
Single and Multiobjective Evolutionary
Algorithms for Clustering Biomedical
Information with Unknown Number

of Clusters
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Abstract. This article presents single and multiobjective evolutionary
approaches for solving the clustering problem with unknown number of
clusters. Simple and ad-hoc operators are proposed, aiming to keep the
evolutionary search as simple as possible in order to scale up for solving
large instances. The experimental evaluation is performed considering
a set of real problem instances, including a real-life problem of analyz-
ing biomedical information in the Parkinson’s disease map project. The
main results demonstrate that the proposed evolutionary approaches are
able to compute accurate trade-off solutions and efficiently handle the
problem instance involving biomedical information.
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1 Introduction

The clustering problem aims at grouping a set of elements in such a way that
elements in the same group (cluster) are more similar to each other than to the
elements in other clusters [1]. Similarity between elements is evaluated according
to a predefined similarity metric to be maximized. Clustering is one of the most
important unsupervised learning problems, which models many other problems
dealing with finding a structure in a given set of data.

In particular, biomedical research demands dealing with a large number of
concepts linked by complex relationships, which are often represented using large
graphs. In order to process and understand these knowledge bases, researchers
need reliable tools for visualizing and exploring large amounts of data conve-
niently. In order to get a deep understanding of such knowledge bases, concepts
with similar characteristics need to be accurately grouped together.
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Clustering is an NP-hard optimization problem [2] that has been thoroughly
studied in the last 30 years [3]. Heuristics and metaheuristics [4] have been
applied to solve the clustering problem efficiently. Among them, evolutionary
algorithms (EAs) have proven to be accurate and powerful methods [5,6].

This article addresses two formulations of the clustering problem, a first one
in which the number of clusters is known in advance, and a multiobjective vari-
ant which simultaneously maximizes the similarity between elements in the same
cluster and minimizes the number of clusters. Three EAs are presented, two for
the single objective and one for the multiobjective clustering problem. The pro-
posed EAs are compared against several methods from the related literature. The
evaluation focuses on a large problem instance from the Parkinson’s disease map
project [7], a research initiative that proposes building a knowledge repository
to describe molecular mechanisms related to that condition [8]. The repository
compiles literature-based information about Parkinson’s disease and organizes
the main concepts and contents in an easy to explore and freely accessible map,
including experimental data, drug targets and other concepts.

The article is organized as follows. Section 2 presents the single and multi-
objective clustering problem formulation and reviews related works on heuris-
tics and metaheuristics applied to the clustering problem. The proposed EAs
are described in Sect. 3 and the experimental evaluation is reported in Sect. 4.
Finally, Sect. 5 presents the conclusions and the main lines for future work.

2 Clustering Problem and Related Work

This section defines the clustering problem in both its single and multiobjective
variants and reviews related works.

2.1 Problem Formulation

Let us consider the following elements:

– The set E = {e1, e2, . . . , en} of elements to be grouped.
– The function s : E × E → [0, 1]; s(ei, ej) is the similarity between ei and ej .

The following conditions hold: ∀ei, ej , s(ei, ej) = s(ej , ei) and s(ei, ei) = 1.
– An integer k > 0, which indicates the number of clusters to consider for

grouping elements (only for the single-objective version of the problem).

The clustering problem consists in assigning the elements in E to a set of
groups (clusters) G = {G1, . . . , Gk}; Gi = {ci}∪{em/s(em, ci) ≤ s(em, cj)∀em ∈
E, cj , ci ∈ C, i �= j}; C ⊆ E, |C| = k is the set of centers of the groups. The
following properties hold: a) cluster index in [1, k]) ∀(i, j), i �= j : 1 ≤ i, j ≤ k,
and b) clusters are disjoint sets Gi ∩ Gj = ∅.

The goal of the single objective version of the problem is to maximize the
total similarity metric (TS) defined in Eq. 1.

max TS =
∑

ei∈E

max
ci∈C

s(ei, ci) (1)
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In the multiobjective version of the problem, the goal is to simultaneously
maximize the value of TS and minimize the number of clusters k.

2.2 Related Work

Many articles have presented heuristic and metaheuristic methods applied to
the clustering problem. Early works considered the single objective version of
the problem, based on minimizing the distance or maximizing similarity.

Das et al. [9] reviewed the application of metaheuristics for clustering prob-
lems. Trajectory-based metaheuristics offer limited problem solving capabilities,
mainly due to scalability issues when solving large problem instances. Deng and
Bard [10] applied GRASP for the Capacitated Clustering Problem, which pro-
poses grouping elements in clusters, where each cluster has capacity constraints
(minimum and maximum number of elements). GRASP was able to find opti-
mal solutions for the problem instances with 30 and 40 nodes, and outperformed
solutions found using CPLEX when using an execution time limit of one hour.

Early proposed EAs did not follow an explicit multiobjective approach. Sheng
and Liu [6] compared k-medoids, local search, and Hybrid K-medoid Algo-
rithm (HKA) over two datasets (517 elements/10 groups, and 2945 elements/30
groups). HKA obtained the best results on the largest problem instance and
slightly better results for the small test problem. The EA by Cowgill et al. [11]
optimized clustering metrics defined in terms of external cluster isolation and
internal cluster homogeneity, improving over hierarchical clustering algorithms
considering an internal criterion. Bandyopadhyay and Maulik [12] proposed an
EA for clustering with a number of clusters not defined a priori, to analyze
several clustering metrics.

Multiobjective EAs (MOEAs) for clustering have been presented in the book
by Maulik et al. [13], most of them focused on optimizing two similarity met-
rics, thus studying different features of the data to analyze. The multiobjective
approach by Ripon et al. [14] considered intracluster variation and intercluster
distance, without assuming the number of clusters. The experimental analysis
over problems with up to 3000 elements, nine classes, and two features, showed
improved solutions over a custom NSGA-II. Handl and Knowles [15] proposed
multiobjective clustering with automatic k determination (MOCK), consider-
ing objective functions based on compactness (deviation) and connectedness of
clusters. These are conflicting objectives because the overall deviation improves
when using more clusters, but the connectivity decreases. MOCK showed good
behavior and scalability when compared with single-objective clustering algo-
rithms. Korkmaz et al. [16] presented a Pareto-based MOEA to find a set of
non-dominated clusters considering intracluster variation and the number of
clusters. The experimental evaluation was performed over two small standard
datasets (150 and 75 elements, with only two attributes), but no numerical
results or multiobjective optimization analysis is reported.

Most of the previous works have proposed ad-hoc EAs to address the clus-
tering problem and few of them have solved multiobjective variants. This article
contributes with simple EAs and an explicit MOEA designed to scale properly
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for solving large problem instances, and we focus on a real-life instance consider-
ing biomedical information in the context of the Parkinson disease map project.

3 Evolutionary Algorithms for Clustering

This section describes in detail the single and multiobjective EAs proposed to
tackle the clustering problem.

3.1 Single Objective EAs

Fitness Function. The fitness function computes the sum of similarities between
each element and its most similar center, as presented in Sect. 2.1.

Solution Encoding. Two solution encodings are proposed and evaluated. Binary
encoding: a solution is represented as a binary vector of length n (the number
of elements to be grouped). Each position in the vector represents whether the
corresponding element is a group center (1) or not (0). Integer encoding: each
solution is a vector of k integers in [1, N ], representing the set of cluster centers.
Numbers only appear once, as the k clusters must have different centers.

Crossover Operators. Two crossover operators were implemented for the binary
encoding: Single Point Crossover (SPX) randomly selects a crossover position
and exchanges the genes after the crossover point between both parents. Two-
Point Crossover (2PX) randomly selects two crossover positions and exchanges
the genes located between these two points.

For the integer encoding, three crossover operators were implemented: SPX,
Generalized Cut and Splice (GenC&S), and Hybrid Crossover (SPX-GenC&S).
GenC&S is a variant of Cut and Splice (C&S) [17] for the clustering problem,
to preserve useful features of the information in both parents (Algorithm1).
GenC&S selects a random cutting point cp on one parent and a random integer
s ∈ [0, k]. Two lists are created, sorted by similarity with the element on position
cp in parent1: LP1 (elements on parent1) and LP2 (elements in parent2). The
first s elements in LP1 are copied to offspring1 and the k−s remaining elements
are copied from LP2, if their similarity to elements already copied to offspring1 is
smaller than the input parameter ε. If less than k centers are copied to offspring1,
the solution is completed with randomly selected centers. SPX-GenC&S uses
a single random number p instead of cp and s. Elements before p in parent1
are copied to offspring1 (like in SPX), and the k − p remaining elements in
offspring1 are copied from parent2, if their similarity to elements already copied
to offspring1 is smaller than ε (like in GenC&S). If less than k centers are copied
to offspring1, the solution is completed with randomly selected centers.

Mutation Operators. Five mutation operators were implemented. For binary
encoding, Bit Flip Mutation changes encoded values by the opposite binary
value; Add Mutation changes data points to centers; and Delete Mutation
changes centers to data points. For integer encoding, One Gene Mutation changes
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Algorithm 1. GenC&S crossover for the clustering problem (integer encoding)
1: Input: parent1, parent2, ε; Output: offspring1
2: cp = rand(0,k)
3: s = rand(0,k)
4: cp element = parent1[cp]
5: offspring1.add(cp element)
6: LP1 = sortAscending(parent1,cp element)
7: LP2 = sortAscending(parent2,cp element)
8: for i = 0 to s − 1 do � Copy the first s elements from LP1 to offspring1
9: offspring1.add(LP1[i])

10: end for
11: for j = 0 to k − s do � Copy the first N − s elements from LP2 to offspring1
12: if similarity(LP2[j],offspring1)< ε then � not too close
13: offspring1.add(LP2[j]) � already in offspring1
14: end if
15: end for
16: while offspring1.length() < k do � Complete with random elements
17: new center = rand(0,N)
18: offspring1.add(new center)
19: end while

elements to another that is not included in the solution (randomly selected
according to a uniform distribution in the set E) and Adapted One Gene Muta-
tion changes an element in the encoding to the most similar element, found by
applying the following search: all elements in the solution are processed, and the
similarity to the element being mutated is evaluated. The best similarity value
(γ) is stored and the new center is selected to have a similarity less than γ.

Corrective Function. Some evolutionary operators do not guarantee to preserve
the number of centers in a solution. A simple corrective function is applied both
for binary and integer encodings. For binary encoding, if the number of 1 s in the
solution is not k, random centers are added or deleted until the solution becomes
feasible. For integer encoding, if the same element appears more than once in
the vector, each repeated element is replaced with another chosen randomly
(uniform distribution) among elements that are not already centers.

Population Initialization. The individuals in the population are randomly gener-
ated following a uniform distribution in {0, 1} (binary encoding) and a uniform
distribution in the set of centers C (integer encoding). The initialization pro-
cedure generates feasible solutions by applying the corrective function to each
individual in the initial population.

3.2 Multiobjective EA

A variant of NSGA-II [18] was implemented to solve the multiobjective variant
of the clustering problem. Following an incremental approach, the encoding and
evolutionary operators that achieved the best results in the comparative analysis
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of the single objective EA for the problem were used in the proposed NSGA-II:
binary encoding, SPX, and Delete Mutation.

In the multiobjective problem, the solution with all genes set to 0 is not
feasible, since it does not represent any grouping at all. To avoid this situation,
the corrective function randomly adds a center to the solution. The initial pop-
ulation is randomly generated following a uniform distribution in [0, 1] and the
corrective function is applied to the generated individuals.

4 Experimental Evaluation

This section describes the evaluation of the proposed EAs for clustering.

4.1 Problem Instances

A total number of 13 problem instances were used to evaluate the proposed EAs.
These instances correspond to clustering problems arising in different fields of
study, including two instances that model the Parkinson’s disease map:

– Instance #1 consists of hydrometric data from 46 basins in Uruguay [19].
– Instances #2 to #8 and #10 to #12 are from the Knowledge Extraction based

on Evolutionary Learning dataset [20], a data repository for classification
problems. These instances have between 80 and 846 elements each.

– Instances #9 and #13 contain data from the Parkinson’s disease map, which
visually represents all major molecular pathways involved in the Parkinson
disease pathogenesis. Instance #9 has 801 elements. Instance #13 has 3056
elements and it is used to test the performance of the multiobjective approach
on a large problem instance containing biomedical information.

4.2 Experimental Configuration and Methodology

Development and Execution Platform. The proposed EAs were developed using
ECJ [21], an open source framework for evolutionary computation in Java.
Experiments were performed on an Intel Core i5 @ 2.7 GHz and 8 GB of RAM.

Results Evaluation. The results computed by the proposed EAs are compared
against clustering algorithms from the literature in terms of the objective func-
tion (total similarity) and in terms of the relative hypervolume (RHV) metric for
the multiobjective variant of the clustering problem. RHV is the ratio between
the volumes (in the objective functions space) covered by the computed Pareto
front and the volume covered by the true Pareto front. The ideal value for RHV
is 1. The true Pareto front—unknown for the problem instances studied—is
approximated by the set of non-dominated solutions found in each execution.

The algorithms used in the comparison are:

– k-medoids [22], a classic partitional method related to k-means. Clusters are
built to minimize the distance between points and the center of the corre-
sponding cluster, according to a given distance metric.
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– Linkage, an agglomerative hierarchical clustering technique based on building
clusters by combining elements of previously defined clusters. A distance func-
tion evaluates a relevant similarity metric for the problem and different linkage
implementations use different distance functions. The Matlab implementation
of single linkage (nearest neighbor), which uses the smallest distance between
objects in the two cluster, in the results comparison.

– Local Search [6], combining k-medoids and an exhaustive search performed
for each cluster. Starting from a randomly selected set of centers, the set of
p nearest neighbors is found for each center. A local search is performed over
these sets to find a new center that minimizes the distance with all elements.
The search ends when no center is changed in two consecutive iterations.

– Greedy, which builds clusters iteratively, taking a locally optimal decision in
each step. Starting from a randomly selected center, in each step searches
for the element with the lowest similarity with the solution already built.
This element is included in the solution as a new center. All clusters are
recomputed and the procedure is applied until building k clusters.

– Hybrid EA, combining an EA and the local search by Sheng and Liu [6]
(Algorithm 2). The hybrid EA uses binary encoding, random initialization,
tournament selection, Mix Subset Recombination, and Bit Flip Mutation.

Algorithm 2. Generic schema of the hybrid EA for the clustering problem
1: Initialize k centers randomly
2: while not stopping criterion do
3: [parent1, parent2] = TournamentSelection(P )
4: if rand(0,1) > pC then
5: [offspring1, offspring2] = Mix Subset Recombination(parent1, parent2)
6: end if
7: [offspring1, offspring2] = Bit Flip Mutation(pM )
8: if rand(0,1) > pLS then
9: [offspring1, offspring2] = Local Search()

10: end if
11: end while
12: return best solution found

Statistical Analysis. Thirty independent executions of each algorithm were per-
formed over each problem instance to have statistical confidence. For each prob-
lem instance, the best and the average fitness value (for the single objective
problem) and the average multiobjective metrics (for the multiobjective prob-
lem) are reported. The Kolmogorov-Smirnov test is applied to each set of results
to assess if the values follow a normal distribution. After that, the non-parametric
Kruskal-Wallis test is applied to compare the results distributions obtained by
different algorithms. A confidence level of 95% is used for both statistical tests.
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4.3 Single Objective Clustering Problem

Parameter Settings. The parameter values of each algorithm were configured
based on preliminary experiments and suggestions from related works:

– Single objective EAs: population size (pop) = 100, crossover probability (pC)
= 0.75, mutation probability (pM ) = 0.01, tournament size = 2, and stopping
criterion of 10000 generations.

– k-medoids: the algorithm stops when the cluster centers remain unchanged
in consecutive iterations.

– Local search: size of the search neighborhood = 3 and the stopping criterion
is the same as for k-medoids, as recommended by Sheng and Liu [6].

– Hybrid EA: pop = 30, pC = 0.95, pM = 0.02, pLS = 0.2, neighborhood size
= 3, tournament size = 2, and stopping criterion of 10000 generations.

Comparison of Evolutionary Operators. For the binary encoding, two crossovers
and three mutations were proposed, generating six possible combinations: SPX
and Bit Flip Mutation (SPX-bit), SPX and Add Mutation (SPX-add), SPX and
Delete Mutation (SPX-del), 2PX and Bit Flip Mutation (2PX-bit), 2PX and
Add Mutation (2PX-add), and 2PX and Delete Mutation (2PX-del). Experimen-
tal results showed that SPX-del performed better on small problem instances,
outperforming the other combinations of evolutionary operators. On medium
sized instances #5 and #6, SPX-bit computed the best results, while on large
instances 2PX-del achieved the best results. Therefore, the rest of the exper-
imental analysis of the single objective EA using binary encoding focused on
these three combinations of evolutionary operators.

For the integer encoding, three crossover operators and two mutations were
presented, generating six possible combinations: SPX and One Gene Mutation
(SPX-One), SPX and Adapted One Gene Mutation (SPX-Adapt), SPX-GenC&S
Crossover and One Gene Mutation (SPXGCS-One), SPX-GenC&S Crossover
and Adapted One Gene Mutation (SPXGCS-Adapt), GenC&S Crossover and
One Gene Mutation (GCS-One), and GenC&S Crossover and Adapted One
Gene Mutation (GCS-Adapt). Results showed that SPX-One computed the best
results in 7 instances and GCS-One in 5 instances, both outperforming the
other combinations. Therefore, the rest of the experimental analysis of the single
objective EA using integer encoding focused on these two combinations.

Comparison of Solution Encodings. Table 1 reports the average similarity results
computed on 30 independent executions of the proposed EA using binary and
integer encoding and the evolutionary operators that achieved the best results
in the previous analysis.

Results indicate that the binary encoded EA using SPX-del and 2PX-del
significantly outperformed the results computed using integer encoding and SPX-
bit. There is no significant difference when using SPX-del and 2PX-del, and for
simplicity, the rest of the experimental evaluation was performed using SPX-del.
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Table 1. Average similarity using different encodings and evolutionary operators.

#I Integer encoding Binary encoding

SPX-One GCS-One SPX-bit SPX-del 2PX-del

#1 18.66 18.66 18.66 18.66 18.66

#2 1.96 1.96 1.96 1.96 1.96

#3 12.42 12.44 12.27 12.46 12.46

#4 16.43 16.41 15.93 16.50 16.50

#5 78.35 78.16 78.61 78.51 78.42

#6 116.18 116.39 116.45 115.69 115.34

#7 54.71 54.68 54.80 54.98 54.98

#8 63.27 63.30 61.10 63.42 63.43

#9 673.57 656.56 633.91 675.20 675.20

#10 37.77 36.49 35.88 38.22 38.22

#11 235.33 229.58 221.17 236.11 236.11

#12 32.89 32.08 31.20 33.23 33.23

Comparison Against Other Algorithms. The proposed EA with binary encoding,
SPX, and delete mutation was compared against the baseline algorithms. Table 2
reports the average similarity computed over 30 independent executions of each
algorithm for the 12 problem instances (the best results are marked in bold). The
Kolmogorov-Smirnov test was performed on the results’ distributions. In most
cases, the test allowed rejecting–with 95% confidence–the null hypothesis that
the results follow a normal distribution. Therefore, the Kruskal-Wallis test was
used to compare the results’ distributions computed by each EA (the p-value is

Table 2. Comparison of average similarity against other algorithms.

Instance Greedy Linkage k-medoids Local search Hybrid EA SPX-del p-value K-W

#1 7.28 17.01 17.03 15.49 18.66 18.66 <10−15

#2 1.12 1.65 1.95 1.70 1.96 1.96 <10−15

#3 5.77 10.18 12.14 10.50 12.45 12.46 <10−15

#4 7.41 14.04 16.00 13.23 16.22 16.50 <10−15

#5 47.69 76.08 76.47 69.11 78.62 78.51 <10−15

#6 83.61 109.68 116.30 108.86 116.45 115.69 <10−15

#7 29.31 50.77 54.98 41.68 54.98 54.98 <10−15

#8 31.81 62.25 62.51 52.99 63.24 63.42 <10−15

#9 499.54 523.19 667.94 615.64 661.48 675.20 <10−15

#10 22.90 30.61 37.09 32.94 36.73 38.22 <10−15

#11 170.65 198.75 236.10 205.96 229.56 236.11 <10−15

#12 22.80 27.02 32.85 28.56 33.10 33.23 <10−15
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reported in the last column). Kruskal-Wallis allows rejecting the null hypothesis
that the results computed by all algorithms follow the same distribution.

The proposed EA outperformed all other algorithms, computing the best
average results in 10 instances. Improvements were up to 9.5% over k-medoids
and 156.2% over greedy. The proposed EA also improved over Linkage in up to
29.1% and over the local search on of 31.9%. Finally, the improvements against
the hybrid algorithm are smaller. In the best case (instance #10) the proposed
EA outperformed the hybrid EA in up to 4.0% (2.3% on average).

4.4 Multiobjective Clustering Problem

Parameters Setting. The parameters of the proposed MOEA were defined based
on preliminary experiments: pop = 100, pC = 0.75, pM = 0.01, tournament of
size 2, and a stopping criteria of 1000 generations.

Numerical Results. The best EA for the single objective clustering problem (i.e.,
using SPX and delete mutation) and k-medoids were used to compare the NSGA-
II results. 30 independent executions of each algorithm were executed, changing
the number of clusters for the single objective algorithms.

Figures 1 and 2 show sample Pareto fronts computed by the proposed MOEA
and the best solutions computed by k-medoids and in 30 independent executions
of the single objective EA using different numbers of clusters. These are repre-
sentative results for the set of problem instances solved.
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Fig. 1. Pareto fronts for instance #4
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Fig. 2. Pareto fronts for instance #6

Results showed that for small number of clusters there is no significant differ-
ence in the solutions computed by EA and MOEA. Both evolutionary approaches
improve over k-medoids. As the number of groups increases, the MOEA is able
to found solutions with better similarity values than the single objective EA, and
both significantly improves over the k-medoids results. In addition, the MOEA
is able to obtain a Pareto front of solutions with different trade-off values in
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a single execution, while several executions (each one for a different number of
clusters) are needed for the single objective EA and k-medoids. Therefore, the
MOEA is useful for a decision-maker to be able to visualize several groupings
with different trade-offs between the problem objectives and select the one that
better captures the problem features. This is especially relevant in the case of
biomedical information, where the number of clusters is particularly difficult to
define a priori for a given dataset.

The RHV results over 30 independent executions, reported in Table 3, indi-
cated that the proposed MOEA is robust and computes accurate Pareto fronts
for the problem instances studied. The average RHV was 0.99, the maximum dif-
ference from the ideal RHV was 0.02 (instances #6 and #12), and the optimum
value of 1.00 was achieved for three problem instances.

Table 3. RHV values obtained by the proposed algorithms.

MOEA EA k-medoids

Average Best Average Best Average Best

0.99 1.00 0.96 1.00 0.83 0.92

Regarding the problem instances from the Parkinson’s disease map, the pro-
posed EAs allowed to compute accurate configurations that provide different
trade-offs between the problem objectives. Using the evolutionary approaches,
several new possible clusterings have been found. These clusters provide novel
promising information, different to the current manually built solutions (see
the project website at http://wwwen.uni.lu/lcsb/research/parkinson s disease
map).

Overall, considering the complete set of problem instances, EA and MOEA
were able to improve over k-medoids 15.8% and 14.1% in average (respectively),
and up to 31.4% and 27.0% in the best case. The best improvements were
obtained in the problem instances with larger number of elements, clearly demon-
strating the good scalability behavior of the proposed evolutionary approaches.
The best improvement of EA over MOEA was 8.7% and the best improvement
of MOEA over EA was 4.4%.

5 Conclusions and Future Work

This article presented evolutionary algorithms applied to the clustering problem
in its single and multiobjective variants, with unknown number of clusters. This
is a very important problem in many research areas that involve dealing with
large volumes of information to be categorized and grouped.

The proposed evolutionary algorithms were conceived to apply simple and
ad-hoc operators, trying to keep the search as straightforward as possible in
order to scale up for solving large instances of the clustering problem.

http://wwwen.uni.lu/lcsb/research/parkinson_s_disease_map
http://wwwen.uni.lu/lcsb/research/parkinson_s_disease_map
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The experimental evaluation was performed considering a set of real prob-
lem instances, including one problem consisting of biomedical information in the
context of the Parkinson disease map project. The main results from the exper-
imental analysis indicate that the proposed evolutionary algorithms are able to
compute accurate solutions for the problem instances studied. The evolution-
ary approaches outperform several algorithms of the related literature. In the
single objective clustering problem, the proposed evolutionary algorithm is able
to compute the best average result in 10 out of 12 problem instances. For the
multiobjective clustering problem, the proposed evolutionary algorithm is able
to compute accurate Pareto fronts, which offer decision-makers solutions with
different trade-offs between the problem objectives.

The evolutionary approach is especially helpful for organizing biomedical
information in the case of the Parkinson’s disease map project. The proposed
EAs are able to find accurate organizations for the data, which provide different
trade-offs between the problem objectives and allow capturing different features
of the information. The computed solutions provide new promising clustering
patterns to be examined along the existing ones, manually built by experts.

The main lines of future work include extending the experimental analysis
considering datasets from different fields of study. Additionally, a parallel model
for EAs should be considered to both reduce execution times and handle bigger
datasets. Finally, the possibility of combining the proposed evolutionary algo-
rithms with visualization tools should be studied, in order to help researchers
analyze the information in a more intuitive way.
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