar concepts, we also
implemented on-request access provisioning, where the controller puts respec-
tive commands on hold until a privileged user has approved it.

Implementing Break-Glass Overrides: Finally, we added a break-glass over-
ride mechanism by allowing our access control system to be shutdown if the right
set of keys is used. These keys are generated by a token generator that would
have to be given to those parties that should be able to perform an override (the
local fire department, a neighbor, etc.). The owner of the OpenHAB installa-
tion has total control over these generators and can disable them at any time.
Once the break-glass override is invoked, all access control mechanisms are dis-
abled, and only the audit component is still active. The notification system of
the on-request delegation system is used to inform all privileged users what is
happening and which token was used to invoke the breaking the glass override.

Means for Frictionless Use: To serve the overall goal of frictionless usage
both on the user and the management side, our system can learn from each
interaction and over time build a simplified model about what a specific user
is allowed to do. Once multiple comparable requests (like “light X in room Y”)
have repeatedly been approved, the user no longer needs to ask for permission
for similar requests. This is done by recording each request, each attribute used
for that request and the outcome of these requests. We use this information to
train a simple risk model. If the risk factor for a given request is low enough,
then the request will be successful regardless of the content of other provided
attributes. We also record these automatic approvals for a later audit.

Specific Challenges of OpenHAB: Intuitively, implementing these features
should have been comparably simple. However, OpenHAB’s architecture made
it rather difficult. In particular, the OSGi framework, which openHAB uses to
dynamically load and replace processes at runtime, could have been used to
disable any feature our access control add-on would provide. To get around this
problem, we enhanced the control flow of information between all components
responsible for executing commands (e. g., ItemProvider and Execution Engine).
We did this by implementing an auditing framework that analyzed the stack
trace of each incoming method call and only allows a predefined set of the classes
to execute OpenHAB commands. Any OSGi service can still see all internal
services, but if a non-listed service tries to create a request, all commands are
dropped.

The OSGi framework also leads to another problem regarding the communi-
cation between our access control implementation and other components in the
system. The original design of openHAB did not allow for session information to
be transported to lower-level components. This meant that we could not filter
communication between different layers on a per-resource basis. We, therefore,
had to build a complicated workaround to transport simple session information
between classes: Given that we could not change methods inside the architecture
without rewriting all OpenHAB device bindings, we had to transfer information
indirectly. In particular, we created an OSGi service that interacted with the

Designing Suitable Access Control 249

Java Debug Interface. This service allowed us to correlate session information
with stack traces and method calls which allowed us to evaluate device inter-
actions on an event by event basis. In matters of performance, maintainability,
and transparency, this approach is, however, by no means ideal.

Besides these limitations, we were able to add the on-request-delegation sys-
tem, location broadcasts and other extensions mentioned in Sect. 2.2 without
any hindrance. Besides implementing the user interfaces for these services, we
also added a set of cryptographic utilities that are, for instance, used to generate
the time-dependent tokens using a HMAC-based one-time password algorithm.

4 Discussion

The lesson learned no.1 is that retrofitting access control is a rather bad idea;
instead, it needs to be considered as a core design goal from the very beginning
especially for an open, web-connected platform that integrates external services
and data sources with a non-fixed user base. It is also important to handle access
control not only on an exterior interface but rather internally on a component
or device level. With OpenHAB’s current overall system architecture, however,
applying the presented techniques from Sect. 2.2 or even making the slightest
extensions to the existing security design is virtually impossible even though we
managed to achieve a working solution. However, considering that complexity
is the worst enemy of security, the necessary workarounds and indirections for
retrofitting advanced access control that we took cannot be recommended safely.

While we only analyzed OpenHAB in such detail, access control does not
seem to be a core design goal in other platforms either. For addressing advanced
scenarios as described in Sect. 2.1 and being web-ready including interaction with
third party services, smart home platform developers should probably rethink
their priorities. In this context, technology such as OSGi also has both benefits
and disadvantages – deciding on such technology stacks should be the result of
careful deliberation.

Finally, an important consideration is also to design access control in a way
that is compatible with widely used, established web standards such as OAuth or
even WS-Security. Otherwise, all integration of external services, data sources,
and APIs is ripe for malicious exploitation and not advisable.

5 Conclusion and Future Work

The Internet of Things has been finding more and more adoption in the last
few years and is seeing continuous growth; particularly, smart home technol-
ogy has found more and more adoption. Smart home platforms, however, still
mainly run in isolated networks not connected to the public Internet. We expect
this to gradually change towards more open deployments including external ser-
vices on the web and in the cloud. In such deployments, however, access control
based on mechanisms specifically tailored to the smart home domain is of utmost
importance.

250 S. Werner et al.

In this paper, we started by discussing unique use cases in future smart
home platforms and used these to derive specific requirements for access control.
Afterwards, as a case study, we analyzed OpenHAB (as a popular example of a
smart home platform) in detail with regards to its access control mechanisms.
Since we found these rather lacking, we then tried to retrofit state-of-the-art
access control in compliance with our identified requirements. Through this case
study, we learned that at least one of the current smart home platforms (and
potentially even other more general IoT platforms) is not ready for future, more
complex application scenarios. We also identified how smart home environments
offer unique ways for access control based on physical context. Finally, we learned
that retrofitting access control in existing smart home platforms is painfully
complicated and cannot be recommended – both from a security and an effort
perspective.

In our future work, we plan to test other IoT Hub platforms and see if
some of the limitations we observed can be improved by using a more suitable
platform where fewer indirections and workarounds are needed to integrate our
fine-grained access control method. Furthermore, we intend to test our methods
not only on edge devices but also expand our access control approach to the
dispersed and interconnected fabric of fog computation.

Acknowledgments. This work partly been supported by the European Commission
through the Horizon 2020 Research and Innovation program under contract 731945
(DITAS project).

References

1. Ahn, G.J., Mohan, B.: Secure information sharing using role-based delegation.
In: International Conference on Information Technology: Coding and Computing,
2004. Proceedings. ITCC 2004, vol. 2, pp. 810–815 (2004)

2. Andy Greenberg: Hackers Remotely Kill a Jeep on the Highway–With Me in It.
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

3. Anggorojati, B., Mahalle, P.N., Prasad, N.R., Prasad, R.: Capability-based access
control delegation model on the federated IoT network. In: 2012 15th International
Symposium on Wireless Personal Multimedia Communications (WPMC), pp. 604–
608 (2012)

4. Aura, T.: Distributed access-rights management with delegation certificates. In:
Vitek, J., Jensen, C.D. (eds.) Secure Internet Programming. LNCS, vol. 1603, pp.
211–235. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48749-2 9

5. Blackstock, M., Lea, R.: Fred: a hosted data flow platform for the IOT built using
node-red. In Proceedings of MoTA 2016 (2016)

6. Brucker, A.D., Petritsch, H.: Extending access control models with break-glass. In:
Proceedings of the 14th ACM Symposium on Access Control Models and Tech-
nologies. pp. 197–206. ACM (2009)

7. Chen, K., Aljarrah, M., Bonnet, P.: Leveraging physical locality to integrate Smart
appliances in non-residential buildings with ultrasound and Bluetooth Low energy.
In: Proceedings - 2016 IEEE 1st International Conference on Internet-of-Things
Design and Implementation, IoTDI 2016 1(iii), pp. 199–209 (2016)

https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://doi.org/10.1007/3-540-48749-2_9

Designing Suitable Access Control 251

8. Dong, R., Ratliff, L.J.: Privacy in the Internet of Things. Next Wave 21(2), 8–16
(2016)

9. Emerson, S., Choi, Y.K., Hwang, D.Y., Kim, K.S., Kim, K.H.: An oauth based
authentication mechanism for IoT networks. In: International Conference on ICT
Convergence 2015: Innovations Toward the IoT, 5G, and Smart Media Era, ICTC
2015, pp. 1072–1074 (2015)

10. Gartner: Gartner Says 8.4 Billion Connected “Things” Will Be in Use in 2017, Up
31 Percent From 2016 (2017). http://www.gartner.com/newsroom/id/3598917

11. Grobe, L., Paraskevopoulos, A.: High-speed visible light communication systems.
IEEE Commun. Mag. 51(12), 60–66 (2013)

12. Kaye, J., Whitley, E.A., Lund, D., Morrison, M., Teare, H., Melham, K.: Dynamic
consent: a patient interface for twenty-first century research networks. Eur. J. Hum.
Genet. 23(2), 141–146 (2015)

13. Kim, T.H.J., Bauer, L., Newsome, J., Perrig, A., Walker, J.: Access right assign-
ment mechanisms for secure home networks. J. Commun. Netw. 13(2), 175–186
(2011)

14. Liu, J., Xiao, Y., Chen, C.P.: Authentication and access control in the Internet of
Things. In: Proceedings of the 32nd IEEE International Conference on Distributed
Computing Systems Workshops 2012, pp. 588–592 (2012)

15. Mayrhofer, R.: A context authentication proxy for IPSec using spatial reference.
In: Proceedings of TwUC 2006: 1st International Workshop on Trustworthy Ubiq-
uitous Computing, pp. 449–462. Austrian Computer Society (OCG), December
2006

16. Sicari, S., Rizzardi, A., Grieco, L.A., Coen-Porisini, A.: Security, privacy and trust
in Internet of Things: the road ahead. Comput. Netw. 76, 146–164 (2015)

17. Vallance, C.: Car hack uses digital-radio broadcasts to seize control (2015). http://
www.bbc.com/news/technology-33622298

18. Weiser, M.: The computer for the twenty-first century. Sci. Am. 265, 94–100 (1991)
19. Yuan, E., Tong, J.: Attributed Based Access Control (ABAC) for web services. In:

Proceedings - 2005 IEEE International Conference on Web Services, ICWS 2005,
pp. 561–569 (2005)

http://www.gartner.com/newsroom/id/3598917
http://www.bbc.com/news/technology-33622298
http://www.bbc.com/news/technology-33622298

Integrating Smart Devices as Business Process
Resources – Concept and Software Prototype

Robert Wehlitz1(&), Ingo Rößner1, and Bogdan Franczyk2,3

1 Institute for Applied Informatics (InfAI), Hainstr. 11, 04109 Leipzig, Germany
{wehlitz,roessner}@infai.org

2 Information Systems Institute, Leipzig University, Grimmaische Str. 12, 04109
Leipzig, Germany

franczyk@wifa.uni-leipzig.de
3 Business Informatics Institute, Wrocław University of Economics, ul.

Komandorska 118-120, 53-345 Wrocław, Poland

Abstract. The foundation of the Internet of Things (IoT) consists of ubiquitous
smart devices, equipped with sensors, actuators and tags, that are connected to
the Internet and able to communicate with one another. It is seen as a great
opportunity for organizations to improve, innovate, and reinvent their business
processes. However, existing Business Process Management (BPM) tools and
systems are not fully capable of integrating and utilizing smart devices as
business process resources and, thus, are unable to unlock the high joint
potential of BPM and the IoT. In this paper, we propose a concept for a
service-oriented BPM system architecture which aims at the modeling, imple-
mentation, and execution of IoT-aware business processes. Furthermore, we
introduce a first software prototype of the architecture as a proof of concept.

Keywords: Business Process Management systems � Internet of Things
Service–oriented architectures

1 Introduction

Business Process Management (BPM) is nowadays a well-recognized discipline in
academia and practice in order to define, improve, and manage business processes
(BP). In the last decades, a plethora of BPM tools and systems, which enable
process-oriented Human-to-Human, Human-to-System, and System–to–System inter-
action, has emerged [1]. With the advent of the Internet of Things (IoT), where
physical world objects are always connected to the Internet through ubiquitous smart
devices, novel interactions during BP, e.g. Human-to-Thing or Thing–to–Thing, are
possible [2]. However, current BPM systems are not fully capable of integrating and
utilizing smart devices as BP resources [3].

In light of this, the main contribution of this paper is a concept for a
service-oriented IoT-aware BPM system architecture which enables to model, imple-
ment, and execute BP that use sensing and actuation capabilities of smart devices in
smart building as well as smart home environments. Furthermore, we present a soft-
ware prototype as a proof of concept. The paper is structured as follows: First, we

© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 252–257, 2018.
https://doi.org/10.1007/978-3-319-91764-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_20&domain=pdf

briefly discuss some aspects on how both businesses and customers could benefit from
BPM in conjunction with the IoT and touch upon related work (Sect. 2). We then
present our concept on how to integrate and utilize smart devices as BP resources
(Sect. 3). The corresponding software prototype is introduced in (Sect. 4). The paper
concludes with a short summary and an outlook for future research (Sect. 5).

2 Motivation and Related Work

The total number of smart devices connected to the Internet is estimated to increase to
around 24 billion (without smartphones and tablets) in 2020 [4]. This will lead to
massive amounts of data which can be utilized by businesses to improve their BP [5].
For instance, high-frequently recorded sensor data from smart devices can serve as a
basis for faster and improved decision making during BP execution, e.g. the early
detection and handling of delivery problems in logistics networks through detailed
package tracking. Furthermore, performance weaknesses and bottlenecks of BP can be
identified resp. prevented, e.g. using predictive maintenance techniques in order to
avoid cost–intensive unscheduled downtimes in production systems.

In the context of smart building and smart home environments, customers may
benefit from new products and services in the areas of entertainment, convenience,
security, health care, and energy efficiency [6]. Businesses, in turn, have the possibility
to gather and analyze more detailed data about their customers in order to individualize
and improve their products and services [2].

All of this requires that services, data, and events are appropriately orchestrated
among businesses, smart devices, and customers. A task BPM systems seem to be well
suited for [3]. However, there are many challenges current BPM systems are not fully
addressing. For example, the heterogeneity of smart devices which includes different
hardware specifications, communication protocols, data exchange formats, and dis-
covery mechanisms [7]. As a first step towards holistic IoT-aware BPM systems, we
found it fundamental to provide a system architecture which is able to integrate dif-
ferent smart devices as BP resources, hence, overcoming the heterogeneity issue.

Research in this field is still at its beginning. A literature survey conducted by [7]
revealed that numerous publications focus on modeling IoT-aware BP without dis-
cussing technical details concerning the integration of smart devices. They also provide
no further information on the implementation and execution of IoT-aware BP. Some
solutions take into account implementation aspects; however, only concentrate on the
integration of sensors or tags, which do not provide actuation capabilities. Other
research work depends on the presence of gateway topologies or additional hardware
required on the local network site which prevents 1:1 communication between, for
instance, mobile devices and the BPM system. Furthermore, most solutions lack a
monitoring component that provides transparency on BP execution. For this reason, we
designed a BPM system architecture that enables the integration of smart devices for
modeling, implementing, and executing IoT-aware BP.

Integrating Smart Devices as Business Process Resources 253

3 Concept

In order to be able to use sensing and actuation capabilities of smart devices, we
describe them at type and instance level. A device type (e.g. Temperature Sensor)
represents a set of similar device instances. Device instances, in turn, are concrete
occurrences of the respective device type (e.g. Temperature Sensor #1, Temperature
Sensor #2, etc.). Each device type provides one or a set of service types (e.g.
getTemperature) which may require to specify input, output, and configuration
parameters (e.g. interval, unit). Device instances provide service instances (e.g.
getTemperature from Temperature Sensor #1) whose parameters have concrete values
(e.g. interval: 10, unit: seconds). Similar to smart devices, rules to identify events in
data streams can also be described at type (e.g. value >22) and instance level (e.-
g. temperature value from Temperature Sensor #1 > 22 °C).

In the following, we introduce our first concept for a service-oriented BPM system
architecture (see Fig. 1) that we derived from literature analysis, internal workshops,
and software prototyping. It supports the modeling, implementation, and execution of
IoT–aware BP and is based on a centralized orchestration model [7].

A process designer component is provided for the graphical modeling of
BP. The BP models are stored in the process repository (①). During BP modeling,
only types of events, smart devices, and device services are available for use. This
allows for the instance–independent composition and reuse of BP models at design
time. Furthermore, it enables to deploy the same BP model multiple times for different
smart devices. The process designer fetches device–related metadata (device and
service types) from the device and service repository (②) which enables the unified
access on heterogeneous devices by service abstraction. Event rule types, which rep-
resent event types and are defined by means of an event rule designer, are stored and
retrieved from the event rule repository (③). This approach allows for event, device,
and service types to be directly referenced by BP elements during modeling.

Fig. 1. UML component diagram of the IoT-aware BPM system

254 R. Wehlitz et al.

The process deployment component fetches executable BP models from the pro-
cess repository (④) and examines if they contain event and/or device and service
types. If this is true, the process deployment component retrieves eligible instances of
all device and service types used in a BP model from the device and service repository
(⑤). It then lets the user decide which specific device and service instances shall be
utilized for a new BP deployment. The same applies to event types. The user defines
which generic event rule types shall be applied on specific data streams of smart
devices. Thereafter, the BP model is enriched with instance–related metadata and
deployed to the process engine (⑥), which ensures that BP instances are executed
according to the underlying model.

The BP service task execution is done by external task workers. They fetch pending
jobs from the process engine and inform it as soon as the jobs have been completed so
that it can proceed with the next BP step (⑦). External task workers invoke sensing
and actuation services (e.g. getTemperature or turnOffLight) by using metadata of
event, device, and service instances which is embedded in the deployed BP definitions.
In case of executing an actuation service, an external task worker fetches the required
service description from the device and service repository and sends a service request
to the streaming platform (⑧). The streaming platform provides an interface by which
platform connectors, that are responsible for handling the communication between the
IoT–aware BPM system and edge devices, can fetch pending service requests and
forward them to their counterpart in local networks, that is client connectors (⑨).
Client connectors run on smart devices themselves or on gateway devices and represent
one of the key components for overcoming the heterogeneity issue mentioned in
Sect. 2. They are responsible for the registration and (auto-)discovery of smart devices
and pass sensing data from local networks on to the IoT-aware BPM system. Fur-
thermore, they forward requests to the service endpoints of smart devices. The platform
connectors push incoming sensing data to the streaming platform where it can be
filtered by events through the event processing engine. The event processing engine
applies event rules on data streams and triggers events if corresponding rules are met.
These events can be processed by the process engine, e.g. to start a new or to affect the
control flow of a running BP instance. Finally, a process monitoring component
accesses the interface of the process engine in order to obtain historical and operational
data on BP instances (⑩). This includes, for example, the number of completed or
running instances of a certain BP model, throughput times, or errors that might occur
during BP execution.

4 Software Prototype

In order to provide a proof of concept of our architecture presented in Sect. 3, we
implemented all system components (see Fig. 1) as an integrated cloud-based software
prototype. This is part of an IoT platform that aims at the provisioning of tools which
support the development of digital services in the area of home energy management.

The process designer component of our software prototype is based on bpmn.io, a
BPMN 2.0 rendering toolkit and web modeler [8], which was extended to integrate
with the device and service repository. We selected BPMN 2.0 as supported modeling

Integrating Smart Devices as Business Process Resources 255

language because it seems to be the best suited standard for mapping IoT concepts in
BP [9]. Following [10], our solution intends that IoT-aware BP are modeled within
BPMN pools. The lanes of a pool represent device types. Each service task that is
placed on a lane is assigned to and handled by the respective device type. The user
clicks on a service task and selects a supported service type from a dialog window. The
label of the service task in question is automatically updated with the device-related
metadata retrieved from the device and service repository to enhance the compre-
hensibility of the BP diagram.

In case of a new BP deployment, the process deployment component analyzes the
BP definition and prompts the user to select concrete instances for every found event
and/or device type. It then deploys the BP model to the process engine, which is based
on the open-source platform Camunda [11]. This supports the external task pattern and,
hence, provides more flexibility and scalability for executing BP service tasks [12]. The
implementation of external task workers is independent from a specific programing
language and additional source code for BP service task execution has not to be
deployed to and executed by the process engine.

Most of the smart devices we use as BP resources for testing our approach support
the wireless communication standards ZigBee or Z-Wave. Both are very popular and
well suited for home energy management scenarios [13]. The smart devices are con-
nected to local ZigBee or Z-Wave networks as well as to the Internet via gateway
devices. We implemented lightweight client connectors and deployed them on the
gateway devices. A software library, written in Python, is also available in order to
integrate “things” which are not part of gateway topologies. Service requests from
platform connectors, which address service endpoints of smart devices, are sent to
client connectors over WebSocket connections. This allows the communication with
local networks from the Internet without the need for cumbersome router configuration.
With regard to the streaming platform, we use Apache Kafka and its publish-subscribe
messaging system [14]. External task workers operate as producers and publish service
requests to Kafka topics to which platform connectors are subscribed. The platform
connectors are also producers and publish sensing data to topics which, in turn, can be
subscribed by the event processing engine. This enables a high flexible and scalable
handling of incoming resp. outgoing event and data streams.

5 Conclusion and Outlook

In this paper, we discussed potential use cases for BPM in conjunction with the IoT and
outlined related work as well as the need for other research contributions. Furthermore,
we presented a concept for a service-oriented BPM system architecture which supports
the integration of smart devices as BP resources and introduced a first implementation
as a proof of concept. In this context, we showed how we tackle the heterogeneity
challenge by using connectors and metadata stored in the device and service repository
for service abstraction in order to provide unified access to smart devices. Furthermore,
system components which make use of these metadata and support the modeling,
implementation, and execution of IoT-aware BP were described.

256 R. Wehlitz et al.

However, the results presented in this paper are work-in-progress and provide a
basis for future research. The existing concept must be developed further towards a
hybrid architecture which allows centralized as well as decentralized BP execution in
order to tackle other challenges, such as privacy, security, and quality of service. In
addition, tools and techniques for adaptive case management should be investigated in
order to improve context awareness of process-oriented IoT applications. This will shift
the utilization of BP from well–structured workflows to adaptive cases whose control
flow is determined at run time based on context information.

Acknowledgments. The work presented in this paper is partly funded by the European Regional
Development Fund (ERDF) and the Free State of Saxony (Sächsische Aufbaubank – SAB).

References

1. van der Aalst, W.M.P.: Business Process Management. a Comprehensive Survey. ISRN
Software Engineering, 2013 (1), 37 p. (2013)

2. Khoshafian, S., Schuerman, D.: Process of everything. In: Fischer, L. (ed.) iBPMS.
Intelligent BPM Systems – Impact and Opportunity, pp. 67–82. Future Strategies Inc.,
Lighthouse Point (2013)

3. Whibley, P.: The Internet of Things will be invisible. In: Fischer, L. (ed.) BPM Everywhere.
Internet of Things – Process of Everything, pp. 39–46. Future Strategies Inc., Lighthouse
Point (2015)

4. Greenough, J.: How the “Internet of Things” will impact consumers, businesses, and
governments in 2016 and beyond (2016). Accessed 08 Aug 2017. http://www.
businessinsider.com/how-the-internet-of-things-market-will-grow-2014-10?IR=T

5. Francis, S., Gibbs, L.: I, For One, welcome our new robot overlords. In: Fischer, L. (ed.)
BPM Everywhere. Internet of Things – Process of Everything, pp. 31–37. Future Strategies
Inc., Lighthouse Point (2015)

6. Zion Market Research. Accessed 08 Aug 2017. https://www.zionmarketresearch.com/news/
smart-home-market

7. Chang, C., Srirama, S.N., Buyya, R.: Mobile cloud business process management system for
the Internet of Things. ACM Comput. Surv. 49(4), 1–42 (2016)

8. bpmn.io Homepage. Accessed 09 Aug 2017. https://bpmn.io
9. Meyer, S., Sperner, K., Magerkurth, C., Pasquier, J.: Towards modeling real-world aware

business processes. In: Proceedings of the Second International Workshop on Web of
Things, pp. 1–6. ACM, San Francisco (2011)

10. Meyer, S., Ruppen, A., Magerkurth, C.: Internet of Things-Aware process modeling:
integrating IoT devices as business process resources. In: Salinesi, C., Norrie, Moira C.,
Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 84–98. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38709-8_6

11. Camunda Homepage. Accessed 09 Aug 2017. https://camunda.org
12. Camunda Documentation. Accessed 09 Aug 2017. https://docs.camunda.org/manual/7.7/

user-guide/process-engine/external-tasks/
13. Zhen, Z., Agbossou, K., Cardenas, A.: Connectivity for home energy management

applications. In: Power and Energy Engineering Conference (APPEEC), pp. 2175–2180.
IEEE PES Asia-Pacific, Xi’an (2016)

14. Kafka Homepage. Accessed 09 Aug 2017. https://kafka.apache.org

Integrating Smart Devices as Business Process Resources 257

http://www.businessinsider.com/how-the-internet-of-things-market-will-grow-2014-10%3fIR%3dT
http://www.businessinsider.com/how-the-internet-of-things-market-will-grow-2014-10%3fIR%3dT
https://www.zionmarketresearch.com/news/smart-home-market
https://www.zionmarketresearch.com/news/smart-home-market
https://bpmn.io
http://dx.doi.org/10.1007/978-3-642-38709-8_6
https://camunda.org
https://docs.camunda.org/manual/7.7/user-guide/process-engine/external-tasks/
https://docs.camunda.org/manual/7.7/user-guide/process-engine/external-tasks/
https://kafka.apache.org

Architecting Enterprise Applications
for the Cloud: The Unicorn Universe Cloud

Framework

Marek Beranek1, Marek Stastny1, Vladimir Kovar1,
and George Feuerlicht2(&)

1 Unicorn College, V Kapslovně 2767/2, 130 00 Prague 3, Czech Republic
marek.beranek@unicorncollege.cz,

marek.stastny@unicornuniverse.eu,

vladimir.kovar@unicorn.eu
2 Prague University of Economics,

W. Churchill Square. 4, 130 67 Prague 3, Czech Republic
george.feuerlicht@gmail.com

Abstract. Recent IT advances that include extensive use of mobile and IoT
devices and wide adoption of cloud computing are creating a situation where
existing architectures and software development frameworks no longer fully
support the requirements of modern enterprise application. Furthermore, the
separation of software development and operations is no longer practicable in
this environment characterized by fast delivery and automated release and
deployment of applications. This rapidly evolving situation requires new
frameworks that support the DevOps approach and facilitate continuous delivery
of cloud-based applications using micro-services and container-based tech-
nologies allowing rapid incremental deployment of application components. It is
also becoming clear that the management of large-scale container-based envi-
ronments has its own challenges. In this paper, we first discuss the challenges
that developers of enterprise applications face today and then describe the
Unicorn cloud framework (uuCloud) designed to support the development and
deployment of cloud-based applications that incorporate mobile and IoT devi-
ces. We use a doctor surgery reservation application “Lekar” case study to
illustrate how uuCloud is used to implement a large-scale cloud-based
application.

Keywords: Cloud computing � Software frameworks � Micro-services
DevOps

1 Introduction

The basic enterprise computing objectives that include low cost, reliability, security,
scalability, easy deployment and usability have not changed dramatically for decades.
However, the hardware and software environment in which enterprise applications are
being developed and deployed today is significantly different from that only a few
years ago. Enterprise architectures have been evolving to take advantage of the

© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 258–269, 2018.
https://doi.org/10.1007/978-3-319-91764-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_21&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_21&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_21&domain=pdf

opportunities offered by advances in hardware and software technologies, in particular
the increase in processing power and storage capacity and the corresponding cost
reductions. The centralized architectures of the 1970s were superseded by client/server
architectures of the 1980s, and component-based architectures of the 1990s, and most
recently by the Service-Oriented Architecture (SOA) at the beginning of this century.
We are now experiencing another major transformation driven by wide adoption of
cloud computing and extensive use of mobile and IoT (Internet of Things) devices.
Public cloud platforms (e.g. AWS [1], Microsoft Azure [2], etc.) offer highly elastic
and practically unlimited computing power and storage capacity, allowing more flex-
ible acquisition of IT resources in the form of cloud services, overcoming the limita-
tions of on-premise IT solutions. Importantly, this new technology environment is
creating opportunities for innovative solutions at a fraction of the cost of traditional
enterprise applications. However, to take full advantage of these developments, orga-
nizations involved in the development of enterprise applications must adopt a suitable
enterprise architecture and application development frameworks. The architecture
needs to support various types of mobile devices (smart phones, tablets, etc.) and
incorporate interfaces that interact with IoT devices. Unlike traditional enterprise
applications that store data on local servers within the organization, most mobile
applications store data and deploy application components in the cloud, making it
possible for applications to be shared by very large user populations. Given the
requirements of modern business environments, the architecture needs to facilitate
rapid incremental development of application components, secure access to informa-
tion and easy and fast cloud deployment. There is now increasing empirical evidence
that to effectively address such requirements, the architecture needs to support
micro-services and container-based virtualization [3]. However, it is also becoming
clear that the management of large-scale container-based environments has its own
challenges and requires automation of application deployment, auto-scaling and control
of resource usage. The need for continuous delivery and monitoring of application
components impacts on the structure and skills profile of IT teams, favoring small
cross-functional teams leading to the convergence of development and operations
(DevOps). The separation of code development and declarative methods of environ-
ment configuration play an important role in increasing the productivity of the software
development process. Furthermore, developers of enterprise applications are increas-
ingly turning towards open source solutions that allow full control over the entire
software stack, avoiding costly proprietary solutions. Also, while the use of public
cloud platforms is economically compelling, an important function of the architecture
is to ensure independence from individual cloud providers, avoiding a provider lock-in.
Finally, the architecture should reduce the complexity of the application development
and maintenance process and facilitate effective reuse of application components and
infrastructure services.

These requirements demand a revision of existing architectural principles and
application development methods. In this paper, we describe the Unicorn Universe
Cloud Framework (uuCloud) designed to facilitate the management of modern
container-based cloud environments addressing the issues identified above. The
uuCloud framework is an integral part of the Unicorn Application Framework (UAF).
We have described the features of the UAF in an earlier publication [4], giving a

Architecting Enterprise Applications for Cloud: The Unicorn Cloud Framework 259

high-level overview of the architecture. In this paper, we focus on the uuCloud
framework and describe its key components and operation. In the next section (Sect. 2)
we review related literature focusing on DevOps, micro-services and container man-
agement frameworks. In the following sections, we briefly overview the UAF archi-
tecture (Sect. 3) and describe the uuCloud framework (Sect. 4). Section 5 illustrates
the application of the uuCloud framework using an example of the Doctor’s Surgery
Reservation System (Lekar Reservation System - LRS). Section 6 includes our con-
clusions and directions for future work. Please, note that all diagrams in this paper are
drawn using the Unicorn Business Modeling Language: https://unicornuniverse.eu/en/
uubml.html.

2 Related Work

Cloud-based application development frameworks and architectures have been the
subject of intense recent interest by industry practitioners and academic researchers, in
particular in the context of micro-services and DevOps [5]. As noted in Sect. 1, several
recent trends including cloud computing, extensive use of mobile and IoT devices have
impacted on the architecture of enterprise applications with corresponding impact on
application development frameworks [6]. Namiot et al. [7] discuss the advantages and
drawbacks of micro-services. The benefits of micro-services include the ability to use
different programming languages for individual services, improved scalability and
more rapid, incremental development within smaller teams. However, they also note
that the use of a larger number of smaller services increases deployment complexity.
One of the most important challenges involves decisions about how to partition the
application system into micro-services, i.e. making decisions about service granularity.
The paper discusses various service partitioning methods including the Scale Cube [8],
partitioning by use-cases and partitioning by resource type. Armin Balalaie et al. [3, 9]
consider achieving reusability, decentralized data governance, automated deployment
and built-in scalability to be the main motivations for migration to a micro-services
architecture. The authors report on their experiences during incremental migration and
architectural refactoring of a commercial “Mobile Backend as a Service” to
micro-services. They argue that standard virtualization methods introduce a heavy
computational overhead and therefore are not cost-effective, and recommend the use of
container-based virtualization to reduce overheads and to enable portability. The
authors discuss synergies between micro-services and DevOps approach that involves
small vertically structured cross-functional teams responsible for individual application
components and services. They conclude that the main lessons learned from the
migration to micro-services include: (1) the critical importance of service contracts as
the number of services increases, (2) the need for skilled developers who understand
distributed systems development, and (3) use of development templates. According to
Rimal et al. [10] the most important current challenge is the lack of a standard
architectural approach for cloud computing. The authors explore and classify archi-
tectural characteristics of cloud computing and identify several architectural features
that play a major role in the adoption of cloud computing. The paper provides
guidelines for software architects for developing cloud architectures. According to Raj

260 M. Beranek et al.

https://unicornuniverse.eu/en/uubml.html
https://unicornuniverse.eu/en/uubml.html

et al. [11] “The urgent thing is to embark on modernizing and refining the currently
used application development processes and practices in order to make cloud-based
software engineering simpler, successful, and sustainable.” The authors argue that
software development has become an inherently complicated task and that a system-
atic, disciplined, and quantifiable approach is essential to make software development
more manageable and to produce quality software products. A new requirements
engineering process and techniques for capturing requirements for cloud-based services
was proposed and illustrated using a large-scale case study based on Amazon Cloud
EC2 [12]. Adaptation of the software development life cycle for cloud computing has
been the subject of recent research interest. The differences between cloud service
provider and consumer SDLC life-cycles resulting from the use of externally provided
cloud services have been identified [13]. The authors describe a Service Consumer
Framework (SCF) that incorporates architectural extensions designed to support
operation in cloud computing environments [14].

While container technologies and micro-services have revolutionized application
development and deployment, it is also evident that the use of these technologies has its
limitations. More specifically, the management of large-scale container-based envi-
ronments requires automation to ensure fast and predictable application deployment,
auto-scaling and control of resource usage. At the same time, there is a requirement for
portability across different public and private clouds. To address such issues a number
of open source projects have been recently initiated; prominent examples include Cloud
Foundry [15], OpenShift [16] and Kubernetes [17]. These projects share many com-
mon concepts and in some cases technologies. A key idea of these open source plat-
forms is to abstract the complexity of the underlying cloud infrastructure and present a
well-designed API (Application Programming Interface) that simplifies the manage-
ment of container-based cloud environments. The Kubernetes project initiated by
Google in 2014 as an open source cluster manager for Docker has its origins in an
earlier Google container management system called Borg [18]. The Kubernetes project
is hosted by the Cloud Native Computing Foundation (CNCF) [19] that has a mission
“to create and drive the adoption of a new computing paradigm that is optimized for
modern distributed systems environments capable of scaling to tens of thousands of
self-healing multi-tenant nodes”. The objective is to facilitate cloud native systems that
run applications and processes in isolated units of application deployment (i.e. software
containers). Containers implement micro-services which are dynamically managed to
maximize resource utilization and minimize the costs associated with maintenance and
operations. CNCF promotes well-defined APIs as the main mechanism for ensuring
extensibility and portability. A basic Kubernetes building block is a Pod - a REST
object that encapsulates a set of logically connected application containers with storage
resources (Volumes) and a unique IP address. Pods constitute a unit of deployment
(and a unit of failure) and are deployed to Nodes (physical or logical machines).
Lifetime of a Volume is the same as the lifetime of the enclosing Pod allowing restart
of individual containers without the loss of data. Pods are externalized as Services;
Kubernetes service is an abstraction that defines a logical set of Pods and a policy for
accessing the Pods (i.e. micro-service). Replication Controller is used to create replica
Pods to match the demand of the application and provide auto-scaling. Kubernetes uses
Namespaces to partition resources allocated to different groups of users.

Architecting Enterprise Applications for Cloud: The Unicorn Cloud Framework 261

The application of Docker and Kubernetes container architecture to multi-tenant SaaS
(Software as a Service) applications has been investigated and assessed using SWOT
(Strength, Weakness, Opportunities and Threats) analysis and contrasted with devel-
oping SaaS applications using middleware services [20]. The authors conclude that
more research is needed to understand the true potential and risks associated with
container orchestration platforms such as Kubernetes.

While Kubernetes appears to be gaining momentum at present with support for
major public cloud platforms including Google Cloud Platform, Microsoft Azure and
most recently AWS, there is a number of other projects that aim to address the need for
a universal framework for the development and deployment of cloud applications,
including the Unicorn Universe Cloud framework described in this paper. While this
rapidly evolving area is of active research interest to both academia and industry
practitioners, currently there is a lack of agreement about a standard application
development framework designed specifically for cloud development and deployment.
Moreover, some proposals lack empirical verification using large-scale real-life
applications.

3 Unicorn Application Framework (UAF)

The Unicorn Application Framework (UAF) developed by Unicorn (https://unicorn.
com/) supports the design, development and operation of enterprise applications. A key
UAF architectural objective is to support various types of mobile and IoT devices and
to facilitate cloud deployment of enterprise applications utilizing standard framework
services that include security and authentication services and support for
multi-language environments. This minimizes the programming effort, improves reli-
ability of applications and allows application developers to focus on the functionality
that directly supports business processes and adds value for the end users. UAF
architecture consists of four frameworks: uuUserInterface (uu5) - framework services
for the development of Graphical User Interfaces (GUIs) based on HTML5 [21], uuIoT
- framework services for the management of IoT devices, uuCloud - framework ser-
vices for provisioning of elastic cloud services and uuAppServerKit - framework
services for the development of application components (i.e. REST micro-services).

3.1 Unicorn Universe Application (uuApp)

UAF provides environment for the implementation and deployment of uuApp applica-
tions. uuApp is a component that implements a cohesive set of application functions
designed to solve a set of specific user requirements. uuApp application is composed of
sub-applications (uuSubApp) - independent units of functionality that implement specific
business functions (e.g. booking a visit to a doctor’s surgery). Each sub-application is
implemented as a logical application server (uuAppServer) and is typically associated
with a structured (uuAppObjectStore) or a binary (uuAppBinaryStore) data store. We
made an architectural decision to associate each sub-application with a single logical
application server to ensure fast access to persistent data and to maintain security and
consistency of the underlying data sources. Using this approach, the access to underlying

262 M. Beranek et al.

https://unicorn.com/
https://unicorn.com/

data sources is controlled by the application server, ensuring that only authorized users can
access the data. To improve scalability, individual use-cases (business functions) may be
distributed across separate application servers in the form of individually addressable
SPPs (Separately Performing Parts) modules.

The UAF follows the View-Model-Controller pattern, implementing the Model
component in the form of an application server (uuAppServer) and the Controller and
View components of the application on the client (typically a mobile device) using the
uuUserInterface framework. The application server implements application logic and
externalizes an API that is accessed by application clients. Persistent objects that
belong to a sub-application are grouped into application workspaces (uuAppWork-
spaces) and identified by an Application Workspace Identifier (AWID). Each
sub-application is typically assigned a separate application workspace.

4 Unicorn Universe Cloud (uuCloud)

Unicorn Universe Cloud is a framework that supports autonomic provisioning of elastic
cloud services using virtual containers and servers. UAF applications are typically
deployed into a hybrid cloud environment (i.e. a combination of public and private
cloud) in the form of virtualized application servers. To ensure portability and to
reduce overheads, the UAF uses container-based virtualization. Our preferred con-
tainerization solution is Docker [22]. Docker container virtualizes the application
including a complete filesystem that contains all components needed to run the
application (i.e. system tools, system libraries, etc.) ensuring that the application runs
independently of the platform the container is deployed on. A sub-application is
mapped to an application server which is then containerized and deployed to a virtual
server, and finally to a physical server. Docker containers can be deployed to a public
cloud infrastructure (e.g. AWS or Microsoft Azure) or to a private (on-premise)
infrastructure (e.g. the Unicorn platform Plus4U). Using containers for virtualization
also improves isolation in multi-tenant environments [3].

4.1 uuCloud Nodes

We use a generic, technology agnostic terminology, node instead of container to
indicate that applications can be implemented using containers or virtual and physical
servers. Node is a unit of deployment with hardware characteristics that include virtual
CPU (vCPU) count, RAM size, ephemeral storage, etc. Nodes are classified according
to NodeSize, e.g. M (Medium size: 1xvCPU, 1 GB of RAM, 1 GB of ephemeral
storage) or L (Large size: 2xvCPU, 2 GB of RAM, 1 GB of ephemeral storage). Nodes
are further classified as synchronous or asynchronous depending on the behavior of the
sub-application that the node virtualizes. Nodes are grouped into NodeSets - sets of
nodes with identical functionality (i.e. nodes that virtualize the same sub-applications).
Database server virtualization does not use containers and virtualizes structured and
binary storage (uuObjectStore and uuBinaryStore) into a logical object called
uuAppStore deployed to a virtual server.

Architecting Enterprise Applications for Cloud: The Unicorn Cloud Framework 263

4.2 uuGateway

Individual containers (nodes) are typically deployed on a public cloud infrastructure
(e.g. Amazon AWS or Microsoft Azure) and access data from cloud-based data stores
and databases (e.g. Mongo DB [23], etc.). Figure 1 illustrates the processing of client
requests by the uuGateway. The uuGateway forwards the uuURI formatted client
request to a router that passes the request to a load balancer. The load balancer selects a
node from a NodeSet of functionally identical nodes, optimizing the use of the hard-
ware infrastructure and providing a failover capability (i.e. if the node is not responsive
the request is re-directed to an alternative node). uuURI is a version of a generic
REST URI adapted for addressing uuApp applications. uuURI uses a standard string
format to route the request to a specified gateway (e.g. Plus4U.net, etc.) and to specify
which server should execute the request on behalf of the user. The URI header contains
a special signed token that identifies an authorized user. The URI string has the fol-
lowing format:

https://gateway/vendor-uuApp-uuSubApp-spp/tid-asid|awid/usecase
where:

– gateway is the gateway address, e.g. Plus4U.net
– vendor code (e.g. Plus4U)
– uuApp – application (uuApp) code
– uuSubApp – sub-application (uuSubApp) code
– spp – optional spp (Separately Performing Parts) code within uuSubApp
– tid – tenant identifier
– asid – identifier of a specific sub-application instance
– awid workspace identifier
– usecase – use case identifier (i.e. API method)

In the case of static server resources, the use case identifier (usecase) is replaced by
resource path (resourcePath) that points to a location where the resource is located.

Fig. 1. uuGateway operation

264 M. Beranek et al.

https://www.gateway/vendor-uuApp-uuSubApp-spp/tid-asid/awid/usecase

4.3 uuCloud Operation Registry

Operation Registry is a key component of the uuCloud environment that maintains
active information about all uuCloud objects (i.e. tenants, resource pools, regions,
resource groups, hosts, nodes, etc.). uuCloud supports multi-tenant operation; each
tenant typically represents a separate organization (e.g. a doctor’s surgery). Tenants are
assigned resource pools that define the maximum amount of hardware resources (i.e.
number of vCPUs, RAM size and amount of storage) that are available for their
operation. The Operation Registry records information about regions (e.g. Azure North
(EU-N-AZ)), resource groups and hosts, and holds information about applications
deployed to each node.

4.4 uuCloud Control Centre

The Control Centre includes tools for deploying and running applications in the
uuCloud environment. Applications (nodes) are deployed into a territory (i.e. tenant)
that is associated with a resource pool and managed using control centre tools. The
control centre verifies permissions for the deployment of applications into a specific
resource pool. Control centre tools are used to manage nodes, verify free resource pool
capacity, locate a suitable host for the application, and to compile and deploy the node
image on selected hosts.

5 Lekar Reservation System

To illustrate the application of the uuCloud framework we use the example of a
recently implemented Doctor Surgery Reservation System - Lekar Reservation System
(LRS). LRS (https://www.plus4u.net/produkty-a-sluzby/lekar/) is an on-line reserva-
tion system that manages communication between healthcare professionals (doctors,
nurses, medical office staff) and patients in the Czech Republic. The main objective of
the system is to enable registered patients to book a visit to any participating medical
practitioner at any time (i.e. 24/7) using a mobile device or a computer, without having
to phone the surgery during office hours to make an appointment. The LRS application
generates automatic SMS and e-mail notifications to alert the patients of an upcoming
appointment, processes reservation confirmations/cancellations, and generates remin-
ders for regular check-ups. From the point of view of the health care professional, LRS
provides an integrated diary showing appointments from all surgeries and gives a quick
and easy access to basic patient information. The benefit for the patient is that all
appointments are recorded in an easily accessible diary. Six months after the first
release of the LRS application there were 210 active healthcare professionals with
thousands of patients from across the Czech Republic using the system. As these
numbers are expected to grow significantly in the future, the scalability of the system is
a critical design consideration.

Architecting Enterprise Applications for Cloud: The Unicorn Cloud Framework 265

https://www.plus4u.net/produkty-a-sluzby/lekar/

5.1 LRS Technical Solution

The LRS application covers three main business functions implemented as cloud
services: Reservations, Organization & Management (i.e. registering and de-registering
doctors, patients, nurses, and office staff) and Notifications (patient notifications via
email and SMS messages). Additional Common Services that include user identifica-
tion and authorization are provided by the UAF components running on uuCloud.
The LRS system is implemented using open source technologies (Java, Ruby, Mon-
goDB, Redis, Docker, Linux, etc.). The application is deployed to a hybrid cloud
environment using the on-premise Plus4U.net platform (https://www.plus4u.net) in
combination with MicroSoft Azure, demonstrating the technical feasibility and com-
mercial benefits of implementing a large-scale system using open source and
container-based technologies deployed on a hybrid cloud infrastructure.

5.2 Topology of the LRS Solution

Each doctor surgery or medical centre is assigned to its own business territory (im-
plemented as a uuCloud tenant) with a separate ObjectStore (MongoDB database
instance) ensuring data security by fully isolating individual cloud tenants. Table 1
shows the current allocation of NodeSets to the three main business functions. There
are 19 nodes in total (1 Large and 18 Medium size nodes); all nodes are deployed on
the Azure North MicroSoft data centre. Asynchronous nodes are used for email and
SMS notifications, while the reservation sub-system uses synchronous nodes to per-
form booking of appointments. Figure 2 shows the topology of the LRS solution; the
Application Deployment tenant is implemented on-premise in the MED-BT business
territory of Unicorn Medical (Unicorn organization responsible for the development of
healthcare information systems), while the runtime LRS system is deployed on the
Microsoft Azure cloud platform using Docker virtualization technologies.

The present version of the LRS system is the first step towards a more compre-
hensive outpatient system for individual medical practitioners and large healthcare
facilities. The inherent scalability of this cloud solution makes it possible to add
computing and storage resources as the need arises with minimal incremental cost
while maintaining high availability and response time characteristics.

Table 1. Allocation of NodeSets to LRS business functions

Business
Function

Reservations Notifications Organization & Management

NodeSet 1x Synchronous
NodeSize L

11x Asynchronous
NodeSize M

2x Synchronous 5x
Asynchronous NodeSize M

266 M. Beranek et al.

https://www.plus4u.net

6 Conclusions and Further Work

We have argued that the accelerating shift towards cloud computing combined with the
dominance of mobile computing and the growing use of IoT devices requires a
re-assessment of the existing architectural principles and the associated application
development frameworks. While the use of micro-services and container-based virtu-
alization brings many benefits, the highly distributed nature of the resulting applica-
tions and the short software release cycles present many challenges to organizations
involved in the development of cloud-based enterprise applications. A suitable appli-
cation development framework and associated methods and tools are an essential
pre-requisite for achieving successful project results on a repeatable basis. The uuCloud
platform described in this paper was developed specifically to address the requirements
of cloud-based applications and is used currently for the development of large-scale
enterprise applications at Unicorn. We have illustrated the application of uuCloud using
a real-world Doctor Surgery Reservation System that is used by hundreds of healthcare
professional and thousands of patients across the Czech Republic.

There are some similarities between uuCloud and other frameworks such as Cloud
Foundry, OpenShift and Kubernetes. Kubernetes, in particular supports similar func-
tionality as uuCloud. We have evaluated these frameworks before starting the UAF
project and decided that our needs would be best served with a fully integrated
architecture that incorporates uuCloud, uuUserInterface and uuIoT frameworks (see
UAF description in Sect. 3). The uuCloud framework currently supports Docker
containers and Microsoft Azure cloud infrastructure, but we are extending the frame-
work to incorporate other technology solutions. Our present efforts focus on improving

Fig. 2. Topology of the LRS cloud solution

Architecting Enterprise Applications for Cloud: The Unicorn Cloud Framework 267

the monitoring tools and ensuring high availability and good response time for
applications running on public cloud infrastructure. We are investigating the feasibility
and cost of deploying applications across multiple availability zones, with the aim of
providing users with similar SLA (Service Level Agreement) guarantees as we are able
to provide for on-premise applications. We are continuously monitoring the rapidly
evolving landscape of cloud platforms and frameworks. We may decide to align the
uuCloud framework with Kubernetes in the future as both frameworks mature and the
direction of cloud standardization becomes clearer.

References

1. Amazon.com (2017). http://aws.amazon.com/. Accessed 7 July 2017
2. Microsoft Azure: Cloud Computing Platform & Services (2017). https://azure.microsoft.

com/en-au/. Accessed 22 Aug 2017
3. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables DevOps:

migration to a cloud-native architecture. IEEE Softw. 33(3), 42–52 (2016)
4. Beránek, M., Feuerlicht, G., Kovář, V.: Developing enterprise applications for cloud: the

unicorn application framework. In: International Conference on Grid, Cloud and Cluster
Computing, GCC 2017, Las Vegas, USA. CSREA Press (2017)

5. Thönes, J.: Microservices. IEEE Softw. 32(1), 116 (2015)
6. Mahmood, Z., Saeed, S.: Software Engineering Frameworks for the Cloud Computing

Paradigm. Springer, London (2013). https://doi.org/10.1007/978-1-4471-5031-2
7. Namiot, D., Sneps-Sneppe, M.: On micro-services architecture. Int. J. Open Inf. Technol. 2

(9), 24–27 (2014)
8. Splitting Applications or Services for Scale, AKF Partners. http://akfpartners.com/growth-

blog/splitting-applications-or-services-for-scale. Accessed 22 Aug 2017
9. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Migrating to cloud-native architectures using mi-

croservices: an experience report. In: Celesti, A., Leitner, P. (eds.) ESOCC Workshops 2015.
CCIS, vol. 567, pp. 201–215. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
33313-7_15

10. Rimal, B.P., et al.: Architectural requirements for cloud computing systems: an enterprise
cloud approach. J. Grid Comput. 9(1), 3–26 (2011)

11. Raj, P., Venkatesh, V., Amirtharajan, R.: Envisioning the cloud-induced transformations in
the software engineering discipline. In: Mahmood, Z., Saeed, S. (eds.) Software Engineering
Frameworks for the Cloud Computing Paradigm, pp. 25–53. Springer, London (2013).
https://doi.org/10.1007/978-1-4471-5031-2_2

12. Ramachandran, M.: Business requirements engineering for developing cloud computing
services. In: Mahmood, Z., Saeed, S. (eds.) Software Engineering Frameworks for the Cloud
Computing Paradigm, pp. 123–143. Springer, London (2013). https://doi.org/10.1007/978-
1-4471-5031-2_6

13. Feuerlicht, G., Thai Tran, H.: Adapting service development life-cycle for cloud. In:
Proceedings of the 17th International Conference on Enterprise Information Systems, vol. 3.
SCITEPRESS-Science and Technology Publications, Lda (2015)

14. Tran, H.T., Feuerlicht, G.: Service repository for cloud service consumer life cycle
management. In: Dustdar, S., Leymann, F., Villari, M. (eds.) ESOCC 2015. LNCS, vol.
9306, pp. 171–180. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24072-5_12

268 M. Beranek et al.

http://aws.amazon.com/
https://azure.microsoft.com/en-au/
https://azure.microsoft.com/en-au/
http://dx.doi.org/10.1007/978-1-4471-5031-2
http://akfpartners.com/growth-blog/splitting-applications-or-services-for-scale
http://akfpartners.com/growth-blog/splitting-applications-or-services-for-scale
http://dx.doi.org/10.1007/978-3-319-33313-7_15
http://dx.doi.org/10.1007/978-3-319-33313-7_15
http://dx.doi.org/10.1007/978-1-4471-5031-2_2
http://dx.doi.org/10.1007/978-1-4471-5031-2_6
http://dx.doi.org/10.1007/978-1-4471-5031-2_6
http://dx.doi.org/10.1007/978-3-319-24072-5_12

15. CloudFoundry. Cloud Application Platform - DevOps Platform, Cloud Foundry (2017).
https://www.cloudfoundry.org/. Accessed 28 Sep 2017

16. OpenShift: Container Application Platform by Red Hat, Built on Docker and Kubernetes
(2017). https://www.openshift.com/. Accessed 28 Sep 2017

17. Kubernetes (2017): https://kubernetes.io/. Accessed 25 Aug 2017
18. Burns, B., et al.: Borg, Omega, and Kubernetes. Queue 14(1), 70–93 (2016)
19. Home - Cloud Native Computing Foundation (2017). https://www.cncf.io/. Accessed 27 Sep

2017
20. Truyen, E., et al.: Towards a container-based architecture for multi-tenant SaaS applications.

In: Proceedings of the 15th International Workshop on Adaptive and Reflective Middleware,
pp. 1–6. ACM, Trento, Italy (2016)

21. WC3. HTML5. https://www.w3.org/TR/html5/. Accessed 21 Aug 2017
22. Docker. What is Docker. 2015 2015-05-14. https://www.docker.com/what-docker. Accessed

21 Aug 2017
23. MongoDB for GIANT Ideas (2017). https://www.mongodb.com/index. Accessed 21 Aug

2017

Architecting Enterprise Applications for Cloud: The Unicorn Cloud Framework 269

https://www.cloudfoundry.org/
https://www.openshift.com/
https://kubernetes.io/
https://www.cncf.io/
https://www.w3.org/TR/html5/
https://www.docker.com/what-docker
https://www.mongodb.com/index

A Knowledge Carrying Service-Component
Architecture for Smart Cyber Physical Systems

An Example Based on Self-documenting Production
Systems

Christopher Haubeck1(&), Winfried Lamersdorf1, and Alexander Fay2

1 University of Hamburg, Hamburg, Germany
{haubeck,lamersdorf}@informatik.uni-hamburg.de

2 Helmut Schmidt University, Hamburg, Germany
alexander.fay@hsu-hh.de

Abstract. Cyber Physical Systems (CPSs) are both software and hardware
intense systems which are integrated into the digital world. An increasingly
relevant application area for CPSs are software-driven industrial Production
Automation Systems. A major driver of these Cyber Physical Production Sys-
tems is the need to integrate intelligent and smart functionalities into the pro-
duction process at runtime that can run in the cyber world and do not radically
change the underlying control flow of the physical plant. To gather the necessary
knowledge for smart functionalities both cyber and physical parts must be
captured, kept and analyzed together in a suitable CPS architecture – also
despite frequent evolutionary changes during their whole (usually relative long)
life span. This paper addresses this problem by presenting a service-component
architecture for smart service-oriented CPSs which can manage implicit
knowledge by acquiring, handling and analyzing domain specific
service-components with respect to the CPS context.

Keywords: Cyber Physical Systems � Service-component architecture
Self-awareness � Models@runtime � Production Automation
Distributed systems

1 Introduction

Cyber-Physical Systems (CPSs) represent a new paradigm to describe the close
interrelationship between hardware and software components. One motivation for this
interconnection is to bring intelligence and smarter functionalities into traditional,
hardware-dominated application areas such as embedded systems, robotics, or system
networks [1]. As an example, this contribution considers the practically relevant area of
Production Automation which can be seen as early CPSs [2]. The most important part
to reach the full dimension of CPSs is to integrate communication and information
gathering capabilities that allow pursuing goals and functionalities on a global system
level [3]. In contrast to that, in traditional production systems information is often not
easily accessible. Because here the overall knowledge is only implicitly available in the

© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 270–282, 2018.
https://doi.org/10.1007/978-3-319-91764-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_22&domain=pdf

respective control code as well as the hardware setup. This is a result of the industrial
practice to often use only informal specifications for implementing system control [4].
Plants are long-living and constantly evolving over their live span. Therefore, docu-
mentation is nearly never up-to-date, which complicates (or even prevents) the task of
analyzing the production system [18]. Since, however, each production system is based
on the respective companies’ application requirements, it is desirable to make the
system analyzable regarding its requirements only by itself. Here, services allow gluing
the physical production process together with software-driven capturing functionalities.
Further, functionalities captured in services allow forming a self-documenting process
as proposed for the need of evolution support in this contribution. Correspondingly, the
aim of this contribution is to tackle the lack of documentation with service-oriented
methods to integrate production systems into the future world of smart CPSs.

The paper is structured along three questions: (Q1) How can the behavior of joint
dynamics between software and hardware be captured in evolvable service-
components? (Q2) Can these service-components provide a basis for reducing the
lack of documentation? (Q3) How can a comprehensive process for self-documenting
be implemented by assembling reusable services? To address these questions, a
service-component architecture is presented which is based on event-based monitoring
in autonomous service-components. First, the problem of a consistent system state in
service-components of a CPS in general and a production system in particular is
addressed. Following that, the paper shows how domain-specific models are captured
in and managed by service-components to represent the combined hardware and
software behavior. Finally, the paper shows how these service-components can be used
to implement a self-documenting process. The approach is evaluated by two case
studies which demonstrate the proposed concept. Related work and a conclusion close
the paper.

2 Service-Oriented Knowledge Management in CPS

The understanding of a CPS is not clearly defined and various kinds of definitions from
different domains exist. In this contribution, the architecture for a smart
service-oriented CPS is presented based on Sztipanovits et al. [5] who define CPS in
three different layers: As shown in Fig. 1, the lowest level is the physical connection
layer which consists of physical components and their interactions. In production
systems, these are mechanical parts which are pneumatically (thick lines in Fig. 1) or
electrically (dashed lines) connected. The other two layers are the cyber layers: first the
cyber connection layer which consists of software components embedded in the
hardware system. In terms of production systems these are the execution environments
and their software code of Programmable Logic Controllers (PLC) which are connected
by bus-systems. To control the plant, events of actuators transfer the code behavior into
physical behavior while events of sensors transfer the physical results back. The last
layer is implemented in ordinary software languages (e.g. object-oriented languages)
and capable of CPS functionalities (e.g. network communication). In this paper this
layer focuses on smart functionalities of CPSs and especially self-documentation. It is
further named the knowledge carrying software layer.

A Knowledge Carrying Service-Component Architecture for Smart CPSs 271

For self-documenting, the CPS architecture follows the general guideline from
Robinson for a requirement monitoring system [6] by applying it to CPSs and the
service-oriented world. Accordingly, the knowledge carrying software layer consists of
the event, model and application layer as shown in Fig. 1. Within the event layer events
are acquired, (pre-) processed, and stored in a state service (Sect. 2.1). Due to the
interdisciplinary interactions of the underlying process in case of a CPS, the model
layer holds domain specific models in knowledge service-components to determine
process properties (Sect. 2.2). The application layer contains application specific
components and is in this contribution discussed with respect to the targeted application
of a self-documenting process for evolution support (Sect. 2.3). The visualization layer

Fig. 1. Service-component architecture for smart CPS

272 C. Haubeck et al.

of Robinson is not discussed here. In a nutshell, this contribution proposes a
service-oriented component architecture that captures behavior in models on top of
traditional hardware systems so that they become smart within a service-oriented CPS.

2.1 Service-Oriented Event Acquisition in Heterogeneous CPSs

To follow compositional design architectures, elements should communicate homo-
geneously regarding their composed properties and semantics [5]. But unfortunately,
CPSs differ in structure and behavior rather heterogeneously [5]. In addition, pro-
duction systems are generally written in domain specific languages and always run
cyclic in their own program thread and under hard real-time conditions. This implies
that only event sequences are shown as an interface towards the upper CPS cyber levels
and the actual execution remains as a black box. These facts and the general conser-
vatism of the production industry make it problematic or even impossible to couple the
component of the production process directly with the CPS by weaving code into the
controlling software like most other monitoring approaches propose [6]. From the
authors’ point of view, this difficulty of external access holds for many other domains
of CPS as well. Therefore, this paper proposes a service-oriented approach which
captures information of event sources externally in a non-invasive way.

Since smart functionalities often require a high level of autonomy, the proposed
architecture is based on active service-components (see [7]). In a CPS view, active
components are software representations of (hardware) entities which are managed and
defined like hierarchical components that communicate with each other via service calls
and provide a flexible internal architecture to act autonomously [7]. For event acqui-
sition, the architecture distinguishes between two types of components:

First service-component adapters (SCA) are deployed in a 1-to-1 mapping per
available entry points of the CPS (see Fig. 1). They allow event sources to participate
in the CPS by providing services within the event-acquisition. These services behave as
proxies that allow for a transparent access to the connection layers and encapsulate the
generation and propagation of events. To allow a high degree of freedom, they operate
autonomously by actively establishing and managing connections to the connection
layer with domain specific technologies like process control protocols. Further also pre-
and post-processing steps like caching are done. In CPSs it is important to decouple the
different layers − although it might affect the performance. Consequently, the utiliza-
tion of provided service- components reduces the complexity in terms of crosscutting
interactions between the layers. Services allow cyber components to browse and reg-
ister for events out of the event layer. Further, the architecture decouples the rate of the
events provided into the CPS (desired rate) with the rate coming from the connection
layer (source rate) inside the service. Note that this decoupling implies the assumption
that values do not change between two measured events according to the source rate.

The second type of components in the event-acquisition layer are representation
service-components (RSC). As shown in Fig. 1 the separately deployed RSCs are in
charge of the consistent system state by requiring the services of the SCA. All RSCs in
their hierarchical order are further called the system façade. RSCs can run in different
computing nodes as SCAs, because in contrast to SCAs, the upper cyber layers of CPSs
should follow a business-oriented modularization. Such a modularization can be made

A Knowledge Carrying Service-Component Architecture for Smart CPSs 273

per technical resources, but can differ by following, e.g., a business process. Never-
theless, for a consistent system façade each RSC must be responsible for a separated
part of the system to have a clear responsibly chain on the cyber layers.

2.2 Domain Specific Models for Joint Dynamics in Service-Components

In complex systems – especially with hardware relations – models play an increasing
role for different phases of the lifecycle as Derler et al. stated also for CPSs [1].
Therefore, the employment of models is also necessary for service-oriented CPSs that
implement smart functionalities at runtime [2]. For CPSs, generally models of the
behavior are considered [1]. The heterogeneity and complexity of these models stresses
modeling languages of CPSs [1] and therefore it is problematical to find a uniform
architecture to integrate such models. To tackle this difficulty, this paper proposes to
encapsulate each model in its own design architecture and execution environment that
is only accessible by services. These so-called knowledge service-components
(KSC) can exist on each hierarchical level of the system façade as shown in Fig. 1.
KSCs describe the CPS behavior and determine high-level properties. The
event-acquisition in RSCs and the models in KSCs must be operated by services
together. For such an event-based service system this contribution establishes an
approach on policy-based evaluated statements for service calls. These statements
consist of three parts:

1. Each statement has a state expression which is based on the state service of the
RSC. An expression of a service call may consume several events, and the RSC
computes the expression’s value. Expressions are evaluated within the RSC to
guarantee that evaluation takes place in the safeguarded system facade.

2. Statements use matchers for expressions that check the expression value against a
desired result. An expression value is only returned to the service caller when the
matcher returns a positive result.

3. Since the evaluation is separated in the RSC and the time when the statement is
fulfilled is unknown, statements have an evaluation policy. Policies determine an
interval for the evaluation of expressions. This means the RSC asks the policies
when the next evaluation should take place by scheduling a task to evaluate and
match the expression when a new and consistent state of involved events is
available. Intervals can be linear, accelerating or decelerating towards a deadline.

In conclusion, models in KSCs define a pool of statements described by event
expressions and transfer them with a policy and matcher to a RSC. An approach that
can also be used as an alternative to the often-used pull principle in other event-based
domains. For example, test cases of events which occurrence time is unknown can be
better defined by this approach. Returned values of statements are processed by
so-called mode services that determine how statements can affect a KSC (see Fig. 1).
This contribution proposes a not necessarily complete list of four mode services:

1. Learning services provide learning mechanisms within the KSC execution envi-
ronment which build up the model. Although simpler models like algebraic func-
tions may not require learning, complex models must use learning algorithms.

274 C. Haubeck et al.

2. An observation service describes how a model acts during live observation. This is
necessary whenever the KSC has statements of the current system state and wants to
reflect this state in its model. Further anomalies which are differences between the
model and the actual observed state seen in the system can be detected here.

3. An analysis service describes how high level properties necessary, for example, in
the self-documenting process are determined based on the model structure and state.
Here the advantage of model-based service-components for CPSs shines since
formal properties can be expressed as services that can be determined automatically.

4. The last simulation service is the most optional one and can be used in addition to
the analysis. Simulation allows the KSC to predict the behavior of models in terms
of already observed situations. Therefore, often observed usage scenarios are
extracted to replay these scenarios to evaluate the model in typical situations.

2.3 Self-documenting Process for Evolution Support

As an application example, this section shows a self-documenting process for evolution
w.r.t non-functional properties. The process is shown in Fig. 2 and allows tackling the
problem of constant evolution in long-living systems which often results in
non-documented behavior and unknown system properties [18]. To support evolution,
event traces of the system are monitored. As a side note, also events from test cases can
be used here (see [17]). To provide analysis, events must be enriched with a machine
interpretable semantic context. For example, for production systems, each event holds
an assigned event-context identifier for the topology and the type of events in a tree
structure. The topology part describes from which system part an event stems. The type
part tells which information it gives. The behavior is documented in the RSC hierarchy
that holds KSCs which consume timed events in mode services as shown previously.
When the observation service detects changes, a human in the loop decides if the
behavior is desired or undesired. Desired changes are considered as an evolution and
undesired as an anomaly. The models are analyzed to find high-level information of the
technical process, e.g. invariants of events or (non-functional) properties. Further,
simulation of usage scenarios can be used for analysis. In general, the process actively
reduces degeneration of documentation by coming from an undocumented system to a
system which is documented by a model-based specification.

The self-documenting process is demonstrated in this paper, but the
service-component architecture can be extended to other functionalities. These func-
tionalities are situated in the application layer. To implement the process RSCs are
extended with a management service-component (MSC) (see Fig. 1) that also com-
municates via services. When considering CPSs with high dynamics, a robust
goal-based approach seems most favorable. This preference results from the fact that
the process is, in general, based on priorities of the mode services whose priorities
depend on the current condition of the underlying system. For example, the observation
mode is continued until a change occurs and learning is necessary. One suitable
architecture is a “goal-based approach with deliberation according to priorities” fol-
lowing a Belief-Desire-Intention architecture [8]. The main goal hierarchy (omitting
plans, beliefs, and smaller goals) is shown in Fig. 3 (left). The overall goal to ensure
documentation is enhanced by sub-goals for mode services of the KCSs. When a

A Knowledge Carrying Service-Component Architecture for Smart CPSs 275

specific condition is fulfilled, a goal deliberation takes place and other mode services
can suppress the current service. In this way, the most needed service is always acti-
vated. Human interaction is included for decisions. This semi-automated approach is
chosen because of domain restrictions, but could also be substituted by adding addi-
tional service-components.

3 Evaluation

To evaluate the concept of a smart service-oriented CPS two case studies are per-
formed: one demonstrates the ability to handle hierarchical event sources and the
second applies the incremental documentation process for evolution support. The
respective prototype was implemented in Java based on active components of the Jadex
platform [7]. Main components and services of the prototype are shown in Fig. 3
(right). The plant connection is done with the industrial M2M standard OPC imple-
mented in a SCA that communicates with RSCs via event services implemented within
a stream-oriented programming style based on the Jadex “Future” concept (see [7]).

Fig. 2. Evolution support process to document behavior of production systems

Fig. 3. (left) Goal hierarchy of the process; (right) components and services view

276 C. Haubeck et al.

To ensure consistency in the system façade, RSCs follow the BASE principle (for:
basically available, soft state, eventual consistency) by using the timestamps of the
connection layers. Each component holds a configuration and RSCs hold the analyzed
properties of their corresponding plant part. MSCs extend the RSCs via extension
services by managing the self-documenting process with an implementation based on
the BDI-Kernel of Jadex (see [8]). KSCs have one of two domain models developed to
ensure a high degree of expressiveness w.r.t documentation (see [18]). The models are
implemented as petri-nets in the Jadex micro-kernel and communicate via state service
to the RSCs and via mode services implemented for both models to the MSCs.

A. Case Study: Hierarchical Distributed Production System

For evaluation of hierarchical CPSs and distributed event sources, a laboratory
plant on the Helmut-Schmidt University was used. It consists of three distinct pro-
ducing machines, an arm robot, a high rack storage area and a portal crane. An
intra-logistics transport system of conveyor belts divided into five subsystems connects
the elements. For self-documenting purposes, models for machine states are used in the
learning services (see [18]) to create models expressing the state of subsystems.
Each RSC creates its own separated state model. Regarding documentation, the case
study considers the nominal capacity of the logistic system for each conveyor, sub-
system and whole plant as a non-functional property. The analysis service uses a formal
algorithm specified on the domain state model and combines the capacity of the whole
plant on the parent RSC by an aggregation formula. The results are shown in Table 1.
The service-oriented CPS shows that it can ensure a consistent hierarchical system
view, because the properties and a detailed formal model documentation are constantly
reflected in services. Such properties bound to documenting service-components are
useful by themselves, because otherwise they are, if at all, only manually determined.

B. Case Study: Evolution of a manufacturing system

A second case study was conducted on a Pick-and-Place-Unit (PPU) at the Tech-
nical University in Munich (see [9]). The PPU serves as a demonstrator for automated

Table 1. Results of the experiments regarding capacity

Resource Mean time [s] Standard deviation [s]

Conveyor 1.0 (SS1) 4.30 0.02
Conveyor 1.1 (SS1) 4.22 0.04
Conveyor 1.2 (SS1) 3.89 0.05
Conveyor 1.3 (SS1) 12.78 0.08
Subsystem 1, aggregated 25.19 0.1
Subsystem 2, aggregated 26.78 0.09
Subsystem 3, aggregated 36.33 0.72
Subsystem 4, aggregated 47.36 0.74
Subsystem 5, aggregated 64.07 21.85
Whole plant, aggregated 199,73 21.87

A Knowledge Carrying Service-Component Architecture for Smart CPSs 277

production plants under evolution. It is capable of processing different workpiece types,
namely metallic and plastic workpieces. Metallic workpieces are to be processed by
stamping them. The PPU consists of four parts: (1) A magazine that provides work-
pieces to be processed. (2) A stamp that stamps metallic workpieces. (3) An output
ramp for releasing workpieces from the plant. (4) A crane which connects the other
plant parts. Evolution scenarios built up the PPU consecutively (names according to
[9]). In scenario Sc1, the PPU just consists of the magazine and the crane which is
extended by workpiece identification in Sc2. In Sc3, a stamp is added for metallic
workpieces and the last considered Sc5 tries to optimize the throughput by a modified
crane behavior. In comparison to the previous case study which captured the machine
state of the system, here the actual routing of products is captured by filtering events
according to the assigned context semantics (see [18]). This case study demonstrates
that the self-documenting process based on the RSCs can be fully implemented. The
resulting petri net is shown in Fig. 4. Every scenario is presented in different line types.
Timing information is shown whenever it changes (just in Sc5). Identifying events are
shown in braces. The self-documenting process detects changes in the observation
service and then relearns the model per new scenario. The model shows how the KSC
prepares the documentation for an engineer and that he is able to analyses the system
evolution with formal petri-nets which are often used in the industrial context as
documentation.

Every time the KSC changes, the process demands an analysis on the model
structure. Table 2 shows the result of some typical properties. Here, the benefit of
constant relearning in service-components can be seen, because improvements and
influences of evolution can be directly inspected. For example, it can be easily seen that
Scenario 5 does not improve the mean transportation time as stated in [9] and only
reduces the standard deviation. Further on, also the reason for this lack of performance
which is a low horizontal crane speed is reflected in the routing model of the KSC.
Overall the case studies verify the answers to the given questions of this paper. Because
they show that evolvable service-components can encapsulate knowledge of CPSs in
models (see Q1) and serve as a documentation for the engineer (see Q2). And the
composed self-documenting process of this services (Q3) allows the service-oriented
CPS to identify that the evolution change have failed and should be reversed.

4 Related Work

This contribution provides an approach which combines different methods. One way
for processing event-traces is complex-event-processing (CEP). As one example,
Michelsen proposes data stream processing in decentralized networks [10], but as other
CEP approaches do not consider acquisition based on complex models. This is also the
case for approaches which use learning techniques to find dependencies between
events. Margara, for example, generates rules for event dependencies by using his-
torical traces [12]. However, general approaches for (distributed) event-based system
normally rely on query languages and mathematical aggregation and result in event
rules. They do not consider the wide range of models needed for CPSs, nor do they
consider models in service-components. Runtime monitoring is a commonly used

278 C. Haubeck et al.

method. An overview is given in [13] and for CPSs it is shown in [14]. Most moni-
toring approaches of CPSs try to tackle the problem of how provided specifications can
be used (see [14]). The approach presented here aims at models which can be learned
within a system by service-component. Further, related work also exists for the dif-
ferent mode services of the models. Although these algorithms usually rely on

Fig. 4. Routing petri-net of scenario 1, 2, 3 and 5 of the PPU case study

Table 2. Results of the incremental analysis

Indicator Sc1 Sc2 Sc3 Sc5

Mean transport time 7816 ms 7807 ms 2102 ms 3802 ms
Standard deviation of transport time 1373 ms 1736 ms 4045 ms 1600 ms
Number of routes 1 1 2 2
Number of places 5 6 14 14
Number of transitions 5 7 16 16

A Knowledge Carrying Service-Component Architecture for Smart CPSs 279

predefined models, our approach is based on similar models and algorithms developed
by the authors in these areas. Nonetheless, other algorithms can be integrated as
additional KSCs.

Service-oriented CPSs are also mentioned in the literature. But as stated in the
survey of Hoang et al. [11] service-oriented CPSs are “typically designed to coordinate
the computational and physical parts of a system”. These approaches often use mid-
dleware approaches for CPS. For instance, in [19] a semantic middleware is presented
that integrates various CPS elements. This often-focused topic of heterogeneity is also
present in the here presented approach, but this paper rather enables high-level model
analysis and knowledge gathering in component-services. To categorize the approach
in the taxonomy of Hoang et al. [11] this contribution follows a distributed architectural
topology with a strong focus on the application layer to provide high-level
management.

Production systems are considered in service-oriented architectures mainly for
accessing control of manufacturing resources. For example, Valilai et al. aim at resource
sharing by supporting collaboration and data integration [16]. Also, real-time services
are considered. Lin et al. [20], for instance, proposes these for sustainability and pre-
dictability of CPSs. Our approach does not consider resource sharing or real-time ser-
vices with services, but rather capture behavior. Similarity exists here to algorithms of
fault detection that create models like discrete event models or process models [15] in
order to describe the monitored system. But these approaches do not consider software
layers provided by CPSs and approaches are limited to the production automation
domain. Four as-a-service (*aaS) models are identified in cloud manufacturing. Cloud is
not directly considered in this paper, but on the cyber levels services are comparable to
cloud services following mostly a software-as-a-service model. Nevertheless, our
research questions regarding services do not aim at typical cloud systems.

In summary, parts of the approach are considered in different areas and the
approach partly relies on these methods. Also, service-oriented CPSs are present in the
literature. But existing approaches do not consider service-oriented architectures for the
automatic gathering of knowledge, nor are these approaches related to the needs of a
service-based learning integrating all layers of a CPS. To our best knowledge, archi-
tectures for combining distributed event-monitoring, model-based learning and ana-
lyzing of CPSs in service-components are not present in the current literature.

5 Conclusion

This paper presented ProductionAutomation as an important application domain inwhich
service-oriented CPSs are worth to be analyzed, tested and implemented. The paper
showed specific problems of CPSs, like capturing joined dynamics, building
domain-specific models, and implementing smart functionalities. To address these
problems, the paper proposed a service-oriented component architecture. The layered
CPS architecture can integrate diverse types of event sources by using autonomous
service-component adapters while maintaining a service-component façade in a CPS
environment. The contribution showed how corresponding knowledge service-
components can be managed in the façade and how services modifying the integrated

280 C. Haubeck et al.

models can be combined to smart CPS functionalities. This was shown by presenting a
self-documenting process based on mode services that supports evolution of the under-
lying system. The approachwas evaluated on a distributed as well as evolving production
plant.

Future work can consider non-event-based CPSs and service-based synchronization
of higher abstracted KSCs. Further, an extended approach can be imagined that
exploits the generated documentation by exchanging documentation between different
service-based CPSs in order to actively provide recommendations.

Acknowledgment. This work was partially supported by the DFG (German Research Foun-
dation) under the Priority Programme SPP1593: Design For Future.

References

1. Derler, P., Lee, E.A., Vincentelli, A.S.: Modeling cyber–physical systems. Proc. of the IEEE
100(1), 13–28 (2012). Modeling cyber–physical systems

2. Lee, E.A.: Cyber Physical Systems: Design Challenges. Berkeley (2008)
3. Dumitrache, I., Caramihai, S.I.: Intelligent cyber-enterprise in the production context. In:

World Congress of the 19th International Federation of Automatic Control (2014)
4. Frey, G., Litz, L.: Formal methods in PLC programming. In: IEEE International Conference

on: Systems, Man, and Cybernetics (2000)
5. Sztipanovits, J., Koutsoukos, X., Karsai, G., Kottenstette, N., et al.: Toward a science of

cyber-physical system integration. Proc. of the IEEE 100(1), 29–44 (2012)
6. Robinson, W.N.: A requirements monitoring framework for enterprise systems. Requir. Eng.

11(1), 17–41 (2006)
7. Braubach, L., Pokahr, A.: Developing distributes systems with active components and Jadex.

Sci. Int. J. Parallel Distrib. Comput. 13(2), 100–119 (2012)
8. Pokahr, A., Braubach, L., Haubeck, C., Ladiges, J.: Programming BDI agents with pure

Java. In: Müller, J.P., Weyrich, M. (eds.) MATES 2014. LNCS (LNAI), vol. 8732, pp. 216–
233. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11584-9_15

9. Vogel-Heuser, B., Legat, C., Folmer, J., Feldmann, S.: Researching Evolution in Industrial
Plant Automation: Scenarios and Documentation of the Pick and Place Unit (2014)

10. Michelsen, T.: Data stream processing in dynamic and decentralized peer-to-peer networks.
In: SIGMOD Ph.D. Symposium, pp. 1–5 (2014)

11. Hoang, D., Paik, H.Y., Kim, C.K.: Service-oriented middleware architectures for
cyber-physical systems. Int. J. Comput. Sci. Netw. Secur. 12(1), 79–87 (2012)

12. Margara, A., Cugola, G., Tamburrelli, G.: Learning from the past: automated rule generation
for complex event processing. In: International Conference on Distributed Event-Based
Systemspp, pp. 47–58 (2014)

13. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection for discrete sequences: a survey.
Trans. Knowl. Data Eng. 24(5), 823–839 (2012)

14. Mao, J., Chen, L. (eds.) Runtime monitoring for cyber-physical systems: a case study of
cooperative adaptive cruise control. In: Intelligent System Design and Engineering
Application (2012)

15. Schneider, S., Litz, L., Danancher, M.: Timed residuals for fault detection and isolation in
discrete event systems. In: Dependable Control of Discrete Systems, pp. 35–40 (2011)

A Knowledge Carrying Service-Component Architecture for Smart CPSs 281

http://dx.doi.org/10.1007/978-3-319-11584-9_15

16. Valilai, O., Houshmand, M.: A collaborative and integrated platform to support distributed
manufacturing system using a service-oriented approach based on cloud computing
paradigm. Rob. Comput. Integr. Manuf. 29(1), 110–127 (2013)

17. Ladiges, J., Fay, A., Haubeck, C., Lamersdorf, W., Lity, S., Schaefer, I.: Supporting
commissioning of production plants by model-based testing and model learning. In:
International Symposium on Industrial Electronics, pp. 606–611 (2015)

18. Ladiges, J., Haubeck, C., Fay, A., Lamersdorf, W.: Evolution management of production
facilities by semi-automated requirement verification. at-Automatisierungstechnik 62(11),
781–793 (2014)

19. Franke, M., Seidl, C., Schlegel, T.: A seamless integration, semantic middleware for
cyber-physical systems. Network, Sensing and Control, pp. 627–632 (2013)

20. Lin, K.Y., Panahi, M.: A real-time service-oriented framework to support sustainable
cyber-physical systems. In: International Conference on Industrial Informatic (2010)

282 C. Haubeck et al.

Experiences on Migrating RESTful Web
Services to GraphQL

Maximilian Vogel1,2(B), Sebastian Weber2, and Christian Zirpins1

1 Karlsruhe University of Applied Sciences, Moltkestr. 30, 76133 Karlsruhe, Germany
christian.zirpins@hs-karlsruhe.de

2 diva-e Netpioneer GmbH, Ludwig-Erhard-Allee 20, 76131 Karlsruhe, Germany
{maximilian.vogel,sebastian.weber}@diva-e.com

Abstract. Web service APIs are central hubs of modern cloud-based
application systems. Over recent years, REST has become a de facto
standard for their architectural style. Yet in scenarios like mobile apps,
flexible client-centric data fetching approaches have emerged as a promis-
ing alternative. This gives rise to the question whether RESTful sys-
tems can be migrated to a technique like GraphQL and benefit from the
new approach. In this paper we report on our experiences during such
migration of a real world smart home application. Our observations have
underpinned some of the conceptual benefits but also identified challeng-
ing aspects where further research is required.

Keywords: Software service architecture · REST · GraphQL

1 Introduction

Many modern service-oriented systems – especially those based on microservice
abstractions [14] – embrace the REST-style of resource-oriented distributed soft-
ware architecture [8]. Beyond offering a simple and solid solution for developers
to realize interprocess communication, the REST architectural style leads t some
favorable characteristics for distributed systems. Among them are loose coupling
and composability of services as well as flexibility, robustness and scalability of
resulting systems.

REST promotes the decomposition of systems into sets of linked resources
with a certain level of granularity. This leads to difficult trade-offs between
reusability and performance that are well known in general software service archi-
tecture (e.g. [4,7]). We generally seek less granular and more cohesive (micro)
services fostering loose coupling and high reusability. But this might require cum-
bersome client server conversations with multiple consecutive requests traversing
the resource graph (aka “under-fetching”). The inverse approach of the Coarse-
Grained Remote Interfaces pattern trades fewer requests with less networking
overhead against lower cohesion and reusability [13]. Moreover, this often leads
to the transfer of too much data for individual requests (aka “over-fetching”).

c© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 283–295, 2018.
https://doi.org/10.1007/978-3-319-91764-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_23&domain=pdf

284 M. Vogel et al.

Finally, service granularity might be optimized for specific use cases, but these
are hard to reuse triggering an ongoing proliferation of variants.

Beyond architectural quality, another point to consider is the ease of using
service APIs from a client perspective. As Byron puts it, app developers
“. . . don’t think of data in terms of resource URLs . . . (but) in terms of a graph
of objects . . . ” relevant to their apps [1]. This has led to a number of declar-
ative data fetching languages like Facebooks’ GraphQL [5]. GraphQL enables
app developers to run queries against a server API that traverse a graph of
application objects and fetch exactly the right amount and format of data in a
single request. Such APIs omit over- as well as under-fetching without the need
for specialized services, thus yielding performance benefits while being widely
reusable.

The potentials of declarative data fetching have recently triggered discus-
sions on whether a technology like GraphQL is an alternative (and thus in con-
tradiction) or a possible extension (and therefore in conformance) to the REST
architectural style and its implementing frameworks. This discussion is also rel-
evant for the case of existing RESTful systems with respect to possibilities of
their modification in order to benefit from declarative data fetching. To this end,
questions arise on two different levels:

– Individual Software Services
• How can existing RESTful services be transformed or extended to offer

declarative data fetching capabilities?
• What are the performance costs and technical challenges of query execu-

tion and are they always justified?
– Service-Oriented Systems and Architecture

• Are services and systems with declarative data fetching capabilities (still)
RESTful and exhibit the related architectural benefits?

• Which architectural design patterns emerge for such systems?

In this paper we don’t seek to finally answer the above questions. Instead,
we offer an experience report along with a discussion on the migration of purely
REST-based software services to GraphQL. We show an industrial case study
that builds on a smart home platform and demonstrate the consequences of
migrating parts of its RESTful API to GraphQL. Our results underpin the con-
ceptual advantages of declarative data fetching in practice. Yet, we have identi-
fied challenges on different levels that should be considered during migration.

The rest of this paper is structured as follows: In Sect. 2 we first discuss
related work. We then give a short introduction to GraphQL in Sect. 3. Based
on this background, we present our case study on migrating REST-based sys-
tems to GraphQL in Sect. 4. Next, we discuss challenges of migration on the
level of service-oriented systems and architecture (Sect. 5.1) as well as individual
software services (Sect. 5.2). Finally in Sect. 6, we summarize our work and give
an outlook.

Experiences on Migrating RESTful Web Services to GraphQL 285

2 Related Work

From an academic standpoint, little research has been published specifically
about GraphQL yet. Currently, Facebook provides only an informal documenta-
tion of GraphQL [5]. Beyond that, Hartig and Pérez have studied the language
from a theoretical perspective and provided a formal query semantics [10].

Falcor by Netflix and OData (Open Data Protocol) are flexible data fetching
libraries and constitute GraphQL alternatives [11,17,18]. Helfer categorizes them
as Web API technologies and brings them into a chronological sequence with
REST and SOAP [11]. Cupek and Huczala compared OData with REST [3] but
not with GraphQL. Falcor as well as GraphQL are JSON-oriented technologies
that both emerged in 2015 and act as middleware to query backend data sources
[15,16]. At the time of writing, no academic work exists on Falcor. However,
several web-based resources provide comparisons of Falcor, OData and GraphQL
[12,15,16]. As Meredith concludes, “The Falcor data model is a graph, and the
GraphQL data model is a tree.” [15]. In this paper, we solely focus on GraphQL.

Recently, some student research has emerged on the topic. The thesis by
Cederlund is in the field of performance and also compares GraphQL with
Falcor [2]. In our own work [21] we have studied how a REST-based backend can
be migrated to a GraphQL server and examined the performance implications
on different types of requests (i.e. consecutive REST calls vs. single GraphQL
queries). In the following sections, we describe our experience with GraphQL in
a real world project and provide a comparison of GraphQL with REST.

3 GraphQL

GraphQL is a strongly typed query language, which provides a flexible syntax
for describing data requirements and interactions for building client applications
[6]. It is not an implementation though, but represents a standard for develop-
ing GraphQL server solutions and use it on the client-side. A GraphQL server
implements the language features and required characteristics defined in this
specification [5]. The language itself provides a type system, which specifies the
types and expressions that are supported. Each GraphQL server supports dif-
ferent types representing an application-specific type system. The possibilities
of a GraphQL server are described by a schema, which specifies all supported
types and operations. In the context of a given schema, a server can verify that
a request is syntactically correct, unambiguous and mistake-free. As shown in
Listing 1.1, the GraphQL schema always has one schema type that defines the
entry point for all client operations.

286 M. Vogel et al.

Listing 1.1. Example of a GraphQL schema

schema {
query : Query ,
mutation: Mutation ,
subscription: Subscription

}

type Query {
maintenance(id: String): Maintenance

}

type Property{
id : String!,
customer: Customer
...

}

type Customer {
id : String!,
country: String!,
city: String ,
...

}

type Maintenance{
id : String!,
start: String!,
property: Property
...

}

The following operation types can be defined in a schema:

Query. The query type is the entry point for each client-side request. Within
this type, all possibilities for querying data are defined by the inclusion of
further object types.

Mutation. If it is necessary to allow the clients to add or modify records, a
mutation type can be defined as an entry point for respective requests.

Subscription. The subscription type offers an entry point for real-time
exchange of data between clients and the server.

An object type represents a grouping of attributes that are referred to as
fields. Each field contains a name, a type and an optional argument. It can also
be specified, if attributes are non-nullable or arrays. The type is either a scalar
type representing a single scalar value or an object type.

To issue a request, a query document must be created in a JSON-like syntax.
A query document contains multiple definitions of operations and fragments.
Each operation starts with an operation type. Depending on the schema, query,
mutation and subscription might be available. In an operation (e.g. query), field
arguments might be given to select objects and field names must be declared to
be included in the results.

Fragments allow to reuse common repeated selections of fields. Fields can be
either specified directly or the spread operator (. . .) can be used to include a
fragment. All fields defined by a fragment will be added at the same level as the
fragment invocation.

Listing 1.2 (left) presents an example of a request, where specific fields of the
Maintenance-object with the ID of 19 are requested. As shown in Listing 1.2
(right), the server returns a JSON object with the requested data.

Experiences on Migrating RESTful Web Services to GraphQL 287

Listing 1.2. Example query (left) and result (right)

{
maintenance(id: "19") {

id
...
Property {

id
...
Customer {

id
...

}}}}

{
"data": {

"Maintenance": {
"id": "19",
"Property": {

"id": "24",
"Customer": {

"id": "33"
}}}}}

The GraphQL specification offers more aspects of schema definition and the
query language. For the sake of giving a first impression, we confine the discussion
to the above selection of basic GraphQL features.

4 Migrating a Smart Home App from REST to GraphQL

This section presents the integration of GraphQL into the customer project
SmartHome of diva-e Netpioneer GmbH. First we introduce the original archi-
tecture and present different approaches to integrate GraphQL. Then we show
how a single service can be migrated to GraphQL and describe which adjust-
ments had to be made. Subsequently, we present the results of an experimental
evaluation that compares the performance before and after migration.

4.1 Original SmartHome System and Architecture

The SmartHome system provides a platform through which IoT devices can
be managed. The backend architecture is organized in three layers for web API,
services and persistence. Web API and services had been originally implemented
as a Java application with Spring Boot1. The API layer provides various RESTful
services to request or transmit data by a number of different clients.

Listing 1.3 shows parts of the existing REST schema used in the performance
analysis (Sect. 4.4). Each of the available resources in the system can be requested
using a URI. For example, the resource customer can be requested by the URI
../1.0/customer/{customerID}. The data model of the REST API represents
relationships between resources through primary keys (id).

1 https://projects.spring.io/spring-boot/.

https://projects.spring.io/spring-boot/

288 M. Vogel et al.

Listing 1.3. Example of the original REST data model

Maintenance {
String id;
Long start;
Long end;
String refProperty;
...

}

Property {
String id;
String street;
String city;
String comment;
String refCustomer;
...

}

Customer {
String id;
String name;
String street;
String zip;
String city;
...

}

In addition to an Angular single-page web app2, various iOS and Android
apps as well as IoT devices communicate with the server. In these applications,
the views are often composed of several interdependent resources. For exam-
ple, for a dashboard in the web app, the resources Property, Maintenance,
and Customer shown in Listing 1.3 are required. Since the relationships require
sequential resolution, several REST requests are necessary. Here, GraphQL is
intended to improve the performance and flexibility of data exchange.

4.2 Architectural Considerations

In the following, we will discuss the integration of GraphQL. To use GraphQL,
an interface is required, which is provided by a server. The server must be able
to process GraphQL queries and return a data set specified by the client. As
shown in Fig. 1, a possibility is to use GraphQL as an API gateway that can be
used to encapsulate access to the external systems [9].

Fig. 1. GraphQL as an API gateway

This approach can be used in a microservice environment for encapsulating
internal service interfaces and provide a unified web API. In a monolithic system,
GraphQL is often directly integrated as a part of the API layer with direct access
2 https://angular.io.

https://angular.io

Experiences on Migrating RESTful Web Services to GraphQL 289

to intra-process services of the business layer. This approach has the advantage
that no further network requests are necessary for a GraphQL query that could
have negative effects on the performance.

4.3 Integration of GraphQL

A requirement for migration was the coexistence of original architectural layers
and REST interfaces together with an additional GraphQL interface. For this
reason GraphQL was integrated as part of the existing server. As described in
Fig. 2, only the API layer had to be expanded.

Fig. 2. GraphQL components in the migrated architecture

To this end, the GraphQL endpoint can be provided via Spring Boot and
is (architecturally) located on the same level as existing REST interfaces. The
GraphQL interface was created as a POST interface3 via URI path /graphQL.
The request payload contains a GraphQL query as specified by the client.

In order to implement the GraphQL specification, the open-source library
graphql-java4 was used. The library provides three components that must be
added to the existing system: the GraphQL execution unit, a schema and
resolvers. As explained in Sect. 3, the schema describes how types can be queried
or modified via the GraphQL interface. In the specified endpoint, a GraphQL
query document is passed to a GraphQL execution unit where it is validated
against the schema. Each object type in this schema is represented by a resolver.
Resolver methods are responsible for getting the required data fields of the query
or mutation from the underlying logic layer.

To achieve a homogeneous API the GraphQL schema was derived from the
existing REST resources. In the GraphQL schema references between REST

3 See REST discussion in Sect. 5.1.
4 https://github.com/graphql-java/graphql-java.

https://github.com/graphql-java/graphql-java

290 M. Vogel et al.

resources were mapped to references between GraphQL object types. Excerpts
of the resulting GraphQL schema are shown in Listing 1.1 (corresponding to the
REST schema in Listing 1.3).

In the end, integration of GraphQL doesn’t affect existing REST interfaces.
Parallel operation of REST and GraphQL is possible without restrictions.

4.4 Performance Analysis

In order to evaluate the envisioned performance gains of the GraphQL API
compared to the original REST API, we have conducted performance tests. In
the following, results of two experiments are presented, each of which consisting
of 1000 requests. Results are shown as box plot diagrams (boxes represent 50% of
results; upper/lower ends show max/min values, dotted lines represent medians).

In the first test scenario, an atomic resource customer was retrieved with
three different approaches: 1. request against single REST API endpoint, 2.
regular GraphQL query, 3. reduced GraphQL query. In the case of the reduced
query, only a single field was queried instead of all fields to determine differences
in query size. For all three retrieval approaches, one roundtrip was necessary to
fetch the data record. Figure 3 shows the resulting box plot of experiment 1.

200

400

600

800

221
241

210

722

190

225
259

209

915

193

235247

220

429

197

re
sp

on
se

ti
m
e
(m

s)

GraphQL
REST
GraphQL red.

Fig. 3. Experiment 1: retrieving
atomic resources

200

400

600

800

1,000

1,200

313
349

277

1,120

253

677
708

662

1,044

627

336350

327

734

303

re
sp

on
se

ti
m
e
(m

s)

GraphQL
REST
REST custom

Fig. 4. Experiment 2: retrieving mul-
tiple linked resources

The median was 221 ms for performing the GraphQL query, and 225 ms for
a request using the existing REST API. Thus, there is no significant difference

Experiences on Migrating RESTful Web Services to GraphQL 291

between the median of both retrieval approaches. The average query time of the
reduced GraphQL query was 235 ms, so no significant difference could be found
in the response times either. From this experiment we conclude that GraphQL
is not slower regarding query execution than REST for atomic resources.

In experiment 2, the resources Property, Maintenance, and Customer depict
in Listing 1.3 were retrieved requiring traversal of the original resource graph.
The GraphQL approach uses a single query (shown in Listing 1.2) to request all
objects from the server. The second variant utilizes the existing REST API to
retrieve three resources consecutively one after the other. For the third variant,
an optimized REST endpoint was created specifically for this application, which
returns the resources in a single response. Figure 4 shows the resulting box plot
of experiment 2.

The median was 313 ms for the GraphQL query and 677 ms for consecutive
requests using the original REST API. For calling the specific endpoint, the
median was 336 ms. Therefore, GraphQL required 46% of the time on average
to retrieve all data from the server compared to the REST API. Response times
of the specific endpoint were in a similar range than that of GraphQL.

5 Challenges of Migration

In the previous section, we have given a concrete example of migrating a static
REST/HTTP API to GraphQL. It shows that the performance of client-server
communication can be significantly improved. However, trade-offs had to be
made for the migration and some issues have not been considered.

Challenges are caused by conceptual differences between REST and GraphQL
on architectural level. These translate to concrete technical issues when creating
individual services. Both angles are being discussed subsequently.

5.1 Challenges on Architectural Level

REST is an architectural style with general principles resulting in beneficial
characteristics on system-level like flexibility, scalability and robustness. It is
often interpreted as an implementation based on web standards (HTTP, URI,
XML/JSON) leading to systems, which are simple, cheap and interoperable.

When migrating a REST/HTTP API to GraphQL/HTTP, a general chal-
lenge is not to break the design principles of the original architecture for the
above reasons. Based on the four principles given by Pautasso et al. [19], we
therefore analyze the compatibility of GraphQL with REST.

Resource Identification through URIs. REST encourages versatile resource-
oriented architecture where self-contained cohesive resources are individually
addressable by means of URIs. GraphQL on the other hand promotes a more
data-centric model without architectural resources. A GraphQL service repre-
sents an object graph of data entities. These objects are collectively accessible
through a single endpoint and URI.

292 M. Vogel et al.

Uniform Interface. REST APIs take full advantage of HTTP verbs and seman-
tics (at least GET and POST should be considered for distinguishing idem-
potent operations). GraphQL introduces a high level query protocol on top of
HTTP with individual operations (query, mutation, subscription). GraphQL
requests might be alternatively mapped to GET or POST operations regard-
less of HTTP semantics.

Self-Descriptive Messages. REST promotes HTTP content negotiation, usu-
ally in conjunction with common formats like XML, JSON or HTML and
HTTP metadata for resource representation. GraphQL prescribes a fixed
query language for requests but is agnostic to the response (serialization)
format (JSON is commonly used). Still the logical structure of a response
is restricted by the specification and mirrors the intend of GraphQL as a
data-fetching technology.

Stateful Interactions through Hyperlinks. Interactions with single REST
resources are stateless and require self-contained messages. Conversation state
is advanced by following hyperlinks that are transferred as part of resource
representations in the former response. GraphQL interactions are stateless as
well but are usually not meant as part of a stateful conversation. Traversal
of the object graph happens during execution of a single query for the sake
of collecting individual result sets.

From the above discussion it becomes obvious that there are severe concep-
tual differences between the general models and practical realizations of REST
and GraphQL. Consequently, a substitution of former REST resources by means
of GraphQL services is likely to break the design principles of the original archi-
tecture. In particular, substituting the entire resource graph by a monolithic
GraphQL service would be clearly invasive.

A more promising migration approach is to complement the original resource
graph by additional endpoints representing subsets of linked resources. Still such
complementary GraphQL services should be carefully designed, i.e. with respect
to the selection of appropriate resources that lend themselves to data fetching
as well as their granularity.

5.2 Challenges on Service-Level

Conceptual differences of GraphQL compared to the original REST architecture
shows in a number of issues with respect to the implementation of GraphQL
service endpoints. Degeneration of the HTTP-level as regards addressing of indi-
vidual resources or semantics of operations leads to typical problems of utilizing
common techniques for caching, fault tolerance or authorization. Some additional
issues emerge on the level of the GraphQL protocol like new security threads.
In the following, we will focus on caching and DoS threads.

Caching. GraphQL objects are not addressable via URIs. Thus, caching behav-
ior of GraphQL queries cannot be specified by HTTP headers and generic HTTP

Experiences on Migrating RESTful Web Services to GraphQL 293

caching can’t be applied. Instead, we need specific GraphQL caching that uti-
lizes object IDs within queries. It is important to note that globally unique IDs
are required for this purpose [6].

We might implement dynamic content caching by means of various
approaches, depending on query and update behavior [20]. Full or partial repli-
cation of data improves situations with complex queries and infrequent updates.
Content-blind caching hashes normalized queries as result keys. It works well for
repeated queries but might pollute the cache otherwise. This approach works
on HTTP-level, if GraphQL requests use HTTP GET with queries encoded as
URL query parameters. Content-aware caching evaluates queries and locally
stores resulting objects for a limited set of query templates. It is a trade-off
between cache size and range of supported queries but puts more load on the
cache for query evaluation and requires more involved consistency mechanisms.

As regards placement of cache content, it might be put on the GraphQL
server (to avoid accessing remote data stores), dedicated proxies or the client-
side. For the case of web apps, GraphQL clients such as Apollo5 or Relay6 already
offer browser-located caching out of the box.

Denial of Service Attacks. GraphQL enables clients to submit individual
queries to the server for execution. This feature might be exploited by perpe-
trators generating excessive load through overly complex (single) queries possi-
bly leading to service failure. Therefore, we need to introduce countermeasures
securing GraphQL APIs against malicious queries.

A naive approach against excessive requests is to check the size of the query
representation before execution and restrict it to a certain limit. The GraphQL
feature of persistent queries offers another simple way of protection. Here, all
permitted query templates are stored on the server. Clients might only execute
pre-defined queries, which can certainly been seen as benefit and drawback at
the same time.

More sophisticated approaches introduce cost metrics quantifying the effort
of query execution. Resolver restriction builds on the weighted number of resolver
calls for a query or, alternatively, the duration of resolver execution. If a request
exceeds some given threshold, the resolver interrupts it. Obviously, harmless
queries might be killed and malicious ones still run for some time.

A better way would be to statically analyze queries prior to execution and
disregard them in case of excessive complexity. Hartig and Pérez have shown that
queries might lead to resulting object graphs of exponential size [10]. Luckily they
also suggest that the size of a result object can be estimated with realistically
low complexity. This would provide the theoretic foundation for effective DoS
prevention to be build into GraphQL server frameworks.

5 https://github.com/apollographql/apollo-client.
6 https://facebook.github.io/relay/.

https://github.com/apollographql/apollo-client
https://facebook.github.io/relay/

294 M. Vogel et al.

6 Conclusion and Outlook

In this paper we have studied the migration of distributed (e.g. web-based)
apps from RESTful client-server interactions to GraphQL. We have compared
the performance of complementary web APIs in the context of an industrial
case study and demonstrated the benefits of the data fetching approach with
GraphQL. While we restrict the study to a minimal part of the API, we con-
sider the behavior of the real world backend (business and persistence layers) as
representative for the performance measures.

Integrating complex semi-compliant technologies in the context of distributed
systems naturally introduces challenges. Even the individual technologies them-
selves usually leave room for interpretation beyond their given rules or specifi-
cation. At this point, best practices need to fill these gaps.

If generic solutions are found, patterns can be deduced. Some patterns have
already emerged for GraphQL like Connections for pagination or Globally Unique
Object IDs for caching. We expect more patterns to emerge in the architectural
space and related to the integration of GraphQL with REST/HTTP. The ulti-
mate goal would be to provide a systematically structured set of patterns as part
of a more general pattern language for web APIs.

References

1. Byron, L.: GraphQL: A data query language. https://code.facebook.com/posts/
1691455094417024/graphql-a-data-query-language/. Accessed 09 June 2017

2. Cederlund, M.: Performance of frameworks for declarative data fetching: an evalu-
ation of Falcor and Relay+GraphQL. Master’s thesis, KTH, School of Information
and Communication Technology (ICT), Stockholm, Sweden (2016)

3. Cupek, R., Huczala, L.: OData for service-oriented business applications: Com-
parative analysis of communication technologies for flexible Service-Oriented IT
architectures. In: 2015 IEEE International Conference on Industrial Technology
(ICIT), Seville, pp. 1538–1543. IEEE (2015)

4. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Pearson
Education, Upper Saddle River (2005)

5. Facebook Inc.: GraphQL - Working Draft. http://facebook.github.io/graphql/.
Accessed 11 Apr 2017

6. Facebook Inc.: Introduction to GraphQL. http://graphql.org/learn/. Accessed 19
Apr 2017

7. Feuerlicht, G., Lozina, J.: Understanding service reusability. In: 15th Interna-
tional Conference Systems Integration, Department of Information Technologies
and Czech Society for Systems Integration, Prague, Czech Republic, pp. 144–150
(2007)

8. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. thesis, University of California, Irvine (2000)

9. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Long-
man Publishing Co., Inc., Boston (2002)

10. Hartig, O., Perez, J.: An initial analysis of Facebook’s GraphQL language. In: Pro-
ceedings of the 11th Alberto Mendelzon International Workshop on Foundations
of Data Management (AMW), Montevideo, Uruguay, 5–9 June (2017)

https://code.facebook.com/posts/1691455094417024/graphql-a-data-query-language/
https://code.facebook.com/posts/1691455094417024/graphql-a-data-query-language/
http://facebook.github.io/graphql/
http://graphql.org/learn/

Experiences on Migrating RESTful Web Services to GraphQL 295

11. Helfer, J.: GraphQL - Evolution or Revolution? https://speakerdeck.com/helfer/
graphql-evolution-or-revolution. Accessed 27 June 2017

12. Helfer, J.: GraphQL vs. Falcor. https://dev-blog.apollodata.com/graphql-vs-
falcor-4f1e9cbf7504. Accessed 17 July 2017

13. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development. Prentice Hall PTR (2004)

14. Lewis, J., Fowler, M.: Microservices. https://martinfowler.com/articles/microser
vices.html. Accessed 17 July 2017

15. Meredith, C.: The Falcor data model is a graph, and the GraphQL data
model is a tree. https://edgecoders.com/the-falcor-data-model-is-a-graph-and-
the-graphql-data-model-is-a-tree-6748ba53bb96. Accessed 03 Aug 2017

16. Miller, D.: graphql (facebook), falcor (netflix) and odata and ... http://
appddeevvmeanderings.blogspot.com/2016/02/graphql-facebook-falcor-netflix-
and.html. Accessed 17 July 2017

17. Netflix Inc.: Falcor: One Model Everywhere. https://netflix.github.io/falcor/.
Accessed 17 July 2017

18. OData: OData - the Best Way to REST. http://www.odata.org/. Accessed 17 July
2017

19. Pautasso, C., Zimmermann, O., Leymann, F.: Restful web services vs. “big” web
services: making the right architectural decision. In: Proceedings of the 17th inter-
national conference on World Wide Web, pp. 805–814. ACM (2008)

20. Tanenbaum, A., Van Steen, M.: Distributed Systems: Pearson New International
Edition: Principles and Paradigms. Pearson Education Limited, Upper Saddle
River (2013)

21. Vogel, M.: Potential von GraphQL in dynamischen Webanwendungen. Bachelor‘s
Thesis, Karlsruhe University of Applied Sciences, Karlsruhe, Germany (2017)

https://speakerdeck.com/helfer/graphql-evolution-or-revolution
https://speakerdeck.com/helfer/graphql-evolution-or-revolution
https://dev-blog.apollodata.com/graphql-vs-falcor-4f1e9cbf7504
https://dev-blog.apollodata.com/graphql-vs-falcor-4f1e9cbf7504
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://edgecoders.com/the-falcor-data-model-is-a-graph-and-the-graphql-data-model-is-a-tree-6748ba53bb96
https://edgecoders.com/the-falcor-data-model-is-a-graph-and-the-graphql-data-model-is-a-tree-6748ba53bb96
http://appddeevvmeanderings.blogspot.com/2016/02/graphql-facebook-falcor-netflix-and.html
http://appddeevvmeanderings.blogspot.com/2016/02/graphql-facebook-falcor-netflix-and.html
http://appddeevvmeanderings.blogspot.com/2016/02/graphql-facebook-falcor-netflix-and.html
https://netflix.github.io/falcor/
http://www.odata.org/

Using Risk Patterns to Identify
Violations of Data Protection Policies

in Cloud Systems

Stefan Schoenen(B), Zoltán Ádám Mann(B), and Andreas Metzger(B)

Paluno – The Ruhr Institute for Software Technology, University of Duisburg-Essen,
Essen, Germany

{Stefan.Schoenen,Zoltan.Mann,Andreas.Metzger}@paluno.uni-due.de

Abstract. Cloud services and cloud infrastructures become increasingly
complex and dynamic: many different physical and virtual machines,
applications and their components interact and all of these entities may
be differently reconfigured, deployed, and migrated during run time. In
addition, a multitude of stakeholders may be involved in cloud service
offering and usage; e.g., service consumers, cloud providers, data sub-
jects, data controllers, and actual end users. Thus, checking whether
cloud services comply with data protection policies when storing or pro-
cessing sensitive data becomes a challenge due to the involved complex-
ity and dynamicity. We present a model-based approach for identifying
violations of data protection policies at run-time. Key elements of our
approach are (1) a run-time model to represent the actual cloud system
and its stakeholders at runtime, and (2) risk patterns that commonly
appear in the context of data protection issues. Our approach aims to
find instances of these risk patterns in the run-time model. If an instance
of a risk pattern is found, this indicates a risk of data protection violation.
We demonstrate the applicability of our approach by using an industry
scenario.

Keywords: Cloud computing · Data protection · Privacy
Run-time model · Risk pattern

1 Introduction

The compelling advantages of cloud computing, such as the seemingly infinite
resource provisioning without the need for buying costly IT equipment, have
made the cloud the platform of choice in many domains [5]. However, using
the cloud is often associated with a loss of control since multiple parties – e.g.,
operators of cloud services – may potentially have access to data and code of
applications in the cloud. Thus, storing and processing sensitive data in the cloud
poses additional risks, hampering the adoption of the cloud [27].

There are several well-known techniques to ensure confidentiality and
integrity of data in a cloud environment, e.g., encryption and authentication
c© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 296–307, 2018.
https://doi.org/10.1007/978-3-319-91764-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_24&domain=pdf

Using Risk Patterns to Identify Violations of Data Protection Policies 297

technologies. However, they all have some drawback, e.g., in terms of perfor-
mance overhead (homomorphic encryption) or inconvenience for users (multi-
factor authentication). Therefore, deciding which mechanism(s) to use is not
trivial and thus a certain knowledge base about when to use which is required.

Traditionally, this decision was made during design by experienced software
engineers. However, to support agile deployment processes in a DevOps environ-
ment and to leverage the potential of the cloud in terms of flexibility, decisions on
data protection mechanisms to use have to be made increasingly at deployment
time or at run time. For example, an application may need only light-weight
data protection mechanisms if deployed in a private cloud, but full-fledged data
protection if deployed in a public cloud. During design time, it may not be clear
where the application will be deployed [4,28], so the application must be engi-
neered such that the data protection mechanisms for the public cloud scenario
are available but can be turned off if the application ends up being deployed in
a private cloud. The mechanisms will then be turned on or off at deployment
time. Moreover, the application may be migrated during run time between clouds
using live migration [16], in which case data protection mechanisms may need
to be turned on or off even during run time.

To enable this flexibility, decisions on the use of data protection mechanisms
must be made automatically during deployment and run time, of course within
bounds set during design time. Thus, the task of software and service engineers
changes from making a concrete design decision to providing the decision logic
and determining the information on which the decision should be based. In par-
ticular, this calls for real-time risk identification and assessment that can be used
to trigger the appropriate mitigation actions during run time.

In this paper, we focus on the question of what information is needed to iden-
tify risks of data protection violations. Specifically, we argue that this involves
the following pieces of information:

– A model of the – current or planned – configuration of the relevant assets,
including infrastructure elements, middleware, applications, and data, but
also involved actors;

– A set of risk patterns, which describe asset configurations that would cause
too high risks of data protection violation and hence must be avoided.

The main novelty of our approach is its holistic view in two dimensions:
considering (i) all layers of the cloud stack, (ii) from design time to run time.
This view is needed to make sound decisions, because data protection is a cross-
cutting concern and the required knowledge is established partly at design time
but partly only when the system is deployed or adapted [17].

The remainder of the paper is organized as follows: Sect. 2 presents a typical
cloud deployment scenario that was created with industry partners to illustrate
the potential data protection issues. Sect. 3 gives an overview of our approach
for identifying violations of data protection policies. The details are described
in Sects. 4, 5 and 6. It is applied to the scenario from Sect. 2 in Sect. 7. Related
work is discussed in Sect. 8. The paper is concluded in Sect. 9.

298 S. Schoenen et al.

2 A Motivating Example

In this section, we look at an industrial cloud setup and its implications on
data protection. This scenario has been devised in the context of the project
“RestAssured – Secure Data Processing in the Cloud”1 with several industry
partners. While it abstracts from specific applications, it has been validated to
reflect the typical data protection concerns of practical cloud systems.

Data Consumer

PaaS Cloud
provider W

Data

SaaS Cloud
Provider Z
(= Data Processor
with Services
offered by C
= Data Controller)

Data Subject

Legislative Organ

Data Controller A
(= Provider of

Component Services A)
IaaS Cloud
Provider X

Flow of
Data

Direct
Relation

Untrusted
(“Black Hat“)

Indirect
Relation

Trusted
(“White Hat“)

FR

Component
A

Com-
ponent

C

DB

US

Data Controller B

Component
B

IaaS Cloud
Provider Y

Fig. 1. An industrial cloud scenario

In Fig. 1 we see a typical cloud scenario where multiple parties are involved. In
this scenario, personal, unencrypted data (a record) about individual users (Data
Subject) are captured by a company (Data Controller A), with explicit consent
of the users and under legislative control. The company stores the data in an
unencrypted database (DB) operated by a PaaS (Platform as a Service) provider
W and deploys its application (Component A) using the infrastructure (including
a VM in which Component A runs and a PM in which this VM runs) provided by
IaaS (Infrastructure as a Service) provider X. Another actor (Data Consumer)
uses an application (Component C) to communicate with Component A and get
access to the data. Component C is run by SaaS (Software as a Service) provider
Z. Another company (Data Controller B) uses an application (Component B)
run on the infrastructure of IaaS provider Y that accesses DB.

1 https://restassuredh2020.eu/.

https://restassuredh2020.eu/

Using Risk Patterns to Identify Violations of Data Protection Policies 299

It is important to note that Data Controller A and Data Consumer (white
hats) are trusted by Data Subject. Nevertheless, as the data traverse between
the trusted parties, several untrusted actors (PaaS provider W, IaaS provider
X, SaaS provider Z) may get unauthorized access to the data along the way.
Moreover, other cloud tenants using the same public database offering (DB)
can also get access to the data. The latter also poses a new problem because
Component B is hosted in the US, but European regulations prohibit processing
personal data of EU citizens outside the EU.

As we can see, a cloud setup can be complex with many different socio-
technical interactions, posing a wide-ranging set of threats to data protection.

3 Overview of the Proposed Approach

To address the challenges of ensuring data protection for dynamically deployed
and configured cloud services, we devise a model-based approach spanning activ-
ities from design time to run time. Figure 2 shows an overview of our approach.

Deployment / run time

Design time

(Re -)
Configuration

Risk
assessment

Run- time model

Meta -model of
run - time model

instance of

Risk
identification Risks

Risk patterns

instance of

refer to

creates

trigger

creates / updates

uses

uses

determines

Fig. 2. Overview of our approach. Boxes represent artefacts, ovals represent activities.

Our approach revolves around two types of artefacts: Run-time model and
risk patterns. The run-time model (see Sect. 4) is created at deployment time
and kept updated during run time, so that it always reflects the current configu-
ration of the cloud-based application and its environment. The risk patterns (see
Sect. 5) are created at design time to capture situations that must be avoided
because of the associated high risk of data protection violations. These two arte-
facts are used by the “Risk identification” activity during deployment time and
run time to identify risks of data protection violation (see Sect. 6).

4 Run-Time Model

Figure 3 shows an overview of the suggested run-time (meta-)model. It is based
on models proposed previously in the literature [10,26], but extends them to
have all necessary information for the identification of risks to data protection.

300 S. Schoenen et al.

Assets

Infrastructure

Applications
Data

Actors
access

Middleware
own

trust

Fig. 3. Overview of the meta-model for run-time models

The run-time model consists of two main parts:

– The Assets part allows capturing the current cloud configuration, thereby
providing a basis for reasoning about possible data protection violations.

– The Actors part allows capturing the relevant actors (natural persons as well
as organizations), their roles, attributes, and relations, thereby allowing to
reason about their data protection requirements.

These two parts are described in more detail next.

Assets. The most important assets are the data that we want to protect. But
other types of assets are also important because they may provide additional
attack surfaces (see Sect. 5 for an example). So it is important to consider other
asset types as well – here: Applications, Middleware, and Infrastructure.

Data

Data object

Data set

Stored data set Database

Record

Data flow

Attribute

Attribute value

* 1

*

*

1

1
*

*

1

1

Fig. 4. A possible refinement of the “Data” part of the meta-model for run-time models

The Data, Applications, Middleware, and Infrastructure parts of the run-time
model contain the entities that make up the given layer of the cloud stack, along
with their attributes and relations. As an example, Fig. 4 shows a possible set
of entity types and their relations in the Data part of the meta-model. It should
be noted that this is just an example; the exact types may vary depending on
the specifics of the used data model (e.g., relational or not).

Using Risk Patterns to Identify Violations of Data Protection Policies 301

The Applications part of the model contains information about the struc-
ture of the application in terms of components and connectors, the Middleware
part contains the entities modeling standard software platform components like
database servers and application servers, whereas the Infrastructure part models
the underlying physical and virtual resources.

The Assets model must also contain the relations between entities in different
parts of the model, for example a data flow that passes through a connector of
two application components.

Actors. For modeling the actors, we consider two different kinds of roles:

– Roles related to cloud services. For all involved services (IaaS, PaaS, SaaS),
we can differentiate between developers, operators, and users of the services.

– Roles related to data protection. In accordance with the EU’s General Data
Protection Regulation [7], we use the roles data subject, data controller, and
data processor.

Of course, it is possible that multiple roles belong to the same actor. For example,
an organization can be user of an IaaS service and operator of an SaaS service.

In terms of the relations among actors, trust is of special importance. We
use a white-list approach to trust, i.e., every trust relation must be explicitly
established (e.g., by means of a contract). Also, trust relations can be limited to
specific types of actions on specific data.

5 Risk Patterns

Risk patterns are the core concept in our approach for identifying potential
data protection violations. A risk pattern describes a configuration of assets and
actors that would lead to unacceptably high risk of data protection violations
and hence must be avoided. Syntactically, risk patterns are expressed in terms of
the entities that make up the meta-model of the run-time model, their attributes
and relations.

Figure 5 shows two examples for risk patterns. In the example of Fig. 5(a),
there is a sensitive data record stored in a database operated by a PaaS provider
that is not trusted by the data subject. Neither the data record nor the database
is encrypted, so the PaaS provider could access the sensitive data, leading to a
possible data protection violation. In the example of Fig. 5(b), a personal data
record is accessed by an application component that is hosted by a VM in a PM
in a non-EU location. Since personal data of EU citizens must not be processed
outside the EU, this would also lead to a data protection violation.

To clarify the semantics of risk patterns, it should be noted that the objects
in the risk patterns are not specific entities, but should be considered as variables
that can take on any specific object of the type as value. The specification of
attributes and relations in the risk pattern is to be considered as constraints
on these attributes and relations. The statement expressed by a risk pattern is

302 S. Schoenen et al.

Fig. 5. Two sample risk patterns

that, whenever the variables can be instantiated with specific objects from the
run-time model satisfying the given constraints on attributes or relations, this
represents an unacceptable case. In the example of Fig. 5(a), the statement can
be formulated as follows: it is unacceptable if there is a data subject, a data
record, a DBMS and a PaaS provider such that the data record belongs to the
data subject, is sensitive and not encrypted and stored in the DBMS, the DBMS
is not encrypted and operated by the PaaS provider, and the data subject does
not trust the PaaS provider.

The examples show that risk patterns can express complex situations in a
compact way. They can adequately capture data protection issues that arise
through interactions of multiple actors and entities on different cloud layers,
also taking into account their attributes and relations.

6 Activities from Design Time to Run Time

Now that we have described the pieces of information forming the core of the
suggested approach, we also briefly describe the activities shown in Fig. 2.

Design time. At design time, the meta-model of the run-time model is defined.
This also determines the language that is used to express the risk patterns.

Risk patterns are derived from a risk assessment. The risk patterns are
designed as a black-list: Each unwanted situation must be captured by a risk
pattern. For determining risk patterns, a risk analysis process should be fol-
lowed, focusing on the types of assets, vulnerabilities and threats in the system.
Risks are identified and assessed in terms of their probability and impact. There
are well-known methodologies and standards for such a process [12,18].

Using Risk Patterns to Identify Violations of Data Protection Policies 303

Deployment time. When the system is deployed in the cloud, the run-time
model is created based on the target environment and the planned configuration
of the application. When the run-time model is in place, the risk patterns can
be evaluated for the first time to check whether the configuration would lead to
any data protection issues. The evaluation of the risk patterns can be cast as a
graph pattern matching problem, in which one tries to find a subgraph of the
run-time model that matches the risk pattern. For this, graph pattern matching
algorithms can be used [6,15].

If a match was found, i.e., a risk was identified, the configuration is changed
and checked again until a safe configuration is found.

Run time. During run time, the system can use self-adaptation to react to
changes in its environment using the MAPE model [14]. Monitoring is used to
detect relevant changes and update the run-time model accordingly. For this pur-
pose, existing cloud monitoring tools and further instrumentation can be used.
The impact of observed changes is analyzed: the same evaluation logic as during
deployment can be used to detect risk pattern matchings in the run-time model.
If necessary, the same configuration logic as during deployment can be used to
devise a new, safe configuration of the system (planning). Finally, the changes
are executed by reconfiguring the system accordingly. The reconfiguration can
be done either automatically or using operator-in-the-loop adaptation [13].

It should be noted that adaptation can be also caused by other reason (e.g.,
insufficient performance). Then, the pattern-matching logic can be used to ensure
that the new configuration of the system fulfills data protection requirements.

7 Application to Our Cloud Scenario

In this section we revisit our example cloud scenario from Sect. 2. Figure 6 depicts
an excerpt from the corresponding run-time model expressed as an instantiation
of the meta-model from Sect. 4. The figure also shows the two matched sample
risk patterns from Sect. 5 (framed with dashed lines), as they could be found by
a graph pattern matching algorithm:

– Risk Pattern A led to detecting the risk that an untrusted PaaS provider can
access a confidential data set stored in the provider’s database.

– Risk Pattern B led to detecting the risk associated with the data subject’s
data being processed on a physical machine outside the EU (here in the USA).

After identifying these specific risks, the configuration of the system can
be adapted in such a way that the found risks are mitigated, which will be
established by the pattern matching algorithm not being able to find a match
with the defined risk patterns. Hence, the run-time model and the risk patterns
together can indeed be used to detect violations of data protection policies and –
by using the system reconfiguration during runtime – ultimately to avoid them.

304 S. Schoenen et al.

Fig. 6. Run-time model of the example from Sect. 2. The found risk pattern instances
are encompassed by the dashed lines.

8 Related Work

We discuss the work most relevant to our proposed approach along the aspects (1)
monitoring data protection concerns in the cloud, (2) risk management addressing
data protection concerns, and (3) data protection risks of cloud services.

Data Protection Monitoring for Cloud Services. While much work on
cloud and service monitoring (e.g., see [1,23]) has been published, approaches
for data protection compliance monitoring of services are scarce [20].

Alhamazani et al. [2] discussed the design issues of several monitoring tools
and also those of cloud monitoring in general. However, data protection is only
mentioned as a minor aspect of monitoring in comparison to performance or QoS
regulations. Our approach is mainly focused on data protection.

Foster and Spanoudakis [11] proposed a monitoring approach for cloud ser-
vices which takes data protection aspects into consideration. Their approach
covers only authenticity and auditability as parts of security and ignore other
security goals like confidentiality and integrity. Our approach can be used to
cover these security goals as well.

Nikolai and Wang propose an IaaS intrusion monitoring and classification
system [21]. This system has the purposes of reducing the overload from secu-
rity sensors by detecting only anomalies which are classified as “urgent” and
classifying the attack which causes anormal behaviour. Our approach classifies

Using Risk Patterns to Identify Violations of Data Protection Policies 305

these security risks depending if a risk pattern was detected or not. Besides IaaS
we also take PaaS and SaaS into consideration.

Watson and Little [28] introduce an approach to reason about the deploy-
ment of a distributed system and its impact on security. They state that not all
deployment problems can be solved during design time, so run time reasoning is
needed. In contrast to our risk patterns, their approach requires the assignment
of security levels to all assets, which can be difficult in some settings. Beyond
the types of entities considered in that paper, we also explicitly consider actors.
As shown in our paper, actors are important for accurately determining data
protection concerns.

Meziane et al. [20] describe a monitoring approach for identifying violations
with respect to data usage. They introduce privacy-aware SLAs against which
data usage flows are checked during run time. Our risk pattern approach takes
a broader stance and also covers other aspects relevant for data protection, such
as secure storage or processing of data.

In our own previous work, we have introduced a run-time model-based app-
roach for detecting geo-location policy violations [24,25]. Even though this pre-
vious work also relies on run-time models, it only considers geo-location as an
aspect of data protection, e.g., data may not be migrated outside of the EU. Geo-
location is only one relevant aspect for data protection, and so the risk-based
approach we introduce here has much broader scope and applicability.

Data Protection Risk Management for Cloud Services. Risk management
covers the process of describing, detecting and mitigating risks. So far, only few
frameworks for risk management of services have been presented [19].

Djemame et al. [8] propose a risk assessment framework for cloud computing
which is designed to help cloud users and cloud providers assess risks during
service deployment and operation. This approach focuses on the relationship
between service providers and services. However, they do not state how risks
may be monitored during operations. This is where risk patterns can help.

Meszaros and Buchalcevova [19] present a framework for online service risk
management. They consider similar assets to ours and present a risk and threat
model as basis. They focus on risk assessment and mitigation and propose tech-
niques for risk monitoring. Our approach can be considered complementary to
their work as we consider the impact of reconfiguration of cloud services on data
protection risks.

Data Protection Risks of Cloud Services. Several authors have analyzed
specific data protection risks in the context of cloud computing and services.
Paquette et al. [22] analyzed the risks of cloud computing, focusing on the con-
text of governmental use of cloud computing. Ardagna et al. [3] survey data-
protection-related publications, stating that the areas where risks occur are on
application-level, between multiple tenants, or between a provider and a ten-
ant. Fernandes et al. [9] survey security issues in cloud computing as a potential
source for data protection risks. These insights provide an important source of
input for our approach as they help defining and specifying risk patterns by

306 S. Schoenen et al.

taking important data protection concerns into account. Our approach can be
seen as a vehicle for capturing and utilizing this kind of knowledge.

9 Conclusion and Future Work

In this paper, we proposed an approach for identifying potential data protection
violations in cloud systems. The approach focuses on a run-time model of relevant
cloud entities and a set of risk patterns to capture situations that would lead to
unacceptably high risks. The identification of potential data protection violations
is done using graph pattern matching during deployment time and run time.

The next steps of our research include the formalization of the concept of risk
patterns and the adoption of efficient algorithms for the graph pattern matching
problem. As a result, we hope to get a better understanding for the possibilities,
limitations, and efforts relating to the proposed approach.

Acknowledgments. This work received funding from the European Union’s Horizon
2020 research and innovation programme under grant 731678 (RestAssured). Useful
discussions with project partners are gratefully acknowledged.

References

1. Aceto, G., Botta, A., de Donato, W., Pescapè, A.: Cloud monitoring: a survey.
Comput. Netw. 57(9), 2093–2115 (2013)

2. Alhamazani, K., Ranjan, R., Mitra, K., Rabhi, F.A., Jayaraman, P.P., Khan, S.U.,
Guabtni, A., Bhatnagar, V.: An overview of the commercial cloud monitoring tools:
research dimensions, design issues, and state-of-the-art. Computing 97(4), 357–377
(2015)

3. Ardagna, C.A., Asal, R., Damiani, E., Vu, Q.H.: From security to assurance in the
cloud: a survey. ACM Comput. Surv. 48(1), 2:1–2:50 (2015)

4. Brogi, A., et al.: SeaClouds: an open reference architecture for multi-cloud gov-
ernance. In: Tekinerdogan, B., Zdun, U., Babar, A. (eds.) ECSA 2016. LNCS,
vol. 9839, pp. 334–338. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48992-6 25

5. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing
and emerging IT platforms: Vision, hype, and reality for delivering computing as
the 5th utility. Future Gener. Comput. Syst. 25(6), 599–616 (2009)

6. Cheng, J., Yu, J.X., Ding, B., Philip, S.Y., Wang, H.: Fast graph pattern matching.
In: IEEE 24th International Conference on Data Engineering, pp. 913–922 (2008)

7. Council of the European Union: General Data Protection Regulation (2016)
8. Djemame, K., Armstrong, D., Guitart, J., Macias, M.: A risk assessment framework

for cloud computing. IEEE Trans. Cloud Comput. 4(3), 265–278 (2016)
9. Fernandes, D.A.B., Soares, L.F.B., Gomes, J.V.P., Freire, M.M., Inácio, P.R.M.:

Security issues in cloud environments: a survey. Int. J. Inf. Sec. 13(2), 113–170
(2014)

10. Ferry, N., Rossini, A., Chauvel, F., Morin, B., Solberg, A.: Towards model-driven
provisioning, deployment, monitoring, and adaptation of multi-cloud systems. In:
IEEE 6th International Conference on Cloud Computing, pp. 887–894 (2013)

https://doi.org/10.1007/978-3-319-48992-6_25
https://doi.org/10.1007/978-3-319-48992-6_25

Using Risk Patterns to Identify Violations of Data Protection Policies 307

11. Foster, H., Spanoudakis, G.: Advanced service monitoring configurations with SLA
decomposition and selection. In: Proceedings of the 2011 ACM Symposium on
Applied Computing (SAC), pp. 1582–1589 (2011)

12. Furuncu, E., Sogukpinar, I.: Scalable risk assessment method for cloud computing
using game theory (CCRAM). Comput. Stand. Interfaces 38, 44–50 (2015)

13. Heinrich, R., Jung, R., Schmieders, E., Metzger, A., Hasselbring, W., Reussner,
R., Pohl, K.: Architectural run-time models for operator-in-the-loop adaptation
of cloud applications. In: 9th Symposium on the Maintenance and Evolution of
Service-Oriented Systems and Cloud-Based Environments (2015)

14. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

15. Mann, Z.A.: Optimization in Computer Engineering - Theory and Applications.
Scientific Research Publishing (2011)

16. Mann, Z.A.: Approximability of virtual machine allocation: much harder than bin
packing. In: Proceedings of the 9th Hungarian-Japanese Symposium on Discrete
Mathematics and Its Applications, pp. 21–30 (2015)

17. Mann, Z.A., Metzger, A.: Optimized cloud deployment of multi-tenant software
considering data protection concerns. In: Proceedings of the 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, pp. 609–618
(2017)

18. Martens, B., Teuteberg, F.: Decision-making in cloud computing environments: a
cost and risk based approach. Inf. Syst. Front. 14(4), 871–893 (2012)

19. Meszaros, J., Buchalcevova, A.: Introducing OSSF: a framework for online service
cybersecurity risk management. Comput. Secur. 65, 300–313 (2017)

20. Meziane, H., Benbernou, S., Hacid, M., Malik, Z., Papazoglou, M.P.: A view-based
monitoring for usage control in web services. Distrib. Parallel Databases 34(2),
145–178 (2016)

21. Nikolai, J., Wang, Y.: A streaming intrusion monitoring and classification system
for IaaS cloud. In: 2016 IEEE 9th International Conference on Cloud Computing
(CLOUD), pp. 632–639, June 2016

22. Paquette, S., Jaeger, P.T., Wilson, S.C.: Identifying the security risks associated
with governmental use of cloud computing. Gov. Info. Q. 27(3), 245–253 (2010)

23. Rabiser, R., Guinea, S., Vierhauser, M., Baresi, L., Grünbacher, P.: A comparison
framework for runtime monitoring approaches. J. Syst. Softw. 125, 309–321 (2017)

24. Schmieders, E., Metzger, A., Pohl, K.: A runtime model approach for data geo-
location checks of cloud services. In: Franch, X., Ghose, A.K., Lewis, G.A., Bhiri,
S. (eds.) ICSOC 2014. LNCS, vol. 8831, pp. 306–320. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45391-9 21

25. Schmieders, E., Metzger, A., Pohl, K.: Runtime model-based privacy checks of big
data cloud services. In: Barros, A., Grigori, D., Narendra, N.C., Dam, H.K. (eds.)
ICSOC 2015. LNCS, vol. 9435, pp. 71–86. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48616-0 5

26. Shao, J., Wei, H., Wang, Q., Mei, H.: A runtime model based monitoring app-
roach for cloud. In: 2010 IEEE 3rd international conference on Cloud Computing
(CLOUD), pp. 313–320. IEEE (2010)

27. Tang, J., Cui, Y., Li, Q., Ren, K., Liu, J., Buyya, R.: Ensuring security and privacy
preservation for cloud data services. ACM Comput. Surv. 49(1), 1–31 (2016). art.
13

28. Watson, P., Little, M.: Multi-level security for deploying distributed applications
on clouds, devices and things. In: IEEE 6th International Conference on Cloud
Computing Technology and Science, pp. 380–385 (2014)

https://doi.org/10.1007/978-3-662-45391-9_21
https://doi.org/10.1007/978-3-662-48616-0_5
https://doi.org/10.1007/978-3-662-48616-0_5

Towards Setting Up a Collaborative
Environment to Support Collaborative
Business Processes and Services with

Social Interactions

Andrea Delgado(B), Laura González, and Daniel Calegari

Instituto de Computación, Facultad de Ingenieŕıa, Universidad de la República,
11300 Montevideo, Uruguay

{adelgado,lauragon,dcalegar}@fing.edu.uy

Abstract. In the last decade, the conjunction of Business Process Man-
agement Systems (BPMS) with Service Oriented Architecture (SOA)
proposals has gained many adepts both in industry and academy, as the
straightforward way to connect Business Processes (BPs) with the ser-
vices that implement them. Nowadays collaborative and virtual organi-
zations need increasingly support to enact their collaborative BPs, both
in centralized and decentralized scenarios. The complexity of existing
systems and the variety of languages and technologies available, are key
elements for the use of services allowing their seamlessly integration. In
this paper we present a proposal for setting up a collaborative environ-
ment comprising: (i) a reference architecture for a process-aware inter-
organizational service integration platform (PA-IOSIP) defined in pre-
vious work, based on a BPMS platform and middleware infrastructure
(e.g. Enterprise Service Bus (ESB)), and (ii) a maturity model which
provides a roadmap to guide the efforts towards setting up such a collab-
orative environment. We also present a proof of concept we have carried
out within the Uruguayan e-Government context.

Keywords: Collaborative Business Processes
Service Oriented Computing · Business Process Management Systems
Enterprise Service Bus

1 Introduction

In the last decade, the conjunction of Business Process Management (BPM) [1–
3] and Systems (BPMS) [4], with Service Oriented Computing (SOC) [5] and
Architecture (SOA) [6,7] proposals, has gained many adepts both in industry
and academy, as an straightforward way to connect Business Processes (BPs)
with the services implementing them. Nowadays collaborative and virtual orga-
nizations need increasingly support to enact their collaborative BPs, fulfilling
both centralized and decentralized scenarios, which depend on the organizations
involved and/or the restrictions of their collaborative BPs and technologies.
c© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 308–320, 2018.
https://doi.org/10.1007/978-3-319-91764-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_25&domain=pdf

Towards Setting Up a Collaborative Environment 309

The SOC paradigm helps in solving this problem by designing specific soft-
ware pieces i.e. services, providing desired qualities such as lose coupling, high
cohesion, easing interoperability, normalizing data exchanges (i.e. types and for-
mat), explicitly defining interfaces for interactions between systems, among oth-
ers. Also, collaborative BPs can be modeled and executed in a notation such
as Business Process Model and Notation (BPMN 2.0) [8], or as services com-
position [6,7] with the Web Services Business Process Execution Language
(WS-BPEL) [9] if the execution is fully automatic (i.e. no user interactions).

Collaborative organizations sharing common goals [10] are focused on inte-
grating their software systems in order to exchange data and execute business
functions setting up their business processes (BPs) [1–3]. This collaboration
can be of two main types: (i) organizations are part of a collaborative environ-
ment in which the interactions between BPs and services are explicitly defined
and agreed; or (ii) organizations offer capabilities for integration, not explicitly
agreeing on their BPs but mainly on the contract of the services they expose or
require to be able to participate in the collaborative environment.

A BPMS provides a complete platform to execute BPs by means of human
tasks interacting with users and automatic tasks invoking services when needed,
allowing the interaction between different participants. Integration platforms
are specialized middleware-based infrastructures, notably Enterprise Service Bus
(ESB) to support the implementation of a SOA [11], providing an intermediate
processing layer between applications and services with the goal of facilitating
integration issues. This middleware can be integrated with BPMS platforms help-
ing supporting both types of collaborative scenarios as defined in (i) and (ii).

Also, in order to support the realization of human tasks within the BPMS, it
would be useful to include mainstream social platforms such as Facebook, Twit-
ter, LinkedIn and Google+, for employees involved in the BPs and for external
users interacting with the platform. These capabilities would help, for example,
to notify users when some activities need to be performed by employees or when
user’s participation is required to complete a process activity, among others.

In this paper we present a proposal for setting up a collaborative envi-
ronment, both methodological and technological, in which organizations (e.g.
in e-government) can interact based on their BPs and services implementing
them. At the center of the proposal we defined: (i) a reference architecture for
a process-aware inter-organizational service integration platform (PA-IOSIP)
which is mainly based on the conjunction of a BPMS platform with an inte-
gration middleware infrastructure (e.g. ESB) [12], and (ii) a maturity model
which provides a roadmap to guide the efforts towards setting up such a collab-
orative environment between willing organizations, taking into account several
dimensions such as the different type of participating organizations, their infras-
tructure, collaborative processes, among others.

The rest of the article is organized as follows: In Sect. 2 we present related
work. In Sect. 3 we analyzed several collaborative scenarios to be supported by
our PA-IOSIP. In Sect. 4 we describe our proposal including the definition of
the maturity model, the dimensions and elements we have defined within them.

310 A. Delgado et al.

In Sect. 5 we present a case study based on the implementation of a collabora-
tive BP carried out within the Uruguayan e-government, as a proof of concept.
Finally in Sect. 6 we present some conclusions and future work.

2 Related Work

In [13] we presented a systematic literature review of existing approaches to sup-
port services and BPs lifecycle, with focus on modeling, design and execution,
but few of them succeeded in linking services to the BPs lifecycle [14] in an
integrated manner. From the technological point of view, some proposals sup-
port the execution of collaborative BPs and services, but mainly with their own
implementations of BPs engines and platforms.

Several well-known maturity models were defined for software process
improvement such as Business Process Maturity Model [15], Capability Maturity
Model (CMM) [16] and the Capability Maturity Model Integration (CMMI) [17].
These are reference models for evaluating the maturity and capacity of an orga-
nization, with regards to key elements as defined in each case. We also analyzed
several proposals for collaborative and integration frameworks and platforms,
including specific proposals for e-government which constitutes our real context
for prototyping the proposal [18–22].

In [19] an e-Government Maturity Model which integrates the assessment
of technological, organizational, operational and human capital capabilities is
proposed. The model is structured around four domains: “e-Government strat-
egy”, “IT governance”, “process management” and “organization and people”.
The “process management” domain comprises the following key domain areas:
business process management, performance management, services to citizen and
business, interoperability, compliance, and quality and security assurance.

In [20] a BPM maturity and adoption model is proposed to guide organiza-
tions to process maturity, identifying six-phases for BPM maturity and adoption:
acknowledge operational inefficiencies, become process-aware, establish intrapro-
cess automation and control, establish interprocess automation and control,
establish enterprise valuation control and create an agile business structure.

Compared to our proposal, these models are broader so they are not as
specific as ours in issues related to BPMS adoption and services interaction.
Also, the application of these models is intended to be performed individually
for each organization. In contrast, our proposal is intended to be applied to the
whole collaborative environment, considering each participating organization.

3 Collaborative Environment Scenarios Analysis

The context of analysis is a group of organizations that collaborate through a
Process-aware Inter-organizational Service Integration Platform (PA-IOSIP) as
described in [12]. We analyzed several collaborative scenarios (which we defined
based on our knowledge of the real context for e-government) with different

Towards Setting Up a Collaborative Environment 311

combinations of BPs maturity and infrastructure, and social media capabilities
and challenges in the complexity of the context.

The integration platform defines three main layers [12]. The top layer corre-
sponds to the User applications layer which provides users with several applica-
tions to interact with the BPs executing in the integration platform, and also
with other components such as documents and business rules. The middle layer
corresponds to the BPMS layer which provides components to support the BPs
lifecycle including modeling, implementing, executing, evaluating and improving
processes. Finally, the bottom layer corresponds to the Integration layer which
includes components to facilitate different aspects (e.g. security, connectivity,
metadata) for achieving an interoperable cross-organizational collaboration.

3.1 Scenarios for the Collaborative Environment

The analysis of scenarios for the collaborative environment was based on defining
different combinations of the participant organizations capabilities and their
interaction with the central integration platform. In Fig. 1 we show two of the
scenarios analyzed: an initial scenario (with few capabilities) and a high level
scenario (with more complex capabilities). The analysis starts with the initial
scenario going up through the high level scenario by adding complexity and
capabilities in the participant organizations, the integration platform and the
infrastructure involved.

Fig. 1. Example of scenarios analyzed for the collaborative environment

As shown in Fig. 1(a), the first step to set up this collaborative environment
is to provide an integration platform that allows participant organizations to
interact within each other through it. This integration platform provides several
components (e.g. security, connectivity, metadata) for achieving an interoperable
cross-organizational collaboration, mainly based on services integration with no
BPMS platform. There are some organizations that has integration capacities
and therefore can be partially integrated in the collaborative BPs, and there are
other organizations that does not present these capacities.

312 A. Delgado et al.

The most advanced organizations will present not only integration capacities
but also provide BPMS support for collaborative BPs, interacting with other
organizations by means of the integration platform. A web portal for interacting
with clients/partners is mandatory even at this early stage, providing at least
initiate and query capacities for their processes. Social media integration with
users is desirable at least for external users from the web portal.

At the high level scenario shown in Fig. 1(b), the BPMS support for col-
laborative BPs will be spread within the complete collaborative environment
(as a signal of BPM maturity), also adding a central BPMS at the integration
platform. All participating organizations will present integration capacities, and
BPMS support, although BPMS providers could not be the same for all partici-
pants. In [23] we propose a methodology that helps organizations in choosing the
most adequate BPMS for their needs, based on their infrastructure and specific
requirements (functional and non functional).

Processes execution will be hosted and carried out within the BPMS of the
process owner in each case, interacting in a (mostly) asynchronous way with
the rest of the BPMS via the central integration platform. The web portal for
external users should allow specific queries regarding process execution, even if
the execution is at that moment within another organization’s control. For this,
identifying the best way to chain the invocations through participants of the
collaborative BP by means of the integration platform is a key element. Social
media will be in place not only for external users, but also for organization’s
employees to execute tasks within the BPMS platform.

Between the initial scenario and the high level scenario several other inter-
mediate scenarios take place, as the participant organizations continue growing
their capacities to interact within the integration platform, to specify, model,
implement and execute their own internal BPs in a BPMS platform and also
taking part in the collaborative BPs defined at the integration level, including
social media interaction with employees and external users, among other ele-
ments.

3.2 Scenarios for Social Media Interactions

As pointed out in [24] it is reasonable to combine BPM with social software as
a way of improving users interactions. However, there are still few studies on
how BPM benefit from social software in practice. As an example, in [25] the
authors propose a BPMN extension for expressing social interactions like direct
messaging, broadcasting and voting, but they did not take these ideas into action.
In an collaborative environment, it is necessary to think about how external users
(e.g. citizens in an e-government case) can interact with the execution of a BP
from their social networks of daily use. In this context, we explored interaction
mechanisms from three of the main social networks (Facebook, Twitter and
Google+) within the execution phase of a BP. In Table 1 we identify common
interactions between users and the execution of a BP through web media.

In the e-government context for example, it could be useful for a citizen to
enter the web portal and view available processes, to query processes by name

Towards Setting Up a Collaborative Environment 313

Table 1. Common interactions through web access media

Category Functionality Interaction media

Processes View available processes Web site

Query processes by name and category Web site

View process information Web site

Cases/Instances Create a process instance

List created instances for an user

View historical data from an instance

Others Login

Notifications

Documents

Confirmation

Voting

and category with respect to its specific needs, and also view process information.
From this list of processes, a citizen can create a process instance providing the
information to initiate it, or use a specific social network for starting it, e.g.
by sending a tweet or filling a Facebook or Google+ form. The citizen could
also want to check the status of its request, thus it is important to list created
instances for an user and provide a way to view historical data from an instance.
These functionalities can be provided in a classical way from the E-Government
portal, or for example from an embedded Facebook application which requires
the user to use its network-specific credentials for login.

There are many kinds of notifications within processes. In this social envi-
ronment, the user can follow the public profile of an organization to access news,
or the process can send direct messages, e.g. a tweet to the user, or a Facebook
message of a private publication in the wall. An interesting interaction arises
when an organization needs to arrange a meeting with the user. In this case
the user can receive an invitation to a private Google Calendar event, and also
receive an automatic reminder when the meeting date is near. Alternative, a
public calendar can be used.

Process information can take the form of documents which can both assessed
when the user queries the information of a specific instance and from central
repositories like Google Drive. In some cases, the user needs to send a confir-
mation with respect to some activity in which he/she is involved. This can be
done by notifying the user by publishing a private message in its Facebook wall
and then using the Like button. In the case of meetings, it is also possible to use
Google Calendar confirmations. Finally, a social intensive functionality is vot-
ing in which users can take collaborative decisions or respond to surveys. The
three social networks provide fully customizable forms for polling and processing
their results.

314 A. Delgado et al.

4 Setting up a Collaborative Environment

Based on the analysis of collaborative environment scenarios we discussed in
Sect. 3, and on the analysis of existing proposals, standards and approaches for
the definition of integration platforms and collaborative environments, we have
defined the following research question: How can a collaborative environment
between interacting organizations be set up considering both methodological and
technological requirements by defining key elements that when achieved, guaran-
tee an integration compliance level between participants?

We have also defined sub-questions to guide our research work, mainly
focused on the reference architecture for an integration platform, the maturity
model and the case study for validation. We applied research methods suitable for
each phase, starting with an extensive analysis of existing proposals (systematic
literature review, existing standards and approaches for integration platforms,
maturity models). For the definition our proposal, we followed design science
principles [26], creating artifacts: (a) reference architecture for an integration
platform, (b) maturity model to guide the efforts in setting up a collaborative
environment within (a), and (c) case study within the uruguayan e-government
as a proof of concept for (a) and (b).

4.1 Reference Architecture for an Integration Platform

The reference architecture defines a Process-aware Inter-organizational Service
Integration Platform (PA-IOSIP) [12], as introduced in Sect. 3. In particular, the
platform provides support for collaborative BPs and services execution within a
controlled distributed environment (e.g. e-government, e-health) where organiza-
tions communicate through a private network and there are formal agreements
between participants. It can also be an open one (e.g. e-commerce, e-science)
where participants collaborate via Internet without explicit agreements. The
reference architecture for the integration platform details can be seen in [12].

4.2 Maturity Model for Collaboration

The maturity model we have defined is based on key definitions of the maturity
models BPMM, which in turn is based on the CMM and CMMI, taking into
account the analysis of scenarios in Sect. 3. The main objective of the maturity
model is to guide the efforts to set up a collaborative environment within the
reference architecture for the integration platform, by evaluating the maturity
of the whole set from the point of view of the integration platform. For this,
we considered meaningful dimensions that we have identified from the scenarios
analysis. The maturity model defines five levels of maturity, following the def-
initions of the maturity models of reference. In Table 2 we present the general
definition of the maturity model.

We identified five dimensions of interest for the analysis: (i) Maturity of each
participant organization, (ii) Level of integration and interoperability within the
platform, (iii) Support for BPMS and collaborative BPs, (iv) Central portal

Towards Setting Up a Collaborative Environment 315

Table 2. Levels defined in the maturity model for a collaborative environment

Level Description

5 - Optimized the measures defined, collected and analyzed in level four are
used for continuous improvement of the collaborative BPs
execution, services execution or infrastructure support

4 - Predictable adds the definition, collection and analysis of measures for level
three elements. These measures are both functional (e.g. BPs
tasks and BP cases execution) and non functional (e.g. BPs and
services execution: response time, throughput and security)

3 - Collaborative the collaborative environment is established, with a central
BPMS and middleware to manage interactions with participant
organizations. Each participant includes a BPMS platform for
their internal processes and parts of the collaborative ones

2 - Integrated participant organizations are mainly connected by means of P2P
interactions within each other, and/or by means of a central
interoperability middleware supporting and managing
interactions

1 - Initial there is no integration between organizations, tasks are carried
out based on forms, documents and/or paper. BPs are implicit in
systems and/or people’s knowledge

for external users interaction and (v) Support for social media integration. The
summary of the maturity model is presented in Fig. 2 showing the levels and
dimensions.

Maturity of Each Participant Organization. It defines the capacity that
each organization has to interact with the integration platform and collaborate
with other participants. The maturity of a participant organization is based on
BPMM definitions and the extensions we made: (i) infrastructure support for
the integration and interoperability within the platform, and (ii) support for
collaborative BPs execution in a BPMS platform. The compliance for each level
is measured by the percentage of the organization BPs that are supported.

Level of Integration and Interoperability Within the Platform. This
dimension looks at the collaborative environment from the integration platform
point of view. Bearing in mind the reference architecture we have defined for
such platform, including BPMS and middleware, we define it at each maturity
level considering the number or participant organizations that are integrated
and effectively collaborating through the integration platform.

Support for BPMS and Collaborative Process. This dimension also takes
the integration platform point of view. We evaluate the support for collaborative
BPs provided by the general collaboration by means of BPMS support for BPs

316 A. Delgado et al.

Fig. 2. Maturity model with dimensions and definitions for each level

execution within all organizations and the integration platform. The final target
is to provide a central BPMS within the integration platform to host general
collaborative BPs, and also BPMS support in each participant organization,
decentralizing all processes.

Central Portal for External Users Interaction. This dimension takes into
consideration the support provided by the collaborative environment to external
users (e.g. citizens) to interact with it. A central portal allows to initiate BP
cases, query existing cases to retrieve the current state, the current executing
task, among others. To do so, a key element is to define a traceability mechanism
for collaborative BPs execution, for example, where each BP registers key data
when it gives control to another participant.

Support for Social Media Integration. This dimension takes into account
the support the integration platform provides for interaction via social media
mainly for external users and organization’s employees. The BPMS platform
must be able to include for example notifications via twitter and messages and
publications via facebook, providing users with a friendly way to track and be
informed about the execution of their BPs, also interacting via the web portal
with these platforms.

5 Proof of Concept

We have implemented a prototype of a real collaborative BP within the
Uruguayan e-government [27], the “Born Alive” process, to develop a proof
of concept of the reference architecture applying the maturity model we have
defined. For doing so, we have integrated different technologies simulating the

Towards Setting Up a Collaborative Environment 317

context of the integration platform and participant organizations. The collabora-
tive BP involves several government agencies such as: Health Ministry (owner),
Social Security Institute, Social Services Ministry, National Registry. We have
already analyzed this collaborative BP but from another point of view in [28].

We will focus here in the description of the infrastructure distribution, inte-
gration and capabilities provided by the participant organizations and the cen-
tral integration platform, by means of implementing the reference architecture
at the maturity model level Three. Further validation of the maturity model will
include the definition and analysis of measures to be able to navigate to levels
Four and Five for continuous improvement of collaborative BPs, infrastructure
and services. We implemented the reference Architecture with two open source
BPMS: Activiti BPMS1 for the Health Ministry, and Bonita BPM2 for the cen-
tral integration platform, and as middleware platform the Red Hat Jboss Fuse3.
We selected Activiti and Bonita since they provide similar functionalities with
a very different approach (Activiti with focus on java developers and Bonita
with focus on automating the development), to evaluate their integration in a
real collaborative environment. In Fig. 3 we present the general definition for the
prototype implementation.

Fig. 3. Architecture and technologies used for the prototype implementation

Both Bonita and Activiti BPMS provide a REST API which allows interac-
tion with the process engine from the middleware platform and the web portal.
The integration platform exposes services as SOAP Web Services (mainly for
security reasons) and invokes the REST API from the central BPMS (Bonita)
or the MSP one (Activiti) when needed. All interactions between participants
(with each other or the integration platform) goes through the middleware plat-
form (as defined in the e-government infrastructure). Invocations and answers
to/from other participants are simulated to execute the process completely. The

1 Activiti BPMS Platform. https://www.activiti.org/.
2 Bonita BPM. http://www.bonitasoft.com/.
3 RH Jboss Fuse. https://www.redhat.com/en/technologies/jboss-middleware/fuse.

https://www.activiti.org/
http://www.bonitasoft.com/
https://www.redhat.com/en/technologies/jboss-middleware/fuse

318 A. Delgado et al.

middleware platform has definitions for routing the messages received within the
SOAP WS, to the corresponding message queue and/or to invoke the REST API
of the corresponding BPMS (e.g. to send a message).

We have also prototyped the social interactions described before with respect
to the BP executed in Activiti BPMS. Social networks interact with the process
engine through the REST API provided by Activiti, and every interaction from
the process is encapsulated in Java classes in such a way that internal users of the
e-gov platform are unaware that they are interacting with social networks. We
have created specific social network accounts representing governmental depen-
dencies and we configured them so they can use external applications that we
provided for some specific interactions. In reply, the social networks provided us
with authentication tokens that Activiti needs to interact through the WS they
provide for interaction.

The proof of concept allowed us to put in place the needed infrastructure
to set up a collaborative environment of maturity level three, following the def-
initions and guides defined in the maturity model. The middleware platform
was integrated seamlessly with Bonita as the central integration platform, and
Activiti was deployed as part of one organization, interacting with the integra-
tion platform, via SOAP/REST WS and messages. We tested integration with
social networks for both external users and employees. We conclude that the
definitions in the maturity model help defining what is needed to set up a col-
laborative environment.

6 Conclusions

This paper presented a proposal for setting up a collaborative environment
to support the interaction of organizations within an integration platform. We
defined a reference architecture for such an integration platform, and a Maturity
Model which provides a roadmap for implementing collaborations within it. The
maturity model provides key guide for the progressive implementation of the
reference architecture in a collaborative environment, and how to evolve it to
improve both infrastructure and collaborative BPs support.

Several scenarios were analyzed to help identifying the main elements to be
considered by the model. The proposal was applied for the implementation of a
collaborative BP within the Uruguayan e-government, which served as a proof
of concept for the proposal, including social media integration. We believe that
the proposal constitutes a step forward in providing guidelines to set up a col-
laborative environment. Future work will be extending the case study to higher
maturity levels, and to carry out more case studies in other real environments,
to continue evaluating the usefulness of the proposal.

Acknowledgement. We would like to thank students Verónica Gamarra and Rodrigo
Lavista.

Towards Setting Up a Collaborative Environment 319

References

1. van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.: Business process man-
agement: a survey. In: van der Aalst, W.M.P., Weske, M. (eds.) BPM 2003. LNCS,
vol. 2678, pp. 1–12. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
44895-0 1

2. Weske, M.: Business Process Management. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28616-2

3. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.: Fundamentals of Business
Process Management. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-33143-5

4. Chang, J.F.: Business Process Management Systems: Strategy and Implementa-
tion. Auerbach Publications, Taylor & Francis Group, Boca Raton, New York
(2005)

5. Papazoglou, M., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented comput-
ing: a research roadmap. Int. J. Coop. Inf. Systems. 17(2), 223–255 (2008)

6. Erl, T.: Service-Oriented Architecture: Analysis and Design for Services and
Microservices, 2nd edn. Prentice Hall, Boston (2016)

7. Krafzig, D., Banke, K., Slama, D.: Enterprise SOA: Service Oriented Architecture
Best Practices. Pearson Education, Upper Saddle River (2005)

8. Object Management Group (OMG): Business Process Model and notation
(BPMN) v2.0 (2013). http://www.omg.org/spec/BPMN

9. WS-BPEL, OASIS (2008). http://docs.oasis-open.org/wsbpel/2.0/
10. Mylopoulos, J.: Cooperative Inf. Systems. IEEE Expert. 12(5), 28–31 (1997)
11. Papazoglou, M.: Web Services and SOA: Principles and Technology, 2nd edn.

Pearson Education Canada, Toronto (2012)
12. Delgado, A. and González, L., Ruggia, R.: A process-aware inter-organizational

service integration platform to support collaborative organizations. In: IEEE Inter-
national Conference on Services Computing (SCC), pp. 844–847 (2016)

13. Delgado, A., Ruiz, F., de Guzmán, I.G.-R., Piattini, M.: Main principles on the
integration of SOC and MDD paradigms to business processes: a systematic review.
In: Cordeiro, J., Virvou, M., Shishkov, B. (eds.) ICSOFT 2010. CCIS, vol. 170, pp.
88–108. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-29578-2 6

14. Delgado, A.: A services lifecycle to support the BPs lifecycle: from modeling to
execution and beyond. In: IEEE International Conference on Services Computing
(SCC), pp. 831–835 (2016)

15. Object Management Group (OMG): Business Process Maturity Model (BPMM)
(2008). http://www.omg.org/spec/BPMM

16. Software Engineering Institute (SEI): Capability Maturity Model (CMM) (1993).
https://www.sei.cmu.edu/reports/93tr024.pdf

17. Software Engineering Institute (SEI): Capability Maturity Model Integration
(CMMI) (2006). http://www.sei.cmu.edu/downloads/cmmi/10tr033.docx

18. Mecella, M., Batini, C.: Enabling Italian e-government through a cooperative archi-
tecture. Comput. J. 34(2), 40–45 (2001)

19. Valdés, G., Solar, M., Astudillo, H., Iribarren, M., Concha, G., Visconti, M.: Con-
ception, development and implementation of an e-Government maturity model in
public agencies. J. Gov. Inf. Q. 28(2), 176–187 (2011)

20. Kerremans, M.: Maturity assessment for business process improvement leaders: six
phases for successful BPM adoption, Gartner, Stanford, pp. 7–15 (2008)

https://doi.org/10.1007/3-540-44895-0_1
https://doi.org/10.1007/3-540-44895-0_1
https://doi.org/10.1007/978-3-642-28616-2
https://doi.org/10.1007/978-3-642-28616-2
https://doi.org/10.1007/978-3-642-33143-5
https://doi.org/10.1007/978-3-642-33143-5
http://www.omg.org/spec/BPMN
http://docs.oasis-open.org/wsbpel/2.0/
https://doi.org/10.1007/978-3-642-29578-2_6
http://www.omg.org/spec/BPMM
https://www.sei.cmu.edu/reports/93tr024.pdf
http://www.sei.cmu.edu/downloads/cmmi/10tr033.docx

320 A. Delgado et al.

21. Bhat, J., Fernandez, J.: A holistic adoption framework for long term success of
BPM, BPM and workflow handbook digital edition v2 (2008)

22. Rosemann, M., De Bruin, T., Hueffner, T.: A model for business process manage-
ment maturity. In: ACIS 2004 Proceedings (2004)

23. Delgado, A., Calegari, D., Milanese, P., Falcon, R., Garćıa, E.: A systematic app-
roach for evaluating BPM systems: case studies on open source and proprietary
tools. In: Damiani, E., Frati, F., Riehle, D., Wasserman, A.I. (eds.) OSS 2015.
IAICT, vol. 451, pp. 81–90. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-17837-0 8

24. Erol, S., Granitzer, M., Happ, S., Jantunen, S., Jennings, B., Johannesson, P.,
Koschmider, A., Nurcan, S., Rossi, D., Schmidt, R.: Combining BPM and social
software: contradiction or chance? J. SW Maint. 22(6–7), 449–476 (2010)

25. Brambilla, M., Fraternali, P., Vaca, C.: Combining social web and BPM for improv-
ing enterprise performances: the BPM4People approach to social BPM. In: 21st
World Wide Web Conference, pp. 223–226 (2012)

26. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems
research. MIS Q. 28(1), 75–105 (2004)

27. González, L., Ruggia, R., Abin, J., Llamb́ıas, G., Sosa, R., Rienzi, B., Bello,
D., Álvarez, F.: A service-oriented integration platform to support a joined-up
e-Government approach: the Uruguayan experience. In: Advancing Democracy,
Governement and Governance, pp. 140–154 (2012)

28. Ruggia, R., Delgado, A., Abin, J., González, L., Garbusi, P.: Managing consistency
in e-government transactions: the case of Uruguay. In: 9th International Conference
on Theory and Practice of Electronic Governance (ICEGOV), pp. 313–322 (2016)

https://doi.org/10.1007/978-3-319-17837-0_8
https://doi.org/10.1007/978-3-319-17837-0_8

Toward an Interactive Mobility Assistant
for Multi-modal Transport

in Smart Cities

Christian Kuster1(B), Nils Masuch2, and Fikret Sivrikaya1

1 GT-ARC gemeinnützige GmbH, Berlin, Germany
christian.kuster@gt-arc.com

2 DAI-Labor, Technische Universität Berlin, Berlin, Germany

Abstract. The worldwide trend of urbanization necessitates new forms
of travel within and between megacities. Shared mobility and multi-
modal mobility approaches have been on the rise to address this need, but
existing solutions are often limited by proprietary systems that cannot
be combined automatically. On the other hand, the concepts of Smart
Cities and the Internet of Things offer great opportunities to intercon-
nect these different services, whereas such holistic approaches lead to
new challenges for emerging applications. In this paper we highlight the
challenges and provide a roadmap towards an agent-based interactive
mobility assistant for multi-modal transport in smart cities that grounds
on the Belief-Desire-Intention (BDI) model, an approach for delibera-
tive agents using mental attitudes, in order to overcome the information
overload and proactively help travelers along their way.

1 Introduction

The ever increasing urbanization has significantly aggravated the traffic situation
in megacities. Currently around 75% of all citizens in the European Union are
living in urban areas. New mobility solution approaches emerge to overcome
these issues and to adapt to the new habits of especially the younger population.
One example is the growing area of shared mobility, which is commonly offered
in the form of car-, bike-, or ride-sharing services. While the increased variety of
mobility options improves the efficiency of transportation in large cities, it also
complicates the residents’ mobility planning. To address this complexity, multi-
modal mobility solutions that integrate different travel modalities have started
emerging on the market. Nevertheless, these approaches again employ isolated
applications. Instead of alleviating the complexity in travel planning, they even
aggravate it with new forms of unfamiliar services and information.

In an even wider context, the concept of a Smart City and the heavily linked
topic of Internet of Things (IoT) [16] bring even more possibilities to a future
travel system. Sensors can, for example, predict weather and congestions or
create health maps for biking/walking. This means that a useful application

c© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 321–327, 2018.
https://doi.org/10.1007/978-3-319-91764-1_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_26&domain=pdf

322 C. Kuster et al.

should not only regard mobility service providers, but have the ability to utilize
other information sources in novel and perhaps unusual ways.

The recently completed Intermodal Mobility Assistance (IMA) project [9]
has aimed at providing an open and scalable platform that enables users to
seamlessly integrate multiple service providers in their route planning. Service
providers, on the other hand, can easily join the platform to provide mobility
or information services. However, routes suggested by an application using this
platform and all other available travel-related data are too much information
for the traveler to have an overview. Services may provide basic information or
operations that are individually neither useful nor comprehensible to a human,
but may become very useful when used in an aggregated way. Hence, especially
on such open platforms that combine various services, an assisting, consolidating
entity is needed to keep the system manageable for users and to generate an
added value. This calls for an automated and proactive personalized mobility
assistant that helps before and during travel. To address this need, we propose
a BDI-style [7] agent-based solution, the Interactive Routing Assistant (IRA).

A first version of IRA has been realized in the context of IMA project, with
the goal of monitoring individual users traveling over inter-modal routes provided
by the IMA platform. Implemented using JIAC V [12], many trade-offs had to be
made due to the novelty and complexity of the platform that had to be realized
within the project’s life span. While being coupled loosely to the BDI model,
the components of the IRA agent as well as the platform’s domain ontology and
service interfaces were predefined, fixed, and implemented with Java concepts.

With the experience gained from IMA, we argue that a more systematic
and elaborate approach is needed, in which an independent assistant collects
information from heterogeneous sources and chooses between different services
to fulfill its goals, in order to face the challenges behind it, as discussed in Sect. 3.
Our approach for the agent-based IRA is then provided in Sect. 4.

2 Related Work

While the number of approaches and products that deal with today’s problems in
the personal transportation in urban areas and especially multi-modality is ris-
ing, most of these focus on calculating routes [10] or traffic control & congestion
management [4]. The need for a mobile companion is often neglected.

Analyzing related research articles about virtual assistants in the transport
domain, we realize that most approaches focus on humans with special needs [1]
or implement simplistic [14] or particular [15] use cases; the universal need for
such assistants as we envision and as studies show [2] is not well addressed so far.
An approach that targets a wider spectrum of users and contexts is shown in [6],
where public transport infrastructures such as vehicles and stations are enriched
with service units that can communicate with a mobile application to give the
user additional contextual information. The presented approach again relies on
a closed system architecture and provides only generic and reactive services.

The interactive mobility assistant proposed in this work focuses on the con-
nection of BDI model with Smart Cities in the form of its constituent web

Toward an Interactive Mobility Assistant for Multi-modal Transport 323

services. A good introduction is given in [5] discussing what distinguishes agents
from web services and what problems may arise when enabling BDI agents to
utilize web services.

An approach that is similar to our concept is presented in [11]: An ontology-
based BDI agent is introduced that is capable of using semantic web services in
heterogeneous environments to create so-called workflows to fulfill its goals. The
agent includes two types of ontologies, namely the operational ontologies that
are domain-independent and responsible for the agent to be functional, and the
application ontologies describing the domain. One of the application ontologies
is the so-called domain workflow pattern ontology that contains predefined work-
flows for specified tasks within the domain. However, the authors do not address
how the service discovery and matching is done; furthermore, a static web with
well-defined workflows is assumed.

3 Research Challenges

Implementing an intelligent assistant that helps travelers to overcome the
tremendous amount of information brings up different but entangled challenges
to be solved, which we want to address in this section, gathered by the study
of the aforementioned relevant literature as well as our own experience from the
past projects.

(1) Understanding of (web) services: To build an intelligent system that is capa-
ble of automatically understanding the meaning of the exchanged informa-
tion and using services, complex ontology representations and rules that
allow detailed reasoning are needed.

(2) Aggregation of services: To create novel value-added utilizations of available
information from services according to the own domain and intentions, the
intelligent system needs a computation model that is able to break down
goals into subsets that can be mapped onto the found services.

(3) Highly dynamic environment : Smart Cities are highly dynamic; services join
and leave, meaning that plans made by aggregated services can fail even-
tually or new and better alternatives become available. Even new types of
information can lead to new assumptions and rules for the system.

(4) Heterogeneous environment : Contrary to past distributed systems, very
diverse set of devices and services, along with their own data models and
interface protocols, can be found in Smart Cities and IoT. Therefore, intel-
ligent systems must have the ability to abstract from these and unify the
knowledge [8].

(5) Conflicting beliefs: Since the system utilizes different information sources, it
can happen that conflicting beliefs occur, e.g., the position of the traveler
indicates the usage of a bus near a railway track, while the mobile device
sensors indicate the usage of a train. Strategies to resolve such conflicts are
needed.

324 C. Kuster et al.

4 Research Approach

To tackle the challenges mentioned above we propose an ontology-based BDI
agent architecture that uses semantic web services to retrieve relevant informa-
tion and perform actions. The approach both addresses the agent model as well
as the agent’s environment.

4.1 The Agent Model

The agent is based on the well-known BDI model and uses the core components
of Belief, Desire and Intention to model its internal state. In addition, it has
sensors and actuators to perceive and influence its environment. In our approach
the beliefs are retrieved from external services as well as from the mobile device
the assistant is executed on. The agent’s intentions (selected plans from the plan
database) are also located in the external services and the mobile device. The
details of the external environment are discussed in Sect. 4.2. The goals (desires)
are encoded in the saved travel routes: IRA wants to ensure that the user arrives
at their destination in time. As travel routes can be divided into sub-routes, the
corresponding goal can be divided into sub goals, leading to a goal hierarchy. To
enable the agent to process new types of information and aggregate them to form
new knowledge (Sect. 3–(2)), the BDI model within the agent is implemented
using ontologies. To enable the agent to handle semantic web services it needs
a corresponding ontology incorporated into the BDI ontology and links both
beliefs and intentions with their web service representation. The belief base is
monitored using observers; changes in the beliefs trigger rules that either lead to
new beliefs or the selection or discarding of intentions. As already mentioned in
Sect. 3–(5) the belief base can store beliefs that contradict each other, so they are
extended by the notion of certainty; the value can be determined regarding the
belief-delivering service and by internal deduction rules (e.g., stable knowledge
becomes more certain over time). Lastly, since a travel route is heavily influenced
by the user’s preferences and habits, a user ontology is used to model beliefs
about the user, which can then weight and modify selected plans. An overview
of the agent can be seen in Fig. 1.

4.2 The Agent Environment

The agent uses external semantic web services to perceive information about its
environment and to perform chosen plans. Furthermore, the user’s mobile device
that runs the mobility assistant is also employed for both perceiving and inter-
acting (see Fig. 1). The route planner is an external service that can be requested
for specific routes. In our approach, coming from the IMA platform, the route
planner is based on a multi-modal approach, in which different service providers
can be included in a request; this way IRA can focus on the on-route manage-
ment of the traveler. Our approach of course allows multiple route planners to
be accessible; IRA would then choose the most appropriate one according to its
plans. Alongside with the route planner different types of services are present

Toward an Interactive Mobility Assistant for Multi-modal Transport 325

Fig. 1. Structure of the agent

in the agent’s environment. They can be divided into transportation-providing
services, like public transport, car-sharing, bike-sharing, etc., and information-
providing services that do not necessarily have to be located in the transportation
domain, such as parking space availability, traffic congestion, weather prediction,
air pollution, tourist features, etc.

All these services have a semantic description based on OWLS-S [3] that can
be parsed by the agent (Sect. 3–(1))[13]. In this work we assume the ontology to
be fixed to the transport domain, therefore we do not have to handle the possible
ontology merging problem (Sect. 3–(4)). Still, we have to make some assumptions
about the service description format: Since we model an assistant that is respon-
sible for a real-world traveler with changing world states, services should provide
information regarding how to react to failed plans, e.g., compensation actions
(In a car-sharing scenario: cancel the booked car).

5 Conclusion and Future Work

With the adoption of smart city technologies, there is strong potential for proac-
tive smart entities for urban mobility systems, such as our proposed multi-modal
mobility assistant. While the benefits of such applications are already recognized
by the research community, there are still many issues to be resolved. We have
argued that our approach is able to face the challenges of future developments.
The next steps are to further work out the developed concepts and implement
them into our existing framework. We plan to further generalize the service
request mechanism and develop the proposed ontologies for a more abstract
agent that complies even better with the BDI approach.

Acknowledgment. This work is supported in part by the German Federal Ministry
of Education and Research (BMBF) under the funding reference numbers 01IS12049
& 16KIS0580.

326 C. Kuster et al.

References

1. Barbeau, S., Labrador, J., Winters, P., Perez, H., Georggi, N.: The travel assistant
device: utilizing GPS-enabled mobile phones to aid transit rides with special needs.
In: Proceedings of the 15th World Congress on Intelligent Transportation System,
NY (2008)

2. Beul-Leusmann, S., Samsel, C., Wiederhold, M., Krempels, K.-H., Jakobs, E.-
M., Ziefle, M.: Usability evaluation of mobile passenger information systems. In:
Marcus, A. (ed.) DUXU 2014. LNCS, vol. 8517, pp. 217–228. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-07668-3 22

3. Burstein, M., Hobbs, J., Lassila, O., Mcdermott, D., Mcilraith, S., Narayanan,
S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, K.:
OWL-S: semantic markup for web services, November 2004. http://www.w3.org/
Submission/2004/SUBM-OWL-S-20041122/

4. Chen, B., Cheng, H.H.: A review of the applications of agent technology in traf-
fic and transportation systems. IEEE Trans. Intell. Transp. Syst. 11(2), 485–497
(2010)

5. Dickinson, I., Wooldridge, M.: Agents are not (just) web services: considering BDI
agents and web services. In: Proceedings of the SOCABE 2005 (2005)

6. Garćıa, C.R., Candela, S., Ginory, J., Quesada-Arencibia, A., Alayón, F.: On route
travel assistant for public transport based on android technology. In: 2012 6th
International Conference on Innovative Mobile and Internet Services in Ubiquitous
Computing (IMIS), pp. 840–845. IEEE (2012)

7. Georgeff, M., Pell, B., Pollack, M., Tambe, M., Wooldridge, M.: The belief-desire-
intention model of agency. In: Müller, J.P., Rao, A.S., Singh, M.P. (eds.) ATAL
1998. LNCS, vol. 1555, pp. 1–10. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-49057-4 1

8. Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: the state of the art. Knowl.
Eng. Rev. 18(1), 1–31 (2003)

9. Keiser, J., Masuch, N., Ltzenberger, M., Grunewald, D., Kern, M., Trollmann, F.,
Acar, E., Ç. A. Salma, Dang, X.T., Kuster, C., Albayrak, S.: IMA - an adapt-
able and dynamic service platform for intermodal mobility assistance. In: 17th
International IEEE Conference on Intelligent Transportation Systems (ITSC), pp.
1521–1528, October 2014

10. Li, J.Q., Zhou, K., Zhang, L., Zhang, W.B., et al.: A multimodal trip planning
system incorporating the park-and-ride mode and real-time traffic/transit infor-
mation. In: Proceedings of the ITS World Congress, vol. 25, pp. 65–76 (2010)

11. Liu, C.H., Chen, J.J.Y.: Using ontology-based BDI agent to dynamically customize
workflow and bind semantic web service. JSW 7(4), 884–894 (2012)

12. Lützenberger, M., Küster, T., Konnerth, T., Thiele, A., Masuch, N., Heßler, A.,
Keiser, J., Burkhardt, M., Kaiser, S., Albayrak, S.: JIAC V: a MAS framework
for industrial applications. In: Proceedings of the 2013 International Conference
on Autonomous Agents and Multi-Agent Systems, pp. 1189–1190. International
Foundation for Autonomous Agents and Multiagent Systems (2013)

13. Masuch, N., Kuster, C., Albayrak, S.: Semantic service manager-enabling semantic
web technologies in multi-agent systems. In: Proceedings of the Joint Workshops
on Semantic Web and Big Data Technologies, INFORMATIK 2014, Stuttgart,
Germany, pp. 499–510 (2014)

https://doi.org/10.1007/978-3-319-07668-3_22
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/
https://doi.org/10.1007/3-540-49057-4_1
https://doi.org/10.1007/3-540-49057-4_1

Toward an Interactive Mobility Assistant for Multi-modal Transport 327

14. Papangelis, K., Sripada, S., Corsar, D., Velaga, N., Edwards, P., Nelson, J.D.:
Developing a real time passenger information system for rural areas. In: Yamamoto,
S. (ed.) HIMI 2013. LNCS, vol. 8017, pp. 153–162. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39215-3 19

15. Rehrl, K., Bruntsch, S., Mentz, H.J.: Assisting multimodal travelers: design and
prototypical implementation of a personal travel companion. IEEE Trans. Intell.
Transp. Syst. 8(1), 31–42 (2007)

16. Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of things for
smart cities. IEEE Internet Things J. 1(1), 22–32 (2014)

https://doi.org/10.1007/978-3-642-39215-3_19

PhD Symposium

PhD Symposium Preface

Service-oriented computing (SOC) has rapidly evolved with technologies such as Web
services, Cloud services, and the Internet of Things. While this has provided the
industry and practitioners with the opportunities for a new generation of products and
services, it has also raised many fundamental research challenges and open issues. The
International Conference on Service Oriented Computing (ICSOC) is the premier
international forum for academics, industry researchers, developers, and practitioners to
report and share groundbreaking work in service-oriented computing.

The International PhD Symposium on Service Computing was in conjunction with
the 15th International Conference on Service Oriented Computing (ICSOC 2017) on
November 13–16, 2017 in Málaga, Spain.

The ICSOC PhD Symposium is an international forum for PhD students working in
all the areas related to the service computing. Its goals are:

– To bring together PhD students and established researchers in the field of service
oriented computing,

– To enable PhD students to interact with other PhD students and to stimulate
exchange of ideas, suggestions, and experiences among participants,

– To provide PhD students an opportunity to present, share and discuss their research
in a constructive and critical atmosphere, and

– To provide PhD students with critical and constructive feedback from experts on
their already completed and, more importantly, planned research work.

To achieve these goals, the symposium operates in a workshop format, giving PhD
students an opportunity to showcase their research and providing them with ample
feedback from senior international researchers and peer PhD students. Apart from the
presentation sessions, this year, the program of the symposium also incorporated a
keynote and a panel. The keynote entitled Demystifying Smart Data & Smart
Industrial-Purpose Applications: Solving Problems & Creating Opportunities was
given by Prof. Michael Papazoglou. The panel was composed by three experts and a
moderator, in which the panelists, guided by the moderator, discussed topics related to
the PhD development and its employment opportunities.

The symposium in Málaga, Spain is the 13th edition of the series held in con-
junction with the ICSOC conferences in Banff (2016), Goa (2015), Paris (2014), Berlin
(2013), Shanghai (2012), Paphos (2011), San Francisco (2010), Stockholm (2009),
Sydney (2008), Vienna (2007), Chicago (2006), and Amsterdam (2005).

Each submission was reviewed by three members of the program committee and
after a thorough review process, 7 papers out of 9 were accepted to constitute the
program of the PhD symposium.

We gratefully acknowledge the support of the contributors to this PhD symposium
and express our great esteem to the program committee members for the time and effort
they have put in reviewing papers.

May 2018 Loli Burgueño
Naouel Moha

Organization

Keynote

Michael Papazoglou Tilburg University, The Netherlands

Panelists

Juan Manuel Murillo University of Extremadura, Spain
Juan M. Vara King Juan Carlos University, Spain
Flavio de Paoli Universit di Milano-Bicocca, Italy

Program Committee

Pedro lvarez Universidad de Zaragoza, Spain
Francis Palma Concordia University, Montreal, Canada
Hoa Dam University of Wollongong, Australia
Massimo Mecella University of Rome, Italy
Gustavo Rossi UNLP, Argentina
George Spanoudakis City University London, UK
Mathias Weske University of Postdam, Germany
Xiwei Xu CSIRO, Australia
Pascal Poizat Universit Paris Ouest, France

Meeting IoT Users’ Preferences
by Emerging Behavior at Run-Time

Daniel Flores-Martin(B)

University of Extremadura, Cáceres, Spain
dfloresm@unex.es

Abstract. Internet of Things systems are increasing their importance
in our lives. To provide their maximum benefit, they must be manually
configured according to the users’ needs and routines. Thus, the increas-
ing number of smart devices and systems being deployed will make this
task completely unmanageable in the near future. This could limit the
rise and penetration of IoT. Moreover, smartphones are standing out as
the interface through which people interact with these systems. Due to
their increasing capabilities they can also detect and analyze their users’
daily activities. Therefore, this research tries to address this situation
by proposing an architecture that allows smartphones to learn from the
habits of their users through automatic learning techniques, and a pro-
gramming model that allows run-time adaptation of the IoT systems
behavior to the detected needs through the invocation of the services
provided by the smartphones.

Keywords: Internet of Things · Context · Smartphones
Machine learning

1 Introduction

The relevance of the Internet of Things (IoT) increases as more and more con-
nected devices are developed. One of the general purposes of these devices is to
make people’s life easier, simplifying tasks or executing them automatically.

For these systems to achieve their goals, they must fulfill their users’ needs.
For that, they have to be manually configured by the users, who often do not
have the necessary technical skills, with the consequent investment of time and
frustration this can cause. This, which today may be a serious drawback, in the
near future in which it is estimated to be 50–100 billion of smart devices [10],
may be unmanageable. Likewise, it is not enough to configure the devices once
at the beginning, but also users must reconfigure them as their habits and needs
change.

Supervised by: Javier Berrocal (jberolm@unex.es), Jose Garcia-Alonso (jgar-
alo@unex.es) and JuanM.Murillo (juanmamu@unex.es). University of Extremadura,
Cáceres, Spain.

c© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 333–338, 2018.
https://doi.org/10.1007/978-3-319-91764-1_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_27&domain=pdf

334 D. Flores-Martin

These drawbacks may be addressed by developing software capable of adapt-
ing its behavior to the people’s needs.

Similar problems have already been detected by other researchers [5,13].
Additionally, several research areas can contribute to solve them, specifically
Context-Oriented Programming (COP), Ambient Intelligent (AmI) and Machine
Learning (ML).

Therefore, the problem statement faced in this PhD. work is that the inter-
actions between people and devices requires too much attention and time from
people. With the growth predictions of IoT in the near future, this demand may
become unmanageable.

The alignment of this proposal with ICSOC corresponds to the development
of technology that allows the creation of services to be deployed in smartphones,
attending to the people’s preferences and the environment that surrounds them.

The rest of the paper is structured as follows. Section 2 describes related fields
and hypothesis about our proposal. Section 3 presents the main objectives of this
research. Next, Sect. 4 shows the preliminary results. Finally, Sect. 5 details the
evaluation plan of this research work.

2 Related Fields and Hypothesis

This work main hypothesis is the following: By using paradigms such as AmI,
COP and ML; and smartphones, that learn about their owners habits and pref-
erences, the interactions between users and IoT systems can be automatized
according to the users’ preferences.

To address this, smartphones, in combination with the predictive models
created through ML techniques, could be used to discover patterns of behavior.
This can be done by using one of the most popular ML branches, Deep Learning
(DL) [8], taking as input the data gathered by the smartphones about their
owners’ activities.

By analyzing the information gathered by the smartphones’ sensors, we can
identify what actions people are doing, at what time, where or when, and which
IoT devices they interact with. In this way, we could be able to automate tasks,
or predict future behaviors.

Several research works support this hypothesis. First, AmI tries to make
everyday environments sensitive and adaptable to people [12]. However, AmI
needs to know the users’ preferences to establish when a device should act. This
is a complex problem when the needs of several people have to be analyzed,
specially when their presence was not originally planned within the system.

Second, COP [6] allows software developers to define the behavior of the
applications, allowing to activate or deactivate certain behaviors or function-
alities depending on the contextual information. However, these programming
models require the different behavior to be defined at design time [7]. Behavior
depend on users’ needs and preferences, as well as changes over time. For this
reason, it can be difficult and inefficient, to try to anticipate all possible behav-
iors at design time. Given this, the possibilities of adaptation of the software
would be limited to a certain number of predefined contexts in the source code.

Meeting IoT Users’ Preferences by Emerging Behavior at Run-Time 335

Third, the supervisors of this PhD. work are focusing on solutions to improve
the integration between people and IoT systems through the use of smartphones,
such as People as a Service (PeasS) [4] and Internet of People (IoP) [9].

Finally, attending aspects of human activity, Cook et al. [11], proposed an
approach for recognizing complex activities of daily living, by using body-worn
sensors and ambient sensors, to provide additional hidden context.

We are aware that there are many proposals for software development whose
behavior is adapted to the context, but they do not cover in many cases the above
mentioned problems. Thus, the research challenges that we address are several.
First, the lack of a unified model of person-IoT interaction. IoT devices are pro-
duced by various manufacturers, each with their own interaction model. Second,
the lack of an automatic negotiation model for the interaction between people
and IoT devices according to the people’s preferences. Third, the absence of
learning models of people’s preferences from their interactions with IoT devices.
If these problems could be solved, a better integration of people in IoT environ-
ments would be obtained.

3 Research Objectives

In addition to the general objective that follows directly from the hypothesis
above, this is to achieve a better integration of people with the IoT by making the
devices learn about their owners. This thesis has the following specific objectives:

(1) Design an architecture where people and connected devices are
represented. The architecture must support the identification of the peo-
ple and devices that are present in a situation, their connections and the
automatic configuration of the devices’ behavior according to the prefer-
ences of the people. The main contribution to be derived from this objective
will be an infrastructure that can contribute to the definition of a standard
for connecting people with devices independently of the manufacturer.

(2) Propose a learning model about people’s preferences. This model will
be hosted on smartphones and must, therefore, meet the resource restrictions
of these devices. It will be provided as a service from the smartphones to
the architecture in order to make the preferences of all the involved people
known. The main scientific contribution associated with this objective will
be ML algorithms adapted to be executed in smartphones and prepared to
manage an important and larger volume of data coming from a single person.
By labeling these data at the beginning, we will study people’s routines, and
use them to train DL models to predict people’s future routines.

(3) Propose a programming model for the architecture. Based on the
capabilities of each device, it is possible to develop software that will sat-
isfy the people’s preferences. The main contribution associated with this
objective will be a programming model that, besides allowing programming
strategies for specific contexts, will allow strategies to emerge once a context
occurs. Neither the context or the strategy will be defined at design time.

The next section shows our architecture, detailing how through the context
and the user profiles, it could facilitate the handling of IoT devices.

336 D. Flores-Martin

4 Preliminary Results

This work has already achieved some preliminary results regarding the objec-
tive 1. In particular, an outline of the architecture supporting the concept of
Situational-Context (SC) has been presented. In [1], SC is defined as the com-
position of the virtual profiles of all entities involved in a given situation. The
objective of a situation is to achieve the highest level of comfort possible for all
participating entities. This is achieved by satisfying the greatest possible number
of goals based on the available skills. Understanding by entities in a situation
both: smart objects, and users represented through their smartphone.

According to [1], entities have two fundamental properties: goals and skills.
Goals can be understood as an entity need that must be satisfied. For example, a
user may need to turn on a lamp when a room is dark. Skills are those capabilities
that can solve certain goals. For example, a lamp has the ability to increase the
luminosity of a room. Thus, we work in a distributed environment, where the
entities collaborate with each other to meet their goals.

Related to the above and to objective 3, the programming model aims to
establish a new way of developing software for IoT systems. To do this, this
model must be based on an architecture that allows defining the entities of a
context. The architecture would be designed according to the Service-Oriented
Computing paradigm. Figure 1 represents the components of the architecture:

– Connectivity Manager: Establishes the links between entities in a context.
It sends and receives information from other entities by invoking services. This
information is relative to goals, skills, history, etc. Communication between
entities can be done using protocols like Bluetooth or WiFi. This is still
undefined.

– Entity Manager: Entity’s goals and skills will be defined, as well as its
particular information, activity history or privilege level in the context. It
will also have services that interpret data from the environment, through
internal sensors, to be used in combination with the information provided by
other entities when developing strategies.
• History Service: It storages the activity history. These activities are

the result of interactions that have occurred in the past with other enti-
ties, why they interacted, when, where, what specific situation was being
produced, etc. Thanks to this, further activities could be predicted.

Fig. 1. Components of the proposed architecture

Meeting IoT Users’ Preferences by Emerging Behavior at Run-Time 337

– Context Manager: It is responsible for creating/updating the contextual
map. It will also be in charge of activating or deactivating strategies.
• Contextual Map: Each entity will have its own contextual map based

on the entities’ goals and skills that surround it. So, each entity can know
what goals can be solved with their skills. For instance, if a light has the
ability to illuminate a room, it must be aware that it can do it.

– ML Manager: Covering the objective 2, it is responsible for the entity learn-
ing. Two types of learning can be differentiated. The first, individual, where
the entity will learn from its own routines. The second, collective, in which
the entity will learn from the entities that surround it within the context,
with the aim of solving goals that their skills allow.
• Strategies Definition: It analyzes the goals and skills to determine what

goals can be addressed by the capabilities available in the contextual map.
In addition, it must be consider that a goal could be solved using several
different strategies.

• ML Performer: It analyzes the activity history of the entity, allowing
the system to learn and detect patterns of behavior, with the aim of
automating tasks in the future.

From this architecture, software developers for IoT systems could work on
new solutions. These solutions can use the goals and skills of different entities
to provide new strategies to solve goals, or use the communication and learning
mechanisms of the architecture, to add new skills to existing systems.

5 Evaluation Plan

Although this doctoral work is still in an initial state, we have developed some
proofs of concept that validate SC in IoT environments. Besides, there are pre-
liminary works to deal with the exchange of information at the network [3].

Our proposal may seem ambitious, however, as stated above, this work is
still in an initial state. The full scope of the work will be discovered during its
development. First, the architecture development. This task will focus on the
development of services for the exchange of information between entities and
strategies resolution for one and many users. We expect to achieve this in the
second quarter of 2018. Second, a learning model, that will pursue executing
ML algorithms in smartphones and to predict future actions based on the users’
activities. It is planned that this task will provide valid results by the end of
2018. Next, the programming model. This will include a skills and abilities stan-
dardization through an ontology and using ML for strategies resolution. This
task will be extended throughout 2019.

The case studies associated with these tasks will be developed under the 4IE
project. A three years European project focused on gerontology [2].

In conclusion, the architecture and programming model that this thesis pro-
poses will try to take full advantage of the features that IoT devices offer, while
facilitating the task of developing software adaptable to them.

338 D. Flores-Martin

Acknowledgments. This work was supported by the Spanish Ministry of Science
and Innovation (TIN2014-53986-REDT and TIN2015-69957-R), by the Department of
Economy and Infrastructure of the Government of Extremadura (GR15098), and by
the European Regional Development Fund and by 4IE project (0045-4IE-4-P) funded
by the Interreg V-A España-Portugal (POCTEP) 2014–2020 program.

References

1. Berrocal, J., Garcia-Alonso, J., Canal, C., Murillo, J.M.: Situational-context: a
unified view of everything involved at a particular situation. In: Bozzon, A.,
Cudre-Maroux, P., Pautasso, C. (eds.) ICWE 2016. LNCS, vol. 9671, pp. 476–483.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-38791-8 34

2. Berrocal, J., Garcia-Alonso, J., Murillo, J.M., Canal, C.: Rich contextual informa-
tion for monitoring the elderly in an early stage of cognitive impairment. Pervasive
Mob. Comput. 34, 106–125 (2017)

3. Galán-Jiménez, J., Berrocal, J., Garcia-Alonso, J., Canal, C., Murillo, J.M.: Coor-
dinating heterogeneous IoT devices by means of the centralized vision of the SDN
controller (2017)

4. Guillen, J., Miranda, J., Berrocal, J., Garcia-Alonso, J., Murillo, J.M., Canal, C.:
People as a service: a mobile-centric model for providing collective sociological
profiles. IEEE Softw. 31(2), 48–53 (2014)

5. Guinard, D., Trifa, V., Mattern, F., Wilde, E.: From the internet of things to the
web of things: resource-oriented architecture and best practices. In: Uckelmann,
D., Harrison, M., Michahelles, F. (eds.) Architecting the Internet of Things, pp.
97–129. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19157-2 5

6. Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented programming. J.
Object Tech. 7(3), 125–151 (2008)

7. Keays, R., Rakotonirainy, A.: Context-oriented programming. In: Proceedings of
the 3rd ACM International Workshop on Data Engineering for Wireless and Mobile
Access, pp. 9–16. ACM (2003)

8. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

9. Miranda, J., Mäkitalo, N., Garcia-Alonso, J., Berrocal, J., Mikkonen, T., Canal, C.,
Murillo, J.M.: From the internet of things to the internet of people. IEEE Internet
Comput. 19(2), 40–47 (2015)

10. Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context aware com-
puting for the internet of things: a survey. IEEE Commun. Surv. Tutor. 16(1),
414–454 (2014)

11. Roy, N., Misra, A., Cook, D.: Ambient and smartphone sensor assisted ADL recog-
nition in multi-inhabitant smart environments. J. Ambient Intell. Hum. Comput.
7(1), 1–19 (2016)

12. Schmidt, A.: Interactive context-aware systems interacting with ambient intelli-
gence. Ambient Intell. 159 (2005)

13. Taivalsaari, A., Mikkonen, T.: A roadmap to the programmable world: software
challenges in the IoT era. IEEE Softw. 34(1), 72–80 (2017)

https://doi.org/10.1007/978-3-319-38791-8_34
https://doi.org/10.1007/978-3-642-19157-2_5

A Proposition for a Design Method
of Service Systems

Blagovesta Kostova(&)

École polytechnique fédérale de Lausanne, 1015 Lausanne, Switzerland
blagovesta.kostova@epfl.ch

Abstract. This research is in the domain of service science and proposes a
method for designing service systems. We consider three levels of design –

individual, organizational, and implementation. The proposed design method
links these three levels by explicit input, output, and feedback between them.
We use a design science research approach to design the method. This disser-
tation solves a practical question – how to design businesses that fit market
needs, and has a theoretical contribution as it advances service science by
combining theories from three domains: cognition (opportunity recognition),
business modeling, and software engineering. We use systems thinking princi-
ples to federate the above theories. We gather data and validate our concepts in
three contexts – a university course, startups, and established companies. We
develop the necessary constructs and models, and conceptualize the final
method in three iterations.

Keywords: Service design � Method � Opportunity recognition
Business model � Software engineering

1 State of Research

Service science studies complex socio-technical systems. To understand these systems,
service science requires a multidisciplinary approach and a combination of methods and
logic from various fields, such as computer science, psychology, design, and marketing
[1]. We are interested in advancing service science by combining three research areas,
namely: opportunity recognition, business modeling, and software engineering.

The desired outcome of this doctoral dissertation is a design method of service
systems (Fig. 1) that links together three levels – an individual intuition of business, an
organization of business, and an IT implementation. On the first design level, an
individual, inspired by their environment, has business ideas that they believe to be
valuable to a customer segment. In collaboration with other people, this individual
designs the second (organizational) level to be a service system. The organizational
level then feeds the third (IT implementation) level with fuzzy business needs. And the
IT implementation phase yields a concrete artifact.

Under the supervision of professor Alain Wegmann.

© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 339–345, 2018.
https://doi.org/10.1007/978-3-319-91764-1_28

http://orcid.org/0000-0001-9890-5227
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_28&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_28&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_28&domain=pdf

On each level, there are the following flows:

• Input – information received from the previous step;
• Output – processed data provided to the next level;
• Feedback – meta information to guide the service designer in their work.

1.1 Individual Level

The literature describes opportunity recognition (identification) as a cognitive process
that consists of active or passive search, alertness, and prior knowledge [2]. Tang et al.
[3] argue that the most prominent traits for opportunity identification is entrepreneurial
alertness. The pattern-recognition framework [2] describes the opportunity recognition
phenomenon as entrepreneurs being able to draw parallels and find similarities (i.e.,
patterns) in various contexts, with an alertness that surpasses active search for infor-
mation. Individuals use cognitive maps to internally represent the perceived informa-
tion, and these maps link together seemingly unrelated notations into opportunities [4].
The last step is a reconfiguration of elements [5], which leads to an individual’s
proposal for a new reality to the society, hence, social construction.

Issues: The individual’s intuition about a business opportunity does not translate
flawlessly to the next level, where a group of people should achieve a shared
understanding.

• Input: identification of observations, which leads to a business idea;
• Output: conceptualization of the observations of the individual, first level of

structuring;
• Feedback: definition of the information the individual should seek to evaluate their

perception regarding the business idea.

1.2 Organizational Level

This new reality goes beyond an individual’s cognitive map and into an explicit shared
understanding of what the envisioned reality would be. Entrepreneurs often use busi-
ness models to communicate their business proposition with others. A business model
captures the most important parts of a business – the way it creates and captures value

Fig. 1. Provisional service systems design method

340 B. Kostova

for a particular set of customers [6]. From a broad perspective, a business model is a
story that explains how the enterprise works [7]. As a business model is an abstraction
(it hides the complexity of implementation), the outcome of the implementation differs
from this abstract description. We need feedback on the hypotheses in order to adjust
the current situation and to be able to achieve the to-be state for the organization.

Issues: On the organization level, the transition between an individual’s idea (an
imagined service to deliver value) to a structured definition of the service system
(conceptual shared service system design) is non-trivial.

• Input: an individual’s cognitive maps;
• Output: a definition of a service system that considers individual cognitive maps.
• Feedback: a definition of heuristics and of metrics to be monitored from the

implementation phase.

1.3 Implementation Level

The implementation level calls for an alignment between business and IT. Zachman [8]
introduces an information-systems architecture that is foundational to the field of
enterprise and service-oriented architecture. Weigand et al. [9] argue that to achieve
alignment in enterprise architecture, we need to adopt a service perspective.
IT-business alignment can be based on a transformation of values. For example,
value-based software engineering recognizes the need for market justification infor-
mation and communication technology (ICT) infrastructure [10]. This value-based
view over software engineering serves as grounds for service-oriented modeling
methods such as SEAM (Systemic Enterprise Architecture Methodology). SEAM is a
family of methods for strategic thinking, business/IT alignment, and requirements
engineering. SEAM is based on software engineering and on systems thinking philo-
sophical principles [11].

Issues: On the implementation level, we need to define a desired input that cor-
responds to concrete business needs and is implementable (i.e., minimizing uncer-
tainty). By tracing the business value, we need to be able to justify the software
requirements. In addition, we need to be able to supply relevant metrics to the orga-
nization level in order to test business hypotheses.

• Input: mapping between the business needs and service requirements.
• Output: service that delivers a concrete IT artifact to service adopters.
• Feedback: data from the interaction to feed the feedback loops in the previous level.

1.4 Current Research

One existing research project in our area of research is on the alignment of human-
centered service systems with corresponding business models [12]. This project focuses
on designing principles in order to facilitate this alignment. It is a research project in its
early stages; it has been presented as a research-in-progress. The goal of the project is to
implement service innovations and their corresponding business models. The design
principles guide service designers towards which actions to take. So far, two principles
have been stated: define scenarios, and define scale and scope of the innovation.

A Proposition for a Design Method of Service Systems 341

The validation of the principles is ongoing. The project does not consider IT imple-
mentation. In addition, it features few details on the individual’s cognition.

Hypothesis-testing entrepreneurship is based on the approach called Lean Startup
[13]. It is a practice-oriented approach towards entrepreneurship. The presented work is a
case that is summarized in [14]. This approach describes steps for achieving a
product-market fit. Yet, the details on information and value exchange are minimal. The
method is well-recognized in the industry but could be extended by data collection,
analysis, and validation.

The current state of SEAM, the method for enterprise and service-oriented archi-
tecture, developed in our laboratory, includes models for analyzing and designing
service-adopter motivation and the value-based alignment of hierarchical service sys-
tems. Our project uses SEAM to design service systems that connect the organizational
and implementation levels, with a focus on value transformation between the levels.
Potentially, we could extend SEAM to the individual designer’s level and add explicit
feedback mechanisms between levels.

2 State of Research Work Performed by Student

Our research involves three contexts: (1) on an individual level within a business
design class for computer science students; (2) within the context of a collaborating
startup, where we observe the transition from an individual level to an organizational
level and to initial implementation; (3) within the context of an established company
and implementation in a structured context:

• Teaching (individual): We describe our teaching approach that is based on expe-
riential learning, systems thinking and service-dominant logic. Using repetition, we
explain to our students how to recognize principles and patterns that exist in
practice and how to apply the same principles and patterns in different contexts.
During the 2017 semester, we collected data with two questionnaires. The project
was presented as a research-in-progress at ISPIM 2017 [15]. We test our hypotheses
about how individuals perceive business opportunities, how they structure their
business ideas, and how they begin to model businesses.

• Startups (from individual to organization): We investigate how startups structures
their business hypotheses, make decision-making process explicit, and evolve from
an unstructured organization into a structured one. Our primary goal is to trace
value exchange between elements in a business model, hence to design service
systems based on value transformation. In this startup context, we collect data on
how multiple individuals share their perceptions, form a shared view of the business
idea, and shape the business needs into IT requirements.

• Industry (organization and implementation): We investigate the opportunity-
recognition process within established companies. We collected data from a field
project (four days of participation in requirements specifications workshops for a
customer-relationship management system). We observe how a structured organiza-
tion formalizes their business needs for new services.

342 B. Kostova

3 Research Methodology: Design Science Research

The research methodology is based on design science research. “Design science […]
creates and evaluates IT artifacts intended to solve identified organizational problems”
[16]. By designing an artifact, we solve a practical problem and contribute to the
knowledge base. “Artifacts are defined as constructs (vocabulary and symbols), models
(abstractions and representations), methods (algorithms and practices), and instantia-
tions (implemented and prototype systems)” [16].

In our case (Fig. 2), the practical problem is that startups struggle to design busi-
nesses and corresponding software solutions. Our artifact is a method for designing
service systems. To build a method, first, we need to identify constructs and models,
which are going to correspond to inputs, outputs, and feedbacks between the levels
(individual, organization, implementation), and to evaluate their relevance. We perform
a literature analysis to identify what already exists, and conduct field studies to
understand what is in use. We evaluate them with expert interviews and case studies.
Second, we design the artifact (a service design method) by using the previously
identified set. The build phase is based on literature analysis and field studies. We
evaluate to what extent the proposed method solves the practical problem with expert
interviews, case studies, and formal verification of models. This concludes the appli-
cation in the appropriate environment. Third, we contribute to the knowledge base. The
evaluation criteria on the theoretical contribution come from the knowledge base
methodologies.

Fig. 2. Research design based on [16]

A Proposition for a Design Method of Service Systems 343

4 Doctoral Project Timeline

We follow an iterative approach. There will be three iterations, for each academic year,
and a final thesis writing period after the last iteration (Table 1).

References

1. Maglio, P.P.: Editorial—Service Science 2.0. (2013)
2. Baron, R.A.: Opportunity recognition as pattern recognition: how entrepreneurs “connect the

dots” to identify new business opportunities. Acad. Manag. Perspect. 20, 104–119 (2006)
3. Tang, J., Kacmar, K.M.M., Busenitz, L.: Entrepreneurial alertness in the pursuit of new

opportunities. J. Bus. Ventur. 27, 77–94 (2012)
4. Weick, K.E.: Cartographic myths in organizations. Mapp. Strateg. Thought 1, 1–10 (1990)
5. Gaglio, C.M., Katz, J.A.: The psychological basis of opportunity identification:

entrepreneurial alertness. Small Bus. Econ. 16, 95–111 (2001)
6. Chesbrough, H.: Business model innovation: opportunities and barriers. Long Range Plann.

43, 354–363 (2010)
7. Magretta, J.: Why business models matter. Harv. Bus. Rev. 80(5), 3–8 (2002)
8. Zachman, J.A.: A framework for information systems architecture. IBM Syst. J. 26, 454–470

(1987)
9. Weigand, H., Johannesson, P., Andersson, B., Bergholtz, M.: Value-based service modeling

and design: toward a unified view of services. In: van Eck, P., Gordijn, J., Wieringa, R.
(eds.) Advanced Information Systems Engineering, CAiSE 2009. Lecture Notes in
Computer Science, vol. 5565, pp. 410–424. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02144-2_33

10. Boehm, B.: Value-based software engineering. ACM SIGSOFT Softw. Eng. Notes 28, 3
(2003)

11. Wegmann, A.: On the systemic enterprise architecture methodology (SEAM). In:
International Conference on Enterprise Information Systems (2003)

12. Kleinschmidt, S., Burkhard, B., Hess, M., Peters, C., Leimeister, J.M.: Towards design
principles for aligning human-centered service systems and corresponding business models.
In: Proceedings of the 37th International Conference on Information Systems, pp. 1–11
(2016)

13. Eisenmann, T.R., Ries, E., Dillard, S.: Hypothesis-Driven Entrepreneurship: The Lean
Startup (2012)

14. Reis, E.: The Lean Startup. Crown Business, New York (2011)

Table 1. Doctoral project timeline

Objective Iteration 1 Iteration 2 Iteration 3

Constructs and models design Sep–Nov 2017 Sep–Oct 2018 Sep 2019
Constructs and models
evaluation

Dec 2017–Feb
2018

Nov 2018–Feb
2019

Oct–Dec
2019

Method design Mar–May 2018 Mar–Apr 2019 Jan–Feb
2020

Method evaluation Jun–Aug 2018 May–Aug 2019 Feb–Apr
2020

344 B. Kostova

http://dx.doi.org/10.1007/978-3-642-02144-2_33
http://dx.doi.org/10.1007/978-3-642-02144-2_33

15. Kostova, B., Tapandjieva, G., Wegmann, A.: Teaching business design at an engineering
school–principles/patterns/practice. In: ISPIM Innovation Symposium, p. 1. The Interna-
tional Society for Professional Innovation Management (ISPIM) (2017)

16. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems
research. MIS Q. 28, 75–105 (2004)

A Proposition for a Design Method of Service Systems 345

A Model-Driven Approach to Continuous
Delivery of Cloud Resources

Julio Sandobalin1,2(&)

1 Escuela Politécnica Nacional, Ladrón de Guevara, E11-253,
P.O. Box 17-01-2759, Quito, Ecuador
julio.sandobalin@epn.edu.ec

2 Universitat Politècnica de València, Camino de Vera, s/n,
46022 Valencia, Spain

jsandobalin@dsic.upv.es

Abstract. DevOps is a paradigm which brings practices and tools that optimize
the software delivery time. Cloud-based DevOps processes facilitate the con-
tinuous delivery of infrastructure and software applications (i.e. cloud resour-
ces). In particular, Infrastructure as Code is the cornerstone of DevOps for
automating the infrastructure provisioning based on practices from software
development. There exist several Configuration Management Tools (CMTs) that
use script languages to define the infrastructure provisioning to be deployed in a
particular cloud provider. However, manual setting of the script languages to
establish the infrastructure provisioning in a CMT for a particular cloud provider
is a time-consuming and error-prone activity. For these reasons, the aim of my
PhD research is proposing a model-driven approach to abstract and automate a
continuous delivery process of cloud resources through model-driven techniques
and DevOps. In addition, this approach seeks to cover the development process
of cloud resources in development, testing and production environments.

Keywords: Cloud computing � DevOps � Continuous delivery
Infrastructure as code � Cloud resources � Model-Driven development

1 Introduction and Problem Statement

To succeed in a world where technologies, requirements, ideas, tools and timelines are
constantly changing, information must be accurate, readily available, easily found and,
ideally, constantly delivery in real-time to all members [1]. To automate the devel-
opment software process practitioners are using a new paradigm called DevOps [2]
(Development & Operations) which is promoting continuous collaboration between
developers and operations staff through a set of principles, practices and tools that
optimize the delivery software time. In particular, the cornerstone of DevOps is the
Infrastructure as Code [3] which is an approach for automating the infrastructure
provisioning based on practices from software development. There exist several
cloud-based DevOps processes which leverage capacities offered by Cloud Computing
and use the Infrastructure as Code for automating the infrastructure provisioning.
Moreover, cloud-based DevOps processes facilitate the continuous delivery of

© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 346–351, 2018.
https://doi.org/10.1007/978-3-319-91764-1_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_29&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_29&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_29&domain=pdf

infrastructure and software applications (i.e. cloud resources). Configuration Man-
agement Tools (CMTs) such as Ansible1, Puppet2 or Chef3 have achieved automate the
infrastructure provisioning in the Cloud. Each CMT has its script language to define the
infrastructure provisioning to be deployed in a particular cloud provider. However,
manual setting of the script languages to establish the infrastructure provisioning in a
CMT for a particular cloud provider is a time-consuming and error-prone activity.
Although CMTs have a high level of automation in the infrastructure provisioning, it
remains a challenge to automate a model-based development process for continuous
delivery of cloud resources.

This research is following the guidelines of the Design Science Methodology [4]
(DSM) which is oriented to information system and software engineering. The goal of
the DSM is obtaining an artifact in a problem context. Therefore, the artifact is:

A model-driven approach to continuous delivery of cloud resources.
The problem context is cloud-based DevOps and the stakeholders are developers

and operations staff. To this end, I aim at answering the following research questions:

RQ1. Which DevOps-based approaches exist for continuous delivery of cloud
resources?
RQ2. How can model-driven techniques support the automation of cloud infras-
tructure provisioning? RQ2.1. How to abstract the complexity to model the
infrastructure of different cloud providers? RQ2.2. How to abstract the complexity
to manage different script languages of the Configuration Management Tools?
RQ3. How to achieve a continuous delivery process of cloud resources based on
models? RQ3.1. How to configure a DevOps toolchain for continuous delivery of
cloud resources? RQ3.2. How to achieve a cloud resource development process
based on models that cover the development, testing, and production environments?

2 Related Work

Currently, there is much interest in cloud-based DevOps research. Research efforts
have focused on infrastructure provisioning and applications deployment in the Cloud.
In this context, below are described the main research works that aim this approach.

TOSCA [5] is a standard for Topology and Orchestration Specification for Cloud
Application which allows modeling nodes (virtual or physical machines) and orches-
trates the deployment of Cloud applications. TOSCA uses DevOps provisioning tools
such as Chef for infrastructure provisioning and Juju4 for deployment of cloud-based
applications.

MORE [6] is a model-driven approach that focuses on automating of initial
deployment and dynamic configuration of a system. MORE defines a topology of

1 https://www.ansible.com.
2 https://puppet.com.
3 https://www.chef.io.
4 https://jujucharms.com.

A Model-Driven Approach to Continuous Delivery 347

https://www.ansible.com
https://puppet.com
https://www.chef.io
https://jujucharms.com

infrastructure to specify system structure and transforms this topology into executable
code for Puppet tool to get virtual machines, physical machines and containers.

MODAClouds [7] is a European project undertaken to simplify the cloud services
usage process. One of its goals is to support system developers in building and
deploying applications and related data to multi-clouds spanning across the full cloud
stack. MODAClouds includes automated infrastructure provisioning platform using
Puppet’s modules.

On the other hand, research works that provide guidelines for continuous delivery
have focused their efforts on code-based software delivery process. The main
approaches in this context are following.

Soni [8] present a research work that focuses on the necessities of the insurance
industry. This approach proposes a proof of concept for designing an effective
framework for continuous integration, continuous testing, and continuous delivery to
automate the source code compilation, code analysis, test execution, packaging,
infrastructure provisioning, deployment and notifications using build pipeline concept.

Rathod and Surve [9] propose a framework for automated testing and deployment
to help automated code analysis, test selection, test scheduling, environment provi-
sioning, test execution, results from analysis and deployment pipeline.

3 Proposed Solution

Answering the research question RQ2, to support the automation of cloud infrastruc-
ture provisioning through model-driven techniques I have developed ARGON [10] (An
infRastructure modelinG tool for clOud provisioNing) tool. ARGON has two main
components: (a) Domain Specific Language (DSL) to model the infrastructure in the
Cloud (RQ2.1), and (b) Transformation engine which creates scripts to manage dif-
ferent Configuration Management Tools (RQ2.1).

ARGON has an abstract syntax which is defined through an Infrastructure Meta-
model [10] (see Fig. 1a). The metamodel abstract the capacities of the cloud computing
instead of focus on infrastructure provisioning tools. Thus, I can distinguish four
groups according to the cloud capacities: (1) Computing capacity allows the creation of
Virtual Machines with one or more Security Groups that perform as a firewall. Each
Security Group enables a Virtual Machine access through ports as Inbound rules and
Outbound rules. Load Balancer allows distributing incoming application traffic
between multiple Virtual Machines and with an input rule or Listener checks the
connection requests. In addition, I can assign a Static IP address to a Virtual Machine.
(2) Storage capacity allows the creation of Databases and File servers. (3) Elasticity
capacity allows the creation of templates or Launch Configuration where features of a
Virtual Machine are specified. Templates are used to configure the creation of groups
of Virtual Machines by means of Auto Scaling Group. Creation or elimination of
Virtual Machines is done based on Scaling Policy which is executed by an Alarm that
monitor a metric in a period of time. (4) Networking capacity is represented by
associations among metaclasses.

The metamodel only defines the abstract syntax, but not a concrete notation of the
graphical language in ARGON. In order to use graphical notation to render the model

348 J. Sandobalin

elements in the modelling editors, I use a concrete syntax developed by using EuGENia
[11]. EuGENia facilitates to generate the models needed to implement a GMF editor in
Eclipse Modeling Framework [12]. ARGON uses this DSL to create an Infrastructure
Model [10] (see Fig. 1b) representing the infrastructure with its provisioning require-
ments of hardware and software.

The transformation engine creates configurations files or scripts that have the full
instructions to create hardware and its settings and install the underlying software. The
transformation engine abstracts the features of scripting languages of Configuration
Management Tools (CMTs) to create transformation rules which represent modules to
build cloud elements. The transformation engine uses an infrastructure model to apply
on it the model-to-text transformations and generates scripts for CMTs. It is worth
mentioning that both DSL and transformation engine are JARs (Java ARchives) which
can be used with the Eclipse packages.

On the other hand, as a first approach to answering the research question RQ3, I
have configured an end-to-end automated toolchain for infrastructure provisioning in
the Cloud based on DevOps community tools [13] (RQ3.1) and ARGON [10]. This
approach takes advantage of Infrastructure as Code concept to apply DevOps practices
by supporting to a systematized and automated infrastructure provisioning pipeline
[13] (see Fig. 2) (RQ3.2). I use ARGON tool to model an infrastructure model with its
provisioning requirements of hardware and software. Subsequently, I will take this
infrastructure model and push it toward a Version Control system in order to retain and
provide access to every version of every infrastructure model that has ever been stored
on it. Moreover, this approach allows teams with infrastructure models across different
places to work collaboratively. An Artefact Repository is used to provide software
libraries, such as the model-to-text transformation engine and ARGON’s Domain
Specific Language. I use an artefact repository in order to provide an only one provider
of libraries or software artefact in phases of development, build, and testing.

Every infrastructure model must be checked into a single version control repository
to begin the Continuous Integration stage. Continuous integration requires that every
time developers or operations staff commits a change, the entire application is built and
a compressive set of automated tests run against it [2]. The transformation engine is
used as a plugin in the continuous integration server to create scripts for provisioning
tools. After, a set of the automated test proposed by Morris [3] is run against the scripts.

(a) (b)

Fig. 1. (a) Infrastructure Metamodel. (b) Infrastructure Model.

A Model-Driven Approach to Continuous Delivery 349

First, Syntax Check Tests are executed for the verification of the structure of the scripts.
Second, Static Code Tests are performed by parsing code or definition files without
executing them in the Cloud.

Scripts that have been built and have overcome a set of automated tests are ready to
be used in CMTs. Continuous Deployment stage takes these scripts built in the previous
stage and automatically use them in CMTs to orchestrate the infrastructure provisioning
and software deployment in the Cloud. Finally, once the infrastructure provisioning is
finished, the Infrastructure Tests are executed towards ensuring the correct functioning
of the infrastructure and the software deployed in the Cloud.

4 Conclusions and Future Directions

At the end of the second year of my PhD research5, my work has focused on
demonstrating the feasibility of how to support the continuous delivery of cloud
resources through model-driven techniques and DevOps. First, ARGON tool provides
support to model the cloud infrastructure elements and then generate scripts to manage
Configuration Management Tools. Second, an end-to-end automated DevOps toolchain
brings support for continuous delivery of infrastructure in the Cloud based on infras-
tructure models developed by ARGON tool.

The next step of my PhD research6 is to design a first experiment to validate the
ARGON tool. The propose of the experiment is to obtain the effectiveness, efficiency,
perceived ease of use, perceived usefulness and intention to use the ARGON tool from
the point of view of software engineering, in the context of undergraduate and post-
graduate students in Computer Science. On the other hand, ARGON tool provides
support for Amazon Web Services. Thus, I am going to extend the ARGON tool to
support infrastructure modeling for different cloud providers such as Microsoft Azure
and Google Computing Engine. Additionally, I am going to extend the DevOps
toolchain to support the continuous delivery process for different cloud providers.
Finally, I am going to generalize the findings for proposing a model-driven method for
continuous delivery of cloud resources.

Fig. 2. Overview of the infrastructure provisioning pipeline.

5 I started my PhD research in September 2015.
6 The next academic year 2017/2018 is the third year of my PhD in which I have to finish my research.

350 J. Sandobalin

Acknowledgments. This research is supported by the Value@Cloud project (TIN2013-
46300-R).

References

1. Cois, C.A., Yankel, J., Connell, A.: Modern DevOps: optimizing software development
through effective system interactions. In: IEEE International Professional Communication
Conference (IPCC) (2015)

2. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through Build,
Test, and Deployment Automation, 1st edn. Addison-Wesley Professional, Upper Saddle
River (2010)

3. Morris, K.: Infrastructure As Code: Managing Servers in the Cloud, 1st edn. O’Reilly Media
Inc, Sebastopol (2016)

4. Wieringa, R.: Design Science Methodology for Information Systems and Software
Engineering. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43839-8

5. Wettinger, J., Breitenbücher, U., Kopp, O., Leymann, F.: Streamlining DevOps automation
for Cloud applications using TOSCA as standardized metamodel. Future Gener. Comput.
Syst. 56, 317–332 (2015)

6. Chen, W., et al.: MORE: a model-driven operation service for cloud-based IT systems. In:
Proceedings - 2016 IEEE International Conference on Services Computing, SCC 2016,
pp. 633–640 (2016)

7. Di Nitto, E., Matthews, P., Petcu, D., Solberg, A.: Model-Driven Development and
Operation of Multi-Cloud Applications. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-46031-4

8. Soni, M.: End to end automation on cloud with build pipeline: the case for DevOps in
insurance industry, continuous integration, continuous testing, and continuous delivery. In:
Proceedings - 2015 IEEE International Conference on Cloud Computing in Emerging
Markets, CCEM 2015, pp. 85–89 (2016)

9. Rathod, N., Surve, A.: Test orchestration a framework for Continuous Integration and
Continuous deployment. In: 2015 International Conference on Pervasive Computing:
Advance Communication Technology and Application for Society, ICPC 2015 (2015)

10. Sandobalin, J., Insfran, E., Abrahao, S.: An infrastructure modelling tool for cloud
provisioning. In: Proceedings - 14th IEEE International Conference on Services Computing,
SCC (2017)

11. Kolovos, D.S., García-Domínguez, A., Rose, L.M., Paige, R.F.: Eugenia: towards
disciplined and automated development of GMF-based graphical model editors. Softw.
Syst. Model. 16(1), 229–255 (2015)

12. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: Eclipse Modeling
Framework. Addison-Wesley Professional, Lebanon (2008)

13. Sandobalin, J., Insfran, E., Abrahao, S.: End-to-End automation in cloud infrastructure
provisioning. In: Proceedings - 26th International Conference on Information Systems
Development, ISD (2017)

A Model-Driven Approach to Continuous Delivery 351

http://dx.doi.org/10.1007/978-3-662-43839-8
http://dx.doi.org/10.1007/978-3-319-46031-4
http://dx.doi.org/10.1007/978-3-319-46031-4

SLA-Driven Governance
for RESTful Systems

Antonio Gamez-Diaz(B), Pablo Fernandez, and Antonio Ruiz-Cortes

Universidad de Sevilla, Seville, Spain
agamez2@us.es

Abstract. Sofware distribution models are moving to SaaS paradigms
where customers no longer need to buy a perpetual license. In this con-
text, SaaS providers leverage the Service Level Agreement (SLA) concept
to delimit the functionality and guarantees to which they commit to their
customers. However, although formal specifications for the definition of
SLAs have been proposed, providers usually have an ad-hoc approach
with a low degree of automation. This approach confirms the fact that
the SaaS industry has not incorporated the idea of an SLA model that
can be implemented within the infrastructure as a decision mechanism.
This instrumentation would be of special interest in RESTful microser-
vice architectures in providing an automated governance framework for
the service catalog and regulating the behavior of each component in the
context of the agreements reached with each client.

This thesis project is divided in four stages: (i) Establishing a suffi-
ciently expressive specification for the description of RESTful microser-
vices regulated by advanced SLAs; (ii) Develop a catalog of SLA analysis
and management operations to support the governance of micro-service
architectures; (iii) Implement a SLAs management ecosystem to sup-
port the government of RESTful microservices; (iv) Consolidation of the
Governify platform to validate the proposal in industrial environments.

1 State of the Art

The Software as a Service (SaaS) paradigm has become entrenched in the indus-
try as a deployment model, bringing flexibility to the customer in pay-for-use
models and making unnecessary to maintain its own infrastructure. In particular,
these types of systems present a business model that depends on the expected
benefits for certain infrastructure costs.

The main architectural paradigm of SaaS systems are the service-oriented
architectures (SOA) [5,10]. They have a number of characteristics such as low
coupling, abstraction, reusability, autonomy, and interoperability. These archi-
tectures have traditionally relied on a set of specifications (SOAP, WSDL) that

This thesis project is being partially supported by the FPU scholarship program,
granted by the Spanish Ministry of Education, Culture and Sports (FPU15/02980)
and the European Commission (FEDER), the Spanish and the Andalusian R&D&I
programs (grants TIN2015-70560-R (BELI) and P12TIC-1867 (COPAS)).

c© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 352–356, 2018.
https://doi.org/10.1007/978-3-319-91764-1_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_30&domain=pdf

SLA-Driven Governance for RESTful Systems 353

allow varying degrees of granularity and provide complex interfaces that often
require heavy deployment infrastructures.

In recent years, there has been a trend towards a new architectural style
that has been called microservice. This style requires that each component (a
microservice) can evolve, scale and deploy independently to the rest, increasing
the flexibility of the system as a whole. This architectural style is employed by
high-performance commercial systems architecture such as eBay, Amazon and
Netflix [8].

A common element of these architectures in particular, and, in general,
when defining and implementing microservices is that they follow the RESTful
paradigm. This paradigm provides a unified approach to identify the granularity
and operational interface of microservices that has a high degree of extensibility.
In particular, RESTful provides a lighter approach for building, deploying and
cloning microservices more effectively.

RESTful systems provide numerous advantages in terms of elasticity, fault
tolerance and flexible architectures design [3]. Both industry [7] and academia
[1] agree to identify the management and evolution of services as a key element
to achieve a more agile integration of the systems and to have a technological
infrastructure that responds quickly to the business needs. These challenges are
magnified in the context of microservice architectures since the independent life
cycle of each microservice must be coordinated as part of a service catalog that
has a higher growth rate than that of classical architectures [9].

As a first step in solving this problem, with a similar approach that in other
industries, SaaS providers use the Service Level Agreement (SLA) concept to
delimit the functionality and guarantees to which they commit to their cus-
tomers. However, although formal specifications have been proposed for the def-
inition of SLAs that arise in the context of the classic SOAs (WS-Agreement [2]),
providers usually have an ad-hoc approach with a low degree of automation. This
approach confirms the fact that the SaaS industry has not incorporated the idea
of an SLA model that can be implemented within the infrastructure as a decision
mechanism when it comes to supporting the SaaS business model. This instru-
mentation would be of special interest in RESTful microservice architectures in
providing an automated governance framework for the service catalog and regu-
lating the behavior of each component in the context of the agreements reached
with each client.

2 Research Challenges

The thesis project focuses on the study of the ways to improve and automate
the management of microservice architectures based on RESTful systems reg-
ulated by SLAs through the definition of methodologies, techniques and tools.
Specifically, we have identified four main challenges:

354 A. Gamez-Diaz et al.

– D1: Establishing a sufficiently expressive specification for the
description of RESTful microservices regulated by advanced SLAs
This challenge would be focused on defining a specification that has the neces-
sary elements to support two main requirements: (i) Establishing the service
properties necessary to regulate government infrastructures that allow align-
ing the behavior of the system with the business model; in this way, these
properties would guide the automated decision making in the different compo-
nents of the architecture (e.g. their scalability strategies); (ii) Defining a price
model that has sufficient degree of expressiveness to contemplate the actual
variability of the purchasing processes taking into account aspects such as
discounts or compensation [6].
From the research context point of view, this challenge would represent the
extension of the industrial specification for RESTful systems most used (OAI)
to meet the requirements presented.

– D2: Develop a catalog of SLA analysis and management operations
to support the governance of micro-service architectures
This challenge would address the characterization of the requirements to sup-
port the government of real SaaS scenarios regulated by SLAs with micro-
service architectures. In particular, these scenarios can be classified into two
types: (i) End-user information systems containing a backend-frontend (appli-
cations) schema; (ii) Integrated information systems that have only one back-
end component (APIs).
These two typologies contain specific requirements to be characterized as
part of the challenge in order to define a complete set of SLA analysis and
management operations that allow the extraction of adequate information to
support automated decision making in the provision of services and definition
of business strategies.

– D3: Implement a SLAs management ecosystem to support the gov-
ernment of RESTful microservices
Based on the catalog identified in D2, this challenge aims to address the evo-
lution of current SLAs management libraries to an ecosystem scheme artic-
ulated in microservices as new components within the Governify platform.
This ecosystem would allow integrating SLAs defined based on the specifi-
cation proposed in D1 to achieve an automated SaaS instrumentation with
independent domain tools.
Another interesting challenge to face is about how to automatically derive
SLA profiles of services by observing past performance and learning their
behaviors. With this approach, companies can leverage from SLA-governance
solutions without the associated costs of specifying every metric threshold.

– D4: Consolidation of the Governify platform to validate the pro-
posal in industrial environments
Since Governify has been designed to avoid ad-hoc approaches in SaaS gov-
ernance, it has been designed as an open set of components that define a
unified and homogeneous interface to foster the development of new research
and industrial ICT projects.

SLA-Driven Governance for RESTful Systems 355

3 Preliminary Results

In particular, during the first thesis year we have addressed the contribution C1,
giving as a result the following activities:

– C1.1: Technical workshops dealing with the technological ecosystem that
is closely related to the thesis topic: (i) REST APIs Security invited talk for
master students; (ii) Docker and Kubernetes workshop for master students.
(iii) Technical meetings of servitization given to nodes of the RCIS network
in order to share the research results with other nodes.

– C1.2: Conferences, both national and international: C1.2.1 Towards SLA
modeling in RESTful APIs, presented at the JCIS national conference;
C1.2.1 An analysis of RESTful APIs offerings in the industry, accepted at
15th ICSOC edition.

– C1.3: Journals: we are preparing a journal extension for the paper accepted
on ICSOC as well as we are incepting another one on the specification of SLAs
for RESTful APIs.

4 Relevance

This thesis project extends the scope of BELI, a Spanish national government
project, whose objectives include the development of a governance system for
hybrid services systems that integrate information systems (computer services)
and teams of people. In this context, the initial stages have been covered with
the Governify1 ecosystem, which provides a set of microservices that support
the design, monitoring and implementation of SLAs.

The objectives of the project are closely aligned with the IMPACT (H2020)
European project, which aims to develop a set of techniques and tools to support
the evolution of information systems to cloud platforms in the context of public
administrations In this context, the present thesis project will try to provide
the instrumentation mechanisms that can be incorporated in the integration of
public cloud APIs to verify the fulfillment of the providers guarantees and the
regulations required by public administrations.

The relevance in the industry of the thesis topic is evidenced in the numerous
ICT projects. Specifically, we highlight SLA@OAI project, developed in con-
junction with Icinetic, which aims to develop an operational extension to define
SLAs within the framework of the Open API Initiative (OAI) specification2,
which currently represents the reference standard, widely used in the industry,
to define functional interfaces of RESTful services.

Furthermore, several European projects have been framed by this idea of ser-
vice governance (SLALOM, SLA-Ready, CELAR, S-CUBE, RESERVOIR and
SLA@SOI). These projects approach the topic of the Service-Oriented Applica-
tions (SOA) governance from different perspectives, but all of them place SLAs
as a key element for the advanced management of infrastructure [4].
1 http://www.governify.io/.
2 https://www.openapis.org/.

http://www.governify.io/
https://www.openapis.org/

356 A. Gamez-Diaz et al.

References

1. Aier, S., Offermann, P., Schönherr, M., Schröpfer, C.: Implementing non-functional
service descriptions in SOAs. In: Draheim, D., Weber, G. (eds.) TEAA 2006. LNCS,
vol. 4473, pp. 40–53. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-75912-6 4

2. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Pruyne, J.,
Rofrano, J., Tuecke, S., Xu, M.: Web Services Agreement Specification (WS-
Agreement). Technical report, Open Grid Forum (2004)

3. Costa, B., Pires, P.F., Delicato, F.C., Merson, P.: Evaluating REST architectures-
approach, tooling and guidelines. J. Syst. Softw. 112, 156–180 (2014)

4. Di Nitto, E., Ghezzi, C., Metzger, A., Papazoglou, M., Pohl, K.: A journey to highly
dynamic, self-adaptive service-based applications. Autom. Softw. Eng. 15(3–4),
313–341 (2008). Special issue

5. Georgakopoulos, D., Papazoglou, M.P.: Service-Oriented Computing. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-10383-4

6. Kansal, S., Singh, G., Kumar, H., Kaushal, S.: Pricing models in cloud computing.
In: Proceedings of the 2014 International Conference on Information and Commu-
nication Technology for Competitive Strategies, ICTCS 2014, pp. 1–5. ACM Press,
New York (2014)

7. Kavianpour, M.: SOA and large scale and complex enterprise transformation. In:
Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp.
530–545. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74974-
5 50

8. Mauro, T.: Microservices at Netflix: Lessons for Architectural Design
9. Newman, S.: Building Microservices. O’Reilly Media, Sebastopol (2015)

10. Papazoglou, M.P., van den Heuvel, W.-J.: Service oriented architectures:
approaches, technologies and research issues. VLDB J. 16(3), 389–415 (2007)

https://doi.org/10.1007/978-3-540-75912-6_4
https://doi.org/10.1007/978-3-540-75912-6_4
https://doi.org/10.1007/978-3-642-10383-4
https://doi.org/10.1007/978-3-540-74974-5_50
https://doi.org/10.1007/978-3-540-74974-5_50

Towards Adaptive Monitoring Services
for Self-Adaptive Software Systems

Edith Zavala(&)

Universitat Politècnica de Catalunya (UPC), Jordi Girona, 1-3, 08034 Barcelona,
Catalunya, Spain

zavala@essi.upc.edu

Abstract. In order to deal with the great diversity of execution contexts,
modern software systems rely on feedback control loops and external moni-
toring services for observing them and their environment, and respond to con-
text changes through adaptation. In this process, the monitoring services play a
crucial role since the quality of the monitoring data (e.g., timeliness, freshness,
accuracy, availability, etc.) affects directly the self-adaptation decisions. Most of
the current approaches supporting monitoring for self-adaptive systems (SASs)
assume that the monitors are static components and they do not change at
runtime. Due to the dynamism of execution contexts mentioned before, this
vision is not valid anymore. Nowadays, monitoring services need to be adaptive
as well, in order to respond to context changes, e.g., new measures to collect are
required or a monitor service failure occurs at runtime. The complexity of
handling monitoring services adaptation in coordination with SASs operation
challenges and offers new opportunities to software engineers. In order to
address this challenge, this research proposes to extend the adaptation logic of
modern SASs with an external MAPE-K loop for managing the adaptation
process of the monitoring services participating in the SASs adaptation logic.
Different algorithmic, statistical, modeling and stochastic analysis and
decision-making techniques are being explored for implementing this
loop. Moreover, a reusable architecture for enacting the adaptation decisions in
the monitoring services is being developed. The approach will be evaluated in
two systems: a self-adaptive smart vehicle and a real self-adaptive video
streaming service.

Keywords: Adaptive monitoring services � Self-adaptive systems
Runtime adaptation

1 Introduction

The complexity of modern software systems has increased dramatically over the years
and is continuing to do so [1]. Users can access software applications using a variety of
devices and since mobile technologies are on the rise, applications are becoming

Supervised by Prof. Xavier Franch and Dr. Jordi Marco.

© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 357–362, 2018.
https://doi.org/10.1007/978-3-319-91764-1_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_31&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_31&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_31&domain=pdf

ubiquitous in our society. In order to deal with the great diversity of execution contexts,
different user profiles, system faults, changing environmental conditions and user
needs, etc., modern software systems provide self-adaptation capabilities at runtime.

In practice, these capabilities are usually realized by implementing the prominent
MAPE-K feedback control loop [2, 3]. In MAPE-K, self-adaptation is achieved
applying four steps: Monitor, Analyze, Plan, and Execute. In the Monitor step, runtime
data from the targeted adaptive system and its environment is collected. The collected
data is then Analyzed and, if needed (e.g. analysis results show a violation of the
requirements), a system adaptation is Planned. Finally, the adaptation is enacted in the
Execute step. In order to function properly, these four steps share a Knowledge base
containing data such as measurements, logs, adaptation policies, etc.

Modern SASs rely on external monitoring services for observing them and their
environment. In the MAPE-K loop, the monitoring services play a crucial role since the
quality of the monitoring data (e.g., correctness, timeliness, freshness, accuracy,
availability, etc.) affects directly the performance of the rest of the elements of the loop
and in consequence the self-adaptation decisions made [2].

In order to guarantee the quality of the monitoring data at runtime, monitoring
services supporting SASs have to be adaptive as well. The complexity of handling the
monitoring services adaptation in coordination with SASs operation challenges and
offers new opportunities to software engineers. In this research, alternatives for
addressing this challenge are studied. The rest of the paper is organized as follows.
Section 2 states the problem this research intends to solve. Section 3 details the pro-
posed solution. Section 4 presents related work. And finally, Sect. 5 presents conclu-
sions and future work.

2 Problem Statement

Several approaches have been proposed to support monitoring of SASs and their
environment. However, most of them assume that the Monitor element (as well as the
rest of elements) of the loop is a static component and it does not change at runtime.
This implies that the systems’ owners should know everything to be monitored at
design time and that the monitoring services that compose this MAPE-K element
always behave the same. Due to the systems’ changing environment, monitoring ser-
vices dynamism and evolving user and systems’ owners’ requirements, this vision is
not valid anymore.

As mentioned before in Sect. 1, monitoring services supporting modern SASs need
to be adaptive as well in order to guarantee monitoring data quality (e.g., correctness,
timeliness, freshness, accuracy, availability, etc.) and the requirements’ satisfaction
over time. The challenge of handling the monitoring services adaptation process in
coordination with SASs operation motivates the study, specification, design and
development of new and innovative methods and techniques for effectively, efficiently
and accurately planning and applying adaptation decisions on monitoring services
supporting SASs at runtime.

Motivated by this challenge, this research explores and experiments with new and
existing methods and techniques in order to provide a solution to deal with the

358 E. Zavala

automatic adaptation of the monitoring services supporting MAPE-K-based SASs. In
summary, the research addresses two main objectives:

• Enable the automatic adaptation of monitoring services supporting MAPE-K-based
SASs at runtime in order to respond to changes in the environment and the mon-
itoring services themselves.

• Compare the results of using adaptive monitoring services in MAPE-K-based SASs,
against using non-adaptive (static) monitoring services.

In order to meet these research objectives we have to address the following research
questions:

• RQ1. How is monitoring adaptation supported by existing approaches?
• RQ2. How is the monitoring services adaptation at runtime supported in current

MAPE-K-based SASs by existing approaches?
• RQ3. What can be improved or done for better supporting the adaptation of the

monitoring services at runtime in MAPE-K-based SASs in the existing approaches?

3 Proposed Solution

In order to coordinate the adaptation of the monitoring services conforming the
Monitor element of MAPE-K-based SASs, this research proposes: first, extend the IBM
MAPE-K loop architecture [3] utilized by most of the modern SASs for conducting
their adaptation process, with a second MAPE-K loop on top of the Monitor element in
charge of managing the adaptation process of the monitoring services (see Fig. 1). This
design decouples the monitoring services adaptation logic from the SASs adaptation
logic, allowing the independent development of the modules and the adoption of the
approach by existing SASs.

Second, we propose to explore different methods and techniques identified in RQ1
and RQ2 for implementing the MAPE-K loop in charge of the monitoring services
adaptation. Then, determine which of them perform better for monitoring services
supporting SASs. A flexible and generic design of the external MAPE-K loop elements
(orange elements in Fig. 1) will be required for experimenting with the different
techniques. At this point, we are exploring different algorithmic, statistical, modeling

Fig. 1. Adaptive monitoring services for SASs (Color figure online)

Towards Adaptive Monitoring Services for Self-Adaptive Software Systems 359

and stochastic analysis and decision-making techniques, through a systematic mapping
in the domain of adaptive monitoring. Finally, we are developing a reusable high-level
architecture for adaptive monitoring services participating in MAPE-K loops. The
architecture is intended to serve as a reference for correctly managing the enactment
process of monitoring adaptation decisions at runtime.

We plan to evaluate our solution in two systems: a self-adaptive smart vehicle and a
real self-adaptive video streaming service, this second as part of the SUPERSEDE
(SUpporting evolution and we adaptation of PERsonalized Software by Exploiting
contextual Data and End-user feedback) H2020 research and innovation project
(https://www.supersede.eu). In the first scenario, the monitoring services adaptation
aims at providing energy-efficient monitoring for self-adaptive smart vehicles. In the
second scenario, adaptation is performed in order to guarantee monitoring services
resilience for the self-adaptive video streaming service. Techniques for implementing
the external loops of both systems (orange elements in Fig. 2) are being studied.

Regarding the evaluation, we have already results about the adaptation of the target
systems with static monitoring. For the smart vehicle a preliminary version of the
implementation has been presented as a demo tool in the IEEE RE’15 conference [4].
On the other hand, the advances on the video streaming service are available in the
public deliverable D4.5 of the SUPERSEDE project [5].

Fig. 2. Adaptive monitoring services for SASs evaluation (Color figure online)

360 E. Zavala

https://www.supersede.eu

4 Related Work

So far, a lot of research has been performed on adapting monitoring systems in a
diversity of domains, for instance, e-health monitoring services [6, 7], structural and
environmental monitoring hardware and software systems [8, 9], network probing [10,
11] and software systems monitoring applications [12, 13]. In this work, due to space
limitations, we reference only some of the studies dealing with the adaptation of
monitoring systems; however, we know that there are several more since we are
conducting a systematic mapping in which we are analyzing a final set of 115 papers
related to this topic.

Although lot of effort has been done, only very few of existing works consider the
adaptation of monitoring systems that support SASs. And in consequence the challenge
of handling the adaptation process of the monitors in coordination with the normal
operation of SASs is still open. On the other hand, the importance of making the
MAPE-K loop elements adaptive has been remarked in the last years by other works [2,
14, 15]. However, the proposals are very superficial or designed for solving a particular
problem. Unlike existing work, we propose to develop a reusable solution to place on
top of any type of monitoring service in the adaptation logic of a SAS.

5 Conclusions and Future Work

In this paper details about our ongoing research on the adaptive monitoring service for
MAPE-K-based SASs topic have been provided. We stated the motivation of the
research and the research problem and challenge it tries to solve. Moreover, we
described our initial proposal for addressing the research challenge as well as the
systems in which we plan to evaluate this proposal. We have also presented the related
work and pointed out the novelty of our research regarding existing proposals. For the
advances on the research results, we have initial implementations of the self-adaptive
smart vehicle and video streaming service with static monitoring services. The next
step is to provide adaptation capabilities to these monitoring services applying our
proposed solution and compare evaluation results using the static and the adaptive
monitoring services in the same systems (i.e., address RQ3).

Acknowledgments. Thanks to CONACYT and I2T2, for the PhD scholarship granted to
Edith Zavala. This work is partially supported by the SUPERSEDE project, funded by the
European Union’s Information and Communication Technologies Programme (H2020) under
grant agreement no. 644018 and partially funded by the Spanish project GENESIS
(TIN2016-79269-R).

References

1. Krupitzer, C., Roth, F.M., VanSyckel, S., Schiele, G., Becker, C.: A survey on engineering
approaches for self-adaptive systems. Pervasive Mob. Comput. 17, 184–206 (2015). https://
doi.org/10.1016/j.pmcj.2014.09.009

Towards Adaptive Monitoring Services for Self-Adaptive Software Systems 361

http://dx.doi.org/10.1016/j.pmcj.2014.09.009
http://dx.doi.org/10.1016/j.pmcj.2014.09.009

2. Toueir, A., Broisin, J., Sibilla, M.: A goal-oriented approach for adaptive SLA monitoring: a
cloud provider case study. In: 2nd IEEE Latin American Conference on Cloud Computing
and Communications (LatinCloud), pp. 53–58. IEEE (2013)

3. IBM-Corporation: An architectural blueprint for autonomic computing. IBM White Paper
36, 34 (2006). https://doi.org/10.1021/am900608j

4. Zavala, E., Franch, X., Marco, J., Knauss, A., Damian, D.: SACRE: a tool for dealing with
uncertainty in contextual requirements at runtime. In: 23rd IEEE International Requirements
Engineering Conference (RE), pp. 278–279. IEEE (2015)

5. Gorroñogoitia, J., Zavala, E., Oriol, M., Motger, Q., Stevanetic, S.: D4.5: methods and tools
to enact software adaptation and personalization, v2, Deliverable D4.5 of SUPERSEDE
H2020 project (2016)

6. Mshali, H.H., Lemlouma, T., Magoni, D.: Context-aware adaptive framework for e-health
monitoring. In: IEEE International Conference on Data Science and Data Intensive Systems
(DSDIS), pp. 276–283. IEEE, USA (2016)

7. Fan, L., Xiong, L.: Real-time aggregate monitoring with differential privacy. In: 21st ACM
International Conference on Information and Knowledge Management (CIKM), p. 2169.
ACM Press, New York (2012)

8. Kim, S., Pakzad, S.: Wireless sensor networks for structural health monitoring: a multi-scale
approach. In: 17th Analysis and Computation Specialty Conference at Structures Congress
(ASCE) (2006)

9. Iacono, M., Romano, E., Marrone, S.: Adaptive monitoring of marine disasters with
intelligent mobile sensor networks. In: IEEE Workshop on Environmental Energy and
Structural Monitoring Systems (EESMS), pp. 38–45. IEEE (2010)

10. Shen, D., Tse, K.H., Chan, C.K.: Adaptive fault monitoring in all-optical networks utilizing
real-time data traffic. J. Netw. Syst. Manag. 20, 76–96 (2012)

11. Shamsi, J., Brockmeyer, M.: Predictable service overlay networks: predictability through
adaptive monitoring and efficient overlay construction and management. J. Parallel Distribut.
Comput. 72, 70–82 (2012). https://doi.org/10.1016/j.jpdc.2011.09.005

12. Psiuk, M., Zielinski, K.: Goal-driven adaptive monitoring of SOA systems. J. Syst. Softw.
110, 101–121 (2015). https://doi.org/10.1016/j.jss.2015.08.015

13. Gonzalez-Herrera, I., Bourcier, J., Daubert, E., Rudametkin, W., Barais, O., Fouquet, F.,
Jézéquel, J.M., Baudry, B.: ScapeGoat: spotting abnormal resource usage in
component-based reconfigurable software systems. J. Syst. Softw. 122, 398–415 (2016).
https://doi.org/10.1016/j.jss.2016.02.027

14. Roth, F.M., Krupitzer, C., Becker, C.: Runtime evolution of the adaptation logic in
self-adaptive systems. In: 12th IEEE International Conference on Autonomic Computing
Runtime, pp. 141–142 (2015)

15. Klos, V., Gothel, T., Glesner, S.: Adaptive knowledge bases in self-adaptive system design.
In: Proceedings of 41st Euromicro Conference on Software Engineering and Advanced
Applications, SEAA 2015, pp. 472–478 (2015). https://doi.org/10.1109/seaa.2015.48

362 E. Zavala

http://dx.doi.org/10.1021/am900608j
http://dx.doi.org/10.1016/j.jpdc.2011.09.005
http://dx.doi.org/10.1016/j.jss.2015.08.015
http://dx.doi.org/10.1016/j.jss.2016.02.027
http://dx.doi.org/10.1109/seaa.2015.48

An Approach to Predictive Analysis
of Self-Adaptive Systems in Design Time

Patŕıcia Araújo de Oliveira(B), Francisco Durán, and Ernesto Pimentel

University of Málaga, Málaga, Spain
{patricia,duran,ernesto}@lcc.uma.es

Abstract. Predictive analysis methods offer the possibility of estimat-
ing the impact of design decisions, which may help in the accomplish-
ment of operational optimal results, before the deployment of the system
is made, and therefore minimizing the required maintenance effort and
cost. However, current predictive methods are not effective when used
on self-adaptive systems, and specifically when used on cloud environ-
ments, because of its complexity and dynamic nature. The main goal
of this thesis project is to investigate different methods for the specifi-
cation of adaptive systems, and to propose techniques and tools for the
modeling of self-adaptive systems and environments, considering adapta-
tion mechanisms, and approaches for the estimation of different Quality
of Service (QoS) metrics that help in the analysis of the systems to
be developed. Specifically, we will provide generic mechanisms for the
modelling of adaptive systems and environments, the definition of met-
rics as transformation rules, and tools using such system specifications
for their analysis. We will focus on the kind of systems and adaptation
mechanisms we find in the cloud, and will evaluate our proposal on state-
of-the-art cloud applications. We will present an approach of predictive
analysis, based on graph transformation, which provides the capability
of taking decisions about elasticity-related QoS from the definition of
an adaptive model of the system and the specification of adaptation
mechanisms described in a formal language to control elasticity in cloud
applications. The proposed approach will enable the simulation of cloud
environments and their elasticity features at design time, which allows
the prediction of different QoS metrics in cloud scenarios, and provides
the capability of specifying and tuning elasticity monitoring, constraints,
and strategies at different levels.

1 Research Problem and Motivation

An important feature of self-adaptive systems, such as cloud applications, is the
capability to react to changes dynamically, which brings new challenges from
the perspective of predictive analysis. Elasticity is one of the key issues in Cloud
Computing, where in fact, elasticity refers not only to resources but also to qual-
ity and cost, and how they can influence each other when changing the context.
Therefore, having the capability of predicting problems related with performance

c© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 363–368, 2018.
https://doi.org/10.1007/978-3-319-91764-1_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_32&domain=pdf

364 P. A. de Oliveira et al.

constraints, scalability issues or reliability risks, becomes particularly relevant
when adaptive systems are being modelled. Predictive information related with
Quality of Service (QoS) metrics allows the adoption of decisions before the
deployment phase, so preventing problems and mitigating the impact of bad
design or management decisions. In order to get this kind of useful information,
we need to have precise and appropriate models both of the application to be
analysed and of the context (cloud platform or self-adaptive system) where the
application is going to be deployed. The more accurate the model is, the more
precise the prediction. In addition to the possibility of getting predictive infor-
mation, the same scenario may also help in the calibration of quality parameters,
providing support to estimate optimal values for them.

A number of different predictive analysis approaches can be found in the
literature, including techniques based on stochastic networks, Petri nets, statis-
tical methods or simulation. However, current predictive analysis tools present
limitations to deal with dynamic architectures. The main limitations exhibited
by most current tools comes from the fact that they do not allow changes in the
model along the analysis process, operating just on static structures. This is the
case, for instance, of the Palladio tool [1], one of the currently more successful
predictive analysis frameworks, and widely used both in industry and academia.
Thus, for instance, the Palladio Simulator can be used to predict QoS properties
(performance and reliability) from software architecture models.

Although Palladio group is introducing the cloud and adaptive systems issues
in some recent work [2,3] the limitation of using static architectures has not still
been solved. There have been other attempts to deal with these issues, such as
those in [4] to build support for dynamic systems on Palladio. Other tools such
as D-Klaper [5], MEDEA [6] or the one described in [7] have proposed alternative
solutions for performance prediction of dynamic systems. However, much work
needs still to be made to solve the problem in a convenient way as it is explained
in Sect. 3.

2 Research Challenges

With the aim of extending the Palladio’s predictive capabilities to support
dynamic systems, we propose to use the e-Motions implementation of the Pal-
ladio Component Model (PCM) described in [8]. Given the metamodel of Pal-
ladio and its operational semantics expressed in terms of graph-transformation
rules, this implementation allows to analyse (static) systems modeled in Palladio
Bench. However, the relevance of this e-Motions specification is the capability
of integrating new adaptation rules, which extend the behaviour of Palladio,
making the analysis of dynamic systems feasible, and increasing its expressive-
ness [9].

In order to explain the contribution intended of this thesis project, the dia-
gram in Fig. 1 summarizes the relationship between the main processes and ele-
ments of the proposal. In e-Motions, a DSL is specified by its syntax (a meta-
model) and a behavior (an operational semantics described as a set of graph

An Approach to Predictive Analysis 365

transformation rules). The systems to be analyzed are specified using Palladio,
and specifically the Palladio Component Model (PCM). Models conforming to
the PCM are composed of four different submodels, which correspond to different
and complementary views of the system. The Palladio language is specified in e-
Motions by taking an extended PCM, denoted PCM∗, which includes definitions
for tokens and dynamics of systems, and its behavior. As presented in [8], static
systems defined in the Palladio Bench (models Mapp conforming to the PCM)
can be loaded and analyzed in e-Motions using the DSL PCM∗ + BehPalladio.

To deal with adaptive systems, the behavior to be used is extended with
adaptation mechanisms, specified as additional e-Motions transformation rules,
BehAdaptation. To control the application of the adaptation operations, SYBL
(Simple Yet Beautiful Language) [10] is used, which is a language for controlling
elasticity in cloud applications in runtime. For a specific model Mapp, the SYBL
annotations provided are represented as a model extension CtrlSYBL so that the
extended model Mapp + CtrlSYBL can be used to analyze the performance of the
described adaptive system using the DSL PCM∗ + (BehPalladio + BehAdaptation).

Fig. 1. Architecture for the specification of cloud systems

Our proposal will try to offer the techniques and tools to allow the modeling of
self-adaptive systems, and specifically in cloud infrastructures, and their analysis,
so that a better estimation of the satisfaction of the requirements of systems can
be carried on, supporting a better selection of resources and a better calibration
of the operational parameters.

Our claim is that by extending the capacity of the Palladio system, and
specifically its PCM and tooling, will allow us to perform more precise statisti-
cal analysis of self-adaptive systems, including those reconfiguration algorithms
usually found in cloud environments.

3 Related Work

In this section, we discuss other approaches that use predictive strategies, most
of them for performance prediction at runtime or at design time.

366 P. A. de Oliveira et al.

Huber et al. propose in [4] a DSL to describe the behaviour of self-adaptive
systems based on strategies, tactics and actions. This work is part of the
Descartes project, which uses Palladio PCM for their design time phases. How-
ever, they focus on runtime performance analysis, not in predictive analysis of
applications at design time.

SimuLizar [3] is an extension of Palladio for the performance analysis of self-
adaptive systems at design time. However, the simulation scope is limited to only
a set of rules that are triggered between the static environment models, which
prevents from testing all possible reachable states of the systems.

D-Klaper [5] is a tool for model-driven performance engineering which can
be applied to self-adaptive systems. It uses an intermediate language to provide
software design models, which can then be analyzed. However, the D-Klaper lan-
guage does not support the modeling of adaptation rules, nor the transformation
of input models.

MEDEA [6] is an approach that proposes the performance prediction at the
beginning of its life cycle for this, modeled the workloads with the resource
consumption, capturing the CPU, memory and disks. However, although using
models to represent the system, this is used to generate executable code for
real hardware and middleware deployments and the results of the executions are
presented to the expert through specific context views that indicate whether the
design meets the performance requirements, not acting entirely at design time.

Johnsen et al. present in [7] an approach model-based prediction to compare
the effect, in terms of performance and accumulated cost, of selecting different
instance types for virtual servers from Amazon Web Services (AWS), for this
their used a highly configurable modeling framework for applications running on
Apache YARN, the ABS-YARN, which using the executable semantics of Real-
Time ABS, defined in Maude, as a simulation tool. However, they do not model
the application but use values obtained from real measurements.

CloudScale method [2] aims to analyze and identify the scalability problem
in design time. This approach presents the ScaleDL languages, which consist in
the set of languages required to allow software architects managing scalability,
elasticity, and cost-efficiency. This set of languages includes the technologies
mentioned above Simulizar and Descartes. Although it is a robust method, the
Palladio limitations — as no possibility of modifications of the initial models —
remain present in the approach.

4 Proposed Solution and Preliminary Results

Building on the already available e-Motions specification of Palladio, we have
already specified several adaptation mechanisms by providing appropriate adap-
tation rules as graph transformation rules. Specifically, we can specify a system
in Palladio, including descriptions of its components architecture, environment
and usage model, and perform its QoS analysis in e-Motions using transforma-
tion rules that describe the adaptation mechanisms available in the system and
its environment.

An Approach to Predictive Analysis 367

We were able to operate simulations and perform predictive analysis taking
into account some the adaptation mechanisms, and thus showing the feasibility
of the approach. So far, we have been able to model the dynamic adaptation
of the system in accordance to its continuous monitoring by creating rules for:
load balancing, variable usage, the scale in/out nodes and the scale up/down
resources capacity (specifically CPU).

As early experiments, presented in [9] and [11], we were able to perform
simulation-based predictive analysis of adaptive systems. Our approach is able to
operate simulations and perform predictive analysis taking into account different
adaptation mechanisms. For the case study used we observed the response time,
throughput at resource usage of the system in order to show the feasibility of
the approach.

The prediction of QoS metrics is one of the most relevant issues when gath-
ering knowledge of applications and their environments, compared to other solu-
tions presented in the literature [12]. However, existing prediction methods do
not consider specific cloud metrics and, therefore, they are not capable of man-
aging other particular cloud features, such as self-provisioning on demand, mea-
sured usage, network access, resource pooling, and elasticity. Properties related
to scalability, elasticity and efficiency are essential to achieve a dynamic adap-
tation in a cloud scenario, specifically for resource allocation and pay-per-use.
Thus, we need to take into account these new metrics [13], and also a taxonomy
of different sources of uncertainty present in the models of self-adaptive systems
and the different ways of managing them [14].

5 Plan for Evaluation and Validation

Building on the knowledge we have gathered so far, we will specify other mech-
anisms of adaptation available for cloud systems in more ambitious case studies.
We will consider other QoS metrics, including not only performance metrics, but
also others related to feasibility, costs, and security.

With this thesis, we intend to offer the techniques and tools to allow the
modeling of self-adaptive systems, and specifically cloud infrastructure, and their
analysis, so that a better estimation of the satisfaction of the requirements of
systems can be carried on, supporting a better selection of resources and a better
calibration of the operational parameters.

To perform the analysis of a dynamic system, it is necessary to consider their
capacity to process and manage different workflows, react through variations of
the usage, and to carry on the necessary changes when components have assigned
different workloads. Following standard techniques, we will model workloads
based on real uses of systems, and will use this information to perform our
simulations.

We will evaluate our proposal modeling real applications running in real
cloud environments, and will verify that the results produced by our predictive
analysis match the actual behavior of the real system executed in the cloud.
We will use standard techniques, such as the Kolmogorov-Smirnov test [15] and
other similar ones, for the comparison of the probability distributions.

368 P. A. de Oliveira et al.

References

1. Happe, J., Koziolek, H., Reussner, R.: Facilitating performance predictions using
software components. IEEE Softw. 28(3), 27–33 (2011)

2. Becker, S., Brataas, G., Lehrig, S.: Engineering Scalable, Elastic, and Cost-Efficient
Cloud Computing Applications: The CloudScale Method. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-319-54286-7

3. Becker, M., Becker, S., Meyer, J.: Simulizar: design-time modeling and performance
analysis of self-adaptive systems. Softw. Eng. 213, 71–84 (2013)

4. Huber, N., van Hoorn, A., Koziolek, A., Brosig, F., Kounev, S.: S/T/A: meta-
modeling run-time adaptation in component-based system architectures. In: 2012
IEEE Ninth International Conference on e-Business Engineering (ICEBE), pp. 70–
77 IEEE (2012)

5. Grassi, V., Mirandola, R., Randazzo, E.: Model-driven assessment of QoS-aware
self-adaptation. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee,
J. (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp.
201–222. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02161-
9 11

6. Falkner, K., Szabo, C., Chiprianov, V.: Model-driven performance prediction of
systems of systems. In: Proceedings of the ACM/IEEE 19th International Confer-
ence on Model Driven Engineering Languages and Systems, p. 44. ACM (2016)

7. Johnsen, E.B., Lin, J.-C., Yu, I.C.: Comparing AWS deployments using model-
based predictions. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol.
9953, pp. 482–496. Springer, Cham (2016)

8. Moreno-Delgado, A., Durán, F., Zschaler, S., Troya, J.: Modular DSLs for flexible
analysis: an e-motions reimplementation of palladio. In: Cabot, J., Rubin, J. (eds.)
ECMFA 2014. LNCS, vol. 8569, pp. 132–147. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-09195-2 9

9. de Oliveira, P.A., Moreno-Delgado, A., Durán, F., Pimentel, E.: Towards the pre-
dictive analysis of cloud systems with e-Motions. In: XX Ibero-American Confer-
ence on Software Engineering (CIbSE) (2017)

10. Copil, G., Moldovan, D., Truong, H.L., Dustdar, S.: SYBL: an extensible language
for controlling elasticity in cloud applications. In: 2013 13th IEEE/ACM Interna-
tional Symposium oncCluster, Cloud and Grid Computing (CCGrid), pp. 112–119.
IEEE (2013)

11. de Oliveira, P.A., Durán, F., Pimentel, E.: Graph-transformation for the perfor-
mance analysis of elastic systems. In: 15th International Workshop on Foundations
of Coordination Languages and Self-Adaptative Systems (2017)

12. Chinneck, J., Litoiu, M., Woodside, M.: Real-time multi-cloud management needs
application awareness. In: Proceedings of the 5th ACM/SPEC International Con-
ference on Performance Engineering, ICPE 2014, New York, NY, USA, pp. 293–
296. ACM (2014)

13. Becker, M., Lehrig, S., Becker, S.: Systematically deriving quality metrics for cloud
computing systems. In: Proceedings of the 6th ACM/SPEC International Confer-
ence on Performance Engineering, pp. 169–174. ACM (2015)

14. Perez-Palacin, D., Mirandola, R.: Uncertainties in the modeling of self-adaptive
systems: a taxonomy and an example of availability evaluation. In: Proceedings of
the 5th ACM/SPEC International Conference on Performance Engineering, ICPE
2014, New York, NY, USA, pp. 3–14. ACM (2014)

15. Hollander, A., Wolfe, D.: Nonparametric Statistical Methods. Wiley-Interscience,
New York (1999)

https://doi.org/10.1007/978-3-319-54286-7
https://doi.org/10.1007/978-3-642-02161-9_11
https://doi.org/10.1007/978-3-642-02161-9_11
https://doi.org/10.1007/978-3-319-09195-2_9
https://doi.org/10.1007/978-3-319-09195-2_9

Paving the Way for a Real-Time
Context-Aware Predictive Architecture

David Corral-Plaza1(&), Guadalupe Ortiz2, and Juan Boubeta-Puig2

1 School of Engineering, University of Cádiz,
Avda. de la Universidad de Cádiz 10, Puerto Real, 11519 Cádiz, Spain

david.corral@uca.es
2 Department of Computer Science and Engineering, University of Cádiz,
Avda. de la Universidad de Cádiz 10, Puerto Real, 11519 Cádiz, Spain

{guadalupe.ortiz,juan.boubeta}@uca.es

Abstract. Internet of Things society generates and needs to consume huge
amounts of data in a demanding context-aware scenario. Such exponentially
growing data sources require the use of novel processing methodologies,
technologies and tools to facilitate data processing in order to detect and prevent
situations of interest for the users in their particular context. To solve this issue,
we propose an architecture which making use of emerging technologies and
cloud platforms can process huge amounts of heterogeneous data and promptly
alert users of relevant situations for a particular domain according to their
context. Last, but not least, we will provide a graphical tool for domain experts
to easily model, automatically generate code and deploy the situations to be
detected and the actions to be taken in consequence. The proposal will be
evaluated through a real case study related to air quality monitoring and lung
diseases in collaboration with a doctor specialist on lung diseases of a public
hospital.

Keywords: Prediction � Context-awareness � Internet of Things
Event-Driven Service-Oriented Architectures

1 Motivation and Problem Statement

Nowadays, society has numerous methods for consumption, production and exchange
of huge amounts of data. This data is mainly originated in the multitude of existent
devices and channels: social networks, smart devices such as smartphones, tablets or
wearables, Internet of Things (IoT) devices, et cetera. Such exponentially growing data
sources require the use of processing methodologies, and tools different from con-
ventional ones in order to fast profit from the relevant information obtained. Even
more, in the smart world [1] context awareness plays a highly relevant role which must
be taken into account when providing the information to the final recipient. Dey et al.’s
context definition in [2] is specially well-known: “Context is any information that can
be used to characterize the situation of an entity. An entity is a person, place, or object
that is considered relevant to the interaction between a user and an application,
including the user and applications themselves”.

© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 369–374, 2018.
https://doi.org/10.1007/978-3-319-91764-1_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_33&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_33&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_33&domain=pdf

Therefore, it is vital to be able to process such large amounts of data together with
users’ context [3], in order to detect real-time situations of interests that are relevant for
a particular user, context and domain. Moreover, we have to follow real-time analysis
not only to detect situations of interest, but also to predict them so that we can take
necessary actions in advance to prevent user from undesirable situations.

The problem is that, currently, an efficient integration of all the stages implied in
this process is not provided. We can find systems to process big amounts of data in real
time [4, 5], systems which are aware of the user’s context [6], and systems which apply
prediction algorithms to vast amounts of data [7]. However, when trying to integrate all
of them, we have several problems: (1) the variety of data formats required to be
managed by an unique system, given the heterogeneity of the IoT sensing data; (2) the
handicap of predicting situations of interest from such heterogeneous data, which is
related to different domains and contexts; (3) the volume and velocity of this data,
becoming a problem to achieve system scalability and performance gains; and (4) the
domain experts that do not have enough technical knowledge to define what they need
to detect or predict (the data value) with current tools. These problems lead us to the
research challenges explained in the following section.

2 Research Challenges

We will deal with the following research challenges:

1. First of all, data will have to be gathered and processed in real time. As discussed
before, the source where these data come from will be very varied—for example,
social networks, smartphone sensors, IoT sensors, et cetera—; therefore, we will
need a means to homogenize all these data with an appropriate structure to be used
in the data analysis systems and an easy procedure to add new sources. The real
challenge will be to define a unified model useful for a wide range of domains.

2. Besides, we need a system which able to constantly detect the user context and to
provide a consistent response according to real-time circumstances of a given user.

3. Not only that, a collaborative architecture is required so that several parties can
provide context data and relevant events to enrich the relevant available data.

4. Suitable novel machine-learning methodologies and tools to process and correlate
huge amounts of data in order to detect and predict situations of interest in real time
for a particular user in a particular domain. It is essential that the architecture is
efficient and scalable [8].

5. Finally, domain experts should be able to easily design the situations to be detected
and predicted in real time, as well as the actions to be taken consequently,
depending on a particular set of incoming data and context information.

370 D. Corral-Plaza et al.

3 Proposed Solution

We envision a holistic Event-Driven Service-Oriented Architecture (ED-SOA),
assuming that anything that happens is an event. Such envisioned architecture, shown
in Fig. 1, should contain the following modules:

• Firstly, Data producers should gather data from several sources (databases, IoT
sensors, social networks, et cetera) and send them to the data collector.

• Secondly, Data Collector follows the necessary transformations so that the infor-
mation received can be used in the following phases of our solution. It is an
intermediate layer that performs a process of homogenization since information will
most probably be received in different formats and structures in most scenarios.

• Thirdly, Data Processing should provide Complex Event Processing (CEP),
context-awareness and prediction module. Initially we bet for FIWARE [9], a
Platform as a Service (PaaS) development tool in the cloud.

• Fourthly, we have Data Consumers, which can be databases, end users or additional
endpoints which pave the way for the collaborative architecture. Such data con-
sumers communicate with the previous module through a REST interface, however
additional protocols might be required.

• Finally, in the bottom of Fig. 1, we can see the graphical modeling tool for pattern
and actions definition for FIWARE. Such tool is expected to be an extension of
MEdit4CEP [10], with the goal of domain experts to easily model events and
patterns expected in a their specific application domain and being able to deploy
them, automatically, in the processing system that is currently running in FIWARE
with no need of programming knowledge.

Fig. 1. Proposed architecture

Paving the Way for a Real-Time Context-Aware Predictive Architecture 371

4 Preliminary Results

By the time being, we have implemented and tested part of the proposed architecture:

1. The data producers integrated are databases, IoT sensors, IoT platforms and mes-
sage queues. Integrating social networks is our following step to be done here.

2. Currently, data collector is being improved; we initially implemented such data
collector and homogenization process through an Enterprise Service Bus (ESB);
however our experience, supported also with other results in the research group
[3, 11], shows that the ESB decreases the system performance.

3. Among the different enablers existing in the FIWARE catalog, we already started
using Orion Context Broker and Cepheus: Orion has become the brain of our
application and control all the information that the different modules receive and
emit inside FIWARE. Cepheus is a CEP engine which will let us define the event
patterns to be monitored. We did not start yet working on the prediction module.

4. In the fourth stage we included databases and mobile applications and we are
working on the inclusion of message queues to foster the collaboration [11].

5. The work on the domain experts graphical tool is not yet started.

In order to test the proposed architecture, we particularized it for air quality domain.
We have analyzed and reported air observations made around the Andalusian territory
for several months. For this purpose we have connected the data provided from
Andalusian air quality stations as the main data source for our system, we have created
an Android app which monitors the user context and we have provided personalized
alerts according to the sensed air quality and user context. We also measured the
performance of the system and even though the system was clearly efficient for the case
study in question. As a result, we detected that our initial implementation was not
scalable enough, reason why we are working now on improving it.

5 Related Work

Concerning prediction architectures where SOA and CEP are used, Mousheimish et al.
[7] propose one which is able to generate CEP rules for any person. The authors extend
their work in [12], for an artworks transportation case study and use an additional
framework to monitor relevant values and predict if they are going to take undesired
values according to a previously specified Service Level Agreement. The main limi-
tation of their proposals is that they do not take into account several inputs sources.

Concerning proposals based on FIWARE, Fazio et al. [6] make use of FIWARE to
design a real e-health remote patient monitoring architecture, which allow caregivers to
improve remote assistance to patients at home. Wolfert et al. [4] describe how
FIWARE has been applied to the smart farming domain, given support to tackle the
data chain of big data applications: data capture, data storage, data transfer, data
transformation, data analytics and data marketing. Fernández et al. [5] have developed
SmartPort, a FIWARE-based platform for sensor data monitoring in a seaport located
in Gran Canaria, Spain. Comparing these proposals with our proposed work, most of
them do not benefit from using the CEP technology and Cepheus component to

372 D. Corral-Plaza et al.

automatically detect meaningful patterns in real time; Fazio et al.’s one is an exception.
In addition, they do not provide prediction mechanisms.

6 Evaluation Plan

As could not be otherwise, during the development of the PhD, we will continuously
review the literature related to the problem stated and the proposed solutions.

On the other hand, we will carry out different experiments in different application
domains to evaluate in an empirical way the performance of the proposed architecture
and solution. Among others, we will go on with the air quality scenario.

In this same line, we expect to test a system to detect air quality alerts with people
suffering from all types of lung diseases in collaboration with Dr. Carmen Maza Ortega,
a specialist in lung diseases at the Hospital Universitario de Puerto Real (Spain).

7 Planned Timeline

In this section we schedule the tasks to be performed during the thirty-six months
expected for the development of the PhD, which we roughly identify between
November 2017 and November 2020 (see Fig. 2).

Task 1. Reviewing literature related to problem statement and proposed solution.
Task 2. Studying emerging and well-stablished technologies and tools for data
processing with the aim of detecting and predicting particular situations of interest.
Task 3. Developing the proposed architecture according to previous tasks.
Task 4. Evaluating the architecture through a case study in a relevant domain.
Task 5. Facilitating the addition of new sources and formats.
Task 6. Incorporating MEdit4CEP or an alternative tool in the architecture to permit
pattern and action graphical design and code generation and deployment.
Task 7. Evaluating the proposed architecture thorough a real case study.
Task 8. Writing and defending the PhD.
Task 9. Disseminating the research results in conferences and journals.

Fig. 2. Estimated timeline for the PhD

Paving the Way for a Real-Time Context-Aware Predictive Architecture 373

8 Conclusions

We have outlined a starting PhD focused on providing real-time context-aware
detection and prediction under the smart world demanding scenario. We envision a
solution based on an ED-SOA in the cloud combining several cutting-edge technolo-
gies which will provide us with early context-aware notifications and predictions in a
particular domain of application. The system envisioned is designed to be scalable and
highly configurable, so that it can integrate an undefined and heterogeneous number of
data sources. Moreover, the system will be easily applicable to several domains, and
domain experts will be provided with a graphical modeling tool which will prevent
them from coding and configuration issues, facilitating the architecture widespread use.

References

1. Liu, H., Ning, H., Mu, Q., Zheng, Y., Zeng, J., Yang, L.T., Huang, R., Ma, J.: A review of
the smart world. Future Gener. Comput. Syst. 56, 684–700 (2017)

2. Dey, A.K.: Understanding and using context. Pers. Ubiquit. Comput. 5, 4–7 (2001)
3. de Garcia Prado, A., Ortiz, G., Boubeta-Puig, J.: CARED-SOA: a context-AwaRe

event-driven service oriented architecture. IEEE Access 5, 1–18 (2017)
4. Wolfert, S., Ge, L., Verdouw, C., Bogaardt, M.-J.: Big data in smart farming – a review.

Agric. Syst. 153, 69–80 (2017)
5. Fernández, P., Santana, J.M., Ortega, S., Trujillo, A., Suárez, J.P., Domínguez, C., Santana,

J., Sánchez, A.: SmartPort: a platform for sensor data monitoring in a seaport based on
FIWARE. Sensors 16, 417 (2016)

6. Fazio, M., Celesti, A., Márquez, F.G., Glikson, A., Villari, M.: Exploiting the FIWARE
cloud platform to develop a remote patient monitoring system. In: 2015 IEEE Symposium on
Computers and Communication (ISCC), pp. 264–270 (2015)

7. Mousheimish, R., Taher, Y., Zeitouni, K.: autoCEP: automatic learning of predictive rules
for complex event processing. In: Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.) ICSOC
2016. LNCS, vol. 9936, pp. 586–593. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-46295-0_38

8. Papazoglou, M.: Web Services and SOA: Principles and Technology. Pearson Education,
New York (2012)

9. Core Platform of the Future Internet: FIWARE. http://www.fiware.org/
10. Boubeta-Puig, J., Ortiz, G., Medina-Bulo, I.: MEdit4CEP: a model-driven solution for

real-time decision making in SOA 2.0. Knowl. Based Syst. 89, 97–112 (2015)
11. Garcia-de-Prado, A., Ortiz, G., Boubeta-Puig, J.: COLLECT: COLLaborativE

ConText-aware service oriented architecture for intelligent decision-making in the Internet
of Things. Expert Syst. Appl. 85, 231–248 (2017)

12. Mousheimish, R., Taher, Y., Zeitouni, K., Dubus, M.: PACT-ART: enrichment, data mining,
and complex event processing in the internet of cultural things. In: 12th International
Conference on Signal-Image Technology & Internet-Based Systems (SITIS), pp. 476–483.
IEEE (2016)

374 D. Corral-Plaza et al.

http://dx.doi.org/10.1007/978-3-319-46295-0_38
http://dx.doi.org/10.1007/978-3-319-46295-0_38
http://www.fiware.org/

Demonstration

Introduction to the Demonstration Track

Preface

The ICSOC 2017 Demonstration Track was held in conjunction with the 15th Inter-
national Conference on Service Oriented Computing (ICSOC 2017) on 13–16 of
November in Málaga, Spain. This track offered an exciting and highly interactive
opportunity to show research prototypes in service oriented computing (SOC) and
related areas. These research prototype demos focused on developments and innovation
in the areas of service engineering, operations, cloud and big data services, imple-
mentation of services as well as development and adoption of services in specific
organizations, businesses, and the society at large.

We received 12 submissions and accepted 6. These demos clearly showed inter-
esting improvements and significance from recently implemented systems, and offered
possibilities for fruitful discussions.

• Saatkamp, Karoline; Breitenbücher, Uwe; Képes, Kálmán; Leymann, Frank;
Zimmermann, Michael. OpenTOSCA Injector: Vertical and Horizontal Topology
Model Injection

• Gschwind, Katharina; Adam, Constantin; Duri, Sastry; Nadgowda, Shripad;
Vukovic, Maja. Optimizing Service Delivery with Minimal Runtimes

• Wolters, Dennis; Heindorf, Stefan; Kirchhoff, Jonas; Engels, Gregor. Semantic
Data Mediator: Linking Services to Websites

• Sandobalin, Julio; Insfran, Emilio; Abrahao, Silvia. ARGON: A Tool for Modeling
Cloud Resources

• Mohamed, Mohamed; Engel, Robert; Warke, Amit; Ludwig, Heiko. Ubiquity: An
Extensible Framework for Persistence in Container Environments

• Khochare, Aakash; Ravindra, Pushkara; Reddy, Siva Prakash; Simmhan, Yogesh.
Distributed Video Analytics across Edge and Cloud using ECHO

We would like to thank the authors for their submissions, the program committee
for their reviewing work, and the organizers of the ICSOC 2017 conference for their
support which made this demo track possible.

Nima Kaviani
Manuel Lama Penin

Organization

Demonstration Chairs

Nima Kaviani IBM Cloud Labs, San Jose, USA
Manuel Lama Penin University of Santiago de Compostela, Spain

Program Committee

Pedro Álvarez University of Zaragoza, Spain
Mohsen Asadi SAP, CA, Canada
Djamal Benslimane University of Lyon, France
Athman Bouguettaya The University of Sydney, Australia
Ivona Brandic Vienna University of Technology, Austria
Antoni Brogi University of Pisa, Italy
Francois Charoy University of Lorraine, France
Jürgen Cito University of Zurich, Switzerland
Florian Daniel Politecnico di Milano, Italy
Zhiyong Feng Tianjin University, China
Marios-Eleftherios Fokaefs York University, Canada
Nam Giang UBC, Canada
Armin Haller Australian National University, Australia
Raman Kazhamiakin Fondazione Bruno Kessler, Italy
Philippe Lalanda Joseph Fourier University, France
Philipp Leitner University of Zurich, Switzerland
Xumin Liu Rochester Institute of Technology, USA
Bardia Mohabbati Amazon, USA
Mohamed Mohamed IBM Almaden Research Center, USA
Guadalupe Ortiz University of Cádiz, Spain
Helen Paik UNSW, Australia
Barba Pernici Politecnico di Milano, Italy
Pierluigi Plebani Politecnico di Milano, Italy
Mohammad Sadoghi Purdue University, USA
Andreas Solti Institute for Information Business, Austria
Juan C. Vidal University of Santiago de Compostela, Spain
Zhongjie Wang Harbin Institute of Technology, China
Barbara Weber Technical University of Denmark
Jianwei Yin Zhejiang University, China

OpenTOSCA Injector: Vertical
and Horizontal Topology Model Injection

Karoline Saatkamp(B), Uwe Breitenbücher, Kálmán Képes, Frank Leymann,
and Michael Zimmermann

Institute of Architecture of Application Systems, University of Stuttgart,
Universitätsstraße 38, 70569 Stuttgart, Germany

{Saatkamp,Breitenbucher,Kepes,Leymann,Zimmermann}@iaas.uni-stuttgart.de

Abstract. The automation of application deployments is supported by
various technologies. The TOSCA standard facilitates to describe appli-
cation deployments in a portable manner by modeling application struc-
tures as topology models. The final structure often depends on the tar-
get environment and is, therefore, not always known at modeling time.
However, a manual adaptation is error-prone and time-consuming. In this
paper, we demonstrate the OpenTOSCA Injector for an automated com-
pletion of topology models: the extended TOSCA runtime OpenTOSCA
for an automated injection and deployment is presented.

Keywords: TOSCA · Deployment model · Completion automation

1 Introduction and Motivation

In recent years, several technologies and standards were developed to automate
the deployment of cloud applications. This includes configuration management
technologies such as Chef, container technologies such as Docker, and standards
such as the Topology and Orchestration Specification for Cloud Applications
(TOSCA) [6]. TOSCA is an OASIS standard that enables to define application
deployments by topology models and management plans, which can be executed
automatically by a TOSCA runtime, e.g., the OpenTOSCA container [1].

A topology model describes the application components and their rela-
tions. This includes application-specific components, such as PHP applications
or databases, middleware, and infrastructure components, such as web servers
or virtual machines. Thereby, application deployments can be described in a
vendor-independent and portable manner. However, the available middleware,
infrastructure, as well as application-specific components can differ between envi-
ronments. When, for example, application deployments are provided for third
parties or parts of the IT infrastructure are outsourced, the target environment
is not known in advance. Thus, the final topology model is not known at model-
ing time. However, the manual adaptation for each target environment is time-
consuming and error-prone [4]. To enable an environment-independent modeling

c© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 379–383, 2018.
https://doi.org/10.1007/978-3-319-91764-1_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_34&domain=pdf

380 K. Saatkamp et al.

Amazon RDS
(Amazon RDS)

MySQL-DB
(MySQL-DB5.7)

MyPHP-App
(PHP-App)

Req

MyPHP-App
(PHP-App)

MySQL-
Req

PHPHost
-Req

Amazon Beanstalk
(Elas c Beanstalk)

Req
Injec on

Bean-
Bean-
stalk

MySQL

RDS select & inject

hostedOn

connectsTo
MySQL

Cap

Cap

hostedOn

Provider Repository

Fig. 1. Topology model with open requirements (left) and injected components (right)

via incomplete topology models and an automated environment-specific injection
of components during deployment time, the OpenTOSCA Injector is developed:
infrastructure components (vertical injection) as well as, e.g., data storage stacks
(horizontal injection) are selected and injected to complete formerly incomplete
topology models.

2 TOSCA Fundamentals and Injection Concept

As already mentioned TOSCA is an OASIS standard that enables to describe
the automated deployment of applications in a vendor-independent and portable
manner. Several TOSCA runtimes to process TOSCA models are already devel-
oped such as Cloudify1, Apache ARIA TOSCA2, and the OpenTOSCA con-
tainer3. In the following all TOSCA concepts relevant for the OpenTOSCA
Injector are introduced. More details about TOSCA can be found in the speci-
fication [6].

The structure of an application can be described as Topology Template, which
is a directed and weighted multigraph as depicted in Fig. 1 on the right. The
components are modeled as Node Templates, e.g., MyPHP-App, and the rela-
tions between them as Relationship Templates such as hostedOn. Their seman-
tic is defined by Node Types, e.g., PHP-App, and Relationship Types, respec-
tively. Types can be derived from other types, thus, inheritance hierarchies can
be defined. For Relationship Types valid target and source elements are spec-
ified, which can be Node Types or Requirement Types and Capability Types.
For each Requirement Type, exactly one requiredCapabilityType is defined, i.e.,
each Capability of this type can be matched to a Requirement of the respec-
tive Requirement Type. Requirements and Capabilities of these types can be
attached to Node Templates. Thus, the matching between Requirements and

1 http://cloudify.co/.
2 http://ariatosca.incubator.apache.org/.
3 http://www.opentosca.org/.

http://cloudify.co/
http://ariatosca.incubator.apache.org/
http://www.opentosca.org/

Topology Model Injectior 381

Capabilities and hence between Node Templates is realized, which is the basis
for the OpenTOSCA Injector.

The left side of Fig. 1 shows an incomplete topology with two open Require-
ments. The Requirements PHPHost-Req and MySQL-Req require Node Tem-
plates with matching Capabilities. Possible suitable Node Templates are stored
in a local Provider Repository in which the respective owner can add all avail-
able components in the environment, such as specific infrastructure components.
However, in future work also the linkage to public repositories should be enabled.
With the OpenTOSCA Injector, not only single Node Templates but also topol-
ogy fragments can be injected [4]. As shown in Fig. 1 on the right, a topology
fragment could consist of a MySQL-DB and an Amazon RDS component, which
is injected based on the matching between the Requirement MySQL-Req and the
specified requiredCapabilityType, e.g., MySQL-Cap attached to the MySQL-DB.

For each match a suitable Relationship Type has to be found to connect
the matched Node Templates. This, for example, could be a hostedOn or con-
nectsTo relation. The suitable Relationship Type is determined by the assigned
Requirement and Capability. However, specific types such as connectsToMySQL
are not always available in the target environment. For this, TOSCA base types
are used: the hostedOn and the connectsTo Relationship Type [7]. In any case,
one of these base types is selected, because of the predefined inheritance hierar-
chy of Capability Types. After the Node Templates or topology fragments are
injected with suitable Relationship Types, the topology is complete and deploy-
able. We implemented the described injection concept and demonstrate it with
the OpenTOSCA Injector, which extends the existing OpenTOSCA container.

3 System Architecture and Demonstration

The OpenTOSCA container is a TOSCA runtime supporting the imperative and
declarative processing of TOSCA models for an automated deployment [2]. For
the imperative processing the management plans are explicitly defined, whereas
at the declarative processing the deployment logic is inferred from the topology
model. Our demonstration is based on declarative provisioning modeling and

ControlIA & Plan
Engine

Container API

Model
Instance

Data

Topology Fragment
Injector

Topology Fragment
Selector

CSAR Importer & Exporter

Provider
Repository

Capability
Types

Rela onship
Types

…

Re
po

sit
or

y
AP

I

Container Repository

…

Plan BuilderManagement
Bus

a

b

c

d

e

Fig. 2. Extended OpenTOSCA system architecture and processing overview

382 K. Saatkamp et al.

management plans are not explicitly considered. Besides the actual purpose of
the OpenTOSCA container to deploy cloud application, it is also used for the
automated deployment of use cases of the 4th Industrial Revolution [3] and IoT
scenarios with different messaging middleware systems [9,10]. In this demonstra-
tion the OpenTOSCA container is used to automatically complete and deploy
topology models for different deployment environments.

In Fig. 2 the extended OpenTOSCA system architecture4 is depicted. While
the left hand side shows the existing OpenTOSCA components required for
the deployment, the right hand side shows the Container Repository extending
the existing runtime. The Container API is used to upload topology models
and all related artifacts, such as JAR files or scripts for the deployment. The
Control component is responsible for interpreting the topology and tracking the
process. For a declarative processing, the Plan Builder generates plans based on
the topology model. The operations invoked by the plans need Implementation
Artifacts (IA) to install and start the application’s components. They are part
of the upload and processed by the IA Engine, while the plans are processed
by the Plan Engine. With the Management Bus, plans finally invoke different
kinds of management operations for the deployment. All data required during
the deployment, e.g., model information, and after the deployment such as the
instance data, are stored in databases.

For the demonstration of the injection the Container Repository is essential.
Its source code is based on the Eclipse Winery5, a modeling tool for TOSCA [5].
Because the injection affects the topology model, the existing Winery capabilities
to deal with topology model elements is utilized. The Topology Fragment Injec-
tor, the Topology Fragment Selector component, and the Provider Repository
extend the existing Winery source code to use it as Container Repository for the
injection. For the injection, the incomplete topology as depicted in Fig. 1 on the
left is uploaded to the Container API and forwarded to the Control component.
It checks the topology model for open requirements and in case open require-
ments are contained, an injection request is sent to the Container Repository (cf.
(a) in Fig. 2). The Topology Fragment Selector browses the Provider Repository
for topology fragments with matching Capabilities (cf. (b) in Fig. 2). For multiple
injection options, the user can select the preferred fragment. After the selection,
suitable Relationship Templates are determined based on the Requirements and
Capabilities, and used to inject the topology fragments in the model (cf. (c) in
Fig. 2). The completed topology model as presented in Fig. 1 is exported and the
Control component starts the deployment of the application (cf. (d) in Fig. 2).

The demonstrated OpenTOSCA Injector implements the TOSCA concept for
Requirement and Capability matching in an automated manner. It facilitates,
beyond the general matching of Capabilities, the injection of whole topology
fragments. The objective is to model an incomplete topology model with defined
requirements which is completed depending on the specific deployment environ-
ment, e.g., a factory, company, or public cloud provider. The Injector can be used

4 https://github.com/OpenTOSCA.
5 https://github.com/eclipse/winery.

https://github.com/OpenTOSCA
https://github.com/eclipse/winery

Topology Model Injectior 383

for the completion by, e.g., different infrastructure components (vertical injec-
tion) such as an OpenStack or vSphere depending on the available infrastructure
as well as for the connection with different data sources for example to analyze
the available data in an environment (horizontal injection). Additionally, it sup-
ports to restrict the set of considered topology fragments for the injection by
target labels attached to Node Templates to express preferences for the match-
ing [8]. With the OpenTOSCA Injector, concepts for an environment-dependent
and automated application deployment can be realized.

Acknowledgments. This work was partially funded by the projects SePiA.Pro
(01MD16013F), SmartOrchestra (01MD16001F), and IC4F (01MA17008G).

References

1. Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann, F., Nowak, A.,
Wagner, S.: OpenTOSCA – a runtime for TOSCA-based cloud applications. In:
Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp.
692–695. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45005-
1 62

2. Breitenbücher, U., Binz, T., Képes, K., Kopp, O., Leymann, F., Wettinger, J.:
Combining declarative and imperative cloud application provisioning based on
TOSCA. In: International Conference on Cloud Engineering, pp. 87–96. IEEE
(2014)

3. Falkenthal, M., Breitenbücher, U., Képes, K., Leymann, F., Zimmermann, M.,
Christ, M., Neuffer, J., Braun, N., Kempa-Liehr, A.W.: OpenTOSCA for the
4th industrial revolution: automating the provisioning of analytics tools based on
apache flink. In: Proceedings of the 6th International Conference on the Internet
of Things, pp. 179–180. ACM (2016)

4. Hirmer, P., Breitenbücher, U., Binz, T., Leymann, F., et al.: Automatic topology
completion of TOSCA-based cloud applications. In: GI-Jahrestagung, GI, vol. P-
251, pp. 247–258. GI (2014)

5. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – a modeling tool
for TOSCA-based cloud applications. In: Basu, S., Pautasso, C., Zhang, L., Fu,
X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 700–704. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-45005-1 64

6. OASIS: Topology and Orchestration Specification for Cloud Applications
(TOSCA) Version 1.0. OASIS (2013)

7. OASIS: TOSCA Simple Profile in YAML Version 1.0. OASIS (2015)
8. Saatkamp, K., Breitenbücher, U., Kopp, O., Leymann, F.: Topology splitting and

matching for multi-cloud deployments. In: Proceedings of the 7th International
Conference on Cloud Computing and Services Science, pp. 247–258. SciTePress
(2017)

9. Franco da Silva, A.C., Breitenbücher, U., Hirmer, P., Képes, K., Kopp, O.,
Leymann, F., Mitschang, B., Steinke, R.: Internet of things out of the box: using
TOSCA for automating the deployment of IoT environments. In: Proceedings of the
7th International Conference on Cloud Computing and Services Science (CLOSER
2017), pp. 358–367. SciTePress, April 2017

10. Franco da Silva, A.C., Breitenbücher, U., Képes, K., Kopp, O., Leymann, F.: Open-
TOSCA for IoT: automating the deployment of IoT applications based on the
Mosquitto Message Broker. In: Proceedings of the 6th International Conference on
the Internet of Things, pp. 181–182. ACM, November 2016

https://doi.org/10.1007/978-3-642-45005-1_62
https://doi.org/10.1007/978-3-642-45005-1_62
https://doi.org/10.1007/978-3-642-45005-1_64

Optimizing Service Delivery
with Minimal Runtimes

Katharina Gschwind1, Constantin Adam2(B), Sastry Duri2,
Shripad Nadgowda2, and Maja Vukovic2

1 Massachusetts Institute of Technology, Cambridge, USA
gschwind@mit.edu

2 IBM T.J. Watson Research Center, New York, USA
{cmadam,sastry,nadgowda,maja}@us.ibm.com

Abstract. In this paper, we argue that deploying applications inside
minimal runtime environments, which only contain the files necessary
and sufficient for the application to run, can cut down the operating
costs, specifically the costs for ensuring the application security and
compliance. We identify a way to deliver minimal runtimes as Docker
containers built from scratch. We describe a use case where minimal
runtimes simplify the service maintenance operations, by reducing the
number of updates for fixing security vulnerabilities.

1 Introduction

Keeping cloud applications secure is a complex process. Administrators need to
check services and their underlying operating systems for vulnerabilities pub-
lished on a daily basis by sources like Redhat security advisories [1], or Ubuntu
security notices [2]. They also need to harden these services and their runtimes
against threats using benchmarks such as those defined by the Center for Inter-
net Security (CIS) [3]. In addition to the deployed application, these processes
must be applied to the underlying OS, which in many cases is more complex
than the application itself. The OS requires a large amount of configuration and
updates, not necessarily related to the deployed application, to ensure that it
cannot be used by an intruder to gain access to the Virtual Machine and/or
Container and compromise it. Instead of implementing a process that secures
the underlying operating system, we propose to eliminate it altogether.

In this paper, we argue that deploying applications inside minimal runtime
environments, which only contain the code necessary and sufficient for the appli-
cation to run, can cut down the operating costs, specifically the costs for ensuring
the application security and compliance. We explore ways of automatically build-
ing and delivering such minimal runtimes, in the form of Docker containers built
from scratch. We build containers from scratch for Redis, a popular open-source
application, run the original and the minimal Redis image through a security
vulnerability advisor, and show that minimal runtimes can reduce the number
of re-deployments needed to keep up with various published security advisories.
c© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 384–387, 2018.
https://doi.org/10.1007/978-3-319-91764-1_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_35&domain=pdf

Optimizing Service Delivery with Minimal Runtimes 385

2 Background

To secure an application, one must ensure that any vulnerabilities are reme-
diated, and that the applications, as well as their underlying operating sys-
tems are configured properly. Vulnerability remediation and compliance enforce-
ment are complementary actions that must be performed for several layers
of software, depending on the type of the underlying runtime of a specific
application. Figure 1 provides an illustration of the layers involved for virtual
machines (cloud-enabled), regular containers (cloud-native), and minimal con-
tainers. Below, we describe in more detail the security and compliance procedures
in place for each of these types of runtime.

Libraries and
Binaries

Application

Guest OS

Kernel

Host OS /
Hypervisor

Libraries and
Binaries

Application

Guest (Container)
OS

Kernel

Minimal Libraries
and Binaries

Application

Kernel

Virtual Machine Container Minimal Container

Fig. 1. Comparison of virtual machines, containers, and minimal containers.

2.1 Cloud-Enabled Applications

A VM running a cloud-enabled application today contains a full OS image
(Linux or Windows) hosting a primary user space application (e.g., MySQL
or Nginx), along with secondary services (e.g., SSH, syslog or NTP). These
VMs contain multiple packages, services or drivers that are not needed by their
primary application, but that increase their attack surface, and reduce their
performance. Vulnerability remediations might require a change window, and
not happen instantly. Performance-wise, patching can delay the system bootup
(this happens frequently on Windows servers). Integration with other systems
(user control, monitoring, inventory, patching, etc.) makes the task of enforcing
compliance and remediating vulnerabilities on these VMs long and complex.

386 K. Gschwind et al.

2.2 Cloud-Native Applications

For containers built from an operating system image, the inherent complexity
of the underlying OS makes it hard for an administrator to know if a container
is running compliant configurations, or non-vulnerable code. The OS and other
services configuration is scattered across the file system, uses different formats;
many packages installed in the container are inactive. The study in [4] shows that,
in 2015, 64% of docker images in Docker hub had high profile vulnerabilities.
The problem has been solved since then for the latest release of a majority of
images, however, as new vulnerabilities appear, not only the latest release needs
to be patched, but also all the already existing deployments. This is our main
motivation to develop minimal runtimes. There is a common interest to reduce
the trusted code base for application runtimes, with unikernels [5] advocating
single address programming paradigms, or microcontainers [6] using statically
compiled “go” applications or building containers from minimal Alpine images.

3 Implementing a Minimal Runtime

DockerSlim [7] is open-source software that creates minimal images including
only the files necessary and sufficient to run specific applications. For each image,
DockerSlim also creates Seccomp and AppArmor security profiles. It takes as
input a “full” docker image built on top of an OS, and operates in three phases:
initialization, monitoring, and image/security profile generation. During initial-
ization, DockerSlim reverse engineers the dockerfile of the image provided, gath-
ering information about volumes, exported ports, created users, etc. Next, it
instantiates a container from the original image, modified to launch the docker-
slim-sensor executable within. Finally, DockerSlim establishes communication
channels to the instrumented container to send commands to the container, and
receive monitored data. During monitoring, DockerSlim runs two sensors in the
container: one tracks filesystem events and identifies the files and symbolic links
needed to run the container, the other traces system calls and generates security
profiles for the image. Finally, DockerSlim generates the minimal image and its
security profile by processing the reports generated by the sensors.

4 Case Study

To demonstrate the advantages of a minimal runtime environment, we have
downloaded a year-old ubuntu-based Docker image for Redis (version 3.2.2), and
generated a minimal image using DockerSlim. We used the IBM Vulnerability
Advisor (IBM VA [8,9]) to analyze both the original and minimal images for
package-level security vulnerabilities, published in the Ubuntu security notices.

We had to make two changes for the IBM VA to function with images built
from scratch. First, to identify the security advisory service against which IBM
VA should check packages, we changed the DockerSlim code to include a file
that contains information about the OS for which the files were built. Second, as

Optimizing Service Delivery with Minimal Runtimes 387

the IBM VA takes as input package information, we needed to map individual
libraries to packages. With these changes, IBM VA was able to process slim
images as though they were full images. Note that since IBM VA works at the
package level, and a package consists of multiple files, IBM VA may report a
vulnerability for a file that is not used in the minimal image. Further analysis
of individual libraries in a slim image is needed to determine whether a package
vulnerability is present in it or not.

We found that the original image had 10 vulnerabilities, in 6 vulnerable
packages. The vulnerable packages were not necessary for the Redis application
to function, therefore none of them was included in the minimal image generated
from scratch. Deploying a minimal container, at the time of the release of the
image, would have avoided dealing with 10 different security vulnerabilities, and
potentially as many re-deployments of the Redis application.

5 Conclusion and Future Work

We have shown that minimal runtimes can cut down the number of updates that
address security vulnerabilities. We will improve upon the DockerSlim method
of generating images, and will conduct a large-scale evaluation of its security
benefits on the set of Docker images with more than one million downloads. To
ensure the completeness of the minimal runtime, we will add static analysis to
the dynamic analysis provided by DockerSlim, and will ensure that test suites
for the applications are automatically invoked during the building process.

References

1. Red hat customer portal security advisories. https://access.redhat.com/security/
security-updates/. Accessed 04 Aug 2017

2. Ubuntu security notices. https://www.ubuntu.com/usn/. Accessed 04 Aug 2017
3. Center for internet security. https://www.cisecurity.org/. Accessed 04 Aug 2017
4. Van Tuin, C.: A security state of mind: compliance and vulnerability audits for

containers. In: 2015 Usenix Container Management Summit, Washington, DC (2015)
5. Madhavapeddy, A., Mortier, R., Rotsos, C., Scott, D., Singh, B., Gazagnaire, T.,

Smith, S., Hand, S., Crowcroft, J.: Unikernels: library operating systems for the
cloud. In: Proceedings of the Eighteenth International Conference on Architectural
Support for Programming Languages and Operating Systems, pp. 461–472. ACM,
New York (2013)

6. https://www.iron.io/microcontainers-tiny-portable-containers/ . Accessed 15 Aug
2017

7. Dockerslim (docker-slim): optimize and secure your docker containers (free and open
source). https://dockersl.im/. Accessed 15 Aug 2017

8. Tak, B., Isci, C., Duri, S., Bila, N., Nadgowda, S., Doran, J.: Understanding security
implications of using containers in the cloud. In: 2017 USENIX Annual Technical
Conference (USENIX ATC 17), pp. 313–319. USENIX Association (2017)

9. Oliveira, F., Eilam, T., Nagpurkar, P., Isci, C., Kalantar, M., Segmuller, W., Snible,
E.: Delivering software with agility and quality in a cloud environment. IBM J. Res.
Dev. 60(2–3), 10:1–10:11 (2016)

https://access.redhat.com/security/security-updates/
https://access.redhat.com/security/security-updates/
https://www.ubuntu.com/usn/
https://www.cisecurity.org/
https://www.iron.io/microcontainers-tiny-portable-containers/
https://dockersl.im/

Semantic Data Mediator:
Linking Services to Websites

Dennis Wolters(B), Stefan Heindorf, Jonas Kirchhoff, and Gregor Engels

Department of Computer Science, Paderborn University, Paderborn, Germany
{dennis.wolters,heindorf,engels}@uni-paderborn.de,

jonaskir@mail.uni-paderborn.de

Abstract. Many websites offer links to social media sites for conve-
nient content sharing. Unfortunately, those sharing capabilities are quite
restricted and it is seldom possible to share content with other services,
like those provided by a user’s favorite applications or smart devices. In
this paper, we present Semantic Data Mediator (SDM) — a flexible mid-
dleware linking a vast number of services to millions of websites. Based on
reusable repositories of service descriptions defined by the crowd, users
can easily fill a personal registry with their favorite services, which can
then be linked to websites by SDM. For this, SDM leverages semantic
data, which is already available on millions of websites due to search
engine optimization. Further support for our approach from website or
service developers is not required. To enable the use of a broad range of
services, data conversion services are automatically composed by SDM to
transform data according to the needs of the different services. In addi-
tion to linking web services, various service adapters allow services of
applications and smart devices to be linked as well. We have fully imple-
mented our approach and present a real-world case study demonstrating
its feasibility and usefulness.

Keywords: Services · Semantic data · Mediation · Data conversion
Interface adaptation

1 Introduction

Many websites enable users to share the presented content by integrating ser-
vices of social media sites, e.g., the service to share content on Facebook or pin
it on Pinterest. Mobile websites might even allow to share content via locally
installed messengers like WhatsApp. Sharing content presented on a website
with other services than those which are already linked to the respective site
is up to end users, because website developers cannot accommodate all services
relevant for users, especially since those might differ from user to user. Unfor-
tunately, directly linking services to websites is a difficult task for end users,
because it requires extensive technical knowledge. Thus, end users usually set-
tle for manually copying content to other services, which is often very tedious.
c© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 388–392, 2018.
https://doi.org/10.1007/978-3-319-91764-1_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_36&domain=pdf

Semantic Data Mediator: Linking Services to Websites 389

For instance, when transferring a recipe found on a website to a cookbook app,
all relevant information like title, ingredients, instructions, and associated images
need to be copied to the respective fields of the cookbook app’s input form. If
the app does not run on the same device as the browser presenting the recipe,
it is even more complicated.

In this paper, we explain how our approach Semantic Data Mediator [2] can
be used to link additional services to websites. On the one hand, we demon-
strate how regular end users without any programming knowledge can make use
of SDM to link their favorite services to millions of websites. For this, SDM
analyzes the semantic data embedded into websites for search engine optimiza-
tion and typed over ontologies like schema.org1. Thereupon, it determines which
additional services can be offered for the found data. On the other hand, we
explain the different building blocks of SDM and how power users can extend
our approach. Moreover, we describe how we implemented SDM and provide a
video demonstration how to use it. To the best of our knowledge, SDM is the first
comprehensive approach enabling end users to bridge the gap between websites
and services. Existing approaches are either restricted to a few selected services,
e.g., share buttons for social media sites, or browser extensions for single services
such as Skype.

Web Service

Device

Apps

Adapter

Service Repository

ConverterConverterConverter
Service

Personal Registry

Ex
te

ns
io

n

Browser

Fig. 1. Linking services to websites: architecture of semantic data mediator

2 System Overview

In this section, we give an overview of our approach Semantic Data Mediator
(SDM). The different buildings block of SDM visualized in Fig. 1 are explained
in the following.

In the center of SDM is a personal registry, which manages all services rele-
vant to a user. Services, which include both web services and services provided
by locally installed applications, can be added to the registry by providing their
OpenAPI descriptions2. Those descriptions can either be referenced via an URL
or can be retrieved from service repositories (see below). The personal registry

1 http://schema.org.
2 https://github.com/OAI/OpenAPI-Specification.

http://schema.org
https://github.com/OAI/OpenAPI-Specification

390 D. Wolters et al.

also contains services for data conversion, since the format of the semantic data
embedded into websites usually differs from the data format expected by ser-
vices. The input and output formats of such converter services are used to create
a graph representing all possible conversion options. Based on this graph, the
personal registry can efficiently compute output formats from given input for-
mats. This information is used to determine which services can be offered to
users.

A service repository contains OpenAPI specifications of services that can be
added to a user’s personal registry. Upon adding a service, credentials for using
the service can be permanently stored or access tokens can be obtained, e.g.,
when OAuth is used. Additionally, user-specific parameters, e.g., an API key
required to access a service, can be defined by using a custom property in the
service description.

The browser extension extracts semantic data from a website and queries the
personal registry for services that are able to process this data. These services
are presented to the user either in an embedded menu attached to the visual
representation of a data item on the website, or in a browser-based menu, which
lists all data items embedded into the respective site. When a user chooses to
invoke a service, the extracted data item is transmitted to the personal reg-
istry, which applies all necessary conversions using the previously determined
converter services and afterwards transmits the (converted) data to the chosen
service. A service can be a web service or it can be a service provided by an
application installed on one of the user’s devices. This does not necessarily has
to be the device on which the browser runs, since SDM supports the cross-device
integration of services via adapters.

Adapters are used to create external service interfaces for applications that
only provide interfaces limited to other applications within the device on which
they are installed. For instance, we use our Cross-Device Application Integra-
tion approach for Android apps (XDAI-A) [3,4] to enable the usage of services
offered by Android apps, e.g., sharing data with a messenger app, adding data
like an event, a recipe, or a note to apps like Android Calendar, MyCookbook3,
or Google Keep4, respectively. XDAI-A provides a domain specific language to
create adapters to support further Android apps. Additionally, we provide a
customizable command-line interface (CLI) adapter that can be used to enrich
command-line tools with a RESTful HTTP interface. To configure the adapter,
an OpenAPI specification needs to be created, which describes the different end-
points provided by the service. For each endpoint, a custom property is used to
configure which command-line tool is executed upon incoming requests. Data
from an HTTP request can easily be mapped to arguments of the invoked tool
and the tools output can again be mapped to the HTTP response. We also
provide a Cross-Device Application Integration approach for Windows applica-
tions (XDAI-W), which extracts information about installed applications from

3 http://mycookbook-android.com/.
4 https://google.de/keep/.

http://mycookbook-android.com/
https://google.de/keep/

Semantic Data Mediator: Linking Services to Websites 391

the Windows registry and offers an HTTP interface to use these applications in
combination with SDM.

Converter services are specially tagged services that are used by the personal
registry to convert the semantic data extracted by the browser extension. SDM
can automatically compose converter services, and thereby, enables the use of
services that only accept a data format different to the one of the extracted data.
The data conversion takes both the semantic type, e.g., event or recipe, as well
as the data format, e.g., JSON-LD or RDF/XML into account. Details about
the data conversion can be found in [2]. To accelerate the creation of converter
services, we provide a template which only requires a conversion function and
some meta information, like a description and input/output types. Additionally,
our CLI adapter allows to simply reuse existing command-line conversion tools
as converter services. For instance, we use this adapter to provide a converter
service based on the universal document converter Pandoc5.

In combination, the previously described building blocks of SDM allow to
link services to the millions of websites that provide semantic data [1]. Further
support for SDM by website developers or service providers is not required. SDM
is simple enough to be used by average end users, while power users can also
extend SDM by adding new (converter) services or adapters.

3 Implementation Details

The browser extension is available for Google Chrome. Similar extensions can
be developed for all major browsers since no features unique to Chrome have
been used to implement the extension. The converter service template, the CLI
adapter, the Windows adapter, the server-side part of the Android adapter, and
the personal service registry (see Sect. 2) are developed using JavaScript and
the Node.js runtime. The client-side part of the Android adapter consists of two
interconnected apps, one responsible for providing the external interface and the
other one for adapting service request. Further details on the Android adapter
are given in [3,4]. The personal registry uses a document-oriented database
(CouchDB) for storing OpenAPI specifications of all registered services along
with some additional parameters, like authentication tokens or credentials to
use the services. Furthermore, it uses a graph database (Neo4j) to efficiently
find conversion options and relevant services for a given website. SDM natively
supports OpenAPI service descriptions. Other service description languages, like
RAML6 or API blueprint7, are supported by converting them upfront to Ope-
nAPI.8 To enable easy deployment, the registry as well as all converters based
on our converter service template or CLI adapter can be deployed as Docker
containers.

5 https://pandoc.org/.
6 http://raml.org.
7 http://apiblueprint.org/.
8 http://github.com/LucyBot-Inc/api-spec-converter.

https://pandoc.org/
http://raml.org
http://apiblueprint.org/
http://github.com/LucyBot-Inc/api-spec-converter

392 D. Wolters et al.

4 Demonstration

The demonstration consists of two parts: (i) Usage of SDM and (ii) technical
details.9 In the first part, we show how SDM links services to websites and
we demonstrate the invocation of web services as well as services provided by
applications installed on different devices. For instance, we demonstrate how a
recipe found on a website on a desktop computer can be exported to Word or
can be added to a cookbook app on a smartphone. Moreover, we explain the
addition of services to the personal registry by utilizing services repositories. In
part two, we explain the technical details of SDM. We show how the personal
registry maintains the information about possible data conversions and how this
information is exploited to find services that require data in a specific format.
Further, we present the different types of adapters and explain how they can be
used to create new services that are accessible for SDM.

References

1. Bizer, C., Meusel, R., Primpeli, A.: Web Data Commons - RDFa, Microdata, and
Microformat Data Sets. http://webdatacommons.org/structureddata/

2. Wolters, D., Heindorf, S., Kirchhoff, J., Engels, G.: Linking services to websites by
leveraging semantic data. In: ICWS 2017, pp. 668–675. IEEE (2017)

3. Wolters, D., Kirchhoff, J., Gerth, C., Engels, G.: Cross-device integration of android
apps. In: Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS,
vol. 9936, pp. 171–185. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46295-0 11

4. Wolters, D., Kirchhoff, J., Gerth, C., Engels, G.: XDAI-A: framework for enabling
cross-device integration of android apps. In: Drira, K., et al. (eds.) ICSOC 2016.
LNCS, vol. 10380, pp. 203–206. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-68136-8 25

9 A demo video is available at: http://sdm.dwolt.de/demo/.

http://webdatacommons.org/structureddata/
https://doi.org/10.1007/978-3-319-46295-0_11
https://doi.org/10.1007/978-3-319-46295-0_11
https://doi.org/10.1007/978-3-319-68136-8_25
https://doi.org/10.1007/978-3-319-68136-8_25
http://sdm.dwolt.de/demo/

ARGON: A Tool for Modeling
Cloud Resources

Julio Sandobalin1,2(&), Emilio Insfran2, and Silvia Abrahao2

1 Escuela Politécnica Nacional, Ladrón de Guevara, E11-253,
P.O. Box 17-01-2759, Quito, Ecuador
julio.sandobalin@epn.edu.ec

2 Universitat Politècnica de València, Camino de Vera, s/n,
46022 Valencia, Spain

{jsandobalin,einsfran,sabrahao}@dsic.upv.es

Abstract. Configuration Management Tools (CMTs) have achieved automate
the orchestration of infrastructure provisioning in the Cloud. However, CTMs
are managed through script languages in a manually intensive manner. As a
result, CMTs management is a time-consuming and error-prone activity. In a
previous work, to face this issue, we have presented ARGON tool which models
the cloud infrastructure and generate scripts for managing the CMTs. In this
paper, we propose an extension of ARGON tool with functionalities both to
modeling computing, storage, networking and elasticity in the Cloud and to
model the middleware needed for the proper operation of cloud-based software
applications.

Keywords: Cloud computing � DevOps � Infrastructure as code
Cloud infrastructure provisioning � Model-Driven development

1 Introduction

DevOps (Development & Operations) is a paradigm which brings principles, practices
and tools that optimize the software delivery time. The cornerstone of DevOps is the
Infrastructure as Code [1] that is infrastructure automation based on practices from
software development. In the DevOps community there exist several Configuration
Management Tools (CMTs) that orchestrate the infrastructure provisioning automation
in the Cloud, such as Ansible1, Chef2 or Puppet3. Each of CMTs works with specific
cloud providers. However, CTMs define the infrastructure provisioning through script
languages in a manually intensive manner. As a result, use scripts for defining the
infrastructure provisioning is a time-consuming and error-prone activity. In a previous
work, to face this issue, we have presented ARGON [2], which is a tool developed for
abstracting the complexity of infrastructure modeling for different cloud providers
through a Domain Specific Language. Furthermore, ARGON abstracts the features of
scripting languages of the CMTs to define transformation rules, which are used to

1 https://www.ansible.com.
2 https://www.chef.io.
3 https://puppet.com.

© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 393–397, 2018.
https://doi.org/10.1007/978-3-319-91764-1_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_37&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_37&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_37&domain=pdf
https://www.ansible.com
https://www.chef.io
https://puppet.com

generate scripts for managing the CMTs. As a first approach, ARGON supports the
resource modeling of Infrastructure as a Service (IaaS) for Amazon Web Services.

In this paper, we propose an extension of ARGON tool with functionalities both to
modeling computing, storage, networking and elasticity in the Cloud and to model the
middleware needed for the proper operation of cloud-based software applications.

On the other hand, ARGON tool is the keystone of our approach of an end-to-end
automated toolchain for cloud infrastructure provisioning [3].

2 An Infrastructure Modeling Tool for Cloud Provisioning

ARGON is a modeling tool for specifying the final state of the infrastructure provi-
sioning in the Cloud and generate scripts for managing Configuration Management
Tools (CMTs). ARGON has a Domain Specific Language (DSL) that includes an
abstract syntax and a concrete syntax. The former is an Infrastructure Metamodel [2],
which abstracts the capacities of the Cloud Computing, such as computing, storage,
networking and elasticity. The latter defines graphical notation to render the metamodel
elements in the modeling editors of Eclipse Modeling Framework [4]. Moreover,
ARGON includes a transformation engine based on model-to-text (M2T) transforma-
tions to generate scripts for managing the CMTs.

ARGON use the DSL to support the infrastructure modeling of different cloud
providers. The Infrastructure Metamodel [2] propose a generic solution for modeling
the cloud infrastructure. However, to model the infrastructure of a particular cloud
platform, it is necessary to make model-to-model (M2M) transformations in order to
get a particular infrastructure model, for instance, Microsoft Azure infrastructure model
or Amazon Web Services infrastructure model. Once the infrastructure model is fin-
ished, the transformation engine uses it and execute model-to-text transformations for
generating scripts for a specific CMT, for instance, creating a playbook for Ansible or
recipe for Chef.

Additionally, ARGON can work with Maven to develop infrastructure projects.
Finally, because the ARGON’s components were developed following a plugin-based
architecture, they can be used in Eclipse Modeling Framework or an integration server
(e.g. Jenkins).

Table 1. Functionalities to model elasticity capacity

Figure Element Description

Launch Configuration Specify a template with hardware features of a Virtual Machine

Auto Scaling Group Specify the number of Virtual Machines to create or terminate

Scaling Policy Specify the conditions to create or terminate a Virtual Machine

Alarm Monitor a metric in a time frame to trigger a Scaling Policy

394 J. Sandobalin et al.

2.1 Functionalities

The functionalities of the ARGON’s elements are described in Tables 1, 2, 3 and 4.
The functionalities to model networking capacity is represented by associations among
metaclasses specified in the Infrastructure Metamodel [2].

3 Modeling Infrastructure and Middleware

ARGON allows modeling a scalable architecture to provide the elasticity capacity to
cloud-based software applications. Figure 1a shows an infrastructure model that has a
Launch Configuration with hardware features of a virtual machine. Auto Scaling
Group specify the minimum and maximum number of virtual machines to be created or

Table 2. Functionalities to model storage capacity

Figure Element Description

Database Create, terminate, start and stop Databases instances

File Server Create and terminate File Servers

Table 3. Functionalities to model computing capacity

Figure Element Description

Virtual Machine Create, terminate, start and stop virtual server instances

Security Group Perform as a firewall to protect Virtual Machines

Inbound Specify inbound rules to enforce in Security Groups

Outbound Specify outbound rules to enforce in Security Groups

Static IP Allocate or release a static IP address to a Virtual Machine

Load Balancer Register or unregister a virtual machine to a Load Balancer

Listener Check the connection requests to a Load Balancer

Table 4. Functionalities to model middleware

Figure Element Description

Role Specify software packages to be installed as middleware

Deployment Specify path, permission, and user to install software applications

Template Specify configuration files to be replaced in a virtual server

ARGON: A Tool for Modeling Cloud Resources 395

terminated according to hardware features from Launch Configuration. Creation of a
virtual machine is done based on Policy to Create which is executed by reaching
Greater than 80% of CPU usage of a virtual machine. Termination of a virtual machine
is done based on Policy to Remove which is executed by reaching Less than 20% of
CPU usage of a virtual machine. Security Group performs as a firewall to all virtual
machines created in the scalable architecture. Security Group enables the virtual
machines to respond requests through ports as Inbound Rules. Load Balancer allows
distributing incoming application traffic between multiple virtual machines and with an
input rule or Listener checks the connection requests.

On the other hand, ARGON allows modeling the middleware and cloud-based
software applications. Figure 1b shows a virtual machine (webserver) which has a
security group (sgp-web) to enable the virtual machine to respond requests through port
22 (ssh) and port 80 (http).

To model the middleware, we define a role (web) in which we specify software
packages to be installed in the virtual machine (webserver), kind of operative system,
port to respond requests to the virtual server, and the option to testing the infrastructure
deployed. Moreover, ARGON allows modeling the deployment (PHP application) of
software applications and specify a template (PHP Configuration) or configuration file
that will be replaced in the virtual server.

Acknowledgments. This research is supported by the Value@Cloud project
(TIN2013-46300-R).

(a) (b)

Fig. 1. (a) Scalable architecture for cloud infrastructure provisioning. (b) Modeling middleware
and software applications.

396 J. Sandobalin et al.

References

1. Morris, K.: Infrastructure as Code: Managing Servers in the Cloud, 1st edn. O’Reilly Media,
Inc. (2016)

2. Sandobalin, J., Insfran, E., Abrahao, S.: An infrastructure modelling tool for cloud
provisioning. In: Proceedings of 14th IEEE International Conference on Services Computing,
SCC (2017). (In press)

3. Sandobalin, J., Insfran, E., Abrahao, S.: End-to-End automation in cloud infrastructure
provisioning. In: Proceedings of 26th International Conference on Information Systems
Development, ISD (2017). (In press)

4. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: eclipse modeling framework
(2008)

ARGON: A Tool for Modeling Cloud Resources 397

Ubiquity: An Extensible Framework
for Persistence in Container

Environments

Mohamed Mohamed(B), Robert Engel, Amit Warke, and Heiko Ludwig

Almaden Research Center, IBM Research, San Jose, CA, USA
{mmohamed,engelrob,aswarke,hludwig}@us.ibm.com

Abstract. Within the last few years, containers are being used for a
broad set of applications, many of which have extensive requirements in
terms of persisting their state. These stateful applications are still not
well supported in container-based environments due to the challenges of
adding persistence support. There are many efforts being done recently
to tackle these challenges but most of them are focused on one environ-
ment or one storage provider. In this paper, we present the Ubiquity
framework, which provides an extensible way of provisioning persistent
storage for stateful containers. Ubiquity can be used to provide different
types of persistent volumes from heterogeneous providers to be consumed
by heterogeneous container frameworks in a seamless manner.

Keywords: Persistence · CloudFoundry · Kubernetes · Docker

1 Introduction

In the last few years micro-services became the new trend for designing software
applications. In this paradigm, software applications are developed as a set of
independent components that focus on small functionalities, can be deployed
separately, and use some lightweight communication mechanism such as REST,
gRPC, etc. These components could be easily deployed in containers that present
a lightweight operating system level virtualization mechanism where the applica-
tion running inside the container shares the kernel with the host operating system
but has its own root file system [5]. Many platforms and orchestration systems
are based on container concepts to offer an agile way of building micro-service
based software such as Cloudfoundry, Docker, Kubernetes, Mesos, etc. While
using these container orchestrators (COs) is beneficial for large scale deploy-
ments, there is still a lively discussion as to which type of applications they
might be best suited for. Most of these COs favor stateless micro-services due
to the challenges of managing state in concurrency situations.

Onboarding stateful applications into these COs in a scalable way is not
well supported particularly in scenarios where state is accessed from workloads
in different deployment platforms. In these scenarios, even though we can have
c© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 398–401, 2018.
https://doi.org/10.1007/978-3-319-91764-1_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_38&domain=pdf

Ubiquity 399

the same persistence backend used to maintain the state, the frameworks that
are being used have heterogeneous ways of consuming persistence storage. For
example, CloudFoundry uses persistent volumes through its persistence drivers
and service brokers, whereas Kubernetes has a dynamic provisioner responsible
for the creation and deletion of volumes and a volume plugin responsible for the
other consumption functions (e.g., attach/detach, mount/unmount). The other
challenge is that the heterogeneous management functionalities for persistent
storage may change from one provider to another and from one persistent volume
type to another (filesystem or block device based).

In this demonstration paper, we present the Ubiquity framework that enables
seamless access to storage for heterogeneous COs. Ubiquity integrates with the
widely used orchestrators (CloudFoundry, Kubernetes, Docker, Mesos, Open-
shift). It also provides an easy way of adding new storage backends without
the need to understand the specificities of the COs that are supported. We will
demonstrate how Ubiquity can be used in different scenarios to provide different
types of persistent storage in heterogeneous environments. In Sect. 2, we will
present Ubiquity and its different components. Afterwards, we will give differ-
ent use cases and demonstrate how ubiquity can help managing the persistent
volumes for the used COs in Sect. 3. Then, we conclude the paper in Sect. 4.

2 Overview of Ubiquity Framework

Ubiquity framework allows COs operators to offer persistent storage from various
providers without the need to understand the intrinsics of storage backends. At
the same time, it allows storage providers to offer their persistent storage to
containers without understanding the intrinsic requirements of the different COs.
As shown in Fig. 1, Ubiquity is made up of different loosely coupled components
that are easy to extend or replace. We briefly introduce these components in the
following subsections.

Ubiquity Volume Service: This service is the main component of Ubiquity playing
the role of the mediator between the COs and the storage backends. It is offering
southbound interfaces to be consumed by COs to allow them to create persis-
tent volumes and manage them. The management operations are continuously
evolving based on the functionalities supported by the COs. These operations
include attaching/detaching volumes to nodes, setting quota/size of volumes,
maintaining the coherence of the attachment of volumes.

Container Orchestrators Plugins: Ubiquity framework has support for different
COs using their specific storage plugins. The plugins generally live in all the
nodes managed by the CO and they allow to execute host side operations to
make the persistent storage ready to be consumed by the containers. So far,
we have support for persistence for CloudFoundry (through an implementation
of the Open Service Broker API [2]), Docker (through an implementation of
the docker plugin API [4]), and Kubernetes environments (through a dynamic
provisioner [1] and a volume plugin implementing the Flex Volume API [7]).

400 M. Mohamed et al.

Fig. 1. Ubiquity architecture overview

Storage Backends: These are the mechanisms needed from the storage provider
perspective to make their storage ready to COs. These components implement
the needed mapping between Ubiquity API and the specific provider API to
allow the creation and management of persistence storage.

Database Service: This service is used for our locking mechanism to manage
concurrent access to volumes. It is also used to enable high availability based on
leader election algorithms.

3 Demonstration

In this section, we will describe the two demos showing how to use Ubiquity in
different scenarios.

Shared volumes: In this demo, we will show how Ubiquity allows providing per-
sistent volumes across different container environments. We have a multi-tier
application where the visual part of the application runs in CloudFoundry and
the processing part runs in docker. The application on CloudFoundry shows a
catalog of pictures saved in a persistent volume bound to the application. We
start a docker deployment using the same persistent volume to run some face
recognition algorithms using OpenCV. We show how the content is changed in
the CloudFoundry side as well. In the demo, we will show the detailed steps
towards enabling both environments to share the same persistent volume. The
persistent storage is created out of distributed filesystem.

Ubiquity 401

Dedicated volumes: In this demo, we show how we create a dynamic Cassandra
cluster on kubernetes. Since Cassandra uses its own filesystem, we need to use
persistent volumes based on block devices. One challenge here is to make each
instance of the cluster get its own block device to avoid data corruption. When-
ever a new instance is added (scale up), a new persistent volume is created and
mounted into the new pod. Ubiquity allows to do that by creating a storage
class that refers to our dynamic provisioner. We refer to the storage class in
the persistent volume claim template related to the descriptor of the Cassan-
dra container. Scaling the cluster up or down becomes a straight forward action
backed up with Ubiquity. We can easily use Cassandra from any instance and
check that the data is replicated and well maintained. If ever we loose a pod,
kubernetes will recreate it and Ubiquity will ensure that the pod is bound to the
right persistent volume to maintain the consistency of the cluster. In this demo,
we can simulate a failure by killing one or more cluster nodes. Kubernetes will
recreate the nodes and Ubiquity will make sure that the data will be recovered.

4 Conclusions

Using containers to deploy stateful applications is a challenging task. Given that
each container orchestrator (CO) has a different set of APIs and storage features,
the burden becomes on the storage vendor to integrate into each CO. So far
there are little efforts being done to integrate this diverse set of COs and storage
systems. Efforts such Rexray [3], Trident [8] and Torus [6] are either specific to
one framework or one storage provider. So far, none of them offers support for
Cloudfoundry, nor heterogeneous support for different container environments
and different storage providers at the same time. In this demonstration paper,
we proposed the Ubiquity framework that addresses the complexity of bringing
together the different COs and Storage providers in the context of providing
persistent storage across COs.

References

1. Dynamic provisioning and storage classes in kubernetes. http://blog.kubernetes.io/
2016/10/dynamic-provisioning-and-storage-in-kubernetes.html

2. Open service broker API. https://github.com/openservicebrokerapi/
3. Rex-ray openly serious about storage. https://rexray.readthedocs.io/en/stable
4. Volume plugins. https://docs.docker.com/engine/extend/plugins volume
5. Azab, A.: Enabling docker containers for high-performance and many-task comput-

ing. In: IC2E (2017)
6. Michener, B.: Presenting torus: a modern distributed storage system by coreos.

https://coreos.com/blog/torus-distributed-storage-by-coreos.html
7. Nelluri, C.: Flexvolume explored. https://www.diamanti.com/blog/flexvolume-

explored/
8. Sullivan, A.: Introducing trident: a dynamic persistent volume provisioner for

kubernetes. http://netapp.io/2016/12/23/introducing-trident-dynamic-persistent-
volume-provisioner-kubernetes

http://blog.kubernetes.io/2016/10/dynamic-provisioning-and-storage-in-kubernetes.html
http://blog.kubernetes.io/2016/10/dynamic-provisioning-and-storage-in-kubernetes.html
https://github.com/openservicebrokerapi/
https://rexray.readthedocs.io/en/stable
https://docs.docker.com/engine/extend/plugins_volume
https://coreos.com/blog/torus-distributed-storage-by-coreos.html
https://www.diamanti.com/blog/flexvolume-explored/
https://www.diamanti.com/blog/flexvolume-explored/
http://netapp.io/2016/12/23/introducing-trident-dynamic-persistent-volume-provisioner-kubernetes
http://netapp.io/2016/12/23/introducing-trident-dynamic-persistent-volume-provisioner-kubernetes

Distributed Video Analytics Across Edge
and Cloud Using ECHO

Aakash Khochare, Pushkara Ravindra(B), Siva P. Reddy,
and Yogesh Simmhan

Indian Institute of Science, Bangalore 560012, India
{aakhochare,kommareddy}@grads.cds.iisc.ac.in, pushkar1593@gmail.com,

simmhan@iisc.ac.in

Abstract. Analytics over urban video streams is well suited for dis-
tributed computing across Edge, Fog and Cloud. Such streams are net-
work intensive, making it is prohibitive to fully transfer them to the
Cloud. Deep Neural Networks have achieved remarkable accuracy in
image classification, but are computationally costly on just Edge devices.
We propose ECHO as a big data platform to compose IoT dataflows
and seamlessly distribute them across Edge and Cloud resources. In this
demonstration, we illustrate the capabilities of ECHO for deploying sev-
eral video analytics applications to support smart city use-cases.

1 Introduction

Internet of Things (IoT) is proliferating sensing and actuation devices in the
physical space around us. Smart Cities, a manifestation of IoT, use analytics
over streaming data sensed from city infrastructure to make management deci-
sions on public utilities, traffic control, public safety, etc. While such processing
has traditionally been limited to either local computation at the data source or
centralized computation in the Cloud, analytics over video streams from thou-
sands of cameras in a city challenges these two exclusive approaches.

The rise of deep neural network models is radically advancing computer vision
algorithms to match humans in their ability to classify images. Such models can
transform video streams into a urban meta-sensor to detect traffic movement,
people density, pollution levels, safety violations, etc. But model inferencing is
computationally costly, often requiring GPU acceleration, with model training
even costlier. The typical approach of moving all the data to the Cloud for scal-
able analytics is bandwidth-intensive for video streams, and introduces network
latencies during decision making. Further, such models are just one part of more
complex applications that perform pre-processing and decision-making too.

The availability of distributed Edge and Fog devices as part of smart city
deployments with substantial cumulative computing capacity can be leveraged
in conjunction with Cloud resources for such urban video analytics applica-
tions. This requires an application platform to compose these dataflows, deploy

c© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 402–407, 2018.
https://doi.org/10.1007/978-3-319-91764-1_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_39&domain=pdf

Distributed Video Analytics Across Edge and Cloud Using ECHO 403

them on distributed resources, and seamlessly manage their online orchestration.
ECHO is one such platform that we have developed to address these needs [1].

In this demo, we showcase the ability of the ECHO platform to deploy and
manage urban video analytics applications across Edge, Fog and Cloud resources.

2 Background and Related Work

ECHO
1 is a platform for Orchestration of Hybrid dataflows across Cloud and

Edge [1]. It allows the user to compose applications as a dataflow of tasks, with
support for hybrid data models such as streams, micro-batches and files flowing
through. An application manager deploys these tasks on distributed Edge, Fog
and Cloud resources, using a platform service that runs on each device. A sched-
uler maps tasks to resources based on their availability maintained in a registry.
Once deployed, the tasks are orchestrated by an Apache NiFi engine on each
resource, which we extend for distributed execution. We also support delegation
of parts of the dataflow to external native engines like Apache Edgent for Com-
plex Event Processing (CEP), Apache Storm for distributed stream processing,
and Google TensorFlow for deep learning. ECHO incorporates dynamic adapta-
tion to remap tasks onto different resources, on-demand, to meet an application’s
current needs.

Other IoT middleware offer a limited subset of these capabilities. Apache
Edgent supports CEP querying over event streams on Edge Devices [2]. It is how-
ever not designed for distributed execution across multiple devices. Node.RED [3]
and native NiFi provide interactive dataflow composition across edge, fog and
cloud machines. While ECHO has a similar dataflow model, it automates the
deployment of the dataflow tasks across distributed resources with awareness of
network asymmetry, supports files, stream and micro-batches as data exchange
formats between tasks, and also allows a pluggable scheduler logic to determine
task placement. Amazon AWS’s GreenGrass and Microsoft’s Azure IoT SDK
have started offering edge and fog device management interfaces to comple-
ment their Cloud services [4,5]. AWS also supports composable serverless lambda
functions to be deployed on edge and Cloud devices. ECHO goes beyond these
capabilities and allows complex user logic to be embedded in the tasks, allows
interfacing with external Big Data platforms like Storm, Edgent and TensorFlow,
and offers a non-proprietary platform that can be extended by users.

3 Extensions to the ECHO Platform

In this demo, we extend ECHO with two novel features that we discuss next:
efficient scheduling and managing network asymmetry.

Resource and Energy-Aware Scheduling. We have earlier proposed the
scheduling of a given dataflow onto Edge and Cloud resources as an optimization

1 https://github.com/dream-lab/echo.

https://github.com/dream-lab/echo

404 A. Khochare et al.

problem and solved it using a Genetic Algorithm (GA) meta-heuristic for an
individual directed acyclic graph (DAG) [6]. Here, we extend this meta-heuristic
approach for scheduling to support dataflows that arrive and depart continuously
within the Edge, Fog and Cloud resources, and integrate the scheduler algorithm
with ECHO. The optimization problem takes the tasks, their compute latencies,
throughput, and energy footprint on different devices, and the network latency
and bandwidth between devices as input. It enforces constraints to prevent the
compute capacity for a single device from being saturated, and the energy usage
on an edge device from draining its battery before it is recharged. The meta-
heuristic scheduler has the goal of reducing the dataflow’s end-to-end latency
subject to the aforementioned constraints.

We extend and use this for ECHO’s adaptive scheduler. The app manager
passes the user’s DAG to the scheduler, along with the state of available resources
from the registry. The scheduler produces a mapping of tasks to devices while
meeting the optimization goal. The algorithm can later be rerun for adaptive
re-balancing in case the dataflow’s latency does not match the requirements due
to factors such as increase in the input rate. We propose to demonstrate the
meta-heuristic scheduler and rebalancing.

Managing Network Asymmetry. ECHO’s app manager invokes the REST
platform service on each device to deploy and connect the dataflow tasks. How-
ever, this requires that the manager service on the Cloud be able to access the
platform service on every resource over the Internet. Edge and Fog devices are
often behind firewalls, making them inaccessible from the public Internet. Here,
we mitigate this by extending the app manager to support asynchronous mes-
sage passing to the platform service using an MQTT publish-subscribe broker.
The platform service in each resource subscribes to a unique topic in the bro-
ker to which the manager publishes control messages for initiating a dataflow
deployment. Each deployment session spawns a unique topic which is used to
pass request and response JSON messages. Through this pattern, only the broker
needs to be in a network location that is visible to all devices. Such a network
asymmetry can also affect tasks on different devices that need to pass data items.
Besides the existing support for both a push and a pull mechanism between two
NiFi engines, we further support a similar broker-based model using Apache
Kafka for scalable transfer of large and fast data streams within the application.
We will demonstrate support for such forms of network asymmetry.

4 Video Analytics Applications

We design two representative video analytics dataflows motivated by smart city
applications, and demonstrate their execution using ECHO on Edge, Fog and
Cloud resources. Our IoT testbed (Fig. 1(Bottom)) where these applications are
deployed consists of 12 Raspberry Pi 2B and 3B edge devices, an NVIDIA TX1
and a SoftIron ARM64 Fog servers, four Azure DS1 VMs in Microsoft’s South
India data center, and one Azure NC6 GPU VM in the US East data center [1].

Distributed Video Analytics Across Edge and Cloud Using ECHO 405

Kafka
Consumer

Detect
Dominant

Color

ALPR

Join and
Timestamp

Kafka
Consumer

Detect
Dominant

Color

ALPR

Join and
Timestamp

Store and
Estimate

Time
Bill

Kafka
Broker

Entry
camera

Exit
camera

[3TFB8O5,3TF8805,
3TFBB05,3TFB8D5,
3TPB805]

[Brown]

[3TFB8O5,3TFB80S,
3TFBB05,3TFB8D5,3
FB805]

[Brown]

[3TFB8O5,3TF8805,3TFB
B05,3TFB8D5,3TPB805,
Brown,
2017-08-29T10:01:54+0
0:00]

[3TFB8O5,3TFB80S,
3TFBB05,
3TFB8D5,3FB805,
Brown,
2017-08-29T17:43:
12+00:00]

[2017-08-2
9T10:01:54
+00:00,
2017-08-2
9T17:43:12
+00:00]

Fig. 1. ALPR dataflow for parking billing (Top), and IoT Testbed Devices (Bottom)

Automatic Billing of Parking. Automatic License Plate Recognition
(ALPR), a popular computer vision analytic, is used in applications like traffic
enforcement, congesting pricing and automated toll collection. It is solved in
two parts – the license plate region is first detected in an image, and then the
characters are extracted from the region using Optical Character Recognition
(OCR) [7]. Here, we design a dataflow that uses ALPR for automated time-based
billing of vehicles across hundreds of parking lots in a city, when cameras are
present at their entry and exit gates. We correlate the time at which a license
plate enters and when it exits using ALPR, and bill them on exit. The challenge
comes from the ALPR algorithm giving false positives. To address this, we also
capture and store the detected color of the vehicle2, besides the top n estimates
of the license plate returned by an OpenALPR task3 and the timestamp when a
vehicle enters. When a vehicle exits, these image analytics algorithms are rerun
to detect its color along with the estimated plate numbers by ALPR, which
are compared using a distance function with the details of vehicles that entered
earlier. A match is found if the best distance score is above a threshold, and is
used to determine the duration of parking and the bill. This dataflow that will
be demonstrated is shown in Fig. 1(Top).

Urban Scene Classification. Classification algorithms based on deep learning
models associate bounding-boxes and tags to different entities in a given image.
The outputs from such models can be used to detect situations of interest in
urban environments, such as safety incidents, traffic violation, etc. YOLO is
2 https://github.com/fengsp/color-thief-py.
3 OpenALPR library, https://github.com/openalpr/openalpr.

https://github.com/fengsp/color-thief-py
https://github.com/openalpr/openalpr

406 A. Khochare et al.

(a) YOLO dataflow deployed within NiFi

(b) YOLO Tiny (c) YOLO Full

Fig. 2. YOLO dataflow and classified outputs from models

one such popular deep convolutional neural network for object detection that is
trained and available on TensorFlow [8]. We demonstrate a novel use of YOLO
using a two-level classification of urban scenes in conjunction with an Apache
Edgent CEP engine, as described in [1]. Running YOLO on a full resolution
image frame (608 × 608) is computationally costly, and TensorFlow achieves a
frame-rate of only 1/s even with an NVIDIA K80 GPU. Instead, we use an
additional tiny YOLO model that operates on a scaled-down image on the Edge
or Fog device, and if any interesting tags are detected, forwards a full-resolution
video segment to a GPU VM on the Cloud where the full model runs for accurate
classification. This also illustrates the use of hybrid engines, TensorFlow and
Edgent, for execution within ECHO. A screenshot of the dataflow in NiFi, along
with a sample frame classification from the models is shown in Fig. 2.

5 Demonstration

The ECHO platform’s features and capabilities will be demonstrated by deploy-
ing the two applications elaborated in Sect. 4.

Distributed Video Analytics Across Edge and Cloud Using ECHO 407

Automatic Billing of Parking. We treat the input video as a stream of
distinct images. We source these images from Caltech automobile dataset [9]
and periodically publish them into either the entry camera topic or the exit
camera topic hosted in a Kafka Broker. As Fig. 1(Top) shows, the first processors
in the dataflow are Kafka Consumers that acquire these image streams. This
application will be deployed using the heuristic scheduler onto our IoT testbed.
This results in a mapping of tasks to the devices, such that the optimization
goals are met. We will then use the deployed application along with a custom
scheduler that will deterministically produce a different mapping to demonstrate
the rebalance capability of ECHO.

Urban Scene Classification. In this application too, we consider the input
video stream as a sequence of images. The images are located in the file system
of the edge device which serves as the input of the video. We use images from
the ETH people dataset as exemplar [10]. The heuristic scheduler is used for the
placement of this dataflow as well. We should see a placement where the native
TensorFlow processor is mapped onto the GPU accelerated fog device.

In both these demonstrations, we will demonstrate the platform seamlessly
handling the network asymmetry that exists between the devices, where some
devices may not be able to access others. Data is either pushed or pulled from the
source to the destination, or vice versa, depending on this network visibility. If
neither can reach each other directly over the network, a Kafka Message Broker
is used to pass the data through indirection.

References

1. Ravindra, P., Khochare, A., Reddy, S.P., Sharma, S., Varshney, P., Simmhan, Y.:
ECHO: an adaptive orchestration platform for hybrid dataflows across Cloud and
Edge. In: Maximilien, M., Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017.
LNCS, vol. 10601, pp. 395–410. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-69035-3 28

2. Apache Edgent, v1.1.0. http://edgent.apache.org/. Accessed 21 June 2017
3. Node-RED. https://nodered.org/. Accessed 1 Oct 2017
4. Amazon AWS Greengrass. https://aws.amazon.com/greengrass/. Accessed 21

June 2017
5. Microsoft Azure IoT Edge. https://azure.microsoft.com/en-in/campaigns/iot-

edge/. Accessed 21 June 2017
6. Ghosh, R., Simmhan, Y.: Distributed scheduling of event analytics across Edge

and Cloud. ACM Trans. Cyber-Phys. Syst. (2017, To appear)
7. Ozbay, S., Ercelebi, E.: Automatic vehicle identification by plate recognition. World

Acad. Sci. Eng. Technol. 9(41), 222–225 (2005)
8. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger, arXiv preprint arXiv:

1612.08242 (2016)
9. CalTech Cars Dataset. http://www.vision.caltech.edu/archive.html. Accessed 28

Aug 2017
10. Ess, A., Leibe, B., Schindler, K., van Gool, L.: A mobile vision system for robust

multi-person tracking. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2008)

https://doi.org/10.1007/978-3-319-69035-3_28
https://doi.org/10.1007/978-3-319-69035-3_28
http://edgent.apache.org/
https://nodered.org/
https://aws.amazon.com/greengrass/
https://azure.microsoft.com/en-in/campaigns/iot-edge/
https://azure.microsoft.com/en-in/campaigns/iot-edge/
http://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1612.08242
http://www.vision.caltech.edu/archive.html

Author Index

Abdellatif, Takoua 43
Abrahao, Silvia 393
Adam, Constantin 384
Aiello, Marco 174
Anderson, Maya 198
Ayed, Rahma Ben 80

Badr, Youakim 93
Belala, Faiza 5, 111
Benzadri, Zakaria 111
Beranek, Marek 258
Bermbach, David 198, 240
Berrocal, Javier 124
Boubeta-Puig, Juan 228, 369
Bozga, Marius 43
Breitenbücher, Uwe 379

Calegari, Daniel 308
Canal, Carlos 124
Carrasco, Jose 55
Clarke, Siobhán 149
Corral-Plaza, David 369

de Oliveira, Patrícia Araújo 363
Delgado, Andrea 308
Dong, Yuji 137
Dubosson, Magali 18
Durán, Francisco 55, 363
Duri, Sastry 384

Engel, Robert 398
Engels, Gregor 388

Fay, Alexander 270
Ferme, Vincenzo 215
Fernandez, Pablo 352
Feuerlicht, George 258
Flores-Martin, Daniel 333
Fragnière, Emmanuel 18
Franczyk, Bogdan 252

Gamez-Diaz, Antonio 352
Garcia-Alonso, Jose 124

García-de-Prado, Alfonso 228
Gatouillat, Arthur 93
Geiger, Matthias 215
González, Laura 308
Graja, Imen 67
Gschwind, Katharina 384
Guerfel, Rawand 80
Guermouche, Nawal 67

Hadj-Alouane, Nejib Ben 161
Hameurlain, Nabil 5
Harrer, Simon 215
Haubeck, Christopher 270
Heindorf, Stefan 388

Insfran, Emilio 393

Junod, Nathalie 18

Kacem, Ahmed Hadj 67
Kallel, Slim 67
Kat, Ronen 198
Képes, Kálmán 379
Khebbeb, Khaled 5
Khochare, Aakash 402
Kirchhoff, Jonas 388
Kitouni, Roumeissa 111
Kostova, Blagovesta 339
Kotonya, Gerald 30
Kovar, Vladimir 258
Kuster, Christian 321

Lamersdorf, Winfried 270
Lazovik, Alexander 174
Lenhard, Jörg 215
Leymann, Frank 379
Ludwig, Heiko 398

Mann, Zoltán Ádám 296
Marir, Souad 111
Massot, Bertrand 93
Masuch, Nils 321
Megahed, Aly 188

Metzger, Andreas 296
Mohamed, Mohamed 398
Murillo, Juan M. 124
Mutanu, Leah 30

Nadgowda, Shripad 384
Nazeem, Ahmed 188

Ortiz, Guadalupe 228, 369

Palade, Andrei 149
Pallas, Frank 198, 240
Pautasso, Cesare 215
Pérez, David García 198
Pimentel, Ernesto 55, 363
Plebani, Pierluigi 198
Pratama, Azkario Rizky 174

Ravindra, Pushkara 402
Reddy, Siva P. 402
Rosa-Gallardo, Daniel J. 228
Rößner, Ingo 252
Ruiz-Cortes, Antonio 352

Saatkamp, Karoline 379
Sahli, Hamza 5
Sandobalin, Julio 346, 393
Sbaï, Zohra 80

Schoenen, Stefan 296
Simmhan, Yogesh 402
Sivrikaya, Fikret 321
Stastny, Marek 258

Tai, Stefan 198
Tata, Samir 188

Vogel, Maximilian 283
Vukovic, Maja 384

Wan, Kaiyu 137
Warke, Amit 398
Weber, Sebastian 283
Wehlitz, Robert 252
Werner, Sebastian 240
White, Gary 149
Widyawan 174
Willaerts, Bettina 18
Wolters, Dennis 388

Yeddes, Moez 161
Yue, Yong 137

Zavala, Edith 357
Zimmermann, Michael 379
Zirpins, Christian 283
Zrelli, Rym 161

410 Author Index

	Preface
	ICSOC 2017 Organization
	Contents
	Adaptive Service-Oriented and Cloud Applications
	Introduction
	Program Chairs
	Web and Publicity Chair
	Program Committee

	A BRS Based Approach for Modeling Elastic Cloud Systems
	Abstract
	1 Introduction
	2 The Elasticity Controller
	3 Formalizing Elastic Cloud Systems with BRS
	3.1 BRS Overview
	3.2 A BRS Model for Elastic Cloud Systems
	3.3 The Elasticity Controller’s Behavior

	4 Tool Support
	5 Related Work
	6 Conclusion
	References

	Detecting Customer Queue “at-risk” Behaviors Based on Ethograms to Minimize Overall Service Dissatisfaction
	Abstract
	1 Context
	2 Queuing and Human Ethology
	3 Literature Review
	4 Methodology
	5 Findings
	6 Conclusion and Further Research
	References

	What, Where, When, How and Right of Runtime Adaptation in Service-Oriented Systems
	Abstract
	1 Introduction
	2 Factors that Influence Adaptation
	2.1 Change Trigger (What)
	2.2 Application Context (Where)
	2.3 Adaptation Model (When and How)
	2.3.1 Predictive vs. Reactive Models
	2.3.2 Model Implementation – Embedded vs. Pluggable

	2.4 Adaptation Effectiveness (Right)
	2.5 Summary

	3 Support for Validation in Runtime Adaptation
	4 Conclusions
	References

	An End-to-End Security Model for Adaptive Service-Oriented Applications
	Abstract
	1 Introduction
	2 Dependence Graph Abstraction
	2.1 Program Dependence Graphs
	2.2 System Dependence Graphs

	3 E2SEM Security Model
	3.1 Decentralized Label Model
	3.2 PDG-Based Non-interference Checking
	3.3 SDG-Based Non-interference Checking
	3.4 Non-interference Runtime Checking

	4 E2SM Evaluation
	5 Related Work
	6 Conclusion
	References

	Runtime Migration of Applications in a Trans-Cloud Environment
	1 Introduction
	2 An Overview of Trans-Cloud
	2.1 A Trans-Cloud Environment
	2.2 The Softcare Case Study

	3 Migration Algorithm
	4 The Tool in Practice
	4.1 Application Deployment
	4.2 Migration Request

	5 Conclusions
	References

	Verification of the Consistency of Time-Aware Cyber-Physical Processes
	1 Introduction
	2 Related Work
	3 Motivating Example
	4 BPMN4CPS: A BPMN Extension for Modeling Time-Aware CPS Processes
	4.1 Modeling CPS Aspects
	4.2 Modeling Time-Related and Physical Properties

	5 Verification of the Consistency of the CPS Processes
	5.1 Transformation Rules for a Cyber-Physical Process
	5.2 Transformation Rules for Collaborative CPS Processes

	6 Experimentation: BPMN4CPS Tool
	7 Conclusion
	References

	Model Checking of Cost-Effective Elasticity Strategies in Cloud Computing
	1 Introduction
	2 Cost-Effective Elasticity Strategy of Composite Cloud Business Services
	2.1 System Model
	2.2 Motivation

	3 Formal Modeling of Elasticity of CCBS
	4 Verification of Elasticity Strategies
	4.1 Formal Analysis of the Proposed System Modeling

	5 Related Work
	6 Conclusion
	References

	QoS-Driven Self-adaptation for Critical IoT-Based Systems
	Abstract
	1 Introduction
	2 Related Works
	3 Motivation Case-Study
	4 QoS-Driven Self Adaptation
	4.1 Managing Changing SLA and Monitoring Environment
	4.2 Non-functional Device Labeled Transition Systems
	4.3 Rule Based Modelization of Control Objectives and SLA

	5 Synthesizing the Discrete Controller
	6 Implementation and Simulation Results
	7 Conclusion and Perspectives
	Acknowledgement
	References

	IoT Systems Provisioning and Management for Context-Aware Smart Cities
	Workshop Program Chairs
	Workshop Committee

	BiAgent-Based Model for IoT Applications
	1 Introduction
	2 Basic Concepts
	2.1 Bigraphs
	2.2 BiAgents
	2.3 Trace

	3 A Layered-Architecture for IoT Applications
	4 4684391En9FigbPrint.eps: A BiAgent-Based Model for IoT
	5 Related Work
	6 Conclusion
	References

	Seamless Interactions on the Internet of Things. A Spotify-Based Proof of Concept
	1 Introduction
	2 Situational Context
	3 Spot&Joy: A Spotify-Based Situational-Context Application
	3.1 Spot&Joy User
	3.2 Spot&Joy Player
	3.3 Situational-Context Challenges

	4 Related Works
	5 Conclusions and Future Work
	References

	A Feedback-Based Adaptive Service-Oriented Paradigm for the Internet of Things
	1 Introduction
	2 Motivation
	2.1 Issue of System States Verification
	2.2 Issue of Physical Behaviours Implementation

	3 Feedback-Based Adaptive Service-Oriented Paradigm
	4 Extending REST for the IoT Based on FASOP
	5 Implementation Methods
	6 Case Studies
	6.1 Turn On/Off a Lamp in the Smart Home
	6.2 Brake an AutoDriving Car

	7 Related Works
	8 Conclusion and Future Work
	References

	QoS Prediction for Reliable Service Composition in IoT
	1 Introduction
	2 Background and Related Work
	2.1 Decentralised Service Execution
	2.2 QoS Prediction

	3 QoS-Driven Service Composition and Execution
	3.1 Service Composition and Execution
	3.2 Collaborative QoS Prediction

	4 Experimental Setup
	4.1 Dataset Description
	4.2 Metrics
	4.3 Performance Comparison

	5 Results
	5.1 Threats to Validity

	6 Conclusion and Future Work
	References

	Checking and Enforcing Security Through Opacity in Healthcare Applications
	1 Introduction
	2 Preliminaries
	2.1 Petri Nets, WF-net and oWF-nets
	2.2 Labeled Transition System
	2.3 Opacity
	2.4 Symbolic Observation Graph

	3 Motivating Scenario
	4 Modeling and Verification
	5 SOG-Based Enforcement of Opacity
	5.1 The SOG-Based Algorithm for the Verification of Simple Opacity
	5.2 The Opacification Proposed Algorithm

	6 Conclusion and Future Work
	References

	Power-Based Device Recognition for Occupancy Detection
	1 Introduction
	2 Related Work
	3 Design and Implementation
	4 Evaluation
	5 Results and Discussion
	5.1 Relation of Monitor Screen Activation and Occupancy
	5.2 Discussion

	6 Concluding Remarks
	References

	Cognitive Determination of Policies for Data Management in IoT Systems
	1 Introduction
	2 State of the Art
	3 Methodology
	3.1 Recommendation of Action Given an Event-Condition
	3.2 Validating the Learned Actions and Updating the Historical Data
	3.3 Learning the Priority of Events-Conditions
	3.4 An Optimization Module for the Final Action Recommendations

	4 Conclusions and Directions for Future Work
	References

	A Research Perspective on Fog Computing
	1 Introduction
	2 From Cloud to Fog Computing
	3 The Main Obstacles for Adoption of Fog Computing
	3.1 Inherent Obstacles
	3.2 External Obstacles

	4 Open Research Challenges in Fog Computing
	4.1 Fog Service Providers
	4.2 Fog Application Providers
	4.3 Cross-Cutting Concerns

	5 Conclusion
	References

	Workshop on Engineering Service-Oriented Applications and Cloud Services
	Workshop Organizers
	Program Committee

	Lessons Learned from Evaluating Workflow Management Systems
	1 Introduction
	2 Related Work
	3 Findings and Lessons Learned
	3.1 Functional Suitability Findings
	3.2 Performance Efficiency Findings
	3.3 Usability Findings
	3.4 Reliability Findings
	3.5 Maintainability Findings
	3.6 Portability Findings
	3.7 Summary

	4 Conclusion and Future Work
	References

	Sustainable WAsTe Collection (SWAT): One Step Towards Smart and Spotless Cities
	Abstract
	1 Introduction
	2 Background
	2.1 Event-Driven Service-Oriented-Architecture
	2.2 Complex Event Processing
	2.3 Summary of Existing Approaches

	3 SWAT: Sustainable WAsTe Collection
	3.1 SWAT Infrastructure and Architecture
	3.2 Hardware Infrastructure
	3.3 Management Software Module
	3.4 Software Clients
	3.5 SWAT Alerts and Actions

	4 Evaluation
	5 Discussion
	6 Conclusion
	Acknowledgements
	References

	Designing Suitable Access Control for Web-Connected Smart Home Platforms
	1 Introduction
	2 Access Control in Smart Home Systems
	2.1 Relevant Usage Scenarios
	2.2 Technical Requirements and Mechanisms

	3 Case Study: OpenHAB
	3.1 System Overview
	3.2 Access Control in OpenHAB
	3.3 Extending Access Control

	4 Discussion
	5 Conclusion and Future Work
	References

	Integrating Smart Devices as Business Process Resources – Concept and Software Prototype
	Abstract
	1 Introduction
	2 Motivation and Related Work
	3 Concept
	4 Software Prototype
	5 Conclusion and Outlook
	Acknowledgments
	References

	Architecting Enterprise Applications for the Cloud: The Unicorn Universe Cloud Framework
	Abstract
	1 Introduction
	2 Related Work
	3 Unicorn Application Framework (UAF)
	3.1 Unicorn Universe Application (uuApp)

	4 Unicorn Universe Cloud (uuCloud)
	4.1 uuCloud Nodes
	4.2 uuGateway
	4.3 uuCloud Operation Registry
	4.4 uuCloud Control Centre

	5 Lekar Reservation System
	5.1 LRS Technical Solution
	5.2 Topology of the LRS Solution

	6 Conclusions and Further Work
	References

	A Knowledge Carrying Service-Component Architecture for Smart Cyber Physical Systems
	Abstract
	1 Introduction
	2 Service-Oriented Knowledge Management in CPS
	2.1 Service-Oriented Event Acquisition in Heterogeneous CPSs
	2.2 Domain Specific Models for Joint Dynamics in Service-Components
	2.3 Self-documenting Process for Evolution Support

	3 Evaluation
	4 Related Work
	5 Conclusion
	Acknowledgment
	References

	Experiences on Migrating RESTful Web Services to GraphQL
	1 Introduction
	2 Related Work
	3 GraphQL
	4 Migrating a Smart Home App from REST to GraphQL
	4.1 Original SmartHome System and Architecture
	4.2 Architectural Considerations
	4.3 Integration of GraphQL
	4.4 Performance Analysis

	5 Challenges of Migration
	5.1 Challenges on Architectural Level
	5.2 Challenges on Service-Level

	6 Conclusion and Outlook
	References

	Using Risk Patterns to Identify Violations of Data Protection Policies in Cloud Systems
	1 Introduction
	2 A Motivating Example
	3 Overview of the Proposed Approach
	4 Run-Time Model
	5 Risk Patterns
	6 Activities from Design Time to Run Time
	7 Application to Our Cloud Scenario
	8 Related Work
	9 Conclusion and Future Work
	References

	Towards Setting Up a Collaborative Environment to Support Collaborative Business Processes and Services with Social Interactions
	1 Introduction
	2 Related Work
	3 Collaborative Environment Scenarios Analysis
	3.1 Scenarios for the Collaborative Environment
	3.2 Scenarios for Social Media Interactions

	4 Setting up a Collaborative Environment
	4.1 Reference Architecture for an Integration Platform
	4.2 Maturity Model for Collaboration

	5 Proof of Concept
	6 Conclusions
	References

	Toward an Interactive Mobility Assistant for Multi-modal Transport in Smart Cities
	1 Introduction
	2 Related Work
	3 Research Challenges
	4 Research Approach
	4.1 The Agent Model
	4.2 The Agent Environment

	5 Conclusion and Future Work
	References

	PhD Symposium
	Keynote
	Panelists
	Program Committee

	Meeting IoT Users' Preferences by Emerging Behavior at Run-Time
	1 Introduction
	2 Related Fields and Hypothesis
	3 Research Objectives
	4 Preliminary Results
	5 Evaluation Plan
	References

	A Proposition for a Design Method of Service Systems
	Abstract
	1 State of Research
	1.1 Individual Level
	1.2 Organizational Level
	1.3 Implementation Level
	1.4 Current Research

	2 State of Research Work Performed by Student
	3 Research Methodology: Design Science Research
	4 Doctoral Project Timeline
	References

	A Model-Driven Approach to Continuous Delivery of Cloud Resources
	Abstract
	1 Introduction and Problem Statement
	2 Related Work
	3 Proposed Solution
	4 Conclusions and Future Directions
	Acknowledgments
	References

	SLA-Driven Governance for RESTful Systems
	1 State of the Art
	2 Research Challenges
	3 Preliminary Results
	4 Relevance
	References

	Towards Adaptive Monitoring Services for Self-Adaptive Software Systems
	Abstract
	1 Introduction
	2 Problem Statement
	3 Proposed Solution
	4 Related Work
	5 Conclusions and Future Work
	Acknowledgments
	References

	An Approach to Predictive Analysis of Self-Adaptive Systems in Design Time
	1 Research Problem and Motivation
	2 Research Challenges
	3 Related Work
	4 Proposed Solution and Preliminary Results
	5 Plan for Evaluation and Validation
	References

	Paving the Way for a Real-Time Context-Aware Predictive Architecture
	Abstract
	1 Motivation and Problem Statement
	2 Research Challenges
	3 Proposed Solution
	4 Preliminary Results
	5 Related Work
	6 Evaluation Plan
	7 Planned Timeline
	8 Conclusions
	References

	Demonstration
	Preface
	Demonstration Chairs
	Program Committee

	OpenTOSCA Injector: Vertical and Horizontal Topology Model Injection
	1 Introduction and Motivation
	2 TOSCA Fundamentals and Injection Concept
	3 System Architecture and Demonstration
	References

	Optimizing Service Delivery with Minimal Runtimes
	1 Introduction
	2 Background
	2.1 Cloud-Enabled Applications
	2.2 Cloud-Native Applications

	3 Implementing a Minimal Runtime
	4 Case Study
	5 Conclusion and Future Work
	References

	Semantic Data Mediator: Linking Services to Websites
	1 Introduction
	2 System Overview
	3 Implementation Details
	4 Demonstration
	References

	ARGON: A Tool for Modeling Cloud Resources
	Abstract
	1 Introduction
	2 An Infrastructure Modeling Tool for Cloud Provisioning
	2.1 Functionalities

	3 Modeling Infrastructure and Middleware
	Acknowledgments
	References

	Ubiquity: An Extensible Framework for Persistence in Container Environments
	1 Introduction
	2 Overview of Ubiquity Framework
	3 Demonstration
	4 Conclusions
	References

	Distributed Video Analytics Across Edge and Cloud Using ECHO
	1 Introduction
	2 Background and Related Work
	3 Extensions to the ECHO Platform
	4 Video Analytics Applications
	5 Demonstration
	References

	Author Index

