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Abstract. Swarm Robotics are widely conceived as the development of
new computationally efficient tools and techniques aimed at easing and
enhancing the coordination of multiple robots towards collaboratively
accomplishing a certain mission or task. Among the different criteria
under which the performance of Swarm Robotics can be gauged, energy
efficiency and battery lifetime have played a major role in the litera-
ture. However, technological advances favoring power transfer among
robots have unleashed new paradigms related to the optimization of the
battery consumption considering it as a resource shared by the entire
swarm. This work focuses on this context by elaborating on a routing
problem for collaborative exploration in Swarm Robotics, where a subset
of robots is equipped with battery recharging functionalities. Formulated
as a bi-objective optimization problem, the quality of routes is measured
in terms of the Pareto trade-off between the predicted area explored by
robots and the risk of battery outage in the swarm. To efficiently bal-
ance these conflicting two objectives, a bio-inspired evolutionary solver
is adopted and put to practice over a realistic experimental setup imple-
mented in the VREP simulation framework. Obtained results elucidate
the practicability of the proposed scheme, and suggest future research
leveraging power transfer capabilities over the swarm.
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1 Introduction

Robotics have evolved dramatically over the years to feature unprecedented levels
of intelligence, resulting in an ever-growing number of scenarios benefiting from
their widespread application to accomplish complex missions, e.g. structural
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health monitoring, oil and gas industry, manufacturing, disaster management,
precision agriculture and logistics, among many others. Providing robots with
smart sensing, communication and organization functionalities allows them to
capture information, operate, reason and infer knowledge from the environment
in a collaborative manner. Research aimed at enhancing such functionalities by
embracing elements from Artificial Intelligence and Distributed Computing has
coined the so-called Swarm Robotics concept, which refers to the deployment of
a set of robots that collaborate with each other so as to collectively perform a
mission in a computationally efficient fashion [1,2].

In general, Swarm Robotics may rely on several key technologies to attain
higher levels of autonomy, optimized operation and self-organization. Unfortu-
nately, it is often the limited battery lifetime of robots not only what restricts
most the autonomy of the swarm, but also what puts at risk the feasibility of
complex missions where robots operate without any human intervention, as in
e.g. the exploration of collapsed infrastructures after a massive disaster [3] or
the structural assessment of undersea drilling equipment [4]. Despite notable
advances in energy efficient robot mechanics, the battery capacity poses severe
operational constraints to Swarm Robotics, to the point of jeopardizing their
potential use in complex endeavors.

To overcome this issue, many research efforts have been devoted towards aug-
menting the power capacity of robot batteries, either by proposing new mate-
rials and chemical components or by deriving new mechanical improvements
that extend further their lifetime by virtue of a lower power consumption [5].
For this same purpose, the community has also focused its attention towards
the consideration of the aggregate battery power of the entire robotic swam
as a whole, an unique resource whose management is to be optimized globally
over all robots rather than locally. This approach grounds on advances in wire-
less/mobile robotic charging [6] and the deployment of mobile charging stations
in the swarm [7], which can be exploited as a resource to actively locate and
replenish the battery of other robots. This research topic has been very active in
this regard, as evinced by the short literature review provided in what follows.

1.1 Related Work

A remarkable amount of interesting studies has been published in the last decade
focused in power charging and battery consumption of swarm robots. Haek et
al. discussed in [8] the importance of swarm robustness, defining this concept
as the ability of the robotic swarm to perform a complex task avoiding the
total drainage of their batteries. In this work authors present a solution to allow
robots to robustly achieve their assigned tasks, which mainly consists of the
use of power stations or power banks. In [9], a collective energy distribution
system is proposed for a dust cleaning swarm of robots. Authors of this study
explore the concept of trophallaxis, previously introduced in [10], which refers
to individual robots donating an amount of their own energy reserve to other
robots of the swarm. This same concept of altruistic behavior is explored in [11],
materializing the idea in a specific robot architecture called CISSBot. Apart from



A Bio-inspired Approach for Collaborative Exploration 77

battery charging, sharing and consumption, several additional features are also
considered and studied in this contribution, such as a collision-free proximity
motion control. Additional research on this topic can be found in [12].

Another interesting approach to energy consumption is the one recently pro-
posed in [13], where an Energy-Aware Particle Swarm Optimization (EAPSO)
bioinspired solver is designed to optimize the movement strategy of aerial micro-
robots. Interestingly, the optimization process considers the energy levels of the
robots for their efficient movement. Although authors do not propose any charg-
ing mechanism, the designed method renders a considerable reduction of the
total energy consumption, making the robotic swarm more reliable and robust.
Another bioinspired scheme sensitive to the consumed energy is the Honey Bee
inspired swarm in [14], which improves the energy efficiency and is proven to be
effective for foraging environments, such as the collection of crops of materials.

Also interesting to mention is the preliminary research presented by [15],
in which an immune system response is studied for the development of energy
sharing strategies. In that case, the granuloma formation is explored, which is a
process in which undesired components are removed by immune systems. This
behavioral concept is mapped to the components of a Swarm Robotics system,
enhancing the fault tolerance of the deployed robots. A further step was taken
in [16], where another immune system mechanism is proposed based on the use
of contact-less energy charging areas and their simulation-based comparison to
other energy charging mechanisms. A similar technique was proposed in [17] to
add self-healing capabilities to robotic swarms.

As stated in [18], an usual trend in the literature for dynamic energy charg-
ing of robots is based on the deployment of power banks or removable chargers.
Despite being quite effective, this approach has its own disadvantages, such as
the resulting weight increase of the robot equipment, often crucial in critical mis-
sions. With the intention of overcoming these issues, [18] describes initial research
on the implementation of an energy-sharing scheme using a two-way communi-
cation mechanism. Finally, in [19] an energy-encrypted contact-less system is
described for improving the charging performance and the energy transmission
mechanism of swarm robots. To this end wireless power transfer is used, enabling
robots to charge their batteries even in moving situations. Other contributions
related to dynamic energy charging include [20], which elaborates on a novel
tree-based schedule for mobile charger robots, which minimizes the travel dis-
tance without causing energy depletion; and [21], which presents a versatile
mobile charging station capable of actively locating and replenishing the battery
of inactive robots.

1.2 Contribution

Even though the literature has been profitable in what regards to Swarm
Robotics with mobile battery recharging nodes, to the best of the authors’
knowledge routing for exploration missions in Swarm Robotics has so far
been addressed without considering such nodes as assets whose routes over
the scenario at hand can be jointly optimized with those of exploring robots.
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Furthermore, when dealing with overly complex scenarios to be explored, the
total area sensed by exploring robots can be intuitively thought of as a con-
flicting objective with the remaining battery margin; in this sense, enforcing the
swarm to explore the entire area spanned by the scenario could create a risk
of any robot to run out of battery on site, and be left dead and unrecoverable.
This work aims at addressing this research niche by modeling and solving a
bi-objective routing problem for mobile swarm robotics considering the mini-
mization of this risk as a second fitness metric that quantifies the quality of
a generated route plan. The problem formulation also includes the search for
optimal routing plans for mobile battery recharging nodes along with the routes
of exploring robots. Both are solved efficiently by means of a bi-objective bio-
inspired solver driven by the aforementioned objectives. Results obtained from
a realistic simulation framework implemented in VREP [22] are shown to be
promising, with several future research lines stemming therefrom.

The rest of this paper is structured as follows: first, Sect. 2 formulates mathe-
matically the optimization problem under study, including the conflicting objec-
tives to be maximized. Next, Sect. 3 delves into the utilized bi-objective solver,
followed by Sects. 4 and 5 detailing the simulation setup and discussing the
obtained results, respectively. Section 6 concludes the paper.

2 Problem Statement

Following the schematic diagram depicted in Fig. 1, we assume a swarm N of
|N | = N robots, with time-dependent positions {p�,t

n }N
n=1

.= {(x�,t
n , y�,t

n )}N
n=1

(with t denoting time) over a square area S� .= [Xmin,Xmax] × [Ymin, Ymax].
Each of such robots is equipped with sensors that allow them to explore an area
{S�,t

n }N
n=1 around its location at time t, e.g. if the area is circular with radius

R�
n , then Sn = {(x, y) ∈ S� : (x − x�,t

n )2 + (x − x�,t
n )2 ≤ R2

n} (areas shaded in
, and in Fig. 1). The total area ST (t) explored by the robotic swarm at

time t′ will be then given by

ST (t′) =
t′⋃

t=1

N⋃

n=1

S�,t
n . (1)

Another set of M ≤ N robots M with battery recharging capabilities is
deployed in the same location jointly with N , with coordinates {p�,t

m }M
m=1

.=
{(x�,t

m , y�,t
m )}M

m=1. A robot m ∈ M will recharge the battery of a robot n ∈ N
whenever (1) their distance dt

m,n falls below a certain threshold Dmax (area in
in Fig. 1), i.e.

dm,n =
√(

x�,t
m − x�,t

n

)2
+

(
y�,t

m − y�,t
n

)2 ≤ Dmax, (2)

and (2) the above condition holds for a minimum of Tmin seconds, comprising
the power plug coupling/uncoupling along with physical maneuvers to align
connectors. If both conditions hold, energy is transferred from robot m ∈ M
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to n ∈ N at a rate of β units of energy per second (measured in e.g. Watts).
Furthermore, the movement of the robot itself involves a battery consumption
of γ units of power per unit of distance, so that in a certain time gap ΔT
measured from time t the remaining amount of battery B�,t+ΔT

n in robot n can
be mathematically expressed as

B�,t+ΔT
n = min

{
[1 + ID · IT · β] · B�,t

n − γV �
n ΔT,Bmax

}
, (3)

where V �
n denotes the cruise speed of the robot (in units of distance per unit

of time), and ID and IT are binary indicator functions such that ID = 1 if
dt′

m,n ≤ Dmax ∀t′ ∈ [t, t + ΔT ], and IT = 1 if ΔT ≥ Tmin (0 otherwise in both
cases). In the above expression Bmax stands for the nominal maximum battery
load (in units of power) of the robot model, which without loss of generality is
assumed to be equal throughout the entire robotic swarm.

With this definition in mind, the goal of the routing optimization prob-
lem is essentially the determination of an optimal set of routes composed
by N + M waypoints W�,t,� .= {w�,t,�

n }N
n=1 = {(x�,t,�

n , y�,t,�
n )}N

n=1 and
W�,t,� .= {w�,t,�

m }M
m=1 = {(x�,t,�

m , y�,t,�
m )}M

m=1 for all robots in the swarm
(both explorers and battery chargers). Here optimality of the set of discovered
routes refers to the Pareto relationship between the explored area and a quantita-
tive measure of the risk of no return taken when the entire swarm is commanded
to follow a certain route. Intuitively, the more area the swarm explores, the more
likely is the chance that any of the robots in the swarm lacks enough battery to
return to the point {(x�,0, y�,0)} where robots had been initially located. This
risk is crucial in many practical situation, e.g. disaster events where the topologi-
cal characteristics of the facility to be explored remain unknown to the command
center before and while the mission is performed by the robotic swarm.

: robot n ∈ N

: waypoint assigned to robot n ∈ N at time tt

t′

tt

t

t′

t′ t′

t′′
t′′

t′′
S�

ST (t′) =
S�

t′ Time

: battery recharging robot m ∈ M

t

Command center

Battery

t′ Time

Bmax
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: waypoint assigned to robot m ∈ M at time tt

Waypoints t′′ t′′ t′′ t′′ to select?
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vs
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Fig. 1. Schematic diagram of the scenario tackled in this paper. (Color figure online)

Mathematically this risk can be modeled by accounting, over the whole
robotic swarm, for battery margin B�,t

n expected to be left for every robot should
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it proceed and move to the assigned waypoint and return safely to {(x�,0, y�,0)}.
Assuming that the route optimization is performed at time t, the value of the
battery margin B�,t

n for robot n ∈ N when commanded to go to waypoint
w�,t,�

n = (x�,t,�
n , y�,t,�

n ) can be estimated as

B�,t
n (p�,t

n ,w�,t,�
n , {p�,t

m }M
m=1, {w�,t

m }M
m=1) = B�,t

n − B
�,t+ΔTp,w+ΔTw,p0
n , (4)

where ΔTp,w and ΔTw,p0 are the times taken for robot n ∈ N to travel from
its current point p�,t

n to the assigned waypoint w�,t,�
n and therefrom to its

initial position {(x�,0, y�,0)}. This estimation is made by assuming that the
robot goes straight without colliding with any object nor any other robot along
its path. It should be remarked that as per (3), the battery expenditure reflected
in B

�,t+ΔTp,w+ΔTw,p0
n takes into account not only the power consumed by the

robot dynamics (which depends on its speed Vn and the traversed distances),
but also time periods along the path during which the relative position between
battery recharging robots and robot n ∈ N fulfill conditions ID and IT required
to recharge the battery of robot n on the move. The total duration of such
recharging periods can be computed as

∑
(ts,te)∈T �,t

n
(te − ts) over the set of

periods T �,t
n , defined as

T �,t
n

.= {(ts, te) ∈ [t, t + ΔTp,w + ΔTw,p0 ] such that :

(1) te > ts; (2) ∃m ∈ M : dt′
mn ≤ Dmax∀t′ ∈ [ts, te]; and (3) te − ts ≥ Tmin},

(5)

with [t′s, t
′
e] ∩ [t′′s , t′′e ] = ∅ ∀(t′s, t

′
e), (t

′′
s , t′′e ) ∈ T �,t

n . Therefore, the swarm-wide
battery margin BT (t) to be maximized at time t so as to keep the aforementioned
risk to its minimum is given by

BT (t) = min
n∈N

{
max

{
0, B�,t

n (p�,t
n ,w�,t,�

n , {p�,t
m }M

m=1, {w�,t
m }M

m=1)
}}

, (6)

from where the formal statement of the problem tackled in this work follows:

maximize

W�,t,�,W�,t,�{
ST (t), BT (t)

}
, (7a)

namely, as the simultaneous maximization of two conflicting objectives: the sur-
face explored by the robotic swarm and the minimum expected battery margin
over the robots should it be commanded to return to the initial deployment point
after reaching the enforced waypoint. W�,t,� ∈ S� and W�,t,� ∈ S�.

3 Proposed Solver

In order to efficiently tackle the above problem, we propose to apply a cen-
tralized meta-heuristic solver capable of optimally balancing the two objective
functions considered in its formulation. The optimizer relies on the renowned
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Non-dominated Sorting Genetic Algorithm (NSGA-II, [23]), a bio-inspired app-
roach that hinges on the concepts of non-dominance ranking and crowding dis-
tance to guide a multi-objective search over a set of potential candidate solutions
(in this case, waypoints defining routes). In essence NSGA-II sorts a population
of candidates according to (1) whether each solution within the population dom-
inates, in terms of Pareto optimality, other solutions in the pool (yielding the
so-called dominance rank of the Pareto front to which the solution at hand
belongs); and (2) the closest distance from every individual to the rest of solu-
tions (corr. crowding distance). By applying this dual selection procedure along
with genetically inspired crossover and mutation operators (with probabilities Pc

Algorithm 1. NSGA-II solver applied to the problem under study.
Data: Number of exploration robots N ; number of battery recharging robots

M ; dimensions of the scenario Xmin, Xmax, Ymin, Ymax; sensing radii
{Rn}N

n=1; maximum distance Dmax and minimum time Tmin for battery
recharge; nominal robot speeds {V �

n }N
n=1 and {V �

m }M
m=1; maximum

battery capacity Bmax; battery charging rate β; battery consumption
rate γ; crossover and mutation probabilities Pc and Pm; population size
P ; maximum number of iterations I; proportion of the minimum battery
margin to the maximum battery capacity λ.

1 Deploy all robots on the initial location (x�,0, y�,0), and set waypoints w�,tini,�
n

and w�,tini,�
m equal to (x�,0, y�,0) ∀n ∈ N and ∀m ∈ M

2 Set t′ = tini and T = {tini}
3 while BT (t) ≥ λBmax do

4 while p�,t
n �= w�,t′,�

n and p�,t
m �= w�,t′,�

m ∀n, m do
5 Let robots move to their assigned waypoints w�,tini,�

n and w�,tini,�
m

6 Update remaining battery {B�,t
n }N

n=1 as per (4) and (5)

7 if t′ = tini then

8 Initialize P individuals in the population uniformly at random from S�

9 else
10 Retrieve the estimated Pareto from the previous run, introduce it in the

population. and fill the remaining individuals randomly over S�

11 for it ← 1 to I do
12 Select parents, recombine them (w.p. Pc) and mutate (w.p. Pm) the

produced new offspring that represent a new set of P waypoints
13 Evaluate explored area and battery margin of offspring as per (1), (6)
14 Sort previous and new waypoints by rank and crowding distance
15 Discard the worst P individuals in the sorted, concatenated population

16 The estimated Pareto is given by the P individuals remaining in population
17 Select the set of waypoints in the estimated front that best suits the

commanding policy (e.g. maintain a battery margin above 10%), and assign
them to robots

18 Set t′ = t, and T = T + {t}
19 All robots to initial position by w�,tini,�

n = w�,tini,�
m = (x�,0, y�,0) ∀n, m
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and Pm, respectively), the Pareto optimality of solutions contained in the pop-
ulation becomes improved iteration after iteration, to eventually yield a Pareto
front estimation after a number of iterations of this search procedure.

An algorithmic description of the NSGA-II approach designed in this work is
provided in Algorithm1. Individuals are encoded directly as N + M vectors wp

i

denoting the waypoints of all robots in the scenario, where i ∈ {1, . . . , N,N +
1, . . . , N + M}, p ∈ {1, . . . , P}, P denoting the population size and wp

i ∈ S�

∀i, p. A uniform crossover operator and a Gaussian mutation with standard
deviation σ have been selected as heuristic operators. The iterative application of
these operators and the NSGA-II selection scheme outlined above is stopped after
I iterations. It is important to remark at this point that the solver must be run
incrementally at certain time instants, e.g. the solver is not run constantly along
time but rather triggered at time ticks embedded in the set T ∈ R[tini, tend],
where tini is the time at which the robotic swarm is first deployed and tend is
the time at which the battery margin BT (tend) in the estimated Pareto front
falls below a fraction λ of the maximum battery capacity Bmax. For the sake
of simplicity, the NSGA-II solver will be executed once all robots have reached
their commanded waypoints W�,t,� and W�,t,� optimized previously, which
yields the time instants contained in T . To match this incremental nature of
the proposed optimization schedule, the population of individuals is accordingly
initialized by including the best front found in the previous NSGA-II execution,
randomly setting the remaining individuals until filling the population.

4 Simulation Setup

In order to assess the performance of the proposed bi-objective routing approach,
a simulation setup has been constructed by resorting to VREP, a renowned
software platform that permits to realistically model and perform experimental
studies with swarms of robots. In order to extract valuable insights, we have kept
the dimensions of the experimental scenario reduced to N = 5 exploring robots
and a single battery recharging node (M = 1) deployed on a 10 × 10 m2 square
area. The maximum distance and minimum time to recharge batteries are set to
Dmax = 1 m and Tmin = 3 s, respectively. Robots with six mechanical legs (also
referred to as hexapods) and diameter size equal to 0.5 m are utilized, with speeds
equal to V �

n = 3.5 cm/s ∀n ∈ N and V �
m = 2.6 cm/s. Battery recharging is done

at a rate of 1% per second with respect to the nominal maximum capacity Bmax

of exploring robots, whereas the recharging node is equipped with a total battery
capacity equal to 10 · Bmax. The battery depletion rate is fixed to γ = 1.5% of
Bmax per linear meter. As for the parameters of the NSGA-II solver, crossover
and mutation rates are set to Pc = 1 and Pm = 0.1, with a population size
of P = 20 individuals and I = 100 iterations per run. The decision making
criterion adopted to select a route among the estimated Pareto fronts was based
on selecting the route whose associated battery margin is closest to 20% of
Bmax. If no route with margin greater than this threshold, the robot swarm is
enforced to return to the origin position. Figure 2 illustrates, from two different
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perspectives, the scenario generated in VREP and simulated to yield the results
discussed in the next section1.

5 Results and Discussion

The discussion on the results obtained by the proposed scheme starts with Fig. 3,
which illustrates the set of estimated Pareto fronts along time under different
assumptions. Specifically, every plot in this figure contains a three-dimensional
cloud of points – each representing a given route plan (set of waypoints) – which
results from the aggregation of all fronts estimated in simulation time for a
single experiment. A total of 10 executions of the NSGA-II solver have sufficed
for illustrating the main benefit of our proposed routing scheme: by incorporating
battery recharging functionalities, the autonomy of the entire robotic swarm is
enhanced, so that a larger area can be explored for a given decision making
criterion imposed on the minimum admissible battery margin for the robots to
return back and safe to the base.

Fig. 2. Visual representation of the simulated setup yielding the results later discussed
in the manuscript; (left) isometric view; (right) top-down view. The robot dynamics are
provided by the VREP framework, whereas the NSGA-II routing approach has been
implemented in Python and communicates with VREP via remote API functions.

To this end two different cases are assessed, depending on the exploration
radii assumed for the sensing robots: (1) Rn = 0.9 m, which should a priori ren-
der minimum gains due to a more efficient area exploration; and (2) Rn = 0.5 m,
smaller sensing radii for which the incorporation of battery recharging functional-
ities in the swarm should provide higher gains. Indeed, this intuition is confirmed
by the results in the plots: as evinced by the plot on the left (higher exploration
radii), almost no exploration gain is obtained by including battery recharging

1 Videos showing how robots move over this scenario can be found at:
https://youtu.be/r31teMtWRF0 and https://youtu.be/zewRVZQpvP8.

https://youtu.be/r31teMtWRF0
https://youtu.be/zewRVZQpvP8
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functionalities ( ) when compared to a unassisted robot swarm ( ). However,
when reducing the sensing radius, robots must traverse longer distances in order
to explore the entire scenario, which leads to higher battery consumption levels
that could be compensated efficiently by including a battery recharging node.
This is precisely what the plot on the right in Fig. 3 reveals: when inspecting
the evolution of the maximum battery margin in the fronts computed along
time, it is straightforward to note that the margin of the unassisted swarm ( )
decreases much faster than that of its assisted counterpart ( ), falling below the
minimum admissible threshold (20%) imposed by the mission commander. As a
result, the entire swarm is commanded to return to the base once 61% of the
scenario has been explored. By including the mobile recharging node, the battery
margin degrades smoothly along time, and is maintained above the threshold to
explore a higher area percentage (ca. 80%) even for more conservative policies.
For instance, should it have been set to 60% the unassisted swarm would have
explored less than 50% of the area; in the assisted case robots would have been
operative for a longer time, attaining explored area ratios close to 80%.

Ex
plo

red
are

a S
(t)
0.0

0.2

0.4

0.6

0.8

1.0

NSGAII run index

0
2

4
6

8
10

B
attery

m
argin

M
(t)

0.0

0.2

0.4

0.6

0.8

1.0

Ex
plo

red
are

a S
(t)
0.0

0.2

0.4

0.6

0.8

1.0

NSGAII run index

0
2

4
6

8
10

B
attery

m
argin

M
(t)

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3. Three-dimensional plot showing the Pareto trade-off between battery margin
and explored area estimated by the NSGA-II solver as the simulation evolves (rep-
resented by the NSGA-II run index). The left plot corresponds to the case when
Rn = 0.9 m, whereas the right plot depicts the case when Rn = 0.5 m, in both cases
∀n ∈ {1, . . . , 5}. Also are included in the plots the two-dimensional projections of the
point cloud along every axis, so that the progression of the maximum achievable value
of each metric. The plane shaded in gray indicates the minimum admissible battery
margin imposed by the mission commander (20%). (Color figure online)

Besides the evidence provided by the above plots, further insights can be
extracted by taking a closer look at the trajectories traced by the robots in the
swarm for both cases. One should expect that for high values of the sensing
radii Rn, nodes should feature relatively less dynamic mobility patterns over the
scenario than those corresponding to lower values of this parameter. The plots
in Fig. 4 go in line with this expected behavior. In particular mobility traces of
the robotic swarm are shown for the assisted robotic swarm with Rn = 0.5 m
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(left) and Rn = 0.9 m (right). It can be noted that the former case features
rectilinear trajectories composed by long segments, whereas in the latter all
robots in the swarm describe topologically tangled traces, and few cases reach
the boundaries of the scenario. In summary, the sensing radii plays a crucial role
in the behavior of the swarm and ultimately, in the attainable performance gain
from the introduction of mobile recharging nodes in the swarm.
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Fig. 4. Trajectories followed by the robots in the swarm for Rn = 0.5 m (left) and Rn =
0.9 m (right). A visual inspection permits to infer that lower values of the sensing radius
make all trajectories be shorter and more complex as a result of a lower overlapping
between the sensing areas of robots in the swarm. On the contrary, when the sensing
radius increases robots describe cleaner, rectilinear trajectories.

6 Concluding Remarks

In this paper, a routing problem for collaborative exploration in Swarm Robotics
has been presented. An analysis of the recent literature supports that one of the
main issues in these systems is the energy consumption and reliability of the
swarm, which jeopardizes the performance of complex missions and tasks. This
identified issue is what lies behind the rationale for this research work: to include
a subset of robots in the swarm endowed with battery charging capabilities. The
challenge resides in how to properly route the robots in the scenario considering
the existence of such nomadic battery recharging nodes, which has been formu-
lated as a bi-objective optimization problem where a Pareto equilibrium must
be met between the explored area and the risk of battery outage. In order to
solve efficiently this problem, a bio-inspired approach has been designed based
on the well-known NSGA-II solver. A realistic experimental setup comprising the
VREP robotic simulation framework has been constructed so as to shed light on
how the proposed solver performs in practice. The obtained results have proven
empirically the practicality and inherent utility of the proposed routing scheme,
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which provides the commander of the mission with more valuable information
for decision making than traditional schemes based on a single fitness function.

Several lines of research related to this work have been planned for the near
future, e.g. the inclusion of other bioinspired multi-objective heuristic engines
(e.g. SMPSO, MOEA/D) and their comparison to each other in terms of multi-
objective indicators. Another research path that will be prospected will gravitate
on relaxing and extending the assumptions and constraints defining the consid-
ered scenario towards, for instance, co-located exploration tasks (demanding
different sensing equipment). Among them, the most challenging research direc-
tion to be followed focuses on distributing the intelligence among the robots in
order to realize a true robotic swarm, namely, a swarm of robots that commu-
nicate to each other and exchange information, deciding on an optimal set of
waypoints without requiring a centralized command center as the one assumed
in this work.
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