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Abstract Due to the universal presence of motion, vibration, and shock, inertial
motion sensors can be applied in various contexts. Development of the microelec-
tromechanical (MEMS) technology opens up many new consumer and industrial
applications for accelerometers and gyroscopes. The multiformity of applications
creates different requirements to inertial sensors in terms of accuracy, size, power
consumption and cost. This makes it challenging to choose sensors that are suited
best for the particular application. In addition, development of signal processing
algorithms for inertial sensor data require understanding on the physical principles
of both motion generated and sensor operation principles. This chapter aims to aid
the system designer to understand and manage these challenges. The principles
of operation of accelerometers and gyroscopes are explained with examples of
different applications using inertial sensors data as input. Especially, detailed
examples of signal processing algorithms for pedestrian navigation and motion
classification are given.

1 Introduction to Inertial Sensors

Inertial sensors measure motion parameters with respect to the inertial space.
They generally fall into two categories: (a) instruments sensing linear inertial
displacement, also known as accelerometers, (b) rotational inertial rate sensors, also
called angular rate sensors or gyroscopes.
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1.1 Accelerometers

An accelerometer is a device that measures translational acceleration resulting
from the forces acting on it. This acceleration is associated with the phenomenon
of weight experienced by a mass that resides in the frame of reference inside
accelerometer and can be described by Newton’s second law of motion: “A force F
acting on a body of mass m causes the body to accelerate with respect to inertial
space.” A typical accelerometer consists of a small mass, also known as a proof or
seismic mass, connected via a spring to the case of the instrument as shown in Fig. 1.

When the instrument experiences acceleration along its sensitive axis, the proof
mass is displaced with respect to the case of instrument; this is the scenario in
Fig. 1b. Under steady state conditions, the force acting on the mass will be balanced
by the tension in the spring. The extension (or contraction) of the spring creates
a force which is proportional to the displacement. When there is no drag force to
resist the movement of the proof mass, its displacement is directly proportional to
the acceleration. This way the applied acceleration can be measured by measuring
the displacement of the proof mass.

There are many different designs for accelerometer but most of them operate
in a manner similar to the simple spring and mass system described above. In
many applications, including navigation, the three dimensional vector of acceler-
ation is required. Normally, three single-axis accelerometers are used. In recent
years, tri-axis instruments have become very popular in the segment of low-cost
accelerometers. It is a common practice to mount the three accelerometers with
their sensitive axes mutually orthogonal, although any non-coplanar configuration
is acceptable as long as the angles between the sensitive axes are known.

Accelerometers are insensitive to the gravitational acceleration and unable to
separate the total acceleration from that caused by the presence of a gravitational
field [18]. These sensors instead provide measurements of the difference between
the true acceleration and the acceleration due to gravity. This quantity is the non-
gravitational force per unit mass exerted on the instrument, and often called a

a b c

Fig. 1 A mass-and-spring accelerometer under different conditions: (a) at rest or in uniform
motion; (b) accelerating; (c) at rest
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specific force. For example, if we consider an accelerometer in free fall, the case
and the proof mass will fall together. Therefore, there will be no displacement of the
proof mass with respect to the case and the output of the instrument will remain at
zero. In other words, the acceleration a of the instrument with respect to an inertially
fixed set of axes equals the gravitational acceleration g and the specific force is zero.
If the accelerometer is held stationary, i.e. a = 0, it will measure the force which
is counteracting to stop it from falling, f = −mg, as visualized in Fig. 1c. This
specific force is required to offset the effect of gravitational attraction. Therefore, the
measurements provided by the accelerometer must be combined with knowledge of
the gravitational field in order to determine the acceleration of the sensor unit with
respect to the inertial space.

The various accelerometer technologies include [60]: mechanical, surface acous-
tic waves, piezoelectric, fiber optic, vibrating beam and solid-state microelectrome-
chanical (MEMS) accelerometers. Historically, mechanical accelerometers were the
first type of accelerometers in mass production. All mechanical accelerometers
are mass–spring type sensors. They can be implemented in open loop when a
displacement of a proof mass with respect to its ‘null’ position is proportional
to the specific force applied along its input axis. They can be also implemented
as closed loop or force feedback pendulous accelerometer in which the spring
is replaced by an electromagnetic device that produces force on the proof mass
to maintain it at its ‘null’ position. The most precise mechanical force-feedback
pendulous accelerometers are capable of measuring specific force with resolutions
of micro-g or better. This class of mechanical accelerometers is used in very
accurate (navigation grade) inertial navigation systems (INS).

Most of accelerometers nowadays are manufactured using MEMS technology
that was developed for the military and aerospace markets in the 1970s. In 2016, the
production volume of MEMS inertial sensors was about 7.5 billion units, dominated
by consumer electronics and automotive applications. MEMS accelerometers can
be fabricated in many different ways. The basic process modules include bulk
micromachining, surface micromachining, wafer bonding, and deep reactive-ion
etching (DRIE). In most cases, the fabrication involves a combination of two
modules or more. The majority of the commercial accelerometers are surface
micromachined. One advantage of surface micromachining is its potential of
Complementary Metal-Oxide-Semiconductor (CMOS) integration. However, due
to some technical challenges, two-chip solutions are still dominant in commercial
products. Bulk micromachining is often combined with wafer bonding (glass–
silicon or silicon–silicon) to produce high-performance accelerometers. A recent
development in which single crystal silicon (SCS) sensing elements are created
in CMOS substrate by using DRIE shows some promising results. In terms of
materials, almost all MEMS accelerometers are made of silicon including silicon
on insulator (SOI). More about MEMS accelerometers can be found in [20, Chapter
2.05].
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1.2 Gyroscopes

Gyroscope (or gyro for short) is a device for measuring or maintaining angular
orientation. It can measure turn rates caused by changes in attitude with respect
to inertial space. Historically the first sensors of this kind were mechanical gyros.
They exploit the inertial properties of a wheel spinning at high speed, which tends
to keep the direction of its spin axis due to the principles of conservation of
angular momentum. Although the axle orientation does not remain fixed, it changes
in response to an external torque much less and in a different direction than it
would without the large angular momentum associated with the disc’s high rate
of spin and moment of inertia. Since external torque is minimized by mounting the
device in gimbals, its orientation remains nearly fixed, regardless of any motion
of the platform on which it is mounted. There are several designs for mechanical
gyros including: dynamically tuned gyroscope (DTG), flex gyro, and dual-axis rate
transducer (DART) which is suitable only for low accuracy applications [60].

Following the development of spinning mass gyros, other kinds of angular rate
sensors, such as optical and vibrating gyros, were developed [4]. These sensors are
based on different physical principles than the conservation of angular momentum.
Optical gyros are based on the Sagnac effect which causes a phase shift between
two waves counter-propagating in a ring interferometer that is rotating; the shift is
proportional to the rate of rotation. Vibrating gyros are based on Coriolis effect that
induces a coupling between two resonant modes of a mechanical resonator. Optical
gyros can be effectively implemented using different integrated optics technologies
that generally fall into two categories: (a) ring laser gyroscopes (RLG) and (b)
fiber optics gyroscopes (FOG). RLGs can be made very accurate to meet the
requirements for navigation grade, but on the other hand, they are expensive, their
size increases with performance, and they are high-voltage devices. FOGs are less
accurate compared to RLGs, but they meet the requirements of medium accuracy
(tactical grade), medium cost gyroscopes.

Vibrating gyros are usually manufactured using MEMS technology [20, Chapter
2.06]. From the accuracy point of view, MEMS gyros are of low to medium accuracy
with their performance approaching FOG. They have low manufacturing costs,
small physical size, and low power consumption; moreover, they can survive severe
shocks and temperature changes. Therefore, MEMS technology is ideally suited for
mass production.

1.3 Areas of Application

Due to the universal presence of motion, vibration, and shocks, inertial sensors can
be applied almost everywhere, from aircraft and space navigation to underground
drilling, from hard disk fall protection to airbags in vehicles, and from video
games to performance improvement of athletes. The large variety of applications
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creates different requirements to inertial sensors in terms of accuracy, size, power
consumption, and cost. For example, the principal driving force for high-accuracy
inertial sensors development has been inertial navigation for aircraft and sub-
marines, precise aiming of telescopes, imaging systems, and antennas. For some
applications, improved accuracy is not necessarily the most important issue, but
meeting performance at reduced cost and size is. The major requirements to inertial
sensors in automotive industry are low cost, high reliability, and possibility of mass
production. In the following sections some examples of applications are given.

1.3.1 Navigation

An INS normally consists of three gyros and three accelerometers. The data from
inertial sensors is processed to calculate the position, velocity, and attitude of
the vehicle. Given the ability to measure the acceleration it would be possible to
calculate the change in velocity and position by performing successive mathematical
integrations of the acceleration with respect to time. In order to navigate with respect
to the desired reference frame, it is necessary to keep track of the direction in which
the accelerometers are pointing. Rotational motion of an INS with respect to the
inertial reference frame may be sensed by gyroscopes that are used to determine the
orientation of the accelerometers at all times. Given this information it is possible
to resolve the accelerations into the reference frame before the integration process
takes place.

High performance INSs require accurate sensors. Such systems are expensive,
weigh several kilos, and have significant power consumption. However, not in every
navigation application has a high-performance INS to be used. For example, land
vehicle navigation systems can significantly reduce INS error growth by applying
non-holonomic constraints1 and using odometer measurements. Therefore, in many
land vehicle applications a lower cost tactical grade INS can be used instead of a
more expensive navigation grade INS. Pedestrian navigation systems take advantage
of biomechanics of walking. Recognizing that people move one step at a time, the
pedestrian mechanization restricts error growth by propagating position estimates in
a stride-wise fashion, rather than on a fixed time interval. Inertial sensors are used
to detect the occurrence of steps, and provide a means of estimating the distance
and direction in which the step was taken. For step detection, accelerometers do not
have to be of high accuracy. Pedestrian navigation is addressed more profoundly in
Sect. 3.

1In short, non-holonomic constraints limit the lateral and vertical speeds of the vehicle and this
knowledge is translated into a measurement [53].
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1.3.2 Automotive

In modern cars, MEMS accelerometers are used in airbag deployment systems
to detect a rapid negative acceleration of the vehicle, determine if a collision
occurred, and estimate the severity of the collision. Another common automotive
use of MEMS gyros and accelerometers is in electronic stability control systems.
It compares the driver’s intended direction which can be determined through the
measured steering wheel angle to the vehicle’s actual direction determined through
measured lateral acceleration, vehicle yaw rotation, and individual wheel speeds.

Other automotive applications of MEMS accelerometers include monitoring of
noise, vibration, harshness, and conditions that cause discomfort for drivers and
passengers and may also be indicators of mechanical faults. Once the data has been
collected during road tests it can be analyzed and compared to previous captures
or against donor vehicles. Comparing data may highlight a problem within the
vehicle allowing the technician to proceed to a repair with confidence supported
by measurements taken.

1.3.3 Industrial

In industrial applications accelerometers are widely used to monitor machinery
vibrations. Analysis of accelerometer based vibration data allows the user to
detect conditions such as wear and tear of bearings, shaft misalignment, rotor
imbalance, gear failure, or bearing fault in rotating equipment such as turbines,
pumps, fans, rollers, compressors, and cooling towers. The early diagnosis of these
faults can prevent costly repairs, reduce downtime, and improve safety of plants
in such industries as automotive manufacturing, power generation, pulp and paper,
sugar mills, food and beverage production, water and wastewater, hydropower,
petrochemistry, and steel production.

1.3.4 Consumer Products

The availability of small size tri-axis accelerometers and gyroscopes with prices less
than $2 has opened up new markets for inertial sensors in video game controllers,
mobile phones, cameras, and other personal electronic devices. The applications of
inertial sensors in consumer devices can be divided into the following categories:
(a) orientation sensing, (b) gesture recognition, (c) motion input, (d) image stabi-
lization, (e) fall detection, and (f) sport and healthy lifestyle applications.

The most common application of orientation sensing by accelerometers is
converting the display to a horizontal or vertical format based on the way the device
is being held. For example STMicroelectronics LSM6DSL inertial module provide
configurable interrupts for change in orientation [59]. Third-party developers have
created thousands of motion-sensitive games and other fanciful applications with
orientation sensing features. With the use of the Global Positioning System (GPS)
and a magnetic compass, location-based services are enabled, making it possible to
identify special sales or lunch menus by just pointing a cell phone at a building.
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Computer or video games can exploit gesture recognition techniques and make
it possible to play the games or do virtual activities such as swinging a tennis racket
or drive a vehicle by moving a hand-held controller. Nintendo’s Wii video game
console uses a controller called a Wii Remote that contains a tri-axis accelerometer
and was designed primarily for motion input. The Sony PlayStation 4 uses the
DualShock 4 remote with embedded inertial module that can be used, for example,
to make steering more realistic in racing games.

Commonly used example of motion input application is darkening the dis-
play when not needed by detecting the motionless state. Some smartphones use
accelerometers for user interface control, for example, make selections by scrolling
down a list by tilting. The accelerometer-enabled wireless mouse makes it possible
to move an object in space and have a corresponding object or cursor follow in a
computer-generated visual model.

Cameras use inertial sensors for image stabilization to reduced blurring asso-
ciated with the motion of a camera during exposure [24]. It compensates for
angular yaw and pitch movement of the camera. There are two ways for images
stabilization in cameras: (1) make adjustments to the image sensor or the lenses
to ensure that the image remains as motionless as possible, (2) digital image
stabilization in which the physical image is allowed to track the scene on the sensor
by software to produce a stable image. The digital technique requires the pixel
count to be increased to allow the image to move on the sensor while keeping
reference points within the boundaries of the capture chip. Different companies
have different names for their image stabilization technology: Image Stabilizer
(Canon), Vibration Reduction (Nikon), Optical SteadyShot (Sony Cyber-Shot),
Super SteadyShot (Sony), MEGA Optical Image Stabilizer (Panasonic and Leica),
Optical Stabilizer (Sigma), Vibration Compensation (Tamron) and Shake Reduction
(Pentax).

Fall detection is an important safety feature to protect hard disk drives in laptops
and some other portable, “always on” devices like MP3 players [1]. Many of these
devices feature an accelerometer which is used to detect drops. If a drop is detected,
the heads of the hard disk are parked to avoid data loss and possible head or disk
damage caused by the shock.

1.3.5 Sport

The advent of small low-cost inertial sensors caused the boom in sensor-laden
sport equipment. Examples of MEMS inertial sensor application in sports include
running, golf, tennis, basketball, baseball, soccer, boxing. Wearable electronics
for running may include accelerometers, gyroscopes, magnetometer and pressure
sensor located in waistband, running shorts or footpod. It can measure different
running metrics, such as cadence, step length, braking, foot contact time, pelvic
rotation, tilt, etc.
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In ball games such as soccer and basketball inertial sensors are integrated in
the ball. In soccer the equipment estimates how hard the ball has been struck,
its speed, spin, and flight path [41]. In basketball the system detects shots made
and missed as well as throw distance, speed, spiral efficiency, and whether a ball
has been caught or dropped. In bat-and-ball games (baseball, softball, cricket) the
equipment is embedded in the bat and computes different swing metrics, including
power, speed, efficiency, and distance the bat travels in the hitting zone. In tennis
the inertial sensors are usually embedded in racket’s handle and they can detect the
type of shot (forehand, backhand, serve, and smash), ball spin (topspin, slice), swing
speed and ball impact spot. In golf the sensors are attached to the shaft of a club and
track the position, speed, and angle of the club as it moves through a swing.

Concussion detection is important in contact sports of all kinds, especially
in boxing, football and hockey [47]. MEMS accelerometers that are able to
measure more than 100 g are usually embedded in helmets, headbands or mouth
guards to measure the severity of an impact. In boxing a small device containing
accelerometer can be attached to the boxer hand wraps or gloves to measure punch
types and rate, power, hit/miss ratio.

Other examples of inertial sensors in sport include motion analysis such as figure
skating jumps, and trajectory analysis in ski jumping and javelin. Xsens MVN
Motion Capture [51, 67] is an interesting example of how inertial sensors can
be used to record human movement. The motion capture suit includes 17 inertial
trackers strapped to the different parts of the body. The data can be used in medical
and sports applications to analyze human movement and gait. It can be also used to
animate digital characters in movies, games, and virtual environments.

2 Performance of Inertial Sensors

Selection of the most suitable inertial sensors for a particular application is a
difficult task. Among the parameters that have to be considered are resolution,
dynamic range, accuracy, cost, power consumption, reliability, weight, volume,
thermal stability, and immunity to external disturbances. Usually when sensors are
examined for compliance, accuracy is the first parameter to start with; however,
accuracy cannot be expressed as a single quantity because several factors contribute
to it.

All accelerometers and gyros are subject to errors which limit their accuracy
in the measurement of the applied acceleration or angular rate. The measurement
error is defined as the difference between the measured and the true value of the
physical quantity. Generally, inertial sensor errors fall into two broad categories: (a)
systematic errors and (b) random errors. When measurement errors are analyzed,
the same methodology can be applied to gyros and accelerometers.

Systematic errors are measurable and sensor type specific. They are caused by
inaccuracy of system parameters and parasitic effects, streaming from the sensor
design, its fabrication processes, and the readout electronics. In the context of
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MEMS sensors, systematic errors apply to whole batches of sensors of a certain
type produced by the same process.

Random errors are caused by interference, noise, instability etc. They can be
divided into two groups: (a) wideband or uncorrelated noise and (b) colored
or correlated noise. Examples of uncorrelated noise are thermal noise [39] and
quantization errors in the analog-to-digital conversion of the output signal. These
errors can be modeled as additive Gaussian white noise process. The effect of zero-
mean white noise can be mitigated by averaging the signal over longer periods of
time; since the output rate of inertial sensors is typically very high (e.g., 1000 Hz),
the signals are usually down-sampled to a slower update rate by averaging.

Correlated noise is a more complicated and much more diverse phenomenon.
Some examples of correlated noise are random walk, Markov processes, and flicker
noise. Flicker or 1/f noise is a nonstationary, long-memory process (i.e., its
autocorrelation decays slower than exponentially) [34]. The name stems from the
fact that the power spectral density of 1/f noise is inversely proportional to the
frequency; this implies that a major part of the power of the noise is located at low
frequencies. In the context of inertial sensors, this noise process is also referred to
as bias instability [28], but in this chapter, we will use the term 1/f noise to refer to
this process and reserve the term “bias instability” for characterizing sensor quality
(see Sect. 2.1).

1/f noise has been observed in a wide range of different contexts, such as
semiconductors, time standards, and highway traffic; even the ancient records of
river Nile’s flood levels have a 1/f power spectral density [64]. However, the origin
of the phenomenon is not known, but it seems that there is no common physical
mechanism to cause it in all these contexts [34]. Therefore, in order to model inertial
sensor errors accurately, the contribution of 1/f noise must be handled carefully. A
common tool for characterizing the contributions of the different noise types is the
Allan variance which is described in Sect. 2.1.2. Other characterization methods do
exist [37], but using Allan variance is recommended in [29].

2.1 Effect of Different Sources of Error

When analyzing the measurement errors of inertial sensors, it is a common
practice to split the measurement error into several components that are mutually
independent and specific to different modes of operation. For instance, even if the
applied input signal is absent, the sensor output is not zero; this error source is called
an offset or bias. Therefore, the bias is defined as the average of sensor output over
a specified time interval that has no correlation with the input signal. Accelerometer
bias is measured in m/s2 or fractions of g whereas gyro bias is measured in ◦/h
or ◦/s. In many cases the bias is not exactly constant but changes slowly in time.
This phenomenon is also called bias instability and can be quantified as the peak-
to-peak amplitude of the long-term bias drift.
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The next important error component is the scale factor error which is defined
as the error in the ratio relating the change in the output signal to a change in the
applied input signal. Scale factor error is commonly expressed as a ratio of output
error to input rate in parts per million (ppm), or, especially in the lower performance
class, as a percentage figure.

Cross-axis sensitivity errors result from the sensor’s sensitivity to signals applied
about axes that are perpendicular to the sensitive axis. Such errors can be due to
physical misalignments of the sensors’ sensitive axes or, particularly in the case
of MEMS sensors, electromagnetic interference between the channels. The cross-
axis sensitivity is also expressed in ppm or a percentage of the applied acceleration
or angular rate. Linearity (non-linearity) error is defined as the closeness of the
calibration curve to a specified straight line. The acceleration-dependent bias
(g-dependent bias) is an error which occurs in Coriolis vibratory gyros; it is
proportional to the translational acceleration of the sensor. Sudden impacts and
shocks may cause significant errors in the output of both accelerometers and
gyroscopes in other ways as well, e.g., as a hysteresis effect.

All the error sources mentioned above consist of both systematic and random
errors.

2.1.1 Calibration of Inertial Sensors

Calibration refers to correcting a measuring device by adjusting it to match
reference values. Calibration of inertial sensors can significantly improve their
performance. Long-term errors, i.e., those which remain constant for at least
3–5 years, can be corrected for in the factory. The factory calibration usually
includes temperature compensation to guarantee good performance over the entire
operational temperature range. This calibration eliminates a significant part of the
measurement errors. The residual errors are much smaller than the initial errors
and can be explained by the fact that the bias and scale factor errors can slightly
change when the system is turned on next time—the so-called day-to-day error.
Furthermore, the temperature compensation does not eliminate all errors caused by
temperature variations.

Despite the fact that the residual errors are much smaller than the errors before
the factory calibration, the sensors’ performance can be improved even further if
these residual errors are calibrated out. The approach for calibration of these errors
depends on the application, the measurement scenario, and the type of error. From
the system’s perspective, one can approach the errors and their correction based
on the sensor transfer characteristic (static and dynamic). With the emergence of
digital signal processing and its use with sensors, this approach is becoming the
standard. Keeping in mind that all sources of measurement error cumulatively affect
the accuracy and resolution of a sensing system in a negative manner, the systems
obey the principle of “a chain only being as strong as its weakest link”. Errors
such as interference, noise, and instability could be eliminated through chopping
or dynamic amplification and division applied to individual sensors.
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2.1.2 Allan Variance

Named after Dr. David W. Allan, the Allan variance [2] is a quantity to characterize
the stability of oscillator systems. Although originally developed for frequency
standards, the Allan variance is widely used to characterize the performance of
inertial sensors; it reveals the contributions of uncorrelated and random walk type
error processes on the measurement noise. The Allan variance σ 2

A is a function of
the averaging time τ , computed as

σ 2
A(τ) = 1

2(N − 1)

N−1∑

i=1

(ȳτ (i + 1) − ȳτ (i))
2 (1)

where the data y have been partitioned into N disjoint bins of length τ , and ȳτ (i) is
the average value of the ith such bin. The square root of Allan variance is known as
the Allan deviation, which is in accordance with common statistical terminology.

Usually, the Allan variance function is visualized as a log–log graph; an example
is shown in Fig. 2. Generally, the Allan variance curve is U-shaped. At short
averaging times, quantization and uncorrelated noise dominate the output. The
variance of independent and identically distributed data is inversely proportional
to the averaging time, which causes a negative slope to the Allan variance at short
averaging times. As the averaging time increases, after some point, 1/f noise starts
to dominate over uncorrelated noise and the curve levels off—the Allan variance
of 1/f noise is constant [64]. Eventually, the curve starts to increase due to rate
random walk. There are also other phenomena that can be identified using Allan
variance [29], but the three effects discussed above are usually the most significant.

Based on the Allan variance plot, it is possible to quantify certain characteristics
of the sensor noise. The spectral density of white noise can be estimated as the

Fig. 2 An example Allan
variance plot
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value of the descending white noise slope at τ = 1 s. The minimum value of the
Allan variance between the white noise and rate random walk slopes corresponds
to the square of the bias instability of the sensor; this value is directly related to the
power of 1/f noise [64].

2.1.3 Modeling the Measurement Errors

A key to estimating and compensating for inertial sensor measurement errors is an
accurate model of the evolution of the different error components with time. Some
of the most commonly encountered models of sensor error time series x(t) are

• random constant

x(t) = x(t − 1); (2)

• first-order Gauss–Markov (GM) models of the form [9]

x(t) = e−Δt/γ x(t − 1) + η(t) (3)

where Δt is the time interval between steps, γ is the correlation time of the
process, and η(i) are independent zero-mean Gaussian random variables; and

• random walk

x(t) = x(t − 1) + η(t) (4)

where the random increments η(i) are independent and zero-mean (but not
necessarily Gaussian).

These three models are closely related. It can be seen that when the correlation
time γ tends to infinity, GM approaches the random walk process. On the other
hand, with γ → 0, GM tends to white noise. Random walk and GM processes are
examples of autoregressive (AR) models which are more generally expressed as

x(t) =
t−1∑

i=0

a(i)x(i) + η(t) (5)

where a(i) are known coefficients and η(i) are independent zero-mean random
variables. Sometimes the noise process η is called the driving noise. Figure 3 shows
an example realization of white noise along with the random walk and GM processes
(γ = 300 samples) generated using the same noise. It can be seen that the correlated
processes have significantly higher values than their driving noise.
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Fig. 3 Example realizations
of white noise, random walk,
and a first-order
Gauss–Markov process

Usually, scale factor errors are quite stable over time and can be modeled as
random constants.2 In contrast, the bias of an inertial sensor can vary significantly
during operation, particularly in the case of MEMS sensors. Therefore, sensor biases
are often modeled as GM or random walk processes. It should be noted that they are
Markovian processes, i.e., the value of the process at time t only depends on the
state of the process at t − 1, not on other past or future states.3 Thus, they are
suboptimal for modeling the 1/f bias instability process which is known to have a
long memory.

It is possible to model 1/f processes as AR processes [35]. However, optimal
modeling of a long-memory process requires an infinite number of states to be
memorized [56]; for this reason, many authors have fitted finite-order AR models on
sequences of data in order to predict the future behavior of, e.g., a gyroscope’s bias.

2.2 Sensor Quality Grade

Inertial sensors are used for various purposes and not all use cases demand similar
performance. For instance, the requirements for the gyroscope of an automotive
stability control system are significantly different from the requirements for full
six-degrees-of-freedom inertial navigation. Traditionally, inertial sensors have been
categorized into several grades based on their performance.

2Scale factors are not exactly constant: for instance, the scale factors of MEMS sensors depend
strongly on the temperature.
3There exist higher-order Gauss–Markov process where the difference equation (3) contains older
values of the process.
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Navigation grade sensors are targeted for long-term autonomous navigation
whereas tactical grade systems are manufactured for shorter intervals of navigation,
usually a few minutes. Typically, the required performance for a navigation-grade
system can be that the position error must not increase by more than one nautical
mile (1.85 km) after 1 h of autonomous inertial navigation. For instance, navigation
grade sensors can be needed for navigation systems in aircraft while a tactical grade
unit can be sufficient for a missile. For examples of navigation grade IMUs, see,
e.g., [27, 31]; examples of tactical grade IMUs include [26, 46].

Consumer or automotive grade sensors are not capable of autonomous nav-
igation, but can be used for positioning temporarily, e.g., when satellite based
positioning is not available, such as when driving through an underpass. Consumer
grade sensors, e.g., [17, 59], are primarily installed for other purposes than naviga-
tion; examples of applications are given in Sect. 1.3.

Table 1 shows example specifications of different grades of inertial measurement
units (IMUs); the values should be regarded as indicative orders of magnitude
corresponding to the example devices referenced above, and should not be used as
a definition of the different quality levels. Anyway, it is clear that the gap between
consumer and navigation grades is large—the differences are in the order of many
decades. Misalignment errors have not been specified for consumer-grade units
because it is difficult, if not impossible, to separate their misalignment errors from
other cross-coupling effects such as inter-channel electromagnetic interference;
hence, the total cross-axis sensitivity is given for these IMUs instead. The consumer-
grade performance figures represent low-cost bulk-manufactured MEMS sensors
that are not individually calibrated by the manufacturer. When considering the size
and power consumption of such a MEMS IMU, one needs to account for other

Table 1 Indicative specifications for IMUs of different quality grades

Component Parameter Unit Navigation Tactical Consumer

Accelerometer Pre-calibration bias mg 0.03 1 30

Noise density µg/
√

Hz 10 50 100

Scale factor error % 0.01 0.03 1

Misalignment mrad 0.05 0.5 –

Cross-axis sensitivity % – – 1

Gyroscope Pre-calibration bias ◦/h 0.005 1 1000

Bias instability ◦/h 0.003 0.1 20

Angular random walk ◦/
√

h 0.002 0.1 0.5

Scale factor error % 0.0005 0.01 1

Misalignment mrad 0.01 0.5 –

Cross-axis sensitivity % – – 1

IMU assemblya Weight kg 5 1 0.01

Volume cm3 1500 500 0.01

Power consumption W 10 5 0.01
aThe figures given for MEMS IMUs correspond to the sensor chip only
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necessary components such as the circuit board and readout electronics in addition
to the sensor chip itself; these are not included in the example figures given for
a consumer-grade IMU in Table 1. Nevertheless, it is not challenging to build a
MEMS IMU into a package with size in the order of a few cubic centimeters.

When considering the performance parameters and requirements of sensors, it is
important to distinguish between errors before calibration and residual errors [55].
For instance, the large bias of a consumer gyroscope can be mostly compensated for
by frequent calibration (e.g., whenever the IMU is stationary), but the bias instability
ultimately determines the attainable performance. On the other hand, with high-
quality IMUs it may be possible to calibrate out misalignment errors to an accuracy
better than the physically achievable sensor alignment precision.

3 Pedestrian Dead Reckoning

The term dead reckoning (DR) refers to the method where a new position estimate
is computed by adding measured or estimated displacements to the coordinates of
a known starting point. Inertial sensors are well known devices for providing the
information on the direction and the distance traveled.

In inertial navigation, the data from three accelerometers and three gyroscopes
are used to update position estimates. As described in Sect. 1.3.1, position estimation
with INS involves the integration of gyroscope measurements to keep track of
the attitude of the sensor unit, followed by double integration of acceleration
measurements to obtain the velocity and position. The process of maintaining
the attitude estimate and integrating the accelerations is called the strapdown INS
mechanization. In this section, we will shortly discuss about the INS mechanisation
and its challenges. This is followed by the detailed description of Pedestrian Dead
Reckoning (PDR) and its accuracy analysis.

3.1 INS Mechanization

The traditional Inertial Navigation System (INS) mechanization includes the fol-
lowing tasks [60]:

1. Integration of the outputs of gyros to obtain the attitude of the system in the
desired coordinate reference frame

2. Using the obtained attitude of the system, transformation of the specific force
measurements to the chosen reference frame

3. Computing the local gravity in the chosen reference frame and adding it to the
specific force to obtain the device acceleration in space

4. If required by the chosen reference frame, the Coriolis correction is applied
5. Double-integration of the acceleration to obtain the velocity and the position of

the device
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For the first task, parameterization for rotations in three-dimensional space is
required. The ones selected in here are direction cosine matrix CA1

A2
and rotation

vector p with notation from [54]. Many other attitude parameterizations can be
used [45]. For example, identical presentation would be possible by switching
direction cosine matrices to quaternions. A 3 × 3 direction cosine matrix transforms
a 3 × 1 vector from reference frame A2 to frame A1

CA1
A2

vA2 = vA1 (6)

The rotation vector p defines an axis of rotation and its magnitude defines an angle to
be rotated. Similarly as direction cosine matrix, rotation vector can be used to define
attitude between frames A2 and A1. If frame A1 is rotated about the rotation vector
p through the angle p = √

pT p the new attitude can be uniquely used to define
frame A2. Conversely, for arbitrary frames A2 and A1 we can find rotation vector
that defines the relative attitude, although not uniquely. The relationship between
direction cosine matrix and rotation vector is [5]

CA1
A2

(p) =
{

I + sin(p)
p

(p×) + 1−cos(p)

p2 (p×)(p×) if p �= 0

I otherwise
(7)

and this can be used to transform any rotation vector to uniquely defined direction
cosine matrix. In Eq. (7) (p×) denotes 3×3 skew symmetric form of 3×1 vector p.

In inertial navigation the orientation estimation beings with finding an initial
orientation At=0 of the sensor unit with respect to some locally level frame L. Then
gyro triad measurements ω

At
IAt

which satisfy

ĊA0
At

= CA0
At

(ω
At
IAt

×) (8)

can be used to update the orientation. In Eq. (8) I refers to inertial (non-accelerating,
non-rotating) reference frame. With sufficiently short time update interval dt an
approximation pt ≈ ω

At
IAt

dt can be used and then Task 1 is completed by updating

CL
At

at each computer cycle:

CL
At

← CL
At−1

CAt−1
At

(pt ) (9)

In Task 2 the accelerometer triad measurement

aAt
SF = r̈At − gAt , (10)

is transformed to L frame using Eq. (9), which leads to differential equation for
position to be solved

r̈L = CL
At

aAt
SF + gL, (11)
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where gL is result from Task 3. Solving Eq. (11) completes Task 5. In this compact
introduction the Task 4 was neglected in Eq. (9). In the double-integration of
accelerations even a small error in acceleration measurement yields a large position
error drift in the output. Because the accelerometers measure the specific force
instead of the true acceleration of the sensor unit, as explained in Sect. 1.1, the
gravitational acceleration is added to the vertical acceleration component; this is
straightforward when the accelerations are first transformed to a local level frame
(Eq. (11)). However, because the gravity compensation of accelerations require
the coordinate transformation, any error in gyroscope output causes errors in
the transformed accelerations, which in turn introduces increasing errors to the
computed accelerations through the errors in the gravity compensation. As the gyro
outputs are integrated to form the coordinate transformation and the transformed
accelerations are double-integrated for position estimate, the gyro errors produce a
position error which increases with time cubed. Therefore the gyro performance is
very critical in INS implementations. Effect of gyro errors can be reduced with
GNSS integration but this is quite difficult with consumer-grade sensors due to
linearization problems [42].

As the requirements for sensor accuracies are very strict for the strapdown
INS mechanization, requiring very high-quality and expensive sensor units, the
developers of mass-market applications are looking for solutions where multiple
integrations of sensor errors can be avoided. In pedestrian applications, the cyclic
nature of the human gait can be utilized to enable navigation with low-cost inertial
sensors. Two approaches have become popular in the literature: mounting the
sensors to the user’s shoe and evaluating the INS mechanization equations in
a stepwise manner; and Pedestrian Dead Reckoning (PDR) where the position
estimate is propagated by detecting steps and estimating their length, and keeping
track of the heading using body-mounted sensors.

The concept of foot-mounted inertial navigation hinges on the idea that when
the sensor unit is known to be stationary, the velocity errors can be observed [19];
this condition holds regularly for a pedestrian’s foot when walking. In addition
to resetting velocity this allows to estimate and compensate for other errors that
are correlated with the velocity errors, e.g. position and attitude offsets and sensor
biases. The most important benefit of foot-mounted inertial navigation is the fact
that it is insensitive to the direction of the step and gait characteristics as long as the
foot stance periods can be properly detected. However, detecting the stance phase
is not trivial especially when the user is running or moving in stairs [50, 57]. In
addition, the foot is subject to higher dynamics than the rest of the body; the sensors
are subject to a significant shock whenever the foot hits the ground, which can lead
to temporary measurement errors.

In PDR, instead of double-integration of the accelerations, the speed of the walk
is estimated from the periodical acceleration waveform produced by pedestrian
movements. The speed can be estimated either from the main frequency of the
periodic signal or by detecting individual steps and estimating their lengths and
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durations from the acceleration waveform. This information along with estimated
heading is used to propagate the estimate of user position. It can be shown that PDR
mechanization is superior to the traditional INS mechanization for a person on foot
when the sensors are mounted on the user’s torso [44]. The main drawback of PDR
is the limitation to one motion mode; the mechanization works only when walking
while the general strapdown INS mechanization works without any assumptions
about the user motion. In addition, while foot-mounted inertial navigation is 3-
dimensional by nature, PDR is 2-dimensional and requires height information from
other sources such as map [66] or barometric altimeter.

3.2 Step Detection with Accelerometers

In this section step detection with torso mounted sensors are considered in detail.
With step we mean the displacement of one foot during walking movement, i.e.
the distance between two consecutive foot prints. The occurrence of a step can be
easily detected from the signal pattern of the vertical acceleration component [40].
However, this approach is sensitive to orientation errors of the sensor unit, as it
is assumed that one axis is aligned with vertical or that the transformation to the
vertical is known. Other possibility it to compute the magnitude of the measured
acceleration vector, i.e. the norm of acceleration [33]. Most commonly the step
detection is based on accelerometers but also gyroscopes can be used [14]. The
signal pattern varies according to where the user attaches the sensor unit [38].
Typical choices to wear the sensor unit are on the belt, e.g. on the side of the user
or on lower back, or onto upper parts of the torso, e.g. attach it to the shoulder
strap of a backpack or wear it in a chest pocket. Step detection is often based on
the detection of signal peaks [38] or crossings of the signal with its average [33] or
some other reference level [43]. Often the detection algorithm combines both peak
detection and detection of reference level crossings. For example, step detection
from acceleration norm may consists of the following steps:

1. Low pass filtering and resampling the signal; sampling frequency in the range
20–25 Hz is high enough.

2. Computation of the norm of current acceleration sample, i.e.,

an (t) =
√

a2
x (t) + a2

y (t) + a2
z (t), (12)

where an (t) is the acceleration norm and ax (t), ay (t), and az (t) are the filtered
components of the measured acceleration.

3. Instances of step starts ts (k) are detected by observing the g-crossings of the
acceleration norm that are followed by a rise rate and a peak height that exceed
the preset limits, and requiring that the time between the current and previous
g-crossings is long enough.
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Fig. 4 Detection of steps
from acceleration norm

4. The step end te (k) is considered to be found when the next step starts or when
a predefined time, considered as the maximum duration of one step, has passed
after the start of the current step.

An example with acceleration norm and the detected step starts is shown in Fig. 4.
The data for the figure were recorded using a sensor unit that was attached to the
belt and positioned to the back of the test walker. Other methods that can be used
to detect individual steps include the correlating of sensor signal with predefined
stride template [7]. The template is formed offline, e.g., by recording it from sample
walk [25]. The correlation method can be improved by using dynamic time warping
(DTW) which allows non-linear mapping between the template and the online
signal [52].

There are applications and devices, such as mobile phones, where the orientation
of the sensor unit cannot be assumed to be predetermined and constant. If the meth-
ods for step detection and step length estimation require e.g. vertical acceleration
component, the phone orientation need to be tracked or the motion classification
can be used to allow adapting different algorithms for different motion modes [13].

3.3 Step Length Estimation

There are two main categories for methods to estimate step length. The first category
includes models that are based on the biomechanical principles whereas the models
in the second category are based on empirical relationships between acceleration
signal pattern and step length. With biomechanical models, certain user-related
parameters, such as leg length, are needed in addition to the empirically determined
scaling parameters [32]. In empirical models, the acceleration norm an(t) or the
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vertical acceleration component av(t) are typically used for step length estimation.
The signal patterns that have been found to correlate well with step length include
the following:

Main frequency p1 (k) = 1/ (te (k) − ts (k)) (13)

Variance, an p2 (k) = var (an (t)) , ts (k) ≤ t < te (k) (14)

Variance, av p3 (k) = var (av (t)) , ts (k) ≤ t < te (k) (15)

Area integral p4 (k) =
∫ te(k)

ts (k)

|an (t) − g| dt (16)

Maximum difference, an p5 (k) = max an (t) − min an (t) , (17)

ts (k) ≤ t < te (k)

Maximum difference, av p6 (k) = max av (t) − min av (t) , (18)

ts (k) ≤ t < te (k)

Instead of (13), the main frequency of the periodical signal can be obtained
using Fast Fourier Transformation (FFT) [38, 40]. In (14)–(15) the variance of the
acceleration signal (e.g., norm or vertical component) is computed over a time
window comparable to some step durations [38], e.g. over one step. The area
integral (16) is obtained by integrating over one step duration the absolute value
of the acceleration norm where the local gravity has been subtracted [33]. In (17)–
(18) the difference between the maximum and minimum acceleration (e.g., norm or
vertical component) of a detected step is used [32].

Also the use of combinations of these signal patterns has been proposed [32,
38], as well as slightly different patterns from these [43]. The empirical step length
model often includes at least one empirically determined parameter. In many cases
a non-linear function, such as raising to a power or extraction of root, has to be
applied to the signal pattern. It is also common to add constant offsets to the pattern
or the function [23, 38]. A generic form of the step length model can be written as

Δsk = Kj,q pj (k)q + b (19)

where Δsk is the distance traveled and pj (k) is the signal pattern, both computed
for the kth step. Kj,q is the scaling factor, b is the offset, and q is the exponent that
defines the function to be applied on pj . The performance of step length estimation
with different functions applied on different signal patterns were demonstrated with
real pedestrian data in [11]. With the best combinations, the relative error in the
estimated distance traveled was 2–3%.

The step length models discussed here are applicable in flat floor or terrain.
In stairs, the step length is forced to be shorter. A method based on analysis of
accelerometer and gyro signal patterns can be used to detect forward direction and
going up or down in stairs [36].
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Fig. 5 Block diagram of the
PDR algorithm

3.4 PDR Mechanization

In PDR mechanization, the dead reckoning process involves step detection and step
length estimation, as shown in the diagram of Fig. 5. The PDR position estimate is
computed by starting from initial coordinates, x0, y0, and initial heading angle ψ0.
As the DR method is not able to determine absolute positions, these initial estimates
have to determined using alternative positioning methods, such as radio navigation
or satellite based positioning.

While the position in PDR algorithm is updated only when step ends are detected,
the heading is updated every Δtg seconds, i.e., at the sampling frequency of the gyro:

ψλ = ψλ−1 + ωλΔtg, (20)

where ωλ is the angular rate measurement by the gyro at the sampling instance λΔtg .
In position estimation, a heading estimate representative of the whole step duration
is needed. Therefore the heading is averaged over the step duration:

ψ̄k = 1

nk

∑

λ∈
k

ψλ, 
k =
{
λ : λ is an integer,

ts (k)

Δtg
≤ λ <

te (k)

Δtg

}
, (21)

where nk is the number of samples in 
k . The heading and horizontal coordinates
are propagated by

xk =
yk =

xk−1 + Δsk cos ψ̄k

yk−1 + Δsk sin ψ̄k,
(22)

where Δsk is the estimated step length, i.e., the distance traveled during the step
with index k (Fig. 6). Position estimates that are based on step detection and step
length estimation are available at step intervals Δtk , which vary according to the
walking style and the speed of the pedestrian.
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Fig. 6 Dead reckoning in
two dimensions

The orientation of the sensor unit with respect to the direction of pedestrian
travel is not fixed in smart phones and many other mobile devices. To determine
the step direction, the knowledge about the orientation of the device with respect
to the environment is required but it is not enough [13, 36]. Methods to estimate
the unknown alignment between the mobile device and the pedestrian (and the step
direction) are compared in [12].

3.5 Effect of Sensor Quality Grade to the Accuracy of PDR

Although PDR mechanization is not as sensitive to sensor errors as the traditional
INS mechanization, the grade of sensors still has an effect to the performance of the
PDR. In this section, the accumulation of errors in PDR is studied based on simple
test cases.

From (13)–(18) it can be seen that the step length estimate is not sensitive to
accelerometer bias: in p2, p3, p5, and p6 the bias is totally canceled out and in p1
and p4 its effect is small. Contrary to the bias error, the effect of the scale factor
error on all other signal patterns except p1 is directly proportional to the sensor
error. However, taking square root, cube root or the fourth root of the signal pattern
decreases the effect of accelerometer scale factor error on the step length estimate,
as can be seen in Table 2.

If the scale factor error of the accelerometer is constant, its effect can be taken
into account in the scaling factor of the step length model (19). In practice the
scale factor error of a consumer grade accelerometer based on MEMS technology is
slowly changing as a function of internal conditions of the sensing element, such as
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Table 2 Effect of 1% scale factor error in accelerometer to functions of signal patterns for step
length estimation

Raw Square root Cube root Fourth root

Function pj (k) pj (k)1/2 pj (k)1/3 pj (k)1/4

Step length error (%) 1.00 0.50 0.33 0.25
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Fig. 7 Effect of 25◦/h gyro bias when the pedestrian is walking with constant speed along the
positive x-axis: (a) heading error; (b) true and estimated coordinates; (c) relative position error

the temperature. If the temperature effect on the sensor scale factor at its maximum
is 1%, then the effect on the estimated distance traveled is the same as the relative
error of the evaluated function (Table 2) at the most. These values are small when
compared with step length modeling errors reported in literature [11, 32].

The effect of the gyro quality to PDR estimates can be analyzed by the simulation
of a PDR system defined by (20)–(22). The effect of the gyro bias is simulated by
using a scenario where the pedestrian walks with constant step length of 0.75 m and
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Table 3 Comparison of gyro grade with respect to the effect of uncompensated bias to the PDR
error build-up

Navigation Tactical Consumer

Bias instability (◦/h) 0.0035 1 25

Time to 2% relative position error 27 days 2.3 h 5.5 min

Time to 3% relative position error 41 days 3.4 h 8.3 min

Time to 3◦ heading error 35 days 3.0 h 7.2 min

constant frequency of 2 steps/s along the positive x-axis. The gyro bias is assumed
to be 25◦/h, which is a typical bias instability of consumer grade gyros (Table 1).
The development of heading error, error in estimated position and the position error
relative to the distance traveled is shown in Fig. 7. The heading error grows linearly
(Fig. 7a), the error in the y-coordinate grows quadratically4 with respect to the x-
coordinate and time (Fig. 7b), and the relative position error with respect to the
distance traveled grows almost linearly (Fig. 7c). With the best step length models,
the long term average in the relative positioning error is about 2–3% [11]. With the
given simulation parameters, the relative positioning error introduced by the gyro
bias is smaller in the beginning, but exceeds 2% in less than 6 min and 3% in less
than 9 min.

To compare the gyro grades described in Table 1, the simulations were also run
with gyro instabilities typical to navigation and tactical grade gyros. The results are
shown in Table 3.

The effect of the gyro scale factor error is simulated by using a scenario where
the pedestrian first makes a 180◦ turn and then walks with a constant step length of
0.75 m and a constant frequency of 2 steps/s along the positive x-axis. The gyro scale
factor error is assumed to be 1%, which corresponds to the scale factor uncertainty
due to the temperature sensitivity over 50 K in a consumer grade gyro [6]. The
heading error, the error in the estimated position, and the position error relative
to the distance traveled are shown in Fig. 8. In this simulation, the heading error
grows in the turn to 1.8◦ and then stays constant, as the scale factor error has
an effect only when the gyro senses a non-zero anular rate (Fig. 8a). Due to the
constant heading error, the position error grows linearly with respect of time and
x-coordinate (Fig. 8b). In the initial turn, the position error relative to the distance
traveled jumps directly to more than 3% (Fig. 8c). That is, with the parameters used
in this simulation and after a 180◦ turn, the error due to the gyro scale factor error is
larger than the error introduced by the best step length models in [11].

To compare the gyro grades described in Table 1, the simulations were also run
with gyro scale factor errors typical to navigation and tactical grade gyros. The
results are shown in Table 4.

4The growth is almost quadratic with small heading errors; however, with larger heading errors,
the sine and cosine functions in (22) bound the error growth.
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Fig. 8 Effect of 1% gyro scale factor error when the pedestrian has made a 180◦ turn from −180◦
and then walks with constant speed along positive x-axis: (a) heading error; (b) true and estimated
coordinates; (c) relative position error

Table 4 Comparison of gyro grade with respect to the effect of uncompensated scale factor error
to the PDR error build-up

Navigation Tactical Consumer

Scale factor error (%) 0.001 0.015 1

Constant heading error (degrees) 0.0018 0.027 1.8

Constant relative position error (%) 0.00314 0.047 3.14

It should be noted that the simulation results given in this section apply only on
PDR mechanization of inertial sensors. The growth of position error is much faster
with traditional INS mechanization, partly due to the low speed of the pedestrian
and partly due to the algorithm simplifications allowed by the characteristics of
pedestrian movements. Another important remark considers the effect of the tilt



76 J. Collin et al.

error of the heading gyro: the simulations assume that the sensitive axis of the gyro
is aligned with vertical. However, in practice the sensor unit easily gets tilted by a
couple of degrees, which introduces a scaling error to the gyro output.

4 Infering Context with Inertial Sensors

In addition to providing data for navigation purposes, inertial sensors can be used
to increase the context awareness of a device. One widely used application is
motion mode classification. In Fig. 9 the waveform of the norm of accelerometer
measurements, as defined in Eq. (12), is shown. The different characteristics in
waveform depending on motion mode is clearly seen. When walking, foot impacts
clearly increase the variability of the signal. When driving a car, engine vibrations,
vehicle accelerations, and road imperfections cause variations which are smaller
than those occurring during walking. Yet, these variations are distinguishable from
the case of a stationary device where the only source of variation is measurement
noise.

a b

c

Fig. 9 Norm of accelerometer output in different motion modes: (a) walking, σ = 0.24 g; (b)
driving, σ = 0.071 g; (c) stationary, σ = 0.0084 g
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Fig. 10 Standard deviation
and peak frequency as
features
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In order to have a computer to identify these motion modes, features such as
sample variance or peak frequency need to be extracted from the acceleration data.
Figure 10 shows two such features: the sample standard deviation σ and the peak
frequency from non-overlapping 5-s windows. In this example, the classification
is relatively easy, as the characteristics are clearly distinguishable and there is
only one label to learn. In practice, the classification problems are more complex,
with overlapping features and multiple labels [69]. Thus, proper algorithms and
statistical tools are needed to obtain useful classification results. In this section a
brief introduction to such tools is given.

4.1 Pattern Recognition

As a simplified statistical example, pattern recognition problem can be considered
as discrimination between r multivariate normal populations. The Bayes theorem
is applied to obtain the probability of the originating population class (e.g. motion
mode) given the statistics (e.g. features) obtained from the sensor data. A training
data set with labeled motion modes is needed to obtain the class means μj

and covariances Σj for each class j . Then, according to the model, the future
observations collated to a q-dimensional feature vector z are distributed as

zj ∼ N(μj ,Σj ). (23)

It should be stressed that due to limited size of the training data set the mean
vector μj ∈ R

q and the covariance matrix Σj ∈ R
q×q are actually estimates of

the true model parameters. Further simplification is made by assuming that the prior
probability P(C = j), where C = j denotes an event that the correct class is j is
known. Under these assumptions, Bayes’ theorem can be applied to obtain

P(C = j |z) = pzj
P (C = j)

pz
, (24)
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where

pz =
r∑

i=1

pzi
P (C = i). (25)

The actual classification result is obtained by finding the class that maximizes the
posterior probability P(C = j |z). Adding inference for sequential data can be
done, for example, using Markov model for state transition probabilities P(Ct =
h)|P(Ct−1 = k) for all possible states h, k = 1, . . . , r . In practice, the assumption
that distributions and correlations between features are known is often invalid as
the feature set may include binary features, multimodally distributed features and
Wishart distributed features (due to sampling in training phase). Thus, in modern
machine learning more generalizable and scalable methods, such as gradient tree
boosting are popular [10]. Even though the new methods in machine learning require
less assumptions for the inputs, there is still a need to understand what kind of data
and features should be included. When inertial sensors are used for classification
there are many options for feature engineering if the basic principles of inertial
sensors are understood well. Features can be extracted from raw data (angular
rates, specific force) or from integrated data (position, velocity, orientation). When
characteristics of sensor noise are identified the effectiveness of high frequency
versus low frequency features may become apparent. Such examples of advanced
features are given in the following section.

4.2 Feature Extraction

Two very important features for classification of motion modes shown in Fig. 10
were examples of statistical (variance) and frequency domain (peak frequency)
features. Using windowed raw sensor data there are many other features easily
obtainable such as [16]:

• Skewness
• Mean absolute deviation
• Zero-crossing rate
• Sub band energies and their ratios
• Change in the peak frequency over 4 sub-frames
• Frequency domain entropy

To make the classification more efficient, there exist efficient algorithms that
can be used reduce the dimensionality of feature space by utilizing the correlation
between features [65].

To show how knowledge of inertial navigation theory may help in classification
the effect known as coning is introduced. The relation between gyroscope measure-
ments and device orientation with fast processing rate was shown in Eqs. (7) and (9).
However, the exact relation between rotation vector and gyroscope measurements
is [5]
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ṗ = ω
At
IAt

+ 1

2
p × ω

At
IAt

+ 1

p2 (1 − p sin(p)

2(1 − cos(p))
)p × (p × ω

At
IAt

) (26)

and the last two terms, describing non-commutativity rate, begin to play a role if the
attitude update rate is too slow. Important feature in this equation is that the cross
product terms remain zero if gyro signal vector (ωAt

IAt
) keeps its direction. If the

gyro signal is constant or the object can rotate only about one fixed axis, then there
is no problem of non-commutativity. The problem arises if gyro data is averaged,
assuming

ṗ ≈ ω
At
IAt

(27)

and the true rotation is lost due to non-commutativity of rotations. Typically in
inertial sensor processing this is avoided by performing the direction cosine update
with fast rate with respect to motion (or applying coning correction terms). In this
context we loosely define the error due to approximation in Eq. (27) as coning
motion. To see why this is important in motion classification, consider following
scenarios for time period n → m

• Unit is in smartwatch attached to wrist of a pedestrian
• Unit is fixed to a vehicle that is cornering
• Unit is stationary on table, gyros have constant bias

Gyroscope data samples at 20 Hz from these scenarios is shown in Fig. 11. To
see the effect of coning errors, this data is resampled by averaging to 1 Hz and
maximum angle error with respect to 20 Hz reference is plotted in Fig. 12. By
combining amount of coning error in each case we will see that first example
has quite large non-commutativity rate, vehicular motion clearly less and the in
the static case the coning error is negligible. The coning effect computed this
way is a direct measure of complexity of angular motion experienced, and thus
an useful, acceleration independent feature for motion mode classification. It may
also help obtaining more insight on how the user experiences the motion [61]. It
should be noted that orientation with fast rate is already computed by the inertial
processing algorithm, so the only extra work for deriving this feature is to take
direct average of gyro data, multiply it by time interval and apply it in Eq. (7) (p ←
n−m
N

∑
ω). Extension this method to specific coning correction algorithms [30] and

accelerometer processing (velocity rotation compensation) is also straightforward.
This illustrates the importance of feature engineering in machine learning, to build
effective feature it is important to know what the sensors actually measure.

Combination of bias and moderate non-coning motion (such as in vehicle mode)
may also result in large coning error. This is because direction of apparent rotation
vector is changing when another component changes its magnitude. Thus the motion
mode recognition and orientation estimation are not necessarily independent tasks.
The quality of sensors affects input features, but on the other hand, known motion
mode can be used to infer gyroscope biased, for example.
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Fig. 11 Gyro data in different cases: (a) Smartwatch; (b) Driving; (c) Biased, stationary. Note the
y-axis scales

4.3 Classification Accuracy

In practice it is impossible to implement a classifier that makes no mistakes; mis-
classifications will occur from time to time. From the viewpoint of the application
designer, the classification accuracy can be evaluated for two different cases: (a)
the expected misclassification rate prior to observing the features, and (b) the
probability of misclassification given the observed feature vector. For the former,
the overlap in the training data is a good indicator. For the latter, (24) directly
gives such probability, but as mentioned the multinormal model for features is
rarely valid. Often the system designer has no other choice than to collect sufficient
amount of independent data for cross-validation to obtain realistic values for
misclassification rates. In addition, one approach to tolerate misclassification is to
apply partial classification methods, where the option of not classifying a situation
at all is reserved [8]. In motion mode classification the number of classes can
vary a lot, which affects the classification accuracy, but generally the reported mis-
classification error rate is almost always below 10% [16].
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Fig. 12 Coning error in degrees in the three cases: (a) Smartwatch; (b) Driving; (c) Biased,
stationary. Note the y-axis scales

4.4 Areas of Application

Motion mode using sensors in smartphones is already generally available [21] and
applications are growing in number continuously. For example, detailed motion
mode information would be valuable for remote monitoring of elderly people [62].
The modern machine learning tools such as XGBoost seems to be very effective
in this [63]. For navigation applications the detection of Walking-mode allows
using PDR, and many other context-dependent mechanizations or filter profiles
have been proposed [15]. The sequential nature of navigation problem has to be
taken into account in recognition [16, 49]. In principle, motion mode classification
methods can be used in any area where human motion is involved and the subjects
exhibit distinct signatures [3]. The list of available applications is not limited to
human motion mode, as the market for Internet of Things devices is growing in the
industrial side as well and general tendency is to include inertial sensors in all kinds
devices that are experiencing motion, without forgetting the increasing amount of
smartphone applications [68].
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5 Summary

With the development of low-cost MEMS accelerometers and gyroscopes, more and
more motion-aware applications become achievable. Since inertial sensors measure
motion parameters the input is based on physical properties specific to the appli-
cation; emerging applications are usually significantly different from the original
use of inertial sensors, i.e., navigation. Novel applications typically are less strict in
sensor accuracy requirements than traditional inertial navigation systems. However,
imprecision may cause the application to perform poorly in certain situations.
Common methods to improve the performance is to calibrate the inertial sensors
and to filter the sensor data appropriately. Understanding of physical principles of
inertial sensor measurements is essential in designing systems that involve motion
measurement. In this chapter, an introduction to inertial sensor applications was
provided. Such a concise presentation did not permit in-depth treatment of inertial
navigation system algorithms and other applications. More information about these
topics and future trends can be found, e.g., in [13, 16, 22, 48, 58, 60].
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