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Abstract Field Programmable Gate Array (FPGA) have plentiful computational,
communication and member bandwidth resources which may be combined into
high-performance, low-cost accelerators for computationally demanding operations.
However, deriving efficient accelerators currently requires manual register trans-
fer level design—a highly time-consuming and unproductive process. Software-
programmable processors are a promising way to alleviate this design burden but
are unable to support performance and cost comparable to hand-crafted custom
circuits. A novel type of processor is described which overcomes this shortcoming
for streaming operations. It employs a fine-grained processor with very high
levels of customisability and advanced program control and memory addressing
capabilities in very large-scale custom multicore networks to enable accelerators
whose performance and cost match those of hand-crafted custom circuits and well
beyond comparable soft processors.

1 Introduction

Field Programmable Gate Array (FPGA) technologies have long been recognised
for their ability to enable very high-performance realisations of computationally
demanding, highly parallel operations beyond the capability of other embedded
processing technologies. Recent generations of FPGA have seen a rapid increase
in this computational capacity and the emergence of System-on-Chip SoC-FPGA,
incorporating heterogeneous multicore processors alongside FPGA programmable
fabric. A key motivation for these hybrid architectures is the ability of FPGA to host
performance-critical operations, offloaded from processors, as application-specific
accelerators with any combination of high-performance, low cost or high energy
efficiency.
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The resources available with which accelerators may be built are enormous: the
designer has, every second, access to trillions of multiply accumulate operations via
on-chip DSP units [3, 30] and memory locations in Block RAM (BRAM) [3, 31],
alongside the computationally powerful and highly flexible Look-Up Table (LUT)
FPGA programmable logic [17]. For instance, the Virtexő-7 family of Xilinx FPGAs
offers up to 7 × 1012 multiply-accumulate (MAC) operations per second and 40 ×
1012 bits/s memory access rates.

To combine these resources into accelerators of highest performance or lowest
cost, though, requires manual design of custom circuit architectures at Register
Transfer Level (RTL) in a hardware design language. This is a low level of design
abstraction which imposes a heavy design burden, significantly more complicated
than describing behaviour in a software programming language. Hence, for many
years designers have sought a way to realise accelerators more rapidly without
suffering critical performance or cost bottlenecks. Software-programmable ‘soft’
processors are one way to do so, but at present adopting such an approach demands
substantial compromise on performance and cost. Soft processors allow their
architecture to be tuned before synthesis to improve the performance and cost of
the final result. Soft general-purpose processors such as MicroBlaze [32] and Nios-
II [2] are performance-limited and a series of approaches attempt to resolve this
issue. One approach uses soft vector coprocessors [9, 24, 33, 34] employing either
assembly-level [34] or mixed C-macro and inline assembly programming. These
enable performance increases by orders of magnitude beyond Nios-II and MIPS
[34], but performance and cost still lag custom circuits. An alternative approach is to
redesign the architecture of the central processor architecture for performance/cost
benefit, and approach adopted in the iDEA [8] processor. Multicore architectures
incorporating up to 16 [12, 22, 25] or even 100 processors in [12] have also been
proposed.

However, the cost of enabling software programmability in all of these
approaches is a reduction in performance or efficiency in the resulting accelerators,
relative to custom circuit solutions. The result is that the performance of these
architectures is only marginally beyond that of software-programmable devices and
there is no evidence these are competitive with custom circuits. It appears that if
FPGA soft processors are to be a viable alternative to custom accelerators then
performance and cost must improve radically.

2 The FPGA-Based Processing Element (FPE)

A unique, lean soft processor—the FPGA Processing Element (FPE)—is proposed
to resolve this deficiency. The architecture of the FPE is shown in Fig. 1. It contains
only the minimum set of resources required for programmability: the instructions
pointed to by the Program Counter (PC) are loaded from Program Memory (PM)
and decoded by the Instruction Decoder (ID). Data operands are read either from
Register File (RF), or in the case of immediate data Immediate Memory (IMM) and
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Fig. 1 The FPGA processing element

Table 1 FPE parameters and instructions

(a) FPE configuration parameters

Parameter Meaning Values

DataWidth Data wordsize 16/32 bits

DataType Type of data Real/complex

ALUWidth No. DSP48e slices 1–4

PMDepth PM Capacity Unlimited

PMWidth PM Wordsize Unlimited

DMDepth DM/RF Capacity Unlimited

RFDepth No. RF locations Unlimited

TxCOMM No. Tx ports ≤1024

RxCOMM No. Rx ports ≤1024

IMMDepth IMM Capacity Unlimited

(b) FPE instruction set

Instruction Function

LOOP Loop

BEQ/BGT/BLT Branching

GET/PUT FIFO get/put

NOP No operation

MUL/ADD/SUB Multiply/add/subtract

MULADD(FWD) Multiply-add

MULSUB(FWD) Multiply-subtract

COPROC Coprocessor access

LD/ST Load/store

LDIMM/STIMM IMM load/store

processed by the ALU (implemented using a Xilinx DSP48e). In addition, a Data
Memory (DM) is used for bulk data storage and a Communication Adapter (COMM)
performs on/off-FPE communications.

The FPE is soft and hence configurable to allow its architecture to be customised
pre-synthesis in terms of the aspects listed in Table 1(a). Beyond these, custom
coprocessors can also be integrated alongside the ALU to accelerate specific custom
instructions. Of course, the FPE is also programmable, with an instruction set
described in Table 1(b).

When implemented on Xilinx Virtex 5 VLX110T FPGA, a 16 bit Real FPE costs
90 LUTs, 1 DSP48e and enables 483 × 106 multiply-add operations per second.
This represents around 18% of the resource of a conventional MicroBlaze processor,
whilst increasing performance by a factor 2.8.

The FPE’s low cost allows it to be combined in very large numbers on a
single FPGA, to realise operations via multicore architectures, with communication
between FPEs via point-to-point queues. Hence the FPE may be viewed as a
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fundamental building block for realising computationally demanding operations
on FPGA.

To do so efficiently, the FPE should be able to exploit all the different types
of parallelism in a program or application. Task parallelism is exploited in the
multicore architectures proposed, but using these to realise data parallel operation
is less than efficient, due to the duplication of control logic and data and memory
resources. In this case each FPE will contain the same instructions in their PM,
access RF in the same orders and execute the same programs. There is considerable
overhead incurred when control resource is duplicated for each FPE. To avoid
this occurring, the FPE is further extended into a configurable SIMD processor
component, as illustrated in Fig. 2.

The width of the SIMD is configurable via a new parameter, SIMDways, which
dictates the number of datapath lanes. All of the FPE instructions (except BEQ,
BGT and BLT) can be used as SIMD instructions.

3 Case Study: Sphere Decoding for MIMO Communications

To illustrate the use of FPE-based multicores for FPGA accelerators, a case study—
Sphere Decoding (SD) for Multiple-Input, Multiple-Output (MIMO) communica-
tions systems—is used. MIMO systems employ multiple transmit and multiple
receive channels [26] to enable data rates of unprecedented capacity, prompting
their adoption in standards such as 802.11n [14]. An M-element array of transmit
antennas emit a vector s ∈ CM of QAM-modulated symbols. The vector of symbols
y ∈ CN received at an N-element array of antennas is related to s by:

y = Hs + v, (1)

where H ∈ CN×M represents the MIMO channel, used typically as a parallel set of
flat-fading subchannels via Orthogonal Frequency Division Multiplexing (OFDM)
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Fig. 3 FSD algorithm components. (a) FSD Tree Structure. (b) General Form of H†

(108 in the case of 802.11n) and v ∈ CN additive noise. Sphere Decoding (SD)
is used to derive an estimate ŝ of s. It offers near that of the ideal ML detector,
with significantly reduced complexity [20, 23]. The Fixed-Complexity SD (FSD)
has a particularly low complexity, two-stage deterministic process which makes it
ideal for efficient realisation via an FPGA accelerator [5]. FSD realises a two-stage
detection process illustrated in Fig. 3a.

Algorithm 1 SQRD for FSD

input : H, M

output: Q, R, order

1 Phase 1: Initialization
2 Q = H, R = 0M,

3 order = [1, · · · ,M],

nf s =
⌈√

M − 1
⌉

4 for i ← 1 to M do
5 normi = ∥∥qi

∥∥2

6 end

7 Phase 2: SQRD ordering
8 for i ← 1 to M do
9 k = min (nf s + 1,M − i + 1)

10 ki = k

arg min
j=i,··· ,M

normj

11 Exchange columns i and ki in R, order, norm and Q
12 ri,i = √

normi
13 qi = qi/ri,i

14 for l ← i + 1 to M do
15 ri,l = qH

i · ql
16 ql = ql − ri,l · qi

17 norml = norml − r2
i,l

18 end
19 end
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Pre-Processing (PP) orders the symbols of y according to the perceived dis-
tortion experienced by each. This is achieved by reordering the columns of H to
give H† (the general form of which is illustrated in Fig. 3b). Practically, this is
achieved via an iterative Sorted QR Decomposition (SQRD) algorithm, described in
Algorithm 1 [11].

SQRD-based PP ordering for FSD transforms the input channel matrix H to the
product of a unitary matrix Q and an upper-triangular R via QR decomposition,
whilst deriving order, the order of detection of the received symbols during MCS. It
operates in two phases, as described in Algorithm 1. In Phase 1 Q, R, order, norm
and nf s are initialized as shown in lines 2–5 of Algorithm 1, where qi is the ith
column of Q. Phase 2 comprises M iterations, in each of which the kth lowest entry
in norm is identified (lines 9 and 10) before the corresponding column of R and
elements in order and norm are permuted with the ith (line 11) and orthogonalized
(line 12–18). The resulting Q, R, and order are used for Metric Calculation and
Sorting (MCS) as defined in (3) and (4).

Metric Calculation and Sorting uses an M-level decode tree to perform a
Euclidean distance based statistical estimation of s. Groups of M symbols undergo
detection via a tree-search structure illustrated in Fig. 3a.

The number of nodes at each tree level is given by nS = (n1, n2, . . . , nM)T . The
first nfs levels process the symbols from the worst distorted paths by Full Search
(FS) enumeration of all elements of the search space. This results in P child nodes
at level i+1 per node at level i, where P is the number of QAM constellation points.
For full diversity, nfs is given by

nf s = �√M − 1�. (2)

The remaining nss (nss = M − nf s) levels undergo Single Search (SS) where
only a single candidate detected symbol is maintained between layers. At each MCS
tree level, (3) and (4) are performed.

s̃i = ŝZF,i −
Mt∑

j=i+1

rij

rii

(
ŝZF,j − ŝj

)
(3)

di =
Mt∑
j=i

r2
ij

∥∥ŝZF,j − ŝj
∥∥2

,Di = di + Di+1 (4)

In (3) and (4), rij refers to an entry in R, derived by QR decomposition of H
during PP, ŝZF is the center of the FSD sphere and s̃j is the j th detected data, which
is sliced to ŝj in subsequent iterations of the detection process [13]. Since Di+1
can be considered as the Accumulated Partial Euclidean Distance (APED) at level
j = i + 1 of the MCS tree and di as the PED in level i, the APED can be obtained
by recursively applying (4) from level i = M to i = 1. The resulting candidate
symbols are sorted based on their Euclidean distance measurements, and the final
result produced post-sorting.
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This behaviour is duplicated across all OFDM subcarriers, of which there are
108 in 4×4 16-QAM 802.11n MIMO. For real-time processing this behaviour is
repeated independently for all 108 subcarriers and must occur within 4µs and at
a rate of 480 Mbps for real-time performance. These are challenging requirements
which has seen detection using custom circuit accelerators become a well-studied
real-time implementation problem [4, 7, 15, 16, 21, 27]. It is notable that none of
these uses software-programmable accelerator components. This section considers
the use of the FPE to realise such a solution.

4 FPE-Based Pre-processing Using SQRD

The SQRD preprocessing technique is low-complexity relative to other, ideal
preprocessing approaches. It is also numerically stable and lends itself well to fixed-
point implementation, hence making it suitable for realisation on FPGA, as a result
of its reliance on QRD. However, there are two major issues that must be resolved to
enable FPE-based SQRD PP for 4×4 802.11n. It computational complexity remains
high as outlined in Table 2; given the capabilities of a single FPE, it appears that a
large-scale multi-FPE architecture is required to enable SQRD for 4 × 4 802.11n.
Its reliance on square root and division operations also present a challenge, since
these operations are not native to the DSP48e components used as the datapaths for
the FPE and will have low performance when realised thereon [19].

To avoid this performance bottleneck, datapath coprocessors are considered to
enable real-time division and square-root operations.

4.1 FPE Coprocessors for Arithmetic Acceleration

Non-restoring 16-bit division [19] requires 312 cycles when implemented using
only the DSP48e in an 16R FPE. This equates to approximately 1.2 × 106 div/s
(divisions per second). Hence, around 100 FPEs would be required to realise the
120 ×106 divisions required per second (MDiv/s) for 4×4 SQRD for 802.11n. The
high resource cost this would entail can be alleviated by adding radix-2 or radix-
4 non-restoring division coprocessors [19] alongside the DSP48e in the FPE ALU
(Fig. 4).

The performance, cost and efficiency (in terms of throughput per LUT, or
TP/LUT) of the programmed FPE when division is realised using a programmed
approach and the DSP48e only, (FPE-P) and when radix-2 or radix-4 coprocessors

Table 2 4 × 4 SQRD
operational complexity

Operation +/− × ÷ √
op/second (×109) 3.24 12.72 0.12 0.12



480 J. McAllister

Fig. 4 FPE division
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Table 3 SQRD division
implementations

Resource Throughput

Solution FPEs DSP48es LUTs (MDiv/s)

FPE-P 100 100 13,600 120

FPE-R2 5 5 900 120

FPE-R4 4 4 944 144

are added alongside the DSP48e (FPE-R2, FPE-R4 respectively) on Virtex 5
FPGA is described in Table 3. The FPE-R2 and FPE-R4 solutions both increase
throughput, by factors of 8.9 and 13.3 respectively and hence increase hardware
efficiency by respective factors of 9.4 and 10.7 as compared to FPE-P. Since 4 × 4
802.11n MIMO requires 120 MDiv/s for SQRD-based preprocessing, the implied
cost and performance metrics of each option are summarised in Table 3. According
to these estimates, FPE-R2 represents the lowest cost real-time solution, enabling a
93.4% reduction in resource cost relative to FPE-P. This approach is adopted in the
FPE-based SQRD implementation.

To realise the 120 × 106 square root operations required per second (MSQRT/s),
performance and cost estimates for software-based execution on the FPE using the
pencil-and-paper method [19] (FPE-P), or by adding a CORDIC coprocessor [28]
(FPE-C) are compared in Table 4(a). The coprocessor-based FPE-C solution at
once increases throughput and efficiency by factors of 23 and 10 respectively as
compared to FPE-P, implying the resources required to realise real-time square-
root for SQRD-based detection of 4 × 4 802.11n MIMO can be estimated as in
Table 4(b). As this shows, FPE-C enables real-time performance using only 11% of
the resource required by FPE-P, and is adopted for realising FPE-based square root
operations.
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Table 4 FPE square root options

(a) 16-Bit PSQRT, CSQRT (b) 802.11n SQRD

FPE-P FPE-C FPE-P FPE-C

PM/RF locations 29/14 8/1 FPEs 63 3

LUTs 142 330 LUTs 8946 990

DSP48es 1 0 DSP48es 63 3

Clock (MHz) 367.7 350 T (MSQRT/s) 121.6 130.8

Latency (cycles) 191 8

T (MSQRT/s) 1.93 43.6

T/LUT (×10−3) 13.6 132.1

4.2 SQRD Using FPGA

Integrating these components into a coherent processing architecture to perform
SQRD, and replicating that behaviour to provide PP for the 108 subcarriers of
802.11n MIMO is a large scale accelerator design challenge. Figure 5 describes the
SQRD algorithm as a, iterative four-task (T1, T2.1–T2.3) process. The first task, T1,
conducts channel norm ordering, and computes the diagonal elements of R (lines
11–13 in Algorithm 1). This is followed by T2.1–T2.3, which are independent and
permute and update Q, R and norm respectively (lines 14–18 in Algorithm 1).

This process is realised using a 4-FPE Multiple Instruction, Multiple Data
(MIMD) architecture, shown in Fig. 6, is used. All FPEs employ 16-bit datapaths
and are otherwise configured as described in Table 5(a). FPE1–FPE3 permute Q, R
and norm and iteratively update (T2.1–T2.3 in Fig. 5). FPE4 calculates the diagonal
elements of R (T1). The SQRD process executes in three phases. Initially, H and
the calculation of norm are distributed amongst the FPEs, with the separate parts
of norm gathered by FPE4 to undergo ordering, division and square root. The
results are distributed to the outer FPEs for permutation and update of Q, R and
norm. Inter-FPE communication occurs via point-to-point FIFO links, chosen due
to their relatively low cost on FPGA and implicit ability to synchronize the multi-
FPE architecture in a data-driven manner whilst avoiding data access conflicts.

The performance and cost of the 4-FPE grouping is given in Table 5(b).
According to these metrics, the throughput of each 4-FPE group is sufficient to
support SQRD-based PP of 3 802.11n subcarriers. To process all 108 subcarriers, the
architecture is replicated 36 times, as shown in Fig. 6. The mapping of subcarriers
to groups is as described in Fig. 6.

On Xilinx Virtex 5 VSX240T FPGA, the cost and performance of this architec-
ture is described in Table 5(b). As this describes, 32.5 MSQRD/s are achieved, in
excess of the 30 MSQRD/s required for 4 × 4 802.11n MIMO.
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Fig. 5 4 × 4 SQRD

5 FSD Tree-Search for 802.11n

Computing MCS for FSD in 4 × 4 16 QAM 802.11n is even more computation-
ally demanding than SQRD-based preprocessing. The operational complexity is
described in Table 6(a). When a single 4 × 4 16-QAM FSD MCS is implemented
on a 16R FPE, the performance and cost are as reported as 16R-MCS in Table 6(b).

To scale this performance to support all 108 subcarriers for 4 × 4 16-QAM
802.11n MIMO, a large-scale architecture is required. Two important observations
of the application’s behaviour help guide the choice of multiprocessing architecture:

1. THE FSD MCS tree exhibits strong SIMD-like behaviour, where each branch
(Fig. 3a), performs an identical sequence of operations on data-parallel samples.

2. The number of FPEs required to implement MCS for all 108 OFDM subcarriers
on a single, very wide SIMD processor implies limitations on the achievable
clock rate as a result of high signal fan-outs to broadcast instructions from a
central PM to a very large number of ALUs, restricting performance [10]. Hence,
a collection of smaller SIMDs is used.

As described in Table 6(b), the cost of 16R-MCS as compared to the basic 16-bit
FPE described in Sect. 2 (from 90 LUTs to 2530 approximately) is significantly
higher. This large increase is due to the large PM required to house the 4591
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Table 5 4-FPE-based SQRD

(a) FPE configuration (b) FPE-SQRD metrics

Parameter Value 4-FPE1 FPE-SQRD

PMDepth 350 LUTs 2109 70,560

RFDepth 32 DSP48es 4 144

IMMDepth 32 Clock (MHz) 315 265

DMDepth 64 T (MSQRD/s) 1.07 32.5

TxComm 32 Latency (µS) 0.9 1.1

RxComm 32

instructions. A significant factor in this large number of instructions are the
comparison operations required for slicing (Eq. (3)) and sorting the PED metrics,
which require branch instructions, which have associated NOP operations due to
the deep FPE pipeline and the lack of forwarding logic [10]. These represent wasted
cycles and dramatically increase cost and reduce throughput—branch and NOP
instructions represent 50.7% of the total number of instructions. Optimising the FPE
to reduce the impact of these branch instructions could have a significant impact on
the MCS cost/performance.
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Table 6 802.11n MCS complexity

(a) Operational complexity (b) MCS implementation options

Operation op/s (×109) 16R-MCS 16R

+/− 32.37 LUTs 2520 805

× 19.20 DSP48es 1 0

Clock (MHz) 367.7 350

L (Cycles) 3281 1420

T (MOP/s) 1.9 4.5

a b

Switch

C1
C2
C3
C4

>

min

+ >0
-

Fig. 7 (a) Switch coprocessor (b) Min coprocessor

5.1 FPE Coprocessors for Data Dependent Operations

Employing ALU coprocessors can significantly reduce these penalties. A switch
coprocessor compares the input to each of four constants, determined pre-synthesis
(a logical depiction of behaviour is shown in Fig. 7a), selecting the closest. This
increases the efficiency of slicing by comparing an input operand to one of a
number of pre-defined values. Similarly, a MIN coprocessor (Fig. 7b) can be used
to accelerate sorting.

Each of these coprocessors occupy around 20 LUTs, but their ability to eliminate
wasted instructions can significantly reduce the PM size. This can enable significant
reductions in overall cost and increases in performance as described in column 3
of Table 6(b). Including these components results in a 68% reduction in resource
cost and a factor 2.3 increase in throughput. The resulting component is capable of
realising FSD MCS for a single 802.11n subcarrier in real-time, providing a good
foundation unit for implementing MCS for all 108 subcarriers.
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Fig. 8 802.11n OFDM MCS-SIMD mapping

5.2 SIMD Implementation of 802.11n FSD MCS

To scale the FPE to realise all 108 subcarriers, a range of architectures may be used.
The data-parallel operation of the subcarriers suggests that a very wide single SIMD
could be used, providing the most efficient realisation from the perspective of PM
and control logic cost. However, as the width of an FPE SIMD unit increases beyond
16 lanes, the instruction broadcast from the single central PM limits the speedup
which may be obtained by constraining the clock frequency. Hence, 16-way SIMDs
are employed and FSD MCS for all 108 802.11n subcarriers is implemented on a
dual-layer network of such processors, as illustrated in Fig. 8.

Level 1 consists of eight SIMDs. The 802.11n subcarriers are clustered into eight
groups {Gi = {j : (j − 1) mod 8 = i}108

j=1}7
i=0, where j is the set of subcarriers

processed by FPE i. The 16 branches of the MCS tree for each subcarrier are
processed in parallel across the 16 ways of the Level 1 SIMD onto which they
have been mapped. Sorting for the subcarriers implemented in each Level 1 SIMD
is performed by adjacent pairs of ways in the Level 2 SIMD—hence given the 8
Level 1 SIMDs, the Level 2 SIMD is composed of 16 ways.

Each FPE is configured to exploit 16-bit real-valued arithmetic [6]. All proces-
sors exploit PMDepth = 128, RFDepth = 32 and DMDepth = 0, and communi-
cation between the two levels exploit 8-element FIFO queues. The Level 1 SIMDs
incorporate SWITCH coprocessors to accelerate the slicing operation, whilst the
Level 2 SIMDs support the MIN ALU extension to accelerate the sort operation.

The program flow for each Level 1 SIMD is as illustrated in Fig. 9a. Each FPE
performs a single branch of the MCS tree, with the empty parts of the program
flow—representing NOP instructions—used to properly synchronise movement of
data into and out of memory.
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a b

Fig. 9 FPE branch interleaving. (a) Original FSD threads. (b) Interleaved threads

Table 7 4 × 4 16-QAM FSD
using FPE

FPE-MCS FPE-FSD

LUT 16,601 96,115

DSP48e 144 408

Clock (MHz) 296 189

T (Mbps) 502.5 483

L (µS) 0.9 2.3

The NOP cycles represent 29% of the total instruction count but since they
represent ALU idle cycles they should preferably be eliminated. To do so, NOP
cycles in one branch can be occupied by the useful, independent instructions from
another, i.e. the branches may be interleaved as illustrated in Fig. 9.This interleaving
occupies wasted NOP cycles, to the extent that when two branches are interleaved
the proportion of wasted cycles is reduced to 4%.

On Xilinx Virtex 5 VSX240T FPGA, this multi-SIMD architecture enables FSD-
MCS for 802.11n as reported Table 7. As this shows, it comfortably exceeds the
real-time performance criteria of 802.11n.

Together with the results of the SQRD preprocessing accelerator, these MCS
metrics show that the FPE can support accelerators for applications with demanding
real-time requirements. By using massively parallel networks of simple processors
(>140 in this case), FPGA can support real-time behaviour and can enable solutions
with resource cost comparable to custom circuits. When the PP and MCS are com-
bined to create a full FSD detector (FPE-FSD in Table 7) the resulting architecture
is the only software-defined FPGA structure to enable real-time performance for
4 × 4 16 QAM 802.11n.
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6 Stream Processing for FPGA Accelerators

The FPE is a load-store structure, supporting only register-register and immediate
instructions. All non-constant operands and results access the ALU via Register File
(RF). Consider the effect of this approach for a 256-point FFT (FFT256) realised
using two FPE configurations: an 8-way FPE SIMD (FPE8) or a MIMD multi-
FPE composed of 8 SISD FPEs (8-FPE). The FFT mappings and itemized ALU,
communication (IPC), memory (MEM) and NOP instructions for each are shown in
Fig. 10.

Figure 10 shows that the efficiency of each of these programs is low—only
52.5% and 31.8% of the respective cycles in 8-FPE1 and FPE8 are used for ALU
instructions. The resulting effect on accelerator performance and cost is clear
from Table 8, which compares 8-FPE1 with the Xilinx Core Generator FFT [29]
component. The FPE is not competitive with the custom circuit Xilinx FFT, which
exhibits twice the performance at a fraction of the LUT cost.

These results follow from the restriction to register-register instructions. Each
FFT256 stage consume 512 complex words. Since RF is the most resource-costly
element of the FPE, buffering this volume of data requires BRAM Data Memory
(DM); in order for these operands to be processed and results stored, a large
number of loads (stores) are required between BRAM and RF, increasing PM
cost. Given the simplicity of the FFT butterfly operation, the overhead imposed
by these is significant. This is combined with the effect of the FPE’s require-
ment to be standalone: since it must handle its own communication, further
cycles are consumed transferring incoming and outgoing data between DM and
COMM, reducing program efficiency still further. Finally, each of these transfers
induces a latency between source and destination—as Fig. 11 illustrates, each FPE

a b

ALU
52.5%

19.2%
MEM

17.5%
NOP

Total
2962

10.8%
COMM

ALU
31.8%

MEM
13.9%

NOP
35.4%

Total
5146

COMM
19.9%

Fig. 10 FFT256: FPE-based 256 Point FFT. (a) 8-FPE1. (b) FPE8

Table 8 256-Point FFT
performance/cost comparison

Cost T T/LUT

LUTs DSP48e (MSamples/s) (×103)

8-FPE1 2296 8 30.5 13.3

Xilinx 621 6 61.9 99.7
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Fig. 11 Load-store paths in the FPE

DM-RF (black) and COMM-RF (red) transfer takes eight cycles, imposing the
need for NOPs.

These factors combine to severely limit the efficiency of the FPE for applications
such as FFT. Mitigating the effect of these overheads requires two features:

• Direct instruction access to any combination of RF, DM and COMM for either
instruction source or destination.

• In cases where local buffering is not required, data streaming through the PE
should be enabled, reducing load/store and communication cycle overhead.

6.1 Streaming Processing Elements

To support these features, a streaming FPE (sFPE) is proposed. The sFPE is still
standalone, software-programmable and lean, but supports a processing approach—
streaming—which diverges from the load-store FPE approach. Streaming means
that focus is placed on ensuring that data can stream into and out of operation
sources and destinations and through the ALU without the need for load and store
cycles. This streaming takes two forms:

• Internal: between RF, DM, COMM and IMM without load-store cycles.
• External: from input FIFOs to output FIFOs via only ALU.

The architecture of a SISD sFPE1 is illustrated in Fig. 12. There are three main
architectural features of note.

• An entire pipeline stage is dedicated to instruction decode (ID)
• A FlexData data manager has been added which allows zero-latency access to

any data source or sink.
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Fig. 12 SISD sFPE architecture

• Off-FPE communication has been decoupled into read (COMMGET) and write
(COMMPUT) components

In the sFPE, ID and FlexData are assigned entire pipeline stages. The ID
determines the source or destination of any instruction operand or result, with all
of the potential sources or destinations of data incorporated in FlexData to allow
each to be addressed with equal latency; this flat memory architecture is unique to
the sFPE. This approach removes the load/store overhead of accessing, for example,
data memory or off-FPE communication; all data operands and results may be
sourced/produced to any of IMM, RF, DM or COMM with identical pipeline control
and without the need for explicit load and store cycles or instructions for DM or
COMM.

To allow unbuffered streaming from input FIFOs or output FIFOs via ALU,
simultaneous read/write to external FIFOs is required, with direct access to ALU
in both directions. Decoupling the off-FPE communication components into COM-
MGET and COMMPUT allow each to be accessed with zero-latency, from a
single instruction—note that these both reside in the same pipeline stage and
hence conform to the regular dataflow pipeline maintained across the remainder
of FlexData. In addition, since all of COMMGET, COMMPUT, DM, RF and IMM
access distinct memory resources (with separate memory banks employed within
the sFPE and a FIFO employed per off-sFPE communication channel) there is
no memory bandwidth bottleneck resulting from decoupling these accesses in this
way—all could be accessed simultaneously if needed.
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Table 9 ALU
operand/destination
instruction coding

Op Source/sink x

Rx RF Register location

&x DM DM address

^x COMMGET/COMMPUT IPC channel no.

x IMM Constant value

Fig. 13 FFT256: sFPE
implementations. (a)
8-sFPE1. (b) sFPE8

a b

6.2 Instruction Coding

To support the increase level of specialisation of the operands in each instruction,
however, operand addressing needs to become more complicated. Generally, sFPE
ALU instructions take the form:
INSTR dest, opA, opB, opC

where INSTR is the instruction class, dest identifies the result destination and
opA, opB, opC identify the source operands. The possible encodings of each of
dest, opA,
opB, opC and the destination are described in Table 9.

This encoding allows any of RF, DM, COMMGET and COMMPUT to be
addressed directly from the absolute addresses quoted in the sFPE instruction.
Constant operands are hard-coded into the instruction and IMM locations allocated
by the assembler.

This architecture and data access strategy can lead to sFPE programs which
are substantially more efficient that their FPE counterparts. Using the sFPE, the
number of instructions needed for FFT256 in both the 8-sFPE and sFPE8 variants
are described in Fig. 13.

In MIMD 8-sFPE form, the total number of instructions required is 257, a
decrease of around 91%. In addition, the efficiency of this realisation is now 99.6%,
with only a single non-ALU instruction required for control. Similarly, sFPE8
requires 95.9% fewer instructions and operates with an efficiency of 98.4%. Given
these metrics it is reasonable to anticipate increases in throughput for 8-sFPE and
sFPE8 by factors of 20 and 30.
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a b

Fig. 14 Itemised sFPE matrix multiplication and ME operations. (a) Matrix multiplication. (b)
Motion estimation

7 Streaming Block Processing

In many operations, however, addressing modes other than the simple direct
approach used in the FPE are vital. An itemized instruction breakdown for
multiplication of two 32×32 matrices and Full-Search ME (FS-ME) with a 16×16
macroblock on a 32 × 32 search window are quoted in Fig. 14.

A number of points are notable. Firstly, the programs are very efficient, verifying
the techniques described in the previous section. However, the programs are
extremely large—35,375 instructions for matrix multiplication (MM) and 284,428
for FS-ME. To store this number of instructions, a very large PM is required,
requiring a lot of FPGA resources—for FS-ME, 241 BRAMs would be required
for the PM alone. These demands are a direct result of the FPE’s restriction to direct
addressing. This is because, in a direct addressing scheme then every operation
requires an instruction; for MM and ME, this translates a very large number of
instructions.

However, both of these operations and their operand accesses are very regular
and can be captured in programs with many fewer instructions than those quoted
above. Both repeat the same operation many times on small subsets of the input
data at regularly-spaced memory locations. For example, Bock-MM of two matrices
A ∈ Rm×n and B ∈ Rn×p when m = n = p = 8 via four 4 × 4 submatrices.
Assuming that A and B are stored in contiguous memory locations in row-major
order and that C is derived in row-major order, the operand memory access are as
illustrated in Fig. 15.

To compute an element of a submatrix of C, the inner product of a four-element
vector of contiguous locations in A (a row of the submatrix) and a four-element
vector of elements spaced by 8 locations in B (a column of the submatrix) is
formed. Afterwards either or both of the row of A or column of B are incremented
to derive the next element of C, before operation proceeds to the next submatrix.
The resulting memory accesses are highly predictable: a regular repeated increment
along the rows of A and columns of B, periodic re-alignment to a new row of
A and/or column of B, repeated multiple times before realigning for subsequent
submatrices.
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Fig. 15 sFPE block matrix multiply operand addressing

These patterns can be used to enable highly compact programs if two features
are available—repeat-style behaviour with the ability for a single instruction to
address blocks or memory are regularly-spaced locations when invoked multiple
times by a repeat.

7.1 Loop Execution Without Overheads

To enable low-overhead loop operation, the sFPE is augmented with the ability to
perform repeat-type behaviour. This means managing the PC such that when a
repeat instruction is encountered, the body of the associated block of statements
is executed a number of times. This task if fulfilled by a PC Manager (PCM), the
behaviour of which is described in Fig. 16.

The PCM controls PC update given its previous value and the instruction
referenced in PM given pieces of information—the start and end lines of the body
statements to be repeated S and E, the number of repetitions N. These are encoded
in a RPT instruction added to the sFPE instruction set. These instructions are
encoded as:
RPT N S E
The behaviour of RPT is shown in Listing 1. This dictates five repetitions of lines

2–5. Any number of repeat instructions can be nested to allow efficient execution of
loop nests with static and compile-time known loop bounds.

Listing 1 RPT Instruction Coding

RPT 5 2 4
INSTR1...
INSTR2...
INSTR3...
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start

i = 0
ei = ∞
si = 0
ni = ∞

0

PC=
ei

PC=
PC+1

1

OP=
RPT

i = i+1
ei = E
si = S
ni = N

3

PC= si
ni = ni−1

2

ni = 0

i = i−1
4

no
yesno

yes
yes

no

Fig. 16 sFPE PCM behaviour

The PCM arbitrates the PC to ensure that the body statements are repeated the
correct number of times and support the construction of nested repeat operations. It
enacts the flowchart in Fig. 16. For an n-level nest it maintains a n + 1-element lists
of metrics, with an additional element added to support infinite repetition of the top-
level program, considered to be an implicit infinite repeat instruction. For layer i of
the loop nest, the start line, end line and number of repetitions are stored in element
i + 1 of the lists s, e and n respectively. In all cases s0 = 0, e0 = ∞ and n0 = ∞ to
represent the start line, end line and number of repetitions of the top-level program
( 0 in Fig. 16).1 Every time a repeat instruction is encountered i, the current index
into s, e and n is incremented and the values of the new element initialised using
S, E and N from the decoded instruction in 3 . Regular PC updating then proceeds
( 1 ) until either another repeat instruction is detected or until ei is encountered. In
the latter case, the number of iterations of the current statement is decremented ( 2 )
or, if ni = 0 all of the iterations of the current repeat statement have been completed
and control of the loop nest reverts to the previous level ( 4 ).

The PCM component requires 36 LUTs and hence imposes a relatively high
resource cost as compared to the FPE. This can be controlled by compile-time
customisation via the parameters listed in Table 10.

1Note that this assumes that the end line of the program is a JMP instruction with the start line as
the target.
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Table 10 PC configuration
parameters

Parameter Meaning Values

pcm_en Enable/disable PCM Boolean

pcm_depth Max. repeat nest depth N ∈ [1, 232 − 1]

a b

Fig. 17 sFPE block memory management elements. (a) sFPE FlexData. (b) Pointer Architecture

The pcm_en parameter is a Boolean which dictates whether the PCM is included
or not. When it is, the maximum depth of loop nest is configurable via pcm_en
which can take, hypothetically, any integer value. As such, the PCM may be

included or excluded and hence imposes no cost when it is not required; further,
when it is included its cost can be tuned to the application at hand by adjusting the
maximum depth of loop nest.

7.2 Block Data Memory Access

Enabling block memory access requires three important capabilities:

• Auto-increment with any constant stride
• Manual increment with any stride
• Custom offset

The need for each of these is evident in MM: auto-increment traverses along
rows and columns with a fixed memory stride—there are many such operations
and so eliminating the need for an individual instruction for each reduce overall
instruction count considerably. Manual increment is required for movement between
rows/columns, whilst custom offset is used to identify the starting point for the
increments, such as the first element of a submatrix.

A Block Memory Manager (BMM) is incorporated in the sFPE FlexData, as
illustrated in Fig. 17a, to enable these properties. The BMM arbitrates access to DM
via Read Pointers (RPs) and Write Pointers (WPs). The architecture of FlexData
and a pointer is illustrated in Fig 17b.

Each pointer controls access to a subset (block) of the sFPE DM and addresses
individual elements of that block via a combination of two subaddress elements: a
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Table 11 BMM configuration parameters

Parameter Meaning Values

mode Addressing mode Direct, block

n_rptrs / n_wptrs No. of read /write pointers N ∈ [1, 232]
s_stride Constant stride N ∈ [1, 232]

Table 12 BMM instructions Operand field Meaning

INC_RP / INC_WP Increment base of RP/WP n to val

SET_RP /SET_WP Set offset of RP/WP n to val

Table 13 ALU block operand instruction coding

Operand field ofs idx !

Meaning Offset Pointer reference Autoincrement base

base and an offset. The offset selects the root block data element whilst the base
iterates over elements relative to the offset.

Pointers operate in one of three modes. Either the base auto-increments, or it is
incremented by explicit instruction, or the offset increments by explicit instruction.
All three modes are supported under the control of the set, inc and data
interfaces. The offset selects the root data element of the submatrices of A, B

and C, with the base added to address elements relative to the offset. The base is
updated via two mechanisms, under the control of inc. The first auto-increments
by a value (s_stride in Fig.17b) set as a constant at synthesis time. Manually
incrementing the base is achieved by c_stride, which is defined at run-time.
Finally, when update of the offset is required, data is accepted on assertion of set.
To allow absolute minimum cost for any operation, configuration parameters for the
sFPE FlexData, BMM and pointer components are configurable by the parameters
in Table 11.

It is notable that addressing mode is now a configuration parameter of the sFPE,
with direct and block modes supported. In direct mode, the BMM is absent whilst
it is included in the block mode. In that case, the cost can be minimised via control
of the number of read and write pointers via n_rptrs and n_rptrs. Finally, the
auto-increment stride s_stride for each pointer is fixed at the point of synthesis.

To support custom increment of the base and offset for each pointer, BMM
instructions take the form
INSTR n val

where n specify the pointer. The permitted values of INSTR are given in Table 12.
ALU operands accessing DM have an encoding of the form &<ofs><idx><!>,

elaborated in Table 13.
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a b c

Fig. 18 sFPE COMM adapters. (a) COMMGET. (b) COMMPUT. (c) COMM pointer

Table 14 COMM
configuration parameters

Parameter Meaning Values

mode Addressing mode Direct, block

n_chan No. channels N ∈ [1, 64)

s_stride Constant stride N ∈ [1, 64)

Table 15 sFPE-based MM and ME: itemized PM

Matrix multiply Motion estimation

Class sFPE sFPE-B δ (%) sFPE sFPE-B δ (%)

ALU 32,768 32 −99.9 268353 26 −99.9

COMM 2048 6 −99.7 2467 14 −99.4

CTRL 559 4 −99.7 12582 12 −99.9

NOP 0 6 1026 6 −99.6

Total 35,375 54 −99.8 284428 58 −99.9

7.3 Off-sFPE Communications

The COMMGET and COMMPUT components, illustrated in Fig. 18 are also both
configurable according to the parameters in Table 14.

Each of COMMGET and COMMPUT can operate under direct and block
addressing modes. In direct mode, individual FIFO channels and be accessed via
addresses encoded within the instruction. Instructions for either COMM unit are
encoded as:
^<p><ofs/idx><!>

where p differentiates peek (read-without-destroying) and get (read-and-destroy)
operations, ofs denotes the offset, idx the pointer reference and ! autoincrement.

7.4 Stream Frame Processing Efficiency

The effect of these streaming and block addressing features can be profound. The
number of instructions required by direct (sFPE) and block-based (sFPE-B) sFPE
modes are quoted in Table 15. Very large reductions in program size have resulted
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from the addition of block memory management—sFPE-B requires fewer than 1%
of the number of instructions required by sFPE. Hence, the stream processing and
advanced program and memory control features of the sFPE have a clear beneficial
effect on program efficiency and scale. Section 8 compares sFPE-based accelerators
for a number of typical signal and image processing operations against real-time
performance criteria and custom circuit and soft processor alternatives.

8 Experiments

Accelerators were created using the sFPE for five typical operations:

• 512-point Fast Fourier Transform (FFT)
• 1024 × 1024 Matrix Multiplication
• Sobel Edge Detection (SED) on 1280 × 768 image frames.
• FS-ME: 16 × 16 macroblock, 32 × 32 search window on CIF 352 × 288 images.
• Variable Block Size ME (VBS-ME) with 16 × 16 macroblock, 32 × 32 search

window on CIF 720 × 480 images.

The sFPF configurations used to realise each of these operations are described in
Table 16. All accelerators target Xilinx Kintex®-7 XC7K70TFBG484 using Xilinx
ISE 14.2.

These configurations expose the flexibility of the sFPE. One notable feature is
the complete absence of RF in many components, such as MM, FS-ME and FFT.
This is a very substantial resource saving which has been enabled as a result of
the sFPE being able to stream data from and to COMM components and DM. This
flexibility also enables a number of performance and cost advantages, as quoted
in Fig. 19. Specifically, the FSME accelerator exhibits real-throughput for H.264;
VBS-ME can support real-time processing of 480p video in H.264 Level 2.2. To the
best of the authors’ knowledge, these are the first time an FPGA-based software-
programmable component has demonstrated this capability.

To compare the performance and cost of sFPE-based accelerators relative to
custom circuits, sFPE FFTs for IEEE 802.11ac have been developed and compared

Table 16 sFPE-based accelerator configurations

MM FS-ME SED FFT

Config. sFPE8 sFPE32 3-sFPE3 5-sFPE

data_ws 32 16 16 16

data_type Real Real Real Complex

dm_depth 1024 1009 1800 [0,32,32,128,512]

pm_depth 64 64 113 [68,78,190,758,1949]

rf_depth 0 0 32 0

n_rptrs 2 2 1 1

n_wptrs 1 1 1 1
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a b c

d e

Fig. 19 sFPE accelerators. (a) T. (b) clk (MHz). (c) LUTs. (d) DSP48e. (e) BRAM

Table 17 802.11ac FFT
characteristics

Frequency (MHz) 20 40 80 160

FFT 64 128 256 512

Throughput (×106 Samples/s) 160 320 640 1280

Table 18 sFPE FFT configurations

Parameter FFT64 FFT128 FFT256 FFT512

Config. 1-sFPE3 1-sFPE8 3-sFPE8 5-sFPE8

data_ws 16

data_type Complex

dm_depth 192 128 [32,256] [0,32,32,128,512]

pm_depth 1184 902 [134,1852] [68,78,190,758,1949]

rf_depth 0

sm_depths 32 64 [32,128] [0,32,32,64,256]

to both the Xilinx FFT and those generated by Spiral [18]. The IEEE 802.11ac
standard [1] mandates 8-channel FFT operations on 20 MHz, 40 MHz, 80 MHz and
160 MHz frequency bands with FFT size and throughput requirements as outlined
in Table 17.

These multi-sFPE accelerator configurations are summarised in Table 18—in the
case where more than one sFPE is used, the configurations of each are presented
in vector format.2 The performance and cost of the resulting architectures are
described in Fig. 20.

Figure 20 shows that the sFPE FFT accelerators for 802.11ac, supported by clock
rates of 528 MHz (FFT64, FFT128), 506 MHz (FFT256) and 512 MHz (FFT512),
the real-time throughput requirements listed in Table 17 are satisfied. In addition,
performance and cost are highly competitive with the Xilinx and Spiral custom
circuits. The LUT, DSP48e and BRAM costs are lower than the Xilinx FFT in 9 out

2Note that FFT512 takes a different configuration to the 512-point FFT previously addressed.
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a b c

d e

Fig. 20 FPGA-based FFT: performance and cost. (a) LUT cost (×103). (b) DSP48e cost. (c)
BRAM cost. (d) % device occupied. (e) T (×109 Samples/s)

a b c d

Fig. 21 Softcore matrix multiplication: performance and cost comparison. (a) T (MM/s). (b)
LUTs. (c) DSP48e. (d) BRAM

a b c d

Fig. 22 Softcore FS-ME: performance and cost comparison. (a) T (FPS). (b) LUTs (×103). (c)
DSP48e. (d) BRAM

of 12 cases, with savings of up to 69, 53 and 56%. Relative to the Spiral FFT, the
performance and cost of the sFPE accelerators are similarly encouraging, enabling
increased throughput in all but one case and reduced LUT and BRAM costs in 7
out of 8 cases; savings reaching 62.8% and 55% respectively. The Spiral FFTs have
consistently lower DSP48e cost, however the total proportion of the device occupied
by each, reported in Fig. 20d, remains in favour of the sFPE in all but one instance.

The performance and cost of sFPE-based MM and FS-ME is compared with
other soft processors in Figs. 21 and 22.

When applied to MM, the performance and cost advantages relative to 32-way
VEGAS (VEGAS32) [9] and 4-way VENICE (VENICE4) [24] are clear. Relative to
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VEGAS32, throughput is increased by a factor 2 despite requiring only 25% of the
number of datapath lanes. As compared to VENICE4, throughput is increased by a
factor 4.7 whilst LUT and BRAM cost are reduced by 76% and 5% respectively.

sFPE-based ME is compared with VIPERS16, VEGAS4 and VENICE4 and the
FPE in Fig. 22. sFPE32 is the only realisation capable of supporting the 30 FPS
throughput requirement for standards such as H.264, with absolute throughput
increased by factors of 22.3, 9.8 and 6.8 relative to VIPERS16, VEGAS4 and
VENICE4.

These results demonstrate the benefit of the sFPE relative to other soft
processors—coupled performance/cost increases of up to three orders of magnitude.
Of course, the softcores to which the sFPE is compared here are general purpose
components and hence offer substantially greater run-time processing capability
than the sFPE, which is highly tuned to the operation for which it was created.
In that respect, the sFPE is more a component for constructing fixed-function
accelerators than a general-purpose softcore. However, despite employing similar
multi-lane processing approaches as VIPERS, VEGAS and VENICE the sFPE’s
focus on extreme efficiency, multicore processing, stream processing and novel
block memory management have enabled very substantial performance and cost
benefits.

9 Summary

Soft processors for FPGA suffer from substantial cost and performance penalties
relative to custom circuits hand-crafted at register transfer level. Performance and
resource overheads associated with the need for a host general purpose processor,
load-store processing, loop handling, addressing mode restrictions and inefficient
architectures combine to amplify cost and limit performance.

This paper describes the first approach which challenges this convention. The
sFPE presented realises accelerators using multicore networks of fine-grained, high
performance and standalone processors. The sFPE enables performance and cost
unprecedented amongst soft processors by adopting a streaming operation model
to ensure high efficiency. combined with advanced loop handling and addressing
constructs for very compact and high performance operation on large data sets.
These enable efficiency routinely in excess of 90% and performance and cost which
are comparable to custom circuit accelerators and well in advance of existing soft
processors.

Specifically, real-time accelerators for 802.11ac FFT and H.264 FS-ME VBS-
ME are described; the former of these exhibits performance and cost which are
highly competitive with custom circuits. In addition, it is shown how sFPE-based
MM and ME accelerators offer improvements in resource/cost by up to three orders
of magnitude. To the best of the authors’ knowledge, these capabilities are unique,
not only for FPGA, but for any semiconductor technology.

This work lays a promising foundation for the construction of complete FPGA
accelerators, but in addition may be used to further ease the design process. For
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example, in the case where off-chip memory access is required, the programmable
nature of the SAE means that it may also be used as a memory controller to execute
custom memory access schedules and highly efficient block access. However,
resolving this and other accelerator peripheral functions is left as future work.
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