
Dataflow Modeling for Reconfigurable
Signal Processing Systems

Karol Desnos and Francesca Palumbo

Abstract Nowadays, adaptive signal processing systems have become a reality.
Their development has been mainly driven by the need of satisfying diverging
constraints and changeable user needs, like resolution and throughput versus energy
consumption. System runtime tuning, based on constraints/conditions variations,
can be effectively achieved by adopting reconfigurable computing infrastructures.
These latter could be implemented either at the hardware or at the software level,
but in any case their management and subsequent implementation is not trivial.
In this chapter we present how dataflow models properties, as predictability and
analyzability, can ease the development of reconfigurable signal processing systems,
leading designers from modelling to physical system deployment.

1 Reconfigurable Signal Processing Systems

For many years, the design of a signal processing system was mostly driven by
performance requirements. Hence, design effort was mainly focused on optimizing
the throughput and latency of the designed system, while satisfying constraints of
reliability and quality of service, and minimizing the system production cost. In
this context, a strong predictability of system behavior is essential, especially when
designing safety-critical real-time systems. Many compile-time methodologies,
computer-aided design tools, and static MoCs, such as the decidable dataflow
MoCs [26], have been created to assist system designers in reaching these goals.

In recent years, the ever increasing complexity of signal processing systems
has lead to the emergence of new design challenges. In particular, modern signal
processing systems no longer offer a fixed throughput and latency, specifically

K. Desnos (�)
Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164, F-35000 Rennes, France
e-mail: kdesnos@insa-rennes.fr

F. Palumbo
Universita degli Studi di Sassari, Sassari, Italy
e-mail: fpalumbo@uniss.it

© Springer International Publishing AG, part of Springer Nature 2019
S. S. Bhattacharyya et al. (eds.), Handbook of Signal Processing Systems,
https://doi.org/10.1007/978-3-319-91734-4_22

787

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91734-4_22&domain=pdf
mailto:kdesnos@insa-rennes.fr
mailto:fpalumbo@uniss.it
https://doi.org/10.1007/978-3-319-91734-4_22


788 K. Desnos and F. Palumbo

tuned to satisfy all timing constraints in the most demanding scenarios from
the system specification. Instead, modern systems must now dynamically adapt
their behavior on-the-fly to satisfy strongly varying workloads and performance
objectives, while optimizing new design goals such as minimizing use of shared
computational resources, or minimizing power consumption. These variations of
the workload and performance objectives may be induced by functional and non-
functional requirements of the system. An example of system with strongly varying
functional requirements is the computing system managing a base station of the
Long-Term Evolution (LTE) telecommunication network. Every millisecond, the
bandwidth allocated for up to 100 active users connected to the managed antenna
may change [50], with a strong impact on the amount and nature of computations
performed by the system. An embedded video decoding system that lowers the
quality of its output in order to augment battery life is an example of varying non-
functional requirement [48, 55]. As presented in [64], increasing the dynamism of a
signal processing often results in a partial loss of predictability, making it difficult,
and sometimes impossible, to guarantee the real-time performance or the reliability
(e.g. deadlock freedom) of a system.

The purpose of reconfigurable signal processing systems is to offer a carefully
balanced trade-off between system predictability and adaptivity. This trade-off
between diverging properties is essential to meet classical constraints of system per-
formance and reliability while satisfying varying requirements of modern system.
To offer a trade-off between predictability and adaptivity, reconfigurable systems
rely both on design-time analysis and optimization of system behavior, that make it
possible to predict the system behavior, and on runtime management technique that
enable system adaptation.

The objective of this chapter is to present how the analyzability of dataflow
MoCs can be exploited to ease the development of reconfigurable signal processing
systems. The chapter structure is briefly summarized as follows: Sect. 2 presents
how reconfigurable systems can be efficiently modeled with dedicated dataflow
MoCs, and Sects. 3 and 4 presents how software and hardware techniques, respec-
tively, can be used to implement reconfigurable applications efficiently. In more
details, Sect. 2 formally introduces the concept of reconfigurable dataflow MoCs
and discusses its key differences with decidable and dynamic classes of dataflow
MoCs. This concept is illustrated through the semantics of several reconfigurable
dataflow MoCs. In Sect. 3, software implementation techniques supporting the
execution of reconfigurable dataflow application are presented. This section covers
a wide range of software implementation techniques, spanning from compile-time
optimizations to runtime management system for reconfigurable applications. Then,
Sect. 4 presents a summary on reconfigurable computing systems, where both coarse
grained and fine grained reconfiguration paradigm are addressed describing how
dataflow MoCs may help in mapping and managing this kind of highly flexible
computing systems.



Dataflow Modeling for Reconfigurable Signal Processing Systems 789

2 Reconfigurable Dataflow Models

The high abstraction level of dataflow MoCs makes them popular models for
specifying complex signal processing applications [26]. By exposing coarse-grain
computational kernels,1 the actors, and data dependencies between them, the First-
In First-Out queues (FIFOs), the dataflow semantics eases the specification of
parallel applications, and provides necessary formalism for many verification and
optimization techniques for the design of signal processing systems.

The expressiveness of a MoC defines the range of applications behavior this
MoC can describe. The expressiveness of a dataflow MoC is directly related to its
firing rules, which are used to specify how and when actors produce and consume
data tokens on connected FIFOs. Dataflow MoCs can be sorted into three classes
depending on their expressiveness:

• Decidable dataflow MoCs [26]: all production and consumption rates are fixed
at compile-time, either as fixed scalar, or with periodic variations. The key
characteristics of decidable dataflow graphs is that, through an analysis of data
rates, it is possible to derive a schedule of finite length at compile-time.

• Dynamic dataflow MoCs [64]: production and consumption rates can change
non-deterministically at each actor firing, making these models Turing-complete
ones. Hence, for most dynamic dataflow MoCs, schedulability, deadlock-
freedom, real-time properties, and memory boundedness of application graphs
can be verified neither at compile-time, nor at runtime. In some dynamic dataflow
MoCs, this lack of analyzability is partially alleviated through specialization of
the model semantics.

• Reconfigurable dataflow MoCs: production and consumption rates can be
reconfigured (i.e. changed) non-deterministically at restricted points in appli-
cation execution. These MoCs are sometimes also called parametric dataflow
MoCs [11]. This restriction limits the expressiveness of reconfigurable dataflow
models, but makes it possible to verify application properties, like schedulability,
either at compile-time or at runtime, after a reconfiguration occurred.

The following subsections formally introduce the reconfiguration semantics
behind reconfigurable dataflow MoCs, and shows how it benefits model analyzabil-
ity through the presentation of several reconfigurable dataflow MoCs. Implementa-
tion optimization techniques taking advantage of the reconfiguration semantics are
presented in Sects. 3 and 4.

1Kernels are usually intended as subparts of an application providing a specific computation. In
a perspective hardware implementation, the computationally intensive ones are the part of the
application that are normally delegated to specific accelerators.



790 K. Desnos and F. Palumbo

2.1 Reconfiguration Semantics

The reconfiguration semantics behind reconfigurable dataflow MoCs is a mathe-
matical model that makes it possible to detect potentially unsafe reconfigurations
of an application graph [44]. A reconfiguration is said to be unsafe if it may result
in an unwanted and undetected state of the application, such as a deadlock or an
inconsistence in production and consumption rates.

The reconfiguration semantics for dataflow MoCs is based on the definition of
hierarchical actors, parameters, and quiescent points. The reconfiguration semantics
can be implemented by any dataflow MoC with atomic actor firings. This assump-
tion guarantees the applicability of the reconfiguration semantics to a broad range
of dataflow MoCs, including decidable [26], multi-dimensional [33], and some
dynamic dataflow MoCs [64].

Formally, a hierarchical graph is defined as a set of actors A. An actor a ∈ A

can either be an atomic actor, an actor whose internal behavior is specified with
host code, or a hierarchical actor, an actor whose internal behavior is specified
with a subset of actors Aa ⊂ A. The top-level graph itself is considered as a
hierarchical actor with no parent, and that contains all other actors in A. Each
actor a is associated to a dedicated set of parameters Pa , that can influence both
its production and consumption rates, and the computations it performs. At any
point in execution time, each parameter p ∈ P (= ⋃

a∈A Pa) is associated to a
value given by a valuation function: val(p) whose type (e.g. integer, real, boolean,
...) depends on the underlying model semantics. The value val(p) of a parameter
may be independent, or may depend on the value of one or several other parameters
in P . The transitive relation q depends on p, between two parameters p �= q, is
noted p � q. Reconfiguration occurs when the value of an independent parameter
is modified during the execution of the application.

Figure 1 shows an example of graph specified with a synthetic dataflow MoC
implementing the reconfiguration semantics. Figure 1a illustrates the semantics,
which is then used to build up the example in Fig. 1b. The graph of Fig. 1b consists
of five actors, including one hierarchical actor h that contains two atomic actors C

and D. Each consumption and production rate is defined by a dedicated parameter
whose valuation function is specified as an expression written next to the graph. In
this graph, p, s, and t are independent parameters and all other parameters have
dependencies; as for example p � r .

Reconfiguration semantics models as a quiescent point the state of an actor
between two firings. Like actor firings, the set of quiescent points Qa of an actor
a is ordered in time according to a transitive precedence relation. Since firings of
actors contained in a hierarchical subgraph cannot span over multiple firings of their
enclosing actor, when a hierarchical actor is quiescent, all actors contained in its
hierarchy must also be. A graphical representation of quiescent points for the graph
of Fig. 1 is presented in Fig. 2.



Dataflow Modeling for Reconfigurable Signal Processing Systems 791

FIFO

Hierarchical 
actor

Atomic
actorA

Port
and ratey

a b

h

A Bhp q wv

r utsC

p:= 6
q:= p/2
r:= q
t:= 2
s:= 4
u:= t
v:= s
w:= 2*t

D

Fig. 1 Synthetic dataflow MoC implementing the reconfiguration semantics. (a) Semantics. (b)
Graph and current valuation of parameters

Top-level

A

h

B

C

D

Fig. 2 Abstract representation of the quiescent points for the graph of Fig. 1. Vertical lines
represent quiescent points of actors. Dotpoint arrows represent actor firings and define a partial
ordering of quiescent points

The reconfiguration semantics requires reconfigurations of any independent
parameter p ∈ P to happen only during a quiescent points q ∈ Q(= ⋃

a∈A Qa)

at execution time. The set of parameters reconfigured during a quiescent point q is
noted: R(q) ⊆ P .

When using a dataflow MoC implementing the reconfiguration semantics, a
compile-time analysis of parameters and quiescent points of an application graph
can be used to verify model-specific reconfiguration safety requirements [44].
Safety requirements of a dataflow MoC are expressed as statements in the form
“Parameter p is constant over firings of actor a”. Formally:

Definition 1 Parameter p is constant over firings of actor c if and only if ∀a ∈
A,∀q ∈ Qa,∀r ∈ R(q), r � p ⇒ q ∈ Qc.

For example, in the SDF MoC, decidability can be expressed as the following
safety requirement: all parameters are required to be constant over firings of the
top-level actor.

In [11], Bouakaz et al. present a Survey of dataflow MoCs adopting the
reconfiguration semantics. Next sections present examples of MoCs implementing
the reconfiguration semantics.



792 K. Desnos and F. Palumbo

2.2 Reconfigurable Dataflow Models

2.2.1 Hierarchy-Based Reconfigurable Dataflow Meta-Models

The purpose of a dataflow meta-model is to bring new elements to the semantics of a
base dataflow MoC in order to increase its modeling capabilities. The Parameterized
and Interfaced Dataflow Meta-Model (PiMM) [17] and Parameterized Dataflow [8]
are two dataflow meta-models with similar purpose: bring hierarchical graph com-
position and safe reconfiguration features to any decidable dataflow MoC that has a
well-defined notion of graph iteration and repetition vector, such as SDF and Cyclo-
Static Dataflow (CSDF) [26], or Multi-Dimensional SDF (MDSDF) [33]. A base
dataflow MoC whose semantics is enriched with PiMM or with the parameterized
dataflow meta-model is renamed with prefixes π - and P-, respectively. For example,
πSDF and Parameterized SDF (PSDF) are the reconfigurable generalizations of the
decidable SDF MoC.

In PiMM and parameterized dataflow meta-models, safe reconfiguration is
expressed as a local synchrony requirement [8]. Intuitively, local synchrony requires
the repetition vector of the subgraph of a hierarchical actor to be configured at the
beginning of the execution of this subgraph, and to remain constant throughout a
complete graph iteration, corresponding to a firing of the parent actor. Hence, in
locally synchronous hierarchical subgraph, all parameters influencing production
and consumption rates of actors must remain constant over the firing of their parent
actor. Formally, with Sc, the set of direct child actors of a hierarchical actor c ∈ A,
where direct child means that ∀h ∈ Sc, d ∈ Sh ⇒ d /∈ Sc.

Definition 2 Subgraph Sc of actor c ∈ A, is locally synchronous if and only if:
∀a ∈ Sc, ∀p ∈ Pa , the requirement “p is constant over firings of c” is verified.

The semantics of PiMM, which is an evolution of the parameterized dataflow
semantics, is illustrated in Fig. 3. An example of πSDF graph is given in Fig. 4.

In PiMM, graph compositionality is supported by hierarchical actors, as defined
in the reconfiguration semantics, and by data interfaces. The purpose of interface-

PiMM semantics

Configuration
input interface

Configuration
input port

Locally static
parameter

Parameter 
dependency

P

Parameterization
semantics

Configuration
output port
Configurable
parameter

Configuration
actor

P

A

Reconfiguration
semantics

Delay and
number of 
tokens

FIFO

ActorA
Port
and rate3

x4

SDF
semantics

Hierarchy
semantics

Data input
interface
Data output
interface

Hierarchical 
actor

ou
t

in

h

Fig. 3 Semantics of the Parameterized and Interfaced Dataflow Meta-Model (PiMM)



Dataflow Modeling for Reconfigurable Signal Processing Systems 793

Converge Channel
Decoding

max
CBsPerUENbUE

Config
NbUE m

ac
sy

m
bo

ls Converge

KeepCurrent
Tones

Config
NbCB N

bC
B

sy
m
bo

ls PerUE
Process.

Bit
Process.

Turbo
Dec.

CRC
Check

si
nk

si
nk

NbCB

maxCBsPerUE NbCB 1 1 1 1

1

MaxCBsPerUE*NbUE MaxCBsPerUE

EUbN 11

1

1

NbCB

Fig. 4 Example of πSDF graph. Bit processing algorithm of the Physical Uplink Shared Channel
(PUSCH) decoding of the LTE telecommunication standard [17]

based hierarchy [52] is to insulate the nested levels of hierarchy in terms of graph
consistence analysis. To do so, data interfaces automatically duplicate and discard
data tokens if, during a subgraph iteration, the number of tokens exchanged on
FIFOs connected to interfaces is greater than the number of token produced on the
corresponding data ports of the parent actor.

The parameterization semantics of PiMM consists of parameters and parameter
dependencies as new graph elements, and configuration input ports and interfaces
as new actor attributes. The value associated to a parameter of a graph is propagated
through explicit parameter dependencies to other parameters and to actors. In the
πSDF MoC, it is possible to disable all firings of an actor by setting all its
production and consumption rates to zero. As illustrated in Fig. 4, parameter values
can be propagated through multiple levels of hierarchy using a configuration input
port on a hierarchical actor and a corresponding configuration input interface in the
associated subgraph.

The reconfiguration semantics of PiMM is based on actors with special firing
rules, called configuration actors. When fired, reconfiguration actors are the only
actors allowed to dynamically change the value of a parameter in their graph. As a
counterpart for this special ability, reconfiguration actors must be fired exactly once
per firing of their parent actor, before any non-configuration actor of their subgraph.
This restriction is essential to ensure the safe reconfiguration of the subgraph to
which configuration actors belong. To be strictly compliant with Definition 2,
configuration actors and other actors of a subgraph can be considered as two separate
subgraphs, executed one after the other.



794 K. Desnos and F. Palumbo

The local synchrony requirement of the πSDF MoC naturally enforces the
predictability of the model. After firing all configuration actors of a subgraph,
all parameters values, and hence all actor production and consumption rates of
this subgraph, are known and will remain fixed for a complete subgraph iteration.
Runtime analyses and optimization techniques can be used to compute the repetition
vector of the subgraph, to optimize the mapping and scheduling of actors, to allocate
the memory, or to verify that future real-time deadlines will be met. An important
benefit of this predictability is the support for data-parallelism which is often lost
in dynamic dataflow MoCs. Data parallelism consists in starting several firings of
the same actor in parallel if enough data tokens are available. Data-parallelism is
supported only if the next sequence of firing rates is know a priori, as is the case in
πSDF graphs. In dynamic dataflow MoCs [64], the firing rules of an actor generally
depend on its internal state after completion of its previous firing. This internal
dependency between actor firings forces their sequential execution, thus preventing
data parallelism.

Figure 4 presents a πSDF specification of the bit processing algorithm of the
Physical Uplink Shared Channel (PUSCH) decoding which is part of the LTE
telecommunication standard. The LTE PUSCH decoding is executed in the physical
layer of an LTE base station (eNodeB). It consists of receiving multiplexed data
from several User Equipments (UEs), decoding it and transmitting it to upper layers
of the LTE standard. Because the number of UEs connected to an eNodeB and
the rate for each UE can change every millisecond, the bit processing of PUSCH
decoding is inherently dynamic and cannot be modeled with static MoCs such as
SDF. Further details on this application, and specification using the parameterized
dataflow meta-model, can be found in [50].

Compile-time and light-weight runtime scheduling technique for executing
πSDF and PSDF graphs, are presented in Sect. 3. Combination of the parameter-
ized dataflow semantics and the CSDF MoC is studied in [32] for the design of
software-defined radio applications.

2.2.2 Statically Analyzable Reconfigurable Dataflow Models

SPDF and Boolean Parametric Dataflow (BPDF) are non-hierarchical reconfig-
urable generalizations of the SDF MoC that emphasize static model analyzability.
In particular, the semantics of the SPDF and BPDF MoCs make it possible to verify
safe reconfiguration requirements and to guarantee graph consistency and liveness
at compile time. In πSDF and PSDF, although local synchrony can be checked at
compile time, consistency and liveness of a subgraph can only be verified at runtime,
after configuration of all the parameters contained in this subgraph.

In the SPDF MoC semantics, symbolic parameters P with integer values
in N

∗ are used for parameterization. Special actors, called modifiers, have the
ability to dynamically change the value of a symbolic parameter. To ensure safe
reconfiguration, a modifier m ∈ A will set a new value for a parameter p ∈ P

with a pre-defined change period α ∈ N
∗. In practice, this means that the value of



Dataflow Modeling for Reconfigurable Signal Processing Systems 795

Fig. 5 Example of
Schedulable Parametric
Dataflow (SPDF) graph

1 12p3 C
set 

q[2p]

set
p[1]

A F

1 12pqq E

4p
2p

6
91

B

D

3

p will be changed every α firings of m. In an SPDF graph, as shown in Fig. 5, the
annotation “set p[α]” is used to denote that an actor is a modifier of parameter p,
with change period α. Change periods, and production and consumption rates of
actors are specified with products

∏n
i=0 ei , where ei is either an integer in N

∗, or a
symbolic parameter p ∈ P .

Using balance equations of actor production and consumption rates, similar to
those used for SDF graphs [26], graph consistency can be verified, and a symbolic
repetition vector can be computed. The basic operation used to find the symbolic
repetition vector of an SPDF graph is the computation of the Greatest Common
Divisor (GCD) of the numbers of data tokens produced and consumed on each
FIFO of the graph. Using this GCD, the numbers of repetition of the producer
and consumer actors, relatively to each other, can be deducted by dividing the
rates of the actors by this GCD. For example, in the graph of Fig. 5, the GCD of
the FIFO between actor D and E is gcdDE = gcd(q, 2pq) = q, which means
that actor E will be executed rateD/gcdDE = 2pq/q = 2p times for each
rateE/gcdDE = q/q = 1 execution of actor D. Using this principle, an algorithm
detailed in [22] can be used to compute the parametric number of repetition of all
actors in an SPDF graph. Using this algorithm on the SPDF graph of Fig. 5, the
following symbolic repetition vector is obtained: A3B6pC9D12pE6F , where Xa

means that actor X is fired a times per iteration of the graph. Notation #X is used
to denote the repetition count of an actor X ∈ A. Similarly, liveness (i.e. deadlock-
freedom) of graphs can be verified statically with an analysis of cyclic data-paths
inspired from SDF graph techniques.

Reconfiguration safety in SPDF graphs is based on the notion of parameter
influence region. The influence region R(x) of a parameter x is the set of: a) FIFOs
whose rates depend on x, b) actors connected to these FIFOs, and c) actors whose
numbers of repetitions depend on x. For example in Fig. 5, R(q) comprises FIFO

DE and actors D and E; and R(p) comprises the whole graph except actor F and
FIFOs connected to it.

Two safe reconfiguration requirements are used in SPDF: data and period safety.
Intuitively, data safety requires that the region R(p) influenced by a parameter p ∈
P comes back to an initial state, in terms of the number of data-tokens on FIFOs,
between each reconfiguration of p. In other words, data safety requires the (virtual)
subgraph composed by R(p) to complete a kind of local iteration and be quiescent
when a reconfiguration of a parameters influencing it occurs. Formally, data safety



796 K. Desnos and F. Palumbo

requires that ∀p ∈ P , with modifier m ∈ A and change period α, all actors a ∈ R(p)

have a repetition count #a such that gcd(#a, #m/α) = #m/α (i.e. #a is a multiple of
#m/α). For example in Fig. 5, with actor E ∈ R(q) and modifier B annotated “set
q[2p]”, actor E is data safe since #E = 6 is a multiple of #B/2p = 6p/2p = 3.

Period safety restricts how often a parameter q can be reconfigured by its
modifier m if #m itself depends on a parameter p. In this case, period safety ensures
that q is reconfigured at least as often as the start of a new iteration of the subgraph
formed by R(p). Formally, ∀p, q ∈ P with modifiers mp and mq , change period αp

and αq , and #mq depending on p, period safety requires #mq/αq to be a multiple
of #mp/αp. If this condition is not met, reconfiguration of q may happen in the
middle of an iteration of the subgraph formed by R(p), when it is not quiescent.
For example, in Fig. 5, repetition count #B = 6p of the emitter of q depends on p,
but its change period is safe since #B/2p = 3 is a multiple of #A/1 = 3. With the
period of q set to 3p instead, the graph would remain data safe but would no longer
be period safe, as #B/3p = 2 is not a multiple of #A/1 = 3. A consistent, data and
period safe SPDF graph will always be schedulable in bounded memory [22].

The semantics of the BPDF MoC is closely related to the one of the SPDF MoC,
and provides the same advantages in terms of static graph analyzability [6]. The
main difference between the two MoCs is that reconfigurable integer parameters
of SPDF are replaced with reconfigurable boolean parameters in BPDF. Through
combinational logic expressions, these boolean parameters are used to change the
BPDF graph topology, by enabling and disabling FIFOs. This feature is equivalent
to setting data rates to 0 in the SPDF and πSDF MoCs.

Examples of SPDF and BPDF graphs of multimedia, signal processing, and
software defined radio applications can be found in [6, 16, 22]. Compilation
techniques for deploying SPDF graphs onto multi and many-core architecture will
be presented in Sect. 3.

2.3 Dynamic Dataflow MoCs and Reconfigurability

In dynamic dataflow MoCs, as presented in [64], production and consumption rates
of actors may change dynamically at each firing, depending on the firing rules
specified for each actor. In most dynamic dataflow MoCs, the semantics include
elements to specify explicitly the internal firing rules of each actor. A common
way to characterize firing rules of a dynamic actor is to model its internal state
with a Finite State Machine (FSM), or a similar model like a Markov chain, and
to associate each FSM state with pre-defined production and consumption rates for
each data port. These FSMs can be specified either explicitly by the application
designer, using a dedicated language, as in the Scenario-Aware Dataflow (SADF)
and Core-Functional Dataflow (CFDF) MoCs [40, 64], or implicitly in the language
describing the internal behavior of actors, as in frameworks based on the CAL Actor
Language (CAL) [13, 21, 67].



Dataflow Modeling for Reconfigurable Signal Processing Systems 797

32x32
0;1;32*32

16x16
0;1;16*16

Recv
1;0;0

MB32
0;32²;32²

MB16
0;16²;16²

Cnfg
1;0;0

VLC Q-1 DCT-1
cfg

mb
bits cfg

mbombo mbimbi
cfg

a

cb

Fig. 6 Dynamic dataflow graph inspired by the residual decoding of a video decoder. (a) Dynamic
dataflow graph. (b) FSM of the VLC actor. Prod./Cons. rates for each state are expressed in the
following order bits;cfg;mbo. (c) FSM of the Q−1 and DCT−1 actors. Prod./Cons. rates for
each state are expressed in the following order cfg;mbi;mbo

An example of dynamic dataflow graph with associated FSMs is presented in
Fig. 6. This graph represents the residual decoding of macro-blocs of pixels in a
video decoding application. The semantics used for the FSMs presented in Fig. 6b,
c is similar to the one of the CFDF MoC. Each state of the FSMs is associated with
an integer production and consumption rate for each port of the corresponding actor.
When enough data tokens are available on the input FIFOs according to the current
actor state, the actor is fired and one state transition is traversed, thus deciding the
next firing rule.

In the graph of Fig. 6, the Variable Length Code (VLC) actor is responsible
for decoding the information corresponding to each macroblock (i.e. square of
pixel) from the input bitstream. To do so, the VLC actor reads the input bitstream
bit-by-bit in the Recv state, and fills an internal buffer. When enough bits have
been received, the VLC actor detects it, and goes to the 16×16 or 32×32 state,
depending on the dynamically detected macroblock size. In the 16×16 or 32×32
states, the VLC actor produces a configuration data-tokens on its cfg port, and
quantized macroblock coefficients on its mb port. The configuration data-token is
received by the dequantizer actor Q−1 and the inverse discrete cosine transform
actor DCT−1, which successively process the quantized macroblock coefficients
in the state corresponding to the dynamically detected macroblock size: 16×16 or
32×32.

Although dynamic dataflow MoCs inherently lack the predictability that charac-
terize reconfigurable dataflow MoCs, several techniques make it possible to increase
the predictability of a dynamic dataflow graph in order to enable a reconfigurable
behavior. The common point between these techniques, is that they exploit the
actor behavioral information specified with FSMs in order to make parts of the



798 K. Desnos and F. Palumbo

application reconfigurable. Two different approaches are presented hereafter: in
Sect. 2.3.1 classification techniques are used to identify reconfigurable behavior
in application graphs specified with existing dynamic MoCs, and in Sect. 2.3.2,
semantics of dynamic dataflow MoCs is extended to ease specification of recon-
figurable behavior within dynamic applications. Further hardware reconfigurable
implementation techniques based on dynamic dataflow MoCs are introduced in
Sect. 4.

2.3.1 Classification of Dynamic Dataflow Graphs

The basic principle of classification techniques for dynamic dataflow graphs is
to analyze the internal FSM of one or more actors in order to identify patterns
that correspond to statically decidable behaviors. Here, a pattern designates a
sequence of firings of one or more actors that, when started, will always be
executed deterministically when running the application, despite the theoretical non-
deterministic dynamism of the dataflow MoC.

In the example of Fig. 6, an analysis technique can detect two sequences of actor
firings, corresponding to the processing of a macroblock of size 16×16 and 32×32,
respectively. The first sequence is triggered when the VLC actor fires in the 16×16
state, which will always be followed by two firings of each of the Q−1 and DCT−1

actors, in the Cnfg and MB16 states. The second sequence is similar for the 32×32
configuration.

In [13], Boutellier et al. propose a technique to analyze a network of actors
specified with CAL, and detect static sequences of actor firings in their FSMs. Once
detected, each alternative sequence of actor firings is transformed into an equivalent
SDF subgraph. Similarly to what is done in reconfigurable dataflow MoCs, SDF
subgraphs are connected using switch/select actors capable of triggering dynam-
ically an iteration of a selected SDF subgraph. As shown in [13], application
performance can be substantially improved by exploiting the predictability of SDF
subgraphs to decrease the overhead of dynamic scheduling of actor firings.

In [21], Ersfolk et al. introduce a technique to characterize dynamic actor by
identifying the control tokens of the application. A control token is defined as a data
token whose value is used in actor code to dynamically decide which firing rule
will be validated for the next actor firing. For example, in Fig. 6, the data tokens
exchanged on the cfg ports are control tokens, as they decide the next firing rules
for the Q−1 and DCT−1 actors. Once a control token is identified, the data and
control path influencing its value is backtracked both through graph FIFOs and by
applying an instruction-level dependency analysis to actor CAL code. By analyzing
the datapath of control tokens, complex relations between firing rules of different
actors can be revealed. As in the previous technique, these relations between firing
rules of dynamic actors can be exploited to transform some part of a dynamic
dataflow graph into an equivalent reconfigurable graph.



Dataflow Modeling for Reconfigurable Signal Processing Systems 799

There exist several other techniques whose purpose is to detect reconfigurable
or static behavior from a dynamic dataflow description. In [67], a set of rules
are specified to classify the behavior of individual actors as static, cyclo-static,
quasi-static, time-dependent (i.e. non-deterministic), and dynamic. These rules can
be verified either by analyzing the firing rules of an actor, or by using abstract
interpretation which allows verifying these rules for all possible actor states [67].
In [20], another technique based on model-checking is used to detect statically
schedulable actions in a dynamic dataflow graph.

2.3.2 Reconfigurable Semantics for Dynamic Dataflow MoC

Parameterized Set of Modes (PSM) is an extension of the CFDF MoC which
brings parameterization semantics on top of the dynamic semantics of the CFDF
model [40]. The purpose of the PSM-CFDF MoC is to improve the analyzability
of FSMs in a network of actors by explicitly specifying graph-level parameters that
influence the dynamic dataflow behavior of one or more actors.

In the PSM-CFDF semantics, an actor a ∈ A is associated to an FSM where each
state, called a mode, corresponds to a fixed consumption and production rate. The
set of all modes of an actor a is noted Ma . Each time a mode ma ∈ Ma of an actor
a is fired, it selects the mode that will be used for the next firing of a. The mode
selected for the next firing of an actor a depends on the parameter values, called a
configuration, of a set of parameters Param(a) specified at graph-level. The set of
all valid configurations for an actor a is noted DOMAIN(a).

Figure 7 presents an example of PSM-CFDF graph modeling part of the
Orthogonal Frequency-Division Multiplexing (OFDM) demodulation of an LTE
receiver, inspired by Dardaillon et al. [16] and Pelcat et al. [50]. Parameter M

takes value in {1, 2} and is used to switch the application behavior between a low-
power mode M = 1, where a 5 MHz bandwidth is received with QPSK modulation,
and a high-throughput mode M = 2, where a 10 MHz bandwidth is received with
16QAM modulation. Parameter B takes integer values between 1 and Bmax , and
is used to control the vectorization of computation, i.e. the number of data tokens
buffered in order to be processed in a single firing of actors. In low-power mode
(resp. high-throughput mode), the FFT actor processes 512 (resp. 1024) samples
and outputs symbols for 300 (resp. 600) subcarriers, each of which is then decoded
by the Demap actor, using QPSK (resp. 16QAM) modulation, and producing 600
(resp. 2400) bits of data. As presented in Fig. 7b, c, the fully connected FSMs of the
two actors each contain 2 ∗ Bmax modes.

Building on the graph-level parameterization semantics, the basic idea of PSM-
CFDF is to gather actor modes into groups of modes with similar properties
(e.g. dataflow rates, mapping, ...) for a subsequent analysis or optimization of the
application. These groups of modes are called the Parameterized Set of Modes
(PSM) of an actor. Formally, a PSM of an actor a is defined as ρ = (S, C, f ),
where S ⊂ Ma is a subset of the modes of a, C ⊂ DOMAIN(a) is a subset of
the configurations of a, and f : C → S is a function giving the current mode in



800 K. Desnos and F. Palumbo

5MHz
M=1,B=2

10MHz
M=2,B=2

5MHz
M=1,B=1

10MHz
M=2,B=1

5MHz
M=1,B=Bmax

10MHz
M=2,B=Bmax

QPSK
M=1,B=2

16QAM
M=2,B=2

QPSK
M=1,B=1

16QAM
M=2,B=1

QPSK
M=1,B=Bmax

16QAM
M=2,B=Bmax

512MB FFT B Demap300MB 2MB

a

b c

Fig. 7 PSM-CFDF graph of an OFDM demodulator used in LTE standard [16, 40, 50]. (a) PSM-
CFDF graph. (b) Partial FSM of the FFT actor. (c) Partial FSM of the Demap actor

Fig. 8 Transition graph for
the PSM-CFDF actors of
Fig. 7

ρ1
M=1,B=1..Bmax

ρ2
M=2,B=1..Bmax

S depending on the current configuration in C. The set of all PSMs of an actor a,
noted PSM(a), must cover all modes of a; formally

⋃
ρ∈PSM(a) ρ.S = Ma . PSM(a)

can be represented as a graph, called transition graph, whose vertices are the PSMs
of the actor, and whose edges represent possible transitions from a PSM to another,
as originally specified in the actor FSM.

PSMs of an actor can be specified explicitly by the application developer, but can
also be deduced automatically from an analysis of the parameterized PSM-CFDF
graph, or from execution traces [40]. Figure 8 presents the transition graph created
for the FSMs in Fig. 7b, c, assuming that values of parameters B and M are changed
simultaneously when no data-token is present on FIFOs of the graph of Fig. 7. This
transition graph contains two PSMs ρ1 and ρ2, gathering modes for M = 1 and
M = 2 respectively.

A smart grouping of actor modes into PSMs can be used to produce a transition
graph where each PSM corresponds to a static schedule of actor firings [40, 54].
For example in Fig. 8, each of the two PSMs corresponds to a static scheduling of
the PSM-CFDF graph, with FFT1Demap300 for ρ1, and FFT1Demap600 for ρ2,
regardless of the value of parameter B. In such a case, changing the active PSM
triggers a reconfiguration of the application that switches between pre-computed
static schedules, which considerably reduces the workload of the application
scheduler.

Smart PSM grouping can efficiently address many optimization objectives,
such as maximizing application performance on heterogeneous platforms [40],
or minimizing the allocated memory footprint for the execution of a dynamic
graph [54].



Dataflow Modeling for Reconfigurable Signal Processing Systems 801

3 Software Implementation Techniques for Reconfigurable
Dataflow Specifications

As shown in previous section, dataflow MoCs can efficiently capture the coarse-
grain reconfigurable behavior of a signal processing system. From the dataflow
perspective, a reconfigurable behavior can be modeled as an explicit lightweight
control-flow enabling predictable and possibly parameterized sequences of actor
firings. A reconfigurable dataflow behavior can either be explicitly specified by the
system developer using specialized dataflow MoCs, or be extracted automatically
from a more dynamic system specification.

To execute a dataflow graph, a set of techniques must be developed to implement
the theoretical MoC semantics and execution rules within diverse hardware and
software environments. Implementation techniques are commonly responsible for
mapping and scheduling actor firings onto available processing elements and for
allocating memory and communication resources. Depending on the predictability
of the implemented dataflow MoC, these implementation techniques can be part of
the compilation process, or part of a runtime manager or operating system [37].

This section presents a set of software implementation techniques for dataflow
specifications that exhibit a reconfigurable behavior. By taking advantage of the
reconfigurable behavior of applications, the presented techniques optimize systems
in terms of performance, resource usage, or energy footprint. Implementation
techniques responsible for translating dataflow specifications with reconfigurable
behavior into synthesizable hardware implementations are presented in Sect. 4.
A more general description of software compilation techniques for other parallel
programming models is presented in chapter [39].

3.1 Compile-Time Parameterized Quasi-Static Scheduling

In general, dynamic and reconfigurable dataflow MoCs are non-decidable models.
Hence, contrary to decidable dataflow MoCs [26], it is not possible to determine at
compile time a fixed sequence of actor firings (i.e. a schedule) that will be repeated
indefinitely to execute a reconfigurable dataflow graph.

A quasi-static schedule of a dataflow graph, is a schedule where as many
scheduling decisions as possible are made at compile time and only a few data-
dependent decisions are left for the runtime manager. The purpose of quasi-static
scheduling is generally to increase application performance by relieving the runtime
manager from most of its scheduling computations overhead [9, 12].

In practice, a quasi-static schedule derived from a dataflow graph with a
reconfigurable behavior is expressed as a parameterized looped schedule [9, 35].
Formally, a parameterized looped schedule S is noted S = (I1I2...In)

λ where λ is
an integer repetition count whose expression may depend on parameter values, and
instruction Ii represents either the firing of an actor a ∈ A, or a nested parameterized



802 K. Desnos and F. Palumbo

i A a B o
g = gcd(a,b )
x = i× (b/g)
y = o×(a/g)

x G y

repeat b/g times {
fire A;
}
repeat a/g times {
fire B;
}

b

a b c d

Fig. 9 Basic grouping operation used to build a quasi-static schedule. (a) Original pair of actors.
(b) Equations. (c) Resulting actor. (d) Pseudo-code for G

looped schedule. The set of instructions I1I2 . . . In of a parameterized looped
schedule S is called the body of S. For example, A(B(CD)2E)p is a parameterized
loop schedule with two nested loops, where actor A is executed once, followed by p

executions of the sequence of actor firings (BCDCDE). A quasi-schedule is valid
only if all loop iteration counts remain constant throughout firing of their associated
body. When building a quasi-static schedule from a reconfigurable dataflow graph,
validity of the schedule is usually enforced by the safe reconfiguration requirement
of the dataflow graph (see Sect. 2.1).

An algorithm to build a quasi-static schedule from a PSDF (or πSDF) graph
is given in [9]. This algorithm, called Parameterized Acyclic Pairwise Grouping
of Adjacent Nodes (P-AGPAN), is an extension of a scheduling algorithm for SDF
graphs whose purpose is to build a schedule minimizing both code size and memory
footprint allocated for FIFOs. The basic operation of the P-AGPAN algorithm,
illustrated in Fig. 9, is to select a pair of actors connected with a FIFO, and to replace
them with a composite actor whose internal behavior is defined with a parameterized
looped schedule. For example, the pair of actors A and B from the graph of
Fig. 9a can be replaced with the composite actor G presented in Fig. 9c. Using
equations from Fig. 9b, the internal behavior of actor G can be represented with the
following parameterized looped schedule: Ab/gBa/g . Pseudo-code corresponding to
the internal behavior of the composite actor G is presented in Fig. 9d.

Applying the P-AGPAN algorithm to a PSDF or a πSDF (sub)graph consists of
iteratively selecting a pair of actors and applying the pairwise grouping operation,
until all actors of the considered subgraph are merged. The order in which pair of
actors are selected for grouping influences code size and memory requirements of
the generated quasi-static schedule. To minimize code size and memory require-
ments [9], priority is given to actor pairs connected with:

1. a single-rate FIFO (i.e. a FIFO with equal but possibly parameterized production
and consumption rates),

2. a FIFO associated to constant rates,
3. a FIFO associated with parameterized rates whose gcd can be computed statically.

If a subgraph contains non-connected actors, as is the case with configuration
actors and other actors of a πSDF graph, then these actors are added to the quasi-
static schedule in the execution order imposed by the execution rules of the MoC.
The P-AGPAN algorithm is applied in a bottom-up approach to all subgraphs of an
application, starting from the innermost subgraph up to the top-level graph.



Dataflow Modeling for Reconfigurable Signal Processing Systems 803

A
M

B1 v h1 1
Mv M

C
w

D

1

1

M w w E 1 1 F 1 1 G 1 w I 1

v

/* top -level graph */
fire A; // Sets v
fire B;
repeat v times{

/* h */
fire C; // Sets w
repeat w times{

fire D;
fire E;
fire F;
fire G;

}
fire I;

}

Grouped actor pair: Schedule: Simplified schedule:
1. D & E → D1E1 → DE
2. F & G → F 1G1 → FG
3. (DE) & (FG) → (DE)1(FG)1 → DEFG
4. (DEFG) & I → (DEFG)wI1 → (DEFG)wI

5. C & ((DEFGI)wI) → C1((DEFGI)wI)1 → C(DEFGI)wI = h
6. B & h → B1hv → Bhv = B(C(DEFGI)wI)v

7. A & Bhv → A1(Bhv)1 → ABhv = AB(C(DEFGI)wI)v

a b

c

Fig. 10 Quasi-static scheduling for the LTE πSDF graph of Fig. 4. (a) Simplified πSDF graph
with 1-letter actor names. (b) Quasi-static pseudo-code. (c) Step-by-step construction of the quasi-
static schedule using algorithm from [9]

Figure 10 illustrates the application of the P-AGPAN algorithm to the LTE
πSDF graph from Fig. 4. Figure 10a presents a simplified version of the πSDF
graph with 1-letter actor and parameter names. Figure 10c details the step-by-
step execution of the P-AGPAN algorithm for this πSDF graph. The first column
of Fig. 10c presents the pair of actors selected for grouping at each step, the
second column presents the internal parameterized looped schedule of the resulting
composite actor, and the last column present the same schedule with simplified
notations. Steps 1 to 5 correspond to the application of the P-AGPAN algorithm
to the hierarchical subgraph of actor h, and steps 6 and 7 to the top-level graph.
The pseudo-code corresponding to the quasi-static schedule AB(C(DEFGI)wI)v

is presented in Fig. 10b.
An algorithm for building a quasi-static schedule for a SPDF graph is given

in [22]. Briefly, this algorithm first consists of computing the symbolic repetition
vector of an SPDF graph, and then finding an ordering of all parameters pi such
that #M(pi+1)

α(pi+1)
= fi · #M(pi)

α(pi )
, where: #M(pi) is the repetition count of the emitter

of pi , α(pi) is its change period, and, finally, fi a parametric expression. Once this
order is established, the quasi-static schedule is obtained by ignoring FIFOs with
delays, and constructing a schedule of actors in topological order, where each actor
X is written: (((Xf ′

N+1)f
′
N ) . . .)f

′
1 , where f ′

i are expressions depending on the N



804 K. Desnos and F. Palumbo

parameters used and modified by X [22]. In the constructed quasi-static schedule,
which is not a parameterized loop schedule, each parenthesis corresponds to a
new value of the parameters used or set by the actor. For example, the quasi-static
schedule for the SPDF graph of Fig. 5 with explicit set and get of parameter values is
(A; set p)3(get p; (B2p; set q))3(get p;C3)3(get p; (get q;D4p))3(get p; (get q;
E2))3F (where all 1 exponent were omitted). An equivalent parameterized looped
schedule can be obtained by factorizing parenthesis with equivalent exponents and
matching set/get: ((AB2pC3(D4pE2))3F .

Further works on quasi-static scheduling include a technique for dynamic
dataflow graphs that exhibit reconfigurable behavior [12]. This technique consists of
pre-computing a multicore schedule for static subparts identified in the application.
The static multicore schedules are then triggered dynamically at runtime. Another
interesting work on quasi-static scheduling is presented in [35], where compact
representation of parameterized looped schedules is studied to speed-up execution
of quasi-static schedules, and reduce their memory footprints.

3.2 Multicore Runtime for πSDFs Graphs

As presented in previous section, analysis techniques can be used to make schedul-
ing decisions at compile-time for dataflow graphs with a reconfigurable behavior.
Nevertheless, since reconfigurable dataflow MoCs are inherently non-decidable,
executing them still requires making some deployment decisions, like mapping or
memory allocation, at runtime. For example, when executing a quasi-static schedule,
although the parameterized execution order of actor firings is known, these firings
still need to be mapped on the cores of an architecture, and memory still need to
be dynamically allocated for the FIFOs whose number and sizes are only known
when a reconfiguration occurs. Another important task to perform at runtime is
the verification that values dynamically assigned to parameters constitute a valid
configuration for the application [8, 17].

A first way to provide runtime support to a reconfigurable dataflow graph is to
use implementation techniques supporting dynamic dataflow MoCs [64]. The main
drawback with this approach is that it does not exploit the runtime predictability
of a reconfigurable MoC to make smart decisions. For example, a commonly used
strategy for executing a dynamic dataflow graph is to implement each actor as an
independent process that checks the content of its input and output FIFOs to decide
whether it should start a new firing. Because of this limited knowledge of the graph
topology and state, actors will waste a lot of processor time and memory bandwidth
only to check, often unsuccessfully, their firing rules [13, 20].

In reconfigurable dataflow MoCs, predictability is achieved by exposing the
parameterizable firing rules of actors as part of the graph-level semantics (Sect. 2).
Building on this semantics, a runtime manager can exploit the predictability of
reconfigurable graphs to make smart mapping, scheduling, and memory allocation
decisions dynamically.



Dataflow Modeling for Reconfigurable Signal Processing Systems 805

Developer

PiSDF
Graph

Actor
Code Heterogeneous

MPSoC

Jobs

Jobs

Jobs

Params

Timings

Data

Data

Pool of
data FIFOs

Slave

Slave

Master

SPIDER
Runtime

Application
Specification

PREESM
Framework

Fig. 11 Overview of the SPIDER runtime workflow and structure [29, 51]

SPIDER (Synchronous Parameterized and Interfaced Dataflow Embedded Run-
time) is a Real-Time Operating System (RTOS) whose purpose is to manage the
execution of πSDF graphs on heterogeneous Multiprocessor Systems-on-Chips
(MPSoCs) [29]. As presented in Fig. 11, πSDF graphs and source code associated
to actors, generally coded in C language, are designed by the application developer
using the Parallel Real-time Embedded Executives Scheduling Method (PREESM)
rapid prototyping framework [51]. The internal structure of the SPIDER runtime, is
based on master and slave processes where a master process acts as the “brain” of
the system, and distributes computations to all the slave processes. In heterogeneous
architectures, the master process is generally running on a general purpose processor
and slave processes are distributed on multiple types of processing elements, such as
general purpose processors, digital signal processors, and hardware accelerators. As
shown in Fig. 11, the communications and synchronizations between the master and
slave processes are supported by a set of FIFO queues with dedicated functionality.
Following πSDF execution rules, the master process maps and schedules each actor
firing individually on the different processes, slave or master, by sending so-called
job descriptors to them through dedicated job queues. A job descriptor is a structure
embedding a function pointer corresponding to the fired actor, the parameters values
for its firing, and references to shared data queues where it will consume and
produce data-tokens. When a job corresponding to a configuration actor is executed
by a slave or master process, it sends new parameter values to the master process
through a dedicated parameter queue. Optionally, a timing queue may be used to
send execution time of all completed jobs to the master process, for profiling and
monitoring purposes.

Figure 12 illustrates how SPIDER dynamically manages the execution of a
πSDF graph on a multicore architecture. The input πSDF graph considered in
this example is depicted in Fig. 12a, b illustrates an intermediate graph resulting
from graph tranformations applied at runtime by the SPIDER runtime, prior to
mapping and scheduling operation. The Gantt diagram corresponding to an iteration
of this graph on 2 cores is presented in Fig. 12c. The master process of the SPIDER

runtime is called at the beginning of the execution, in order to map and schedule
the ConfigSize configuration actor that is, at this point, the only executable actor



806 K. Desnos and F. Palumbo

size
Config

Size

FilterRead
Image ezis4 ezis

Display
4

nb
SetNB
Slices

size/nb
Kernel

size/nb

size=2
Config

Size

Read
Image 2 2

Display
4

nb1=1
SetNB
Slices1

2
Kernel1

22 2

Filter1

2 2

nb2=2
SetNB
Slices2

1
Kernel2.1

12 2

Filter2

Kernel2.2
1

Core1

Core2

Master
SPIDER

Config
Size

Master
SPIDER

Read
Image

SetNb
Slices2

SetNb
Slices1

Master
SPIDER

Kernel1 Kernel2.2

Kernel2.1

Display

1

4

a b

c

Fig. 12 Deployment process of the SPIDER runtime. (a) Input πSDF graph. (b) Intermediate
single-rate graph. (c) Gantt diagram of one iteration of the πSDF graph with SPIDER

according to πSDF execution rules. When executed, the ConfigSize actor sets a
new value for parameter size triggering a reconfiguration, and a second call to
the master process. Using the new value of the size parameter, the master process
computes the repetition vector of the top-level graph and applies a single-rate graph
transformation in order to expose its data-parallelism. With size = 2, the single-rate
transformation duplicates the Filter actor to make the data-parallelism of its two
firings explicit. At this step, memory can be allocated for all FIFOs of the top-level
graph, and the ReadImage actor can be scheduled. Concurrently to the execution
of the ReadImage actor, the master process continues its execution to manage the
execution of the two instances of the Filter hierarchical actor. The master process
manages separately the two subgraphs of the Filter actors, and schedules a firing of
the SetNBSlices configuration actor for each of them. During the third and final call
to the master process, a new configuration of each of the two subgraphs is taken into
account to compute their respective repetition vectors, to perform the single-rate
graph transformation on them, to allocate all FIFOs in memory, and to schedule all
remaining actor firings. The single-rate graph of Fig. 12b is the executed graph for
parameter values size = 2, nb1 = 1, and nb2 = 2.

Compared to implementation strategies with no global management of applica-
tions, using a runtime manager to control the execution of a reconfigurable graph has
an overhead on application performance. Indeed, such runtime manager requires
processor time to compute repetition vectors, to perform graph transformations,
and to map and schedule actor firings. Nevertheless, as presented in [28, 29], even
with large reconfigurable graphs with several hundreds of actors, this overhead is
largely compensated by the efficiency of the scheduling decisions, and generally
outperforms dynamic deployment strategies with no global manager.



Dataflow Modeling for Reconfigurable Signal Processing Systems 807

Front-end

Developer

Reduced
SPDF
Graph

Actor
Code

Heterogeneous
MPSoCApplication

Specification

PaDaF
(C++)

CLang Reduced
PaDaF
(LLVM IR)

SPDF
Graph

(PaDaF IR)

Actor
+ annota-

tions
(LLVM IR)

Execution

Analysis

Link Full
PaDaF

(PaDaF IR)

Check buffer

Map/Schedule

Codegen (ASM)

Back-end

Fig. 13 Overview of the compilation flow for SPDF graphs [16]

3.3 Compilation Flow for SPDF Graphs

A compilation framework for deploying reconfigurable applications specified with
the SPDF MoC onto heterogeneous MPSoCs is presented in [16]. This development
flow for SPDF graphs differs from the flow based on the runtime manager presented
in the previous section in that it shifts most of the deployment decisions to the
compilation framework. In particular, in the SPDF compilation flow, actors are
manually mapped on the cores by the application designer, and actor firings are
quasi-statically scheduled based on a compile-time analysis of the graph and the
behavior of actors. An overview of the different stages of the SPDF compilation
flow, adopting the elements presented in Chapter [39], is illustrated in Fig. 13.

In the SPDF compilation flow, the specifications of both the SPDF graph and
the internal behavior of actors are based on a hierarchy of specialized C++ classes
called Parametric Dataflow Format (PaDaF). Figure 14 illustrates the syntax used
to specify part of an LTE application with PaDaF [16]. The SPDF graph presented
in Fig. 14a contains a parameterizable number Nb of FFT actors, each processing
1024 samples received from an antenna. Results of the FFT actors are then
transmitted to a MIMO actor, which sets a new value for parameter p at each
firing, and produces a reconfigurable number of data tokens towards the Sink actor.
As shown in the C++ description of the LTE graph in Fig. 14b, PaDaF allows
the description of SPDF graphs using for-loop constructs. Hence, the PaDaF

syntax specifies SPDF graphs in a reduced format where a statically parameterizable
number of actors and FIFOs may be instantiated and connected together. This
syntax is similar to the SigmaC programming language used for the specification
of decidable CSDF graphs [25]. The PaDaF code corresponding to the MIMO
actor is presented in Fig. 14c. As can be seen in this example, actor specification
is based on a hierarchy of C++ classes used to specify actors (Actor class),
their data ports (PortIn/PortOut classes), and their parameters (ParamOut
class). As in graph descriptions, control code can be used to specify a statically
parameterizable number of data ports when specifying an SPDF actor with PaDaF.
The internal computations performed by an actor at each firing are specified in its
unique compute() function.



808 K. Desnos and F. Palumbo

1024 FFT1

1024 FFT2

1024 FFTNb

set
p[1]

MIMO 57p Sink4200
4200
4200

57
Fft fft[NB_ANT ];
Mimo mimo;
Sink sink;
for(i=0; i<NB_ANT; i++){

fft[i].out <= mimo.in[i];
}
sink.in <= mimo.out

class Mimo : public Actor {
std::vector <PortIn <int >*> Iin;
PortOut <int > Iout;
ParamOut p;
int nbAnt
Mimo(int nb): p(1), out(p*57) {

nbAnt = nb;
for(int i=0; i<nb; i++){

Iin[i] = new PortIn <int >(4200);
}

}
void compute ();

}

600

600

600

a b

c

Fig. 14 Partial LTE application specification with PaDaF (from [16]). (a) SPDF graph. (b) PaDaF

graph description. (c) PaDaF Mimo actor code

The steps composing the compilation flow presented in Fig. 13 are sorted into
two groups, the front-end and the back-end, presented hereafter.

• Front-end: The first steps of the SPDF compilation flow, called the front-end,
are architecture-independent operations responsible for exposing coarse and fine
grain properties of the application.

– Clang: The first step of the front-end is to compile the graph and the
actor PaDaF specifications of an application into an LLVM Intermediate
Representation (IR) using the Clang compiler [36].

– Execution: In a second step, the produced LLVM IR corresponding to the
reduced graph description is executed in order to build the complete SPDF
graph, where a parameterizable number of actors are instantiated.

– Analysis: In the third step of the front-end, executed in parallel with the
second, the LLVM IR corresponding to the internal behavior of actors is
analyzed in order to detect and annotate the instructions responsible for
pushing and popping data into the FIFOs connected to each actor.

– Link: In the last step of the front-end, a full PaDaF IR of the application is
obtained by linking the complete SPDF graph with annotated actor code, as
detailed in [16].

• Back-end: The latter steps of the compilation flow, called the back-end, are
responsible for deploying the application on a specified heterogeneous architec-
ture.



Dataflow Modeling for Reconfigurable Signal Processing Systems 809

– Map/Schedule: Although mapping of the actors is currently manually spec-
ified by the application developer, the back-end is still responsible for
producing a quasi-static schedule of actor firings for each core.

– Check buffer: An analysis of the proposed mapping and scheduling is also
used to check that the memory capacity of the targeted platforms are not
exceeded.

– Codegen (Assembly (ASM))Finally, the annotated internal data access patterns
of actors exposed in the PaDaF IR are used in the code generation step in
order to generate calls to on-chip communication primitives, and to produce
efficiently pipelined ASM code.

The efficiency of this SPDF compilation flow is demonstrated in [16] for the
deployment of several Software Defined Radio (SDR) applications on a domain-
specific MPSoCs. The performance of the synthesized software for evaluated SDR
applications is shown to be equivalent to handwritten code.

3.4 Software Reconfiguration for Dynamic Dataflow Graphs

Applications specified with dynamic dataflow MoCs do not, in general, exhibit a
safe reconfigurable behavior as defined in Sect. 2.1. Hence, software implementation
techniques presented in previous sections that exploit the compile-time and runtime
predictability of reconfigurable behavior can not, in general, be applied to dynamic
dataflow graphs. This section presents how a design flow integrating reconfigurable
software components can be used to improve the implementation of dynamic
dataflow graphs. Here, a software component designates an application independent
piece of software supporting the execution of a dynamic dataflow graph by manag-
ing and monitoring its deployment onto a target architecture. Reconfigurability of
these software components comes from their capability to change their deployment
strategies at runtime in order to impact a performance indicator (e.g. latency, energy
consumption, . . . ), in a controlled and predictable way.

Figure 15 presents an overview of an energy-aware design flow, proposed in [55],
for video decoding applications specified with dynamic dataflow graphs. The design
flow is composed of three main parts:

1. a modular specification of the application based on a dynamic dataflow
MoC [64],

2. reconfigurable software components controlling the energy of the deployed
application

3. a hardware platform embedding energy and performance sensors

RVC-CAL [10] is a language standardized by the Motion Picture Expert Group
(MPEG) committee to specify video decoders. In RVC-CAL, a set of widely used
video decoding basic building blocks, like discrete cosine transforms, variable
length coding algorithms, or deblocking filters, can be composed into a network



810 K. Desnos and F. Palumbo

RVC-CAL
Standard

Video
Decoding
Building
Blocks

Video
Decoder
Networks

Compose

JADE
(Just-in-time Adaptive Decoder Engine)

Reconfiguration
Engine

Hardware
Platform

Just-In-Time
Compilation

Energy
Manager MonitorTrigger

Perf.
Counter
Battery
Level

FeedSelect

Input
Bitstream

Decoded
Video

Fig. 15 Overview of an energy-aware design flow for dynamic dataflow graphs [55]

in order to specify a complete video decoder. Network specified with RVC-CAL

implements the Dataflow Process Network (DPN) semantics [38], which is a non-
deterministic model close to the CFDF MoC. RVC-CAL descriptions of several video
decoders with diverse computational complexity are used as inputs of the design
flow presented in Fig. 15.

The Just-in-time Adaptive Decoder Engine (JADE), which constitutes the second
stage of the design flow presented in Fig. 15, is a software component built with
LLVM [24]. The main purpose of JADE is to manage on-the-fly the execution of
platform-independent RVC-CAL networks onto various hardware platforms. To do
so, JADE translates a selected network of RVC-CAL actors into the LLVM IR, and
feeds it to the just-in-time LLVM compiler and interpreter for the targeted platform.

The energy manager that was integrated within JADE in [55] is the key recon-
figurable software component of the design flow presented in Fig. 15. The first
objective of the energy manager is to monitor the execution of the application on the
targeted platform in order to build an energy model of its energy consumption [55].
Monitoring of the application is achieved by automatically inserting calls to
instrumentation functions reading performance monitoring counters of the targeted
platform. Using the energy model built from monitoring information, the energy
manager is able to estimate precisely the energy consumption of the different video
decoders at its disposition. The second responsibility of the energy manager is to
control the energy consumption of the system by triggering reconfigurations of the
currently executed network. A typical scenario for reconfiguration occurs when the
energy manager estimates that the remaining battery charge is insufficient to finish
decoding a video stream of known length. In such a scenario, the energy manager
may trigger a reconfiguration to a different network with lower computational
complexity and lower quality, but which will reduce energy consumption. Practical
evaluation of this energy-aware design flow [55] shows the efficiency of this
approach on the latest HEVC video standard.

Further work on the use of software reconfiguration techniques for implementing
dynamic dataflow MoCs is presented in [68]. In this work, a low-cost monitoring of
the execution all actors of a DPN is used to obtain statistics on their execution time.
Using this monitoring information, a runtime manager may trigger a reconfiguration
of the mapping of the different actors on the different Processing Element (PE) of
the targeted architecture.



Dataflow Modeling for Reconfigurable Signal Processing Systems 811

Fig. 16 Overview of the classical computing spectrum: performance versus flexibility

4 Dataflow-Based Techniques for Hardware Reconfigurable
Computing Platforms

Flexibility and adaptivity of a signal processing system at the hardware level may
be achieved by means of reconfigurable computing. In recent years, reconfigurable
computing has become a popular hardware design paradigm for accelerating a wide
variety of applications. Hardware reconfiguration is commonly used as a way to
enable kernel execution over specialized and optimized circuits, retaining much of
the flexibility of a software solution.

Figure 16 depicts a very general overview of the classical computing spectrum,
whose extremes are represented by Central Processing Units (CPUs)—generic
and extremely flexible—and Application Specific Integrated Circuits (ASICs)—
dedicated, non programmable, circuits customized and highly optimized for a given
functionality. CPUs are capable of executing any type of code their compilers
can translate into machine code, with average performance and very limited
optimization capabilities. The flexibility of CPUs comes at the expense of—medium
to highly—complex hardware micro-architectures requiring a significant amount of
silicon area for their implementation to be able to serve a complete instruction set. In
ASIC designs, resources are minimized since the architecture is forged accordingly
to the native execution flow of the implemented application, while operating
frequency, throughput and energy consumption may be optimized according to the
given constraints. A counterpart of this highly optimized design is that ASICs are
not flexible at all, as their hardwired datapath can execute no other function than the
one they are meant for. Reconfigurable computing infrastructures lays in between,
representing an appealing option since they are capable of guaranteeing a trade-off
among the aforementioned extremes. In practice, reconfigurable hardware allows
customizing the execution infrastructure by allowing runtime (re-)programmability
of datapaths to implement application-specific datapaths, thus providing flexibility.
Switching and programmability capabilities determine the type of implementable
reconfiguration that, as discussed hereafter, can take place at different granularities.

Studies on the subject of reconfigurable hardware dates back to nineties and
have been surveyed in several different works along time [15, 27, 34, 62, 63,
65]. Reconfigurable hardware guarantees different degrees of flexibility, being
(re-)programmable over a given set of functionalities, but still offering specialization
advantages. Nevertheless, as in any specialized design, programmability design does



812 K. Desnos and F. Palumbo

not come for free: it requires the programmers to have a deep knowledge and
understanding of the architectural details. This drawback traditionally limited the
wide usage of reconfigurable computing systems. Field Programmable Gate Array
(FPGA) platforms, for example, were typically considered merely as development
boards for prototyping activities, rather than an actual target.

The main purpose of this section is to understand how dataflow-based speci-
fications and design flows can be used to facilitate the design of reconfigurable
computing infrastructures. Before that a bit of terminology has to be introduced.
Different types of classification of reconfigurable computing systems are available.
We will refer hereafter mainly to coarse grained (CG) and fine grained (FG)
reconfigurable platforms. These two types of architectures differ for the size of the
hardware blocks that are reconfigured.

• Coarse Grained (CG) reconfigurable computing systems involve a fixed set
of—often programmable—Processing Elements (PEs) connected by means of
dedicated routing blocks [15]. The basic idea behind these systems is to
maximize resource re-use among different target applications. PEs are managed
in a time multiplexed manner to serve different functionalities at different
execution instants. The number of interchangeable scenarios is typically fixed
and at runtime the system can switch from one execution to another.

• Fine Grained (FG) reconfigurable computing systems can execute a theoretically
infinite number of different functions, since programmability takes place at the
single bit level. An example of this kind of platforms is provided by FPGAs
that are programmable both at design time and at runtime. Change of context
while executing requires the support of partial dynamic reconfiguration [2, 66],
meaning that part of the executed bitstream is re-loaded with a previously
generated configuration(s) stored on a dedicated memory accessed from a
configuration module.

4.1 Dataflow-Driven Coarse Grained Reconfiguration

Coarse grained reconfigurable systems, as already said, rely on the execution of a
set of different applications on the same hardware substrate, typically composed
of several PEs that are highly re-usable to implement various target specifications.
CG reconfiguration strategies can be adopted both on ASIC and FPGA technologies
and, being extremely modular, the instantiated PEs can be deeply optimized.

As shown in Fig. 17, the set of PEs used in a CG reconfigurable systems, can be
homogeneous, which means that all PEs are identical computing blocks, or hetero-
geneous, which means that PEs are application specific, not identical, computing
blocks. Moreover, the computing fabric may not necessarily be composed of a
regular infrastructure, i.e. the communication backbone will include as many links
as needed and will not be based on a fully connected grid infrastructure as in array-
based systems. PEs are normally not constrained in terms of computing granularity:



Dataflow Modeling for Reconfigurable Signal Processing Systems 813

HOMOGENOUS HETEROGENEOUS

ALU ALU

ALU ALU

REGULAR, FULLY 
CONNECTED, 

INTERCONNECT

ALU ALU

ALU ALU

CUSTOMIZED
INTERCONNECT

SUB ADD

ADD MEM

REGULAR, FULLY 
CONNECTED, 

INTERCONNECT

SUB ADD

ADD MEM

CUSTOMIZED 
INTERCONNECT

RE
G

U
LA

R 
BA

CK
BO

N
E

CG ARRAY OF 
HOMOGENEOUS PE

CG ARRAY OF 
HETEROGENEOUS PE

IR
RE

G
U

LA
R 

BA
CK

BO
N

E

FULLY CUSTOMIZED 
RECONFIGURABLE DATAPATH

CUSTOMIZED DATAPATH 
WITH HOMOGENEOUS PE

Fig. 17 CG reconfigurable architectures: classification

they can range from a simple ALU to a complex discrete cosine transform in a Video
Codec platform. The work of Beaumin et al. on multi-context accelerator [5] can be
considered as a first attempt to combine dataflow specifications and reconfigurable
computing concepts. In the RVC-CAL context, Beaumin et al. [5] propose a
reconfigurable co-processor in charge of executing different Dataflow Process
Network (DPN). The design of the reconfigurable co-processor is based on a set
of heterogeneous PEs, called network units, where each of network unit is capable
of executing a different kernel represented by means of DPN. Each network unit
instantiates as many processing units as needed to implement the CAL actors in
a given input DPN; these processing units communicates together by means of
communication channels, provided in hardware as FIFO queues. An example of
network unit is depicted in Fig. 18. Each network unit is configurable at design time
so that each processing unit can be customized to execute different actors, as well
as the interconnection among them. Indeed, the interconnection infrastructure needs
to enable every processing unit to be connected to every FIFO, which is achieved by
leveraging on a full mesh infrastructure configured for every CAL network deployed
on the co-processor. This type of reconfigurable architecture can be classified among
the CG reconfigurable one, where the network units are the PEs. Moreover, it may
be considered heterogeneous since different numbers of processing units and FIFOs



814 K. Desnos and F. Palumbo

A B C

HOST PROCESSOR

NU_1

NU_N
CC: Communica�on Controller

NU: Network Unit
PU: Processing Unit

CC

CO-PROCESSOR

MAPPING

FULL MESH

MESH
CONTROLLER

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

PU

PU

PU

PU

NETWORK UNIT

Fig. 18 Dataflow process network based co-processor [5]

can be included in the instantiated network units, according to the DPNs that they
respectively implement, and each processing unit can be specialized to implement a
different datapath, according to the actor mapped over it.

The more a CG reconfigurable system is customized to fit application needs,
avoiding any extra PEs and unnecessary connections and adopting heterogeneous
PEs, the more it is possible to maximize its efficiency in terms of power, resources
usage and performance. On the other hand, besides design and debug issues,2 the
adoption of CG reconfigurable heterogeneous and irregular platforms is limited
by the fact that mapping is not so straightforward. Research efforts have been
undertaken to automate the application mapping process [3]. Dimensioning the
underlying hardware substrate and efficiently mapping several applications over it
are key challenges that can be addressed by combining the dataflow models to the
CG reconfigurable approach.

4.1.1 Heterogeneous Coarse-Grained and Runtime Reconfigurable
Architectures

To address the mapping problem, one possibility is provided by datapath merging
(DPM) techniques, whose primary goal is to minimize the number of PEs and
communication links integrated into a CG reconfigurable datapath. Given different
input datapaths, described as dataflow graphs, DPM combines the graphs into a
unique specification with minimal nodes and connections. Exploiting a graph-based
formalism favours resource re-use, both in terms of hardware modules (representing
the different nodes of the given specification) and interconnects (representing the
edges among the nodes). The outcome of this procedure is a reconfigurable datapath
graph that can be synthesized in hardware according to a one-to-one mapping
between graph nodes and hardware modules.

2As for any highly specialized system designers are required to define all the micro-architecture at
Register Transfer Level (RTL). All the details about the functionality-set to be implemented have
to be known and a lot of effort is spent in coding and debugging.



Dataflow Modeling for Reconfigurable Signal Processing Systems 815

* +

&

<<

* +

<<

* +

&

<<

* +

&

<<

G1 G2 G' G
a1 a2 a3

a4

a5

b1 b2

b3

a1/b1 a2/b2 a3/-

a4/-

a5/b3 a5/b3

a1/b1 a3/b2a2/-

a4/-

multiplexer
demultiplexer

+++

Fig. 19 The datapath merging problem [60]

Figure 19, from the work of Souza et al. [60], provides an example of DPM
among two input graphs, G1 and G2. G and G′ represent two possible solutions
of the DPM problem, where the switching elements, that allows to share resources
among G1 and G2, are indicated as multiplexers and demultiplexers. Resources are
minimized both in G and G′, as they present the same number of nodes and both
map the couples a1/b1 and a5/b3 over the same resources, but they have a different
amount of edges. In G edges are minimized since there is one more shared resource
that couples a3/b2 and, in turn, allows sharing the link between a3/b2 and a5/b3 to
connect the a3 to a5 (see G1) and b2 to b3 (see G2).

In the literature, several heuristic methods have been proposed to solve the
DPM problem. Moreano et al. [43] solve it as a maximum clique problem over a
compatibility graph. Nodes are compatible if they can be implemented by the same
hardware resource. The graph gives a full overview of the compatibility among
different possible mappings between the edges of the given input specifications.
Solving the maximum clique problem for the compatibility graph leads to one (or
more) mapping(s) capable of maximizing both resources and edges sharing that, in
turn, means minimizing the PEs and the interconnections necessary to implement a
datapath executing different input graph-based specifications. Two input graphs at a
time are merged so, having N input specifications implies to solve the DPM problem
N-1 times. The DPM problem is NP-complete, and it is currently impossible to find
an optimal solution with a polynomial complexity algorithm.

A polynomial time heuristic algorithm is adopted to solve it in [4]. Another
approach, proposed by Huang et al. in [31], solves the DPM problem using a
bipartite matching heuristic method. Two graphs at a time are considered and all the
possible mappings are weighted according to the number of sharable connections,
then maximum weights drive a certain merging solution.

In the RVC-CAL context, Palumbo et al. used DPM techniques [46] to create
runtime reconfigurable CG substrates, to be used as stand-alone reconfigurable
systems [58] or within application-specific accelerators [57]. In those works the
combination of the dataflow models and the CG reconfigurable design paradigm
is quite straightforward: each actor is mapped over a single and atomic PE, and
multiple input dataflows are combined together over the same substrate adopting a
DPM approach. In this way different input specifications share, where convenient,



816 K. Desnos and F. Palumbo

A B C

D E C

A
G C

F

SB: Switching BoxInput DPN: aplha, beta, gamma

GAMMA

BETA

ALPHA

A

F

D

SB

E

B

G

SB G

CONFIGURATION MANAGER

FIFO

FIFO

FIFO

FIFO

RUN TIME CG RECONFIGURABLE DATAPATH

SB CFIFO

Fig. 20 Dataflow to CG reconfigurable substrate [46]

common PEs that are accessed through programmable switching elements, named
switching boxes (SBs). SBs are placed at the crossroads among different paths
of data, forking or joining the execution flow of the different input networks.
Figure 20 provides an example of the CG reconfigurable datapath that may be
created leveraging on such an approach. Three different input specifications are
mapped over the same substrate that is capable of executing them one at a time, by
switching from one configuration to another. The configuration manager drives the
SBs according to the requested execution. This type of reconfigurable architecture
is a CG one by definition and the constituting PEs, whose granularity depends
on the actors in the given input specifications, are heterogeneous. To facilitate
the automatic definition of such an architecture, starting from RVC-CAL DPN
input specifications, it is possible to rely on the RVC-CAL compliant design flow
presented in [58]—and depicted in Fig. 21. In this design flow, an set of tools is
adopted to compose, optimize and synthesize the RTL description of the runtime
reconfigurable system. The CG reconfigurable datapath is assembled using the
following tools:

• the Multi-Dataflow Composer tool [47, 49]—capable of creating a multi-
functional high level description of a CG reconfigurable system applying
datapath merging techniques on a set of input DPNs specifications

• Xronos [7]—capable of providing High Level Synthesis (see Sect. 4.2) from
CAL to RTL of each single actor of the given input DPN

• TURNUS [14]—capable of optimizing the system, by means of high-level
profiling, to provide the optimal FIFO sizing (in the multi-dataflow case worst
case sizing is assigned).

RVC-CAL compliant reconfigurable architectures, assembled as in [58], can be
used as the CG reconfigurable processing core of a co-processing unit, as the one
presented in Fig. 21 [57].

A DPM-based technique has been used also in a recent work of Edwards et
al. [19]. They use the concept of compositional hardware circuits and exploit
Kahn Networks to merge and implement in hardware different dataflow networks
(Fig. 22).



Dataflow Modeling for Reconfigurable Signal Processing Systems 817

.xdf

IR

FRONT END

BACK END

CAL Actors
Library

O
RC

C

FRONT END

BACK END

M
DC mul�-flow

IR

C++ Java

HDL Comp
Library

Communic.
Protocol

Coarse-Grained HDL
Pla�orm

TURNUS XRONOS

WEIGHTS

BUFFER
SIZING

Fig. 21 Design environment for RVC-CAL compliant CG reconfigurable architectures [58]

HOST PROCESSOR

CC: Communica�on Controller
LOCAL MEM: Local Memory
CONF REG: Configura�on Registers Bank
FSM: Finite State Machine
CG RECONF CORE: Coarse Grained

Reconfigurable Datapath

CC

CO-PROCESSOR

LOCAL
MEM

CONF
REG

FSM

CG 
RECONF 

CORE

A

F

D

SB

E

B

G

SB G

CONFIGURATION MANAGER

FIFO

FIFO

FIFO

FIFO

RUNTIME CG RECONFIGURABLE DATAPATH

SB CFIFO

D E C
BETA

A B C
ALPHA A

G C
F

GAMMA

MDC

Fig. 22 Multi-Dataflow Composer (MDC) based reconfigurable co-processor [57]

4.1.2 Coarse-Grained and Runtime Reconfigurable Arrays

Another type of coarse-grain reconfigurable architecture combines a host processor
controller with an array of PEs. These PEs, which are typically small and simple
like ALUs, are connected together in the array with some local memories. CG
reconfigurable arrays are commonly used for efficient implementations of streaming
systems [1, 18, 41]. These architectures often exploit imperative programming
approaches to map and control the flow of data. The examples hereafter demonstrate
how dataflow models can be exploited for the same purposes.

WaveScalar, presented by Swanson et al. in [61], is a dataflow-based reconfig-
urable architecture that contains a pool of PEs, to which are dynamically assigned



818 K. Desnos and F. Palumbo

instructions: the WaveCache loads instructions from memory and assigns them to
PEs for execution. While instruction scheduling is dynamic and out-of-order, the
reference application is described as a dataflow graph. Basically, the WaveScalar
compiler translates the input imperative programs into a dataflow description, used
as the target code. WaveScalar does not implement dataflow-driven reconfiguration,
but it is certainly one of the first attempts to combine dataflow models with the CG
reconfigurable paradigm.

Galanis et al. have exploited a dataflow-based approach to map different func-
tionalities over the proposed reconfigurable computing array in [23]. In their work
the host processor is connected to a co-processing unit, implemented by means of
a reconfigurable datapath, where: (1) PEs are an ALU and a multiplier that can
take operands from other nodes or from a register bank; and (2) the interconnection
among PEs is a full crossbar (or a fat-tree network if scalability issues may arise).
Sub-graphs of the parts of the application to be accelerated are mapped over the
reconfigurable datapath and the control is generated by an embedded FPGA, which
support the overall control flow.

Niedermeier et al. [45], targeting streaming applications, exploited dataflow
principles for controlling the flow of data and configuring PEs of their CG
architecture. In particular, they configure each PE, including memory blocks, by
means of a finite state machine, whose stages are defined as dataflow actors with
input and output token patterns. Digital Signal Processing (DSP) applications are
particularly suitable to be implemented using such an approach.

Huang et al. [30] adopted dataflow-based control in order to manage complex
scheduling situations throughout the propagation of control tokens along with
the data to be processed. Such a self control strategy allows to relax mapping
and management issues, leveraging on a distributed approach and on a dynamic
dataflow control, getting rid of static scheduling. In this way, complex scheduling
situations due to latency variations (e.g. when a memory access occurs) are handled
transparently with token propagation.

4.2 Fine-Grained Dataflow-Driven Reconfiguration

Bit-level reconfigurability, traditionally required designers to have a deep knowl-
edge of the hardware design flow and hardware description languages. In the last
few years, High Level Synthesis (HLS) approaches became popular; they are meant
to speed up both hardware and software design process [42]. In particular, from
the hardware perspective, one of their advantages is relieving designers from the
definition of the RTL description of the system and its components.

A popular commercial HLS synthesizer is Vivado3 from Xilinx, which accel-
erates IP creation by enabling C, C++ and System C specifications to be directly

3https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html.

https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html


Dataflow Modeling for Reconfigurable Signal Processing Systems 819

T
A
S
K

1

Hot-swappable
Hardware modules

(HSHMs)

Partial configurations

T
A
S
K

1

T
A
S
K

2

T
A
S
K

N

FPGA

Base Module

Static configuration

+

+

+

=

=

=

FPGA

HSHMs 
& 

Base Module

Full configurations

FPGA

T
A
S
K

2

FPGA
FPGA

T
A
S
K

2

T
A
S
K

N

FPGA

Fig. 23 Spatial and temporal partitioning of an application in a FPGA exploiting DPR [53]

implemented into Xilinx programmable devices without the need to manually create
the RTL description. Similarly, but based on dataflow approaches, Xronos [7] and
the Caph compiler [59] are meant to provide dataflow-to-hardware generation.
Xronos, which has been developed within RVC-CAL context where dataflow
networks expressed using the CAL language based on the DPN MoC, is an evolution
of the CAL2HDL framework and the work done in [56]. One of the limitation of
Xronos is that it generates a target dependent descriptions implementable only on
Xilinx FPGA boards. This limitation is not true for the Caph approach that provides
target independent RTL descriptions of dataflow compliant systems, which can be
implemented both on ASIC and on FPGA.

Dynamic partial reconfiguration (DPR)4 is defined as the ability to modify, at
runtime and while the system is executing, blocks/slots of logic by downloading
partial bit files. The remaining logic, i.e. those slots where reconfiguration is not
applied, keeps running its execution without any interruption. As depicted in Fig. 23,
DSP applications may take advantage of DPR, changing tasks in the pipeline
while keeping the overall system functional. In this context, the dataflow paradigm
is used to address the problem of ensuring that reconfiguration is performed
at a convenient time, minimizing its impact on execution latency and memory
footprint. By capturing, at compile-time, the application execution in terms of
actors exchanging tokens along communications edges, dataflow networks provide
a clear definition of dependences. On top of that, their predictability property,
enforced by the semantics and execution rules (see Sect. 2.1), can be exploited

4https://www.xilinx.com/products/design-tools/vivado/implementation/partial-reconfiguration.
html.

https://www.xilinx.com/products/design-tools/vivado/implementation/partial-reconfiguration.html
https://www.xilinx.com/products/design-tools/vivado/implementation/partial-reconfiguration.html


820 K. Desnos and F. Palumbo

to manage in advance slots reconfiguration order. In particular, Piat et al. in [53]
extended static dataflow description with additional properties to provide compile-
time analysis of the DPR influence on the system, to be able to assess early in the
design stage DPR time slots and memory requirements. To manage network based
reconfiguration, the Parameterized SDF (PSDF) MoC is adopted, since it is capable
of representing dynamic behaviors at network level. Network parameters impact
on scheduling/partitioning and memory footprint changes and, therefore, perfectly
matches the DPR needs that requires:

• To evaluate buffering requirements on DPR actor inputs—all the incoming edges
of the DPR actor are analyzed and the memory cost of the input path is evaluated.

• To manage slots reconfiguration—a dedicated DPR layer is modelled aside the
basic dataflow schedule to represent the reconfiguration instant for each DPR
actor, either based on user defined reconfiguration scheme or on network tokens
in the case of PSDF model.

In conclusion, as described in this Sect. 4, dataflow specifications may facilitate
both mapping and synthesis of coarse and fine grained reconfigurable computing
infrastructure to be used in the signal processing domain.

Acknowledgements This work was partially supported by the CERBERO (Cross-layer modEl-
based fRamework for multi-oBjective dEsign of Reconfigurable systems in unceRtain hybRid
envirOnments) Horizon 2020 Project, funded by the European Union Commission under Grant
732105.

References

1. Advanced Computer Architecture Group - University of California: Morphosys research
project. http://gram.eng.uci.edu/morphosys/

2. Altera: Increasing Design Functionality with Partial and Dynamic Reconfiguration in 28-nm
FPGAs (2010)

3. Ansaloni, G., Tanimura, K., Pozzi, L., Dutt, N.: Integrated kernel partitioning and scheduling
for coarse-grained reconfigurable arrays. IEEE Trans. on CAD of Integrated Circuits and
Systems 31(12), 1803–1816 (2012). http://dx.doi.org/10.1109/TCAD.2012.2209886

4. Battiti, R., Protasi, M.: Reactive local search for the maximum clique problem 1. Algorithmica
29(4), 610–637 (2001)

5. Beaumin, C., Sentieys, O., Casseau, E., Carer, A.: A coarse-grain reconfigurable hardware
architecture for rvc-cal-based design. In: Design and Architectures for Signal and Image
Processing (DASIP), 2010 Conference on, pp. 152–159 (2010). https://doi.org/10.1109/DASIP.
2010.5706259

6. Bebelis, V., Fradet, P., Girault, A., Lavigueur, B.: Bpdf: A statically analyzable dataflow model
with integer and boolean parameters. In: Proceedings of the Eleventh ACM International
Conference on Embedded Software, p. 3. IEEE Press (2013)

7. Bezati, E., Mattavelli, M., Janneck, J.: High-Level Synthesis of Dataflow Programs for Signal
Processing Systems. In: 8th International Symposium on Image and Signal Processing and
Analysis (ISPA 2013) (2013)

8. Bhattacharya, B., Bhattacharyya, S.: Parameterized dataflow modeling for dsp systems. Signal
Processing, IEEE Transactions on (2001). https://doi.org/10.1109/78.950795

http://gram.eng.uci.edu/morphosys/
http://dx.doi.org/10.1109/TCAD.2012.2209886
https://doi.org/10.1109/DASIP.2010.5706259
https://doi.org/10.1109/DASIP.2010.5706259
https://doi.org/10.1109/78.950795


Dataflow Modeling for Reconfigurable Signal Processing Systems 821

9. Bhattacharya, B., Bhattacharyya, S.S.: Quasi-static scheduling of reconfigurable dataflow
graphs for dsp systems. In: Proceedings 11th International Workshop on Rapid System Pro-
totyping. RSP 2000. Shortening the Path from Specification to Prototype (Cat. No.PR00668),
pp. 84–89 (2000). https://doi.org/10.1109/IWRSP.2000.855200

10. Bhattacharyya, S.S., Eker, J., Janneck, J.W., Lucarz, C., Mattavelli, M., Raulet, M.: Overview
of the mpeg reconfigurable video coding framework. Journal of Signal Processing Systems
63(2), 251–263 (2011)

11. Bouakaz, A., Fradet, P., Girault, A.: A survey of parametric dataflow models of computation.
ACM Trans. Des. Autom. Electron. Syst. 22(2), 38:1–38:25 (2017). https://doi.org/10.1145/
2999539. http://doi.acm.org.rproxy.insa-rennes.fr/10.1145/2999539

12. Boutellier, J., Lucarz, C., Lafond, S., Gomez, V.M., Mattavelli, M.: Quasi-static scheduling
of cal actor networks for reconfigurable video coding. Journal of Signal Processing Systems
63(2), 191–202 (2011). http://dx.doi.org/10.1007/s11265-009-0389-5

13. Boutellier, J., Sadhanala, V., Lucarz, C., Brisk, P., Mattavelli, M.: Scheduling of dataflow
models within the reconfigurable video coding framework. In: 2008 IEEE Workshop on Signal
Processing Systems, pp. 182–187 (2008). https://doi.org/10.1109/SIPS.2008.4671759

14. Casale-Brunet, S., Bezati, E., Mattavelli, M., Canale, M., Janneck, J.W.: Execution trace graph
analysis of dataflow programs: Bounded buffer scheduling and deadlock recovery using model
predictive control. In: Design and Architectures for Signal and Image Processing (DASIP),
2014 Conference on, pp. 1–6 (2014). https://doi.org/10.1109/DASIP.2014.7115623

15. Compton, K., Hauck, S.: Reconfigurable computing: A survey of systems and software. ACM
Comput. Surv. 34(2), 171–210 (2002). http://doi.acm.org/10.1145/508352.508353

16. Dardaillon, M., Marquet, K., Risset, T., Martin, J., Charles, H.P.: A new compilation flow
for software-defined radio applications on heterogeneous mpsocs. ACM Transactions on
Architecture and Code Optimization (TACO) 13(2), 19 (2016)

17. Desnos, K., Pelcat, M., Nezan, J.F., Bhattacharyya, S.S., Aridhi, S.: Pimm: Parameterized and
interfaced dataflow meta-model for mpsocs runtime reconfiguration. In: Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS XIII), 2013 International Confer-
ence on, pp. 41–48. IEEE (2013)

18. Dongwook Lee Manhwee Jo, K.H.K.C.: FloRA: Coarse-grained reconfigurable architecture
with floating-point operation capability. In: International Conference on Field-Programmable
Technology (2009)

19. Edwards, S.A., Townsend, R., Kim, M.A.: Compositional dataflow circuits. In: Proceedings
of the 15th ACM-IEEE International Conference on Formal Methods and Models for System
Design, MEMOCODE 2017, Vienna, Austria, September 29 - October 02, 2017, pp. 175–184
(2017). http://doi.acm.org/10.1145/3127041.3127055

20. Ersfolk, J., Roquier, G., Jokhio, F., Lilius, J., Mattavelli, M.: Scheduling of dynamic dataflow
programs with model checking. In: Signal Processing Systems (SiPS), 2011 IEEE Workshop
on, pp. 37–42. IEEE (2011)

21. Ersfolk, J., Roquier, G., Lilius, J., Mattavelli, M.: Modeling control tokens for composition
of cal actors. In: Design and Architectures for Signal and Image Processing (DASIP), 2013
Conference on, pp. 71–78 (2013)

22. Fradet, P., Girault, A., Poplavko, P.: Spdf: A schedulable parametric data-flow moc. In: 2012
Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 769–774. IEEE
(2012)

23. Galanis, M.D., Dimitroulakos, G., Tragoudas, S., Goutis, C.E.: Speedups in embedded systems
with a high-performance coprocessor datapath. ACM Trans. Design Autom. Electr. Syst. 12(3),
35:1–35:22 (2007). http://doi.acm.org/10.1145/1255456.1255472

24. Gorin, J., Wipliez, M., Prêteux, F., Raulet, M.: Llvm-based and scalable mpeg-rvc decoder.
Journal of Real-Time Image Processing 6(1), 59–70 (2011)

25. Goubier, T., Sirdey, R., Louise, S., David, V.: σc: A programming model and language for
embedded manycores. In: International Conference on Algorithms and Architectures for
Parallel Processing, pp. 385–394. Springer (2011)

https://doi.org/10.1109/IWRSP.2000.855200
https://doi.org/10.1145/2999539
https://doi.org/10.1145/2999539
http://doi.acm.org.rproxy.insa-rennes.fr/10.1145/2999539
http://dx.doi.org/10.1007/s11265-009-0389-5
https://doi.org/10.1109/SIPS.2008.4671759
https://doi.org/10.1109/DASIP.2014.7115623
http://doi.acm.org/10.1145/508352.508353
http://doi.acm.org/10.1145/3127041.3127055
http://doi.acm.org/10.1145/1255456.1255472


822 K. Desnos and F. Palumbo

26. Ha, S., Oh, H.: Decidable signal processing dataflow graphs. In: S.S. Bhattacharyya, E.F.
Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, third edn.
Springer (2018)

27. Hartenstein, R.W.: Coarse grain reconfigurable architecture (embedded tutorial). In: Pro-
ceedings of ASP-DAC 2001, Asia and South Pacific Design Automation Conference 2001,
January 30-February 2, 2001, Yokohama, Japan, pp. 564–570 (2001). http://doi.acm.org/10.
1145/370155.370535

28. Heulot, J., Boutellier, J., Pelcat, M., Nezan, J.F., Aridhi, S.: Applying the adaptive hybrid flow-
shop scheduling method to schedule a 3gpp lte physical layer algorithm onto many-core digital
signal processors. In: 2013 NASA/ESA Conference on Adaptive Hardware and Systems (AHS-
2013), pp. 123–129 (2013). https://doi.org/10.1109/AHS.2013.6604235

29. Heulot, J., Pelcat, M., Desnos, K., Nezan, J.F., Aridhi, S.: Spider: A synchronous parameterized
and interfaced dataflow-based rtos for multicore dsps. In: 2014 6th European Embedded
Design in Education and Research Conference (EDERC), pp. 167–171 (2014). https://doi.
org/10.1109/EDERC.2014.6924381

30. Huang, Y., Ienne, P., Temam, O., Chen, Y., Wu, C.: Elastic cgras. In: Proceedings of the
ACM/SIGDA International Symposium on Field Programmable Gate Arrays, FPGA ’13, pp.
171–180. ACM, New York, NY, USA (2013). http://doi.acm.org/10.1145/2435264.2435296

31. Huang, Z., Malik, S.: Managing dynamic reconfiguration overhead in systems-on-a-chip design
using reconfigurable datapaths and optimized interconnection networks. In: Proceedings of the
Conference on Design, Automation and Test in Europe, DATE ’01, pp. 735–. IEEE Press,
Piscataway, NJ, USA (2001). http://dl.acm.org/citation.cfm?id=367072.367934

32. Kee, H., Shen, C.C., Bhattacharyya, S.S., Wong, I., Rao, Y., Kornerup, J.: Mapping parame-
terized cyclo-static dataflow graphs onto configurable hardware. Journal of Signal Processing
Systems (2012)

33. Keinert, J., Deprettere, E.F.: Multidimensional dataflow graphs. In: S.S. Bhattacharyya, E.F.
Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, second edn.
Springer (2013)

34. Kenneth Pocek Russell Tessier, A.D.: Birth and adolescence of reconfigurable computing:
a survey of the first 20 years of field-programmable custom computing machines. Field-
Programmable Custom Computing Machines, Annual IEEE Symposium on 00(undefined),
1–17 (2013). doi.ieeecomputersociety.org/10.1109/FPGA.2013.6882273

35. Ko, M.Y., Zissulescu, C., Puthenpurayil, S., Bhattacharyya, S.S., Kienhuis, B., Deprettere,
E.F.: Parameterized looped schedules for compact representation of execution sequences in
dsp hardware and software implementation. IEEE Transactions on Signal Processing 55(6),
3126–3138 (2007)

36. Lattner, C.: Llvm and clang: Advancing compiler technology. Proc. of FOSDEM (2011)
37. Lee, E.A., Ha, S.: Scheduling strategies for multiprocessor real-time dsp. In: Global

Telecommunications Conference and Exhibition’Communications Technology for the 1990s
and Beyond’(GLOBECOM), 1989. IEEE, pp. 1279–1283. IEEE (1989)

38. Lee, E.A., Parks, T.M.: Dataflow process networks. Proceedings of the IEEE 83(5), 773–801
(1995)

39. Leupers, R., Aguilar, M.A., Castrillon, J., Sheng, W.: Software compilation techniques
for heterogeneous embedded multi-core systems. In: S.S. Bhattacharyya, E.F. Deprettere,
R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, third edn. Springer (2018)

40. Lin, S., Wang, L.H., Vosoughi, A., Cavallaro, J.R., Juntti, M., Boutellier, J., Silvén, O.,
Valkama, M., Bhattacharyya, S.S.: Parameterized sets of dataflow modes and their application
to implementation of cognitive radio systems. Journal of Signal Processing Systems 80(1),
3–18 (2015). http://dx.doi.org/10.1007/s11265-014-0938-4

41. Liu, L., Wang, D., Zhu, M., Wang, Y., Yin, S., Cao, P., Yang, J., Wei, S.: An energy-efficient
coarse-grained reconfigurable processing unit for multiple-standard video decoding. IEEE
Trans. Multimedia 17(10), 1706–1720 (2015)

42. Martin, G., Smith, G.: High-level synthesis: Past, present, and future. IEEE Design & Test of
Computers 26(4), 18–25 (2009). http://dx.doi.org/10.1109/MDT.2009.83

http://doi.acm.org/10.1145/370155.370535
http://doi.acm.org/10.1145/370155.370535
https://doi.org/10.1109/AHS.2013.6604235
https://doi.org/10.1109/EDERC.2014.6924381
https://doi.org/10.1109/EDERC.2014.6924381
http://doi.acm.org/10.1145/2435264.2435296
http://dl.acm.org/citation.cfm?id=367072.367934
doi.ieeecomputersociety.org/10.1109/FPGA.2013.6882273
http://dx.doi.org/10.1007/s11265-014-0938-4
http://dx.doi.org/10.1109/MDT.2009.83


Dataflow Modeling for Reconfigurable Signal Processing Systems 823

43. Moreano, N., Araujo, G., Huang, Z., Malik, S.: Datapath merging and interconnection sharing
for reconfigurable architectures. In: System Synthesis, 2002. 15th International Symposium
on, pp. 38–43 (2002)

44. Neuendorffer, S., Lee, E.: Hierarchical reconfiguration of dataflow models. In: MEMOCODE
(2004). https://doi.org/10.1109/MEMCOD.2004.1459852

45. Niedermeier, A., Kuper, J., Smit, G.: Dataflow-based reconfigurable architecture for streaming
applications. In: System on Chip (SoC), 2012 International Symposium on, pp. 1–4 (2012).
https://doi.org/10.1109/ISSoC.2012.6376365

46. Palumbo, F., Carta, N., Pani, D., Meloni, P., Raffo, L.: The multi-dataflow composer tool:
generation of on-the-fly reconfigurable platforms. Journal of real-time image processing 9(1),
233–249 (2014)

47. Palumbo, F., Carta, N., Pani, D., Meloni, P., Raffo, L.: The multi-dataflow composer tool:
generation of on-the-fly reconfigurable platforms. Journal of real-time image processing 9(1),
233–249 (2014)

48. Palumbo, F., Sau, C., Evangelista, D., Meloni, P., Pelcat, M., Raffo, L.: Runtime energy versus
quality tuning in motion compensation filters for hevc. IFAC-PapersOnLine 49(25), 145–152
(2016)

49. Palumbo, F., Sau, C., Fanni, T., Meloni, P., Raffo, L.: Dataflow-based design of coarse-grained
reconfigurable platforms. In: Signal Processing Systems (SiPS), 2016 IEEE International
Workshop on, pp. 127–129. IEEE (2016)

50. Pelcat, M., Aridhi, S., Piat, J., Nezan, J.F.: Physical layer multi-core prototyping: a dataflow-
based approach for LTE eNodeB, vol. 171. Springer Science & Business Media (2012)

51. Pelcat, M., Desnos, K., Heulot, J., Guy, C., Nezan, J.F., Aridhi, S.: Preesm: A dataflow-based
rapid prototyping framework for simplifying multicore dsp programming. In: Education and
Research Conference (EDERC), 2014 6th European Embedded Design in, pp. 36–40 (2014).
https://doi.org/10.1109/EDERC.2014.6924354

52. Piat, J., Bhattacharyya, S., Raulet, M.: Interface-based hierarchy for synchronous data-flow
graphs. In: SiPS Proceedings (2009). https://doi.org/10.1109/SIPS.2009.5336240

53. Piat, J., Crenne, J.: Modeling dynamic partial reconfiguration in the dataflow paradigm. In:
2014 IEEE Workshop on Signal Processing Systems (SiPS), pp. 1–6. IEEE (2014)

54. Plishker, W., Sane, N., Bhattacharyya, S.S.: Mode grouping for more effective generalized
scheduling of dynamic dataflow applications. In: Proceedings of the 46th Annual Design
Automation Conference, pp. 923–926. ACM (2009)

55. Ren, R., Juarez, E., Sanz, C., Raulet, M., Pescador, F.: Energy-aware decoder management:
a case study on rvc-cal specification based on just-in-time adaptive decoder engine. IEEE
Transactions on Consumer Electronics 60(3), 499–507 (2014). https://doi.org/10.1109/TCE.
2014.6937336

56. Roquier, G., Bezati, E., Thavot, R., Mattavelli, M.: Hardware/software co-design of dataflow
programs for reconfigurable hardware and multi-core platforms. In: 2011 Conference on
Design and Architectures for Signal and Image Processing, DASIP 2011, Tampere, Finland,
November 2–4, 2011, pp. 171–177 (2011). http://dx.doi.org/10.1109/DASIP.2011.6136875

57. Sau, C., Fanni, L., Meloni, P., Raffo, L., Palumbo, F.: Reconfigurable coprocessors synthesis
in the mpeg-rvc domain. In: ReConFigurable Computing and FPGAs (ReConFig), 2015
International Conference on, pp. 1–8. IEEE (2015)

58. Sau, C., Meloni, P., Raffo, L., Palumbo, F., Bezati, E., Casale-Brunet, S., Mattavelli, M.:
Automated design flow for multi-functional dataflow-based platforms. Journal of Signal
Processing Systems 85(1), 143–165 (2016)

59. Sérot, J., Berry, F.: High-level dataflow programming for reconfigurable computing. In:
Proceedings of the 2014 International Symposium on Computer Architecture and High
Performance Computing Workshop, SBAC-PADW ’14, pp. 72–77. IEEE Computer Society,
Washington, DC, USA (2014). http://dx.doi.org/10.1109/SBAC-PADW.2014.18

60. Souza, C.C.d., Lima, A.M., Araujo, G., Moreano, N.B.: The datapath merging problem
in reconfigurable systems: Complexity, dual bounds and heuristic evaluation. J. Exp.
Algorithmics 10 (2005). http://doi.acm.org/10.1145/1064546.1180613

https://doi.org/10.1109/MEMCOD.2004.1459852
https://doi.org/10.1109/ISSoC.2012.6376365
https://doi.org/10.1109/EDERC.2014.6924354
https://doi.org/10.1109/SIPS.2009.5336240
https://doi.org/10.1109/TCE.2014.6937336
https://doi.org/10.1109/TCE.2014.6937336
http://dx.doi.org/10.1109/DASIP.2011.6136875
http://dx.doi.org/10.1109/SBAC-PADW.2014.18
http://doi.acm.org/10.1145/1064546.1180613


824 K. Desnos and F. Palumbo

61. Swanson, S., Schwerin, A., Mercaldi, M., Petersen, A., Putnam, A., Michelson, K., Oskin, M.,
Eggers, S.J.: The wavescalar architecture. ACM Trans. Comput. Syst. 25(2), 4:1–4:54 (2007).
http://doi.acm.org/10.1145/1233307.1233308

62. Tessier, R., Burleson, W.: Reconfigurable computing for digital signal processing: A survey.
VLSI Signal Processing 28(1–2), 7–27 (2001). http://dx.doi.org/10.1023/A:1008155020711

63. Tessier, R., Pocek, K.L., DeHon, A.: Reconfigurable computing architectures. Proceedings of
the IEEE 103(3), 332–354 (2015). http://dx.doi.org/10.1109/JPROC.2014.2386883

64. Theelen, B.D., Deprettere, E.F., Bhattacharyya, S.S.: Dynamic dataflow graphs. In: S.S.
Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing
Systems, third edn. Springer (2018)

65. Wijtvliet, M., Waeijen, L., Corporaal, H.: Coarse grained reconfigurable architectures in the
past 25 years: Overview and classification. In: International Conference on Embedded Com-
puter Systems: Architectures, Modeling and Simulation, SAMOS 2016, Agios Konstantinos,
Samos Island, Greece, July 17–21, 2016, pp. 235–244 (2016). http://dx.doi.org/10.1109/
SAMOS.2016.7818353

66. Xilinx: Partial Reconfiguration User Guide (2012)
67. Yviquel, H., Casseau, E., Wipliez, M., Gorin, J., Raulet, M.: Classification-based optimization

of dynamic dataflow programs. In: Advancing Embedded Systems and Real-Time Communi-
cations with Emerging Technologies, pp. 282–301. IGI Global (2014)

68. Yviquel, H., Sanchez, A., Mickaël, R., Casseau, E.: Technical Report: Multicore Runtime
for Dynamic Dataflow Video Decoders. Technical report, IETR/INSA Rennes; IRISA, Inria
Rennes (2017). https://hal.archives-ouvertes.fr/hal-01503378

http://doi.acm.org/10.1145/1233307.1233308
http://dx.doi.org/10.1023/A:1008155020711
http://dx.doi.org/10.1109/JPROC.2014.2386883
http://dx.doi.org/10.1109/SAMOS.2016.7818353
http://dx.doi.org/10.1109/SAMOS.2016.7818353
https://hal.archives-ouvertes.fr/hal-01503378

	Dataflow Modeling for Reconfigurable Signal Processing Systems
	1 Reconfigurable Signal Processing Systems
	2 Reconfigurable Dataflow Models
	2.1 Reconfiguration Semantics
	2.2 Reconfigurable Dataflow Models
	2.2.1 Hierarchy-Based Reconfigurable Dataflow Meta-Models
	2.2.2 Statically Analyzable Reconfigurable Dataflow Models

	2.3 Dynamic Dataflow moc and Reconfigurability
	2.3.1 Classification of Dynamic Dataflow Graphs
	2.3.2 Reconfigurable Semantics for Dynamic Dataflow moc


	3 Software Implementation Techniques for Reconfigurable Dataflow Specifications
	3.1 Compile-Time Parameterized Quasi-Static Scheduling
	3.2 Multicore Runtime for pisdf Graphs
	3.3 Compilation Flow for spdf Graphs
	3.4 Software Reconfiguration for Dynamic Dataflow Graphs

	4 Dataflow-Based Techniques for Hardware Reconfigurable Computing Platforms
	4.1 Dataflow-Driven Coarse Grained Reconfiguration
	4.1.1 Heterogeneous Coarse-Grained and Runtime Reconfigurable Architectures
	4.1.2 Coarse-Grained and Runtime Reconfigurable Arrays

	4.2 Fine-Grained Dataflow-Driven Reconfiguration

	References


