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Abstract The fast Fourier transform (FFT) is a widely used algorithm in signal
processing applications. FFT hardware architectures are designed to meet the
requirements of the most demanding applications in terms of performance, circuit
area, and/or power consumption. This chapter summarizes the research on FFT
hardware architectures by presenting the FFT algorithms, the building blocks in FFT
hardware architectures, the architectures themselves, and the bit reversal algorithm.

1 Introduction

The Fourier transform is one of the most important tools in digital signal processing.
It is used to convert continuous signals in time domain into frequency domain. For
discrete data, such as that in digital systems, the discrete Fourier transform (DFT)
is used instead. The DFT transforms a finite sequence of equally spaced samples to
a corresponding frequency domain representation as follows:

X[k] =
N−1∑

n=0

x[n]Wnk
N , k = 0, 1, . . . , N − 1, (1)

where N denotes the DFT size, x[n] is the input signal in the time domain, and X[k]
is the output signal in the frequency domain, which is defined for the frequencies
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k ∈ [0, N − 1]. Note that both x[n] and X[k] are discrete signals. The coefficients
Wnk

N are called twiddle factors and correspond to rotations in the complex plane
defined as

Wnk
N = e−j 2π

N
nk = cos

(
2π

N
nk

)
− j sin

(
2π

N
nk

)
, (2)

where j denotes the imaginary unit.
The original signal x[n] can be recovered from X[k] by calculating the inverse

discrete Fourier transform (IDFT):

x[n] = 1

N

N−1∑

k=0

X[k]Wnk
N , n = 0, 1, . . . , N − 1. (3)

The arithmetic complexity of the DFT in (1) is O(N2). However, the DFT
contains redundant operations.

The term fast Fourier transform (FFT) refers to various methods that reduce the
computational complexity of the DFT. The most popular one is the Cooley-Tukey
algorithm [16]. Section 2 discusses FFT algorithms and representations.

For the implementation of FFT hardware architectures, Sect. 3 discusses the
building blocks that they consist of, i.e., butterflies, rotators and shuffling circuits.
Later, Sect. 4 presents the FFT hardware architectures. They are divided into fully
parallel, iterative and pipelined FFTs. The outputs of FFT hardware architectures are
generally provided in bit-reversed order. Section 5 explain the bit reversal algorithm
used to sort them out. Finally, Sect. 6 summarizes the main conclusions of this
chapter.

2 FFT Algorithms

2.1 The Cooley-Tukey Algorithm

The Cooley-Tukey algorithm [16] decomposes the DFT into a set of smaller DFTs,
when N is not a prime number. Let us assume that N = N2 · N1 and consider that n

and k are calculated as

n = n1N2 + n2, with n1 = 0, . . . , N1 − 1 and n2 = 0, . . . , N2 − 1;
k = k2N1 + k1, with k1 = 0, . . . , N1 − 1, and k2 = 0, . . . , N2 − 1.

(4)
Then, (1) can be written as
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X[k2N1 + k1] =
N2−1∑

n2=0

N1−1∑

n1=0

x[n1N2 + n2]W(n1N2+n2)(k2N1+k1)
N . (5)

By exploiting the periodicity of the twiddle factors, i.e., W
φN2
N = W

φ
N1

, W
φN1
N =

W
φ
N2

and W
φN1N2
N = 1, the equation is transformed into

X[k2N1 + k1] =
N2−1∑

n2=0

N1−1∑

n1=0

x[n1N2 + n2]Wn2k2
N2

W
n1k1
N1

W
n2k1
N , (6)

which finally results in

X[k2N1 + k1] =
N2−1∑

n2=0

⎡

⎢⎢⎢⎢⎢⎣

⎛

⎝
N1−1∑

n1=0

x[n1N2 + k1]Wn1k1
N1

⎞

⎠

︸ ︷︷ ︸
N1−point DFT

W
n2k1
N︸ ︷︷ ︸

Twiddlefactor

⎤

⎥⎥⎥⎥⎥⎦
W

n2k2
N2

︸ ︷︷ ︸
N2−point DFT

, (7)

where the N1-point and N2-point DFTs are referred to as inner and outer DFTs,
respectively. As a result, an N -point DFT is broken down into N2 DFTs of size N1
and N1 FFTs of size N2, with twiddle factor multiplications in the middle. This is
illustrated in Fig. 1 for N = 16, N2 = 8 and N1 = 2.

In general, N can be the product of several numbers, i.e., N = Nm−1 · Nm−2 ·
. . . · N0. Radix-r refers to the case in which Ni = r,∀i = 0 . . . m − 1. The radix-r
FFT is derived by expressing n and k as

n = nm−1 · rm−1 + nm−2 · rm−2 + n1 · r + n0,

ni ∈ [0, . . . , r − 1],∀i = 0, . . . , m − 1;
k = km−1 · rm−1 + km−2 · rm−2 + k1 · r + k0,

ki ∈ [0, . . . , r − 1],∀k = 0, . . . , m − 1. (8)

This results in m = logr N nested r-point DFTs with twiddle factors in between.
When r = 2, each nested 2-point DFT is calculated on N/2 pairs of data
and requires a total of N additions. This leads to an arithmetic complexity of
O(N log N) for the entire FFT, compared to O(N2) in the DFT in (1).

Finally, the recursive application of Cooley-Tukey principle can be done by
starting from the time domain sequence, which results in a decimation-in-time
(DIT) decomposition. In a similar fashion, the decimation-in-frequency (DIF)
decomposition is obtained by starting from the frequency sequence.
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Fig. 1 Graphical representation of the Cooley-Tukey algorithm

2.2 Representation Using Flow Graphs

Figures 2 and 3 show the flow graphs of the radix-2 DIF and DIT FFT algorithms,
respectively. The numbers at the input of the graph represent the indexes of the
input sequence, x[n], whereas those at the output are the frequencies, k, of the
output signal X[k]. The flow graphs consist of a series of n stages, s ∈ {1 . . . n}.
At each stage, additions, subtractions and rotations are calculated. Additions and
subtractions come in pairs, forming the so called butterflies, which have the shape
�

�
. The upper output of the butterfly provides the sum of the inputs and the lower

part subtracts the lower input from the upper one.
Each number φ in between butterflies represents a rotation, which corresponds

to a complex multiplication by

W
φ
N = e−j 2π

N
φ. (9)

Rotations by φ ∈ {0, N/4, N/2, 3N/4} are called trivial rotations, due to the
fact that they correspond to multiplications by 1,−j,−1 or j . Trivial rotations can
easily be calculated by interchanging the real and imaginary parts of the inputs
and/or changing their signs.

Finally, an index I is added to the left of the flow graph, together with its binary
representation bn−1bn−2 . . . b1b0. This index together with the stage is used to refer
to the rotations in the flow graph. For instance, the rotation with index I = 14 at
stage s = 1 in Fig. 2 is φs(I ) = φ1(14) = 6. Through the chapter, the symbol
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Fig. 2 Flow graph of a 16-point radix-2 DIF FFT

(≡) is used to relate decimal numbers and their binary representation, e.g., I ≡
bn−1bn−2 . . . b1b0.

When the FFT size N is large, it is not feasible to represent the FFT by a flow
graph. In this case, the binary tree and the triangular matrix representations are
useful tools to represent the algorithms in a simple manner.

Note that any FFT flow graph of the same radix will look the same. The only
difference is where the twiddle factor multiplications are positioned. This can be
seen by comparing Figs. 2 and 3. Hence, all the following algorithms only differ in
the twiddle factor multiplications, although this may provide significant differences
when implemented.

2.3 Binary Tree Representation

The binary tree representation [61, 83] is a generalization of the Cooley-Tukey
algorithm. In the Cooley-Tukey algorithm, N is decomposed into a product of
factors, i.e., N = Nm−1 · Nm−2 · . . . · N0. This results in nested DFTs where each
DFT contains the previous one. Conversely, in the binary tree representation, N is
only split in two factors, i.e., N = P · Q, which is analogous to (7). Then, both P
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Fig. 3 Flow graph of a 16-point radix-2 DIT FFT
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Fig. 4 Binary tree diagram of all possible algorithm for N = 32

and Q are again decomposed in two factors each. This process repeats iteratively
forming a tree in which each node is split in two unless it is a leaf node.

A binary tree diagram [61] is an effective way of understanding the difference
between FFT algorithms. For instance, Fig. 4 shows all the binary tree representa-
tions for N = 32. Note that each node has at most two branches.

In the binary tree representation, the upper node is assigned a value n to represent
the 2n-point DFT. Then, n is split into p and q, where n = p + q, P = 2p and
Q = 2q . After the first iteration, the remaining DFTs are again divided into smaller
DFTs using the same procedure, so that the value of a node is the same as the sum
of the sub-nodes.

The values of the sub-nodes can be chosen arbitrarily at each iteration. This leads
to a large number of alternatives. In general, for N = 2n, the number of N -point
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FFT algorithms generated by using binary trees is [83]

(2(n − 1))!
n!(n − 1)! , (10)

which comes from all the possible selections at each iteration. For a 32-point FFT,
the number of FFT algorithms according to (10) is 14, which corresponds to the
cases in Fig. 4.

The twiddle factors at each stages are directly obtained from the binary tree. This
is done by going across the binary tree from left to right. In this process, the final
leafs of the tree represented by 1 are skipped, as they correspond to radix-2 DFT
operations. For example, the sequence of numbers in Fig. 4a is 5, 4, 3, 2. Given this
sequence, the number of angles of the corresponding twiddle factors is the power
of these numbers. Thus, for this example the twiddle factors are W32, W16, W8, and
W4. This corresponds to the DIF decomposition, as it is obtained by decimating a 2-
point DFT at each iteration from the input samples towards the output frequencies.
How to generate the rotation coefficients φ for any FFT stage is described in [83].

2.4 Triangular Matrix Representation

The triangular matrix representation [24] is based on the ideas that rotations can be
moved among FFT stages. The triangular matrix representation of some typical 16-
point FFT algorithms is shown in Fig. 5. Rows are numbered as x = 1, . . . , n − 1
from top to bottom and columns as y = 1, . . . , n−1 from left to right. Each element
in row x and column y, Mxy , corresponds to a set of rotations that can be moved
through several stages. Its value is the stage where these rotations are placed, which
must be in the range x ≤ Mxy ≤ y.

a b c

Fig. 5 Triangular matrix representation of typical 16-point FFT algorithms: (a) radix-2 DIF, (b)
radix-2 DIT, (c) radix-22 DIF
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Accordingly, the rotation coefficients φs(I ) at any FFT stage s are calculated as

φs(I ) =
∑

Mxy=s

bn−x · bn−y−1 · 2n+(x−y)−2. (11)

Note that the numbering of rows and columns differs from the original paper [24],
where the variables i = n − x and j = n − y − 1 are used instead of x and y.

By applying Eq. (11) to Fig. 5a, the rotation coefficients are obtained as

φ1(I ) = b3 · b2 · 22 + b3 · b1 · 21 + b3 · b0 · 20 = b3 · [b2b1b0];
φ2(I ) = b2 · b1 · 22 + b2 · b0 · 21 = b2 · [b1b00];

φ3(I ) = b1 · b0 · 22 = b1 · [b000],
(12)

which correspond to the radix-2 DIF algorithm in Fig. 2. For instance, if s = 1 and
I = 14 ≡ 1110 = b3b2b1b0, then according to (12), φ1(14) = b3 · [b2b1b0] =
1 · [110] = 6. This corresponds to the rotation by 6 for s = 1 and I = 14 in Fig. 2.
The rotations for the other algorithms in Fig. 5 can be derived in the same way.

In the triangular matrix representation, the radix-2 DIF FFT is the case where all
the rotations are in the lowest possible stage, i.e., ∀x, y,Mxy = x. Analogously, the
radix-2 DIT FFT is the case where all the rotations are in the highest possible stage,
i.e., ∀x, y,Mxy = y. Finally, the radix-22 DIF FFT is the case where the rotations
of the radix-2 DIF algorithm in odd stages are moved to the next even stage, except
for those in the main diagonal, which cannot be moved.

Given that x ≤ Mxy ≤ y, each element Mxy can take y − x + 1 different
values. By multiplying all the alternatives, the total number of algorithms that are
represented by the triangular matrix as a function of n is

n−1∏

k=1

(n − k)k. (13)

This is a large number of algorithms that includes, among others, all the algorithms
representable by a binary tree.

2.5 The Radix in FFTs

The concept of radix has been used since the beginning of the FFT. It serves to
distinguish different FFT algorithms. The radix is represented with a base and an
exponent, i.e., r = ρα . The base ρ indicates the size of the butterflies, i.e., the
smallest DFT size that is used for the decomposition. Both base and exponent
together provide the rotations at the FFT stages.

The first radices to be considered were radix-2, radix-4 and higher powers of two.
These algorithms can be derived by the Cooley-Tukey algorithms as in (8).
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Split radix [20] was also proposed in the early days. It combines radix-2 and
radix-4 into an L-shaped butterfly. Split radix is known for having the least number
of non-trivial rotations among FFT algorithms. However, it is seldom used in FFT
hardware architectures due to the irregularity in the distribution of rotation.

Some years later, radix-22 was introduced for FFT hardware architectures [45].
From the algorithmic point of view, radix-22 is the same algorithm as radix-4 as both
carry out exactly the same arithmetic operations [24]. However, both radices lead to
different FFT architectures, due to the fact that radix-22 groups the calculations into
2-point butterflies and radix-4 groups them into 4-point butterflies.

The binary tree decomposition provides radix-2k , for k ∈ N. Radix-2k is obtained
when any node v of the binary tree is split into k and v − k, being k constant.
Notice that the concept of radix is not unique any more, as radix-2k may refer to
different trees. Furthermore, many FFT algorithms based on the binary tree cannot
be described by a single radix, but by a mixed radix, such as radix-24,23. As a result,
many algorithms are better referred to by their tree than by their radix. The same
happens to the triangular matrix representation, where there are even algorithms
that cannot be described by a radix.

2.6 Non-power-of-two and Mixed-Radix FFTs

Most of the FFT designs consider FFT sizes that are powers of two and the rest of the
chapter focuses on them. However, there are cases when N is a non-power-of-two
and/or is a combination of powers of different radices [11, 88, 105, 106, 111, 112].

When N is a power of the radix, i.e., N = rk , the Cooley-Tukey algorithm is the
most suitable approach, even when it is a non-power-of-two. When N is a product
of powers of coprime numbers, i.e.,

N =
∏

i

r
ki

i , (14)

where ri and rj are coprime ∀i �= j , then the Cooley-Tukey algorithm leads
to twiddle factors between blocks of different radices. Conversely, the twiddle
factors in between those blocks do not appear when using the prime factor
algorithm (PFA) [6, 38]. Therefore, the PFA algorithm is recommended under these
circumstances.

3 Building Blocks for FFT Hardware Architectures

FFT hardware architectures consist of butterflies, rotators and circuits for data
shuffling. In the architectures, butterflies/rotators may be used to calculate one or
several of the butterflies/rotations of the flow graph. Circuits for data shuffling are
used to generate the data order to the butterflies and rotators in the architecture.
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3.1 Butterflies

Butterflies in FFT architectures are characterized by their radix. A radix-ρ butterfly
is a circuit with ρ inputs and ρ outputs that calculates an ρ-point DFT. Therefore, it
corresponds to a direct implementation of the ρ-point DFT flow graph, where each
addition/rotation in the flow graph is translated into an adder/rotator.

Radix-ρ butterflies are used in radix-ρα FFTs, α ≥ 0. The most common radices
for butterflies are radix-2 and radix-4, which cover all radix-2k and radix-4k FFTs.
Radix-2 and radix-4 butterflies have the advantage that they only consist of adders,
and no rotator is needed. In case of radix-4, its trivial rotation by −j can be
embedded by changing the routing of the signals and the signs in the butterfly
operations. Conversely, higher-radix butterflies include non-trivial rotators, which
increases their cost.

3.2 Rotators

In a digital system with complex signals, a rotation by an angle α can be described as

[
X

Y

]
=
[

C −S

S C

] [
x

y

]
, (15)

where X + jY is the result of the rotation and C, S ∈ Z are the real and imaginary
part of the rotation coefficient C + jS.

Due the finite word length effects, the rotation by C + jS provides an approxi-
mation of the angle α with a certain error, being

C = R(cos α + εc);
S = R(sin α + εs),

(16)

where εc and εs are the relative approximation errors of the cosine and sine
components, respectively, and R is the magnitude. The approximation error for a
given rotation can then be calculated as [30]

ε =
√

ε2
c + ε2

s . (17)

Here, it should be noted that although it is common that R is a power-of-two, any
magnitude can be used for the rotators, as long as the magnitude is the same for all
the rotators at the same FFT stage [34].

It is often common to map the angle range into one or two quadrants. In this
way, the rotators can often be simplified at the cost of a W2 or W4 rotator at the end.
Which in turn sometimes may be integrated with the preceding butterfly as discussed
above. Hence, in the following, the quadrant discussion is sometimes neglected.
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Fig. 6 Twiddle factors W4, W8 and W16

The sine and cosine values are typically either stored in a memory or computed
using an approximation, e.g., one of the methods discussed in the chapter “Arith-
metic” [44]. The size of the sine and cosine memory can be reduced by utilizing
octave symmetry, i.e.,

sin (α) = − cos
(
α + π

2

)

cos (α) = sin
(
α + π

2

) . (18)

In this way, only sin and cos values for inputs between 0 and π
4 must be stored or

approximated.
Rotators in FFT hardware architecture usually calculate rotations by different

angles at different time instants. These rotation angles are part of a the set of
rotations

W
φ
L = e−j 2π

L
φ, φ ∈ {0, 1, . . . , L − 1}, (19)

where L is the resolution of the twiddle factor. Note that WL refers to the entire set
of L angles, whereas W

φ
L refers to a single angle which is the φ-th angle of the set.

Any twiddle factor WL divides the circumference in L equal parts and it contains the
angles that create these divisions. The twiddle factors W4, W8 and W16 are shown
in Fig. 6.

The number of different rotation angles that a rotator has to compute depends on
the selected algorithm and architecture. When this number is large, general rotators
are used. When the number of angles is small, the rotators may be simplified. Next
sections describe different techniques to implement general and simplified rotators.
They are mainly based on the use of multipliers or the CORDIC algorithm. An
overview of techniques to implement rotators can be found in [73].
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a b

c

Fig. 7 Multiplier-based rotators. (a) Standard complex multiplier using four multiplications and
two additions based on (20). (b) Complex multiplier using three multiplications and five additions
based on (21) (three additions if the gray ones are replaced by memories). (c) Lifting-based rotator

3.2.1 Multiplier-Based General Rotators

The most straightforward approach is the direct implementation of Eq. (15), i.e.,

X = xC − yS;
Y = xS + yC.

(20)

This requires four real-valued multipliers and two real-valued additions, as shown
in Fig. 7a.

C and S are generally obtained as C = �R cos α	 and S = �R sin α	, where
�·	 represents a rounding operation and being R a power of 2. Allowing R to be
a non-power-of-two, widens the search for efficient rotation coefficients and the
approximation errors can be reduced [30].

Other alternatives are based on rewriting (20) [101] to reduced the number of
multipliers from four to three. Among them, the more interesting ones are

X = x(C + S) − (x + y)S;
Y = y(C − S) + (x + y)S,

(21)

and

X = (x + y)C − y(C + S);
Y = (x + y)C − x(C − S).

(22)

Both cases include a common term in the equations for X and Y that only need to
be calculated once. Thus, when C + S and C − S are precomputed, these cases
require three real-valued multiplications and three real-valued additions. Otherwise,
they require three real-valued multiplications and five real-valued additions. The
structure for (21) is shown in Fig. 7b.
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Lifting-based rotators [8, 41, 79] are another way to obtain low-complexity
rotations. There exist several different ways to rewrite (15) using lifting, one being

[
X

Y

]
=
[

1 D

0 1

] [
1 0
S 1

] [
1 D

0 1

] [
x

y

]
, (23)

where S = sin(α) and D = 1−cos(α)
sin(α)

= tan(α/2). This requires three real-
valued multiplications and three real-valued additions as shown in Fig. 7c. The other
three standard alternatives have a similar form, but differ in how the coefficient
corresponding to D is derived. Based on the angle, a structure can be selected to

make sure that |D| ≤ 1−cos( π
4 )

sin( π
4 )

≈ 0.414. This avoids the large magnitudes obtained

for certain angles, as in the example structure D → ∞ when α → π .

3.2.2 Multi-Stage General Rotators

As opposed to the multiplier-based rotators in the previous section, multi-stage
rotators perform only a part of the total rotation in each stage. Step k of such a rotator
can rotate with a set of angles, typically δkαk , where δk ∈ {−1, 1} or δk ∈ {−1, 0, 1},
i.e., a fixed angle, αk , can be rotated in either direction or rotated in either direction
or no rotation at all. Based on the remaining angle to be rotated, zk , δk is determined
and the remaining angle after the rotation, zk+1, is updated.

The general structure of a rotation stage includes the calculation of xk+1, yk+1
and zk+1 and is shown in Fig. 8. Multi-stage rotators mainly involve the CORDIC
algorithm and its variations.

The total angle of rotation is then

α =
M∑

k=0

δkαk + εφ, (24)

where εφ is the phase error of the approximation.
The available techniques optimize for different goals. For example, the CORDIC

algorithm initially discussed, selects the angle of rotation such that the rotator
becomes simple. A later discussed technique instead selects the angles to be suited
for FFT computations with length power-of-two, i.e., the angle resolution is on a
grid with power-of-two resolution.

Fig. 8 General rotation stage
in multi-stage rotator
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In the CORDIC algorithm [97], discussed from a general perspective in the
chapter “Arithmetic” [44], each stage multiply with the coefficients Ck + jSk =
2k + jδk , where δk ∈ {−1, 1}. The corresponding angles are then

αk = tan−1
(

2−k
)

. (25)

These angles have the property that any angle α can be expressed as a sum
of them. This enables the CORDIC algorithm to rotate by any rotation angle.
Furthermore, due to the simplicity of the coefficients Ck + jSk , each rotation stage
is calculated with only 2 adders/subtracters as

xk+1 = xkCk − ykSk = 2kxk − δkyk;
yk+1 = xkSk + ykCk = 2kyk + δkxk.

(26)

According to this, the scaling of each rotation stage is

Rk =
√

C2
k + S2

k = Ck

√
1 + (Sk/Ck)2 = Ck

√
1 + tan(αk)2 = 2k

cos(αk)
. (27)

The term 2k is generally compensated by removing the k LSBs after each rotation
stage. The product of the scalings by 1/ cos(αk) at all the stages produces a total
scaling of approximately 1.64, which can be compensated by multiplying the output
of the CORDIC rotator by

K =
M∏

k=0

cos(αk) =
M∏

k=0

cos(tan−1(2−k)) = 0.6073. (28)

The CORDIC assumes that the initial angle z0 = α is in the interval [−90◦, 90◦].
Otherwise, this is easily achieved by a trivial rotation by 180◦. Then, direction of
the rotations δk are calculated for k = 0, . . . ,M according to

δk = −sign(zk);
zk+1 = zk + δkαk,

(29)

where zk is the remainder rotation angle at the input of stage k, zM+1 = εφ , and
sign(η) = 1 if η ≥ 0 and sign(η) = −1 if η < 0.

There are multiple variations of the CORDIC algorithm. Some of the main
modifications to the CORDIC algorithms are introduced next, and surveys on
CORDIC techniques can be found in [2, 76]. For some of the mentioned approaches
it is not straightforward to determine the rotation parameters at run-time. Hence,
for these methods it is required to perform the design offline and store the control
signals in memory rather than the angles. This approach is naturally possible for all
techniques, and, as the sequence of angles is often known beforehand, most likely
advantageous compared to storing the angle values.
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The redundant CORDIC [63, 91] considers that δk ∈ {−1, 0, 1} [91] or even
δk ∈ {−2,−1, 0, 1, 2} [63]. This enables several rotation angles at each CORDIC
stage. However, the scaling for different angles is different, which demands a
specific circuit for scaling compensation. The extended elementary angle set
(EEAS) CORDIC [104] and the mixed-scaling-rotation (MSR) CORDIC [66, 81]
also follow the idea of increasing the number of rotation angles per rotation stage.

The memoryless CORDIC [27] removes the need for rotation memory to store
the FFT rotation angles. Instead, the control signals δk are generated from a counter.
This is advantageous for large FFTs, which have stages with a large number of
rotations.

The modified vector rotational (MRV) CORDIC [103] allows for skipping
and repeating CORDIC stages, whereas the hybrid CORDIC [47, 89] divides the
rotations into a coarse and a fine rotations. These techniques reduce the number of
stages and, therefore, the latency of the CORDIC.

The CORDIC II [33] proposes new types of rotation stages: Friend angles,
uniformly scaled redundant (USR) CORDIC and nanorotations. They allow for both
a low latency and a small number of adders.

Finally, the base-3 rotators [57] consider an elementary angle set that is different
to that of the CORDIC. All the rotations are generated by combining a small set
of FFT angles. This set fits better the rotation angles of the FFT than that of the
CORDIC, which results in a reduction in the rotation error, number of adders and
latency of the circuit.

3.2.3 Simplified Multiplier-Based Rotators

Naturally, the real-valued multipliers in Sect. 3.2.1 can be implemented using shift-
and-add multiplication, as discussed in the chapter “Arithmetic” [44]. This is
specially useful when the rotator only needs to rotate by a single angle.

Initially, consider a rotation by π
4 . As sin

(
π
4

) = cos
(

π
4

)
only one multiplication

coefficient is required for each input (or output). Hence, either each input is
multiplied by sin

(
π
4

)
and then the results are added and subtracted, as shown in

Fig. 9a, or the inputs are first added and subtracted and then multiplied by sin
(

π
4

)
,

as shown in shown in Fig. 9b. The constant multiplication can be implemented
using a optimal single constant multiplier from [42], while the best shift-and-add
approximation with a given number of additions for the exact coefficient sin

(
π
4

)

can be found using the approach in [43].
For a general angle, the rotator shown in Fig. 7a can be used as a starting point.

Now, both the multipliers sharing the same input can be simultaneously realized
using multiple constant multiplication (MCM) techniques. This is illustrated in
Fig. 10a, where the dashed box indicates the two multipliers realized using MCM.
An identical MCM block is used for the other input. General MCM algorithms
include [40, 98], while the algorithm in [18] is specifically tailored for two constants.
An alternative view of the problem is to implement a sum-of-product block for
the two multipliers going to the same output, as illustrated in Fig. 10b. However,
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Fig. 9 Single constant
rotations by π/4. (a)
Multiplication followed by
addition. (b) Addition
followed by multiplication

a b

Fig. 10 Single constant
rotations by a general angle.
(a) Rotation implemented by
using two MCM blocks as
indicated by the dashed box.
(b) Rotation implemented
using two sum-of-product
blocks as indicated by the
dashed box

a b

as the MCM and the sum-of-product problems are dual to each other, exactly the
same number of adders are expected. A third option is to consider the problem as a
constant matrix multiplication problem [5, 60].

For the rotators in Fig. 7b, c, no sharing can be done between the multipliers.
However, due to the initially reduced complexity of the rotator, it may still happen
that the total complexity is reduced. It should also be noted that the computations of
the lifting-based structure in (23) can be merged to one matrix.

[
X

Y

]
=
[
E F

S E

] [
x

y

]
, (30)

where E = 1 + DS and F = D(2 + SD). This forms another option to realize in
any of the ways mentioned above.

When more than one angle is considered it is still possible to use shift-and-add
techniques. Consider a W8 rotator with indices φ ∈ {0, 1}. For φ = 0, the inputs are
simply bypassed to the outputs. For φ = 1 one of the approaches in Fig. 9 can be
used. Then, the correct rotation result is selected by using a multiplexer, as shown
in Fig. 11, where the π

4 -rotator in Fig. 9a is used.
For several non-trivial angles, the naïve approach is to implement all different

coefficients by using shift-and-add as an MCM problem and then select the correct
angle by a multiplexer. However, the multiplexers can be merged with the shift-and-
add network to significantly reduce the complexity [77, 96].
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Fig. 11 W8 rotator based on
Fig. 9a

Of special interest is to note that it may be possible to find coefficients with longer
word length, but with the same or smaller number of adders [34, 43]. Also, as earlier
discussed, the magnitude may be selected as a non-power-of-two to further simplify
the computations [34].

3.2.4 Simplified Multi-Stage Rotators

All the techniques mentioned in Sect. 3.2.2 are based on simple rotator stages.
Clearly, for a constant coefficient the best selection of stages can be found. This
has been explicitly proposed for CORDIC-based rotators [48, 75], although it can
be easily generalized to arbitrary types of stages. If several angles are to be realized
at different time instances it is of benefit having similar structure for the stages such
that multiplexers can be easily introduced.

3.2.5 Rotators Based on Trigonometric Identities

Approaches based on trigonometrical identities [78, 84] search for expressions that
are shared among different rotation angles. As a result, a simplified version of
the rotator is obtained, which includes a reduced number of adders, multiplexers
and multiplications by real constants. For instance, the twiddle factor W16 can be
reduced to constant multiplications by cos(π/8) and/or sin(π/8) [84].

3.3 Shuffling Circuits

The purpose of the shuffling circuits in FFT architectures is to provide the data in
the correct order needed for FFT stages. At each FFT stage, butterflies operate on
pairs of data whose index I differ in bn−s [29]. This can be observed in Fig. 2.
For instance, the index of pairs of inputs to butterflies in stage 1 differs in bn−s =
b4−1 = b3. As I ≡ b3b2b1b0, I = 0 ≡ 0000 and I = 8 ≡ 1000 differ in b3 and are
processed together in a butterfly at the first stage.

As different FFT stages demand different data orders, circuits for data permuta-
tion need to be included in between stages. These circuits have been studied by using
life-time analysis and register allocation [74, 80], Kronecker products [39, 52–54,
82, 87, 92, 93] and bit-dimension permutations [21–23]. The following explanation
is based on the latter, and follows the theory in [23].
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a b

c

Fig. 12 Shuffling circuits. (a) Serial-serial permutation. (b) Serial-parallel permutation. (c)
Dataflow of the serial-parallel permutation

Bit-dimension permutations are permutations on a group of 2n data defined by a
permutation of the n bits that represent the index of those data in binary. In FFTs,
each stage processes N = 2n data that we index with I = bn−1 . . . b1b0 as in
Fig. 2. For these data, we can define their position [23]. For instance, P ≡ b0b3b2b1
defines a specific data order, where each index I ≡ b3b2b1b0 is in position P. Thus,
I = 8 ≡ 1000 is in P ≡ 0100. For parallel data, a vertical bar separates serial
and parallel data, e.g., P ≡ b0b3b2|b1. The first part of the position until the bar
indicates the time of arrival, which is defined as the relative time to the arrival of the
first sample to a given point of the circuit. The second part after the bar indicates the
terminal of arrival. The number of parallel dimensions p corresponds to the number
of bits after the bar. Thus, for P ≡ b0b3b2|b1, the number of parallel dimensions is
p = 1 and I = 8 ≡ 1000 is in P = 010|0, i.e., it arrives at terminal T (P) = 0 at
time t (P) = 2 ≡ 010.

Different positions define different orders, and the data order is changed when
permuting the bits of the position. This is achieved by the shuffling circuits in FFT
architectures. Figure 12 shows the main shuffling circuits used in FFT hardware
architectures.

The circuit in Fig. 12a is used to calculate a serial-serial bit-dimension permuta-
tion. It consists of a buffer of length L and two multiplexers. This circuit is used to
change the position of pairs of data separated by L clock cycles. This is done when
one of the data is at the input of the circuit and the other one is at the output of the
buffer. Then S = 0 is selected so that the position change. Otherwise, when S = 1
data passes through the buffer maintaining the order.
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The length of the buffer defines the bit-dimension permutation that is carried
out. If xn−1 is the first bit from the left and x0 is the last one, then a serial-serial
permutation that interchanges xj and xk , j > k ≥ p has a buffer length [23]

L = (2j − 2k)/2p. (31)

The circuit in Fig. 12b carries out a serial-parallel permutation. Figure 12c shows
how it works: The groups of data A, B, C and D have L data in series each. First,
the L data A and C arrive to the circuit at the upper and lower inputs, respectively.
Then the L data B and D arrive. The circuit first delays the lower data, then it swaps
the groups B and C, and finally it delays the upper part. The result is that data in
groups B and C are interchanged.

The length of the buffers for interchanging xj and xk , j ≥ p > k is [23]

L = 2j−p. (32)

Finally, parallel-parallel permutations interchange parallel data flows. This does
not require any hardware, as it can be hard wired.

4 FFT Hardware Architectures

There are three main types of FFT hardware architectures: Pipelined, iterative and
fully parallel. Next section discusses when to choose each type and the following
sections describe the different types.

4.1 Architecture Selection

Table 1 classifies the types of FFT hardware architectures in terms of the input data
flow and the number of parallel samples, P . The higher P , the higher the throughput
and also the larger the area of the circuit.

Iterative FFT hardware architectures loads data into a memory, then processes
them and finally outputs them. During the processing, new data cannot be loaded.
Therefore, iterative FFT architectures are suitable for processing data bursts.

Table 1 FFT architecture
selection

FFT architecture type Data flow P

Iterative Burst ≥1

Serial pipelined Continuous flow 1

Parallel pipelined Continuous flow >1

Fully parallel Continuous flow N
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The other architectures process data in a continuous flow. The difference among
them is the parallelization P . The selection of the architecture depends on the
expected performance. The throughput is calculated as Th = P · fclk where fclk
is the clock frequency of the system and P is generally a power of 2. Thus, if the
minimum throughput that the system must achieve is Thmin, then P is obtained as

P = 2
⌈

log2 (Thmin/fclk)
⌉
. (33)

4.2 Fully Parallel FFT

Fully parallel FFT architectures correspond to the direct implementation of the
FFT flow graph, i.e., each multiplication/addition in the flow graph is implemented
by a separated multiplier/adder. Therefore, the number of hardware components
is of order O(N log N). Fully parallel FFT architectures offer the maximum
parallelization of the FFT algorithm. As a consequence, they provide the maximum
throughput and the minimum latency among FFT architectures.

The implementation of rotators as shift-and-add and the selection of the FFT
algorithm play an important role in the design of fully parallel FFTs. As each rotator
calculates a rotation by a single angle, it is beneficial to use simplified rotators.
Complementary to this, the selection of the FFT algorithms determines the number
of non-trivial rotations in the fully parallel FFT. Therefore, algorithms with a small
number of non-trivial rotations lead to more hardware-efficient implementations.

4.3 Iterative FFT Architectures

Iterative FFT architectures [15, 35, 46, 49, 55, 71, 72, 85, 93, 95] are also called
memory-based or in-place FFT architectures. We suggest to call them iterative, as
this is the term that reflects their nature better. Although the term memory-based is
widely used, we prefer to avoid it due to the facts that non-iterative FFTs may also
use memories, and iterative FFTs may use delays instead of memories.

Iterative FFT architectures generally consist of a memory or bank of data
memories. Data are read from memory, processed by butterflies and rotators, and
stored again in memory. This process repeats iteratively until all the stages of the
FFT algorithm are calculated. The advantage of iterative FFTs is the reduction in the
number of butterflies and rotators, as they are reused for different stages of the FFT.

A simple iterative FFT architecture is shown in Fig. 13. It consists of a memory
and a processing element (PE), which computes the butterfly and rotation. As seen in
Fig. 13, after every iteration data are stored in memory so it is necessary to compute
whole FFT before it receives new samples. Thus, the memory-based architecture
is unable to compute the FFT when data arrives continuously at the input. For a
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Fig. 13 Iterative
(memory-based) FFT
architecture

continuous flow, the iterative FFT requires additional memory to store the incoming
data while the FFT is being calculated. If the processing time is longer than the time
between FFTs, a larger processing element is also needed in order to handle the
data flow.

Considering that the processing element is a radix-r butterfly and a set of rotators,
the number of iterations of an iterative FFT architecture is calculated as

It = log2 N

log2 r
= n

log2 r
, (34)

and the number of clock cycles to process each iteration is N/r , which leads to a
total processing time of

Tproc = N log2 N

r log2 r
. (35)

The loading time depends on the FFT size and on the number of input samples that
are loaded in parallel to the memory bank:

Tload = N

P
. (36)

When reading output data from the memories and writing the new input data are
done simultaneously, the latency of the iterative FFT in clock cycles is

Lat = Tload + Tproc = N

P
+ N log2 N

r log2 r
, (37)

and, as N samples are processed every Lat clock cycles, the throughput in samples
per clock cycle is

Th = N

Lat
= rP

r + P
log2 N

log2 r

. (38)

To increase the throughput and decrease the latency in iterative FFT architectures,
high-radix processing elements are used. For instance, radix-16 is used in [49].
However, this also increases the amount of hardware of the FFT. Therefore, there is
a trade-off between performance and hardware complexity.
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The highest degree of parallelization for iterative FFT architectures consists in
calculating simultaneously all the operations of the same stage of the FFT. This
is done by the so called column FFT [3, 90], which computes the FFT by means
of a column of processing elements composed of butterflies and rotators.. This
architecture allows fast computation of the FFT, but requires a large number of
hardware components, being the number of butterflies and rotators of order O(N).

Finally, the radix-r butterfly in the PE processes r samples in parallel. Thus, r

samples must be read from and written to memory each clock cycle. This requires
to divide the memory into r memory banks that are accessed simultaneously.
Furthermore, data must be written in memory in the same addresses that are read.
This demands a conflict-free access strategy. Such memory organization can be
studied from [15, 35, 46, 49, 55, 71, 72, 85, 93, 95].

4.4 Pipelined FFT Architectures

Pipelined FFT architectures [1, 13, 14, 17, 23, 25, 26, 29, 31, 32, 36, 45, 51, 58, 62,
64, 65, 67–69, 86, 94, 99, 107–109] consist of a set of n = logρ N stages connected
in series, where ρ is the base of the radix r = ρα . In a pipelined FFT, each stage of
the architecture computes one stage of the FFT algorithm. The main advantage of
pipelined architectures is that they process a continuous flow of data, with a good
trade-off between performance and resources.

There are three main types of pipelined FFT architectures: feedback (FB),
feedforward (FF) and serial commutator (SC). First, feedback architectures [13,
14, 17, 26, 45, 62, 64, 68, 69, 86, 94, 99, 107, 109] are characterized by their
feedback loops, i.e., some outputs of the butterflies are fed back to the memories at
the same stage. Feedback architectures are divided into single-path delay feedback
(SDF) [17, 26, 45, 86, 109], which process a continuous flow of one sample per clock
cycle, and multi-path delay feedback (MDF) [13, 14, 62, 64, 68, 69, 94, 99, 107],
which process several samples in parallel. Second, feedforward architectures [1,
9, 10, 17, 25, 29, 31, 36, 45, 51, 58, 70, 86, 108] do not have feedback loops and
each stage passes the processed data to the next stage. Single-delay commutator
(SDC) FFTs are used for serial data [9, 10, 17, 70] and, multi-path delay commutator
(MDC) FFTs [1, 25, 29, 31, 36, 45, 51, 58, 86, 108] are used to process several data
in parallel. Finally, SC FFT architectures [32] are characterized by the use of circuits
for bit-dimension permutation of serial data.

Pipelined FFT architectures can also be classified into serial pipelined and
parallel pipelined FFT architectures. Next sections use this classification, which
allows for comparing the hardware resources of FFTs with the same performance.
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Fig. 14 64-Point SDF FFT architecture

Table 2 Twiddle factors of a
64-point DIF FFT for
different radices

FFT stage

FFT algorithm 1 2 3 4 5

Radix-2 DIF W64 W32 W16 W8 W4

Radix-22 DIF W4 W64 W4 W16 W4

Radix-23 DIF W4 W8 W64 W4 W8

Radix-24 DIF W4 W64 W4 W16 W4

Fig. 15 Internal structure of
a SDF stage

4.4.1 Serial Pipelined FFT Architectures

Serial pipelined FFT architectures consists of SDF, SDC and SC FFT architectures.
These architectures are characterized by their relatively low number of components
(adders, rotators and memory) and a throughput of 1 sample per clock cycle, which
allows for high data rates of MSamples/s.

An example of SDF FFT architecture is shown in Fig. 14 for N = 64. It
consists of n = log2 N stages with radix-2 butterflies (R2), rotators and buffers.
This architecture can implement radix-2k FFT algorithms, including radix-2. The
difference among FFT algorithms is reflected in the rotations calculated at each
stage. Table 2 shows the twiddle factors for typical DIF algorithms. Note that W4
corresponds to trivial rotations, which leads to simple rotators. Thus, the complexity
of radices 22, 23 and 24 is smaller than that of radix-2.

The twiddle factors for DIT algorithms are the same as DIF ones, where the
twiddle factor at stage s in the DIT case corresponds to that one in stage n− s in the
DIF case.

The internal structure of a SDF stage is shown in Fig. 15. It consists of a buffer,
a radix-2 butterfly, two multiplexers, a rotator and eventually its rotation memory.

The buffer at stage s has length

Ls = 2n−s . (39)
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The reason is that Ls input data are loaded to the buffer, causing a delay of those
data. After Ls clock cycles, the output of the buffer is processed in the butterfly
together with the input data for Ls clock cycles. During these clock cycles, one
output of the butterfly is sent to the rotator and the other output of the butterfly is
fed back to the buffer. Later, the values that go through the buffer are sent to the
rotator, while a new sequence is loaded to the buffer. Therefore, the buffer is reused
for inputting and outputting data.

This data management can be related to the data flow of the FFT algorithm: If
we consider data arriving in series from top to bottom in the data flow of Fig. 2
then, at each stage, groups of Ls data must be delayed Ls clock cycles. This makes
them arrive to the input of the butterfly at the same time as the data that they have
to be operated with. For instance, if sample x[0] at stage s = 1 is delayed Ls =
2n−s = 24−1 = 8 clock cycles, then it may be input to the butterfly together with
x[8]. After the butterfly calculation, data are ordered in series again by delaying the
lowest output of the butterfly Ls clock cycles.

In terms of hardware components, the radix-2k SDF FFT requires one butterfly
per stage, which results in 2 log2 N complex adders, a total memory of N − 1,
which is the sum of all the buffer lengths, and a number of rotators that depends on
the algorithm itself.

Figure 16 shows a 64-point radix-4 SDF FFT architecture. In this case, the
number of stages is logρ N = log4 64 = 3. The data management is analogous
to the radix-2k SDF FFT: Data are delayed so that all 4 data into a butterfly arrive at
the same clock cycle.

At each stage, the radix-4 butterfly requires 8 complex adders, leading to a total of
8(log4 N) complex adders for the entire FFT. For the data, radix-4 uses 3 memories
of size 4n−s at stage s, which leads to a total FFT memory of N − 1.

The second type of serial FFT architectures is SDC [9, 10, 17, 70]. It is based on
separating the data stream in two parallel data streams with the real and imaginary
parts of the samples, respectively. An explanation of radix-2k SDC and SDF
architectures can be found in [17]. Generally, SDF FFTs are preferred to SDC ones,
due to the larger data memory in SDC FFT architectures.

Fig. 16 64-Point radix-4 SDF FFT architecture



Hardware Architectures for the Fast Fourier Transform 637

Fig. 17 16-Point radix-2 DIF SC FFT architecture

Fig. 18 Data management of the 16-point radix-2 DIF SC FFT

The third type of serial FFT architectures is SC [32]. Figure 17 shows a 16-point
DIF serial commutator FFT. It uses circuits for bit-dimension permutation of serial
data, which were described in Sect. 3.3.

The SC FFT is based on the idea of placing in consecutive clock cycles pairs of
data that must be processed in the butterflies. Figure 18 shows the data management
of the SC FFT in Fig. 17. The last column in Fig. 18 shows the frequencies k of
X[k]. The rest of the numbers represent the data index I according to the definition
in Fig. 2. The order of arrival to each FFT stage is from top to bottom. Therefore,
x[0] and x[8] are the first and second inputs to the first stage, respectively. Butterflies
operate on consecutive data. This allows for calculating the butterflies in two clock
cycles, which halves the hardware complexity with respect to SDF FFTs. Note that
the architecture in Fig. 17 uses half-butterflies (1/2 R2) instead of (R2). Rotators
are also calculated in two clock cycles and its hardware is halved. The shuffling
circuits in Fig. 17 delay three, one, and seven clock cycles, respectively. This can be
observed in Fig. 18, where data that are exchanged are separated these numbers of
clock cycles at the corresponding stages. Further details are shown in [32].
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Table 3 Comparison of pipelined serial FFT architectures

Area Performance

Pipelined Complex Complex Complex Latency Throughput

architecture rotators adders sample memory (cycles) (samples/cycle)

Radix-2
SDF [45]

2(log4 N − 1) 4(log4 N) N N 1

SDF
Radix-2 [109]

log4 N − 1 2(log4 N) 4N/3 4N/3 1

SDF
Radix-4 [19, 86]

log4 N − 1 8(log4 N) N N 1

SDF
Radix-22 [45]

log4 N − 1 4(log4 N) N N 1

SDF
Split-radix [110]

log4 N − 1 4(log4 N) N N 1

SDC
Radix-2 [9, 10]

2(log4 N − 1) 2(log4 N) 3N/2 3N/2 1

SDC
Radix-2 [70]

2(log4 N − 1) 2(log4 N) 3N/2 3N/2 1

SDC Radix-4 [4] log4 N − 1 3(log4 N) 2N N 1

SDC-SDF
Radix-2 [100]

log4 N − 1 2(log4 N) + 1 3N/2 3N/2 1

SC Radix-2 [32] log4 N − 1 2(log4 N) N N 1

Table 3 compares serial pipelined N -point FFT architectures. The table shows
the trade-off between area and performance. Area is measured in terms of the
number of complex rotators, adders and memory addresses, whereas performance
is represented by throughput and latency. The throughput is 1 sample per clock
cycle for all the architectures, which makes them comparable in terms of hardware
resources.

As can be observed in the table, the order of magnitude of all parameters is the
same for all architectures. The number of rotators and adders has order O(log N)

and the memory has order O(N). For large FFTs, the data memory takes up most of
the area of the circuit, so it is preferable to use an architecture with a small memory.
For small N , most of the FFT area is due to rotators, whose area is always larger
than the area of the adders.

4.4.2 Parallel Pipelined FFT Architectures

This section discusses parallel FFT architectures, i.e., MDF and MDC. These
architectures are characterized by their high throughputs. They can process P

parallel samples in continuous flow and achieve a throughput of Th = P · fclk,
reaching rates of GSamples/s.

MDF FFT architectures [13, 14, 62, 64, 68, 69, 94, 99, 102, 107] consists of
multiple SDF paths in parallel. Thus, they work in a similar way as SDF FFT
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Fig. 19 16-Point 2-parallel radix-2 DIF MDC FFT architecture

Fig. 20 16-Point 4-parallel radix-22 MDC FFT

architectures. The only difference is that the parallel SDF paths are interconnected
either at some intermediate stages [102] or in the last stages.

MDC FFT architectures [1, 25, 29, 31, 36, 45, 51, 58, 86, 108] forward data to
the next stage instead of feeding it back to the buffer of the same stage. Figure 19
shows a 16-point 2-parallel radix-2 DIF MDC FFT architecture. It consists of radix-
2 butterflies, rotators and shuffling circuits for serial-parallel permutations. This
architecture processes 2 samples per clock cycle in a continuous flow.

Higher throughput is achieved by increasing the parallelization. Figure 20 shows
a 16-point 4-parallel radix-22 feedforward architecture. This architecture processes
4 samples per clock cycle in a continuous flow.

Table 4 compares parallel pipelined FFT hardware architectures. The architec-
tures are classified into 4-parallel and 8-parallel ones. The table includes the number
of adders and rotators. W16 and W8 rotators are separated from general rotators due
to its lower complexity. The number of complex adders is related to the architecture
type: MDC FFTs have 100% utilization of butterflies and usually require less adders
than MDF FFTs. The amount and complexity of the rotators depend on the radix
and on the FFT size. Radices-24 and 23 are usually the best options. They achieve
the least number of general rotators with some overhead of W16 and W8 rotators.
New approaches focus on reducing the amount rotators in parallel pipelined FFT
architectures even further [31]. Finally, for most parallel pipelined FFT architectures
the total data memory size is N − P .
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Table 4 Comparison of parallel pipelined FFT architectures

Area

Pipelined Complex Rotators
architecture adders General W16 W8

4-Parallel architectures

R2
MDC, [36]

4(log2 N) + 4 2(log2 N) − 4 0 0

R4
MDC, [86]

4(log2 N) 3�(log2 N)/2	 − 3 0 0

R4
MDC, [108]

4(log2 N) 3�(log2 N)/2	 − 3 0 0

R22

MDC, [29]
4(log2 N) 3�(log2 N)/2	 − 3 0 0

R23

MDC, [29]
4(log2 N) 4�(log2 N)/3	 − 4 0 2�(log2 N)/3�

R24

MDF, [99]
4(log2 N) 4�((log2 N) − 2)/4	 − 1 4�((log2 N) − 2)/4� (2)a

R24

MDF, [68]
8(log2 N) 4�(log2 N)/4	 − 4 4�(log2 N)/4� (1)b

R24

MDF, [14]
8(log2 N) 4�(log2 N)/4	 − 4 4�(log2 N)/4� (1)b

R24

MDC, [29]
4(log2 N) 4�(log2 N)/4	 − 4 3�(log2 N)/4� (2)b

8-Parallel architectures

R2
MDC, [56]

8(log2 N) 4(log2 N) − 8 0 0

R2
MDF, [102]

16(log2 N) 4(log2 N) − 8 0 0

R22

MDC, [29]
8(log2 N) 6�(log2 N)/2	 − 6 0 0

R8
MDC, [86]

8(log2 N) 7�(log2 N)/3	 − 7 0 2�(log2 N)/3�

R23

MDC, [29]
8(log2 N) 7�(log2 N)/3	 − 7 0 2�(log2 N)/3�

R24

MDF, [99]
8(log2 N) 8�((log2 N) − 3)/4	 − 1 8�((log2 N) − 3)/4� 2+(4)c

R24

MDF, [94]
16(log2 N) 8�(log2 N)/4	 − 8 8�(log2 N)/4� (2)b

R24

MDC, [29]
8(log2 N) 8�(log2 N)/4	 − 8 6�(log2 N)/4� (2)b

a Additional W8 rotators required only when mod((log2 N) − 2, 4) = 3
b Additional W8 rotators required only when mod((log2 N), 4) = 3
c Additional W8 rotators required only when mod((log2 N) − 3, 4) = 3
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5 Bit Reversal for FFT Architectures

The outputs of FFT hardware architectures are generally provided in bit-reversed
order. The bit reversal algorithm [37] is used to sort them out.

5.1 The Bit Reversal Algorithm

The bit reversal of N = 2n indexed data is an algorithm that reorders the data
according to a reversing of the bits of the index [37]. This means that any sample
with index I ≡ bn−1 . . . b1b0 moves to the place BR(I ) ≡ b0b1 . . . bn−1. Note
that the bit reversal is an inversion operation, i.e., BR(x) = BR−1(x). Therefore,
if data are in natural order, the bit reversal algorithm obtains them in bit-reversed
order and vice versa. For instance, the bit reversal of (0, 1, 2, 3, 4, 5, 6, 7) is
(0, 4, 2, 6, 1, 5, 3, 7) and the bit reversal of the latter set is the former.

5.2 Bit Reversal for Serial Data

For a hardware circuit that receives a series of N data in bit-reversed order, the bit
reversal of the data is calculated by the permutation:

σ(un−1 . . . u1u0) = u0u1 . . . un−1. (40)

A first option to calculate the bit reversal of a series of data is to use a double
buffering strategy [9, 59]. This consists of 2 memories of size N where even and odd
FFT output sequences are written alternatively in the memories. The bit reversal
can also be calculated using a single memory of size N . This is achieved by
generating the memory address in natural and bit-reversed order, alternatively for
even an odd sequences [7]. For SDC FFT architectures, the output reordering can be
calculated by using two memories of N/2 addresses [9, 70]. Alternatively, the output
reordering circuit can be integrated with the last stage of the FFT architecture [9, 10].

The optimum solution in terms of memory/delays for the bit reversal of serial
data [28] consists of using a series of j = �n/2� − 1 circuits for serial-serial bit-
dimension permutations. Each of them carries out a permutation of the bits xj and
xn−1−j , which requires a buffer of length

L = 2n−1−i − 2i . (41)

By adding the buffer lengths, the total number of delays for even n is

(N − 1)2, (42)
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and for odd n it is

(√
2N − 1

)(√N

2
− 1

)
. (43)

5.3 Bit Reversal for Parallel Data

For parallel data, the bit reversal permutation is the same as for serial data, with the
difference that the p less significant bits are parallel dimensions. As for serial data,
some solutions are based on using memories [50, 108] and other ones are based on
using buffers [12].

The optimum solution in terms of memory/delays for the bit reversal of parallel
data [12] uses circuits for serial-serial permutations and parallel-parallel permuta-
tion. As in the bit reversal of serial data, these circuits are used to interchange bits xj

and xn−1−j for j = �n/2� − 1. Assuming that p < n/2, a serial-serial permutation
is carried out when 0 ≤ j < p and a serial-parallel one when p ≤ j ≤ �n/2� − 1.
As a result, the total numbers of delays for even n is

D(σ) = N − 2
√

N + P, (44)

and for odd n it is

D(σ) = N − √
2N −

√
N

2
+ P. (45)

6 Conclusions

More than 50 years after the first FFT algorithms were proposed, the design of
FFT hardware architectures is still an active research field that involves multiple
research topics. They include the study and selection of FFT algorithms, the design
of rotators in hardware, the design of new FFT architectures and the data shuffling,
including the bit reversal algorithm. Nowadays, new FFT algorithms as well as
new representations for these algorithms are explored. The most common FFT
algorithms are radix-2k , and there is an increasing interest in non-power-of-two
FFTs. The area in FFT architectures is reduced by implementing rotators as shift-
and-add operations. Most approaches are based on simplifying a complex multiplier
or on the CORDIC algorithm. New FFT hardware architectures that achieve fully
utilization of butterflies and reduction of the number of rotators and their complexity
have been proposed during the last years. Likewise, the optimum circuits for bit
reversal have been proposed recently, and the research on shuffling circuits for the
FFT is still an open research field.
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