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Foreword

Sensing and imaging is an interdisciplinary field involving a number of science,
technology, and engineering disciplines, such as optics, electricity, magnetism, heat,
sound, mathematics, and computing technology, among others. It has diversified
applications that have significantly changed our lives.

Our university, Chengdu University of Information Technology (CUIT), is jointly
sponsored by the Sichuan Provincial Government and Meteorological Bureau of
China with a history since 1951. It is specialized in atmospheric science and
information technology and focuses on research and teaching for meteorological,
industrial, and medical applications, etc. Our mission is to train students and
have them prepared for their future career development. With atmospheric science
and information technology as the core, we provide multidisciplinary programs in
science, technology, engineering, management, together with economics, literature,
law, and art in 17 colleges of CUIT. There are a number of interdisciplinary institutes
or centers in CUIT for graduate students to develop their potentials.

Because of the interdisciplinary nature of sensing and imaging, and to promote
the interdisciplinary research and teaching in our university, we are happy to have
the opportunity to hold the International Conference on Sensing and Imaging 2017
(ICSI 2017) in our university, Chengdu University of Information Technology,
Chengdu, Sichuan, China, on June 5–7, 2017.

I thank the co-chairs of the conference, Prof. Ming Jiang and Prof. Eric Todd
Quinto, for their efforts in co-chairing the conference, and Prof. Nathan Ida and
Prof. Alfred K. Louis for joining Profs. Jiang and Quinto to edit the proceedings of
the conference. I would also like to thank Prof. Quinto for leading the publication of
a special issue from nine selected submissions to the conference. Special thanks to
all the local organizers and volunteers for their efforts in supporting this conference,
especially to Prof. Jia He and Dr. Yongqing Zhang. I thank all the invited speakers,
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vi Foreword

session chairs, and participants for coming to CUIT and participating in this
conference. It is the efforts of all the aforementioned ones that made this conference
successful.

General Chair of ICSI 2017 Prof. Dr. Jiliu Zhou
President of Chengdu University
of Information Technology (CUIT)
Chengdu, China



Preface

The International Conference on Sensing and Imaging 2017 (ICSI 2017) was the
third of our conference series on sensing and imaging. The previous two were held
at Chifeng, Inner Mongolia, China, in 2015, and Taiyuan, Shan Xi Province, China,
in 2016.

With the success of the previous two conferences, and because of the suggestions
from peers and requests from participants, we decided to publish the proceedings for
ICSI 2017.

This conference was held at Chengdu University of Information Technology,
Chengdu, Sichuan Province, China, on June 5–7, 2017, and was sponsored and
organized by CUIT. We have received 79 submissions for ICSI 2017. After the
first round review, we accepted 66 submissions for presentation at the conference.
Among them, there were 22 invited talks.

The review and publication of these proceedings are unlike most conference
proceedings. All submissions were first reviewed to see if they could be suitable
for presentations at the conference and were accepted after revisions. Unlike other
proceedings of conferences, after the conference, all revised submissions underwent
another round of revision so the authors could incorporate discussions at the
conference. They were reviewed again for final acceptance in the proceedings, and
some submissions were rejected. We understand that proceedings are different from
journal submissions, but we hope the two rounds of revisions improve the quality of
submissions without delaying the publication.

For the publication of the work presented at the conference, nine submissions
were selected to be published in the special issue entitled “Recent Developments in
Sensing and Imaging” in the journal Sensing and Imaging of Springer Nature. Each
selected manuscript has been extended to a full-length regular paper with significant
extension from its conference version and reviewed under the normal reviewing
process of the journal Sensing and Imaging. This special issue has been edited by
Profs. Eric Todd Quinto, Mark Anastasio, Tingting Jiang, and Yu Shang, and has
been published.

vii



viii Preface

For the proceedings, we have 35 papers including 5 invited chapters. There
are four parts in the proceedings: Part I for invited chapters, Part II for sensing
technologies, Part III for imaging and image processing technologies, and Part IV
for sensing and imaging applications.

We thank Christopher T. Coughlin, Publishing Editor of Springer Nature, for his
prompt agreement and coordination to publish the proceedings in Lecture Notes in
Electrical Engineering (LNEE), so that authors could prepare their manuscript for
this publication opportunity. We thank all the reviewers for their timely responses
and comments for authors to improve the quality of manuscripts. We thank all the
authors for their participation in ICSI 2017 and their understanding and patience for
the two rounds of revisions. We thank the authors of the five invited contributions
for their effort in preparing the invited chapters. Finally, we thank Marie Josephine,
Jeffrey Taub, HoYing Fan, and Divyaa Veluswamy of the editorial team of Springer
Nature for their help and support during our editing of the proceedings.

Beijing, China Ming Jiang
Akron, OH, USA Nathan Ida
Saarbrücken, Germany Alfred K. Louis
Medford, MA, USA Eric Todd Quinto
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Sensing and Actuation: A Case for
Multidisciplinary Engineering Education

Nathan Ida

1 Introduction

The importance of sensors and actuators in design and operation of modern systems
cannot be overstated. Almost every device or system one comes in contact with
in industry, in transportation, in the home, or in medicine makes use of sensors
and actuators, often in staggering numbers. The humblest of cars may contain many
dozens of these devices, and some cars may contain literally hundreds of sensors and
actuators. A quick read of the OBD-II (On Board Diagnostics) list shows that a car
central processing unit monitors hundreds of sensors and actuators to comply with
pollution control [1], safety, and operational requirements of the modern car. But
sensors and actuators can be found in more mundane places affecting everybody’s
daily life. From thermostats in the kitchen to voice-actuated toys, to accelerometers
in telephones, to entertainment, and to medical tests in laboratories and hospitals,
the average person comes in contact with dozens of sensors and actuators every day,
often unknowingly, almost always casually. Does the average driver know where
the oxygen sensors in a car are, how many of them the car possesses, exactly what
function they perform, and how they perform that function? And if an accident
should occur, the driver is confident the airbag system will protect him or her. But
does the driver know that to do so, the system uses an array of accelerometers as
sensors and an explosive charge as a chemical actuator to generate the gas that fills
the bag? But, as a whole, the public has accepted sensors and actuators as part
of modern systems and is comfortable with their presence even if their location
and function is not known or understood. Indeed, the idea of sensing and actuation
may be viewed as an extension of natural sensing by living organisms, and much

N. Ida (�)
Department of Electrical and Computer Engineering, The University of Akron, Akron, OH, USA
e-mail: ida@uakron.edu

© Springer International Publishing AG, part of Springer Nature 2019
M. Jiang et al. (eds.), The Proceedings of the International Conference on Sensing
and Imaging, Lecture Notes in Electrical Engineering 506,
https://doi.org/10.1007/978-3-319-91659-0_1
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4 N. Ida

of the efforts in modern sensing and actuation can be summarized in attempts to
mimic and, in some cases, improve on natural sensing. In many areas of sensing
and actuation, existing sensors far surpass anything that may have existed as natural
sensors. But in others much remains to be done. For example, current chemical
sensors are very far from being able to mimic the nose of a dog, let alone surpass it
and the dexterity of a hand has no match in modern actuators.

One tends to think of sensors and actuators as a product of the information age
and of the rapid development of electronics associated with it. Indeed, as far as the
sheer number and variety of sensors available and their sophistication, this attitude
is justified. But sensors existed before electronics, before the transistor, before the
vacuum tube, or even before electricity. The first thermocouples date to 1826 when
Antoine Becquerel first used them to measure temperature. The Peltier effect that
allowed refrigeration and heating in space and then found its way into consumer
products dates back to 1836 and has been in use in thermoelectric generators from
the 1890s. The RTD (resistance temperature detector) was developed in 1871 by
William Siemens. The photoelectric sensor existed as a device since the early 1930s.
Aircraft use Pitot tubes to measure their speed, a device invented in 1732 by Henri
Pitot for the mundane function of measuring water flow in rivers. And, perhaps
more than any other sensor, the magnetic needle or compass dates back to at least
1100 CE and by some sources to 2400 BCE. Modern actuators can be easily dated
as starting with Michael Faraday’s invention of the motor in 1824. But actuation
occurred before, back into times lost to memory. The use of steam for actuation
can be dated to the work of Hero of Alexandria (10–70 CE) [2]. The use of water
and water wheels existed before 250 CE and probably much before that [3]. Wind
harvesting can be dated to at least the work of Hero [2] and probably earlier.

In addition, man has made use of animal senses (as well as animal power) to
improve his lot. In tenth-century France, salamanders were kept in water sources
to detect poisoning and later fish served the same purpose. To this day, truffles are
harvested with the help of pigs who can detect their smell. The canary in the coal
mine has become an adage, and in reality it saved lives of coal miners well into the
1990s. Plants as well have joined this quest; rose bushes have been used for early
detection of phylloxera – a fungus that devastated the wine industry in Europe in the
late 1880s. The quest for new sensors and sensing mechanism in the modern age can
be viewed as a continuation of human efforts to improve its lot by better sensing its
environment and, by extension, and by better interacting with it. This nobble quest
and the less noble but equally important industrial need for sensing and actuation
have fueled the rapid development of sophisticated sensors and actuators.

It is therefore not surprising that engineering education has responded by
introducing programs in sensors and to a much lesser extent in actuators either as
part of existing offerings or as new disciplines. Here too, the variety of approaches
mirrors the extent and variety of devices and the needs. Many approaches to
teaching sensors and actuators stem from the research environment and hence
follow the same degree of specialization. These tend to be focused on particular
classes of devices such as MEMs, nanosensors, biosensors, wireless sensors, and
many other specialized topics. Others view sensors and to a degree actuators as
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complementary to other primary topics such as control, environmental engineering,
physics, aerospace, transportation, and others, focusing on those aspects of sensing
and actuation that are of interest to the discipline and are often bundled with the
primary subject. The topics exposed are cherry-picked to fit the subject and may be
supplemented with topics in signal processing or microprocessor control as needed.
Still others, particularly training offerings, focus on classes of devices of interest to
an industry, a company, the military, or a branch of government. A course of study
of this type may focus entirely on a single class of sensors or a few related classes
such as accelerometers, temperature sensors, capacitive sensors, or pH sensing, as
examples. The focus is typically narrow and often intended to popularize the use of
these devices or to stimulate research. On the other extreme of the spectrum stand
“catch all” classes attempting to cover all topics related to sensors and/or actuators
following some logical groupings, necessarily minimizing the details to allow broad
coverage of the topics. In most cases, course offerings focus on sensors alone, but
there are also approaches that take into account the intended use of sensors and
hence deal with applications, interfacing, and related issues. Discussion of actuators
is less common, but, nevertheless, offerings exist either as separate subjects or
in combination with sensors. A quick search on the internet will produce many
offerings in each category complete with outlines and rationale.

The books and textbooks that have been publish to support teaching of sensors
and, again, to a smaller extent, actuators reflect and in many cases drive the type
of offerings available. The two most common types are handbooks [4–8] and
monographs [9–14]. Handbooks, by their nature, are inclusive but shallow and are
often written as cooperative efforts by many contributors, each focusing on subjects
of their expertise. Some are very broad in coverage [4–6], some more focused [7,
8], but in all cases they make for very poor textbooks. Indeed, their very intent is
as references not as textbooks. Monographs tend to be loaded with research results,
ideally suited as references but, in general, not suitable for teaching. There are a few
publications that qualify as textbooks in the classical sense [15–17]. Unfortunately
there are few of these, and some are specialized [15, 17] or at a low level, not really
suited for university-level teaching [16]. This is not surprising. Very often a textbook
will follow a course, and it is only practical for a publisher to invest in a good
textbook once the subject has received wide support in academia. The teaching of
sensors and actuators is not at that stage, that is, most classes are taught as electives
and are driven by local interest rather than by broad discipline requirements. The
fact that the topic itself is interdisciplinary contributes to this state.
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2 Proposed Course of Study

2.1 The Sensor-Actuator Ensemble

Sensors and actuators serve many purposes, but, on the whole, sensors may be
viewed as input to systems; these are devices that collect information needed for
the system to operate. The outputs of systems are connected to actuators of various
types and levels of sophistication and produce an output action of some sort – from
the simplest to the most sophisticated imaginable. In between, interfacing between
sensors and actuators is a processor, again of various levels of sophistication as
needed. This view of sensors and actuators broadens the scope of sensing and
actuation and emphasizes the link between the two classes of devices. In effect, any
input device, from switches to gyroscopes, becomes a sensor, and any output, from
a flashing LED to a multi-MW motor or the entire power grid, becomes an actuator.
The processors themselves can be trivial or utterly complex. Turning on the lights
involves a switch (sensor), a lamp (actuator), and the wiring harness (processor). Of
course, it can be much more complex than this. One can use a motion sensor to turn
on the lights and a microprocessor or timer to turn them off. The processor may be
a microprocessor, a computer, or a network of computers acting together to affect
processing of input data and producing output of some sort.

The three components of a system that involves sensors, actuators, and processors
must be studied together since these are interrelated. Sensors must be capable of
interfacing with microprocessors a need that affects their design. Many sensors
are designed specifically with this in mind affecting their operation, power needs,
sensitivities, and other properties such as the addition of purely digital functions
including buses, digital output communication links, and other circuits. Actuators
as well must be interfaced requiring compatibility with microprocessors. This
may be done by directly driving small, low power actuators or, more often, by
additional circuitry allowing microprocessor to control actuators. The most common
interfacing element, the microprocessor, has itself evolved to accommodate these
inputs and outputs, and it is not surprising to find that microprocessors contain
the basic circuit elements needed to interface to sensors and actuators. Sensors and
actuators often use similar principles, and many devices are dual – they can serve as
both sensors and actuators. Because of that, it is possible and perhaps desirable
to describe them together. The processor linking the two is at the center of the
system, and its role in achieving a successful sensing system must be addressed in
conjunction with sensors and actuators. In addition, basic electronic circuits needed
for interfacing or to operate the devices must be part of the study. These include
amplifiers, comparators, digital gates, bridge circuits, oscillators, and power supply
and management circuits. As a result, a comprehensive approach must address the
following:
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Sensors
Actuators
Interfacing circuits
Microprocessors

2.2 The Nature of Sensors and Actuators

The vast majority of sensors and actuators are electrical devices in the sense
that output of sensors and input to actuators is electrical. However, most devices
encompass principles and techniques that involve other disciplines. For example,
many pressure sensors are semiconductor devices, and as such they belong squarely
in the realm of electrical engineering. But their operation is based on strain in
the semiconductor, and understanding of their operation, properties, limitations,
and possible uses all involve knowledge of mechanical properties of materials
and structures. The same types of sensors are highly sensitive to temperature
variations. Understanding of the errors due to temperature variations and possible
compensation of errors involves heat transfer issues such as heat capacity. Many
sensors as well use multiple principles in arriving at the intended function. The
principles come from all disciplines, sometimes from corners of science that
engineering students know little or nothing about. Table 1 shows a selection of
effects commonly used in sensing and actuation. Some are common engineering
principles and well known to students, some less so. There are in fact over dozens
of effects and laws that are being used, and they hail from disciplines ranging from
quantum electronics to mechanics and everything in between.

The sensors and actuators an engineer is expected to understand, develop, and use
are governed by physical laws. The understanding of these physical laws is crucial
to understanding sensors and actuators. Again, these laws encompass all areas of
engineering and science. Some of the more important in sensing and actuation are
listed in Table 2.

In light of what sensors and actuators are and how they operate, the student needs
to have at least cursory knowledge of the following:

Solid state physics and atomic structure
Quantum theory and effects
Semiconductor physics, band gaps, energy states, and semiconductor processing
Thermodynamics, heat transfer principles, conduction, and radiation
Optics, spectral response, and optical effects
Materials science, material properties, statics, and dynamics
Wave propagation in materials, stresses, strains, acoustics, and ultrasound
Electromagnetics, magnetic materials, laws, and electromagnetic wave propagation
Chemistry and electrochemistry

In addition, the use, calibration, and analysis of data from sensors and actuators
require elements of the following:
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Table 1 A selection of physical effects used in sensing and actuation

Avalanche effect
Barkhausen effect
Cherenkov effect
Compton effect
Coriolis effect
Doppler effect
Edison effect
Einstein effect
Electrooptic effect
Electrocaloric effect
Electrochemical effect
Electron-cloud effect
Electrostrictive effect
Faraday effect
Ferroelectric effect
Giant magnetoresistance
Gibbs-Thomson effect
Gunn effect
Haas effect
Hall effect
Hypersonic
Inverse Doppler effect
Inverse Faraday effect
Joule’s effect
Josephson effect
Joule-Thomson effect
Kelvin effect
Kerr effect
Magneto-optic effect
Magneto-optic Kerr effect
Magnetoelectric effect

Magnetoresistive effect
Magnetostrictive effect
Magnus effect
Mateucci effect
Meissner effect
Miller effect
Mössbauer effect
Nernst effect
Peltier-Seebeck effect
Photoconductive effect
Photoelastic effect
Photoelectric effect
Photomagnetic effect
Photorefractive effect
Photothermal effect
Piezoresistive effect
Sagnac effect
Proximity effect
Relativistic Doppler effect
Reverse Cerenkov effect
Rusty bolt effect
Schottky effect
Skin effect
Stefan-Boltzmann law
Thermoelastic effect
Thermoelectric effect
Thermomagnetic effect
Thermooptic effect
Transformer effect
Triboelectric effect
Venturi effect
Wiedemann effect
Zeeman effect

Electronics and electric circuits and power electronics
Microprocessors and programming
Error analysis and statistics
System integration

3 A Proposed Approach to Teaching Sensors and Actuators

It is not likely that students will be proficient in all areas of science and engineering
involved in sensing and actuation. The very fact that sensors are used and taught
across all disciplines indicates that most students will only be knowledgeable in a
subset of the topics needed, perhaps a small subset. It is therefore imperative that the
topics necessary for understanding be taught as part of the offering in sensors and
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Table 2 A short list of laws, principles, and constants governing operation of sensors and
actuators

Ampere’s law
Avogadro’s hypothesis
Bernoulli’s equation
Biot-Savart law
Blackbody radiation
Bode’s law
Boyle’s law
Bragg’s law
Brewster’s law
Carnot’s theorem
Causality principle
Charles’ law
Cherenkov radiation
Conservation laws
Coulomb’s law
Curie-Weiss law
Dalton’s law of partial pressures
de Broglie wavelength
Planck constant
Dulong-Petit law
Einstein field equation
Equivalence principle
Faraday constant

Faraday’s law
Faraday’s laws of electrolysis
Gauss’ law
Hooke’s law
Huygens’ principle
Ideal gas constant
Ideal gas laws
Joule’s laws
Kirchhoff’s law of radiation
Kirchhoff’s laws
Lambert’s laws
Lenz’s law
Mach’s principle
Maxwell’s equations
Newton’s laws of motion
Ohm’s law
Pascal’s principle
Planck radiation law
Snell’s laws
Stefan-Boltzmann constant
Thermodynamic laws
Wave-particle duality
Wiedemann-Franz law

actuators at a level that is appropriate. One cannot expect to teach and the students
cannot be expected to learn all necessary topics in depth. Rather, the presentation
should be at a level that allows understanding at present and serves as the basis for
further study should specialization be needed in the future. Because sensors and
actuators cover a vast number of devices, the focus should be on principles based
on a rational classification of devices. Here too there are many approaches, all with
some logical choices behind them. However, for a general purpose, interdisciplinary
course in sensors and actuators, the choice must be on physical principles. The
proposed course of study divides sensors and actuators into nine sections based on
the following physical principles.

3.1 Temperature Sensors and Thermal Actuators

Topics include thermo-resistive sensors including metal resistance temperature
detectors (RTDs), silicon-resistive sensors and thermistors, thermoelectric sensors
and actuators, metal junction and semiconductor thermocouples as well as Peltier
cells (both as sensors and as actuators), PN junction temperature sensor, and
thermo-mechanical devices as thermal actuators. Bimetal sensors with applications
in thermostats and thermometers serve to introduce the concept of duality between
sensing and actuation.
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3.2 Optical Sensing and Actuation

The photo-conducting effect is the first optical principle that found its way into
sensing, and hence it is a good starting point. Silicon-based sensors including
photodiodes, transistors, and photovoltaic sensors allow the introduction of quantum
principles and basic semiconductor theory. Photoelectric, photomultipliers, and
CCD sensors are followed by thermal-based optical sensors including thermopiles,
infrared sensors, pyroelectric sensors, and bolometers. Most optical actuators rely
on MEMs principles and are therefore delayed to a special section on MEMs and
smart devices.

3.3 Electric and Magnetic Sensors and Actuators

A large number of devices fall into this class, and as a consequence, the discussion
is more extensive. It starts with capacitive devices followed by magnetic devices.
A variety of sensors and actuators including position, proximity, and displacement
sensors, as well as magnetometers, velocity, and flow sensors, are introduced. The
principle involved including the Hall effect and magnetostrictive effect are discussed
side by side with more common effects. A rather extensive discussion of motors
and solenoids covers many of the principles of magnetic actuation, but capacitive
actuators are discussed as well.

3.4 Mechanical Sensors and Actuators

Many sensors and actuators are mechanical in nature or respond to mechanical
quantities. The classical strain gauge is featured as a generic method of measuring
forces and the related quantities of strain and stress. But it is also used in
accelerometers, load cells, and pressure sensors. Accelerometers, force sensors,
pressure sensors, and inertial sensors are some of the more common sensors in
industry. Mechanical actuators are exemplified by the bourdon tube, bellows, and
vacuum motors.

3.5 Acoustic Sensors and Actuators

By acoustics are meant sensors and actuators based on elastic, sound-like waves.
These include microphones and hydrophones based on magnetic, capacitive and
piezoelectric principles, the classical loudspeaker, ultrasonic sensors and actuators,
piezoelectric actuators, and surface acoustic wave (SAW) devices. Thus, although
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acoustics may imply to many sound waves, the frequency range of acoustic sensors
is from near zero to many GHz. As in other classes of sensors, the distinction
between sensors and actuators is based on function and size rather than principles
and some exhibit duality. A loudspeaker is not different than a microphone
except for function and size, and ultrasonic transducers are almost always dual
sensors/actuators.

3.6 Chemical Sensors and Actuator

Chemical sensors and actuators are some of the most common, ubiquitous, and,
unfortunately, least understood devices by most engineers. A fairly large section of
the existing chemical sensors including electrochemical and potentiometric sensors,
thermochemical, optical, and mass sensors are covered. Chemical actuation is not
neglected either, and again, it is much more prevalent than normally thought.
Actuators include catalytic conversion, electroplating, cathodic protection, and
others.

3.7 Radiation Sensors and Actuators

Aside from classical ionization sensors, this category includes non-ionizing,
microwave radiation as well. Sensors are based on reflection, transmission, and
resonant methods, and, since any antenna can radiate power, it can serve as an
actuator to affect specific tasks such as cauterization during surgery, low-level
treatment for cancer, or hypothermia, not to mention microwave cooking and
heating.

In addition to the discussion of principles, the comprehensive approach proposed
includes the following topics to supplement and complement the discussion on
sensors and actuators:

3.8 Microelectromechanical (MEM) Sensors and Actuators

Microelectromechanical sensors and actuators as well as smart sensors form
an important part of available devices. Necessarily, methods of sensor/actuator
production are an important aspect of these devices. Some of the methods of
production are first given, followed by a number of common classes of sensors and
actuators including inertial and electrostatic sensors and actuators, optical switches,
valves, and others. In the context of smart sensors, issues associated with wireless
transmission, modulation, encoding, and sensors networks are emphasized.
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3.9 Performance Characteristics Sensors and Actuators

The discussion of the performance characteristics of sensors and actuators is
important in design and in applications. The transfer function, span, sensitivity and
sensitivity analysis, errors, nonlinearities as well as frequency response, accuracy,
and other properties including issues of reliability, response, dynamic range, and
hysteresis are discussed early in general terms and through examples of actual
sensors and actuators, and all sensor and actuator characteristics are repeated and
discussed in conjunction with specific sensors throughout the course of study.

3.10 Interfacing Methods and Circuits

With few exceptions sensors or actuators cannot operate on their own and require
electronic circuits to operate and interface. The circuits discussed start with the
operational amplifier and its many applications followed by power amplifiers and
pulse width modulation circuits for use with actuators. The A/D and D/A in their
various forms, including voltage to frequency and frequency to voltage converters,
follow these prior to discussion of bridge circuits and data transmission methods.
Excitation circuits including linear and switching power supplies, current and
voltage references, and oscillators are also discussed. Noise and interference issues
were also deemed part of interfacing although some issues of noise were introduced
in the section on performance characteristics.

3.11 Interfacing to Microprocessors

The microprocessor and its role in interfacing sensors and actuators do not need
introduction or justification. It is a fact that most sensors and actuators are
interfaced using microprocessors. The emphasis is on 8-bit microprocessors to
keep the discussion simple, but the issues addressed are general and pertain to all
microprocessors. The architecture, memory, and peripherals of the microprocessor,
the general requirements for interfacing, properties of signals, resolution, and errors
are introduced and their role in interfacing emphasized.

3.12 Units

Engineering students are familiar with the SI system of units, but the scope of
topics in sensors and actuators is so wide that they need to deal with many derived
units they are not used to and perhaps would never have used otherwise. A short
discussion on units is included as part of the introduction to the course.
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Each of the subjects A through K is allocated about 3.5 h on the average and
includes a few detailed examples per subject. The material in each section is
supplemented by a set of problems that allow the student to reinforce knowledge.
Some are classical problem where a student is asked to come up with a definite
answer, but many are open-ended questions that can easily be extended into projects
of considerable scope, within or out of class. The use of examples and problems is
particularly important in a course of this type as it allows the student to review
unfamiliar material in disciplines in which he or she is not proficient. To this end,
a generous supplement of material is being made available ranging from the table
of elements, through summaries on theoretical issues in radiation, electromagnetics,
acoustics, mechanics, and electrochemistry to data sheets and application notes. The
latter serve not only to supplement the class but also to take it beyond fundamentals
and keep it practical and current.

As was mentioned in the introduction, one of the missing links in sensors and
actuators is a modern, comprehensive textbook to complement a course of study
such as the one proposed. Undoubtedly that will happen, and in the future the student
will have access to a selection of good textbooks to help focus the study of sensors
and actuators.

4 A New Direction in Teaching

Most of the engineering curriculum tends to be narrowly focused with specific
subjects taught individually and later integrated through electives and in many cases
through a capstone project. This means that a student really only needs a handful
of topics, closely related to his/her discipline. An electrical engineering student
will rarely have recourse to stress analysis, and a mechanical engineering student
probably will never hear of Maxwell’s equations. The teaching of sensors and
actuators takes a decisively different turn and broadens the scope of teaching. The
student now is exposed to a very broad range of issues in many disciplines allowing
for a better understanding of systems and, indeed, for a broader education. In the
current environment in industry, where design and work is done in interdisciplinary
teams, this approach to teaching serves as a means of tighter cooperation between
disciplines or, at the very least, a better understanding of each other’s views and
needs.

5 Conclusions

The teaching of sensors and actuators is different than other areas in engineering
in the inherent broad base in principles. The proposed course of study touches
on some of the most important principles involved and links sensors and actuators
through processors. The proposed course is interdisciplinary in nature although, by
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necessity, it is based on electrical engineering principles with additions from all
other disciplines in engineering and many in sciences. A comprehensive approach
based on fundamentals is taken throughout with examples and problems anchoring it
in the application world and ensuring it is current. Central to the approach proposed
here is the microprocessor, viewed as a general-purpose tool for interfacing. Hence
an integral part of the course of study is electronic circuits needed for interfacing
and elements of microprocessor interfacing.
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Advances in Reconstruction Algorithms
for Diffuse Correlation Spectroscopy
and Tomography

Yu Shang

Abbreviations

BFI Blood flow index
CSF Cerebrospinal
DCS/DCT Diffuse correlation spectroscopy/tomography
DOS/DOT Diffuse optical spectroscopy/tomography
FE Finite element
PDE Partial differential equation
RBC Red blood cell
S-D Source-detector

1 Introduction

As an essential substance involved in the biological metabolism, the oxygen carried
in the blood is vital to the tissue health. Over the years, various technologies have
been developed to monitor the oxygen status in the tissue. Among these, near-
infrared diffuse optical spectroscopy/tomography (DOS/DOT) is one category used
most widely to detect the blood oxygenation level in bulk tissue [15, 20, 39], owing
to the features of noninvasiveness, portability, and inexpensive instrumentation.
DOS/DOT utilizes the light intensity change at multiple source-detector separations,
as well as the phase change (when frequency-modulated light is applied), to probe
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oxygenation parameters, including oxyhemoglobin ([HbO2]), deoxy-hemoglobin
([Hb]), and total hemoglobin concentrations (THC), as well as oxygen saturation
(StO2) [6, 13]. While the tissue oxygen parameters reflect the balance between
the oxygen supply and oxygen consumption, they are unable to comprehensively
evaluate the oxygen kinetics in the tissue [13, 34].

Blood flow is a dynamic parameter indicating how fast the oxygen in the blood
is supplied to the biological tissue. Additionally, blood flow reflects the vasodilation
and vasoconstriction features of the vessel, which is helpful to diagnose vasculature
diseases [6, 30]. Furthermore, combination of the blood flow and oxygen informa-
tion (taken together as hemodynamic parameters) allows for estimation of tissue
metabolic rate [28, 32], thus proving comprehensive assessment of oxygen kinetics
and physiology. Measurement of blood flow in deep tissue, however, is not a routine
task in the past, due to the limitation in the technology. Ultrasound Doppler can
measure the blood flow in large vessel [38], but not able to assess microvasculature
blood flow. Laser Doppler is a technology to detect microvasculature blood flow
[29], but only in superficial tissue, up to 2 mm. There exist some large instruments
for probing the blood perfusion in deep tissue, such as perfusion MRI or Xenon
CT [41]. However, the high cost and low portability restrict them for use in routine
clinic, such as in the bedside or surgical rooms.

A relatively new technology for blood flow measurement, namely, diffuse
correlation spectroscopy (DCS) [5, 7, 18, 24], has gained rapid development in
recent years. While DCS also utilizes the light in near-infrared (NIR) range, the
temporal autocorrelation of light electric field, rather than the light intensity, is
quantified in DCS to extract the blood flow information in deep tissue [3, 18].
DCS for tissue blood flow measurement has been validated against a variety of
flow techniques, including ultrasound Doppler [28], laser Doppler [30], perfusion
MRI [41], as well as fluorescent microsphere flow measurement [43]. Moreover, the
DCS has been applied in clinic, for therapeutic monitoring of the microvasculature
blood flow that are relevant to various diseases, such as ischemic stroke [31],
peripheral arterial disease [40], head-neck tumor, and breast tumor [8, 12]. The
successful applications of DCS also promote the development of diffuse correlation
tomography (DCT) [9, 23, 44], an extension of DCS for blood flow imaging.

Apart from instrumentation, the reconstruction algorithm of DCS/DCT also
contributes greatly to the accuracy and robustness of BFI values as well as the
detective sensitivity of diagnostic outcomes. In the next sections, we will briefly
describe the basic principle and hardware components of DCS/DCT. We will then
review the conventional algorithms used to reconstruct the blood flow information
from the measured data of DCS/DCT. The fast and wide applications of DCS/DCT
to the physiological studies and clinic triggered the developments of a few advanced
algorithms, which will be the focus in this paper. Finally, we will discuss the
future prospective of the DCS/DCT reconstruction algorithm and anticipate these
technologies for clinical implications.
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2 Principle and Instrumentation of DCS/DCT

The details of the DCS/DCT are described elsewhere [3, 7, 18, 23, 44]. Briefly,
NIR light is emitted by the long-coherent lasers (source) into biological tissue. The
light experiences multiple scattering events within the tissue, and a small portion of
photons eventually reach the detectors placed on the tissue surface millimeters to
centimeters away from the source. There are temporal changes in the light electric
field, which is due to the moving scatterers (mainly the red blood cells (RBC) in
the tissue). The autocorrelation function of light electric field with respect to delay
time is calculated, so as to quantify the RBC motions (i.e., blood flow) based on the
mathematical models specified below [4, 22, 24, 25]:
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is the wave vector magnitude of the light in the medium. l* is the photon random-
walk step length, with the value equal to 1/μs
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To comply with the principle of DCS/DCT, basic hardware components of

the instrument include a few long-coherent (>5 m) lasers in NIR range, a few
single-photon-detectors, a digital correlator, as well as a computer for data records
and analyses. Because the light electric field (E(0) and E*(τ )) cannot be directly
measured, the light intensity (I(0) and I(τ )) was collected by the detector instead,
and the temporal autocorrelation of light intensity is calculated as:
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There exists a Siegert relation that associates the electric field autocorrelation
with light intensity autocorrelation [27]:
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One pair of source (S) and detector (D) permits extracting a single value of
BFI from the measured DCS data, by assuming that the tissue is homogeneous
within the volume covered by the S-D pair. A few S-D pairs at different separations
enable to extract the blood flow in tissue with relative heterogeneity (e.g., layered
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tissue). Furthermore, an S-D array, i.e., numerous S-D pairs aligned in regular
pattern, allows for three-dimensional tomography/imaging of blood flow by using
reconstructed algorithm.

3 Conventional Reconstruction Algorithms for DCS
and DCT

The conventional algorithm for DCS is based on the analytical solution of a
partial differential equation (PDE), which is derived by combing the integral
form of autocorrelation function and the point spread function of time-domain

DOT [26]. Ultimately, the unnormalized autocorrelation of light G1
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The analytical solution of PDE is dependent on the geometry of the tissue and
usually has complicated mathematical forms. For the purpose of readily implemen-
tation, the tissue geometry is often assumed as semi-infinite, and accordingly, the
below solution is obtained [7, 18]:
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, Reff = − 1.440n−2 + 0.710n−1 + 0.668 + 0.0636n,

and n is the refraction coefficient.
The term α < �r2(τ ) > contained in K2(τ ) is the blood flow index (BFI) that we

aim to reconstruct. The form of <�r2(τ )> varies according to different flow models
being considered. For example, a diffuse model, i.e., <�r2(τ ) >= 6DBτ , was found
to fit experimental data well in large range of tissues [7, 18]. Here, DB is the effective
diffusive coefficient. To account for the fact that some scatterers are not “moving”
in the tissue, a factor α, denoting the ratio of “moving” scatterers to the total number
of scatterers, is added to <�r2(τ ) > (so that <�r2(τ ) > = 6αDBτ ). The combined
term, αDB, is referred to as blood flow index (BFI) in biological tissues.

The BFI is extracted by fitting the measured DCS data with the analytical
solution, which aims to minimize the sum of the squared errors over all delay times
(τ ), as specified below:

min
αDB

∑

k

[
g1,mea

(−→
r , τk

)− g1,cal
(−→
r , τk

)]2
(6)



Advances in Reconstruction Algorithms for Diffuse Correlation Spectroscopy. . . 19

Here g1,mea and g1,cal represent the measured data of normalized autocorrelation
function and the one calculated by the analytical solution (Eqs. 3 and 5), respec-
tively.

The solution of BFI by fitting the autocorrelation data to the analytical solution
can be numerically implemented via simplex approach, wherein the BFI (i.e., αDB)
is the only unknown variable during the searching process. A few attempts have
been made to improve the fitting procedures. For example, the parameter β is
conventionally calculated via the Siegert relation prior to the calculation of BFI,
in other words, solving the two variables sequentially. As an alternative method,
the solution to fit the two unknowns (BFI and β) simultaneously was proposed
and was shown to have good performance [11]. The methods to fit more than two
unknowns (e.g., BFI and absorption coefficient ua and reduced scattering coefficient
us’) were also developed and validated by experiments [14]. Despite the progress,
fitting multiple variables with simplex method is highly theoretical and sometime
may fail to find the minimum, thus has not gained widely applications.

Apart from the semi-infinite solution, there are analytical solution to the PDE
(i.e., Eq. 4) for other regular tissue geometries, such as cylinder and sphere [2, 4].
However, those solutions are rarely adopted for practical applications, due to the
complicated and tedious mathematical expression.

Similar to DCS, the conventional algorithm to reconstruct BFI in DCT is also
based on the analytical solution to PDE (Eq. 4), with the following expression
[9, 42]:
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are the normalized autocorrelation

data in homogeneous background and the heterogeneous tissue, respectively, both
collected at the ith source-detector pair of
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to the perturbation of autocorrelation function at pair of
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. The form
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→
r j, τ

)
depends on the tissue geometry and usually consists

of Green’s functions. The perturbation of BFI (i.e., �
(
αDB

(−→
r j
))

) relative to
homogeneous background is extracted by solving the linear equation group Eq. (7),
with incorporation of regularization method.

In 2003, the DCT was first utilized to image the cerebral blood flow in rat during
cortex spreading experiment [9]. The reconstruction algorithm was further improved
by considering the noise effect, and it was adopted in rat experiments [44].
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4 Recent Progress in DCS/DCT Reconstruction Algorithms

While the analytical solutions of PDE are able to quantify the BFI temporal change
or spatial contrast and have been utilized for diagnosis or therapeutic monitoring
of various diseases, this sort of algorithms requires the tissue to have simple and
regular geometries (such as semi-infinite). Most of biological tissues or organs (e.g.,
brain, limb, breast) have irregular geometry, which can be quantified by medical
imaging modalities. The assumption of regular geometry would lead to the error
in extracting the BFI values. It was reported that the semi-infinite solution leads
to up to 18% error in estimation of BFI in homogeneous tissue, dependent on the
curvature of the tissue being measured [33]. Besides the geometry, the analytical
solution generally assumes the tissue to be homogeneous, which is also inconsistent
with most of real tissues. In recent years, many efforts have been made to improve
the conventional algorithms. For example, a solution with geometry of multilayered
slabs was proposed and used to investigate the brain cortex activities [19]. Similarly,
an algorithm of “modified Beer-Lambert law” for blood flow was proposed to
quantify the blood flow change in slab-layered tissue [1].

Although tremendous progress was made as mentioned above, the analytical
solution, by nature, cannot account for arbitrary geometry of the tissue. This
problem was well resolved through introduction of finite element (FE) method,
according to Eq. (4). In FE method for Eq. (4), the variable to be reconstructed
is μa + 2μ

′
sk

2
0ταDB. When assuming μa and μ

′
s are homogeneous and fixing a

value of delay time τ , the value of αDB is extracted [23]. The concept of FE
solution for DCT was borrowed from that of DOT, and the combined term (i.e.,
μa + 2μ’

sk
2
0ταDB) is called “effective μa” [23], because it is equivalent to variable

μa in DOT reconstruction. As such, there is an established FE package for DOT
(e.g., Nirfast [10]) which can be readily adapted for DCT flow reconstruction.

In both phantom and in vivo experiments, the FE method exhibited good
efficiency in reconstruction of BFI contrast [23] and has been used for diagnosis
of the diseases such as breast cancer [17]. As seen from Eq. (4), the BFI is largely
affected by the variation of μa when using the FE method. Moreover, only the
g1(τ ) at single delay time, as described in last paragraph, is utilized in FE method.
Although the g1(τ ) data at multiple delay times could be used to denoise the curve
and select a stable single g1(τ ) value, the FE method, in principle, insufficiently
utilizes the DCT measured data (i.e., the g1(τ ) at multiple delay times).

For sufficient use of the DCT data, we proposed a new mathematical approach,
namely, the Nth-order linear algorithm (i.e., NL algorithm) for extracting BFI
value. Unlike the analytical solution or FE method, the NL algorithm does not
seek for the solution of PDE. Instead, it starts with combination of an Nth-order
Taylor polynomial with the integral form of g1(τ ). After a series of mathematical
procedures, the BFI is extracted by iteration of linear regressions, ultimately
reaching the following expressions:
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Equations (8) and (9) are called first-order and Nth-order linear (NL) algorithm,
respectively. Here αDB(i) is the BFI of the ith tissue component; w(p,j) is the
normalized weight of photon package collected by jth detector; and s(i, p, j) is the
path length of pth photon packet traveled within ith tissue component and collected
by jth detector. The coefficient of matrix A(i, j) has the following expression:

A (i, j) =
Q∑

p=1

−2w (p, j) k2
0(i)s (i, p, j) μ

’
s(i) (10)

The key parameter contained in Eqs.(8), (9), and (10) is s(i, p, j), which is
determined by the tissue geometry and heterogeneity, indicating that both of these
two features are fully taken into consideration in NL algorithm. The accuracy of
NL algorithm on various geometries and tissue heterogeneity was validated in DCS,
through computer simulations as well as animal experiment [33, 35].

As an example, we compared the performance of NL algorithm and the conven-
tional semi-infinite solution in reconstruction of the BFI in layered model of human
head. For this purpose, the human head was modeled as an ideal sphere, with four
layers including, in order from the outer to inner, the scalp, skull, cerebrospinal
(CSF), and brain (Fig.1a). Different BFI values were assigned to each layer of head
except CSF, which is considered as non-scattering tissue and does not contain RBCs.
The forward problem of DCS (i.e., generating autocorrelation function g1(τ )) was
implemented through Eq. (1), with the assigned BFI values and optical properties
(e.g., μa and μ’s) at different layers. Additionally, realistic noise was added to the
DCS data according to the relevant theory of photon statistics [11, 21]. The inverse
problem (i.e., reconstruction of BFI from noisy g1(τ ) data) was solved through
analytical solution (Eqs. 5 and 6) and NL algorithm (Eqs. 8, 9, and 10), respectively.
Due to the noise in DCS data, the reconstructed values of BFIs at different layers
tend to be difficult to separate, which is referred to as “cross-talk,” also commonly
found in NIRS for oxygenation calculation [36]. The “cross-talk” becomes more
evident when the photon signals at different layers are unbalanced. As shown in
Fig. 1b, when small S-D separation (2.0 cm) is utilized, the mean photon path
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Fig. 1 (a) Four-layered model of human head including, in order from the outer to inner, the scalp,
skull, cerebrospinal (CSF), and brain; the BFI values of the scalp, skull, and brain are assigned to
be 0.5, 0, and 1.0 × 10−8 cm2/s, respectively. (b) The mean path length of photons traveled in the
scalp, skull, and brain, collected at different S-D separations (i.e., 2.0, 2.5, and 3.0 cm)
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Fig. 2 Time course of BFI values at different layers, extracted by (a) semi-infinite solution,
(b) first-order and (c) fifth-order linear algorithm, as well as the (d) fifth-order linear algorithm
combined with regularization approach. The noisy DCS data were generated by computer
simulation on layered sphere human head through Eq. (1) as well as the theory of photon statistics

length (MPL, representing the photon signals) at shallow layers (scalp and skull) is
much longer than that in deep layer (brain), leading to larger signal unbalance. With
increase in S-D separation (e.g., 3.0 cm), the “cross-talk” effect is greatly alleviated.

In this comparison, we also introduced the Tikhonov regularization [16, 37] to the
NL algorithm, with aim to reduce the “cross-talk” among BFIs at different layers.
Figure 2 shows the reconstructed value of BFI at the three layers (scalp, skull, and
brain) reconstructed by semi-infinite analytical solution, NL algorithm, as well as
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Fig. 3 The mean value and the standard derivation of BFIs in different layers, extracted by
semi-infinite solution, first-order and fifth-order linear algorithm, as well as the fifth-order linear
algorithm combined with regularization approach. Note that with semi-infinite solution, the BFI
values extracted from 2.0, 2.5, and 3.0 cm represent flow in the scalp, skull, and brain, respectively.
The two horizontal dashed lines indicate the true values of BFI in the scalp and brain (i.e., 0.5 and
1.0 × 10−8 cm2/s, respectively). According to Fig. 1 caption, the true value of BFI in skull is
0 cm2/s

the NL algorithm with Tikhonov regularization. Because the analytical solution can
only extract a single value of BFI, the ones extracted from the small, medium, and
large S-D separation (i.e., 2.0, 2.5, and 3.0 cm) data represent the BFI of the scalp,
skull, and brain, respectively. Compared with the true values, the analytical solution
generates the largest errors (up to 78% error in brain flow, see Fig. 3), while it is
little affected by the noise, evidenced by the smallest variations (Fig. 2a). The BFI
values at different layers were elegantly reconstructed by the NL algorithm, with
accuracy dependent on the order of linear algorithm (Fig. 2a–d). First-order linear
algorithm generates around 22.6% error in brain flow, while the error was reduced
to 1.3% with fifth-order algorithm (Fig. 3). However, the noisy DCS data makes the
separation of BFI values at shallow (scalp and skull) and deep (brain) layers unclear,
as exhibited in Fig. 2b, c. By use of Tikhonov regularization, the BFIs at superficial
layers (in blue and green) and deep layer (in red) were better separated, and the
data robustness was enhanced (Fig. 2d). However, the regularization term, aiming
to reduce the condition number of matrix in Eqs. 8, 9, and 10, also decreases the
overall accuracy of BFI (Fig. 3). Therefore, investigations on regularization form
and parameter selection are needed for future studies.

It is possible to adapt the NL algorithm for use in DCT flow imaging. With
this aim, the entire tissue is discretized into numerous voxels (or elements) by
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Fig. 4 The pilot outcome of DCT flow imaging by NL algorithm. (a) Setup of flow spatial distri-
bution in a flat tissue, in which the flow value in a cube-shape anomaly is set as 1.0 × 10−7 cm2/s,
ten times of the background flow. The tissue contains 2250 (15 × 15 × 10) elements in a volume
of 30 × 30 × 30 mm3. (b) Three-dimensional flow images reconstructed by NL algorithm. The
autocorrelation data were collected from a 9 × 22 S-D array placed on the tissue surface (bottom
side)

meshing, and only the BFI within the same voxel is considered homogeneous.
As such, the “ith” in Eqs. (8)–(10) represents the number of voxel (or element)
rather than the tissue component. Similar to DOT, the DCT is also an ill-posed
problem requiring a few mathematical techniques to maintain the solution fidelity
and robustness. Here we present a pilot outcome of DCT flow imaging by NL
algorithm, for a flat tissue in a volume of 30 × 30 × 30 mm3. The Tikhonov
regularization mentioned above was adopted by us as well for flow reconstruction.
The autocorrelation data were collected by a 9 × 28 S-D array placed on the tissue
surface. To establish the DCT model, the flat tissue was meshed with 2250 elements
(15 × 15 × 10), as shown in Fig. 4a. The tissue contains a cube-shape anomaly
with BFI value at 1.0 × 10−7 cm2/s, ten times of the surrounding tissue. Figure
4b exhibits three-dimensional imaging of flow reconstructed by NL algorithm and
Tikhonov regularization approach. Generally, the anomaly was well reconstructed
and the outline is clearly visible. Due to the large unbalance between the numbers
of unknowns (i.e., 2250 elements) and that of measurements (i.e., 252 S-D pairs),
however, the reconstructed flow images tend to be homogenized, when compared to
the true contrast shown in Fig. 4a. More approaches for image reconstructions (e.g.,
algebraic reconstruction technique (ART), total variation (TV)) could be considered
as the potential method to improve the quality of flow imaging, which is one target
of our ongoing research projects.
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5 The Future Prospective of the DCS/DCT Reconstruction
Algorithms

While the applications of DCS and DCT to physiological studies and clinic are
remarkably increasing in recent years, there are technical challenges, particularly
in reconstruction algorithms. The first challenge is how to process the noisy
autocorrelation data, in order to enhance the accuracy and robustness of BFI value.
As mentioned in Sect. 3, by use of the analytical solution, the BFI was extracted
through minimizing the sum of squared errors between the analytical g1(τ ) value
and measured data (also referred to as least-squares method), which is based on L2

norm minimization. The L2 norm minimization, however, is susceptible to the noisy
data, or in other words, the target value is influenced more by the data with larger
error than that by the smaller one. The L2 norm minimization is also applied to the
procedure of linear regression in NL algorithm that we proposed. In the past decade,
there are increasing studies on L1 norm minimization, which exhibits advantages
in denoising and robustness for image reconstruction. In addition to the L1 norm
minimization, the progress in classification or cluster methods (such as the support
vector regression) provides alternative solutions to the fitting optimization. Hence,
introduction of advanced optimization approaches into DCS/DCT reconstruction
algorithm is one of the potential future studies.

For extraction of the BFIs at multiple layers (or tissues) using NL algorithm, an
important factor affecting the BFI value is the parameter selection. For example, we
used L-curve method to determine the parameter value in Tikhonov regularization
for the outcomes presented in Fig. 2. However, we found that the L-curve is not
ideal in parameter selection when the noise level is high, and manual adjustment of
parameter value is thus required. Furthermore, for any reconstruction approach (e.g.,
Tikhonov regularization, ART, or TV), development of mathematical techniques
that incorporate both solution fidelity and data noise will be a worthwhile target of
future research.

How to improve the temporal and spatial resolution of DCS/DCT would be
another possible research direction in field of reconstruction algorithm. Compared
with the morphological imaging modalities such as CT or MRI, the diffuse optical
technologies (DOT and DCT) have limited measured data, leading to low spatial
resolution in reconstructed images. Adding more S-D pairs to the optical system
is the most straightforward solution, which, however, substantially increases the
instrumentation cost. Maximizing the spatial resolution with limited measured
data would be a realistic solution, which is also a study focus for other image
technologies, such as CT or MRI. A few optimization methods proposed for those
image technologies, such as the compressed sensing or deep learning, could also
be translational to improve the spatial resolution of DCT flow imaging. Moreover,
the method could also be used to improve the temporal resolution of DCS, which is
particular critical for real-time monitoring of acute diseases such as ischemic stroke.
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Steady and Transient Flow CFD
Simulations in an Aorta Model of Normal
and Aortic Aneurysm Subjects

R. Vinoth, D. Kumar, Raviraja Adhikari, S. Vijayapradeep, K. Geetha,
R. Ilavarasi, and Saravanakumar Mahalingam

1 Introduction

The aorta is the biggest artery in cardiovascular system; it serves as the medium
for transmission of blood from heart to all organs in the body. An aortic aneurysm
(AA) is a regional bulging of the aorta. It represents the progressive weakening of
aortic wall in aneurysm region. Thoracic aortic aneurysm (TAA) and abdominal
aortic aneurysm (AAA) are the major subclasses of aortic aneurysm. TAA occurs in
the thoracic region of aorta and AAA occurs in the abdominal region of aorta. The
aneurysm may rupture if it is not treated timely, and it can be treated by medical
procedure and surgery. Aortic aneurysm is standing at fifteenth and tenth position as
leading cause of death and top ten killers for men older than 55 years, respectively,
according to the Society for Vascular Surgery. Abdominal aortic aneurysm is
identified as the 18th leading cause of death in patients of all age groups and the
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15th leading cause of death in the age group more than 65 years [1]. Every year in
the United States (USA), more than 15,000 patients die due to aneurysm dissection
and rupture [2]. The rupture or dissection of aortic aneurysm may happen when
aneurysm’s diameter reaches value in the range of 6–7 cm [3]. The maximum
aneurysm diameter criteria are used for the predication of aneurysm’s rupture and
advising the aneurysm patients to undergo medical procedure or surgery [4–6].
Darling et al. [7] described that the aneurysm with large diameter may not rupture.
Choksy et al. [8], Nicholls et al. [9] and Hall et al. [10] have reported that the
aneurysm with small diameter could also rupture. The maximum aneurysm diameter
criteria for the predication of rupture are unreliable [11]. The maximum diameter
criteria do not convinced the researchers in predicting the rupture of aneurysms.
The medical procedures and surgery for treating the aneurysms are high in price
with high mortality risks. Since the medical treatment expenses and mortality rate
are high, using the diameter of aneurysm as basis for advising the patients for
aneurysm repair is incompatible. It is essential to detect new parameters to predict
the aneurysm’s rupture and dissection. The diseases are to be found to exist in
cardiovascular system due to flow conditions in blood vessels [12]. Since the flow
of blood through vessel changes haemodynamic forces acting on the blood vessel
wall, the investigation on flows in aorta is crucial. The occurrence of aneurysm in
blood vessel mainly depends on the relationship between haemodynamic forces and
corresponding changes in layers of blood vessel wall [13]. Therefore, it is believed
that the interaction between haemodynamic forces and physiological conditions of
blood vessel wall plays a major role in the aneurysm formation, its progression and
rupture. Computational fluid dynamics (CFD) technique has been widely used for
simulating the blood flow in blood vessels.

In the present work, computational fluid dynamics approach is used for the
simulation of blood flow through an aorta model of normal subject and patient-
specific aortic aneurysm model. The bifurcations, curvature of arteries and branches
could result in the complex flow regions in the abdominal aorta [14]. Shahcheraghi
et al. [15] reported the effect of aortic branches on the flow. The aortic branches
considered by Shahcheraghi et al. in their model are included in the present study.
The brachiocephalic artery, common carotid artery, left subclavian artery, celiac
artery, renal arteries, superior mesenteric artery, inferior mesenteric artery and
common iliac arteries are included in the present study. The other branches and
arteries are not included in the present model to reduce the computational time.

The blood has a non-Newtonian nature, but it adopts Newtonian nature when
the shear rate is more than 100 s−1 [16, 17]. The blood as a Newtonian fluid is
an acceptable condition for large arteries like aorta [16, 18, 19]. In unsteady flow
analysis, the non-Newtonian nature of blood influences the flow when the shear
rate is less than 100 s−1 [16]. Yu Lei et al. [20] reported that the non-Newtonian
nature of blood plays a crucial role in the transportation of oxygen and low-density
lipoproteins (LDL) and the Newtonian blood rheology underestimates the wall
shear stress. Some authors reported that the non-Newtonian assumption for flow
simulation in large blood vessels is essential [21–23], while a few other authors
concluded that it is a noncrucial assumption [24, 25].
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The purpose of this study is to compare the blood flow pattern of aorta model
of normal subject with blood flow pattern of patient-specific aortic aneurysm.
The steady and transient analyses of flow were carried out. The haemodynamic
parameters like wall pressure, wall shear stress (WSS) and velocity distribution were
estimated during the analysis.

2 Methodology

2.1 Generation of Geometry

The generation of aortic geometry was described in our previous publication [26],
and it is depicted again in this section. The subject of normal case was a 36-
year-old female, and AAA case was a male aged 79 years. The heart rate and
blood pressure of subjects were normal. The study approved by the Institutional
Ethics Committee-Clinical Studies (Apollo Hospitals, Chennai, India) and obeyed
to the declaration of Helsinki. A 320-slice computed tomographic (CT) scanner
(Aquilion one, Toshiba Medical System) was used to obtain sectional images of
the aneurysmal and normal aorta. The pixel size and slice thickness were 0.5 mm.
The 3D geometry of subjects was reconstructed from CT image using Mimics v17.0
(Materialise, Belgium). The reconstructed geometry of aneurysmal aorta is shown
in Fig. 1, and the reconstructed geometry of aorta of normal subject was shown in
our previous publication [26].

Fig. 1 Geometry of
aneurysmal aorta

Common carotid artery
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2.2 Flow and Boundary Conditions

Steady State

The three-dimensional blood flow is governed by the Navier-Stokes and continuity
equations. The solutions of these governing equations were computed by using a
volume-based solver

ANSYS CFX (v15, ANSYS, Inc.). The laminar model was employed for the
flow simulation. The value of 10−4 was taken as maximum RMS residual value
for controlling the accuracy of solution. To attain convergence in simulation, the
minimum iteration was kept as 100, and maximum iteration was set at 500 in
convergence control. The Reynolds number considered for the flow analysis was
1,350 [27]. The velocity of 0.225 m/s was set as the inlet boundary condition
for aorta, which is calculated from the Reynolds number. The opening boundary
conditions were considered with static pressure of 120 mmHg at the outlet of all
the branches and iliac arteries. The aortic wall was taken as rigid, and no-slip
boundary condition was used at the aortic wall. The assumption of Newtonian
model for blood is a satisfactory assumption for aorta [16, 18, 19]; hence, the
blood flow was assumed to be Newtonian, homogeneous and incompressible. The
density and dynamic viscosity of blood were to be 1050 kg m−3 and 0.0035 Ns
m−2, respectively [16, 18, 28].

Transient State

The transient analysis was carried out to investigate the pulsatile nature of flow
through an aorta and a patient-specific aortic aneurysm. The time-varying velocity
and pressure profiles were obtained from Olufsen et al. [29]. The velocity profiles
at the inlet of aorta and pressure profile at the outlet of iliac arteries were enforced
in simulation. The velocity profile for aneurysmal aorta is shown in Fig. 2. The
velocity profile for normal subject and pressure profile were shown in our previous
publication [26]. In the present work, five cardiac cycles were employed with
a step of 0.002 s. The fifth cycle was taken as the final solution to estimate
the haemodynamic parameters from the aorta models. The pressure waveforms
enforced for both subject are the same. The cardiac cycle period was taken as 1 s
and the flow reaches its peak value at 0.14 s. A 15% of the inlet flow volume was
considered at brachiocephalic artery, and 5% of the inlet flow volume was assumed
for left subclavian artery and common carotid artery [15]. A 10% of the thoracic
mass flow was set at renal arteries [30], and pressure was assumed at other branches.
The blood was assumed to be a non-Newtonian fluid. The Casson fluid model was
recommended for non-Newtonian fluids by Casson [31], and the Casson fluid model
was used in the simulations to approximate the non-Newtonian nature of flow. The
dynamic viscosity of the Casson fluid model is given by Eq. (1) [32].

√
μ =

√
τY

γ̇
+√K (1)
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Fig. 2 Velocity profile. The fifth cardiac cycle of inlet velocity waveform of aneurysmal subject

Table 1 Mesh sensitivity test for aneurysmal aorta model

Mesh Number of mesh elements Wall shear stress in Pa Difference in %

Coarse mesh 546,087 17.684
54.61

Medium mesh 1,148,858 27.343
30.45

Fine mesh 1,488,499 35.67

where μ is the dynamic viscosity, τY is the yield stress, γ̇ is the shear strain rate
and K is the viscosity consistency. The yield stress was assumed as 0.004 Pascal
[33]. The other boundary conditions and properties were the same as that of steady-
state analysis.

2.3 Meshing and Mesh Sensitivity Test

The fluid domain geometry of aorta models was discretised into tetrahedral elements
by using ANSYS Workbench (v15, ANSYS, Inc.). Three tetrahedral meshes
(coarse, medium and fine mesh) were generated for the fluid domain geometry of
each model. The mesh sensitivity test was carried out by steady-state analysis with
maximum wall shear stress (WSS) value as reference for comparison in the model.
Table 1 shows the details of mesh sensitivity test of aneurysmal model. The mesh
sensitivity test for normal subject was shown in our previous publication [26]. It is
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observed that the difference in maximum WSS between fine and medium mesh was
lesser than the same between medium and coarse mesh. Hence, the fine mesh was
considered for analyses.

3 Results and Discussion

3.1 Steady State

The velocity, wall pressure and wall shear stress distributions in the models were
estimated from this analysis. Figure 3 shows velocity streamline of the aorta models.
The flow in aorta model of normal subject is highly stable. The flow in aneurysmal
aorta model is unstable and recirculation encounters in aneurysm region. This
recirculation makes the bits of protoplasm in prolonged contact with the aneurysm
lumen surface, and it induces the platelets deposition in the lumen surface [34].
The platelets deposition contributes to the thrombus formation, and it may lead to
aneurysm rupture. The high velocity of flow has occurred at the branches of aortic
arch. The peak velocity of the aneurysmal model (1.068 m/s) was greater than the
same of the aorta model of normal subject (0.671 m/s). The results depict that the

Fig. 3 Velocity streamline.
(a) Normal (b) Diseased
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Fig. 4 Wall pressure. (a) Normal (b) Diseased

flow was streamline in aorta model of normal subject but the flow was unstable in
the aneurysmal aorta model due to recirculation. The flow pattern within the lumen
surface depends on the geometrical arrangement of lumen. These results propose
that the aneurysm may cause severe threats to the patients. The wall pressure
distribution of the aorta models is shown in Fig. 4. The wall pressure was distributed
uniformly in the aorta model of normal subject, but there was a nonuniformity
in wall pressure distribution in the aneurysmal aortic model. The peak pressure
of the aneurysmal model (16,849.959 Pa) was more than the same in the aorta
model of normal subject (16,837.664 Pa). The pressure distribution result reveals
that the variation in the flow dynamics within the aneurysm region may increase
aortic wall pressure. Figure 5 presents the wall shear stress (WSS) distribution in
aorta models. The WSS is a stress component, and it is a tangential force acting on
the lumen surface due to blood flow. The wall shear stress can be converted into
biological signals by mechanoreceptor, and this signal acts on the endothelial cells
as stimulator to change the cellular functions of the vessel wall [35, 36]. The platelet
deposition along the aneurysm region is related with the WSS distribution along the
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Fig. 5 Wall shear stress. (a) Normal (b) Diseased

aneurysmal wall. The WSS is distributed comparatively uniform in both models.
The high magnitude of wall shear stresses appeared at the branches of aorta and
bifurcation. The peak value of WSS in aneurysmal model (45.670 Pa) was more
than the peak value of WSS from aorta model of normal subject (30.495 Pa).

3.2 Transient State

The velocity, wall pressure and WSS were estimated at four different time instants
during the cardiac cycle from transient analysis. These four time instants (t = 4.08 s
(maximum acceleration), 4.14 s (peak systole), 4.28 s (maximum deceleration) and
4.65 s (mid-diastole)) represent the important phases of the cardiac cycle. The
velocity streamlines of the aorta models are shown in Fig. 6. The streamlines show
that each model has a unique flow pattern according to the shape of aorta. At all-time
instants, the peak velocity of aorta model of normal subject was higher than the peak
velocity of aneurysmal aorta. At t = 4.08 s, the flow was uniform in both models.
The peak velocity occurred at branches of aorta. At t = 4.08 s and t = 4.14 s, the
velocity decreased in the aneurysm region. At t = 4.14 s, the velocity increased
in the descending region of aorta of normal subject, and flow became retrograde
in the aneurysm region. At t = 4.28 s, the velocity has reached its peak value at
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the bifurcation, and the velocity increased in aneurysm region. The recirculation
of flow and vortices occurred in aneurysm cavity. At t = 4.65 s, the flow velocity
increased in aortic arch and aneurysm region. The flow in aneurysmal model became

Velocity
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Fig. 6 Velocity streamlines. (a) t = 4.08 s (b) t = 4.14 s (c) t = 4.28 s (d) t = 4.65 s. Arrows
indicate the peak value. Magnified image is displayed on the right side
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Velocity

Velocity Velocity

Velocity
1.447

0.250

0.188

0.125

0.063

0.000

Normal subject Aneurysmal aorta

0.000

0.049

0.097

0.146

0.195

1.007

0.755

0.503

0.252

0.000

1.085

0.724

0.362

0.000
[ms^−1] [ms^−1]

[ms^−1]
[ms^−1]

c

d

Fig. 6 (continued)



Steady and Transient Flow CFD Simulations in an Aorta Model of Normal. . . 39

Fig. 7 Wall pressure at peak velocity. Arrows indicate the peak value. Magnified image is
displayed on the right side

worse. The recirculation may increase the deposition of platelets. This promotes the
thrombus renewal and it may cause aneurysm rupture. Figure 7 depicts the pressure
distribution at aortic walls at peak velocity. The higher-pressure value was observed
in the aorta model of normal subject. This occurs due to degree of complexity in
shape of aorta. The pressure decreased in the descending region of aorta in normal
subject. The pressure in aneurysm cavity was comparatively lower than the pressure
in the aortic arch. There was no change in radial pressure within the aneurysm
region.

The wall shear stress distribution in aorta models is presented in Fig. 8. At
t = 4.08 s, very low WSS is distributed in the aorta models, and a little higher
shear stress appeared at the branches of abdominal aorta. At peak systole, the WSS
attains its peak value. A few patches of low WSS (62.476–124.926 Pa) appeared
in the abdominal aorta region of normal subject. A little higher WSS occurred at
the bifurcation of aneurysmal aorta. At t = 4.28 s, some patches of low WSS were
distributed in ascending aorta, arch of aorta and descending aorta. The high WSS
appeared at the bifurcations. At mid-diastole, the intensity level of low WSS patches
has increased in the aortic arch and abdominal regions. The abnormal low and high
shear stress regions are observed in the aneurysm region. The abnormal low and
high wall shear stress patterns play an important role in the formation of thrombus
and aneurysm rupture.
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Fig. 8 Wall shear stress. (a) t = 4.08 s, (b) t = 4.14 s, (c) t = 4.28 s and (d) t = 4.65 s. Arrows
indicate the peak value. Magnified image is displayed on the right side



Steady and Transient Flow CFD Simulations in an Aorta Model of Normal. . . 41

Fig. 8 (continued)
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4 Conclusion

The CFD models of aorta of normal subject and patient-specific aortic aneurysm
were developed. The steady and transient analyses were carried out to compare
the blood flow patterns of the models. The Newtonian blood model was used for
steady-state analysis, and non-Newtonian blood model was assumed for transient-
state analysis. The haemodynamic parameters like wall pressure, wall shear stress
and velocity distribution were estimated from the models.

It is found from the results that the flow in the patient-specific aneurysmal model
was unstable. The abnormal high and low WSS occurred in the aneurysm cavity
during deceleration phase of flow. It may cause rupture of aneurysm. It is observed
from the results of steady-state analysis that all the measured haemodynamic
parameters from aneurysmal aorta model were higher than those obtained from the
aorta model of normal subject. This high magnitude of these parameters may lead
to severe problem to the aneurysmal patient. These measured parameters could help
the surgeons in assessing the severity of aortic aneurysms Furthermore, the usage of
gold nanoparticles as a contrast agent is the emerging new sort of approach to obtain
CT images of aneurysm. This may help in the prediction of rupture of aneurysm.

Acknowledgement Authors acknowledge Department of Science and Technology (DST, Govt. of
India) – Nanomission Infrastructure Project #SR/NM/PG-05/2008/ for grant.
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Blur-Specific No-Reference Image
Quality Assessment: A Classification
and Review of Representative Methods

Dingquan Li and Tingting Jiang

1 Introduction

Images may suffer from a variety of distortions during image acquisition, compres-
sion, transmission, display, etc. To monitor and improve the quality of images,
image quality assessment (IQA) becomes a fundamental technique for modern
multimedia systems. Since human is the end-user in most multimedia devices, the
most accurate image quality evaluation is achieved by subjective ratings. However,
subjective evaluation is difficult to carry out in real-time applications due to its draw-
backs of inconvenience, high price, and inefficiency. These drawbacks lead to the
need of efficient and effective objective IQA methods that can automatically predict
image quality. Objective IQA can be categorized into full-reference IQA (FR-IQA,
e.g., PSNR, MSSIM [27]), reduced-reference IQA (RR-IQA, e.g., FEDM [30]), and
no-reference IQA (NR-IQA, e.g., BRISQUE [17]). Due to the unavailability of the
reference images in most practical applications, NR-IQA is preferable but also more
challenging.

In this work, we focus on blur-specific NR-IQA. Blur is one of the most
common distortions and unintentional blur impairs image quality. Image blur
often occurs in the following situations: (1) out of focus, (2) object motion and
camera shake, (3) nonideal imaging systems, (4) atmospheric turbulence or aerosol
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scattering/absorption, and (5) image compression and image denoising [6, 9, 19].
Researches on blur-specific NR-IQA can bring new perspectives for related appli-
cations, e.g., autofocusing and image deblurring [12].

Various blur-specific NR-IQA methods have been proposed over the last two
decades. In 2009, Ferzli and Karam [6] summarized several traditional meth-
ods, most of which are designed for “autofocus” applications. In 2012, Vu and
Chandler [25] gave an overview and classified existing methods into edge-based
methods (based on measuring the edge spread), pixel-based methods (operated in
the spatial domain but with no assumption on edges), and transform-based methods
(operated in the spectral domain). Many novel blur-specific NR-IQA methods have
been recently developed, e.g., [7, 13–15, 29]. This work aims to give an overall
classification of existing methods and systematically introduces 18 representative
methods, especially the recently developed ones, so as to provide an integrated
and valuable reference for blur-specific NR-IQA research and help researchers keep
abreast of the recent progress.

Most existing methods only test their performance on Gaussian blur images. It
is thus unclear how these methods would behave in the presence of noise or in
more complex realistic situations. Stability and practicability are very important for
objective methods, so we conduct comparative experiments for 13 representative
methods with available codes on two sorts of images, including Gaussian blur
images from TID2013 [20] and realistic blur images from BID [4]. By comparing
the experimental results, we can see that most existing methods have satisfactory
performance on Gaussian blur images, but they fail to accurately estimate the image
quality of realistic blur images. Therefore, further study is needed in this field. At
last, we discuss the issues of realistic blur, on which practical blur-specific NR-IQA
methods focus.

The rest of this paper is organized as follows. In Sect. 2, existing blur-specific
NR-IQA methods are classified, and several representative methods are reviewed.
Then experimental settings, results, analysis, and discussions are presented in
Sect. 3. Finally, concluding remarks are made in Sect. 4.

2 Blur-Specific No-Reference Image Quality Assessment:
Classification and Review

Blur-specific NR-IQA methods based on traditional signal/image processing tech-
nologies have been investigated over 20 years. However, traditional signal process-
ing technologies cannot accurately express the diversity of blur process and the
complexity of human visual system (HVS), so researchers have turned to machine
learning technologies for estimating image quality of blur images. Though blur-
specific NR-IQA methods based on machine learning technologies have only been
studied in recent years, they are in a rapid growth. In terms of this natural fact, we
divide the existing blur-specific NR-IQA methods into two categories: learning-free
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Fig. 1 An overall classification of blur-specific no-reference image quality assessment methods,
including learning-free methods and learning-based methods. NSS is the abbreviation of “natural
scene statistics”

methods and learning-based methods. An overall classification is shown in Fig. 1,
where the representative methods in each category will be discussed in detail later.
It should be noted that, for Gaussian blur images, image sharpness can be used as
the synonym of image quality, while image blurriness can be used as the antonym
of image quality. In previous literatures, researchers mainly considered Gaussian
blur images; therefore, we not only review blur-specific NR-IQA methods but also
review both sharpness and blurriness estimators. However, we should also note that
the abovementioned relationships among quality, sharpness, and blurriness are not
necessarily true in realistic situations.

2.1 Learning-Free Methods

Among learning-free methods, some use the characteristics of blur in the spatial
domain (e.g., the spread of edges and the smoothing effects), while others further
use the characteristics of blur in the transform domain (e.g., the reduction of high-
frequency components and the loss of phase coherence). In this regard, learning-free
methods can be classified as transform-free methods and transform-based methods.

Transform-Free Methods

Transform-free methods only make use of the spatial information. They can be
further divided into edge-based methods and edge-free methods. The former makes
assumptions on edges while the latter does not.
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Edge-Based Methods

Given that blur affects the edge’s property (e.g., blur tends to make the edge spread),
a lot of blur-specific NR-IQA methods are developed based on analyzing the edges.
MDWE [16], JNB [6], CPBD [19], PSI [5], and EMBM [8] are the representative
edge-based methods.

A. MDWE

Marziliano et al. [16] proposed a blur-specific NR-IQA method, called MDWE,
based on measuring the average edge width. The basic assumption is that blur
makes the edges spread, so image blur can be directly estimated based on the edge
width. The framework of MDWE is shown in Fig. 2. First, the RGB color image
is transformed into the gray image. Then, the vertical Sobel filter is used as the
edge detector to find vertical edges in the image. Third, for each edge point, the
edge width is used as a local blur measure, where the edge width is measured by
the distance between the local maximum and minimum points closest to the edge

Fig. 2 The framework of MDWE, which is based on measuring the average edge width. The
bottom right part is an illustration of how to compute the edge width on one row of the image



Blur-Specific No-Reference Image Quality Assessment: A Classification and. . . 49

(along the horizontal direction). The bottom right part of Fig. 2 illustrates how to
compute the edge width. P ′2 and P2 are the local maximum and minimum points
closest to the edge point P1, so P1’s edge width is |P ′2P2|. Similarly, P3’s edge
width is |P ′4P4|. Finally, the global blur measure is obtained by averaging the edge
width over all edge points. The smaller the global blur value is, the better image
quality is.

B. JNB

Ferzli and Karam [6] estimated image quality by integrating the concept of just
noticeable blur (JNB) and edge width into a probability summation model. Taking
the characteristics of HVS into account, JNB is proposed to deal with the failure
of estimating blur among images with different contents. It considers the minimum
amount of perceived blurriness at distinct contrast levels. JNB width is the minimum
edge width that people can perceive the blur, and subjective experiments were
performed to obtain the JNB width. The results showed that:

WJNB(C) =
{

5, C ≤ 50

3, C ≥ 51
(1)

whereWJNB and C are the JNB width and the image contrast, respectively.
The probability P(ek) of detecting a blur distortion at edge ek is determined by

a psychometric function.

P(ek) = 1− exp

(
− | W(ek)

WJNB(Cek )
|β
)

(2)

whereW(ek) is the measured edge width using MDWE [16],WJNB(Cek ) is the JNB
width defined in Eq. (1), and Cek is the local contrast near the edge ek . β ranges
from 3.4 to 3.8, and it is simply fixed to its median value 3.6.

Adopting a probability summation hypothesis, the localized detection probabili-
ties over a region of interest R can be pooled as:

Pblur(R) = 1−
∏

ek∈R
(1− P(ek)) = 1− exp(−DβR) (3)

where

DR =
⎛

⎝
∑

ek∈R
| W(ek)

WJNB(Cek )
|β
⎞

⎠

1
β

Considering the size of the foveal region, the image I is divided into blocks
with a block size of 64 × 64. The edge blocks are the blocks with more than 0.2%



50 D. Li and T. Jiang

edge pixels. For each edge block Rb, the probability of detecting blur in Rb can be
computed by Eq. (3). Therefore, the probability of detecting blur in the image I is
given by:

Pblur(I ) = 1−
∏

Rb∈I
(1− Pblur(Rb)) = 1− exp(−Dβ) (4)

where

D =
⎛

⎝
∑

Rb∈I
| DRb |β

⎞

⎠

1
β

(5)

Finally, the image quality score s is determined by:

s = L

D
(6)

where L is the total number of processed blocks and D is given by Eq. (5).

C. CPBD

JNB method [6] is based on the assumption that the blur impairment increases when
Pblur increases; however, it ignores that blur is not likely to be perceived when the
edge width is small enough (below the JNB width). WhenW(ek) equalsWJNB(Cek )

in Eq. (2), the probability of blur detection Pblur(ek) is the just noticeable blur
detection probability PJNB = 63%. That is, when the probability of blur detection
Pblur at edge ek is below PJNB = 63%, the blur is not likely to be detected. Based on
this assumption, Narvekar and Karam [19] used the concept of JNB together with a
cumulative probability of blur detection. The flowchart of CPBD is shown in Fig. 3a,
which is the same as JNB method except for the last pooling step. The last pooling
step in CPBD is obtained from the normalized histogram of the probability of blur
detection Pblur in the image, and the image quality score equals to the percentage of
edges whose blur cannot be detected, which can be calculated as:

CPBD = P(Pblur ≤ PJNB) =
PJNB∑

Pblur=0

P(Pblur) (7)

D. PSI

Feichtenhofer et al. [5] proposed a perceptual sharpness index (PSI) based on
the statistical analysis of local edge gradients. First, an adaptive edge selection
procedure based on a threshold and thinning process is applied to select the most
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Fig. 3 The flowcharts of CPBD and EMBM

significant edges in the image. Second, the edge widths of the selected edges
are computed by an improved edge width measurement based on diagonal edge
gradients. Third, according to the human perception of acutance, edge widths above
the JNB width are subtracted by the edge slopes. Finally, the local sharpness map is
deduced by applying the above three steps in a block-wise way. Since the sharpest
regions in an image are most related to human sharpness perception, the global
image quality score is determined by the highest Qth percentile average of the local
sharpness values.
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E. EMBM

Guan et al. [8] proposed a blur-specific NR-IQA method EMBM by integrating
the concept of edge modeling into JNB, where the edge is modeled as the step
function convolved with a Gaussian function. The flowchart of EMBM is shown in
Fig. 3b. There are some differences between EMBM and CPBD. First, unlike CPBD,
the parametric edge model in EMBM is used for edge description and detection,
from which the edge width and the local contrast for each edge can be computed
simultaneously. Second, all edges are depicted parametrically, so EMBM needs not
to be performed in a block-wise way. Third, EMBM only considers salient edges
(with large contrast) that grab most attention from human visual perception.

Edge-Free Methods

Operating in the spatial domain but with no assumption on edges, edge-free methods
are based on the intrinsic characteristics of the image, the comparison between
an image and its re-blurred version, or the comparison between pixels and their
adjacent pixels. SVC [21], BIBS [3], MLV [1], ARISMc [7], and CATV [2] are the
representative edge-free methods.

A. SVC

Sang et al. [21] observed that the singular values in the singular value curve (SVC)
decay exponentially, and they decay even faster with larger degree of blur. So the
degree of attenuation can be used to capture the image blur. Since the shape of
SVC closely resembles an inverse power function, Sang et al. fitted the singular
value curve by the equation y = x−q . After taking logarithms of the equation, the
fitting process can be achieved by linear regression. Denote the kth singular value
as sk, k = 1, 2, · · · , r , then the estimated q follows the formula:

q =
∑r
k=1 ln k ln 1

sk∑r
k=1 ln k ln k

(8)

Since the tails of the singular value curve are almost indistinguishable, they are
not helpful for the estimation of q. Therefore, in practice, the truncated sum is
considered:

q =
∑
sk>c

ln k ln 1
sk∑

sk>c
ln k ln k

(9)

where c is a threshold value and it is set to 50.
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J=I J=J(smax)
s = 0 s = smin s = smax

J=I*G(s)

J   I

Fig. 4 The re-blurred process of image I in BIBS. G(σ) is the 3 × 3 Gaussian blur kernel with
standard deviation σ

B. BIBS

Image quality can be measured in a “FR-like” fashion by comparing the blurred
image with its re-blurred version which is generated by applying a Gaussian filter.
This is based on the observation that the blurred image changes less than the pristine
image after the re-blurring process. Bong et al. [3] predicted blind image blur score
(BIBS) by applying a re-blurring process (see Fig. 4), where two specific states in
the re-blurring process are selected: the state (σ = σmin) that the re-blurred image
starts to change its pixel values, and the state (σ = σmax) that re-blurred image never
changes anymore. Then, image quality is measured based on the shape difference of
local histogram between the image and its re-blurred versions.

C. MLV and CATV

Bahrami and Kot [1] proposed a novel blur-specific NR-IQA method based on the
content-based weighting distribution of the maximum local variation (MLV). MLV
of a pixel Ii,j is defined as the maximum variation between the intensity of Ii,j with
respect to its 8-neighbor pixels:

ψ(Ii,j ) = max{| Ii,j − Ix,y | |x = i − 1, i, i + 1; y = j − 1, j, j + 1.} (10)

And the MLV map Ψ (I) of an image I is constructed by:

Ψ (I) =
⎛

⎜
⎝

ψ(I1,1) · · · ψ(I1,N )
...

. . .
...

ψ(IM,1) · · · ψ(IM,N)

⎞

⎟
⎠ (11)

whereM and N are the numbers of row and column in the image I , respectively.
Since variations in the pixel values can be an indication of image quality, the

statistics of MLV distribution can be used for quality assessment. Bahrami and
Kot [1] modeled the MLV distribution by the generalized Gaussian distribution
(GGD), which is given by:
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f (Ψ (I);μ, γ, σ ) =

⎛

⎜⎜⎜
⎜
⎝

γ

2σΓ ( 1
γ
)

√
Γ ( 1

γ
)

Γ ( 3
γ
)

⎞

⎟⎟⎟
⎟
⎠
e

−

⎛

⎜⎜
⎜
⎝
(
Ψ (I)−μ

σ

√√
√√ Γ ( 1

γ )

Γ ( 3
γ )

⎞

⎟⎟
⎟
⎠

γ

(12)

where μ, σ , and γ are the mean, standard variation, and shape parameter, respec-
tively. Γ (·) is the Γ function. The estimated standard deviation σ is an indicator
of image blurriness, where σ increases by decreasing image blurriness. To take
the human sharpness perception into account, high variation regions should be
emphasized. This can be achieved by assigning higher weights to the larger MLV
pixels, which results in a weighted MLV map Ψw(I)

Ψw(I) =
⎛

⎜
⎝

w1,1ψ(I1,1) · · · w1,Nψ(I1,N )
...

. . .
...

wM,1ψ(IM,1) · · · wM,Nψ(IM,N)

⎞

⎟
⎠ (13)

where weight is defined as wi,j = eηi,j and ηi,j is the normalized rank (ranging
from 0 to 1) of ψ(Ii,j ) when Ψ (I) is sorted in ascending order.

Instead of considering the MLV distribution, later Bahrami and Kot [2] proposed
a content aware total variation (CATV) method by parameterizing the image total
variation (TV) distribution using GGD. Image quality is defined as the standard
deviation σ modified by the shape parameter γ to account for the image content
variation, i.e, image quality score s is given by:

s = σ

γ
1−γ

2

(14)

D. ARISMc

Gu et al. [7] proposed ARISMc to estimate image quality based on the analysis of
the locally estimated coefficients in the autoregressive (AR) parameter space. The
framework of the proposed ARISMc method is shown in Fig. 5.

To take chrominance information into account, the image is first transferred to
YIQ color space. Then, for each channel, the AR parameters at each pixel are
estimated based on an 8th-order AR model.

Since image blurring can increase the similarity of locally estimated AR param-
eters, image quality can be assessed by energy difference and contrast difference of
locally estimated AR parameters. The energy differenceEi,j and contrast difference
Ci,j of AR parameters at pixel (i, j) are given by:

Ei,j = | max
(x,y)∈Ωi,j

Wx,y − min
(x,y)∈Ωi,j

Wx,y |2 (15)
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Fig. 5 The framework of ARISMc

Ci,j =
| max(x,y)∈Ωi,j Wx,y −min(x,y)∈Ωi,j Wx,y |2

max(x,y)∈Ωi,j W 2
x,y +min(x,y)∈Ωi,j W 2

x,y

(16)

where Ωi,j = {(x, y)|x ∈ [i − 1, i + 1], y ∈ [j − 1, j + 1], (x, y) �= (i, j)} and
{Wx,y, (x, y) ∈ Ωi,j } denotes the estimated AR parameters at pixel (i, j).

The contrast difference can be further modified into block-based version:

Cbbu,v =
1

B

√ ∑

(i,j)∈Φu,v
Ci,j (17)

where Φu,v = {(i, j)|i ∈ [(u − 1)B, uB], j ∈ [(v − 1)B, vB]}, 1 ≤ u ≤
�M/B�, 1 ≤ v ≤ �N/B�, B is the block size andM and N are the row and column
of the image.

At percentile pooling stage, the largest Qk% values in the k(k ∈ {E,C,Cbb})
are averaged to obtain ρk . Then, the overall score for an image channel is given by a
weighted average of ρk(k ∈ {E,C,Cbb}). Finally, the ARISMc score for estimating
the image quality is given by a weighted average of the three overall scores in YIQ
channels.

Transform-Based Methods

In the transform domain, blur has some quality-relevant characteristics such as
the reduction of high-frequency components and the loss of phase coherence.
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Transform-based methods utilize wavelet transform or “Fourier-like” transform
(e.g., Fourier transform and cosine transform), so we categorize them into wavelet-
based methods and Fourier-like methods.

Wavelet Methods

A. FISHbb

Blur leads to the reduction of high-frequency components. Vu and Chandler [24]
proposed a fast wavelet-based method FISHbb by analyzing the energies of the
high-frequency coefficients. The image is broken into 16 × 16 blocks with 50%
overlapping in advance.

For each block, the DWT coefficients are obtained by Cohen-Daubechies-
Fauraue 9/7 filters with three levels of decomposition. The three high-frequency
sub-bands are denoted as SLHn, SHLn , and SHHn, (n = 1, 2, 3). Then, the overall
log energy at each DWT level is computed as the weighted average log energy of
the three high-frequency sub-bands, which is given by:

En = (1− α)ELHn + EHLn
2

+ αEHHn, α = 0.8. (18)

EXYn = log10

⎡

⎣1+ 1

MnNn

∑

i,j

S2
XYn
(i, j)

⎤

⎦ , XY ∈ {LH,HL,HH }. (19)

whereMn and Nn are the size of the nth sub-band.
Next, the overall sharpness score FISH of a block is given by the weighted sum

of the overall log energy in the three levels, which is obtained by:

FISH =
3∑

n=1

23−nEn (20)

Finally, a sharpness map is derived. And to consider the human sharpness
perception, the single FISHbb score is computed by the root mean square of the
1% largest values of the local sharpness map.

FISHbb =
√√√√ 1

K

K∑

k=1

FISH2
k (21)

where K denotes the number of blocks which received the 1% largest FISH scores
of the sharpness map and FISHk, k = 1, · · · ,K denote the FISH scores of these
blocks.



Blur-Specific No-Reference Image Quality Assessment: A Classification and. . . 57

B. LPC

Wang and Simoncelli [26] showed that step edges result in strong local phase coher-
ence (LPC) structures across scales and space in the complex wavelet transform
domain and blur causes the loss of such phase coherence. This gives a different
perspective for understanding blur perception. Following this idea, Hassen et al. [9]
proposed a blur-specific NR-IQA method based on the strength of the LPC near
edges and lines. Figure 6 shows a simple flowchart of LPC. First, the image is
passed through 3-scale 8-orientation log-Gabor filters, and the complex coefficient
at the ath scale, the bth orientation, and the kth spatial location is denoted as cabk .
Then the LPC strength at bth orientation and kth spatial location is computed by:

S
{b,k}
LPC = cos

(
3∑

a=1

waΦ{cabk}
)

= cos

(

Φ

{
3∏

a=1

c
wa
abk

})

=
R
{∏3

a=1 c
wa
abk

}

|∏3
a=1 c

wa
abk |

(22)

where Φ{·} and R{·} are the phase function and the real part of a complex number.
[w1, w2, w3] = [1,−3, 2] denotes the weights during LPC evaluation.

Then the LPC strength measure at all orientations and kth spatial location is
pooled by a weighted average. To give higher importance for the orientations with
more energy, the weights are determined by the magnitude of the first (finest) scale
coefficient c1bk . So the LPC strength measure at kth spatial location is given by:

Image passed through 3-
scale 8-orientation log-

Gabor filters

Compute LPC strength at
one orientation and one

spatial location

Compute LPC strength at
each spatial location

LPC score

Pooling

Fig. 6 A simple flowchart of LPC. It consists of three steps: computation of complex coefficients,
LPC strength calculation, and LPC strength pooling
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S
{k}
LPC =

∑8
b=1 |c1bk|S{b,k}LPC∑M
b=1 |c1bk| + c0

(23)

where c0 = 2 is a constant to avoid instability when
∑M
b=1 |c1bk| is close to zero.

Finally, a spatial LPC map is obtained. Let S{(k)}LPC , k = 1, · · · ,K denote the

sorted LPC strength values in descending order such that S{(1)}LPC ≥ S
{(2)}
LPC ≥

· · · ≥ S{(K)}LPC . To emphasize the importance of the sharpest regions in human visual
perception, the overall image quality score SLPC is obtained by a weighted average,
where the weights are assigned based on the ranks of LPC values.

SLPC =
∑K
k=1 ukS

{(k)}
LPC∑K

k=1 uk
(24)

where uk is the weight assigned to the k-th ranked spatial LPC value and is
calculated by:

uk = exp

[
−
(
k − 1

K − 1

)
/βk

]
, βk = 1e − 4. (25)

Fourier-Like Methods

A. S3

Vu and Chandler [25] proposed a blur-specific NR-IQA method S3 based on the
combination of spectral and spatial measures. The flowchart of S3 is shown in
Fig. 7. According to the reduction of high-frequency components in blur images,
the spectral measure S1(x) of a block x is initially defined as the slope of the
local magnitude spectrum αx, then rectified by a sigmoid function to account for
HVS, i.e.,

S1(x) = 1− 1

1+ eβ1(αx−β2)
, β1 = −3, β2 = 2. (26)

To further consider the contrast effect, the spatial measure S2(x) of a block x is
calculated based on the local total variation, which is given by:

S2(x) = 1

4
max
ξ∈x

TV(ξ) (27)

where ξ is a 2× 2 block of x and TV(ξ) is the total variation of ξ .
Then, the overall sharpness map S3 of the image I is obtained by a geometric

mean of spectral and spatial measures in a block-wise way:
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S3(x) =
√
S1(x)S2(x), x ∈ I. (28)

Finally, to consider the human sharpness perception, the overall sharpness score
is calculated as the average of the largest 1% values of the overall sharpness map.

B. BIBLE

Having observed that blur affects the moment energy, Li et al. [13] presented a
blind image blur evaluator (BIBLE) to assess image quality based on the variance-
normalized moment energy. The flowchart of BIBLE is shown in Fig. 8. The
gradient image is divided into equal-sized blocks, and the Tchebichef moments [18]
of all blocks are computed. Then the block’s energy is calculated by summing up
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the squared non-DC moments. Finally, image quality is measured by the variance-
normalized moment energy together with a visual saliency model to adapt to the
HVS characteristics.

2.2 Learning-Based Methods

Recently, researchers turn to machine learning technologies for blur-specific NR-
IQA. Learning-based methods comprise two steps: feature extraction and quality
prediction. The most important thing is to extract features that can reflect image
quality. Once it is done, quality prediction can be achieved by support vector
regression (SVR), neural network, probabilistic prediction model, etc. To emphasize
the importance of feature extraction, the learning-based methods are classified as
handcrafted feature-based methods and learnt feature-based methods.

Handcrafted Feature-Based Methods

Handcrafted features are generally extracted from the nature scene statistic (NSS)
models. Meanwhile, they can also be obtained by some NSS-free low-level image
features (e.g., contrast, brightness, etc.) So we divide the handcrafted feature-based
methods into NSS-based methods and NSS-free methods.

A Representative NSS-Based Method BIBE

It is assumed that natural scenes contain certain statistical properties that could
be altered by the existence of distortions. Therefore, by modeling the statistical
distributions of image coefficients, image quality can be estimated by deviations
of these statistics. Wang et al. [28] proposed a blur-specific NR-IQA method BIBE
based on the NSS of gradient distribution, where the flowchart of BIBE is shown in
Fig. 9. First, the blurred image is passed through the horizontal and vertical Prewitt
filters to get the gradient map. Then, the gradient-related distributions represented
by histograms are modeled using the generalized Gaussian distribution (GGD) or
asymmetric GGD. Finally, the NSS features (parameters of the models) are fed into
the extreme learning machine [10] to predict the image quality.

Blurred
Image

Gradient
Map

Gradient
Calculation

Histogram NSS models Extreme Learning
Machine

Gradient
Distribution

NSS
features

Final
Score

Fig. 9 The flowchart of BIBE
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A Representative NSS-Free Method RISE

Inspired by the multi-scale characteristics of HVS when perceiving visual scenes,
Li et al. [15] proposed a blur-specific NR-IQA method RISE based on multi-scale
features extracted in both the spatial and spectral domains. The flowchart of RISE
is shown in Fig. 10.

For an image I (x, y), the scale space L(x, y, σ ) can be first built by convoluting
it with a series of Gaussian filters G(x, y, σ ):

L(x, y, σ ) = I (x, y) ∗G(x, y, σ ),G(x, y, σ ) = 1

2πσ 2
e−(x2+y2)/2σ 2

(29)

where σ is the scale and ∗ denotes the convolution.
Second, multi-scale gradient similarity maps GSk, k = 1, 2, 3, 4 can be obtained

by:

GSk = DkD0 + c1

D2
k + D2

0 + c1
(30)

where Dk is the gradient map of the k-th scale image (k = 1, 2, 3, 4), D0 is the
gradient map of the original image. c1 is a small constant to ensure numerical
stability.

The gradient similarity features are defined as:

fGk = 1

MN

M∑

x=1

N∑

y=1

GSk(x, y), k = 1, 2, 3, 4 (31)
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whereM and N are the number of rows and columns in the image.
Third, multi-scale singular value similarity f Sk , k = 1, 2, 3, 4 is defined as:

f Sk =
sTk s0 + c2

s2
k + s2

0 + c2
(32)

where sk is the singular values of the k-th scale image (k = 1, 2, 3, 4) and s0 is
the singular values of the original image. c2 is a small constant to ensure numerical
stability.

To take the impact of the viewing distance into account, the blurred image is also
down-sampled to get multi-resolution images, and the DCT domain entropies of all
multi-resolution images are calculated as the third type of features.

Finally, all the three types of features are concatenated and fed into an SVR
model with RBF kernel to get the quality score.

Learnt Feature-Based Methods

Learnt feature-based methods utilize machine learning methods to learn powerful
features that can strongly reflect image quality. These methods can be divided into
two categories: shallow learning methods and deep learning methods, in terms of
whether features are extracted from shallow learning architectures or deep learning
architectures.

A Representative Shallow Learning Method SPARISH

Having observed that over-complete dictionaries learned from natural images can
capture edge patterns, Li et al. [14] proposed a blur-specific NR-IQA method
SPARISH based on the sparse representation. Figure 11 shows the flowchart of
SPARISH. An over-complete dictionary is learnt to construct a sparse coding model
for the image gradient blocks, then the variance-normalized block energy over
high-variance image blocks is used as the quality score, where the block energy
is obtained from the sparse coefficients.
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Fig. 11 The flowchart of SPARISH
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Fig. 12 The flowchart of Yu’s CNN. MLP is the abbreviation of multilayer perceptron, GRNN
indicates the general regression neural network and SVR means support vector regression

A Representative Deep Learning Method Yu’s CNN

Human visual mechanism is very complicated and cannot be accurately expressed
by shallow learning architectures. Recently, deep learning techniques have been
applied for general purpose IQA [11]. Yu et al. [29] made an attempt on applying
deep learning architectures to blur image quality assessment. The flowchart of Yu’s
CNN is shown in Fig. 12. The image patches pre-processed by the local contrast
normalization are passed through a convolutional layer, a down-sampling layer and
a fully connected layer to extract patch features and then the features are mapped
to patch quality scores by a regression model (MLP, GRNN or SVR). Finally, the
average of patch quality scores is used as the overall image quality score.

3 Experiments

3.1 Experimental Settings

Evaluated Methods

We choose the 13 representative methods with available codes for comparative
experiments, i.e., 6 transform-free methods (MDWE, CPBD, PSI, EMBM, MLV,
ARISMc), 4 transform-based methods (FISHbb, LPC, S3, BIBLE), 1 handcrafted
feature-based method RISE, and 2 learnt feature-based methods (SPARISH and Yu’s
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CNN). The quality prediction models for learning-based methods are trained on the
LIVE blur database [22].

Evaluation Criteria

Video Quality Experts Group (VQEG) [23] suggests to map the objective score o to
the subjective score s using a four-parameter logistic function:

F(o) = τ1 − τ2
1+ e

o−τ3
τ4

+ τ2 (33)

where τ1, τ2, τ3, and τ4 are free parameters to be determined during the nonlinear
mapping process, with initial values as τ1 = max(s), τ2 = min(s), τ3 = mean(o),
and τ4 = std(o)/4.

Three evaluation criteria are chosen to evaluate the method’s performance:
Spearman’s rank-order correlation coefficient (SRCC), Pearson’s linear correlation
coefficient (PLCC), and root-mean-square error (RMSE). SRCC indicates how
well the relationship between subjective and objective scores can be described
using a monotonic function. PLCC is a measure of the linear correlation between
the subjective and objective scores after the nonlinear mapping. RMSE is used
to measure the differences between the subjective and objective scores after the
nonlinear mapping. For a good method, the values of SRCC and PLCC are close to
1, while the value of RMSE is close to 0.

Testing Databases

We consider blurred images from TID2013 [20] and BID [4]. Gaussian blur images
from TID2013 are obtained using Gaussian filters, which are to approximate the out-
of-focus blur. There are 125 blurred images generated from 25 reference images
and 5 blur kernels. Realistic blur images from BID are taken from real world along
with a variety of scenes, camera apertures, and exposure time. There are 586 images,
most of which suffer from realistic out-of-focus blur or motion blur. The subjective
scores are in the form of mean opinion score (MOS) with a range [0, 9] on TID2013
and [0, 5] in BID.

3.2 Experimental Results

The performance comparison is shown in Table 1, where the best three values are in
boldface. On Gaussian blur images from TID2013, most existing methods correlate
well with subject ratings in terms of SRCC and PLCC (SRCC, PLCC> 0.8). On
realistic blur images from BID, FISHbb outperforms the others. However, the SRCC
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Table 1 Performance comparison and average computational time (seconds/image) on
TID2013 [20] and BID [4], where the best three values in each column are marked in boldface

TID2013 [20] BID [4]
Method SRCC↑ PLCC↑ RMSE↓ Time(s)↓ SRCC↑ PLCC↑ RMSE↓ Time(s)↓
MDWE [16] 0.816 0.835 0.686 0.184 0.307 0.320 1.186 3.333

CPBD [6] 0.852 0.855 0.647 0.068 0.018 0.004 1.252 1.826
PSI [5] 0.868 0.879 0.594 0.015 0.069 0.198 1.228 0.210
EMBM [8] 0.865 0.875 0.604 0.212 0.299 0.314 1.189 2.913

MLV [1] 0.879 0.883 0.587 0.037 0.320 0.363 1.167 0.481
ARISMc [7] 0.901 0.898 0.549 6.466 -0.013 0.155 1.237 87.966

FISHbb [24] 0.858 0.876 0.603 0.167 0.477 0.473 1.103 2.283

LPC [9] 0.889 0.892 0.565 0.565 0.316 0.385 1.155 8.378

S3 [25] 0.861 0.881 0.590 4.927 0.413 0.423 1.134 52.656

BIBLE [13] 0.899 0.905 0.531 0.916 0.361 0.370 1.163 10.982

RISE [15] 0.932 0.923 0.481 0.345 0.120 0.135 1.252 7.138

SPARISH [14] 0.893 0.900 0.543 1.485 0.307 0.328 1.183 25.217

Yu’s CNN [29] 0.843 0.860 0.639 3.100 0.030 0.160 1.236 40.857

The negative of SRCC indicates that the prediction trend is contrary to what it is supposed to be

of FISHbb is less than 0.5 (far less than 1), which indicates that there is still a large
space for designing robust and effective blur-specific NR-IQA methods for realistic
blur images.

Computational time is also an important aspect for evaluating the performance
of NR-IQA methods since many practical applications need to run in real time.
Images in TID2013 are 512 × 384 pixels, while the size of images in BID is larger,
ranging from 1280 × 960 to 2272 × 1704. All tests are carried out on a desktop
computer with Intel Core i7 6700 K CPU at 4 GHz, 32 GB RAM, Windows 10, and
Matlab R2016a (Yu’CNN is implemented using Python 2.7.6 and tested on Ubuntu
14.04 using the CPU of the same desktop computer). We used the default settings
of the codes and did not optimize them. In Table 1, we also report the average
computational time (seconds/image) on TID2013 and BID. We can observe that (1)
the fast three methods (PSI, MLV, CPBD) are operated in the spatial domain and (2)
most methods run fast on TID2013. However, as the image size increases, methods
such as ARISMc, S3 get quite slow on BID, which cannot meet the requirement of
time-sensitive applications.

Discussion on Realistic Blur

It is hard to model all the influence factors in the real world. Besides the Gaussian
and out-of-focus blur, there are other crucial factors to be considered, e.g., motion
blur, ghosting, macrophotography, and image content variation in Fig. 13.

• Motion blur: there are few NR-IQA methods for assessing the quality of motion
blur images, though its related problem “motion deblurring” is a hot topic.
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Fig. 13 Crucial factors (besides the Gaussian and out of focus blur) that influence the quality
of realistic blur images. (a) Motion blur. (b) Ghosting. (c) Macrophotography. (d) Image content
variation

Motion blur has directionality while Gaussian blur is isotropic. In terms of this
specific characteristic of motion blur, one may further consider the directionality
and the directional features for quality estimation on motion blur images. We
believe that a large realistic motion blur image database with subjective ratings
will facilitate the works.

• Ghosting: ghosting effect arises when the motion degree is very high, which
differs from the ordinary motion blur.

• Macrophotography: the blur in Bokeh is to strengthen the photo’s expressiveness.
In view of this, to evaluate the quality of macrophotography images, aesthetic
factors may need to be taken into account.

• Image content variation: due to the image content variation, NR-IQA methods
may produce quite different objective scores for images with very similar
subjective quality. At the meantime, NR-IQA methods may produce inconsistent
predictions on image pairs with quite different subjective quality. To ease the
impact of image content variation on blur-specific NR-IQA methods, the image
content variation and blur distortion level should be jointly considered.
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4 Conclusion

In this paper, we have classified previous works and have reviewed 18 representative
blur-specific NR-IQA methods. Remarkable progress has been made in the past
decades, evidenced by a number of state-of-the-art methods correlating well with
subjective evaluations on Gaussian blur images. However, experimental results have
also shown that most of the existing methods fail to estimate image quality of
realistic blur images. It is the evidence that the blur-specific NR-IQA problem is
far from being solved. We have also discussed on realistic blur, especially the issue
on image content variation that should be considered in the development of blur-
specific NR-IQA methods.
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Intensity Inhomogeneity
Quantization-Based Variational Model
for Segmentation of Hepatocellular
Carcinoma (HCC) in Computed
Tomography (CT) Images

Luying Gui and Xiaoping Yang

1 Introduction

Since the traditional method of lesion segmentation is manually finished by
physicians, it is a time-consuming work for segmenting lesions from a large amount
of medical images [1–3]. Besides, the accuracies of the results highly rely on
the experiences of the physicians. Accurate segmentation algorithms are desired
for labor saving and robustness in medical image analysis. However, the existing
problems such as noise, low intensity contrast, blurred edges, and inhomogeneity
cause considerable challenges for image segmentation [3–6].

To overcome these problems, some prior knowledge is used in object seg-
mentation, including shapes [7–11], textures [12, 13], intensities [14]. With the
assumption that images are piecewise smooth, extracted edges and local distribution
of intensities are incorporated into an edge-based implicit active contour [15].
Besides, energy of salient edges which is derived from higher-order statistics is also
incorporated into a variational level set [16].

Since the inhomogeneity is a common problem in different types of medical
images, some approaches are designed to deal with this kind of artifacts [17, 18].
A piecewise constant assumption is proposed to correct the bias in magnetic
resonance (MR) images [19]. In this work, bias correction and segmentation are
finished at the same time by clustering based on the intensities in local regions.
Additionally, local information is also described by Gaussian distributions [20].
Moreover, prior knowledge of bias fields is also utilized to tackle this problem [21].
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These approaches above eliminate the effect of slowly varying intensities, which is
called a kind of inhomogeneity, for segmentation on medical images.

Here we consider the problem concerning more serious uneven distribution of
intensities or having heavily inhomogeneous intensities, in small regions in images.
This situation may be caused by artifacts as well as the properties of the tissues
and exhibit as granular appearances. For example, lesions may be constituted by
various types of tissues. These tissues with different imaging characteristics will
give different appearances in medical images and may cause the lesion regions
with grained spots and complicated textures. Under this circumstance, segmentation
curves are easily attracted by these fake edges and light or dark spots in the process
of evolution and then cannot reach the real boundaries.

In order to solve this problem that segmenting lesion regions have complicated
appearances, we propose a complexity measurement named complexity indicator
(CI ) map to evaluate the degree of uneven intensities in local regions. Embedding
into a variational level set formulation, this complexity indicator map actually acts
as an expansion energy for the segmentation contours. Moreover, in this paper,
the real boundaries are captured by evaluating the similarities between regions. To
achieve this goal, a similarity indicator (SI ) map is constructed by calculating the
Wasserstein distance between accumulative histograms of two regions. The SI map
can drive the segmentation contours to stop at the real boundaries. This new method
is applied to segment the hepatocellular carcinoma (HCC) in CT images, and most
of these lesions suffer from low contrast and nonuniform textures. Experimental
results and comparisons show that the proposed method is effective in dealing
with these situations. The precision and Dice coefficient of the proposed method
are 92.3% and 89.7%, respectively, which are higher than other two well-known
methods.

2 Quantitative Analysis for Inhomogeneous Regions

Since the existence of differences between individuals and specialties in the medical
field, lesion regions may have various appearances like irregular textures, intensity
changes on medical images. It is hard to describe the characters of lesions by using
a uniform pattern, and even these lesions are caused by the same disease. In order
to deal with these regions, which are presented as inhomogeneous regions, two
measurements are proposed to describe these appearances and subsequently applied
in a variational segmentation method for precise separation of lesions. The two
measurements are complexity measurement and similarity measurement which are
presented as follows.
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2.1 Complexity Measurement for Inhomogeneous Regions

In order to construct the complexity indicator map, the complexity of a region is
evaluated by its intensity changes. First, we define a local region with radius r
around the central pixel x:

Rx,r = {y ∈ Ω| |y − x| ≤ r}. (1)

We use I and IRx,r to present the intensities of the whole image and intensities in
the local region Rx,r , respectively. Then the differences between the intensities of
the region and its Gaussian filtered result:

DRx,r = IRx,r −G ∗ IRx,r . (2)

In the above computation, the Gaussian filter actually implements two functions:
(1) denosing and (2) assigning weights for neighbors according to their distance
from the center. To highlight the different contrast between the central pixel and its
surround pixels, based on the DRx,r , CIr(x) is created and computed as follows:

CIr(x) =
|Rx,r |∑

DRx,r , (3)

which accumulates the values of D in a local region Rx,r (which is centered on x
and has radius r), and the sum of differences are denoted as the value of CIr in
position x. |Rx,r | represents the number of pixels in the region Rx,r .

For covering the different situation in different scales, for a center x, neighbor
regions with different radii r are chosen.

The complexity indicator (CI ) map is obtained by accumulating CIr(x) in
different scales:

CI (x) =
∑

r∈K
CIr(x), (4)

where K denotes the collection of all radii r . In this paper, we set K = {5, 7, 9}.

2.2 Similarity Measurement Based on the Wasserstein Distance

Besides, similarity between textures is considered as an important role in the
description of the inhomogeneous regions for its talent capability of distinguishing
two regions. In this paper, the similarity between regions is based on their
cumulative histogram.
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For a local region Rx,r , which is the region centered on x and with radius r , the
histogram h is defined as:

hR(y) := |z ∈ Rx,r ∩Ω : I (z) = y|
|Rx,r ∩Ω| , (5)

for 0 ≤ y ≤ L. And the corresponding cumulative distribution function is
defined by:

FR(y) := |z ∈ Rx,r ∩Ω : I (z) ≤ y|
|Rx,r ∩Ω| , (6)

for 0 ≤ y ≤ L.
Then, the similarity between two regions R1 and R2 can be obtained by

calculating the Wasserstein distance between their cumulative histograms:

W(R1, R2) =
∫ L

0
|FR1 − FR2 |dy. (7)

Then, the similarity indicator (SI ) map in this paper can be introduced by:

SI (x) = 1

W(R(x, r), R′(x, r̃))
, (8)

where R′(x, r̃) = R(x, r̃)− R(x, r), (r < r̃), r and r̃ are two radii, respectively.

3 The Proposed Segmentation Method

3.1 The Segmentation Model Based on CI and SI

We present a new method, which combines the global and local intensity infor-
mation of images, to segment images with intensity complexity. In the proposed
method, the piecewise constant model [22] is implemented as the global image
fitting term, and the complexity indicator map is incorporated to create the
local information term. Thus, this energy functional expressed in the level set
formulation is:

E(φ, c1, c2) = λ1

∫

Ω

|u0(x, y)− c1|2H(φ(x, y))dxdy

+λ2

∫

Ω

|u0(x, y)− c2|2(1−H(φ(x, y)))dxdy
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+λ3

∫

Ω

CI ·H(−φ(x, y))dxdy

+λ4

∫

Ω

SI · δ(φ)|∇φ|dxdy, (9)

where φ is the level set function, H is the Heaviside function, and c1 and c2 are
mean of intensity values in regions with H(φ) > 0 and H(φ) ≤ 0, respectively.
λ1, λ2, λ3, λ4 > 0. CI is the complexity indicator map, and SI is the similarity
indicator map.

3.2 Implementation Details

In (9), the curve C is represented as the zero set of the level set function φ through
using the Heaviside function H and its derivative δ0 in the distribution sense, which
are defined by:

H(s) =
{

1 if s ≥ 0
0 if s < 0,

δ(s) = d

ds
H(s). (10)

In computation, Hε and δε , which are the regularized versions of the function H
and its derivative, are used and expressed as follows:

Hε(s) = 1

2

(
1+ 2

π
arctan

( s
ε

))
,

and

δε(s) = 1

π
· ε

ε2 + s2 .

Then, an artificial time t ≥ 0 is used to parameterize the descent direction, and
the equation in φ(t, x, y) is:

∂φ

∂t
= δε(φ)

[
λ1(u0 − c1)

2 + λ2(u0 − c2)
2
]

+λ3CIδε(φ)

+λ4δε(φ)div

(
SI

∇φ
|∇φ|

)
, (11)

which can be solved by a finite differences implicit scheme.
In this paper, we set λ1 = λ2 = 1 and λ3 = 4, λ4 = 2.
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4 Results

4.1 Experimental Results on CT Images

In this section, we first show the efficiency of the proposed CI map and SI
map. To achieve this goal, a HCC region which exhibits granular textures and
similar appearances with its backgrounds is chosen for demonstration of these two
quantitative measurements. The original image and its CI map, as well as its SI
map, are shown in Fig. 1.

In the example shown in Fig. 1, the CI map creates a higher energy region on
the position of the granular regions, including the HCC region. This high energy can
encourage the segmenting contour expanding and then avoid the contour stopping at
the fake edges. In Fig. 1, the CI map also presents that the high energy is decreasing
when approaching to the real boundaries because the energy calculated in the CI
map is influenced by the relative even regions in the background. Thus the expansion
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Fig. 1 First line: the original CT image with granular and low contrast HCC region; second line:
left: its CI map and right: its SI map
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Fig. 2 Comparison results of CV model, BCS method and our method on the CT images for
HCC with complicated textures. The first column, the ground truth; the second column, the initial
contours; the third column, the results obtained of CV model; the fourth column, the results of
BCS method; and the fifth column, the results of our proposed method

of the contour is slowing when approaching to the real boundaries. In the SI map,
the real boundaries of the HCC region have low energy, which encourages the
segmenting contour stopping near the positions.

To demonstrate the efficiency of the proposed method, we apply it on real
medical images. In this experiment, 60 CT images with HCC are utilized. These
lesion regions have various appearances, and most of them have uneven intensities
and grained situations in different degrees, which present as complicated and
uniform textures. Some experimental results are shown in Fig. 2.

In this section, we also compare the results of our new approach with those
of two other methods: the classical CV model [22] and a segmentation method
combine with bias correction [19] (hereafter termed ‘BCS’). The ground truth, the
initialization contours, as well as results of comparison are shown in Fig. 2.

In the first line, the HCC region exhibits similar appearances with the back-
ground; this fact causes error segmentation of the other two methods. In the second
line, the HCC region has grain appearance inside the lesion, which causes some
fake edges and leads to error segmentation. In the third line, the HCC lesion suffers
from both blurred boundaries and granular surface, and the experimental results
also show that the fake edges which are caused by the complex textures affect the
accurate segmentation for other two methods in the comparison. With the CI map
and SI map, which provide effective solutions for these situations, our proposed
method gives precise segmentation results in this experiment.
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4.2 Quantitative Measurements

In addition, comparisons of these segmentation results are also evaluated quantita-
tively by precision, recall [23], and Dice coefficient [24], which are expressed in (12)
and (13), respectively.

precision = T P

T P + FP ,

recall = T P

T P + FN , (12)

where T P is the number of true positive pixels, TN is the number of true negative
pixels, FP is the number of false positive pixels, and FN is the number of false
negative pixels.

Dice = 2(A
⋂
G)

A
⋂
G+ A⋃G, (13)

where A is the segmenting result, and G is the ground truth.
Results of quantitative evaluation for these three methods are shown in Fig. 3.

The segmentation results of the proposed method obtain average precision with
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Fig. 3 Precision, recall and Dice for segmentation of HCC
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92.3% and average Dice with 89.7%, which are higher than those of other two
methods in the comparison.

5 Discussion and Conclusion

In this paper, a level set-based segmentation method is proposed to segment the
objects with complex textures and uneven intensities.

The inhomogeneous situation imposes several difficulties for conventional seg-
mentation algorithms. For instance, the uneven intensities may lead to fake edges,
and the irregular textures may confuse the boundaries between objects and back-
grounds. To deal with these problems, two quantitative measurements of complex
changes of intensities are proposed in this paper, which are the complexity indicator
(CI ) map and the similarity indicator (SI ) map.

Considering that the segmentation curves are likely to be entangled by some fake
edges in inhomogeneous region, the complex indicator CI is proposed in this paper.
Embedding into a level set framework, the CI map obtains higher energy in these
regions which have inhomogeneous intensities and grained appearances, and this
high energy will encourage the contours expanding. In addition, this power will
decrease near the real boundaries, because of the changes of gray values tend to
moderate.

It is worth noting that in formulation of the CI map, the Gaussian filter is
adopted, which is used to realize two functions, first, acting as noise filter, and
second, acting as a weight distributor. The weights assigned by the Gaussian
filter actually based on their distances of pixels to their region centers, and
therefore, pixels which are far away from centers have less influence on the central
pixel. In a word, the distance-related weights guarantee more accurate measure-
ment of the relationships between pixels and therefore make the CI map more
efficient.

Moreover, to locate the real boundaries, the SI map is created based on the
similarity evaluation between two regions by using the Wasserstein distance. Pixels
in the real boundaries have more changes in their neighbor regions and then obtain
higher values in distance evaluation and therefore gain smaller values in the SI map,
which makes the segmenting contours stop at the suitable positions.

In this paper, different parameters are set for the CI and SI energy terms.
As can be seen in Fig. 2, livers almost have relative smooth and homogeneous
appearances in CT images, and on the contrary, the HCC lesion regions are complex
and inhomogeneous. In this situation, a large parameter of the CI energy term
will encourage the segmenting contour expand more effectively. Because of the
smooth background (i.e., liver tissues), the CI energy will fade in the position that
is close to the boundaries. This fact also explains that a relative small parameter
is assigned for the SI energy. As an edge indicator, the function of SI energy
should be strengthened when the situation becomes more complicated, like both
the background and foreground have complex appearances.
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The efficiency of the proposed method and the rationality of the parameter setting
can be proved by the experimental results. Some typical examples are shown in
Fig. 2. In the first line, a lesion with uneven intensities and blurred boundaries is
shown. In the second and third lines, lesions with grained appearances, like light
spots, dark lines, and dark spots, are shown. These complicated textures bring
difficulties for segmentation. From these images, we can see that segmentation
contours of the two well-known methods are easily stopped by the fake edges
which are created by the violent intensity changes. However, these problems can
be addressed by the proposed method. Experimental results in the last column also
prove the effectiveness of the new approach.

Experimental results demonstrate the efficiency of the proposed method from
both visual effect and quantitative evaluation. With a light spot in the dark lesion
region, this spot has high contrast with the object region, so it is easy to be
recognized as background and be error segmented. For the classical CV model, with
a large parameter for the regularization term, i.e., the arc length, these high-contrast
spots will not be segmented. However, the similar intensities for the background and
foreground bring problems, and the segmentation contour stops at the fake edges
which are caused by uneven intensities inside the lesion region. However, beneficial
from the CI map and SI map, the proposed method has relatively low degree of
dependence on initialization contours. As shown in Fig. 2, the initialization contours
are only small circles in the HCC regions. Theoretically, as we have pointed out, this
CI map is designed to direct the expanding of the segmenting contours, especially
in the case of complex regions, and the SI map is designed to stop the movement of
the contours. This idea also can be illustrated by the example in Fig. 1.

In the grained and uneven intensity cases we showed above, the proposed
method has good performance, which presents segmentation contours to approach
the ground truths. The efficiency of the proposed method is also confirmed by
quantitative evaluations.

In conclusion, a new segmentation method for inhomogeneous regions with
complex textures is proposed. Based on two measurements of complexity of regions,
the active contour can expand across the fake edges which are generated by
complicated textures and approach the real boundaries. Additionally, the accuracy
of this method does not rely on the initialization. The efficiency of the proposed
method, as well as its independency of the initializations, is proved by experimental
results of segmenting HCC regions in CT images. Comparison results with other
two methods also present the advantages of the novel segmentation method.
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A Novel Computed Tomography
Scanning Mode and Local Image
Reconstruction of Impurities in Pipeline

Lingli Zhang, Li Zeng, and Dong Wu

1 Introduction

Impurities in pipeline easily cause blockage, which affects the liquid velocity and
even leads to an accident. Therefore, nondestructive testing (NDT) of the pipeline
in service has a great practical significance. The conventional NDT techniques
in pipeline involve ultrasonic testing (UT), acoustic emission (AE), radiography
testing (RT), X-ray computed tomography (CT), etc. In terms of UT’s advantage
of strong penetrability, accurate defection location, low cost of detection, and fast
speed, it is widely used for NDT of the defect of the metal, nonmetal, and composite
materials, etc., such as the defect detection of the pipeline. The correlative scanning
techniques and ultrasound image processing methods were progressively developed
[1]. However, UT appears more difficult in the face of complicate and irregular
objects, and its detection results are commonly not intuitive. For another AE is a
dynamic NDT method, and its basic principle is to utilize the sensitive instrument
to receive and process the acoustic emission signal and thus infer the defect
location, the change of state level, and the development of the internal structure
of the material. Based on the high detection sensitivity and most of the materials
possessing acoustic emission characteristics, AE has been widely used in pipeline
leak detection [2]. Although AE has not too many restrictions on the shape of the
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object and the on-site conditions, it is sensitive to the object material and merely
gives the position, activity, and strength of the noise source, while it can’t obtain
the nature and size of the defect within the noise source. By contrast, the principle
of RT is to utilize the change of the electromagnetic wave, which penetrates the
detected object to obtain the images [3]. The defects can be detected with analyzing
and evaluating these images.

In current years, X-ray CT has been widely used in industrial applications
because of its nondestructive and effective testing technology, and it is most applica-
ble to detection of defect, material evaluation, interior analysis of object, etc. [4–7].
CT has the ability to obtain the intuitive and clear images without overlapped and
geometrical distortion compared with traditional radiate photography. Nevertheless,
the conventional CT usually detects the static object such as pipeline wall. Although
dual CT can detect the dynamic objects, it is mostly used in clinical diagnosis
due to the high cost [8]. According to the detection of the impurities in pipeline,
its scanning mode appears more difficult to be adaptive. Therefore, developing a
new scanning mode for the detection of flowing fluid inclusion in pipeline is very
necessary. The novel computed tomography scanning mode, which takes advantage
of fluid flowing to obtain equivalent spiral cone-beam (ESCB) projection data of the
fluid (including impurities), is proposed to detect impurities in pipeline in this paper,
and its mechanical movement is simple and feasible, which can be easily adaptive
to the live conditions of the detected pipeline in service.

In CT detection technology, spiral cone-beam scanning mode and the corre-
sponding imaging method can solve the long object detection (such as pipeline) in
view of high efficiency of the detection and good axial resolution of reconstruction
image [9–14]. Meanwhile the Feldkamp-Davis-Kress (FDK) [15] algorithm is
always a popular approximate cone-beam CT algorithm whose filter function is
global, which is unsuitable for truncated projection data. Whereafter, an improved
cone-beam image reconstruction method was developed for the circular orbit by
reference [16]. However, there exist several issues about the detected object, such
as the thickness of the pipeline wall, the long string part of the wall which is
impenetrable by weak X-ray, the local truncation projection data in the pipeline wall,
and the limited translation of detector and X-ray source. In practical, the projection
data obtained is locally truncated in these situations.

In recent several years, local reconstruction methods are gradually developed
aiming at improving the scanning speed and solving the projection truncation issues
[17]. Since the local reconstruction methods can implement the characteristics of
the reconstructed image in which X-ray only irradiates the lesion on the patient to
reduce the patient’s exposure dose and improve the projection reconstruction speed
at the same time, it is widely applied in medical CT. Local reconstruction has also
many NDT applications in industry. There were several typical local reconstruction
methods such as lambda tomography algorithm [18, 19], pseudolocal tomography
algorithm [20], local reconstruction algorithm based on wavelet multiresolution [21,
22], etc. The lambda tomography algorithm is a kind of strict local reconstruction
algorithm which is not confined to the two-dimensional or three-dimensional field,
as in the mathematical theory, it can rebuild any dimension of space information
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of the image. However, the reconstructed part by lambda tomography algorithm is
not the attenuation coefficient distribution of the original image but the attenuation
coefficient distribution of the edge of image, which highlights the edge and leads
to the large noise at the same time. The two above methods are not strict and their
required data area is larger than region of interest (ROI). The reconstructed result by
pseudolocal tomography algorithm is also not the attenuation coefficient distribution
of the image, but a part of the Hilbert transform of the image. While local
reconstruction algorithm based on wavelet multiresolution is a local reconstruction
research direction in recent years, different from lambda tomography algorithm
and pseudolocal tomography algorithm, its reconstructed result is the attenuation
coefficient distribution of the local area, but it is very dependent on the selection of
wavelet coefficients.

Furthermore the investigative interior reconstruction algorithm by Wang et al.
[23] can solve local image reconstruction as well. Mao-lin Xu et al. [24] put forward
a local CT image reconstruction with a new filter. Mao-lin Xu’s algorithm utilizes
a new filter replacing the slope filter function of filtered back-projection (FBP)
method. The new filter’s side lobe attenuates sooner than the probable selected
filters’, which has been presented in the Mao-lin Xu’s paper. This algorithm realizes
the local image reconstruction using new filter function, and it ignores the data far
away from the calculation points. In his paper, simulated results present that the
developed algorithm is convenient to reduce the Gibbs effect of reconstructed image
and the reconstructed results have high spatial resolution and density resolution.
Generally, reconstructed results have high spatial resolution using a filter function
with high and narrow main lobe; the rapid attenuation of side lobe helps to improve
the density of image resolution. The new filter obtains a good compromise between
spatial resolution and density resolution, and the distant side lobe of the new filter
attenuates quickly. Taking these advantages into consideration, a local spiral cone-
beam FDK is presented that combines the general spiral cone-beam FDK image
reconstruction algorithm and the local filter to solve the truncated projection which
is obtained by the novel scanning mode in this paper.

Before introducing the novel scanning mode in this paper, the previous scanning
modes such as fan-beam CT, cone-beam CT, and spiral cone-beam CT are presented
in Section II. Section III introduces the proposed novel scanning mode. And then
the corresponding algorithm is presented in Section IV. Finally Section V presents
the results and conclusions.

2 Preparation

2.1 Fan-Beam CT Imaging

The scanning mode of CT system can be divided into two kinds: parallel-beam and
fan-beam. Figure 1 shows the geometric structures of parallel-beam and fan-beam,
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Fig. 1 The comparison between parallel-beam geometry and fan-beam geometry

Table 1 Geometrical scanning parameters for a simulated equivalent spiral cone-beam CT imag-
ing

Parameter Value

Distance between source and detector 354 mm
Distance between source and rotation axis 212 mm
Sampling interval between two adjacent projection views 1.406◦
Diameter of ROI 60.42 mm
Pitch of each turn of spiral trajectory 10.62 mm
The number of detector array (row × column) 256 × 256
Size of each detector element 0.196 × 0.392 mm2

Voxel size of the object 0.354 × 0.354 × 0.354 mm3

The number of the reconstructed object 256 × 256 × 100

respectively. The fan-beam CT scanning mode is that the X-ray source and fan-
beam detector are stationary and the turntable rotates carrying the scanned object
or, equivalently, X-ray source and fan-beam detector turn around the scanned object
in a circular track. Since the fan-beam CT scanning has a proceeding speed, it is
extensively utilized in several fields. The corresponding well-known algorithm is
fan-beam FBP algorithm referring to reference [25].

Fan-beam FBP with R-L filter has a high reconstruction speed, and it can obtain a
relatively good image on the premise that the projection data is complete. However,
R-L filter has a Gibbs artifact which reduces the intensity resolution of image, and it
will not get an ideal image when the projection data is incomplete or contains noise.
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Fig. 2 The general cone-beam scanning geometry

2.2 Cone-Beam CT Imaging

A general cone-beam CT scanning mode is that the detected area should be
completely covered by cone-beam X-ray. X-ray source and the flat detector turn
around the object in a circular track simultaneously as shown in Fig. 2. The
solution to cone-beam projection data can be divided into two kinds: one kind
is analytic reconstruction method; the other is iterative reconstruction method.
Since the rapid reconstruction speed is very important in applications, analytic
reconstruction method is still popular. Additionally, analytic reconstruction methods
can be divided into accurate reconstruction method and approximate reconstruction
method. Nowadays accurate reconstruction algorithm has a good development, and
approximate cone-beam reconstruction algorithm has very important value both
in the application and theory. When the projection data is under the complete,
noiseless, and ideal conditions, accurate reconstruction algorithm is a good choice;
in the presence of measurement noise, data truncation, the movement of patients,
digital processing, and the use of contrast agents, accurate reconstruction algorithm
has a certain influence on image quality; by this time the approximate reconstruction
algorithm or iterative reconstruction algorithm is necessary.

On consideration that cone-beam CT utilizes cone-beam X-ray and high-density
flat detector, it has a great many advantages such as a fast scanning speed, a high
utilization rate of X-ray, the consistent axis resolution, etc. Nevertheless, cone-beam
CT is not good enough for the long rod-shaped object like a pipeline.
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Fig. 3 Spiral cone-beam scanning geometry

2.3 Spiral Cone-Beam CT Imaging

Compared with general cone-beam CT scanning mode, spiral cone-beam CT not
only has the advantages of the general cone-beam CT scanning track but also
can solve the long object detection such as the pipeline and the human body,
and its scanning track satisfies the condition of completeness data of the accurate
reconstruction [26] as shown in Fig. 3. Spiral FDK algorithm [27] is similar to FDK
algorithm. In fact, the spiral cone-beam FDK algorithm let cone-beam be treated as
the accumulative fan-beam along the z-axis direction. The procedure of the spiral
cone-beam FDK algorithm is presented under the corresponding to the spiral cone-
beam scanning as in reference [27].

Although spiral cone-beam CT has the ability to settle the detection of a long
static object, it is not suitable for the situation that the pipeline is not translated and
fluid in pipeline is flowing.

3 The Proposed Novel Scanning Mode

3.1 Equivalent Spiral Cone-Beam Scanning

In order to detect flowing fluid with inclusions of the pipeline, which may lead to
impact fluid speed and cause accident, the novel scanning mode is researched in
this paper motivated by predecessors. Considering that X-ray source and detector
cannot shift along the pipeline and big thickness of the pipeline wall may not be
impenetrable, this scanning mode takes cone-beam scanning by X-ray source and
detector around the fixed pipeline with circular track (as shown in Fig. 4) and uses
the fluid flowing to obtain ESCB projection data of the fluid (containing inclusions),
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Fig. 4 The sketch map of the novel scanning mode in this paper

Fig. 5 Inclusions are
following along fluid flowing
(assuming that liquid flowing
is uniform in a short time)

whose pitch can be estimated by tracking the change of inclusion position in
one circular cone-beam scan projection image (supposing that in a short time the
movement of impurities along fluid can be treated as a uniform linear motion as
shown in Fig. 5). It is easy to implement the mechanical movement of this scanning
mode and adapt to the inspection condition of pipeline in service. Considering that
pipeline doesn’t move according to the fluid flowing, this scanning mode obtains
merely spiral cone-beam projection data of the internal of pipeline with impurities;
therefore, its projection data in the pipeline wall is locally truncated (the projection
data in pipeline wall is not involved in image reconstruction, but it has influence on
the internal fluid projection data).
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Fig. 6 Pipeline scanning coordinate system

3.2 The Equivalent Trajectory of X-Ray Source

The speed of the flowing fluid v can be determined by X-ray digital radiography for
the impurities in flowing fluid of the pipeline in S seconds, where S denotes the time
about X-ray source rotating along the circular orbit in one circle. And then required
pitch L can be expressed as:

L = v∗S (1)

Considering that the thickness of pipeline wall affects the penetrability of X-
ray, this paper only utilizes the three-dimensional projection data of the pipeline
internal fluid (containing impurities). It means treating the pipeline internal as ROI.
As is shown in Fig. 6, r is an internal radius of the pipeline, and zmin and zmax
are the starting and ending value of scanned pipeline, respectively. It can define the
cylindrical ROI as follows:

ROI =
{
(x, y, z)

∣∣∣x2 + y2 ≤ r2, zmin ≤ z ≤ zmax

}
(2)

The equivalent trajectory of X-ray source �(β) can be expressed as follows:

� (β) = (−D sinβ,D cosβ, βL/2π)T (3)

where D is the distance from X-ray source to the pipeline center, T denotes
the transpose of a vector, β is a rotation angle of X-ray source, and
2πzmin/L − π ≤ β ≤ 2πzmax/L + π .
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3.3 The Estimate of the Sampling Interval ΔZ

The estimate of the sampling interval �Z needs to consider two aspects: one aspect
is data acquisition time, and the other is the pitch L. Let D denote the distance from
X-ray source to the pipeline center and d denote the distance from detector to the
pipeline center. The sampling interval �Z can be estimated as follows.

An appropriate value of the sampling interval �Z can be given by the following
formula:

�Z = L ∗ D + d
D − r ∗

1

(N − 1)
(4)

where N is the number of one-dimensional detector and�Z is the sampling interval.
From Eq. (4), it is obvious that �Z can be set to a large value when L is quite large
and N is relatively small. However, a too large �Z brings about the poor spatial
resolution of the reconstruction result.

Considering spatial resolution �z, the sampling interval can be expressed as
�Z = D+d

D+r �z.

4 The Presented Method

4.1 A Local Filter Function [24]

A new frequency domain form of the local filter function can be expressed as the
following:

H(w) = |w|W(w)

where the window function is:

W(w) =
{

er2

r2−w2 exp
[ −r2

r2−w2

]
, |w| ≤ r,

0, |w| > r.
(5)

It is easy to prove that W(w) is an infinitely differential function with the support
[−r, r]. The corresponding spatial filter function can be derived as follows:

h (α) = − 2

(2πα)2
+ o

(
1

(2πα)5

)

Relatively, the spatial filter function of R-L filter is expressed as:

h (α) = −2r sin (2παr)

(2πα)2
+ 2

(2πα)2
(1− cos 2παr) .
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From their spatial forms, it can be seen that the local filter in spatial domain
decays in second order as s tends to infinite, while the R-L filter decays in first
order. Generally, reconstruction image has high spatial resolution by using a filter
function with the high and narrow main lobe; the rapid attenuation of side lobe helps
to improve the density of the image resolution. The local filter function obtains
a good compromise between spatial resolution and density resolution. And the
distant side lobe of local filter attenuates quickly, which has been proved in detail in
reference [24].

4.2 The Presented Approach

Aiming at reconstructing the image of the flowing fluid with impurities in pipeline,
the presented approach brings the local filter into the spiral cone-beam FDK algo-
rithm, which obtains the local spiral cone-beam FDK CT reconstruction algorithm
as follows.

Let f = {f (x, y, z)|(x, y, z) ∈ ROI} be the discretization data of the flowing fluid
with inclusions in pipeline. The X-ray source trajectory �(β) can be expressed as
Eq. (3), and the pitch L can be defined by Eq. (1). p(α, z,β) denotes the projection
data of X-ray scanning internal flowing fluid with inclusions in the pipeline. α is the
angle of the current X-ray off the center X-ray (perpendicular to the center of the
detector).

Step 1: weighting the projection data

p′ (α, z, β) = p (α, z, β) (D + d) cosα
√
(D + d)2 + z2

(6)

Step 2: doing one-dimensional convolution according to variable α

p′′ (α, z, β) =
αmax∫

−αmax

p′
(
α′, z, β

)
h
(
α − α′) dα′ (7)

where the local filter is the convolution function h (α) = D
(
α

sinα

)2∫ +∞
0 wW(w)

cos (wα) dw, W(w) is a window function by Eq. (5) which avoids confusion error
and attenuates high-frequency components, and αmax = sin−1(r/D).

Step 3: computing three-dimensional back-projection f (x, y, z) as follows:

Considering that a plane contains reconstructed point (x, y, z) and is vertical to
z-axis, then the source trajectory α(β) can be computed by Eq. (3), and cross-
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Fig. 7 It is the sectional
drawing of Fig. 6

point α(β
′
) can be provided by β

′
(z) = 2πz/L. Let p′′(α, z,β) be back projected

to the reconstructed point (x, y, z) in the range of β with [β
′
(z) − π ,β

′
(z) + π ]. The

mathematical form can be expressed as below:

f (γ cosϕ, γ sinϕ, z) = 1

4π2

∫ β′(z)+π

β′(z)−π
1

K2p
′′ (α, z, β) dβ (8)

where γ is the distance between the point (0, 0, z) and (x, y, z) and angle ϕ is that the
ray from the point (0, 0, z) to (x, y, z) deviates from the positive direction of x-axis:

(α, z) =
(

−tan−1 γ cos (β − ϕ)
D + γ sin (β − ϕ) ,

(
z− L

2π
β

)
× D + d
√
D2 + d2 + 2γD sin (β − ϕ)

)

and K2 = D2 + r2 + 2rD sin (β − ϕ). The physical meaning of K is the distance
between two points obtained by projecting reconstructed point (x, y, z) and X-ray
source location onto plane xoy, respectively. The variable geometric properties can
be shown in Fig. 7.

5 Results and Conclusions

5.1 The Experimental Data Specifications and Conditions
of Computer Hardware

In order to validate the scanning mode and the effectiveness of the presented
reconstruction algorithm for the pipeline flow fluid with impurities in this
paper, the simulation experiments are presented on personal computer with 4G
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Fig. 8 It presents the simulated models: (a) “pipeline data1” and (b) “pipeline data2”

memory and 2.70GHz CPU by Microsoft Visual Studio 2010. Figure 8a shows
“pipeline data1” which is composed of 256 × 256 × 100 voxels of each size
0.354 mm × 0.354 mm × 0.354 mm. Figure 8b “pipeline data2” is analogous
to (a) except for a little more complicated flowing fluid impurities in pipeline.
The projection data are simulated via adding Gaussian noise with zero mean
and standard deviation 0%max, 0.1%max, and 0.5%max (max stands for the
maximal intensity of the current projection view). The parameters of the proposed
geometrical scanning mode for a simulated equivalent spiral cone-beam CT imaging
are presented in Table1. In the experiment, this paper utilizes the local projection
data to reconstruct using the general spiral FDK to verify our proposed scanning
mode and the presented algorithm.

5.2 Performance Assessment

To quantitatively assess the performance of the presented algorithm, the following
three metrics are utilized: (1) root-mean-square error (RMSE), (2) normalized
root-mean-square distance (NRMSD), and (3) normalized mean absolute distance
(NMAD) [28]:

RMSE =
√√√√ 1

Q

Q∑

k=1

(f (k)− fROI(k))
2 (9)

NRMSD =

√√√√√
√√√

Q∑

k=1
(f (k)− fROI(k))

2

Q∑

k=1

(
f ROI − fROI(k)

)2
(10)
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NMAD =

Q∑

k=1
|f (k)− fROI(k)|
Q∑

k=1
|fROI(k)|

(11)

where f denotes the original model “pipeline data1” or “pipeline data 2,” fROI
denotes the reconstructed ROI of the model, |f | represents the absolute value of
f, and the average of the densities in ROI is f ROI. Q is the total number of pixels
in ROI. When the reconstructed results are approximately equal to the original, the
values of NRMSD and NMAD will be close to 0. The NRMSD and NMAD values
highlight the image quality in different aspects, respectively. The more different
places in reconstructed result are, the larger the value of NRMSD is. On condition
that the reconstructed result is uniformly dense with the correct average density, the
value of NRMSD will be close to 1.0. Contrary to NRMSD, NMAD emphasizes the
consequence of several small errors. Meanwhile, the value of NMAD is close to 1.0
in case that the reconstructed result is uniformly dense with zero density.

5.3 The Simulated Experimental Results

For the sake of verifying the superiority of our cone-beam computed tomography
local image reconstruction algorithm, we made the comparison with general spiral
FDK [27]. Figure 9 shows the images reconstructed by different filters from local
projection data. In Fig. 9, image (a) is the 50th slice of original “pipeline data1.”
Images (b1), (b2), and (b3) are reconstructed by general spiral FDK with R-
L filter from local projection data (short for spiral-FDK-RL-filter). Image (c1),
(c2), and (c3) are reconstructed by general spiral FDK with local filter from local
projection data (short for spiral-FDK-local-filter), which are processed in contrast
enhancement through Adobe Photoshop CS4. Figure 10 shows the zoom-in figures
according to Fig. 9. From Figs. 9 and 10, it can show that when the projection
data are incomplete, the general spiral FDK algorithm with R-L filter has a certain
influence on reconstructed image because of the truncated data of pipeline wall
which suffers streak artifacts, meanwhile, the presented algorithm can obtain the
reconstructed image which is very close to the impurities of internal pipeline. Figure
11 demonstrates the gray difference among the images which is the original image
and reconstructed images using spiral FDK with R-L filter and local filter, which
shows that R-L filter has relatively good contrast and local filter has good intensity
resolution. It can be observed that the image using local filter is much closer to the
original image in ROI compared with R-L filter. In vision, local filter is more able
to mitigate streak artifacts and noise, and it makes a good trade-off between contrast
and intensity resolution.
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Fig. 9 It presents the 50th slice of “pipeline data1”: (a) is the original image of the “pipeline
data1”; (b1), (b2), and (b3) are the reconstructed results by general spiral cone-beam FDK method
with R-L filter from 0%max, 0.1%max, and 0.5%max projection data; and (c1), (c2), and (c3) are
the reconstructed results by general spiral cone-beam FDK method with local filter from 0%max,
0.1%max, and 0.5%max projection data. The grayscale window is [0.255]

To highlight the superiority of the presented algorithm, a complicated model
“pipeline data2” is utilized. Figure 12 shows the reconstructed images by different
filters from local projection data. Image (a) is the 50th slice of original “pipeline
data2.” Images (b1), (b2), and (b3) are reconstructed by general spiral FDK with R-
L filter from local projection data. Images (c1), (c2), and (c3) are reconstructed by
general spiral FDK with local filter from local projection data, which are processed
in contrast enhancement through Adobe Photoshop CS4. Figure 13 represents
the zoom-in figures corresponding to Fig. 12. Figure 14 demonstrates the gray
difference among the images. It still validates the point that local filter can maintain
good intensity resolution, while R-L filter can obtain high contrast. They can show
that when the projection data are incomplete, the general spiral FDK algorithm
also suffers streak artifact because of the truncated data of pipeline wall; however,
the presented algorithm can obtain the closer image to the impurities of internal
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Fig. 10 It shows the zoom-in figures corresponding to Fig. 9

pipeline, compared with general spiral cone-beam FDK algorithm with R-L filter.
Accordingly, it also obtains that local filter takes more advantages of suppressing
streak artifacts and noise.

Furthermore, the visual inspections of the reconstructed results are necessary.
Tables 2 and 3 list the RMSE, NRMSD, and NMAD assessments of the images
(as shown in Figs. 9 and 12, respectively) reconstructed by general spiral FDK
with R-L filter and local filter from incomplete projection data, respectively. The
quantitative results using local filter exhibited better results than those from spiral-
FDK-RL-filter according to the three assessments. Table 2 presents that under the
incomplete projection data, for adding 0%max, 0.1%max, and 0.5%max projection
data, reconstructed local ROIs using local filter outperform R-L filter with smaller
RMSE, NRMSD, and NMAD assessments, respectively. Meanwhile, Table 3 also
confirms the superiority of our algorithm with smaller assessments. The good
valuation of the presented algorithm is attributed to the local filter with a high and
narrow main lobe and the rapid attenuation of side lobe which help to improve
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Fig. 11 (a–c) represent the gray histograms of the 128th row of Fig. 9 reconstructed from adding
0%max, 0.1%max, and 0.5%max projection data, respectively

the density of the image resolution. In addition, local filter can maintain the good
properties in mitigating streak artifacts and noise. Despite increasing the noise, local
filter still keeps good performance. Relatively, R-L filter does not work out this
situation very well.

6 Conclusions

In order to solve the detection of impurities in pipeline in service, this paper
proposed a novel scanning mode and presented a corresponding local spiral cone-
beam FDK reconstruction algorithm with a local filter. On one hand, this scanning
mode takes advantage of fluid flowing to obtain ESCB projection data of the
liquid (including impurities), which is simple and feasible. On the other hand,
the presented algorithm utilizes a novel filter as a filter function to preserve the
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Fig. 12 It presents the 50th slice of “pipeline data2”: (a) is the original image of the “pipeline
data2”; (b1), (b2), and (b3) are the reconstructed results by general spiral cone-beam FDK method
with R-L filter from 0%max, 0.1%max, and 0.5%max projection data; and (c1), (c2), and (c3) are
the reconstructed results by general spiral cone-beam FDK method with local filter from 0%max,
0.1%max, and 0.5%max projection data. The grayscale window is [0.255]

resolution of the pipeline internal impurities, while the general spiral FDK with R-L
filter cannot solve the incomplete projection data problem very well. It was inferred
from the simulated experiments incomplete projection data that the presented
algorithm showed more advantages than general spiral FDK algorithm with R-L
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Fig. 13 It shows the zoom-in views corresponding to Fig. 12

filter according to image quality and the evaluation indexes. The streak artifacts
can be better suppressed, and more accurate images can be reconstructed by the
presented algorithm for the reconstruction of impurities in pipeline in service.

In the future work, we will consider the motion of the object to be reconstructed
and improve the algorithm to deal with the dynamic CT for detecting the pipeline
internal.
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Fig. 14 (a–c) represent the gray histograms of the 128th row of Fig. 12 reconstructed from adding
0%max, 0.1%max, and 0.5%max projection data, respectively

Table 2 Evaluations of the results of 50th slice reconstructed about “pipeline data1” by different
filters from local projection data with adding 0, 0.1%max, and 0.5%max

Method Noise ROI RMSE NRMSD NMAD

Spiral-FDK-RL-filter 0%max Global 18.1507 0.1797 0.1670
Local 11.5026 0.7077 0.8340

0.1%max Global 18.3822 0.1827 0.1710
Local 11.2209 0.7130 0.8404

0.5%max Global 21.2796 0.2196 0.2147
Local 12.1180 0.7733 0.9107

Spiral-FDK-local-filter 0%max Global 18.8058 0.1941 0.1347
Local 6.3701 0.2902 0.1997

0.1%max Global 18.8937 0.1953 0.1363
Local 6.3793 0.2911 0.2007

0.5%max Global 20.2487 0.2141 0.1576
Local 6.5132 0.3039 0.2136
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Table 3 Evaluations of the results of 50th slice reconstructed about “pipeline data2” by different
filters from local projection data with adding 0, 0.1%max, and 0.5%max

Method Noise ROI RMSE NRMSD NMAD

Spiral-FDK-RL-filter 0%max Global 20.0332 0.2027 0.1478
Local 14.3166 0.3940 0.4558

0.1%max Global 20.0475 0.2029 0.1480
Local 14.3270 0.3943 0.4563

0.5%max Global 21.0065 0.2184 0.1643
Local 14.9699 0.4230 0.4912

Spiral-FDK-local-filter 0%max Global 22.1431 0.2321 0.1310
Local 12.6541 0.3177 0.1840

0.1%max Global 22.1404 0.2325 0.1308
Local 12.6606 0.3184 0.1845

0.5%max Global 22.2745 0.2383 0.1331
Local 12.8027 0.3280 0.1931
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A Linearity Bootstrapped Switch with
Dynamic Bulk Biasing Design for CMOS
Image Sensors

Gong Chen, Weiwei Ling, Juan Zhou, Yao Yao, Li Li, Hua Wei, Yao Huang,
and Jiang Du

1 Introduction

The analog-to-digital converter (ADC) is one of the essential building blocks in
the CIS systems [1, 2]. High sampling accuracy of time-varying input signals is
the first requirement in designing ADCs for various video applications. Therefore,
improving linearity performance in ADCs, especially in front-end switch capacitor
arrays, should be a prevailing concern in terms of sampling accuracy specification.

Switches produce harmonic distortion when they are sampling high-speed
signals. And sampling switch nonlinearity is mainly attributed to nonlinear on
equivalent on-resistance and associated parasitic capacitance. The conventional
bootstrapped switches in [3] has a merit of approximate constant on-resistance
because of the constant-overdrive-MOSFET approach. Although the bootstrapped
switch can sample the input signal accurately, the nonlinearity of internal input-
related transistors (except the booted transmission gate) and the charge rejection
due to turning off some transistors slightly earlier in the overall circuit always
cause a non-zero potential at the output when in holding mode. As shown in
Fig. 1, the charge injection is corrected by introducing differential topology as it
appears as a common-mode disturbance. Herein, a pair of cross-couple capacitors is
used to eliminate unequal charges in the comparison cycles. However, the charges
introduced by two switches in a differential topology do not exactly cancel each
other because of two reasons. The primary error is the load capacitance mismatch
in the next stage of digital-to-analog converter (DAC) arrays. The secondary factor
is the two input differential signals which are not equal to each other. Hence, for the
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Fig. 1 SAR ADC scheme

purpose of obtaining much smaller non-zero holding biasing voltage, also achieving
higher precision, an improvement for higher linearity of internal transistors is taken
into consideration.

This paper presents an improved linearity bootstrapped switch architecture to
be used in a successive approximation register (SAR) ADC. The full-scale input
range is 1.2 V. A dynamic bulk biasing circuit for bulk compensation is implemented
to improve the linearity of the input signal-related transistors. A previous work
[4] has discussed a bulk-effect compensation approach within device reliability
limits. A further consideration [5] has introduced a dynamically driven deep n-
well (DNW) with combination of bulk-effect compensation. However, no concrete
implementation of the scheme was discussed. Herein this paper goes into the
particulars of circuit analysis. Actually, the bulk effect is only required in the
sampling mode. Our dynamic substrate voltage compensation circuit can connect
the bulk terminal to the source of the transistor while in sampling mode, like [4],
without decreasing the linearity performance in the sample mode. But in holding
mode, the bulk terminal is connected to the ground to reduce the charge rejection
from the parasitic capacitance. Therefore, the bootstrapped switch has 2 dB second
harmonic improvement in a case of single tone testing. Moreover, the errors caused
by the next stage of holding potential imbalance and capacitors mismatch are
decreased, to enhance the whole ADC’s linearity performance.

In addition, this paper presents a reliable clock doubling circuit. Normally, simple
charge pump is suggested by [6] to obtain conduction of transistors. Unfortunately,
the transistors lose reliability when their gate-source voltage is approximately twice
as much as the specified supply voltage. For the proposed reliable clock doubling
circuit, none of the transistors have terminal voltages exceeding the specified
supply voltage. Furthermore, three transistors and only one capacitor are required
in comparison with the conventional charge pump which consists of at least four
transistors and two capacitors.

The rest of this paper is organized as follows; Sect. 2 is an overview of
the proposed bootstrapped switch architecture. The remaining sections provide
simulation results and conclusions.
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2 Analysis of Proposed Bootstrapped Switch

2.1 Preliminaries

Bootstrapped switch is used in CIS system. There has been a great demand in analog
switches for operating with low supply voltage to analog ground difference (supply
difference) since the latest generation CMOS technologies are scaled down. Another
requirement is that analog switches conduct signals in the rail-to-rail range. To
combine the rail-to-rail operation with the constant-overdrive-MOSFET approach
leads to the conclusion that the gate potential unavoidably must exceed one of the
supply rails. Hence, it is necessary to either boost the supply difference or use
a signal-dependent clock booster. Figure 2 shows the conventional bootstrapped
switch based on the basic principle of operation of a constant overdrive. A drawback
of this switch is that NMOS transistors of M8 cannot conduct for source voltage
beyond VDD−VthM8 for normal clock signals, where VDD is the supply voltage and
Vth is the threshold voltage. Thus the on-resistance is relatively nonlinear for high
input voltages near VDD − VthM8. In [4], a solution to this bulk effect is proposed
through the use of a separate well PMOS transistor as the main switch by controlling
its bulk potential. In [7], a MOS-only implementation was presented; however, no
attention has been paid to reliability problems. In [3], reliability problems have been
addressed with simple circuit configurations.

In this paper, first, the bulk-effect compensation is implemented in the internal
input signal-related NMOS switches of M7 and M8. Then a dynamic bulk biasing
circuitry is proposed to release charge rejection of M7, M8. Finally, a revised clock
doubling circuit is reported to limit the transistors’ terminal voltages of the charge
pump in Fig. 2 not exceeding the specified supply voltage. The circuit structure is
described in the next section.

Fig. 2 The conventional bootstrapped switch in [3]
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2.2 Proposed Circuit Description

Figure 3 shows the proposed circuit and clock signal. The falling edge of CLKs
has a time delay compared to the rising edge of CLKsb. In the beginning of the
holding mode (CLKs = 1.2 V, CLKsb = 1.2 V), the bottom plate of C1 is discharged
through M3, and top plate of C1 is discharged through M5, M9, and M10
simultaneously.

The whole circuit operation is discussed in a worst case of input signal equal to
VDD . Transistors M3, M4, M5, M7, and M10 correspond to five ideal switches. M8
is the main sampling switch whose gate is grounded through M9 and M10 during
holding mode, hence, turning it off. During the same phase, M13, M14, M15, and
C2, forming a clock-boosting circuit, drive transistor M4 which unidirectionally
charges capacitor C1. This solution provides clock doubling by ensuring the
reliability constraint. None of the transistors in the proposed reliable clock doubling
circuit have terminal voltages Vgs , Vds , and Vgd exceeding the supply voltage of
1.2 V. Transistors M5 (connected to VDD through M1) and M7 isolate the sampling
switch M8 when the capacitor C1 is being charged to VDD . The charged capacitor
provides a constant voltage of VDD between gate and source of M8 during sampling
mode of the clock, thus also ensuring a low on-resistance independent of the input

Fig. 3 The proposed circuit and clock signal
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signal. During this mode, M2 pulls down the gate of M5, turning it on and allowing
the charge to flow from capacitor C1 to the gate of M6, M7, and M8. This turns all
three transistors on. M7 also enables node n3 to follow the input voltage shifted by
VDD , keeping the gate-source voltage constant regardless of the input signal. M9
reduces the Vds and Vgd of M10 when CLKsb is off and node n1 is at 2VDD for the
worst case input of VDD . Transistor M6 ensures that the gate-source voltage across
MP5 does not exceed VDD by allowing the input voltage to appear at node n3 during
sampling mode of the clock.

The voltage at node n1 can be expressed in Eq. (1) while considering the parasitic
capacitances attached to the top plate of C1. For the worst case, input voltage of
M7, which is an NMOS transistor, is required to conduct. The gate of this transistor
is for this reason connected to the gate of M8 for bootstrapped voltage to ensure
high conductivity by maintaining Vgs of the transistor equal to Vdd during sampling
mode. Yu et al. [1] report an option to use PMOS instead of M4. But it would not
have been possible to turn the PMOS off during the sampling mode, and it would
have been a leaky switch. In this scheme M4 is a reliable switch. During holding
mode, it charges capacitor C1 to Vdd . During sampling mode, M4 has Vdd − VthM4
at the gate and Vdd + Vin at the drain. Even for the worst case, transistor M4 is off.
Thus, the transistor reliability is ensured.

Vn1 = Vin + C1

C1+ CpVDD, (1)

In the proposed dynamic bulk biasing circuit, both the bulk terminals of M7 and
M8 are connected to the source of M11. When in sampling mode, M12 is turned
off; M11 is turned on. The potential of drain and source of M11 is the same. Thus
the substrate of M8 and M7 is connected to the source of themselves. Even if Vin
is higher than VDD , the PN junction between source and bulk of M8 and M7 is not
reversed. When in holding mode, M12 is turned on and M11 is turned off. This is
helpful to discharge the parasitic capacitance of M7 and M8. In the reliable clock
doubling circuit, during the sampling mode, capacitor C2 is pre-charged to Vdd −
VthM13. During the holding mode, M14 connects the bottom plate of C2. As a result
the top plate of C2 rises to 2Vdd−VthM13. The gate potential of M4 toggles between
Vdd − VthM13 and 2Vdd − VthM13.

2.3 Charge Injection Description

Charge injection occurs due to unwanted charges injected into the circuit by turning
off some transistors slightly earlier in the overall circuit. The output node Vout is
the most sensitive from the charge injection point of view. The charge injection is
concluded from two aspects. The first dominating reason is that when M8 turns
off, the channel charge, source-to-bulk parasitic capacitor charge, and drain-to-bulk
parasitic charge flow out to source and drain regions in a fast turning off time. The
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second reason is that the gate-drain overlap capacitance introduces variation to the
output voltage during the holding mode. However, the charge injection from the
overlap capacitance only has marginal effects on the output voltage. Herein, only
the first dominating reason is considered.

It is supposed that the channel charge, source-to-bulk parasitic capacitor charge,
and drain-to-bulk parasitic charge of M8 flow equally in both directions toward
source and drain. As in [8], the channel capacitance is calculated as

Cchannel ∼= 2/3CoxWM8LM8, (2)

The parasitic capacitance can be approximated as

CparaM8 ∼= CdiffusionWM8 × SA, (3)

WhereWM8 and LM8 are the dimensions of the transistor M8. Cox and Cdiffusion are
the gate oxide and diffusion unit-area capacitance, respectively. SA is the diffusion
length. The drain and source of M8 are assumed having the same SA. The charge
flowing to the output junction Vout for the bootstrapped voltage of Vdd − Vin at gate
terminal is given by

�Q = −
(
Cchannel

2
+ CparaM8

)
(Vdd − Vin) (4)

The change in voltage according to Q = CV at the output node because of the
charge is given as

�V = − (Cchannel/2+ CparaM8)(Vdd − Vin)

Chold
(5)

Equation 5 proves that the dynamic bulk biasing circuit can decrease the charge
injection effectively. Furthermore, in order to have a reduced charge injection at the
output, either the size of the switch M8 should be small or the value of Chold should
be high. The bootstrapped switch also has an improved input voltage-dependent
signal distortion by keeping Vgs = Vdd .

2.4 Design Strategy

The transistor size is listed in Table 1. The on-resistance of M8 is given by

Ron(t) = 1

μnCox
WM8
LM8

(VgsM8(t)− VthM8(t))
(6)
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Table 1 Transistor sizes for
the proposed bootstrapped
switch circuit

Transistor W[um] L[um] Transistor W[um] L[um]

M1 2 0.18 M9 2 0.3

M2 1 0.18 M10 2 0.18

M3 4 0.18 M11 1 0.18

M4 8 0.18 M12 1 0.18

M5 6 0.18 M13 2 0.18

M6 1 0.18 M14 4 0.18

M7 4 0.18 M15 2 0.18

M8 9 0.18

The sampling switch M8 is most critical from charge injection and low Ron point
of view. If the width of M8 is too large, then it will result in an increased charge
injection at the output. On the other hand in order to have lower Ron, value of the
width of the sampling transistor should be larger. From simulations an optimum
value of 9/0.18 um was selected for these trade-offs.

The transistor M5 allows Vdd + Vin to appear as gate voltage for the sampling
transistor. So the propagation delay of M5 should be as small as possible. For the
same reason, for charging C1 sufficiently fast, M4’s width is four times that of M13.
All transistors in the design have a length of 0.18 um (minimal length from design
rule) except M9 whose length has been kept to 0.3 um. It is helpful to improve the
punch-through voltage of M9. The rest of the transistors in the bootstrapped switch
are designed to have less propagation delay and thus avoiding unnecessary leakage
paths because of different turn-on times.

C1 is 120 fF and C2 is 80 fF to have low KT/C noise. The capacitance of
Chold is determined by the whole SAR ADC design consideration. Following [9],
a unit capacitor is selected by the thermal noise, capacitor mismatch, and design
rule. Herein, a unit capacitor is 17.76 fF. For 8-bit calculation, the total loading
capacitance of Chold is 4.2 pF.

3 Simulation Result

The simulation of the bootstrapped switch is implemented in the 65 nm triple well
process. Figure 4a shows a comparison of output waveform among proposed circuit
in Fig. 3 (solid line), bootstrapped switch in [1] with dynamic biasing voltage
circuit (dotted line), and conventional switch in Fig. 2 with linear charge pump
(mixed line). It is obvious that the proposed bootstrapped switch can obtain a
best non-zero bias in the holding mode with maximum value +0.02 V/−0.07 V.
Figure 4b shows the simulated gate and source voltage of M8. The discrepancy
is 0.71 V.
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Fig. 4 Simulation of proposed bootstrapped switch terminal potential. (a) A comparison among
proposed circuit in Fig. 3, bootstrapped switch in [1] with dynamic biasing voltage circuit and
conventional switch in Fig. 2 with linear charge pump. (b) Simulated gate and source voltage of
M8

Figure 5 varies the value of Chold from 1.2 to 4.2 pF. The effect of these variations
on charge injection during holding mode and on acquisition time during sampling
mode verifies the discussion in Sect. 2.3.

Power spectral density simulations are demonstrated in Fig. 6. The simula-
tion is for a single tone input sine wave of 21 MHz; the clock-controlled sam-
pling frequency is 150 MHz. The 2nd-order harmonic is basically limiting the
SNDR performance without suppression by the differential topology. The SNDR
is 59.85 dBFS and SFDR is 76.02 dBFS. In comparison the power spectral density
of the conventional one, for which SNDR is 57.73 dBFS and SFDR is 73.14 dBFS.
This work has a 2.12 dBFS improvement in SNDR.
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Fig. 5 Simulation of holding mode and sampling mode by sweeping different Chold values. (a)
Charge injection during holding mode by sweeping different Chold values. (b) Acquisition time
during sampling mode by sweeping different Chold values

4 Conclusion

A bootstrapped switch has been simulated in 65 nm triple well process. Switch
charge injection and linearity are improved due to the dynamic bulk biasing
structure. A simpler clock doubling circuit is also proposed for further improvement
of the linearity. Obtained results show the feasibility of the proposed bootstrapped
switch.
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Fig. 6 Simulation of power spectrum. (a) Simulated power spectrum of the conventional boot-
strapped switch at fin = 21 MHz, fsample = 150 MHz. (b) Simulated power spectrum of the proposed
bootstrapped switch at fin = 21 MHz, fsample = 150 MHz
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A Low-Complexity Bound Estimation
Technique for Maximum Likelihood
Receivers

Li Alex Li, Hua Wei, Yao Yao, Weiwei Ling, Gong Chen, Jiang Du,
and Yao Huang

1 Introduction

The union bound is usually considered as a useful analytical tool to estimate
the performance of maximum likelihood (ML) receivers, because this bound only
depends on the minimum Euclidean distance of received constellations and the
number of nearest neighbors. The union bound closely approximates the exact
probability of symbol error at high signal to noise ratio (SNR) values [2]. However
the computational complexity of the union bound for the real-time application is
still impractical even for multiple-input multiple-output (MIMO) systems, due to the
exhaustive search in minimum Euclidean distance search (MEDS). MEDS can be
applied in many works such as adaptive space-time modulation [4], dynamic pilot
allocation for ML receivers in MIMO-OFDM systems [5], and optimal minimum
distance-based precoding [1]. Some previous work on MEDS has been reported
in [9], which employs the symmetric properties and avoids the all zero vector to
reduce the complexity. However, such vectors do not have a very significant effect
on computational complexity, and hence the reduction is relatively small.

L. A. Li (�) · H. Wei · Y. Yao · W. Ling · G. Chen · J. Du · Y. Huang
Communication Engineering, Chengdu University of Information Technology, Chengdu, China
e-mail: lili1984@163.com;weihua@cuit.edu.cn;174960917@qq.com;lingweiwei@cuit.edu.cn;
chg@cuit.edu.cn;dujiang@cuit.edu.cn;huangyao@cuit.edu.cn

© Springer International Publishing AG, part of Springer Nature 2019
M. Jiang et al. (eds.), The Proceedings of the International Conference on Sensing
and Imaging, Lecture Notes in Electrical Engineering 506,
https://doi.org/10.1007/978-3-319-91659-0_8

117

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91659-0_8&domain=pdf
mailto:lili1984@163.com; weihua@cuit.edu.cn; 174960917@qq.com; lingweiwei@cuit.edu.cn; chg@cuit.edu.cn; dujiang@cuit.edu.cn; huangyao@cuit.edu.cn
mailto:lili1984@163.com; weihua@cuit.edu.cn; 174960917@qq.com; lingweiwei@cuit.edu.cn; chg@cuit.edu.cn; dujiang@cuit.edu.cn; huangyao@cuit.edu.cn
https://doi.org/10.1007/978-3-319-91659-0_8


118 L. A. Li et al.

2 System Model and Motivation

2.1 System Model

We consider the following real-valued linear model:

r = Ht+ v, (1)

where r, v ∈ R
Nr , t ∈ Z

Nt , H ∈ R
Nr×Nt has full column rank, and R and Z

denote the sets of real numbers and real integers with a limited range, respectively.
In wireless communications, t, r, and v are the transmitted and received vectors,
and the additive white Gaussian noise (AWGN) vector, which follows the Gaussian
distribution N (0Nr×1, σ

2INr×1). The quantity H is a random matrix that models the
frequency-flat channel, the coefficients of which are i.i.d. (independent and identi-
cally distributed) with real Gaussian distribution. The channel state information is
perfectly known to the receiver for real-time bound estimation. Here,M denotes the
constellation size for each transmit antenna. S is the set of all possible transmit
symbol vectors with the size |S | = MNt .

2.2 Conventional Sphere Decoding Algorithms

The tree search algorithms can be categorized as depth-first search (DFS), breadth-
first search (BFS), and K-best-first search (KBFS). All conventional methods or
variants are based on QR decomposition and tree search algorithms.

Depth-First Search

The DFS algorithm is performed by searching down one branch with the cost within
the initial radius until the first full path is obtained in this manner. The distance
obtained from the first full path is used as the reference radius to replace the initial
radius, and then a new search can proceed to find the minimum distance within the
new radius of a sphere. If the full path cannot be achieved, the DFS will start a
new search from one discarded branch in the upper level until the full path is made
and repeat the search as above. Further, the complexity of DFS is the same as BFS
without reference radius update.

Breadth-First Search

All branches at level i are examined by BFS first, and the survival branches within
the initial radius are extended to the next level. This procedure is carried out until
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BFS reaches the lowest level. The minimum distance is found based on the costs
of survival branches. Then the algorithm is terminated and returns the minimum
distance. Because it searches all possible branches at each level, the complexity is
apparently higher than any other optimized search methods.

K-Best-First Search

The KBFS is the optimization of BFS. The only difference between KBFS and BFS
is the way of keeping survival branches for level i. The KBFS sorts the survival
branches according to their costs and stores the first K-best branches for the level
i + 1. Others are eliminated simultaneously. In this case, the complexity of KBFS
is largely reduced and not affected so much by the initial radius and relatively
stable compared to other approaches. However, the accuracy of search cannot be
guaranteed, because some discarded branches area highly likely to contain the full
path corresponding to the minimum distance.

2.3 Motivation

The ML solution can be obtained by using DFS with lower complexity. From the
system model above, the ML metric can be expressed as

t̂ = argmint∈S ‖r−Ht‖2. (2)

The real-time symbol error rate (SER) of ML receivers can be approximated through
the union bound, which can be obtained by using the square of the minimum
Euclidean distance (d2

min) in a Q-function. The union bound can be approximated
in a looser form as [2] and [4]:

d2
min = argmintm,tn∈S ,tm �=tn

‖H(tm − tn)‖2

Nt
, (3)

Pe ≤ Nr(M − 1)Q

⎛

⎝

√
d2

min

4σ 2

⎞

⎠ , (4)

where Q denotes the Q-function and σ 2 is the noise variance. The equation in (4)
has been verified by comparing the exact error probability with the union bound in
[3] and found to be a reasonable estimate of the real-time performance of the ML
receiver. The exhaustive search computation in (3) is prohibitive, since in the worst
case it must search |S |(|S | − 1)/2 symbol vectors.
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3 The Proposed Bound Estimation Technique

In this section, we reformulate the search problem by using a QR decomposition
and properties of special matrices and derive a novel sphere decoding approach for
MEDS. Then we present the complexity of SDAs for this specific case in terms
of the arithmetic operations. We show that it is possible to greatly simplify the
procedures of MEDS with an acceptable accuracy loss. Additionally, we propose an
IR based on channel statistics and a modified version of SE enumeration for SDAs.

3.1 Generalization of Sphere Decoding

The main idea behind the SDA for our case is to find the lattice point corresponding
to the minimum Euclidean distance within a sphere. The tree search diagram of four
levels with four child nodes for each parent node is depicted in Fig. 1. The solid line
with forward arrow represents the survival branches, and the dashed line denotes
the discarded branches. The red solid line which extends to the lowest level is one
of full paths. One branch node corresponds to one of possible candidates as shown
in Fig. 1. Once the distance for a given lattice point exceeds the radius constraint,
this branch is discarded. The H in (3) can be decomposed into Q and R using a QR
decomposition, given by

H = QR subject to QQ† = INt×Nt , (5)

where Q ∈ R
Nt×Nt is an orthogonal matrix and R ∈ R

Nt×Nt is an upper triangular
matrix. Some zeros must be added to ensure that H is a square matrix in the case of
Nt > Nr . It is noted that only the first Nt columns of Q and the first Nt rows of R
are used, provided Nt < Nr . We assume e = tm − tn, m �= n, so

root

level 1

level 2

level 3

level 4

p

branch

A full path

Fig. 1 Tree search diagram for sphere decoding algorithm for 4 quadrature amplitude modulation
(QAM) or quadrature phase shift keying (QPSK)
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‖He‖2 = ‖QRe‖2 = ‖Q‖2‖Re‖2 = ‖Re‖2. (6)

The minimum distance search problem in (3) can be converted into an equivalent
form according to (6), that is,

d2
min =

1

Nt
argmine∈A ‖Re‖2. (7)

The SDA principles are exploited to search for the minimum distance, so that (7)
becomes

d2
min =

1

Nt
argmine∈A

Nt∑

i=1

∣∣∣∣
∣∣

i−1∑

j=1

ri,j ej + ri,iei
∣∣∣∣
∣∣

2

︸ ︷︷ ︸
a cost at level i

≤ p, (8)

where A is the set of all possible combinations of e and p is the radius of a sphere.
The quantity ri,j denotes the (Nt − i + 1, Nt − j + 1)-th element of R, and ei is
the (Nt − i + 1)-th entry of e. Here we do not specifically discuss the complexity
of SDAs, but it would be comparable to that of conventional SDAs. The number of
arithmetic operations is [11]

Nt∑

k=1

(2M−1 + 1)kπk/2

Γ (k/2+ 1)
pk/2 +N2

t , (9)

where k is the index of transmit antennas and Γ (·) denotes the gamma function. It
is obvious that the complexity of SDAs is much lower than the exhaustive search
method and only grows exponentially in k not in (2M−1 + 1)k .

3.2 Channel Statistics-Based Initial Radius

The Wishart matrix W is a random and nonnegative definite matrix with real,
nonnegative eigenvalues given by

W =
{ H†H Nt > Nr

HH† Nt ≤ Nr.
(10)

According to (6) and [7], the Rayleigh-Ritz theorem can be applied to the Wishart
matrix as below:
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‖e‖2λmin{W} ≤ ‖Re‖2

‖e‖2
‖e‖2 ≤ ‖e‖2λmax{W}, (11)

where λi{} denotes the ordered ith eigenvalue of the Wishart matrix, and
‖e‖2λmin{W} ≈ 0 for simplicity. Here we can make an important assumption
that p ≈ λmax{W}. Hence, the distribution of p can be roughly approximated by
the distribution of the maximum eigenvalue of the real Wishart matrix. The CDF of
the maximum eigenvalue of the real Wishart matrix can be expressed as [10]

∫ p

0

1

lm

lm∑

i=1

ϕi(λ1)
2λ
ln−lm
1 e−λ1dλ1 = 0.99, (12)

where λ1 = λmax{W}, lm = min(Nt ,Nr), and ln = max(Nt ,Nr).

ϕk+1(λ1) =
(

k!
(k + ln − lm)

)1/2

L
ln−lm
k (λ1), k = 0, . . . , lm − 1, (13)

where Lln−lmk (λ1) = 1
k!e
λ1λ

lm−ln
1

dk

dλk1

(
e−λ1λ

ln−lm+k
1

)
is the associated Laguerre

polynomial. The IR p can be obtained by (12). For a small number of antennas,
the IR p can be calculated according to

∫ pα

0

1

Γ (Nt)
xt−1etdt = 0.99, (14)

where α denotes the average power of the candidate constellation. Because we
assume e = [0, . . . , ei , . . . , 0]T is highly likely to be the vector corresponding to
the minimum distance value, the distribution of p can be reduced to chi-square
distribution χ2.

3.3 Modified Schnorr-Euchner Enumeration

SDAs employing SE enumeration can further reduce the complexity, as the candi-
date nodes are sorted and examined according to the path metric weight[8]. The
modified SE enumeration incorporated with [9] is presented in this part. The path
metric weight for the ordered kth candidate in level i is

P ki = Bki + Pi−1

=
∣∣∣∣
∣∣
ri,ie

k
i +

i−1∑

j=1

ri,j ej

∣∣∣∣
∣∣

2

+ Pi−1,
(15)
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where Pi−1 denotes the path metric weight for i−1 levels, and k ∈ [1, Nic].Nic is the
number of candidates for level i, which is selected by the modified SE enumeration.
According to (11), the corresponding range of eki can be represented as (16), where
d2
c = ‖e‖2 is the minimum square Euclidean distance in the constellation, and Ri

denotes the last i rows and i columns of R. Hence eki is in the range defined by (16)
and is chosen as one of the candidate nodes in level i, and the sorted branch metric
weights of candidate nodes can be denoted as Bki > B

k
i−1, which can greatly reduce

the complexity of conventional SDAs. A pseudo-code of the proposed algorithm is
shown in Algorithm 1, where

cmin ≤eki ≤ cmax
⌊−(p − Pi−1)

1/2 −∑i−1
j=1 ri,j ej

ri,i

⌋

≤eki ≤
⌈
(p − Pi−1)

1/2 −∑i−1
j=1 ri,j ej

ri,i

⌉

.

(16)

Algorithm 1 Proposed algorithm for MEDS
Require: p, R, S
Ensure: d2

min
1: Set i = 1, P0 = 0
2: Compute the bounds (cmin, cmax) of eki by (16) and sort them according to the distance from

λi = −∑i−1
j=1 ri,j ej /ri,i , k ∈ [1, Nic ]. Set k = 0.

3: k = k + 1.
4: if k > Nic then
5: go to 15.
6: else
7: If ej = 0, j = 1, . . . , i − 1 or i = 1 then k = k + 1. go to 9.
8: end if
9: Calculate the path metric for kth candidate node at ith level, P ki = Bki + Pi−1.

10: if i = Nt then
11: go to 21.
12: else
13: If P ki < p, i = i + 1, Pi−1 = P ki−1, then go to 2.end if
14: end if
15: i = i − 1.
16: if i = 0 then
17: Output d2

min = p and terminate.
18: else
19: go to 3.
20: end if
21: if P ki < p then
22: p = P ki , go to 15.
23: end if
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4 Applications in Dynamic Pilot Allocation

As stated in the previous section, the proposed methods can be naturally exploited in
the other algorithms, which use the union bound as a performance indicator. In this
section, we apply the union bound to the dynamic pilot allocation [6] to validate the
effectiveness of the proposed method. In other words, the dynamic pilot allocation
does place the pilots in the same positions with the method as the conventional union
bound estimation.

4.1 Application Examples

The dynamic pilot allocation algorithm is an optimized pilot placement strategy,
which can improve the SER performance of the receiver at the expense of the
channel estimation mean square error (MSE) performance degradation. Hence, it
is very important to evaluate the real-time performance of the receiver. In this
case, we use the ML detection in the receiver side and use the proposed method to
estimate the performance with different pilot placements. In the next, one particular
pilot placement with the minimum SER estimate will be found and used in the
transmitter side to improve the detection performance of the ML receivers. In this
part, we will compare the optimized pilot patterns using the conventional union
bound estimates in [2] and the proposed method, respectively. According to our
observations, the pilots will be allocated the deep faded subcarriers. The length of
channel impulse response is 8, the number of subcarrier is 32, and the number of
pilots is 8. The signal to noise ratio (SNR) is set to 20 dB to avoid the effects of
the noise. The transmitter and receiver are equipped with two antennas. In Fig. 2,
the pilot placement for the channel impulse response of the first transmit antenna
is shown, and the pilot placement for the second transmit antenna is shown in
Fig. 2. The result is similar to the first antenna example. The pilot placement with
the proposed method as selection metric is almost identical to the conventional
union bound. It implies that the proposed method can accurately obtain the real-
time SER and can be used in some other algorithms which require the real-time
SER performance (Fig. 3).

5 Simulation Results

For comparison purposes, the conventional DFS [9] and K-best-first search (KBFS)
SDAs are introduced. The complexity of the proposed and other algorithms
is compared via Monte Carlo simulations in terms of floating-point operations
(FLOPS). Note that the zeros in matrices or vectors do not count in FLOPS. The
union bound and real-time performance of the ML receiver are measured in terms
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Fig. 2 Comparison of pilot placement between proposed method and union bound for the first
transmit antenna with 4QAM
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Fig. 3 Comparison of pilot placement between proposed method and union bound for the second
transmit antenna with 4QAM
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Fig. 4 Comparison of RMSE between the proposed and KBFS for Nt = Nr = 8 with L =
[−2, 0, 2] (4QAM case)

of symbol error rate (SER). The power of the transmit antennas is normalized to

unity. The signal to noise ratio (SNR) is defined as SNR(dB) = 10 log10

(
EsNr
σ 2

)
.

The IR obtained in (12) is applied to the proposed and conventional DFS, and
p = ∞ in KBFS. The complexity of MEDS is greatly reduced by employing
SDAs. From Figs. 4 and 5, further complexity reduction is achieved by the proposed
algorithm with negligible RMSE performance loss. Additionally, the root-mean-

square error (RMSE) is defined as RMSE =
√
E[|d̂2

min − d2
min|2]. The curves for

the union bound and the exact performance (simulation result) approximately agree
as shown in Fig. 6, so the proposed bound estimation technique is shown to be tight
and requires lower complexity and hence is suited to real-time applications.

6 Discussion

From the simulation results above, the proposed algorithm has achieved the same
performance with a lower complexity compared to the conventional algorithm. From
the conventional point of view, the SDAs based on SE enumeration have reached
a very low complexity in the sense that there is no much room to be improved
in terms of complexity. However, the proposed algorithm performs better for the
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performance estimates of MIMO systems using ML receivers. There are three
reasons:

1. The proposed algorithm does not transverse the tree span in the first place, but
proceeds down one particular branch that has high probability to be the desired
solution. Because with the good channel conditions, the nulling canceling results
are identical to the results of maximum likelihood criterion. In other cases, the
first search result is very close to the final ML result.

2. The additional constrain of the radius has been set initially, and the first search
radius is also available. Although the SDAs are unlikely to fail in most cases,
they cannot reach the optimum solutions in some extreme cases. In other words,
the SDAs cannot reach the correct solutions even with every node checked. This
is because the maximum likelihood criterion fails, and the SDAs are not needed
to search the correct solution with intensive efforts. After the first search, the
proposed algorithm ensures that there is one of solutions available. Thus, the
tight radius will not lead to the failure of the SDAs.

3. In each search layer, the accessed nodes are bounded by the lower and upper
bound, which results in a more efficient search in each layer. Although some
desired nodes may be eliminated accidentally, the SDAs are constrained by the
initial radius and the first search radius to keep the unvisited nodes that belong to
the possible solutions to ML.

7 Conclusion

This paper provides a novel low-complexity algorithm for real-time union bound
applications. The union bound is still tight at low and high SNR values. Hence, this
approach can be applied to a range of applications that require real-time estimates
of SER.
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Analysis of RF Channel Isolation Impact
in Wireless Co-Time Co-Frequency Full
Duplex

Juan Zhou, Ying Shen, Gong Chen, Yajuan Xue, and Kun Mao

1 Introduction

Co-time co-frequency full duplex (CCFD) operation has emerged as an attractive
solution for increasing the spectrum efficiency of wireless communication systems.
With CCFD, a wireless terminal is allowed to transmit and receive simultaneously
in the same frequency band [1–4]. For example, the terminal can do the signal
detection work while transmitting signals at the same frequency at the same time.
However, one of the biggest practical impediments to CCFD operation is the
presence of self-interference, i.e., the interference that the modem’s transmitter
causes to its own receiver. To suppress the self-interference in a better way, the
RF feedback chain is employed to provide the reference self-interference signal in
the CCFD framework [5, 6]. The problem is that this architecture is analyzed with
the perfect RF chain isolation, which is impossible in practical projects.

Experimental results have shown that the self-interference cancelation (SIC)
performance is impacted by RF chain isolation, because of the RF signal leak due
to imperfect RF chain isolation. In this paper, we analyze the impact of RF chain
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isolation on the SIC mathematically. We first give a brief description of the system
model, and then the RF leakage signal is described, and then the self-interference
signal is estimated with the RF leakage signal. Since the estimated self-interference
signal is not correct due to the RF chain isolation, the SIC performance is degraded.

The system model is shown in Sect. 2. In Sect. 3, the impact on SIC of the RF
chain isolation is explained. The simulation results and experimental results are
presented in Sect. 4, and Sect. 5 concludes the paper.

2 System Model

The multiple-antenna CCFD architecture with RF feedback chain is shown in
Fig. 1, which is shown to be better in SIC performance in wireless CCFD. On the
transmitter side, the digital signal to be transmitted is mapped into the analog signal
by digital-analog converter (DAC) and is further up-converted and amplified to the
radio-frequency (RF) signal x1 by T x chain. On the receiver side, the wireless
self-interference signal is received at the Rx antenna and down-converted to the
analogy signal Rx chain, and then the analogy signal is mapped into the digital
signal by analog-digital converter (ADC). In addition, the RF signal is not only
used for transmitting at the T x antenna but also coupled for digital self-interference
cancelation. Correspondingly, a feedback path is added to process the coupled
signal, where the coupled signal is down-converted by the feedback chain, and is
further mapped into the digital signal by ADC.

In this paper, we focus on the architecture with two transmit antennas and two
receive antennas; correspondingly, two feedback chains are employed for better SIC
performance. Of course, similar analysis can be applied to more antennas.

3 Analysis of Imperfect RF Chain Isolation Impact

As shown in Fig. 1, the expected transmit signals and feedback signals are x1 and x2.
However, due to the RF signal leakage, the signals to be transmitted are x1 + γ1x2
and x2 + γ2x1, and then the corresponding feedback signals are

z1 = x1 + β1x2 (1)

and

z2 = x2 + β2x1 (2)

Suppose the transmit pilot signals x1,p and x2,p are FDD (frequency division
duplex), though TDD (time division duplex) could be similarly analyzed. With
hij (i = {1, 2} and j = {1, 2}) denoting the channel condition from T xi(i =
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Fig. 1 CCFD architecture with feedback chains. T x, Fb, and Rx represent transmit, feedback,
and receive, respectively

{1, 2}) antenna to Rxj (j = {1, 2}) antenna, the signals at the receive antennas can
be represented as

y1 = h11(x1,p + γ1x2,p)+ h21(x2,p + γ2x1,p) (3)

and

y2 = h12(x1,p + γ1x2,p)+ h22(x2,p + γ2x1,p) (4)

For the SIC in the CCFD, the channel condition is necessary. The estimation of
channel condition is usually executed as follows.

At time t1, the pilot signals x1,p is transmitting at T x1, while T x2 is silent. The
corresponding feedback signal is

z1,p = x1,p (5)

The received signals at Rx1 and Rx2 are, respectively, described as

y1,p = h11x1,p + h21γ2x1,p (6)
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and

y2,p = h12x1,p + h22γ2x1,p (7)

Then the estimated channel conditions ĥ11 and ĥ12 can be expressed as

ĥ11 = E(y1,p/z1,p) = h11 + h21γ2 (8)

and

ĥ12 = E(y2,p/z1,p) = h12 + h22γ2 (9)

At time t2, the pilot signals x2,p is transmitting at T x2 while T x1 is silent. Here,
the corresponding feedback signal is

z2,p = x2,p (10)

The received signals at Rx1 and Rx2 are respectively described as

y1,p = h11γ1x2,p + h21x2,p (11)

and

y2,p = h12γ1x2,p + h22x2,p (12)

The estimated channel condition ĥ21 and ĥ22 can be similarly analyzed as

ĥ21 =E(y1,p/z2,p) = h21 + h11γ1 (13)

and

ĥ22 = E(y2,p/z2,p) = h22 + h12γ1 (14)

With ĥ11 and ĥ21, the estimated self-interference signal ŝ1 at the RX1 chain can
be obtained by

ŝ1 = ĥ11z1 + ĥ21z2 (15)

Since the signals to be transmitted are x1 + γ1x2 and x2 + γ2x1 due to the RF
imperfect isolation, the practical self-interference signal is

s1 = h11(x1 + γ1x2)+ h21(x2 + γ2x1)+ η1 (16)
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where η denotes the receiver white noise with the noise power σ 2. The residual
self-interference after SIC at RX1 chain can be calculated as

ê1 = s1 − ŝ1 (17)

Depending on (1), (2), (8), and (13), (17) can be further expressed as

ê1 = h11(β1x2 + γ1β2x1)+ h21(β2x1 + γ2β1x2)+ η1 (18)

The expected residual power of self-interference signal at the RX1 chain is
‖ê1‖2 = σ 2, which is true only under the conditions β1 = 0 and β2 = 0. In
addition, it is found that γ1 and γ2 will not impact the SIC performance under the
perfect conditions.

The signal at the RX2 chain is similarly analyzed as follows. With ĥ22 and ĥ12,
the estimated self-interference signal ŝ2 at the RX2 chain can be obtained by

ŝ2 = ĥ12z1 + ĥ22z2 (19)

Since the practical self-interference signal is

s2 = h12(x1 + γ1x2)+ h22(x2 + γ2x1)+ η2, (20)

the residual self-interference after SIC at RX1 chain can be calculated as

ê2 = s2 − ŝ2 (21)

Depending on (1), (2), (9), and (14), (21) can be further expressed as

ê2 = h12(β1x2 + γ1β2x1)+ h22(β2x1 + γ2β1x2)+ η2 (22)

The expected residual power of self-interference signal at the RX2 chain is also
‖ê2‖2 = σ 2, which is true only under the conditions β1 = 0 and β2 = 0. It is also
found that γ1 and γ2 will not impact the SIC performance under perfect conditions.

From the analysis above, we can find the impact on SIC in CCFD is inevitable
due to imperfect RF isolation, because the perfect conditions are too critical to
realize. Besides it is shown that the SIC in RX1 chain is similarly for that in RX2
chain. Hence, for convenience of analysis, we only focus on the SIC performance in
RX1 chain in the following analysis.

Based on (18), the residual power of self-interference signal at the RX1 chain can
be defined by

‖ê1‖2 = ‖h11γ1β2 + h21β2‖2‖x1‖2 + ‖h11β1 + h21γ2β1‖2‖x2‖2 + σ 2 (23)
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For convenience of analysis, it is assumed that the power of the signal to be
transmitted is unity, meaning that ‖x1‖2 = 1 and ‖x2‖2 = 1. Then (23) can be
rewritten as

‖ê1‖2 = ‖h11γ1 + h21‖2β2
2 + ‖h11 + h21γ2‖2β2

1 + σ 2 (24)

Since h11 and h21 are the wireless channel conditions of self-interference signal
with almost the same circumstance, it is reasonable to assume that the order of
magnitude of h11 is the same as that of h21, approximated as h0. Similarly, since
the γ1, γ2, β1, and β2 are leakage coefficients of the same node, we can assume
that γ1, γ2, β1, and β2 have the same order of magnitude, approximated as γ0
and β0.

Therefore, the imperfect RF isolation impact on SIC performance in CCFD can
be analyzed in three cases as follows.

1. If the magnitude of channel condition is much larger than the magnitude
of leakage coefficient, the residual power of self-interference signal can be
approximated as

‖ê1‖2 ≈ ‖h21‖2β2
2 + ‖h11‖2β2

1 + σ 2 (25)

which can be further simplified as

‖ê1‖2 ≈ 2‖h0‖2β2
0 + σ 2 (26)

It is found that the residual power of self-interference signal is obtained by the
receiver noise and the multiplex of the magnitude of wireless self-interference
channel condition and that of the RF leakage coefficient. Here, we note that if
2‖h0‖2β2

0 is much smaller than the receiver noise, then the SIC performance is
determined by the receiver noise, and the impact from the RF chain isolation can
be neglected. In practice, the receiver noise is always much smaller; hence, for
the convenience of analysis, we assume that σ 2 is small enough to be canceled
in the following analysis.

With s1 in (16), the power of the received self-interference signal is

‖s1‖2 = ‖h11(x1 + γ1x2)‖2 + ‖h21(x2 + γ2x1)‖2 + σ 2 (27)

Since γ1 and γ2 are much smaller than 1 in practice, and ‖x1‖2 and ‖x2‖2 are
assumed to be unite one, the self-interference signal power can be approximated
as

‖s1‖2 ≈ 2‖h0|2 (28)
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The SIC performance in CCFD can be calculated as

�dB = 10 log 10(‖s1‖2/‖ê1‖2)

= 10 log 10(1/(β2
0 + σ 2)) (29)

2. If the magnitude of channel condition is much smaller than the magnitude
of leakage coefficient, the residual power of self-interference signal can be
approximated as

‖ê1‖2 ≈ ‖h11‖2β2
1 (1+ γ1)

2 (30)

Since the leakage coefficient is usually much smaller than 1, (25) can be further
simplified as

‖ê1‖2 ≈ 2‖h0‖2β2
0 (31)

Then the SIC result is the same as that of case (1), which is �dB =
10 log 10(1/β2

0 ).
3. If the magnitude of channel condition has the same order as that of leakage

coefficient, the residual power of self-interference signal can be approximated as

‖ê1‖2 ≈ ‖h0‖2β2
0 (1+ γ0)

2 (32)

Similar SIC result can be obtained, which is �dB = 10 log 10(1/β2
0 ).

From the analysis above, we can find that the RF isolation impact on SIC
performance is determined by the leakage coefficient β1 and β2, and the leakage
coefficient γ1 and γ2 can be neglected. The residual power of self-interference signal
can be obtained by (29).

4 Experimental Results and Simulation Results

We first give the experimental results. The transmitted signal power is 30 dBm with
20 MHz bandwidth, and the leakage signal in the feedback 2 chain is measured
as −37 dBm. The signal power is measured in the practical project by a spectrum
analyzer, which is shown in Fig. 2. From this figure, we can find that the RF leakage
signal damages the SIC performance apparently.

To confirm the theoretical analysis, a simulation platform is developed as follows:
3GPP LTE protocol with 20 MHz bandwidth is applied in the CCFD system,
and the RLS (recursive least square) algorithm is employed as the digital self-
interference cancelation method. For clear insight of the RF isolation impact, the
receiver noise is set as −95 dBm. The RF chain leakage coefficient β is set as
{0.0001, 0.0004, 0.0016, 0.0064, 0.0256, 0.1024}. From Fig. 3, the theoretical SIC
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Fig. 2 The experimental SIC performance in CCFD with the imperfect RF chain isolation
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Fig. 3 Theoretical SIC performance and simulation SIC performance are compared in CCFD,
where β denotes the RF chain leakage coefficient

performance is calculated by (29), which matches well with the simulation SIC
performance.

5 Conclusion

In this paper, it is first described that the RF leakage signal, due to the imperfect RF
chain isolation, damages the self-interference cancelation performance in CCFD
wireless communication system. Through mathematical analysis, we find that RF
chain isolation impact is determined by the RF leakage coefficient. The residual
power of self-interference signal is inversely proportional to the magnitude of RF
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leakage coefficient; the smaller the RF leakage coefficient, the larger SIC capability
in CCFD. Since RF isolation is always imperfect, the method of the analysis can
also be applied to other fields, such as signal detection and signal processing.

Acknowledgements This work was supported by the National Natural Science Foundation of
China (No.61601064, No.61471108, No.61601065, No.41404102), Sichuan Youth Science and
Technology Foundation (No. 2016JQ0012), and Key Project of Sichuan Provincial Education
Department (No. 16ZA0218).

References

1. Duarte M, Sabharwal A (2010) Full-Duplex wireless communications using off-the-shelf
radios: feasibility and first results. In: Proceedings of the Asilomar conference on signals,
systems and computers (ASILOMAR), pp 1558–1562

2. Nguyen D, Tran L-N, Pirinen P, Latva-Aho M (2014) On the spectral efficiency of full-Duplex
small cell wireless systems. IEEE Trans Wirel Commun 13:4896–4910

3. Jang Y, Min K, Park S, Choi S (2015) Spatial resource utilization to maximize uplink spectral
efficiency in full-Duplex massive MIMO. In: Proceedings of the IEEE ICC, pp 1583–1588

4. Soury H, ElSawy H, Alouini M-S (2017) Downlink error rates of half-Duplex users in full-
Duplex networks over a Laplacian inter-user interference limited and EGK fading. IEEE Trans
Wirel Commun 16:2693–2707

5. Shen Y, Juan Z, Tang Y (2015) Digital self-interference cancellation in wireless co-time and
co-frequency full-Duplex system. Wirel Pers Commun 82:2557–2565

6. Ahmed E, Eltawil AM (2015) All-digital self-interference cancellation technique for full-
Duplex systems. IEEE Trans Wirel Commun 14:3519–3532



Application of a Dual Motor
Synchronous Servo Control System
to the Photoelectronic Detection System

Ai Xiong, Meng-Yun Lin, and Xin Li

1 Introduction

Single motor direct drive is widely used in the servo control system of the photo-
electronic detection system [1, 2]. The telescope as one kind of the photoelectronic
detection system uses the single motor to drive the elevation axis; with the increment
of telescope diameter, the single motor hasn’t met the system requirements because
of its limitations [3]: when the single motor drives the mass balanced load, the output
toque is unbalanced which will make the drive force different and is not suitable for
the demand of the big power device. The single motor can make the temperature
change rapidly, can make the rigid strut deformation, and will degrade the tracking
performance of the photoelectronic detection system.

The servo control of the photoelectronic tracking system normally consists of
position loop, velocity loop, and current loop [4]. However, because of the limitation
of the actuators, the servo control may become nonlinear and degrade the photoelec-
tronic tracking system performance which cannot meet the performance demand.
The real-time and synchronization of the communication in multi-motor control
system is put out. EtherCAT [5], which was proposed by Beckhoff Company in
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Germany, has been widely used and developed rapidly for its superior performance.
By comparing and analyzing a variety of real-time industrial Ethernet, it is clear that
EtherCAT can be effectively applied to multi-motor synchronous control system.
KINGSTAR Motion software to achieve PC-based EtherCAT master function, with
the configuration of AxN servo driver EtherCAT slave of Phase Motion Ltd., is given
[6, 7]. The EtherCAT master and slave communication program design is described
in details. A single motor closed-loop test was carried out to verify the feasibility of
the system.

The rest of the paper is organized as follows. In Sect. 2, an overview of the
PI control scheme, the current loop, and the EtherCAT bus technique is given. In
Sect. 3, we present a structure of a dual motor synchronous servo control system
which combines the cross-coupling law with the EtherCAT bus, and the comparison
of dual motor synchronous servo control system to the single motor system is
also given. Section 4 introduces the experimental platform of the proposed dual
motor synchronous servo control system. Also, results of the presented algorithm
implemented on the experimental platform are given. Finally, Sect. 5 concludes with
further discussion on the results and the servo control system presented.

2 PI Control, Current Loop, and EtherCAT

2.1 PI Control

The popularity of PI (proportional plus integral) controllers can be attributed
partly to their robust performance in a wide range of operating conditions and
partly to their functional simplicity, which allow engineers to operate them in a
simple, straightforward manner. To implement such a controller, two parameters
must be determined for the given process: proportional gain (providing an overall
control action proportional to the error signal through the all-pass gain factor) and
integral gain (reducing steady-state errors through low-frequency compensation by
an integrator).

A standard PI written in the “parallel form” is given in (1):

GPI(s) = U(s)

E(s)
= Kp + Ki

s
(1)

where U(s) is the control signal acting on the error signal E(s), Kp is the proportional
gain, and Ki is the integral gain. In the time domain, (1) can be rewritten as follows:

u(t) = Kp +Ki

t∫

0

e (τ ) dτ (2)
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Fig. 1 Block diagram of the
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2.2 Current Loop

Nowadays, the demand for high precision of the servo control system of photoelec-
tronic detection system is increasing. In the past designs of servo control system,
the structure of speed loop and position loop is normally employed. However, the
low-frequency gain of the speed loop is influenced by the system phase gain and
is hard to increase. Through adding a current loop in the speed loop, the speed
loop characteristics of the system can be altered which will improve the tracking
precision of the servo control system. In Fig. 1, the current open-loop of the servo
control system of the photoelectronic detection system is shown.

Where Va the armature voltage, L the armature inductance, R the armature
resistance, If the armature current, Tm the torque constant, J the moment of inertia,
Tl the constant of counter electromotive force, and n the electromotor speed.

Firstly, we consider the current open-loop, as shown in Fig. 1. The transfer
function relating the output E to the input Va is

Gc(s) = E(s)/Va(s) = (Tm/R) s/
(
TmTls

2 + Tms + 1
)

(3)

In most servo control applications, Tl and Tm are constants if the electromotor
is selected and the two transition frequencies of the system are also constants. This
can be shown by changing (3) to

Gc(s) = (R/Tl) s/ (s − T1) (s − T2) (4)

where T1,2 =
(−1±√1− 4Tl/Tm

)
/2Tl and T1, 2 < 0 (Tl/Tm < 0.1 is normally the

case in the real applications).
It is shown from (4) that the two poles of Gc(s) are on the left plane of the

complex plane and the system is stable. However, the system bandwidth seldom can
meet the design need. To expand the system bandwidth of the current open-loop, a
PI controller with the transfer function

Gacr(s) = K (Tes + 1) /Tes (5)

is designed as shown in Fig. 2.
Therefore, the transfer function relating If to Iref is

If(s)/Iref(s) = (KT mTes +KT m)

/
(
RT mTlTes

2 + (TeTmR + TeTmR) s + (RT e +KT m)
) (6)
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Fig. 2 Block diagram of the current closed-loop using a PI controller
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Fig. 3 Block diagram of the three closed-loop of the servo control system

If the PI controller and electromotor parameters are selected to satisfy
KTm � RTe and Te < Tl, (6) is simplified as following:

If(s)/Iref(s) ≈ (KTes +K) /
(
RT lTes

2 + (TeR + TeR) s +KT m

)
(7)

It is shown from (7) that the system is not influenced by the electromechanical
load and the performance (mainly the system bandwidth) of the system will not
change if the control system doesn’t saturate. Now, the transfer function relating the
output n(s) and the input Iref(s) is

n(s)/Iref(s) = (KRT es +KR)
/
(
TmTlTeCeRs

3 + CeTeTm (R +K) s2 + Ce (RT e +KT m) s
) (8)

To simplify (8), we use the following assumptions

⎧
⎨

⎩

TmTlTeCe � R1
K � R

KT m � RT e

(9)

and get the equation

n(s)/Iref(s) ≈ R (Tes + 1) /CeTm (Tes + 1) s ≈ (R/CeTm) (1/s) (10)

The motor driver of the servo control system uses three closed-loop, as shown in
Fig. 3.
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2.3 EtherCAT

EtherCAT is by and large the fastest industrial Ethernet technology, but it also
synchronizes with nanosecond accuracy. This is a huge benefit for all applications
in which the target system is controlled or measured via the bus system. The
rapid reaction times work to reduce the wait times during the transitions between
process steps, which significantly improves application efficiency. Lastly, the
EtherCAT system architecture typically reduces the load on the CPU by 25–30%
in comparison to other bus systems (given the same cycle time). When optimally
applied, EtherCAT’s performance leads to improved accuracy, greater throughput,
and thus to lowered costs.

The EtherCAT master sends a telegram that passes through each node. Each
EtherCAT slave device reads the data addressed to it “on the fly” and inserts its
data in the frame as the frame is moving downstream. The frame is delayed only by
hardware propagation delay times. The last node in a segment (or branch) detects
an open port and sends the message back to the master using Ethernet technology’s
full duplex feature.

The telegram’s maximum effective data rate increases to over 90%, and due to
the utilization of the full duplex feature, the theoretical effective data rate is even
higher than 100 Mbit/s (>90% of two times 100 Mbit/s).

The EtherCAT master is the only node within a segment allowed to actively
send an EtherCAT frame; all other nodes merely forward frames downstream. This
concept prevents unpredictable delays and guarantees real-time capabilities.

The master uses a standard Ethernet Media Access Controller (MAC) without
an additional communication processor. This allows a master to be implemented on
any hardware platform with an available Ethernet port, regardless of which real-
time operating system or application software is used. EtherCAT slave devices
use an EtherCAT slave controller (ESC) to process frames on the fly and entirely
in hardware, making network performance predictable and independent of the
individual slave device implementation.

3 Dual Motor Cross-Coupling Control

3.1 Dual Motor Drive Model

The structure of the elevation axis frame of the gimbal is shown in Fig. 4, and it
includes the U-type gimbal, load, motor one, motor two, and so on.

The control model of Fig. 4 is shown in Fig. 5 [3].
Where JL the moment of inertia of the load, Jm1 the moment of inertia of the

motor one, Jm2 the moment of inertia of the motor two, Tm1 and Tm2 are the torque
of motor one and motor two, θL and θm1 and θm2 are the rotary angles of the load
and motor one and motor two, K1 and K2 are the stiffness of the axis.
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Fig. 4 Block diagram of the elevation axis frame of the gimbal

Fig. 5 Block diagram of the
dual motor drive model

K1 K2
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JL

The dynamics equation of the dual motor drive model is [8, 9, 10]:

Jm1θ̈m1 +K1 (θm1 − θL) = Tm1 (11)

JLθ̈L +K2 (θL − θm2)+K1 (θL − θm1) = 0 (12)

Jm2θ̈m2 +K2 (θm2 − θL) = Tm2 (13)

The equation of the torque output is:

Jm1θ̈m1 + Jm2θ̈m2 + JLθ̈L = Tm2Tm1 (14)

3.2 Dual Motor Cross-Coupling Drive Control

Dual motor cross-coupling is based on the dual motor equal control [11, 12]. The
method of dual motor cross-coupling position drive control is shown in Fig. 6.
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Fig. 6 Block diagram of the structure of the dual motor cross-coupling drive control
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In the dual motor cross-coupling position drive control system, every motor will
respond to the other motor disturbance and finally decrease the synchronous error
with high precision. The encoder 1 feedback will be used as the position feedback
because of the installation errors of the two encoders.

4 Experiments

4.1 Experimental Platform

The experimental platform of the dual motor cross-coupling position drive control
system is shown in Fig. 7.

KINGSTAR is a complete “plug-and-play” PC-based platform for industrial
motion control, machine vision, and programmable logic controllers (PLC). Built
on the EtherCAT standard and supported by a real-time 64-bit Windows operating
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Fig. 8 Block diagram of the three closed-loop of the motor driver

system (RTOS), KINGSTAR empowers engineers to design, develop, and integrate
applications with KINGSTAR’s soft motion, machine vision, and PLC or third-party
software. Using a single industrial PC, you can replace all hardware with software-
only motion controllers and machine vision positioning systems, quickly and cost
effectively.

The IPC of Beckhoff with Windows 7 and KINGSTAR is configured as the
EtherCAT master and receives the position, speed value, and so on, from the
EtherCAT slaves. After the calculation of position loop and speed loop, the reference
torque is sent to the EtherCAT slaves. The AxN motor drivers of the Phase Motion
Ltd. are configured as the EtherCAT slaves, sample the encoder data, run the torque
loop, return the data to the master, and receive the commands from the master. The
three closed-loop tasks allocation is shown in Fig. 8.

The 100BASE-TX Ethernet wire is the media which connect the master and the
slaves. The Encoder is the ECA4000 of 27 bits resolution, with Endat 2.2 interface,
from the Heidenhain Ltd. The motor is PMSM motor manufactured by the Phase
Motion Ltd., and the rated torque is 35 Nm, the max speed is 1150

◦
/s.

4.2 Experimental Results

1. Bandwidth Comparison

The sweep sine signal is used to drive the speed open-loop and speed closed-
loop, and the signals of responds are processed by MATLAB’s system identification
toolbox. The Bode plots of the single motor and dual motor speed closed-loop are
shown in Fig. 9.

From the figures above, the speed closed-loop bandwidth of the single motor
drive is 18 Hz, while the speed closed-loop bandwidth of the single motor drive
is 29 Hz. The bandwidth comparison shows that the stiffness of dual motor drive is
better than that of the single motor drive.
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Fig. 9 Block diagram of the Bode plots of single motor drive and dual motor drive

2. Tracking Error

Given the sine signal of 20
◦

sin (0.1t), the speed and position loop use the PI
controller, and the position tracking errors (PosTrackErr) of single and dual motor
drive are shown in Figs. 10 and 11, respectively.

Because the platform of the elevation axis is small and the stiffness of the axis is
big, the error of the dual motor drive is a little better than that of the single motor
drive.

3. Tracking Error with Disturbance

Given the sine signal of 20
◦

sin (0.1t) and the sine disturbance of 9.72 Nm, the
position tracking errors of single and dual motor drive are shown in Figs. 12 and 13,
respectively.
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Fig. 11 Block diagram of the position error of dual motor drive

The figures above show that the error of the dual motor drive with the tracking
error 4.66′′ is better than that of the dual motor drive with the tracking error 8.96′′.
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Fig. 13 Block diagram of the position error of dual motor drive under the disturbance noise

5 Conclusions

The dual motor cross-coupling drive control system based on EtherCAT is imple-
mented on the basis of single motor drive control. The experimental analysis of
single motor drive control and dual motor drive control is carried out, which clarifies
the advantages of dual motor drive control.

The resulting performance could be improved in the big telescope as the stiffness
of the elevation axis of the big telescope is worse. Furthermore, PI controller gains
and relevant command signal selected empirically should be decided with some
techniques.
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Calibrating TOF Sensor by Fusing
Normal Maps

Hanyu Ni, Yiguang Liu, Zhenyu Xu, Jianyu Heng, and Ling Jin

1 Introduction

The TOF sensor has been introduced for many years, which based on reconstruction
methods provides the real distance of scene. However, depth images obtained by
the TOF camera suffer from the problems of low resolution, noises, and radial
distortion. For example, compared with the images of conventional color camera
with 1280*960 or 1920*1080, The Swiss Ranger 3000 [1] based on 3D-TOF can
only produce 176*144 depth images, which are rather low resolution. Since the
problem of low resolution has not been effectively solved, the TOF sensor remains
in the experimental phase.

There are many works attempting to improve the resolution of depth images;
in general, methods of calibration are roughly categorized into two classes. The
first-class methods based on time redundancy use image super-resolution means.
However, the second-class methods based on spatial redundancy realize sensor
fusion; our method based on the second-class methods fuses the Kinect [2] sensor
with the TOF sensor. We will simply discuss now works in both classes. 3D
shape scanning [3] based on image super-resolution means is commonly aligned
several scans taken from multiple viewpoints. The scanning data based on accurate
calibration techniques, such as iterative closest points (ICP) [4], is used to iterate
each other. But because the TOF sensor is sensitive to movement, it is difficult to
obtain depth images of high resolution from different viewpoints. Cui et al. [5] use
some low-resolution depth images captured from slightly mobile views of the TOF
sensor, the improvement task based on a convex optimization framework to maintain
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the original measurement and suppress noises. Depth fusion methods solve the
problem that multiple frames are obtained by merging the other devices to provide
data captured simultaneously. This technique is applied to many calibration works,
for example, [6] build a calibration system that is consist of a TOF sensor and of a
stereoscopic sensor, which allows depth fusion to address the weaknesses of both
individual sensors, and they propose a novel method based on the calibration system
that uses the TOF data projected onto the stereo image to finish fusion. To obtain
more reliable and accurate depth images produced by the TOF sensor, [7] and [8]
fuse the TOF sensor with other stereo sensors. Schwarz et al. [9] present a sensor
fusion approach to TOF, based on the combination of depth and texture sources; this
method is appropriate for depth scenery capture. Yu et al. [10] propose a solution
of low computation cost to fuse depth images from TOF with high-resolution color
images to improve the resolution of depth images. Besides, other works [11–13]
based on the second-class methods improve the resolution of TOF.

The innovations of this paper include (1) a novel method combined depth images
with normal maps is proposed to improve the resolution of those depth images
produced by TOF; and (2) compared with classic photometric stereo, the normal
maps based on photometric stereo are captured by adding an extra light source
around the Kinect sensor, which are sufficiently illuminated to achieve better effects
of fusion.

In the other sections, we introduce our system overview in Sect 2, introduce
experimental principles of the TOF and photometric stereo in Sect 3, show and
discuss the results of our experiment in Sect 4, and, finally, give conclusions and
future outlooks in Sect 5.

2 Process of Fusing TOF with Normal Maps

Our system follows three steps. First, original static depth images are obtained by
the TOF sensor; after that, we use the bilateral filtering [14] techniques to smooth
original depth images. Second, as shown in Fig. 1, the Kinect sensor based on
photometric stereo obtains normal maps. In order to solve the problems that some
areas cannot be illuminated adequately, one extra light source is added around the
Kinect sensor. In addition, two triggers are used for two LED light sources to
turn on them conveniently. To obtain smooth normal maps, original normal maps
are optimized by joint bilateral filtering [15]. Finally, depth images are fused with
normal maps by our algorithm. Figure 2 shows our framework of experiments.
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Fig. 1 Obtaining normal maps

Fig. 2 Overview of our
experiments TOF
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Kinect
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3 Photometric Stereo with One Extra Light Source

3.1 Classic Photometric Stereo

The fundamental principles of photometric stereo are described in the pioneering
works of Woodham in the 1980s [16]. Light source is calibrated by estimating the
light direction, so we use a ball where the brightest spot is used to identify the
direction of light, as shown in Fig. 3. The direction of light is computed as:
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Fig. 3 A sphere determines
the direction of the light

Fig. 4 Classic model of
photometric stereo

Z

N

R

Z

Z = (2N · R)N − R,Nx = Qx −Hx
Ny = Qy −Hy,Nz =

√
R2 −N2

x −N2
y

(1)

where [Qx , Qy] denotes the location of the brightest point and [Hx , Hy] denotes
central position of the ball. R (as shown in Fig. 4) denotes the direction of reflection
taken as [0, 0, 1]. According to Lambertian surfaces, intensity at any point on the
surfaces is able to be computed as:

I = kdN · Z (2)

where N is the normal of point and Z is the reflected light direction. As for different
light sources, Ii(i = 1, 2, 3. . .n) is also different; therefore, we can obtain Ii as:

Ii = kd(NxZix +NyZiy +NzZiz) (3)
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for determining N, according to Eq. 3, we need at least three light sources that these
light sources are not in the same location. Then Eq. 3 is written as:

[M] = kd [N ] (4)

Only when Z > 3, the N can be computed as:

[Z]M = [I ], ZT ZM = ZT I
M = (ZT Z)−1

ZT I, kd = ‖M‖ , N = G/kd (5)

3.2 Obtaining Normal Images with Two Light Sources

After the sphere is illuminated by two different horizontal LED lights, according to
Fig. 5, respectively, we can obtain two spatial planes I and II, then the two planes
intersect in 3D space. As for Eq. 2, we know that N1 · Z1 = I1 and N2 · Z2 = I2.
In addition, assuming that we use the surfaces of a hemisphere, if Z and N were 90
degrees, the intensity I = 0 (see also Eq. 2), which is impossible, so we ignore the
data of this situation. Using the following formula, we find the normal N2, which
closets to the true value:

N2 = N1 − (I2Z1 − I1Z2)
N1 · (I2Z1 − I1Z2)

‖I2Z1 − I1Z2‖2
(6)

Light source Light source

II

I Z2

Z2

Z1
N1 N2

Z1

Fig. 5 Two different horizontal LED lights illuminate the areas



158 H. Ni et al.

3.3 TOF Based on Phase Shift

TOF is based on phase shift, so we give the phase shift σ for the correlation function
z(σ ).

z(σ ) = lim
t→∞

∫
cos(ζ t)× θ cos(ζ(t + σ)+ ϕ)dt (7)

where θ is the amplitude of incident light, ζ is the frequency, and ϕ is the phase
angle. Its light source is pulsed or modulated by continuous wave (CW). According
to pulsed modulation, we use square wave modulation to detect phase shifts between
the illumination and the reflection. There are four phase images Pi(i = 1, 2, 3, 4)
with the same period (�t). So, distance d is computed as:

d = 1

2
c�t

(
P2

P4 + P2

)
(8)

Besides, the second way is CW that takes multiple samples per measurement. Our
system is based on this method. So the ϕ and the offset (H) can be computed as:

ϕ = arctan

(
P3 − P1

P4 − P2

)
,H = P1 + P2 + P3 + P4

4
(9)

Besides, we can also get the amplitude θ and the distance d as:

d = r

4πf
ϕ, θ =

√
(P3 − P1)

2 + (P4 − P2)
2

2
(10)

where γ is the speed-of-light constant. By computing the phase delay ϕ and the
incident light x, we can get the light positions Li(i = 1, 2, 3, 4) as:

Li =
[(
ϕγ × (x − 1)

4πf

)
− γ θi

2πf

]
(11)

After multiple iterations and refinements, Li is computed by Eq. 9 through Eq. 11.
According to the light source positions, the phase delay ϕ is computed by many
refinements. Finally, we obtain depth images.

3.4 Combining Normal Maps with Depth Images

The position information from the surfaces normal and depth images is obtained by
minimizing:

E = γ1
∑

n,m

‖vnm‖2(Hij −H 0
ij )

2 + γn ∑
n,m

[(N0
nm · vij ) ∂H∂v |nm)+

N0
xij

fx
Zij )]2

+γn ∑
n,m

[(N0
nm · vij ) ∂H∂v |nm)+

N0
ynm

fy
Znm)]2

(12)
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Fig. 6 (a) Albedo of classic method, (b) albedo of our method

γ1+γn = 1 and γ1, γn � 0, H 0
ij denotes the original depth images, and N0

ij

denotes normal that are computed by Sects. 3.2 and 3.3, and vij is the weight of
pixel. Then we compute and amend the normal N0 to update normal images. After
several iterations and optimizations, the depth images are obtained.

4 Experimental Results

4.1 Results of Photometric Stereo

In order to prove that our method is more suitable than the classic photometric stereo
in obtaining normal maps, we launch an experiment that examines the albedo of
“captain” handwritten on white paper. Experiment (as shown in Fig. 6) shows that
the albedo ratio is more stable and the relative error of albedo produced by our
method is smaller than traditional method with the increase of pixel. Because some
areas are insufficient illumination, which will have an influence on fusion effect, our
method strengthens illumination intensity, and the result of fusion is smoother.

4.2 Results of Fusion

As shown in Fig. 7ii, mesh from the depth image of TOF is almost impossible to
recognize before being fused, and only the contour is visible. But we perform our
fusion algorithm that fuses the depth image of TOF with normal maps in Fig. 7iii and
iv, respectively; effects of mesh are obviously improved in Fig. 7v and vi. However,
compared with the normal map from our method in Fig. 7iv, the normal map based
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Fig. 7 From left to right: (i) intensity image; (ii) mesh from TOF; (iii) normal map from classic
photometric stereo; (iv) normal map from our method; (v) mesh from fusion of the normal map iii
and the depth image of TOF; (vi) mesh from fusion of the normal map iv and the depth image of
TOF
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on classic photometric stereo is very dim in Fig. 7iii. Besides, the effects of mesh
in Fig. 7vi are better than mesh in Fig. 7v. Finally, there are still some holes on the
mesh; this is the research of next step.

5 Conclusion

In this paper, we have proposed a novel fusion framework to improve the low
resolution of TOF depth images. Besides, to obtain applicable normal maps, we
equip two source lights to the Kinect sensor and successfully overcame the problem
of lack of sufficient illumination faced by traditional photometric stereo. By using
the two sensors as a combination, the resolution of TOF is improved. We hope that
our method could be applied to many other fields and provide insights about the next
generation of TOF production. In future works, we will put more effort to address
the problem of sensitivity to movement of the TOF sensor, making it able to be used
in dynamic scene.

Acknowledgements Thanks to the editor and reviewers for time and effort spent handling this
paper. This work was supported by the Science and Technology Innovation seedling project of
Sichuan (2016–2017).
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Flame Temperature Sensor Based
on a Silicon Nitride Hot Surface Igniter

Rikesh Shakya and Nathan Ida

1 Introduction

Combustion is a chemical reaction that occurs when fuel and air burn together
at very high temperature producing heat and combustion products. One of the
primary concerns during combustion is to make efficient use of the fuel. The
amount of fuel and air required for the combustion process is referred in comparison
with a stoichiometric air-fuel ratio. The stoichiometric air-fuel ratio is the ratio
of the amount of air necessary to burn a particular fuel completely. Fuel-air
equivalence ratio (φ) for a combustion process is the ratio of the mass of fuel to
air compared to the stoichiometric ratio of fuel and air. Fuel-air equivalence ratio
in the combustion process defines the temperature profile at different points in the
flame. The maximum theoretically achievable flame temperature in the combustion
process is called adiabatic flame temperature, which is specified in either constant
volume or constant pressure with no heat transfer to the surroundings. Adiabatic
flame temperature is a function of fuel composition, stoichiometry of fuel and air,
and temperature and pressure of the reactants. In a constant pressure and constant
reactant temperature combustion process, knowledge of the fuel-air ratio gives the
temperature of the flame and vice versa. Flame temperature is one of the parameters,
which can be used to determine the efficiency of a combustion.
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There are various temperature measurement devices that are used for differ-
ent applications. In general, temperature measurement methods can be broadly
categorized by the principle of measurements into mechanical, electrical, acoustic,
and optical methods. Each of these methods has their own strengths and weaknesses.
The choice of the temperature sensor depends upon application, temperature range,
and accuracy requirement. Early temperature sensors were mechanical, and these
include devices such as in-glass thermometer [1, 2], bimetallic strip thermometer
[1], and fluid expansion thermometer [1]. These are based on the change in
mechanical dimensions of fluids with changes in temperature. Another class of
temperature measurement methods uses optical techniques, which includes the
sodium spectrum line reversal method [3, 4]; brightness and emissivity methods
[3]; two-color pyrometry [6]; Schlieren [5, 7], shadowgraph [5], and interferometric
methods [5, 8]; Rayleigh scattering, Raman scattering, or resonant fluorescent
scattering [1, 5], [9]; LIF [10, 11]; etc. Acoustic thermography method is a relatively
inexpensive method for noninvasive temperature measurement. The method is based
on the principle of variation in speed of sound with changes in temperature [5,
12–14]. Another category of temperature measurement devices involves electrical
methods. These methods possess the advantage of easy detection and also permit
various signal processing techniques unlike other methods. Thermocouples [1, 15,
16], thermistors [17], and platinum resistance thermometers (PRT) [18–20] are some
popular electrical temperature sensors.

This paper presents the use of hot surface igniters (HSI) that are made up
of silicon nitride (SN), for temperature measurements in a premixed combustion
system. The use of SN HSI has the distinct advantage of being a dual-purpose
device serving as an igniter and as a temperature sensor, and since most combustion
system already employs hot surface igniters, their dual use contributes to lowering
costs. The resistance of the SN HSI varies with the change in temperature, and
this property is utilized for temperature measurements. Silicon carbide (SiC) HSI
was prevalent before the introduction of silicon nitride HSI. The SN HSI has low
density, corrosion resistance, and high mechanical strength at high temperatures and
possesses great hardness in comparison with SiC HSIs. Additionally, SN HSIs are
very good insulators helping in preventing electric shocks.

Flame temperature is an important parameter of combustion systems. It provides
a way to estimate the fuel-air equivalence ratio (φ) for air-fuel mixtures. Knowledge
of equivalence ratio permits adjustment of fuel and airflow rates to maximize the
efficiency of premixed combustion systems. Since the equivalence ratio is applicable
only for premixed combustion systems, the flame temperature sensor discussed
is only useful to control the efficiency of premixed combustion systems. Extra
interfacing circuits are required for dual functioning of the sensor, which increases
the cost of the burner control system. However, the HSI sensor as a dual-purpose
sensor saves the cost of fuel by increasing the efficiency of the combustion system.
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2 Theory of Operation

Flames are categorized into diffusion and premixed flames based on mixing of
fuel and air during combustion as shown in Fig. 1. Diffusion flames have fuel
and air coming to the interface only in the region of combustion. The rate of
combustion is dependent on the rate of diffusion and mixing. There is no true
final flame temperature in the case of diffusion flames, although some points of
flame reach nearly the theoretical maximum for stoichiometric premixed mixtures,
unless the air supply as well as the fuel supply is restricted. Premixed flames are
produced by the combustion of the mixture of fuel and air, which are mixed prior
to reaching the combustion chamber. Premixed flame has flammability limits with
the ratio of fuel and air to be within certain lower and upper limits of lean and
rich air. Premixed flames are generally employed for small-scale burners as large-
scale premixed flames require large mixer that adds the risk of fire and explosion.
The fuel-air equivalence ratio varies between 0 and 1 for lean mixtures and from
1 to infinity for rich mixtures. Combustion stoichiometry plays a major role in the
combustion process as it is directly related to stack losses, unburnt fuel, auxiliary
power consumption, and different environmental pollutant formation.

Theoretically, there should be stoichiometric ratio of fuel and air for complete
combustion. This raises the flame temperature to adiabatic flame temperature;
however, a small amount of excess air is necessary in practice to reduce the risk
of production of harmful flue gases. A method to estimate the adiabatic flame
temperature is to use the average specific heat (Cp) method. In the constant pressure
combustion process, flame temperatures are calculated as follows [21]:

For φ ≤ 1,

TP = TR + φfsLHV

(1+ φfs) Cp,p
(1)

Fig. 1 Example of premixed flame (a) and diffusion flame (b)
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For φ ≥ 1,

TP = TR + fsLHV

(1+ φfs) Cp,p
(2)

where fs is the fuel-air ratio, LHV the lower heating value of water vapor, and
Cp,p the average specific heat at constant pressure per unit mass of mixture at
temperatures T0 = 25 ◦C and reactant temperature TR.

These expressions show that the flame temperature is directly related to the
equivalence ratio of fuel and air. Theoretically, the maximum adiabatic flame
temperature should occur at the equivalence ratio of 1. However, in practice, it
could differ for different fuels. The maximum value of adiabatic flame temperature
(Tad) of mixtures of hydrocarbon and air occurs slightly on the rich side of the
fuel equivalence ratio as shown in Fig. 2. This is due to reduced heat release due
to product dissociation, although specific heat increases with an increase in the
equivalence ratio. However, the direction of shifting is determined by the peak heat
release. Furthermore, in case of fuels like NmHn/F2 mixtures, the shift is toward
the lean side of the mixture. This is because the variation of specific heat with
equivalence ratio dominates the reduced heat due to product disassociation for these
fuels.

Fig. 2 Variation of adiabatic flame temperature vs equivalence ratio for various hydrocarbon fuels
at STM [23]
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Fig. 3 Mallard and Le
Chatelier’s flame zones in
laminar premixed flames [24]

One of the early theories of flame propagation (by Mallard and Le Chatelier
[24]) that discusses the flame propagation mechanism in a combustion process was
based on heat transfer between layers of gas. According to Mallard and Le Chatelier,
there are two zones in combustion of laminar, premixed flame. Figure 3 shows these
two zones which were termed as the preheat zone (Zone I) and the burning region
(Zone II). The temperature of flame varies at different points of the flame as there
shown in the figure.

3 Methodology

A test combustion chamber was set up for performing experiments to analyze
different properties of the HSI igniter sensor. There were different aspects of the
HSI sensor, which needed to be tested for flame temperature measurements.

• The variation of resistance of the sensor with variations in the equivalence ratio.
• The positioning of the sensor at various locations of the combustion chamber to

find out the location of a sensor that gives optimum results.
• The testing of several types of sensors having different dimensions. Three

different types of sensors from Kyocera and CoorsTek were tested to find out
the appropriate dimensions of the sensor and to evaluate its performance.

All the tests were performed to minimize the error and increase accuracy of the
HSI sensors. The results obtained were verified by employing multiple samples
of different varieties of the sensor. Figure 4 shows the test combustion chamber
setup used for the experiment. A Bosch Greenstar Wall Hung boiler model ZBR21-
3 was used as the test combustion chamber. The boiler was customized for the
measurement of airflow intake and gas flow intake to the combustion chamber. Tap
water without any recirculation was used for the boiler. There were three different
types of HSI sensors used to test the feasibility of dual-purpose sensor. Beckett 7590
control board was employed to control the operation of gas flow valves and blower
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Fig. 4 Experimental setup
for flame temperature sensor

motor. An electronic control board was also designed to control the fuel and airflow
rate intake into the boiler system and to control the operation of sensor for both
ignition and temperature measurements.

Silicon nitride HSI sensors were used as test dual-purpose igniter/flame tempera-
ture sensor. Figure shows different sensors used during the experiment. Figure 5a –
Kyocera (a) and Fig. 5b – Kyocera (b) are two HSI sensors from Kyocera. The
Kyocera sensor shown in Fig. 5a (Kyocera SN220) has short sensor stem and
sensor length compared to the one shown in Fig. 5b, which is a modified version
of Kyocera SN220. The body of sensor in Fig. 5a did not reach into the flame;
therefore the sensor in Fig. 5b was custom designed with a longer stem and sensor
length such that the whole body of sensor element lies within the flame. The
maximum temperature range of the sensor is 1200 ◦C. Figure 5c shows a CoorsTek
sensor, which has hairpin-like sensor element. These SN igniters have rapid heat
increase, higher chemical resistance, high electrical efficiency, and long life due
to oxidation proof design. The resistance ratio with respect to resistance at 23 ◦C
(R/R23) vs temperature variations for these devices is linear in the working range of
the combustion chamber up to 1200 ◦C.
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Fig. 5 Three commercial SN igniters

Fig. 6 Corrected flame temperature vs equivalence ratio at different gas flow rates for a sample of
the Kyocera (a) sensor

4 Results

The resistance ratio was correlated to the equivalence ratio of the combustion system
as shown in Fig. 6. Figure 6 shows that the flame temperatures varied not only with
the variations in equivalence ratio but also with the variations in mass airflow rates
and gas flow rates for the same value of equivalence ratio. These results were found
to be in agreement with the study conducted by S. Prucker [22] for combustion of
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premixed H2/air flames. For the same value of φ, the flame temperature increased
with the increase in fuel and gas flow rates. Higher gas flow rate resulted in an
increase in heat generation as the combustion was not adiabatic and additional heat
generation resulted in an increase in flame temperature. This was the reason for the
increase in flame temperature at a specific value of equivalence ratio with increase
in gas flow.

The mass airflow rate computed using a commercial MAF sensor was used
to compensate the effect of increased fuel flow rate in the flame temperature for
different equivalence ratios. Figure 6 shows the MAF rate compensated flame
temperatures for different values of equivalence ratio. It can be observed that there is
a reduction in the flame temperature variation at an equivalence ratio with different
mass airflow rate and fuel flow rate. Higher errors were noticed for φ < 0.7, and
very low errors were noticed for φ between 0.7 and 1. Equivalence ratio between
0.7 and 1 is the working range for most of the combustion systems. Mathematical
relationships can be derived for corrected flame temperature and equivalence ratio
for two different regions of the stoichiometry using the plots 7 (Fig. 7).

The corrected flame temperature for different samples of the same sensor did
not converge to a single curve. Rather they were separated from each other by
some constant offsets. The temperature tolerance for Kyocera sensors was specified
as ±20%. And the difference in corrected curves for different sensors was found
to be due to temperature tolerance of different sensors. However, the temperature
difference between the corrected temperature curves for different sensors remained
constant for φ between 0.7 and 1. These temperature variations for different samples
of same sensor at a specific value of equivalence ratio are corrected by using the
offset of resistance ratio at a temperature (Fig. 8).

Fig. 7 Corrected flame temperature vs equivalence ratio for a sample of the Kyocera (a) sensor
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Fig. 8 Corrected flame temperature vs equivalence ratio for multiple samples of Kyocera (a)
sensors

Steps in calibration of a reference flame temperature sensor:

1. Plot the flame temperature (Tf) vs equivalence ratio (φ) curves by keeping gas
regulator current constant and varying the airflow of the system. Obtain multiple
curves for different values of the gas regulator current.

2. Obtain the relationship for corrected flame temperature (Tc) by compensating
flame temperature based on the mass airflow rate (ṁa) of the system.

3. Plot the corrected flame temperature vs equivalence ratio for the sensor, and
obtain a calibration curve for the calculation of equivalence ratio based on
corrected flame temperature for the leaner side of stoichiometry (φ = f2(Tc);
φ < 1).

The calibration curve for the Kyocera (a) sensor is shown in Fig. 9. Figures 10,
11, and 12 show the comparison in the errors of the calculated equivalence ratio
using the sensors and actual equivalence ratio for Kyocera (a) and (b) and CoorsTek
sensor, respectively.

5 Performance Characteristics

The characteristics of the flame temperature sensor were analyzed considering the
maximum allowable temperature tolerance of the sensor being 1200 ◦C for both
the Kyocera and CoorsTek sensors. The average nominal resistance of the Kyocera
sensor at 23 ◦C was taken as 50 � and that for the CoorsTek sensor was taken as
45 �. Also, all the results were verified within the range of φ between 0.6 and 1.
Similarly, test range for the fuel flow rate was between 0.29 to 0.53 g/s, and the
airflow rate was varied between the range 3.7 and 14.75 g/s.
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Fig. 9 Calibration curve for flame temperature sensor Kyocera (a) sensor
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Fig. 10 Comparison of calculated φ with actual values for Kyocera (a) sensor

Range
Each type of sensors has been calibrated, and the results were verified using a
multiple number of the same type of sensor over the range of φ between 0.6 and 1.

Resolution
The resolution of the sensor is related to resolution in the measurement of resistance
value. Considering the resolution of ADC as 12 bits, the resolution of different
sensors is tabulated in Table 1.
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Fig. 11 Comparison of calculated φ with actual values for Kyocera (b) sensor
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Fig. 12 Comparison of calculated φ with actual values for CoorsTek sensors

Table 1 Resolution of different sensors

Sensor Resistance resolution Resolution in φ (�φ)

Kyocera’s long sensor 0.23 � ±0.00659
Kyocera’s short sensor 0.23 � ±0.00748
CoorsTek sensor 0.15 � ±0.0106
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Table 2 Sensitivity of
different sensors

Sensor Sensitivity (◦C/φ = 1)

Kyocera (b) 615
Kyocera (a) 652
CoorsTek 437

Table 3 Errors in different
sensors

Sensor Error in φ (±φ)

Kyocera (b) 0.045
Kyocera (a) 0.04
CoorsTek 0.057

Table 4 Response time of
different HSI sensors

Sensor Rise time (s) Settling time (s)

Kyocera (b) 22 25
Kyocera (a) 33 35
CoorsTek 25 28

Table 5 Percentage
nonlinearity for different
sensors

Sensor Nonlinearity (%)

Kyocera (a) 25
Kyocera (b) 25
CoorsTek 30

Sensitivity
The calibration curve for the sensor was nonlinear, and the sensitivity varied along
the working range of the sensor. The average sensitivity was calculated over this
linear range of calibration curve. The average sensitivity is tabulated for each type
of sensors in Table 2.

Accuracy and Precision
All three types of sensors were calibrated and tested for accuracy and precision for
different values of air and gas flow rates. The maximum errors for different sensors
are tabulated in Table 3.

Response Time
The response time of the sensor is presented based on rise time and settling time.
Average rise time was calculated as the time required for flame temperature to reach
from 10% to 90% of changes in temperature. Similarly, setting time was calculated
as time required for flame temperature to reach within 5% of the steady-state error
in temperature. The average response time for the three sensors for changes in φ,
(�φ = ± 0.0) was obtained experimentally and is shown in Table 4.

Linearity
The relationship between the corrected flame temperature and changes in equiv-
alence ratio is highly nonlinear. The percentage nonlinearity for different sensors
calculated using a best-fit straight-line method is shown in Table 5.
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6 Conclusion

The flame temperature sensor discussed was designed to make use of existing hot
surface igniters for dual functioning as an igniter and equivalence ratio calculation.
The flame temperature sensor was calibrated to measure the equivalence ratio of
the premixed air combustion system, along with the knowledge of mass airflow
intake of the combustion system. The flame temperature sensor was also found to
be dependent upon the combustion chamber setup. The variations in airflow and
gas flow patterns of the combustion chamber required recalibration of the sensor.
Therefore, any variations in gas air mixing pattern affects the output of the sensor,
which makes the sensor output dependent upon the combustion chamber setup. The
flame temperature sensor can be used as either a standalone sensor or can be easily
integrated with other combustion control systems.
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Analytical Calculation of Induced
Voltages of Uniform Eddy Current
Probes Above a Moving Conductor

Siquan Zhang and Nathan Ida

1 Introduction

Eddy-current testing (ECT) techniques are widely used with advantages such as
sensitivity to surface flaws in conductive structures. Depending on the method of
inspection, an ECT probe can consist of a single coil serving as both exciting
and receiving coil or one or more excitation coils with one or more pick-up
coils. In conventional ECT testing, a cylindrical coil carrying AC current is placed
in proximity to the conductive specimen, and the alternating current in the coil
produces a changing magnetic field that interacts with the test specimen and
generates eddy currents inside the conductor [1–3]. The change in eddy currents
is monitored by observing the impedance variation of the coil affected by the eddy
currents associated with the magnetic field [4–7].

A probe consisting of one or more exciting coils and one or more pick-up coils is
also called a send-receive probe. The exciting coils are driven with a sinusoidal
current, and the change in eddy currents inside the conductor is monitored by
measuring the voltage induced in the pick-up coil. This makes the exciting magnetic
flux independent of the exciting coil resistance. The induced magnetic flux can also
be measured directly but to do so requires additional magnetic field sensors [8–10].

A uniform ECT probe consists of a wide rectangular exciting coil and a small
pick-up coil. The wide rectangular exciting coil induces uniform eddy currents in
the conductor, and the pick-up coil detects only the perpendicular component of the
eddy currents. The probe has the advantage of being self-differential, self-nulling,
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and lift-off noise free. By positioning the pick-up coil right under the exciting coil
center, the probe can eliminate the influence of disrupting objects perpendicular to
the uniform eddy current due to its self-differential feature, so it can be used to
detect flaws in weld zones and material edges [11].

In this paper, a uniform ECT probe is placed above multilayer conductive
plates, and the double Fourier transform method is introduced to evaluate and
compare the voltages induced in the rectangular and cylindrical pick-up coils by
calculating the incident and reflected magnetic field. The remainder of the paper
is organized as follows. In Sect. 2, an AC-excited single-turn rectangular coil
located above and perpendicular to the conductive plates is analyzed, and the z
component of the magnetic flux density is derived by computing the incident and
reflected magnetic fields. In Sect. 3, the expressions of the voltage induced in the
cylindrical and rectangular pick-up coils are derived, by calculating the magnetic
flux penetrating through the pick-up coils. In Sect. 4, the voltages induced in
the coils at different exciting frequencies and moving speeds of the conductor
are calculated and compared. The analytical calculated results are verified with
experiments. The probes are also used to test the flaws in conductor. Finally, the
conclusion is drawn in Sect. 5.

2 Theoretical Analysis

2.1 Analytical Model

Figure 1a shows a rectangular exciting filamentary coil located above a conductive
plate. The coil is perpendicular to the plate with the center of the coil at (0,
y0, z0). The surface of the conductor coincides with the z = 0 plane. The coil
dimensions are 2a1 and 2b1. The conductive medium is assumed to be linear,
isotropic, and homogeneous. The thickness, conductivity, and permeability of the
plate are assumed to be d1, σ 1, and μ1, respectively. The plate is moving along the
y direction at a speed v. The material below the plate is assumed to be half infinite;
its conductivity and permeability are assumed to be σ 2 and μ2. The exciting current
in the coil is sinusoidal.

For analysis convenience, the entire space in Fig. 1 is divided into three
regions:

1. Region 0 (z > 0): In this region, the incident magnetic flux density Bi generated
by the exciting current and the reflecting magnetic flux density Br generated by
induced eddy currents exist simultaneously. The incident magnetic flux density
Bi can be expressed by the vector potential Ai as follows:

∇ × ∇ × Ai = μ0J (1)

Bi = ∇ × Ai (2)
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Fig. 1 (a) Single-turn and (b) multi-turn rectangular exciting coil located above conductive plates

The reflected magnetic flux density Br satisfies the following:

∇ × Br = 0 (3)

∇2 × Br = 0 (4)

2. Region 1 (−d1 < z < 0): The magnetic flux density B1 in this region satisfies the
following:

∇2B1 − σ1μ1v
∂B1

∂y
− jωσ 1μ1B1 = 0 (5)

∇ · B1 = 0 (6)

3. Region 2 (z < −d1): The magnetic flux density B2 in this region satisfies the
following:

∇2B2 − jωσ 2μ2B2 = 0 (7)

∇ · B2 = 0 (8)

The double Fourier transform and inverse transform methods are introduced to
solve the above equations:

b (ξ, η, z) =
∫ ∞

−∞

∫ ∞

−∞
B (x, y, z) · ej(xξ+yη)dxdy (9)
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B (x, y, z) = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
b (ξ, η, z) · e−j(xξ+yη)dξdη (10)

Where ξ and η are the integration variables used in the double Fourier transform.

2.2 Incident Magnetic Flux Density

As shown in Fig. 1a, the single filamentary rectangular coil consists of four finite
length wires; it is analyzed as follows:

Solving (1), the vector potential for an arbitrary point p(x,y,z) in region 0
generated by the source point (x’,y’,z’) in the coil can be written as:

A (x, y, z) = μ0

4π

∫

v

J
(
x’, y’, z’

)
du’

R
(11)

where J is the current density, u is the exciting coil, and R is the distance from
p(x,y,z) to the point source (x’,y’,z’):

R =
√
(x − x’)2 + (y − y’)2 + (z− z’)2 (12)

The vector potential in the region z < z0 can be obtained by applying the Fourier
transform to (11):

a (ξ, η, z) = μ0
4π

∫

v

J
(
x’, y’, z’

){ ∞∫
−∞

∞∫
−∞

1
R
ej(xξ+yη)dxdy

}

du’

= μ0
2

∫

v

J
(
x’, y’, z’

)
ej
(
ξx’+ηy’) 1√

ξ2+η2
e−|z−z0|

√
ξ2+η2

du’
(13)

The components of the incident magnetic flux density can be obtained by
applying the Fourier transform to (2):

bx = −jηaz − ∂ay
∂z
, by = ∂ax

∂z
+ jξaz, bz = −jξ · ay + jη · ax (14)

As shown in Fig. 1a, the wire (1) of the rectangular coil, parallel to the x axis,
satisfies J(x’, y’, z’) = I, y’ = y0, and z − z0 < 0. Substituting these into (13), the x
component of the vector potential is obtained:

ax = μ0
2

∫

v

J
(
x’, y’, z’

)
ej
(
ξx’+ηy’) 1√

ξ2+η2
e−|z−z0|

√
ξ2+η2

du’

= μ0I
2
e(z−z0)

√
ξ2+η2√

ξ2+η2
ejηy0

x0∫

−x0

ejξx’dx’ = μ0I sin(ξx0)e
jηy0e(z−z0)

√
ξ2+η2

ξ
√
ξ2+η2

(15)
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The single-turn rectangular coil shown in Fig. 1a is perpendicular to the y axis
and hence only has x component ax and z component of the vector potential.
Therefore, the z component of the magnetic flux density in (14) can be written
directly:

bz = jηax (16)

Substituting (15) into (16), the z component of the incident magnetic flux density
in region 0 becomes:

biz = jη {ax (b1, y0, z0 + a1)− ax (b1, y0, z0 − a1)}

= −
jμ0Iη sin(b1ξ)e

jy0η
(
ea1
√
ξ2+η2−e−a1

√
ξ2+η2

)
e(z−z0)

√
ξ2+η2

ξ
√
ξ2+η2

(17)

We have the general solution expression for the z component of the incident
magnetic flux density as:

biz = Cizez
√
ξ2+η2

(18)

Where the coefficient of the incident magnetic flux density is:

Ciz = −
jμ0Iη sin (b1ξ) e

jy0η
(
ea1

√
ξ2+η2 − e−a1

√
ξ2+η2

)
e−z0

√
ξ2+η2

ξ
√
ξ2 + η2

(19)

2.3 Reflected Magnetic Flux Density

Applying the Fourier transform to (4), the reflected magnetic flux density in region
0 can be written as:

∂2br

∂z2
−
(
ξ2 + η2

)
br = 0 (20)

Similarly, applying the Fourier transform to (5) and (7), the magnetic flux density
in regions 1 and 2 can be obtained as:

∂2b1

∂z2 −
(
ξ2 + η2 − jσ1μ1vη + jωσ 1μ1

)
b1 = 0 (21)

∂2b2

∂z2
−
(
ξ2 + η2 + jωσ 2μ2

)
b2 = 0 (22)
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The normal component of B and the tangential component of H must be
continuous at the z = 0 and z = −d1 planes.

Continuity of Bz:

biz + brz = b1z (z = 0) (23)

b1z = b2z (z = −d) (24)

Continuity of Hx:

(bix + brx)
μ0

= b1x

μ1
(z = 0) (25)

b1x

μ1
= b2x

μ2
(z = −d) (26)

Continuity of Hy:

(
biy + bry

)

μ0
= b1y

μ1
(z = 0) (27)

Due to the fact that ∇ · J = 0 inside the conductor, no z component of current
density Jz is present in regions 1 and 2:

ξb1y = ηb1x (28)

ξb2y = ηb2x (29)

According to (3):

−jηbrz = ∂bry

∂z
(30)

−jξbrz = ∂brx

∂z
(31)

According to (6) and (8):

−jξb1x − jηb1y + ∂b1z

∂z
= 0 (32)

−jξb2x − jηb2y + ∂b2z

∂z
= 0 (33)
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Let:

ξ = ς cosφ, η = ς sinφ, ς = √ξ2 + η2,
μ1ς
μ2γ1

= m, 1+m
1−m = P,

μ0γ1
μ1ς

= n, (n+1)+(1−n)P e2γ1d

1−n+(1+n)P e2γ1d
= κ, γ1 =

√
ξ2 + η2 − jσ1μ1vη + jωσ 1μ1

(34)

Solving the above equations, the coefficient of the reflected magnetic flux density
is obtained as:

Drz = κ · Ciz = −
jμ0Iηκ sin (b1ξ) e

jy0η
(
ea1

√
ξ2+η2 − e−a1

√
ξ2+η2

)
e−z0

√
ξ2+η2

ξ
√
ξ2 + η2

(35)

The reflected magnetic flux density can be obtained as:

brz = Drze−z
√
ξ2+η2 = −

jμ0Iηκ sin(b1ξ)e
jy0η

(
ea1
√
ξ2+η2−e−a1

√
ξ2+η2

)
e−(z+z0)

√
ξ2+η2

ξ
√
ξ2+η2

(36)

Applying the Fourier inverse transform to (36), the z component of the reflected
magnetic flux density of the single-turn rectangular coil in region 0 becomes:

Brz = −jμ0I

4π2

∞∫

−∞

∞∫

−∞

κη

ξς
sin (b1ξ)

(
ea1ς − e−a1ς

)
ejy0ηe−(z+z0)ς e−j(ξx+ηy)dξdη

(37)

2.4 Magnetic Flux Density of Multi-turn Rectangular Exciting
Coil

Figure 1b shows the arrangement of a multi-turn rectangular exciting coil located
above the conductive plates. The coil contains N1 turns.

By integrating (37) on the width and length of the multi-turn rectangular coil
shown in Fig. 2, where y0 shown in Fig. 1a coincides with the origin of the system
of coordinates, the reflected magnetic flux density generated from the multi-turn
exciting coil can be obtained as:
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Fig. 2 Configuration of multi-turn rectangular coil. (a) Cylindrical and (b) rectangular pick-up
coil

B total
rz = − jμ0IN1

4π2w1h1

∞∫
−∞

∞∫
−∞

κη
ξς

{
w1∫

0
sin [(b1 + p) ξ ]

[
e(a1+p)ς − e−(a1+p)ς ] dp

}

·
{
h1/2∫

−h1/2
ejηy0dy0

}

e−(z+z0)ς e−j(ξx+ηy)dξdη = − jμ0IN1
2π2w1h1

∞∫
−∞

∞∫
−∞

κk1
ξς

sin
(
ηh1

2

)

· e−(z+z0)ς e−j(ξx+ηy)dξdη
(38)

where:

h1/2∫

−h1/2

ejηy0dy0 =
2

η
sin

(
ηh1

2

)
(39)

k1 =
w1∫

0
sin [(b1 + p) ξ ] · [e(a1+p)ς − e−(a1+p)ς ] dp = −

w1∫

0
sin [(b1 + p) ξ ]

e−(a1+p)ςdp
=
[
ς sin ξ(b1+w1)−ξ cos ξ(b1+w1)

ξ2+ς2

]
eς(a1+w1) −

[
ς sin ξb1−ξ cos ξb1

ξ2+ς2

]
eςa1

+
[
ς sin ξ(b1+w1)+ξ cos ξ(b1+w1)

ξ2+ς2

]
e−ς(a1+w1) −

[
ς sin ξb1+ξ cos ξb1

ξ2+ς2

]
e−ςa1

(40)
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3 Variation of Induced Voltage in the Pick-Up Coils

3.1 Magnetic Flux Penetrating Through the Cylindrical Coil

Figure 2a, b show the arrangement of a multi-turn rectangular exciting coil and one
cylindrical and one rectangular pick-up coil located above the conductive plates.
The axis of the pick coils is located at (0, c1). The turns of the exciting coil and
cylindrical and rectangular pick-up coils are N1, N2, and N3, respectively.

The reflected magnetic flux penetrating through the multi-turn cylindrical pick-
up coil shown in Fig. 2a can be obtained by first assuming a single-turn circular
pick-up coil with radius r0 located at (0, c1, z’) and then performing the coordinate
transformation x = r0cosθ and y = r0sinθ + c1. The reflected magnetic flux
penetrating through a single-turn circular pick-up coil is obtained by integrating
(38) on its circular area as follows:

ϕrzc =
r0∫

0
rdr

2π∫

0
B total
rz

∣∣
z=z’dθ = − jμ0IN1

πw1h1

∞∫
−∞

∞∫
−∞

κk1
ξς2 sin

(
ηh1

2

)
e−jηc1r0J1 (r0ς)

e−
(
z’+z0

)
ςdξdη

(41)

The reflected magnetic flux penetrating through the multi-turn cylindrical pick-
up coil shown in Fig. 2a is obtained by integrating (41) on its radial direction
(r1 → r2) and axial direction (z1 → z2) as follows:

ϕtotal
rzc = N2

(z2−z1)(r2−r1)
r2∫

r1

dr0

z2∫

z1

ϕrzcdz1

= −jμ0IN1N2
πw1h1(r2−r1)(z2−z1)

∞∫
−∞

∞∫
−∞

κk1
ξς5 sin

(
ηh1

2

)
e−jηc1 · Int (r1ς, r2ς)

[
e−ς(z0+z1) − e−ς(z0+z2)

]
dξdη

(42)

where:

Int (x1, x2) =
x2∫

x1

xJ 1(x)dx (43)

z2∫

z1

e−z’ςdz’ = e−ςz1 − e−ςz2

ς
(44)



186 S. Zhang and N. Ida

3.2 Magnetic Flux Penetrating Through the Rectangular Coil

Figure 2b shows a multi-turn rectangular pick-up coil located below the exciting
coil and its central axis perpendicular at (0, c1); the number of turns is N3. First,
we obtain the reflected magnetic flux penetrating through a single-turn rectangular
pick-up coil with dimensions 2a2 and 2b2 and located at (0, c1, z’) by integrating
(38) on its rectangular area:

ϕrzr =
a2∫

−a2

dx
c1+b2∫

c1−b2

B total
rz

∣∣
z=z’dy = − jμ0IN1

2π2w1h1

∞∫
−∞

∞∫
−∞

κk1
ξς

sin
(
ηh1

2

)
· e−

(
z’+z0

)
ς

·
{
a2∫

−a2

e−jξxdx
}

{
c1+b2∫

c1−b2

e−jηydy
}

dξdη = − 2jμ0IN1
π2w1h1

∞∫
−∞

∞∫
−∞

κk1
ξ2ης

sin
(
ηh1

2

)
e−jηc1 · e−

(
z’+z0

)
ς

· sin (ξa2) sin (ηb2) dξdη

(45)

Then the reflected magnetic flux penetrating through the multi-turn rectangular
pick-up coil is obtained by integrating (45) on the coil width and length as:

ϕtotal
rzr = N3

w2(z4−z3)

z4∫

z3

dz’
∫ w2

0 ϕrzrdp

= −j2μ0IN1N3
π2w1h1w2(z4−z3)

∞∫
−∞

∞∫
−∞

κk1
ξ2ης

sin
(
ηh1

2

)
e−jηc1e−z0ς

{
z4∫

z3

e−ςz’dz’
}

·
{
w2∫

0
sin [ξ (a2 + p)] sin [η (b2 + p)] dp

}

dξdη

= −j2μ0IN1N3
π2w1h1w2(z4−z3)

∞∫
−∞

∞∫
−∞

κk1k2
ξ2ης2 sin

(
ηh1

2

)
e−jηc1e−z0ς · (e−ςz3 − e−ςz4

)
dξdη

(46)

where:

z4∫

z4

e−z’ςdz’ = e−ςz3 − e−ςz4

ς
(47)

k2 =
w2∫

0
sin [ξ (a2 + p))] sin [η (b2 + p)] dp

= sin[a2ξ−b2η+(ξ−η)w2]−sin(a2ξ−b2η)
2(ξ−η) + sin(a2ξ+b2η)−sin[a2ξ+b2η+(ξ+η)w2]

2(ξ+η)
(48)
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3.3 Variation of Induced Voltage in the Pick-up Coil

The relationship between the magnetic flux φ penetrating through the pick-up coil
and the voltage V induced in the coil is:

V = −dϕ
dt

= −jωϕ (49)

The voltage induced in the cylindrical pick-up coil can be obtained as:

Vc = −ωμ0IN1N2
πw1h1(r2−r1)(z2−z1)

∞∫
−∞

∞∫
−∞

κk1
ξς5 sin

(
ηh1

2

)
e−jηc1 · Int (r1ς, r2ς)

· [e−ς(z0+z1) − e−ς(z0+z2)
]
dξdη

(50)

Similarly, the voltage induced in the rectangular pick-up coil can be obtained as:

Vr = −2ωμ0IN1N3
π2w1h1w2(z4−z3)

∞∫
−∞

∞∫
−∞

κk1k2
ξ2ης2 sin

(
ηh1

2

)
e−jηc1

· [e−ς(z0+z3) − e−ς(z0+z4)
]
dξdη

(51)

Because we only consider the reflected magnetic flux in deriving the induced
voltage expressions (50) and (51), the calculated results are variations of voltage
induced in pick-up coil due to eddy currents generated in the conductor.

4 Results

The analytical results of the induced voltage in the cylindrical and rectangular pick-
up coils can be calculated using Wolfram Mathematica according to (50) and (51).
The parameters of the coils and conductive plates are given in Tables 1 and 2,
respectively.

Table 1 Parameters of the
coils

Pick-up coil
Excitation coil Cylindrical Rectangular

a1 (mm) 5 r2 (mm) 9 a2 (mm) 6
b1 (mm) 12 r1 (mm) 7.9 b2 (mm) 6
z0 (mm) 11.9 z1 (mm) 1.2 z3 (mm) 1.2
w1 (mm) 0.5 z2 (mm) 5.2 z4 (mm) 5.2
h1 (mm) 24 c1 (mm) 5 w2 (mm) 1.5
c1 (mm) 5 N2 100 N3 100
N1 420
Current (mA) 100
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Table 2 Parameters of the
conductive plates

d1 (mm) 1
σ1 (S/m) 3.6 × 107

σ2 (S/m) 0
μr1, μr2 1

Fig. 3 The fabricated
exciting and pick-up coils

Fig. 4 Experimental setup

The cylindrical and rectangular pick-up coils are given same number of turns
and are given dimensions to let them have the same upper and lower surface area,
so we can compare the voltages induced in them under the same conditions. The
upper plate is assumed to be made of aluminum, 1 mm in thickness. The fabricated
coils are shown in Fig. 3, and the experimental setup is shown in Fig. 4. The
exciting sinusoidal signal is generated by a function generator and then amplified
with a power amplifier. The voltage induced in the pick-up coils is measured with a
millivoltmeter.

Here we consider the condition of a single-layer conductor. In Fig. 2, if the axis of
the pick-up coil coincides with the z axis and the conductive plate is without defect,
the uniform eddy currents induced in the plate will generate a net zero magnetic
flux penetrating through the pick-up coil, so the induce voltage in pick-up coil
is zero. Here we set the distance between the axis of the pick-up coil and z axis
as 5 mm. Figure 5 shows results of the induced voltage calculated and measured
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Fig. 5 The variation of induced voltage in the cylindrical coil and rectangular coil calculated and
measured at different exciting frequencies

from the cylindrical and rectangular pick-up coils, respectively, at different exciting
frequencies. The analytical results are obtained as the square root of the sum of
squares of the calculated real and imaginary parts using (50) and (51).

In experiments, the thickness of the single-layer conductive plate is also 1 mm.
The central axes of the pick-up coils are perpendicular at (0, 5). The exciting current
is 100 mA. The measured quantities in the experiments are the effective values of
voltage induced in the pick-up coils. The variation of the induced voltage in the
pick-up coils is obtained by subtracting the measured value when the probe is above
the plate from the measured value when the probe is in air. It can be seen from
Fig. 5 that the variations of induced voltage in the two pick-up coils increase with
frequency, but the cylindrical coil has a larger variation than the rectangular coil at
the same frequency.

The relationship between the induced voltage variation and the moving speed
of the conductor was also evaluated analytically and experimentally. The induced
voltage variations are calculated and measured at speeds from v = 0 to v = 25 m/s.
The effective value of the exciting current is 200 mA, the excitation frequency is
fixed at 2 kHz, and the thickness of the aluminum plate is 2 mm. The experimental
setup is shown in Fig. 6, where the conductive plate is rotated by a speed adjustable
motor, so we can control the rotation rate to adjust the linear speed of the conductor
and obtain an approximate moving speed of the conductor. To avoid rubbing
between the coils and the conductive plate, the distances of z1, z2, and z0 in Table
1 are increased to 4.2, 8.2, and 14.9 mm, respectively, and they are used in both the
analytical calculations and experiments.
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Fig. 6 Experimental setup for speed characterization of the moving conductor
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Fig. 7 Variation of induced voltage in the pick-up coils at different moving speed of conductor

The results are shown in Fig. 7. The voltages induced in the two coils both
decrease as the speed of the conductor increases. At the same moving speed of
the conductor, a larger variation in the induced voltage is observed in the cylindrical
coil compared to the rectangular coil.

The designed coils are also used to test electro-discharge machined (EDM) slit
flaws in the aluminum plate. The slit flaws shown in Fig. 8 are 0.5 mm wide and
0.2, 0.5, 0.8, 1, 1.2, 1.5, 1.8, 2, 2.2, 2.5, 2.8, and 3 mm deep from left to right. The
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Fig. 8 The experimental setup for testing slit flaws of different depths
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Fig. 9 Variation of induced voltages in cylindrical and rectangular pick-up coils for different
depths of slit flaws

induced voltages are measured with a millivoltmeter when the coil is located above
the slit flaws of different depths. The excitation frequency and voltage are fixed at
10 kHz and 10 V, respectively. The distance from the center of the pick-up coil to
the center of the exciting coil (z axis) is 5 mm. The results shown in Fig. 9 were
obtained by subtracting the measured voltages when coil is above the slit flaw from
the measured value when the coil is above the conductor without flaws. It can be
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seen from Fig. 9 that the variations of induced voltage in the pick-up coils both
increase with the depth of slits, but larger variations are obtained in the cylindrical
coil than in the rectangular coil for slit flaws of the same depth.

5 Conclusions

In this article, we start from Maxwell equation to obtain governing equations for
an analytical model of the uniform send-receive ECT probe. The double Fourier
transform method and the magnetic vector potential are introduced to solve the
problem, and the components of the magnetic flux density in the region above
the conductive plate are derived by computing the incident and reflected magnetic
flux density. The induced voltages in the cylindrical and rectangular pick-up coils
are calculated when the probes are used at different exciting frequencies and
moving speeds of the conductor. The analytical calculated results agree well with
experimental results.

The calculated and measured results demonstrate that the uniform ECT probes
are sensitive to the variation of excitation and conductive parameters; the cylindrical
pick-up coil is more sensitive to the changing magnetic field and induces larger
voltages than the rectangular pick-up coil when they are applied under identical
conditions. The uniform probes and analytical model can be used as a forward model
in conductive material characterization and defect quantitative inversion.
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8. Laurinavičius L (2011) Helicon resonator based strong magnetic field sensor. Meas Sci Rev
11(11):149–153



Analytical Calculation of Induced Voltages of Uniform Eddy Current Probes. . . 193

9. Hesse O, Pankratyev S (2005) Usage of magnetic field sensors for low frequency eddy current
testing. Meas Sci Rev 5(3):86–93

10. Matkova V, Strapacova T (2012) Detection sensors for electromagnetic nondestructive evalua-
tion. IEEE ELEKTRO:435–438

11. Hoshikawa H, Koyama K (1998) Uniform Eddy current probe with little disrupting noise. Rev
Prog Quant Nondestructive Eval 17:1059–1066



Part III
Imaging and Image processing



An Enhanced Unscented Kalman Filter
Method Based on the Covariance
Intersection Algorithm

Yao Huang, Wei Hua, Li Li, Weiwei Ling, Yao Yao, Gong Cheng, Jiang Du,
and Haijun Zhang

1 Introduction

For linear systems, the Kalman filter is recursively performed with the promising
performance. However, for nonlinear systems, the performance of Kalman filter will
be significantly degraded and possibly diverged [1]. The extended Kalman filter
(EKF) is a kind of nonlinear optimal algorithm with its robustness in the nonlinear
systems, but the EKF requires the computation of the Jacobian matrix, which greatly
increases the complexity of the filter [2].

Later, it is found that the Gaussian approximation is simpler, compared to the
nonlinear function approximation. Motivated by the Gaussian approximation, the
unscented Kalman filter (UKF) is proposed. On the basis of no trace transform, the
deterministic sampling and the linear Kalman filtering framework are adopted in
the UKF. It has the following characteristics [3, 4]: (1) compared to the EKF, its
accuracy is raised to the third-order accuracy for Gauss data and the second-order
accuracy for the nonlinear non-Gaussian data; (2) the computation of the Jacobian
matrix is not required; (3) the discrete system and the additive noise can be handled
by the UKF; (4) the computational complexity is the same order with that of the
EKF; and (5) the deterministic sampling strategy is adopted to avoid the problem of
particle recession and dilution.

But for a practical system, the UKF performance will be greatly reduced due to
the uncertainty model used and unknown signal statistical properties. In addition,
because of the bit precision of the hardware and filtering errors, the calculations in
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every step yield the uncompensated errors. In the UKF, the calculation is iteratively
performed. Therefore, the accuracy of UFK will be significantly reduced by error
accumulation in hundreds of iterations. Hence, some improved filter methods are
proposed.

Particle filter is presented in [5]. In this method, a large number of particles will
be produced, and its computation will be more intensive. Based on MIT an adaptive
UKF with the robustness to interference [6] is proposed, but there are also a large
number of partial differential calculations required. In [7], a confidence interval is
proposed to overcome the accuracy of UKF prediction degradation. Meanwhile, the
numerical stability in the UKF is considered [8]. Minimum entropy criterion [9],
confidence interval [10], and singular value decomposition [11] are used in the UKF
to improve the accuracy.

Motivated by the covariance intersection algorithm (CIA) [12], we propose an
improved UKF. The improved value can be derived via the actual value and the
estimate value, given the unknown correlation between these two values. In this
method, there is correlation between the true value for the present moment and
the estimate value for the next moment. But the numerical value of correlation is
unknown in actual situation. Through the CIA, the improved value is gotten without
the correlation.

2 The Covariance Intersection Algorithm

A and B are relevant information. When information A and information B need
fusion, the correlation information between A and B is very helpful for information
fusion. But in most instances, the correlation information is unknown.

How to solve this problem? The CIA is provided. {a, Paa} and {b, Pbb} represent
information A and its covariance and information B and its covariance, respectively.
Meanwhile, ã = a − a, b̃ = b − b, and c̃ = c − c. ã, b̃, and c̃ are error values. a, b,
and c are actual values. a, b, and c are mean values.

The mean squared error Paa and Pbb and the covariance Pab are computed as
follows:

Paa = E
[
ããT

]
,Pbb = E

[
b̃b̃
T
]
,Pab = E

[
ãb̃T

]

a and b are actually not known. Hence, Paa and Pbb are also unknown.
In the CIA, Paa and Pbb are approximated by the values Paa and Pbb. Based on

{a, Paa} and {b, Pbb}, the improved estimated value of {c, Pcc} is obtained by the
CIA without correlation Pab.

In Fig. 1, the solid line ellipses are Paa and Pbb, and the dotted lines ellipses are
Pcc. Based on Paa and Pbb, different Pcc is derived from different Pab. Pab is the
correlation information between information A and information B.
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Fig. 1 Improved covariance
elliptical shape

As shown in Fig. 1, Pcc is always located in the intersection of Paa and Pbb

for any value of Pab. Hence, according to the CIA, Pcc is obtained even if Pab is
unknown, and the more information Pcc can be recovered with the better Pab. The
CIA process is expressed by:

P−1
cc = wP−1

aa + (1− w)P−1
bb (1)

P−1
cc c = wP−1

aa a+ (1− w)P−1
bb b (2)

where w is the weighting factor assigned to a and b. w is adopted different value
in 0 ≤ w ≤ 1 under different optimization method, for example, the Newton-
Raphson method, positive semi-definite method, and convex optimization method.
If the optimization method is improved, {c, Pcc} will be more accurate. Therefore
the optimal values {c, Pcc} are unique and relative to the optimization method.

In the CIA, {c, Pcc} are computed based on {a, Paa} and {b, Pbb}. The only
constraint is consistent, which is Paa − Paa ≥ 0 and Pbb − Pbb ≥ 0, to satisfy
the consistency constraint Pcc − Pcc ≥ 0 [12]. Pcc is the error variance and

Pcc = E
[
c̃c̃T

]
.

3 The Improved UKF

3.1 UKF

It is assumed that the nonlinear system is:

X(k) = f (X (k − 1))+W (k − 1) (3)
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Y(k) = h (X(k))+ V(k) (4)

where f (·) and h(·) are nonlinear functions, k is the kth time, X(k) is the system state
vector, Y(k) is the system measurement vector, and V(k) and W(k) are process noise
and measurement noise. Their statistical properties are:

⎧
⎪⎪⎨

⎪⎪⎩

E [W(k)] = 0, E [V(k)] = 0
E [W(i)W(j)] = Rδij ,∀i, j
E [V(i)V(j)] = Qδij ,∀i, j
E
[
W(i)V(j)T

] = 0

(5)

R(k) and Q(k) are their mean squared error.

1. Initialization

X̂a (0 |0 ) =
[
X̂(0 |0 )T 00

]T
(6)

PaXX (0 |0 ) =
⎡

⎣
PXX (0 |0 ) 0 0

0 Q (0 |0 ) 0
0 0 R (0 |0 )

⎤

⎦ (7)

2. Proportion symmetry sampling

χ (k − 1 |k − 1 ) =
⎡

⎣
X̂ (k − 1 |k − 1 )

X̂ (k − 1 |k − 1 )+√(n+ λ)PXXi (k − 1 |k − 1 )
X̂ (k − 1 |k − 1 )−√(n+ λ)PXXi (k − 1 |k − 1 )

⎤

⎦

T

(8)

PXX (k |k ) =
⎡

⎣
PXX (k |k ) 0 0

0 Q (k |k ) 0
0 0 R (k |k )

⎤

⎦ (9)

X̂ (k − 1 |k − 1 ) is the filter value at the k − 1th time. PXX(k − 1|k − 1) is the
mean squared error of X̂ (k − 1 |k − 1 ). PXXi(k − 1|k − 1) is the ith column of
PXX(k − 1|k − 1) and i = 1, 2, · · · , n.λ= α2(n + κ) − n, where α and κ are impact
factors and they generally take small values.
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3. Time update equations

χ (k |k − 1 ) = f (χ (k − 1 |k − 1 ) , k − 1) (10)

χ (k |k − 1 ) = f (χ (k − 1 |k − 1 ) , k − 1) (11)

μ (k |k − 1 ) = h (χ (k |k − 1 ) , k − 1) (12)

Ŷ (k |k − 1 ) =
2n∑

i=0

W(i)
m μi (k |k − 1 ) (13)

In Eq.(13), μi(k|k − 1) is the ith column of μ(k|k − 1) and i= 1, 2, · · · , 2n. W(i)
m

is the weighted value. W(0)
m = λ/ (n+ λ), W(0)

m = λ/ (n+ λ), and i = 1, 2, · · · , 2n:

PXX (k |k − 1 ) =
2n∑

i=0
W(i)
c

[(
χi (k |k − 1 )− X̂ (k |k − 1 )

)

×(χi (k |k − 1 )− X̂ (k |k − 1 )
)T ]

(14)

χi(k| k − 1) is the ith column of χ(k| k − 1) and i = 0, 1, · · · , 2n, and W(i)
c is the

weighted covariance matrix.
W(0)
c = λ/ (n+ λ) + (1-α2 + β) and W(i)

c = 1/2 (n+ λ) , i = 1, 2, · · · , 2n. β
is the prior distribution factor (it is usually set to 2 for Gaussian distribution).

4. Measurement update equations

PXY (k |k − 1 ) =
2n∑

i=0
W(i)
c

[(
χi (k |k − 1 )− X̂ (k |k − 1 )

)

×(μi (k |k − 1 )− Ŷ (k |k − 1 )
)T ]

(15)

PYY (k |k − 1 ) =
2n∑

i=0
W(i)
c

[(
μi (k |k − 1 )− Ŷ (k |k − 1 )

)

× (
μi (k |k − 1 )− Ŷ (k |k − 1 )

)T ]
(16)

K(k) = PXY (k |k − 1 )P−1
YY (k |k − 1 ) (17)

X̂ (k |k ) = X̂ (k |k − 1 )+K(k)
(
Y(k)− Ŷ (k |k − 1 )

)
(18)

PXX (k |k ) = PXX (k |k − 1 )−K(k)PYY (k |k − 1 )KT (k) (19)
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where PXX, PXY, PYY represent covariance matrix between X and X, X and Y, and
Y and Y, respectively. K is filter gain; X̂ (k |k ) is the filter value at the kth time.

3.2 The Improved UKF

The UKF, incorporating the CIA, can obtain the better estimated value
X̂improved (k |k ) without the covariance information between the real value X(k − 1)
and the estimated value X̂ (k |k ). Meanwhile, the UKF accuracy is improved in the
proposed method. Equations are expressed as follows:

P−1 = wP−1
XX (k |k )+ (1− w)P−1

XX (k − 1 |k − 1 ) (20)

P−1X̂improved (k |k )= wP−1
XX (k |k ) X̂ (k |k )+ (1− w)P−1

XX (k − 1|k − 1)X (k−1)
(21)

X̂improved (k |k ) is the improved filter value and its covariance matrix is P−1. w is
the weighting factor assigned to X̂ (k |k ) and X(k − 1).

At the kth time, the real value X(k − 1) is known. Through the UKF, the filter
value X̂ (k |k ) is computed. Due to the mismatched system model, noises, and
interferences existing in the UKF process, the accuracy of X̂ (k |k ) is reduced.

But the relevancy between the real value X(k − 1) and the filter value X̂ (k |k ) is
existing in the practice and unknown in the actual situation. Through the proposed
method, the relevancy computation about covariance matrix between X̂ (k |k ) and
X(k − 1) is avoided, and the accuracy of X̂ (k |k ) is improved. X̂improved (k |k ) is
obtain by (20) and (21) without the covariance matrix. The algorithm procedure of
improved UKF is in Fig. 2.

It is the algorithm flow chart in Fig. 2. X̂ (k |k ) and PXX(k| k) are computed
through UKF. And then X̂improved (k |k ) is got by the CIA.

In fact, some methods [9–11] are adopted to keep filter result stability in the
UKF algorithms, for example, U − D decomposition filter and singular value
decomposition filter. In the U − D decomposition filter, covariance matrix P is
decomposed as UDUT , where U is an upper triangular matrix and D is diagonal

matrix. Hence, UD1/2 is equivalent to P
1/

2 . In the singular value decomposition
filter, V is the eigenvector matrix of P, and D is diagonal matrix, where the diagonal

element is the singular value of P. Therefore, VD1/2 is also equivalent to P
1/

2 .
These two algorithms keep positive definite of P and make better robustness of the
UKF algorithms.

In these two algorithms, there will be few changes in the process of UKF.
PaXX (k − 1 |k − 1 ) is decomposed. In U − D decomposition filter, Eqs. (8) and
(9) transform into Eqs. (22) and (23).
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Fig. 2 Algorithm flow chart

PXX (k − 1 |k − 1 ) = U (k − 1 |k − 1 )D (k − 1 |k − 1 )U(k − 1 |k − 1 )T (22)

χ (k − 1 |k − 1 )

=
⎡

⎢
⎣

X̂ (k − 1 |k − 1 )
X̂ (k − 1 |k − 1 )+ Ui (k − 1 |k − 1 )

√
(n+ λ)Di (k − 1 |k − 1 )

X̂ (k − 1 |k − 1 )− Ui (k − 1 |k − 1 )
√
(n+ λ)Di (k − 1 |k − 1 )

]
T

⎤

⎥
⎦

T

(23)

In the singular value decomposition filter, change equations are:

PXX (k − 1 |k − 1 ) = V (k − 1 |k − 1 )D (k − 1 |k − 1 )V(k − 1 |k − 1 )T (24)

χ (k − 1 |k − 1 )

=
⎡

⎣
X̂ (k − 1 |k − 1 )

X̂ (k − 1 |k − 1 )+ Vi (k − 1 |k − 1 )
√
(n+ λ)Di (k − 1 |k − 1 )

X̂ (k − 1 |k − 1 )− Vi (k − 1 |k − 1 )
√
(n+ λ)Di (k − 1 |k − 1 )

⎤

⎦

T

(25)

Vi(k − 1|k − 1), Ui(k − 1|k − 1), and Di(k − 1|k − 1) are the ith column of
V(k − 1|k − 1), U(k − 1|k − 1), and D(k − 1|k − 1). i = 1, 2, · · · , n. Hence,
X̂ (k |k ), PXX(k|k), and X(k − 1) can be obtained. And then the CIA is also used to
improve accuracy.
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4 The Improved Kalman Filter (KF)

The linear system model is:

{
X (k+ 1) = � (k)X (k)+ � (k)W (k)

Y(k) = H(k)X(k)+ V(k)
(26)

X(k + 1) represents the system state vector, and Y(k) is the system measurement
vector. V(k) and W(k) are process noise and measurement noise. Their statistical
properties are in (5). �(k), �(k), and H(k) are computation models according to the
object.

1. Time update equations

{
X̂(k) = �(k)X̂ (k − 1)
P (k |k − 1 ) = �(k)P(k)�(k)T + �(k)Q(k)�(k)T

(27)

P is the covariance matrix of X̂.

2. Measurement update equations

⎧
⎪⎨

⎪⎩

K(k) = P (k |k − 1 )H(k)T
(
H(k)P (k |k − 1 )H(k)T + R(k)

)−1

X̂ (k |k ) = X̂ (k |k − 1 )+K(k)
(
Y(k)−H(k)X̂ (k |k − 1 )

)

P (k |k ) = (I−K(k)H(k))P (k |k − 1 )

(28)

At time k, K is filtering gain and X̂ (k |k ) is the filter value.
From the model in (26), (27), and (28), there are also noises and interferences

existing in the KF process. Hence, the accuracy of KF is also improved by the
presented method.

According to the KF, X̂ (k |k ), P(k|k), and X(k − 1) are obtained. The presented
method is also used in the KF.

P−1
KF = wP−1 (k |k )+ (1− w)P−1 (k − 1 |k − 1 ) (29)

P−1
KF X̂improved (k |k ) = wP−1(k |k ) X̂ (k |k )+ (1− w)P−1(k − 1 |k − 1)X (k − 1)

(30)

P−1
KF is the fused covariance matrix; X̂improved (k |k ) is the improved filter value.
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5 Simulation

In this model, the position, velocity, and acceleration (PVA) motion model is usually
adopted. Two sensors are used to track one target. This model is in (31) and (32).

X(k) =

⎛

⎜⎜
⎝

1 0 �t 0
0 1 0 �t

0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠X (k − 1)+W (k − 1) (31)

θ(k)i = arctan

(
yk − siy
xk − six

)

+ V (k)i (32)

X(k) is a state variable vector, X(k) = (
xk yk ẋk ẏk

)T
. The initial value of

X is
(

0 0 1 0
)T

. xk, yk are horizontal and vertical position, and ẋk, ẏk are the
corresponding horizontal and longitudinal velocity. W(k − 1) and V(k)i represent
Gaussian noise, W(k − 1) mathematical expectation is zero, and the covariance

is

⎡

⎢⎢
⎣

1
30�t

3 0 1
20�t

2 0
0 1

30�t
3 0 1

20�t
2

1
20�t

2 0 1
10�t 0

0 1
20�t

2 0 1
10�t

⎤

⎥⎥
⎦.V ik N(0, 0.052).six and siy are the ith sensor

measurement value. The location of them are represented by
(
s1
x , s

1
y

)
= (1, 1) and

(
s2
x , s

2
y

)
= (−1,−2), respectively. The time interval Δt is 0.01 s; the simulation

time is 5 s. And [11] is the compared method.
In Fig. 3, two black triangles are the sensors’ location. Black line is the

real trajectory. Red line is the compared method estimation trajectory. Blue line
represents the trajectory obtained by the presented method. As shown in Fig. 3, the
presented method is closer to the real trajectory, compared to the compared method.

In Fig. 4, the vertical axis represents MSE on the x-axis, and the horizontal axis
represents time. In Fig. 5, the vertical axis represents MSE on the y-axis, and the
horizontal axis represents time. Red line is the presented method MSE, and blue
line is the UKF MSE in both of these two figures. From Figs. 4 and 5, the precision
is improved by more than half at some time, for example, time 120, 230, and 400
on the x-axis and time 100, 190, and 380 on the y-axis. Generally speaking, the
accuracy of proposed method is overall higher than the accuracy of the compared
method. Especially,

In Fig. 6, the MSE and Monte Carlo methods are adopted to compare these two
methods’ performance, and the number of Monte Carlo simulations is 500. The
expression is as follows:
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Fig. 3 Tracking trajectory between the UKF and the presented method

Fig. 4 MSE on the x-axis

MSE =
√√√√ 1

M

M∑

n=1

(
(x (k |k )− x(k))2 + (y (k |k )− y(k))2) (33)

M = 500, the value of k is from 1to 500.
In Fig. 6, the presented method MSE is lower than the compared MSE. It

is expressed that the accuracy of the proposed method is better than one of the
compared method.
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Fig. 5 MSE on the y-axis

Fig. 6 MSE

5.1 The Second Model

X (k + 1) =
[

1 1
− 1 −1

]
X(k)+

[
1
1

]
W(k) (34)

Y(k) = [ 1 1
]

X(k)+ V (k) (35)
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Fig. 7 X1(k)

X(k) = [
X1(k) X2(k)

]T
, the initial value is

[
0 0
]T

; W(k), V(k) are zero-mean
independent white noise with different varianceQ and R. Q = 0.7, R = 0.9. Other
element values are as follows:

�(k) =
[

1 1
− 1 −1

]
, �(k) =

[
1
1

]
, H(k) = [ 1 1

]

Because the second model is a linear system, KF is used.
In Figs. 7 and 8, red line is the KF estimation value, and blue line is the presented

method value. As is shown in Figs. 7 and 8, the accuracy of KF is obviously higher
than the one of the proposed method. It is also instruction that the proposed method
is effective.

6 Conclusion

In this paper, an enhanced UKF method based on CIA is proposed. According
to the real value at time k − 1 and the filter value at time k, the accuracy
is effectively improved by this method. And more importantly, the correlation
information between the real value and the filter value is not involved.
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Fig. 8 X2(k)
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Application in Image Denoising Using
Fractional Total Variation Theory

Guo Huang, Qing-li Chen, Tao Men, Xiu-Qiong Zhang, Hong-Ying Qin,
and Li Xu

1 Introduction

Image processing based on partial differential equations is a brand new
interdisciplinary branch with the integration of the theories of various fields
[1, 2]. This method has a powerful mathematical theory foundation and many
advantages which other image denoising methods do not have, but during in-depth
studies, many scholars at home and abroad still find many inadequacies in image
denoising models based on partial differential equations. For example, though
PM model [3] and ROF model [4] can effectively remove noise from the smooth
region of image, the denoised image will produce a “ladder effect” and piecewise
smooth phenomenon; the LLT model [5] takes advantage of the higher-order partial
differential equation modeling, even though it can eliminate the “ladder” effect, the
resulting denoised image presents bad visual effects; and the MCM model [6] can
protect edge information of the image, but the denoised image will produce many
of the artifacts.

In recent years, many scholars applied fractional calculus theory to low-layer
image processing and obtained better simulation results [7, 8]. Fractional differential
can improve high-frequency component of the signal and retain very low-frequency
signal nonlinearly at the same time. Therefore applying this theory to image
processing can make the edges of the image more prominent, while retaining
the texture information of the smooth region of the image [9, 10]. Zhang et al.
introduced the classical fractional calculus Grümwald-Letnikov definition into the
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building of the energy functional and derived another type of image denoising
model based on fractional partial differential equations [11]. The image denoising
model based on fractional partial differential equations is actually based on spatial
partial differential equations, that is, in spatial domain they use the memory of
fractional calculus and non-locality for image denoising. This can obtain better
denoising effects while effectively suppressing “ladder phenomenon” to some
extent. However, some shortcomings exist in the fractional order partial differential
equation-based image denoising model: (1) Zhang’s denoising model does not
introduce edge stop function, so detailed information such as edge and texture
in the denoised image is not ideal. (2) Numerical implementation of the Zhang’s
denoising model only considers the fractional differential of the X-axis and Y-
axis direction and this method overlooks the role of pixel points in several other
directions, thus resulting in the imprecision of the numerical calculation of the
fractional differential.

To solve the problems of Zhang’s image denoising model, this paper attempts
to introduce edge-stop function with fractional gradient amplitude as the parameter
and implement the numerical calculation of spatial partial differential equations by
building fractional differential mask in eight directions, this method could obtain
the solution of the denoising model by transforming the image denoise model based
on what is proposed in this paper to correlation and convolution operations between
fractional differential mask operator and noise image.

2 Analysis of Definitions and Theorems

Digital images are usually described by two-dimensional functions. Thus the key
of image-processing models based on PDE is to seek some appropriate function
space to model the digital image. In general, most of the images possess rather
complicated characteristics such as non-regular boundary, highly sophisticated
texture, and random noise. In order to describe as completely as possible the
complicated characteristics of the images, many researchers tried to find the
“characteristic function space” that can describe the complicated characteristics of
the images and modeled the complicated characteristic information of the images
using this “characteristic function space.”

In the ROF model [12], because all the functions in the “BV space” are allowed
to have leaping discontinuity, it provides important theoretical basis for maintaining
noncontinuous features and structures such as image boundary and texture in the
denoising process. The “BV space” is thus deemed appropriate function space to
describe non-texture images. This section extends “Total variation” and “Bounded
variation function space” with the basic definitions in the theory of fractional
calculus to derive “Fractional total variation” and “Fractional bounded variation
function space” which can more precisely describe the detailed characteristics of
the images such as boundary and texture.
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2.1 Total Variation and Bounded Variation Function Space

Let � be a bounded subset on the real plane, function μ ∈ L1(�), if the distribution
derivative or general derivative can be represented by some limited vector value
Radon measurement (when ∀φ = (φ1, φ2) ∈ C1

0(�)
2, and

∣∣φL∞(�)
∣∣ ≤ 1, it is

satisfied that
∫
�μdivφd� = − ∫

�Dμ · φd�, in which Dμ = (Dxμ, Dyμ) is the
limited vector value measurement on �, and it becomes the distributed gradient or
general gradient of μ). Thus function μ can be called the limited variation function
on � and define the total variation of μ as:

∫

�

|Dμ| = sup

⎧
⎨

⎩

∫

�

μdivφd� : φ = (φ1, φ2) ∈ C1
0(�)

2,
∣∣φL∞(�)

∣∣ ≤ 1

⎫
⎬

⎭
(1)

Thus, according to the definition of fractional order total variation [13], we could
obtain the definition of bounded variation function space as:

BV (�) =
⎧
⎨

⎩
μ ∈ L1 (�) ,

∫

�

|Du| d� <∞
⎫
⎬

⎭
(2)

in which, when ∀μ ∈ C1(�), μ is a first-order continuous differentiable function
defined on�, it can be derived by Green formula that

∫
�μdivφd�=−∫ �Dμ·φd�,

and thus
∫
�|Dμ|d� =

∫
�|∇μ|d�.

2.2 Fractional Total Variation and Bounded Variation
Function Space

Suppose there is function μ(x, y) ∈ RN × N , φ(x, y) ∈ RN × N × RN × N it can be
discretized with distance h= 1 in the N × N plane μ = (μi,j

)N
i.j=1, φ = (φi,j

)N
i.j=1,

thus it can be obtained that the fractional gradient of function μ(x, y) and fractional
divergence of function φ(x, y) are:

∇vμ = (∇vμi,j
)N
i,j=1 =

(
Dvxμi,j ,D

v
yμi,j

)N

i,j=1
(3)

divvφ =
(
(−1)v

(
Dvxφi,j +Dvyφi,j

))N

i,j=1
(4)

Thus, the fractional Green formula is as:

∫

�

μdivvφd� = −
∫

�

(−1)vDvμ · φd� (5)
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So, according to the fractional Green formula, we could get the fractional total
variation and bounded variation function space as follows:

Suppose � is a real subset on real plane, fun value is Radon measurement on �,
when ∀φ = (φ1, φ2) ∈ C1

0(�)
2, and

∣
∣φL∞(�)

∣
∣ ≤ 1, it satisfies the Green function

μ ∈ L1(�). Suppose the distributed derivative or general derivative of μ can be
represented by the limited vector formula

∫
�
μdivvφd� = −∫

�(−1)vDvμ · φd�,
in which Dvμ = (Dx

vμ, Dy
vμ) is the limited vector value measurement on �, that

is, the fractional gradient of μ; thus, it can be called that μ is the fractional limited
variation function on � and can define the fractional total variation of μ as:

∫

�

∣∣Dvμ
∣∣ d� = sup

⎧
⎨

⎩

∫

�

μdivvφd� : φ = (φ1, φ2) ∈ C1
0(�)

2,
∣∣φL∞(�)

∣∣ ≤ 1

⎫
⎬

⎭

(6)

The fractional limited variation function space is as:

BV v (�) =
⎧
⎨

⎩
μ ∈ L1 (�) ,

∫

�

∣∣Dvu
∣∣ d� <∞

⎫
⎬

⎭
(7)

in which, when ∀μ ∈ C1(�), that is, μ is the first-order continuous differentiable
function defined on �, from the fractional Green formula, it can be derived that∫
�
μdivvφd� = −∫

�(−1)vDvμ · φd� and thus Dvμ = ∇vμ =
(
∂vμ
∂x1

v ,
∂vμ
∂x2

v

)
.

3 Construction of the Image Denoising Model Based
on Fractional Total Variation

It is already known the noisy image I(x, y), x, y ∈�, and let the noisy image I(x, y) be
independent on X axis and Y axis. Thus, it is only needed to calculate the fractional
gradient modulus of the image signal on the X axis. The same is for the Y axis.
From the Grümwald-Letnikov definition of the fractional gradient modulus [14], it
is known that the fractional derivative of image signal I(x, ·) is:

G
a D

v
t I (x, ·) =

(
1

h

)n N−1∑

j=0

(−1)j
� (v + 1)

� (j + 1) � (v − j + 1)
I (x − jh, ·) (8)

When step size is h = 1, the following can be derived:

G
a D

v
t I (x) =

N−1∑

j=0

(−1)j
(
v

j

)
I (x − j) (9)
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Let function cv(x) satisfies the below:

cv(x) =
⎧
⎨

⎩
(−1)x

(
v

x

)
x ≥ 0

0 x < 0
(10)

Thus, the fractional derivative of the signal I(x, ·) can be rewritten as the
convolution of signal I(x, ·) and function cv(x) is below:

G
a D

v
t I (x, ·) = cv(x) ∗ I (x, ·) (11)

Further, put formula (11) into the energy functional based on fractional BVv(�)
space, and the fractional variation model based on convolution integral can be
obtained as in formula (12).

E(I) =
∫

�

∣∣cv ∗ I ∣∣ dxdy + λ
2
‖f − I‖2

L2
(12)

The image denoising model based on Grümwald-Letnikov definition of fractional
partial derivative equations can be derived by combining the basic property of
function and gradient descent flow as in formula (13).

∂I

∂t
= −

⎛

⎝
∫

�

cv(z)
(cv ∗ I )x
|cv ∗ I | (x + z, y) dz+

∫

�

cv(z)
(cv ∗ I )y
|cv ∗ I | (x, y + z) dz

⎞

⎠

+ λ (I0 − I )
(13)

4 Experiments and Theoretical Analysis

In solving the denoising model to get the numeric value of the fractional derivative,
we still use the fractional derivative mask operator Wj in reference [11] that
fractional derivative operator is rotation invariant [15], that is, it includes mask
W+
x along the positive direction of X axis, mask W−

x along the negative direction
of X axis, mask W+

y along the positive direction of X axis, mask W−
y along the

negative direction of X axis, mask W 45
x along the 45◦ direction counterclockwise

to the positive X axis, mask W 135
x along the 135◦ direction counterclockwise to the

positive X axis, maskW 225
x along the 225◦ direction counterclockwise to the positive

X axis, and mask W 315
x along the 315◦ direction counterclockwise to the positive

X axis.
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This paper mainly studies the image denoising model based on fractional
partial derivative equations with fractional gradient as the measurement, assuming
the denoising effect mainly relates with the regularization term in the denoising
model, that is, without considering compensation for the information loss in the
noisy image. Thus the experiments about image denoising model in this paper all
ignore the effect of fidelity term, that is, all assuming fidelity coefficient λ = 0.
Consequently the denoising performance of different denoising models can be
compared in the same condition. And replacing the function cv with fractional
derivative modulus Wj

i , we can obtain the improved denoising model based on
spatial fractional partial derivative equations as shown in (14).

∂ I

∂t
=−

⎛

⎜
⎝

(
Wx+ ◦ (Wx+∗I)|cv∗I |

)
+
(
Wx− ◦ (Wx−∗I)|cv∗I |

)
+
(

Wy+ ◦
(
Wy+∗I

)

|cv∗I |

)

+
(

Wy− ◦
(
Wy−∗I

)

|cv∗I |

)

+. . .
(
Wx45 ◦

(
W
x45∗I

)

|cv∗I |
)
+
(
Wx135 ◦

(
W
x135∗I

)

|cv∗I |
)
+
(
Wx225 ◦

(
W
x225∗I

)

|cv∗I |
)
+
(
Wx315 ◦

(
W
x315∗I

)

|cv∗I |
)

⎞

⎟
⎠

(14)

As shown in Figs. 1, 2, and 3, subgraphs (c), (d), (e), and (f) in graph,
respectively, represent the resulting images and their residual image after denoising
the camera man image, lena image, and barbara image which have Gaussian white
noise (mean μ = 0 and variance σ 2 = 0.15), using the model in reference [11]
and the model proposed in this paper, correspondingly (the order of the fractional
derivative in the model proposed in this paper is the same as that in reference [11],
that is, v= 1.2). Observing directly, compared with the traditional FPDE model, the
proposed model in this paper is able to preserve the detailed information such as
image boundary and texture because of the use of the boundary stop function with
fractional gradient modulus as the parameter.

As shown in Figs. 4, 5, and 6, compare the denoising performance curves of
both the traditional model and the improved model. It can be observed that the
signal-to-noise ratios (SNR) both increase to some peak level and then decrease
with the number of iteration increasing in the denoising process. The denoising
model proposed in this paper is able to obtain higher SNR than that of the traditional
FPDE model (camera man images experiment, SNR by the model proposed in this
paper is 19.09 db, while SNR by FPDE is 18.5 db; lena images experiment, SNR
by the model proposed in this paper is 16.24 db, while SNR by FPDE is 15.5 db;
barbara images experiment, SNR by the model proposed in this paper is 17.31 db,
while SNR by FPDE is 16.67 db).
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Fig. 1 The camera man images and their corresponding level lines after implementing denoising
by traditional model and improved model. (a) Original, (b) noise image, (c) FPD, (d) improved
model, (e) residual image by FPDE, (f) residual image by improved model

5 Conclusion

To solve the problems existing in the various image denoising models based on
integer-order partial differential equations, researchers introduced fractional calcu-
lus theory into the image denoising models based on partial derivative equations
and constructed image denoising models based on fractional partial differential
equations [16]. These models build the energy functional of the denoising model by
replacing integer-order gradient operator with fractional-order gradient operator and
solved issues such as “staircase effect” in image denoising modes based on integer-
order partial differential equations. On this basis, targeting the issues in the existing
image denoising models based on space-fractional partial differential equations,
this paper tries to introduce the boundary stop function with fractional gradient
modulus as the parameter and implement the numeric computation of the space-
fractional partial differential equations by constructing the fractional differential
mask operators along eight directions. Thus the proposed denoising model not only
has the same advantage or preserving boundary information of the image as that
of the models based on integer-order partial differential equations, but also in some
degree preserves the texture information of the image.
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Fig. 2 The lena images and their corresponding level lines after implementing denoising by
traditional model and improved model. (a) Original, (b) noise image, (c) FPD, (d) improved model,
(e) residual image by FPDE, (f) residual image by improved model

Experimental results show that the proposed model is more capable of noise
suppressing and boundary preserving, compared with traditional denoising models.
Especially, this model will not greatly attenuate the detailed texture information
in the smooth regions of the image where there is little change in gray levels. On
the contrary, it nicely preserves more detailed texture information of the image. On
the other hand, the image denoising model proposed in this paper, which is based
on space-fractional partial differential equations, is only some initial attempts and
promotion of the fractional differential theory applying to image enhancement.

The algorithm is not flawless, and the future improvements need to solve the
following issues: how to design the numeric computation methods for the space-
fractional partial differential equations to obtain more accurate numeric solution,
how to construct more reasonable boundary stop function to better preserve the
detailed information such as edges and textures in the image during the denoising
process, and how to establish the complex relations between the order of the space-
fractional differential equations and the effect of the denoised image so that the
model can make the denoising process more self-adaptively based on the local noise
and texture characteristics of the image.



Fig. 3 The barbara images and their corresponding level lines after implementing denoising by
traditional model and improved model. (a) Original, (b) noise image, (c) FPD, (d) improved model,
(e) residual image by FPDE, (f) residual image by improved model

Fig. 4 The contrast of denoising performance curves about camera man image implementing by
traditional FPDE model and improved model
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Fig. 5 The contrast of denoising performance curves about lena image implementing by tradi-
tional FPDE model and improved model

Fig. 6 The contrast of denoising performance curves about barbara image implementing by
traditional FPDE model and improved model
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Total Variation with Overlapping Group
Sparsity for Removing Mixed Noise

Jin-Jin Mei and Ting-Zhu Huang

1 Introduction

In imaging applications, the observed images are unavoidably corrupted by the
noise during the process of acquisition, transmission, or storage. Therefore, the
image denoising is always an essential task in image processing. Researchers have
proposed many methods to remove the noise; see [1–12] and references therein.
But in the synthetic aperture radar (SAR) imaging system, the observed images are
usually contaminated with the multiplicative noise due to the image formation under
coherent radiation while the additive noise due to the thermal vibrations of image
capture radiation [13, 14]. Assume that Ω ⊂ R

2 is a connected bounded domain
with the compacted Lipschitz boundary; we consider a degradation model under the
mixed additive and multiplicative noise,

f = u+ k0η + k1uη (1)

where f ∈ L2(Ω) is the noisy image, u is the unknown original image, η denotes
the Gaussian white noise with mean zero and variance one, and k0, k1 > 0 represent
the noise level.

As far as we know, there are a few mathematical techniques for removing the
mixed additive and multiplicative noise. In [14], the authors assume that a patch
from the original image is a linear combination of patches from the noisy image.
They considered the total least square (TLS) sense to obtain the true image. In [15],
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since the TV regularization preserves the image edges effectively, Chumchob et al.
proposed a convex variational model (called TV-EXP for short) for removing the
mixed noise,

min
u∈BV (Ω)

∫

Ω

|∇u|dx + α1

2

∫

Ω

(u− f )2dx + α2

∫

Ω

(u+ f e−u)dx (2)

where α1 and α2 are the positive regularization parameters, which control the trade-
off between the TV regularization term and the data-fitting terms. BV (Ω) is the
space of functions u ∈ L1(Ω) such that

∫

Ω

|∇u|dx := sup

{∫

Ω

u divϕ dx : ϕ ∈ (C∞0 (Ω))2, ‖ϕ‖∞ ≤ 1

}

is finite. With the norm ‖u‖BV (Ω) = ‖u‖L1(Ω) +
∫
Ω
|∇u|dx, BV (Ω) is a Banach

space. For more details, see [16, 17] and references therein. In order to obtain the
solution of (2), they applied a nonlinear multigrid method based on the fixed-point
smoother. But this mathematical method is comparatively complicated and time-
consuming. Moreover, there exist some staircase artifacts in the restored images.

Recently, researchers have studied a new TV regularization method based on the
overlapping group sparsity [10, 18, 19]. The numerical experiments showed that this
regularization can suppress the staircase artifacts effectively. Therefore, inspired by
the advantage of the TV with overlapping group sparsity, we propose two convex
models for removing the mixed additive and multiplicative noise. In this paper, we
develop the ADMM algorithm to solve the proposed models, and the convergence of
the algorithm is guaranteed under certain conditions. Furthermore, according to the
peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) [20],
experimental results show that our proposed methods are effective.

This paper is summarized as follows. In the next section, we review the TV with
overlapping group sparsity and the framework of ADMM. In Sect. 3, we propose
two variational models based on the TV with overlapping group sparsity and develop
the ADMM algorithm for solving the proposed models. The experiments show the
superior performance in Sect. 4. Finally, we conclude the paper in Sect. 5.

2 Preliminaries

2.1 TV with Overlapping Group Sparsity

For completeness, we briefly review the TV with overlapping group sparsity.
Firstly, we assume that the original image u ∈ R

n2
which is rearranged in the

lexicographically order. In other words, the ((j − 1)n + i)th element of the vector
u is equal to the (i, j)th element of the corresponding square matrix. According to
[10], a K-square-point group of a two-dimensional image is defined as follows:
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ũi,j,K =

⎛

⎜
⎜⎜
⎝

ui−K1,j−K1 ui−K1,j−K1+1 · · · ui−K1,j+K2

ui−K1+1,j−K1 ui−K1+1,j−K1+1 · · · ui−K1+1,j+K2
...

...
. . .

...

ui+K2,j−K1 ui+K2,j−K1+1 · · · ui+K2,j+K2

⎞

⎟
⎟⎟
⎠
∈ R

K×K,

where K1 =
[
K−1

2

]
, K2 =

[
K
2

]
, and [x] represents the largest integer no more than

x. Similarly, by stacking all the columns of ũi,j,K , we obtain a vector ui,j,K ∈ R
K2

.
Then an overlapping group sparsity functional is defined as

φ(u) =
n∑

i,j=1

‖ui,j,K‖2.

According to [10, 18, 19], the anisotropic TV functional with overlapping group
sparsity is given by

!(Du) = φ(D1u)+ φ(D2u),

where the operator D : R
n2 → R

2n2
is the discrete gradient operator satisfied

(Du)i,j = ((D1u)i,j , (D2u)i,j ). Here,D1 andD2 are the first-order finite difference
operators in the horizontal and vertical directions under the periodic boundary
condition.

2.2 Classic ADMM

The ADMM technique is widely applied for solving the constrained separable
optimization problem

min
x∈X,y∈Y f (x)+ g(y) (3)

s.t.Ax + By = b

where f (x) and g(y) are closed convex and lower semicontinuous functions,
X ⊂ R

m and Y ⊂ R
n are closed convex sets, and A ∈ R

l×m and B ∈ R
l×n

are linear operators [21–23]. By introducing a multiplier λ ∈ R
l , the corresponding

augmented Lagrangian function is given by

L(x, y; λ) = f (x)+ g(y)+ λ�(Ax + By − b)+ β
2
‖Ax + By − b‖2

2 (4)
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where β is a positive penalty parameter. According to the framework of ADMM,
the solution (xk+1, yk+1) is obtained by

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

xk+1 = arg min
x

f (x)+ β
2
‖Ax + Byk − b + λ

k

β
‖2

2,

yk+1 = arg min
y

g(y)+ β
2
‖Axk+1 + By − b + λ

k

β
‖2

2,

λk+1 = λk + γβ(Axk+1 + Byk+1 − b)

(5)

where γ > 0 represents a relax parameter. Based on the work [22], if γ ∈(
0,

√
5+1
2

)
, the convergence of ADMM is guaranteed.

3 The Proposed Model

Inspired by the works [1, 6, 10], we propose an exponential variational model (just
referred to as OGSTV-EXP) for removing the mixed additive and multiplicative
noise

min
u>0

φ(D1u)+ φ(D2u)+ α1

2
‖u− f ‖2

2 + α2〈u+ f e−u, 1〉 (6)

where 1 denotes a vector which all components are equal to one and the multiplica-
tion between two vectors is performed in componentwise. The fourth data-fitting
term of the model (6) is obtained by the logarithmic transformation. But the
logarithmic transformation is nonlinear. For overcoming the disadvantage, we also
present an I-divergence variational model by combining the TV with overlapping
group sparsity,

min
u>0

φ(D1u)+ φ(D2u)+ α1

2
‖u− f ‖2

2 + α2〈u− f log u, 1〉. (7)

We refer to the above model as OGSTV-Idiv. According to [7], due to the invariant
property of TV, the solutions of the exponential model and the I-divergence model
for removing the mixed additive and multiplicative noise are equal. Then for dealing
with the models (6) and (7), we rewrite these two models as the following synthetical
model:

min
u>0

φ(D1u)+ φ(D2u)+ α1

2
‖u− f ‖2

2 + α2F(u), (8)

where F(u) is equal to 〈u + f e−u, 1〉 for (6) and 〈u − f log u, 1〉 for (7). In
the following, we apply the ADMM technique mentioned above to solve the
minimization model (8).
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By introducing three auxiliary variables v1, v2, and w ∈ R
n2

, we transform the
model (8) into the equivalent constrained minimization,

min
u>0,v1,v2,w

φ(v1)+ φ(v2)+ α1

2
‖u− f ‖2

2 + α2F(w). (9)

s.t.v1 = D1u, v2 = D2u,w = u

Then, the corresponding augmented Lagrangian function is given as

L(u, v1, v2, w; λ1, λ2, λ3) = φ(v1)+ 〈λ1, v1 −D1u〉 + β1

2
‖v1 −D1u‖2

2 + φ(v2)

+ 〈λ2, v2 −D2u〉 + β1

2
‖v2 −D2u‖2

2 +
α1

2
‖u− f ‖2

2

+ α2F(w)+ 〈λ3, w − u〉 + β2

2
‖w − u‖2

2,

where β1, β2 > 0 are the penalty parameters. By the framework of ADMM, the
whole algorithm for removing the mixed additive and multiplicative noise is given
as follows.

Algorithm 1 ADMM algorithm for solving (8)

1: Initialize u0, v0
1 , v0

2 , w0, λ0
1, λ0

2 and λ0
3; set α1, α2, β1, β2, γ .

2: For k = 1, 2, . . . , calculate uk+1, vk+1
1 , vk+1

2 , wk+1, λk+1
1 , λk+1

2 , λk+1
3 by

vk+1
l = arg min

vl

φ(vl)+ β1

2
‖vl −Dluk + λ

k
l

β1
‖2

2, l = 1, 2 (10)

wk+1 = arg min
w

α2F(w)+ β2

2
‖w − uk + λ

k
3

β2
‖2

2 (11)

uk+1 = arg min
w

L(u, vk+1
1 , vk+1

2 , wk+1; λk1, λk2, λk3) (12)

λk+1
l = λkl + γβ1(v

k+1
l −Dluk+1), l = 1, 2

λk+1
3 = λk3 + γβ2(w

k+1 − uk+1)

3: If uk+1 satisfies the stopping criteria ‖uk+1 − uk‖2/‖uk‖2 ≤ 1× 10−4, return uk+1 and stop.

1. For obtaining vk+1
1 and vk+1

2 , we utilize the classical majorization-minimization
(MM) method to deal with (10). The MM method is a good way to address the
difficult optimization problem. Specifically, let Q(t, t ′) be a majorizor1 of the

1A functionQ(t, t ′) is a majorizor of the function P(t), ifQ(t, t ′) ≥ P(t) for all t , t ′ andQ(t, t) =
P(t).
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function P(t). Then instead of directly solving the minimizer of P(t), the MM
iterative method is formulated as an easier optimization minimization problem

tk+1 = arg min
t

Q(t, tk). (13)

Note that when P(t) is convex, the iterative sequence tk+1 obtained by (13)
converges to the minimizer of P(t). Therefore, in order to solve (10), we first

need to find a majorizor of φ(vl). Based on the fact that 1
2

(
1
‖t‖2

‖s‖2
2 + ‖t‖2

)
≥

‖s‖2 for all t, s ∈ R
n2

and t �= 0, we have a majorizor of φ(vl),

S(t, vl) = 1

2

n∑

i,j=1

(
1

‖ti,j,K‖2
‖(vl)i,j,K‖2

2 + ‖ti,j,K‖2

)

= 1

2
‖Λ(t)vl‖2

2 + C(t), l = 1, 2

where ti,j,K �= 0, C(t) is independent of vl and Λ(t) is a diagonal matrix with

each diagonal element

√
∑K2
m1,m2=−K1

(∑K2
n1,n2=−K1

|ti−m1+n1,j−m2+n2 |2
)−1/2

.

As a result, we solve the minimization

vk+1
l = arg min

vl

1

2
‖Λ(vkl )vl‖2

2 +
β1

2
‖vl −Dluk + λ

k
l

β1
‖2

2, l = 1, 2.

The solutions of (10) are obtained by

vk+1
l =

(
I + 1

β1
Λ2(vkl )

)−1
(

Dlu
k − λ

k
l

β1

)

, l = 1, 2 (14)

where I represents the identity matrix.
2. For the w-subproblem, if F(w) = 〈w+f e−w, 1〉, we apply the Newton iterative

method to solve (11). But if F(w) = 〈w−f logw, 1〉, by the first-order condition
with respect to w, we deduce the following equation:

w2 +
(
α2

β2
I + λ

k
3

β2
− uk

)

w − α2

β2
f = 0.

The solution is given by

wk+1 =
uk − α2

β2
I − λk3

β2
+
√

(uk − α2
β2
I − λk3

β2
)2 + 4α2

β2
f

2
. (15)
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3. With respect to the u-subproblem, we obtain the corresponding normal equation

(
β1D

�D + (α1 + β2)I
)
u =

2∑

l=1

D�
l (λ

k
l + β1v

k+1
l )+ α1f + λk3 + β2w

k+1.

Under the periodic boundary condition, the Hessian matrix on the left-hand side
can be diagonalized by the discrete fast Fourier transform F . Consequently, we
get the solution

u = F−1

(
F(
∑2
l=1D

�
l (λ

k
l + β1v

k+1
l )+ α1f + λk3 + β2w

k+1)

F
(
β1D�D + (α1 + β2)I

)

)

(16)

where F−1 represents the inverse fast Fourier transform.

Algorithm 1 is a direct application of the classic ADMM. Motivated by [22], we
give the convergence analysis of Algorithm 1.

Theorem 1 For fixed β1, β2 > 0 and γ ∈ (0,
√

5+1
2 ), the ADMM algorithm for the

model (8) converges.

Proof For illustrating the convergence of Algorithm 1, we first transform (8) into
the general constrained convex problem (3). Therefore, we let

x = (v1, v2, w)
�, f (x) = φ(v1)+ φ(v2)+ α2F(w)

y = u, g(y) = α1

2
‖u− f ‖2

2.

The constrained conditions in (9) are rewritten as the following form:

Ax + By = b

where

A =
⎛

⎝
I 0 0
0 I 0
0 0 I

⎞

⎠ , B =
⎛

⎝
−D1

−D2

−I

⎞

⎠ , b = 0.

According to [22, 24], we deduce that for fixed β1, β2 > 0, and γ ∈ (0,
√

5+1
2 ),

Algorithm 1 is convergent.

Note that the v1, v2 and u-subproblems have the closed solutions in Algorithm 1.
Although the w-subproblem is approximatively solved by the Newton iterative
method, Algorithm 1 is empirically convergent. Furthermore, Fig. 1 shows the curve
of the energy functional values is decreasing along the iteration number increasing.
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Fig. 1 Plot of the energy functional values in (8) for the image “test,” where the level of the mixed
noise is (10, 0.3)

Fig. 2 Original images. (a) Test (256× 256); (b) house (256× 256); (c) peppers (512× 512); (d)
SAR (256× 256)

4 Numerical Experiments

In this section, we demonstrate the performance of the proposed methods for
removing the mixed additive and multiplicative noise. Figure 2 shows four 8-bit
grayscale test images including three natural images and one real SAR image. We
compare the proposed methods with TV-EXP [15]. All numerical experiments are
performed under Windows 10 and MATLAB R2015b running on a Lenovo desktop
with 3.4 GHz Intel Core CPU and 4GB RAM. We apply PSNR and SSIM to measure
the quality of the restored images, which are, respectively, defined as

PSNR = 20 log 10

(
255n

‖u∗ − u‖2

)
, SSIM = 2μu∗μu(2σ + c2)

(μ2
u∗ + μ2

u + c1)(σ
2
u∗ + σ 2

u + c2)
,
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Table 1 The values of PSNR and SSIM for the restored images by applying different methods

Image Noisy TV-EXP OGSTV-EXP OGSTV-Idiv

Test (10,0.1) 35.83 0.9451 36.26 0.9664 36.35 0.9680

(20,0.1) 33.83 0.9335 34.40 0.9623 34.33 0.9570

(10,0.3) 30.31 0.9160 31.15 0.9460 31.10 0.9450

(20,0.3) 29.68 0.9014 30.27 0.9424 30.31 0.9270

House (10,0.1) 30.18 0.8142 30.68 0.8231 30.72 0.8240

(20,0.1) 28.77 0.7917 29.26 0.8023 29.32 0.8040

(10,0.3) 26.47 0.7421 27.02 0.7564 27.06 0.7570

(20,0.3) 25.72 0.7188 26.35 0.7421 26.38 0.7350

Peppers (10,0.1) 30.55 0.9205 31.11 0.9265 31.13 0.9270

(20,0.1) 28.97 0.8890 29.66 0.9041 29.67 0.9050

(10,0.3) 27.09 0.8521 27.65 0.8626 27.65 0.8620

(20,0.3) 26.48 0.8292 26.96 0.8482 26.96 0.8470

SAR (10,0.1) 27.42 0.7542 27.71 0.7670 27.77 0.7701

(20,0.1) 26.00 0.7119 26.25 0.7164 26.30 0.7203

(10,0.3) 24.10 0.6297 24.32 0.6353 24.35 0.6395

(20,0.3) 23.56 0.6021 23.77 0.6103 23.81 0.6180

where u∗ is the restored image, μu∗ is the mean of u∗, μu is the mean of the original
image u, σ 2

u∗ and σ 2
u are their respective variances, σ is the covariance of u∗ and u,

and c1, c2 > 0 are constants.
For the parameters α1, α2, β1 and β2 in Algorithm 1, we manually tune for

obtaining the highest PSNR values. Since the value of γ affects the convergent
speed, we set γ = 1.618 which makes the ADMM algorithm converge faster than
γ = 1. In addition, we set the iteration number of the Newton method for solving (6)
as 5. The iteration number of the MM method equals 10 for solving (6) and (7). For
the TV regularization with overlapping group sparsity, we set the group sizeK = 3.

In the experiments, the original images are corrupted by the mixed additive
and multiplicative noise with the noisy levels (10, 0.1), (20, 0.1), (10, 0.3), and
(20, 0.3). In order to show the superior performance, we compare the three methods
for the mixed additive and multiplicative noise removal. Table 1 lists the values of
PSNR and SSIM of the restored images. Obviously, comparing with OGSTV-EXP
and OGSTV-Idiv, the TV-EXP model provides the worst values of PSNR and SSIM.
Especially, the values of PSNR by the proposed methods are about 0.6dB higher
than the TV-EXP model. Furthermore, the OGSTV-EXP and OGSTV-Idiv models
obtain the competitive results in terms of PSNR and SSIM.

Figure 3 shows the comparison of different methods for removing the mixed
noise. By using the different methods, the restored images of the TV-EXP model
obviously bring in the staircase effect. However, our proposed methods preserve
the image details and remove the mixed additive and multiplicative noise. Due to
the TV with overlapping group sparsity, it is obvious that two variational methods
outperform TV-EXP, and the staircase artifacts are effectively eliminated. To further
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Fig. 3 Comparison of different methods for removing the mixed additive and multiplicative noise
with the noise level (10, 0.3). (a) Noisy images; (b) TV-EXP; (c) OGSTVEXP; (d) OGSTVIdiv

illustrate the performance of the proposed methods, we give the zoomed version of
the original images and restored images shown in Fig. 4. Obviously, we find that
the staircase artifacts are reduced in the homogeneous region by using the proposed
methods, especially in the restored images “test,” “peppers,” and “SAR.”

5 Conclusion

In this paper, we review the TV regularization with overlapping group sparsity and
the classic ADMM. Based on the exponential model [6] and the I-divergence model
[7], we present two convex variational models for removing the mixed additive and
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Fig. 4 Zoomed version of the images in Fig. 3. (a) Original images; (b) TV-EXP; (c) OGSTVEXP;
(d) OGSTVIdiv

multiplicative noise. Due to the convergent property, ADMM is applied to solve
the proposed variational problems. Numerical experiments show that the proposed
methods outperform the TV-EXP model in qualitative and quantitative comparisons.
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Image Restoration for Target Behind
Inhomogeneous Turbid Medium via
Longitudinal Laser Tomography

Wenjun Yi, Xiaofeng Wang, Zhengzheng Shao, Meicheng Fu, Lei Wang,
and Xiujian Li

1 Introduction

Imaging through optically inhomogeneous turbid medium is an essential observing
and detecting tool in many fields such as underwater observation, astronomical
observation, medical imaging, and security surveillance [1–5]. Generally, it is diffi-
cult to perfectly remove the influence of inhomogeneous turbid medium embedded
into the target image through blind image restoration algorithms such as the filtering
algorithms [6–10] and the total variation methods [11–15]. In order to improve the
imaging performance, great progress has been made recently with methods such
as ghost imaging [16, 17], wavefront shaping [18–20], and speckle correlations
[21, 22]. However, most of the methods presented above, if not all, are generally
designed for short-range imaging or imaging through opaque solid scattering layer
in stable environments while are unable to effectively eliminate the inhomogeneous
degradations induced by the fast-changing turbid medium.

Range-gated laser imaging [23–27] can effectively improve the signal-to-noise
ratio (SNR) of target images by removing the backscattering noises; however, the
range-gated target images will still suffer from the degradation of inhomogeneous
turbid medium over the long laser transmission path, especially when the targets are
partially obscured by the medium layer. In fact, the photons backscattered from the
turbid medium clusters usually carry plentiful physical information of the turbid
medium and the light beams, thus the inhomogeneous degradations. Therefore,
rather than being ignored, the backscattering images of the turbid medium should
be captured and analyzed for the target image restorations.
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Here, based on longitudinal laser tomography (LLT) [28, 30], which can capture
both the target images and the backscattering images of turbid medium to form
an image sequence, we describe an optical approach to estimate the degradation
caused by the turbid medium with the help of some prior system parameters and
the backscattering images and further to retrieve the true target images by a proper
variational model.

2 Principles of Image Restoration

The LLT system consists of a nanosecond pulsed laser and an intensified charge-
coupled device (ICCD) camera, as shown in Fig. 1. By changing the gate delay
of the ICCD camera through the signal timings shown in Fig. 1, the echo signals
from various ranges will be captured by the camera to generate an image sequence
[28]. In this paper, both the target image and the backscattering image of the turbid
medium will be captured by the LLT system, and then the degradations of the target
image will be estimated for further image restoration, assisted by the backscattering
images together with some prior system parameters.

Fig. 1 Schematic diagram of the LLT system
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The degradation model of the observed target image can be simplified as:

U0 = V · U +N, (1)

Here, U0 represents the observed target image, U represents the ideal image
without degeneration, V is the degradation matrix determined by the turbid medium
along the laser transmission path, and N is the additive noise of the system
[28]. Based on the degradation model, the restoration of the target image can be
divided into two steps: first, estimate the degradation matrix, and second, solve the
degradation model in Eq. (1).

2.1 Degradation Matrix Establishment

According to light detection and ranging (LIDAR) [31–34] theories, the energy
reflected from the target with reflectivity of ρt will be captured by a pixel (i, j) of
the ICCD camera [28]:

Itar (i, j) =
EtD

2d2
pixρt (Xt , Yt , Zt )

α2f 2Zt
2

· exp

⎡

⎣−2

Zt∫

0

Ke (x, y, z) dz

⎤

⎦ , (2)

Here, Zt is the distance between the ICCD and the target, Et is the single pulse
energy in the measurement, α is the divergence angle of the laser beam, dpix
is the pixel size, D is the camera aperture, f is the focal length of the optical
receiving system, and Ke is the extinction coefficient of the atmospheric turbid
medium, respectively; moreover, as shown in Fig. 2, the reflection point positions
(Xt, Yt, Zt) and the pixel coordinates (i, j) satisfy the projective transformation, i.e.,{
idpix = −fXt/Zt
jdpix = −f Y t/Zt .

Fig. 2 Coordinate system of LLT setup
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Obviously, on the right-hand side of Eq. (2), the last factor, which depends on the
atmospheric parameters rather than the parameters of the transceiver system and the
target, can be defined as the degradation matrix caused by the turbid medium:

V (i, j) ≡ exp

⎡

⎣−2

Zt∫

0

Ke (x, y, z) dz

⎤

⎦ (3)

Introducing the LIDAR ratio [34], i.e., the extinction-to-backscattering ratio
S = Ke/β, the degradation matrix can be rewritten by:

V (i, j) = exp

⎡

⎣−2

Zt∫

0

Sβ (x, y, z) dz

⎤

⎦ (4)

where β is the backscattering coefficient of the turbid medium. The LIDAR ratio
S can be assumed to be constant, which depends on the complex refractive index
and the size distribution of the medium particles but is independent with the number
density of the particles [34]. When the gate range is set to cover the whole layer
of the turbid medium as shown in Fig. 1, the exponential term turns out to be

approximately the total reflectivity ρS of the medium layer, i.e.,
Zt∫

0
β (x, y, z) dz ≈

ρS (x, y). Therefore, the degradation matrix can be simplified as:

V (i, j) = exp [−2SρS (x, y)] . (5)

Certainly, the reflectivity ρS of the turbid medium can be calibrated by a
reference target with uniform reflectivity ρ0 which can be premeasured. Basically,
the gray value of the medium image is proportional to the reflectivity of the turbid
medium; therefore the medium reflectivity ρS is supposed to be obtained by the
pre-calibration of the transceiver system as follows: the turbid-medium-free LLT
experiments can be performed by using a reference target plate with uniform
perpendicular-incidence reflectivity ρ0, which needs to be measured in advance. The
average gray value of the target in the reference target image I0 can be represented
as:

I0 = CE0ρ0/Z0
2, (6)

Here, E0 is the single pulse energy in the pre-calibration, C is a constant
determined by the system parameters, and Z0 is the distance between the reference
target and the camera. In the LLT system, the distance of the target is easy to
calculate as Z0 = cτ 0/2, in which c denotes the light speed and τ 0 denotes the
target signal delay.
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After that, LLT can be performed with the same experimental system under the
existence of turbid medium to capture the gated images of the new targets and the
turbid medium; in this measurement, the transceiver system parameters except the
pulse energy of the laser are supposed to remain unchanged. The gate range for the
backscattering image of the turbid medium needs to cover the whole medium layer,
and its image intensity can be represented as:

IS (i, j) = CESρS (x, y) /Zs2, (7)

where ES is the single pulse energy in this measurement and ZS is the distance of
the medium layer. Then, the medium reflectivity ρS can be obtained by:

ρS (x, y) = E0ZS
2ρ0

ESZ0
2I0
IS (i, j) (8)

Moreover, in Eq. (5) there is still an unknown value, i.e., the LIDAR ratio S,
which is supposed to be obtained by the premeasurement or by the estimation
through the prior information of the turbid medium. After that, by substituting the
S value and the calibrated ρS into Eq. (5), the estimated degradation matrix can be
achieved as:

Ṽ (i, j) = exp

[

−2S
E0ZS

2ρ0

ESZ0
2I0
IS (i, j)

]

. (9)

2.2 Image Restoration Algorithm

In order to eliminate the influence of the degradation matrix, we still use the
following variational model proposed in Ref. [28] to solve the degradation model in
Eq. (1):

min
U

∫

#

[
|∇U | + γ |U0 − Ṽ · U |

]
, (10)

Here, γ denotes the regularization parameter, U0 represents the observed target
image, U represents the restored target image, and Ṽ represents the estimated
degradation matrix, respectively. The flowchart of the image restoration process is
presented in Fig. 3.
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Fig. 3 Flowchart of the
restoration method

3 Image Restoration Experiments

In this section, the validity and feasibility of the proposed method will be verified
through experiments. The LLT experimental system and the signal timing were set
up as Fig. 1. A synchronization beam, detected by a Si photodetector, was sampled
from the main laser beam to provide external triggering for the ICCD camera. A
layer of turbid medium was produced and controlled by a fog generator, which could
atomize water and spray out the columnar fogs as shown in Fig. 1.

In the experiments, the wavelength, the pulse width, the divergence angle, the
laser repetition frequency, and the pulse energy of the laser beam fed by a Quanta-
Ray PRO Series pulsed Nd:YAG laser was 532 nm, 20 ns, 10 mrad, 10 Hz, and 2 mJ,
respectively. The image resolution, gate time, and frame frequency of the Andor
iStar ICCD camera were set to be 340 × 340 pixels, 20 ns, and 10 fps, respectively.
The targets, some plastic plates with various patterns including the aircraft model in
the simulations, were placed 30 m away from the ICCD camera. In the experiments,
the backscattering image of the artificial fogs and the target image were captured in
one single longitudinal scan to reduce the temporal variation of the fogs. According
to the laser repetition frequency and the camera frame frequency, the time interval
of the backscattering image and the target image is about 100 ms.

3.1 Pre-calibration Measurements

Before LLT experiment, the pre-calibration was first performed based on the pre-
calibration method proposed in Sect. 2.1. A reference target plate with uniform
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reflectivity ρ0 was used to calibrate the medium reflectivity ρS. The perpendicular-
incidence reflectivity ρ0 of the reference target plate was premeasured by an optical
power meter at various ranges, according to the following Eq. (11):

Er = ρ0
Ar

Z2
r
Ei (11)

Here, Ei is the incident energy, Er is the received energy, the incident direction
and the receiving direction are both normal to the surface of the reference target, Ar
is the receiving area of the optical power meter, and Zr is the distance between the
reference target and the optical power meter. The average reflectivity was obtained
as ρ0 = 0.4643sr−1 by linear fitting of Er/Ei versus Ar/Z

2
r , as shown in Fig. 4.

Then, by using this plate as the reference target, the turbid-medium-free LLT
experiments were performed; the reference target I0 is shown in Fig. 4, and the
average gray value of the reference target plate is denoted by I0. In the pre-
calibration experiment, the single pulse energy E0 and the target distance Z0 together
with ρ0 and I0 served as the prior parameters for the following image restoration
process.

Fig. 4 Linear fitting of Er/Ei versus Ar/Z
2
r
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3.2 Restoration Results

The observed raw target image and the backscattering image of the medium layer
were captured by the LLT system, as shown in Fig. 5. The LIDAR ratio S can
be estimated according to the prior information of the turbid medium. In these
experiments, the turbid media were water droplets sprayed by the fog generator, and
the complex refractive index of water is m= 1.334 – 1.32× 10−9i at the wavelength
of 532 nm [35]. For water clouds, the LIDAR ratio has a near-constant value close
to 19 sr at 532 nm [36, 37]. Considering the good robustness of the LIDAR ratio S
[29], the average of the three values, i.e., S = 19sr, is chosen as the estimate of the
LIDAR ratio for image recovery.

According to Eq. (9), the degradation matrix Ṽ can be approximately estimated
by the backscattering image IS together with the prior parameters such as E0, Z0, ρ0,
I0, and S; through the proposed variational model in Eq. (10), the retrieved target
images U can be solved with the estimated degradation matrix Ṽ and the observed
target image U0 as shown in Fig. 5.

The structural similarity (SSIM) index, which is a decimal value between 0 and
1, is used for the image quality assessment [38]. By considering the captured fog-
free target images in Fig. 5 as the ideal target image Iideal approximately, the SSIM
indexes are listed in the corresponding images. Obviously, the proposed method can
improve the SSIM indexes remarkably and achieve a higher degree of structural
similarity with the ideal images, which indicates that the retrieved image is more

Fig. 5 Recovery process of the first experimental image group
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Fig. 6 Recovery results of the second experimental image group. (a) Observed fog-free image,
(b) observed raw target image, (c) observed medium image, (d) denoised medium image, (e)
degradation matrix visualization, (f) retrieved target image

similar to the ideal image and that the proposed method is effective in eliminating
the inhomogeneous degradations caused by the turbid medium. The same procedure
can be performed for the restorations of another group of results, as shown in Fig. 6,
which comes to the same conclusions.

3.3 Homomorphic Filtering Recovery for Comparison

As we have known, homomorphic filtering [8] is a common technique to extract
high-frequency information by logarithmic transformation and frequency domain
filtering. Taking homomorphic filtering as an example, we compare the proposed
method with the blind digital image restoration algorithms. The Butterworth filter
functions [39] for homomorphic filtering algorithm and their corresponding results
for the single degraded target image (Fig. 6b) are shown in Figs. 7 and 8,
respectively. The results indicate that homomorphic filtering can visually weaken
the influence of the turbid medium to some extent. However, at the same time,
homomorphic filtering changes the relative gray value, i.e., the relative reflectivity of
the target image. By considering the captured fog-free target images in Fig. 6a as the
ideal target image, the SSIM indexes are listed in the corresponding images in Fig. 8;
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Fig. 7 Butterworth filter functions of homomorphic filtering

Fig. 8 Recovery results of homomorphic filtering. (a–c) show homomorphic filtering results of
various Butterworth filter functions as shown in Fig. 7

obviously, homomorphic filtering cannot improve the SSIM indexes remarkably.
Unlike homomorphic filtering, the proposed method can reveal the degradation area
of the target without changing the relative reflectivity of the rest parts.
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4 Conclusion

Based on LLT, a novel and feasible image restoration method is developed to
estimate the degradation caused by the inhomogeneous turbid medium, assisted
by the backscattering images and some prior system parameters, and further to
restore the target images with the estimated degradation matrix through a proper
total variation model.

The proposed restoration method is based on the physical signal relevance
between the target layer and the turbid medium layer, instead of a blind image
restoration algorithm. Experimental results indicate that the proposed method can
effectively eliminate the interferences of the inhomogeneous turbid medium to
achieve real target images.

As the proposed method can reveal the true target behind inhomogeneous
turbid medium, it can reduce the false recognition rate for target recognition and
identification. The proposed approach is aimed at target imaging through rapidly
changing turbid medium such as moving cloud/mist in the air and flowing muddy
masses under the water. The proposed method potentially will be applied in
target acquisition for the astronomical observation, the military reconnaissance, the
underwater imaging, and the fire rescue.
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A Hybrid Approach for Object Proposal
Generation

Muhammd Aamir, Yi-Fei Pu, Waheed Ahmed Abro, Hamad Naeem,
and Ziaur Rahman

1 Introduction

Recent years have witnessed a rapid evolution in computer vision and machine
learning, with much effort being invested to enable machines to “see.” Major road
blocks have been solved, such as detecting edges in an image, segmenting images
in more accurate ways, and learning different image features. The first step toward
enabling machines to “see” is to enable a computer to recognize objects – which is
the foundation of the visual world.

Object class detection is one of the key problems present in computer vision.
While a human can easily recognize and detect objects, machines and computers
still struggle due to diverse viewpoint variations like size, angle, perspective,
occlusion, and illumination. In recent years, several approaches to object detection
have been proposed to overcome these variations. A traditional approach for
object detection is the sliding window approach, where the classifier is applied
at every object location and scale. However, Girshick et al. [3] revolutionized
this approach when he demonstrated a two-phase process method. In Girshick’s
process, a set of object proposals is first generated using a FAST algorithm,
and then post-classification deep convolutional network classifier is applied on
each of the proposals. This approach provides dramatic improvements in object
detection accuracy as compared to the sliding window approach. Since Girshick’s
revolutionary demonstration, most current state-of-the-art object detectors have
followed Girshick’s lead and use object proposals as a first preprocessing step.
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Object detection performance depends upon both the object proposal algo-
rithms and the post-classification detection networks. Merely improving post-
classification, while beneficial, is not sufficient on its own. It is necessary for any
post-classification improvements to be combined with a reduction in the number of
image locations in order to be significant. Reducing image proposal not only speeds
up object detection but also reduces the false positives in the post-classification
stage. The goal is to reduce the number of proposals at the generation time in order
to be used in real-time applications more efficiently and to automatically generate a
small number of diverse regions that may contain objects in an image. Each object
of an image must be well represented in at least one region.

In this paper, we propose a new hybrid object proposal method which signifi-
cantly reduces the number of proposals generated and the number of false positives
in the post-classification phase. We first get initial proposals from hierarchical
segmentations [1] and then rank the proposals as per score criteria. Scoring regions
is done using contours enclosed in the region, and then top of object proposals passes
for post-classification.

2 Related Works

In this section, we concisely review previous approaches to object detection, most
of which use object classifiers and object proposal algorithms. These methods
are broadly divided into two categories: groping methods and window scoring
methods. Grouping methods generate multiple segments of an image which are
likely to contain objects. The most common approach to grouping methods is to do
hierarchical image segmentation and merge segments according to the similarities
between those segments. Most grouping algorithm performance relies on initial
segmentation algorithms. Felzenszwalb [4] algorithm is well suited for this purpose,
as his algorithm is both efficient and timely. Algorithms generate set of small initial
regions at a rapid speed, which, in turn, define segmentation as graph problems
where each vertex is an element to be segmented, and edges are between two
neighboring regions. Algorithms then make region comparisons, each segment
corresponding to a connected component of the graph.

Carreira and Sminchisescu [5], CMPC, and Endres and Hoiem [6] meth-
ods solve multiple graph cuts with different seeds and parameters to gener-
ate class-independent proposals. Both of these methods generate binary fore-
ground/background segments, with each obtained foreground segment as an object
hypothesis, and both of these methods learn to predict the segments that cover
complete objects and rank proposals accordingly. However, both algorithms are
slow due to their reliance on the gPb edge detector but generate high-quality
segmentation masks. Selective search [1] method is the most widely used method
in object recognition and object detection and is based on multiple hierarchical
segmentation using superpixels. For covering a diverse set of regions, different kinds
of grouping strategies and color spaces are used which produces high recall at fast
speeds – a few seconds per image. However, there is no scoring mechanism on the
proposals; therefore, proposals cannot be ranked.
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Table 1 The performance comparisons of both approaches are given in the chart below

Methods Approach Output segments Output score Time (s)

Selective search [1] Grouping Yes No 10
CPMC [5] Grouping Yes Yes 250
Endres and Hoiem [6] Grouping Yes Yes 100
Rantalankila [7] Grouping Yes No 10
Objectness [8] Window scoring No Yes 3
Rahtu [9] Window scoring No Yes 3
EdgeBox [2] Window scoring No YES 0.3
Bing [10] Window scoring No YES 0.2

On the other hand, window scoring methods is very different, with each window
score being calculated according to how likely it is to contain an object. This
approach generates a bounding box much faster than the grouping methods.
However, this approach has low localization accuracy. Objectness [8] is a window-
based approach in which each candidate window score is calculated on different
image cues. Objectness stands as one of one of the earliest object proposal methods
and is capable of measuring the likelihood that objects are present in the image. This
method uses saliency, color contrast, edge density, and superpixel straddling cues
to obtain characteristics of images and adopts Bayesian’s framework to combine
several cues. This has shown that the new combined cues outperform the state-of-
the-art saliency measure. The last advantage of objectness is its slow emergence
of drawback, which appears at a snail’s speed. This method has low localization
accuracy, but the first few proposals it obtains are of high quality.

EdgeBox [2] is another window-based approach and is among the fastest object
proposal generation methods. EdgeBox generates object proposals directly from the
edges of an image. Initial edge maps are computed from edge detectors [11] and then
are combined into eight connecting edges to form an edge group. This method uses
sliding window search over a scale to generate a candidate box and then scores each
box, selecting the top few thousand proposals. Rahtu et al. [9] begins with a large
number of randomly sampled boxes from an objectness and multiplies them with
proposal regions generated from single, pair, and triplet superpixel segmentations.
And their score function is similar to that of objectness, where they have made some
improvements by adding low-level features (Table 1).

Girshick et al. [3] introduced their R-CNN method which defines object detection
in a two-step process. This method generates a set of category-independent propos-
als using bottom-up grouping (i.e., selective search). Girshick et al. then used a deep
convolutional neural network on those generated proposals. This method dramati-
cally improves the performance proposal generation, proposal classification, and
overall object detection by replacing the traditional sliding window approach with
object proposals, thus achieving a state-of-the-art object detection performance. Fast
R-CNN [8] is an improvement of Girshick et al.’s previous work and allows for
faster object detection.
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This paper presents a hybrid approach which combines both grouping and
window scoring methods to increase the detection performance. This hybrid method
results in excellent object detection task completion at relatively fast speeds
compared to selective search methods and greatly reduces the false-positive rate.

3 Proposed Work

In this paper, we have proposed a new hybrid object proposal approach which
combines hierarchical segmentations [1] and window scoring method [2]. First, we
generate object proposals through the agglomerative clustering grouping method.
We then score the boxes according to the sums of the magnitude of the all the edges
in each edge group minus the edge groups of the contours that straddle the bounding
box. Finally, we rank the object proposals according to score of the boxes. The top-
ranked proposals can then be chosen for the classification task. However, there is
still a great deal of importance in reducing object proposal generation time, as it
also reduces the false-positive rate.

We observed that R-CNN achieves object detection at a faster rate due to
reducing object location – from all locations to proposed location – while the
object proposal generated by selective search [1] was still very high (around 8–
10 thousand). Furthermore, we have reduced object proposals by ranking object
proposal according to box score and only have select top few thousand proposals
for object detection.

3.1 Algorithm Overview

The major steps of our algorithm are as follows:

1. Segmentation: Our proposal begins by generating a set of initial regions on which
we apply hierarchical clustering.

2. Hierarchical Clustering: We group initial segments obtained from the above step
according by the similarity measure between neighboring regions.

3. Edge detection and edge groups: We generate image edge maps with the
structured edge detector. And, from edge map, we form edge groups by grouping
neighboring edges according to orientation similarity.

4. Score regions: Regions obtained from clustering are forwarded for scoring. We
score regions according to the strength of the edges in the edge groups within the
region and then subtract the strength of edges in the edge groups that straddle the
region.

5. Ranking: We rank the proposal according to score of the region.
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Segmentation

As most of the grouping methods generate object proposals using segmentation,
we also use segmentation to obtain a small set of starting regions for hierarchical
clustering. We use Felzenszwalb and Huttenlocher’s graph-based algorithm, which
is an efficient method for obtaining regions. This method is well suited for our
purpose because of its speed and accuracy. It converts images into a graph – pixels
are the vertices and neighboring pixels are connected with the edges. We then
manipulate the graph to segment the image.

Hierarchical Clustering

Regions obtained from step 1 serve as starting points for hierarchical clustering.
Agglomerative (bottom-up) clustering method is then used, where initially each
region is a cluster. We repeatedly combine two similar neighboring regions – after
each combination new similarities are calculated. This process continues until the
whole image becomes one cluster/region. We then use color, texture, size, and gap
similarity measures. Hierarchical clustering is applied on different color spaces to
cover a more diverse set of regions. Regions from each hierarchy are then combined,
while duplicate regions are removed at the end. Clusters obtained from hierarchical
clustering are the object proposals; we repeat the clustering algorithm in different
color spaces.

Edge Detection and Edge Group

For edge detection, we use structured edge detection. Structure forest extract image
patches from the image, convert each image patch into vectors, extract the image
features for each patch, and then predict scores of the patches at the edge. The edges
obtained from detector are then combined into eight connected neighboring edges
with similar orientation until the orientation differences above pi/2 form the edge
groups. This method shows good accuracy and speed as compared to traditional
edge detectors.

Score Regions

Given set object proposals obtained from hierarchical clustering, we calculate the
score of each object proposal. This is accomplished by summing the magnitude
of every wholly enclosed edge in the group in a given region and subtracting the
magnitude of every edge in the group which straddles the object region. The value
of wb(si) is calculated for each edge group to check if the group is wholly enclosed
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in the region. When an edge group is not wholly closed in the box, then wb(si) = 0.
If an edge group is wholly enclosed in the box wb(si) is calculated as below:

wb (si ) = 1−maxt
∏|T|−1

j
a
(
tj − tj+1

)
(1)

where “a” is the affinity and “t” is the order path, so the above equation finds the
order path with the max affinity between the groups. We then compute the score
using the formula:

h(b) =
∑
i wb (si)mi

2(bw + bh)k
(2)

where bw and bn are the box width and height and k is the bias value for larger
boxes.

Ranking

We rank objects proposed according to score obtained from Eq. 2, where a few
thousands of object proposals passed for classification task (Figs. 1 and 2).

4 Evaluations and Results

Most of our experiments were performed on a PASCAL VOC 2007 dataset [12],
which contains 9963 images, with a training set containing 2501 images, validation
set containing 2510 images, and test set containing 4952 images. The dataset has
20 object classes in four broad categories – person, animal, vehicle, and indoor.

Fig. 1 Proposal evaluation
on VOC
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Fig. 2 Proposal evaluation
on migrating cancer dataset

Training images are labeled with ground truth from 20 object classes. Every image
has an annotation that contains the bounding box information and difficulty level of
the object.

PASCAL VOC provides standardized images, which contain a large number
of objects and a cornucopia of categories, scales, illuminations, viewpoints, and
positions – making this database ideal for object reorganization. PASCAL 20 visual
object classes are airplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow,
dining table, dog, horse, motorbike, person, potted plant, sheep, sofa, train and TV
monitor. We have performed all our experiments on a CPU with 4GB RAM. For
evaluating the quality of our object proposals, we use two measures: ABO (average
best overlap) and MABO (mean average best overlap).

4.1 Average Best Overlap (ABO)

Average best overlap, for any class, is achieved by calculating best overlap on
ground truth of class and proposed object region of said class and then taking its
average. Overlap is the intersection of proposed region with ground truth over area
of their union.

IoU (box, gtruth) = area (box) ∩ area (gtruth)

area (box) ∪ area (gtruth)

4.2 Mean Average Best Overlap (MABO)

Mean average best overlap, is the mean ABO over all classes. We have evaluated
our proposal on PASCAL VOC 2007 test set and compare with selective search and
edge box proposal generation methods (Tables 2 and 3).
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Table 2 Mean average best overlap on VOC dataset

Methods Test images Proposals MABO (mean average best overlap)

Edge box 4952 1500 0.799
Selective search 4952 1500 0.820
Our proposal 4952 1500 0.833

Table 3 Average best overlap for 20 classes of VOC on top 1500 proposals

VOC classes Edge box ABO Selective search ABO Our proposal ABO

Plane 0.771 0.796 0.807
Bicycle 0.824 0.844 0.861
Bird 0.796 0.812 0.812
Boat 0.779 0.768 0.784
Bottle 0.692 0.660 0.673
Bus 0.841 0.864 0.868
Car 0.788 0.783 0.808
Cat 0.827 0.906 0.909
Chair 0.783 0.798 0.808
Cow 0.827 0.829 0.854
Table 0.817 0.891 0.894
Dog 0.837 0.895 0.900
Horse 0.815 0.828 0.841
Bike 0.815 0.829 0.846
Person 0.755 0.754 0.766
Potted plant 0.746 0.740 0.758
Sheep 0.814 0.797 0.828
Sofa 0.828 0.904 0.907
Train 0.801 0.856 0.863
TV monitor 0.821 0.842 0.868

5 Conclusions and Future Work

In summary, our efficient, new hybrid method for generating object proposals uses
selective search proposal and scores them according to edges present in the proposed
regions. This method results in adequate detection rates for object detection task –
compared to object detection solely utilizing selective search – and significantly
decreases the false-positive rate. Throughout this paper, we demonstrate that our
purposed hybrid method matches the accuracy of selective search, with only 25%
the number of proposal after ranking said proposals. Our method results in high-
quality class-independent object locations, with mean average best overlap of 0.833
at 1500 locations.

In the future, the score function can be further optimized by penalizing the
portion of edge groups that overlap the region boundary, instead of subtracting
strength of edges present in edge group. The edge box generates redundant object
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proposals in each scale; therefore, by reducing redundant object proposals, edge box
performance can also be further improved. Furthermore, we can use a strong post-
classification, deep convolutional features and strong appearance models for object
detection with reduced object proposals.
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Adaptive-Order Regression-Based MR
Image Super-Resolution

Jing Hu

1 Introduction

Magnetic resonance (MR) imaging is widely used to assess brain diseases, spinal
disorders, cardiac function, as well as musculoskeletal injuries. Several factors can
affect the resolution of MR images, including the acquisition time, short physio-
logical characteristics, and organ motion. Compared with computed tomography,
a longer acquisition time is required in MR imaging, making it more prone to
several image artifacts caused by involuntary patient motion [1]. To minimize the
likelihood of such motion artifacts, scan time is often shortened in MR imaging,
as such fewer slices are obtained in an image set and the spacing between those
slices becomes larger. In this way, MR images are usually highly anisotropic (e.g.,
1× 1× 6 mm3) with a lower resolution in the slice-selection direction compared to
the in-plane directions [2]. However, in many medical applications, an isotropic MR
image is required for visualization purposes [3]. Besides the demand for an isotropic
resolution, a higher resolution is also essential for a comprehensive understanding
of human anatomy, which facilitates early detection of abnormalities and improving
clinical assessment accuracy.

Traditional interpolation methods such as spline interpolation are the simplest
solution to improve MR image resolution. However, they often produce images with
blurred edges and stair-casing artifacts that result in a loss of fine-detail informa-
tion. In recent years, some sophisticated interpolation-based super-resolution (SR)
methods are proposed. To some extent, they all belong to a family of adaptive 3D
interpolation filters. Using the pattern-redundancy property that has been widely
used in natural image processing [4], Manjón et al. [5] calculated the interpolation
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coefficients as the similarity of the intensities between 3D image patches around
the unknown voxel and its neighboring voxels. Afterward, the unknown voxel
in the super-resolved MR images was estimated by weighted averaging. Under a
same framework, Plenge et al. [6] used 3D patch similarity in in-plane directions
to estimate the high-resolution (HR) voxel for the voxel in slice-selection. Later,
several researchers [7–11] acclaimed that using an HR image of the same subject in
other modalities to refine interpolation weights can effectively improve the quality
of reconstructed images.

Whether using a different imaging modality or not, these advanced interpolation-
based SR algorithms all focus on the refinement of interpolation weights. In our
previous work [12], we have pointed out these interpolation-based SR algorithms
actually fall into the framework of zero-order regression estimation, hence cannot
faithfully reconstruct high-frequency details for low-resolution (LR) images. To this
end, a regression-inspired SR method using second-order polynomials was proposed
in our pilot study. Though this high-order method was successful in providing a
better fine-detail reconstruction capability compared to conventional interpolation-
based methods, its computational burden is much heavier, due to the fact that
an exhaustive search for suitable patches is needed to estimate the second-order
polynomials for each HR voxel. What is worse, the high dimensionality of MR
image further increases computational cost.

To speed up this high-order regression-based SR method together with compet-
itive image reconstruction quality, an adaptive-order strategy is proposed in this
paper. Specifically, a voxel classification scheme is devised to discriminate voxels
in structure regions from voxels in flat regions. Afterward, the specific order of
regression is determined according to the classification result.

The reminder of this paper is organized as follows. Firstly, the second-order
regression-based SR framework is briefly introduced in the next section, and
then the proposed adaptive-order strategy is clarified. Experimental results and
comparisons are demonstrated in Sect. 3. Finally, Sect. 4 concludes this paper.

2 Method

Let Z and I denote HR (output) and LR (input) images and Zs and Is denote their
corresponding low-frequency images. That is, Zs is lack of the high-frequency
details in Z and likewise for Is and I. Let p and q denote the column vectors of
two s × s image patches which are extracted from I and Z, respectively; ps and qs

are the corresponding column vectors of two s × s image patches taken from Is and
Zs, respectively.
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2.1 Regression-Based SR Method

In regression-based SR method, the mapping function f between HR and LR patches
relates these two kinds of patches as q = f (qs). Considering that singular structures
are scale invariant, qs in image Zs is able to find its similar patch ps in image Is. In
this way, the mapping function of patch qs to its high-resolution counterpart q can
be regarded as the same mapping function of patch ps to patch p. More specifically,
to estimate the function f for patch qs, a local expansion of f could be developed by
utilizing an Nth order Taylor series, if patches qs and ps are similar:

q = f (qs) = f (ps + qs − ps)
= f (ps)+ f ′ (ps) ◦ (qs − ps)+ 1

2f
′′ (ps) ◦ (qs − ps) ◦ (qs − ps)+ · · ·

≈ p+ f ′ (ps) ◦ (qs − ps)+ 1
2f

′′ (ps) ◦ (qs − ps) ◦ (qs − ps)
(1)

where ◦ denotes the element-wise product of two matrices and f’(·) and f”(·) denote
the first and second derivatives of the mapping function f.

From Eq. (1), we can see that in order to reconstruct the HR version of path
qs, the multi-order derivative of the mapping function should be estimated first.
However, derivative estimation is an ill-posed problem [12, 13], and a proper image
regularization is required. In our previous work [12], we have proposed to exploit
the self-similarity property [5] in the three-dimensional image data so as to obtain
a reliable second-order derivative estimation. That is, inside image Is, patches with
a similar layout to the patch ps can also be explored (see green box p1,s in Fig. 1).
Therefore, the mapping function of the patch qs to its high-resolution counterpart
q can also be regarded as the same mapping function of patch p1,s to patch p1,
where p1 is p1,s’s high-resolution counterpart in image I. Like Eq. (1), the mapping
function on patch p1,s could also be locally expanded as:

p1 = f
(
p1,s

) = f (ps + p1,s − ps
)

= f (ps)+ f ′ (ps) ◦
(
p1,s − ps

)+ 1
2f

′′ (ps) ◦
(
p1,s − ps

) ◦ (p1,s − ps
)+ · · ·

≈ p+ f ′ (ps) ◦
(
p1,s − ps

)+ 1
2f

′′ (ps) ◦
(
p1,s − ps

) ◦ (p1,s − ps
)

(2)

Besides p1,s, more patches similar to ps could also be found in Is, and each of
them derives the formulation of f’(·) and f”(·) like Eq. (2). By incorporating the J-
most similar patches {pi,s}J i = 1 and their paired HR patches {pi} J i = 1, we can
learn the function f in a weighted least-square formulation:

min
f ′(ps ),f ′′(ps )

J∑

i=1

∥
∥∥pi − p− f ′ (ps) ◦

(
pi,s − ps

)− 1
2f

′′ (ps) ◦
(
pi,s − ps

)

◦ (pi,s − ps
)∥∥2

2w
(
pi,s − ps

)
(3)

where w(pi,s - ps) measures the similarity between patches pi,s and ps, and
its specific formation could be found in our previous work [12]. Denote
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Fig. 1 The patch relations of the proposed method

b = [f
′
(m), f′′(m)]T , and convert the linear equations in Eq. (3) to matrix form.

A closed form of Eq. (3) is obtained by using weighted square estimation method:

b̂ = (XTWX
)−1

XTWy with

y = [p1,s − ps p2,s − ps · · · pJ,s − ps
]T (4)

W =

⎡

⎢⎢
⎢
⎣

diag
(
w
(
p1,s − ps

)× 1
)

diag
(
w
(
p2,s − ps

)× 1
)

...

diag
(
w
(
pJ,s − ps

)× 1
)

⎤

⎥⎥
⎥
⎦

and

X =

⎡

⎢⎢⎢
⎣

diag
(
p1,s − ps

)
diag

((
p1,s − ps

) ◦ (p1,s − ps
))

diag
(
p2,s − ps

)
diag

((
p2,s − ps

) ◦ (p2,s − ps
))

...
...

diag
(
pJ,s − ps

)
diag

((
pJ,s − ps

) ◦ (pJ,s − ps
))

⎤

⎥⎥⎥
⎦

with 1 denoting a unit vector and diag(�) defining a diagonal matrix.
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2.2 Regression-Based SR Method

Although using a high-order regression is beneficial to high-frequency detail
reconstruction, it is very time-consuming. Intuitively, it is not necessary to use high-
order regression for smooth regions since their intensity values are nearly constant.
In light of this, to estimate the HR patch q in Eq. (1), an adaptive regression-
order strategy is proposed in this paper: for highly detailed regions, a second-order
regression is used to recover complex structures; for medium-detailed regions, a
first-order derivative estimation is sufficient; for smooth regions, we simply paste
the results from qs to q.

To discriminate textured areas from flat areas, image structure tensor is adopted
in this paper. It has been alleged that the relative discrepancy between image
structure tensor’s eigenvalues is able to reflect how strongly the distribution of
gradients in an image patch is biased toward a particular direction [14]. That is, for
a voxel in the smooth region, there is a small eigenvalue difference; for a voxel in a
texture region, there is a large eigenvalue difference. Therefore, voxel classification
can be achieved by examining the eigenvalue difference for each voxel. More
specifically, for each voxel (i, j) in every MR image slice, its structure tensor matrix
is defined as:

S =
[
s11 s12

s21 s22

]
=
[

(gx (i, j))
2 gx (i, j) gy (i, j)

gx (i, j) gy (i, j)
(
gy (i, j)

)2

]

(5)

where gx and gy denote gradient information in the x and y directions. The
eigenvalues of S are calculated as:

λ1 = 1
2

(
s11 + s22 +

√
(s11 − s22)

2 + 4s2
12

)
and λ2 = 1

2
(
s11 + s22 −

√
(s11 − s22)

2 + 4s2
12

) (6)

T = λ1−λ2 is used to reflect the texture degree for every voxel, and voxels with
different texture magnitudes are classified by analyzing the cumulative histogram of
T value in that image slice:

(i, j) ∈
⎧
⎨

⎩

c1 T (i, j) > t1

c2 t2 < T (i, j) ≤ t1
c3 TM (i, j) ≤ t2

(7)

where T(i,j) is the T value of the voxel at location (i,j); t1 and t2 are the bin values
that correspond, respectively, to 50% and 20% in the cumulative T histogram; c1, c2,
and c3, respectively, represent the hard- and medium-detailed regions and smooth
regions. Figure 2 presents the voxel classification result for a T1 image using Eq. (7).
We see that by using this criterion, more than one third of the voxels are regarded as
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Fig. 2 Voxel classification results of a T1 volume. The first row: a typical slice is shown at (a)
axial, (b) sagittal, and (c) coronal views. The second row: corresponding voxel classification results

located in smooth regions. Intuitively, avoiding a second-order regression estimation
on these voxels helps to speed up the algorithm.

3 Experiments

In this section, the proposed method is evaluated on an open-access dataset provided
by BrainWeb MRI (http://brainweb.bic.mni.mcgill.ca/brainweb/). A fixed set of
parameters is used for the proposed method in all experiments. In detail, the patch
size is 5 × 5, the 3D searching area for finding similar patches is a 13 × 13 × 3
window. The state-of-the-art algorithms NLM [10] and our previous work [12] are
selected as a comparison baselines. Peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM) index [15] are adopted to evaluate the objective performance.

The HR T1W volume in BrainWeb dataset has 181 × 217 × 181 voxels with
a resolution of 1 mm3. To generate LR volume, blurring and down-sampling steps
are involved. That is, the blurred image is generated by convolving the HR images
with a 3D Gaussian kernel with a standard deviation of 0.8 (in voxel space)
along dimensions. Next, the blurred images were down-sampled to lower voxel
resolutions, such as 2 × 2 × 2 mm3 and 3 × 3 × 3 mm3.

These simulated LR data are upsampled by T1W image to 1 mm isotropic
resolution using the proposed method and other compared methods. Figure 3
compares the reconstruction results using different methods, in which the local
regions of interest (ROIs) in blue boxes are presented at the lower corner for
providing a better comparison. Table 1 summarizes the quantitative comparisons

http://brainweb.bic.mni.mcgill.ca/brainweb
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Fig. 3 Super-resolution results (1 × 1 × 1 mm3) for simulated data (first row, 2 × 2 × 2 mm3;
second row, 3 × 3 × 3 mm3) on BrainWeb using different methods. (a) NN, (b) NLM, (c) second-
order regression method, and (d) the proposed method

Table 1 PSNR, SSIM, and time cost for different methods on different slice thickness (PSNR
[dB] /SSIM/time [s])

Slice thickness (mm3) NN NLM Second-order regression method

26.6297 28.5482 29.2822
2 × 2 × 2 0.8932 0.9387 0.9472

0.05 3.21a 246.11
22.2134 25.1146 27.0874

3 × 3 × 3 0.7562 0.8586 0.9094
0.05 3.62a 241.66

aNote that NLM uses MATLAB/C++ (.Mex) to speed up, while the other three methods use
MATLAB only

and the computational time. We can clearly observe that the proposed method can
produce comparable HR results as compared with the second-order regression-
based method but with improved computational efficiency. Compared with NLM
method, which is a zero-order regression-based, the proposed method produces
smoother contours.

4 Conclusions

In this paper, we devise a new adaptive-order strategy in a regression-based MR
image super-resolution framework. Leveraging image structure tensor to measure
the texture degree, image voxels are classified into different groups. The regression
order is then adaptively selected voxel-wisely according to the classification results.
Experimental results demonstrate that the proposed method is more time efficient
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than second-order regression-based method and produces a comparative perfor-
mance than some state-of-the-art SR approaches, both visually and quantitatively.
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A Cone-Beam CT Reconstruction
Algorithm Constrained by Non-local
Prior from Sparse-View Data

Zhichao Zhang, Yining Hu, and Limin Luo

1 Introduction

The problem of potential effects of X-ray radiation on human genetic diseases and
cancer has gained concerns in many computed tomography applications. Sparse-
view scan is an effective way to reduce the total radiation dose received by patients.
But the reconstruction from sparse sampling is a serious ill-posed problem [1]. In
this situation, the conventional analytical methods based on projection geometry
can introduce many strip artifacts. And by the common iterative algorithms, such
as MLEM or OSEM, we also cannot gain satisfactory reconstruction results. The
model of maximum a posteriori (MAP) tends to prevent the solution fall into local
minimum in the iterative process by introducing prior information [2].

With excellent filtering performance, non-local method is applied to image
denoising [3], initially. This paper introduces non-local MRF idea to the MAP
reconstruction of CBCT from sparse-view data. Using large-scale search window
and block similarity, the non-local prior can keep boundary sharp while suppressing
strip artifacts effectively caused by sparse sampling. Experiments show that, com-
pared with local MRF prior, the non-local model can obtain better reconstruction
images.
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Although excellent reconstruction results can be gained by MAP-NL method, the
computationally expensive feature of non-local idea is the most obvious barrier to
its application. And the CPU does not have enough capacity to support the iterative
optimization process of MAP algorithm constrained by non-local prior in three-
dimensional image space. In recent years, the optimization strategy of objective
function using GPU, with strong parallel computing power, has become an effective
solution. In this paper, we use technology of CUDA to solve this problem.

1.1 Maximum A Posteriori (MAP)

According to Bayesian theory:

P (X|Y ) = P (Y |X)P (X)/P (Y ) (1)

where X = {xj}, j = 1· · · J represents the image to be reconstructed, Y = {yi},
i = 1· · · I is the projection data. According to MAP reconstruction model, given
the measure data Y, optimize the image X to maximize the posterior probability
P(X|Y). Considering the non-negativity of probability and the monotonicity of
natural logarithmic function, the optimization of the above equation is equivalent
to optimizing the logarithmic relation. Then we have objective function:

f (X) = arg min
X

(−L (Y |X)+ βU(X)) (2)

where L(Y|X) = ln (P(Y|X)), βU(X) = ln (P(X)), and β is the balance parameter
and controls the degree of constraint on the reconstruction image; U(X) is the
regularization function. Minimizing the above formula, the reconstruction result of
MAP model is obtained. Based on the Poisson statistical model, the multiplicative
iterative formula of the observed data X is:

xk+1
j = xkj

∑

i

aij + β ∂U(X
k)

∂xkj

∑

i

aij
yi

∑

l

ailx
k
l

(3)

where A = {aij} ∈ R
I × J is the system matrix and aij is the contribution of pixel

xj to the attenuation of ith X-ray. And the ideal observation model can be simply
expressed as Y = AX.

1.2 Non-local Method

The commonly used MRF lp-norm prior can be defined with the following form:

U(X) =
∑

i

∑

j∈Wi
wij
∥∥xi − xj

∥∥
p

(4)
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where Wi represents the MRF window of pixel xi, xj is the pixel in Wi, and wij

is the weight between xi- and xj-based Euclidean distance. The l2-norm is widely
used in many researches in the field of iterative imaging. But considering the l1-
norm is better than l2-norm in removing artifacts and preserving edges [4, 5], the
former is used in this paper. The conventional MRF prior models are calculated in
small neighborhood region, normally. It is difficult to distinguish whether the abrupt
change of gray level is artifact or boundary.

Non-local prior can provide constraint according to patch similarity. It has been
applied to two-dimensional CT reconstruction [6–8]. And in this paper, with the help
of CUDA, this prior model is introduced into CBCT reconstruction. Filtering in a
relatively wide neighborhood (search window) and considering similarity between
patches named similarity patch-window, it makes full use of the similarity structure
in image space and has better performance in suppressing artifacts and edge-
preserving. And the similarity patch-window is a small window about the central
pixel (voxel).

The weight wij of non-local model can be calculated by [6]:

wij = 1

Z(i)
e

−‖v(Ni )−v(Nj )‖2
2

h2 (5)

where Ni and Nj are cubic neighbor centered by voxel xi and voxel xj, respectively;
v(Ni) and v(Nj) are vectors about Ni and Nj, respectively; ‖‖2

2 represents the sum
of distance between two patch-windows; h is a parameter controlling the decay of
exponential function; and Z(i) is the normalization factor.

Z(i) =
∑

j

e

−‖v(Ni )−v(Nj )‖2
2

h2 (6)

On the CUDA programming platform, we can apply a thread for each voxel
to compute the non-local prior of this voxel. Because of the parallel execution of
threads, the computation speed of non-local method could be greatly improved. The
parallel kernel function of non-local prior calculation is given as follows:

__global__ void NonlocalPriorKernel(float *prior, float *object)
{

//get the index of thread
int tid = threadIdx.x+(blockIdx.x+blockIdx.y*gridDim.x)
*blockDim.x;
calculate value: the non-local prior of voxel xtid
prior[tid] = value;

}
Containing information of thread, gridDim, blockDim, blockIdx, and threadIdx

are built-in variables of CUDA. And in order to faster iterative optimization speed
further, we use parallelized projection and back-projection methods according to
our previous work [9].
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2 Experimentation and Discussion

In this paper, the performance of non-local is evaluated with both three-dimensional
Shepp-Logan phantom data and clinical data. We compare non-local method with
conventional MRF prior model in experiments.

2.1 Simulated Data

In the three-dimensional Shepp-Logan digital phantom experiment, the distance
from X-ray source to object center (DSO) is 2000 mm; the distance from X-ray
source to the center of detector plate (DSD) is 2200 mm; the plate size is 200× 400;
the detector size is 0.75 mm2; the size of this phantom is 256 × 256 × 100; and the
voxel size is 1 mm3. The size of search window is 9 × 9 × 9. The size of similarity
patch-window is 3 × 3 × 3. The reconstruction experiments form 60 projection
images and 40 projection images are carried out to test the performances of different
algorithms. Although the noise distribution in real scan are often characterized in
the Gaussian model due to the correction and calibration process in acquisition, the
Poisson model is still available because in sparse-view scan, the tube current and
tube voltage are not reduced; therefore the expectation of projection is relatively
high, and in this case, the Poisson distribution is similar to Gaussian.

Figure 1 shows the reconstruction images of different methods from projection
data of 60 angles, and Fig. 2 gives those from 40 projection images. The result of
traditional local MRF prior has many artifacts.

Figure 3 shows the reconstruction values of the 128th line of the middle slice
of reconstruction images. Compared to the local MRF prior, the non-local idea has
better performance, and its results are closer to the original image.

Table 1 shows the PSNR and SSIM of reconstruction images gained by different
algorithms. We can know that the result of local MRF model is relatively poor.

The above results show that, on Shepp-Logan phantom data, non-local prior
improves greatly the image quality of sparse-view reconstruction. And in the aspects

Fig. 1 Reconstruction images using 60 projection views data. (a) Original image, (b) no prior, (c)
local MRF prior, (d) non-local prior
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Fig. 2 Reconstruction images using 40 projection views data. (a) Original image, (b) no prior, (c)
local MRF prior, (d) non-local prior
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Fig. 3 The voxel values of the 128th line of the middle slice of object data. (a) 60 projection
images, (b) 40 projection images

Table 1 PSNR and SSIM of results using different methods

60 projection angles 40 projection angles
Algorithm PSNR SSIM PSNR SSIM

No prior 31.3451 0.8997 30.2750 0.8798
Local MRF prior 35.0551 0.9633 34.9139 0.9608
Non-local prior 35.5360 0.9671 35.2953 0.9672

of structural artifact removal and boundary preserving, non-local method has better
capability than local MRF model. In order to verify the performance of our method
on real CBCT data, further experiments are executed.

2.2 Clinical Acquisitions

The CBCT projection images of human head are collected from 650 angles, and the
size of those images is 768 × 1024. In this CBCT system, the DSO is 1000 mm; the
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Fig. 4 Reconstruction images using 650 projection views data. (a) No prior, (b) local MRF prior,
(c) non-local prior

Fig. 5 Reconstruction images using 216 projection views data. (a) No prior, (b) local MRF prior,
(c) non-local prior

DSD is 1500 mm; and the pixel size is 0.388 mm2. The size of the reconstruction
object is 450 × 450 × 450, and the voxel size is 0.5 mm3.

In this paper, reconstruction experiments with 650 projection images, 216 pro-
jection images, and 130 projection images were carried out. In those experiments,
the size of search window is 15 × 15 × 15, and the size of similarity patch-window
is 5 × 5 × 5.

Figure 4 gives the reconstruction results using 650 projection images. Non-
local method is slightly better than the local MRF prior in the visual effect of
reconstruction results, but the difference is not obvious. The SSIM value of images
constructed by them is 0.9888. Then one of the two images can be selected as a
reference image for evaluating sparse scan reconstruction results. In this paper, we
chose the reconstruction image of non-local model.

Figure 5 shows the reconstruction images of different methods from projection
data of 216 angles, and Fig. 6 gives those from 130 projection images. In visual
effect, the reconstruction images of constrained by non-local model are better than
traditional MRF prior in the same number of iterations.
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Fig. 6 Reconstruction images using 130 projection views data. (a) No prior, (b) local MRF prior,
(c) non-local prior
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Fig. 7 The voxel values of the 225th line of the middle slice of object data. (a) 216 projection
images, (b) 130 projection images

Table 2 PSNR and SSIM of results using different methods

216 projection angles 130 projection angles
Algorithm PSNR SSIM PSNR SSIM

No prior 32.3900 0.8071 28.2371 0.6779
Local MRF prior 39.2123 0.9656 33.3851 0.8922
Non-local prior 40.7190 0.9743 35.4098 0.9479

Figure 7 shows the reconstruction line profile of the 225th line of the middle slice
of object data reconstructed by different algorithms, and the line profile of non-local
method is closer to that of reference image. Table 2 shows the PSNR and SSIM of
reconstruction images gained by different algorithms, and the reference image is
Fig. 4c. We can know that the non-local methods can gain higher PSNR and SSIM
and has better ability to remove artifacts.
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All above results show that the non-local prior can produce satisfactory recon-
struction results in sparse scan reconstruction of CBCT.

3 Conclusion

This paper introduces non-local prior into CBCT reconstruction from sparse-view
data in the platform of CUDA. We use non-local filter function to constrain the
objective function in the iterative method, so that noise and artifacts are suppressed
better and details are kept as much as possible. Experiments show that compared
with local MRF idea, the prior model of non-local has better performance in
suppressing noise and artifacts caused by sparse sampling.
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Robust Binary Keypoint Descriptor
Based on Local Hierarchical Octagon
Pattern

Ling Jin, Yiguang Liu, Zhenyu Xu, Yunan Zheng, and Shuangli Du

1 Introduction

In recent years, keypoint descriptors have been popularized in computer vision
and pattern recognition application tasks such as object matching, object recog-
nition, and texture analysis [1]. Moreover, with the recent progress in research
on application of keypoint descriptors, object recognition based on matching
becomes more practical and attractive in the field of machine vision [2]. To create
a descriptor with strong robustness, high discriminative power as well as high
efficiency in computation is the goal of this paper. Existing keypoint descriptors
can be categorized into two classes according to their composition: floating-point
values and binary string. The former (e.g., SIFT [3], SURF [4]) are widely used
in CV applications since they are highly discriminative and robust to general
image deformations such as image rotation and scale; however they are inefficient
to compute, store, and match; thus their extensions to real-time applications are
hindered. The latter (e.g., BRIEF [5], ORB [6], BRISK [7], or FREAK [8]) is a
binary string realized by comparing the intensities of selected pixels to each other,
and the binary string is memory saving and can be matched efficiently; nevertheless,
they face the problem of being less robust and discriminative and may result in
lots of mismatching. Moreover, before building the latter descriptors, the image
should be filtered with specified Gaussian kernels to suppress the noise, which is
also time-consuming. Although SIFT descriptor and binary descriptor have been
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widely studied in recent years (e.g., [9–11]), most of the research focuses only
on improving matching rate and existing keypoint descriptors do not handle the
problems they face explicitly. To address the problems the above descriptors face,
we propose a new descriptor called LHOP.

2 LHOP Descriptor

Compared to the aforementioned descriptors, the main features of LHOP descriptor
can be highlighted as follows: (1) It is robust. Binary tests are performed between
average intensities from different image patches instead of individual pixel inten-
sities, which makes it more robust to local image distortions and noise. (2) It is
efficient to compute. Integral image is employed to guarantee the computing speed,
and Gaussian smoothing is not used in our method since the average intensity
of a patch is not sensitive to image noise. (3) It is highly discriminative. The
average intensities are sampled from multi-scale patches on hierarchical layers,
which contain more distinct information than individual pixel intensities sampled
on single layer. (4) It is memory saving and compact. The LHOP descriptor consists
of 256 independent bits which are obtained from 256 independent binary tests.

Before building the descriptor, each keypoint is assigned an orientation estimated
by the intensity centroid measure [6] to make the LHOP descriptor invariant in the
plane rotation. Let K denotes a keypoint. For a given patch P with a radius of 5σ
(where σ is the keypoint’s scale), we set O as the centroid of it and K as the center.

Vector
−−→
KO is the orientation of the keypoint K. Then, for any image patch P , its

moment, denoted byMpq , is defined as follows:

Mpq =
∑

(x,y)∈P
xpyqI (x, y) (1)

where I (x, y) denotes the intensity of the pixel at point (x, y) and the keypoint K
also is the origin of this coordinate system. By using these moments, the centroid
and the orientation can be computed as follows:

O =
(
M10

M00
,
M01

M00

)
, θ = atan2 (M01,M10) (2)

In order to compute the moment M01 quickly, we divide the patch P into n
subpatches P1, P2, . . . , Pn (12 in our implementation), as shown in Fig. 1a, and
then theM01 can be written as:

M01 =
∑

(x,y)∈P
yI (x, y)

=
∑

i

∑

(x,y)∈Pi
yI (x, y) ≈

∑

i

⎛

⎝Yi
∑

(x,y)∈Pi
I (x, y)

⎞

⎠ (3)
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Fig. 1 Fast orientation estimation, the method, and its mean absolute error. (a) The method. (b)
MAE (mean absolute error)

Table 1 Average times of computing orientations for 10,000 keypoints resulted by several
methods

Methods SIFT SURF ORB OURS

Time[ms] 452 368 98 7

where Yi is the Y-coordinate of the center point of Pi and
∑

(x,y)∈Pi
I (x, y) can be fast

computed by integral image (Fig. 1a). The M10 can be computed in a similar way.
The parameter n is determined by the keypoint scale and the size of the region for
keypoint orientation computation. In our method, the diameter of the region is cho-
sen as 12

∑
, and the parameter n is also set as 12; thus the width of each subpatch

is 1 sigma, making our method resistant to noise and also efficient to compute.
Reference [6] has shown that centroid-based orientation has higher rotation

estimation accuracy and better noise resistance ability compared to gradient-based
orientation. It is proposed in this paper that centroid is approximately computed by
using the integral image, which increases the computation speed by more than one
order of magnitude. In Table 1, we can observe that the average time of computing
orientations for 10,000 keypoints resulted by our method is less than other methods.
We tested the accuracy of several methods on the 1000 image patches randomly
selected from 100 different images, with each image patch being artificially rotated
by a series of given angles. As shown in Fig. 1b, for the orientation produced by our
method, the mean absolute error of its angle is less than 3◦, which is more stable
and accurate than the methods used in SIFT and SURF.

The LHOP descriptor is built on a single structure – the octagon filter – which is
firstly invented as a keypoint detector in [12]. We find this shape of filter can also be
used efficiently to build a binary descriptor, since it possesses both of the following
valuable properties: (1) It’s very fast to compute by using of slanted integral image,
which needs only 11 additions to calculate the sum of pixel intensities within an
octagon area. (2) It is almost rotational invariant, as shown in Table 2.
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Table 2 Overlap ratios resulted by filters of different shapes with random rotations around their
centers

Shapes Circle Box Octagon

Overlap ratios 100% >84% >96%

Fig. 2 The process to construct the binary string (i) Four oriented square patches are selected
(ii) The description pyramid (iii) The third layer of pyramid L3 is partitioned into 16 octagonal
subpatches (iv) The sub-path S7

3 contributes 4 bits to the final descriptor

The binary string of LHOP descriptor is constructed by starting with selecting
several orientated patches (Fig. 2(i)) with the keypoint as their center to create
a description pyramid (Fig. 2(ii)). The pyramid has n layers Li (i = 1, · · · , n)
(4 in our implementation), and an upper layer gives more detailed information
of a smaller region surrounding the keypoint to LHOP descriptor as opposed
to a lower layer. Each Li is equally partitioned into 16 octagonal subpatches
S
j
i (j = 1, 2, . . . , 16), as shown in Fig. 2(iii). Let Ri be the side length of Li ,
Ri = ki × R1 (0 < k < 1.0). When the factor k is close to 1.0, the layers become
quite similar to each other, which will introduce redundant information to LHOP
descriptor; when k is close to 0, the layers become quite different to each other,
but the patch Sji is no longer resistant to local image distortions. So, in order to
get better performance, it is very important that we should know how to choose the

value of the factor k. Tentative experiments show that with R1 = 10σ and k = 0.4
1
3 ,

the descriptor performs well in most cases. Let F (X) be the average intensity of
patch X, and let Fc (X) (c = 1, 2, 3, 4) be the average intensity of the four corner
octagonal patches around X. Each bit b in LHOP descriptor is corresponding to:

b =
{

0, if F
(
S
j
i

)
≤ Fc

(
S
j
i

)

1, otherwise
(4)

Each Sji contributes 4 bits to LHOP descriptor (Fig. 2(iv)), and LHOP descriptor
consists of 256 bits in total. Figure 2 gives an overview of the process to construct
the binary string.

By computing the Hamming distance, LHOP descriptors can be matched
extremely fast on modern CPUs which often provide a specific instruction to
perform a XOR or bit count operation.
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Table 3 The average times of constructing 10,000 keypoint descriptors resulted by several
methods

Methods SIFT SURF ORB LHOP

Time[ms] 9971 2812 250 91
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Fig. 3 Performance evaluation on the datasets introduced by Mikolajczyk and Schmid. The
abscissa represents the image pair, e.g., “1–4” is the image pair consisting of the first and the
fourth images in a dataset, and the ordinate represents the number of correct matches

3 Experiments and Results

Experiments have been done on a laptop with a 2.6 GHz CPU, 2GB memory
and without using multi-threading. The datasets for experiments were proposed
by Mikolajczyk and Schmid [13] with transformations covering zoom and rotation
(Boat), viewpoint change (Wall), brightness changes (Leuven), blur (Trees and
Bikes), as well as JPEG compression (UBC). Each dataset has six images; we match
the first image against the other five images. SURF keypoint is extracted in each
image for matching, and the descriptor’s performance is evaluated by the number
of correct matches. As shown in Table 3, LHOP descriptor is about two orders of
magnitude faster than SIFT descriptor and 2 times faster than ORB descriptor in
construction. For the matching performance as shown in Fig. 3, LHOP descriptor
performs better than SURF descriptor, ORB descriptor, and BRISK descriptor in all
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Fig. 4 The comparison of the matching performance between LHOP and SIFT and the compar-
ison between LHOP and SURF (a) LHOP, 810 correct matches, (b) SIFT, 212 correct matches,
(c) LHOP, 325 correct matches, (d) SIFT, 146 correct matches, (e) LHOP, 601 correct matches, (f)
SURF, 407 correct matches

of the 6 datasets and performs better than SIFT descriptor in 4 datasets (Trees, Bikes,
Leuven, and UBC). We compare the proposed descriptor with a number of state-of-
the-art keypoint descriptors including SIFT and SURF. And the comparison results
of the matching performance on an image pair with one image under high JPEG
compression are shown in Fig. 4. We can observe from these comparison results
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that our LHOP descriptor offers the better matching performance compared to other
descriptors. And it is clear that our proposed descriptor is more stable and accurate
than other descriptors including SIFT descriptor and SURF descriptor through these
experiments.

4 Conclusion

In this paper a new effective descriptor, LHOP, with low computational complexity
has been proposed. Experimental results show that LHOP descriptor runs at a speed
much higher than the state-of-the-art keypoint descriptors under almost the same
or better matching performance, making LHOP a compelling choice for real-time
tasks.
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Seamless Mosaicking of Multi-strip
Airborne Hyperspectral Images Based
on Hapke Model

Junchuan Yu, Bokun Yan, Wenliang Liu, Yichuan Li, and Peng He

1 Introduction

As one of the hottest topics in remote sensing (RS) society, hyperspectral technology
plays a significant role in earth observation. With the continuous improvement of
resolution and dimensionality, the development of hyperspectral RS application
gradually inclines toward more quantitative field. However, due to the impact
of view angle, irradiance, and bidirectional reflectance distribution function, the
image intensity has been varying in both single image and in-between images,
which can cause problems in generating mosaics of multi-strip images [1]. This
issue has drawn enough attention in satellite RS data processing for some large-
scale applications [2], such as land-cover classifications, but is still insufficient
in terms of airborne hyperspectral image processing. Different from multispectral
images, the seamless mosaicking of airborne hyperspectral images can improve
the visual continuity and help remove line-to-line radiometric inconsistencies for
subsequent analyses, which is critical to the quality of quantitative applications [3].
Traditionally, the statistical model and semiempirical model are two mainstream
methods for correcting the illumination gradient (IG) of hyperspectral images.
The statistical model is suitable for massive RS data processing because of its
simple principle and efficient calculation [4]. In contrast, the semiempirical model
describes the mechanism between light and surface objects, so the physical meaning
of its parameters is more straightforward [5]. Consequently, the semiempirical
model is more suitable to airborne hyperspectral images, although the inversion of
model parameters is complex.
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Table 1 The spectral configuration of HyMap (C) sensor

Module Spectral range (nm) Bandwidth (nm) Sampling interval (nm) Bands

VIS 400∼905 15∼16 15 36
NIR 880∼1410 18∼20 18 36
SWIR1 1400∼1960 18∼20 18 36
SWIR2 1950∼2500 18∼20 18 36

In this paper, a new method for seamless mosaicking of multi-strip airborne
hyperspectral images is introduced based on Hapke model, which quantitatively
describes physical properties of electromagnetic radiation interacting with semi-
infinite particle medium and has been widely used in photometric correction of lunar
images, such as IIM [6] and M3 data [7]. As an example, the HyMap images in Lop
Nor area of Hami province are selected to illustrate the implementation method and
evaluate the results of the application.

2 Materials and Methods

2.1 The HyMap Images

The HyMap (C) is a mainstream aircraft-mounted commercial hyperspectral sensor
developed by Integrated Spectronics, Sydney, Australia, and operated by HyVista
Corporation [8]. With the bandwidths between 15 nm ∼ 20 nm, the HyMap (C)
provides 144 spectral channels covering the 0.45 μm ∼ 2.5 μm range over a 668
pixel swath. The spectral configuration of HyMap (C) sensor is shown in Table 1.
The HyMap (C) provides signal-to-noise ratios of 600∼ 1000 or better, which offers
a reliable validation dataset for this study.

Eight strips of HyMap images were obtained in Lop Nor area of Hami province
on June 28, 2016, between 13:00 and 16:30. The spatial resolution of HyMap
images is 2.5 m by 2.5 m, with the flight height of 1.5 km. All the data were
converted to radiance and geometrically corrected by picking ground control points.
The atmosphere correction and EFFORT correction of the radioactive data were
performed by a plug-in routine for ENVI software supplied by HyVista Corporation.

2.2 The Hapke Model

Our work is mainly based on Hapke’s bidirectional reflectance model. In this study,
both the model prediction and measurement are presented in terms of bidirectional
reflectance factor (REF), which is defined as

REF = I

F
(1)
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where I is the scattered radiance and F is the incident irradiance. According to the
Hapke model [9], the reflectance factor can be described as below:

REF = I

F
= μi

μi + μe
w

4
[(1+ B(g)) p(g)+H (μi)H (μe)− 1] (2)

where μi = cos (θ i) and μe = cos (θe) are the cosine of incidence angle (θ i)
and emittance angle (θe), respectively, g is the phase angle, p(g) is the function of
phase angle and wavelength regardless of the condition of particle surface, B(g) is
the backward scattering function used to explain shadow-hiding opposition effect,
and H(μi) and H(μe) are the Chandrasekhar’s H-functions, which describe multiple
scattering contributions. To further simplify the formula, we use f (g) as a phase
function, which is separated from the incidence and emission angles. Then, Eq. (2)
can be simplified as

REF = I

F
= μi

μi + μe f (g) (3)

Previous studies have shown that the surface phase function describes changes in
the intensity on the surface due to phase angle and contains the physical attributes
of the surface [10]. Consequently, the f (g) can be expressed as a multi-order fitting
of phase angle. In this study, the f (g) is fit with a four-order polynomial

f (g) = a0 + a1g + a2g
2 + a3g

3 + a4g
4 (4)

where the phase angle g is expressed in degrees. The parameters a0∼a4 are adjusted
to make the phase function fit the data.

3 Seamless Mosaicking of HyMap Images

The imaging angle including incidence angle (θ i), emittance angle (θe), and phase
angle g can be calculated by pixel, based on the GPS and POS information acquired
with the hyperspectral data. In order to reduce the computing, a resampling of
images is first required. The resampled points need to cover the whole surface of the
images. A simple regular grid in object space was suggested in this study. According
to Eq. (3), a group of f (g) can be solved by pixel through the known incidence and
emittance angle. The parameters a0∼a4 of each band were determined by fitting
each f (g) and g with Eq. (4).

As mentioned above, the systematic variation in intensity from one image
region to another is associated with the varying of view and incident angles. A
normalization of imaging angle is needed to remove the illumination gradient of
images. Usually, the normalized emittance angle is set to 0◦, and the normalized
incidence angle is set to 25◦, which is the average sun zenith of all eight strips.
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According to Eq. (5), which is a transformation formula of Eq. (3), the radiance of
each image can be corrected to normalized sensor angle.

I(25) = μi=25 (μi + μe)
μi (μi=25 + μe=0)

f(g=25)

f(g)

F(25)

F
I (5)

where the I(25) is the corrected radiance, the f(g = 25) is the phase function with
g = 25◦, and the F(25) is the incident irradiance with g = 25◦. It is noted that the
F(25)/F can be approximated as equal to μi = 25/μi.

The radiative correction of HyMap images removed the systematic illumination
gradient from one image edge to another, resulting in smooth mosaicking of two
adjacent images.

4 Experimental Results

The visual change of the images is the most reliable evidence to assess if the
radiative correction is complicated. As shown in Fig. 1a, we can see a scene of
HyMap image without radiative correction displayed in true color, which clearly
presents an IG along the vertical direction of sensor travel. In contrast, the corrected
image (Fig. 1b) shows that the illumination of each ground object smoothly transits
from one edge to the other without obvious distortion. The radiative differences of
the corrected and uncorrected image shown in Fig. 1c illustrate the value differences
between both sides of the image and further reveal the essential problems of
producing “seamless” mosaic for the multi-strip images (Fig. 2a).

Fig. 1 (a) Uncorrected HyMap image, (b) corrected HyMap image using Hapke model presented
in this paper, and (c) the radiative difference of the HyMap image before and after correction. All
in true color
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Fig. 2 (a) A mosaicking of original images, (b) a mosaicking of corrected images (using statistical
method), and (c) a mosaicking of corrected images (using techniques presented in this paper). All
in true color

For multispectral images, the IG between multi-scene images is mainly caused by
different acquisition time and probably can be removed by RS processing software,
such as ENVI. However, these tools are ineffective for aerial hyperspectral images
(Fig. 2b), because the IG exists with each single image and cannot be removed
by statistical-based method, such as histogram match. As shown in Fig. 2c, all
eight strips corrected using techniques presented in this paper could stitch together
generating a “seamless” mosaic.

In order to further illustrate the contribution of IG correction for hyperspectral
data, we transfer the hyperspectral data by the minimum noise fraction (MNF) as
an alternative method of principal components analysis. As shown in Fig. 3a, the
radiative difference between adjacent images becomes even larger. This is because
the main valid information of hyperspectral data concentrated in the first few bands
after MNF transformation, which further highlights the existing differences. The
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Fig. 3 (a) A mosaicking of eight-strip MNF-transformed image, (b) a seamless mosaicking of
eight-strip MNF-transformed image. All in false color

seamless mosaicking of MNF-transformed data shown in Fig. 3b proves that the
radiative correction is valid for all band.

Generally, hyperspectral data approximate the true spectral response of an object.
Thus, it is a common method to quantify the extent of the change in spectrum by
comparing the spectral characteristics before and after correction. Figure 4 shows
the original and corrected spectrum of a selected pixel on overlap between two
adjacent images. As shown in Fig. 4a, the original spectrum of target from strip1
to strip2 shows poor agreement on overlapping regions, revealing the cause of IG
between adjacents. In contrast, the corrected spectrum of two images strip showed
good consistency (Fig. 4b), without changing the spectral curve shape, indicating
that this method can effectively improve the airborne hyperspectral mosaicking
effect.

Radiometric inconsistencies between adjacents can seriously affect the subse-
quent analyses of hyperspectral data, such as ground cover-type classification and
mineral information extraction. The traditional image mosaic methods mainly built
based on statistical model were generally achieved by adjusting the mean and
variance between images. Although the statistical method can solve the problem
of color continuity, it is still difficult to correct the radiometric inconsistencies
within the image. The new method presented in this paper was built based on
the imaging principle of the sensor and was achieved by correcting the radiance
to normalized imaging angle, which can largely preserve the true information of
the data. Furthermore, the implementation of seamless mosaicking technology also
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Fig. 4 Selected spectrum from overlap of adjacent images (blue and red trace). (a) Uncorrected
spectrum, (b) corrected spectrum

improves the efficiency of hyperspectral data processing by treating the mosaic data
simultaneously instead of treating each image separately.

5 Conclusion

In this study, we present a semiempirical method based on the Hapke model to
remove the varying brightness gradient of airborne hyperspectral images, which
severely affect the radiometric consistencies for subsequent analysis. The multi-
strip and MNF-transformed HyMap images were chosen to assess the model. The
experimental results show that the method given in this paper can efficiently remove
the illumination gradient in both single image and between multi-scene images. In
comparison with the statistical method, the new method preserves the true spectral
information of the data to a large extent and can be used in both qualitative and
quantitative analyses, which can considerably benefit the subsequent applications.
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Computational Calibration
and Correction for Gigapixel Imaging
System

Jiazhi Zhang, Jie He, Haiwen Li, Yuanchao Bai, Huizhu Jia, Louis Tao,
and Heng Mao

1 Introduction

Remote sensing system is broadly used in many fields. In most cases, users
require both a large field of view (FOV) for monitoring a large area and high
spatial resolution for capturing more details. However, these two requirements are
in intrinsic conflict. The larger area an image covers, the more details it omits.
Gigapixel cameras are built to solving these problems. A practical approach to build
a gigapixel camera is to align multiple sensors into an array [1]. But the packs of
the sensors will bring in blind gaps between sensors and thus may omit important
details. To overcome this problem, another approach is to adopt optical path mosaic
methods in the imaging system, including external optical mosaic and internal
optical mosaic. For the external optical mosaic method, several identical imaging
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systems are built up to image the same FOV, so that multiple detectors/chips have
enough space to distribute on the detection plane and finally mosaic the entire FOV
from such sub-images [2]. This kind of methods often involves complex structures
to make duplicated light ways. Hence the system will be heavy, complex, and hard to
assemble and adjust. For the internal optical mosaic method, several relay imaging
systems stand behind the customized object lens to, respectively, image sub-FOV
at the first image plane or surface and finally mosaic the entire FOV from such
sub-images, even doing the non-planar mosaic [3–7]. These systems usually utilize
second-imaging methods to collect lights. Therefore, the volume of the system will
be huge. The second-imaging subsystems are more sensible to errors, which means
these subsystems need to be calibrated carefully. Furthermore, the lens for first-
imaging can be huge to produce enough FOV. Heavy loads, huge volumes, and
hardness of assembling and adjustment always mean high cost, both for producing
and carrying.

Our system is an implementation of external optical mosaic method. We simpli-
fied the structure of the optical system by utilizing four duplicated subsystems. We
use commercial lens and sensors to lower the producing cost. The simplified system
contains no complex mechanical structures; this lowers the load and the volume. As
a sacrifice, we have more volatile errors that make the system more vulnerable to
the changes of conditions. To compensate this defect, we developed a set of methods
for calibrating and correcting errors. These help the system achieve a precision on
single-pixel level and can be used to observe very small details.

The system involves tens of errors and parameters which must be corrected to
make the output image visible for human. In this paper, a series of calibrating
methods based on carefully designed templates are adopted to calibrate and correct
the parameters. The paper is organized as follows. The system is described in Sect.
2. The detailed calibrating and correcting methods are exposed in Sect. 3. And the
correcting results are shown in Sect. 4.

2 System Overview

The system layout is shown in Fig. 1a, b. And the optical pathway is shown in Fig.
1c. Four @Zeiss Apo Sonnar F2/135 mm lenses are arranged in a 2 × 2 array. This
major lens images the same object plane, and their images are the same to each
other. Each lens covers 4(2 × 2) to 16(4 × 4) @Sony IMX135 sensors, which are
installed on one PCB. Gaps between sensors are 80% of the sensor size. So the
gaps in one group of sensors can be compensated by other groups. And there can be
overlapping area between the images of the sensors. According to these overlaps,
the images can be mosaiced to form the final large FOV image. Each sensor has
13 million pixels. The total pixel number of the large image can be calculated with
Eq. (1)



Computational Calibration and Correction for Gigapixel Imaging System 295

Fig. 1 Layout of our gigapixel camera. (a) Perspective layout of major lens and sensors. (b)
Layout of the sensors. Sensors with the same Roman numbers are covered by the same major
lens. (c) Optical pathway of our gigapixel camera. Paths in the same color go through the same
major lens

r = 0.92 × rS × S × L (1)

in which rS is the pixel number of a single sensor, S is the number of sensors covered
by each lens, and L is the number of major lenses. The final image can have a pixel
number of 0.16 gigapixels to 0.67 gigapixels.

The computation part is implemented on a workstation with @Intel i7 CPU,
@NVidia GTX970 GPU, and @RedHat CentOS 5. A self-developed software is
used to process the captured images and to mosaic them to form the final large FOV
image.
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According to our analysis, when the object distance changes, the distances
between each group must change to make the images of the four major lens the
same. To achieve this, each PCB is installed on a two-axis motion stage. The stage
moves when the object distance changes.

3 Parameter Calibrating and Correcting

3.1 Parameters in the System

Sensing a large area with multiple sensors can induce many errors caused by sensor
alignment. In our system, sensors that are covered by the same lens are packed on
one PCB. Inaccurate manufacture will cause position errors, rotation errors, and
scaling errors between their images. Meanwhile, the four PCBs are, respectively,
installed on four motion stages. The stages are then installed on one motherboard.
This will also bring installation errors, including position errors, rotation errors,
and scaling errors. Furthermore, the sensors are not absolutely parallel with the
PCBs, and the latter are not parallel with the motherboard plane. This can bring
perspective errors. The position errors can be corrected by stage motion and overlap-
based mosaic, and the installation errors are actually coupled. Thus, there are three
groups of errors left to be calibrated: rotation errors of each sensor, scaling errors
of each sensor, and perspective errors of each sensor. These errors are called the
geometric parameters.

Vignetting is another part of errors to be calibrated in our system. The IMX135
sensors we adopt have a micro lens before the CMOS chip. The lens induces a
vignetting distribution for the image. Besides, each major lens induces a vignetting
distribution into the system, and this distribution influences all the images of the
sensors covered by the lens. Calibrating and correcting the vignetting distribution is
called de-vignetting.

To calibrate the above parameters, we first calibrate the vignetting parameters
firstly because vignetting is not related to the position relationships between sensors.
Then we calibrate the geometric parameters.

3.2 De-vignetting

In common cases, the vignetting distribution is complex. It can be caused by off-axis
illumination induced by the lens, the spatial relationship between the image plane
and the object plane, and the deformation of the image plane and the object plane [8].
But here we consider the vignetting distribution of our system as a curved surface
which can be described by a low-frequency distribution. To fit the surface, a white
printing paper is imaged by the camera as a template. The paper is pasted on a flat
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Fig. 2 De-vignetting using white template. (a) Before de-vignetting. (b) After de-vignetting

wall so there is no deformation on the object plane. White paper means there is no
interferential distributions for observing the vignetting distribution. Based on these
conditions, we consider the images as the pure vignetting distribution of each sensor.
A discrete low-frequency surface is fitted according to the response of the white
plane for each image. This fitted surface can represent the vignetting distribution.

To correct the vignetting distribution, the image processing software should
calculate the vignetting distribution level for each pixel and divide the raw image
pixel value with the vignetting distribution value. To accelerate the calculation on
GPU, we calculate the vignetting distribution value for each pixel offline and use a
hyper-parameter λ to normalize it [9].

K (x, y) = λ

P (x, y)
(2)

In Eq. (2), P(x, y) is the vignetting distribution value of each pixel calculated
from the fitted polynomial. And the matrix K is calculated and stored in the GPU
memory. When image I comes in, the dot product of I and K is calculated and output
as the de-vignetted image. See Fig. 2 for the de-vignetting result.

3.3 Rotation and Scaling Calibrating and Correcting

Rotation and scaling errors are actually space transformations. To calibrate these
parameters, we need to find some points whose coordinates are known. And
calculate the rotation degree and the scale rate from the original coordinates and
the transformed coordinates. As we calibrate these parameters for mosaic, we just
concern about the relative rotation and scaling between the images from different
sensors. For the system with 4(2 × 2) sensors covered by each lens, we designed a
dot array pattern and print it in a suitable size as a template. The pattern is shown
in Fig. 4a. There are 16(4 × 4) duplicated dot arrays in the image. Each sensor will
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image one of the arrays so that each image is an image of the same pattern. In this
way, we can observe how do the images transform from each other.

Rotation and scaling transformation can be expressed as affine transformation in
Eq. 3:

[
xi

yi

]
=
[
m cos θ −m sin θ
m sin θ m cos θ

] [
x0

y0

]
+
[
�x

�y

]
(3)

A sensor 0 is chosen as the benchmark sensor, which means it is considered to
have no rotation and scaling. Images of other sensors are transformations of this
sensor’s image. The transformation involves two parameters, the rotation degree θ i

and the scaling ratio mi. This equation induces another two unknown parameters�x
and �y, which represent the translation errors and are not concerned. To calibrate
the four parameters, at least 2 points are required to find out the solution of the linear
equation. One of the points is the reference center point. Our pattern contains 19
dots, and their centers of mass can be calculated as 19 points. The best approximate
parameters can be found out by least square fitting.

To correct the images, a coordinate transformation is calculated firstly, according
to Eq. 3 and the fitted parameters. Then the pixel is recalculated with bilinear
interpolation algorithm [10] described in Eq. 4.
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(4)

3.4 Perspective Error Calibrating and Correcting

We assume that our sensor plane is flat and with no deformation. Then the field
distortion can be considered as simple perspective transformation, or perspective
transformation. Perspective transformation is a more general affine transformation
[11]. If perspective error is calibrated, rotation and scaling are calibrated at the same.
The perspective transformation can be described with Eq. 5.

{
x’
i = k1xi + k2yi + k3xiyi +�x
y’
i = k4xi + k5yi + k6xiyi +�y

(5)

To calibrate perspective error, at least 4 points are required as there are eight
unknown parameters including two translation errors. Similar to Sect. 3.3, least
square fitting is used to solve the parameter values, and bilinear interpolation is
used to calculate the pixel values of the transformed image.
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Table 1 Rotation (θ) and scaling (m) errors

D = 875 cm D = 622 cm D = 415 cm
Sensor # θ (

◦
) m θ(

◦
) m θ(

◦
) m

1 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000
2 0.8833 1.0009 0.9539 1.0024 0.8491 1.0017
3 −0.0501 0.9998 0.0491 1.0008 −0.0681 1.0002
4 0.1657 0.9995 0.2842 1.0019 0.1524 1.0016
5 0.4340 1.0013 0.5137 1.0026 0.4323 1.0007
6 0.4153 0.9988 0.5492 1.0005 0.3952 0.9980
7 0.4152 1.0023 0.5561 1.0038 0.3637 1.0012
8 0.6116 0.9988 0.8008 1.0011 0.5938 0.9990
9 0.0594 0.9992 0.1812 0.9987 0.0663 0.9992
10 0.4029 1.0010 0.5930 1.0027 0.4234 1.0011
11 0.0696 0.9998 0.2124 1.0012 0.0256 1.0000
12 0.0580 1.0004 0.2713 1.0026 0.0460 1.0013
13 0.3909 1.0009 0.5650 1.0026 0.4284 1.0000
14 0.3303 0.9989 0.5551 1.0009 0.3803 0.9982
15 0.4304 1.0018 0.5685 1.0038 0.3894 1.0015
16 0.6569 0.9988 0.8864 1.0019 0.7030 0.9994

Three working distances (D= 875 cm, D= 622 cm, and D= 415 cm) and 16 sensors are involved
in the experiments. All the errors are relative to sensor 1

Fig. 3 Affine errors of 16 sensors, with different working distances. (a–c) Rotation errors (
◦
) of

different working distances (a, 875 cm; b, 622 cm; c, 415 cm); (d–f) scaling errors of different
working distances (d, 875 cm; e, 622 cm; f, 415 cm)

4 Correcting Results

We have calibrated the rotation and scaling errors and the vignetting patterns of 16
sensors in laboratory conditions. The de-vignetting result is shown in Fig. 6b. The
calibrated rotation and scaling errors are shown in Table 1 and Fig. 3.

To evaluate our correcting results intuitively, we designed another template,
shown in Fig. 4b. The template contains various shapes that are randomly arranged.
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Fig. 4 Calibrating templates. (a) Dot array template. (b) Geometric shapes template

Fig. 5 Mosaic GUI software

The pattern well reconstructed with the corrected images implies the correcting
effectiveness of correcting.

To check the output images of correcting, we developed an experimental software
to mosaic the images by hand. The software allows user to move, rotate, and scale
each image and shows the result of mosaicking the images. See Fig. 5.

Considering that the sensors are in the central area of the effective FOV of
the four lenses, we have only corrected the vignetting caused by the micro lens
in single sensor. Our correcting result shows that the vignetting is corrected very
well. Besides, with only rotation and scaling errors corrected, the images can be
mosaicked well. Most joint edges are accurate on single-pixel level. Our laboratory
experiment images can be completely mosaiced with no error larger than 1 pixel
(Fig. 6). For outdoor experiments, we can mosaic the images with errors no larger
than 5 pixels. The errors mainly come from rapid motions of the natural objects,
such as swinging trees and moving cars.
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Fig. 6 Correcting results. (a) Before correcting. (b) After correcting and mosaic. (c–f) Zoom-in
view of details in the joint area of two neighboring images. Red lines indicate the boundary of the
images

5 Discussion

Gigapixel imaging is a strong and increasing requirement for remote sensing and
other related fields. Users demand large FOV as well as many small details. In
this paper, we develop a novel gigapixel imaging system and propose a series
of calibrating and correcting methods to correct the errors and parameters in our
system. The methods utilize carefully designed templates to calibrate the various
errors in the system. The correcting results improve the precision of the system to
single-pixel level and prove the effectiveness and efficiency of the methods.

For calibrating and correcting vignetting, a white template is used to reflect the
vignetting distribution. The vignetting correcting matrix is calculated offline and
used for accelerating the online correcting process. However, the vignetting caused
by the four major lenses are not taken into consideration. A problem is that the
influence of these vignetting distributions on single sensor changes as the object
distance changes and the carrier PCBs move. This means the online correcting
matrix must be recalculated on object distance changes.

For geometric errors, we only calibrated the rotation and scaling errors between
images. By using the carefully designed dot array template, the parameters are
calibrated well. However, the perspective errors are not calibrated. Correcting
perspective errors are more complex than correcting the rotation and scaling errors
and may bring performance problems. Since the perspective errors are not obvious,
they are ignored to improve the system performance.

Finally, to check our correcting results, we developed a mosaic GUI software
which allows us to move and mosaic the images by hand. With the software, we have
successfully validated our gigapixel imaging system in the laboratory and outdoor
conditions. The mosaic result proves our calibrating methods powerful.
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Expected Value Correction-Based
Computed Tomography for Airplane
Engine

Wang Bo, Xiao Yongshun, Han Fangda, Yu Daiwei, and Chen Zhiqiang

1 Introduction

Airplane engine is the key part of the plane. However, the rotating parts in the
airplane engine are vulnerable to high pressure, high temperature, high speed, and
possible exotic objects like birds and ice. As a result, it is essential to conduct regular
test on these parts [1, 2].

Industrial CT is a nondestructive test method that has been widely used in product
quality control in many fields for its high precision and efficiency [3]. It has also
been used in aerospace industries such as turbine blades detection and blades wall
thickness measurement of airplane engines. Compared with other nondestructive
test methods, industrial CT can provide qualitative and quantitative analysis of
defects as well as high-resolution images of the inner structure of the objects, and it
has a high tolerance for dimension and different shapes. However, when it comes to
some special conditions, such as the in situ nondestructive test of airplane engine,
the relatively higher cost and lower efficiency block its further development [4–6]
since it is impossible to conduct CT process on the entire aircraft.

In this paper, we mainly concentrate on monitoring the deformations and defects
of airplane engine. The detection often needs to be conducted in situ due to the
inconvenience and inefficiency to disassemble the engines from planes for tests.
Meanwhile, there are deformations that can only be detected during operation. As a
result, the detection is often needed to be conducted in an in situ form.
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The rotating parts of the engine are surrounded by all kinds of blocks, which
calls for more powerful X-ray sources and more sensitive detectors, resulting in
high test cost. So testing the engine with a dynamic tomographic imaging system is
an approach to solve the problem. Based on researches on the in situ nondestructive
testing methods for airplane engine, we put forward a system using CT technique
to detect the rotating parts of the airplane engine, taking advantage of the objects’
self-rotation [7, 8].

The dynamic tomography system makes use of the rotation of the engine to
acquire projection data. A sensor is set to track the status of the rotating parts
and trigger the accelerator to emit X-ray. More details about the system will be
introduced in the next part.

However, some components like the casing, pipelines, and fuel tanks always
remain static when the engine is in operation. These static parts will appear as strip
artifacts in the projection data and result in the ring artifacts in the reconstruction
image [8]. The MVC (minimum value correction) method and the PIC (prior image
correction) method have been proposed to solve the problem. The first one is fast but
cannot reconstruct the image with high clearness due to the existence of artifacts,
while the second one is more accurate but time-consuming to get prior image using
iterative method with additional projection data from conventional CT [9, 10].

In this paper, the features and causes of the blocking artifacts are analyzed, and
expected value correction (EVC) is proposed to eliminate the blocking artifacts, and
both numerical and physical experiments are carried out to verify its effectiveness.

1.1 System Design

Compared with conventional CT systems, the dynamic CT system doesn’t have a
turntable, and the projection from different angles is acquired using the rotation
of the rotating parts. As shown in Fig. 1, STS (synchronous triggering system) is
deployed over the engine to monitor the rotation of the rotating parts and trigger
the accelerator to flash. The sensor detects the specific marker on the rotor and
sends signal to STS, then STS delays the signal with different values to trigger
the accelerator. In this way the projection data can be obtained to reconstruct the
structure of the airplane engine.

The sequence diagram of STS system is shown in Fig. 2. Once the delay time td
is set, the kth trigger signal tk is t�k after the kth sensor signal, while the (k + 1)th
trigger signal tk + 1 is t�k + td after the (k + 1)th sensor signal.

1.2 Data Processing and Artifacts

The projection process in conventional industrial CT system can be expressed as

Hf = p (1)

where H is the projection operator, f is the object, and p is the projection.
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Fig. 1 The schematic diagram of the dynamic CT system

Sensor 

signal

Kth trigger signal

(K+1)th trigger 

signal

Delay time

Fig. 2 STS trigger signal sequence diagram

Thus to reconstruct the object from the projection, a reverse process is needed as

f = H−1p (2)

But, as mentioned above, several parts stay static during the dynamic CT process.
So in our dynamic CT system, the projection operator cannot be shared by the static
parts, which always have the same projection value in all views. Thus, the projection
process in our case can be expressed as

Hf + b = p (3)

where b is the projection of the static parts remaining as a constant value.
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The projection process is separated into two parts, the static one and the rotating
one. In the projection data, the static one appears as strips and will turn into
ring artifacts in the reconstruction image without artifact correction. But if the
constant static projection value can be obtained, the reconstruction process can be
simplified as

f = H−1 (p − b) (4)

where p–b represents the corrected projection data of the rotating parts. Therefore,
once the exact projection of static parts is determined, the object can be recon-
structed accurately.

According to the above, the key point to reconstruct the object with dynamic CT
system is to find out the constant static projection value, which remains unknown in
our test process and will be discussed in the next part.

2 Methodology

A novel method based on expected value correction has been proposed to eliminate
the blocking artifacts.

The rotational symmetry parts of the measured object contribute to strip pro-
jection data. In our dynamic CT system, the static blocks share the same feature
with the rotational symmetry parts in conventional CT. Thus if the projection data
is reconstructed directly, those strip projection data would turn into ring artifacts.

The image to be reconstructed from the projection data from our dynamic CT
system is actually made up of the rotating parts and the static parts and expressed as

img (x, y) = imgrot (x, y)+ imgsta (x, y) (5)

And the projection data of the object can be divided into two parts at the
mean time:

prj (θ, t) = prjrot (θ, t)+ prjsta (θ0, t) (6)

where prj represents the projection data, θ is the projection angle, tis the detector
position, and θ0 represents the stable projection angle of the static parts. After
getting the projection data prj(θ , t) from dynamic CT system, the next step is to
restore the projection data of rotating parts prjrot(θ , t) from prj(θ , t). There are
several approaches to reconstruct the rotating parts from the mixed projection data.
One possible way is to estimate the contribution of the static parts and remove it
from the projection data. The MVC method estimates the contribution by using
the minimum value of projection data, while the PIC method uses the prior image,
which needs additional projection data as mentioned before.
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Fig. 3 The comparison of
expected value of different
projection data. (a) Gray
value of the projection data of
engine, rotor, and blocks. (b)
Gray value of the projection
data of engine, rotor, and
blocks in [250, 390]

Inspirited by the MVC method, we attempt to use the expected value to estimate
the blocking projection data. Before we start to introduce our method, a brief graph
is provided to explain why we use expected value instead of the minimum value.

As shown in Fig. 3, we compare the expected value of different projection data.
The blocking data is shown as the black dotted line, which is continuous and smooth
in most parts. The rotating data is shown as the blue dashed line and the projection
of engine is the red one.

As shown in Fig. 4, the distributions of the expected value, minimum value, and
maximum value are almost the same when the pixel is away from the rotation center.
When it comes to the data near the rotation center, the minimum and maximum
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Fig. 4 The comparison of
the expected value, minimum
and maximum. (a) Gray value
of the projection data of
expected value, minimum
value, and maximum value.
(b) Gray value of the
projection data of expected
value, minimum value and
maximum value in [250, 390]

value has the same trend of distribution, in spite of the different values. Because
of the existence of the rotating parts, the minimum value of the projection data
has some intense fluctuations in some specific position. But the expected value
of the projection data is continuous and much smoother. Thus it is better to use
the expected value to estimate the blocking projection. And more details of the
difference between the minimum value and expected value will be shown in the
next part as well as the comparison of the two methods.
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Table 1 Parameters In
numerical simulation

Distance between source and object 2542.3 mm
Distance between object and detector 859.7 mm
Detector length 832 mm
Detector bins 640
Image size 256 × 256
Total views in 360◦ 512

3 Experiments and Results

In this section, we use numerical experiments to verify the feasibility of the pro-
posed method. Our numerical experiments are based on MATLAB, and parameters
used in simulation are listed in Table 1.

3.1 Phantom

The phantom used in our numerical experiments is a simplified model of airplane
engine (Fig. 5a). The phantom is made up of two main parts, the rotating part and
the static part. The rotating part in Fig. 5c is a rotor with nine blades. As shown in
Fig. 5e, the shell of engine, fuel tank, and pipeline which remain still during working
make up the blocks. To make the phantom more suitable to the actual in situ engine,
an ellipse is added to represent the wing of the aircraft, the two concentric annuluses
are on behalf of the shell of engine, and the other small parts are designed to be fuel
tank and pipelines. All these phantoms are of uniform pixel grid as 256 × 256.

As shown in Fig. 5b, the projection data of the engine consists of two parts.
The first part is the projection data of the rotor obtained from the conventional CT
processing on the phantom of it (Fig. 4d). The other one is the projection data of the
blocks which can be obtained from one specific angle since it’s static (Fig. 5f).

3.2 Results

To verify our method, we compare our result with the directly reconstructed image
(Fig. 6). Figure 6b is the reconstructed image using FBP directly, and Fig. 6c is the
projection data after expected value correction. Figure 6d is the reconstructed image
obtained from Fig. 6c. Compared with the original rotor, our method can reconstruct
the blade pretty well, but the rotational shaft is missing because its projection data
has the same feature with the blocks and is removed during the correction process.
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Fig. 5 Numerical simulation.
(a) Phantom of engine. (b)
Projection data of engine. (c)
Phantom of rotor. (d)
Projection data of rotor. (e)
Phantom of blocks. (f)
Projection data of blocks. The
gray scale of phantoms is [0,
1]

As shown in Fig. 7, the blocks projection estimation using minimum value is
conducted. From the reconstructed image Fig. 7b, though the shape of the rotor can
be reconstructed correctly and the blocks can also be removed, there are several
obvious ring artifacts in the image, which will result in the misjudgment of the
defects of the rotor.

More tests are taken to test our method. As shown in Fig. 8a, a broken model
with distorted and cracked blades is designed. The reconstructed image is shown in
Fig. 8c. A more badly broken model is designed to testify that our method can work
well under nonperiodic symmetry condition (Fig. 9).
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Fig. 6 Reconstruction
results. (a) Projection data.
(b) Directly reconstructed
image. (c) Expected value
corrected projection data. (d)
Reconstructed image with our
method. The gray scale of
phantom and images is [0, 1]

Fig. 7 The result of minimum value correction method. (a) The corrected projection data of
minimum value correction method. (b) The reconstructed image using the corrected projection
data
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Fig. 8 Reconstruction
results. (a) Phantom of
broken rotor. (b) Projection
data. (c) Reconstructed image
with our method. (d)
Expected value corrected
projection data. The gray
scale of phantom and
reconstructed image is [0, 1]

3.3 Noise Condition

To verify the feasibility of our method under conditions with noises, more numerical
experiments are done to compare with the conventional CT progress. Projection data
is obtained with noise during projection process; both dynamic and conventional CT
processes are used for comparison.

As shown in Fig. 10a, c, the projection data with noise from dynamic CT and
conventional CT is prepared. Our method is used for reconstruction of the dynamic
CT projection data, while FBP method is used for the conventional CT projection
data.

The reconstructed images of the two processes are shown in Fig. 10b, d.
Considering the image quality, the reconstructed image from conventional CT is
clearer than the dynamic one. Signal-to-noise ratio of dynamic one is 2.080 and
the conventional one is 2.727. Though the image quality is lower comparing with
conventional method, the structural integrity of the rotor can be identified from the
reconstructed image (Fig. 10b).
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Fig. 9 Reconstruction
results. (a) Phantom of
broken rotor. (b) Projection
data. (c) Reconstructed image
with our method. (d)
Expected value corrected
projection data. The gray
scale of phantom and
reconstructed image is [0, 1]

Further discussions on the practicability of our method are taken, which concen-
trate on the ability of deformation identification of reconstructed images. Additional
numerical experiments are done using the broken rotor phantom and the badly
broken rotor phantom (Fig. 11). The reconstructed images from conventional CT
process with FBP method are also provided for comparison. From the results,
the deformations and defects of the rotor can be identified from the reconstructed
images, though the image quality of our method is a little bit lower comparing with
the results of conventional CT.

4 Conclusion

In this paper, a block-eliminating method based on expected value correction is
proposed, which attempts to eliminate the ring artifacts caused by static blocks in
dynamic CT system. Our method works well to reconstruct the rotating part such
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Fig. 10 Reconstruction
results. (a) Dynamic CT
projection data with noise. (b)
Reconstructed image with our
method. (c) Conventional CT
projection data with noise. (d)
Reconstructed image with
FBP method. The gray scale
of reconstructed images is
[0, 1]

as blades, though the parts that have the same features with the blocks are removed.
Numerical experiments of non-noise and noise condition are carried out to verify
the practicability of our method, which verify that our method works well on both
non-noise and noise conditions. In the future, more works will be done focusing on
the effects caused by vibration of rotor during operation.
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Fig. 11 Reconstruction results. (a) Reconstructed image from dynamic CT with our method. (b)
Reconstructed image from conventional CT with FBP method. (c) Reconstructed image from
dynamic CT with our method. (d) Reconstructed image from conventional CT with FBP method.
The gray scale of reconstructed images is [0, 1]
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Low-Dose CT Post-processing Based
on 2D Residual Network

Huijuan Zhang, Yunbo Gu, Wei Yang, Jiasong Wu, Xiangrui Yin, Yang Chen,
Huazhong Shu, Limin Luo, Gouenou Coatrieux, and Qianjin Feng

1 Introduction

X-ray computed tomography (CT) provides major anatomical and pathological
information of the human body for medical diagnosis and treatment. However,
repetitive clinical CT examinations require reducing the radiation dose. The easier
access to filtered back projection (FBP) reconstructed CT images and to the
projection data obtained from the manufacturers opens the way for post-processing
methods which offer good implementability and expansibility to existing CT
scanner equipment in hospitals [1]. Chen et al. proposed a large-scale nonlocal
mean algorithm to remove the low-dose CT (LDCT) artifacts via a nonlinear
large-scale filter correction [2]. In [3], the authors reported an effective processing
of abdomen LDCT images based on a sparse representation using a pretrained
dictionary. Deep learning techniques have recently been considered to tackle this
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problem. A multilayer perceptron (MLP) machine-based method was introduced to
learn the mapping from the noisy images to the corresponding noise-free images
and has shown an impressive performance in image restoration [4–6]. In [7], a
residual convolutional network architecture was designed to build the relationship
between the wavelet coefficients of low-dose and high-dose CT images. Han et al.
[8] proposed a U-net structured architecture with residual learning to predict the
artifacts in sparse-angle reconstructed CT image.

This paper explores the application of 2D residual network in LDCT image pro-
cessing. The proposed residual network (ResNet) performs noise-artifact removal by
predicting the residual component (mainly composed of noise-artifact component)
between the LDCT images and the corresponding standard-dose CT (SDCT)
images included in the training data set. The experiment results validate the good
performance of the 2D ResNet method in improving LDCT image quality.

2 Residual Network Architecture

Commonly used network architectures include plain network, with connections only
between adjacent layers, and multi-branch network structured as directed acyclic
graph. Deep network layers (i.e., deep CNN) provide an improved representation
accuracy of image features. Some examples of plain networks are AlexNet [9]
to VGGNet [10]. However, a gradient diffusion tends to occur when the depth is
increased, which might result in training failure. This gradient diffusion problem can
be solved by ReLU and batch normalization (BN) [11] to some extent. Indeed, as
the network depth continues to increase, both the training error and the testing error
surprisingly increase. ResNet [12] is introduced to solve this difficulty by learning
the local and global features via skip connections combining different levels.

2.1 Residual Network

Compared to the plain network, a residual network [12] consists of an ensemble
of basic residual unit, containing two stacked convolution layers. Here xl and xl + 1
are the input and output of the l-th residual unit, respectively, and F(x) denotes the
residue mapping of the stacked convolution layers. Wl represents the convolution
weight of the l - th layer. If the dimensions of the input xl and the mapping F(xl)
match in the element-wise addition, their relation can be expressed by

xl+1 = xl + F (xl, {Wl}) (1)
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Otherwise, a dimension mapping convolution layer is needed in the skip connec-
tion, whose convolution kernel is represented as Ws; thus

xl+1 = F (xl, {Wl})+Wsxl (2)

Recursively, from the 0-th layer to the L-th layer, Eq. (2) can be expressed as

xL = x0 +
L−1∑

i=0
F (x, {Wi}). Such residual network appears as a straight addition

operation between layers except for the activation and BN layers.
In [13], He et al. suggest that the form of residue should be as simple as possible,

with a shortcut connection minimum train error and test error. But provided that
the residue is 0.5x, convolution or dropout will block the forward and backward
propagation, leading to an increased error [13]. So we adopt the shortcut connection,
and the convolution layer, which aims at realizing the dimension mapping, is added
only when the dimensions do not match.

Using ResNet with the skip connection, a simple identity mapping directly
connects the input and output layers. It has the same computational complexity
as the plain network with the same depth because no extra parameters need to be
learned and the only computation required is the gradient of loss with respect to
the input.

2.2 Batch Normalization

Batch normalization [11] can be used to solve the internal covariate shift, which is
caused by the change of distribution of each layer’s input after the convolution and
activation layers during training. With the batch normalization, the input of each
layer is normalized to zero mean and unit variance and is then scaled and shifted to
restore the distribution. It was pointed out in [11] that the dependence on dropout
can be reduced due to the regularization role of BN. Another merit of BN is that it
can significantly accelerate the CNN training because the inputs of each layer have
a similar distribution.

2.3 Loss Function

The strategy of residual learning [8, 14] is adopted to learn the residue in the ResNet
processing. The benefit of learning residue is that it can avoid building complicated
regression model for mapping LDCT images to HDCT images due to the inherently
rich details in CT images. To measure the similarity between the predicted residue
N
′

and the real residue N, which can be obtained by subtracting HDCT image Q
from LDCT image P in the training data set, we can build the loss function J(W, b)
as follows:
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J (W, b) =
[
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where m is the sample number in current batch and J(W, b) is the loss of
these samples. (xi, yi) is the i-th sample. J(W, b; x(i), y(i)) is the mean square
error (MSE) of the i-th sample, which is defined as J

(
W, b; x(i), y(i)) =

1
RC

C−1∑

j=0

R−1∑

k=0

∥∥N ′ (j, k)−N (j, k)∥∥2, where N = P − Q. R and C are, respectively,

the width and height of the sample. The second term in Eq. (3) is the regularization
term called weight decay. nl is the number of convolution layers. sl is the number of
nodes in the l-th layer, and sl + 1 is the number of nodes in the l + 1-th layer. The
weight can be constrained by setting different weight decay parameter λ. A smaller
λ will lead to a wider weight range.

The Adam optimization method in [15] is applied to update the learning rate of
parameters using the unbiased estimation of the gradient’s first moment m and the
second moment v during backward propagation.

3 Low-Dose CT Image Post-processing

The randomly sampled and cropped 128 × 128 size low-dose CT and the corre-
sponding noise patches, obtained by subtracting high-dose CT images from the
corresponding low-dose CT images, are used as the training set. Here the Adam
method is used to minimize the MSE between the output of the last convolution
layer and the actual residual images (low-dose noise). Zero padding strategy is used
here in order to ensure that the size of the output image is equal to the original
input size. For each layer, the numbers of convolution kernels are set to 64 and
the convolution stride to 1. Then, the CT slides are input into the trained model
to estimate the residual data contained in the LDCT images, since our model is
independent of the input size by the fact that a fully convolution layer is used instead
of a fully connection layer.

Experiments were conducted to explore the factors that might influence the
model performance, e.g., model width, depth, and dropout options. We analyzed
three different depths by setting (n is the number of basic units for plain network or
residual network), leading to a total of 12, 16, and 24 convolution layers (the layer
number is 2n + 6), in the plain network and the residual network.

In order to study the influence of the convolution kernel number in each network
layer, we compared the 2D-Resnet-9 network with a broader network, whose
parameters are listed in Table 1. The cell across multiple step lines of the table
represents the skip connection in the residual network. Here, the suffix of layer name
“conv” represents the convolution; besides, “bn” is the BN; and “relu” represents
the ReLU activation function. The suffix “sum” presents the element-wise sum. The
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Table 1 2D residual network with increased width

Layer Kernel size Channel number

C1_conv, C1_bn, C1_relu 3 × 3 32
C2_conv, C2_bn, C2_relu 3 × 3 64
C3_conv, C3_bn, C3_relu 3 × 3 96
C4_conv 3 × 3 96

resBlock1_bn, resBlock1_reluresBlock1_conv

[
3× 3

3× 3

]

× 3 128

resBlock2_bn, resBlock2_reluresBlock2_conv 128
res_sum
res_bn, res_relu
C10_convC10_bn, C10_relu 3 × 3 64
C11_conv 3 × 3 1

prefix “Ci” denotes the i-th convolution layer. “res” indicates the layer related to
the residual blocks. “resBlocki” denotes the i-th convolution layer in the residual
network. 3 × 3 denotes the convolution kernel size, and the channel number is the
number of kernels in the current convolution layer.

4 Results and Evaluation

The data set for evaluation was provided by AAPM Low-Dose CT Grand Challenge,
thanks to the Mayo Clinic [16] which consists of low-dose and high-dose CT images
from ten patients, with 512 × 512 resolution. The utilization of the real projection
data is permitted with signed agreement authorized by the Mayo Clinic. The high-
dose scanning voltage is 100 or 120 V, and the X-ray tube current varies from 200
to 500 mA. The slice thickness is 1 mm. Poisson noise was inserted into the full-
dose projection data to simulate the corresponding 25% of the full-dose data. The
reconstruction CT images using both the full-dose and the quarter-dose projection
data are provided in the challenge data set. We use nine patient CT images as
the training data set (5080 CT slices in total). The remaining patient data set is
used as the test data to validate the algorithm performance. We randomly sample
small patches over the whole training set to allow more images to be included in
the training process in single batch. The patch size for training the 2D model is
128 × 128. Mean value subtraction and variance normalization were carried out on
each patch to obtain training samples with an approximate Gaussian distribution.

The computer platform was configured as follows: CPU is Intel(R) Core(TM)
i7-4790 K 4.00GHz; GPU is NVIDIA gtx1080 with 8G memory. We used the
MatConvNet deep learning framework [17], the MATLAB version R2015b, and the
MSRA method to initialize the weights of convolution layers. The learning rate is
set to 0.001 (halved every 40 epochs) and the weight decay to 1e−5. The moments
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Fig. 1 Selected axial views of the 2D post-processing results. From left to right, illustration of the
original LDCT images, the reference SDCT images are the processed LDCT images are given

for the Adam algorithm were, respectively, set as default values 0.9 and 0.999. The
batch size was set to 64 and 2 for 2D networks to fully exploiting GPU memory.
Following the principle that stacked small convolution kernels can achieve the same
receptive field size as the large kernels, whereas saving memory, we adopted the
small convolution kernel size 3 × 3 for all networks. The model training has t 150
epochs.

The final results are obtained by subtracting the LDCT images to the residue
components estimated using the trained residual network. It can be clearly seen in
Fig. 1 that the 2D ResNet model works well in preserving the original image details
without causing significant over-smoothing. The computation time on a single GPU
for each CT image using the 2D model is 0.3 s. Figure 2 shows that the training
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Fig. 2 Solid lines denote training loss, and dashed lines are testing loss. Left: plain networks.
Right: residual networks (The legend is formatted “A-B-n”; “A” denotes the training and testing
phase; “B” is the network type; “plain” means the plain networks; “resnet” is the residual networks;
“n” represents the number of basic element blocks; here n is selected from the values in {3, 5, 9})

error and testing error decrease in both plain networks and residual networks when
the depth increases. The deep 2D-resnet_deep-20 model (n = 20, 46 layers in total)
performs also very well.

5 Conclusion

Experimental results have shown that the proposed 2D residual-based networks have
good performance on preserving image details and removing noise-artifact structure
as well. The 2D model is thus suggested for LDCT scans with sick thickness.
Our work in progress will focus on methodological issues (such as compensating
the contrast loss after processing) and extended clinical assessment. Algorithm
acceleration will also be considered in order to better fulfill clinical requirements.

Acknowledgments The authors would like to thank Dr. Cynthia McCollough (the Mayo Clinic,
USA) for providing clinical projection data of Somatom Definition AS+ CT.
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Phase Congruency and Its Application to
Tubular Structure Extraction

Xiaojuan Deng and Hongwei Li

1 Introduction

A number of tubular structure extraction algorithms have been developed in the
literature. Thresholding [1] is the fastest one among all of them. For images from
the industry, however, the varied contrast of the tubular structures makes it difficult
to determine an appropriate threshold. To tackle this issue, noise suppression and
tubular structure enhancement are usually applied before thresholding. Popular
enhancement methods are based on filtering with filters constructed from an analysis
of multi-scale space or local Hessian matrix, such as the Frangi operator [2]
and Krissian operator [3]. The response of the Hessian matrix-based operators
is considerably sensitive to the local image contrast. In order to overcome the
shortcomings of Frangi and Krissian operators, Bauer [4] proposed an approach
based on gradient vector flow (GVF) fields. By providing a new external force
for active contours and snakes, the GVF method has a strong ability to suppress
noise. However, it will lose some of fragile tubular structures. The recently proposed
method [5, 6] defines a nonlinear and nonlocal path operators, which can be used
to filter out tubular structures. However, its low efficiency prevents its further
application to real CT images which are often big volume datasets.

In this paper, we propose an efficient tubular and tabular structure extraction
approach based on the idea of phase congruency [7–10]. Phase congruency is a
dimensionless quantity and much less sensitive to local image contrast, which makes
it very suitable for extracting edges with various contrast.
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The remainder of this paper is organized as follows. The idea of phase con-
gruency and phase symmetry are introduced in Sect. 2. The proposed approach is
described in Sect. 3. Experiments to verify and validate the proposed approach are
provided in Sects. 4, and 5 goes for remarks and conclusions.

2 Related Work

To address the extraction problems with real CT images outlined above, two-
dimensionless quantities, i.e., phase congruency (PC) and phase symmetry, are
employed in our tubular structure detection method, which provide information
invariant to image contrast.

Phase Congruency: The definition of PC has been given in [11], and Morrone
and Owens et al. have also proposed a method to compute the PC values. The
computation can be illustrated geometrically as shown in Fig. 1. The local, complex
valued, Fourier components at a location x in the signal will each have an amplitude
An(x) and a phase angle φn(x). The magnitude of the vector from the origin to the
end point defines the local energy E(x), and the phase angle of E(x) is φ(x). Phase
congruency is measured as the ratio of E(x) to the overall path length taken by
the local Fourier components in reaching the end point as shown in the following
formula:

PC(x) = |E(x)|
∑
n An(x)

, 0 ≤ PC(x) ≤ 1 (1)

where F(x) measures the response of the even-symmetric filter, while H(x)
measures the response of the odd-symmetric filter. If all the Fourier frequency

Fig. 1 Local energy model at
point x



Phase Congruency and Its Application to Tubular Structure Extraction 327

components at point x are in phase, then all the complex vectors would be aligned,
and the ratio |E(x)|/∑n An(x) would be 1 (i.e., PC(x) = 1). Another extreme
case is that there is no coherence of phase, and then the ratio drops to 0. A phase
congruency of value one means that there is an edge, while a phase congruency of
value zero means that there is no structure.

The local energy model E(x) can be expressed by the cosine function, and the
phase congruency, i.e., PC, has the following form:

PC(x) =
∑
n W(x)

⌊
An

(
cos
(
φn(x)− φ(x)

)− ∣∣sin
(
φn(x)− φ(x)

)∣∣
)
− T

⌋

∑
n An(x)+ ε

.

(2)
W(x) is a weight factor to reduce the responses (PC values) where the frequency
spread is very narrow. If the frequency spread is sparse, e.g., there is only one (or
nearly one) frequency component presented in the signal, the PC will be nearly
constant one everywhere, losing its role as edge indicator. In this case, W(x) could
help to avoid false detection of edge points. The parameter ε intends to prevent the
denominator of formula (1) becoming zero. The symbols �� denote a thresholding
operator such that the enclosed quantity is equal to itself when its value is positive
and zero otherwise. The parameter T is used to control the effect of noise, see [8, 9]
for details.

Phase Symmetry: In 1997, Peter Kovesi published a paper [12] emphasizing
the importance of local symmetry information on feature detection. It is pointed
out that the absolute response values of the even-symmetric filter through the
local symmetry points will be very large and the absolute response values of the
odd symmetric filter through the local symmetry points will be very small. The
measurement of the degree of symmetry was given in the following formula:

Sym(x) =
∑
n�An[|cos(φn(x))| − |sin(φn(x))|] − T �∑

n An(x)+ ε
. (3)

At a point of symmetry, the Fourier components are at a maxima or minima (at the
symmetric points of their cycle). At a point of asymmetry, the Fourier components
are at the asymmetric points of their cycle. Phase symmetry can be combined into
the phase congruency to suppress noisy false detected structures.

3 Algorithm

Noise and other structural artifacts are usually seen in real CT images, and the
cracks might demonstrate quite various contrast levels. So to successfully extract
the cracks, preprocessing to reduce noises (as well as other unrelated artifacts) and
tubular structure enhancement techniques are indispensable.
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Fig. 2 (a) The preprocessed image; (b) the phase congruency of image (a); (c) the phase symmetry
of (a). The red ROIs of (a), (b), and (c) are zoomed in and shown in (d), (e), and (f), respectively

So our algorithm includes a preprocessing procedure to remove noise, bottom-
hat transformation to remove background, and the phase congruency and symmetry
congruency for further tubular structure enhancement. For the denoising algorithm,
we chose the nonlocal means algorithm [13], since it works well in most situations.

Calculating Phase Congruency and Phase Symmetry: The calculation of the
phase congruency and phase symmetry for the preprocessed CT images is demon-
strated in Fig. 2. By checking the box-framed area, i.e., region of interest, one
can tell that both phase congruency and phase symmetry produce noisy structures.
However, usually their false structures appear at different locations. This observation
motivates the idea of combining the phase congruency and phase symmetry to
reduce false detections by helping each other.

Thresholding: After computing and combining the phase congruency and phase
symmetry, thresholding segmentation shall be easy, i.e., a proper threshold is easy
to be determined. The results are demonstrated in Fig. 3. Figure 3a shows an image
patch, Fig. 3b shows the mixed phase congruency and phase symmetry, and (c) and
(d) shows the densities of the yellow line segments in (a) and (b), respectively.
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Fig. 3 Combining the phase congruency and phase symmetry. (a) Original image; (b) phase
congruency + phase symmetry; (c) zoomed in of the yellow line segment in (a); (d) zoomed in
of the yellow line segment in (b)

Fig. 4 Comparison with Frangi’s approach: (a)–(c) resulting image from Frangi’s approach with
threshold values 0.02, 0.01 and 0.005, respectively; (d) the result by our approach

4 Experiments

Two experiments are performed. One is to compare the proposed approach with the
popular Frangi’s approach, and the other one demonstrates the result from applying
the proposed approach to a 3D image. Note that just as in Eq. (2), the parameter of ε
in Eq. (3) is empirically set to 1e−4 in our experiments, while the noise threshold T
is estimated automatically by the algorithm, which is based on a statistical modeling
of the noise distribution for the image. Assume that the noise is Gaussian, and
the response of the filters to noise will form Rayleigh distribution. Then the filter
responses at the smallest scale can be utilized as a guide to the estimation of the
underlying noise level. Because the smallest scale filters spend most of their time
responding to noises. See [8] for more details. In our implementations, the threshold
T are set to 0.2, which seems appropriate for all the tests.

Experiment 1: Comparison with Frangi’s Approach

The results are shown in Fig. 4. It’s clear that the Frangi’s approach is sensitive
to the threshold parameters. A large threshold leads to incomplete extraction, and
weak cracks get lost, while small thresholds introduce more noise and noisy false
structure. On the contrary, our approach gives clean and complete result.
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Fig. 5 3D result by our approach. (a) the 3D image to be processed; (b) the extracted tabular
structures by our approach

Experiment 2: 3D Result with the Proposed Approach

In this experiment, we apply our approach to a 3D image that reconstructed from
scanning an industrial object. Figure 5a shows the 3D image, while Fig. 5b shows
the segmentation result. By checking the resulting 3D image slice by slice, it turns
out that almost all favorite cracks are effectively detected.

5 Conclusion and Remark

Phase congruency as well as phase symmetry provides a contrast invariant way
of identifying features within images. Combining phase congruency and phase
symmetry to extract the cracks in a certain kind of 3D objects from the industry
is an efficient approach, which is validated by experiments on real CT images.
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Non-rigid 3D CT/MR Liver Registration
with Discontinuous Transforms Using
Total Variation Regularization

Min Ding, Xueying Du, Hanqiu Liu, Cheng Zhang, Ming Li, Zhonghua Shen,
and Lun Gong

1 Introduction

Research to improve the registration accuracy of computed tomography
(CT)/magnetic resonance (MR) images of the abdomen plays an important role
in clinical diagnosis; to, these imaging modalities can allow observation of
nodule growth, monitoring of emphysema progression, analysis of respiratory
movement, and so on. Conventional registration methods with L2-regularization
expect smooth and continuous displacement fields throughout an image. This
constraint is unsuitable when discontinuous motion fields exist, for example, when
organs such as the liver slide against the abdominal wall during respiration. In this
case, the adjacent structures undergo a different motion pattern and move relatively
independently. To solve this problem, some effective registration methods were
proposed in a previous study.
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Using motion masks [1] is a popular way to accommodate for discontinuities
near sliding interfaces. But this can dismiss discontinuities on the mask border
and require initial segmentation. Some diffusion-based methods were introduced
to accommodate for discontinuities near sliding interfaces. Direction-dependent
regularizations [2] were used to decompose the deformation field into two direc-
tions at the discontinuity interface, and smoothing was only applied in tangential
components, not across the boundary. A locally adaptive regularization [3] was
proposed in the commonly used demonstration to recover motion discontinuities,
but it involved an implicit regularization term and lacked a formal cost definition
for a proper optimization scheme. In summary, some of the methods mentioned
above need segmentation and others do not have an explicit regularization term. By
contrast, total variation (TV) [4, 5] can be defined as an explicit penalty that allows
for a well-defined optimization framework and does not need any segmentation;
also, discontinuations can be well preserved at sliding boundaries.

Only a few articles [6, 7] currently focus on the complicated sliding motion
of the liver during breathing. Moreover, most studies are limited to mono-modal
registration. Yet in our work, we use TV as the regularization term in the cost
function, which can constrain its spatial incoherence without restricting it to be
smooth. To deal with multi-modal registration, we adopt our previous work and
use correlation ratio–based mutual information (CRMI) [8] as the similarity metric;
CRMI has been proven to have excellent performance in multi-model registration.
Furthermore, the parametric transformation model known as free-form deformation
(FFD) was used by B-splines; this offers a more physically plausible motion field
with a large displacement capture range.

2 Registration Method

2.1 Image Registration

Let�= {X= (x, y, z)| 0≤ x < X, 0≤ y < Y, 0≤ z < Z} ⊆ R3 denote the image domain
and u represent the displacement field between F(x) and M(x). F(x) represents the
fixed image and M(x) represents the moving image. The registration problem can
be seen as selecting the best transformation to minimize the cost function:

C = D (F (X) ,M (u (X)))+ λR (u) (1)

where D represents the similarity metric of the registration and R is the regu-
larization term; λ controls the weight of the regularization term. The popular L2
regularization is global smoothing that cannot accurately model the discontinuities
created by the lung or liver; therefore, TV was chosen as our penalty to recover
discontinuous motion.
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2.2 TV Regularization

The formulation of TV regularization can be written as the L1-norm:

RTV (u) =
3∑

l=1

∑

x∈�

∥∥∇u
∥∥

1 (2)

where

TV (u) =
∑

x∈�

∥∥∇u
∥∥

1 =
∑

x∈�

√(
∂u
∂x

)2

+
(
∂u
∂y

)2

+
(
∂u
∂z

)2

(3)

Herein,∇ is a linear operator for gradient. ∂u/∂x, ∂u/∂y, and ∂u/∂z are derivatives
of the deformation field of pixel x. However, the function of the regularization term
is non-differentiable at zero, so we use a smooth semi-norm approximation to TV
[9], which is defined as TV (ul) =

∫
�

√| ∇ul | +βdx, in order to prevent dividing
by zero.

2.3 Cubic B-Spline Transformation

To form an explicit optimization scheme, we choose FFDs based on the cubic
B-spline as our deformation model. To define the cubic B-spline equation for 3-
dimensional images of the lung, given an nx × ny × nz mesh (denoted by !) with
uniform spacing (δ mm), let φi, j, k be the control points in the image plane. So, the
deformation of pixels at coordinate (x, y, z) can be written as:

u (x, y, z;φ) =
3∑

l=0

3∑

m=0

3∑

n=0

Bl(u)Bm(v)Bn(w)φpx+l,py+m,pz+n (4)

where px = �x/δ� − 1, py = �y/δ� − 1, pz = �z/δ� − 1, u = x/δ − �x/δ�,
v = y/δ − �y/δ�, and w = z/δ − �z/δ�. �.� is the floor function and B is the basis
function of the cubic B-spline [10].

2.4 Similarity Measurement

Because the experiment evaluates mono-model images and multi-modal images,
mutual information (MI) [11] is the most widely used similarity metric that can
satisfy both conditions. MI is, however, sensitive to intensity distortion and noise,
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and it falls into the local extreme under the condition of small sampling points.
To improve the accuracy of restoration of lung images, we choose the recently
developed CRMI algorithm as our similarity measure. The correlation ratio can
make up for the shortcomings of MI, which corrects only the deformation of location
and ignores the function mapping of intensity values. The similarity metric was
defined as [8]

CRMI (M,F ;φ) = (2− NMI (M,F ;φ)) · (1− CR (M,F ;φ)) (5)

2.5 Optimization

Transformation minimizes CRMI by iterating to find the best alignment position. In
our method, we choose as the optimizer the algorithm of limited memory Broyden-
Fletcher-Goldfarb-Shanno, which is known for its high performance in handling
high-dimensional problems [12]. Here we compute the analytical gradients of the
cost function to find the minimum value with respect to grid displacement:

C = ∂CRMI (M,F ;φ)
∂φi,j,k

+ λ ∂R(u)
∂φi,j,k

(6)

Lun et al. [8] show the derivation of the similarity metric. Considering equation
(3), we determine the gradient of TV as follows:

∂TV (u)
∂φi,j,k

=
∫

�

(
∂u
∂x

∂ (∂u/∂x)
∂φi,j,k

+ ∂u
∂y

∂ (∂u/∂y)
∂φi,j,k

+ ∂u
∂z
∂
(∂u/∂z)
∂φi,j,k

)
/

√(
∂u
∂x

)2

+
(
∂u
∂y

)2

+
(
∂u
∂z

)2

+ βdx (7)

The first-order derivative of the deformation field with respect to x is as follows;
Lun et al. [8] show the calculation process:

∂u
∂x

= 1

δ

3∑

l=0

3∑

m=0

3∑

n=0

∂Bl(u)

∂u
Bm(v)Bn(w)φpx+l,py+m,pz+n (8)

∂u
∂y

= 1

δ

3∑

l=0

3∑

m=0

3∑

n=0

Bl(u)
∂Bm(v)

∂v
Bn(w)φpx+l,py+m,pz+n (9)

∂u
∂z

= 1

δ

3∑

l=0

3∑

m=0

3∑

n=0

Bl(u)Bm(v)
∂Bn(w)

∂w
φix+l,jy+m,kz+n (10)
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An arbitrary control point φi, j, k influences the pixels in a local neighborhood,
which is defined as {x ⊂ �||x − φi, j, k| ≤ 2δ}. Therefore, the derivative of the
aforementioned derivative with respect to φi, j, k is:

∂ (∂u/∂x)
∂φi,j,k

=
{

1
δ

∂Bi−px (u)
∂u

Bj−py (v)Bk−pz(w)
∣∣x− φi,j,k

∣∣ ≤ 2δ
0 others

(11)

∂ (∂u/∂y)
∂φi,j,k

=
{

1
δ
Bi−px (u)

∂Bj−py (v)
∂v

Bk−pz(w)
∣∣x− φi,j,k

∣∣ ≤ 2δ
0 others

(12)

∂ (∂u/∂z)
∂φi,j,k

=
{

1
δ
Bi−px (u)Bj−py (v)

∂Bk−pz (w)
∂w

∣∣x− φi,j,k
∣∣ ≤ 2δ

0 others
(13)

3 Results and Discussion

3.1 4-Dimensional CT Deformable Image Registration
Database Registration

To verify the validity of the proposed method, we tested it in the public 4-
dimensional Deformable Image Registration Laboratory (DIR-Lab) data sets on
the basis of quantitative and qualitative criteria. To highlight the characteristics of
TV in preserving boundary discontinuities, we compared TV regularization with L2
regularization while selecting the same metric and deformation model.

The public data set contains 10 CT sequences from patients treated for
esophageal and lung cancers. Each sequence of the data set has an average spatial
resolution of 1 × 1 × 2.5 mm3 and a size ranging from 256 × 256 × 94 to
512 × 512 × 136. The average target registration error (TRE) is used to access
registration accuracy calculated for 300 anatomical landmarks in phases of extreme
inhalation and exhalation. The displacement field was used as the qualitative
metric and the TRE, as the quantitative metric. Because of computer performance
limitations, we selected the first five cases in our experiment because they were
relatively small and had a consistent size.

Figure 1 shows the qualitative results of two approaches tested on the 4-
dimensional CT image of patient 4. From Fig. 1c we can clearly see that the motion
vectors are smoothed and continuous between the lung and rib cage. A displacement
field like this is unreal and increases errors at this boundary. By contrast, Fig. 1f
shows lung sliding against the pleura; the motion of the lung is large, while the
rib cage moves only a little. TV spreads slowly along edges, and it can preserve
discontinuation at sliding boundaries, which allows more plausible displacement
fields and correspondences to be obtained when registering sliding organs.
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Fig. 1 Coronal view of the 170th slice in 4-dimensional computed tomography. (a) Fixed image.
(b) Displacement field overlaid with L2 regularization. (c) Enlarged view of the displacement
vector field of the highlighted region in (b. d) A moving image. (e) Displacement field overlaid with
total variation regularization. (f) Enlarged view of the displacement vector field of the highlighted
region in (e)

Table 1 Mean Target Registration Error (millimeters) from the DIR-Lab data set compared
among methods

Case TRE (mm)

Before
registration

Method of
Vandemeule-
broucke [1]

Method of
Pace et al. [2]

Method of
Papiez̈ et
al. [3] Our method

1 3.89 1.52 1.06 1.05 1.02
2 4.34 1.30 1.45 1.08 0.98
3 6.94 1.69 1.88 1.49 1.24
4 9.83 1.82 2.04 1.90 1.38
5 7.48 2.75 2.73 1.99 1.75
Mean 6.50 1.82 1.83 1.50 1.27

Table 1 compares the quantitative results of TRE obtained by our methods with
results from some popular methods used in the DIR-Lab. The smaller the TRE
value, the better the registration result. The table shows the value of TRE before
registration, with a mean of 6.50 mm for the first five cases. The TRE with our
method is 1.27 mm—lower than that for all the other methods listed in Table 1.
In particular, our method achieved the best results for all cases, which proves the
feasibility and superiority of our algorithm.
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Fig. 2 The clinical computed tomography/magnetic resonance image pairs and a fusion image
after rigid registration of the 65th slice in sagittal view from data 1 and the 52nd slice from data
2. The top row shows data 1 and the bottom row shows data 2. (a) and (d) represent fixed images,
(b) and (e) represent moving images, and (c) and (f) represent the fusion image. The fusion image
before non-rigid registration is color-coded

3.2 Clinic CT/MR Data set

We verified the capability of our algorithm in two clinical CT/MR liver data sets,
which were obtained from Shanghai Huashan Hospital. To improve registration
accuracy, the clinic data were resampled to an isotropic 1.47 × 1.47 × 3 mm3

resolution with a size of 256 × 256 × 48. We use the CT image as the fixing
image and the MR image as the moving image. Rigid registration was used to
roughly aligned the two images. Then non-rigid registration was performed using
CRMI, with TV regularization compared with L2 regularization. Here we take the
fusion image and the displacement field as the qualitative measure. In addition,
the Hausdorff distance (HD) and M-Hausdorff distance (MHD) [13] were used as
the quantitative metrics in clinical data sets. These metrics objectively measure the
algorithm registration accuracy through a set of points extracted by the edge detector
at the boundaries.

Figure 2a–f shows the original image pairs and fusion image from data 1 and
data 2. Figures 3a, d and 4a, d show that the images were well aligned after non-
rigid registration, although the difference between the fusion images is small in
both methods. The difference in the displacement field is visible. Figures 3c and
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Fig. 3 Sagittal view of 3-dimensional deformable computed tomography/magnetic resonance
liver registration results for data 1. The top row represents the results using L2-regularization, and
the bottom row represents results obtained with our methods. (a) and (d) are fusion images, (b)
and (e) show displacement vector fields, and (c) and (f) provide enlarged views at the abdominal
wall

4c show a continuous displacement field at the boundaries between the liver and
abdominal wall, and the motion vector moves across the boundary, which shows
implausible displacement fields. By contrast, Figs. 3f and 4f show the liver sliding
against the abdominal wall; the motion of the abdominal wall beside the lower liver
is large because of the small limitation applied by the rib cage. Although the results
of data 2 are not as good as those of data 1, we can also see the improvement at the
boundary. Therefore, TV regularization can make a correction in the displacement
field between the liver and abdominal wall and can reduce the registration error
between such boundaries.

Table 2 exhibits the HD and MHD as the quantitative metrics of data 1 and data
2; their small values indicates that the method achieves a better registration result
at the boundary of the liver. In each case, the HD obtained by TV regularization
is obviously less than the L2-norm. As for the MHD, it is easy to see that TV
regularization provides better results. Both results verify that TV regularization can
preserve discontinuous movement well and can improve registration accuracy.
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Fig. 4 Sagittal view of 3-dimensional deformable computed tomography/magnetic resonance
liver registration results for data 2. The top row represents the results using L2-regularization, and
the bottom row represents results obtained with our methods. (a) and (d) are fusion images, (b)
and (e) show displacement vector fields, and (c) and (f) provide enlarged views at the abdominal
wall

Table 2 Hausdorff distances
(millimeters) and
M-Hausdorff distances
(millimeters) with different
methods applied to data 1 and
data 2

Data Metric Before registration L2-norm TV

1 HD 37.87 23.12 14.40
MHD 10.61 2.98 2.12

2 HD 32.98 25.19 20.22
MHD 5.87 2.35 1.83

HD Hausdorff distance, MHD M-Hausdorff distance, TV
total variation

4 Conclusion

In this chapter we presented a 3-dimensional multi-modal registration strategy for
CT/MR images of the liver, with the aim of preserving physiologically plausible
deformation at discontinuous borders. TV was used as the regularization term in
place of traditional L2-regularization. We have demonstrated the robustness of the
algorithm by experimenting with a 4-dimensional CT data set and clinical data.
In the 4-dimensional CT data set, the TRE showed improved registration accuracy
compared with some other state-of-the-art methods. The displacement field we
obtained shows that TV can preserved discontinuation well at borders. In the clinical
data, although we found little difference in the fusion image obtained with the two
methods, the difference in the displacement field is obvious. In addition, better
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results were achieved for both HD and MHD with TV regularization than with L2
regularization. All these results show that TV can preserved well real motion in the
liver. The proposed method will be further improved in our subsequent work and be
used in clinical applications.
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Directional Diffusion Filter Bank
and Texture Quality Measurement for
Robust Orientation Estimation
and Enhancement of Fingerprint Images

Hong Liu, Chao Yang, and Zengmei Lan

1 Introduction

Fingerprint recognition systems are becoming more and more widely used as effec-
tive authentication tools in personal identification applications [1]. The robustness
of their performance, however, is still a critical constraint in practice, especially
in situations where fingerprint images are of low quality. There are many causes
leading to low-quality fingerprint images, such as finger scars or small foreign inter-
ferences causing ruptures of fingerprint ridge lines, noises caused by perspiration,
information lost from dry fingers, etc. In addition, excessive pressing pressure by
fingers can often cause fingerprint deformation and artifacts. There are a variety
of complications that can produce different forms of interferences to fingerprints.
This is exactly the reason why estimating orientation fields and enhancing images
for low-quality fingerprints are difficult. An effective algorithm that can adapt to all
low-quality cases is yet to be reported.

In order to improve the robustness of recognition and matching capabilities
for low-quality fingerprint images, it is necessary to effectively enhance the
images and obtain accurate corresponding orientation fields. Classic fingerprint
enhancement algorithms are based on prior orientation field estimations. They
usually first complete a fast estimation of the orientation field and then construct
a filtering algorithm with the estimated orientation field to enhance the image [2, 3].
These methods usually perform well but with an obvious limitation: an effective
enhancement of the image depends on an accurate estimation of the orientation
field, and an accurate estimation of the orientation field in turn often depends on
a well-enhanced image. For low-quality fingerprint images, errors in orientation
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Fig. 1 Examples of orientation field estimation by [6] in low-quality regions

estimation can often cause the subsequent enhancement to magnify the existing
artifacts, resulting in low recognition rate. In addition, an orientation field is not
only a starting point for image enhancement but also provides important information
for fingerprint matching [4]. At present, algorithms of orientation field estimation
are mainly based on the following computations: local gradient information [5],
fingerprint “ridge” and “valley” line extractions [6], structural tensor [7], Fourier
analysis [8], and so on. These methods can synthesize the local information of
the image to realize fast calculations of local texture directions and have certain
interference-resistant performance. However, it is easy for them to produce incorrect
orientation estimations in the cases where either texture information is missing or
noises or scratches are strong. To illustrate this, examples created by the method
described in [6] are shown in Fig. 1.

In general, orientation field estimation of a fingerprint image can be easily
affected by interferences such as noises and scars. In order to mitigate this problem,
some scholars have proposed to use a directional filter bank to enhance fingerprint
images and then locally analyze each of the enhanced images. Finally a final
enhanced fingerprint image is synthesized. The computational complexity of these
approaches increases as the number of filters increases, and the accuracy of the
synthesized enhancement image depends on proper parameter selections of the
directional filter bank as well as on the local analysis method used for each enhanced
image. For example, Oh SK et al. [9] proposed to first use a directional filter bank
(DFB) to process the fingerprint image and use the sum of the local grayscales as
a measure of local energy of the enhanced image and, finally, based on this energy
measurement, to obtain an orientation field estimation and a synthesis of the final
enhanced image. In their paper, there is no clear description of the construction
of the directional filter bank, and the definition of local energy also ignores the
frequency information of fingerprints. The robustness of their algorithm is not high.
Khan MAU and Khan TM [10] proposed the use of a three-level filter structure
to obtain enhanced images in different directions and then used the principal
component analysis (PAC) to enhance the sub-band directional images. However,
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Fig. 2 Flow diagram of our proposed process

their paper did not give details on sub-band energy calculation, and there was no
discussion of orientation field estimation.

In this paper, we first use a bank of eight directional diffusion filters to process
fingerprint images. We then analyze the localized spectral information of the eight
filtered images in the specific directions and get a quantitative measure of the
fingerprint texture clarity, that is, a measure of the fingerprint quality. Finally, we
obtain a robust estimation of local ridge/valley orientation and a final enhanced
image based on the quality measurement. The process is shown in Fig. 2.

2 Method

2.1 Directional Diffusion Filter

Nonlinear diffusion filtering is widely used in image denoising, edge extraction,
smoothing, and texture pattern analysis [11]. The filter is capable of preserving
edge information and at the same time connecting broken texture patterns [12]. It is
defined as follows:

∂u

∂t
= div (D∇u) (1)

where div is the divergence operator, u is the image, and D =
[
a b

b c

]
is the diffusion

coefficient matrix which controls the behavior of diffusion. This equation can be
rewritten as:

∂tu = ∂x
(
a∂xu+ b∂yu

)+ ∂y
(
b∂xu+ c∂yu

)

= a∂2
xu+ 2b∂xu∂yu+ c∂2

yu
(2)
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where ∂xu, ∂2
xu represents the first- and second-order partial differential operations

for the x direction of the image, respectively, and the same for the y direction.
The coefficient matrix D is generally a symmetric, positive semi-definite matrix

with two eigenvalues, λ1, λ2 and λ1 > λ2, and two corresponding eigenvectors, u1,
u2. The direction of the diffusion or smoothing is along u2.

Reversely, in order to make the direction of the diffusion in a specified direction,
one can construct a specific diffusion coefficient matrix D with the following
steps:

1. Specify the direction of the diffusion as θ , and construct two vectors that are
perpendicular to each other:

u1 =
[

cos (θ)
sin (θ)

]
, u2 =

[
sin (θ)
− cos (θ)

]
(3)

2. Specify two values as λ1 = s, λ2 = 1 − s, where s is set to be 0.99 in our
experiment.

3. A matrix D can be constructed to have u1, u2 as its eigenvectors and λ1, λ2 as
their corresponding eigenvalues.

We can then use Formula (2) to realize a diffusion filtering of an image in any
arbitrary direction by creating a proper diffusion coefficient matrix D. In order to
effectively denoise and connect broken texture patterns, it is usually necessary to
have many iterations in a numerical scheme of the Formula (2). The number of
iterations in this paper is set to be n = 40.

Selecting θ = [−90,−67.5,−45,−22.5, 0, 22.5, 45, 67.5] as the eight directions
for the diffusion filtering processing, we show an example of the filtering effect in
Fig. 3.

Fig. 3 Directional diffusion filtering. (a–h) are the diffusion-filtered image in the directions
θ = [−90, −67.5, −45, −22.5, 0, 22.5, 45, 67.5], respectively
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It can be observed that for each of the filtered images, local texture information is
effectively enhanced for some regions while the rest has been destroyed or blurred.
To be more specific, regions with texture orientations consistent with the diffusion
filter direction is effectively enhanced while regions with texture orientations
significantly different from it are blurred. Notice that effectively enhanced regions
in all eight images are complementary. We argue that the number of and spacing
between the directions of the filter bank seems reasonable, which provides a basis
for the subsequent synthesis of a completely enhanced image.

2.2 Quality Measurement Based on Spectrum Analysis

For a diffusion filter of a given direction, if the actual texture direction of a region is
in a close proximity with the filter direction, the region will be effectively enhanced,
broken texture patterns will be connected to a certain extent, and noises will be
effectively suppressed.

Assuming that a local region of a fingerprint can be effectively enhanced by
the diffusion filter in the direction of θ , an intensity profile in the direction
perpendicular to the diffusion direction is similar to a sinusoidal curve because of
the alternating ridge/valley pattern. When the resolution of the images is fixed, the
frequency of the intensity profile will also be stabilized within a certain range. For
example, fingerprint images obtained at 500dpi are considered to have a ridge/valley
alternating period of approximately 10 (pixels/cycles), and therefore the period
of the intensity profile is also about 10 (pixels/cycles). In order to reduce noise
interference, we use an oriented sampling rectangle instead of an oriented sampling
line and calculate the mean intensity in the direction of the filter to obtain a one-
dimensional intensity profile as illustrated in Fig. 4.

Figure 4 shows that the intensity profile of a clearly enhanced region is similar
to a sinusoidal curve, and the fluctuation amplitude is large. In poor quality regions,
intensity profiles are irregular, and the fluctuation amplitudes are small. We apply
fast Fourier transform (FFT) to the profiles and observe the spectrums as shown in
Fig. 5.

Figure 5a shows a very concentrated spectrum which has a peak at about
the sixth frequency component (about 1/13 (cycles/pixels)) which is close to
the statistically common value of the fingerprint ridge/valley frequency (1/10
(cycles/pixels)). Figure 5b depicts a relatively dispersed spectrum, and the energy
near the 1/10 (cycles/pixels) frequency component is not dominant. Therefore, the
quality of a fingerprint image can be measured in the frequency domain using these
characteristics. We propose the following algorithm:

1. A rectangular window of length 64 is sampled in the direction of the filter
centered at each pixel as shown in Fig. 6, and the directional intensity profile
is created as shown in Fig. 7.

2. A 64-point fast Fourier transform (FFT) is performed on the profile, and the
module of the transform is computed.
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Fig. 4 Rectangular sampling regions and corresponding intensity profiles. (a) Directional
diffusion-filtered image corresponding to θ = 67.5, (b) filtered image corresponding to θ = −67.5
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Fig. 5 Spectral analysis of intensity profiles. (a, b) correspond to the cases of (a, b) in Fig. 4
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Fig. 6 Directional diffusion-enhanced image with its quality image based on spectrum analysis

Fig. 7 Fingerprint image enhancement and direction field estimation framework and renderings
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3. Since the ridge/valley alternating period of 500DPI fingerprint images is typically
about 10 (pixels/cycles), in good quality areas, the spectrum is expected to have a
peak near frequency 10 (pixels/cycles). Taking into account the spectral leakage
of the FFT, the fence effect, and variations among fingerprint images, we measure
the maximum energy, that is, the maximum amplitude, between 1/16 and 1/7
(cycles/pixels) or between the fifth and the tenth frequency components, to reflect
the quality of the fingerprint. Figure 6 shows the effectiveness of the quality
image corresponding to the filtering result in a specific direction.

Calculated quality image based on the spectrum analysis contains the frequency
information, the energy information, and the directional information of the local
regions of a fingerprint image, which makes it a very reasonable and effective
fingerprint quality measurement.

2.3 Final Synthesis of Image Enhancement and Estimation
of Orientation Field

According to the quality image of each diffusion filtered image, the final enhanced
image can be obtained by selecting the best from the filtered images pixel by pixel.
At the same time, the direction of the selected diffusion filter for each pixel gives
the best estimation of the orientation for that pixel.

Figure 7 shows the entire process. The quality measurement based on spectrum
analysis given in this paper can efficiently quantify the local quality of the
fingerprint image. Based on these quality images, the filtered image pixels with the
maximum quality values for each pixel are taken to form the final enhanced image,
and at the same time, the orientation field is obtained by using the corresponding
diffusion filter directions.

Figure 7 also shows the effectiveness of the algorithm at the places where
excessive noises and significant scars exist. Any low-quality region in the image
can always be effectively enhanced by one diffusion filter in the right direction. Our
algorithm avoids the problem of directly estimating the orientation field of the image
because any direct estimation will be unstable in the presence of strong noise and
other significant interferences. The proposed method has excellent robustness for
images with low quality and is superior to the existing methods.

3 Results

As a comparison with the proposed algorithm, we present here a classical method
for orientation field estimation proposed by Kass and Witkin [5]. The main idea
of the method is to extract local gradient information. The specific steps are the
following:



Directional Diffusion Filter Bank and Texture Quality Measurement for Robust. . . 351

1. Divide the image into small blocks of size w × w.
2. Calculate a horizontal gradient ∂x(i, j) and a vertical gradient ∂y(i, j) at the pixel

(i, j).
3. Calculate the direction at (i, j) by the following equations:

[
Vx (i, j)

Vy (i, j)

]
=

⎡

⎢⎢⎢
⎣

i+w/2∑

u=i−w/2

j+w/2∑

v=j−w/2

(
∂2
x (u, v)− ∂2

y (u, v)
)

i+w/2∑

u=i−w/2

j+w/2∑

v=j−w/2
2∂x (u, v) ∂y (u, v)

⎤

⎥⎥⎥
⎦

(4)

θ (i, j) = 1

2
tan−1

(
Vy (i, j)

Vx (i, j)

)
+ π

2
(5)

where θ (i, j) is the estimated direction and θ (i, j) ∈ [0,π ). The value of w is important
to the algorithm. In general, a smaller block size tends to produce large error in areas
where noise and interference are strong, while a larger block size can get a relatively
accurate direction estimation. But in the region where there is a sharp change in the
directions of the texture, for example, near a core, a larger block size will result in
poor estimation.

Our algorithm does not exhibit such a problem. Although the iteration number as
a parameter replaces the block size, we can choose one iteration number to handle
all types of local areas of the fingerprint (Fig. 8).

Fig. 8 Compared with a classical algorithm
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4 Conclusion

In this paper, we observed risks in direct orientation field estimation for low-
quality fingerprint images and proposed a robust fingerprint image enhancement
and orientation field estimation method. Our work includes two main points.
First, we introduce the directional diffusion filtering method to form a filter bank,
which makes the design of the filter simple and effective. Second, we define a
quality measurement of filtered images based on spectrum analysis. This quality
measurement affords more robustness due to the consideration of both energy and
frequency information.

The experimental examples are taken from the FVC2004 database. The results
show that the algorithm is robust for low-quality images with strong noise and
significant interferences and is superior to the existing methods. In this paper, the
fingerprint images are used as examples, but obviously the algorithm is well-suited
for processing any type of images with directional textures.
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Sensing and Imaging Applications



Optimization of Event Processing
in RFID-Enabled Healthcare

Shanglian Peng and Jia He

1 Introduction and Motivation Example

With increasing smart devices introduced in healthcare monitoring applications,
it becomes possible to manage people and objects in real time in the Internet
of Things (IoT) era. Radio-frequency identification (RFID) is one of the most
popular techniques used in healthcare monitoring scenarios which can be used to
identify and monitor elderly people and patients, track hospital assets and medical
instruments, validate patients’ drug compliance, check status of operations, etc. [1]
In RFID-enabled healthcare applications, streams of data are collected in real time
and need to be processed within second response time in order to reduce risk of
decisions.

To ensure error-free decision-making in life-critical RFID-enabled monitoring
applications, a careful and fast responsive computing model is needed. Complex
event processing (CEP) [2], as a stream-based computing paradigm, has been widely
used in time-critical stream processing systems. Over RFID streams, queries of
interest are considered as complex patterns (or complex events) which can be
defined using SQL-style declarative [3] or rule-based languages [4]. To evaluate
these patterns (queries), a non-deterministic or tree-based model is needed which
could be running over the real-time RFID event streams [5]. However, existing
event detection engines are limited in optimization algorithms over RFID-enabled
healthcare applications [6, 7]. This paper is motivated by the need to efficiently
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Fig. 1 Motivation example of RFID-enabled healthcare monitoring

run event detection queries in a healthcare RFID application with specialized
optimization algorithms supported.

Motivation Example As shown in Fig. 1, in a RFID-enabled healthcare applica-
tion, suppose we want to monitor people and caregiver’s activity and movement in
order to make error-free decisions. Monitored people are attached with RFID tags,
the objects such as medicine, dosages, and instruments are also tracked by RFID
tags. Due to cost consideration, we assume to use passive tags. RFID tags are read
at fixed points and mobile readers. The readings of RFID tags, which we call simple
events (records), will be pushed to a local server. Event patterns (queries) can be
defined over these event streams. In a healthcare application, many activities need
to be monitored with specific workflow. For example, in Fig. 1, to track whether
a person in Room2 gets the right caring process, we can define an event detection
pattern query over the RFID streams with a declarative pattern definition language
proposed in [8, 9]:

Query 1:
PATTERN SEQ(Room r, ReceptionDesk rd,
! SEQ(SPD spd, Decontamination d, Packing p, Sterilization s, StoragePatch sp,

spd.id = d.id = p.id = s.id = sp.id),
Washing w, Operating o, rd.id=w.id=o.id)

Here, the control flow of RFID-based sterile processing [10] is shown in Fig. 2
which can be formulated as a subpattern in Query1 SEQ(SPD spd, Decontamination
d, Packing p, Sterilization s, StoragePatch sp, spd.id = d.id = p.id = s.id = sp.id).
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Fig. 2 The life cycle and workflow of surgical items in healthcare and hospital [10]

Query1 is a long sequence pattern query with a negated nested SEQ pattern
imbedded. Semantic meaning of Query1 is that a person moving from the room
area to the operation room should be followed by a reception desk reading and a
washing reading, and if the tools used for the operation are not (!) disinfected by
the flow in Fig. 2, then a complex event is triggered. The state-of-art complex event
processing (CEP) works [1, 2, 6] do not support such nested pattern evaluation. In
the Cayuga system [11], authors define composable queries with negation operator
which is only applied to a single atomic event type of SEQ pattern. NEEL [8, 9] aims
to solve nested pattern queries with query rewrite and some data structures, and their
works are the closest to the work in this paper. In this paper, we address the problem
of evaluate negation nested sequence queries in a healthcare context. The rest of
the paper is organized as follows: Section 2 introduces the event model. Section 3
presents the NFA-based evaluation model. In Sections 4, we present optimization
method of the evaluation model. Section 5 discusses experimental analysis of the
evaluation model, while in Section 8, we draw a conclusion of the paper.

2 Event Model

Event type is a specification or class label of objects that have the same semantic
meaning. Primitive event/atom event is an event which cannot be divided into
smaller events. Each primitive event has an event type. A complex event is an event
which is a combination of primitive events and/or complex events connected by
event operators. Event operators used in our event model include SEQ, Negation (!),
AND, and OR. An event instance denotes occurrence of a primitive or composite
event. Primitive event instance is denoted by lowercase letters, for instance, in
Query1 “s”. Event instance has temporal information denoted with start time and
end time. For a primitive event instance, start time equals to end time.
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Event type is denoted as Ei which includes attributes of the event instances of this
type. Primitive event types are predefined in the application domain. For example,
event type of decontamination event in Query 1 is denoted as “D,” while di ∈ Di

denotes di is an event instance of event type Di. Each event type has attributes which
is denoted as ei. attrj meaning the jth attribute of event instance ei [3, 8].

3 Evaluation Model

To evaluate a pattern query as described in Query, there are some models such as
tree-based model [12], petri-net-based model [13], rule-based model [14], and NFA-
based model [3]. We use the NFA-based model to evaluate pattern queries because
NFA is suitable for fast stream processing and is easy to be implemented.

For an event query defined with SASE language, the query is first transformed
into a query plan, and the query plan is then transformed into a NFA model. The
transformation of Query 1 is shown in Fig. 3.

In Fig. 3, the event pattern is first compiled into a query plan tree, event operators
are round nodes in the tree (SEQ in in Fig. 3.), and event types are transformed into
rectangular square nodes. Attribute constraints of different operators are attached to
corresponding nodes.

Fig. 3 Query plan and NFA of Query1
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Table 1 Running example of Query1 over a stream snapshot of a healthcare application

Timestamp Location TagID Timestamp Location TagID

R� ���� 9:05:28 13-04 RD 0007

W ���� 9:05:33 13-04 R1 0003

8:08:55 13-04 R2 0002 9:11:55 13-04 R2 0004

RD ���� W ����

8:24:35 13-04 RD 0003 O ����

9:00:01 13-04 RD 0002 9:32:01 13-04 O 0002

�:��:�� ��-��

�:��:	� ��-��

�:�	:	� ��-��


:��:�� ��-��


:		:	� ��-��

The query plan tree is then transformed into a NFA model. A start and end node
is constructed for a query as shown in Fig. 3. As there exists a Negation SEQ pattern
in Query, we construct a sub-NFA embedded into the overall NFA. A stack-based
data structure is used to store event instances of different event types. Events of the
same tag ID in different event types are connected with forwarded arrows.

Running Example For a given event stream snapshot as shown in Table 1, the
evaluation works as follows: For event types of R (R1-R8 in Fig. 1), each primitive
event should be stored in stack of type R in Fig. 3. In Table 1, caregivers with
TagID 0001, 0002, 0003, and 0004 are stored into a stack first, and then according
to the NFA model in Fig. 3, we should check whether there exist subsequent events
that fulfill the attribute constraint described in Query 1. This operation is checked
by traversing the corresponding stacks of RD, W, and O of the NFA and checks
the TagID attribute constraint over each stack. So we need to keep all the events
of types R, RD, W, and O in the evaluation process which would result in great
memory consumption and search operations. As shown in Table 1, the event with
TagID 0001 in red color would satisfy partial matches of Query 1; we need to check
whether the caregiver with TagID 0001 took the disinfected tools to people in the
operation room with sequence pattern SEQ(SPD spd, Decontamination d, Packing
p, Sterilization s, StoragePatch sp, spd.id = d.id = p.id = s.id = sp.id). This pattern
should be detected over workflow streams in Fig. 2; in this running example, we
omit the stream processing of this pattern.
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4 Optimization Algorithm

In the evaluation process of the NAF of an event query, we need to keep all the partial
matches of the subpattern until we slide forward to the next processing window.
With this mechanism, we need to keep partial matches in the stack and delete related
events which would not contribute to future matches. As stack operations are hard
to apply to batch deletions over the event streams, we propose to use an ordered B-
tree-based data structure to optimize the deletion operation of partial matches. The
ordered B-tree structure is shown in Fig. 4.

In Fig. 4, we only store a pointer in the stack data structure of NFA, and the event
data is stored in leaf nodes of a time-ordered B-tree data structure. Each TagID is
stored only once. Batch deletion of events from the memory works as the following
steps:

1. At the end of the sliding window, compute the time range which indicates the
start and end time of the window in the ordered B-tree.

2. For each TagID in the ordered B-tree, search for related stack, and search for the
subsequent events from the pointers between different types of stacks; output the
patterns that satisfy the query.

3. Delete the partial matches that do not generate matches in the time window, and
re-initialize the stack, and readjust the ordered window.

The event detection processing will move to the next sliding window after the
deletion process.

Fig. 4 Illustration of the ordered B-tree of Query1
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5 Experimental Analysis

In this section, we present experimental study of the event detection model with
a simulated RFID-enabled healthcare application. In the application, RFID read
interval is set to seconds that means we generate RFID data stream from different
RFID readers in seconds. We generate events in Fig. 1 with multithread styles to
simulate a practical scenario. The streams vary in hours long with different volumes.
Events of different event types fulfills a predefined normal probability distribution.

The simulation system is implemented in Visual Studio with C ++; data
generator is implemented with C#. The computer used in the experiment is with
i5 core processor and 4G memory. To compare the model and algorithm, we use
NEEL [9] as the benchmark.

We have tested response time and memory consumption of the algorithms over
different volume of streams with sliding window set 30 min. The results are shown
in Figs. 5 and 6.

From Fig. 5, we can see NEEL outperforms the NFA implementation of the
straightforward algorithm in this paper due to their optimization over a nested
pattern match, while with optimization method, our algorithm outperforms NEEL
as we delete partial matches in a batch manner.

Figure 6 is the memory comparison of different methods. As we can see, the
straightforward implementation algorithm of this paper uses less memory than other
methods. NFA + B-tree utilizes the most memory because it needs a B-tree to store
all events and the stack data structure to store relationship between different event
types. But considering time is critical in monitoring applications, we think it is
acceptable to use more memory to get a quick response.
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We test the event access number of the NFA-based methods to see the efficiency
of searching different data structures. The result is shown in Fig. 7.

From Fig. 7, we can see that B-tree-based method utilizes few searches than
the straight method because the batch operation reduces some event access in the
memory which would also reduce partial match management cost in a way.

6 Conclusion

In this paper, we present event detection method over RFID-enabled healthcare data
streams with NFA-based model. To enhance fast partial matches deletion and reduce
event access numbers, we utilize ordered B-tree to store the events. Experimental
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results show that while our optimization method consumes more memory, it can
provide fast response and utilizes few searches over streams. In the future, we would
like to optimize the query execution plan over multiple queries.
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Measurement of the Gas-Solid Flow
in a Wurster Tube Using 3D Electrical
Capacitance Tomography Sensor

H. Q. Che, J. M. Ye, W. Q. Yang, and H. G. Wang

1 Introduction

The bottom spray fluidized bed with a Wurster tube is widely applied for the pellets
coating due to its good performance on coating uniformity and efficiency [1]. The
Wurster tube is a vertical tube placed above the air distributor in the bed; the air
distributor was designed to control the airflow with a higher speed in the center
and a lower in the annulus zone. During coating, the pellets in the annulus zone
are pneumatically transported to the Wurster tube through the bottom gap between
the Wurster tube and air distributor. In the Wurster tube, the pellets interact with
the coating solvent from a bottom spray nozzle. The pellets are dried as they move
upward into a fountain zone; after that, the pellets fall back into the annulus zone
[2]. This circulation of solid particles is repeated until the desired coating film on
the surface of particles was achieved. The gas-solid flow characteristic is one of the
most important parameters which affects the coating quality.

Electrical capacitance tomography (ECT) gives an option to visualize the gas-
solid flow inside the Wurster-type fluidized bed. It has several advantages including
non-intrusive and simple structure, low cost, and fast imaging speed [3]. It has
been reported to be used in the monitoring of the fluidized bed with Wurster tube
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[4, 5]. However, only 2D images are used to investigate the flow characteristics
and limited information are given for the process control. Recently, 3D ECT has
been successfully applied in the measurement of gas-solid flow in fluidized beds.
Wang et al. [6] investigated the instantaneous properties of the shape of the jets in a
0.3 m bubbling gas-solid fluidized bed using the 3D electrical capacitance volume
tomography (EVCT). Mao et al. [7] investigated the gas-solid flow in the bottom
region of a circulating fluidized bed by four types of 3D ECT sensor. 3D ECT gives
more details on the flow characteristics than the traditional 2D images.

In this paper, a 3D ECT sensor with 16 electrodes is designed and installed in
the Wurster tube in a lab-scale fluidized bed. The 3D sensitivity maps are calculated
based on the structure of electrodes. Several sets of experiments are carried out with
different operational conditions. The objectives of this research are (1) to reconstruct
the 3D solid distributions inside the Wurster tube using a unique ECT sensor, (2) to
analyze the effect of operational parameters on the flow hydrodynamic behaviors,
and (3) to explore the factors which might affect the image quality from the 3D ECT
sensor.

2 Experiment

2.1 Experimental Setup

The lab-scale fluidized bed with Wurster tube is depicted in Fig. 1. The main frame
of the fluidized bed consists of a plenum in the bottom, a conical chamber with
a height of 350 mm, an expansion chamber with a height of 500 mm, and a filter
on the top. The Wurster tube is made of stainless steel, and the diameter and the
length of the Wurster tube are 65 and 150 mm, respectively. The fluidization air was
supplied by a root blower, and the airflow rate ranged from 0.89 to 3.50 m/s. 3 kg
sugar pellets with the mean diameter of 800 μm and density of 900 kg/m3 was used
as the bed material. All the experiments were conducted without solution spraying,
and the bottom nozzle was removed.

2.2 ECT Sensor Design and Image Reconstruction

The 3D ECT sensor totally has 16 electrodes, and the electrodes are placed in dual
planes in the inner wall of Wurster tube as shown in Fig. 2. The Wurster tube is made
of stainless steel to act as a shielding layer. The dual planes are located 1.5∼6.5 cm
and 8.5∼13.5 cm above the bottom of the Wurster tube, respectively. The measured
volume is the region surrounded by the electrodes, and it has a height of 12 cm. An
AC-ECT system with 16 channels from ECT Instruments Ltd., UK, is connected
to the ECT electrodes. During the measurement, the electrodes are excited one
after the other and the capacitance between the excited electrode and the remaining
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Fig. 1 A lab-scale fluidized
bed with Wurster tube

Fig. 2 Structure of the 3D ECT sensor. (a) Overall view. (b) Cross sections

ones is measured. The total number of independent measured capacitances is 120 in
one frame.

There are two major computational problems in ECT: the forward problem and
the inverse problem. The forward problem is to determine the capacitances from
the permittivity distribution, and the inverse problem is to determine the permit-
tivity distribution from capacitance measurements [8]. For forward problem, the
capacitance between electrode pairs can be considered as a function of permittivity
distribution.

C = ξ (ε) (1)
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Fig. 3 Voxels in the sensing
region (952 × 50 voxels)

where C is the capacitance between electrodes and ε is the permittivity of object.
The change in capacitance with the perturbation of the permittivity distribution is

�C = dξ

dε
(�ε)+ o (�ε) (2)

where o(�ε) represent higher-order terms of �ε, and they are usually small. By
neglecting o(�ε), Eq. (2) is simplified by

�C = s �ε (3)

where s = dξ
dε

is the sensitivity of the capacitance to the changes in permittivity.
In order to visualize the permittivity distribution, the measured volume is

discretized into voxels as shown in Fig. 3. Based on Eq. (3), the discrete form of
the forward problem is

λ
M×1

= S
M×N G

N×1
(4)

where λ is the normalized capacitance vector; S is the sensitivity distribution matrix,
giving a sensitivity map for each electrode pair; G is the normalized permittivity
distribution, i.e., the gray level of voxels for visualization; and M and N are the
number of independent electrode measurements and the number of voxels in the
sensing area, respectively.

The sensitivity maps were calculated by COMSOL Multiphysics™ software
based on the finite element methods (FEM). The sensitivity maps are calculated
as [9]
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Sij (P ) = −
∫∫∫

P

Ei (x, y, z)

Vi
· Ej (x, y, z)

Vj
dxdydz (5)

where Sij(P) is the sensitivity value between the ith and jth electrodes over the voxel
P and Ei(x,y,z) is the electric field vector when the ith electrode is excited with a
voltage of Vi.

The normalized capacitance vector in Eq. (4) is defined as

λ = C − CL

C − CH
(6)

where C is the measured capacitance vector and CL and CH are the low- and high-
calibration capacitance vectors, respectively.

If the inverse of S existed in Eq. (4), the inverse problem, i.e., 3D image
reconstruction, could be solved by

G = S−1λ (7)

However, the inverse of S does not exist, and Eq. (7) is not applicable. The liner
back projection (LBP) algorithm [9] is one of the solutions of the inverse problem;
it gives the fastest imaging speed. LBP algorithm is written as

G = STλ (8)

Another commonly used algorithm is Landweber iteration [10]; it is slower but
may give better image quality. It is written as

Gn+1 = Gn + α · ST · (λ− S ·Gn) (9)

where α is the step length, and it is decided by the method in [11]. Normally, the
initial value of G, i.e., G0, is obtained by Eq. (8).

3 Results and Discussion

3.1 3D Sensitivity Map Analysis

Figure 4 shows the iso-surfaces of sensitivity maps between different electrode
pairs. As can be seen, the map has high sensitivity between adjacent electrodes,
such as electrode pairs E1–E2 and E1–E9 (in the order of 2.5 × 10−4), and low
sensitivity between opposing electrodes, such as E1–E5 and E1–E13 (in the order
of 1.0 × 10−4). Also, the symmetric feature can be seen clearly in Fig. 4 for the
opposite electrodes among different planes.
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Fig. 4 Iso-surfaces of normalized sensitivity distributions between typical electrodes pairs (the
sensitivity value of the iso-surfaces is 2.5 × 10−4 for red color and 1.0 × 10−4 for blue color)

3.2 Different 3D Visualization Methods

Figure 5 gives the 3D iso-surfaces and 3D slices of two typical of flow structures
inside a Wurster tube. The value of iso-surfaces is 0.3 for these figures. The 3D slices
are stacked up by several 2D images at different cross sections. Comparing the iso-
surfaces and slices, it can be found that the flow behaviors can be more clearly
recognized by the slices, especially for the dispersed flow case. The following
discussion will be based on the slices.

3.3 Static Tests of ECT Sensor

To validate the measurement of 3D ECT sensor, static tests were carried out before
the dynamic tests. Two parameters are introduced to assess the measurement accu-
racy of ECT sensor and compare the different imaging algorithms: (1) correlation
coefficient (Ccoef) and (2) signal-to-noise ratio (SNR). They are defined as follows:
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Fig. 5 Different 3D
visualization methods
(iso-surface value = 0.3)

Correlation coefficient:

Ccoef =

N∑

i=1

(
Ĝi − Ĝ

) (
Gi −G

)

√
N∑

i=1

(
Ĝi − Ĝ

)2 N∑

i=1

(
Gi −G

)2
(10)

Signal-to-noise ratio:

SNR = 20 lg

(
Signal

Noise

)
= 20 lg

√√√
√

∑F
i=1 C

2
i

∑F
i=1

(
Ci − C

)2 (11)

where G is the measured permittivity distribution, Ĝ is the true permittivity
distribution of the sensing area, Ci is the mean value of measured capacitances of
the ith frame, and F is the total frames of measurement.

Figure 6 shows the true solid distributions and the reconstructed images of static
tests, and totally four typical solid distributions are chosen for validation. Table 1
summarizes the Ccoef and SNR for different distributions. As can be seen from both
the figure and the table, the Landweber iteration gives higher Ccoef values and better
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Fig. 6 Image reconstruction for static measurements

image reconstruction performance than LBP method. From the results of Landweber
iteration, the image quality of “half” and “core” types are better than “annular”
and “near-wall” types. In addition, the image quality turns worse with the iteration
number increases from 5 to 10; this is due to the semi-convergence characteristics of
Landweber iteration [12]. The SNR values in Table 1 show that the noise in present
research is very low compared with the ECT sensor in reference [13]. The main
source of the noise in ECT measurements is the parasitic capacitance between the
shielding (Wurster tube) and electrodes; the static electricity of pellets generated by
flow may also affect the capacitance values. Hence, proper grounding and shielding
are crucial for the measurement.

It can be concluded that Landweber method with five iterations is the proper
option for 3D image reconstruction in this research, and the following dynamic
measurements are based on that. More information about the static validation of
3D ECT sensor can be found in reference [9].
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Table 1 Ccoef and SNR for static tests

Distribution Half Core Annular Near wall

Ccoef LBP 0.96 0.63 0.68 0.77
Iterations = 5 0.90 0.86 0.72 0.85
Iterations = 10 0.73 0.76 0.45 0.56

SNR 50.01 67.56 61.12 59.31
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Fig. 7 Normalized capacitances with the air rate. (a) hgap = 10 mm. (b) hgap = 20 mm

3.4 Capacitance Analysis in Dynamic Tests

To analyze the measured capacitances of dynamic tests, the capacitances between
four types of electrode pairs are selected for comparison, i.e., adjacent electrode
pairs in the same plane, opposite electrode pairs in the same plane, adjacent
electrode pairs in different planes, and opposite electrode pairs in different planes.
For example, the four types of electrodes can be E1–E2, E1–E5, E1–E9, and E1–
E13, respectively.

Figure 7 shows the change in normalized capacitances with the airflow rate; the
capacitances are the averaged values of the same type. The capacitances decrease
with the increase in airflow rate, which is induced by the decrease in the solid
concentration inside the sensing region. It should be noted that for the case of
hgap = 10 mm, the capacitance value from adjacent electrode pairs is obviously
lower than the opposite ones, which indicates the near-wall solid concentration
decreases more dramatically. This phenomenon is related to the gas-solid flow
regime inside the Wurster tube, which will be discussed in the following parts.
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Fig. 8 3D slices of solid distribution with different air rates (hgap = 10 mm)

3.5 3D Solid Distribution with Different Operating Conditions

In the bottom of the bed chamber, the particles flow from the annulus zone to the
coating zone though the gap between the Wurster tube and air distributor, and thus
the height of that gap (hgap) plays an important role for the gas-solid flow inside the
Wurster tube. The 3D slices of the solid distribution with the case of hgap = 10 mm
are given in Fig. 8. As can be seen, for the flow rate of 0.89 and 1.18 m/s, the flow
structures are unsteady and difficult to qualify. With the flow rate increased up to
1.71 m/s, the solids are mainly concentrated in the central region of the tube as
“core” flow regime. With further increasing the flow rate, the solid concentration
decreased gradually, but the flow is still in “core” regime.

Figure 9 shows the 3D slices for the case of hgap = 20 mm. Compared with the
case of hgap = 10 mm, the solid flow is more complex. It can be observed that the
flow includes two typical regimes, i.e., the “core” flow regime in the bottom and
dispersed flow regimes in the upper.
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Fig. 9 3D slices of solid distribution with different air rates (hgap = 20 mm)

Figure 10 gives the cross-sectional slices in different heights of the Wurster tube.
From these slices, it can be clearly seen that the gas-solid flows in the Wurster
tube are all initially “core” flow. However, the profile of the “core” of the case of
hgap = 20 mm is irregular; it is actually in an unsteady state and turns dispersed
with further moving upward. In contrast, for the case of hgap = 10 mm, the “core”
profile is uniform and keeps all through the tube. It should be noted from Fig. 10
that the slices in the middle position of tube are obviously distorted, and the gray
level is larger than other slices. It is likely that this feature is image artifacts and not
a true representation of the distribution of the solids. One of the possible reasons is
the unequal distribution of sensitivity strength in that region [14]. As can be seen
from Fig. 4, the sensitivity in that region is induced by the electrodes from different
planes, and iso-surfaces are highly distorted.
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Fig. 10 Cross-sectional slices along the vertical direction of the Wurster tube

3.6 Averaged Solid Concentration

The average solid concentration of β in the measuring region can be calculated
based on the reconstructed image from ECT by

β = ϑ ·

N∑

i=1
Gi (x, y, z) · voli (x, y, z)

N∑

i=1
voli (x, y, z)

(12)

where vol(x,y,z) is the volume of the voxel, N is the total number of voxels in the
sensing region, and ϑ is the loosely packed voidage of the solid, and it is estimated
to be 0.62.

Figure 11 shows the variation in the average solid concentration with fluidization
flow rate. The solid concentration decreases with the increase in the air rate. In
addition, the solid concentration for the case of hgap = 10 mm is lower than for the
case of hgap = 20 mm. One possible reason is that the smaller gap height blocks the
solid flow into the Wurster tube.
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Fig. 11 Averaged solid concentration with different air rates

3.7 Time-Series Properties of Gas-Solid Flow

Figure 12 gives several 3D slice sequences in a continuous period with different
operational parameters; the time interval between adjacent images is 1 s. As can be
seen from these figures, the gas-solid flow tends to be unstable with the increase of
flow rate, i.e., from 1.71 to 3.50 m/s, and the process is easy to control in terms of
solid homogeneous distributions.

To quantify the intensity of solid flow fluctuation, the coefficient of variation
(CV) of solid concentration of the sensing region is used. The definition of CV is
written as

CV =
√√√√ 1

L− 1

L∑

n=1

(x(n)− x)2/x, x = 1

L

L∑

n=1

x(n) (13)

where x(n) is the measured time-series concentration signal and L is the length of
the signal. Generally, a low CV value would indicate that the flow is steady.

Figure 13 gives the time-series curves of the averaged solid concentration of all
experiments. Figure 14 compares the CV value of these cases. The CV increases
with the increase of air rate, and the CV for the case of hgap = 10 mm is lower than
that for the case of hgap = 20 mm. It can be concluded that the gas-solid fluctuation
inside the Wurster tub is enhanced with the hgap changes from 10 mm to 20 mm.
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Fig. 12 3D slices of image sequences in a continuous period (the time interval between adjacent
images is 1 s). (a) ufl = 1.71 m/s. (b) ufl = 3.5 m/s
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4 Conclusion

This paper presents an approach to visualize the 3D gas-solid flow structure inside
a Wurster-type fluidized bed using electrical capacitance tomography. The main
conclusions are given as follows:
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1. The 3D ECT sensor with 16 electrodes in a dual plane is suitable for the visu-
alization of gas-solid flow in a Wurster-type fluidized bed, and the Landweber
algorithm is the proper option for 3D image reconstruction.

2. For the case of hgap = 10 mm, the solids are mainly concentrated in the center
of the tube, and the distribution keeps all through the tube. For the case of
hgap = 20 mm, the gas-solid flow turn dispersed with increase in height.

3. With hgap changes from 10 to 20 mm, the solid concentration in the Wurster tube
increases; meanwhile, the gas-solid fluctuation is enhanced.

4. The image quality in the region among electrode planes is low, and it is possibly
induced by the unequal distribution of sensitivity strength in that region.
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Investigation the Application of Electrical
Capacitance Tomography on Pipe Flow
with Thick Wall

Shiguo Liang, Jiamin Ye, Hanqiao Che, and Haigang Wang

1 Introduction

Electrical capacitance tomography (ECT) is a relative mature visualization method
applied in industrial process. ECT is attracting increasing attention with respect
to the merits compared with other process tomography techniques, such as non-
intrusive, non-radiative, and fast imaging speed [1]. ECT is widely used in the
measurement of multiphase flow, i.e., gas-solid flow in fluidized beds [2, 3], gas-
liquid flow in pipelines [4], and pharmaceutical fluidized bed for pellet coating and
drying [5].

There are two challenges in the investigation and application of electrical
capacitance tomography in real industry process. The first one is imaging the
process with the wall thickness effect. Another one is imaging the process with
high permittivity ratio media such as tap water and air. The stray capacitance and
ill-posed problem becomes obvious when it comes to thick pipe and high dielectric
constant materials. Yang [6] studied the effect of electrode number on ECT sensor
with small pipe diameter and thick pipe wall. Based on an eight-electrode sensor on
the coal delivery system, the sensitivity maps and image for different flow patterns
were analyzed. In [7], ECT sensor was utilized on a bubble column apparatus to
research the flow recognition in water.
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The aim of this research is to study the effect of wall thickness on the image
quality and sensitivity distribution. Simulation results will be given and analyzed.

2 Principal of ECT

Figure 1 shows the eight-electrode ECT sensor for the current study. The inner
diameter of the pipe is 50 mm, and two kinds of pipe thickness are used for
comparison, namely, 2 and 12 mm. To investigate the wall thickness effect, the
relative pipe thickness is introduced, which represents the ratio of the pipe thickness
and the outer radius of the pipe. The ratio is defined as

δ = Ro − Ri
Ro

× 100%. (1)

Thus, the relative pipe thickness is 7.41% for the thin pipe and 32.43% for the
thick pipe.

To visualize the objects in the sensing area, the permittivity vector is usually
calculated with certain algorithms, the so-called inverse problem in ECT. Linear
back project (LBP) [8] is the widely used image reconstruction algorithm, which
can be expressed as

g = ST · λ (2)

where g is the gray level matrix, i.e., the normalized permittivity vector, λ is the
normalized capacitance vector, and S is the sensitivity matrix in the sensing area.

With Landweber iteration, the quality of the reconstructed image can be
improved. The Landweber iteration algorithm can be expressed as

g(n+1) = g(n) + α · ST ·
(
λ− ST · g(n)

)
(3)

where α is the step length and the superscript n is the iteration number.
The LBP algorithm is non-iterative, simple, fast, and thus appropriate for online

image reconstruction. The sensitivity matrix can be calculated as [9],

Sij (x, y) = −
∫ ∫

p(x,y)

∇ϕi (x, y)
Vi

· ∇ϕj (x, y)
Vj

dxdy (4)

Fig. 1 ECT sensor with
eight-electrode
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screen
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where Si,j(x,y) is the sensitivity value between the ith electrode and the jth electrode
in the pixel of (x,y) and ϕiis the potential distribution when the ith electrode is
energized with voltage Vi .

The normalized capacitance vector can be written in the following expression:

λ = Cm − Cl

Ch − Cl
(5)

where Cm is the measurement capacitance and Ch and Cl represent the calibration
capacitances when the pipe is filled with high permittivity and low permittivity
medium, respectively.

3 Results and Analysis

The capacitance and sensitivity are two key factors for image reconstruction. In
the following parts, the analysis of capacitance and sensitivity will be given and
analyzed.

3.1 Capacitance

Figure 2 shows the capacitance distribution for annular flow distribution, where
Ch is the capacitance when the sensor is filled with high permittivity media, Cl
with low permittivity media, Cm the annular flow pattern, and λ is the normalized
capacitance. Figure 2a, b is the capacitances for the relative pipe thickness of 7.41%.
For the sensor with thin pipe, the measurement result indicates that the Cm is
between Ch and Cl, except the capacitance for adjacent electrodes, i.e., those above
15 pF. For the sensor with relative pipe thickness of 32.43%, Cl is higher than that of
high permittivity media. The results clearly show the difference between the thick
and thin pipe.

3.2 Sensitivity Analysis

Figure 3 shows the sensitivity maps of different electrodes for the sensor with the
relative pipe thickness of 7.41% and 32.43%, respectively. It is clear that the sensor
with thin wall has higher sensitivity than that with thick wall. The sensitivity maps
among different electrodes both for thin and thick wall have the same distributions,
i.e., high sensitivity closed to the wall region and low value in the central area.

To further compare the differences of the sensitivity in the sensor with thin and
thick wall, the sensitivity values along the dimensionless radial position (i.e., r/R)
of the sensor are given in Fig. 4. In Fig. 4, the value of 0.5 indicates in the center,
and 0, 1 indicate the positions closed to the wall.
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Fig. 2 Capacitances of annular flow distribution. (a) Thin wall. (b) Thin wall. (c) Thick wall. (d)
Thick wall

For the sensitivity of adjacent electrodes, i.e., S1,2, along the radial position, the
sensitivity value with thick wall is lower than that with thin wall for the position
far from the electrode (0–0.8), while for the position near the electrode (0.8–1),
sensitivity value with thick wall is higher than that with thin wall. In other words,
the area near the electrodes is more sensitive for the sensor with thick wall.

For S1,3, the radial position is smaller than 0.87, the sensitivity value of sensor
with thin wall is higher, after 0.87, the value goes down so rapidly that it is lower
than the sensitivity value of sensor with thick wall.

For the sensitivity of opposite electrodes, S1,5, along the x direction, the
sensitivity value is minimum at the radial position of 0.5, which means the core
area of the sensor is less sensitive. Besides, it can be seen in the Fig. 4c that the
sensitivity value of sensor with thin wall is larger than thick wall in x direction. Yet,
along the y direction, the sensitivity value is maximum at the radial position of 0.5.
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Fig. 3 Sensitivity maps for the sensor with thin and thick wall

3.3 Image Reconstruction

Figure 5 shows the real distribution of flow patterns and the corresponding recon-
structed images for 7.41% and 32.43% thick pipe. It is noted that the capacitances
with adjacent electrodes are rejected. The flow patterns are annular flow, bubbly
flow, core flow, and stratified flow, represented and named as AF, BF, CF, and SF
accordingly.

It can be seen from Fig. 5 that the reconstructed images of four flow patterns
can reflect the real distributions well for the sensor with the relative pipe thickness
of 7.41%. However, for the sensor with the relative pipe thickness of 32.43%, the
images are seriously distorted, only the stratified flow can be reconstructed properly.

The capacitance distributions indicate that there is great difference between the
thin and thick wall for the adjacent electrodes. One possible method is to reject the
adjacent measurements of capacitance, and the reconstructed images are given in
Fig. 5, as well.

It can be seen from Fig. 5 that the quality of the reconstructed images has been
improved compared to the image in sensor with relative pipe thickness of 32.43%.
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However, in terms of image reconstruction and normalized capacitance method, it
needs to be investigated further to give high-quality images for the application of
ECT in real industry pipeline process with thick wall.

Figure 6 shows that the images reconstructed with Landweber get improved
for most images for both the thin wall and thick wall, compared with the images
reconstructed with LBP. Besides, for the sensor with thickness of 32.43%, the
images without adjacent capacitance are better than those with adjacent capacitance.

3.4 Relative Image Error

Figure 7 shows the relative image error of the four flow patterns compared to the
real distributions. As shown in Fig. 7, the relative image error for the pipe of 32.43%
is 40–60% larger than that of 7.41%. Except the stratified flow, the relative image
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Fig. 5 Image reconstructed with LBP for different flow patterns

errors are 80% for the thick pipe. After the rejection of the adjacent capacitance, the
relative image error drops 18–40%.

Figure 8 is the relative image error of the images reconstructed with Landweber.
It can be seen that the relative image error is smaller when the Landweber algorithm
is used, especially for the sensor with thickness of 32.43%. The error can also drop
down when the adjacent capacitance is rejected.
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4 Conclusions

This paper presents the application of electrical capacitance tomography in the pipe
with the relative wall thickness of 7.41% and 32.43%. The research is based on
numerical simulation. The flow patterns used for the simulation include annular
flow, bubbly flow, core flow, and stratified flow. From the capacitance analysis of
the annular flow, the main difference of capacitance in thick pipe is the adjacent
capacitances. For 32.43% thick pipe, the low calibration capacitance is larger than
the high calibration capacitance, which leads to the negative value of normalized
capacitance. From the sensitivity analysis, it can be seen that the sensitivity maps in
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Fig. 8 Relative image error of the images reconstructed with Landweber for different flow patterns

the thick pipe are less sharp. The quality of image reconstructed in thin pipe is high,
while the images in thick pipe are seriously distorted. The reconstructed images are
improved greatly without the adjacent capacitance. The relative image error drops
18–40% compared the image reconstructed from full measured capacitance, when
LBP is used for reconstruction.
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A New Method for Differential
Phase-Contrast Imaging Without Phase
Stepping

Jingzheng Wang and Jian Fu

1 Introduction

X-ray imaging is a popularly utilized tool in medical diagnosis and industrial
nondestructive testing. X-ray imaging, with the absorbing information of the
materials, cannot get good contrast when the sample is composed of elements of low
atomic number, like soft tissues and organic materials. As X-rays are phase-shifted
more than absorbed, phase information of these materials can further improve the
imaging contrast [1–3]. So far, there are five common methods to retrieve phase
information, namely, crystal interferometer-based imaging [4], propagation-based
imaging [5, 6], diffraction-enhanced imaging [2, 7], grating-based interferometer
imaging [8] (GBI), and speckle-based imaging [9, 10].

Grating-based interferometer imaging, which is also commonly called differen-
tial phase-contrast imaging (DPCI), has attracted many investigators in the recent
years [11–22]. Conventional DPCI needs phase stepping procedure to retrieve the
phase information, which is costing too much time during the scanning. Yongshuai
Ge designed a new grating to replace the conventional absorption grating [23],
which can achieve a single-shot image without phase stepping. Peiping Zhu used
a method called “reverse projection” to acquire phase signal without phase stepping
[24], but it needs the sample to rotate to a symmetrical position for resampling.
Zanette demonstrated a method called interlaced stepping, which combined CT
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rotation step and phase step to reduce the scanning time [25]. Xin Liu proposed a
method that needs movement of the phase grating [26]. It needs twice the movement
of the phase grating and can easily retrieve the phase signal with good spatial
resolution.

In this work, we present another solution to retrieve phase signal of the sample
without phase stepping by designing a new absorption grating. Each column is
the same as the conventional one, but it is shifted between adjacent columns. An
experimental data supports this idea.

2 Methods

2.1 Configurations

This method we implement is based on the Talbot-Lau-type interferometer. Figure
1a depicts the DPCI setup of the conventional method. An X-ray beam generated by
a laboratory tube is separated by grating G0 as several coherent linear X-ray sources.
All X-ray beams penetrate the sample and then go through the phase grating G1 and
the absorption grating G2. Finally, an X-ray pattern is recorded by the detector that is
behind the G2. During this process, the G2 need to be moved M times transversely,
which is called phase stepping procedure. And the detector captures projections
after each movement of the G2 (Fig. 1c).

Figure 1b shows the configuration of the proposed method, which is almost the
same in the setup as the conventional method. The only difference between these
two methods is the G2. The proposed method just needs exposure once without
phase stepping by using a new absorption grating G2 we designed (Fig. 1e), whereas
the conventional method needs exposure several times with the phase stepping
procedure at the G2.

2.2 New Grating Design

The main idea of this new grating is that intensity of four adjacent pixels in a row of
a detector can be considered as the intensity of one detector’s pixel in four different
phase stepping positions of the normal G2, which means it only needs one exposure
to retrieve phase-contrast signal. Any two adjacent grating columns have a relative
offset of d, where d is 1/M of g2 and g2 is the period of absorption grating (M = 4
in this work). There are four pixels in the new G2 as an example, and pixel NO.
i (i = 1, 2, 3, 4) in new grating is the same as in normal G2 in position NO. i. If
considering the similarity among the intensity of these four adjacent pixels, then,
pixel NO. i of new grating is the same as pixel NO. i of normal grating in position
NO. i (i = 1, 2, 3, 4). It can be described mathematically as Eqs. 1–4:
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Fig. 1 DPCI configurations. (a) Shows the configuration of the conventional method, which needs
a phase stepping procedure. (b) Shows the configuration of the proposed method, which does not
need a phase stepping procedure by using a new grating. (c) Shows the phase retrieval steps of the
conventional method. (d) Shows the grating comparison between the conventional method and the
proposed method. (e) Shows the phase retrieval steps of the proposed method

I1 (x, z) = I (x − 1, z) , (1)

I2 (x, z) = I (x, z) , (2)

I3 (x, z) = I (x + 1, z) , (3)

I4 (x, z) = I (x + 2, z) , (4)

where I with subscript is intensity in four different positions in the conventional
method and I without subscript is the original intensity of single-shot image taken
from detector by the proposed method. Then, using the Fourier analysis method [23,
27, 28] to retrieve the phase-contrast signal.

For example, if there is a single-shot image captured by the detector, then we pick
up four adjacent pixels in a row, marked as (a), (b), (c), and (d). Thus, these four
pixels’ values can be regarded as four values of pixel (b) in four different positions
in the conventional method by Eqs. (1)–(4). Next, do signal extract procedure by a
normal way. In addition, this method is just like a template, which slides in a row,
and each pixel’s phase signal can be calculated.
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3 Experiments

An experiment was implemented by the conventional method. The image size is
307× 652. The grating is stepped four times. The heights and periods of the grating
structures were 35 and 10 μm for the source grating G0, 40 and 3.2 μm for the
phase grating G1, and 25 and 4.8 μm for the analyzer grating G2, respectively. The
source grating was placed 31 mm from the X-ray tube. The distance between G0
and G1 was 300 mm, whereas G1 and G2 were 145 mm apart, corresponding to the
first fractional Talbot distance.

Due to the lack of designed grating, the acquired projection by the proposed
method is made from the projections captured by the conventional method, which
makes the projection perform like captured by using new grating, so that new grating
we demonstrated can replace the phase stepping in the conventional method. We
assume that the four projections in conventional method are marked as P0, P1,
P2, and P3, and the projection in proposed method is marked as Pnew. Then we
set the value in column c of proposed projection to j-th projection of conventional
method in the same position, where j is the remainder of c/4. This procedure can be
mathematically described as:

Pnew (x, z) = Pc (x, z) , c = xmod 4, (x = 0, 1, 2, . . . ,W) , (5)

where W is the width of the projection and c refers to which projection in the
conventional method.

And based on the projection image, we can extract signals shown in Fig. 2.
The results of proposed method successfully show the structure of the sample
compared with the conventional method. The intensity profile along the red line
marked in Fig. 2 was plotted in Fig. 3, which shows the phase intensity of proposed
method is along the conventional method. It proves that the image retrieved
by proposed method is corresponding to conventional method. Furthermore, the
proposed method provides a highly efficient way to retrieve phase-contrast images.

4 Conclusion

In this work, we demonstrate a new method by designing a new absorption grating,
which effectively extracts the signals of sample and greatly reduces the exposure
time and radiation dose as well. The experiment data in this work is taken from the
conventional method, which can prove our idea in the rough. As the feasibility of
the proposed method is proved, a proposed grating needs to be made, and another
experiment using new grating needs to be carried out in the later work.
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Fig. 2 Experiment results. Three signals of sample by the two methods

Fig. 3 Intensity profiles along the red lines in Fig. 2
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Automatic Liver Tumor Segmentation
Based on Random Forest and Fuzzy
Clustering

Jun Ma, Yuanqiang Li, Yuli Wu, Menglu Zhang, Jian He, Yudong Qiu,
and Xiaoping Yang

1 Introduction

Accurate segmentation of the primary or secondary liver tumor in computed
tomography (CT) has been an essential step to create precise liver tumor models for
pre-procedural planning and precise treatment. Nowadays, two kinds of approaches
have been mainly used in clinical workflow. One kind of approaches is manual
segmentation. Although this method is relatively reliable, it is very labor-intensive to
manually segment the whole slices of 3D CT images, and the segmentation results
are subject to inter- and intra-observer variability. The other kind of approaches
is interactive or semiautomatic segmentation. But the user assistance is still time-
consuming for CT images with multiple tumors. Automatic segmentation is the most
promising technique to handle the above problems. However, implementation of
accurate and robust automatic segmentation for 3D liver CT datasets is challenging
because of the high anatomical variability in patients, low signal-to-noise ratios,
and similar intensities between targets and backgrounds (especially in non-contrast-
enhanced CT images).

Almost all of existing methods typically employed semiautomatic methods for
liver tumor segmentation. Häme et al. proposed a semiautomatic framework based
on nonparametric intensity distribution estimation and a hidden Markov measure
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field model for liver lesion segmentation [4]. Linguraru et al. used shape analysis
to segment liver at first, and then graph cuts were employed to segment hepatic
tumors based on shape and enhancement constraints [7]. Level set methods were
also modified to segment liver lesions [5, 6].

In this paper, we propose a novel framework to segment liver tumor from CT
scans based on random forest and fuzzy clustering. For evaluation, segmentation
experiments have been conducted on the liver tumor segmentation challenge testing
datasets, resulting in promising results.

2 Data

CT scans provided by the challenge organizer were acquired from various clinical
sites around the world [2]. Cases include a variety of liver tumors during clinical
practice. The training and testing datasets contain 130 and 70 CT scans, respectively.

3 Method

The proposed automatic liver tumor segmentation consists of two phases: prepro-
cessing and segmentation of liver tumor. In the preprocessing phase, the curvature
filter is introduced to remove noise, and spatial regularization is employed by a
trained mask. In the segmentation phase, we build a strong feature pool by features
extraction and selection, and then efficient random forests are trained to classify
each pixel into three categories: the liver, the tumor, and the background. After that,
fuzzy clustering and morphological operators are used to deal with the under- and
oversegmentation. A detailed description of each phase is given in the following
sections.

3.1 Preprocessing

CT images are inevitably affected by noise in the acquisition process. In order
to reduce the influence of noise over the course of feature extraction, we must
denoise on the volumetric CT images. Even though many filtering techniques can be
employed for CT images denoising, they are in general incapable of preserving the
edges. The curvature filter removes the noise efficiently without generating artifacts
and has no parameter to be tuned. Thus, we first introduce the curvature filter [3] to
remove noise in preprocessing step (see Fig. 1b).

Moreover, in order to constrain the segmentation in a specific region and
eliminate the interference of surrounding tissues, we employ a spatial regularization
strategy, which is motivated by one of the “winning” algorithmic properties in
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Fig. 1 Two main steps of the preprocessing. (a) Input image. (b) Curvature filter. (c) Liver mask.
(d) Spatial regularization

BRATS [8]. Specifically, we make a mask for spatial regularization by taking the
union of all the liver ground truth in the training dataset. By doing this, we can
guarantee that the liver tumor is in the mask (Fig. 1c). Meanwhile, the computation
cost can be reduced by segmenting only in the mask (Fig. 1d).

3.2 Random Forest Training

After preprocessing, we first classify the pixels into three categories, the liver, the
tumor, and the background, by a statistical learning method. The basic assumption of
all statistical learning methods is that the data have certain statistical rules. In LiTS,
CT images vary greatly because the dataset was collected from six medical centers.
Extracting features to train a classifier from all images may produce a weak classifier
due to nonsignificant statistical rules of the dataset. Hence, we divide the 130 CT
scans into 3 types by the gray level of livers in training dataset, namely, [20,70],
[70,100], and [100,140]. Random forest is a commonly used learning-based method
which combines bagging and fully-grown decision trees [1]. We train a random
forest classifier for each type.
Features extraction and selection: Both intensity and texture features are calculated.
The intensity features consist of the summation and average of local area gray
intensity. The texture features include gray-level co-occurrence matrix, local binary
pattern features, Gabor filter features, Robert features, Hog features, Haar-like
features, local entropy, local range, and local standard deviation of the image. In
order to incorporate features in different scales, all the features are extracted in both
5× 5 and 11× 11 patches. Table 1 shows the parameters of each feature set.
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Table 1 Parameters of each
feature set (Scales:5,11)

Feature Parameters Number

GLCM Num. of properties: 90

3

LBP Num. of neighbors: 118

8

Gabor Num. of orientations: 16

4

Robert Patch size: 2

3× 3

HOG Patch size: 144

3× 3; 9 orientations

Haar-like Calculated edge feature 2

template by integral image

Sum Patch size: 2

5× 5, 11× 11

Average Patch size: 2

5× 5, 11× 11

Local entropy Patch size: 2

5× 5, 11× 11

Local range Patch size: 2

5× 5, 11× 11

Local standard Patch size: 2

deviation 5× 5, 11× 11

In 3D volumetric images, a large amount of features can be extracted. In order
to reduce the influence of redundant features on the classifier, Yaqub et. al [9] made
a feature pool with fewer “good” features by feature scoring and selection. In our
work, we calculate 382 features from the training data as a main feature pool as
shown in Table 1. Then 116 features are chosen from the main feature pool as the
strong feature pool according to the information gain ratio, including the summation
and average of local area gray intensity, gray-level co-occurrence matrix, Gabor
filter features, local entropy, local range, and local standard deviation of the image.
Random forest training: For each case, we divide all the pixels into three classes:
the liver, the tumor, and the background. In order to select the appropriate number of
trees, 70% of the samples are randomly selected for training, and the remaining 30%
of the samples are used as testing data. We train the random forest from 1 tree to
20 trees and choose the random forest which has the highest test accuracy of testing
data. The final random forest classifier we use contains 15 randomly trained trees,
and the maximum tree depth is 12. We also find that even if increasing the number
of trees and the maximum tree depth in the forest, there is only a slight improvement
in the accuracy of the testing data.
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3.3 Tumor Segmentation

Before segmentation, we skim through the whole volume to confirm a few param-
eters. The number of images per case varies from a few dozen to more than one
thousand in the LiTS datasets. Many images without liver are also included in the
CT scans. Segmenting the entire volume will increase computation cost and make no
sense. Therefore, we go through the volume data before performing random forest
classification, which coincides with the clinical workflow. During this process, we
find out the slice range of the plausible liver tumor as well as decide the range
of the image intensity and the corresponding random forest. In addition, since for
each case, liver orientation may be different, the direction of the liver mask is also
determined.

After confirming the above parameters, the procedure of tumor segmentation is
totally automatic. First, each pixel in the mask is classified by the random forest.
In this way, most of the tumor and normal liver are separated from the original
images. However, there are many over segmentation in the current results due to the
surrounding similar tissues. Since it is well known that the liver is the largest organ
in the abdomen, in the second step, the maximum connected region is extracted
as region of interest (ROI) from the combination of the tumor and normal liver
segmentation results. This can eliminate the interference of similar tissues outside
the liver. Subsequently, in order to include the tumors that are not classified by
the random forest, closing operation is applied to fill small holes in the ROI. The
structuring element of closing operation is set as a 10× 10 square.

Finally, the obtained ROI contains normal liver and tumor (Fig. 2b). Due to
the different gray level, normal liver and tumor in the ROI can be separated by
fuzzy clustering method. The class with small intensity is taken as tumor from
the clustering results (Fig. 2c). Additionally, in order to remove isolate points and
make the segmentation results smooth, we apply an opening operation with a
square structuring element whose width is 3 pixels to refine the tumor segmentation
(Fig. 2d).

Fig. 2 The procedure of the tumor segmentation. (a) Preprocessed image. (b) Classification result.
(c) Clustering result. (d) Final result
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Table 2 Evaluation of the
proposed method

Metric Score

Dice 0.47

Volume Overlap Error 0.65

Relative Volume Difference − 0.35

Average symmetric surface distance 11.49

Maximum symmetric surface distance 64.31

4 Experiments and Results

The proposed method is tested on the liver tumor segmentation challenge(LiTS). All
the experiments are run on a PC with 8G RAM i7-core with MATLAB 2015b. The
training times for all random forests are about 5 minutes. The average processing
time for segmenting a CT scan with 120 slices is about an hour and a half. Table 2
lists the quantitative evaluation of the proposed method in the testing data.

The calculated mean scores of Dice, volume of overlap error (VOE), relative
volume difference (RVD), average symmetric surface distance (ASD), and maxi-
mum symmetric surface distance (MSD) are 0.47, 0.65, −0.35, 11.49, and 64.31,
respectively. Figure 3 shows six tumor segmentation results in the short axis view.

Besides, we compare the accuracy of four classifiers on the feature set. Specif-
ically, random forest, SVM (Gaussian kernel), SVM (quadratic kernel), and K-
nearest neighborhood are used to classify the feature set into three categories: the
background, the liver, and the tumor. Each classifier uses threefold cross validation
scheme. Table 3 shows the classification results of these classifiers. It can be seen
that random forest shows better performance as compared to other classifiers by
achieving maximum recall and precision.

5 Discussion and Conclusion

An automatic method for segmentation of the liver tumor in CT scans using random
forest and fuzzy clustering has been presented. The proposed method has three main
highlights. Firstly, the curvature filter is introduced as a preprocessing step for noise
removal to reduce the variance of the CT datasets. Secondly, a spatial regularization
strategy is employed as a region constraint to narrow the segmentation range and
reduce the computation cost. Finally, the combination of random forest and fuzzy
clustering is used to segment liver tumor efficiently, where both intensity and texture
features are utilized.

There are a few limitations that are worth noting. The first one is that most of the
undersegmentation errors occur in the unclear or small tumors, which the random
forest cannot recognize. In addition, most of the oversegmentation errors take place
in the gallbladder surrounded by the liver which is classified as tumor. Finally, our
implementation works under the assumption that the intensity of the liver and tumor
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Fig. 3 The results of proposed segmentation method. (a) Case 3, Slice 164. (b) Case 19, Slice 74.
(c) Case 27, Slice 74. (d) Case 33, Slice 493. (e) Case 48, Slice 265. (f) Case 56, Slice 378

Table 3 Classification
accuracy of different
classifiers

Classifier Recall Precision

Random Forest 0.88 0.65

SVM (Gaussian Kernel) 0.86 0.60

SVM (Quadratic Kernel) 0.81 0.59

K Nearest Neighborhood 0.77 0.53
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have certain statistical rules in the datasets, which is valid in most cases. However,
we find that the tumor is whitened in some cases, such as case 52 and case 63 in the
testing data. Therefore, these lesions cannot be identified either.

In the future, our method can be further improved as follows: (1) adding more
classes (e.g., gallbladder) to the random forest classifier can identify the interference
tissue; (2) using more training cases might improve the accuracy of the segmentation
results; and (3) the processing time can be reduced by parallel computing in
classification.

Acknowledgements This study was supported by National Nature Science Foundation of China
for funding (Grant Nos. 11531005). Thanks to the organizers of the LiTS Challenge for the public
liver tumor dataset.
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Using Electrically Tunable Lens
to Improve Axial Resolution
and Imaging Field in Light Sheet
Fluorescence Microscope

Muyue Zhai, Xiaoshuai Huang, Heng Mao, Qiudong Zhu,
and Shanshan Wang

1 Introduction

The light sheet microscope is the primary tool for three-dimensional imaging in the
life sciences. It uses a thin sheet of light to illuminate biological samples, which will
reduce the luminous flux on the biological sample, thereby reducing phototoxicity
and light bleaching. In addition, since only the focal plane of the detection objective
is excited, the influence of the fluorophore out of focus on the contrast of the image
will be reduced too.

Conventionally, biological samples have a certain thickness, so the traditional
coaxial lighting method in the imaging of biological samples has a great limitation.
For example, the image contrast decreases with the increasing of the imaging
depth, and the fluorescent markers of biological samples were quickly bleached.
Confocal microscopy is a common method for increasing the axial resolution,
but this approach still has a greater phototoxicity on biological samples. In 2004,
Huisken et al. reported the first modern light sheet microscope in the journal Science
named the selective plane illumination microscopy (SPIM) [1]. The SPIM forms
a Gaussian light through a cylindrical lens and excitation objective to selectively
excite the specific plane of the biological sample. All the fluorescence emitted from
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the excited sample surface is collected by the detection objective and the camera.
From then on, the light sheet microscope has been widely used in the field of life
sciences because of its high axial resolution and low light toxicity.

We hope that the LSFM’s light sheet is thinner to increase the axial resolution and
imaging contrast as more as possible, and we hope that the illumination of the light
sheet will be wider and longer for high-speed large FOV imaging. However, subject
to physical laws, the two aspects are contradictory, so we cannot get very thin, very
wide, and long light sheet at the same time, so that we can only make a choice. We
optimize the lighting conditions in the part the FOV – through the cylindrical lens
and high NA excitation light [2] – to obtain a thinner sheet in the region and then
use the ETL to enlarge the FOV by temporal multiplexing [3, 4]. After splicing the
image regions, we can obtain a large FOV, high-resolution image. The short time
response of the ETL ensures the temporal resolution of the system; the high NA
of the excitation light enables thinner light sheet illumination in the specific region
to ensure axial resolution [5] and image contrast. By temporal multiplexing of the
regions, we achieve the large FOV imaging.

2 Theory

The LSFM produces a light sheet illumination on the sample through the cylindrical
lens and the excitation objective. The thickness of the light sheet is limited by the
diffraction limit. According to the Rayleigh criterion (Eq. 1), the thickness of the
light sheet is inversely proportional to the effective numerical aperture (NA) of the
objective.

ω0 = 1.4λf

2Dlens
(1)

where ω0 is the beam waist thickness, f is the focal length of the excitation optics, λ
is the wavelength of the excitation light, and Dlens is the diaphragm of the excitation
optics.

Just as shown in Fig. 1, the Rayleigh length of the Gaussian beam [6] is
proportional to the square of the light sheet’s thickness (Eq. 2). In order to ensure a
sufficiently large FOV, the usual LSFM will limit the excitation NA to about 0.10,
which will increase the thickness of the light sheet.

ZR = πω2
0

λ
(2)

where ZR represents the Rayleigh length, λ is the wavelength of the laser, and ω0 is
the beam waist.
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Fig. 1 Base-mode Gaussian beam parameters

Fig. 2 Light sheet beam
shapes of different NA. (a)
The light sheet beam of NA
0.3. (b) The light sheet beam
of NA 0.1

These equations are for characterizing light sheets propagating in air (refractive
index n = 1.0); in a medium of refractive index n, the confocal parameter becomes:

bn = 2nZR (3)

where n is the refractive index of the medium and bn denotes the confocal parameter
in medium with refractive index n (Fig. 2).

However, the NA of the detection objective is usually above 0.4, so the thickness
of the light sheet is thicker than the depth of focus [7] of the detection objective
(Eq. 4).

dtot = λ· n
NA2

+ n

M·NA
· e (4)

where dtot represents the depth of field, λ is the wavelength of excitation light, n
is the refractive index of the medium between the object and the objective front
lens element, and NA equals the objective numerical aperture. The variable e is the
smallest distance that can be resolved by a detector that is placed in the image plane
of the microscope objective, whose lateral magnification is M.

The light outside the depth of focus of the detection objective enters the
objective, reducing the imaging contrast. And the plane selection will get worse
simultaneously. We raise the excitation NA to 0.25, which greatly reduces the
thickness of the light sheet, but this also leads to a reduction in the illumination
field of the light sheet. By the axial scanning of the excitation light using ETL,
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Fig. 3 The data collection and processing. (a) The frame when the light sheet is near the excitation
objective. (b) The frame when the light sheet is on the focus point of the excitation objective. (c)
The frame when the light sheet is away from the excitation objective

we get several regions of thin light sheet illumination. Then we combine the several
high-contrast images to get a high-contrast and large FOV image.

As shown in the Fig. 3, the focus line will move along the x-axis during the zoom
process of ETL. When the focus lines are in the following positions, three images
are acquired. Capture the effective region for each image, and combine them to get
a complete high-resolution and high-contrast image.

3 System Description

3.1 Temporal Multiplexing LFSM

We first proposed an experiment for principle demonstration to verify the effective-
ness of temporal multiplexing LFSM. The schematic diagram is shown in Fig. 4; the
laser beam emitted from the fiber is collimated by a collimator objective. Then the
laser beam passes through the ETL. The laser beam aperture is limited to 6 mm by
the aperture stop so as to match the ETL’s aperture. The light sheet was produced
by a cylindrical lens, and then it was again imaged on the sample surface by a tube
lens and a water-dipping exposure objective. The effective illumination NA of the
excitation objective is 0.25. The ETL and the exit pupil of the excitation objective
are conjugated.

The signals are collected at right angles to the illumination sheet via a water-
dipping detection objective. The transverse magnification of the detection optical
path is 40X, and the unit pixel that corresponds to the size of the object is
6.5 um/40 = 162.5 nm.
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working view

3.2 LSFM Volumetric Imaging System

Subsequently, according to the above temporal multiplexing LFSM, we develop
the LSFM volumetric imaging system by using Piezo Focus Objective Positioner
and MEMS scanner. The implementation process is shown in the schematic
diagram. This imaging system enhances axial resolution and contrast by temporal
multiplexing, and it has the capability of volumetric imaging, which is similar to the
confocal microscope (Fig. 5).

Figure 6 is its hardware connection diagram. Its workflow is shown in Fig. 7. The
ETL performs an axial zooming driven by the precise control signal provided by the
FPGA controller, changing the focus position of the excitation light. And after each
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Fig. 8 Light sheet fluorescence microscope experimental setup

step of the zooming process, the image is acquired by the sCMOS to complete the
large field of view and high-axial-resolution imaging. Then, the MEMS scanner
and the PFOP move synchronized for the Z-Stack, driven by the FPGA controller.
Subsequently, the above two processes are repeated to complete the volumetric
imaging of the organism.

4 Experiment

We set up an experimental system for principle demonstration, as shown in Fig. 8.
Fluorescent beads whose diameter is 20 nm evenly spread in the chamber. The actual
output power of the laser is 10 mW. The sCMOS camera (Andor Neo) uses the
global shutter mode to acquire the fluorescence signal. ETL (Optotune, EL-6-15)
uses the Optotune Driver4 controller to manually control its zooming process. And
the cylindrical lens is placed on the rotating frame so as to adjust the direction of the
cylindrical lens to make the plane of light sheet and the detection objective coincide.
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Fig. 9 The partial
magnification image of the
fluorescent beads

4.1 PSF Calibration

The effective illumination NA of the excitation objective (Olympus 20X, 0.5 NA)
is 0.25, which can obtain the light sheet with the thinnest thickness of 1.2 um in
the z-axis direction. This can effectively increase the image contrast and obtain
the image near the diffraction limit. As shown in the Fig. 9, under the condition
of exposure time of 1 ms and laser power of 10 mW, we obtain the high-contrast
and high-spatial-resolution images when imaging the fluorescent beads by a water-
dipping detection objective (Nikon 40X,0.8 NA). The beads are moved irregularly
with the flow, and the oblique elongation of the PSF shown in the figure is due to
the unavoidable motion blur in the exposure process.

4.2 Performance Evaluation

The laser beam width is limited to 6 mm by the aperture stop, and a sheet having
a width greater than 400 μm is produced in the y-axis direction by a cylindrical
lens (Daheng, fx = 100 mm), a tube lens (Thorlabs, f = 80 mm), and an excitation
objective (20X @ fTube − Lens = 180 mm). Control the ETL for x-axis zooming; thus
the focus line will move along the x-axis; then get three images continuously. The
valid regions of each image are shown in Fig. 10. Through the ETL zooming, expand
the x-axis length of the FOV to 300 um, which can cover about 0.12 mm 2 in the
objective space.

To analyze the imaging performance quantitatively, we calculated the ratio of the
average area of beads inside and outside the valid region.

The ratio of the average area of beads inside and outside the valid region of the
images can be obtained by calculating the average area of beads inside and outside
the valid region of 100 images. The calculation process is shown in Eq. 5. The result
demonstrates that the above method of increasing the axial resolution by using large
NA excitation illumination is effective.

RatioArea = AreaBeads in_valid_region

AreaBeads out_of_valid_region
= 196pixel2

256pixel2
= 76.6% (5)



418 M. Zhai et al.

Fig. 10 The image of the fluorescent beads during the zooming process. (a) The ETL is at the
negative diopters (current = 103 mA). (b) The ETL is at the zero diopters (current = 110 mA). (c)
The ETL is at the positive diopters (current = 118 mA)

The other comparison criterion is RMS contrast, which is defined as geometrical
mean of all pixel intensities after subtracting the mean of these intensities (Eq. 6):

RMS Contrast =
√√
√√ 1

MN

N∑

n=1

M∑

m=1

(
I (m, n)− I)2 (6)

We calculated the RMS contrast inside and outside the valid region of 100
images. And the following results were obtained. The image contrast in the valid
area is significantly higher than the area outside the valid area from the results.

RMS ContrastIn_valid_region = 18.47 (7)

RMS ContrastOut_of_valid_region = 9.20 (8)

5 Conclusion and Discussion

The operability of the proposed scheme is verified by preliminary experiments.
It is proved by experiment that the axial resolution and contrast of the imaging
are improved by using the large NA excitation illumination. With the ETL’s axial
zooming and temporal multiplexing, the image FOV has also been ensured.

A larger excitation field can be obtained for high-speed imaging using a
cylindrical lens to produce a light sheet under low NA condition. But the axial
resolution of the LSFM is relatively poor under the condition of low excitation NA.
Increasing the NA of the excitation light means that the thickness of the light sheet is
reduced. The light sheet is thinner, so the fluorescence image contrast is significantly
increased by the reduction of the emitted light outside the depth of focus of the
detection objective. At the same time, the Rayleigh length of the Gaussian beam is
proportional to the square of the light sheet’s thickness, resulting in a decrease of the
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effective illumination region. Using the ETL, the x-axis fast push-up of the high NA
excitation light is achieved. This technique can reduce the thickness of light sheet
and increase the axial resolution significantly.

However, with the decrease of the thickness of the light sheet, the inhomogeneity
of the refractive index of the sample has a greater effect on the fluorescence imaging,
so it is necessary to add the adaptive optics system in the excitation light path. We
plan to further optimize the excitation light by using AO system in the future work
to achieve better image quality.
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normal and depth images, 158–159
phase shift, 158
two light sources, normal images, 157

Platinum resistance thermometers (PRT), 164

Poisson distribution, 272
Poisson statistical model, 270
Position tracking errors (PosTrackErr)

disturbance noise
dual motor drive, 150, 151
single motor drive, 150, 151

elevation axis, 149
Position, velocity, and acceleration (PVA)

motion model, 205
Premixed flames, 165
Programmable logic controllers (PLC), 147
PSNR, see Peak signal-to-noise ratio (PSNR)
Pulsed modulation, 158

R
Radiation sensors and actuator, 11
Radiative difference, 288
Radio-frequency identification (RFID)-enabled

healthcare applications
complex event processing works, 359
evaluation model, 360–362
event model, 359–360
experimental analysis, 363–364
non-deterministic tree-based model, 357
optimization algorithm, 362–363
people and caregiver’s activity and

movement, 358
surgical items, life cycle and workflow of,

358
Radon measurement, 213, 214
Raman scattering, 164
Rayleigh criterion, 412
Rayleigh-Ritz theorem, 121
Rayleigh scattering, 164
Realistic blur images, 64

crucial factors, 65, 66
ghosting effect, 66
image content variation, 66
macrophotography, 66
motion blur, 65–66

Real-time 64-bit Windows operating system
(RTOS), 147–148

Reduced-reference IQA (RR-IQA), 45
Regions of interest (ROIs), 266
Registration method

cubic B-spline transformation, 335
image registration, 334
optimization, 336–337
similarity measurement, 335–336
TV regularization, 335

Resistance temperature detector (RTD), 4
Resonant fluorescent scattering, 164
R-L filter, 95–100
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RMSE, see Root-mean-square error
Root-mean-square error (RMSE), 94, 97, 101,

102, 126

S
Schlieren, 164
Schnorr-Euchner (SE) enumeration, 122–123
SDA, see Sphere decoding algorithm
Seamless mosaicking, of multi-strip airborne

hyperspectral images
Hapke model, 286–287
HyMap images

atmosphere correction and EFFORT
correction, 286

IG correction, 288
minimum noise fraction (MNF), 288
radiative correction, 288
radiative difference, 288
radiometric inconistencies, 290
resampling images, 287
RS processing software, 288
spectral configuration of, 286

Selective plane illumination microscopy
(SPIM), 411

Self-interference cancelation (SIC), 131–132,
136–137

Sensors and actuators
animal sensing, 4
On Board Diagnostics (OBD-II), 3
in car, 3
classes of devices, 4–5
course of study

nature of sensors and actuators, 7–9
sensor-actuator ensemble, 6–7

handbooks, 5
history, 4
monographs, 5
natural sensing, 3–4
teaching approach

acoustic sensors and actuators, 10–11
chemical sensors and actuator, 11
electric and magnetic sensors and

actuators, 10
interdisciplinary course, 9
interfacing methods and circuits, 12
mechanical sensors and actuators, 10
MEM sensors and actuators, 11
microprocessors, 12
new direction, 13
optical sensing and actuation, 10
performance characteristics, 12
radiation sensors and actuator, 11
rational classification of devices, 9

SI system of units, 12–13
temperature sensors and thermal

actuators, 9
textbooks, 5

Shadowgraph, 164
SIC, see Self-interference cancelation
Signal-to-noise ratio (SNR), 117, 124, 216,

237, 372, 373, 375
Silicon carbide (SiC), 164
Silicon nitride (SN), 164, 168, 169
SI map, see Similarity indicator map
Similarity indicator (SI) map, 70, 77–78

experimental results, 74–75
global and local intensity information,

72–73
inhomogeneous regions, 71–72

Singular value curve (SVC), 52
Sodium spectrum line reversal method, 164
Sphere decoding algorithm (SDA)

channel statistics-based initial radius,
121–122

conventional algorithms
BFS, 118–119
DFS, 118
KBFS, 119

generalization, 120–121
modified SE enumeration, 122–123

Spiral cone-beam CT imaging, 88
Square wave modulation, 158
Structural similarity index (SSIM), 224, 230,

231, 244, 245, 266, 272, 273, 275
Successive approximation register (SAR)

ADC, 105, 106
Symbol error rate (SER), 119, 124–126
Synthetic aperture radar (SAR) imaging

system, 223

T
Temperature sensors and thermal actuators, 9
Thermistors, 164
Thermocouples, 4, 164
Thoracic aortic aneurysm (TAA), 29
3D Electrical capacitance tomography sensor

average solid concentration, 378–379
capacitance analysis in dynamic tests,

375–376
experimental setup, 368
operating conditions, 376–378
sensitivity maps

COMSOL Multiphysics™software, 370
symmetric feature, 371, 372

sensor design and image reconstruction
computational problems, 369
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3D Electrical capacitance tomography sensor
(Cont.)

lab-scale fluidized bed, with Wurster
tube, 368, 369

liner back projection (LBP) algorithm,
371

normalized capacitance vector, 371
permittivity distribution, 370
sensing region, voxels in, 370

static tests
correlation coefficient, 372, 373, 375
Landweber iteration, 374
signal-to-noise ratio (SNR), 372, 373,

375
solid distributions and reconstructed

images, 373, 374
structure of, 369
time-series properties of gas-solid flow,

379–381
visualization methods, 372

Three-dimensional Shepp-Logan digital
phantom data, 272–273

Thresholding, 325
Tikhonov regularization approach, 22–24
Time-of-flight (ToF) sensor, normal maps

fusion
calibration system, 154
depth images, 153
experimental results, 159–161
photometric stereo, light source

classic model of, 155–157
normal and depth images, 158–159
phase shift, 158
two light sources, normal images, 157

process of, 154–155
super-resolution means, 153

Total least square (TLS), 223
Tracking error, 149–151
Transfer function, 143
Tree search algorithms, 118–119
Tubular structure extraction algorithms

Frangi’s approach, 329
local energy model, 326
of phase congruency, 326–328
phase symmetry, 327, 328
Rayleigh distribution, 329
3D result, 330
thresholding segmentation, 328

TV-EXP model, 224, 230, 231
TV regularization, 335
Two-color pyrometry, 164

U
Uniform ECT, See Eddy-current testing (ECT)

techniques
Union bound, 117
Unscented Kalman filter (UKF)

algorithm flow chart, 203
CIA, 198–199
covariance matrix, 202
diagonal matrix, 202
eigenvector matrix, 202
linear system model, 204
mean squared error, 200
measurement update equations, 201–202,

204
mismatched system model, 202
nonlinear system, 199–200
particle filter, 198
prior distribution factor, 201
simulation

MSE, 206–207
PVA motion model, 205
second model, 207–208
singular value decomposition filter, 202,

203
time update equations, 204
weighted covariance matrix, 201

W
Wall shear stress (WSS)

distribution
steady state, 35–36
transient state, 39–41

mesh sensitivity test, 33
Wasserstein distance, 70–72
Water wheels, 4
Wavelet methods

FISHbb, 56
LPC, 57–58

Wind harvesting, 4
Wishart matrix, 121–122
WSS, see Wall shear stress
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