
An Approach for Recovering Distributed
Systems from Disasters

Ichiro Satoh(B)

National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan
ichiro@nii.ac.jp

Abstract. This paper presents an approach to recovering distributed
applications, which consist of software agents running on different com-
puters from drastic damages by disasters. The approach is inspired from
regeneration mechanisms in living things, e.g., tails of lizards. When
an agent delegates a function to another agent coordinating with it, if
the former has the function, this function becomes less-developed and
the latter’s function becomes well-developed like differentiation processes
in cells. It can also initialize and restart differentiated software agents,
when some agents cannot be delegated like regeneration processes. It is
constructed as a general-purpose and practical middleware system for
software agents on real distributed systems consisting of embedded com-
puters or sensor nodes.

1 Introduction

Hundreds of natural disasters occur in many parts of the world every year, caus-
ing billions of dollars in damages. This fact may contrast with the availability
of distributed systems. Distributed systems are often treated to be dependable
against damages, because in distributed systems data can be stored and exe-
cuted at multiple locations and processing must not be performed by only one
computer. However, all existing distributed systems are not resilient to damages
in the sense that if only one of the many computers fails, or if a single network
link is down, the system as a whole may become unavailable. Furthermore, in
distributed systems partially damaged by disasters surviving computers and net-
works have no ability to fill functions lost with damaged computers or networks.

On the other hand, several living things, including vertebrates, can regen-
erate their lost parts, where regeneration is one of developmental mechanisms
observed in a number of animal species, e.g., lizard, earthworm, and hydra,
because regeneration enables biological systems to recover themselves against
their grave damages. For example, reptiles and amphibians can partially regen-
erate their tails, typically over a period of weeks after cutting the tails. Regen-
eration processes are provided by (de)differentiation mechanism by which cells
in a multicellular organism become specialized to perform specific functions in a
variety of tissues and organs. The key idea behind the approach proposed in this
paper was inspired from (de)differentiation as a basic mechanism for regenera-
tion like living things. The approach introduces a (de)differentiation mechanism
c© Springer International Publishing AG, part of Springer Nature 2018
P. Korošec et al. (Eds.): BIOMA 2018, LNCS 10835, pp. 270–282, 2018.
https://doi.org/10.1007/978-3-319-91641-5_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91641-5_23&domain=pdf


An Approach for Recovering Distributed Systems from Disasters 271

into middleware systems for distributed systems, instead of any simulation-based
approaches.1

Our middleware system aims at building and operating distributed applica-
tions consisting of self-adapting/tuning software components, called agents, to
regenerate/differentiate their functions according to their roles in whole applica-
tions and resource availability, as just like cells. It involves treating the undertak-
ing/delegation of functions in agents from/to other agents as their differentiation
factors. When an agent delegates a function to another agent, if the former has
the function, its function becomes less-developed in the sense that it has less
computational resources, e.g., active threads, and the latter’s function becomes
well-developed in the sense that it has more computational resources.

2 Example Scenario

Let us suppose a sensor network to observe a volcano. Its sensor nodes are located
around the volcano. Each of the nodes have sensors to measure accelerations
result from volcano tectonic earthquakes around it in addition to processors and
wired or wireless network interfaces. The locations of sensor nodes tend to be
irregular around the volcano.

A disaster may result in drastic damages in sensor networks. For example,
there are several active or dormant volcanoes in Japan. Sensor networks to detect
volcano ash and tremor are installed at several spots in volcanoes. Volcanic
eruptions, including phreatic eruptions, seriously affect such sensor networks.
More han half sensor nodes may be damaged by eruptions. Nevertheless, the
sensor networks should continue to monitor volcano tectonic earthquakes with
only their surviving nodes as much as possible.

Sensor nodes in a volcano are located irregularly, because it is difficult for
people to place such nodes at certain positions in volcanoes, because there are
many no-go zones and topographical constraints. Instead, they are distributed
from manned airplanes or unmanned ones. Therefore, they tend to be overpop-
ulated in several areas in the sense that the coverage areas of their sensors are
overlap or contained. To avoid congestion in networks as well as to save energy
consumption, redundant nodes should be inactivated.

3 Requirements

To support example scenarios discussed in the previous section, our approach
needs to satisfy the following requirements: Self-adaptation is needed when envi-
ronments and users’ requirements change. To save computational resources and
energy, distributed systems should adapt their own functions to changes in their
systems and environments. Saving resources is important in distributed systems
used in field, e.g., sensor networks, rather than data centers, including cloud

1 There is often a gap between the real systems and simulations. We believe that
adaptive distributed systems need more experiences in the real systems.



272 I. Satoh

computing. Our approach should conserve limited computational resources, e.g.,
processing, storage resources, networks, and energy, at nodes as much as possible.
Non-centralized management can support reliability and availability. Centralized
management may be simple but can become a single point of failures. Therefore,
our adaptation should be managed in a peer-to-peer manner. Distributed systems
essentially lack no global view due to communication latency between comput-
ers. Software components, which may be running on different computers, need
to coordinate them to support their applications with partial knowledge about
other computers. Our approach should be practical so that it is implemented as
a general-purpose middleware system. This is because applications running on
distributed systems are various. Each of software components should be defined
independently of our adaptation mechanism as much as possible. As a result,
developers should be able to concentrate their application-specific processing.

4 Approach: Regeneration and Differentiation

The goal of the proposed approach is to introduce a regeneration mechanism
into distributed systems like living things. Regenerations in living things need
redundant information in the sense that each of their cells have genes as plans
for other cells. When living things lose some parts of their bodies, they can
regenerate such lost parts by encoding genes for building the parts with differen-
tiation mechanisms. Differentiation mechanisms can be treated as selections of
parts of genes to be encoded. Since a distributed application consists of software
components, which may be running on different computers like cells, we assume
that software components have program codes for functions, which they do not
initially provide and our differentiation mechanisms can select which functions
should be (in)activated or well/less-developed.

Each software component, called agent, has one or more functions with
weights, where each weight indicates the superiority and development of its
function in the sense that the function is assigned with more computational
resources. Each agent initially intends to progress all its functions and period-
ically multicasts messages about its differentiation to other agents of which its
distributed application consist. Such messages lead other agents to degenerate
their functions specified in the messages and to decrease the superiority of the
functions. As a result, agents complement other agents in the sense that each
agent can provide some functions to other agents and delegate other functions
to other agents that can provide the functions.

5 Design

Our approach is maintained through two parts: runtime systems and agents.
The former is a middleware system for running on computers and the latter
is a self-contained and autonomous software entity. It has three protocols for
regeneration/differentiation.



An Approach for Recovering Distributed Systems from Disasters 273

5.1 Agent

Each agent consists of one or more functions, called the behavior parts, and
its state, called the body part, with information for (de)differentiation, called
the attribute part. The body part maintains program variables shared by its
behaviors parts like instance variables in object orientation. When it receives
a request message from an external system or other agents, it dispatches the
message to the behavior part that can handle the message. The behavior part
defines more than one application-specific behavior. It corresponds to a method
in object orientation. As in behavior invocation, when a message is received from
the body part, the behavior is executed and returns the result is returned via
the body part. The attribute part maintains descriptive information with regard
to the agent, including its own identifier. The attributes contains a database for
maintaining the weights of its own behaviors and for recording information on
the behaviors that other agents can provide.

5.2 Regeneration

We outline our differentiation processes for regeneration (Fig. 1). The Appendix
describes the processes in more detail.

– Invocation of behaviors: Each agent periodically multicasts messages about
the weights of its behaviors to other agents. When an agent wants to execute
a behavior, even if it has the behavior, it compares the weights of the same or
compatible behaviors provided in others and it. It select one of the behaviors,
whose weights are the most among the weights of these behaviors. That is,
the approach selects more developed behaviors than less developed behaviors.

– Well/Less developing behaviors: When a behavior is executed by other agents,
the weight of the behavior increase and the weights of the same or behaviors
provided from others decrease. That is, behaviors in an agent, which are
delegated from other agents more times, are well developed, whereas other
behaviors, which are delegated from other agents fewer times, in a cell are
less developed.

– Removing redundant behaviors: The agent only provides the former behaviors
and delegates the latter behaviors to other agents. Finally, when the weights
of behaviors are zero, the behaviors become dormant to save computational
resources.

– Increasing resources for busy behaviors: Each agent can create a copy of itself
when the total weights of functions provided in itself is the same or more
than a specified value. The sum of the total weights of the mother agent and
those of the daughter agent is equal to the total weights of the mother agent
before the agent is duplicated.

– Reactivating dormant behaviors: When an agent does not receive messages
about the weights of behaviors provided in agents, treats such behaviors to
be lost. When it has the same or compatible behaviors, which are dormant,
it resets the wights of the behaviors, to their initial values. Therefore, they
are regenerated and differentiated according to the above process again.



274 I. Satoh

Body
part

Attribute
part

Agent B

(b) Progression/Regression phase

(c) Differentiated phase

Restraining
message

Well-developed Less-developed

Agent A

Agent B

(a) Invocation phase

Request message

w1 5 Behavior 1

w2 5 Behavior 2

w15Behavior 1

w25Behavior 2

Body
part

Attribute
part

Body
part

Attribute
part

Agent A

Agent B

w1 5 Behavior 1

w2 5 Behavior 2

w15Behavior 1

w25Behavior 2

Body
part

Attribute
part

Body
part

Attribute
part

Agent A

Agent B

w1 6 Behavior 1

w2 5 Behavior 2

w14Behavior 1

w25Behavior 2

Body
part

Attribute
part

Agent B

Agent B

(d) Dedifferentiated phase

Initial weight

Body
part

Attribute
part

Agent A

Agent B

w1 5 Behavior 1

w2 5 Behavior 2

w15Behavior 1

w25Behavior 2

Body
part

Attribute
part

Agent B

Initial weight

Fig. 1. Regeneration in agents

6 Implementation

To evaluate our proposed approach, we constructed it as a middleware system
with Java (Fig. 2), which can directly runs on Java VM running on VMs in
IaaS, e.g., Amazon EC2. It is responsible for executing duplicating, and deploy-
ing agents based on several technologies for mobile agent platforms. It is also
responsible for executing agents and for exchanging messages in runtime systems
on other IaaS VMs or PaaS runtime systems through TCP and UDP protocols.
Messages for exchanging information about the weights of differentiation are
transmitted as multicast UDP packets. Application-specific messages for invok-
ing methods corresponding to behaviors in agents are implemented through TCP
sessions.

Agent BAgent A

Runtime Systemtime SystRuntnt temte

Execution
manager

Adaptation
manager

Network
manager

g g Agent DAgent C

Runtime Systemtime SystRuntnt temte

Execution
manager

Adaptation
manager

Network
manager

g g

y

Java VM

y

Java VM

Network

OS/Hardware OS/Hardware

Fig. 2. Runtime system

Each agent is an autonomous programmable entity. The body part main-
tains a key-value store database, which is implemented as a hashtable, shared
by its behaviors. We can define each agent as a single JavaBean, where each
method in JavaBean needs to access the database maintained in the body parts.
Each method in such a JavaBean-based agent is transformed into a Java class,



An Approach for Recovering Distributed Systems from Disasters 275

which is called by another method via the body part, by using a bytecode-level
modification technique before the agent is executed. Each body part is invoked
from agents running on different computers via our original remote method invo-
cation (RMI) mechanism, which can be automatically handled in network dis-
connection unlike Java’s RMI library. The mechanism is managed by runtime
systems and provided to agents to support additional interactions, e.g., one-way
message transmission, publish-subscription events, and stream communications.
Since each agent records the time the behaviors are invoked and the results are
received, it selects behaviors provided in other agents according to the average
or worst response time in the previous processing. When a result is received
from another agent, the approach permits the former to modify the value of the
behavior of the latter under its own control. For example, agents that want to
execute a behavior quickly may increase the weight of the behavior by an extra
amount, when the behavior returns the result too soon.

7 Evaluation

This section describes the performance evaluation of our implementation.

7.1 Basic Performance

Although the current implementation was not constructed for performance, we
evaluated several basic operations in distributed systems consisting of eights
embedded computers, where each computer is a Raspberry Pi computer, which
has been one of the most popular embedded computers (its processor was Broad-
loom BCM2835 (ARM v6-architecture core with floating point) running at
700 MHz and it has 1 GB memory and SD card storage (16 GB SDHC), with
a Linux operating system optimized to Raspberry Pi, and OpenJDK. The cost
of transmitting a message through UDP multicasting was 17 ms. The cost of
transmitting a request message between two computers was 28 ms through TCP.
These costs were estimated from the measurements of round-trip times between
computers. We assumed in the following experiments that each agent issued
messages to other agents every 110 ms through UDP multicasting.

We evaluated the speed of convergence in our differentiation. Each computer
had one agent having three functions, called behavior A, B and C, where behavior
A invoked B and C behaviors every 200 ms and the B and C behaviors were
null behaviors. We assigned at most one agent to each of the computers. B
or C, selected a behavior whose weight had the highest value if its database
recognized one or more agents that provided the same or compatible behavior,
including itself. When it invokes behavior B or C and the weights of its and
others behaviors were the same, it randomly selected one of the behaviors. We
assumed in this experiment that the weights of the B and C behaviors of each
agent would initially be five and the maximum of the weight of each behavior
and the total maximum of weights would be ten.



276 I. Satoh

0

10

2

4

6

8

0 1.0 2.0 3.0

Behavior A in Agent 1

Behavior B in Agent 1

Behavior A in Agent 2

Behavior B in Agent 2

Behavior A in Agent 3

Behavior B in Agent 3

Behavior A in Agent 4

Behavior B in Agent 4

Time (s)

W
ei

gh
t

0 1.0 2.0 3.0
0

10

2

4

6

8

Behavior A in Agent 1

Behavior B in Agent 1

Behavior A in Agent 2

Behavior B in Agent 2

Time (s)

W
ei

gh
t

Fig. 3. Convergence in four agents with two behaviors (Left) and Convergence in eight
agents with two behaviors (Right)

Differentiation started after 200 ms, because each agent knows the presence
of other agents by receiving heartbeat messages from them. The right of Fig. 3
details the results obtained from our differentiation between four agents on
four computers and The left of Fig. 3 between eight agents on eight comput-
ers. Finally, two agents provide behavior B and C respectively and the others
delegate the two behaviors to the two agents in both the cases. Although the
time of differentiation depended on the period of invoking behaviors, it was inde-
pendent of the number of agents. This is important to prove that this approach
is scalable.

7.2 Sensor Networks Recovering from Damaged by Disasters

Let us suppose a sensor-network system consisting of 15 × 15 nodes connected
through a grid network, as shown in Fig. 4. The system was constructed on a
commercial IaaS cloud infrastructure (225 instances of Amazon EC2 with Linux
and JDK 1.7). This experiment permitted each node to communicate with its
eights neighboring nodes and the diameter of a circle in each node represents
the weight of a behavior. Nodes were connected according to the topology of the
target grid network and could multicast to four neighboring runtime systems
through the grid network. We assume that each agent monitors sensors in its
current node and every node has one agent.

We put agents at all nodes and evaluated removing of redundant agents.
Each agent has conflict with agents at its eights neighboring nodes, because
it can delegate its function to them, vice versa. Figure 5(i) shows the initial
weights of agents. (ii) and (iii) show the weights of behaviors in agents eight and



An Approach for Recovering Distributed Systems from Disasters 277

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

behavior in agent

8-neighboring nodes

Fig. 4. 15 × 15-Grid network on cloud computing

sixteen seconds later. Even though differentiated behaviors were uneven, they
could be placed within certain intervals, i.s., two edges on the grid network.
This proved that our approach was useful in developing particular functions of
software components at nodes.

ii) Weights (8 second later)i) Initial weights iii) Weights (16 second later)
Diameter is propostional to weight
of behavior at each agent Weight0 10

Fig. 5. Removing redundant agents

Figure 6(i) was the initial weights of agents on the network. We explicitly
made a flawed part in the network (Fig. 6(ii)). Some agents dedifferentiate them-
selves in nodes when a flawed part made in the network. In the experiment agents
around the hole started to activate themselves through dedifferentiation. The
weights of their behaviors converged according to the weights of their behaviors
to the behaviors of other newly activated agents in addition to existing agents.
Finally, some agents around the hole could support the behaviors on behalf of
the dismissed agents with the flawed part. This result prove that our approach
could remedy such a damage appropriately in a self-organized manner. This is
useful for sensing catastrophes, e.g., earthquakes and deluges.



278 I. Satoh

ii) Partial destructioni) Initial weights iii) 16 second later

Fig. 6. Regeneration to recover damage

ii) Weights (4 second later)i) Initial weights iii) Weights (8 second later)

Diameter is propostional to 
weight of behavior 
at each agent

Weight0 10

iv) Weights (12 second later) v) Weights (16 second later)

Fig. 7. Agents are differentiated in broadcasting to all agents

Next, we assume each node could multicast to all agents through the grid
network. Figure 7 shows only one agent is activated and the others are inactivated
after their differentiations, because the latter can delegate the function to the
former. We partitioned the grid network as shown Fig. 8(ii). The above half has
a well-developed behavior and the below half lacks such behavior. Therefore,
all agents in the below half reset their weights as shown Fig. 8(iii) and they
are differentiated. Finally, only one agent is activated on the below half part
(Fig. 8(iv)).



An Approach for Recovering Distributed Systems from Disasters 279

ii) Network partitioningi) Stable phase iii) Reseting weights in 
partitioned area

Weight0 10

iv) Weights (4 second later) v) Weights (8 second later)

Diameter is propostional to 
weight of behavior 
at each agent

Fig. 8. Agents are differentiated in network partitioning

8 Related Work

We compare between our approach and other existing bio-inspired approaches for
distributed systems. The Anthill project [1] by the University of Bologna devel-
oped a bio-inspired middleware for peer-to-peer systems, which is composed of
a collection of interconnected nests. Autonomous agents, called ants can travel
across the network trying to satisfy user requests. The project provided bio-
inspired frameworks, called Messor [2] and Bison [3]. Messor is a load-balancing
application of Anthill and Bison is a conceptual bio-inspired framework based
on Anthill. One of the most typical self-organization approaches to distributed
systems is swarm intelligence [4,5]. Although there is no centralized control struc-
ture dictating how individual agents should behave, interactions between simple
agents with static rules often lead to the emergence of intelligent global behav-
ior. Suda et al. proposed bio-inspired middleware, called Bio-Networking, for
disseminating network services in dynamic and large-scale networks where there
were a large number of decentralized data and services [6,7]. Although they
introduced the notion of energy into distributed systems and enabled agents to
be replicated, moved, and deleted according to the number of service requests,
they had no mechanism to adapt agents’ behavior unlike ours. As most of their
parameters, e.g., energy, tended to depend on a particular distributed system.
so that they may not have been available in other systems. Our approach should
be independent of the capabilities of distributed systems as much as possible.



280 I. Satoh

Finally, we compare between our approach and our previous ones, because we
constructed several frameworks for adaptive distributed systems. One of them
enabled distributed components to be dynamically federated [8]. We also pre-
sented an early version of the proposed approach [9], but the version was designed
for adaptive services over enrich distributed systems, e.g., cloud computing. They
did not support any disaster management.

9 Conclusion

This paper proposed an approach to recovering distributed applications from vio-
lent damages, which might result from disasters. The approach is unique to other
existing approaches for disaster-tolerant approaches for distributed systems. It
was inspired from a bio-inspired mechanism, regeneration in living things. It was
also available at the edge of networks, e.g., sensor networks and Internet-of-Thing
(IoT). It enabled agents, which were implemented as software components, to
be differentiated. When a component delegated a function to another compo-
nent coordinating with it, if the former had the function, this function became
less-developed and the latter’s function became well-developed like differentia-
tion processes in cells. It could also initialize and restart differentiated software
components, when some components could not be delegated like regeneration
processes in lizards. It was constructed as a general-purpose and practical mid-
dleware system for software components on real distributed systems consisting
of embedded computers or sensor nodes.

Appendix

This appendix we describe our model for regenerating software components,
called agents, by using a differentiation mechanism in detail. We specify from 1-th
to n-th behaviors of k-th agent, as bk1 , . . . , b

k
n and the weight of behavior bki as wk

i .
Each agent (k-th) assigns its own maximum to the total of the weights of all its
behaviors. The W k

i is the maximum of the weight of behavior bki . The maximum
total of the weights of its behaviors in the k-th agent must be less than W k.
(W k ≥ ∑n

i=1 wk
i ), where wk

j − 1 is 0 if wk
j is 0. The W k may depend on agents.

In fact, W k corresponds to the upper limit of the ability of each agent and may
depend on the performance of the underlying system, including the processor.

Invocation of Behaviors

1. When an agent (k-th agent) receives a request message from another agent, it
selects the behavior (bki ) that can handle the message from its behavior part
and dispatches the message to the selected behavior (Fig. 1(a)).

2. It executes the behavior (bki ) and returns the result.
3. It increases the weight of the behavior, wk

i .
4. It multicasts a restraining message with the signature of the behavior, its

identifier (k), and the behavior’s weight (wk
i ) to other agents (Fig. 1(b)).2

2 Restraining messages correspond to cAMP in differentiation.



An Approach for Recovering Distributed Systems from Disasters 281

The key idea behind this approach is to distinguish between internal and external
requests. When behaviors are invoked by their agents, their weights are not
increased. If the total weights of the agent’s behaviors,

∑
wk

i , is equal to their
maximal total weight W k, it decreases one of the minimal (and positive) weights
(wk

j is replaced by wk
j −1 where wk

j = min(wk
1 , . . . , wk

n) and wk
j ≥ 0). The above

phase corresponds to the degeneration of agents.

Well/Less Developing Behaviors

1. When an agent (k-th agent) wants to execute a behavior, bi, it looks up the
weight (wk

i ) of the same or compatible behavior and the weights (wj
i , . . . , w

m
i )

of such behaviors (bji , . . . , b
m
i ).

2. If multiple agents, including itself, can provide the wanted behavior, it selects
one of the agents according to selection function φk, which maps from wk

i and
wj

i , . . . , w
m
i to bli, where l is k or j, . . . ,m.

3. It delegates the selected agent to execute the behavior and waits for the result
from the agent.

The approach permits agents to use their own evaluation functions, φ, because
the selection of behaviors often depends on their applications. Although there
is no universal selection function for mapping from behaviors’ weights to at
most one appropriate behavior like a variety of creatures, we can provide several
functions.

Removing Redundant Behaviors

1. When an agent (k-th agent) receives a restraining message with regard to
bji from another agent (j-th), it looks for the behaviors (bkm, . . . bkl ) that can
satisfy the signature specified in the receiving message.

2. If it has such behaviors, it decreases their weights (wk
m, . . . wk

l ) and updates
the weight (wj

i ) (Fig. 1(c)).
3. If the weights (wk

m, . . . , wk
l ) are under a specified value, e.g., 0, the behaviors

(bkm, . . . bkl ) are inactivated.

References

1. Babaoglu, O., Meling, H., Montresor, A.: Anthill: a framework for the development
of agent-based peer-to-peer systems. In: Proceedings of 22nd International Confer-
ence on Distributed Computing Systems (ICDCS 2002), Washington, D.C., USA,
pp. 15–22. IEEE Computer Society (2002)

2. Montresor, A., Meling, H., Babaoğlu, Ö.: Messor: load-balancing through a swarm
of autonomous agents. In: Moro, G., Koubarakis, M. (eds.) AP2PC 2002. LNCS
(LNAI), vol. 2530, pp. 125–137. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-45074-2 12

https://doi.org/10.1007/3-540-45074-2_12
https://doi.org/10.1007/3-540-45074-2_12


282 I. Satoh

3. Montresor, A., Babaoglu, O.: Biology-inspired approaches to peer-to-peer computing
in BISON. In: Abraham, A., Franke, K., Köppen, M. (eds.) Intelligent Systems
Design and Applications. ASC, vol. 23, pp. 515–522. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-44999-7 49

4. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, Oxford (1999)

5. Dorigo, M., Stützle, T.: Ant Colony Optimization. Bradford Company, Scituate
(2004)

6. Nakano, T., Suda, T.: Self-organizing network services with evolutionary adaptation.
IEEE Trans. Neural Netw. 16(5), 1269–1278 (2005)

7. Suzuki, J., Suda, T.: A middleware platform for a biologically inspired network
architecture supporting autonomous and adaptive applications. IEEE J. Sel. Areas
Commun. 23(2), 249–260 (2005)

8. Satoh, I.: Self-organizing software components in distributed systems. In: Lukowicz,
P., Thiele, L., Tröster, G. (eds.) ARCS 2007. LNCS, vol. 4415, pp. 185–198. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-71270-1 14

9. Satoh, I.: Resilient architecture for complex computing systems. In: 18th Interna-
tional Conference on Engineering of Complex Computer Systems, pp. 256–259, July
2013

https://doi.org/10.1007/978-3-540-44999-7_49
https://doi.org/10.1007/978-3-540-71270-1_14

	An Approach for Recovering Distributed Systems from Disasters
	1 Introduction
	2 Example Scenario
	3 Requirements
	4 Approach: Regeneration and Differentiation
	5 Design
	5.1 Agent
	5.2 Regeneration

	6 Implementation
	7 Evaluation
	7.1 Basic Performance
	7.2 Sensor Networks Recovering from Damaged by Disasters

	8 Related Work
	9 Conclusion
	References




