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Abstract. Predictive analysis in business process monitoring aims at
forecasting the future information of a running business process. The
prediction is typically made based on the model extracted from histor-
ical process execution logs (event logs). In practice, different business
domains might require different kinds of predictions. Hence, it is impor-
tant to have a means for properly specifying the desired prediction tasks,
and a mechanism to deal with these various prediction tasks. Although
there have been many studies in this area, they mostly focus on a spe-
cific prediction task. This work introduces a language for specifying the
desired prediction tasks, and this language allows us to express various
kinds of prediction tasks. This work also presents a mechanism for auto-
matically creating the corresponding prediction model based on the given
specification. Thus, different from previous studies, our approach enables
us to deal with various kinds of prediction tasks based on the given spec-
ification. A prototype implementing our approach has been developed
and experiments using a real-life event log have been conducted.
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1 Introduction

Process mining [1] provides a collection of techniques for extracting process-
related information from the logs of business process executions (event logs). One
important area in this field is predictive business process monitoring, which aims
at forecasting the future information of a running process based on the models
extracted from event logs. Through predictive analysis, potential future problems
can be detected and preventive actions can be taken in order to avoid unexpected
situation (e.g., processing delay, SLA violations). Many techniques have been
proposed for tackling various prediction tasks such as predicting the outcomes
of a process [9,15,21,31], predicting the remaining processing time [2,23–25,30],
predicting the future events [10,11,30], etc (cf. [5,8,11,17,18,22,27]).

In practice, different business areas might need different kinds of prediction
tasks. For instance, an online retail company might be interested in predicting
c© Springer International Publishing AG, part of Springer Nature 2018
J. Gulden et al. (Eds.): BPMDS 2018/EMMSAD 2018, LNBIP 318, pp. 97–113, 2018.
https://doi.org/10.1007/978-3-319-91704-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91704-7_7&domain=pdf


98 A. Santoso

the processing time until an order can be delivered to the customer, while for
an insurance company, predicting the outcomes of an insurance claim process
would be interesting. On the other hand, both of them might be interested in
predicting whether their processes comply with some business constraints (e.g.,
the processing time must be finished within a certain amount of time).

When it comes to predicting the outcomes of a process or predicting an
unexpected behaviour, it is important to specify the desired outcomes or the
unexpected behaviour precisely. For instance, in the area of customer problem
management, to increase customer satisfaction as well as to promote efficiency,
we might be interested in predicting the possibility of “ping-pong behaviour”
among the Customer Service (CS) officers while handling the customer problems.
However, the definition of a ping-pong behaviour could be varied. For instance,
when a CS officer transfers a customer problem into another CS officer who
belongs to the same group, it can already be considered as a ping-pong behaviour
since both of them should be able to handle the same problem. Another possible
definition would be when a CS officer transfers a problem into another CS officer
who has the same expertise, and the problem is transfered back into the original
CS officer.

To have a suitable prediction service for our domain, we need to understand
and specify the desired prediction tasks properly. Thus, we need a means to
express the specification. Once we have characterized the prediction objectives
and are able to express them properly, we need a mechanism to create the cor-
responding prediction model. To automate the prediction model creation, the
specification should be machine processable. As illustrated above, such speci-
fication mechanism should also allow us to specify some constraints over the
data, and compare some data values at different time points. For example, to
characterize the ping-pong behaviour, one possibility is to specify the behaviour
as follows: “there is an event at a certain time point in which the CS officer is
different with the CS officer in the event at the next time point, but both of them
belong to the same group”. Note that here we need to compare the information
about the CS officer names and groups at different time points.

In this work, we tackle those problems by providing the following contri-
butions: (i) We introduce a rich language for expressing the desired prediction
tasks. This language allows us to specify various kinds of prediction tasks. In
some sense, this language also allows us to specify how to create the desired
prediction models based on the event logs. (ii) We devise a mechanism for build-
ing the corresponding prediction model based on the given specification. Once
created, the prediction model can be used to provide predictive analysis service
in business process monitoring. (iii) We exhibit how our approach can be used
for tackling various kinds of prediction tasks (cf. Section 3.3). (iv) We develop
a prototype that implements our approach and enables the automatic creation
of prediction models based on the specified prediction objective. (v) To demon-
strate the applicability of our approach, we carry out experiments using a real-life
event log that was provided for the BPI Challenge 2013 [29].
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Roughly speaking, in our approach, we specify various desired prediction
tasks by specifying how we want to map each (partial) business processes execu-
tion information into the expected predicted information. Based on this specifi-
cation, we automatically train either classification or regression models that will
serve as the prediction models. By specifying a set of desired prediction tasks,
we can obtain multi-perspective prediction services that enable us to focus on
various aspects and predict various information. Our approach is independent
with respect to the classification/regression model that is used. In our imple-
mentation, to get the expected quality of predictions, the users are allowed to
choose the desired classification/regression model as well as the feature encoding
mechanisms (to allow some sort of feature engineering). Supplementary materials
containing more explanations, examples and experiments are available at [26].

2 Preliminaries

This section provides some background concepts for the rest of the paper.

Trace, Event and Event Log. We follow the usual notion of event logs as
in process mining [1]. An event log captures historical information about the
execution of business processes. In an event log, each execution of a process
is represented as a trace. Each trace has several events, and each event in the
trace captures the information about a particular event that happens during the
process execution. Events are characterized by various attributes, e.g., timestamp
(the time at which the event occurred).

Let E be the event universe (i.e., the set of all event identifiers), and A be
the set of attribute names. For any event e ∈ E , and attribute name n ∈ A,
#n(e) denotes the value of the attribute n of e. E.g., #timestamp(e) denotes the
timestamp of the event e. If an event e does not have an attribute named n, then
#n(e) = ⊥ (undefined value). A finite sequence over E of length n is a mapping
σ : {1, . . . , n} → E , and such a sequence is represented as a tuple of elements of
E , i.e., σ = 〈e1, e2, . . . , en〉 where ei = σ(i) for i ∈ {1, . . . , n}. The set of all finite
sequences over E is denoted by E∗. The length of a sequence σ is denoted by |σ|.

A trace τ is a finite sequence over E such that each event e ∈ E occurs at
most once in τ , i.e., τ ∈ E∗ and for 1 ≤ i < j ≤ |τ |, we have τ(i) �= τ(j), where
τ(i) refers to the event of the trace τ at the index i. Let τ = 〈e1, e2, . . . , en〉 be
a trace, τk = 〈e1, e2, . . . , ek〉 denotes the k-length prefix of τ (for 0 < k < n).
For example, let {e1, e2, e3, e4, e5, e6, e7} ⊂ E , τ = 〈e3, e7, e6, e4, e5〉 ∈ E∗ is
an example of a trace, τ(3) = e6, and τ2 = 〈e3, e7〉. Finally, an event log L
is a set of traces such that each event occurs at most once in the entire log,
i.e., for each τ1, τ2 ∈ L such that τ1 �= τ2, we have that τ1 ∩ τ2 = ∅, where
τ1 ∩ τ2 = {e ∈ E | ∃i, j ∈ Z

+ . τ1(i) = τ2(j) = e}.
An IEEE standard for representing event logs, called XES (eXtensible Event

Stream), has been introduced in [13]. The standard defines the XML format
for organizing the structure of traces, events and attributes in event logs. It
also introduces some extensions that define some attributes with pre-defined
meaning such as: (i) “concept:name”, which stores the name of event/trace;
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(ii) “org:resource”, which stores the name/identifier of the resource that trig-
gered the event (e.g., a person name); (iii) “org:group”, which stores the group
name of the resource that triggered the event.

Classification and Regression. In machine learning, a classification and
regression model can be seen as a function f : �X → Y that takes some input fea-
tures/variables �x ∈ �X and predicts the corresponding target value/output y ∈ Y .
The key difference is that the output range of the classification task is a finite
number of discrete categories (qualitative outputs) while the output range of
the regression task is continous values (quantitative outputs) [12]. Both of them
are supervised machine learning techniques where the models are trained with
labelled data. I.e., the inputs for the training are the pairs of input variables �x
and target value y. This way, the models learn how to map certain inputs �x into
the expected target value y.

3 Approach

Our approach for obtaining a predictive process monitoring service consists of the
following main steps: (i) specify the desired prediction tasks and (ii) automati-
cally create the prediction model based on the given specification. Once created,
we can use the models to predict the future information. In the following, we
elaborate these steps.

3.1 Specifying the Desired Prediction Tasks

This section explains the mechanism for specifying the desired prediction task.
Here we introduce a language that is able to capture the desired prediction task
in terms of the specification on how to map each (partial) trace in the event
log into the desired prediction results. Such specification can be used to train a
classification/regression model that will be used as the prediction model.

In our approach, the specification of a particular prediction task is specified
as an analytic rule, where an analytic rule R is an expression of the form

R = 〈Cond1 =⇒ Target1, . . . , Condn =⇒ Targetn, DefaultTarget〉.
Each Condi in R is called condition expression, while Targeti and DefaultTarget
are called target expression (for i ∈ {1, . . . , n}). We explain and formalize how to
specify a condition and target expression after providing some intuitions below.

An analytic rule R will be interpreted as a function that maps (partial) traces
into the values obtained from evaluating the target expressions. The mapping
is based on the condition that is satisfied by the corresponding trace. Let τ
be a (partial) trace, such function R can be illustrated as follows (the formal
definition will be given later):

R(τ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

evaluate(Target1) if τ satisfies Cond1,
...

...
evaluate(Targetn) if τ satisfies Condn,
evaluate(DefaultTarget) otherwise
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We will see that a target expression essentially specifies the desired prediction
result or expresses the way how to compute the desired prediction result. Thus,
an analytic rule R can also be seen as a means to map (partial) traces into
the desired prediction results, or to compute the expected prediction results of
(partial) traces.

To specify a condition expression in analytic rules, we introduce a language
called First-Order Event Expression (FOE). Roughly speaking, an FOE formula
is a First-Order Logic (FOL) formula [28] where the atoms are expressions over
some event attribute values and some comparison operators (e.g., =, �=, >).
Moreover, the quantification in FOE is restricted to the indices of events (so as
to quantify the time points). The idea of condition expressions is to capture a
certain property of (partial) traces. To give some intuition, before we formally
define the language, consider the ping-pong behaviour that can be specified as
follows:

Condpp = ∃i.( i > curr ∧ e[i]. org:resource �= e[i + 1]. org:resource ∧
i + 1 ≤ last ∧ e[i]. org:group = e[i + 1]. org:group)

where “e[i+1]. org:group” is an expression for getting the “org:group” attribute
value of the event at the index i + 1. The formula Condpp basically says that
“there exists a time point i that is bigger than the current time point (i.e., in the
future), in which the resource (the person in charge) is different with the resource
at the time point i + 1 (i.e., the next time point), their groups are the same, and
the next time point is still not later than the last time point”. As for the target
expression, some simple examples would be some strings such as “Ping-Pong”
and “Not Ping-Pong”. Based on these, we can create an example of analytic rule

R1 = 〈Condpp =⇒ “Ping-Pong”, “Not Ping-Pong”〉,
where Condpp is as above. In this case, R1 specifies a task for predicting the
ping-pong behaviour. In the prediction model creation phase, we will create a
classifier that classifies (partial) traces based on whether they satisfy Condpp or
not. During the prediction phase, such classifier can be used to predict whether
a given (partial) trace will lead into ping-pong behaviour or not.

The target expression can be more complex than merely a string. For
instance, it can be an expression that involves arithmetic operations over numeric
values such as

TargetremainingTime = e[last]. time:timestamp − e[curr]. time:timestamp,

which computes “the time difference between the timestamp of the last event
and the current event (i.e., remaining processing time)”. Then we can create an
analytic rule

R2 = 〈curr < last =⇒ TargetremainingTime, 0〉,
which specifies a task for predicting the remaining time, because R2 will map
each (partial) trace into its remaining processing time. In this case, we will create
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a regression model for predicting the remaining processing time of a given (par-
tial) trace. Section 3.3 provides more examples of prediction tasks specification
using our language.

Formalizing the Condition and Target Expressions. As we have seen in
the examples above, we need to refer to a particular index of an event within a
trace. To capture this, we introduce the notion of index expression idx defined
as follows:

idx :: = i | pint | last | curr | idx1 + idx2 | idx1 − idx2

where (i) i is an index variable. (ii) pint is a positive integer (i.e., pint ∈ Z
+).

(iii) last and curr are special indices in which the former refers to the index of
the last event in a trace, and the latter refers to the index of the current event
(i.e., last event of the trace prefix under consideration). For instance, given a
k-length prefix τk of the trace τ , curr is equal to k (or |τk|), and last is equal to
|τ |. (iv) idx+ idx and idx− idx are the usual arithmetic addition and subtraction
operation over indices.

The semantics of index expression is defined over k-length trace prefixes.
Since an index expression can be a variable, given a k-length trace prefix τk of
the trace τ , we first introduce a variable valuation ν, i.e., a mapping from index
variables into Z

+. Then, we assign meaning to index expression by associating
to τk and ν an interpretation function (·)τk

ν which maps an index expression into
Z
+. Formally, (·)τk

ν is inductively defined as follows:

(i)τk

ν = ν(i) (curr)τk

ν = k (idx1 + idx2)
τk

ν = (idx1)
τk

ν + (idx2)
τk

ν

(pint)τk

ν = pint ∈ Z
+ (last)τk

ν = |τ | (idx1 − idx2)
τk

ν = (idx1)
τk

ν − (idx2)
τk

ν

To access the value of an event attribute, we introduce event attribute acces-
sor, which is an expression of the form

e[idx]. attName

where attName is an attribute name and idx is an index expression. To define the
semantics of event attribute accessor, we extend the definition of our interpreta-
tion function (·)τk

ν such that it interprets an event attribute accessor expression
into the attribute value of the corresponding event at the given index. Formally,
(·)τk

ν is defined as follows:

(e[idx]. attName)τk

ν =

{
#attName(e) if (idx)τk

ν = i, 1 ≤ i ≤ |τ |, and e = τ(i)
⊥ otherwise

E.g., “e[i]. org:resource” refers to the value of the attribute “org:resource” of the
event at the position i.

The value of an event attribute can be either numeric (e.g., 26, 3.86) or
non-numeric (e.g., “sendOrder”), and we might want to specify properties that
involve arithmetic operations over numeric values. Thus, we introduce the notion
of numeric expression and non-numeric expression as expressions defined as
follows:
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nonNumExp :: = true | false | String | e[idx]. NonNumericAttribute
numExp :: = number | idx | e[idx]. NumericAttribute

| numExp1 + numExp2 | numExp1 − numExp2

where (i) true and false are the usual boolean values, (ii) String is the
usual string, (iii) number is real numbers, (iv) e[idx]. NonNumericAttribute
(resp. e[idx]. NumericAttribute) is event attribute accessor for accessing an
attribute with non-numeric values (resp. numeric values), (v) numExp1+numExp2
and numExp1 − numExp2 are the usual arithmetic operations over numeric
expressions.

To give the semantics for numeric expression and non-numeric expression,
we extend the definition of our interpretation function (·)τk

ν by interpreting true,
false, String, and number as themselves (e.g., (3)τk

ν = 3, (“sendOrder”)τk

ν =
“sendOrder”), and by interpreting the arithmetic operations as usual, i.e., for
the addition operator we have

(numExp1 + numExp2)τk

ν = (numExp1)τk

ν + (numExp2)τk

ν

The definition is similar for the subtraction operator. Note that the value of an
event attribute might be undefined ⊥. In this work, we define that the arithmetic
operations involving ⊥ give ⊥ (e.g., 26 + ⊥ = ⊥).

We are now ready to specify the notion of event expression as follows:

eventExp :: = numExp1 acop numExp2 | nonNumExp1 lcop nonNumExp2
| eventExp1 lcop eventExp2 | true | false

where (i) lcop stands for a logical comparison operator (= or �=). (ii) acop
stands for an arithmetic comparison operator (<, >, ≤, ≥, = or �=). We interpret
each logical/arithmetic comparison operator as usual (e.g., 26 ≥ 3 is interpreted
as true, “receivedOrder” = “sendOrder” is interpreted as false). It is easy to
see how to extend the definition of our interpretation function (·)τk

ν towards
interpreting event expressions, therefore we omit the details.

Finally, we are ready to define the language for specifying condition expres-
sion, namely First-Order Event Expression (FOE). An FOE formula is a First
Order Logic (FOL) formula where the atoms are event expressions and the quan-
tification is ranging over event indices. Syntactically FOE is defined as follows:

ϕ :: = eventExp | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | ∀i.ϕ | ∃i.ϕ

Where eventExp is an event expression. The semantics of FOE constructs is
based on the usual FOL semantics. Formally, given a k-length trace prefix τk

of the trace τ , and index variables valuation ν, we extend the definition of our
interpretation function (·)τk

ν as follows1:
1 We assume that variables are standardized apart, i.e., no two quantifiers bind the

same variable (e.g., ∀i.∃i.(i > 3)), and no variable occurs both free and bound (e.g.,
(i > 5) ∧ ∃i.(i > 3)). As usual in FOL, every FOE formula can be transformed
into a semantically equivalent formula where the variables are standardized apart
by applying some variable renaming [28].
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(¬ϕ)τk

ν = true if (ϕ)τk

ν = false

(ϕ1 ∧ ϕ2)
τk

ν = true if (ϕ1)
τk

ν = true, and (ϕ2)
τk

ν = true

(∃i.ϕ)τk

ν = true if for some c ∈ {1, . . . , |τ |}, we have (ϕ)τk

ν[i�→c] = true

(∀i.ϕ)τk

ν = true if for every c ∈ {1, . . . , |τ |}, we have that (ϕ)τk

ν[i�→c] = true

where ν[i �→ c] stands for a new index variable valuation obtained from ν as
follows:

ν[i �→ c](x) =
{

c if x = i
ν(x) if x �= i

Intuitively, ν[i �→ c] substitutes each variable i with c, while the other variables are
substituted the same way as ν is defined. The semantics of ϕ1 ∨ ϕ2 and ϕ1 → ϕ2

is as usual in FOL. When ϕ is a closed formula, its truth value does not depend on
the valuation for the index variables, and we denote the interpretation of ϕ simply
by (ϕ)τk

. We also say that τk satisfies ϕ, written τk |= ϕ, if (ϕ)τk

= true.
Finally, the condition expression in analytic rules is specified as closed FOE

formulas, while the target expression is specified as either numeric expression or
non-numeric expression, except that target expressions are not allowed to have
index variables (Thus, they do not need variable valuation).

Essentially, FOE has the following main features: (i) it allows us to specify
constraints over the data; (ii) it allows us to (universally/existentially) quantify
different event time points and to compare different event attribute values at
different event time points; (iii) it supports arithmetic expressions/operations
over the data.

Checking Whether a Condition Expression is Satisfied. Given a k-length
trace prefix τk of the trace τ , and a condition expression ϕ (which is expressed
as an FOE formula), to explain how to check whether τk |= ϕ, we first introduce
some properties of FOE formula below. Let ϕ be an FOE formula, we write
ϕ[i �→ c] to denote a new formula obtained by substituting each variable i in ϕ
by c.

Theorem 1. Given an FOE formula ∃i.ϕ, and a k-length trace prefix τk of the
trace τ ,

τk |= ∃i.ϕ iff τk |= ∨
c∈{1,...|τ |} ϕ[i �→ c]

Proof (sketch). By the semantics definition, τk satisfies ∃i.ϕ iff there exists an
index c ∈ {1, . . . , |τ |}, such that τksatisfies the formula ψ that is obtained from ϕ
by substituting each variable i in ϕ with c. Thus, it is the same as satisfying the
disjunction of formulas that is obtained by considering all possible substitutions
of the variable i in ϕ (i.e.,

∨
c∈{1,...|τ |} ϕ[i �→ c]). This is the case because such

disjunction of formulas will be satisfied by τk when there is a formula in the
disjunction that is satisfied by τk. ��
Theorem 2. Given an FOE formula ∀i.ϕ, and a k-length trace prefix τk of the
trace τ ,
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τk |= ∀i.ϕ iff τk |= ∧
c∈{1,...|τ |} ϕ[i �→ c]

Proof (sketch). Similar to Theorem 1, except that we use conjunctions of
formulas. ��

To check whether τk |= ϕ, we perform the following three steps: (1) Eliminate
all quantifiers. This can be easily done by applying Theorems 1 and 2. As a result,
each variable will be instantiated with a concrete value. (2) Evaluate each event
attribute accessor expression based on the event attributes in τ . From this step,
we will have a formula which is constituted by only concrete values composed
by logical/arithmetic/comparison operators. (3) Last, we evaluate all logical,
arithmetic and comparison operators.

Formalizing the Analytic Rule. With this machinery in hand, now we can
formalize the semantics of analytic rules as introduced above. Formally, given
an analytic rule

R = 〈Cond1 =⇒ Target1, . . . , Condn =⇒ Targetn, DefaultTarget〉.
R is interpreted as a function that maps (partial) traces into the values obtained
from evaluating the target expressions defined below

R(τk) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(Target1)τk

if τk |= Cond1,
...

...
(Targetn)τk

if τk |= Condn,
(DefaultTarget)τk

otherwise

where τk is k-length trace prefix of the trace τ , and recall that (Targeti)τk

is the
application our interpretation function (·)τk

to the target expression Targeti in
order to evaluate the expression and get the value. Checking whether τk |= Condi

can be done as explained above. We also require that an analytic rule to be
coherent, i.e., all target expressions of an analytic rule should be either only
numeric or non-numeric expressions. An analytic rule in which all of its target
expressions are numeric expressions is called numeric analytic rule, while an
analytic rule in which all of its target expressions are non-numeric expressions
is called non-numeric analytic rule.

Given a k-length trace prefix τk and an analytic rule R, we say that R is well-
defined for τk if R maps τk into exactly one target value, i.e., for every condition
expressions Condi and Condj in which τk |= Condi and τk |= Condj , we have that
(Targeti)τk

= (Targetj)τk

. The notion of well-defined can be generalized to event
logs. Given an event log L and an analytic rule R, we say that R is well-defined
for L if for each possible k-length trace prefix τk of each trace τ in L, we have
that R is well-defined for τk. This condition can be easily checked for the given
event log L and an analytic rule R.

Note that our notion of well-defined is more relaxed than requiring that
each condition must not be overlapped, and this gives flexibility for mak-
ing a specification using our language. For instance, one can specify several
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characteristics of ping-pong behaviour in a more convenient way by specify-
ing several conditional-target rules (i.e., Cond1 =⇒ “Ping-Pong”, Cond2 =⇒
“Ping-Pong”, . . .) instead of using disjunctions of these several characteristics.
From now on we only consider the analytic rules that are coherent and well-
defined for the event logs under consideration.

3.2 Building the Prediction Model

Given an analytic rule R and an event log L, if R is a numeric analytic rule,
we build a regression model. Otherwise, if R is a non-numeric analytic rule, we
build a classification model. Note that our aim is to create a prediction function
that takes (partial) traces as inputs. Thus, we train a classification/regression
function in which the inputs are the features obtained from the encoding of trace
prefixes in the event log L (the training data). There are several ways to encode
(partial) traces into input features for training a machine learning model. For
instance, [14] studies various encoding techniques such as index-based encoding,
boolean encoding, etc. In [30], the authors use the so-called one-hot encoding
of event names, and also add some time features (e.g., the time increase with
respect to the previous event). In general, an encoding technique can be seen as
a function enc that takes a trace τ as the input and produces a set {x1, . . . , xm}
of features (i.e., enc(τ) = {x1, . . . , xm}).

In our approach, users are allowed to choose the desired encoding mech-
anism by specifying a set Enc of preferred encoding functions (i.e., Enc =
{enc1, . . . , encn}). This allows us to do some sort of feature engineering (note
that the desired feature engineering approach, that might help increasing the
prediction performance, can also be added as one of these encoding functions).
The set of features of a trace is then obtained by combining all features produced
by applying each of the selected encoding functions into the corresponding trace.
In the implementation (cf. Sect. 4), we provide some encoding functions that can
be selected in order to encode a trace.

The procedure for creating the prediction model takes the following three
inputs: (i) an analytic rule R; (ii) an event log L; and (iii) a set Enc =
{enc1, . . . , encn} of encoding functions. The steps for creating the prediction
model are as follows: (1) for each k-length trace prefix τk of each trace τ in
the event log L (where k ∈ {2, . . . , |τ |}), we do the following three steps: (i) we
apply each encoding function enci ∈ Enc into τk, and combine all obtained fea-
tures (This step gives us the encoded trace prefix τk

encoded); (ii) we compute the
expected prediction result (target value) by applying the analytical rule R to τk

(i.e., the target value is equal to R(τk)); (iii) we add a new training instance by
specifying that the prediction function P maps the encoded trace prefix τk

encoded

into the target value computed in the previous step. (2) Finally, after processing
each k-length trace prefix of each trace in the event log as in the step 1, we
train the prediction function P based on the training instances obtained from
the step 1 and get the desired prediction function. A more formal explanation
of this procedure can be seen in [26].
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3.3 Showcase of Our Approach: Multi-perspective Predictive
Analysis Service

An analytic rule R specifies a particular prediction task of interest. To specify
several desired prediction tasks, we only have to specify several analytic rules,
i.e., R1, . . . , R2. Given a set R of analytic rules, i.e., R = {R1, . . . , R2}, our
approach allows us to construct a prediction model for each analytic rule R ∈ R.
This way, we can get a multi-perspective prediction analysis service provided by
all of the constructed prediction models where each of them focus on a particular
prediction objective.

In Sect. 3.1 we have seen some examples of prediction task specification
for predicting the ping-pong behaviour and the remaining processing time. In
the following, we show other examples of specifying prediction task using our
language.

Predicting Unexpected Behaviour. We can specify a task for predicting
unexpected behaviour by first expressing the characteristics of the unexpected
behaviour. The condition expression Condpp (in Sect. 3.1) expresses a possible
characteristic of ping-pong behaviour. Another possible characterization of this
behaviour is shown below:

Condpp2 = ∃i.( i > curr ∧ e[i]. org:resource �= e[i + 1]. org:resource ∧
i + 1 ≤ last ∧ e[i]. org:resource = e[i + 2]. org:resource ∧
i + 2 ≤ last ∧ e[i]. org:group = e[i + 1]. org:group

∧ e[i]. org:group = e[i + 2]. org:group)

essentially, Condpp2 characterizes the condition where “an officer transfers a task
into another officer of the same group, and then the task is transfered back into
the original officer”. In the event log, this situation is captured by the changes
of the org:resource value in the next event, but then it changes back into the
original value in the next two events, while the values of org:group remain the
same. We can then specify an analytic rule for specifying the ping-pong behaviour
prediction task as follows:

R3 = 〈Condpp =⇒ “Ping-Pong”, Condpp2 =⇒ “Ping-Pong”, “Not Ping-Pong”〉.
During the training phase, R3 maps each trace prefix τk that satisfies either
Condpp or Condpp2 into the target value “Ping-Pong”, and those prefixes that
neither satisfy Condpp nor Condpp2 into “Not Ping-Pong”. After the training
based on this rule, we get a classifier that is trained for distinguishing between
(partial) traces that will and will not lead into ping-pong behaviour. This exam-
ple also exhibits the ability of our language to specify a behaviour that has
multiple characteristics.

Predicting Next Event. The task for predicting the next event is specified
as follows: R4 = 〈curr + 1 ≤ last =⇒ e[curr + 1]. concept:name, ⊥〉. In the
training phase, R4 maps each k-length trace prefix τk into its next event name,
because “e[curr + 1]. concept:name” is evaluated into the name of the event at
the index curr + 1 (i.e., |τk|+1). If k = |τ |, then R4 maps τk into ⊥ (undefined).
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After the training, we get a classifier that is trained to give the next event name
of the given (partial) trace.

Predicting the Next Event Timestamp. This task can be specified as fol-
lows:2

R5 = 〈curr + 1 ≤ last =⇒ e[curr + 1]. time:timestamp, ⊥〉.
R5 maps each k-length trace prefix τk into the next event timestamp. Hence,
we train a regression model that outputs the next event timestamp of the given
(partial) trace.

Predicting SLA/Business Constraints Compliance. Using FOE, we can
easily specify expressive SLA conditions/business constraints, and automatically
create the corresponding prediction model using our approach. E.g., we can
specify a constraint:

∀ i.(e[i]. concept:name = “OrderCreated” → ∃ j.(j > i ∧
e[j]. concept:name = “OrderDelivered” ∧ e[i]. orderID = e[j]. orderID ∧

(e[j]. time:timestamp − e[i]. time:timestamp) < 10.800.000))

which essentially says “whenever there is an event where an order is cre-
ated, eventually there will be an event where the order is delivered and the
time difference between the two events (the processing time) is less than
10.800.000 ms (3 h)”.

4 Implementation and Experiment

As a proof of concept, by using Java and WEKA, we have implemented a pro-
totype3 that is also a ProM4 plug-in. The prototype includes a parser for our
language and a program for automatically processing the specification as well as
building the corresponding prediction model based on the approach explained
in Sects. 3.1 and 3.2. We also provide several feature encoding functions to be
selected such as one hot encoding of attributes, time since the previous event,
time since midnight, attribute values encoding, etc. We can also choose the
desired machine learning model to be built.

Our experiments aim at showing the applicability of our approach in auto-
matically constructing reliable prediction models based on the given specifica-
tion. The experiments were conducted using the real life event log from BPI
Challenge 2013 (BPIC 13) [29]. For the experiment, we use the first 2/3 of the
log for the training and the last 1/3 of the log for the testing. In BPIC 13, the
ping-pong behaviour among support teams is one of the problems to be ana-
lyzed. Ideally a customer problem should be solved without involving too many
2 Note that timestamp can be represented as milliseconds since epoch (hence, it is a

number).
3 More information about the implementation architecture, the code, the tool, and

the screencast can be found at http://bit.ly/predictive-analysis.
4 ProM is an extendable framework for process mining (http://www.promtools.org).

http://bit.ly/predictive-analysis
http://www.promtools.org
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support teams. Here we specify a prediction task for predicting the ping-pong
behaviour by first characterizing a ping-pong behaviour among support teams
as follows:

Condppteam = ∃i.( i > curr ∧ e[i]. org:group �= e[i + 1]. org:group ∧
i + 1 ≤ last ∧ e[i]. concept:name �= “Queued”)

Roughly, Condppteam says that there is a change in the support team while the
problem is not being “Queued”. We then specify the following analytic rule:

Rex1 = 〈Condppteam =⇒ “Ping-Pong”, “Not Ping-Pong”〉
that can be fed into our tool for obtaining the prediction model. For this case,
we automatically generate Decision Tree and Random Forest models from that
specification. We also predict the time until the next event by specifying the
following analytic rule:

Rex2 = 〈curr + 1 ≤ last =⇒ e[curr + 1]. time:timestamp − e[curr]. time:timestamp, 0〉

For this case, we automatically generate Linear Regression and Random Forest
models.

We evaluate the prediction performance of each k-length prefix τk of each
trace τ in the testing set (for 2 ≤ k < |τ |). We use accuracy and AUC (Area
Under the ROC Curve) [12] values as the metrics to evaluate the ping-pong
prediction. For the prediction of the time until the next event, we use MAE
(Mean Absolute Error) [12], and RMSE (Root Mean Square Error) [12] values
as the metrics, and we also provide the MAE and RMSE values for the mean-
based prediction (i.e., the basic approach where the prediction is based on the
mean of the target values in the training data). The results are summarized in
Tables 1 and 2. We highlight the evaluation for several prediction points, namely
(i) early prediction (at the 1/4 of the trace length), (ii) intermediate prediction
(at the 1/2 of the trace length), and (iii) late prediction (at the 3/4 of the trace
length). The column “All” presents the aggregate evaluation for all k-length
prefix where 2 ≤ k < |τ |.

Table 1. The evaluation of predicting ping-pong behaviour among support teams

Accuracy AUC value

Early Mid Late All Early Mid Late All

Decision Tree 0.82 0.67 0.87 0.77 0.76 0.69 0.63 0.75

Random Forest 0.83 0.73 0.91 0.83 0.89 0.73 0.78 0.87

The AUC values in Table 1 show that our approach is able to automatically pro-
duce reasonable prediction models (The AUC values > 0.5). Table 2 shows that
all of the automatically generated models perform better than the mean-based
prediction (the baseline). The experiment also exhibits that the performance of
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Table 2. The evaluation of predicting the time until the next event

MAE (in days) RMSE (in days)

Early Mid Late All Early Mid Late All

Linear Regression 0.70 1.42 2.64 2.07 1.04 1.87 2.99 2.77

Random Forest 0.34 1.07 1.81 1.51 1.03 2.33 2.89 2.61

Mean-based Prediction 2.42 2.33 2.87 2.70 2.44 2.40 3.16 2.90

our approach depends on the machine learning model that is generated (e.g., in
Table 1, random forest performs better than decision tree). Since our approach
does not rely on a particular machine learning model, it justifies that we can
simply plug in different supervised machine learning techniques in order to get
different/better performance. In the future we plan to experiment with deep
learning approach in order to get a better accuracy. As reported by [30], the
usage of LSTM neural networks could improve the accuracy of some prediction
tasks. More experiments can be seen in our supplementary materials (cf. [26]).

5 Related Work

This work is related to the area of predictive analysis in business process man-
agement. In the literature, there have been several works focusing on predicting
time-related properties of running processes. For instance, the works in [2,23–
25] focus on predicting the remaining processing time. The works by [18,22,27]
focus on predicting delays in process execution. The authors of [30] present a
deep learning approach for predicting the timestamp of the next event and use it
to predict the remaining cycle time. Looking at another perspective, the works
by [9,15,31] focus on predicting the outcomes of a running process. The work
by [15] introduces a framework for predicting the business constraints compli-
ance of a running process. In [15], the business constraints are formulated in
propositional Linear Temporal Logic (LTL), where the atomic propositions are
all possible events during the process executions. Another work on outcomes
prediction is presented by [21], which proposes an approach for predicting aggre-
gate process outcomes by also taking into account the evaluation of process risk.
Related to process risks, [8] proposes an approach for risks prediction. Another
stream of works tackle the problem of predicting the future events of a running
process (cf. [5,10,11,24,30]).

A key difference between those works and ours is that, instead of focusing on
a specific prediction task, this work enables us to specify and focus on various
prediction tasks. To deal with these various desired prediction tasks, we also
present a mechanism that can automatically build the corresponding prediction
models based on the given specification of prediction tasks.

This work is also related to the works on devising specification language.
Unlike the propositional LTL, which is the basis of Declare language [20] and
typically used for specifying business constraints over sequence of events (cf.
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[15]), our FOE language (which is part of our rule-based specification language)
allows us not only to specify properties over sequence of events but also to specify
properties over the data (attribute values) of the events. Concerning data-aware
specification language, the work by [3] introduces a data-aware specification
language by combining data querying mechanisms and temporal logic. Such lan-
guage has been used in verification of data-aware processes systems (cf. [4,6,7]).
The works by [16] enrich the Declare language with data conditions based on
First-Order LTL (LTL-FO). Although those languages are data-aware, they do
not support arithmetic expressions/operations over the data which is absolutely
needed, e.g., for expressing the time difference between the timestamp of the first
and the last event. Another interesting data-aware language is S-FEEL, which is
part of the Decision Model and Notation (DMN) standard [19] by OMG. Though
S-FEEL supports arithmetic expressions over the data, it does not allow us to
(universally/existentially) quantify different event time points and to compare
different event attribute values at different event time points, which is needed,
e.g., in the ping-pong behaviour.

6 Conclusion

We have introduced a mechanism for specifying the desired prediction tasks by
using a rule-based language, and for automatically creating the corresponding
prediction models based on the given specification. A prototype of ProM plug-in
that implements our approach has been developed and several experiments using
a real life event log confirmed the applicability of our approach.

Future work includes the extension of the tool and the language. One possible
extension would be to incorporate aggregate functions such as SUM and CONCAT.
These functions enable us to specify more tasks such as the prediction of total
cost that is based on the sum of the cost attributes in all events. The CONCAT
function could allow us to specify the prediction of the next sequence of activ-
ities by concatenating all next activities. Experimenting with other supervised
machine learning techniques would be the next step as well, e.g., using deep
learning approach in order to improve accuracy.
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