
Chapter 4
Seagrass Meadows

Seagrass meadows are intertidal and shallow subtidal habitats composed of up to
76 species of marine angiosperms and are important components of global estuarine
and coastal ecosystems in boreal, temperate and tropical latitudes. Found on all
continents except Antarctica, seagrasses provide habitat, protection and nursery
grounds for economically valuable fishery species, act as indicators of and modify
local water quality and form close links between benthic and pelagic food chains,
and nutrient and carbon cycles (Jackson et al. 2001; Mateo et al. 2006; Unsworth
et al. 2014). They have a high level of connectivity with mangroves and coral reefs
(Unsworth et al. 2008) and are important habitats for food security and human well-
being (Cullen-Unsworth et al. 2014).

Seagrasses are among the most productive primary producers in the sea and, like
mangroves and salt marshes, have strong trophic links to the coastal ocean (Holmer
2009). Roughly half of their primary productivity is contributed by the seagrasses
themselves with the other half coming from associated epiphytes and macroalgae. In
tropical areas where seagrass species diversity (up to 12 species) is greater than in
higher latitudes, dugong, sea turtles and parrotfish directly feed on these angio-
sperms. Many tropical seagrass species are highly productive to the extent that they
can provide most of the fixed carbon for some coastal regions.

A large fraction of this fixed carbon is not consumed by herbivores, and seagrass
tissue is relatively refractory and decomposes slowly. A significant fraction of
seagrass production occurs below-ground as roots and rhizomes where this material
can be preserved over long time scales (Duarte et al. 2005). Seagrass meadows are
net autotrophic, acting as net CO2 sinks. Until recently, the role of seagrasses in
storing carbon has been ignored.

Like salt marshes and mangroves, seagrass meadows are highly dynamic in time
and space with large changes taking place over short intervals. Physical disturbance,
herbivory, intraspecific competition, nutrients, pollution and deposition of fine
particles all play key roles in influencing seagrass biomass, species composition
and area. A number of factors will determine if seagrasses will occur in any given
area, including natural biophysical drivers that regulate physiological activity
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and morphology, such as light availability, temperature, water clarity, salinity, wave
action, currents, depth, substrate, day length, nutrients, epiphytes and diseases. Also,
the availability of seeds and vegetative fragments and anthropogenic inputs, such as
sediment loading and excess nutrients may be important determinants in seagrass
existence.

Widespread losses of seagrass have occurred globally, and about 24% of all
species are at risk of extinction or are now classified as near threatened on the
IUCN’s Red List (Waycott et al. 2009; Short et al. 2011). The rate of seagrass
decline has increased over the past 70 years, from 0.9% per year prior to 1940 to 7%
per year since 1980. Direct impacts such as removal of seagrass during dredging
cause immediate loss, but a large number of indirect impacts cause much of the
permanent and chronic damage to seagrass meadows. These include overfishing,
long-term nutrient pollution and climate change.

Few metabolic studies have been conducted in the Southern Hemisphere to
investigate whether or not seagrass meadows have potential as carbon sinks (Duarte
et al. 2010), but the few studies available indicate that they have large storage
capacity (Duarte et al. 2011) and can form the basis for climate change mitigation
strategies. Seagrass meadows function to trap and bind sediment by trapping
suspended particles from currents and hereby help to clarify the overlying water
column. The root and rhizomes stabilise the sediments and help prevent coastal
erosion during storms, heavy rains and floods. Seagrass detritus is not only an
important trophic link, but accumulates to become an important carbon sink.

4.1 Fluid Dynamics: The Mechanism for Sediment
and Carbon Accumulation

Seagrasses, like their salt marsh and mangrove counterparts, are ecosystem engi-
neers capable by their very existence of reducing the velocity of currents and
attenuating waves to the extent that sediment particles can deposit on their surfaces
and on the seabed. Other factors play important roles in helping to accumulate
carbon, such as canopy complexity, turbidity, wave height and water depth
(Samper-Villarreal et al. 2016). But the essence of what drives the accumulation of
sediment particles and associated carbon is fluid dynamics. The movement of water
among, between and around seagrass blades is the key feature of carbon capture
(Koch et al. 2006).

The main source of energy required to move water is the sun which causes winds
that lead to waves and thermal gradients that lead to expansion, mixing and insta-
bilities in water gradients and thus flow. Seawater, being an incompressible fluid,
moves at a flow rate (Q) which is defined by the velocity (u) of the fluid that passes
through a cross-sectional area, A. Water flow leads to both hydrostatic and dynamic
pressures which are a constant. What this means in practical terms is that the sum of
the pressures helps to explain lift that occurs within, around and under seagrass
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canopies. Drag is another force that operates in the case of water motion and has two
components, (1) viscous drag (Fd) that exists due to the interaction of the seagrass
surface with the water and defined as

Fd ¼ 1=2CdρAu
2 ð4:1Þ

where Cd is the drag coefficient and ρ is the hydrostatic pressure and (2) the dynamic
or pressure drag (Fp) that exists under high flows when flows separate from
boundaries.

Water flow can be either smooth and regular (laminar flow) or rough and irregular
(turbulent flow), depending on the velocity and temporal and spatial scale under
investigation as defined by the Reynolds number:

Re ¼ lu=v ð4:2Þ
where l is the length scale under observation and v is the kinematic viscosity. Re

defines four flow regimes that may occur: (1) creeping flow where Re << 1 which
occurs at very slow flows and spatial scales such as those experienced by microbes,
(2) laminar flow (1 < Re < 103) which is smooth and regular, (3) transitional flow
(Re � 103) which involves the production of eddies and disturbances in the flow and
(4) fully turbulent flow (Re >> 3). These flows are scale-dependent; flow is almost
always turbulent across entire seagrass meadows but laminar at the scale of individ-
ual seagrass leaves.

Flow conditions become more complex when water approaches a boundary such
as the seagrass canopy or seafloor. Water cannot penetrate such boundaries but slips
by it, a condition which leads to the development of a velocity gradient perpendic-
ular to the boundary as the velocity at the boundary will be zero relative to the stream
velocity (U0). As water flows downstream, the velocity gradient will get larger and a
slower moving layer of water will develop next to the boundary. Vertically, there is a
sublayer in which the forces are largely viscous. Consequently, the mass transfer in
this layer is slow, dominated by diffusion, which is called a diffusive boundary layer.
Such boundary layers can become embedded within one another such that it is
possible to define boundary conditions around blade epiphytes, flowers, leaves and
the canopy.

At the molecular level, a boundary layer develops on the sediment surface as well
as on each leaf, shoot or flower as water flows through a seagrass meadow. The faster
the water movement, the thinner the diffusive boundary layer, and thus the transfer
of molecules (e.g. CO2) is faster from the boundary layer to the water column. When
currents are weak, the flux of molecules may be diffusion-limited, but after a critical
velocity (Uk) is reached, the transfer is no longer limited by diffusion but by the rate
of assimilation capacity (i.e. biological or biochemical activity). The mass transfer of
molecules also depends on other factors such as the thickness of the periphyton layer
on the seagrass leaves, reactions within the periphyton layer and the concentration of
molecules in the water adjacent to the leaf-periphyton assemblage.
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At the scale of shoots (mm to cm), a feedback mechanism operates as individual
shoots are affected by the other shoots and its position within the entire canopy
(i.e. edge versus centre of the entire meadow). As water velocity increases, shoots
bend which minimises drag, but the forces exerted on individual shoots are more
complex when waves are involved as a shoot is exposed to unsteady flows in
different directions. This is confirmed by the fact that in wave-swept environments,
seagrass leaves become longer as wave exposure increases (de Boer 2007). Flow
around shoots results in bending but also pressure gradients on the leeward side of
the leaf such that a vertical ascending flow is generated downstream of the shoot.
This water then disperses horizontally at the point where the leaves bend over with
the flow. Interstitial water is also flushed out at the base of the shoot due to the
pressure gradients generated on the sediment surface.

At the whole-canopy level, reduced flows occur within the canopy due to the
deflection of the current over the canopy and a loss of momentum within the canopy
(van Katwijk et al. 2010). Water speed as a result can be 2 to >10 times slower than
outside the meadow. It is this process that allows water and sediment particles to be
trapped during low tide; even short seagrass canopies can still reduce water velocity
(e.g. Zostera novazelandica; Heiss et al. 2000). Vertically, however, water flow
intensifies at the height of the sheath or stem as these parts are much less effective at
reducing water velocity compared with the leaf component. Canopy flow is never-
theless complex because it is a function of the drag or resistance of the leaves on the
water.

Seagrass canopies are overall areas where sediments deposit and carbon accu-
mulates largely due to the reduction in velocity and intensity of turbulence, that is, a
reduction in flow strength that leads to a reduction in resuspension within the canopy
(de Boer 2007). Although few data (Gacia et al. 2003) exist for empirical measure-
ments of sediment deposition in seagrasses, Duarte et al. (2013a, b) estimate a mean
rate of 0.2 � 0.04 cm year�1. Accumulation may be seasonal, especially during
summer when seagrasses are at their maximum density and in winter then
resuspension may be greater than accumulation when seagrasses are minimal,
although roots and rhizomes may alone be sufficient to stabilise the accumulated
deposits (Bos et al. 2007). Epiphytes on seagrass leaves may foster the accumulation
of sediment particles by increasing the roughness of the canopy and increasing the
thickness of the boundary layer on the leaf surface. However, in highly wave-
exposed locations, seagrasses may not accumulate fine sediments due to
resuspension. Indeed, in some cases, sediment may be coarser beneath seagrass
patches as a result of turbulence generated by the leaves themselves.

4.2 Carbon Sequestration

Rates of carbon sequestration in seagrass meadows (n ¼ 396) average
220.7 � 20.1 g Corg m

�2 year�1 (�1 SE) and a median of 167.4 g Corg m
�2 year�1

with values ranging from �2094 to 2124 g Corg m
�2 year�1 (Table 4.1). As there
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are comparatively few sequestration rates derived from dating using radionuclides
(Romero et al. 1994; Mateo et al. 1997; Miyajima et al. 2015; Rozaimi et al. 2016),
most of these numbers were derived from metabolic measurements of annual
primary production and community respiration to determine the amount of carbon
available for storage (Cebrian 2002, Duarte et al. 2010, 2013a, b). Like salt marshes
and mangroves, there is no clear relationship with latitude as many of the most
luxuriant seagrass meadows are composed of Posidonia oceanica in the Mediterra-
nean. The data are skewed towards seagrasses of Florida, Spain and Texas, but there
are seagrass beds at nearly all locations that show net heterotrophy (those with
negative values in Table 4.1), that is, more loss of carbon via respiration than
fixed by the plants. Unlike the data for salt marshes and mangroves, nearly all of
the seagrass data were derived from metabolic studies rather than from empirical
measurements of actual carbon storage; thus these data do not necessarily account
for possible export of ‘excess’ carbon fixed by the plants nor possible import of
carbon from adjacent ecosystems, such as mangroves, salt marshes, coral reefs,
rivers or oceanic inputs. Nevertheless, on average, seagrass meadows store carbon
although apparently less than salt marshes and mangroves. This conclusion was also
reached for tropical Indo-Pacific seagrasses, with an estimated average net sink of
155 g Corg m

�2 year�1 (Unsworth et al. 2012).
The sequestration of seagrass carbon is likely to be underestimated as seagrasses

export a substantial portion of their primary production, both in particulate and
dissolved form. Available evidence indicates that the export of seagrass carbon
represents a significant contribution for carbon sequestration in sediments outside
seagrass meadows and in the deep sea (Duarte and Krause-Jensen 2017).

The effects of physical disturbance on carbon sequestration capacity of seagrasses
has recently been experimentally determined by Dahl et al. (2016). In a series of field
experiments testing the impact of shading and simulated grazing, they found that
treatments of high-intensity shading and high-intensity clipping to simulate grazing
show significantly lower net community production and carbon content in below-
ground biomass than in control plots. This latter effect was caused by erosion of the
surface sediment due to the removal of above-ground biomass. Their findings
indicate that high-intensity disturbances reduce the ability of seagrass meadows to
sequester carbon.

Seagrasses, unlike their marsh and mangrove counterparts, can clearly modify
seawater pH to the extent that this phenomenon may have some bearing on their
ability to withstand ocean acidification. Near a natural volcanic vent off the Italian
coast, Apostolaki et al. (2014) found that at high CO2 levels in close proximity to the
vent, seagrasses have high rates of primary productivity but less biomass possibly
due to greater grazing, nutrient limitation or poor environmental conditions. A
similar result was found in relation to a CO2 vent in Papua New Guinea (Russell
et al. 2013). Thus, seagrass responses to ocean acidification may be complex rather
than a simple overall positive or negative reaction. The capacity of seagrasses to
modify their ambient pH may have implications for nearby coral reefs as the
presence of seagrasses results in a net increase in pH possibly ameliorating the
impacts of acidification (Unsworth et al. 2012).
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The net increase in pH suggests a positive trend between seagrass productivity
and carbonate deposition. Indeed, a study of particulate inorganic carbon (PIC,
mostly CaCO3) in seagrasses has shown that PIC stocks in the top 1 m of sediment
average 654 Mg PIC ha�1 exceeding POC (particulate organic carbon) stocks by a
factor of 5 (Mazarrasa et al. 2015). Meadows dominated by Halodule, Thalassia or
Cymodocea support the highest PIC stocks which decrease polewards by 8 Mg PIC
ha�1 per degree of latitude. Using PIC sediment stocks and estimates of sediment
accretion, Mazarrasa et al. (2015) estimated a mean PIC accumulation rate of 126.3 g
PIC m�2 year�1 or roughly one-half of the estimated rate of organic carbon seques-
tration (Table 4.1). Further, based on the global extent of seagrasses (177,000 to
600,000 km2), seagrasses globally store between 11 and 39 Pg PIC in the top metre
of sediment and accumulate between 22 and 75 Tg PIC year�1. This range of values
suggests a significant contribution to coastal carbonate carbon sequestration by
seagrasses (Gullström et al. 2018; Howard et al. 2018). High rates of carbonate
accumulation imply CO2 emissions from precipitation, but the POC and PIC stocks
between vegetated and un-vegetated sediments demonstrate that seagrass meadows
are strong overall CO2 sinks.

4.3 Carbon Stocks

Published and unpublished measurements of the organic carbon content of living
seagrass biomass and underlying soils were compiled recently by Fourqurean et al.
(2012a, b) based on data from seagrass meadows across the globe. The results show
a wide spread of data of soil organic carbon storage (Fig. 4.1) with most observations
being <100 Mg Corg ha�1 from short (<1 m) cores, but much higher carbon
inventories from cores taken to at least 1 m depth. Overall, a median value of
69.3 Mg Corg ha�1 was derived. Median above- and below-ground biomass were
0.264 and 0.540 Mg Corg ha

�1, respectively, underscoring that nearly all seagrass
organic carbon is stored in soil.

Geographically, it is difficult to discern true trends or patterns in the data owing to
the scarcity of data from many parts of the globe. Nevertheless, it is clear that
meadows of the Mediterranean seagrass Posidonia oceanica have the highest aver-
age soil storage (372.4 Mg Corg ha�1). The median soil Corg stock value is about
equal to the average for terrestrial soils, but about one-fourth of the median for salt
marsh soils and one-tenth that of the median for mangrove soils.

Using estimates of global seagrass area of between 300,000 and 600,000 km2 and
multiplying by the median soil Corg value, we derive a range of global Corg values of
between 2.1 and 4.2 Pg Corg for soils and between 75.5 and 151 Tg Corg for biomass.
If we assume that the 1 m soil data is the most complete inventory, the soil Corg stock
rises to between 5.8 and 9.8 Pg Corg. As with salt marshes and mangroves, soil Corg

stocks can be much greater in systems where unconsolidated soils accumulate to
depths greater than 1 m, such as in Posidonia oceanica meadows where 11 m thick
deposits have been found. Of course, meadows growing on coarse carbonates may
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have fairly shallow deposits of less than a metre with correspondingly small Corg but
large carbonate carbon inventories (Campbell et al. 2015).

Carbon storage in seagrass soils is a reflection of long-term nutrient history. In a
comparison of long-term nutrient history versus short-term nutrient enrichment,
Armitage and Fourqurean (2016) found that in sites undergoing 17 months of
nutrient additions, biomass carbon both above- and below-ground increase but soil
carbon content decrease by about 10% in response to phosphorous addition. There is
also less than 3% organic carbon in soil when seagrass leaf N:P exceeds a threshold
of 75:1 or when below-ground seagrass carbon stock is less than 100 g m�2 in the
experimental plots and within a naturally occurring long-term gradient of phospho-
rus availability. Their results show that even under nutrient-limited conditions,
seagrass beds have very high potential for carbon storage.

Black carbon may, in some instances, lead to an overestimation of carbon stocks.
Chew and Gallagher (2018) found that failure to subtract allochthonous recalcitrant
carbon (black carbon) formed outside the ecosystem overvalues the storage of
organic carbon. They estimate that current carbon stock estimates are positively
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Fig. 4.1 Estimates of soil Corg stored in the world’s seagrass meadows. Updated from Fourqurean
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biased, particularly for low organic seagrass environments, by 18% for temperate
regions and 43% for tropical regions. Obviously, more estimates of black carbon
need to be made in order to more accurately assess seagrass blue carbon stocks.

4.4 Potential Losses

Assuming an annual rate of loss of 7% (Waycott et al. 2009) and global area
estimates of 300,000 to 600,000 km2 (Fourqurean et al. 2012), seagrass decline
returns to either the atmosphere or to the adjacent coastal ocean (or both) from 0.54
to 1.08 Pg CO2 equivalents annually. This range is greater than that for salt marshes
(0.02–0.24 Pg CO2 equivalents) and mangroves (0.27–0.59 Pg CO2 equivalents) and
equal to about one-quarter of the average annual deforestation rate of 4.61 Pg CO2

equivalents.
If all seagrass was destroyed, 7.7 to 15.4 Pg CO2 equivalents would be lost which

is nearly twice to more than three times greater than the annual average rate of
deforestation across the globe. Obviously, the loss of seagrass is an ecological
catastrophe in terms of species and ecosystem services being lost and carbon that
is being either returned to the atmosphere or coastal ocean. Management emphasis is
urgently needed to stem the high rates of seagrass lost annually and to conserve and
restore presently declining meadows.
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