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Abstract. Lindenmayer systems (L-systems) are a formal grammar sys-
tem that iteratively rewrites all symbols of a string, in parallel. When
visualized with a graphical interpretation, the images have been par-
ticularly successful as a concise method for simulating plants. Creating
L-systems to simulate a given plant manually by experts is limited by
the availability of experts and time. This paper introduces the Plant
Model Inference Tool (PMIT) that infers deterministic context-free L-
systems from an initial sequence of strings generated by the system using
a genetic algorithm. PMIT is able to infer more complex systems than
existing approaches. Indeed, while existing approaches can infer D0L-
Systems where the sum of production successors is 20, PMIT can infer
those where the sum is 140. This was validated using a testbed of 28
known D0L-system models, in addition to models created artificially by
bootstrapping larger models.
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1 Introduction

Lindenmayer systems (L-systems), introduced in [1], are a formal grammar sys-
tem that produces self-similar patterns that appear frequently in nature, and
especially in plants [2]. L-systems produce strings that get rewritten over time
in parallel. Certain symbols can be interpreted as instructions to create sequen-
tial images, which can be visually simulated by software such as the “virtual
laboratory” (vlab) [3]. Such simulations are useful as they can incorporate dif-
ferent geometries [2], environmental factors [4], and mechanistic controls [5], and
are therefore of use to simulate and understand plants. L-systems often consist
of small textual descriptions that require little storage compared to real imagery.
Certainly also, they can produce a simulation extremely quickly with low cost
computers in comparison to actually growing a plant.

An L-system is denoted by a tuple G = (V, ω, P ), which consists of an alpha-
bet V (a finite set of allowed symbols), an axiom ω that is a word over V , and
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a finite set of productions, or rewriting rules, P . A deterministic context-free L-
system or a D0L-system, has exactly one rule for each symbol in V of the form
A → x, where A ∈ V (the predecessor) and x is a word over V (the successor,
denoted by succ(A)). Words get rewritten according to a derivation relation, ⇒,
whereby A1 · · · An ⇒ x1 · · · xn, where Ai ∈ V, xi is a word, and Ai → xi is in
P , for each i, 1 ≤ i ≤ n. Normally, one is concerned with derivations starting at
the axiom, ω ⇒ ω1 ⇒ ω2 ⇒ · · · ⇒ ωn. The sequence (ω1, . . . , ωn) is known as
the developmental sequence of length n.

Fig. 1. Fractal plant
after 7 generations [2].

One common alphabet for visualization is the turtle
graphics alphabet [2], so-called as it is imagined that each
word generated contains a sequence of instructions that
causes a turtle to draw an image with a pen attached.
The turtle has a state consisting of a position on a (usu-
ally) 3D grid and an angle, and the common symbols
that cause the turtle to change states and draw are: F
(move forward with pen down), f (move forward with pen
up), + (turn left), − (turn right), [ (start a branch), ] (end
a branch), & (pitch up), ∧ (pitch down), \(roll left), /
(roll right), | (turn around 180◦). For branching mod-
els, [ causes the state to be pushed on a stack and ]
causes the state to be popped and the turtle switches
to it. It is assumed that the right hand side of rewriting rules have paranthe-
ses that are properly nested. Additional symbols are added to the alphabet,
such as A and B, to represent the underlying growth mechanics. The “Fractal
Plant” L-system is inferred commonly [6,7] and so is shown here as an example:
G = ({X,F},X, {X → F [+X]F [−X] + X,F → FF}). After 7 generations,
“Fractal Plant” can produce the image in Fig. 1 after 7 generations. More real-
istic 3D models may be produced with extensions of D0L-systems.

A difficult challenge is to determine an L-system that can accurately sim-
ulate a plant. In practice, this often involves manual measurements over time,
scientific knowledge, and is done by experts [8]. Although this approach has
been successful, it does have notable drawbacks. Producing a system manually
requires an expert that are in limited supply, and it does not scale to producing
arbitrarily many models. Furthermore, the more complex plant models require a
priori knowledge of the underlying mechanics of the plant, which are difficult and
time consuming to acquire. To address this, semi-automated (used as an aide for
the expert) [9,10], and fully automated approaches [6,7], have been introduced
to find an L-system that matches observed data. This approach has the poten-
tial to scale to constructing thousands of models, and also has the potential to
expose biomechanics rather than requiring its knowledge beforehand.

The ultimate goal of this research is to automatically determine a model
from a sequence of plant images over time. An intermediate step is to infer the
model from a sequence of strings used to draw the images. This is known as
the inductive inference problem, defined as follows. Given a sequence of strings
α = (ω1, . . . , ωn), find a D0L-system, or if it exists, G = (V, ω, P ) such that
ω = ω0 ⇒ ω1 ⇒ · · · ⇒ ωn where α is the developmental sequence of length n.
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This paper introduces the Plant Model Inference Tool (PMIT) that aims
to be a fully automated approach to inductive inference of L-systems. Towards
that goal, PMIT uses a genetic algorithm (GA) to search for an L-system to
match the words produced. This paper presents a different encoding scheme
than previous approaches, and shows that it is more effective for inferring D0L-
systems. Additionally, some logical rules based on necessary conditions are used
as heuristics to shrink the solution space. Between these two techniques, it is
determined that PMIT is able to infer L-systems where the sum of the production
successors is approximately 140 symbols in length; whereas, other approaches
are limited to about 20 symbols. Moreover, the testbed used to test PMIT is
significantly larger than previous approaches. Indeed, 28 previously developed
D0L-systems are used, and for these systems that PMIT properly inferred, it did
so in an average of 17.762 s. Furthermore, additional (in some sense “artificial”)
models are created by combining the existing models where the combined length
of the successors is longer than 140 symbols (which PMIT does not solve), and
then randomly removing “F” symbols until it can solve them. This work can be
seen as a step towards the goal of 3D scanning a plant over time, converting the
images into strings that describe how to draw them, then inferring the L-system
from the sequence of strings.

The remainder of this paper is structured as follows. Section 2 describes some
existing automated approaches for inferring L-systems. Section 3 describes the
logical rules used to shrink the solution space, and Sect. 4 discusses the genetic
algorithm. Section 5 will discuss the methodology used to evaluate PMIT and
the results. Finally, Sect. 6 concludes the work and discusses future directions.
Some details are omitted due to space constraints, but appear online [11].

2 Background

This section briefly describes some notation used throughout the paper, con-
tains a brief description of genetic algorithms since they are used as the search
mechanism here, then describes some existing approaches to L-system inference.

An alphabet is a finite set of symbols. Given an alphabet V , a word over V
is any sequence of letters written a1a2 · · · an, ai ∈ V, 1 ≤ i ≤ n. The set of all
words over V is denoted by V ∗. Given a word x ∈ V ∗, |x| is the length of x, and
|x|A is the number of A’s in x, where A ∈ V . Given two words x, y ∈ V ∗, then
x is a substring of y if y = uxv, for some u, v ∈ V ∗ and in this case y is said to
be a superstring of x. Also, x is a prefix of y if y = xv for some v ∈ V ∗, and x
is a suffix of y if y = ux for some u ∈ V ∗.

The GA is an optimization algorithm, based on evolutionary principles, used
to efficiently search N -dimensional (usually) bounded spaces [12]. In evolution-
ary biology, increasingly fit offspring are created over successive generations by
intermixing the genes of parents. An encoding scheme is applied to convert a
problem into a virtual genome consisting of N genes. Each gene is either a
binary, integer, or real value and represents, in a problem specific way, an ele-
ment of the solution to the problem. One common type of encoding is a real
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mapped encoding, where the genes have a real value from 0 and 1 and differ-
ent ranges within are mapped contextually [12]. This encoding works best when
the options at each step of the problem are unknown or dependent on prior
choices.

The GA functions by first creating an initial population (P ) of random solu-
tions. Each member of the population is assessed using a problem specific fitness
function. Then the GA, controlled by certain parameters, performs a selection,
crossover, mutation, and survival step until a termination condition is reached.
In the selection step, a set of pairs of genomes are selected from the population
with odds in proportion to their fitness, i.e. preferring more fit genomes. During
the crossover step, for each selected pair, a random selection of genes are copied
between the two; thereby, producing two offspring. Each gene has a chance of
being swapped equal to the control parameter crossover weight. The mutation
step takes each offspring and randomly changes zero or more genes to a random
value with each gene having a chance of being mutated equal to the mutation
weight. Then each offspring is evaluated using the fitness function. The offspring
are placed into the population and genomes are culled until the population is
of size P again. Usually, the most fit members are kept (elite survival). The
termination condition may be based on such criteria as finding a solution with
sufficient fitness, or hitting a pre-determined maximum number of generations.

Various approaches to L-system inference were surveyed in [13]. There are
several different broad approaches towards the problem: building by hand [2,8],
algebraic approaches [6,14], using logical rules [6], and search approaches [7].
Since PMIT is a hybrid approach incorporating a search algorithm, GA, together
with logical rules to reduce intractability by shrinking the search space, this
section will examine some existing logic-based and search-based approaches.

Inductive inference has been studied theoretically (without implementation)
by several authors [13], e.g. Doucet [14]. He devised a method that uses solutions
to Diophantine equations to, in many cases, find a D0L-system that starts by
generating the input strings. A similar approach was implemented with a tool
called LGIN [6] that infers L-systems from a single observed string ω. They
devise a set of equations that relate the number of each symbol observed in ω
to the linear combination of the production values in the growth matrix.

LGIN is limited to two symbol alphabets, which is still described as
“immensely complicated” [6], and was evaluated on six variants of “Fractal
Plant” [2] and had a peak execution time of four seconds.

Runqiang et al. [7] propose to infer an L-system from an image using a GA.
Each gene is encoded to represent a symbol in each successor. The fitness function
matches the candidate system to the observed data using image processing. Their
approach is limited to an alphabet size of 2 and a maximum total length of all
successors of 14. Their approach is 100% successful for a variant of “Fractal
Plant” [2] with |V | = 1, and has a 66% success rate for a variant of “Fractal
Plant” [2] with |V | = 2. Although they do not list timings, their GA converged
after a maximum of 97 generations, which suggests a short runtime.
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3 PMIT Methodology for Logically Deducing Facts
About Successors

In this section, the methodology that is used by PMIT to reduce the size of the
solution space with heuristics—all of which are based on necessary conditions for
D0L-systems—will be described. Indeed, the success and efficiency of a search
algorithm is generally tied to the size of the solution space. As all these conditions
are mathematically true, this guarantees that a correct solution is in the remain-
ing search space (if there is a D0L-system that can generate the input). In PMIT,
logical rules are used to reduce the dimensional bounds in two contexts. The first
context is to determine a lower bound � and upper bound u on the number of
each symbol B produced by each symbol A for each A,B ∈ V , henceforth called
growth of B by A. Thus, two programming variables (A,B)min and (A,B)max

are created that change such that (A,B)min ≤ |succ(A)|B ≤ (A,B)max. A sec-
ond context is a separate lower � and upper bound u on the length of each
successor for each A ∈ V . Then, two programming variables Amin and Amax

are used such that Amin ≤ |succ(A)| ≤ Amax and their values improve as the
program runs. The bounds on growth and on lengths depend on each other, so
all the rules are run in a loop until the bounds stop improving.

For this paper, it is assumed that if a turtle graphic symbol has an identity
production (e.g. + → +), then this is known in advance. Typically, these sym-
bols do have identity productions. There are some instances where “F” may not,
(some variants of “Fractal Plant” [2]). In such a case, “F” is treated as a non-
turtle graphics symbol for the purposes of inferring the L-system. Also, all suc-
cessors are assumed to be non-empty, which are commonly used in practice when
developing models [2]. This implies that Amin is initialized to 1 for each A ∈ V .
For each turtle symbol T ∈ V , Tmin = Tmax = 1, (T, T )min = (T, T )max = 1
and (T,A)min = (T,A)max = 0 for every A ∈ V,A �= T .

3.1 Deducing Growth

Consider input α = (ω0, . . . , ωn), ωi ∈ V ∗, 0 ≤ i ≤ n with alphabet V . Deduction
of growth in PMIT is based on two mechanisms; the first being the determination
of so-called successor fragments, of which there are four types.

– A word ω is an A-subword fragment if ω must be a subword of succ(A).
– A word ω is an A-prefix fragment if ω must be a prefix of succ(A).
– A word ω is an A-suffix fragment if ω must be a suffix of succ(A).
– A word ω is an A-superstring fragment if ω must be a superstring of succ(A).

As PMIT runs, it can determine additional successor fragments, which can help
to deduce growth. Certain prefix and suffix fragments can be found for the first
and last symbols in each input word by the following process. Consider two words
such that ω1 ⇒ ω2. It is possible to scan ω1 from left to right until the first non-
turtle graphics symbol is scanned (say, A, where the word scanned is αA). Then,
in ω2, PMIT skips over the graphical symbols in α (since each symbol in α has
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a known identity production), and the next Amin symbols, β, (the current value
of the lower bound for |succ(A)|) must be an A-prefix fragment. Furthermore,
since branching symbols must be paired and balanced within a successor, if a [
symbol is met, the prefix fragment must also contain all symbols until a matching
] symbol is met. Similarly, an A-superstring fragment can be found by skipping
α symbols, then taking the next Amax symbols from ω2 (the upper bound on
|succ(A)|). If a superstring fragment contains a [ symbol without the matching ]
symbol, then it is reduced to the symbol before the unmatched [ symbol. Then,
lower and upper bounds on the growth of B by A ((A,B)min and (A,B)max)
for each B ∈ V can be found by counting the number of B symbols in any
prefix and superstring fragments respectively and changing them if the bounds
are improved. For a suffix fragment, the process is identical except from right to
left starting at the end of ω1. An example of this process appears in [11].

The second mechanism for deduction of growth is based on calculating the
number of times each symbol A ∈ V appears in word ωi above the num-
ber implied from ωi−1 together with the current values of each lower bound
(B,A)min, for each B ∈ V . Formally, a programming variable for the accounted
for growth of a symbol A ∈ V for 1 ≤ i ≤ n, denoted as Gacc(i, A) is:

Gacc(i, A) :=
∑

B∈V

(|ωi−1|B · (B,A)min). (1)

The unaccounted for growth for a symbol A, denoted as Gua(i, A), is computed
as Gua(i, A) := |ωi|A − Gacc(i, A).

Then, (B,A)max is set (if it can be reduced) under the assumption that all
unaccounted for A symbols are produced by B symbols. Furthermore, (B,A)max

is set to be the lowest such value computed for any word from 1 to n, where
B occurs, as any of the n words can be used to improve the maximum. And,
|succ(B)|A must be less than or equal to (B,A)min plus the additional unac-
counted for growth of A divided by the number of B symbols (if there is at least
one; also the floor function is used since |succ(B)|A is a positive integer) in the
previous word, as computed by

(B,A)max := min
1≤i≤n,

|ωi−1|B>0

(
(B,A)min +

⌊
Gua(i,A)
|ωi−1|B

⌋ )
. (2)

An example is presented in [11].
Once (B,A)max has been determined for every A,B ∈ V , the observed words

are re-processed to compute possibly improved values for (B,A)min. Indeed for
each (B,A), if x :=

∑
C∈V
C �=B

(C,A)max, and x < |ωi|A, then this means that

|succ(B)|A must be at least
⌈

|ωi|A−x
|ωi−1|B

⌉
, and then (B,A)min can be set to this

value if its bound is improved. For example, if ωi−1 has 2 A’s and 1 B, and ωi

has 10 A’s, and (A,A)max = 4, then at most two A’s produce eight A’s, thus
one B produces at least two A’s (10 total minus 8 produced at most by A), and
(B,A)min can be set to 2.
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3.2 Deducing Successor Length

The deduction of Amin and Amax are found from two logical rules, one involving
the sum of the minimum and maximum growth over all variables, and one by
exploiting a technical mathematical property. The first rule simply states that
Amin is at least the sum of (A,B)min for every B ∈ V and similarly Amax is
at most the sum of (A,B)max for every B ∈ V . The second rule is trickier but
often improves the bounds for Amax and Amin for A ∈ V . This takes place in
steps. First, the maximum number of symbols that can be produced by A in ωi

is computed by: x := |ωi| − ∑
B∈V,B �=A(Bmin · |ωi−1|B). If |ωi−1|A > 0, let:

Ai
max :=

⌊
x

|ωi−1|A

⌋
(3)

if its value is improved. It follows that Amax can be set to min 1≤i≤n,
|ωi−1|A>0

Ai
max, if

its value is improved. Next, now that these Ai
max values have been calculated, it

is sometimes possible to further improve the Amax and Amin values. Let Y i ∈ V ,
1 ≤ i ≤ n be such that Y i occurs the least frequently in ωi−1 with at least one
copy. The current value of Y i

max will be examined as computed by Eq. 3; note
Y 1, . . . , Y n can be different. Let V i

max := Y i
max +

∑
B∈V,

B �=Y i
Bmin. Then, V i

max

can allow refinement of the upper bound for each successor, as Amax may be
improved by assuming all other symbols produce their minimum and subtracting
from V i

max. Mathematically this is expressed as:

Amax := V i
max −

∑

B∈V,
B �=A

Bmin (4)

for 1 ≤ i ≤ n, if A occurs in ωi−1, and if the new value is smaller, which has
the effect of the minimum over all i, 1 ≤ i ≤ n. Although it is not immediately
obvious that this formula is an upper bound on |succ(A)|, a mathematical proof
has been completed (omitted due to space constraints), and appears in [11] along
with an example of its use. Thus, Amax can be set in this fashion. Similarly, Amin

can be set by taking Y i that occurs most frequently.

4 Encoding for the L-system Inference Problem

In this section, the GA and encoding used by PMIT is described and contrasted
with previous approaches.

The efficient search of a GA is controlled, in part, by the settings of the
control parameters: population size, crossover weight, and mutation weight. The
process of finding the optimal control parameter settings is called hyperparameter
search. It was found via Random Search (details on methodology used in [11])
that the optimal parameter settings were 100 for population size, 0.85 crossover
weight, and 0.10 for mutation weight. These parameters are henceforth used.

The fitness function for PMIT compares the symbols in the observed data
to the symbols in the words produced by the candidate solution position by
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position. An error is counted if the symbols do not match or if the candidate
solution is too long or short. The base fitness is the number of errors divided by
total number of symbols. If the candidate solution produces more than double
the number of symbols expected, it is not evaluated and assigned an extremely
high fitness so that it will not pass the survival step. Since errors early on in
the input words ω0, . . . , ωn will cause errors later, a word ωi, is only assessed
if there are no errors for each preceding word, and 1.0 is added to F for each
unevaluated word. This encourages the GA to find solutions that incrementally
match more of the observed words. PMIT is also evaluated using brute force,
which is guaranteed to find the most fit solution and it was found that the
solution found by the GA matches that found by brute force, showing that this
fitness function is effective at finding an optimal solution.

PMIT uses three termination conditions to determine when to stop running.
First, PMIT stops if a solution is found with a fitness of 0.0 as such a solution
perfectly describes the observed data. Second, PMIT stops after 4 h of execution
if no solution has been found. Third, PMIT stops when the population has
converged and can no longer find better solutions. This is done by recording the
current generation whenever a new best solution is found as Genbest. If after
an additional Genbest generations, no better solutions are found, then PMIT
terminates. To prevent PMIT from terminating early due to random chance,
PMIT must perform at least 1,000 generations for the third condition only. This
third condition is added to prevent the GA from becoming a random search
post-convergence and finding an L-system by chance skewing the results.

The encoding scheme used most commonly in literature (e.g., [7,10]) is to
have a gene represent each possible symbol in a successor. The number of genes
for the approaches in literature varies due the specific method they use to decode
the genome into an L-system, although they are approximately the total length
of all successors combined. With this approach, each gene represents a variable
from V (encoded as an integer from 1 to |V |). However, in some approaches (and
PMIT) the decoding step needs to account for the possibility that a particular
symbol in a successor does not exist (represented by �). When the possibility of
an � exists, such genes have a range from 1 to |V | + 1. As an example, assume
V = {A,B} and Amin = 2, Amax = 3, Bmin = 1, Bmax = 3. For A, it is certain to
have at least two symbols in the successor and the third may or may not exist.
So, the first three genes represent the symbols in succ(A), where the first two
genes have each possible values from {A,B} and the third gene has {A,B,�}.

Next the improvements made to the genomic structure defined by the basic
encoding scheme will be described. Although they are discussed separately for
ease of comprehension, all the improvements are used together.

PMIT uses the bounds and successor fragments to create a genomic struc-
ture. For example, if V = {A,B}, Amin = 1, and Amax = 3, then succ(A)
can be expressed as the genomic structure of {A,B}, {A,B,�}, {A,B,�}.
If there is an A-prefix of B, then the genomic structure can change to
{B}, {A,B,�}, {A,B,�} since the first symbol in succ(A) is B, essentially elim-
inating the need for the first gene. This is similar for an A-suffix. The second
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improvement to the basic encoding scheme further reduces the solution space by
eliminating impossible solutions. When building the successor, PMIT first places
the symbols known to be in succ(A). For each successor,

∑
A,B∈V (A,B)min genes

are created with a real value range between 0 and 1. Since these symbols must
exist, the mapping selects an unused position within the successor. After these
symbols are placed, if any additional symbols are needed up to the value of Amax,
then PMIT selects the remainder allowing the option of using �, ensuring that
(A,B)max is not violated for any A,B ∈ V ; i.e. the bounds computed by the
heuristics shown in Sect. 3 ensure that the candidate solutions are always valid,
and the genes’ values are dynamically interpreted to ensure that the bounds are
not violated. Further details and examples are in [11].

Lastly, it was determined that since new non-graphical symbols can only be
produced by non-graphical symbols, it is possible to, at first, ignore the graphical
symbols over a smaller alphabet Vim. Then, one can search for the successors over
V ∗

im, which is a simpler problem. For example, if A → F [+F ]B and B → F [-F ]A,
then with Vim = {A,B} it is only necessary to find A → B and B → A. Each
graphical symbol can be added in one at a time. In the example above, the
second step might add + to Vim and find A → +B and B → A. Solving these
smaller problems is more efficient as the individual search spaces are smaller and
when summed are smaller than the solution space when trying to find the full
successor in one step. Additional details, including the use of successor fragments
to further simplify the number of genes needed, are omitted and appear in [11].

5 Data, Evaluation, and Results

To evaluate PMIT’s ability to infer D0L-systems, ten fractals, six plant-like
fractal variants inferred by LGIN [2,6], and twelve other biological models were
selected from the vlab online repository [3]. The biological models consist of ten
algaes, apple twig with blossoms, and a “Fibonacci Bush”. The dataset compares
favourably to similar studies where only some variants of one or two models
are considered [6,7]. The data set is also of greater complexity by considering
models with alphabets from between 2 to 31 symbols compared to two symbol
alphabets [6,7]. However, there remain gaps both in terms of successor lengths
and alphabet size. Hence, additional L-systems are created by bootstrapping;
that is, by combining successors from multiple L-systems to create new “fake”
systems with every combination of alphabet size from 3 to 25 in increments of 2
and longest successor length from 5 to 25 in increments of 5. To get successors
of the proper length some “F” symbols were trimmed from longer successors.
These are called generated L-systems.

Two metrics are used to measure success. Success rate (SR) is the percentage
of times PMIT can find any L-system that describes the observed data. Mean
time to solve (MTTS) is the time taken to solve the models (measured using
a single core of an Intel 4770 @ 3.4 GHz with 12 GB of RAM on Windows 10).
PMIT stops execution at 4 h (14400 s) calling the search a failure, as more than
this time is not practical relative to other tools in the literature.
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5.1 Results

Three programs were evaluated. The first is PMIT (implemented in C++ using
Windows 10), the second is a restriction of PMIT that uses a brute force algo-
rithm without the GA or logical rules, and the existing program LGIN. No
comparison is made to the work by Runqiang et al. [7] as LGIN is strictly
better; indeed, LGIN is the best approach that could be found in literature
making it the best algorithm to which PMIT can be compared. The compar-
ison between brute force and GA shows the effects of using GA on MTTS.
Results are shown in Table 1. No SR is shown for LGIN as it is not explic-
itly stated; however, it is implied to be 100% [6] for all rows where a time is

Table 1. Results for PMIT, Brute Force, and LGIN [6], on existing L-system models.

Model PMIT Brute force LGIN [6]

SR MTTS (s) Infer growth SR MTTS (s) MTTS (s)

Algae [2] 100% 0.001 n/a 100% 0.001 -

Cantor Dust [2] 100% 0.001 n/a 100% 0.001 -

Dragon Curve [2] 100% 0.909 n/a 100% 4.181 -

E-Curve [2] 0% 14400 Yes 0% 14400 -

Fractal Plant v1 [2,6] 100% 33.680 n/a 100% 163.498 2.834

Fractal Plant v2 [2,6] 100% 0.021 n/a 100% 5.019 0.078

Fractal Plant v3 [2,6] 100% 0.023 n/a 100% 5.290 0.120

Fractal Plant v4 [2,6] 100% 0.042 n/a 100% 6.571 0.414

Fractal Plant v5 [2,6] 100% 34.952 n/a 100% 171.003 0.406

Fractal Plant v6 [2,6] 100% 31.107 n/a 100% 174.976 0.397

Gosper Curve [2] 100% 71.354 n/a 100% 921.911 -

Koch Curve [2] 100% 0.003 n/a 100% 0.023 -

Peano [2] 0% 14400 Yes 0% 14400 -

Pythagoras Tree [2] 100% 0.041 n/a 100% 2.894 -

Sierpenski Triangle v1 [2] 100% 2.628 n/a 100% 267.629 -

Sierpenski Triangle v2 [2] 100% 0.086 n/a 100% 128.043 -

Aphanocladia [3] 0% 54.044 Yes 0% 14400 -

Dipterosiphonia v1 [3] 0% 14400 No 0% 14400 -

Dipterosiphonia v2 [3] 0% 14400 Yes 0% 14400 -

Ditira Reptans [3] 100% 73.821 n/a 100% 6856.943 -

Ditira Zonaricola [3] 0% 74.006 Yes 0% 14400 -

Herpopteros [3] 0% 81.530 Yes 0% 14400 -

Herposiphonia [3] 0% 298.114 Yes 0% 14400 -

Metamorphe [3] 0% 14400 Yes 0% 14400 -

Pterocladellium [3] 0% 14400 No 0% 14400 -

Tenuissimum [3] 0% 14400 No 0% 14400 -

Apple Twig [3] 0% 14400 No 0% 14400 -

Fibonacci Bush [3] 0% 14400 Yes 0% 14400 -
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Fig. 2. L-systems solved with 100% SR by alphabet size and longest successor length.

written. The variants used by LGIN [2,6] are the six Fractal Plants. In general,
PMIT is fairly successful at solving the fractals, the “Fractal Plant” variants,
and also Ditria reptans. The success rates are all either 0% or 100%, indicat-
ing that a problem is either solved or not. It was observed that PMIT was
able to solve many other models excluding the F and f symbols, as indicated
in the “Infer Growth” column. For example, PMIT inferred for Aphanocladia
that A → BA, B → U [−C]UU [+/C/]U ; however, it was not able to then
infer C → FFfFFfFFfFF [-F 4]fFFfFF [+F 3]fFFfFF [-FF ]fFFf . This is
interesting as the growth mechanisms might be more complicated for a human
to infer than the lines represented by the F and f symbols. Therefore, PMIT is
a useful aide to human experts even when it cannot infer the complete L-system.

For the generated models, Fig. 2 gives one point for every L-system (generated
or not) tested with PMIT. A model is considered solved if there is a 100% success
rate and unsolved otherwise. It is evident that the figure shows a region described
by alphabet size and longest successor length that PMIT can reliably solve.
PMIT can infer L-systems with |V | = 17, if the successors are short (5) and can
infer fairly long successors (25) when |V | = 3. Computing the sum of successor
words

∑
A∈V |succ(A)|, then PMIT is able to infer L-systems where such a sum

is less than 140, which compares favorably to approaches in literature where the
sum is at most 20. Overall, in terms of MTTS, PMIT is generally slower than
LGIN [6] for |V | = 2 although is still practically fast for these L-systems (less
than 35 s); however, PMIT can reliably infer L-systems with larger alphabet sizes
and successor lengths and still does so with an average of 17.762 s. Finally, the
brute force algorithm required a MTTS of 621.998 s. Hence, the logical rules and
the GA provide considerable improvement.
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6 Conclusions and Future Directions

This paper introduced the Plant Model Inference Tool (PMIT) as a hybrid app-
roach, combining GA and logical rules, to infer deterministic context-free L-
systems. PMIT can infer systems where the sum of the successor lengths is less
than or equal to 140 symbols. This compares favourably to existing approaches
that are limited to one or two symbol alphabets, and a total successor length
less than or equal to 20 [6,7]. Although PMIT is slower than existing approaches
for “Fractal Plant” which has a small (2) alphabet [6,7] with a MTTS of 35 s
or less compared to 2 s or less, PMIT is still practically fast. Furthermore, exist-
ing approaches are limited to 2 symbol alphabets while PMIT can infer some
L-systems with up to 17 symbol alphabets with longer successors.

For future work, methods will be investigated to further extend the limits
of alphabet size and successor length. Also, a main focus will be on the ability
to properly infer the drawing pattern likely using image processing techniques,
perhaps taking advantage of techniques devised here to sub-divide alphabets.
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