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1 Introduction

For linear systems, the Kalman filter is recursively performed with the promising
performance. However, for nonlinear systems, the performance of Kalman filter will
be significantly degraded and possibly diverged [1]. The extended Kalman filter
(EKF) is a kind of nonlinear optimal algorithm with its robustness in the nonlinear
systems, but the EKF requires the computation of the Jacobian matrix, which greatly
increases the complexity of the filter [2].

Later, it is found that the Gaussian approximation is simpler, compared to the
nonlinear function approximation. Motivated by the Gaussian approximation, the
unscented Kalman filter (UKF) is proposed. On the basis of no trace transform, the
deterministic sampling and the linear Kalman filtering framework are adopted in
the UKF. It has the following characteristics [3, 4]: (1) compared to the EKF, its
accuracy is raised to the third-order accuracy for Gauss data and the second-order
accuracy for the nonlinear non-Gaussian data; (2) the computation of the Jacobian
matrix is not required; (3) the discrete system and the additive noise can be handled
by the UKF; (4) the computational complexity is the same order with that of the
EKF; and (5) the deterministic sampling strategy is adopted to avoid the problem of
particle recession and dilution.

But for a practical system, the UKF performance will be greatly reduced due to
the uncertainty model used and unknown signal statistical properties. In addition,
because of the bit precision of the hardware and filtering errors, the calculations in
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every step yield the uncompensated errors. In the UKF, the calculation is iteratively
performed. Therefore, the accuracy of UFK will be significantly reduced by error
accumulation in hundreds of iterations. Hence, some improved filter methods are
proposed.

Particle filter is presented in [5]. In this method, a large number of particles will
be produced, and its computation will be more intensive. Based on MIT an adaptive
UKF with the robustness to interference [6] is proposed, but there are also a large
number of partial differential calculations required. In [7], a confidence interval is
proposed to overcome the accuracy of UKF prediction degradation. Meanwhile, the
numerical stability in the UKF is considered [8]. Minimum entropy criterion [9],
confidence interval [10], and singular value decomposition [11] are used in the UKF
to improve the accuracy.

Motivated by the covariance intersection algorithm (CIA) [12], we propose an
improved UKF. The improved value can be derived via the actual value and the
estimate value, given the unknown correlation between these two values. In this
method, there is correlation between the true value for the present moment and
the estimate value for the next moment. But the numerical value of correlation is
unknown in actual situation. Through the CIA, the improved value is gotten without
the correlation.

2 The Covariance Intersection Algorithm

A and B are relevant information. When information A and information B need
fusion, the correlation information between A and B is very helpful for information
fusion. But in most instances, the correlation information is unknown.

How to solve this problem? The CIA is provided. {a, Paa} and {b, Pbb} represent
information A and its covariance and information B and its covariance, respectively.
Meanwhile, ã = a − a, b̃ = b − b, and c̃ = c − c. ã, b̃, and c̃ are error values. a, b,
and c are actual values. a, b, and c are mean values.

The mean squared error Paa and Pbb and the covariance Pab are computed as
follows:

Paa = E
[
ããT

]
, Pbb = E

[
b̃b̃

T
]
, Pab = E

[
ãb̃T

]

a and b are actually not known. Hence, Paa and Pbb are also unknown.
In the CIA, Paa and Pbb are approximated by the values Paa and Pbb. Based on

{a, Paa} and {b, Pbb}, the improved estimated value of {c, Pcc} is obtained by the
CIA without correlation Pab.

In Fig. 1, the solid line ellipses are Paa and Pbb, and the dotted lines ellipses are
Pcc. Based on Paa and Pbb, different Pcc is derived from different Pab. Pab is the
correlation information between information A and information B.



An Enhanced Unscented Kalman Filter Method Based on the Covariance. . . 199

Fig. 1 Improved covariance
elliptical shape

As shown in Fig. 1, Pcc is always located in the intersection of Paa and Pbb

for any value of Pab. Hence, according to the CIA, Pcc is obtained even if Pab is
unknown, and the more information Pcc can be recovered with the better Pab. The
CIA process is expressed by:

P−1
cc = wP−1

aa + (1 − w) P−1
bb (1)

P−1
cc c = wP−1

aa a + (1 − w) P−1
bb b (2)

where w is the weighting factor assigned to a and b. w is adopted different value
in 0 ≤ w ≤ 1 under different optimization method, for example, the Newton-
Raphson method, positive semi-definite method, and convex optimization method.
If the optimization method is improved, {c, Pcc} will be more accurate. Therefore
the optimal values {c, Pcc} are unique and relative to the optimization method.

In the CIA, {c, Pcc} are computed based on {a, Paa} and {b, Pbb}. The only
constraint is consistent, which is Paa − Paa ≥ 0 and Pbb − Pbb ≥ 0, to satisfy
the consistency constraint Pcc − Pcc ≥ 0 [12]. Pcc is the error variance and

Pcc = E
[
c̃c̃T

]
.

3 The Improved UKF

3.1 UKF

It is assumed that the nonlinear system is:

X(k) = f (X (k − 1)) + W (k − 1) (3)
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Y(k) = h (X(k)) + V(k) (4)

where f (·) and h(·) are nonlinear functions, k is the kth time, X(k) is the system state
vector, Y(k) is the system measurement vector, and V(k) and W(k) are process noise
and measurement noise. Their statistical properties are:

⎧⎪⎪⎨
⎪⎪⎩

E [W(k)] = 0, E [V(k)] = 0
E [W(i)W(j)] = Rδij ,∀i, j

E [V(i)V(j)] = Qδij ,∀i, j

E
[
W(i)V(j)T

] = 0

(5)

R(k) and Q(k) are their mean squared error.

1. Initialization

X̂a (0 |0 ) =
[
X̂(0 |0 )T 00

]T

(6)

Pa
XX (0 |0 ) =

⎡
⎣

PXX (0 |0 ) 0 0
0 Q (0 |0 ) 0
0 0 R (0 |0 )

⎤
⎦ (7)

2. Proportion symmetry sampling

χ (k − 1 |k − 1 ) =
⎡
⎣

X̂ (k − 1 |k − 1 )

X̂ (k − 1 |k − 1 ) + √
(n + λ) PXXi (k − 1 |k − 1 )

X̂ (k − 1 |k − 1 ) − √
(n + λ) PXXi (k − 1 |k − 1 )

⎤
⎦

T

(8)

PXX (k |k ) =
⎡
⎣

PXX (k |k ) 0 0
0 Q (k |k ) 0
0 0 R (k |k )

⎤
⎦ (9)

X̂ (k − 1 |k − 1 ) is the filter value at the k − 1th time. PXX(k − 1|k − 1) is the
mean squared error of X̂ (k − 1 |k − 1 ). PXXi(k − 1|k − 1) is the ith column of
PXX(k − 1|k − 1) and i = 1, 2, · · · , n.λ = α2(n + κ) − n, where α and κ are impact
factors and they generally take small values.



An Enhanced Unscented Kalman Filter Method Based on the Covariance. . . 201

3. Time update equations

χ (k |k − 1 ) = f (χ (k − 1 |k − 1 ) , k − 1) (10)

χ (k |k − 1 ) = f (χ (k − 1 |k − 1 ) , k − 1) (11)

μ (k |k − 1 ) = h (χ (k |k − 1 ) , k − 1) (12)

Ŷ (k |k − 1 ) =
2n∑
i=0

W(i)
m μi (k |k − 1 ) (13)

In Eq.(13), μi(k|k − 1) is the ith column of μ(k|k − 1) and i = 1, 2, · · · , 2n. W(i)
m

is the weighted value. W(0)
m = λ/ (n + λ), W(0)

m = λ/ (n + λ), and i = 1, 2, · · · , 2n:

PXX (k |k − 1 ) =
2n∑
i=0

W(i)
c

[(
χi (k |k − 1 ) − X̂ (k |k − 1 )

)

×(
χi (k |k − 1 ) − X̂ (k |k − 1 )

)T ] (14)

χi(k| k − 1) is the ith column of χ(k| k − 1) and i = 0, 1, · · · , 2n, and W(i)
c is the

weighted covariance matrix.
W(0)

c = λ/ (n + λ) + (
1-α2 + β

)
and W(i)

c = 1/2 (n + λ) , i = 1, 2, · · · , 2n. β

is the prior distribution factor (it is usually set to 2 for Gaussian distribution).

4. Measurement update equations

PXY (k |k − 1 ) =
2n∑
i=0

W(i)
c

[(
χi (k |k − 1 ) − X̂ (k |k − 1 )

)

×(
μi (k |k − 1 ) − Ŷ (k |k − 1 )

)T ] (15)

PYY (k |k − 1 ) =
2n∑
i=0

W(i)
c

[(
μi (k |k − 1 ) − Ŷ (k |k − 1 )

)

× (
μi (k |k − 1 ) − Ŷ (k |k − 1 )

)T ] (16)

K(k) = PXY (k |k − 1 ) P−1
YY (k |k − 1 ) (17)

X̂ (k |k ) = X̂ (k |k − 1 ) + K(k)
(
Y(k) − Ŷ (k |k − 1 )

)
(18)

PXX (k |k ) = PXX (k |k − 1 ) − K(k)PYY (k |k − 1 ) KT (k) (19)
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where PXX, PXY, PYY represent covariance matrix between X and X, X and Y, and
Y and Y, respectively. K is filter gain; X̂ (k |k ) is the filter value at the kth time.

3.2 The Improved UKF

The UKF, incorporating the CIA, can obtain the better estimated value
X̂improved (k |k ) without the covariance information between the real value X(k − 1)
and the estimated value X̂ (k |k ). Meanwhile, the UKF accuracy is improved in the
proposed method. Equations are expressed as follows:

P−1 = wP−1
XX (k |k ) + (1 − w) P−1

XX (k − 1 |k − 1 ) (20)

P−1X̂improved (k |k )= wP−1
XX (k |k ) X̂ (k |k )+ (1 − w) P−1

XX (k − 1|k − 1) X (k−1)

(21)

X̂improved (k |k ) is the improved filter value and its covariance matrix is P−1. w is
the weighting factor assigned to X̂ (k |k ) and X(k − 1).

At the kth time, the real value X(k − 1) is known. Through the UKF, the filter
value X̂ (k |k ) is computed. Due to the mismatched system model, noises, and
interferences existing in the UKF process, the accuracy of X̂ (k |k ) is reduced.

But the relevancy between the real value X(k − 1) and the filter value X̂ (k |k ) is
existing in the practice and unknown in the actual situation. Through the proposed
method, the relevancy computation about covariance matrix between X̂ (k |k ) and
X(k − 1) is avoided, and the accuracy of X̂ (k |k ) is improved. X̂improved (k |k ) is
obtain by (20) and (21) without the covariance matrix. The algorithm procedure of
improved UKF is in Fig. 2.

It is the algorithm flow chart in Fig. 2. X̂ (k |k ) and PXX(k| k) are computed
through UKF. And then X̂improved (k |k ) is got by the CIA.

In fact, some methods [9–11] are adopted to keep filter result stability in the
UKF algorithms, for example, U − D decomposition filter and singular value
decomposition filter. In the U − D decomposition filter, covariance matrix P is
decomposed as UDUT , where U is an upper triangular matrix and D is diagonal

matrix. Hence, UD1/2 is equivalent to P
1/

2 . In the singular value decomposition
filter, V is the eigenvector matrix of P, and D is diagonal matrix, where the diagonal

element is the singular value of P. Therefore, VD1/2 is also equivalent to P
1/

2 .
These two algorithms keep positive definite of P and make better robustness of the
UKF algorithms.

In these two algorithms, there will be few changes in the process of UKF.
Pa

XX (k − 1 |k − 1 ) is decomposed. In U − D decomposition filter, Eqs. (8) and
(9) transform into Eqs. (22) and (23).
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Fig. 2 Algorithm flow chart

PXX (k − 1 |k − 1 ) = U (k − 1 |k − 1 ) D (k − 1 |k − 1 ) U(k − 1 |k − 1 )T (22)

χ (k − 1 |k − 1 )

=
⎡
⎢⎣

X̂ (k − 1 |k − 1 )

X̂ (k − 1 |k − 1 ) + Ui (k − 1 |k − 1 )
√

(n + λ) Di (k − 1 |k − 1 )

X̂ (k − 1 |k − 1 ) − Ui (k − 1 |k − 1 )
√

(n + λ) Di (k − 1 |k − 1 )
]
T

⎤
⎥⎦

T

(23)

In the singular value decomposition filter, change equations are:

PXX (k − 1 |k − 1 ) = V (k − 1 |k − 1 ) D (k − 1 |k − 1 ) V(k − 1 |k − 1 )T (24)

χ (k − 1 |k − 1 )

=
⎡
⎣

X̂ (k − 1 |k − 1 )

X̂ (k − 1 |k − 1 ) + Vi (k − 1 |k − 1 )
√

(n + λ) Di (k − 1 |k − 1 )

X̂ (k − 1 |k − 1 ) − Vi (k − 1 |k − 1 )
√

(n + λ) Di (k − 1 |k − 1 )

⎤
⎦

T

(25)

Vi(k − 1|k − 1), Ui(k − 1|k − 1), and Di(k − 1|k − 1) are the ith column of
V(k − 1|k − 1), U(k − 1|k − 1), and D(k − 1|k − 1). i = 1, 2, · · · , n. Hence,
X̂ (k |k ), PXX(k|k), and X(k − 1) can be obtained. And then the CIA is also used to
improve accuracy.
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4 The Improved Kalman Filter (KF)

The linear system model is:

{
X (k + 1) = � (k) X (k) + � (k) W (k)

Y(k) = H(k)X(k) + V(k)
(26)

X(k + 1) represents the system state vector, and Y(k) is the system measurement
vector. V(k) and W(k) are process noise and measurement noise. Their statistical
properties are in (5). �(k), �(k), and H(k) are computation models according to the
object.

1. Time update equations

{
X̂(k) = �(k)X̂ (k − 1)

P (k |k − 1 ) = �(k)P(k)�(k)T + �(k)Q(k)�(k)T
(27)

P is the covariance matrix of X̂.

2. Measurement update equations

⎧
⎪⎨
⎪⎩

K(k) = P (k |k − 1 ) H(k)T
(
H(k)P (k |k − 1 ) H(k)T + R(k)

)−1

X̂ (k |k ) = X̂ (k |k − 1 ) + K(k)
(
Y(k) − H(k)X̂ (k |k − 1 )

)
P (k |k ) = (I − K(k)H(k)) P (k |k − 1 )

(28)

At time k, K is filtering gain and X̂ (k |k ) is the filter value.
From the model in (26), (27), and (28), there are also noises and interferences

existing in the KF process. Hence, the accuracy of KF is also improved by the
presented method.

According to the KF, X̂ (k |k ), P(k|k), and X(k − 1) are obtained. The presented
method is also used in the KF.

P−1
KF = wP−1 (k |k ) + (1 − w) P−1 (k − 1 |k − 1 ) (29)

P−1
KF X̂improved (k |k ) = wP−1(k |k ) X̂ (k |k ) + (1 − w) P−1(k − 1 |k − 1) X (k − 1)

(30)

P−1
KF is the fused covariance matrix; X̂improved (k |k ) is the improved filter value.
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5 Simulation

In this model, the position, velocity, and acceleration (PVA) motion model is usually
adopted. Two sensors are used to track one target. This model is in (31) and (32).

X(k) =

⎛
⎜⎜⎝

1 0 �t 0
0 1 0 �t

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠X (k − 1) + W (k − 1) (31)

θ(k)i = arctan

(
yk − si

y

xk − si
x

)
+ V (k)i (32)

X(k) is a state variable vector, X(k) = (
xk yk ẋk ẏk

)T
. The initial value of

X is
(

0 0 1 0
)T

. xk, yk are horizontal and vertical position, and ẋk, ẏk are the
corresponding horizontal and longitudinal velocity. W(k − 1) and V(k)i represent
Gaussian noise, W(k − 1) mathematical expectation is zero, and the covariance

is

⎡
⎢⎢⎣

1
30�t3 0 1

20�t2 0
0 1

30�t3 0 1
20�t2

1
20�t2 0 1

10�t 0
0 1

20�t2 0 1
10�t

⎤
⎥⎥⎦.V i

k N(0, 0.052).si
x and si

y are the ith sensor

measurement value. The location of them are represented by
(
s1
x , s1

y

)
= (1, 1) and(

s2
x , s2

y

)
= (−1,−2), respectively. The time interval Δt is 0.01 s; the simulation

time is 5 s. And [11] is the compared method.
In Fig. 3, two black triangles are the sensors’ location. Black line is the

real trajectory. Red line is the compared method estimation trajectory. Blue line
represents the trajectory obtained by the presented method. As shown in Fig. 3, the
presented method is closer to the real trajectory, compared to the compared method.

In Fig. 4, the vertical axis represents MSE on the x-axis, and the horizontal axis
represents time. In Fig. 5, the vertical axis represents MSE on the y-axis, and the
horizontal axis represents time. Red line is the presented method MSE, and blue
line is the UKF MSE in both of these two figures. From Figs. 4 and 5, the precision
is improved by more than half at some time, for example, time 120, 230, and 400
on the x-axis and time 100, 190, and 380 on the y-axis. Generally speaking, the
accuracy of proposed method is overall higher than the accuracy of the compared
method. Especially,

In Fig. 6, the MSE and Monte Carlo methods are adopted to compare these two
methods’ performance, and the number of Monte Carlo simulations is 500. The
expression is as follows:
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Fig. 3 Tracking trajectory between the UKF and the presented method

Fig. 4 MSE on the x-axis

MSE =
√√√√ 1

M

M∑
n=1

(
(x (k |k ) − x(k))2 + (y (k |k ) − y(k))2) (33)

M = 500, the value of k is from 1to 500.
In Fig. 6, the presented method MSE is lower than the compared MSE. It

is expressed that the accuracy of the proposed method is better than one of the
compared method.



An Enhanced Unscented Kalman Filter Method Based on the Covariance. . . 207

Fig. 5 MSE on the y-axis

Fig. 6 MSE

5.1 The Second Model

X (k + 1) =
[

1 1
− 1 −1

]
X(k) +

[
1
1

]
W(k) (34)

Y(k) = [
1 1

]
X(k) + V (k) (35)
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Fig. 7 X1(k)

X(k) = [
X1(k) X2(k)

]T
, the initial value is

[
0 0

]T
; W(k), V(k) are zero-mean

independent white noise with different varianceQ and R. Q = 0.7, R = 0.9. Other
element values are as follows:

�(k) =
[

1 1
− 1 −1

]
, �(k) =

[
1
1

]
, H(k) = [

1 1
]

Because the second model is a linear system, KF is used.
In Figs. 7 and 8, red line is the KF estimation value, and blue line is the presented

method value. As is shown in Figs. 7 and 8, the accuracy of KF is obviously higher
than the one of the proposed method. It is also instruction that the proposed method
is effective.

6 Conclusion

In this paper, an enhanced UKF method based on CIA is proposed. According
to the real value at time k − 1 and the filter value at time k, the accuracy
is effectively improved by this method. And more importantly, the correlation
information between the real value and the filter value is not involved.
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Fig. 8 X2(k)
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