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1 Introduction and Motivation Example

With increasing smart devices introduced in healthcare monitoring applications,
it becomes possible to manage people and objects in real time in the Internet
of Things (IoT) era. Radio-frequency identification (RFID) is one of the most
popular techniques used in healthcare monitoring scenarios which can be used to
identify and monitor elderly people and patients, track hospital assets and medical
instruments, validate patients’ drug compliance, check status of operations, etc. [1]
In RFID-enabled healthcare applications, streams of data are collected in real time
and need to be processed within second response time in order to reduce risk of
decisions.

To ensure error-free decision-making in life-critical RFID-enabled monitoring
applications, a careful and fast responsive computing model is needed. Complex
event processing (CEP) [2], as a stream-based computing paradigm, has been widely
used in time-critical stream processing systems. Over RFID streams, queries of
interest are considered as complex patterns (or complex events) which can be
defined using SQL-style declarative [3] or rule-based languages [4]. To evaluate
these patterns (queries), a non-deterministic or tree-based model is needed which
could be running over the real-time RFID event streams [5]. However, existing
event detection engines are limited in optimization algorithms over RFID-enabled
healthcare applications [6, 7]. This paper is motivated by the need to efficiently
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Fig. 1 Motivation example of RFID-enabled healthcare monitoring

run event detection queries in a healthcare RFID application with specialized
optimization algorithms supported.

Motivation Example As shown in Fig. 1, in a RFID-enabled healthcare applica-
tion, suppose we want to monitor people and caregiver’s activity and movement in
order to make error-free decisions. Monitored people are attached with RFID tags,
the objects such as medicine, dosages, and instruments are also tracked by RFID
tags. Due to cost consideration, we assume to use passive tags. RFID tags are read
at fixed points and mobile readers. The readings of RFID tags, which we call simple
events (records), will be pushed to a local server. Event patterns (queries) can be
defined over these event streams. In a healthcare application, many activities need
to be monitored with specific workflow. For example, in Fig. 1, to track whether
a person in Room2 gets the right caring process, we can define an event detection
pattern query over the RFID streams with a declarative pattern definition language
proposed in [8, 9]:

Query 1:
PATTERN SEQ(Room r, ReceptionDesk rd,
! SEQ(SPD spd, Decontamination d, Packing p, Sterilization s, StoragePatch sp,

spd.id = d.id = p.id = s.id = sp.id),
Washing w, Operating o, rd.id=w.id=o.id)

Here, the control flow of RFID-based sterile processing [10] is shown in Fig. 2
which can be formulated as a subpattern in Query1 SEQ(SPD spd, Decontamination
d, Packing p, Sterilization s, StoragePatch sp, spd.id = d.id = p.id = s.id = sp.id).
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Fig. 2 The life cycle and workflow of surgical items in healthcare and hospital [10]

Query1 is a long sequence pattern query with a negated nested SEQ pattern
imbedded. Semantic meaning of Query1 is that a person moving from the room
area to the operation room should be followed by a reception desk reading and a
washing reading, and if the tools used for the operation are not (!) disinfected by
the flow in Fig. 2, then a complex event is triggered. The state-of-art complex event
processing (CEP) works [1, 2, 6] do not support such nested pattern evaluation. In
the Cayuga system [11], authors define composable queries with negation operator
which is only applied to a single atomic event type of SEQ pattern. NEEL [8, 9] aims
to solve nested pattern queries with query rewrite and some data structures, and their
works are the closest to the work in this paper. In this paper, we address the problem
of evaluate negation nested sequence queries in a healthcare context. The rest of
the paper is organized as follows: Section 2 introduces the event model. Section 3
presents the NFA-based evaluation model. In Sections 4, we present optimization
method of the evaluation model. Section 5 discusses experimental analysis of the
evaluation model, while in Section 8, we draw a conclusion of the paper.

2 Event Model

Event type is a specification or class label of objects that have the same semantic
meaning. Primitive event/atom event is an event which cannot be divided into
smaller events. Each primitive event has an event type. A complex event is an event
which is a combination of primitive events and/or complex events connected by
event operators. Event operators used in our event model include SEQ, Negation (!),
AND, and OR. An event instance denotes occurrence of a primitive or composite
event. Primitive event instance is denoted by lowercase letters, for instance, in
Query1 “s”. Event instance has temporal information denoted with start time and
end time. For a primitive event instance, start time equals to end time.
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Event type is denoted as Ei which includes attributes of the event instances of this
type. Primitive event types are predefined in the application domain. For example,
event type of decontamination event in Query 1 is denoted as “D,” while di ∈ Di

denotes di is an event instance of event type Di. Each event type has attributes which
is denoted as ei. attrj meaning the jth attribute of event instance ei [3, 8].

3 Evaluation Model

To evaluate a pattern query as described in Query, there are some models such as
tree-based model [12], petri-net-based model [13], rule-based model [14], and NFA-
based model [3]. We use the NFA-based model to evaluate pattern queries because
NFA is suitable for fast stream processing and is easy to be implemented.

For an event query defined with SASE language, the query is first transformed
into a query plan, and the query plan is then transformed into a NFA model. The
transformation of Query 1 is shown in Fig. 3.

In Fig. 3, the event pattern is first compiled into a query plan tree, event operators
are round nodes in the tree (SEQ in in Fig. 3.), and event types are transformed into
rectangular square nodes. Attribute constraints of different operators are attached to
corresponding nodes.

Fig. 3 Query plan and NFA of Query1
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Table 1 Running example of Query1 over a stream snapshot of a healthcare application

Timestamp Location TagID Timestamp Location TagID

R� ���� 9:05:28 13-04 RD 0007

W ���� 9:05:33 13-04 R1 0003

8:08:55 13-04 R2 0002 9:11:55 13-04 R2 0004

RD ���� W ����

8:24:35 13-04 RD 0003 O ����

9:00:01 13-04 RD 0002 9:32:01 13-04 O 0002

�:��:�� ��-��

�:��:	� ��-��

�:�	:	� ��-��


:��:�� ��-��


:		:	� ��-��

The query plan tree is then transformed into a NFA model. A start and end node
is constructed for a query as shown in Fig. 3. As there exists a Negation SEQ pattern
in Query, we construct a sub-NFA embedded into the overall NFA. A stack-based
data structure is used to store event instances of different event types. Events of the
same tag ID in different event types are connected with forwarded arrows.

Running Example For a given event stream snapshot as shown in Table 1, the
evaluation works as follows: For event types of R (R1-R8 in Fig. 1), each primitive
event should be stored in stack of type R in Fig. 3. In Table 1, caregivers with
TagID 0001, 0002, 0003, and 0004 are stored into a stack first, and then according
to the NFA model in Fig. 3, we should check whether there exist subsequent events
that fulfill the attribute constraint described in Query 1. This operation is checked
by traversing the corresponding stacks of RD, W, and O of the NFA and checks
the TagID attribute constraint over each stack. So we need to keep all the events
of types R, RD, W, and O in the evaluation process which would result in great
memory consumption and search operations. As shown in Table 1, the event with
TagID 0001 in red color would satisfy partial matches of Query 1; we need to check
whether the caregiver with TagID 0001 took the disinfected tools to people in the
operation room with sequence pattern SEQ(SPD spd, Decontamination d, Packing
p, Sterilization s, StoragePatch sp, spd.id = d.id = p.id = s.id = sp.id). This pattern
should be detected over workflow streams in Fig. 2; in this running example, we
omit the stream processing of this pattern.
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4 Optimization Algorithm

In the evaluation process of the NAF of an event query, we need to keep all the partial
matches of the subpattern until we slide forward to the next processing window.
With this mechanism, we need to keep partial matches in the stack and delete related
events which would not contribute to future matches. As stack operations are hard
to apply to batch deletions over the event streams, we propose to use an ordered B-
tree-based data structure to optimize the deletion operation of partial matches. The
ordered B-tree structure is shown in Fig. 4.

In Fig. 4, we only store a pointer in the stack data structure of NFA, and the event
data is stored in leaf nodes of a time-ordered B-tree data structure. Each TagID is
stored only once. Batch deletion of events from the memory works as the following
steps:

1. At the end of the sliding window, compute the time range which indicates the
start and end time of the window in the ordered B-tree.

2. For each TagID in the ordered B-tree, search for related stack, and search for the
subsequent events from the pointers between different types of stacks; output the
patterns that satisfy the query.

3. Delete the partial matches that do not generate matches in the time window, and
re-initialize the stack, and readjust the ordered window.

The event detection processing will move to the next sliding window after the
deletion process.

Fig. 4 Illustration of the ordered B-tree of Query1
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5 Experimental Analysis

In this section, we present experimental study of the event detection model with
a simulated RFID-enabled healthcare application. In the application, RFID read
interval is set to seconds that means we generate RFID data stream from different
RFID readers in seconds. We generate events in Fig. 1 with multithread styles to
simulate a practical scenario. The streams vary in hours long with different volumes.
Events of different event types fulfills a predefined normal probability distribution.

The simulation system is implemented in Visual Studio with C ++; data
generator is implemented with C#. The computer used in the experiment is with
i5 core processor and 4G memory. To compare the model and algorithm, we use
NEEL [9] as the benchmark.

We have tested response time and memory consumption of the algorithms over
different volume of streams with sliding window set 30 min. The results are shown
in Figs. 5 and 6.

From Fig. 5, we can see NEEL outperforms the NFA implementation of the
straightforward algorithm in this paper due to their optimization over a nested
pattern match, while with optimization method, our algorithm outperforms NEEL
as we delete partial matches in a batch manner.

Figure 6 is the memory comparison of different methods. As we can see, the
straightforward implementation algorithm of this paper uses less memory than other
methods. NFA + B-tree utilizes the most memory because it needs a B-tree to store
all events and the stack data structure to store relationship between different event
types. But considering time is critical in monitoring applications, we think it is
acceptable to use more memory to get a quick response.
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Fig. 5 CPU time consumption of three algorithms of Query1 (Window 30 mins, SEQ query length
4, imbedded SEQ length 4)
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Fig. 6 Memory consumption of three algorithms of Query1 (Window 30 mins, SEQ query length
4, imbedded SEQ length 4)
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Fig. 7 Event access number of two algorithms of Query1 (Window 30 mins, SEQ query length 4,
imbedded SEQ length 4)

We test the event access number of the NFA-based methods to see the efficiency
of searching different data structures. The result is shown in Fig. 7.

From Fig. 7, we can see that B-tree-based method utilizes few searches than
the straight method because the batch operation reduces some event access in the
memory which would also reduce partial match management cost in a way.

6 Conclusion

In this paper, we present event detection method over RFID-enabled healthcare data
streams with NFA-based model. To enhance fast partial matches deletion and reduce
event access numbers, we utilize ordered B-tree to store the events. Experimental
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results show that while our optimization method consumes more memory, it can
provide fast response and utilizes few searches over streams. In the future, we would
like to optimize the query execution plan over multiple queries.
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