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Preface

BIOMA is one of the major scientific events focusing on the progress of the area of
bioinspired optimization methods and their applications. As in the seven previous
editions, BIOMA 2018 provided an opportunity to the international research com-
munity in bioinspired optimization to discuss recent research results and to develop
new ideas and collaborations in a friendly and relaxed atmosphere. But this year,
BIOMA was organized for the first time outside Slovenia, namely, in Paris, France.
This event was part of the SYNERGY project that has received funding from the
European Union’s Horizon 2020 research and innovation program under grant
agreement no. 692286.

BIOMA 2018 welcomed talks that cover various aspects of bioinspired optimization
research such as new algorithmic developments, high-impact applications, new
research challenges, theoretical contributions, implementation issues, and experimental
studies. BIOMA 2018 strived for a high-quality program that was complemented by
several invited talks and special sessions.

The call for papers resulted in a total of 69 submissions including 53 long papers
and 16 short papers. Each submitted long paper was assigned to three members of the
Program Committee for review, with short papers assigned to two reviewers. Based on
the review process, 27 long papers were accepted for presentation and inclusion in the
LNCS proceedings. In addition, eight short papers were accepted as posters. The long
papers made up a strong program which was completed by three keynotes from Prof.
Yaochu Jin (University of Surrey, UK), Prof. Swagatam Das (Indian Statistical Insti-
tute, Kolkata, India) and Prof. Celso C. Ribeiro (Universidade Federal Fluminense,
Brazil). The accepted papers are from 18 countries: Algeria, Brazil, Canada, Chile,
Czech Republic, Finland, France, Germany, India, Japan, Mexico, Portugal, Slovenia,
Spain, Switzerland, Turkey, Uruguay, and USA.

We would like to thank all the contributors for the success of the BIOMA 2018
conference, in particular the members of the Program Committee for their careful
review of the papers and useful feedback to the authors. Our special thanks go to the
three keynote speakers, the members of the Organizing Committee, and the publicity
chairs.

May 2018 Peter Korošec
Nouredine Melab
El-Ghazali Talbi
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Optimization of Home Care Visits
Schedule by Genetic Algorithm

Filipe Alves1(B), Ana I. Pereira1,2, Ad́ılia Fernandes3, and Paulo Leitão1

1 Research Centre in Digitalization and Intelligent Robotics (CeDRI),
Instituto Politécnico de Bragança, Campus de Santa Apolónia,

5300-253 Bragança, Portugal
{filipealves,apereira,pleitao}@ipb.pt

2 Algoritmi R&D Centre, University of Minho, Braga, Portugal
3 Instituto Politécnico de Bragança, Campus de Santa Apolónia,

5300-253 Bragança, Portugal
adilia@ipb.pt

Abstract. Currently, it has been verified that population is increasingly
aged and it is necessary to perform home services. These services include
home care visits to patients with impossibility of travel to healthcare
centers, where the health professionals perform the medical treatments.
Usually, this home care services are performed by nurses that need trans-
portation for this purpose. Therefore, it is necessary to make a schedule
of these home care visits that, usually, is made manually by the health-
care center. This work aims to carry out an automatic schedule of home
care visits of the healthcare Center of Bragança, Portugal, in order to
reduce the travel costs and optimize the time spent on trips. The Genetic
Algorithm was used to solve this problem. In this paper it is presented
the schedule of home care visits for three days of the healthcare center.

Keywords: Optimization · Schedule · Home care · Genetic algorithm

1 Introduction

Home Health Care (HHC) is increasingly important for the current society [1]. In
Portugal, for example, there is a high number of older people that need support
on theirs homes, so the home health care services are very important on these
cases. For many of these people it is impossible to travel to hospitals, healthcare
centers, laboratories, among other health services, due to many reasons, for
example, their limited mobility, the high distance of health local, or even their
homes are in isolated areas without public transportation. Thus, the Home care
services are performed by the National Health System since it is economically
advantageous to keep people at home instead of providing them a hospital bed
[2]. So, these elderly/sick people need to perform the necessary treatments in
their homes, so the health professionals need to travel to patients’ residences to
perform all the requested treatments [3].
c© Springer International Publishing AG, part of Springer Nature 2018
P. Korošec et al. (Eds.): BIOMA 2018, LNCS 10835, pp. 1–12, 2018.
https://doi.org/10.1007/978-3-319-91641-5_1
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To solve this issue, it is necessary to analyze the support needed for home care
services to better perform the management of these services. According to studies
already carried out, optimization strategies contributes to improve the Home
Health Care services in many different ways [4–6]. Some reviews highlight a large
number of papers from the Operational Research community and their main
subject is the optimization of the daily planning of health care services. Recently,
Nickel et al. [2] propose a heuristic to address the medium-term and short-term
planning problem. In the literature, the routing problem is largely tackled as
a “Travelling Salesman Problem (TSP)” approach for designing the caregiver’s
route using MILP [7] and/or heuristic [8] approaches for a static, deterministic
problem. In this context, the Portuguese public health system includes two types
of units: Hospitals and Healthcare Centers. The Healthcare Centers are closer to
the population since they follow up their patients, continuously, and the home
care services are performed by nurses teams of these units. The aim of this work
consists in solving a common problem of Healthcare Centers: produce a daily
vehicles schedule of a Healthcare Center where the health professionals (nurses)
spent the minimum time to perform all home care visits (considering the travel
and treatment patient time).

The paper is organized as follows: Sect. 2 gives a global framework, the
description of the real problem and its formulation, and presents the real data
collected. The Sect. 3 presents the Genetic Algorithm, the global method chosen
to solve the problem. The numerical results are presented in the Sect. 4. Finally,
the last scheduling presents the conclusions and future work.

2 Global Framework and Problem Definition

In this context, the global architecture of the HHC system must integrate com-
putational support. Thus, the problem was solved sequentially using the archi-
tecture presented in Fig. 1.

Fig. 1. Developed architecture

The first step (1), allows to connect the computational support with the
informations from Health Unit, in particularly, the list of patients, human and
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physical resources, among other data, allow to obtain the planning of routes for
a certain day of work, that is, the optimal route, instead the manual scheduling.

The second step (2) places the optimized routes into action, allowing the
reduction of time spent and reduction of costs for the service.

The Healthcare Centers have a set of vehicles that are used to perform home
care visits by the nurses. The Healthcare Center of Bragança (HCB) has, at
maximum, five vehicles to perform home care visits for each day. Currently, the
vehicles schedule of the HCB is done manually. So, the aim of this work is to
produce a vehicles schedule in order to obtain the minimum total spent time to
perform all home care visits by the nurses of HCB.

To solve this problem, and considering the information given by HCB, it was
considered:

– 15 min for the trip, in the same city or locality, to visit different patients.
– The trips duration between the different locations is known.
– The list and the duration of the treatments are known for each patient

(defined and given by Health National Unit).
– The number of patients that need home care, and assigned to a working day,

is known in advance and does not change during that day.
– Patient’s care activities cannot be performed at the same time or overlap.
– All trips begin and end up at the Healthcare Center.

2.1 Problem Formulation

Taking into account all the above information for a working day, it was also
considered the following parameters for a given day: NP represents the total
number of patients that need of home care and NC is the total number of
vehicles used for home care visits. Other general information is needed to obtain
the final formulation, such us:

– The locations of all patients.
– The time matrix that presents the travel time needed between different loca-

tions.
– Vehicles that perform home care visits is known in advance.
– The vehicle characteristics (in the same vehicle, the maximum number of

travel persons is seven, hence can transport more than one team).
– Each vehicle carries nurses responsible for certain activities. Therefore, there

is no interchangeability among caregivers for care activities.
– In general, each patient will be visited by a specific nurse. In some specific

cases, a set of patients can be visited by the same nurse (explained later).

Consider the vector x = (p1, ..., pNP , c1, ..., cNP ) where the patient pi will
be visited by the vehicle ci, for i = 1, ..., NP , and x ∈ {1, · · · , NP}NP ×
{1, · · · , NC}NP .
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For a given x it is possible to define the vehicles schedule and the function
Sl(x), l = 1, .., NC, that represents the total time needed to perform all visits
of the vehicle l, considering the vector x. The objective function is defined as

f(x) = max
l=1,...,NC

Sl(x) (1)

which represents the maximum time spent by all vehicles to perform all the
visits. Then the constrained optimization problem will be defined as

min f(x) (2)

where x = (p1, ..., pNP , c1, ..., cNP ) with pi ∈ {1, ..., NP} and cj ∈ {1, ..., NC};
all the patients need to be treated ∪P

i=1pi = {1, ..., NP} and the number of
nurses in each vehicle trip is less or equal to seven.

To solve the minimization problem presented previously, Genetic Algorithm
(GA) was used and it is presented in Sect. 3.

2.2 Real Data

The Healthcare Center of Bragança provided three typical working days in April
2016. The data used were available by the Healthcare Center of Bragança (chosen
by the institution and simulated a normal working day). In these days, the HCB
had:

– On the day 1 – 4 vehicles available to perform the home care visits, 31 patients
who require home-based treatments from 12 different locations.

– On the day 2 – 5 vehicles available to perform home care visits, 25 patients
who require home-based treatments from 5 different locations.

– On the day 3 – 5 vehicles available to home care visits, 22 patients who require
home-based treatments from 9 different locations.

The home care services provided by the nurses, can be classified into five different
treatments (or home care visits) presented in Table 1. This information was
provided by HCB, where the number of treatment was assigned depending on
the type of treatment, described in Table 1.

Analyzing the Table 1, it is verified that the treatments are different and
have different times between them. Each of these treatments will be considered
for each patient according to the needs (information provided by the Health
Center). It becomes necessary to know all the locations of all the patients for
the vehicles scheduling.

Table 2 presents all patients locations for the three days (and the correspond-
ing abbreviation) and the spent time between two locations (in minutes). As it
was stated before, it was assigned 15 min to travel at the same location.

The values presented in Table 2 are based on the data provided by the HCB.
As mentioned previously, it is also necessary to know the treatments list of the
patients for the three days in study.
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Table 1. Full characterization of the different treatments provided by the nurses

Treatment Description Characterization Time
(min)

1 Curative Treatments, for example, pressure
ulcer, venous ulcer, surgical wounds,
traumatic wounds, ligaments, remove
suture material, burns, evaluation and
dressing of wound dressings

30

2 Surveillance and rehabilitation Evaluation, implementation and
patient monitoring

60

3 Curative and surveillance Wound treatment, watch over
bandage, frequency and tension
monitoring, teach and instruct the
patient of the complications and
pathologies

75

4 Surveillance Assess risk of falls, self-care, patient
behaviors and still the providers
knowledge. Monitor, height, tension
and heart rate. Patients dietary and
medical regimen

60

5 General Evaluate, support and teach about
mourning

60

Table 2. Data about travel times between different locations (in minutes)

A Bg B C Cl E G M Ml Mo O P Pi Rl Rb Rd S Sm Sd Sp

Alfaião (A) 15 24 16 28 35 25 16 22 21 18 20 29 25 21 26 18 24 15 30 32

Bragada (Bg) 24 15 22 33 30 31 27 34 31 16 30 26 15 32 15 19 15 20 16 17

Bragança (B) 16 22 15 25 33 17 16 16 18 16 17 29 23 18 25 15 23 15 29 31

Carrazedo (C) 28 33 25 15 44 24 31 39 39 26 38 39 32 35 33 23 34 24 37 42

Coelhoso (Cl) 35 30 33 44 15 42 38 44 29 19 19 17 17 43 31 29 29 30 36 21

Espinhosela (E) 25 31 17 24 42 15 24 18 34 25 33 37 32 26 34 24 32 25 37 40

Gimonde (G) 16 27 16 31 38 24 15 20 18 21 22 32 29 19 29 21 27 17 33 35

Meixedo (M) 22 34 16 39 44 18 20 15 31 27 29 40 35 17 37 27 34 23 39 42

Milhão (Ml) 21 31 18 39 29 34 18 31 15 23 15 36 31 27 33 27 31 21 36 39

Mós (Mo) 18 16 16 26 19 25 21 27 23 15 24 15 16 26 15 16 19 15 18 21

Outeiro (O) 20 30 17 38 19 33 22 29 15 24 15 27 31 27 32 26 30 20 36 38

Parada (P) 29 26 29 39 17 37 32 40 36 15 27 15 19 38 27 25 25 36 31 23

Pinela (Pi) 25 15 23 32 17 32 29 35 31 16 31 19 15 34 15 20 16 21 21 19

Rabal (Rl) 31 32 18 35 43 26 19 17 27 26 27 38 34 15 34 24 32 22 38 40

Rebordáınhos (Rb) 26 15 25 33 31 34 29 37 33 15 32 27 15 34 15 22 16 20 19 20

Rebordãos (Rd) 18 19 15 23 29 24 21 27 27 16 26 25 20 24 22 15 20 15 25 28

Salsas (S) 24 15 23 34 29 32 27 34 31 19 30 25 16 32 16 20 15 20 15 15

Samil (Sm) 15 20 15 24 30 25 17 23 21 15 20 36 21 22 20 15 20 15 26 28

Sendas (Sd) 30 16 29 37 36 37 33 39 36 18 36 31 21 38 19 25 15 26 15 17

Serapicos (Sp) 32 17 31 42 21 40 35 42 39 21 38 23 19 40 20 28 15 28 17 15
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The list of treatments for each patient on days 1, 2 and 3, is:

– Day 1: the patients 1, 2, 3, 4, 8, 9, 10, 11, 12, 13, 14, 17, 19, 22, 23 and 24
need treatment 1, the patients 5, 6 and 7 need treatment 2, the patient 15
and 20 requires treatment 3, the patients 16, 21, 25, 26, 27, 28, 29, 30 and
31 need treatment 4 and the patient 18 requires treatment 5. There are some
patients that have the same nurse. It is the case of patient 11 and 13; patient
4 and 22; patient 17 and 23; and patient 1 and 12.

– Day 2: the patients 3, 16, 17, 21, 22, 23, 24 and 25 need treatment 1, the
patients 2, 8, 9 and 11 need treatment 2, the patients 4, 5, 10, 12, 13, 14,
15 and 18 need treatment 3, the patients 1, 19 and 20 requires treatment 4
and the patients 6 and 7 need treatment 5. In this day there are two pairs of
patients that have the same nurse, that is the case of patient 3 and 16; and
patient 21 and 25.

– Day 3: the patients 1, 2, 3, 6, 7, 8, 9, 17, 21 and 22 need treatment 1, the
patients 4 and 5 requires treatment 2, the patients 13 and 14 need treatment 3,
the patients 11, 12, 15, 16, 18, 19 and 20 need treatment 4 and the patient 10
requires treatment 5. The patients 16 and 18 must be visit by the same nurse.

Based on all the presented data, the main objective is to obtain the vehicles
schedule, in order to minimize the total spent time needed to perform the trips,
the treatments and return to the starting point, HCB.

3 Genetic Algorithm

Initially proposed by Holland [9], GA inspired by the natural biological evolution,
uses a population of individuals to apply genetic procedures: crossover between
two different individuals or/and mutation in one individual.

The values of the control parameters used in GA were adjusted to a suitable
experience of the problem, i.e. it was considered a population size (Ps) and
concerning the probability of the procedures (crossover and mutation), 50% rate
was selected. Is expected that the following population (next generation) of
individuals has a better capability. The algorithm repeats the crossover and
mutation procedures in new populations until the desired diversity of solutions
is performed [10,11].

The method applied in this work is summarized by the following Algorithm.

Algorithm 1. Genetic Algorithm
1: Generates a randomly population of individuals, P0, with dimension Npop. Set

k = 0.
2: while stopping criterion is not met do
3: Set k = k + 1.
4: P ′ = Apply crossover procedure in population Pk.
5: P ′′ = Apply mutation procedure in population Pk.
6: Pk+1 = Npop best individuals of {Pk ∪ P ′ ∪ P ′′}.
7: end while
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Details related to the algorithm implementation can be seen in [12]. The
iterative procedure terminates after a maximum number of iterations (NI) or
after a maximum number of function evaluations (NFE).

4 Numerical Results

The HCB also provides us the vehicles schedule, performed manually, that is,
without any mathematical model or subject to computational mechanisms. Thus,
for the days 1, 2 and 3, respectively, will be presented in the Tables 3, 4 and 5.

It was presented the real vehicles schedule used in the reference working
days to compare the improvement. Each patient is visited by one nurse. In some
specific situations there are a set of patients that will be visit for the same nurse

Table 3. HCB schedule for day 1

Vehicles scheduling in the health unit

Vehicles

1 HCB - B P(1) - T.1 B - P P(2) - T.1 P - B P(3) - T.1

P(4) - T.1 P(5) - T.2 B - Rb P(6) - T.2 Lunch Rb - B

P(7) - T.2 B - M P(22) - T.1 M - B P(12) - T.1 P(24) - T.1

B - Bg P(25) - T.4 Bg - HCB

2 HCB - C P(8) - T.1 C - E P(9) - T.1 E - B P(10) - T.1

B - Rd P(11) - T.1 Rd - B P(13) - T.1 B - S P(14) - T.1

S - HCB Lunch

3 HCB - B P(15) - T.3 B - Sp P(16) - T.4 Sp - P P(17) - T.1

P - B P(18) - T.5 Lunch B - O P(19) - T.1 O - B

P(20) - T.3 P(21) - T.4 P(23) - T.1 B - HCB

4 HCB - B P(26) - T.4 P(27) - T.4 P(28) - T.4 P(29) - T.4 Lunch

B - MI P(30) - T.4 P(31) - T.4 MI - HCB

Table 4. HCB schedule for day 2

Vehicles scheduling in the health unit

Vehicles

1 HCB - B P(1) - T.4 P(8) - T.2 P(19) - T.4 B - HCB Lunch

2 HCB - B P(2) - T.3 B - Rd P(4) - T.3 Rd - G P(5) - T.3

Lunch G - B P(6) - T.5 P(7) - T.5 B - HCB

3 HCB - CI P(9) - T.2 P(10) - T.3 P(11) - T.2 P(12) - T.3 Lunch

P(13) - T.3 P(14) - T.3 P(15) - T.3 CI - HCB

4 HCB - B P(16) - T.1 P(17) - T.1 P(18) - T.3 P(20) - T.4 B - G

P(23) - T.1 Lunch G - B P(3) - T.1 B - HCB

5 HCB - RI P(21) - T.1 RI - B P(22) - T.1 P(24) - T.1 B - Rd

P(25) - T.1 Rd - HCB Lunch
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Table 5. HCB shedule for day 3

Vehicles scheduling in the health unit

Vehicles

1 HCB - B P(1) - T.1 P(2) - T.1 P(3) - T.1 P(19) - T.4 P(20) - T.4

B - HCB Lunch

2 HCB - E P(4) - T.2 E - B P(5) - T.2 P(6) - T.1 P(7) - T.1

B - Rd P(8) - T.1 Rd - HCB Lunch

3 HCB - P P(9) - T.1 P - Rd P(10) - T.5 Rd - A P(11) - T.4

P(12) - T.4 A - HCB Lunch

4 HCB - B P(13) - T.3 B - Sm P(14) - T.3 Sm - B P(15) - T.4

P(16) - T.4 Lunch B - Sd P(18) - T.4 Sd - HCB

5 HCB - Sd P(17) - T.1 Sd - Mo P(21) - T.1 Mo - MI P(22) - T.1

MI - HCB Lunch

(as was described previously). It is also possible to conclude that the maximum
spent time by the vehicles was 694, 651 and 448 min for each day (without the
lunchtime), respectively, as show Tables 3, 4 and 5.

Regarding the identification of patients and treatments, P(1) - T.1 represents
Patient 1 who needs Treatment 1. For example, the schedule of the vehicle 1 for
day 3 will be: begin the trip in HCB to Bragança to execute the home care visit
of Patients 1, 2, 3, all with treatment 1, and then, still in the same locality, visits
patient 19 and 20 (both need treatment 4). Finished, return to HCB for lunch.

For the computational results it was used the Matlab Software, version 2015a,
running in a computer with a processor Intel (R) Core (TM) i5 2.40 GHz CPU
with 4.0 GB of memory RAM.

In this work, the Genetic Algorithm (GA) was used to produce the vehicles
schedule with the minimum spent time (not considering the lunchtime). For the
population size, it was considered Ps = 30 individuals, the maximum number
of function evaluation was fixed at NFE = 5000 and the maximum number of
iterations as NI = 100.

Since GA is a stochastic method, it was performed 100 runs to solve the
problem. Table 6 presents the GA overall performance, such as: the best solution
obtained in all runs (f∗

min), the solution average (f∗
avg), and finally, the average

time to solve the optimization problem (Timeavg) in seconds.

Table 6. Summary of GA results

f∗
min f∗

avg Timeavg

Day 1 545 573 24

Day 2 498 510 20

Day 3 333 333 15
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Table 7. Optimal vehicles schedules using GA for day 1

Vehicles Schedule using GA

Vehicles

1 HCB - B P(10) - T.1 P(12) - T.1 P(1) - T.1 P(15) - T.3 B - Rb

P(6) - T.2 Lunch Rb - P P(2) - T.1 P - B P(29) - T.4

P(26) - T.4 B - HCB

2 HCB - B P(21) - T.4 P(5) - T.2 B - P P(17) - T.1 P - B

P(23) - T.1 P(3) - T.1 Lunch B - MI P(31) - T.4 MI - E

P(9) - T.1 E - C P(8) - T.1 C -HCB

3 HCB - B P(28) - T.4 P(20) - T.3 B - M P(22) - T.1 M - B

P(4) - T.1 P(27) - T.4 Lunch B - Bg P(25) - T.4 Bg - B

P(18) - T.5 B - HCB

4 HCB - MI P(30) - T.4 MI - B P(7) - T.2 B - Sp P(16) - T.4

Sp - B P(24) - T.1 Lunch B - Rd P(11) - T.1 Rd - B

P(13) - T.1 B - S P(14) - T.1 S - O P(19) - T.1 O - HCB

Analyzing the numerical results presented in the previous table, it is possible
to verify that the total time found by GA for the different days, is less than
the times planned manually. The first solution with the shortest total time was
chosen as the final result. The average of the solutions is slightly higher in the
first two days and the same on the third day, that is, optimized planning has
almost always been found. In each run was always found solutions. Finally, the
average time to solve the problem was always less than 24 s, i.e. very fast.

Consequently, the GA obtains the vehicles schedule for each working day.
The Table 7 presents the vehicle schedule obtained by the algorithm for day 1.
It is possible to conclude that the maximum spent time is 545 min.

In our problem only the effective time spent with the home care visits is
considered by the Healthcare Center, excluding lunchtime. The same happens
for the remaining computational results.

For the day 2, it was obtained the vehicles schedule presented in Table 8, that
has 498 min to perform all the home care visits.

Finally, for the day 3 was collected a vehicles schedule with a maximum time
spent by vehicles of 333 min, as it is possible to see in Table 9.

In order to conclude and for a better perception of the illustrated results, it
will be presented the following example of home visits made by vehicle 1 on day
3. Thus, the vehicle 1 starts the route at the Healthcare Center (HCB) to Parada,
provides care to Patient 9 (Treatment 1), then travels of Parada to Bragança,
to provide care to Patient 19 (Treatment 4). After travel to Alfaião, takes care
of Patient 11 (Treatment 4) and then travels again to Sendas to provide care
to Patient 17 (Treatment 1). Finally, returns of Sendas to the point of origin
(HCB) to end the home visits and have the lunchtime.

Table 10 presents a comparison of the maximum time spent by each vehicle,
using GA, and the time provided by the HCB.
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Table 8. Optimal vehicles schedules using GA for day 2

Vehicles schedule using GA

Vehicles

1 HCB - CI P(14) - T.3 P(11) - T.2 P(15) - T.3 CI - B P(19) - T.4

Lunch P(17) - T.1 B - HCB

2 HCB - B P(1) - T.4 P(7) - T.5 P(20) - T.4 B - CI P(12) - T.3

CI - HCB Lunch

3 HCB - G P(5) - T.3 G - B P(24) - T.1 B - CI P(10) - T.3

CI - B P(6) - T.5 Lunch B - CI P(13) - T.3 CI - HCB

4 HCB - B P(8) - T.2 P(3) - T.1 P(16) - T.1 B - Rd P(4) - T.3

Rd - B P(18) - T.3 B - HCB Lunch

5 HCB - RI P(21) - T.1 RI - Rd P(25) - T.1 Rd - B P(2) - T.3

B - CI P(9) - T.2 CI - G P(23) - T.1 Lunch G - B

P(22) - T.1 B - HCB

Table 9. Optimal vehicles schedules using GA for day 3

Vehicles schedule using GA

Vehicles

1 HCB - P P(9) - T.1 P - B P(19) - T.4 B - A P(11) - T.4

A - Sd P(17) - T.1 Sd - HCB Lunch

2 HCB - B P(20) - T.4 B - Rd P(10) - T.5 Rd - A P(12) - T.4

A - B P(6) - T.1 P(7) - T.1 B - HCB Lunch

3 HCB - B P(2) - T.1 B - Rd P(8) - T.1 Rd - B P(1) - T.1

B - MI P(22) - T.1 MI - B P(13) - T.3 B - HCB Lunch

4 HCB - Mo P(21) - T.1 Mo - E P(4) - T.2 E - Sm P(14) - T.3

Sm - B P(5) - T.2 B - HCB Lunch

5 HCB - B P(15) - T.4 B - Sd P(18) - T.4 Sd - B P(16) - T.4

P(3) - T.1 B - HCB Lunch

Table 10. Maximum time spent (minutes) by each vehicle on home care visits

Vehicles

Day 1 Day 2 Day 3

HCB 694 651 448

GA 545 498 333

Comparing the results with the vehicles schedule provided by the HCB it is
possible to conclude that the GA obtained vehicles schedule with a reduction
(approximately 30%) of the maximum spent time to perform all the home visits.

The numerical results show more than an optimal solution, needing a few
seconds for find them. GA, had 100% of successful rate since they found a feasible
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solution in all runs. While the manual process takes a long time, since they are
complex cases and without optimization tests, it is possible to verify that the
average time to solve the problem is quickly and allows several solutions.

5 Conclusions and Future Work

The home care visits are usually planned manually and without any computer
support in HCB, this implies that the solution obtained may not be the best one,
in addition to the process being complex and taking a higher time consuming. So,
in an attempt to optimize the process, it is necessary to use strategies to minimize
the maximum time spent by each vehicle on home care routes, without, however,
worsening the quality of the provided services and, always, looking for the best
schedules organization. In this paper, the scheduling problem of HCB was solved
successfully using GA method, needing few seconds to find the problem solution.

This approach represents a gain for all entities involved, as health profession-
als and patients.

For future work, it is possible to reformulate the problem and take into
account the multi-objective approach to minimize the total time spent by
all vehicles. Another approach may be the use of multi-agent for real-time
simulation.
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Abstract. Lindenmayer systems (L-systems) are a formal grammar sys-
tem that iteratively rewrites all symbols of a string, in parallel. When
visualized with a graphical interpretation, the images have been par-
ticularly successful as a concise method for simulating plants. Creating
L-systems to simulate a given plant manually by experts is limited by
the availability of experts and time. This paper introduces the Plant
Model Inference Tool (PMIT) that infers deterministic context-free L-
systems from an initial sequence of strings generated by the system using
a genetic algorithm. PMIT is able to infer more complex systems than
existing approaches. Indeed, while existing approaches can infer D0L-
Systems where the sum of production successors is 20, PMIT can infer
those where the sum is 140. This was validated using a testbed of 28
known D0L-system models, in addition to models created artificially by
bootstrapping larger models.

Keywords: L-systems · Inductive inference · Genetic algorithm
Plant modeling

1 Introduction

Lindenmayer systems (L-systems), introduced in [1], are a formal grammar sys-
tem that produces self-similar patterns that appear frequently in nature, and
especially in plants [2]. L-systems produce strings that get rewritten over time
in parallel. Certain symbols can be interpreted as instructions to create sequen-
tial images, which can be visually simulated by software such as the “virtual
laboratory” (vlab) [3]. Such simulations are useful as they can incorporate dif-
ferent geometries [2], environmental factors [4], and mechanistic controls [5], and
are therefore of use to simulate and understand plants. L-systems often consist
of small textual descriptions that require little storage compared to real imagery.
Certainly also, they can produce a simulation extremely quickly with low cost
computers in comparison to actually growing a plant.

An L-system is denoted by a tuple G = (V, ω, P ), which consists of an alpha-
bet V (a finite set of allowed symbols), an axiom ω that is a word over V , and
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a finite set of productions, or rewriting rules, P . A deterministic context-free L-
system or a D0L-system, has exactly one rule for each symbol in V of the form
A → x, where A ∈ V (the predecessor) and x is a word over V (the successor,
denoted by succ(A)). Words get rewritten according to a derivation relation, ⇒,
whereby A1 · · · An ⇒ x1 · · · xn, where Ai ∈ V, xi is a word, and Ai → xi is in
P , for each i, 1 ≤ i ≤ n. Normally, one is concerned with derivations starting at
the axiom, ω ⇒ ω1 ⇒ ω2 ⇒ · · · ⇒ ωn. The sequence (ω1, . . . , ωn) is known as
the developmental sequence of length n.

Fig. 1. Fractal plant
after 7 generations [2].

One common alphabet for visualization is the turtle
graphics alphabet [2], so-called as it is imagined that each
word generated contains a sequence of instructions that
causes a turtle to draw an image with a pen attached.
The turtle has a state consisting of a position on a (usu-
ally) 3D grid and an angle, and the common symbols
that cause the turtle to change states and draw are: F
(move forward with pen down), f (move forward with pen
up), + (turn left), − (turn right), [ (start a branch), ] (end
a branch), & (pitch up), ∧ (pitch down), \(roll left), /
(roll right), | (turn around 180◦). For branching mod-
els, [ causes the state to be pushed on a stack and ]
causes the state to be popped and the turtle switches
to it. It is assumed that the right hand side of rewriting rules have paranthe-
ses that are properly nested. Additional symbols are added to the alphabet,
such as A and B, to represent the underlying growth mechanics. The “Fractal
Plant” L-system is inferred commonly [6,7] and so is shown here as an example:
G = ({X,F},X, {X → F [+X]F [−X] + X,F → FF}). After 7 generations,
“Fractal Plant” can produce the image in Fig. 1 after 7 generations. More real-
istic 3D models may be produced with extensions of D0L-systems.

A difficult challenge is to determine an L-system that can accurately sim-
ulate a plant. In practice, this often involves manual measurements over time,
scientific knowledge, and is done by experts [8]. Although this approach has
been successful, it does have notable drawbacks. Producing a system manually
requires an expert that are in limited supply, and it does not scale to producing
arbitrarily many models. Furthermore, the more complex plant models require a
priori knowledge of the underlying mechanics of the plant, which are difficult and
time consuming to acquire. To address this, semi-automated (used as an aide for
the expert) [9,10], and fully automated approaches [6,7], have been introduced
to find an L-system that matches observed data. This approach has the poten-
tial to scale to constructing thousands of models, and also has the potential to
expose biomechanics rather than requiring its knowledge beforehand.

The ultimate goal of this research is to automatically determine a model
from a sequence of plant images over time. An intermediate step is to infer the
model from a sequence of strings used to draw the images. This is known as
the inductive inference problem, defined as follows. Given a sequence of strings
α = (ω1, . . . , ωn), find a D0L-system, or if it exists, G = (V, ω, P ) such that
ω = ω0 ⇒ ω1 ⇒ · · · ⇒ ωn where α is the developmental sequence of length n.
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This paper introduces the Plant Model Inference Tool (PMIT) that aims
to be a fully automated approach to inductive inference of L-systems. Towards
that goal, PMIT uses a genetic algorithm (GA) to search for an L-system to
match the words produced. This paper presents a different encoding scheme
than previous approaches, and shows that it is more effective for inferring D0L-
systems. Additionally, some logical rules based on necessary conditions are used
as heuristics to shrink the solution space. Between these two techniques, it is
determined that PMIT is able to infer L-systems where the sum of the production
successors is approximately 140 symbols in length; whereas, other approaches
are limited to about 20 symbols. Moreover, the testbed used to test PMIT is
significantly larger than previous approaches. Indeed, 28 previously developed
D0L-systems are used, and for these systems that PMIT properly inferred, it did
so in an average of 17.762 s. Furthermore, additional (in some sense “artificial”)
models are created by combining the existing models where the combined length
of the successors is longer than 140 symbols (which PMIT does not solve), and
then randomly removing “F” symbols until it can solve them. This work can be
seen as a step towards the goal of 3D scanning a plant over time, converting the
images into strings that describe how to draw them, then inferring the L-system
from the sequence of strings.

The remainder of this paper is structured as follows. Section 2 describes some
existing automated approaches for inferring L-systems. Section 3 describes the
logical rules used to shrink the solution space, and Sect. 4 discusses the genetic
algorithm. Section 5 will discuss the methodology used to evaluate PMIT and
the results. Finally, Sect. 6 concludes the work and discusses future directions.
Some details are omitted due to space constraints, but appear online [11].

2 Background

This section briefly describes some notation used throughout the paper, con-
tains a brief description of genetic algorithms since they are used as the search
mechanism here, then describes some existing approaches to L-system inference.

An alphabet is a finite set of symbols. Given an alphabet V , a word over V
is any sequence of letters written a1a2 · · · an, ai ∈ V, 1 ≤ i ≤ n. The set of all
words over V is denoted by V ∗. Given a word x ∈ V ∗, |x| is the length of x, and
|x|A is the number of A’s in x, where A ∈ V . Given two words x, y ∈ V ∗, then
x is a substring of y if y = uxv, for some u, v ∈ V ∗ and in this case y is said to
be a superstring of x. Also, x is a prefix of y if y = xv for some v ∈ V ∗, and x
is a suffix of y if y = ux for some u ∈ V ∗.

The GA is an optimization algorithm, based on evolutionary principles, used
to efficiently search N -dimensional (usually) bounded spaces [12]. In evolution-
ary biology, increasingly fit offspring are created over successive generations by
intermixing the genes of parents. An encoding scheme is applied to convert a
problem into a virtual genome consisting of N genes. Each gene is either a
binary, integer, or real value and represents, in a problem specific way, an ele-
ment of the solution to the problem. One common type of encoding is a real
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mapped encoding, where the genes have a real value from 0 and 1 and differ-
ent ranges within are mapped contextually [12]. This encoding works best when
the options at each step of the problem are unknown or dependent on prior
choices.

The GA functions by first creating an initial population (P ) of random solu-
tions. Each member of the population is assessed using a problem specific fitness
function. Then the GA, controlled by certain parameters, performs a selection,
crossover, mutation, and survival step until a termination condition is reached.
In the selection step, a set of pairs of genomes are selected from the population
with odds in proportion to their fitness, i.e. preferring more fit genomes. During
the crossover step, for each selected pair, a random selection of genes are copied
between the two; thereby, producing two offspring. Each gene has a chance of
being swapped equal to the control parameter crossover weight. The mutation
step takes each offspring and randomly changes zero or more genes to a random
value with each gene having a chance of being mutated equal to the mutation
weight. Then each offspring is evaluated using the fitness function. The offspring
are placed into the population and genomes are culled until the population is
of size P again. Usually, the most fit members are kept (elite survival). The
termination condition may be based on such criteria as finding a solution with
sufficient fitness, or hitting a pre-determined maximum number of generations.

Various approaches to L-system inference were surveyed in [13]. There are
several different broad approaches towards the problem: building by hand [2,8],
algebraic approaches [6,14], using logical rules [6], and search approaches [7].
Since PMIT is a hybrid approach incorporating a search algorithm, GA, together
with logical rules to reduce intractability by shrinking the search space, this
section will examine some existing logic-based and search-based approaches.

Inductive inference has been studied theoretically (without implementation)
by several authors [13], e.g. Doucet [14]. He devised a method that uses solutions
to Diophantine equations to, in many cases, find a D0L-system that starts by
generating the input strings. A similar approach was implemented with a tool
called LGIN [6] that infers L-systems from a single observed string ω. They
devise a set of equations that relate the number of each symbol observed in ω
to the linear combination of the production values in the growth matrix.

LGIN is limited to two symbol alphabets, which is still described as
“immensely complicated” [6], and was evaluated on six variants of “Fractal
Plant” [2] and had a peak execution time of four seconds.

Runqiang et al. [7] propose to infer an L-system from an image using a GA.
Each gene is encoded to represent a symbol in each successor. The fitness function
matches the candidate system to the observed data using image processing. Their
approach is limited to an alphabet size of 2 and a maximum total length of all
successors of 14. Their approach is 100% successful for a variant of “Fractal
Plant” [2] with |V | = 1, and has a 66% success rate for a variant of “Fractal
Plant” [2] with |V | = 2. Although they do not list timings, their GA converged
after a maximum of 97 generations, which suggests a short runtime.
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3 PMIT Methodology for Logically Deducing Facts
About Successors

In this section, the methodology that is used by PMIT to reduce the size of the
solution space with heuristics—all of which are based on necessary conditions for
D0L-systems—will be described. Indeed, the success and efficiency of a search
algorithm is generally tied to the size of the solution space. As all these conditions
are mathematically true, this guarantees that a correct solution is in the remain-
ing search space (if there is a D0L-system that can generate the input). In PMIT,
logical rules are used to reduce the dimensional bounds in two contexts. The first
context is to determine a lower bound � and upper bound u on the number of
each symbol B produced by each symbol A for each A,B ∈ V , henceforth called
growth of B by A. Thus, two programming variables (A,B)min and (A,B)max

are created that change such that (A,B)min ≤ |succ(A)|B ≤ (A,B)max. A sec-
ond context is a separate lower � and upper bound u on the length of each
successor for each A ∈ V . Then, two programming variables Amin and Amax

are used such that Amin ≤ |succ(A)| ≤ Amax and their values improve as the
program runs. The bounds on growth and on lengths depend on each other, so
all the rules are run in a loop until the bounds stop improving.

For this paper, it is assumed that if a turtle graphic symbol has an identity
production (e.g. + → +), then this is known in advance. Typically, these sym-
bols do have identity productions. There are some instances where “F” may not,
(some variants of “Fractal Plant” [2]). In such a case, “F” is treated as a non-
turtle graphics symbol for the purposes of inferring the L-system. Also, all suc-
cessors are assumed to be non-empty, which are commonly used in practice when
developing models [2]. This implies that Amin is initialized to 1 for each A ∈ V .
For each turtle symbol T ∈ V , Tmin = Tmax = 1, (T, T )min = (T, T )max = 1
and (T,A)min = (T,A)max = 0 for every A ∈ V,A �= T .

3.1 Deducing Growth

Consider input α = (ω0, . . . , ωn), ωi ∈ V ∗, 0 ≤ i ≤ n with alphabet V . Deduction
of growth in PMIT is based on two mechanisms; the first being the determination
of so-called successor fragments, of which there are four types.

– A word ω is an A-subword fragment if ω must be a subword of succ(A).
– A word ω is an A-prefix fragment if ω must be a prefix of succ(A).
– A word ω is an A-suffix fragment if ω must be a suffix of succ(A).
– A word ω is an A-superstring fragment if ω must be a superstring of succ(A).

As PMIT runs, it can determine additional successor fragments, which can help
to deduce growth. Certain prefix and suffix fragments can be found for the first
and last symbols in each input word by the following process. Consider two words
such that ω1 ⇒ ω2. It is possible to scan ω1 from left to right until the first non-
turtle graphics symbol is scanned (say, A, where the word scanned is αA). Then,
in ω2, PMIT skips over the graphical symbols in α (since each symbol in α has
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a known identity production), and the next Amin symbols, β, (the current value
of the lower bound for |succ(A)|) must be an A-prefix fragment. Furthermore,
since branching symbols must be paired and balanced within a successor, if a [
symbol is met, the prefix fragment must also contain all symbols until a matching
] symbol is met. Similarly, an A-superstring fragment can be found by skipping
α symbols, then taking the next Amax symbols from ω2 (the upper bound on
|succ(A)|). If a superstring fragment contains a [ symbol without the matching ]
symbol, then it is reduced to the symbol before the unmatched [ symbol. Then,
lower and upper bounds on the growth of B by A ((A,B)min and (A,B)max)
for each B ∈ V can be found by counting the number of B symbols in any
prefix and superstring fragments respectively and changing them if the bounds
are improved. For a suffix fragment, the process is identical except from right to
left starting at the end of ω1. An example of this process appears in [11].

The second mechanism for deduction of growth is based on calculating the
number of times each symbol A ∈ V appears in word ωi above the num-
ber implied from ωi−1 together with the current values of each lower bound
(B,A)min, for each B ∈ V . Formally, a programming variable for the accounted
for growth of a symbol A ∈ V for 1 ≤ i ≤ n, denoted as Gacc(i, A) is:

Gacc(i, A) :=
∑

B∈V

(|ωi−1|B · (B,A)min). (1)

The unaccounted for growth for a symbol A, denoted as Gua(i, A), is computed
as Gua(i, A) := |ωi|A − Gacc(i, A).

Then, (B,A)max is set (if it can be reduced) under the assumption that all
unaccounted for A symbols are produced by B symbols. Furthermore, (B,A)max

is set to be the lowest such value computed for any word from 1 to n, where
B occurs, as any of the n words can be used to improve the maximum. And,
|succ(B)|A must be less than or equal to (B,A)min plus the additional unac-
counted for growth of A divided by the number of B symbols (if there is at least
one; also the floor function is used since |succ(B)|A is a positive integer) in the
previous word, as computed by

(B,A)max := min
1≤i≤n,

|ωi−1|B>0

(
(B,A)min +

⌊
Gua(i,A)
|ωi−1|B

⌋ )
. (2)

An example is presented in [11].
Once (B,A)max has been determined for every A,B ∈ V , the observed words

are re-processed to compute possibly improved values for (B,A)min. Indeed for
each (B,A), if x :=

∑
C∈V
C �=B

(C,A)max, and x < |ωi|A, then this means that

|succ(B)|A must be at least
⌈

|ωi|A−x
|ωi−1|B

⌉
, and then (B,A)min can be set to this

value if its bound is improved. For example, if ωi−1 has 2 A’s and 1 B, and ωi

has 10 A’s, and (A,A)max = 4, then at most two A’s produce eight A’s, thus
one B produces at least two A’s (10 total minus 8 produced at most by A), and
(B,A)min can be set to 2.
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3.2 Deducing Successor Length

The deduction of Amin and Amax are found from two logical rules, one involving
the sum of the minimum and maximum growth over all variables, and one by
exploiting a technical mathematical property. The first rule simply states that
Amin is at least the sum of (A,B)min for every B ∈ V and similarly Amax is
at most the sum of (A,B)max for every B ∈ V . The second rule is trickier but
often improves the bounds for Amax and Amin for A ∈ V . This takes place in
steps. First, the maximum number of symbols that can be produced by A in ωi

is computed by: x := |ωi| − ∑
B∈V,B �=A(Bmin · |ωi−1|B). If |ωi−1|A > 0, let:

Ai
max :=

⌊
x

|ωi−1|A

⌋
(3)

if its value is improved. It follows that Amax can be set to min 1≤i≤n,
|ωi−1|A>0

Ai
max, if

its value is improved. Next, now that these Ai
max values have been calculated, it

is sometimes possible to further improve the Amax and Amin values. Let Y i ∈ V ,
1 ≤ i ≤ n be such that Y i occurs the least frequently in ωi−1 with at least one
copy. The current value of Y i

max will be examined as computed by Eq. 3; note
Y 1, . . . , Y n can be different. Let V i

max := Y i
max +

∑
B∈V,

B �=Y i
Bmin. Then, V i

max

can allow refinement of the upper bound for each successor, as Amax may be
improved by assuming all other symbols produce their minimum and subtracting
from V i

max. Mathematically this is expressed as:

Amax := V i
max −

∑

B∈V,
B �=A

Bmin (4)

for 1 ≤ i ≤ n, if A occurs in ωi−1, and if the new value is smaller, which has
the effect of the minimum over all i, 1 ≤ i ≤ n. Although it is not immediately
obvious that this formula is an upper bound on |succ(A)|, a mathematical proof
has been completed (omitted due to space constraints), and appears in [11] along
with an example of its use. Thus, Amax can be set in this fashion. Similarly, Amin

can be set by taking Y i that occurs most frequently.

4 Encoding for the L-system Inference Problem

In this section, the GA and encoding used by PMIT is described and contrasted
with previous approaches.

The efficient search of a GA is controlled, in part, by the settings of the
control parameters: population size, crossover weight, and mutation weight. The
process of finding the optimal control parameter settings is called hyperparameter
search. It was found via Random Search (details on methodology used in [11])
that the optimal parameter settings were 100 for population size, 0.85 crossover
weight, and 0.10 for mutation weight. These parameters are henceforth used.

The fitness function for PMIT compares the symbols in the observed data
to the symbols in the words produced by the candidate solution position by
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position. An error is counted if the symbols do not match or if the candidate
solution is too long or short. The base fitness is the number of errors divided by
total number of symbols. If the candidate solution produces more than double
the number of symbols expected, it is not evaluated and assigned an extremely
high fitness so that it will not pass the survival step. Since errors early on in
the input words ω0, . . . , ωn will cause errors later, a word ωi, is only assessed
if there are no errors for each preceding word, and 1.0 is added to F for each
unevaluated word. This encourages the GA to find solutions that incrementally
match more of the observed words. PMIT is also evaluated using brute force,
which is guaranteed to find the most fit solution and it was found that the
solution found by the GA matches that found by brute force, showing that this
fitness function is effective at finding an optimal solution.

PMIT uses three termination conditions to determine when to stop running.
First, PMIT stops if a solution is found with a fitness of 0.0 as such a solution
perfectly describes the observed data. Second, PMIT stops after 4 h of execution
if no solution has been found. Third, PMIT stops when the population has
converged and can no longer find better solutions. This is done by recording the
current generation whenever a new best solution is found as Genbest. If after
an additional Genbest generations, no better solutions are found, then PMIT
terminates. To prevent PMIT from terminating early due to random chance,
PMIT must perform at least 1,000 generations for the third condition only. This
third condition is added to prevent the GA from becoming a random search
post-convergence and finding an L-system by chance skewing the results.

The encoding scheme used most commonly in literature (e.g., [7,10]) is to
have a gene represent each possible symbol in a successor. The number of genes
for the approaches in literature varies due the specific method they use to decode
the genome into an L-system, although they are approximately the total length
of all successors combined. With this approach, each gene represents a variable
from V (encoded as an integer from 1 to |V |). However, in some approaches (and
PMIT) the decoding step needs to account for the possibility that a particular
symbol in a successor does not exist (represented by �). When the possibility of
an � exists, such genes have a range from 1 to |V | + 1. As an example, assume
V = {A,B} and Amin = 2, Amax = 3, Bmin = 1, Bmax = 3. For A, it is certain to
have at least two symbols in the successor and the third may or may not exist.
So, the first three genes represent the symbols in succ(A), where the first two
genes have each possible values from {A,B} and the third gene has {A,B,�}.

Next the improvements made to the genomic structure defined by the basic
encoding scheme will be described. Although they are discussed separately for
ease of comprehension, all the improvements are used together.

PMIT uses the bounds and successor fragments to create a genomic struc-
ture. For example, if V = {A,B}, Amin = 1, and Amax = 3, then succ(A)
can be expressed as the genomic structure of {A,B}, {A,B,�}, {A,B,�}.
If there is an A-prefix of B, then the genomic structure can change to
{B}, {A,B,�}, {A,B,�} since the first symbol in succ(A) is B, essentially elim-
inating the need for the first gene. This is similar for an A-suffix. The second
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improvement to the basic encoding scheme further reduces the solution space by
eliminating impossible solutions. When building the successor, PMIT first places
the symbols known to be in succ(A). For each successor,

∑
A,B∈V (A,B)min genes

are created with a real value range between 0 and 1. Since these symbols must
exist, the mapping selects an unused position within the successor. After these
symbols are placed, if any additional symbols are needed up to the value of Amax,
then PMIT selects the remainder allowing the option of using �, ensuring that
(A,B)max is not violated for any A,B ∈ V ; i.e. the bounds computed by the
heuristics shown in Sect. 3 ensure that the candidate solutions are always valid,
and the genes’ values are dynamically interpreted to ensure that the bounds are
not violated. Further details and examples are in [11].

Lastly, it was determined that since new non-graphical symbols can only be
produced by non-graphical symbols, it is possible to, at first, ignore the graphical
symbols over a smaller alphabet Vim. Then, one can search for the successors over
V ∗

im, which is a simpler problem. For example, if A → F [+F ]B and B → F [-F ]A,
then with Vim = {A,B} it is only necessary to find A → B and B → A. Each
graphical symbol can be added in one at a time. In the example above, the
second step might add + to Vim and find A → +B and B → A. Solving these
smaller problems is more efficient as the individual search spaces are smaller and
when summed are smaller than the solution space when trying to find the full
successor in one step. Additional details, including the use of successor fragments
to further simplify the number of genes needed, are omitted and appear in [11].

5 Data, Evaluation, and Results

To evaluate PMIT’s ability to infer D0L-systems, ten fractals, six plant-like
fractal variants inferred by LGIN [2,6], and twelve other biological models were
selected from the vlab online repository [3]. The biological models consist of ten
algaes, apple twig with blossoms, and a “Fibonacci Bush”. The dataset compares
favourably to similar studies where only some variants of one or two models
are considered [6,7]. The data set is also of greater complexity by considering
models with alphabets from between 2 to 31 symbols compared to two symbol
alphabets [6,7]. However, there remain gaps both in terms of successor lengths
and alphabet size. Hence, additional L-systems are created by bootstrapping;
that is, by combining successors from multiple L-systems to create new “fake”
systems with every combination of alphabet size from 3 to 25 in increments of 2
and longest successor length from 5 to 25 in increments of 5. To get successors
of the proper length some “F” symbols were trimmed from longer successors.
These are called generated L-systems.

Two metrics are used to measure success. Success rate (SR) is the percentage
of times PMIT can find any L-system that describes the observed data. Mean
time to solve (MTTS) is the time taken to solve the models (measured using
a single core of an Intel 4770 @ 3.4 GHz with 12 GB of RAM on Windows 10).
PMIT stops execution at 4 h (14400 s) calling the search a failure, as more than
this time is not practical relative to other tools in the literature.
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5.1 Results

Three programs were evaluated. The first is PMIT (implemented in C++ using
Windows 10), the second is a restriction of PMIT that uses a brute force algo-
rithm without the GA or logical rules, and the existing program LGIN. No
comparison is made to the work by Runqiang et al. [7] as LGIN is strictly
better; indeed, LGIN is the best approach that could be found in literature
making it the best algorithm to which PMIT can be compared. The compar-
ison between brute force and GA shows the effects of using GA on MTTS.
Results are shown in Table 1. No SR is shown for LGIN as it is not explic-
itly stated; however, it is implied to be 100% [6] for all rows where a time is

Table 1. Results for PMIT, Brute Force, and LGIN [6], on existing L-system models.

Model PMIT Brute force LGIN [6]

SR MTTS (s) Infer growth SR MTTS (s) MTTS (s)

Algae [2] 100% 0.001 n/a 100% 0.001 -

Cantor Dust [2] 100% 0.001 n/a 100% 0.001 -

Dragon Curve [2] 100% 0.909 n/a 100% 4.181 -

E-Curve [2] 0% 14400 Yes 0% 14400 -

Fractal Plant v1 [2,6] 100% 33.680 n/a 100% 163.498 2.834

Fractal Plant v2 [2,6] 100% 0.021 n/a 100% 5.019 0.078

Fractal Plant v3 [2,6] 100% 0.023 n/a 100% 5.290 0.120

Fractal Plant v4 [2,6] 100% 0.042 n/a 100% 6.571 0.414

Fractal Plant v5 [2,6] 100% 34.952 n/a 100% 171.003 0.406

Fractal Plant v6 [2,6] 100% 31.107 n/a 100% 174.976 0.397

Gosper Curve [2] 100% 71.354 n/a 100% 921.911 -

Koch Curve [2] 100% 0.003 n/a 100% 0.023 -

Peano [2] 0% 14400 Yes 0% 14400 -

Pythagoras Tree [2] 100% 0.041 n/a 100% 2.894 -

Sierpenski Triangle v1 [2] 100% 2.628 n/a 100% 267.629 -

Sierpenski Triangle v2 [2] 100% 0.086 n/a 100% 128.043 -

Aphanocladia [3] 0% 54.044 Yes 0% 14400 -

Dipterosiphonia v1 [3] 0% 14400 No 0% 14400 -

Dipterosiphonia v2 [3] 0% 14400 Yes 0% 14400 -

Ditira Reptans [3] 100% 73.821 n/a 100% 6856.943 -

Ditira Zonaricola [3] 0% 74.006 Yes 0% 14400 -

Herpopteros [3] 0% 81.530 Yes 0% 14400 -

Herposiphonia [3] 0% 298.114 Yes 0% 14400 -

Metamorphe [3] 0% 14400 Yes 0% 14400 -

Pterocladellium [3] 0% 14400 No 0% 14400 -

Tenuissimum [3] 0% 14400 No 0% 14400 -

Apple Twig [3] 0% 14400 No 0% 14400 -

Fibonacci Bush [3] 0% 14400 Yes 0% 14400 -
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Fig. 2. L-systems solved with 100% SR by alphabet size and longest successor length.

written. The variants used by LGIN [2,6] are the six Fractal Plants. In general,
PMIT is fairly successful at solving the fractals, the “Fractal Plant” variants,
and also Ditria reptans. The success rates are all either 0% or 100%, indicat-
ing that a problem is either solved or not. It was observed that PMIT was
able to solve many other models excluding the F and f symbols, as indicated
in the “Infer Growth” column. For example, PMIT inferred for Aphanocladia
that A → BA, B → U [−C]UU [+/C/]U ; however, it was not able to then
infer C → FFfFFfFFfFF [-F 4]fFFfFF [+F 3]fFFfFF [-FF ]fFFf . This is
interesting as the growth mechanisms might be more complicated for a human
to infer than the lines represented by the F and f symbols. Therefore, PMIT is
a useful aide to human experts even when it cannot infer the complete L-system.

For the generated models, Fig. 2 gives one point for every L-system (generated
or not) tested with PMIT. A model is considered solved if there is a 100% success
rate and unsolved otherwise. It is evident that the figure shows a region described
by alphabet size and longest successor length that PMIT can reliably solve.
PMIT can infer L-systems with |V | = 17, if the successors are short (5) and can
infer fairly long successors (25) when |V | = 3. Computing the sum of successor
words

∑
A∈V |succ(A)|, then PMIT is able to infer L-systems where such a sum

is less than 140, which compares favorably to approaches in literature where the
sum is at most 20. Overall, in terms of MTTS, PMIT is generally slower than
LGIN [6] for |V | = 2 although is still practically fast for these L-systems (less
than 35 s); however, PMIT can reliably infer L-systems with larger alphabet sizes
and successor lengths and still does so with an average of 17.762 s. Finally, the
brute force algorithm required a MTTS of 621.998 s. Hence, the logical rules and
the GA provide considerable improvement.
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6 Conclusions and Future Directions

This paper introduced the Plant Model Inference Tool (PMIT) as a hybrid app-
roach, combining GA and logical rules, to infer deterministic context-free L-
systems. PMIT can infer systems where the sum of the successor lengths is less
than or equal to 140 symbols. This compares favourably to existing approaches
that are limited to one or two symbol alphabets, and a total successor length
less than or equal to 20 [6,7]. Although PMIT is slower than existing approaches
for “Fractal Plant” which has a small (2) alphabet [6,7] with a MTTS of 35 s
or less compared to 2 s or less, PMIT is still practically fast. Furthermore, exist-
ing approaches are limited to 2 symbol alphabets while PMIT can infer some
L-systems with up to 17 symbol alphabets with longer successors.

For future work, methods will be investigated to further extend the limits
of alphabet size and successor length. Also, a main focus will be on the ability
to properly infer the drawing pattern likely using image processing techniques,
perhaps taking advantage of techniques devised here to sub-divide alphabets.
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Abstract. The purpose of this paper is to show an adaptive meta-
heuristic based on GA, DE, and PSO. The choice of which one will
be used is made based on a probability that is uniform at the begin-
ning of the execution, and it is updated as the algorithm evolves. That
algorithm producing better results tend to present higher probabilities
of being selected. The metaheuristic has been tested in four multimodal
benchmark functions for 1000, 2000, and 3000 iterations, managing to
reach better results than the canonical GA, DE, and PSO. A comparison
between our adaptive metaheuristic and an adaptive GA has shown that
our approach presents better outcomes, which was proved by a t-test, as
well.

Keywords: Metaheuristics · Genetic Algorithms
Differential Evolution · Particle swarm optimization · Adaptive
Multimodal

1 Introduction

Different metaheuristics present unique exploration and exploitation capabilities,
i.e., they possess different forms of exploring and exploiting the search space.
Thus, what works for solving a specific problem might be not good for tackling
another one. Moreover, each problem can demand a particular set of parameters
for each algorithm.

In this context, adaptive algorithms have appeared trying to solve as many
problems as possible with no changes. Mostly approaches deal with adaptation in
terms of operators or parameters. When dealing with operators, the adaptation
tries to identify which operator is more suitable to the problem, while in param-
eters, the algorithm attempts to discover the best value. Both situations happen
during the execution of the algorithm, i.e., on-the-fly. For example, in [1], a
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Genetic Algorithm choses between four crossover and three mutations operators
as the metaheuristic solves multimodal benchmarks functions. Then, the authors
evolve the algorithm to a self-adaptive one in [2], in which the parameters are
encoded into the genes of each solution.

In fact, there are many works dealing with adaptive algorithms such as [3–8],
etc. However, works that deal with different metaheuristics at the same time
are rare. For instance, [9] came up with an algorithm that executes a GA and
a PSO simultaneously; then they share information between their populations.
The main drawback of this algorithm is the performance because both meta-
heuristics must execute at the same time. Costa’s work [10] came up with the
idea of upgrading the population in the SPEA2 (Strength Pareto Evolution-
ary Algorithm) using GA, DE and PSO by applying a stochastic approach, in
which as the algorithm executes if a metaheuristic creates a population which
dominates the previous one, then the probability of being chosen increases.

In this context, this paper is organized as follows: Sect. 2 illustrates the
pseudo code and how the canonical algorithms GA, DE, and PSO work; Sect. 3
introduces our adaptive approach and how the algorithm chooses which meta-
heuristic to use in execution time; Sect. 4 shows how the experiments were set
and explains the results; finally, Sect. 5 presents the conclusion and future work.

2 Metaheuristics

2.1 Genetic Algorithms

In 1962, Holland [11] proposed an adaptive system that will become the Genetic
Algorithm as we know it. The pseudo code of a Genetic Algorithm is shown
in Algorithm 1. Firstly, the GA creates a random set of candidate solutions.
For each one, the algorithm calculates its fitness that expresses the quality of
a solution. Then, individuals are chosen to form a temporary population using
a selection mechanism. The temporary population undergoes genetic operators
(crossover and mutation) to generate the new population. Finally, the new popu-
lation is evaluated. If the algorithm is elitist and the previous population contains
the best chromosome, this solution replaces the worst individual in the new one;
otherwise, the old population is entirely replaced by the new one. The whole
process is repeated while the stop criterion is not reached.

Algorithm 1. Genetic Algorithm
Population ← generateInitialPopulation();
fitness ← Eval(Population)
while stop Criteria not reached do

TempPopulation ← Selection(Population);
TempPopulation ← Crossover(TempPopulation);
Population ← Mutation(TempPopulation);
fitness ← Eval(Population)

end while
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2.2 Particle Swarm Optimization

The particle swarm optimization was proposed by Kennedy and Eberhart [12]
in 1995. The algorithm consists of particles that are placed into a search space,
and move themselves combining its own history position and the current global
optimal solution. A particle position is represented in the search space as SD

i =
(s1i , s

2
i , . . . , s

D
i ) and it is updated based on its velocity V D

i = (v1
i , v

2
i , . . . , v

D
i ), in

which D represents the problem dimension. The new position is computed by
Eqs. 1 and 2, where w represents the inertia weight, cl and c2 are acceleration
constants, rl and r2 are random number in the range [0, 1], pdi is the best position
reached by the particle p, and gd is a vector storing the global optima of the
swarm so far.

vd
i = w × vd

i + c1r1 × (pdi − xd
i ) + c2r2 × (gd − xd

i ) (1)

sdi = sdi + vd
i (2)

The Algorithm 2 outlines how PSO works. Initially, the swarm is created
at random, in which each particle has to be within the domain [ad

i , b
d
i ]. Then,

particles are evaluated to initialize the P matrix and the gd vector, which are the
best experience of each particle and the best solution that has been found so far,
respectively. Thereafter, the velocity and the position of a particle are updated
within a loop that obeys some stop criterion. In the pseudo code presented in
the Algorithm 2, the stop criterion is a certain number of iterations.

Algorithm 2. PSO Pseudo Code
S ← InitSwarm();
fitness ← Eval(S);
g ← best(fitness);
P ← S;
while stop Criterion not reached do

V = w ∗ V + c1r1 × (P − X) + c2r2 × (g − X);
S = S + V ;
fitness ← Eval(S);
if best(fitness) is best than g then

g ← best(fitness);
end if
if fitness(s) is best than p then

p ← fitness(s);
end if

end while

2.3 Differential Evolution

Differential Evolution (DE) is a metaheuristic developed by Storn and Price [13]
in 1995. It works similarly to a Genetic Algorithm; however, using different
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operators. The Algorithm 3 presents its pseudo code. The DE algorithm starts
initializing a random population along with its evaluation. Then, the mutation
process selects three random individuals creating the vector v, which is also
called vector of differences, where F is a constant chosen by the programmer.
Afterward, a new individual is created using a gene from v if a random number
is less than CR (Crossover Rate); otherwise, the gene comes from popij . Finally,
if the new individual is better than that one in the current population, the new
one replaces it.

Algorithm 3. DE Pseudo Code
pop ← InitPopulation();
fitness ← Eval(pop);
while stop Criterion not reached do

Select 3 individuals randomly: indiv1, indiv2, indiv3;
vj ← indiv3 + F × (indiv1 − indiv2);
if (rand() ¡ CR) then

new indivj ← vj
else

new indivj ← popij
end if
if fitness(new indiv) best than fitness(popi) then

popi ← new indiv;
end if

end while

3 The Adaptive Metaheuristic

The adaptive metaheuristic was inspired in Carvalho’s work [1], in which the
authors use a similar process for choosing the proper genetic operators. The
Algorithm 4 presents the pseudo code of our approach. Basically, the adaptive
metaheuristic selects which one to use at execution time. All three algorithms
start with a uniform distribution, i.e., all of them have the same probability of
being selected. Then, if the chosen algorithm improves the current solution then
its probability of being selected increases by 1% while the other probabilities
decrease by 0.5%; otherwise, the probability decreases, while the other ones
increase with the same rate.

Also, the adaptation process can be done as many time as the programmer
wants. In this work, we tested the adaptation done on each, 25, 50, 100 and 125
iterations. On each iteration means that the adaptation, i.e., the algorithm is
chosen on each iteration; on each 25, the adaptation is done in all iterations mul-
tiple of 25, and so on. For example, if the algorithm runs using 1000 iterations,
will be performed 40 adaptation on each 25, 20 adaptation on each 50, and so
on.
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Algorithm 4. Adaptive Metaheuristic
Population ← Init Population();
fitness ← eval(Population)
while Number of Generations not reached do

Select Metaheuristic()
Use Metaheuristic(Population, fitness)
if (Metaheuristic improves solution) then

Prob Metaheuristic++;
else

Prob Metaheuristic- -;
end if
Population ← NewPopulation;

end while

4 Computational Experiments

4.1 Experiment Setup

All experiments were conducted on an Intel Xeon X5650 2.67 GHz, 24 GB RAM,
500 GB Hard Disk on Ubuntu 16.04.2 LTS. In terms of parameters, all algorithms
used a population of 50 individuals, 30 genes, and 50 trials. The number of trials
were chosen based on the central limit theorem that allow us to use parametric
tests. The algorithms were implemented in Java 7 using Eclipse Oxygen. Also,
the following configurations were used on each kind of algorithm:

– GA: Probability of Crossover = 0.7; Probability of Mutation = 0.02;
Selection method = Tournament; Tournament Size = 7; Crossover = Simple;
Elitism = TRUE.

– PSO: c1 = 2.33; c2 = 2.47; linear inertia weight (Wmax = 0.9,Wmin = 0.4);
Topology = Star (Fully Connected).

– DE: Crossover Rate = 0.6; F = 0.815; DE/Rand/1.
– Adaptive: Probability increasing = 1%; Probability decreasing = 0.5%; Itera-

tions for adapting = 1, 25, 50, 100, and 125.

4.2 Benchmark Functions

In this work, we used four multimodal (several local optima) benchmark func-
tions as presented in Table 1, which are minimization functions very common

Table 1. Benchmark functions

Code Name Function Domain Min.

ROS Rosenbrock f1(x) =
∑n−1

i=1 [100(xi+1 − x2
i )

2 + (xi−1)
2] [−5, 10] 0

RAS Rastringin f2(x) = 10n +
∑n

i=1[x
2
i − 10 cos (2πxi)] [−5.12, 5.12] 0

SCW Schwefel f3(x) = − ∑n
i=1 xi ∗ sin

√|xi| [−500, 500] −12569.49

GRI Griewank f4(x) =
∑n

i=1(
x(i)2

4000
) − ∏n

i=1(
x(i)√

i
) + 1; [−600, 600] 0
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for testing metaheuristic. In this context, minimize a function f(x), x ∈ Rn is
to discover a vector x with dimension n in which the value of f(x) is minimum.
In the referred table we can see what the domain of each gene and its optimum
value are.

The Rosenbrock function is commonly considered as unimodal. Nonetheless,
the Generalized Rosenbrock (f1(x)) is multimodal in dimensions higher than
three [14].

4.3 Results for 1000, 2000 and 3000 Iterations

Table 2 presents the result (best, mean, worst and standard deviation) of each
canonical algorithm optimizing each benchmark function. Whereas Table 3 shows
the results of the adaptive metaheuristic on each type of adaptation. Both tables
are considering 1000 iterations. As we can see, the best results were presented
by the adaptive algorithms performing the adaptation on every 100 and 125
iterations. On the other hand, the canonical PSO shows better outcomes in the
mean and worst results for ROS function; and, GA reached best mean and worst
for SCW. However, the Adaptive gives better outcomes for RAS, SCW and GRI
functions. Regarding the worsts, the GA shows the best worst result for RAS,
SCW, and GRI. Nevertheless, the important thing here is that the best solutions
are reached by our adaptive metaheuristic.

Tables 4 and 5 show the results after 2000 iterations for the canonical algo-
rithms and the adaptive metaheuristic, respectively. Again the best results were

Table 2. Results for 1000 iterations - canonical

Best Mean Worst Std. Dev.

GA

ROS 29.732 105.830 175.230 45.658

RAS 0.256 0.843 2.265 0.421

SCW −12568.247 −12563.990 −12556.364 3.308

GRI 0.612 0.984 1.042 0.077

DE

ROS 358.122 706.918 1505.896 234.446

RAS 137.588 160.048 179.952 10.394

SCW −9330.961 −8612.050 −8091.159 288.092

GRI 1.029 1.061 1.095 0.018

PSO

ROS 28.551 32.881 50.051 4.924

RAS 0.088 19.328 61.822 16.761

SCW −11306.211 −9155.361 −6479.682 1010.047

GRI 0.200 0.886 1.241 0.240
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Table 3. Results for 1000 iterations - adaptive

Best Media Worst Std. Dev.

1 iteration

ROS 32.547 133.657 204.346 42.589

RAS 0.188 1.799 3.948 1.067

SCW −12568.710 −12560.413 −12534.404 7.355

GRI 0.267 0.893 1.049 0.194

25 iteration

ROS 27.989 64.011 155.244 42.440

RAS 0.073 2.465 9.119 2.042

SCW −12568.104 −12552.624 −12481.255 16.161

GRI 0.022 0.800 1.101 0.338

50 iteration

ROS 27.534 49.323 157.457 38.451

RAS 0.258 3.951 15.306 3.430

SCW −12569.344 −12560.870 −12517.038 11.205

GRI 0.071 0.764 1.192 0.318

100 iteration

ROS 26.362 60.773 626.600 101.926

RAS 0.028 6.585 119.175 19.864

SCW −12569.381 −12318.744 −8529.903 884.435

GRI 0.006 0.758 1.100 0.337

125 iteration

ROS 26.945 55.341 218.926 45.152

RAS 0.018 8.177 176.832 29.462

SCW −12569.472 −12294.613 −8428.805 881.318

GRI 0.041 0.701 1.120 0.403

Table 4. Results for 2000 iterations - canonical

Best Mean Worst Std. Dev.

GA

ROS 6.470 79.330 151.804 45.048

RAS 0.030 0.181 0.659 0.125

SCW −12569.150 −12568.279 −12567.027 0.548

GRI 0.276 0.690 1.009 0.181

DE

ROS 31.279 89.137 207.356 48.936

RAS 95.899 129.277 154.292 11.721

SCW −11743.363 −10256.110 −9176.490 746.605

GRI 0.002 0.083 0.200 0.062

PSO

ROS 28.077 28.972 30.422 0.462

RAS 0.262 9.119 37.369 9.076

SCW −11251.846 −9286.336 −7917.191 890.262

GRI 0.008 0.527 0.991 0.302
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Table 5. Results for 2000 iterations - adaptive

Best Mean Worst Std. Dev.

1 iteration

ROS 10.991 80.763 149.699 51.184

RAS 0.040 0.282 0.938 0.212

SCW −12569.233 −12568.156 −12565.010 0.909

GRI 0.054 0.451 1.000 0.260

25 iteration

ROS 0.378 39.603 134.218 34.498

RAS 0.004 0.261 2.103 0.425

SCW −12569.213 −12567.382 −12560.399 1.812

GRI 0.013 0.137 0.485 0.131

50 iteration

ROS 5.221 28.030 78.754 9.638

RAS 0.001 0.225 2.049 0.391

SCW −12569.476 −12568.625 −12560.359 1.684

GRI 0.001 0.085 0.532 0.125

100 iteration

ROS 1.636 27.517 74.411 9.349

RAS 0.002 0.190 1.277 0.285

SCW −12569.485 −12567.591 −12560.978 2.381

GRI 0.000 0.115 0.966 0.207

125 iteration

ROS 1.962 26.640 33.528 4.699

RAS 0.001 0.504 7.167 1.240

SCW −12569.486 −12568.512 −12560.069 1.826

GRI 0.000 0.141 0.934 0.262

obtained by the adaptive metaheuristic. However, the canonical GA tended to
reach the best results in terms of mean and worst in the Schwefel function, while
PSO reached similar results in the Rosenbrock function.

Tables 6 and 7 present the outcomes after 3000 iterations for the canoni-
cal algorithms and the adaptive metaheuristic, respectively. In this experiment,
we can notice that almost all results are better in the adaptive metaheuristic,
excepting for Griewank function in which the DE presented the best result in
best and mean columns.
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Table 6. Results for 3000 iterations - canonical

Best Mean Worst Std. Dev.

GA

ROS 3.723 69.786 137.587 47.010

RAS 0.018 0.073 0.166 0.038

SCW −12569.361 −12568.958 −12568.017 0.304

GRI 0.114 0.488 0.942 0.227

DE

ROS 25.537 27.366 51.774 4.368

RAS 88.416 116.684 134.385 9.051

SCW −12444.607 −11851.003 −9850.102 511.812

GRI 0.000 0.000 0.002 0.001

PSO

ROS 26.566 28.543 29.442 0.462

RAS 0.004 5.257 28.130 7.292

SCW −11138.709 −8869.721 −6479.683 1049.671

GRI 0.002 0.217 0.630 0.169

Table 7. Results for 3000 iterations - adaptive

Best Mean Worst Std. Dev.

1 iteration

ROS 10.149 76.380 150.567 51.695

RAS 0.011 0.112 0.387 0.098

SCW −12569.457 −12568.978 −12567.635 0.430

GRI 0.014 0.193 0.776 0.151

25 iteration

ROS 0.413 35.954 134.695 33.232

RAS 0.001 0.035 0.136 0.032

SCW −12569.388 −12568.692 −12566.106 0.743

GRI 0.000 0.033 0.159 0.039

50 iteration

ROS 0.027 25.111 27.082 4.409

RAS 0.000 0.073 1.993 0.335

SCW −12569.486 −12569.228 −12566.700 0.538

GRI 0.000 0.020 0.132 0.033

100 iteration

ROS 0.082 23.085 26.617 7.149

RAS 0.000 0.059 0.949 0.181

SCW −12569.487 −12569.296 −12567.423 0.460

GRI 0.000 0.023 0.253 0.053

125 iteration

ROS 0.378 23.154 28.790 8.095

RAS 0.000 0.061 0.894 0.168

SCW −12569.487 −12569.289 −12567.281 0.441

GRI 0.000 0.015 0.199 0.037
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4.4 Comparison Against an Adaptive GA

In this comparison, two characteristics have been changed. In the first one, the
Schwefel function changed to f3(x) = 418d − ∑n

i=1 xi ∗ sin
√|xi|, in which d

is the dimension of the function that in our case is 30. In the second one, the
population size has been increased to 100. Table 8 shows the results for 1000 and
2000 iteration using the Adaptive GA [1], which stochastically chooses between
four crossover and three mutation operators in execution time.

Table 9 presents the results of our approach considering the adaptation on
“each 100” iterations. As we can observe, the adaptive metaheuristic presents
better results compared to the adaptive GA.

Table 8. Results for the adaptive GA

Best Mean Worst Std. Dev.

Adaptive GA - 1000 iterations

ROS 41.837 248.705 1072.296 169.331

RAS 12.757 43.533 2176.657 19.680

SCW 1.807 3999.956 1371.780 1046.521

GRI 0.586 0.956 47.799 0.136

Adaptive GA - 2000 iterations

ROS 18.396 130.863 6543.140 902.405

RAS 4.7851 31.1575 73.7288 18.4707

SCW 0.329 1349.220 4118.256 1381.812

GRI 0.155 0.573 1.389 0.241

Table 9. Results for the adaptive metaheuristic using 1000 and 2000 iterations

Best Mean Worst Std. Dev.

1000 iteration

Adaptation 100 iterations

ROS 18.506 33.126 134.860 18.076

RAS 0.006 9.561 159.507 26.413

SCW 0.054 16.316 444.853 63.163

GRI 0.017 0.621 1.081 0.385

2000 iteration

Adaptation 100 iteration

ROS 0.525 25.401 29.152 5.080

RAS 0.000 0.063 0.690 0.113

SCW 0.001 5.915 280.429 39.618

GRI 0.000 0.072 0.500 0.124
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Table 10. T-test: adpative metaheuristic vs adaptive GA

Adaptive GA Adaptive MH

Mean Std. Dev. Mean Std. Dev. t

1000 iteration

ROS 248.705 169.331 33.126 18.076 8.951

RAS 43.533 19.68 9.561 26.413 7.293

SCW 3999.956 1046.521 16.316 63.163 26.867

GRI 0.956 0.136 0.621 0.385 5.801

2000 iteration

ROS 130.863 902.405 25.401 5.08 0.826

RAS 31.1575 18.4707 0.063 0.113 11.904

SCW 1349.22 1381.812 5.915 39.618 6.871

GRI 0.573 0.241 0.072 0.124 13.071

A bicaudal-based t-test considering α = 0.05 and a hypothesis test (H0)
that there are no differences between means, is presented in Table 10. Thus, if
t is within [−2.009, 2.009], we accept H0, otherwise we reject it. As we can see,
we rejected H0 in almost all cases. Therefore, the differences are meaningful in
the majority of the benchmark functions. In other words, the Adaptive meta-
heuristic presents the best results compared to the adaptive GA. Even though
the difference between the adaptive GA and the adaptive metaheuristic is not
meaningful in Rosenbrock function after 2000 iterations, the mean of the meta-
heuristic algorithm is smaller as well as the standard deviation, demonstrating
that the adaptive metaheuristic is much more stable than the adaptive GA.

5 Conclusions

In this paper, we presented a stochastic adaptive metaheuristic based on GA,
DE, and PSO. Experiments using 1000, 2000, and 3000 iterations have shown
that our approach tends to present the best results with some variations in the
means and in the worsts; however, those differences tend to disappear in favor
of our approach as we increase the number of iterations. A comparison against
an adaptive GA showed that the adaptive metaheuristic reached much better
outcomes.

Future work includes: use a self-adaptive approach on all parameters of our
method; parallelization of the adaptive metaheuristic using a General Purpose
Graphical Unit Processing (GP-GPU); and to use fuzzy logic to select which
algorithm to execute in a particular iteration.
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Lucija Brezočnik(B) , Iztok Fister Jr. , and Vili Podgorelec

Institute of Informatics, Faculty of Electrical Engineering and Computer Science,
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Abstract. In this paper, we present a novel algorithm called STAPSO,
which comprises Scrum task allocation and the Particle Swarm Opti-
mization algorithm. The proposed algorithm aims to address one of the
most significant problems in the agile software development, i.e., iteration
planning. The actuality of the topic is not questionable, since nowadays,
agile software development plays a vital role in most of the organizations
around the world. Despite many agile software development methodolo-
gies, we include the proposed algorithm in Scrum Sprint planning, as
it is the most widely used methodology. The proposed algorithm was
also tested on a real-world dataset, and the experiment shows promising
results.

Keywords: Agile software development
Particle Swarm Optimization · Scrum · Software engineering
Task allocation

1 Introduction

The idea of the iterative and agile development is all but new [1]. Ongoing chang-
ing priorities, desire to accelerate product delivery, the increase of productivity,
improvement of project visibility, and enhancing software quality [2] are the top
five reasons for adopting agile. Furthermore, in the report from Gartner Inc. [3],
which is the world’s leading research and advisory company, it is evident that
the traditional project and development methods, e.g., waterfall, are evermore
unsuitable [4,5]. Consequently, we can state that agile software development is,
nowadays, not a competitive advantage anymore, but rather the need for the
organizations to survive on the market.

Regardless of the chosen agile method, e.g., Scrum, Kanban, Scrumban, XP
(extreme programming), and Lean, monitoring of its performance must be car-
ried out. Success in agile projects is most often measured by velocity in 67%,
followed by the iteration burndown (51%), release burndown (38%), planned
vs. actual stories per iteration (37%), and Burn-up chart (34%) [2]. However, a
prerequisite for a successful monitoring of the progress is undoubtedly precise
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iteration planning. The latter is not only the number one employed agile tech-
nique in the organizations [2], but also one of the hardest tasks, as is evident from
many scientific papers [6,7] and interviews conducted with different CIOs (Chief
Information Officers). Also, each task defined in a given iteration must be esti-
mated precisely. The estimation can be conducted with various techniques [2,8],
e.g., number sizing (1, 2, . . . , 10), Fibonacci sequence (1, 2, 3, 5, 8, . . . ), and
T-shirt sizes (XS, S, M, L, XL, XXL or XXXL). However, we must not forget
about dependencies between tasks which result in the implementation order.

Thus, from an apparently simple problem arises a considerable optimiza-
tion problem that is dealt with daily in organizations all around the world.
When dealing with numerous dependencies and tasks, solving a problem by hand
becomes very hard. On the contrary, we propose a systematical solution that is
based on nature-inspired algorithms. Nature-inspired algorithms are a modern
tool for solving hard continuous and discrete problems. They draw inspiration for
solving such problems from nature. Until recently, more than 100 nature-inspired
algorithms have been proposed in the literature [9], where Particle Swarm Opti-
mization (PSO) [10] is one of the oldest and well-established nature-inspired
algorithms. Many studies have proved theoretically and practically that PSO is
a very simple, as well as efficient algorithm [11,12] appropriate even for real-
world applications [13].

In this paper, we show the modifications of the basic PSO algorithm that
is applied to the problem of Scrum task allocation. The new algorithm, called
STAPSO, is developed, implemented, and tested on a real dataset.

We believe that this is the first work that deals with the problem of Scrum
task allocation in the optimization domain. Altogether, the purpose of this paper
is to:

– represent Scrum task allocation as an optimization problem,
– propose the Particle Swarm Optimization algorithm for solving Scrum task

allocation, or simply STAPSO, and
– test the proposed algorithm on a real dataset.

The structure of this paper is as follows: Sect. 2 outlines the fundamentals of
Scrum, while Sect. 3 describes the fundamentals of the PSO algorithm, together
with STAPSO algorithm. Section 4 presents the design of the experiment, along
with the results in Sect. 5. The paper concludes with a summary of the performed
work and future challenges.

2 Scrum

Scrum is the most used agile methodology, with 58% share of the market [2] and
is by definition “a framework for developing, delivering, and sustaining complex
products” [14,15]. It consists of three primary roles, i.e. the Scrum Master, the
Product Owner, and the Development Team. In the organizations, the Scrum
Master is responsible for Scrum promotion and offers support regarding Scrum
theory, values, and practices. Product Owner is a focal role since it is connected
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with the development team and the stakeholders. Two of his/her primary goals
are to maximize the value of the product, and definition of the user stories from
the product backlog. The remaining role, i.e., the Development Team, is liable
for product increment delivery at the end of each Sprint. The Development Team
is cross-functional and self-organizing, meaning that the people in it have all the
skills required to deliver the product successfully.

Fig. 1. The Scrum framework.

In Scrum, the process starts with the Product Owners’ definition of the
product backlog, which is a prioritized list of user stories (see Fig. 1). Afterwards,
Sprint Planning starts. At this meeting, the team decides which user stories from
the Product Backlog will be carried out in the upcoming Sprint (because the
Product Backlog is prioritized, they pull user stories from the top of the list).
The newly created document is called a Sprint Backlog and contains an in-
depth description of the chosen user stories. After that, everything is ready for
the beginning of the Sprint, that usually lasts between one and four weeks. Each
day of the Sprint starts with a brief daily Scrum (short stand-up meeting) at
which the Development Team exchanges opinions regarding the previous day
and highlights possible problems. At the end of each Sprint, Sprint Review and
Sprint Retrospective are carried out by the Development Team and the Product
Owner, with the intention to find the potential for improvement.

For the calculation of the optimal line, it is necessary to determine the dura-
tion of the Sprint first (n days). For example, if we decide on the two week
long Sprints, the Development Team actually has ten working days, assuming
Saturday and Sunday are free days. After that, based on tasks from the Sprint
Backlog, the total estimated effort (t effort) is obtained as their sum. Optimum
per day (opt d) can now be calculated by Eq. 1.

opt d =
t effort

n days
(1)
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Ideal or optimal line (Oline) is derived from linear function f(x) = ax + b
and is presented by Eq. 2, where x denotes the specific day of the Sprint.

Oline = − t effort

n days
∗ x + t effort (2)

Current line (Cline) is calculated by Eq. 3, where Edone denotes the sum-
marized effort of the tasks per given day.

Cline = Oline(x) − (Oline(x − 1) − Edone) (3)

3 Particle Swarm Optimization for Scrum Task
Allocation

In this Section, the proposed algorithm called STAPSO is described in detail.
Since the algorithm is based on the PSO, its explanation is divided into two
Subsections. Subsect. 3.1 depicts the fundamentals of the PSO, and Subsect. 3.2
presents the proposed algorithm in detail.

3.1 Fundamentals of PSO

The PSO algorithm [10] preserves a population of solutions, where each solution
is represented as a real-valued vector x = (xi,1, . . . , qi,D)T for i = 1, . . . ,Np and
j = 1, . . . ,D , and the parameter Np denotes the population size, and the param-
eter D dimension of the problem. This algorithm explores the new solutions by
moving the particles throughout the search space in the direction of the current
best solution. In addition to the current population x(t)

i for i = 1, . . . ,Np, also
the local best solutions p(t)

i for i = 1, . . . ,Np are preserved, denoting the best i-
th solution found. Finally, the best solution in the population g(t) is determined
in each generation. The new particle position is generated according to Eq. (4):

v(t+1)
i = v(t)

i + C1U(0, 1)(p(t)
i − x(t)

i ) + C2U(0, 1)(g(t) − x(t)
i ),

x(t+1)
i = x(t)

i + v(t+1)
i ,

(4)

where U(0, 1) denotes a random value in interval [0, 1], and C1 and C2 are
learning factors. Algorithm1 depicts the original PSO algorithm.

Interestingly, many surveys have recently revealed that the PSO algorithm
was used in numerous real-world applications [13,16]. However, the presence
of the PSO algorithm in the software engineering research area is still in the
minority.

In the next Subsection, the proposed STAPSO algorithm is presented for the
Scrum task allocation problem.
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Algorithm 1. Pseudocode of the basic PSO algorithm
Input: PSO population of particles xi = (xi1, . . . , xiD)T for i = 1 . . . Np, MAX FEs.
Output: The best solution xbest and its corresponding value fmin = min(f(x)).
1: init particles;
2: eval = 0;
3: while termination condition not meet do
4: for i = 1 to Np do
5: fi = evaluate the new solution(xi);
6: eval = eval + 1;
7: if fi ≤ pBesti then
8: pi = xi; pBesti = fi; // save the local best solution
9: end if

10: if fi ≤ fmin then
11: xbest = xi; fmin = fi; // save the global best solution
12: end if
13: xi = generate new solution(xi);
14: end for
15: end while

3.2 STAPSO Algorithm

The following Section depicts the process of a Scrum task allocation problem
using the STAPSO algorithm. For this problem, the following three modifications
were applied to the basic PSO algorithm:

– representation of individuals,
– design of fitness function, and
– constraint handling.

Representation of Individuals. Candidate solutions in the basic PSO algo-
rithm are represented as real-valued vectors x, whilst a Scrum task allocation
problem demands an integer vector y symbolizing the effort of a particular
task. For that reason, mapping between representation of solutions in real-valued
search space to the solution in a problem space is needed. In a STAPSO, this
mapping is conducted in a similar manner as it was done for the problem of sport
training sessions’ planning [17]. A candidate solution in the proposed STAPSO
algorithm is also represented, using the real-valued vector xi = {xi0, . . . , xin}T

for i = 1 . . . n with elements xij ∈ [0, 1]. In order to obtain effort values for fitness
function calculation, firstly the permutation of task effort πi = {πi1, . . . , πin} is
mapped from the vector xi such that the following relation is valid:

xiπi0 < xiπi1 < . . . < xiπin
. (5)

Vector yi = {yi0, . . . , yin}T is determined from task description, Table 1. Table 2
presents an example of mapping the candidate solution xi via permutation of
task effort πi to the final task allocation.
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Table 1. Task description table (example)

Task ID Effort

0 3

1 2

2 4

3 3

4 5

Table 2. Candidate solution mapping

Dimension j

Elements i 0 1 2 3 4

Candidate solution xi 0.70 0.42 0.21 0.94 0.52

Permutation πi 3 1 0 4 2

Task allocation yi 3 2 3 5 4

Fitness Function. Fitness function is calculated according to Eq. 6 as follows:

f(x) = |
n days∑

j=0

(calculated effort per dayj)| (6)

where n days denotes the number of days, and calculated effort per day is cal-
culated effort for every day according to the constraint:

∀d ∈ {1, 2, . . . , n days},∀t ∈ {1, 2, . . . , n tasks(d)},

t∑

i=1

effort(i) ≤ opt d
(7)

where the variables d and t denote the current day of the Sprint, and the number
of tasks per day, respectively. Final effort per day is then calculated as the sum
of the tasks’ efforts, that should not exceed the value of the opt d (Eq. 1).

Constraint Handling. As discussed in previous Sections, there is sometimes
a particular order (dependency) of some tasks. In other words, it means that
one task must be completed before the beginning of another task. Most candi-
date solutions that are obtained according to mapping in Table 2 are unfeasible,
i.e., they violate the dependency conditions. In our case, unfeasible solutions
are penalized. Algorithm 2 presents our solution for handling constraints, where
the function is violated() checks if the dependency condition is violated. If the
dependency condition is violated, the algorithm assigns a very high penalty [18]
value to this particle. Despite many constraint handling methods, our penaliza-
tion method behaves very well on the current problem. For that reason, we have
not tested the behavior of any other constraint handling methods yet [19].
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Algorithm 2. Constraint handling in STAPSO
1: violations = 0;
2: fitness = f(x);{calculated by Eq. 6}
3: for i = 1 to NumRules do
4: if is violated() then
5: violations = violations + 1;
6: end if
7: end for
8: if violations > 0 then
9: fitness = violations ∗ 1000;

10: end if

4 Experiment

The experimental approach was used in order to show the power of the STAPSO
algorithm. Thus, Subsect. 4.1 comprises parameter settings of the algorithm and
the computer environment, and Subsect. 4.2 presents test data, along with the
constraints on Scrum tasks that were used in this study.

4.1 Setup

Experiments were conducted on an Intel XEON Z240 computer. STAPSO is
implemented in the Python programming language without using any special
software libraries. The algorithm ran on a Linux Ubuntu 16.04 operating system.
After the extensive parameter tuning, the following parameter settings were used
based on their best performance:

– population size Np: 75,
– dimension of the problem D: 60,
– number of function evaluations per run MAX FEs = 30000,
– total runs: 25,
– cognitive component C1 = 2.0,
– social component C2 = 2.0,
– velocity: [−4, 4],
– number of days: 10,
– number of Sprint: 1.

4.2 Test Data and Constraints

Table 4 presents test data that were used in this study. Test data for such exper-
iments is very hard to get due to the company policy of confidential data. Thus,
the source of test data is an internal project that was conducted within our lab-
oratory. In Table 4, Task ID denotes the identification number of a particular
task, while Effort symbolizes the effort of this task. In this study, the following
constraints were considered:

Ψ = {(T7, T3), (T6, T22), (T4, T58), (T33, T31)}.
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Thereby, Ψ denotes the implementation order of the tasks, i.e., task T7 must
be implemented before task T3, task T6 must be implemented before task T22,
etc. In the context of the algorithm, this means that all of the possible solutions
must obey all of the given constraints and provide legitimate task allocation also
considering Eqs. 2 and 3.

5 Results

In the total of 25 runs, an optimal solution was found 20 times (i.e. success rate:
80%), meaning that no tasks were left behind for the next Sprint. In three cases
(12%), the algorithm did not allocate one task with the estimated effort of 1,
and in two cases (8%), the algorithm did not allocate one task estimated with
the effort of 2. We want to highlight that all constraints presented in Subsect. 4.2
were satisfied in all runs. On average, an optimal solution was found after 5533
function evaluations.

Table 3 comprises an in-depth description of one optimal solution. The latter
presents the sequence of tasks’ implementation for one Sprint, which is described
with the Task IDs (column 2) and belonging tasks’ effort (column 3). Per each
day, the number of tasks and remaining effort is recorded, respectively.

Table 3. Example of task allocation from Table 4 (optimal solution)

Day Tasks allocated Tasks’ effort Number
of tasks

Effort
remaining

1 4, 12, 15, 17, 21, 32, 42 5, 3, 1, 1, 1, 2, 2 7 0

2 43, 27, 49, 48, 58, 33 3, 3, 3, 1, 1, 4 6 0

3 51, 7, 50, 5 1, 5, 4, 5 4 0

4 24, 26, 45, 35, 57, 54, 25 2, 1, 2, 2, 4, 2, 2 7 0

5 18, 10, 29, 16 2, 5, 3, 5 4 0

6 6, 22, 8, 53, 31 5, 4, 3, 1, 2 5 0

7 28, 44, 19, 0, 30, 3 4, 2, 1, 2, 4, 2 6 0

8 1, 14, 20, 37, 40, 52, 23, 38 2, 2, 2, 1, 1, 3, 3, 1 8 0

9 56, 34, 41, 11, 2, 9, 13 2, 3, 1, 2, 1, 3, 3 7 0

10 36, 39, 46, 47, 55, 59 3, 2, 4, 2, 2, 2 6 0
∑

60 150 60 0

Figures 2 and 3 present the same proposed solution of the STAPSO algorithm,
where two tasks with the estimated effort of 1 were not allocated. A non-optimal
solution was chosen deliberately for easier explanation of the results and devi-
ations. Figure 2 presents the solution in the form of the burndown chart, and
Fig. 3 shows allocated tasks per day of the Sprint.

In Scrum, a burndown chart is one of the most frequently used graphs to
present the current state of the work of the project [2,20]. On the abscissa axis
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Fig. 2. Burndown chart of non-optimal solution (chosen deliberately for easier expla-
nation of the results) (Color figure online)

(Fig. 2), days of the Sprint are displayed, and on the ordinate axis, the remaining
effort of the Sprint. The preparation of such a graph is carried out in several
stages. Firstly, the optimal line is drawn. The optimal line is calculated with
Eq. 2 and shows an ideal or optimal course of the implementation of the tasks.
In Fig. 2, this line is colored with red. As stated before, all tasks are estimated
with effort (see Table 4) and with their fulfillment, we can monitor remaining
effort in a Sprint. If we look at the first day of the Sprint in Fig. 2, we can
see that ideal effort completed per day is 15 (calculated with Eq. 1). Thus, the
Development Team should, on their first day, complete tasks with the sum of the
effort of at least 15. As we can see from Fig. 3, algorithm STAPSO for the first
day allocated 5 tasks with the estimated effort sum of 14, meaning that, after
the first day, the Development Team is one effort behind the optimal line (see
blue line). In a real-world scenario, we can witness lines that are similar to the
green line. From the latter, it is evident that the Development Team was behind
the optimal line for the first four days, and on day 3 (point A) they fulfilled
tasks with the effort sum of only 4. However, after the third day, the fulfillment
of tasks went very quickly, so in two days they caught up and were in front of the
optimal line on day five (point B). Point C shows that the progress has stopped
on day 8 (they were behind the optimal line again), and they stayed behind it
until the end of the Sprint.

In Fig. 3 the days of the Sprint show the allocated tasks given by the STAPSO
algorithm. As we have said in the description of Fig. 2, the optimal effort sum
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Fig. 3. Task allocation of non-optimal solution (chosen deliberately for easier explana-
tion of the results)

per day is 15 (maximum value of the ordinate axis). This sum is also the value
that the algorithm is trying to achieve per day. If we look at the results, on the
first day the STAPSO algorithm allocated five tasks, i.e., T1, T2, T4, T8, and
T12 (see Table 4), with the sum of effort of 14. On the second day, a sum of
effort of 15 is fulfilled with the tasks T20, T29, T41, T42, T43, T48, and T52,
etc. This kind of graph is beneficial for the Development Team and the Product
Owner, since they have allocated tasks from the beginning of the Sprint.

6 Conclusion

A novel algorithm STAPSO was implemented and tested successfully on a real
dataset. It offers a solution to the global problem of task allocation in the agile
software development. The STAPSO algorithm can be applied to all of the known
estimation techniques, e.g. number sizing, Fibonacci sequence, and T-shirt plan-
ning. Furthermore, it can be included in companies regardless of their size and
maturity degree.

In the design of the algorithm, there is still significant room for improvement.
In the future, we intend to study the impact of various constraint handling meth-
ods and variants of PSO on the behavior of the STAPSO algorithm. Hybridiza-
tion of STAPSO with any other well-established algorithms, e.g., Differential
Evolution is also a sparkling way for future research.
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Since we have not found any similar algorithms for Scrum task allocation that
are based on nature-inspired algorithms yet, we believe that this study could be
a stepping stone for more links between the vibrant agile software development
research area and optimization.

Acknowledgment. The authors acknowledge the financial support from the Slove-
nian Research Agency (Research Core Funding No. P2-0057).

Test Data

Table 4. Test data

Task ID Effort Task ID Effort

T0 2 T30 4

T1 2 T31 2

T2 1 T32 2

T3 2 T33 4

T4 5 T34 3

T5 5 T35 2

T6 5 T36 3

T7 5 T37 1

T8 3 T38 1

T9 3 T39 2

T10 5 T40 1

T11 2 T41 1

T12 3 T42 2

T13 3 T43 3

T14 2 T44 2

T15 1 T45 2

T16 5 T46 4

T17 1 T47 2

T18 2 T48 1

T19 1 T49 3

T20 2 T50 4

T21 1 T51 1

T22 4 T52 3

T23 3 T53 1

T24 2 T54 2

T25 2 T55 2

T26 1 T56 2

T27 3 T57 4

T28 4 T58 1

T29 3 T59 2
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Abstract. A cooperative model of eight popular nature-inspired algo-
rithms (CoNI) is proposed and compared with the original algorithms on
benchmark set CEC 2011 collection of 22 real-world optimization prob-
lems. The results of experiments demonstrate the superiority of CoNI
variant in the most of the real-world problems although some of original
nature-inspired algorithms perform rather poorly. Proposed CoNI shares
the best position in 20 out of 22 problems and achieves the best results
in 8 out 22 test problems. Further fundamental points for improvement
of CoNI are in selection of topology, migration policy, and migration
frequency.

Keywords: Global optimization · Nature-inspired algorithms
Real-world problems · Cooperative model

1 Introduction

Many researchers have developed tens of optimization algorithms based on sys-
tems from nature [1]. Beside these methods, another scientists propose existing
good-performing methods enhanced by new features [2,3]. The goal of this paper
is to reveal possibility of cooperation of nature-inspired algorithms in order to
obtain more efficient optimization algorithm.

In our recent works [4,5], we have experimentally compared the performance
of nature-inspired algorithms on the collection of real-world optimization prob-
lems. It was found that none of eight nature-inspired algorithms selected to
the comparison is able to provide a similar results as three recently proposed
adaptive DE variants. Furthermore, some of the nature-inspired methods even
perform worse than the blind random search.

In this paper, we apply and study the results of cooperative model of well-
known nature-inspired optimization algorithms. A practicality of the proposed
model will be achieved on the real-world problems [6] with various dimension-
ality. The purpose of use of these problems is simple, we want to show the
performance of compared algorithms on selected real problems to help scientists
c© Springer International Publishing AG, part of Springer Nature 2018
P. Korošec et al. (Eds.): BIOMA 2018, LNCS 10835, pp. 50–61, 2018.
https://doi.org/10.1007/978-3-319-91641-5_5
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in choice of the proper optimization method. A blind random search method was
not selected for this experiment.

When a problem is solved in global optimization, there is an objective func-
tion f(x), x = (x1, x2, . . . , xD) ∈ IRD defined on the search domain Ω limited
by lower and upper boundaries, i.e. Ω =

∏D
j=1[aj , bj ], aj < bj , j = 1, 2, . . . ,D.

The global minimum point x∗, which satisfies condition f(x∗) ≤ f(x),∀x ∈ Ω
is the solution of the problem.

The rest of the paper is organized as follows. Section 2 shows brief descrip-
tion of the nature-inspired algorithms selected for experimental comparison.
A cooperation model of nature-inspired algorithms is described in Sect. 3. Exper-
imental setting and methods applied to statistical assessment are described in
Sect. 4. Experimental results on real-world optimization problems are presented
in Sect. 5. Section 6 describes conclusion of the paper with some final remarks.

2 Selected Nature-Inspired Algorithms

The survey of bio-inspired algorithms has been presented recently in [1]. The
book [7] along with mentioned survey were the main sources for the selection
of nature-inspired algorithms for this experimental comparison. Based on these
sources and previous studies [4,5], the list of alphabetically sorted eight nature-
inspired methods with their descriptions follows.

The artificial bee colony algorithm (ABC) was proposed by Karaboga in [8].
This algorithm models the behavior of the bees consist of three groups - employed
bees, onlookers bees, and scouts. The only input parameter limit, usually equal
to the population size, controls a number of unsuccessful new ‘food positions’
(position in Ω) necessary to find a new random food position. An employed ith
bee jth position is updated by y(i, j) = P (i, j) + (P (i, j) − P (r, j)) U(−1, 1),
where j is randomly selected index from (1,D) of the position to be updated
(D is the dimension of the problem), r is randomly selected bee different from
current ith bee and U(−1, 1) is a random number from the uniform distribution
with parameters given in parentheses.

The bat algorithm (abbreviated Bat) simulates an echolocation behavior of
real bats controlled by emission rate and loudness. The artificial representation
of this phenomenon uses parameter setting that follows the original publication
of Yang [9]. Maximal and minimal frequencies are set up fmax = 2, fmin = 0,
respectively. A local-search loudness parameter is initialized Ai = 1.2 for each
bat-individual and reduced if a new bat position is better than the old one
using coefficient α = 0.9. The emission rate parameter is initialized to each bat-
individual ri = 0.1 and increased by parameter γ = 0.9 in the case of a successful
offspring.

The dispersive flies optimization algorithm (abbreviated DFO hereafter) was
proposed in [10] by al Rifaie. The only control parameter called disturbance
threshold, is set to value from the recommended range 1×10−2 < dt < 1×10−4,
i.e. dt = 1 × 10−3.
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The cuckoo search algorithm (denoted Cuckoo) was introduced by Yang in
[11]. This algorithm was inspired by cuckoo birds ‘nest-parasitism’. Probability
of the cuckoo’s eggs laid in a bird-host nest is set pa = 0.25 and the control
parameter of Lévy flight random walk is set to λ = 1.5.

The firefly algorithm (called Firefly in follows) proposed by Yang in [7] mod-
els the ‘light-behavior’ of fireflies when attracted another fireflies. This artificial
representation of fireflies model has several control parameters that are set to
recommended values – randomization parameter α = 0.5, light absorption coef-
ficient γ = 1, and attractiveness is updated using its initial β0 = 1 and minimal
βmin = 0.2 values.

The only representative of the algorithms modeling the life of plants is Flower
Pollination Algorithm for Global Optimization (denoted Flower hereafter) and
was proposed by Yang in [12]. The goal of this approach is to model a process of
transferring pollen grains between the flowers to their further reproduction. The
main control parameter equals to probability of switching between global and
local search is set to p = 0.8. A second parameter controlling Lévy distribution
is set up λ = 1.5, as in the Cuckoo search algorithm.

The particle swarm optimization (PSO) originally proposed by Kenedy and
Eberhart in 1995 belongs to very popular and ofen studied nature-inspired algo-
rithms [13]. In this experiment, the basic variant of PSO with slightly enhanced
of particles’ velocities updated by the variation coefficient w and coefficient c is
used. The variation control parameter w is set as a linear interpolation from max-
imal value wmax = 1 to wmin = 0.3, for each generation. Parameter controlling
a local and a global part of the velocity update is set c = 1.05. A new velocity is
computed by vi,G+1 = wG+1 vi,G +c U(0, 1) (pbest −xi)+c U(0, 1) (gbest −xi),
where G denotes generation, U(0, 1) is random number generated from uniform
distribution with parameters given in parentheses, xi is current particle position,
pbest is up-to-now best historical position of the current particle, and gbest is a
position of the best particle in swarm history.

The self-organizing migrating algorithm (abbreviated SOMA) was proposed
by Zelinka and Lampinen in 2000 as a model of a pack of predators [14]. SOMA
has several control parameters and particle strategies that crucially influence the
algorithm’s efficiency. The best settings based on our preliminary experiments
was taken for this experiment. Parameter controlling the (maximal) length of
individual way toward to leader is set PathLenght = 2, the step size is set to
Step = 0.11, and perturbation parameter is set Prt = 0.1. There are also sev-
eral strategies of individual movement, the best performing strategy all-to-one
as indicated in the preliminary experiments was applied to comparison on the
CEC 2011 benchmark.

3 Cooperative Model of Nature-Inspired Algorithms

The main goal of this paper is to construct cooperative model of the aforemen-
tioned nature-inspired algorithms to achieve better efficiency. There are many
possibilities how to employ selected k various algorithms to cooperation. We
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applied a modification of our well-performed recent cooperative model described
in [15,16]. A comprehensive review of a control parameters settings in a dis-
tributed evolutionary algorithms is in [17,18]. The idea of the cooperative model
is based on migration model with ring topology [16] and its pseudo-code is illus-
trated in Algorithm1.

Algorithm 1. Cooperative Model of Nature-Inspired Algorithms
initialize nature-inspired algorithms’ populations Pi, i = 1, 2, . . . , k
evaluate individuals of all algorithms’ populations
while stopping condition not reached do

for i = 1, 2, . . . , k do
perform ngen generations of ith algorithm’s population

end for
construct a ring topology of randomly ordered algorithms’ populations
migrate selected individuals between populations by the unidirectional ring

end while

Proposed cooperative model has beside selected ring topology several input
parameters. At first, k populations of equal size Np is initialized and developed by
k various algorithms. Then, ngen generations of all nature-inspired algorithms are
performed independently and several individuals are selected to exchange with
other populations. This exchange is called migration and preliminary experi-
ment [15] shows that combination of the best and nind randomly selected indi-
viduals is a good choice. Migration is performed between couple of populations
such that selected the best individual from the donor population replaces the
worst individual in the acceptor population. Randomly selected nind individuals
from the donor population replaces nind randomly selected individuals in the
acceptor population except the best individual.

The couples of populations to migration are given by ring topology where
each population has two neighbors - preceding and following. For higher level
of randomness, order of algorithms’ populations in ring topology is given ran-
domly for each migration. The populations are not communicated with the same
counterparts for higher level of diversity of individuals in overall CoNI algorithm.
Selected nind+1 individuals from the donor population (preceding in circle man-
ner) replaces the selected individuals in acceptor population (following in circle
manner).

A pseudo-parallel representation will be used to estimate efficiency of the
proposed cooperative model. Physically, ngen generations are performed subse-
quently for each algorithm on single-CPU PC (pseudo-parallelism). The quality
of the proposed cooperative model is evaluated by function value and also by
number of function evaluations. The name of the proposed cooperative model of
nature-inspired algorithms is abbreviated as CoNI in following text.
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4 Experimental Setting

The test suite of 22 real-world problems selected for CEC 2011 competition
in Special Session on Real-Parameter Numerical Optimization [6] is used as a
benchmark in the experimental comparison. The functions in the benchmark
differ in the computational complexity and in the dimension of the search space
which varies from D = 1 to D = 240.

For each algorithm and problem, 25 independent runs were carried out. The
run of the algorithm stops if the prescribed number of function evaluations
MaxFES = 150000 is reached. The partial results of the algorithms after reach-
ing one third and two thirds of MaxFES were also recorded for further analysis.
The point in the terminal population with the smallest function value is the
solution of the problem found in the run.

The population size N = 90 was used in all the nature-inspired algorithms
and CEC 2011 problems. The number of nature-inspired algorithms cooperative
in CoNI is k = 8, the population size of each cooperative algorithm is set equally
to Np = 15, number of generations before migration is ngen = 10 and nind = 4
individuals are randomly selected for each of migration. The other control param-
eters are set up according to recommendation of authors in their original papers.
All the algorithms are implemented in Matlab 2010a and all computations were
carried out on a standard PC with Windows 7, Intel(R) Core(TM)i7-4790 CPU
3.6 GHz, 16 GB RAM.

5 Results

A Table 1 contains the basic characteristics of CoNI algorithm at final stage of
the search (FES = 150000) and the results of the Kruskal-Wallis test including
significance and multiple comparison based on Dunn’s method. The detailed
results of the original nature-inspired algorithms on CEC 2011 real-world prob-
lems used in this experiment are presented in previous works [4,5]. The median
value for the problem (row) where CoNI algorithm achieves the best result out
of all algorithms in comparison is printed bold.

Kruskal-Wallis non-parametric one-way ANOVA test was applied to each
problem to obtain significant differences. It was found that the performance of
the algorithms in comparison differs significantly, the null hypothesis on the
same performance is rejected in all the problems at all dimensions with achieved
significance level p < 1×10−5 and it means that algorithms’ performance differs
even in the similar medians.

The best performing algorithms significantly different from the followers and
mutually with no significant differences are listed in the column “best” ordered
ascending with respect to the median function value. The worst performing algo-
rithms significantly different from their predecessors and mutually with no sig-
nificant differences are listed in the column “worst” ordered from the worst
performing algorithm. Based on these columns, it is not easy to assess the supe-
riority or inferiority of the algorithms. In the case of the proposed CoNI, the first
position (column best) is not occupied only for the problems T11.3 and T11.4.
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Table 1. The basic characteristics of function values found by the cooperative model
and results of Kruskal-Wallis multiple comparison

F D Min Max Med Mean Std Best Worst

T01 6 1.18E−06 14.779 8.41626 6.92583 5.98041 Cuckoo, CoNI Bat, DFO

T02 30 −25.5936 −15.3846 −22.0875 −21.5095 3.13850 CoNI, ABC,

SOMA

Bat, DFO

T03 1 1.15E−05 1.15E−05 1.15E−05 1.15E−05 5.19E−21 All Firefly

T04 1 0 0 0 0 0 All Firefly

T05 30 −35.7924 −31.4839 −34.1075 −33.5094 1.29947 ABC, CoNI DFO, Bat

T06 30 −29.1627 −21.2696 −27.4277 −26.5641 2.58163 CoNI, SOMA DFO, Bat,

Firefly

T07 20 0.807308 1.3313 1.04799 1.0488101 1.54E−01 CoNI, SOMA,

Cuckoo

DFO, Bat,

Firefly

T08 7 220 220 220 220 0 All Bat, Firefly,

DFO

T09 126 13082.7 36124.4 19363.4 21467.9 6618.66 ABC, CoNI Firefly

T10 12 −20.8443 −12.773 −19.2706 −18.8992 2.00284 Cuckoo, CoNI Bat, Firefly,

DFO

T11.1 120 62744.9 212805 71228.1 79231.1 28762.1 ABC, CoNI DFO, Firefly

T11.2 240 1.10E+06 1.17E+06 1.12E+06 1.12E+06 17712.3 CoNI, ABC Bat, Firefly,

DFO

T11.3 6 15445.5 15453.4 15447.6 15448.2 2.11792 Flower Bat, Firefly,

DFO

T11.4 13 18485.2 19148.6 18820 18853.86 155.764 Flower ABC, Bat,

DFO

T11.5 15 32781.8 32984.7 32878 32872.0 51.1892 SOMA, CoNI,

Flower

Bat, Firefly

T11.6 40 129038 137573 133039 133312 2570.42 Flower, CoNI,

SOMA

Firefly, DFO

T11.7 140 1.92E+06 2.54E+06 1.95E+06 2.01E+06 139086 CoNI, Flower,

SOMA

Firefly,

DFO, Bat

T11.8 96 941250 1.02E+06 946333 951888 16253.6 CoNI, SOMA Firefly, Bat

T11.9 96 1.00E+06 1.84E+06 1.43E+06 1.42E+06 176918 SOMA, CoNI,

PSO

Firefly, Bat

T11.10 96 941689 1.14E+06 945565 962950 45817.2 CoNI, SOMA Firefly, Bat

T12 26 12.4059 20.3057 16.7507 17.0220 1.96866 CoNI, SOMA DFO, Bat

T13 22 11.5376 26.6287 21.4875 20.5451 3.78682 ABC, CoNI,

SOMA

Bat, DFO

Comparing medians of these problems it is obvious that CoNI takes at least the
third position out of nine algorithms.

For better overview of the comparison of the presented algorithms’ perfor-
mance, the number of first, second, third, and the last positions from Kruskal-
Wallis test are computed and showed in Table 2. It is clear that CoNI is able
to achieve the first position in 8 out of 22 real-world problems. In the remain-
ing problems, CoNI occupies the second or the third position without signifi-
cant difference between CoNI and the best performing counterpart (based on
Kruskal-Wallis test). Further promising results provide ABC, Flower, SOMA,
and Cuckoo. An interesting is significant win of Flower algorithm in T11.3 and
T11.4 problems. The worst performing algorithms in whole experiment are Fire-
fly and Bat algorithm followed by DFO. Necessary to note that Firefly algorithm
performs substantially better when solving an artificial problems as CEC 2014
(see results in [5]).
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Table 2. Number of significant wins, second, third, and the last positions of the
algorithms

Position ABC Bat Cuckoo DFO Firefly Flower PSO SOMA CoNI

1st 4 0 2 0 0 3 0 2 8

2nd 2 0 1 0 0 1 1 5 9

3rd 0 0 3 0 0 2 5 7 2

Last 1 8 0 5 8 0 0 0 0

In Table 3 the results of Friedman test are presented. This test was carried out
on medians of minimal function values at three stages of the search, namely after
FES = 50000, 100000, and 150000. The null hypothesis on equivalent efficiency
of the algorithms was rejected at the all stages of the search, p-value achieved
in Friedman test was less than 5 × 10−6.

Table 3. Mean rank of Friedman test for all algorithms

Alg 1st stage 2nd stage 3rd stage Avg

CoNI 2.8 2.2 2.1 2.3

SOMA 2.7 3.0 3.0 2.9

PSO 4.3 4.2 4.4 4.3

ABC 3.9 4.5 4.6 4.3

Cuckoo 4.7 4.3 4.0 4.3

Flower 4.6 4.4 4.3 4.4

DFO 7.0 6.9 7.1 7.0

Firefly 7.6 7.6 7.7 7.6

Bat 7.6 7.8 7.9 7.8

The mean ranks from Friedman test of the algorithms in three stages are
also illustrated in Fig. 1. Moreover, the mean rank values for each algorithm
of three stages are joined for better conclusions. Notice that better performing
algorithm over all 22 test problems achieves smaller mean rank and vice versa.
Based on these results (especially a graphical representation) three groups of
compared algorithms with respect to performance are arisen. The worst per-
forming triplet is formed by DFO, Firefly, and Bat algorithm. All these nature-
inspired algorithms are often used by researchers to solve the real problems. The
“middle-performing” group is formed by PSO, Flower, Cuckoo, and ABC algo-
rithm where performance of ABC and PSO is gradually in the search process
surprisingly decreased. Mean ranks of these algorithms are approximately equal
to the average rank. Whilst performance of SOMA in the best couple is gradu-
ally decreased with increasing FES, CoNI with increasing function evaluations
achieved less mean rank.
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Fig. 1. Mean rank of Friedman test for all algorithms

Performance of new CoNI algorithm should be also compared with the per-
formance of the winner of CEC 2011 competition, GA-MPC. Detailed results of
this algorithm are provided in [19]. It is clear that CoNI is able to outperform
GA-MPC in 5 problems, i.e. T04, T11.6-8, and T11.10 and in two problems (T03
and T08) both algorithms perform equally. In the remaining cases, the CEC 2011
winner performs better than cooperative model of nature-inspired algorithms.

Achieved results of this experimental study show that proposed cooperative
model of nature-inspired algorithm is able to outperform the original algorithms
and also partially the CEC 2011 winner. Further analysis of CoNI features should
detect if some of the used nature-inspired algorithms performs better or worse.
For this purpose, the number of successfully generated new individuals are com-
puted for each of eight nature-inspired algorithms in CoNI. This characteristic
denotes the number of newly generated individuals better than the old solution
in accordance with the goal function. For better comparison, a percentage suc-
cess of each (ith) used algorithm is computed as a proportion of its success (suci)
from whole success (suctotal):

psuci =
suci

suctotal
· 100, i = 1, 2, . . . k (1)
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For better comprehensibility, box-plot of the percentage successes of all algo-
rithms is depicted in Fig. 2.

Fig. 2. Comparison of percentage successes (psuc) in CoNI algorithm

From the box-plot in Fig. 2, it is clear that the biggest proportion of suc-
cessfully generated new-individuals provides Cuckoo algorithm with ABC and
surprisingly DFO algorithm. This situation is caused by very simple reason. The
worst individual of current algorithm in CoNI is replaced by the selected best
individual (from another algorithm) and sometimes this new solution could be
substantially better than current best solution (case of DFO). Then, some indi-
viduals of such algorithm will be more increased because of using of the new
best solution. Thin boxes in the bottom of the plot for PSO and Flower suggest
lower success-proportion in most of the real-world problems.

Except the percentage successes, the “name” of the nature-inspired algorithm
employing the overall best solution of CoNI is stored in 17 stages of CEC 2011
problems. Because the lack of space, total number of “ownership” of the best
solution in 17 stages of 22 test problems is computed: ABC (112), SOMA (79),
Bat (70), Firefly (62), Cuckoo (34), Flower (11), PSO (3), and DFO (3). We can
see that the most often algorithm providing the overall best solution of CoNI
is ABC. This result is in contradiction with the mean rank of ABC algorithm
(Fig. 1) and the success of this algorithm in CoNI (Fig. 2). The least counts of
developed the best CoNI solution have DFO and PSO algorithms. When we
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consider presented results (Table 2 and Fig. 2), the performance of both these
algorithms is rather less, especially for DFO variant. However, the percentage
success of PSO algorithm in CoNI model belongs to better foursome. The phe-
nomenon, when badly performing separately applied nature-inspired algorithm
has high success in CoNI model is caused by big number of small improvements.

Fig. 3. Minimal function values from 25 runs in problems with various dimensionality

The various performance of nature-inspired algorithms is the main reason
for using of the cooperative model because higher variability of partial solutions
causes higher ability to produce more diverse individuals. The diversity of indi-
viduals is crucial feature of evolutionary algorithms in the search of the right
solution of optimization problems.

The performance of CoNI algorithm in problems with various dimension level
is depicted in Fig. 3. The T11.3 problem (D = 6) is solved successfully by most
algorithms (boxes are flattened at the bottom of the figure). For higher dimen-
sions (problems T13, T11.8), the better performance of CoNI is more obvious.
Furthermore, for the problem with highest dimension, T11.2, (D = 240) CoNI
achieves the best results among all algorithms in comparison.
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6 Conclusion

In this paper the cooperation model of several algorithms based on well-known
migration model is proposed to increase the efficiency of nature-inspired algo-
rithms. The results of experimental comparison of eight popular nature-inspired
algorithms with the cooperative model of these algorithms demonstrate clearly
the superiority of the proposed CoNI algorithm. Good performance of CoNI is
caused by exchange of the individuals between variously performing algorithms.
A proper settings of the parameters of cooperative model promises better results
in various real-world problems.

Although nature-inspired algorithms belong to very popular optimization
methods, their efficiency is often poor as it is shown in results of [4,5]. When
we consider a No-Free-Lunch theorem [20] – each algorithm is better performing
in another kind of optimization tasks – cooperative model of nature-inspired
algorithms is simple idea to achieve better results. The high performance of CoNI
is caused by exchange the individuals of variously successful applied algorithms
in various problems. Without the migration, the results are not better than the
results of the best non-parallel nature-inspired algorithm. Proposed cooperative
algorithm shares the best position in 20 out of 22 problems and achieves the
best results (first position) in 8 out 22 test problems.

Comparison of CoNI with the winner of CEC 2011 real-world problems
test suite – (GA-MPC [19]) shows that cooperative model is competitive in
most of real problems. We believe that there exist possibilities of the improve-
ments. Especially selection of proper topology, migration policy, and migra-
tion frequency are the fundamental points for improvement of the cooperative
model [17,18].

The source code of newly proposed CoNI algorithm in Matlab is available
at www1.osu.cz/∼bujok/, the source code of some other state-of-the-art nature-
inspired algorithms can be found on web site of MathWorks, www.mathworks.
com.
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Abstract. We propose a general solution method framework based
on a Collaborative Agent Teams (CAT) architecture to tackle large-
scale mixed-integer optimization problems with complex structures. This
framework introduces several conceptual improvements over previous
agent teams’ approaches. We discuss how to configure the three key com-
ponents of a CAT solver for multidimensional optimization problems: the
problem representation, the design of agents, and the information sharing
mechanisms between agents. Implementation guidelines are also given.

Keywords: Multidimensional optimization · Asynchronous Teams

1 Introduction

Despite of the continuous improvements of the commercial/academic solvers
and of the exact and solution methods, many optimization problems are so com-
plex that finding good-quality solutions remains challenging. These problems
are too large (in terms of size) and complex (in terms of structure) to be solved
directly through classical solution methods (e.g., [1,2]). This paper extends the
latter by generalizing and formulating the CAT (Collaborative Agent Teams)
methodology for any optimization problem. We propose a general framework
for CAT, an agent-based methodology based on the Asynchronous Teams (A-
Teams) paradigm that is designed to tackle complex multi-dimensional opti-
mization problems. We discuss how to design the three key components of a
CAT solver: the problem representation; the design of the agents and their job
description; the information sharing mechanisms between the agents.

“Decision problem” refers to a real-world issue requiring a solution as per-
ceived by decision-makers. A decision problem can often be expressed qualita-
tively in terms of a choice between alternative options. An “optimization model”
c© Springer International Publishing AG, part of Springer Nature 2018
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refers to a mathematical system formulated to represent a view of a decision
problem. It is specified in terms of a set of decision variables and parameters.
It incorporates objective function(s) and a constraint set. “Optimization algo-
rithm” and “solution method” refer to programmable procedures developed to
generate high-quality solutions for a given optimization model. The Simplex and
branch-and-bound methods, greedy heuristics and tabu search metaheuristics,
are all examples of optimization algorithms, including simulation-optimization
approaches [3]. A “heuristic” is a basic solution method that finds, in a rea-
sonable amount of time, a “satisfying” solution to the considered optimization
model. Optimality is generally not guaranteed. A “metaheuristic” (MH) is a
higher-level methodology that guides underlying heuristics for solving the opti-
mization problem. The term “solution” is used to designate a set of values for the
decision variables that satisfy all the constraints of a given optimization model.

The paper is organized as follows. Section 2 presents a literature review of
operations research approaches that contributed to design CAT. In Sect. 3, CAT
and its components are presented. Section 4 concludes the paper.

2 Strategies to Tackle Complex Problems/Models

We describe here algorithmic strategies to solve complex decision problems and
the optimization models used to represent them. We also position their relative
strengths in achieving better performance or tackling more complex problems.
A general description of relevant strategies is provided rather than a techni-
cal description of algorithms. Some strategies are not exclusive: they can be
hybridized to tackle the most challenging problems (which opens the door for
CAT).

2.1 Classical Approaches, Parallel Algorithms and Hybridization

Many optimization models are today “easy” to solve, even with the use of a
solver (CPLEX/Gurobi) or with the help of filtering techniques to reduce the
search space [4,5]. However, several optimization models are hard to solve using
solvers, especially when the model is nonlinear/stochastic. Models with a single
category of binary decision variables and few constraint types are often solved
to near-optimality in a reasonable amount of time with MHs (e.g., the tabu
search MH is efficient for the simple facility location model [6]). MHs can usually
successfully tackle such problems even if they have nonlinear objective functions
or constraints. Local-search MHs are efficient on these problems because it is
straightforward to create a new solution by applying a local transformation on a
given solution. When multiple types of integer, binary and continuous decision
variables are present in the model, these approaches may not be effective.

Most state-of-the-art commercial solvers (CPLEX, Gurobi) use several pro-
cessors at a time if possible. According to [7], parallelism [in MHs] allows for
improved solution quality and reduction in the resolution time. Two strate-
gies are especially relevant: (1) parallelization of the search: several copies of a
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given MH work in parallel, each having its own parameter settings and possibly
exchanging solutions synchronously or asynchronously during the search pro-
cess; (2) parallelization of some of the most computationally-intensive tasks of
the search process (typically solution quality evaluation or neighborhood explo-
ration).

Hybridization refers to the combination of different types of algorithms into
one methodology [8]. The first main technique combines various MHs [9], hoping
that one method’s strengths compensate for the other method’s weaknesses. Sev-
eral hybridization strategies can be designed for any two given MHs, resulting
in a larger number of potential solution methods. The second main hybridiza-
tion technique combines MHs with exact methods [10]. These hybrid solution
methods are often called matheuristics [11]. They effectively combine the ability
of MHs to handle a large number of binary/integer decision variables, with the
LP- (linear program) or MIP- (mixed integer program) based methods’ ability
to handle a large number of constraints and continuous decision variables.

2.2 Decomposition and Model-Based Strategies

Some methods use the optimization model’s formulation to break it down into
smaller/easier problems. Since the 1960s, decomposition-based solution methods
(e.g., [12,13]) are effective at solving large optimization models that exhibit a
specific model structure. The efficiency of these methods lies in clever reformu-
lation of the optimization model and the availability of a sub-model that can
be solved very fast. However, when the decomposed sub-models they yield are
themselves difficult to solve, these methods may not perform well.

Multilevel techniques [14] are another family of methods making use of the
model formulation. They start from the optimization model, then iteratively and
recursively generate a smaller and smaller model by coarsening until a relatively
small model is obtained, creating a hierarchy of optimization models [9]. A solu-
tion to the smallest model is found by some optimization algorithm. Then, the
solution to this problem is successively transformed into a solution to the model
of the next level until a solution to the original optimization model is found.

Recently, a number of progressive variable fixing solution methods have been
proposed to solve complex models. The simplest method, the LP-rounding strat-
egy [15], uses a solver to obtain the LP relaxation of the model. The values of
integer and binary decision variables that are fractional in the LP relaxation are
then rounded to obtain an integer-feasible solution. In [16], a sequence of linear
relaxations of the original optimization model is solved, and as many binary
and integer variables as possible are fixed at every iteration. These methods are
effective to solve problems with a small number of binary and a large number of
continuous decision variables.

2.3 Distributed Decision Making and Agent Optimization

Another strategy to cope with model complexity is to work at the decision prob-
lem level rather than directly on the optimization model. The decision problem
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can often be partitioned into various interconnected sub-problems under the
responsibility of distinct organizational units. For each sub-problem, a sub-model
is formulated and solved using an optimization algorithm. This approach has
many advantages and is even more suited to decision problems involving mul-
tiple decision-makers. According to [17], “distributed decision making can be
useful in order to better understand/manipulate a complex decision situation”.

Multi-agent systems (MAS) and agent-based optimization algorithms have
been used recently to model/analyze complex decision problems. MAS formalize
complex decision problems as networks of simpler decision problems, each of
these problems being tackled by a separate agent [17]. Depending on the degree
of sophistication of the approach, the agent may use basic rules to make decisions,
or formulate an optimization model which is then solved with an appropriate
(exact or heuristic) optimization algorithm. An example of this approach is A-
Teams [18], a cooperative MAS used for various problems (e.g. [1,19–21]).

2.4 Towards an Integrated Optimization Framework

Many approaches have integrated the above strategies to solve complex opti-
mization models. Their strengths are often complementary: a MAS is indeed well
suited to implement parallel and potentially hybrid optimization algorithms. A
hybrid matheuristic can couple two algorithms working in parallel rather than
sequentially. Despite these advantages, very few tools have been proposed to com-
bine the strengths from all these strategies into one solution system. The five
following elements should be present in an optimization framework designed for
complex decision problems. (1) Draw inspiration from the decision problem and
alternative optimization model formulations to design adapted solution meth-
ods, instead of one perspective. (2) Use partitioning strategies through organiza-
tional decomposition (at the problem level) or mathematical decomposition (at
the model level), while working on each partition simultaneously in parallel. (3)
Use the type of optimization algorithm that works best for each sub-model. (4)
Share information/solutions between different optimization strategies. (5) Com-
bine good solutions from sub-models into good solutions to the complete model.
An optimization framework based on these characteristics is now proposed.

3 CAT as an Agent-Based Solution Method

CAT is a hybrid distributed agent-based solution method to solve complex deci-
sion problems and associated optimization models that cannot be efficiently
addressed using classical MHs or mathematical decomposition methods. The
approach builds on the A-Teams paradigm [18], and it relies on the foundations
of Subsect. 2.4. We use the location-routing problem (LRP) [22] to illustrate the
CAT concepts. It involves decisions on the number and location of distribution
centers (DCs) in order to serve customers at minimum cost, and finding the best
delivery schedules and vehicle routes to serve the customers. “An asynchronous
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team is a team of software agents that cooperate to solve a problem by dynam-
ically evolving a shared population of solutions” [18]. Agents are autonomous:
they incorporate their own representation of the problem, and rules to choose
when to work, what to work on and when to stop working. The approach is well
suited to implement multiple representations of a problem, such as advocated
above. Previous work suggests that A-Teams can host a large variety of opti-
mization algorithms. Whereas some applications [1] use simple heuristics and
linear and integer programming, recent applications [20,21] employ MHs (e.g.,
tabu search). When facing complex optimization models, it makes sense to use
the best tools for each (sub-)model. A MAS allows for that much flexibility.

3.1 Problem Solving Approach

The following steps are required to solve optimization problems with CAT: (1)
identify different relevant points of view (dimensions) to examine the decision
problem; (2) formulate optimization models and sub-models for these dimen-
sional views; (3) design optimization algorithms to solve each sub-model; (4)
design optimization algorithms to integrate solutions from sub-models into solu-
tions of the complete optimization models. These steps are explained below.

Views and Sub-problems, Models and Sub-models. Complex decision
problems can be analyzed from different views, that is, a filter/lens which empha-
sizes, reduces or reshapes some aspects of the decision problem to solve. It can
reflect a stakeholder’s perceptions. The integrated view refers to a holistic appre-
hension of the complete decision problem, that is, one that looks at all relevant
facets from a centralized standpoint. Problem solving with CAT requires address-
ing the problem with an integrated view, and with alternative dimensional views.
Dimensional views are rearrangements of the problem into systems of interrelated
sub-problems. These sub-problems may cover only a subset of the objectives and
decisions of the original problem and they may involve a reduction of some of
its facets. Dimensional views are used to reduce the complexity of the problem
by providing effective partitioning schemes. Dimensional views must be selected
before optimization models can be formulated. A dimensional view may require
the definition of several sub-problems. A sub-problem contains a portion of the
decisions and context associated with the decision problem. The number of sub-
problems used and the exact definition of each of them are critical issues. Useful
sub-problems possess the following characteristics. First, they make sense from
a business standpoint (i.e., they are easily understandable by a decision-maker).
Second, the set of all the sub-problems associated with a dimensional view must
constitute a valid representation of the complete decision problem. For the LRP,
the following two dimensional views could be defined. First, a functional view is
associated with the types of decisions (location, customer allocation to facilities,
vehicle routing) associated with the decision problem. The problem can then be
partitioned into a DC location sub-problem, a customer-to-DC allocation sub-
problem, and a transportation or route design sub-problem. Second, the LRP has
an inherent spatial dimension. Indeed, the customers served by a company may
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cover a large territory, and logistics decisions may be made on a national or sales
region level instead of globally. In this context, the problem can be partitioned
into several regional sub-problems. These dimensional views and the associated
sub-problems are easily understandable by a decision-maker. Each regional sub-
problem contains all decision types, and each functional sub-problem contains
decisions for all regions. Thus, they both constitute a valid representation of the
whole problem.

The integrated view leads to the formulation of a “complete” optimization
model to represent the decision problem. This model is generally difficult to
solve, but it will be used for various purposes. For each dimensional view, sub-
models are formulated to represent sub-problems. These formulations are usually
expressed in terms of partitions of complete model decision variable vectors and
parameter matrices. They may also be based on alternative modeling formalisms:
(e.g., a constraint programming sub-model can be defined even if the complete
optimization model is a MIP). A sub-model is useful if it can be solved effi-
ciently. It is usually the case if the sub-model: (1) corresponds to a generic class
of decision models studied in depth in the literature (e.g., bin packing, facil-
ity location); (2) can be solved to optimality using generic LP-MIP solvers, or
dynamic programming, or simple enumeration (explicit or implicit); (3) isolates a
homogeneous group of binary/integer variables and their associated constraints.

Optimization Algorithms. Once the sub-models have been formulated, opti-
mization algorithms must be designed to solve them. In CAT, optimization algo-
rithms are implemented as a set of autonomous software agents. Solutions to
sub-models are recorded and subsequently used to build complete solutions. The
following guidelines are useful to select a solution method. (1) Develop greedy
heuristics to construct feasible solutions for profit maximizing or cost minimizing
sub-models. (2) When the sub-model has been studied in the literature, published
solution methods can be integrated into CAT. (3) Purely linear sub-models can
be solved using a LP-solver library. (4) Sub-models involving a homogeneous
group of binary/integer variables can usually be solved effectively with a local
search MH since it is rather straightforward to define a neighborhood in this
context. In the LRP context, some of the sub-models formulated and the solu-
tion methods selected could be the following: a pure facility location sub-model
solved with a MIP solver such as CPLEX; a location-allocation sub-model solved
with a Lagrangean heuristic [23]; a vehicle routing sub-model solved with a tabu
search MH [24]; a regional LRP sub-model solved with a tabu search [25].

Integration Sub-models. Integration refers to combining the solutions of
the sub-models associated with one view into solutions to the full optimiza-
tion model. It is done by exactly/heuristically solving an integration sub-model.
Integration sub-models are restricted versions of the full optimization model
obtained by fixing the value of several decision variables. The fixed values are
provided by the solutions to the dimensional sub-models. By solving the integra-
tion sub-model, the optimal value of the non-fixed decision variables is found,
and a solution to the complete model is produced. We refer to the set of deci-
sion variables to optimize in an integration sub-model as integration variables.
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Integration variables not present in any dimensional sub-model are linking vari-
ables, and those present in various dimensional sub-models are overlapping
variables.

Integration is also used as a search strategy. For a specific dimensional view,
the choices of integration variables lead to different integration sub-models.
When the dimensional sub-models solutions are mutually exclusive, the integra-
tion sub-model contains only linking variables, and optimizing these variables
provides a feasible solution for the complete model. When the dimensional sub-
models solutions are overlapping, a merging integration sub-model is obtained.
Since it is unlikely that the overlapping variables have the same value in all
partial solutions, the integration sub-model must find the optimal value of these
variables. The search space created by a merging sub-model can be enhanced by
including more than one partial solution from a given dimensional sub-model.
This adds all the variables from that sub-model to the set of overlapping vari-
ables. If the resulting integration sub-model is difficult to solve, one can constrain
the integration sub-model by fixing the values of the overlapping variables that
are identical in all partial solutions or restricting the values of the overlapping
variables to those found in the partial solutions, resulting in a smaller model.

Depending on the partial solutions chosen for integration, the resulting sub-
model may be infeasible. When it occurs, an alternative integration sub-model
that seeks to find a feasible solution while keeping most of the partial solutions’
characteristics is used. In these sub-model’s, the original objective function is
replaced with the minimization of the number (or amplitude) of decision variable
changes when compared with the values found in the sub-problems.

To conclude our LRP example, using the pure location sub-model and the
vehicle routing sub-model solutions, one would formulate a merging integration
sub-model as follows. The depot location decision variables are fixed using the
solution to the pure min-cost location sub-model. Several vehicle routing sub-
model solutions are also considered. The resulting integration sub-model selects
a set of feasible routes among the routes provided by the vehicle routing sub-
models. It is a capacitated set partitioning model for which many methods exist.

3.2 CAT System Structure

The structure of the CAT system incorporates a blackboard, utility agents and
optimization agents. The blackboard acts as a memory and a hub for communica-
tions, and it is the repository of all solutions (to the complete optimization model
and to all sub-models). Agents communicate solely through the blackboard. New
complete or partial solutions are placed on the blackboard and existing solutions
are retrieved when necessary. Utility agents provide functionalities required by
all agents, such as building mathematical model files for solvers, formatting
instance data, and compiling solution statistics. The optimization agents are the
most important: (1) construction agents create new solutions from scratch; (2)
improvement agents take existing solutions and try to improve them; (3) destruc-
tion agents remove unwanted solutions from the repository; (4) integration agents
combine high-quality solutions from various dimensional sub-models into solu-
tions to the complete optimization model. These agent roles are now defined.
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3.3 Agent Jobs Descriptions

As pointed out by earlier works [20,26], a few key questions must be answered
when designing a multi-agent optimization system. How many agents should be
used? What should their role be? How should they decide when to act, what
to act on, and how to act? For all their advantages, agent teams are complex
to design and implement. Indeed, if the system uses several algorithms that are
similar in nature (e.g., simulated annealing variants) on the same sub-model,
it is likely that one of the optimization algorithms (usually the best) will be
largely responsible for the team’s performance. Also, on a computer with lim-
ited resources (memory or processor power), it is likely that adding agents will
deteriorate performances. To avoid these pitfalls, it is advised in [18] to start
with a small number of agents, and to add new agents with different skills as
needed. According to the literature and to our experience in developing CAT
systems, an agent team needs four important basic skills. (1) Quickly obtain fea-
sible solutions to the complete optimization model. Although these may not be
of high quality, they provide a basis for other agents to work upon. (2) Improve
existing solutions. This can be done at the complete model level or agents can
work on specific parts of the problem. (3) Remove unwanted or poor solutions
from the population to control its size. (4) Efficiently combine features from
solutions originating from different methods or dimensions. The nature of these
skills is now discussed.

Construction Agents. Feasible solutions can be obtained quickly with simple
heuristics (e.g., greedy or hill-climbing algorithms, or even randomly) for sev-
eral classes of optimization models. Another option is to use generic LP/MIP
heuristics (e.g., feasibility pump [27]). This approach tends to produce solutions
that are very different from those obtained with greedy methods. The key goals
at this task are speed and diversity, rather than solution quality. Using various
methods usually results in a more diverse initial population of solutions, yielding
a higher potential for improvement and collaboration, and reducing the need for
specific diversification strategies. If the complete optimization model is difficult
to solve but it is easy to find a feasible solution, one can generate solutions to the
complete model then infer initial solutions for sub-models from these solutions,
thus reducing the number of algorithms and agents needed for this role.

Improvement Agents. For complex decision problems, it is recommended to
work on sub-models and not on the complete model. Since defining a neighbor-
hood (or a set of neighborhoods covering the complete model’s range of variables)
may be challenging, local search is difficult to use. Evolutionary computing pro-
vides generic crossover operators, but solution encoding is complex and on highly
constrained problems, developing effective repair functions may be problematic.
To design a good set of improvement agents, the solution methods used to solve
sub-models must be carefully selected. If the sub-model is a LP, existing LP-
solvers can be used. If it has only one type of binary/integer variable (allowing for
the construction of neighborhoods), a local search MH can be developed. If it is a
variant of a well-known problem, the best available method can be implemented.
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It may also be worthy to investigate alternative sub-model reformulations. Many
strategies can tackle complex sub-models (e.g., an initial solution obtained with
a simple heuristic may give a hot-start for a MIP-solver). Nowadays, commer-
cial solvers incorporate several generic MIP heuristics [28]. When MHs are not
efficient, generic MIP heuristics often are. In [29], a review of heuristics based on
mathematical programming is provided. To ensure that the system continuously
works on each sub-model (or, at least, looks for opportunities to work on it),
a dedicated agent should be assigned to its solution. The creation of “super-
agents” performing several tasks should be avoided. Such super-agents tend to
use too much resource and require complex scheduling rules.

Destruction Agents. Solution destruction is as important as solution creation
in agent-based optimization [18]. In some situations, the choice of solutions to
destroy is obvious, such as when duplicates exist in the population. Aside from
maintaining some control on the size of the population, destruction serves two
purposes: removing poor quality solutions and maintaining diversity in terms
of solution characteristics. At the beginning of the search, the solutions in the
population are quite diverse. As improvement agents work, the solution qual-
ity of the best solutions in the population improves rapidly. At this stage, the
destruction agent should focus on removing solutions that are of poor quality. A
simple rule such as choosing a solution at random from those in the 4th quartile
in terms of solution quality is appropriate. However, as the overall quality of
solution improves, newly created solutions tend not to be competitive in terms
of quality compared to those which have been improved by several agents. They
should have a chance to be improved before they are discarded. Furthermore,
as the population improves, working on the same solutions tends to accelerate
convergence. As the search progresses, a destruction agent shifts its focus from
removing poor solutions to either: (1) removing a random solution which has
been improved at least (I - 2) times and is in the bottom half in terms of per-
formance, where I (parameter) is the number of improvements made on the
solution that has been improved most frequently in the population; (2) finding
the two most similar solutions in the population, and destroying the worst one;
(3) finding the solution which has been used the most frequently to create new
solutions among the solutions in the 4th quartile in terms quality, and destroying
it. These rules can be encapsulated in destruction agents, and they work equally
well on a population of complete solutions or on a population of partial solutions
(solutions to a specific sub-problem). The metrics necessary to implement them
are detailed in Subsect. 3.4. Alternatively, some solutions can be “protected” and
be immune to deletion for a certain amount of time. These solutions may be the
status quo or solutions provided by a decision-maker.

Integration Agents. Although the destruction agent works toward maintaining
variety, additional diversification strategies may be needed. It is possible to add
an agent whose sole objective is to provide the population with radically differ-
ent solutions than those currently in the population. This agent should maintain
a record of what has been proposed in the past, so it does not produce solu-
tions similar to those already removed from the population due to poor solution
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quality. The integration of partial solutions from sub-models into complete solu-
tions is a key component of an efficient agent team. At least one optimization
algorithm should be provided for each integration sub-model. If two methods
are available, they can both be used if they generate different high quality solu-
tions. The number of agents to use depends on the relative speed at which the
improvement agents generate new solutions to sub-models and the amount of
computation effort required to solve the integration sub-models. Integration can
be used in flexible ways. Integration of solutions to sub-models from different
dimensional views can be desirable, as long as the resulting merging integration
sub-models are not too difficult to solve. Solving these models often requires
the design of specific heuristics or the use of a generic approach (see above).
These heuristics are easily implemented using a MIP solver such as CPLEX or
Gurobi. This approach is in line with scatter search and path-relinking MHs, and
is an effective way of reaping the most benefits from using multiple dimensional
views. As this type of integration is slightly different from the type of integration
sub-models required to assemble complete solutions from partial solutions, these
sub-models should be assigned to a different integration agent.

3.4 Decision Rules and Metrics: Solution Ancestry and Similarity

An agent needs formal rules to determine which solution to work on. A trivial
option is to select a random solution from the population, but this does not give
very good results. Obviously, an agent does not want to select a solution that it
has recently worked on. A simple yet effective decision rule is that the agent waits
that at least three others agents have improved the solution before attempting
to work on it again. Some improvement agents such as local search MHs may
want to push that rule a little further: since a local search explores thoroughly a
restricted portion of the search space, an agent may want to select a solution that
is significantly different from the one it just worked on. For more sophisticated
decision rules, metrics can be computed as follows. Agents need an effective
way to determine which solutions they recently worked on. In a cooperative
context, this information should be accessible to all agents. A simple metric to
achieve this objective is solution’s ancestry. Simply put, a solution’s ancestry
is its genealogical tree. Each solution keeps track of the solutions used for its
creation, or as a basis for its improvement, and the agents that worked on it. An
improvement agent can then use this information to determine if it has worked on
a solution recently, or on any of its parents. Tied to each solution is a list of agents
that have worked on it, and whether this attempt at improving it succeeded.
This list is sorted in reverse order. A similar mechanism is used to determine
whether a solution has transmitted its characteristics to other solutions in the
population. Anytime a solution is used to create a new solution or to alter an
existing solution, its characteristics are propagated through the population. The
new solution is linked to its parent solution(s) through an acyclic directed graph
structure, so that it is easy to find all the parents or all offspring of a given
solution. A propagation index is calculated for each solution, which is set to 0
when the solution is created. When a new solution s0 is created, if it has one or
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more parent solutions, it parses its solutions digraph and updates the values of
its parents’ propagation index in a recursive manner.

There are occasions when an agent wishes to find similar, or very different,
solutions in the population. A well-known metric to do this is the Hamming
distance, which is the number of binary variables with different values in two
solutions. Although it is useful in some contexts, that measure can be misleading
for mixed-integer linear models. In most decision problems, some decisions have
more importance than others. Often, a group of binary or integer variables is
larger but of less significance. In the LRP, many more decision variables are asso-
ciated with the vehicle routing decisions than the location decisions, despite the
fact that location decisions have a more lasting impact on the quality of the solu-
tion. For this problem, two solutions could have the exact same depot locations
but have a high Hamming distance, which would not reflect the importance of
location decisions adequately. In order to obtain a more accurate distance met-
ric, one can measure the percentage of variables of each type that have the same
value. Different types of variables can even be weighted in order to account for
their relative importance.

4 Conclusion

This paper gives a generic methodology and implementation guidelines to model
and solve complex real-world decision problems. It shows how to look at decision
problems from different point-of-views, and how to partition the problem as well
as the associated optimization method into dimensional sub-models. We propose
a general formulation of CAT, a new agent-based solution method designed
to benefit from the complexity reductions resulting from the multi-dimensional
views of the problem. CAT is scalable since its execution can easily be distributed
over multiple computers. CAT is easily extendable by adding new agents or
processing power as needed or by allowing some of the agents to work using
more than one processor at a time.
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Abstract. Swarm Robotics are widely conceived as the development of
new computationally efficient tools and techniques aimed at easing and
enhancing the coordination of multiple robots towards collaboratively
accomplishing a certain mission or task. Among the different criteria
under which the performance of Swarm Robotics can be gauged, energy
efficiency and battery lifetime have played a major role in the litera-
ture. However, technological advances favoring power transfer among
robots have unleashed new paradigms related to the optimization of the
battery consumption considering it as a resource shared by the entire
swarm. This work focuses on this context by elaborating on a routing
problem for collaborative exploration in Swarm Robotics, where a subset
of robots is equipped with battery recharging functionalities. Formulated
as a bi-objective optimization problem, the quality of routes is measured
in terms of the Pareto trade-off between the predicted area explored by
robots and the risk of battery outage in the swarm. To efficiently bal-
ance these conflicting two objectives, a bio-inspired evolutionary solver
is adopted and put to practice over a realistic experimental setup imple-
mented in the VREP simulation framework. Obtained results elucidate
the practicability of the proposed scheme, and suggest future research
leveraging power transfer capabilities over the swarm.

Keywords: Swarm robotics · Battery recharging · Routing · NSGAII

1 Introduction

Robotics have evolved dramatically over the years to feature unprecedented levels
of intelligence, resulting in an ever-growing number of scenarios benefiting from
their widespread application to accomplish complex missions, e.g. structural
c© Springer International Publishing AG, part of Springer Nature 2018
P. Korošec et al. (Eds.): BIOMA 2018, LNCS 10835, pp. 75–87, 2018.
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health monitoring, oil and gas industry, manufacturing, disaster management,
precision agriculture and logistics, among many others. Providing robots with
smart sensing, communication and organization functionalities allows them to
capture information, operate, reason and infer knowledge from the environment
in a collaborative manner. Research aimed at enhancing such functionalities by
embracing elements from Artificial Intelligence and Distributed Computing has
coined the so-called Swarm Robotics concept, which refers to the deployment of
a set of robots that collaborate with each other so as to collectively perform a
mission in a computationally efficient fashion [1,2].

In general, Swarm Robotics may rely on several key technologies to attain
higher levels of autonomy, optimized operation and self-organization. Unfortu-
nately, it is often the limited battery lifetime of robots not only what restricts
most the autonomy of the swarm, but also what puts at risk the feasibility of
complex missions where robots operate without any human intervention, as in
e.g. the exploration of collapsed infrastructures after a massive disaster [3] or
the structural assessment of undersea drilling equipment [4]. Despite notable
advances in energy efficient robot mechanics, the battery capacity poses severe
operational constraints to Swarm Robotics, to the point of jeopardizing their
potential use in complex endeavors.

To overcome this issue, many research efforts have been devoted towards aug-
menting the power capacity of robot batteries, either by proposing new mate-
rials and chemical components or by deriving new mechanical improvements
that extend further their lifetime by virtue of a lower power consumption [5].
For this same purpose, the community has also focused its attention towards
the consideration of the aggregate battery power of the entire robotic swam
as a whole, an unique resource whose management is to be optimized globally
over all robots rather than locally. This approach grounds on advances in wire-
less/mobile robotic charging [6] and the deployment of mobile charging stations
in the swarm [7], which can be exploited as a resource to actively locate and
replenish the battery of other robots. This research topic has been very active in
this regard, as evinced by the short literature review provided in what follows.

1.1 Related Work

A remarkable amount of interesting studies has been published in the last decade
focused in power charging and battery consumption of swarm robots. Haek et
al. discussed in [8] the importance of swarm robustness, defining this concept
as the ability of the robotic swarm to perform a complex task avoiding the
total drainage of their batteries. In this work authors present a solution to allow
robots to robustly achieve their assigned tasks, which mainly consists of the
use of power stations or power banks. In [9], a collective energy distribution
system is proposed for a dust cleaning swarm of robots. Authors of this study
explore the concept of trophallaxis, previously introduced in [10], which refers
to individual robots donating an amount of their own energy reserve to other
robots of the swarm. This same concept of altruistic behavior is explored in [11],
materializing the idea in a specific robot architecture called CISSBot. Apart from
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battery charging, sharing and consumption, several additional features are also
considered and studied in this contribution, such as a collision-free proximity
motion control. Additional research on this topic can be found in [12].

Another interesting approach to energy consumption is the one recently pro-
posed in [13], where an Energy-Aware Particle Swarm Optimization (EAPSO)
bioinspired solver is designed to optimize the movement strategy of aerial micro-
robots. Interestingly, the optimization process considers the energy levels of the
robots for their efficient movement. Although authors do not propose any charg-
ing mechanism, the designed method renders a considerable reduction of the
total energy consumption, making the robotic swarm more reliable and robust.
Another bioinspired scheme sensitive to the consumed energy is the Honey Bee
inspired swarm in [14], which improves the energy efficiency and is proven to be
effective for foraging environments, such as the collection of crops of materials.

Also interesting to mention is the preliminary research presented by [15],
in which an immune system response is studied for the development of energy
sharing strategies. In that case, the granuloma formation is explored, which is a
process in which undesired components are removed by immune systems. This
behavioral concept is mapped to the components of a Swarm Robotics system,
enhancing the fault tolerance of the deployed robots. A further step was taken
in [16], where another immune system mechanism is proposed based on the use
of contact-less energy charging areas and their simulation-based comparison to
other energy charging mechanisms. A similar technique was proposed in [17] to
add self-healing capabilities to robotic swarms.

As stated in [18], an usual trend in the literature for dynamic energy charg-
ing of robots is based on the deployment of power banks or removable chargers.
Despite being quite effective, this approach has its own disadvantages, such as
the resulting weight increase of the robot equipment, often crucial in critical mis-
sions. With the intention of overcoming these issues, [18] describes initial research
on the implementation of an energy-sharing scheme using a two-way communi-
cation mechanism. Finally, in [19] an energy-encrypted contact-less system is
described for improving the charging performance and the energy transmission
mechanism of swarm robots. To this end wireless power transfer is used, enabling
robots to charge their batteries even in moving situations. Other contributions
related to dynamic energy charging include [20], which elaborates on a novel
tree-based schedule for mobile charger robots, which minimizes the travel dis-
tance without causing energy depletion; and [21], which presents a versatile
mobile charging station capable of actively locating and replenishing the battery
of inactive robots.

1.2 Contribution

Even though the literature has been profitable in what regards to Swarm
Robotics with mobile battery recharging nodes, to the best of the authors’
knowledge routing for exploration missions in Swarm Robotics has so far
been addressed without considering such nodes as assets whose routes over
the scenario at hand can be jointly optimized with those of exploring robots.
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Furthermore, when dealing with overly complex scenarios to be explored, the
total area sensed by exploring robots can be intuitively thought of as a con-
flicting objective with the remaining battery margin; in this sense, enforcing the
swarm to explore the entire area spanned by the scenario could create a risk
of any robot to run out of battery on site, and be left dead and unrecoverable.
This work aims at addressing this research niche by modeling and solving a
bi-objective routing problem for mobile swarm robotics considering the mini-
mization of this risk as a second fitness metric that quantifies the quality of
a generated route plan. The problem formulation also includes the search for
optimal routing plans for mobile battery recharging nodes along with the routes
of exploring robots. Both are solved efficiently by means of a bi-objective bio-
inspired solver driven by the aforementioned objectives. Results obtained from
a realistic simulation framework implemented in VREP [22] are shown to be
promising, with several future research lines stemming therefrom.

The rest of this paper is structured as follows: first, Sect. 2 formulates mathe-
matically the optimization problem under study, including the conflicting objec-
tives to be maximized. Next, Sect. 3 delves into the utilized bi-objective solver,
followed by Sects. 4 and 5 detailing the simulation setup and discussing the
obtained results, respectively. Section 6 concludes the paper.

2 Problem Statement

Following the schematic diagram depicted in Fig. 1, we assume a swarm N of
|N | = N robots, with time-dependent positions {p�,t

n }N
n=1

.= {(x�,t
n , y�,t

n )}N
n=1

(with t denoting time) over a square area S� .= [Xmin,Xmax] × [Ymin, Ymax].
Each of such robots is equipped with sensors that allow them to explore an area
{S�,t

n }N
n=1 around its location at time t, e.g. if the area is circular with radius

R�
n , then Sn = {(x, y) ∈ S� : (x − x�,t

n )2 + (x − x�,t
n )2 ≤ R2

n} (areas shaded in
, and in Fig. 1). The total area ST (t) explored by the robotic swarm at

time t′ will be then given by

ST (t′) =
t′⋃

t=1

N⋃

n=1

S�,t
n . (1)

Another set of M ≤ N robots M with battery recharging capabilities is
deployed in the same location jointly with N , with coordinates {p�,t

m }M
m=1

.=
{(x�,t

m , y�,t
m )}M

m=1. A robot m ∈ M will recharge the battery of a robot n ∈ N
whenever (1) their distance dt

m,n falls below a certain threshold Dmax (area in
in Fig. 1), i.e.

dm,n =
√(

x�,t
m − x�,t

n

)2
+

(
y�,t

m − y�,t
n

)2 ≤ Dmax, (2)

and (2) the above condition holds for a minimum of Tmin seconds, comprising
the power plug coupling/uncoupling along with physical maneuvers to align
connectors. If both conditions hold, energy is transferred from robot m ∈ M
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to n ∈ N at a rate of β units of energy per second (measured in e.g. Watts).
Furthermore, the movement of the robot itself involves a battery consumption
of γ units of power per unit of distance, so that in a certain time gap ΔT
measured from time t the remaining amount of battery B�,t+ΔT

n in robot n can
be mathematically expressed as

B�,t+ΔT
n = min

{
[1 + ID · IT · β] · B�,t

n − γV �
n ΔT,Bmax

}
, (3)

where V �
n denotes the cruise speed of the robot (in units of distance per unit

of time), and ID and IT are binary indicator functions such that ID = 1 if
dt′

m,n ≤ Dmax ∀t′ ∈ [t, t + ΔT ], and IT = 1 if ΔT ≥ Tmin (0 otherwise in both
cases). In the above expression Bmax stands for the nominal maximum battery
load (in units of power) of the robot model, which without loss of generality is
assumed to be equal throughout the entire robotic swarm.

With this definition in mind, the goal of the routing optimization prob-
lem is essentially the determination of an optimal set of routes composed
by N + M waypoints W�,t,� .= {w�,t,�

n }N
n=1 = {(x�,t,�

n , y�,t,�
n )}N

n=1 and
W�,t,� .= {w�,t,�

m }M
m=1 = {(x�,t,�

m , y�,t,�
m )}M

m=1 for all robots in the swarm
(both explorers and battery chargers). Here optimality of the set of discovered
routes refers to the Pareto relationship between the explored area and a quantita-
tive measure of the risk of no return taken when the entire swarm is commanded
to follow a certain route. Intuitively, the more area the swarm explores, the more
likely is the chance that any of the robots in the swarm lacks enough battery to
return to the point {(x�,0, y�,0)} where robots had been initially located. This
risk is crucial in many practical situation, e.g. disaster events where the topologi-
cal characteristics of the facility to be explored remain unknown to the command
center before and while the mission is performed by the robotic swarm.

: robot n ∈ N

: waypoint assigned to robot n ∈ N at time tt

t′

tt

t

t′

t′ t′

t′′
t′′

t′′
S�

ST (t′) =
S�

t′ Time

: battery recharging robot m ∈ M

t

Command center

Battery

t′ Time

Bmax

”recharges”

: waypoint assigned to robot m ∈ M at time tt

Waypoints t′′ t′′ t′′ t′′ to select?

Margin

vs

Explored area

”recharges”

Fig. 1. Schematic diagram of the scenario tackled in this paper. (Color figure online)

Mathematically this risk can be modeled by accounting, over the whole
robotic swarm, for battery margin B�,t

n expected to be left for every robot should
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it proceed and move to the assigned waypoint and return safely to {(x�,0, y�,0)}.
Assuming that the route optimization is performed at time t, the value of the
battery margin B�,t

n for robot n ∈ N when commanded to go to waypoint
w�,t,�

n = (x�,t,�
n , y�,t,�

n ) can be estimated as

B�,t
n (p�,t

n ,w�,t,�
n , {p�,t

m }M
m=1, {w�,t

m }M
m=1) = B�,t

n − B
�,t+ΔTp,w+ΔTw,p0
n , (4)

where ΔTp,w and ΔTw,p0 are the times taken for robot n ∈ N to travel from
its current point p�,t

n to the assigned waypoint w�,t,�
n and therefrom to its

initial position {(x�,0, y�,0)}. This estimation is made by assuming that the
robot goes straight without colliding with any object nor any other robot along
its path. It should be remarked that as per (3), the battery expenditure reflected
in B

�,t+ΔTp,w+ΔTw,p0
n takes into account not only the power consumed by the

robot dynamics (which depends on its speed Vn and the traversed distances),
but also time periods along the path during which the relative position between
battery recharging robots and robot n ∈ N fulfill conditions ID and IT required
to recharge the battery of robot n on the move. The total duration of such
recharging periods can be computed as

∑
(ts,te)∈T �,t

n
(te − ts) over the set of

periods T �,t
n , defined as

T �,t
n

.= {(ts, te) ∈ [t, t + ΔTp,w + ΔTw,p0 ] such that :

(1) te > ts; (2) ∃m ∈ M : dt′
mn ≤ Dmax∀t′ ∈ [ts, te]; and (3) te − ts ≥ Tmin},

(5)

with [t′s, t
′
e] ∩ [t′′s , t′′e ] = ∅ ∀(t′s, t

′
e), (t

′′
s , t′′e ) ∈ T �,t

n . Therefore, the swarm-wide
battery margin BT (t) to be maximized at time t so as to keep the aforementioned
risk to its minimum is given by

BT (t) = min
n∈N

{
max

{
0, B�,t

n (p�,t
n ,w�,t,�

n , {p�,t
m }M

m=1, {w�,t
m }M

m=1)
}}

, (6)

from where the formal statement of the problem tackled in this work follows:

maximize

W�,t,�,W�,t,�{
ST (t), BT (t)

}
, (7a)

namely, as the simultaneous maximization of two conflicting objectives: the sur-
face explored by the robotic swarm and the minimum expected battery margin
over the robots should it be commanded to return to the initial deployment point
after reaching the enforced waypoint. W�,t,� ∈ S� and W�,t,� ∈ S�.

3 Proposed Solver

In order to efficiently tackle the above problem, we propose to apply a cen-
tralized meta-heuristic solver capable of optimally balancing the two objective
functions considered in its formulation. The optimizer relies on the renowned
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Non-dominated Sorting Genetic Algorithm (NSGA-II, [23]), a bio-inspired app-
roach that hinges on the concepts of non-dominance ranking and crowding dis-
tance to guide a multi-objective search over a set of potential candidate solutions
(in this case, waypoints defining routes). In essence NSGA-II sorts a population
of candidates according to (1) whether each solution within the population dom-
inates, in terms of Pareto optimality, other solutions in the pool (yielding the
so-called dominance rank of the Pareto front to which the solution at hand
belongs); and (2) the closest distance from every individual to the rest of solu-
tions (corr. crowding distance). By applying this dual selection procedure along
with genetically inspired crossover and mutation operators (with probabilities Pc

Algorithm 1. NSGA-II solver applied to the problem under study.
Data: Number of exploration robots N ; number of battery recharging robots

M ; dimensions of the scenario Xmin, Xmax, Ymin, Ymax; sensing radii
{Rn}N

n=1; maximum distance Dmax and minimum time Tmin for battery
recharge; nominal robot speeds {V �

n }N
n=1 and {V �

m }M
m=1; maximum

battery capacity Bmax; battery charging rate β; battery consumption
rate γ; crossover and mutation probabilities Pc and Pm; population size
P ; maximum number of iterations I; proportion of the minimum battery
margin to the maximum battery capacity λ.

1 Deploy all robots on the initial location (x�,0, y�,0), and set waypoints w�,tini,�
n

and w�,tini,�
m equal to (x�,0, y�,0) ∀n ∈ N and ∀m ∈ M

2 Set t′ = tini and T = {tini}
3 while BT (t) ≥ λBmax do

4 while p�,t
n �= w�,t′,�

n and p�,t
m �= w�,t′,�

m ∀n, m do
5 Let robots move to their assigned waypoints w�,tini,�

n and w�,tini,�
m

6 Update remaining battery {B�,t
n }N

n=1 as per (4) and (5)

7 if t′ = tini then

8 Initialize P individuals in the population uniformly at random from S�

9 else
10 Retrieve the estimated Pareto from the previous run, introduce it in the

population. and fill the remaining individuals randomly over S�

11 for it ← 1 to I do
12 Select parents, recombine them (w.p. Pc) and mutate (w.p. Pm) the

produced new offspring that represent a new set of P waypoints
13 Evaluate explored area and battery margin of offspring as per (1), (6)
14 Sort previous and new waypoints by rank and crowding distance
15 Discard the worst P individuals in the sorted, concatenated population

16 The estimated Pareto is given by the P individuals remaining in population
17 Select the set of waypoints in the estimated front that best suits the

commanding policy (e.g. maintain a battery margin above 10%), and assign
them to robots

18 Set t′ = t, and T = T + {t}
19 All robots to initial position by w�,tini,�

n = w�,tini,�
m = (x�,0, y�,0) ∀n, m
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and Pm, respectively), the Pareto optimality of solutions contained in the pop-
ulation becomes improved iteration after iteration, to eventually yield a Pareto
front estimation after a number of iterations of this search procedure.

An algorithmic description of the NSGA-II approach designed in this work is
provided in Algorithm1. Individuals are encoded directly as N + M vectors wp

i

denoting the waypoints of all robots in the scenario, where i ∈ {1, . . . , N,N +
1, . . . , N + M}, p ∈ {1, . . . , P}, P denoting the population size and wp

i ∈ S�

∀i, p. A uniform crossover operator and a Gaussian mutation with standard
deviation σ have been selected as heuristic operators. The iterative application of
these operators and the NSGA-II selection scheme outlined above is stopped after
I iterations. It is important to remark at this point that the solver must be run
incrementally at certain time instants, e.g. the solver is not run constantly along
time but rather triggered at time ticks embedded in the set T ∈ R[tini, tend],
where tini is the time at which the robotic swarm is first deployed and tend is
the time at which the battery margin BT (tend) in the estimated Pareto front
falls below a fraction λ of the maximum battery capacity Bmax. For the sake
of simplicity, the NSGA-II solver will be executed once all robots have reached
their commanded waypoints W�,t,� and W�,t,� optimized previously, which
yields the time instants contained in T . To match this incremental nature of
the proposed optimization schedule, the population of individuals is accordingly
initialized by including the best front found in the previous NSGA-II execution,
randomly setting the remaining individuals until filling the population.

4 Simulation Setup

In order to assess the performance of the proposed bi-objective routing approach,
a simulation setup has been constructed by resorting to VREP, a renowned
software platform that permits to realistically model and perform experimental
studies with swarms of robots. In order to extract valuable insights, we have kept
the dimensions of the experimental scenario reduced to N = 5 exploring robots
and a single battery recharging node (M = 1) deployed on a 10 × 10 m2 square
area. The maximum distance and minimum time to recharge batteries are set to
Dmax = 1 m and Tmin = 3 s, respectively. Robots with six mechanical legs (also
referred to as hexapods) and diameter size equal to 0.5 m are utilized, with speeds
equal to V �

n = 3.5 cm/s ∀n ∈ N and V �
m = 2.6 cm/s. Battery recharging is done

at a rate of 1% per second with respect to the nominal maximum capacity Bmax

of exploring robots, whereas the recharging node is equipped with a total battery
capacity equal to 10 · Bmax. The battery depletion rate is fixed to γ = 1.5% of
Bmax per linear meter. As for the parameters of the NSGA-II solver, crossover
and mutation rates are set to Pc = 1 and Pm = 0.1, with a population size
of P = 20 individuals and I = 100 iterations per run. The decision making
criterion adopted to select a route among the estimated Pareto fronts was based
on selecting the route whose associated battery margin is closest to 20% of
Bmax. If no route with margin greater than this threshold, the robot swarm is
enforced to return to the origin position. Figure 2 illustrates, from two different
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perspectives, the scenario generated in VREP and simulated to yield the results
discussed in the next section1.

5 Results and Discussion

The discussion on the results obtained by the proposed scheme starts with Fig. 3,
which illustrates the set of estimated Pareto fronts along time under different
assumptions. Specifically, every plot in this figure contains a three-dimensional
cloud of points – each representing a given route plan (set of waypoints) – which
results from the aggregation of all fronts estimated in simulation time for a
single experiment. A total of 10 executions of the NSGA-II solver have sufficed
for illustrating the main benefit of our proposed routing scheme: by incorporating
battery recharging functionalities, the autonomy of the entire robotic swarm is
enhanced, so that a larger area can be explored for a given decision making
criterion imposed on the minimum admissible battery margin for the robots to
return back and safe to the base.

Fig. 2. Visual representation of the simulated setup yielding the results later discussed
in the manuscript; (left) isometric view; (right) top-down view. The robot dynamics are
provided by the VREP framework, whereas the NSGA-II routing approach has been
implemented in Python and communicates with VREP via remote API functions.

To this end two different cases are assessed, depending on the exploration
radii assumed for the sensing robots: (1) Rn = 0.9 m, which should a priori ren-
der minimum gains due to a more efficient area exploration; and (2) Rn = 0.5 m,
smaller sensing radii for which the incorporation of battery recharging functional-
ities in the swarm should provide higher gains. Indeed, this intuition is confirmed
by the results in the plots: as evinced by the plot on the left (higher exploration
radii), almost no exploration gain is obtained by including battery recharging

1 Videos showing how robots move over this scenario can be found at:
https://youtu.be/r31teMtWRF0 and https://youtu.be/zewRVZQpvP8.

https://youtu.be/r31teMtWRF0
https://youtu.be/zewRVZQpvP8
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functionalities ( ) when compared to a unassisted robot swarm ( ). However,
when reducing the sensing radius, robots must traverse longer distances in order
to explore the entire scenario, which leads to higher battery consumption levels
that could be compensated efficiently by including a battery recharging node.
This is precisely what the plot on the right in Fig. 3 reveals: when inspecting
the evolution of the maximum battery margin in the fronts computed along
time, it is straightforward to note that the margin of the unassisted swarm ( )
decreases much faster than that of its assisted counterpart ( ), falling below the
minimum admissible threshold (20%) imposed by the mission commander. As a
result, the entire swarm is commanded to return to the base once 61% of the
scenario has been explored. By including the mobile recharging node, the battery
margin degrades smoothly along time, and is maintained above the threshold to
explore a higher area percentage (ca. 80%) even for more conservative policies.
For instance, should it have been set to 60% the unassisted swarm would have
explored less than 50% of the area; in the assisted case robots would have been
operative for a longer time, attaining explored area ratios close to 80%.
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Fig. 3. Three-dimensional plot showing the Pareto trade-off between battery margin
and explored area estimated by the NSGA-II solver as the simulation evolves (rep-
resented by the NSGA-II run index). The left plot corresponds to the case when
Rn = 0.9 m, whereas the right plot depicts the case when Rn = 0.5 m, in both cases
∀n ∈ {1, . . . , 5}. Also are included in the plots the two-dimensional projections of the
point cloud along every axis, so that the progression of the maximum achievable value
of each metric. The plane shaded in gray indicates the minimum admissible battery
margin imposed by the mission commander (20%). (Color figure online)

Besides the evidence provided by the above plots, further insights can be
extracted by taking a closer look at the trajectories traced by the robots in the
swarm for both cases. One should expect that for high values of the sensing
radii Rn, nodes should feature relatively less dynamic mobility patterns over the
scenario than those corresponding to lower values of this parameter. The plots
in Fig. 4 go in line with this expected behavior. In particular mobility traces of
the robotic swarm are shown for the assisted robotic swarm with Rn = 0.5 m
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(left) and Rn = 0.9 m (right). It can be noted that the former case features
rectilinear trajectories composed by long segments, whereas in the latter all
robots in the swarm describe topologically tangled traces, and few cases reach
the boundaries of the scenario. In summary, the sensing radii plays a crucial role
in the behavior of the swarm and ultimately, in the attainable performance gain
from the introduction of mobile recharging nodes in the swarm.
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Fig. 4. Trajectories followed by the robots in the swarm for Rn = 0.5 m (left) and Rn =
0.9 m (right). A visual inspection permits to infer that lower values of the sensing radius
make all trajectories be shorter and more complex as a result of a lower overlapping
between the sensing areas of robots in the swarm. On the contrary, when the sensing
radius increases robots describe cleaner, rectilinear trajectories.

6 Concluding Remarks

In this paper, a routing problem for collaborative exploration in Swarm Robotics
has been presented. An analysis of the recent literature supports that one of the
main issues in these systems is the energy consumption and reliability of the
swarm, which jeopardizes the performance of complex missions and tasks. This
identified issue is what lies behind the rationale for this research work: to include
a subset of robots in the swarm endowed with battery charging capabilities. The
challenge resides in how to properly route the robots in the scenario considering
the existence of such nomadic battery recharging nodes, which has been formu-
lated as a bi-objective optimization problem where a Pareto equilibrium must
be met between the explored area and the risk of battery outage. In order to
solve efficiently this problem, a bio-inspired approach has been designed based
on the well-known NSGA-II solver. A realistic experimental setup comprising the
VREP robotic simulation framework has been constructed so as to shed light on
how the proposed solver performs in practice. The obtained results have proven
empirically the practicality and inherent utility of the proposed routing scheme,
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which provides the commander of the mission with more valuable information
for decision making than traditional schemes based on a single fitness function.

Several lines of research related to this work have been planned for the near
future, e.g. the inclusion of other bioinspired multi-objective heuristic engines
(e.g. SMPSO, MOEA/D) and their comparison to each other in terms of multi-
objective indicators. Another research path that will be prospected will gravitate
on relaxing and extending the assumptions and constraints defining the consid-
ered scenario towards, for instance, co-located exploration tasks (demanding
different sensing equipment). Among them, the most challenging research direc-
tion to be followed focuses on distributing the intelligence among the robots in
order to realize a true robotic swarm, namely, a swarm of robots that commu-
nicate to each other and exchange information, deciding on an optimal set of
waypoints without requiring a centralized command center as the one assumed
in this work.
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Abstract. Different criteria exist for the classification of the meta-
heuristics. One important classification is: improvement metaheuristics
and constructive. On the one hand improvement metaheuristics, begins
with an initial solution and iteratively improves the quality of the solu-
tion using neighborhood search. On the other hand, constructive meta-
heuristics, are those in which a solution is built from the beginning,
finding in each iteration a local optimum. In this article, we to compare
two constructive metaheuristics, Ant Colony Optimization and Intelli-
gent Water Drops, by solving a classical NP-hard problem, such like the
Set Covering Problem, which has many practical applications, includ-
ing line balancing production, service installation and crew scheduling
in railway, among others. The results reveal that Ant Colony Optimiza-
tion has a better behavior than Intelligent Water Drops in relation to
the problem considered.

Keywords: Intelligent Water Drops · Set Covering Problem
Constructive metaheuristic

1 Introduction

The Set Covering Problem (SCP) is a NP-hard problem [10], which consists
into find a subset of columns in a zero-one matrix such that they cover all
the rows of the matrix at a minimum cost. Some of its applications includes
line balancing production, emergency services location, crew scheduling in mass-
transit companies, logical analysis of numerical data, metallurgical production,
vehicle routing and treatment of boolean expressions.

Given the complex nature of the SCP and the huge size of real datasets,
the problem has been studied and solved by several metaheuristics, such like
genetic algorithms [3], simulated annealing [4], indirect genetic algorithms [1],
ant colony optimization [11], cat swarm optimization [5], cuckoo search [13] and
a meta optimization [7], among others.
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Constructive metaheuristics for the SCP includes Ant Colony Optimization
and Meta-RaPS. The aim of this article is to study the performance of the
Ant Colony Optimization (ACO) and Intelligent Water Drops (IWD) algorithms
applied to the SCP. These constructive metaheuristics were introduced by: [8]
to solve the Traveling Salesman Problem (TSP), based on the behavior of ant
colonies and [12] to solve the Multiobjective Knapsack Problem (MKP) and it
is based on the behavior of natural water drops flowing in the beds of rivers,
carrying soil and moving between different branches to reach their destination;
the interesting on this is that the path constructed to the destination tends to
be optimal, despite the obstacles in the environment.

This article is organized as follows: In Sect. 2 we describe the SCP, in Sect. 3
we present the ACO algorithm, in Sect. 4 we present the IWD algorithm, in
Sect. 5 we describe the results obtained for several SCP instances and finally in
Sect. 6, we present the conclusions and future work.

In the construction phase of the solution a degree of randomness must be
incorporated, with the aim of avoiding that the same solution is built in each
iteration. Each iteration ends when the solution is found, therefore in this type
of metaheuristics is avoided the problem of the infeasibility.

2 Set Covering Problem

The SCP consists into find a subset of columns in a zero-one matrix such that
they can cover all the rows of that matrix at a minimum cost.

The SCP can be defined as:

Minimize Z =
n∑

j=1

cjxj (1)

Subject to
n∑

j=1

aijxj ≥ 1 ∀i ∈ I (2)

xj ∈ {0, 1} ∀j ∈ J (3)

Let A = (aij) be a m × n binary matrix with I = {1, . . . , m} and J =
{1, . . . , n} being the row and column sets respectively. We say that a column j
can cover a row i if aij = 1. The cost of selecting the column j is represented by
cj , a non-negative value, and xj is a decision variable to indicate if the column
j is selected (xj = 1) or not (xj = 0).

One of the many practical applications of this problem is the location of fire
stations. Lets consider a city divided in a finite number of areas which need to
locate and build fire stations. Each one of this areas need to be covered by at
least one station, but a single fire station can only bring coverage to its own area
and the adjacent ones; also, the problem requires that the number of stations to
build needs to be the minimum.
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Being the SCP a NP-hard class problem, one of the many difficulties that
benchmarks arise is regarding their size and the computational cost associated.
To solve this, many authors have proposed to simplify (or “pre-process”) the
problem before apply any exact method or metaheuristic. By doing this, we are
dealing with problems that are equivalent to original but smaller in terms of rows
and columns. We introduce a preprocessing phase before run the metaheuristic;
the goal of this phase is to reduce the size of instances and improve the perfor-
mance of the algorithm. In this article, we use two methods that have proven to
be more effective: Column Domination and Column Inclusion, presented in [2,9]
respectively.

3 Ant Colony Optimization

Ant Colony Optimization Algorithm (ACO) it was inspired by the behavior of
ant colonies in the search for their food, was proposed by [8], is a probabilistic
technique that allows to find the shortest path in a graph. In the nature, the
ants leave a chemical signal called pheromone, in the path through which pass.
The pheromone has an important role in the survival of the ants allowing to find
the shortest way to its power supply.

An ant exploratory moves in random searching for food, depositing
pheromone in its path which is followed by more ants which reach the source of
food found. When transiting more ants by this path, the amount of pheromone
will be increased reinforcing the path. If there are two paths to the same food
source, the shortest path will be the busiest because of its amount of pheromone,
considering that in the longest path the pheromone will disappear because it is
volatile. The behavior of the ants is shown in the Fig. 1.

Fig. 1. Path of the ants to its source of food.

The main idea, is to model an optimization problem as the search for the
lowest cost route in a graph by a colony of artificial ants. The ACO algorithms
are essentially constructive, that is to say, for each iteration all the ants build a
solution depositing pheromone, according to the quality of the solution, allowing
to guide to the rest of the ants of the colony.
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The ACO Algorithm can be applied directly to the SCP. The columns are
chosen as the solution components and have associated a cost and a pheromone
trail. Constraints say that each column can be visited by an ant once and only
once and that a final solution has to cover all rows.

A walk of an ant over the graph representation corresponds to the iterative
addition of columns to the partial solution obtained so far. Each ant starts with
an empty solution and adds columns until a cover is completed. A pheromone
trail τj and a heuristic information ηj are associated to each eligible column j.
A column to be added is chosen with a probability that depends of pheromone
trail and the heuristic information. The probability function is given by the
equation Eq. 5:

pk
j (t) =

τjη
β
j∑

l∈Nk

τl[ηl]β
if j ∈ Nk (4)

where Nk is the feasible neighborhood of the ant k. The β parameter controls
how important is η in the probabilistic decision. τj is the pheromone and ηj is
the heuristic information.

In this work we use a dynamic heuristic information ηj that depends on the
partial solution of an ant. We defined as ηj = ej

cj
, where ej is the so called cover

value, that is, the number of additional rows covered when adding column j to
the current partial solution, and cj is the cost of column j. An ant ends the
solution construction when all rows are covered.

An important step in ACO Algorithm is the pheromone update on the path.
The pheromone trails are updated as given by the following equation:

τj = p τj + ωi, ∀j ∈ J (5)

where p ∈ J [0, 1) is the pheromone persistence and ωi ≥ 0 is the amount of
pheromone put on column j.

The general pseudocode for the ACO is presented in Algorithm 1.

Algorithm 1. Ant Colony System
1: {Step 1: initialize parameters}
2: while not stop condition do

3: {Step 2: All the ants in the colony generate a solution}
4: for each ant in the nest do
5: generate a new solution

6: end for
7: {Step 3: Update}
8: update local optimal

9: update pheromone trails

10: end while
11: {Step 4: Best solution}
12: return the best solution found
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Step 1. Algorithm parameters are initialized.

Step 2. Once each ant generated a solution, the local optimal solution is updated
if needed. Due to evaporation, all pheromone trails are decreased uniformly. The
ants deposit some amount of pheromone on good solution to mark promising
areas for next iterations.

Step 3. The algorithm ends when a certain stop condition is reached.

Step 4. The best solution found is returned.

The Set Covering Problem has been solved by the following variants of the
algorithm: Ant Colony Optimization (ACO), Ant Colony System (ACS), Max-
Min Ant System (MMA’S) and Hyper-Cube Framework for ACO [11].

4 Intelligent Water Drops Algorithm

The IWD algorithm is a population-based constructive metaheuristics proposed
in [12] and designed to imitate the flow properties of natural water drops, which
tend to describe an optimal path to their destination considering the distance
and despite the constraints in the environment.

In the algorithm, the population is composed by N water drops (denoted by
IWDk, k ∈ [1 . . . N ]) moving in a discrete environment, represented by a graph
with Nc nodes in which the drops will move from one node to another.

Each drop has two main properties: the amount of soil it carries (denoted by
soilk) and the velocity (denoted by velk). Both properties can change how the
drop flows in the environment.

In case of soil, it is expected that as iterations passes, the amount of soil
carried by each drop will increase, making the drop bigger (Fig. 2A). Also the
velocity in a water drop determines the amount of soil removed; the faster the
water drop is, the bigger the amount of soil removed (Fig. 2B). However, the
velocity of a water drop can increase or decrease according to the branch chosen
in each iteration.

Fig. 2. Behavior of water drops in a river.

Choosing a branch (of the path) or another depends basically on how “desir-
able” -in terms of the amount of soil- the branch is; so, if the branch has a high
amount of soil then that branch is more difficult to flow (more soil, less veloc-
ity) than another branch with a less amount (Fig. 2C). In the algorithm, this
behavior is implemented by a probabilistic function of inverse of soil.
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The IWD algorithm has been applied to several problems like: air robot
path planning, smooth trajectory planning, vehicle routing problem, economic
load dispatch problem, image processing, rough set feature selection, reservoir
operation, code coverage, data aggregation in wireless sensor networks, multi-
objective job shop scheduling, among others.

The general pseudocode for the IWD is presented in Algorithm 2.

Algorithm 2. Intelligent Water Drops
1: {Step 1: Static Parameters Initialization}
2: Initialize parameters N, MAX IT ERAT ION, Nc.

3: Initialize soil parameters: as, bs, cs

4: Initialize velocity parameters: av , bv , cv

5: for i = 1 to MAX IT ERAT ION do
6: {Step 2: Dynamic Parameter Initialization}
7: for k = 1 to N do
8: Initialize V Ck list as empty.

9: Initialize soilk value as zero.
10: Initialize velk value as InitVel.
11: end for
12: {Step 3: Create and Distribute Water Drops}
13: for k = 1 to N do
14: Create the kth water drop (IW Dk).

15: Select randomly a node for IW Dk.

16: end for
17: {Step 4: Update Visited List of Water Drops}
18: for k = 1 to N do
19: Update V Ck.

20: end for
21: {Step 5: Complete Each Water Drop Solution}
22: for k = 1 to N do
23: Choose a path for IW Dk.

24: Update velocity (velk).

25: Compute the amount of soil (Δsoil) to be carried by IW Dk

26: Remove Δsoil from the path and add it to IW Dk

27: end for
28: {Step 6: Find the Best Solution from the Iteration}
29: for k = 1 to N do
30: Calculate fitnessk

31: end for
32: {Step 7: Update Paths of the Best Solution from Iteration}
33: {Step 8: Update the Total Best Solution}
34: end for

Step 1. In this step we set the static parameters to run the IWD algorithm;
all of these values will remain constant during execution and can only change
between experiments.

The two properties of intelligent water drops -soil and velocity- also have
parameters to set in this step; these parameters are constants required to update
the soil and velocity values in each iteration. For soil, parameters are: as, bs and
cs; for velocity, parameters are: av, bv, cv.

Step 2. Each water drop (denoted by IWDk, k ∈ [1 . . . N ]) need to update
certain values in each iteration: a list of nodes visited, the value for soil property
and the value for velocity property.

In case of nodes, a list (denoted by V Ck) will be updated by adding the
last node visited; in case of the first iteration, this list will be set to empty
(V Ck = {}).
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For soil and velocity, the first iteration will set arbitrarily these values to the
static parameters of InitSoil and InitVel respectively.

Step 3. In this step the water drops are created and then distributed randomly
along the nodes. At this point, we do not use any probability function yet.

Step 4. With all water drops distributed, we can update their list of visited
nodes by adding the nodes from Step 4.

Step 5. This step will build a valid path to solution by moving the recently
created water drops across nodes and updating their soil and velocity properties
each time. All steps described here will be executed in a loop until reach a
solution.

Step 5.1. Select the next node (called j) to be visited by water drop IWDk.
Considering a water drop at node i and with a visited list of V Ck, this step
will look at all nodes that have not been visited yet and will select one of them
according to a probability function based on the amount of soil present in the
path to that next node (Eq. 6).

pk
i (j) =

f(soil(i, j))∑
∀l/∈V Ck f(soil(i, l))

(6)

The function f(soil(i, j)) represents the inverse amount of soil in the path
between nodes i and j respectively and uses a constant ε with the solely purpose
to avoid zero division (Eq. 7).

f(soil(i, j)) =
1

ε + g(soil(i, j))
(7)

The function g(soil(i, j)) is introduced to always get a positive value when
calculating the amount of soil between nodes i and j respect to the amount of
soil in the visited path (Eq. 8).

g(soil(i, j))

⎧
⎨

⎩

soil(i, j) if min
l/∈vc(IWD)

(soil(i, l)) ≥ 0

soil(i, j) − min
l/∈vc(IWD))

(soil(i, l)) else
(8)

Step 5.2. Update velocity of the water drop. As long as the water drop moves
between nodes i and j certain amount of soil will be carried by the drop, turning
the drop bigger. To calculate this change, the algorithm will use a function based
on the soil in the path between i and j (Eq. 9).

velk(t + 1) = velk(t) +
av

bv + cv · soil(i, j)
(9)
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Step 5.3. Update soil amount of the water drop. Depending on the velocity value
of the water drop when moving between i and j, the amount of soil removed from
environment (soil(i, j)) and carried by the drop for the next iteration (soilk(t +
1)) will be different (Eqs. 10, 11 and 12). The more time it takes, the more soil
the water drop will carry (Eq. 13).

soil(i, j) = (1 − ρ) · soil(i, j) − ρ · Δsoil(i, j) (10)

soilk(t + 1) = soilk(t) + Δsoil(i, j) (11)

Δsoil(i, j) =
as

bs + cs · time(i, j : velk(t + 1))
(12)

time(i, j : velk(t + 1)) =
HUD(i, j)
velk(t + 1)

(13)

The HUD(i, j) is a local heuristic function proposed in [12] to measure the
undesirability of the water drop to move from one node to another. In this article,
we applied the same idea for SCP; the heuristic function applied considers the
cost of moving to node j (costj) and the number of constraints covered by the
node (Rj); the function is presented in Eq. 14.

HUD(i, j) =
costj

Rj /∈ V CR
(14)

Step 5.4. Remove soil from the path and add it to the water drop. In previous
steps, we calculated the amount of soil removed from the path (Δsoil); now, the
value of soil property for each water drop (soilk) needs to be updated.

Step 6. Once all water drops have completed their solutions, the algorithm
requires to evaluate which one was the best in the current iteration (T IB); to
do this, we have to consider specifically the problem we are solving -SCP in
this case- where the best solution is given by the one with the minimum cost
associated. The equation that will compute this step is presented in Eq. 15.

T IB = arg min q(IWDk) (15)

Step 7. The path traveled by the best water drop in the iteration (TIB) will
modify the environment for the future drops. In this step, the algorithm will
update the amount of soil in the arcs of the graph that were traveled by T IB in
order to reflect the impact of this drop on them.

The soil update then, will be done based on Eq. 10 but considering the quality
of the best solution found during the current iteration (T IB). As better the
solution is, then more soil will be removed. In the algorithm, this is calculated
in terms of the soil present during the current iteration and the quality of the
iteration-best solution (Eq. 16). The parameter ρIWD is a negative constant.

soil(i, j) = (1 − ρIWD) · soil(i, j) +

ρIWD · soil(i, j)IB · 1
q(T IB)

(16)
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Step 8. Finally, if the iteration-best solution is better than the global-best, then
the global-best solution needs to be replaced with the new one (Eq. 17).

TTB =

{
T IB if q(TTB) > q(T IB),
TTB else

(17)

5 Computational Results

The proposed IWD algorithm has been implemented in Java language in an Intel
CORE i7 CPU, 8 GB of RAM, running Windows 7 Ultimate 64 bit.

5.1 Parameters

With the objective of finding a better behavior of the algorithm we consider
different configurations for the static parameters based on the size of the families
of instances. The values of each family is obtained when running the algorithm 10
times by varying the parameters: Number of intelligent water drops, Maximum
number of iterations and initial soil value. The selected configuration is the one
which corresponds to the solution with best RPD.

The parameters tuning for the IWD algorithm is detailed in Table 1 consid-
ering the different instances families.

Table 1. Tuning for static parameters in IWD.

Dataset m n N MAX

ITERATION

Initial

soil

as bs cs Initial

vel

av bv cv ε ρ

4 200 1000 250 300 1600 1000 0.01 1 3 10 0.01 1 0.01 0.95

5 200 2000 300 600 1600 1000 0.01 1 3 10 0.01 1 0.01 0.95

6 200 1000 250 600 1600 1000 0.01 1 3 10 0.01 1 0.01 0.95

The instances tested are from Beasley’s OR Library. Details on instances are
presented in Table 2.

Table 2. Set covering instances.

Instance
set

No. of
instances

m n Cost
range

Density
(%)

Optimal
solution

4 10 200 1000 [1, 100] 2 Known

5 10 200 2000 [1, 100] 2 Known

6 5 200 1000 [1, 100] 5 Known

After performed experiments for the 3 families presented before, results can
be seen at Table 3. This tables, presents the instance number, the optimum
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result known (Zopt), the minimum result obtained by our experiments (Zmin),
the average result obtained (Zavg) and the relative percentage deviation (RPD)
for IWD with Pre-Processing and IWD [6] techniques.

The RPD value quantifies the deviation of the objective value Zmin from the
optimal known Zopt. To calculate it, we use Eq. 18

RPD =
(

Zmin − Zopt

Zopt

)
× 100 (18)

Table 3. Computational results

Instance Zopt Zmin Zavg RPDACO Zmin Zavg RPDIWDpreprocess DiffRPD

4, 1 429 443 449 0, 23 430 434 3, 26 92, 94

4, 2 512 560 579 0, 00 512 518 9, 38 100, 00

4, 3 516 546 561 0, 00 516 518 5, 81 100, 00

4, 4 494 536 554 0, 20 495 501 7, 84 97, 45

4, 5 512 552 592 0, 39 514 519 7, 81 95, 01

4, 6 560 614 263 2, 68 575 575 9, 64 72, 20

4, 7 430 456 478 0, 70 433 437 6, 05 88, 43

4, 8 492 536 568 0, 41 494 497 8, 94 95, 41

4, 9 641 706 721 0, 78 646 654 10, 14 92, 31

4, 10 514 586 596 0, 78 518 522 14, 01 94, 43

5, 1 253 277 301 0, 79 255 259 9, 49 91, 68

5, 2 302 334 357 1, 32 306 309 10, 60 87, 55

5, 3 226 245 264 2, 65 232 234 8, 41 68, 49

5, 4 242 263 291 0, 41 243 243 8, 68 95, 28

5, 5 211 232 254 0, 47 212 212 9, 95 95, 28

5, 6 213 234 250 0, 00 213 216 9, 86 100, 00

5, 7 293 325 351 1, 71 298 298 10, 92 84, 34

5, 8 288 316 344 0, 35 289 289 9, 72 96, 40

5, 9 279 325 355 0, 72 281 282 16, 49 95, 63

5, 10 265 291 302 1, 13 268 269 9, 81 88, 48

6, 1 138 156 181 2, 90 142 145 11, 54 74, 87

6, 2 146 184 194 4, 79 153 156 20, 65 76, 80

6, 3 145 172 189 0, 00 145 149 15, 70 100, 00

6, 4 131 152 181 2, 29 134 136 13, 82 83, 43

6, 5 161 188 198 0, 62 162 169 14, 36 95, 68

In accordance with the results showed in the Table 3 it is visualized that ACO
was mejor in all the instances achieving 4 optimals, however also it is appreciated
that the RPD of IWD is similar for all instances.
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6 Conclusions and Future Work

This article presents the comparison of two constructive metaheuristics (IWD
and ACO), solving a classic combinatorial problem as SCP which has been used
for modeling problems of the industry. For this problem ACO had a better
behavior than IWD, reaching 4 optimum for the instances used in contrast to
IWD that did not reach any. We used the instances of the groups 4, 5, 6. For group
4, ACO obtained 2 optimum, 1 in group 5 and 1 in group 6. In order to improve
the behavior of IWD, it incorporated a stage of preprocessing which helped
to improve the response but without reaching a reach some optimal. Although
the results of IWD have not been better than ACO, these are encouraging. In
the same line, the future work proposed it is related to improve the tuning of
parameters to improve the results. Also, another very interesting line is related
to test the algorithm for the remaining instances from OR Library and other
SCP libraries, such like the Unicost (available at OR-Library website), Italian
railways, American airlines and the Euclidean benchmarks.
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J., Misra, S., Paredes, F.: Comparing cuckoo search, bee colony, firefly optimiza-
tion, and electromagnetism-like algorithms for solving the set covering problem.
In: Gervasi, O., Murgante, B., Misra, S., Gavrilova, M.L., Rocha, A.M.A.C., Torre,
C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2015. LNCS, vol. 9155, pp. 187–202.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21404-7 14

https://doi.org/10.1007/978-3-540-28646-2_1
https://doi.org/10.1007/978-3-319-21404-7_14


Single and Multiobjective Evolutionary
Algorithms for Clustering Biomedical
Information with Unknown Number

of Clusters
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Abstract. This article presents single and multiobjective evolutionary
approaches for solving the clustering problem with unknown number of
clusters. Simple and ad-hoc operators are proposed, aiming to keep the
evolutionary search as simple as possible in order to scale up for solving
large instances. The experimental evaluation is performed considering
a set of real problem instances, including a real-life problem of analyz-
ing biomedical information in the Parkinson’s disease map project. The
main results demonstrate that the proposed evolutionary approaches are
able to compute accurate trade-off solutions and efficiently handle the
problem instance involving biomedical information.

Keywords: Clustering · Biomedical information · Multiobjective

1 Introduction

The clustering problem aims at grouping a set of elements in such a way that
elements in the same group (cluster) are more similar to each other than to the
elements in other clusters [1]. Similarity between elements is evaluated according
to a predefined similarity metric to be maximized. Clustering is one of the most
important unsupervised learning problems, which models many other problems
dealing with finding a structure in a given set of data.

In particular, biomedical research demands dealing with a large number of
concepts linked by complex relationships, which are often represented using large
graphs. In order to process and understand these knowledge bases, researchers
need reliable tools for visualizing and exploring large amounts of data conve-
niently. In order to get a deep understanding of such knowledge bases, concepts
with similar characteristics need to be accurately grouped together.
c© Springer International Publishing AG, part of Springer Nature 2018
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Clustering is an NP-hard optimization problem [2] that has been thoroughly
studied in the last 30 years [3]. Heuristics and metaheuristics [4] have been
applied to solve the clustering problem efficiently. Among them, evolutionary
algorithms (EAs) have proven to be accurate and powerful methods [5,6].

This article addresses two formulations of the clustering problem, a first one
in which the number of clusters is known in advance, and a multiobjective vari-
ant which simultaneously maximizes the similarity between elements in the same
cluster and minimizes the number of clusters. Three EAs are presented, two for
the single objective and one for the multiobjective clustering problem. The pro-
posed EAs are compared against several methods from the related literature. The
evaluation focuses on a large problem instance from the Parkinson’s disease map
project [7], a research initiative that proposes building a knowledge repository
to describe molecular mechanisms related to that condition [8]. The repository
compiles literature-based information about Parkinson’s disease and organizes
the main concepts and contents in an easy to explore and freely accessible map,
including experimental data, drug targets and other concepts.

The article is organized as follows. Section 2 presents the single and multi-
objective clustering problem formulation and reviews related works on heuris-
tics and metaheuristics applied to the clustering problem. The proposed EAs
are described in Sect. 3 and the experimental evaluation is reported in Sect. 4.
Finally, Sect. 5 presents the conclusions and the main lines for future work.

2 Clustering Problem and Related Work

This section defines the clustering problem in both its single and multiobjective
variants and reviews related works.

2.1 Problem Formulation

Let us consider the following elements:

– The set E = {e1, e2, . . . , en} of elements to be grouped.
– The function s : E × E → [0, 1]; s(ei, ej) is the similarity between ei and ej .

The following conditions hold: ∀ei, ej , s(ei, ej) = s(ej , ei) and s(ei, ei) = 1.
– An integer k > 0, which indicates the number of clusters to consider for

grouping elements (only for the single-objective version of the problem).

The clustering problem consists in assigning the elements in E to a set of
groups (clusters) G = {G1, . . . , Gk}; Gi = {ci}∪{em/s(em, ci) ≤ s(em, cj)∀em ∈
E, cj , ci ∈ C, i �= j}; C ⊆ E, |C| = k is the set of centers of the groups. The
following properties hold: a) cluster index in [1, k]) ∀(i, j), i �= j : 1 ≤ i, j ≤ k,
and b) clusters are disjoint sets Gi ∩ Gj = ∅.

The goal of the single objective version of the problem is to maximize the
total similarity metric (TS) defined in Eq. 1.

max TS =
∑

ei∈E

max
ci∈C

s(ei, ci) (1)
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In the multiobjective version of the problem, the goal is to simultaneously
maximize the value of TS and minimize the number of clusters k.

2.2 Related Work

Many articles have presented heuristic and metaheuristic methods applied to
the clustering problem. Early works considered the single objective version of
the problem, based on minimizing the distance or maximizing similarity.

Das et al. [9] reviewed the application of metaheuristics for clustering prob-
lems. Trajectory-based metaheuristics offer limited problem solving capabilities,
mainly due to scalability issues when solving large problem instances. Deng and
Bard [10] applied GRASP for the Capacitated Clustering Problem, which pro-
poses grouping elements in clusters, where each cluster has capacity constraints
(minimum and maximum number of elements). GRASP was able to find opti-
mal solutions for the problem instances with 30 and 40 nodes, and outperformed
solutions found using CPLEX when using an execution time limit of one hour.

Early proposed EAs did not follow an explicit multiobjective approach. Sheng
and Liu [6] compared k-medoids, local search, and Hybrid K-medoid Algo-
rithm (HKA) over two datasets (517 elements/10 groups, and 2945 elements/30
groups). HKA obtained the best results on the largest problem instance and
slightly better results for the small test problem. The EA by Cowgill et al. [11]
optimized clustering metrics defined in terms of external cluster isolation and
internal cluster homogeneity, improving over hierarchical clustering algorithms
considering an internal criterion. Bandyopadhyay and Maulik [12] proposed an
EA for clustering with a number of clusters not defined a priori, to analyze
several clustering metrics.

Multiobjective EAs (MOEAs) for clustering have been presented in the book
by Maulik et al. [13], most of them focused on optimizing two similarity met-
rics, thus studying different features of the data to analyze. The multiobjective
approach by Ripon et al. [14] considered intracluster variation and intercluster
distance, without assuming the number of clusters. The experimental analysis
over problems with up to 3000 elements, nine classes, and two features, showed
improved solutions over a custom NSGA-II. Handl and Knowles [15] proposed
multiobjective clustering with automatic k determination (MOCK), consider-
ing objective functions based on compactness (deviation) and connectedness of
clusters. These are conflicting objectives because the overall deviation improves
when using more clusters, but the connectivity decreases. MOCK showed good
behavior and scalability when compared with single-objective clustering algo-
rithms. Korkmaz et al. [16] presented a Pareto-based MOEA to find a set of
non-dominated clusters considering intracluster variation and the number of
clusters. The experimental evaluation was performed over two small standard
datasets (150 and 75 elements, with only two attributes), but no numerical
results or multiobjective optimization analysis is reported.

Most of the previous works have proposed ad-hoc EAs to address the clus-
tering problem and few of them have solved multiobjective variants. This article
contributes with simple EAs and an explicit MOEA designed to scale properly
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for solving large problem instances, and we focus on a real-life instance consider-
ing biomedical information in the context of the Parkinson disease map project.

3 Evolutionary Algorithms for Clustering

This section describes in detail the single and multiobjective EAs proposed to
tackle the clustering problem.

3.1 Single Objective EAs

Fitness Function. The fitness function computes the sum of similarities between
each element and its most similar center, as presented in Sect. 2.1.

Solution Encoding. Two solution encodings are proposed and evaluated. Binary
encoding: a solution is represented as a binary vector of length n (the number
of elements to be grouped). Each position in the vector represents whether the
corresponding element is a group center (1) or not (0). Integer encoding: each
solution is a vector of k integers in [1, N ], representing the set of cluster centers.
Numbers only appear once, as the k clusters must have different centers.

Crossover Operators. Two crossover operators were implemented for the binary
encoding: Single Point Crossover (SPX) randomly selects a crossover position
and exchanges the genes after the crossover point between both parents. Two-
Point Crossover (2PX) randomly selects two crossover positions and exchanges
the genes located between these two points.

For the integer encoding, three crossover operators were implemented: SPX,
Generalized Cut and Splice (GenC&S), and Hybrid Crossover (SPX-GenC&S).
GenC&S is a variant of Cut and Splice (C&S) [17] for the clustering problem,
to preserve useful features of the information in both parents (Algorithm1).
GenC&S selects a random cutting point cp on one parent and a random integer
s ∈ [0, k]. Two lists are created, sorted by similarity with the element on position
cp in parent1: LP1 (elements on parent1) and LP2 (elements in parent2). The
first s elements in LP1 are copied to offspring1 and the k−s remaining elements
are copied from LP2, if their similarity to elements already copied to offspring1 is
smaller than the input parameter ε. If less than k centers are copied to offspring1,
the solution is completed with randomly selected centers. SPX-GenC&S uses
a single random number p instead of cp and s. Elements before p in parent1
are copied to offspring1 (like in SPX), and the k − p remaining elements in
offspring1 are copied from parent2, if their similarity to elements already copied
to offspring1 is smaller than ε (like in GenC&S). If less than k centers are copied
to offspring1, the solution is completed with randomly selected centers.

Mutation Operators. Five mutation operators were implemented. For binary
encoding, Bit Flip Mutation changes encoded values by the opposite binary
value; Add Mutation changes data points to centers; and Delete Mutation
changes centers to data points. For integer encoding, One Gene Mutation changes



104 M. E. Curi et al.

Algorithm 1. GenC&S crossover for the clustering problem (integer encoding)
1: Input: parent1, parent2, ε; Output: offspring1
2: cp = rand(0,k)
3: s = rand(0,k)
4: cp element = parent1[cp]
5: offspring1.add(cp element)
6: LP1 = sortAscending(parent1,cp element)
7: LP2 = sortAscending(parent2,cp element)
8: for i = 0 to s − 1 do � Copy the first s elements from LP1 to offspring1
9: offspring1.add(LP1[i])

10: end for
11: for j = 0 to k − s do � Copy the first N − s elements from LP2 to offspring1
12: if similarity(LP2[j],offspring1)< ε then � not too close
13: offspring1.add(LP2[j]) � already in offspring1
14: end if
15: end for
16: while offspring1.length() < k do � Complete with random elements
17: new center = rand(0,N)
18: offspring1.add(new center)
19: end while

elements to another that is not included in the solution (randomly selected
according to a uniform distribution in the set E) and Adapted One Gene Muta-
tion changes an element in the encoding to the most similar element, found by
applying the following search: all elements in the solution are processed, and the
similarity to the element being mutated is evaluated. The best similarity value
(γ) is stored and the new center is selected to have a similarity less than γ.

Corrective Function. Some evolutionary operators do not guarantee to preserve
the number of centers in a solution. A simple corrective function is applied both
for binary and integer encodings. For binary encoding, if the number of 1 s in the
solution is not k, random centers are added or deleted until the solution becomes
feasible. For integer encoding, if the same element appears more than once in
the vector, each repeated element is replaced with another chosen randomly
(uniform distribution) among elements that are not already centers.

Population Initialization. The individuals in the population are randomly gener-
ated following a uniform distribution in {0, 1} (binary encoding) and a uniform
distribution in the set of centers C (integer encoding). The initialization pro-
cedure generates feasible solutions by applying the corrective function to each
individual in the initial population.

3.2 Multiobjective EA

A variant of NSGA-II [18] was implemented to solve the multiobjective variant
of the clustering problem. Following an incremental approach, the encoding and
evolutionary operators that achieved the best results in the comparative analysis



Single and Multiobjective Evolutionary Algorithms 105

of the single objective EA for the problem were used in the proposed NSGA-II:
binary encoding, SPX, and Delete Mutation.

In the multiobjective problem, the solution with all genes set to 0 is not
feasible, since it does not represent any grouping at all. To avoid this situation,
the corrective function randomly adds a center to the solution. The initial pop-
ulation is randomly generated following a uniform distribution in [0, 1] and the
corrective function is applied to the generated individuals.

4 Experimental Evaluation

This section describes the evaluation of the proposed EAs for clustering.

4.1 Problem Instances

A total number of 13 problem instances were used to evaluate the proposed EAs.
These instances correspond to clustering problems arising in different fields of
study, including two instances that model the Parkinson’s disease map:

– Instance #1 consists of hydrometric data from 46 basins in Uruguay [19].
– Instances #2 to #8 and #10 to #12 are from the Knowledge Extraction based

on Evolutionary Learning dataset [20], a data repository for classification
problems. These instances have between 80 and 846 elements each.

– Instances #9 and #13 contain data from the Parkinson’s disease map, which
visually represents all major molecular pathways involved in the Parkinson
disease pathogenesis. Instance #9 has 801 elements. Instance #13 has 3056
elements and it is used to test the performance of the multiobjective approach
on a large problem instance containing biomedical information.

4.2 Experimental Configuration and Methodology

Development and Execution Platform. The proposed EAs were developed using
ECJ [21], an open source framework for evolutionary computation in Java.
Experiments were performed on an Intel Core i5 @ 2.7 GHz and 8 GB of RAM.

Results Evaluation. The results computed by the proposed EAs are compared
against clustering algorithms from the literature in terms of the objective func-
tion (total similarity) and in terms of the relative hypervolume (RHV) metric for
the multiobjective variant of the clustering problem. RHV is the ratio between
the volumes (in the objective functions space) covered by the computed Pareto
front and the volume covered by the true Pareto front. The ideal value for RHV
is 1. The true Pareto front—unknown for the problem instances studied—is
approximated by the set of non-dominated solutions found in each execution.

The algorithms used in the comparison are:

– k-medoids [22], a classic partitional method related to k-means. Clusters are
built to minimize the distance between points and the center of the corre-
sponding cluster, according to a given distance metric.
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– Linkage, an agglomerative hierarchical clustering technique based on building
clusters by combining elements of previously defined clusters. A distance func-
tion evaluates a relevant similarity metric for the problem and different linkage
implementations use different distance functions. The Matlab implementation
of single linkage (nearest neighbor), which uses the smallest distance between
objects in the two cluster, in the results comparison.

– Local Search [6], combining k-medoids and an exhaustive search performed
for each cluster. Starting from a randomly selected set of centers, the set of
p nearest neighbors is found for each center. A local search is performed over
these sets to find a new center that minimizes the distance with all elements.
The search ends when no center is changed in two consecutive iterations.

– Greedy, which builds clusters iteratively, taking a locally optimal decision in
each step. Starting from a randomly selected center, in each step searches
for the element with the lowest similarity with the solution already built.
This element is included in the solution as a new center. All clusters are
recomputed and the procedure is applied until building k clusters.

– Hybrid EA, combining an EA and the local search by Sheng and Liu [6]
(Algorithm 2). The hybrid EA uses binary encoding, random initialization,
tournament selection, Mix Subset Recombination, and Bit Flip Mutation.

Algorithm 2. Generic schema of the hybrid EA for the clustering problem
1: Initialize k centers randomly
2: while not stopping criterion do
3: [parent1, parent2] = TournamentSelection(P )
4: if rand(0,1) > pC then
5: [offspring1, offspring2] = Mix Subset Recombination(parent1, parent2)
6: end if
7: [offspring1, offspring2] = Bit Flip Mutation(pM )
8: if rand(0,1) > pLS then
9: [offspring1, offspring2] = Local Search()

10: end if
11: end while
12: return best solution found

Statistical Analysis. Thirty independent executions of each algorithm were per-
formed over each problem instance to have statistical confidence. For each prob-
lem instance, the best and the average fitness value (for the single objective
problem) and the average multiobjective metrics (for the multiobjective prob-
lem) are reported. The Kolmogorov-Smirnov test is applied to each set of results
to assess if the values follow a normal distribution. After that, the non-parametric
Kruskal-Wallis test is applied to compare the results distributions obtained by
different algorithms. A confidence level of 95% is used for both statistical tests.
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4.3 Single Objective Clustering Problem

Parameter Settings. The parameter values of each algorithm were configured
based on preliminary experiments and suggestions from related works:

– Single objective EAs: population size (pop) = 100, crossover probability (pC)
= 0.75, mutation probability (pM ) = 0.01, tournament size = 2, and stopping
criterion of 10000 generations.

– k-medoids: the algorithm stops when the cluster centers remain unchanged
in consecutive iterations.

– Local search: size of the search neighborhood = 3 and the stopping criterion
is the same as for k-medoids, as recommended by Sheng and Liu [6].

– Hybrid EA: pop = 30, pC = 0.95, pM = 0.02, pLS = 0.2, neighborhood size
= 3, tournament size = 2, and stopping criterion of 10000 generations.

Comparison of Evolutionary Operators. For the binary encoding, two crossovers
and three mutations were proposed, generating six possible combinations: SPX
and Bit Flip Mutation (SPX-bit), SPX and Add Mutation (SPX-add), SPX and
Delete Mutation (SPX-del), 2PX and Bit Flip Mutation (2PX-bit), 2PX and
Add Mutation (2PX-add), and 2PX and Delete Mutation (2PX-del). Experimen-
tal results showed that SPX-del performed better on small problem instances,
outperforming the other combinations of evolutionary operators. On medium
sized instances #5 and #6, SPX-bit computed the best results, while on large
instances 2PX-del achieved the best results. Therefore, the rest of the exper-
imental analysis of the single objective EA using binary encoding focused on
these three combinations of evolutionary operators.

For the integer encoding, three crossover operators and two mutations were
presented, generating six possible combinations: SPX and One Gene Mutation
(SPX-One), SPX and Adapted One Gene Mutation (SPX-Adapt), SPX-GenC&S
Crossover and One Gene Mutation (SPXGCS-One), SPX-GenC&S Crossover
and Adapted One Gene Mutation (SPXGCS-Adapt), GenC&S Crossover and
One Gene Mutation (GCS-One), and GenC&S Crossover and Adapted One
Gene Mutation (GCS-Adapt). Results showed that SPX-One computed the best
results in 7 instances and GCS-One in 5 instances, both outperforming the
other combinations. Therefore, the rest of the experimental analysis of the single
objective EA using integer encoding focused on these two combinations.

Comparison of Solution Encodings. Table 1 reports the average similarity results
computed on 30 independent executions of the proposed EA using binary and
integer encoding and the evolutionary operators that achieved the best results
in the previous analysis.

Results indicate that the binary encoded EA using SPX-del and 2PX-del
significantly outperformed the results computed using integer encoding and SPX-
bit. There is no significant difference when using SPX-del and 2PX-del, and for
simplicity, the rest of the experimental evaluation was performed using SPX-del.
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Table 1. Average similarity using different encodings and evolutionary operators.

#I Integer encoding Binary encoding

SPX-One GCS-One SPX-bit SPX-del 2PX-del

#1 18.66 18.66 18.66 18.66 18.66

#2 1.96 1.96 1.96 1.96 1.96

#3 12.42 12.44 12.27 12.46 12.46

#4 16.43 16.41 15.93 16.50 16.50

#5 78.35 78.16 78.61 78.51 78.42

#6 116.18 116.39 116.45 115.69 115.34

#7 54.71 54.68 54.80 54.98 54.98

#8 63.27 63.30 61.10 63.42 63.43

#9 673.57 656.56 633.91 675.20 675.20

#10 37.77 36.49 35.88 38.22 38.22

#11 235.33 229.58 221.17 236.11 236.11

#12 32.89 32.08 31.20 33.23 33.23

Comparison Against Other Algorithms. The proposed EA with binary encoding,
SPX, and delete mutation was compared against the baseline algorithms. Table 2
reports the average similarity computed over 30 independent executions of each
algorithm for the 12 problem instances (the best results are marked in bold). The
Kolmogorov-Smirnov test was performed on the results’ distributions. In most
cases, the test allowed rejecting–with 95% confidence–the null hypothesis that
the results follow a normal distribution. Therefore, the Kruskal-Wallis test was
used to compare the results’ distributions computed by each EA (the p-value is

Table 2. Comparison of average similarity against other algorithms.

Instance Greedy Linkage k-medoids Local search Hybrid EA SPX-del p-value K-W

#1 7.28 17.01 17.03 15.49 18.66 18.66 <10−15

#2 1.12 1.65 1.95 1.70 1.96 1.96 <10−15

#3 5.77 10.18 12.14 10.50 12.45 12.46 <10−15

#4 7.41 14.04 16.00 13.23 16.22 16.50 <10−15

#5 47.69 76.08 76.47 69.11 78.62 78.51 <10−15

#6 83.61 109.68 116.30 108.86 116.45 115.69 <10−15

#7 29.31 50.77 54.98 41.68 54.98 54.98 <10−15

#8 31.81 62.25 62.51 52.99 63.24 63.42 <10−15

#9 499.54 523.19 667.94 615.64 661.48 675.20 <10−15

#10 22.90 30.61 37.09 32.94 36.73 38.22 <10−15

#11 170.65 198.75 236.10 205.96 229.56 236.11 <10−15

#12 22.80 27.02 32.85 28.56 33.10 33.23 <10−15
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reported in the last column). Kruskal-Wallis allows rejecting the null hypothesis
that the results computed by all algorithms follow the same distribution.

The proposed EA outperformed all other algorithms, computing the best
average results in 10 instances. Improvements were up to 9.5% over k-medoids
and 156.2% over greedy. The proposed EA also improved over Linkage in up to
29.1% and over the local search on of 31.9%. Finally, the improvements against
the hybrid algorithm are smaller. In the best case (instance #10) the proposed
EA outperformed the hybrid EA in up to 4.0% (2.3% on average).

4.4 Multiobjective Clustering Problem

Parameters Setting. The parameters of the proposed MOEA were defined based
on preliminary experiments: pop = 100, pC = 0.75, pM = 0.01, tournament of
size 2, and a stopping criteria of 1000 generations.

Numerical Results. The best EA for the single objective clustering problem (i.e.,
using SPX and delete mutation) and k-medoids were used to compare the NSGA-
II results. 30 independent executions of each algorithm were executed, changing
the number of clusters for the single objective algorithms.

Figures 1 and 2 show sample Pareto fronts computed by the proposed MOEA
and the best solutions computed by k-medoids and in 30 independent executions
of the single objective EA using different numbers of clusters. These are repre-
sentative results for the set of problem instances solved.
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Fig. 1. Pareto fronts for instance #4
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Fig. 2. Pareto fronts for instance #6

Results showed that for small number of clusters there is no significant differ-
ence in the solutions computed by EA and MOEA. Both evolutionary approaches
improve over k-medoids. As the number of groups increases, the MOEA is able
to found solutions with better similarity values than the single objective EA, and
both significantly improves over the k-medoids results. In addition, the MOEA
is able to obtain a Pareto front of solutions with different trade-off values in
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a single execution, while several executions (each one for a different number of
clusters) are needed for the single objective EA and k-medoids. Therefore, the
MOEA is useful for a decision-maker to be able to visualize several groupings
with different trade-offs between the problem objectives and select the one that
better captures the problem features. This is especially relevant in the case of
biomedical information, where the number of clusters is particularly difficult to
define a priori for a given dataset.

The RHV results over 30 independent executions, reported in Table 3, indi-
cated that the proposed MOEA is robust and computes accurate Pareto fronts
for the problem instances studied. The average RHV was 0.99, the maximum dif-
ference from the ideal RHV was 0.02 (instances #6 and #12), and the optimum
value of 1.00 was achieved for three problem instances.

Table 3. RHV values obtained by the proposed algorithms.

MOEA EA k-medoids

Average Best Average Best Average Best

0.99 1.00 0.96 1.00 0.83 0.92

Regarding the problem instances from the Parkinson’s disease map, the pro-
posed EAs allowed to compute accurate configurations that provide different
trade-offs between the problem objectives. Using the evolutionary approaches,
several new possible clusterings have been found. These clusters provide novel
promising information, different to the current manually built solutions (see
the project website at http://wwwen.uni.lu/lcsb/research/parkinson s disease
map).

Overall, considering the complete set of problem instances, EA and MOEA
were able to improve over k-medoids 15.8% and 14.1% in average (respectively),
and up to 31.4% and 27.0% in the best case. The best improvements were
obtained in the problem instances with larger number of elements, clearly demon-
strating the good scalability behavior of the proposed evolutionary approaches.
The best improvement of EA over MOEA was 8.7% and the best improvement
of MOEA over EA was 4.4%.

5 Conclusions and Future Work

This article presented evolutionary algorithms applied to the clustering problem
in its single and multiobjective variants, with unknown number of clusters. This
is a very important problem in many research areas that involve dealing with
large volumes of information to be categorized and grouped.

The proposed evolutionary algorithms were conceived to apply simple and
ad-hoc operators, trying to keep the search as straightforward as possible in
order to scale up for solving large instances of the clustering problem.

http://wwwen.uni.lu/lcsb/research/parkinson_s_disease_map
http://wwwen.uni.lu/lcsb/research/parkinson_s_disease_map
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The experimental evaluation was performed considering a set of real prob-
lem instances, including one problem consisting of biomedical information in the
context of the Parkinson disease map project. The main results from the exper-
imental analysis indicate that the proposed evolutionary algorithms are able to
compute accurate solutions for the problem instances studied. The evolution-
ary approaches outperform several algorithms of the related literature. In the
single objective clustering problem, the proposed evolutionary algorithm is able
to compute the best average result in 10 out of 12 problem instances. For the
multiobjective clustering problem, the proposed evolutionary algorithm is able
to compute accurate Pareto fronts, which offer decision-makers solutions with
different trade-offs between the problem objectives.

The evolutionary approach is especially helpful for organizing biomedical
information in the case of the Parkinson’s disease map project. The proposed
EAs are able to find accurate organizations for the data, which provide different
trade-offs between the problem objectives and allow capturing different features
of the information. The computed solutions provide new promising clustering
patterns to be examined along the existing ones, manually built by experts.

The main lines of future work include extending the experimental analysis
considering datasets from different fields of study. Additionally, a parallel model
for EAs should be considered to both reduce execution times and handle bigger
datasets. Finally, the possibility of combining the proposed evolutionary algo-
rithms with visualization tools should be studied, in order to help researchers
analyze the information in a more intuitive way.
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Abstract. The crude oil preheating process in refineries is required to
be scheduled in a way to minimize the processing cost involved with it,
subject to the satisfaction of various process related constraints. The
process forms a mixed-integer optimization problem as the scheduling of
the processing units involves binary variables, while the discharges from
the running units are real valued. The two parts of such problems are
usually handled by two different algorithms, where the optimum schedul-
ing obtained by one algorithm is fed to another algorithm for optimiz-
ing its discharge process. In the present work, formulating the crude oil
preheating process under the effect of linear fouling as a mixed-integer
nonlinear programming (MINLP) model, three binary-real coded evolu-
tionary algorithms (EAs) are investigated in order to demonstrate that a
single EA can successfully tackle its both binary and real parts. Further,
the statistical analysis of the performances of the EAs are also presented
through their application to a benchmark instance of the problem.

Keywords: Evolutionary algorithms · Optimization
Crude oil preheating process

1 Introduction

Evolutionary algorithms (EAs) are known to have the ability to find approximate
solutions in reasonable time for such problems also, where classical optimization
methods either become too expensive or even ineffective. EAs are usually inde-
pendent of problem domains unlike classical optimization methods, which are
restricted to specific classes of problems only. Hence, EAs have found applica-
tions in a wide range of real-life problems, including linear and nonlinear, convex
and non-convex, continuous and discrete, and many more.

However, EAs still could not be generalized in case of many classes of dis-
crete or mixed-discrete problems, but require the incorporation of some problem
information for their effective performance. Unit scheduling of continuous flow
process systems in industries is such a problem, which consists of two opti-
mization sub-problems. The first part is the integer-valued scheduling of the

c© Springer International Publishing AG, part of Springer Nature 2018
P. Korošec et al. (Eds.): BIOMA 2018, LNCS 10835, pp. 113–125, 2018.
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processing units, while the second part is concerned with the optimization of the
discharge process based on the scheduling of the first part. Accordingly, the opti-
mization of an industrial continuous flow process system essentially becomes a
mixed-integer non-linear programming (MINLP) problem involving both integer
variables to represent operational status of the units and real variables to repre-
sent the flows from the running units. Due to the complexities involved with such
MINLP problems, two parts of a problem are often tackled separately through
two different algorithms, where the first algorithm is employed to schedule the
processing units over a time horizon and then the second algorithm optimizes
the flow processes in the schedule of the first algorithm [1,2]. However, such an
isolating system may suffer from the drawback of missing better solutions as the
possibility of more promising solutions cannot be denied if both the parts of the
problem were tackled interactively [3,4].

In view of above, three EAs are investigated here for handling an MINLP
based two-step continuous flow process system by a single EA. The studied
problem is the optimum scheduling of the crude oil preheating process arising
in refineries, which is carried out through a crude preheat train (CPT) over a
time horizon. The aim of preheating is to increase the crude oil temperature
to a certain degree before its entry into a furnace, so that the energy (fuel)
requirement in the furnace gets reduced. The CPT consists of a network of heat
exchangers, commonly known as the heat exchanger network (HEN), to run a
productive heat treatment process. The heat exchangers of HEN require periodic
shutting down for the purpose of cleaning or other maintenance. This demands
the effective scheduling of the HEN in order to get the optimum performance
from the active units.

2 Literature Review

In the case of EAs, mixed-integer problems involving distinct real and integer
valued parts are often solved by hybridizing two optimization techniques, allow-
ing one technique to handle the integer part and another to handle the real part.
As an example, Trivedi et al. [5] solved the mixed-integer unit commitment
problem, where binary variables are evolved using a genetic algorithm (GA) and
the continuous variables using a differential evolution (DE). Similar hybridiza-
tion procedures are found in many other works, such as hybridization of GA
and particle swarm optimization (PSO) [6,7], artificial bee colony (ABC) and
GA [8], and DE and PSO [9].

Some works are also found where both integer and real parts of mixed-integer
problems are handled by a single algorithm [3,4]. However, no such work on
scheduling the crude oil preheating process in refineries could be found in spe-
cialized literature.

3 Problem Description and Formulation

The studied problem of crude oil preheating process in a CPT is adopted from
Smäıli et al. [10], which is shown schematically in Fig. 1. In this problem, the
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Fig. 1. Crude oil preheating process in a CPT [10].

raw crude oil passes through 14 heat exchangers (marked in Fig. 1 by 1 to 14),
where it is preheated by 7 heating streams (marked in Fig. 1 by H1 to H7)
prior to entering into the furnace. Heat exchangers 1–8 are connected in series;
while the remaining 6 heat exchangers are arranged in two parallel lines, one
containing heat exchangers 9–11 and the other connecting heat exchangers 12–
14. The desalter and flash used in the processing line remove, respectively, any
salt and vapour dissolved in the crude oil. The preheated crude oil is then burnt
in the furnace at a higher temperature, after which it is distilled into different
products.

During the preheating process of the crude oil, some impurities mixed
with the crude oil get precipitated/deposited on the inner surfaces of the heat
exchangers, which is called fouling. Such deposition forms a thick layer over time,
which gradually reduces the performance of heat exchangers. In other words, the
crude oil cannot be heated up to the possible level, which consequently increases
the energy requirement in the furnace, thus increasing the energy cost. Further,
the periodic cleaning of the heat exchangers for mitigating fouling is associated
with cleaning cost. Hence, the process needs optimization for minimizing the
total operational cost (i.e., the total of energy cost and cleaning cost) subject to
some processing constraints.

Since the process is operated continuously over several years without any
interruption, it can be considered that a cycle of a shorter time period is repeated
in the entire time horizon. For the purpose of analysis, the cycle can further
be divided equally into a certain number of time instants. At a time instant,
a unit (heat exchanger) will remain either in full operation or partially/fully
shutdown. In a shutting down instant, a unit may go through cleaning process
also. Accordingly, the general optimization problem of a cycle of the process can
be defined as follows:
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– Determine
1. Operational status of each unit at every time instant.
2. Outlet temperature of the crude from the CPT at every time instant.

– To minimize total cost (cleaning cost plus energy cost).
– Subject to

1. Limit on operational units in each series segment at every instant.
2. Limit on operational units in each parallel segment at every instant.
3. Limit on operational units in each heating line at every instant.
4. Limit on crude oil temperature from the outlet of the CPT.
5. Limit on cleaning instants of each unit in the entire time horizon.
6. Limit on cleaning a unit at consecutive time instants.

The above optimization problem is formulated in Eqs. (1) and (2).

Minimize f = Ccl
N∑

i=1

T∑

t=1

βit + CenerF f
NcfN

T∑

t=1

(
Θfmax − Θf,out

Nt

)
(1)

Subject to g1 ≡
nsui∑

j=1

usuij ,t � suon
i ; t = 1, 2, · · · , T ; i = 1, 2, · · · ,ns

(2a)

g2 ≡
npsuij∑

k=1

upsuijk,t � psuon
ij ;

t = 1, 2, · · · , T ; j = 1, 2, · · · ,npsi
i = 1, 2, · · · ,npl

(2b)

g3 ≡
nhlui∑

j=1

uhluij ,t � hluon
i ; t = 1, 2, · · · , T ; i = 1, 2, · · · ,nhl

(2c)

g4 ≡ Θf,out
Nt � Θfmax; t = 1, 2, · · · , T (2d)

g5 ≡
T∑

t=1

vit � 1; i = 1, 2, · · · , N (2e)

g6 ≡ (1 − uip) (1 − uit) �= 0; p =

{
T ; if t = 1
t − 1; otherwise.

t = 1, 2, · · · , T ; i = 1, 2, · · · , N

(2f)

The objective function, f , in Eq. (1) represents the total operational cost,
where the two summing terms on the right side represent the cleaning cost and
energy cost, respectively. The constraints, g1–g3, in Eqs. (2a)–(2c) represent,
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respectively, the minimum number of operational units in series segments, par-
allel segments, and heating medium flow lines; while the constraints, g4–g6, in
Eqs. (2d)–(2f) ensure the specified temperature of the crude oil at the outlet
of the CPT, cleaning of each unit at least once in the entire time horizon, and
avoiding the cleaning of a unit at two consecutive time instants, respectively.

In Eqs. (1) and (2), N and T are respectively the total number of units (heat
exchangers) and time instants in a production cycle, Ccl is the cleaning cost
coefficient per cleaning instant for the ith unit at the tth time instant (in prac-
tice, Ccl may remain same in all units and time instants), Cener is the energy
cost coefficient per unit of energy requirement, F f

N is the flow rate in the last
unit (Nth unit), cfN is the specific heat transfer capacity of the crude oil in the
last unit, Θf,out

Nt is the crude outlet temperature from the last unit at the tth time
instant, Θfmax is the temperature up to which the crude is to be heated in the
furnace, ns is the number of series segments, nsui is the number of units in the
ith series segment with suij as its jth unit and suon

i as the required minimum
number of operational units, npl is the number of parallel segments, npsi is the
number of branches in the ith parallel segment with npsuij as the number of
units in its jth branch and psuijk as the kth unit while psuon

ij as the required
minimum number of operational units in that branch, nhl is the number of heat-
ing lines with nhlui as the number of units in the ith heating line and hluij as
the jth unit and hluon

i as the required minimum number of operational units in
that heating line.

The cleaning time (βit), operational status (uit) and cleaning status (vit) of
the units, as used in Eqs. (1) and (2), are expressed by Eq. (3), where vit = 1
means that the ith unit will be cleaned at the tth time instant.

uit =

⎧
⎪⎨

⎪⎩

1; if the ith unit is fully in operation
0; if the ith unit is shutdown partially

t = 1, 2, · · · , T ; i = 1, 2, · · · , N.

(3a)

vit =

⎧
⎪⎨

⎪⎩

0; if uit = 1
{0, 1}; otherwise

t = 1, 2, · · · , T ; i = 1, 2, · · · , N.

(3b)

βit =

⎧
⎪⎨

⎪⎩

0; if vit = 0
∈ [0, αit]; otherwise

t = 1, 2, · · · , T ; i = 1, 2, · · · , N.

(3c)

For obtaining the crude oil outlet temperatures from the last unit at different
time instants, Θf,out

Nt used in Eqs. (1) and (2d), the same for different units are
computed using Eq. (4a), where t = 1, 2, · · · , T and i = 1, 2, · · · , N .
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Θf,out
it =

{
Θf,in

it ; ifuit = 0
φh
itΘ

hinit
i (1 − αit) + {αit + (1 − αit)φc

it} Θf,in
it ; otherwise.

(4a)

where, Θf,in
it =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Θf,inlet; if i = 1
Θf,out

i−1,t; i ∈ {2 − 14; i �= 6, 12}
Θf,out

5,t − Θdesalter; if i = 6
Θf,out

8,t ; if i = 12

(4b)

φh
it =

(1 − x)Cmin

(1 − xRi)cfi
(4c)

φc
it =

(1 − xRi)cfi − (1 − x)Cmin

(1 − xRi)cf
(4d)

Cmin = min{F f
i c

f
i, F

h
i chi } (4e)

x = exp
{

−hitAi

Cmin
(1 − Ri)

}
(4f)

Ri =
Cmin

Cmax
(4g)

αit =

⎧
⎪⎨

⎪⎩

0; ifuit = 1
∈ (0, 1); otherwise

t = 1, 2, · · · , T ; i = 1, 2, · · · , N.

(4h)

In Eq. (4), Θf,out
it is the crude outlet temperature from ith unit at tth time

instant, Θf,in
it is the crude oil inlet temperature of ith unit at tth time instant,

Θhinit
i is the initial temperature of heating medium of ith unit, αit is the partial

shutdown time during operation, Θf,inlet is the crude oil temperature at the inlet
of the CPT, Θdesalter is the temperature drop in desalter, Cmin is the minimum
heat capacity rate, Cmax is the maximum heat capacity rate, F f

i is the flow rate
of crude oil of ith unit, cfi is the specific heat capacity of crude oil of ith unit,
F h
i is the flow rate of heating medium of ith unit, chi is the specific heat capacity

of heating medium of ith unit, hit is the heat transfer co-efficient of ith unit at
tth time instant and Ai is the area of ith unit.

The heat transfer co-coefficients for cleaning/shutdown sub-period (hcl
it) and

processing sub-period (hpr
it ) can be obtained from the linear fouling rates (Ṙf

t),
which are expressed by Eq. (5).

Ṙf,pr
it = Ṙf,cl

it = Ṙf
t (5a)

hcl
it =

hpr
i,t−1

1 + {hpr
i,t−1Ṙ

f,pr
i,t−1(1 − αit)Δt} (5b)

hpr
it =

hcl
it

1 + (hcl
itṘ

f,cl
i,t−1βitΔt)

+ (vithclean
it ) (5c)
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In Eq. (5), Ṙf,pr
it is the fouling resistance under processing sub-period, Ṙf,cl

it is
the fouling resistance under cleaning sub-period and Δt is the duration of each
time interval.

4 Evolutionary Algorithms (EAs) for Solving
the Problem

The optimization problem studied in the present work seeks the scheduling of
the crude oil preheating process in a CPT of N heat exchangers over T time
instants, so as to minimize the total cost arising from the requirement of exter-
nal energy for additional heating of the crude oil and periodic cleaning of the
heat exchangers. The scheduling of the heat exchangers needs 2NT number of
{0, 1} binary variables (uit and vit; i = 1, . . . , N and t = 1, . . . , T ), while the
crude preheating process requires NT number of real variables (αit; i = 1, . . . , N
and t = 1, . . . , T ). For solving the problem, three mixed-binary EAs are inves-
tigated here, which are genetic algorithm (GA), differential evolution (DE) and
particle swarm optimization (PSO). In all the three EAs, an individual (solution
representation) for the problem at hand consists of two one-dimensional arrays,
the first one of size 2NT takes the {0, 1} binary variables and the second one of
size NT takes the real variables.

The investigated binary-real coded GA (brGA) is the one applied by Datta [3]
to a problem of similar nature, namely the unit commitment problem arising
in the area of power systems, which involves the scheduling of given power
generating units and optimization of discharge from the operational units in
a way to meet the hourly power demand at a minimum production cost sub-
ject to a series of system related fixed and dynamic constraints. In the brGA,
the standard binary tournament selection operator, single-point crossover oper-
ator and swapping mutation operators are used for handling the {0, 1} val-
ued binary variables; while the binary tournament selection operator, simulated
binary crossover (SBX) operator [11] and polynomial mutation operator [11] are
used for handling the real variables of a problem.

Datta and Figueira [12] proposed a real-integer-discrete coded differential
evolution (ridDE) algorithm for working with any type of variables (real, binary,
integer, or discrete) without any conversion, which was also applied successfully
to the unit commitment problem by Datta and Dutta [2]. The ridDE replaces
the real valued mutation operator of the ‘DE/rand/1/bin’ variant of DE [13] by
a binary valued mutation operator, which generates only {0, 1} valued binary
mutant elements with a mutation probability based on some basic properties of
DE and such binary numbers. The ridDE is investigated here as another EA for
solving the problem at hand.

Similar to the ridDE [12], Datta and Figueira [14] proposed a real-integer-
discrete coded particle swarm optimization (ridPSO) algorithm for working with
any type of variables (real, binary, integer, or discrete) without any conversion,
whose application was demonstrated on various engineering design problems.
The ridPSO defines particle vectors by {0, 1} valued binary elements with a
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mutation probability, based on some basic properties of PSO and such binary
numbers. The ridPSO is investigated here as the third EA for solving the crude
oil preheating problem.

Since all the three EAs are stochastic in nature, there is no guarantee that
the new individuals formed in a generation (iteration) will be better than those
of the current individuals from where they were generated. Hence, in order to
prevent the search from moving opposite to the optimum in worst cases, the
elite individuals at every generation are preserved using the mechanism proposed
by Deb et al. [15]. In this case, instead of forming the population for the next
generation directly with the newly generated individuals, they are first combined
with the existing individuals of the current population. Then the best 50% of
them, based on their objective values, are taken as the population for the next
generation.

5 Numerical Experimentation

The EAs stated in Sect. 4 are coded in the C programming language by incor-
porating the optimization problem formulated in Eqs. (1) and (2). Then the
performances of the EAs are evaluated with the help of a case study.

5.1 Case Study

The investigated case study of crude oil preheating is taken from Smäıli et al. [10].
As shown in Fig. 1, the CPT in the case study consists of 14 number of shell and
tube heat exchangers (N = 14) of the type of counter-current flow. The heat
exchanger network (HEN) starts with two series segments (ns = 2); the first
one contains units (heat exchangers) 1–5, followed by a desalter, and then the
second series segment containing units 6–8. Fixing a flash after the second series
segment, the remaining six units are then arranged in a parallel segment (npl =
1) having two branches; the first one contains units 9–11 and the second one
contains units 12–14. At the end of the HEN, a furnace is placed for further
heating of the crude oil, if required.

There are seven heating lines (nhl = 7) in the HEN, which are marked in
Fig. 1 as H1–H7. The units (heat exchangers) covered by the heating lines are as
follows—H1: (1, 9, 12), H2: (8, 10, 13), H3: (6, 11, 14), H4: (3, 7), H5: (2), H6:
(4) and H7: (5).

The case study is subjected to some operational constraints in the form of
minimum number of units to be made always fully operational. Each of the two
series segments and the two branches of the parallel segment requires minimum
of two of its units to be made fully operational. Some heating lines also have
similar requirement, which are as follows—H1: 2, H2: 2, H3: 2 and H4: 1.

For solving the problem, a repeating production cycle of 3 years is considered,
which is divided into 36 time instants (T = 36), i.e., each time instant is of a
duration of one month. Except the cost coefficients, the problem related other
input parameters are taken from Smäıli et al. [10] and given in Table 1 in terms of
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Table 1. Design and fouling data for the case study (source: Smäıli et al. [10])

Unit Θhinit
i

(oC)
Fh
i

(kg/s)
F f
i

(kg/s)
chi
(kJ/kgK)

cfi
(kJ/kgK)

hclean
it

(W/m2K)
Ai (m2) Ṙf

t×10−7

(m2K/J)

HE-1 194 19.1 95 2.8 1.92 0.5 56.6 0.6

HE-2 296 3.3 95 2.9 1.92 0.5 8.9 0.9

HE-3 197 55.8 95 2.6 1.92 0.5 208.3 0.6

HE-4 170 49.7 95 2.6 1.92 0.5 112.9 0.8

HE-5 237 49.7 95 2.6 1.92 0.5 121.6 0.8

HE-6 285 34.8 95 2.8 2.3 0.5 110.1 1.5

HE-7 205 55.8 95 2.6 2.3 0.5 67.2 1.1

HE-8 254 45.5 95 2.9 2.3 0.5 67.1 1.5

HE-9 249 9.5 46 2.8 2.4 0.5 91.0 1.6

HE-10 286 22.8 46 2.9 2.4 0.5 61.3 1.8

HE-11 334 17.4 46 2.8 2.4 0.5 55.6 1.9

HE-12 249 9.5 46 2.8 2.4 0.5 91.0 1.6

HE-13 286 22.8 46 2.9 2.4 0.5 61.3 1.8

HE-14 334 17.4 46 2.8 2.4 0.5 55.6 1.9

the notations used in the problem formulation in Eqs. (1)–(5). The cleaning cost
coefficient (Ccl) and energy cost coefficient (Cener) are taken from Tian et al. [16],
which are 20000 $ per cleaning instant and 15.5 $ per MWh, respectively. Further,
the initial temperature of the crude oil at any time instant is considered to be
26 oC (Θfinit

t = 26 oC), requiring it to be preheated up to 250 oC (Θfmax = 250 oC)
with a drop of 10 oC in the desalter (Θdesalter = 10 oC).

5.2 Experimental Setup

The considered EA related parameter values are given in Table 2, where a non-
applicable value is marked by (–). Since the performance of a stochastic opti-
mizer is likely to be influenced by the user-defined algorithmic parameter setting,
instead of fixed values, some parameter values in Table 2 are made self-adaptive
within given ranges with an attempt to reduce their influences on the perfor-
mance of an EA. In this process, every time a random value for such a parameter
is generated within its given range. Further, in order to analyze the statistical
performance, 30 number of independent runs of each EA are performed with
different sets of initial individuals (solutions).

5.3 Results and Discussion

With the above problem and algorithm related input information, each of the
EAs are executed for 30 independent runs. For the purpose of illustration, the
best schedule obtained by the brGA is given in Table 3, where ‘1’ in the schedule
means that the particular unit (heat exchanger) is in fully operation at the
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Table 2. User-defined parameter values for the investigated EAs.

Parameter brGA ridDE ridPSO

Population size 100 100 100

Maximum number of generations performed 7000 7000 7000

Crossover probability 90% (0, 90%] –

Distribution index for SBX operator 20 – –

Mutation probability (0, 1%] – –

Distribution index for polynomial mutation operator 35 – –

Mutation probability (for binary variables only) – (0, 15%] (0, 15%]

Scaling factor (for real variables only) – (0, 70%] –

Inertia constant (for real variables only) – – (0, 0.75]

Cognitive factor (for real variables only) – – (0, 1.5]

Social factor (for real variables only) – – (0, 2]

Number of runs 30 30 30

Table 3. The best schedule of the case study obtained by the brGA.

Time
instant

Schedule Number of
operating
units

Time
instant

Schedule Number of
operating
units

1 01111101111111 12 19 11111110111111 13

2 11111111111110 13 20 11111111111011 13

3 11111111111101 13 21 11110111011111 12

4 11101111011111 12 22 11111110110111 12

5 01111111110111 12 23 11111101111111 13

6 11111111111111 14 24 11111111111111 14

7 11011111101111 12 25 11111011011111 12

8 11111111101111 13 26 11111111111111 14

9 11110111011111 12 27 11111111011111 13

10 11111111101111 13 28 11111111111111 14

11 11111110011111 12 29 11111111111110 13

12 11111011101111 12 30 11110111111111 13

13 11011111101111 12 31 11111111101011 12

14 11101111111011 12 32 11101111111111 13

15 11111110111111 13 33 11111111110111 13

16 11111111101111 13 34 11111111111111 14

17 11111111111101 13 35 11111111111111 14

18 11110111101111 12 36 10111111101111 12
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Fig. 2. Total cost over 30 runs and crude outlet temperatures over different time
instants of a random run.

corresponding time instant, while ‘0’ means it was partially shutdown during
which period the unit may go through cleaning also. The schedule shows that no
two units are cleaned at two consecutive time instants and each unit is cleaned
at least once in the entire production cycle.

Table 4. Statistical analysis of the overall cost over 30 independent runs of the EAs.

EA Overall cost (in $)

Best Worst Mean Standard deviation

brGA 477150 582772 526507 31555

ridDE 534629 662064 576553 26633

ridPSO 733464 912245 815510 46860

Table 5. The t-test values for the solutions of the EAs at a significance level of 5%.

EA brGA-vs-ridDE brGA-vs-ridPSO ridDE-vs-ridPSO

t-value −6.64 −28.02 −24.28

The overall costs, i.e., the values of the objective function expressed by
Eq. (1), obtained from 30 runs of each of the EAs are visualized in Fig. 2(a),
where it is observed that the lowest cost could be obtained by the brGA among
the three EAs. Further, the obtained crude oil outlet temperatures from the
heat exchanger network at different time instants of a random run are shown
in Fig. 2(b), where the outlet temperatures obtained from the brGA are found
to be almost close to the required maximum furnace temperature, while those
obtained from the ridPSO are found to be the worst ones.

For further detail of the performances of the EAs, a statistical analysis of the
overall costs (best, worst, mean, and standard deviation) over 30 independent
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runs of the EAs is performed and the obtained results are presented in Table 4.
It is seen in Table 4 that the brGA has better objective values (best, worst as
well as mean), followed by those of the ridDE. However, the ridDE has better
standard deviation than those of the brGA and ridPSO. Therefore, finally the
EAs are statistically compared by conducting pair-wise t-test between the mean
objective value and standard deviation at a significance level of 5%. The obtained
t values are given in Table 5, by marking a value with a ‘-ve’ sign if the second
EA in a pair is not better than the first one. Accordingly, it can be concluded
that the brGA outperforms the ridDE and ridPSO, and the ridDE outperforms
the ridPSO.

6 Conclusion

A typical crude oil preheating process arising in refineries is formulated as a
constrained mixed-integer nonlinear programming (MINLP) problem for mini-
mizing total of the cost of additional energy requirement and the cost for cleaning
the heat exchangers of the process. It involves two separate optimization sub-
problems, the integer valued scheduling of the heat exchangers and the real val-
ued heating levels in the operational heat exchangers. Such problems are usually
handled by two separate algorithms, one for the integer part and another for the
real part. The potentiality of thee mixed-binary evolutionary algorithms (EAs),
namely genetic algorithm (GA), differential evolution (DE) and particle swarm
optimization (PSO), are investigated here for handling both the parts of the
problem by a single EA. From statistical analysis of the results for a benchmark
problem, the GA is found outperforming both the DE and PSO, followed by the
DE outperforming the PSO.
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10. Smäıli, F., Vassiliadis, V.S., Wilson, D.I.: Mitigation of fouling in refinery heat
exchanger networks by optimal management of cleaning. Energy Fuels 15, 1038–
1056 (2001)

11. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley,
Chichester (2001)

12. Datta, D., Figueira, J.R.: A real-integer-discrete-coded differential evolution. Appl.
Soft Comput. 13(9), 3884–3893 (2013)

13. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for
global optimization over continuous spaces. J. Glob. Optim. 11, 341–354 (1997)

14. Datta, D., Figueira, J.R.: A real-integer-discrete-coded particle swarm optimization
for design problems. Appl. Soft Comput. 11(4), 3625–3633 (2011)

15. Deb, K., Agarwal, S., Pratap, A., Meyarivan, T.: A fast and elitist multi-objective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

16. Tian, J., Wang, Y., Feng, X.: Simultaneous optimization of flow velocity and clean-
ing schedule for mitigating fouling in refinery heat exchanger networks. Energy
109, 1118–1129 (2016)



Hybrid Weighted Barebones Exploiting
Particle Swarm Optimization Algorithm

for Time Series Representation

Antonio Manuel Durán-Rosal(B), David Guijo-Rubio,
Pedro Antonio Gutiérrez, and César Hervás-Mart́ınez

Department of Computer Science and Numerical Analysis,
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Abstract. The amount of data available in time series is recently
increasing in an exponential way, making difficult time series prepro-
cessing and analysis. This paper adapts different methods for time series
representation, which are based on time series segmentation. Specifically,
we consider a particle swarm optimization algorithm (PSO) and its bare-
bones exploitation version (BBePSO). Moreover, a new variant of the
BBePSO algorithm is proposed, which takes into account the positions
of the particles throughout the generations, where those close in time
are given more importance. This methodology is referred to as weighted
BBePSO (WBBePSO). The solutions obtained by all the algorithms are
finally hybridised with a local search algorithm, combining simple seg-
mentation strategies (Top-Down and Bottom-Up). WBBePSO is tested
in 13 time series and compared against the rest of algorithms, showing
that it leads to the best results and obtains consistent representations.

Keywords: Time series representation · Segmentation
Barebones particle swarm optimization · Hybrid algorithms

1 Introduction

Nowadays, the exponential increase of time series and their big amount of data
hamper their processing [1]. Time series data mining (TSDM) includes several
tasks such as the reconstruction of missing values [2], clustering [3], classification
[4], forecasting [5] or segmentation [6]. Different areas of application can signifi-
cantly benefit from efficient TSDM algorithms, including climate [7] or finances
[8], among others.

Time series segmentation consists in dividing the time series into consecutive
parts or points, trying to satisfy different objectives. There are two points of
view that time series segmentation is focused on. On the one hand, segmenting
time series is used for discovering patterns in them. On the other hand, there is
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another objective when segmenting time series, which tries to reduce the number
of points of the time series (i.e. its dimensionality). With respect to this second
objective, one of the main problems is the difficulty of processing and mining
large time series, their dimensionality making them very difficult to analyse.
Due to this fact, several algorithms have been proposed trying to simplify time
series, which are also known as time series representation procedures. Keogh et al.
[9] proposed different algorithms using piecewise linear approximations (PLA),
which try to discover a set of points whose interpolations are the representation
of the segments. Two PLA well-known algorithms are Top-Down and Bottom-
Up, which iteratively reduce the error of the approximation. Other time series
representation algorithms are the piecewise aggregate approximation (PAA) or
the adaptative piecewise constant approximation (APCA) [10].

In this work, the contribution is focused on PLA segmentation algorithms,
trying to find the set of points whose interpolations minimize the error of
the resulting approximation. To do so, we propose a new variant of the bare-
bones exploiting particle swarm optimization algorithm (BBePSO) [11], using
the weighted average values of the visited positions of the particles and the best
one from all the generations, instead of considering only the current ones. PSO
is another evolutionary algorithm which simulates the behaviour of a set of par-
ticles when looking for food, and it has been applied to a lot of problems, such
as routing vehicle [12], video tracking [13], etc. BBePSO has been proposed to
improve the convergence of the standard BBPSO (which used a normal distri-
bution to decide the movement of the particles), adding an exploiter component.
In BBePSO, the algorithm converges using the current positions. In this paper,
we show that the consideration of the past values in the evolution is impor-
tant for the performance of the algorithm, and we propose a method in this
direction, WBBePSO. This method takes the previous and the current positions
into account, dynamically adapting the current positions by a weighted mean
of the past values (giving more importance to those positions closer in time).
This methodology modifies the mean and the standard deviation of the normal
distribution considered in the standard BBePSO.

Evolutionary algorithms are able to find high-quality areas using populations
of individuals. For this reason, they are robust heuristics which can solve differ-
ent problems. However, their main drawback is their poor ability when finding
the precise optimum in the areas they converge. The application of local searches
in different parts of the evolutionary process is a way to prevent this problem. In
this work, we combine the best solutions obtained by all the evolutionary meth-
ods (PSO, BBePSO and the proposed WBBePSO) with a local search combining
Bottom-Up and Top-Down algorithms. In this sense, the resulting hybrid meth-
ods are referred to as HPSO, HBBePSO, and HWBBePSO, respectively.

This paper is organised in the following sections: Sect. 2 describes the problem
of time series segmentation, Sect. 3 presents all the algorithms adapted to time
series segmentation, Sect. 4 describes the datasets, the performed experiments
and the discussion of the results (including a statistical validation) and Sect. 5
concludes the paper.
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2 Time Series Segmentation Problem Definition

The main objective of this paper is to reduce the number of points of a given
time series Y = {yi}Ni=1 in a set of L segments by cutting the values of the
time series using L − 1 cut points (t1 < t2 < · · · < tL−1). The error approxima-
tion resulting from the linear interpolation between the cut points needs to be
minimised with the aim of avoiding information loss. That is, the cut points t
(arranged from the smallest to the largest) are extracted from all time indexes,
obtaining the set of segments S = {s1, s2, . . . , sL}, where s1 = {y1, . . . , yt1},
s2 = {yt1 , . . . , yt2}, . . . , sL = {ytL−1 , . . . , yN}. As stated before, a linear interpo-
lation each pair of consecutive cut points is considered. Note that the cut points
belongs to two segments (the previous and the next one). The number of seg-
ments of the approximation is a value predefined by the user. In order to solve
this problem, we apply swarm intelligence algorithms.

3 Algorithms and Their Adaptations

This section presents the details of PSO, BBePSO and WBBePSO, together
with their specific adaptation for time series segmentation.

3.1 Particle Swarm Optimisation Algorithm (PSO) and Its
Barebones Exploiting Version (BBePSO)

The particle swarm optimisation (PSO) [14] is another evolutionary-type algo-
rithm which simulates the behaviour of a set of particles in a swarm when they
are looking for food (i.e. birds or fish). The population of individuals corresponds
with a set of K particles moving in a dimensional space of length D. Each par-
ticle k is represented by a position array of real values (xk), which represents
a solution of the problem, and the velocity of the particle vk, which represents
the strength and the direction of the movement of the particle. The quality of a
particle is calculated by a fitness function (f). PSO also stores the best position
found by the particle (pk) and the best position found by the entire swarm (g).
The evolution is based on a good compromise between local and global best
positions, also known as cognitive and social components, respectively. In each
iteration t, the PSO algorithm performs the following updates:

– Velocity update: the velocity vk is updated in iteration t (vt
k) following the

next expression.

vt
k = w · vt−1

k + ρt1 · C1 · (
pt−1
k − xt−1

k

)
+ ρt2 · C2 · (

gt−1 − xt−1
k

)
, (1)

where w is the inertia weight (a parameter used for velocity reduction, i.e.,
particles roaming), ρt1, ρt2 are uniform random values obtained at iteration t,
ρ1, ρ2 ∼ U(0, 1), and C1, C2 are the acceleration constants.

– Position update: the position of a particle at iteration t (xt
k) is then updated

using the expression:
xt
k = xt−1

k + vt
k. (2)
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– Best local and global position update: finally, the best local position at iter-
ation t is:

pt
k =

{
pt−1
k if f(xt

k) ≥ f(pt−1
k ),

xt
k if f(xt

k) < f(pt−1
k ),

(3)

for k = 1, . . . , K, and the global best position is updated as:

gt = arg minx∈{g,pt
1,...p

t
K} {f(x)} . (4)

Note that we consider minimisation problems (the lower value of f(xk), the
higher quality of xk), which is the case of the problem to solve (minimisation of
approximation error).

An improved version of PSO is the exploiting barebones PSO (BBePSO)
[11]. This algorithm updates the position of the particles in the swarm without
considering velocities. BBePSO replaces Eqs. 1 and 2 by:

xt
k,j =

⎧
⎨

⎩
N

(
pt−1
k,j +gt−1

j

2 , |pt−1
k,j − gt−1

j |
)

if U(0, 1) < 0.5,

pt−1
k,j otherwise,

(5)

where N(μ, σ) is a normal distribution with mean (μ) equal to the average value
of the best global and local positions, and the standard deviation (σ) equal to
the difference, in absolute terms, of their values. This expression represents a
0.5 probability that the j-th dimension of the particle k takes a random value
from the previous normal distribution (exploration) or from the best personal
position (exploitation). BBePSO outperforms other variants of PSO [11], and it
is also better when the values of the velocities or the acceleration constants are
difficult to estimate.

PSO and BBePSO for Time Series Segmentation: The particle repre-
sentation corresponds to a real array (xi). The closest integer of each value
represents a cut point, for instance, if xi = {2.56, 6.08, 9.10, 11.75}, its corre-
sponding set of cut points in the time series is t = {3, 6, 9, 12}. In this way,
the length of the chromosome will be the same that the number of cut points
L−1. The initial population of PSO and BBePSO is formed by K particles with
integer values without repetition (the values need to be unique). The standard
procedures are used for updating velocities (in PSO), the particle positions and
the best personal and global positions. However, after position update, the new
particle has to satisfy two constraints:

– The values of the positions must be sorted, that is, (xk,1 < xk,2 < xk,L−1).
For this reason, if xk,j > xk,j+1, or xk,j < xk,j−1, the cut points of the
chromosome are sorted in ascending order.

– Furthermore, the cut points need to be higher than 1 and lower than N . If
this constraint is not satisfied, the algorithm rescales the values of the particle
with:
xt′
i = xt

i−min{xt
i}

max{xt
i}−min{xt

i} (max{xt−1
i } − min{xt−1

i }) + min{xt−1
i }.

Finally, the algorithm is run until a number of evaluations is reached.
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3.2 Weighted BBePSO (WBBePSO)

Our proposal is a new dynamic version of BBePSO. BBePSO updates the values
of the positions taking into account the best personal and global positions. In
this sense, the previous values are forgotten during the evolution when a particle
is updated. In PSO, the velocities and the inertia weight w can be considered as
a memory of the previous values, but this algorithm is poorer than BBePSO in
finding solutions, given that it lacks an exploiter component. Keeping in mind
the necessity of this memory and that more recent positions should be given
more importance, we define a new Weighted BBePSO (WBBePSO), where the
position update is made as follows:

xt
k,j =

⎧
⎨

⎩
N

(
pt−1
k,j + pt−1

g,j

2 , |pt−1
k,j − gt−1

j |
)

if U(0, 1) < 0.5,

pt−1
k,j otherwise,

(6)

where the best local position is updated as:

ptk,j =

∑t
m=1 mpmk,j∑t

m=1 m
, (7)

and the best global one as:

gtj =

∑t
m=1 mgmj

∑t
m=1 m

. (8)

It is important to mention that the higher the value of m, the more importance
is given to the solution, so that more recent particles have more influence in the
update process.

WBBePSO for Time Series Segmentation: The adaptation of the algo-
rithm to time series segmentation follows the same considerations than for PSO
and BBePSO (a real encoding, rounding the values to time indices, and a pro-
cedure for ensuring the fulfilling of the constraints).

3.3 Common Elements for All the Algorithms

This section presents the elements which are common for PSO, BBePSO and the
proposed WBBePSO, i.e. the fitness function and the local search procedure.

Fitness Function. As we mentioned before, the main objective is to reduce
the number of points of the time series with the minimum information loss. For
that, we minimise the approximation error, which is the difference between a
real point of the time series and its corresponding approximation. The error of
the i-th point in the k individual is:

ei(xk) = (yi − ŷi(xk)), (9)
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where yi is the real value of the time series, and ŷi is the approximation resulting
of the interpolation coded in individual xk. The fitness function is defined as the
root mean square error:

RMSE(xk) = f(xk) =

√√
√
√ 1

N

N∑

i=1

e2i (xk). (10)

Local Search. The best solution obtained by all evolutionary algorithms in the
last generation (PSO, BBePSO, or WBBePSO) is hybridised with a local search
[2] based on the combination of Bottom-Up and Top-Down segmentation pro-
cedures [9], resulting in hybrid algorithms (HPSO, HBBePSO, HWBBePSO).
On the one hand, Bottom-Up is an iterative algorithm which starts considering
each point of the time series as a cut point. In each iteration, it removes the cut
point (merging two consecutive segments) that results in the minimum increase
of approximation error. On the other hand, Top-Down is the opposite algorithm,
starting by considering only one segment. Then, in each iteration, the algorithm
recursively adds the cut point (splitting a segment) which results in the maxi-
mum decrease of error. The local search is based on removing a percentage of
cut points with the Bottom-Up algorithm and adding the same percentage of
points with Top-Down. For that, the stopping criteria of these algorithms is the
number of segments to be merged or cut.

4 Experimentation

The time series used, the experiments performed and the discussion of the results
are shown in this section.

4.1 Time Series

For the experiments, we use 13 time series collected from different fields. Table 1
summarises the following information of each time series: name, type, length,
and source. Also, the time series are represented in Fig. 1.

4.2 Experimental Setting

We evaluate the performance of HWBBePSO against the rest of hybrid methods
described in Sect. 3, and we analyse the existence of significant differences using
statistical tests. For all the algorithms, we consider the same parameter config-
uration than in [18] (which has been proved to be effective for many different
optimisation problems): the population size is K = 200, the maximum number of
evaluations is 20, 000, the inertia (w) is established to 0.72 and the acceleration
constants (C1, C2) to 0.49. Finally, the percentages of reduction and hybridiza-
tion are 2.5% and 40%, respectively. The percentage of reduction corresponds
to the number of points of the approximation with respect to the original size,
while the percentage of hybridisation represents the number of cut points which
are removed and added in the local search. All the algorithms are run 30 times
with different seeds, due to their stochastic nature.
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Table 1. Time series used

Name Type Length Source

Arrhytmia Cardiology data 9000 PhysioBank ATM [15]

B41043 Wave height TS 7303 NDBC [16] (Puerto Rico)

B41044 Wave height TS 7303 NDBC [16] (Puerto Rico)

B46001 Wave height TS 8767 NDBC [16] (Alaska)

B46075 Wave height TS 7303 NDBC [16] (Alaska)

BBVA Bank market rates 4174 (Spain)

DEUTSCHE Bank market rates 4174 (Germany)

HandOutlines Benchmark TS 8127 UCR repository [17]

IBEX Stock prices TS 5730 https://es.finance.yahoo.com/

Mallat Benchmark TS 8192 UCR repository [17]

SANPAOLO Bank market rates 4174 (Italy)

Société Genéralé Bank market rates 4174 (France)

StarLight Benchmark TS 8192 UCR repository [17]

Table 2. RMSE results and mean ranks (R̄RMSE) for all the algorithms

Algorithm HPSO (Mean ± SD) HBBePSO (Mean ± SD) HWBBePSO (Mean ± SD)

Arrhytmia 0.052 ± 0.002 0.052 ± 0.002 0.051 ± 0.001

B41043 0.395 ± 0.006 0.394 ± 0.006 0.389 ± 0.003

B41044 0.392 ± 0.009 0.391 ± 0.007 0.382 ± 0.004

B46001 0.984 ± 0.008 0.980 ± 0.007 0.975 ± 0.006

B46075 1.046 ± 0.011 1.040 ± 0.012 1.034 ± 0.009

BBVA 0.319 ± 0.008 0.323 ± 0.009 0.317 ± 0.008

DEUTSCHE 1.926 ± 0.055 1.915 ± 0.062 1.905 ± 0.076

HandOutlines 0.006 ± 0.000 0.006 ± 0.000 0.006 ± 0.000

IBEX 205.688 ± 3.894 206.132 ± 3.954 203.128 ± 4.085

Mallat 0.162 ± 0.007 0.167 ± 0.007 0.157 ± 0.009

SANPAOLO 0.111 ± 0.003 0.110 ± 0.002 0.109 ± 0.001

SOGenéralé 2.154 ± 0.052 2.127 ± 0.042 2.136 ± 0.031

StarLightCurves 0.024 ± 0.001 0.024 ± 0.001 0.023 ± 0.001

R̄RMSE 2.62 2.23 1.15

The best method is shown in bold face and the second one in italics

4.3 Discussion

The approximation errors in RMSE are shown in Table 2, together with associ-
ated average ranks (R = 1 for the best method in each dataset and R = 3 for the
worse one). For all the algorithms, the mean and the standard deviation (SD) of
the 30 runs are presented (Mean ± SD). As can be seen, HWBBePSO outper-
forms the rest of algorithms with the best results in all datasets except in the case
of Société Générale, where it is the second best. The second best method seems

https://es.finance.yahoo.com/
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to be HBBePSO with better results than HPSO in several datasets (B41043
or DEUTSCHE among others). However, this algorithm (HPSO) obtains lower
errors in other datasets, such as BBVA or Mallat.

Analysing the standard deviation of the results, HWBBePSO presents the
lowest values in almost databases (8 out of 13 datasets, and the second one
in other two) showing its effectiveness and that the evolution does not depend
on the initialisation. From this analysis, it can be observed that the algorithm
HWBBePSO balances the use of previously visited positions, giving more impor-
tance to the most recent ones. In this way, it is able to converge to high-quality
areas, avoiding a premature convergence, and, moreover, when combined with
the local search, the resulting hybrid algorithm finds an optimum solution in
these areas.

To determine the statistical significance of the rank differences observed for
each swarm intelligence algorithm in the different time series, we have carried
out a non-parametric Friedman test [19] with the ranking of RMSE of the best
models as the test variable (since a previous evaluation of the RMSE values
resulted in rejecting the hypothesis of normality and equality of variances). The
test shows that the effect of the algorithm used for dimensionality reduction is
statistically significant at a significance level of 5%, as the confidence interval is
C0 = (0, F0.05 = 3.40) and the F-distribution statistical value is F ∗ = 16.16 /∈
C0. Consequently, we reject the null-hypothesis stating that all the algorithms
perform equally in mean ranking for RMSE.

Based on this rejection, the Holm post-hoc test is used to compare the three
algorithms to each other. Holm test is a multiple comparison procedure that
considers a control algorithm (CA), in this case HWBBePSO, and compares it
with the remaining methods [20]. The test statistics for comparing the mean
rank of the i-th and j-th algorithm using this procedure is:

z =
R̄i − R̄j√

k(k+1)
6N

, (11)

where k is the number of algorithms and N the number of datasets. The z value is
used to find the corresponding probability from the table of normal distribution,
which is then compared with an appropriate level of confidence α. Holm’s test
adjusts the value for α in order to compensate for multiple comparison.

The results of the Holm test for α = 0.05 can be seen in Table 3, using
the corresponding p and α∗

Holm values. From the results of this test, it can be

Table 3. Holm tests comparing HWBBePSO (CA) with the rest of methods: p-values
and α∗

Holm with initial α = 0.05

CA: HWBBePSO HPSO HBBePSO

p-value 1.90 × 10−4(∗) 6.04 × 10−3(∗)

α∗
Holm 0.025 0.050

(*): statistically significant differences were found for
α = 0.05
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Fig. 1. Time series considered for the experiments.
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Fig. 2. Approximation time series of HWBBePSO.
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concluded that the HWBBePSO algorithm obtains a significantly higher ranking
of RMSE when compared to the remaining two algorithms, which justifies the
proposal.

Finally, to visually analyse the results, the approximations obtained by the
algorithms HWBBePSO for all datasets are shown in Fig. 2. Comparing Figs. 1
and 2, the algorithm results in faithful approximations of the real values.

5 Conclusions

In this paper, we propose a new algorithm for time series segmentation with the
objective of reducing the length of the time series with minimum information
loss. The algorithm reduces the approximation error using interpolations of each
segment. The paper includes a particle swarm optimisation algorithm (PSO),
its exploiter barebones version (BBePSO), and a novel BBePSO version which
takes into account the weighted value of the previously visited positions, giving
more importance to recent ones (WBBePSO). The best solution obtained by
all the algorithms are then improved with a local search procedure, resulting in
hybrid versions (HPSO, HBBePSO, and HWBBePSO). The evaluation of the
method is made in 13 time series from different fields.

The experiments show that the best results, those with lowest approximation
error, are obtained by HWBBePSO, showing that considering all the positions
visited by a particle during the evolution is good for this kind of problems.
Moreover, the standard deviation of the new methodology is the lowest one
in almost time series, i.e. the algorithm is less dependent on the initialisation.
Finally, the approximated time series are represented, they being very similar to
the original ones.

Future research includes considering the approximated time series in other
posterior tasks, using other types of approximations (instead of PLA) and adding
more time series to the validation.
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rithm. In: Mart́ınez-Álvarez, F., Troncoso, A., Quintián, H., Corchado, E. (eds.)
HAIS 2016. LNCS (LNAI), vol. 9648, pp. 163–173. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-32034-2 14

https://doi.org/10.1007/978-3-319-32034-2_14
https://doi.org/10.1007/978-3-319-32034-2_14


Hybrid Weighted Barebones Exploiting Particle Swarm Optimization 137

3. Ferreira, L.N., Zhao, L.: Time series clustering via community detection in net-
works. Inf. Sci. 326, 227–242 (2016)

4. Zhao, J., Itti, L.: Classifying time series using local descriptors with hybrid sam-
pling. IEEE Trans. Knowl. Data Eng. 28, 623–637 (2016)

5. Chen, M.Y., Chen, B.T.: A hybrid fuzzy time series model based on granular
computing for stock price forecasting. Inf. Sci. 294, 227–241 (2015)
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Abstract. To find the strengths and weaknesses of a new multi-
objective optimization algorithm, we need to compare its performance
with the performances of the state-of-the-art algorithms. Such a com-
parison involves a selection of a performance metric, a set of benchmark
problems, and a statistical test to ensure that the results are statistical
significant. There are also studies in which instead of using one perfor-
mance metric, a comparison is made using a set of performance metrics.
All these studies assume that all involved performance metrics are equal.
In this paper, we introduce a data-driven preference-based approach that
is a combination of multiple criteria decision analysis with deep statis-
tical rankings. The approach ranks the algorithms for each benchmark
problem using the preference (the influence) of each performance metric
that is estimated using its entropy. Experimental results show that this
approach achieved similar rankings to a previously proposed method,
which is based on the idea of the majority vote, where all performance
metrics are assumed equal. However, as it will be shown, this approach
can give different rankings because it is based not only on the idea of
counting wins, but also includes information about the influence of each
performance metric.

Keywords: Multiple criteria decision analysis
Multi-objective optimization · Quality indicators
Deep statistical ranking · Statistical comparison · Data-driven

1 Introduction

When working on a new optimization algorithm, a crucial task is to compare its
performance with state-of-the-art algorithms [1]. In single-objective optimiza-
tion, the performance of algorithms is analyzed using the best algorithmic solu-
tion. For example, in the case of minimization problems, the solution with the
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P. Korošec et al. (Eds.): BIOMA 2018, LNCS 10835, pp. 138–150, 2018.
https://doi.org/10.1007/978-3-319-91641-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91641-5_12&domain=pdf


Data-Driven Preference-Based Deep Statistical Ranking 139

lowest value is the best. However, in multi-objective optimization algorithms
(MOAs), it is not clear what the quality of a solution means in the presence of
several optimization criteria. This is because the result is an approximation of
the Pareto-optimal front, called an approximation set, which can be analyzed
according to different quality aspects related to properties of convergence and
diversity e.g., the closeness to the optimal front, coverage of a wide range of
diverse solutions [2]. Quality indicators can be used to evaluate the performance
of MOAs. Each quality indicator maps an approximation set to a real number
[3]. In comparative studies, algorithms are used to solve a number of benchmark
problems followed by the application of quality indicators to assess their per-
formance [1]. Meta-heuristics are non-deterministic techniques, meaning there is
no guarantee that the result will be the same for every run. To test the quality
of an algorithm, it is not enough to perform just one run, but many runs of
the algorithm on the same problem are needed, from which conclusions can be
drawn. Additionally, this data must be analyzed with some statistical tests to
ensure that the results are significant.

The aim of this study is to compare the performance of MOAs using a data-
driven preference-based approach with a set of quality indicators. In Sect. 2, an
overview of the related works is presented. Section 3 introduces the data-driven
preference-based methodology. In Sect. 4 the experimental study is presented,
while Sect. 4.3 gives a discussion of the proposed methodology. The conclusions
of the paper are presented in Sect. 5.

2 Related Work

Many studies that address the problem of how to compare approximation sets
in a quantitative manner have been conducted. Riquelme et al. [3] presented a
study of a large number of metrics for comparing the performance of different
multi-objective optimization algorithms, and presented a review and an analysis
of 54 multi-objective optimization metrics and a discussion about the advan-
tages/disadvantages of the most cited metrics in order to give researchers suffi-
cient information for choosing them. A lot of the presented metrics use quality
indicators to evaluate the quality of the solutions. Additionally, after calculating
the quality indicator of interest, the data must be analyzed using a statistical test
to ensure that the results are significant [4,5]. In [6], Eftimov et al. presented a
study on how to compare the performance of MOAs using quality indicators and
a Deep Statistical Comparison (DSC) approach. They used the DSC approach
because it gives more robust statistical results to compare MOAs regarding the
data obtained for a single quality indicator. However, there are also studies that
use more than one quality indicator to evaluate the performance of MOAs. In [7],
Yen and He presented a double-elimination tournament using a quality indicator
ensemble to rank MOAs. The tournament contains approximation sets obtained
from MOAs for the same initial population and involves a series of binary tourna-
ment selections and in each one a quality indicator from an ensemble is randomly
chosen for comparison. The result of the tournament is one winning approxima-
tion set, so the corresponding MOA is ranked one. Then the approximations sets
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that are generated by the winning MOA are removed and the remaining approx-
imation sets will go through another double elimination tournament to identify
the second best algorithm and so on. The results of the evaluation show that the
method is performing more or less as a majority vote. The same idea was used by
Ravber et al. [8], where instead of double elimination tournament, they used the
chess rating system based on the Glicko-2 system [9]. The comparison between
two approximation sets was made by a randomly selected quality indicator from
the ensemble. In both approaches, the selection of the quality indicator that is
used for a binary tournament is random and comes from a uniform distribution,
such that all quality indicators in the ensemble are equal. Eftimov et al., also
presented a comparative study of MOAs using an ensemble of quality indicators
together with DSC [10]. This study used two ensemble combiners to rank and
compare MOAs. Using one of them, each algorithm obtains a ranking for each
problem, which is the average of its DSC rankings for each quality indicator
for that problem. The other proposed ensemble is a hierarchical majority vote,
which is a recursive approach where each algorithm is checked for the number
of wins. In both scenarios, there is no preference between the quality indicators
used in the comparison and all are assumed equal.

2.1 The Deep Statistical Ranking

Deep Statistical Comparison (DSC ) is a recently proposed approach for making
a statistical comparison of meta-heuristic stochastic optimization algorithms on
a set of single-objective problems [4]. Its main contribution is its ranking scheme,
which is based on the whole distribution instead of using just one statistic to
describe the distribution, such as either the average or the median. A study on
how to compare the performance of MOAs using quality indicators and DSC can
be found in [6,10], where DSC gave more robust results compared to a standard
statistical test recommended for making a statistical comparison.

2.2 The PROMETHEE

PROMETHEE methods are used in decision making to solve a decision problem
in which a set of alternatives are evaluated according to a set of criteria that are
often conflicting. Without loss of generality, we can assume that these criteria
have to be minimized. For the method, an evaluation matrix is constructed,
in which each alternative is estimated for each criteria. The method performs
pairwise comparisons between all the alternatives for each criteria to provide
either a complete or partial rankings of the alternatives. Four PROMETHEE
methods exist, named as I, II, III, and IV. They can be used depending on the
nature of the data that is involved in the comparison and the type of ranking
that is preferred.

3 The Proposed Methodology

The proposed methodology consists of two steps. In the first, the DSC rank-
ing scheme is used to obtain robust statistics regarding each quality indicator
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separately, which are combined in the second step using the PROMETHEE II
method [11].

3.1 The PROMETHEE II

Let us assume that a comparison needs to be made between m algorithms (i.e.,
alternatives) regarding n quality indicators (i.e., criteria) for a single problem.
Let A = {A1, A2, . . . , Am} be the set of algorithms we want to compare regarding
the set of quality indicators Q = {q1, q2, . . . , qn}. The decision matrix is a m×n
matrix (see Table 1) that contains the DSC rankings obtained for the algorithms
for each quality indicator separately.

Table 1. Decision matrix.

q1 q2 . . . qn

A1 q1(A1) q2(A1) . . . qn(A1)

A2 q1(A2) q2(A2) . . . qn(A2)
...

...
...

...

Am q1(Am) q2(Am) . . . qn(Am)

The DSC ranking scheme always ranks the best algorithm as one, the sec-
ond best as two, and so on. In our case, we are interested in minimizing the
criteria since lower DSC ranking values are preferable. Before we start with the
PROMETHEE, the decision matrix is transformed in such a way that the DSC
rankings, which are in the same column, are transformed using a standard com-
petition ranking scheme [10]. This should be done because for the DSC rankings
it does not matter if rankings are 1.50, 3.00, and 1.50 or 1.00, 3.00, and 1.00.
In both scenarios having 1.00 and 1.50 means that the algorithm is the best
according to some quality indicator. Since the DSC ranking scheme can never
give a 1.00, 3.00, and 1.00 when comparing three algorithms (since it follows
the idea of fractional ranking), the DSC rankings for each quality indicator are
transformed using the standard competition ranking scheme.

The appropriate method in our case is PROMETHEE II. It is based on pair-
wise comparisons that need to be made between all algorithms for each quality
indicator. The differences between DSC rankings for each pair of algorithms
according to a specified quality indicator are taken into consideration. For larger
differences the decision maker might consider larger preferences. The preference
function of a quality indicator for two algorithms is defined as the degree of
preference of algorithm A1 over algorithm A2 as seen in the following equation:

Pj(A1, A2) =

{
pj(dj(A1, A2)), if maximizing the quality indicator

pj(−dj(A1, A2)), if minimizing the quality indicator
, (1)
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where dj(A1, A2) = qj(A1) − qj(A2) is the difference between the DSC rankings
of the algorithms for the quality indicator qj and pj(·) is a generalized preference
function assigned to the quality indicator. There exist six types of generalized
preference functions [11]. In our case, usual preference function is used for each
quality indicator because of the importance of any differences between the rank-
ings, which is presented in Eq. 2.

p(x) =

{
0, x ≤ 0
1, x > 0

, (2)

After selecting the preference function for each quality indicator, the next
step is to define the average preference index and outranking (preference and net)
flows. The average preference index for each pair of algorithms gives information
of global comparison between them using all quality indicators. The average
preference index can be calculated as:

π(A1, A2) =
1
n

n∑
j=1

wjPj(A1, A2), (3)

where wj represents the relative significance (weight) of the jth quality indicator.
The higher the weight value of a given quality indicator the higher its relative
significance. The selection of the weights is a crucial step in the PROMETHEE
II method because it defines the priorities used by the decision-maker. In our
case, we used the Shannon entropy weight method, which will be explained in
the next subsection. For the average preference index, we need to point out that
it is not a symmetric function, so π(A1, A2) �= π(A2, A1).

To rank the algorithms, the net flow for each algorithm needs to be calcu-
lated. It is the difference between the positive preference flow, φ(A+

i ), and the
negative preference flow of the algorithm, φ(A−

i ). The positive preference flow
gives information how a given algorithm is globally better than the other algo-
rithms, while the negative preference flow gives the information about how a
given algorithm is outranked by all the other algorithms. The positive and the
negative preference flows are defined as:

φ(A+
i ) =

1
(n − 1)

∑
x∈A

π(Ai, x),

φ(A−
i ) =

1
(n − 1)

∑
x∈A

π(x,Ai). (4)

The net flow of an algorithm is defined as:

φ(Ai) = φ(A+
i ) − φ(A−

i ). (5)

The PROMETHEE II method ranks the algorithms by ordering them accord-
ing to decreasing values of net flows.



Data-Driven Preference-Based Deep Statistical Ranking 143

3.2 The Shannon Entropy Weighted Method

To find the quality indicator weights, we use the Shannon entropy weighted
method [12]. For this reason, the decision matrix presented in Table 1 needs to
be normalized. Because the smaller value is preferred, the matrix is normalized
using the following equation:

qj(Ai)
′
=

maxi(qj(Ai)) − qj(Ai)
maxi(qj(Ai)) − mini(qj(Ai))

, (6)

where qj(Ai)
′
is the normalized value for qj(Ai).

The entropy for each quality indicator is defined as:

ej = K
m∑
i=1

W

(
qj(Ai)

′

Dj

)
, (7)

where Dj is the sum of the jth quality indicator in all algorithms, Dj =∑m
i=1 qj(Ai)

′
, K is the normalized coefficient, K = 1

(e0.5−1)m , and W is a func-
tion defined as W (x) = xe(1−x) + (1 − x)ex − 1.

The weight of each quality indicator used in Eq. 3 is calculated using the
following equation:

wj =
1

(n−E) (1 − ej)∑n
j=1

[
1

(n−E) (1 − ej)
] , (8)

where E is the sum of entropies, E =
∑n

j=1 ej .

4 Results

4.1 Experimental Setup

The data from six algorithms is available from [13]. The algorithms are compared
using 16 test problems. The number of objectives is set to four. More about the
parameters of the test problems and the algorithms can be found in [13]. All test
problems assume minimization of all objectives. Each algorithm was run for each
problem 30 times. Before calculating the quality indicators, each approximated
Pareto front was normalized. In our experiment quality indicators are hyper-
volume (q1), epsilon indicator (q2), r2 indicator (q3), and generational distance
(q4). All of them are unary indicators. Since we are introducing a methodology,
we are not specifically dealing which quality indicators are used. The selection is
up to user to make sure that relevant quality indicators are selected (e.g., if all
quality indicators should be Pareto compliant, convergence, diversity, etc.). For
calculating the hypervolume, the reference point (1, . . . , 1) is used, while for the
other quality indicators, the reference set consists of all non-dominated solutions
already known from all runs for each algorithm for a given problem. Because the
DSC ranking scheme involves a statistical test for comparing distributions, a
two-sample Anderson-Darling (AD) test is used and the significance level is set
to 0.05. The benefits of using this test are presented in [14].
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4.2 Experimental Results

In the experiment, three out of six algorithms are randomly selected. The algo-
rithms are: DEMOSP2, DEMONS−II, and NSGA-II. First, for each quality indi-
cator, the DSC ranking scheme is used to compare the quality indicator data for
a single problem. Further, the DSC rankings obtained for each quality indica-
tor and each problem are transformed using the standard competition ranking
scheme (see Table 2). The highest ranked algorithm for each problem and each
quality indicator has the best performance.

Table 2. Transformed DSC rankings for each quality indicator of the algorithms,
A1 = DEMOSP2, A2 = DEMONS−II, and A3 = NSGA-II.

Problem Hypervolume r2 Epsilon Generational distance

A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

DTLZ1 2.00 1.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00

DTLZ2 2.00 1.00 3.00 3.00 1.00 2.00 2.00 1.00 3.00 2.00 1.00 3.00

DTLZ3 1.00 1.00 3.00 2.00 1.00 3.00 1.00 1.00 3.00 1.00 1.00 3.00

DTLZ4 1.00 2.00 3.00 1.00 2.00 2.00 1.00 2.00 3.00 1.00 2.00 3.00

DTLZ5 2.00 2.00 1.00 1.00 1.00 3.00 1.00 1.00 1.00 1.00 3.00 2.00

DTLZ6 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00 1.00 2.00 3.00

DTLZ7 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00

WFG1 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00 1.00 3.00 2.00

WFG2 1.00 2.00 3.00 1.00 2.00 2.00 1.00 2.00 2.00 1.00 3.00 1.00

WFG3 1.00 3.00 2.00 1.00 2.00 2.00 1.00 2.00 2.00 1.00 2.00 2.00

WFG4 1.00 2.00 3.00 2.00 1.00 2.00 2.00 1.00 3.00 3.00 2.00 1.00

WFG5 3.00 2.00 1.00 3.00 1.00 1.00 1.00 3.00 2.00 3.00 2.00 1.00

WFG6 1.00 2.00 3.00 2.00 1.00 3.00 1.00 2.00 2.00 3.00 1.00 1.00

WFG7 1.00 2.00 3.00 2.00 1.00 3.00 1.00 2.00 2.00 3.00 2.00 1.00

WFG8 1.00 2.00 2.00 1.00 2.00 3.00 1.00 2.00 2.00 1.00 3.00 2.00

WFG9 1.00 2.00 2.00 1.00 1.00 3.00 1.00 2.00 2.00 3.00 2.00 1.00

Before we find the complete ranking of the algorithms, the weights of each
quality indicator are calculated for each single problem using the Shannon
entropy weighted method. The weights for all problems are presented in Table 3.

Then, the PROMETHEE II method is used to rank the algorithms for each
problem. If the original decision matrix is involved in the PROMETHEE II
calculations, the preference function that is used is the one for minimizing the
quality indicator, while if the normalized matrix is used, the preference function
is the one used to maximize the quality indicator. In our case, we have a set
of three algorithms A = {A1, A2, A3} that need to be compared according to
a set of four quality indicators Q = {q1, q2, q3, q4}. The rankings obtained for
PROMETHEE II method are presented on the left side of Table 4. They are
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Table 3. Weights for each quality indicator.

Problem q1 q2 q3 q4 Problem q1 q2 q3 q4

DTLZ1 0.25 0.25 0.25 0.25 WFG2 0.14 0.37 0.37 0.12

DTLZ2 0.25 0.25 0.25 0.25 WFG3 0.13 0.29 0.29 0.29

DTLZ3 0.24 0.28 0.24 0.24 WFG4 0.18 0.46 0.18 0.18

DTLZ4 0.18 0.46 0.18 0.18 WFG5 0.26 0.22 0.26 0.26

DTLZ5 0.57 0.20 0.00 0.23 WFG6 0.19 0.19 0.47 0.15

DTLZ6 0.25 0.25 0.25 0.25 WFG7 0.18 0.18 0.46 0.18

DTLZ7 0.25 0.25 0.25 0.25 WFG8 0.36 0.14 0.36 0.14

WFG1 0.25 0.25 0.25 0.25 WFG9 0.37 0.12 0.37 0.14

further compared with the rankings obtained by the average ensemble with the
DSC rankings (DSC ensemble I) [10], presented in the middle part of Table 4
and the hierarchical majority vote with the DSC rankings (DSC ensemble II)
[10], presented on the right side of Table 4. From it, we can see that the rankings
obtained using PROMETHEE II with DSC differ from the rankings obtained
using the average ensemble with DSC or the hierarchical majority vote with
DSC only in two bolded problems: DTLZ5 and WFG7.

Table 4. Ensemble combiner for the algorithms: A1 = DEMOSP2, A2 = DEMONS−II,
and A3 = NSGA-II.

Problem PROMETHEE II DSC ensemble I DSC ensemble II

A1 A2 A3 A1 A2 A3 A1 A2 A3

DTLZ1 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00

DTLZ2 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00

DTLZ3 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00

DTLZ4 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00

DTLZ5 2.00 3.00 1.00 1.00 2.50 2.50 1.00 2.50 2.50

DTLZ6 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00

DTLZ7 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00

WFG1 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00

WFG2 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00 2.00

WFG3 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00 2.00

WFG4 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00

WFG5 3.00 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00

WFG6 1.00 2.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00

WFG7 1.00 2.00 3.00 1.50 1.50 3.00 1.00 2.00 3.00

WFG8 1.00 2.50 2.50 1.00 2.50 2.50 1.00 2.50 2.50

WFG9 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00
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To see what happens on a single problem, let us focus on the DLTZ5 prob-
lem. The decision matrix and its normalization are presented at top of Table 5.
The transformed DSC rankings for the r2 indicator and the DLTZ5 problem are
1.00, 1.00, and 1.00. Further, there is a problem in the normalization process
because the normalized rankings are indeterminate forms (i.e., 0/0) [15], so the
weight or the relative significance of this quality indicator can not be calculated.
However, according to this quality indicator and the obtained DSC rankings, the
compared algorithms are the same and they are all winners. Let us suppose that
the weight w3 could be calculated in some way, then the part of the average pref-
erence index that is related to the q3 indicator is a product of w3P3(Ai1 , Ai2),
where i1, i2 = 1, . . . ,m and i1 �= i2. In this case, it will be zero and will not
influence the average preference index, which is used for calculating the positive
and negative flows. Because it can not provide any additional information, it is
removed and the result will be the same as comparing the algorithms regarding
the remaining quality indicators, which in our case are q1, q2, and q4. By remov-
ing the r3 indicator, the decision matrix and its normalization are presented at
the bottom part of Table 5. The weights obtained using the Shannon entropy
weighted method are 0.57, 0.20, and 0.23. The final rankings and the outrank-
ing flows are given on the left side od Table 6. On the right part of Table 6 the
average preference indices that are used for calculating the positive and negative
flows for DLTZ5 are presented.

Table 5. Decision matrices for DLTZ5.

Algorithm Decision matrix Normalized matrix

q1 q2 q3 q4 q1 q2 q3 q4

DEMOSP2 2.00 1.00 1.00 1.00 0.00 1.00 0/0 1.00

DEMONS−II 2.00 1.00 1.00 3.00 0.00 1.00 0/0 0.00

NSGA-II 1.00 3.00 1.00 2.00 1.00 0.00 0/0 0.50

Algorithm Decision matrix Normalized matrix

q1 q2 q3 q4 q1 q2 q3 q4

DEMOSP2 2.00 1.00 / 1.00 0.00 1.00 / 1.00

DEMONS−II 2.00 1.00 / 3.00 0.00 1.00 / 0.00

NSGA-II 1.00 3.00 / 2.00 1.00 0.00 / 0.50

Table 6. Outranking flows, PROMOTHEE II rankings, and average indices for DLTZ5.

Algorithm φ+ φ− φ Ranking π(Ai, A1) π(Ai, A2) π(Ai, A3)

DEMOSP2 0.11 0.10 0.01 2.00 π(A1, Aj) 0.00 0.08 0.14

DEMONS−II 0.03 0.17 −0.14 3.00 π(A2, Aj) 0.00 0.00 0.06

NSGA-II 0.23 0.10 0.13 1.00 π(A3, Aj) 0.19 0.27 0.00
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Using the decision matrix presented in Table 5, the rankings obtained using
the average ensemble and the hierarchical majority vote are the same and are
1.00, 2.50, and 2.50. In the case of hierarchical majority vote, DEMOSP2 is ranked
as first because it wins in three out of four quality indicators, while DEMONS−II

and NSGA-II are ranked second (e.g., 2.5) because both are ranked first in the
case of two quality indicators, then both are second in the case of one quality
indicator and third in the case of one quality indicator. All quality indicators are
assumed equal and the ranking is made by counting the number of wins. However,
the obtained rankings using the data-driven preference-based approach are 2.00,
3.00, and 1.00, which are completely different from the other ensembles. From the
left part of Table 6, we can see that NSGA-II has the highest positive flow. The
question is why it is ranked first when DEMOSP2 has two wins. This happens
because the quality indicators that are involved have a data-driven preference
for each of them, which is obtained by the Shannon entropy weighted method.
The quality indicators are ordered as q1, q4, q2, (e.g, hypervolume, generational
distance, and epsilon indicator), starting from the most significant one to the
least significant one. The average preference indices between A1 and A3 that are
used for calculating the positive and negative flows are:

π(A1, A3) =
1
3

[0.57 · 0 + 0.20 · 1 + 0.23 · 1] = 0.14

π(A3, A1) =
1
3

[0.57 · 1 + 0.20 · 0 + 0.23 · 0] = 0.19 (9)

Using the calculations presented in Eq. 9, we can see that the average preference
index between NSGA-II and DEMOSP2 is 0.19 and it is a result of only one win
regarding the quality indicator q1, while the average preference index between
DEMOSP2 and NSGA-II is 0.14 and it is smaller even though it is a result of
two wins regarding q2 and q4. This happens because q1 is the most significant
and its weight is much more than the sum of the weights of q2 and q4. In our
experiment, the proposed data-driven preference-based approach gives different
rankings from the hierarchical majority vote only for DLTZ5. This happens
because only on that problem the compared algorithms are the same regarding
one of the used quality indicators, which is the r3 indicator. However, if this
happens for other single-problems, the rankings can also differ from the rankings
obtained by a hierarchical majority vote.

Furthermore, the obtained rankings using PROMETHEE II with DSC can
be used as input data for a multiple-problem scenario. The appropriate statis-
tical test is the Friedman test. Using it, the obtained p-value is 0.00, so using
a significance level 0.05, we can conclude that there is a statistical significant
difference between the compared algorithms using a set of benchmark prob-
lems. When comparing MOAs, often more than three algorithms are involved in
the comparison, or especially a new algorithm is compared with state-of-the-art
algorithm as a multiple comparisons with a control algorithm. When the number
of algorithms increases the DSC rankings can be affected when correcting the
p-values to control the FWER. In such a scenario, it is better to use multiple
Wilcoxon tests, one for each pairwise comparison and then combine the p-values
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to find the actual p-value for the scenario. More about this scenario and the
DSC approach is presented in [4]. If we are interested in to compare them using
a data-driven preference-based approach, we just need to use PROMETHEE II
with DSC instead of the original DSC ranking scheme to find the rankings for
each pairwise comparison on each problem.

4.3 Discussion

Comparing the performance of a new MOA with the performance of state-of-
the-art MOAs is a crucial task in order to find its strengths and weaknesses.
Different performance metrics can be used for evaluation and they are usually
combined with statistical tests to ensure that the results are significant. Several
previously proposed approaches are focused on comparing MOAs using a set of
quality indicators. They follow the idea of ensemble learning, but all of them
assume that all quality indicators are equal. The performance metric and the
way how the algorithms will be compared also depend on the user preference
or the concrete application. For example, in our previous work, we presented
an average ensemble and a hierarchical majority vote based on counting wins
according to different quality indicators, but in this paper we proposed a data-
driven preference-based approach that is a combination of PROMETHEE II
and DSC ranking scheme. According to the user preference all involved quality
indicators are still equal, but the data-driven preference changes this by using
its entropy. Organizing the DSC rankings for each quality indicator and each
problem into a decision matrix, the Shannon entropy weighted method is used
to find the relative significance of each quality indicator for each problem. The
relative significance of each quality indicator is related to its entropy, which is the
amount of information conveyed by it. The experimental results have shown that
the preference-based approach performs more or less as a hierarchical majority
vote. However, it can give different rankings, and the algorithm can overrank
another one even if it has a lower number of wins, but it wins in most preferred
quality indicator(s). Also, if there is a quality indicator for which all compared
algorithms perform the same (they all win), it does not have an influence in the
comparison and it can be removed from the set of quality indicators. Comparing
the hierarchical majority vote and data-driven preference-based ranking, we can
say that the hierarchical majority vote is more appropriate in cases where the
performance is estimated by counting wins and loses such as in the case of
dynamic multi-objective optimization, otherwise data-driven preference-based
ranking can be used in cases when the influence of each quality indicator is
required.

5 Conclusion

In this paper, we presented a data-driven preference-based approach for com-
paring MOAs using a set of quality indicators. The approach is a combination
of PROMETHEE II, which is a method in MCDA, and a DSC ranking scheme,
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that gives more robust statistical results and is based on comparing distribu-
tions instead of using only one statistic to describe the data. We compared our
method with previously proposed methods where all involved quality indicators
are assumed equal. We have shown that our method performs similar to a hierar-
chical majority vote, but also can give different rankings regarding the influence
of each quality indicator, which is its preference and is estimated according to
its entropy.
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Rok Hribar1,2(B), Jurij Šilc1, and Gregor Papa1,2
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Abstract. Deep neural networks are constructed that are able to par-
tially solve a protein structure optimization problem. The networks are
trained using reinforcement learning approach so that free energy of pre-
dicted protein structure is minimized. Free energy of a protein structure
is calculated using generalized three-dimensional AB off-lattice protein
model. This methodology can be applied to other classes of optimization
problems and represents a step toward automatic heuristic construction
using deep neural networks. Trained networks can be used to construct
better initial populations for optimization. It is shown that differential
evolution applied to protein structure optimization problem converges to
better solutions when initial population is constructed in this way.

Keywords: Protein folding · Heuristic · Deep learning
Differential evolution

1 Introduction

Prediction of protein structure from the sequence of its residues is a hard opti-
mization problem. All proteins are endowed with a primary structure consisting
of the chain of amino acids. Folding of this chain results into so-called 3D pro-
tein structure. The biological functional role of the protein is strictly dependent
on the protein 3D structure. Knowledge of a proteins structure provides insight
into how it can interact with other proteins, DNA/RNA, and small molecules.
It are these interactions which define the proteins function and biological role
in an organism. Thus, protein structure and structural feature prediction is a
fundamental area of computational biology. Its importance is exacerbated by
large amounts of sequence data coming from genomics projects and the fact
that experimentally determining protein structures remains expensive and time
consuming [1].

Over the last decades a lot of effort have been invested in reducing the com-
putational cost of calculating the 3D structures of proteins. One way to decrease
the computational cost is the introduction of approximate models for the cal-
culation of protein’s free energy which is minimal for appropriate 3D structure.
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Because the computation of free energy is less costly, optimization that finds
the right structure is also less costly to preform. Examples of such approximate
models include models using a cubic lattice [2] and AB type models [3]. Another
way to speed up the optimization process is to make optimization more efficient,
so that less free energy evaluations are needed. This resulted in development of
heuristics that are tailored specifically for this optimization problem. Since pro-
tein folding process is in nature guided only by the physical laws, optimization
methods were devised that include principles from statistical physics. Heuristics
from this category include annealing contour Monte Carlo [4] and conformational
space annealing [5]. Another approach to developing a specialized optimization
algorithm is to modify known metaheuristics such as artificial bee colony [6] or
evolutionary algorithm [7].

A different approach to prediction of protein 3D structure is the use of
machine learning. Here the prediction of 3D structure is based only on features
directly calculated from the sequence of amino acids. There is no optimization
performed during prediction. The structure is calculated simply by applying the
model. Optimization is used only during the model training, when appropriate
model is searched for. Currently, deep neural networks (DNNs) are the most
widely used models for this problem. Properly trained DNNs are very successful
at predicting protein’s secondary structure (≈80% accuracy) [8] and its disor-
dered regions (≈90% accuracy) [9]. However, full 3D structure prediction is much
less accurate (≈20% accuracy) [10]. DNN models are usually trained using super-
vised learning where experimentally acquired 3D structures of proteins are used
as training examples. Advantage of this approach is that protein’s free energy
does not need to be calculated. But on the other hand, by using only experi-
mental data one is limited to possibly insufficient amount of training examples
to properly train DNN.

In this paper a different approach to DNN training is presented and used in
which explicit training examples are not needed. Instead, the free energy of a
protein is used to provide information about the quality of predicted solutions.
This is possible because this problem can be interpreted as an optimization
problem or a prediction problem. This allows the combination of both views
to generate a new method for addressing the protein structure problem. In this
regard such methodology can be applied to any optimization problem to generate
DNNs able to predict a solution of an optimization problem. In other words,
given a class of optimization problems one can construct a DNN that represents
extremely fast heuristic specially designed for this class of optimization problems.
This is a step toward automatic heuristic generation.

2 Deep Neural Network as an Optimization Algorithm

Optimization problems are often solved using approximate algorithms (heuris-
tics) that are tailored for a specific class of problems. For example, there are
specific heuristics that work well for vehicle routing [11], production scheduling
[12], protein folding [13] and so on. Heuristics are especially useful if similar
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problems need to be solved over and over again. In such cases it is sensible to
develop specialized optimization procedures which are optimized for that specific
class of problems.

In this section a methodology is presented where DNNs are trained in a
way that they are able to approximately solve an optimization problem that
belongs to a given class of problems. Such class of optimization problems can be
represented with a fitness function f with two inputs.

f : S,X → R

fs(x) = min.
(1)

Set S holds all possible optimization problems in the class, while set X holds all
possible candidate solutions for that class of problems. For example, in case f
represents a class of production scheduling problems, s encodes the orders that
need to be fulfilled and x encodes the production schedule.

Given function f , it is possible to define a function g that takes a problem
specification s as an input and returns the position xoptimal

s where function fs
has a global minimum.

g : S → X
g(s) = arg min

x∈X
fs(x) = xoptimal

s
(2)

In other words, g(s) is a solution of optimization problem fs(x) = min. Calcu-
lation of function g is in general intractable. But it might be possible to find a
model that approximates g to some degree. One aim of this paper is to find out
whether a trained DNN is able to approximate g. It is important to note that the
input and output of DNN are traditionally floating point numbers. Therefore, s
and x should be encoded as vectors of floating point numbers. Even for discrete
s and x it is usually possible to find such an encoding.

It is known that a neural network can approximate arbitrary function to an
arbitrary precision [14]. So g can be approximated well using DNN, however it
is unknown how large such a network should be and whether it is possible to
find it using known training techniques. If DNN could be trained to approximate
g, such DNN can preform partial optimization extremely quickly. While DNN
training is known to be resource intensive, prediction is usually not.

Training DNN to approximate g is also an optimization problem, however
optimization landscape of DNN training is not similar to fs landscape. DNN
parameters encode a strategy for predicting xoptimal

s from s, so optimization is not
performed on a single problem encoded by s, but for all possible s at once. Also
DNN optimization landscape has particular properties, like the fact that saddle
points are exponentially more common compared to local minima [15]. Therefore,
a suitable optimization method that takes those specific properties into account
should be used for training them. Currently, stochastic gradient descent (SGD)
is the prevalent and very successful approach to DNN training [16].
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2.1 Supervised Learning Approach

DNN can be trained to approximate g using supervised learning. Let ĝ(s) be the
output of DNN when s is its input. In supervised learning pairs (si, xoptimal

si ) are
provided and DNN error is minimized using SGD so that

J =
∑

i

∥∥ĝ(si) − xoptimal
si

∥∥ = min. (3)

Since xoptimal
s is in general unknown, its best approximation has to be used which

results to nonideal DNN model. So xoptimal
si need to acquired using external

optimization algorithms. In order to prevent DNN overfitting it is necessary to
provide a large amount of training examples, i.e. much more than the number
of DNN parameters. Therefore, such approach is extremely resource intensive.

2.2 Reinforcement Learning Approach

Another approach to DNN training is reinforcement learning. In this case func-
tions fs are used to calculate the error of DNN. DNN is trained so that

E =
∑

i

fsi(ĝ(si)) = min. (4)

In reinforcement learning terminology, E can be understood as a penalty that
needs to be minimized. In this case xoptimal

si are not needed and so no exter-
nal optimization is required. The downside is that SGD can not be applied as
simply as with supervised learning. Error function J from Eq. (3) can be eas-
ily differentiated with respect to DNN parameters using backpropagation. But
penalty E from Eq. (4) also includes application of fs. This makes the calcula-
tion of the gradient difficult and different methods have been introduced by deep
reinforcement learning community to mend this problem.

In this paper an adapted version of deterministic policy gradient method [17]
is used. This method uses a differentiable model called a critic that approximates
function f from Eq. (4). The derivative of E can then be approximately calculated
using the derivative of the critic by applying the chain rule. Our adaptation of
this method is to not model f with a critic but instead use f directly. In order
to calculate derivative of E in this scope, the derivative ∇xfs(x) is required.

Fortunately, derivation of fs can also be preformed using backpropagation
principles, i.e. applying chain rule coupled with dynamic programming. There
are good libraries that can preform such automatic differentiation, for exam-
ple theano, TensorFlow and CNTK. In this paper theano was used to write
expressions for the calculation of E. These expressions are then transformed to
a computational graph for calculation of E which can be used to build compu-
tational graph for gradient calculation ∇E using the chain rule. In this respect
procedure is returned for analytical gradient calculation ∇E without any assis-
tance from the user. Computational graphs for E and ∇E calculation can be
compiled to C++, CUDA or OpenCL which brings multi processor support and can
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easily be accelerated on GPGPU or even FPGA [18]. Therefore, use of theano
is beneficial even if just calculation of E is needed.

Therefore, by using theano DNN can be trained using SGD so that E from
Eq. (4) is minimized. Great advantage of this approach is an unlimited amount
of training examples si which can be drawn from desired distribution over si.
This generation of training examples is extremely cheap compared to supervised
learning approach where training examples need to be generated by optimization
algorithm or acquired by experimental measurement.

3 Generalized Three-Dimensional AB Off-Lattice Protein
Model

AB off-lattice model has been widely used to describe the protein secondary
structure folding process for decades [3]. The off-lattice protein model was ini-
tially developed to consider 2D folding problems and was extended to deal with
3D scenarios where additional torsional energy contributions of each bond are
taken into account [19]. According to the AB off-lattice model, the main driving
forces that contribute to protein structure formulation are the hydrophilic and
hydrophobic interactions.

The protein chain is modeled as a vector s where each component si specifies
the hydrophilicity of amino acid at the site i. The distance of two neighbor-
ing amino acids is set to one (di,i+1 = 1). Under this model free energy G is
calculated as

G(u, d) =
1
4

n−2∑

i=1

(1 − ui · ui+1) + 4
n−2∑

i=1

n∑

j=i+2

(
d−12
ij − C(si, sj)d−6

ij

)
, (5)

where ui is a vector from amino acid on site i to amino acid on site i+1 and dij
is a distance between amino acids on site i and j (see Fig. 1). The interaction
between two amino acids is specified by a function

C(si, sj) =
1
8

(1 + si + sj + 5sisj) . (6)

Structure of a protein of length n can be encoded using angles θi and ϕi

that tell how vectors ui are oriented in space (see Fig. 2). Therefore, a protein
structure of length n is fully determined by

x = (θ2, . . . , θn−1, ϕ3, . . . , ϕn−1). (7)

Use of this encoding reduces the dimensionality of search space and allows us
to automatically fulfill the constraint ‖ui‖ = 1. The values ui and dij that are
needed for free energy calculation can be calculated from x in the following way

ui = (cos θi sin ϕi, sin θi sinϕi, cos ϕi) (8)
ri+1 = ri + ui (9)

dij = ‖ri − rj‖. (10)
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Fig. 1. Visualization of direction vec-
tors ui and distances dij on a protein
with three amino acids.
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si+1
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Fig. 2. Visualization of angles θi and
ϕi from Eq. (7) that determine the
direction of vectors ui.

The first two amino acids in a sequence are fixed to specific coordinates and the
third one is constrained to xy-plane.

r1 = (0, 0, 0) (11)
r2 = (1, 0, 0) (12)

ϕ2 =
π

2
(13)

By this choice, rotational symmetry of the model is eliminated.
In protein structure optimization problem we want to find a structure of a

protein that minimizes the free energy G. Therefore, given a protein defined
with s, we want to find x that determines the structure of that protein. So the
problem class is defined by a function

fs(x) = G(u(x), d(x)) = min. (14)

Traditionally si = ±1, where hydrophobic amino acid has si = −1 and
hydrophilic si = 1. In this regard quantity si tells how hydrophilic an amino acid
is. However, this paper uses a generalization of this model where si ∈ R. One
reason for this choice is the fact that amino acids in nature are not hydrophilic
to the same degree [20]. Some may attract or repel water more than others.
Also hydrophilicity changes with temperature [21] which allows one to use this
generalized model to study how protein structure changes with temperature.
Use of generalized model is also beneficial with regard to DNN training because
this brings a richer set of training examples and makes the training landscape
smoother.

4 Experiments

In this section DNN training procedure using reinforcement learning is presented
and how solutions predicted by DNNs were used as initial population of differ-
ential evolution (DE) algorithm. A variant of SGD called Adam [22] was used
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and gradient of E was used to guide the training. The calculation of ∇E was
calculated using theano library.

E =
B∑

i=1

fsi(ĝ(si)) (15)

In each step of Adam algorithm a batch of proteins si of random length was
randomly selected. Distribution over length was uniform and over hydrophilicity
a mixture of two Gaussians with mean at ±1 and standard deviation 0.15. Based
on the selected si calculation of E and ∇E was done by theano. The number
of sampled proteins for E and ∇E calculation is called a batch size B. The
training is more stochastic if B is low and becomes more deterministic if B is
high. By experimenting with different batch sizes a good balance between speed
and accuracy was found at B = 512.

Stated more informally, in each step, DNN tries to solve 512 random protein
optimization problems and gets updated in direction that would improve its
solving capabilities for those 512 proteins. Because DNN gets a different batch
of random proteins in each step, it converges to a state that is able to solve all
protein optimization problems equally well. Picking training batches randomly
also ensures that DNN can not overfit since duplicates in the training data are
extremely unlikely. Therefore, the training error of DNN is not a biased estimate
of its accuracy and validation set is not needed.

A DNN structure was chosen that can take proteins with up to n = 100 amino
acids. To allow prediction on smaller proteins zero padding was used. Example
of small scale DNN is shown in Fig. 3. DNNs with different number of hidden
layers was trained in order to quantify how DNN depth influences the accuracy.
In all cases the width of hidden layers was chosen to be 2n = 200. Rectified
linear units were used as activation functions on hidden layers and tanh on the
output layer to ensure that θi, ϕi ∈ [−π, π].

Fig. 3. Small scale example of how DNN receives the protein specification and how
its output is interpreted. If a protein is shorter than DNN input layer, zero is placed
on sites where there are no amino acids. In this case some angles from the output are
discarded (crossed out outputs).
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Before training, initial DNN weights need to be set. Initial weights were gen-
erated randomly using Glorot initialization [23]. However, if the magnitude of
initial weights is to large, it can happen that initial DNN predicts very densely
packed structures which causes a very large gradient due to d−12

ij repulsive term
in free energy. This causes an unstable gradient descent. Therefore, a prefactor
wi was added to initialization and DNN models with w1 = 0.1 and w2 = 1.0 was
trained.

To avoid unstable gradient descent the predictions of initial DNN should be
unfolded protein structures. This, however, produces another problem. The first
summand in Eq. (5) forces proteins to be unfolded which means that unfolded
structure is a local minimum that is common to all proteins. To avoid getting
stuck in this common local minimum the first summand in Eq. (5) was simply
not included in the calculation of free energy at the beginning of training. When
DNN predicted structures began to fold, the previously ignored summand was
gradually added during training. In the last stage of training the full version of
free energy was used.

During DNN training it can happen that for some si in the batch DNN
predicts a structure where two amino acids are very close to each other. A
repulsive interaction causes the gradient ∇E to be very large for the entire
batch. In the next step of gradient descent the DNN is thrown away from a
possibly good region. Such events might be rare, but can severely disturb the
progress of training. To mitigate the effect of such events, gradient norm clipping
can be used. In other words, if the gradient length exceeds a given threshold,
the gradient is clipped so that its length is equal to the threshold.

Solutions predicted by DNNs might be a good initial population for optimiza-
tion. To test whether this is true protein structure optimization using DE was
implemented. DE was shown to be the best known optimization method for this
problem [7]. Specifications of implemented DE algorithm was taken from [7], but
without parameter control. DE type was best/1/bin, population size was 100,
mutation with dithering was employed with mutation constant taken between
0.1 and 1 and recombination constant was 0.9. DE was run 30 times for three pro-
teins found in nature (1CB3, 1CRN and 2EWH) with random initial population
and with initial population where 50% of candidates were predicted by DNNs.

5 Results

To measure how good a candidate solution is, we use free energy G of the protein.
In case of comparing solutions gotten by DE, this is a sound measure from the
point of view of statistical physics. That is, the protein is most likely to be
in states with low free energy. In ideal case one could check if the solution is
equivalent to the native structure, but because global minima of this protein
model are unknown this is not possible. To evaluate the performance of DNN,
training error is used. It is equivalent to validation error and defined as a mean
of free energy values predicted by DNN for a batch of random proteins. The
variance of this error measure is very low because the batch size B = 512 is large.
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Fig. 4. Training error of DNNs with respect to the number of hidden layers for two
different magnitudes of initial DNN weights. Full line is the mean error of models,
shaded area shows the range of error for central 66% of the models and the dashed line
is the error of the best model.

Table 1. Free energy calculated for three proteins found in nature by using structures
predicted by DNN and by DE.

Protein Length Best DNN Mean DE Best DE

1CB3 13 −4.6235 −2.1513 −6.7700

1CRN 46 −42.765 −64.948 −79.906

2EWH 98 −65.163 −148.32 −170.47

The training error of DNNs depends of the number of layers. This dependence
is usually monotonically decreasing [16], but for this problem this is not the case
(see Fig. 4). This can be attributed to the sensitivity of training to selection of
initial DNN weights. DNNs were initialized using random matrices. Therefore,
the magnitude of DNN output is exponentially dependent of the number of
layers. Since initial weights have small components (�1), this means that initial
DNNs with small number of layers predict very folded structures, while initial
DNNs with high number of layers predict practically straight structures. Figure 4
shows that initial DNN predictions should not be very folded nor very straight.
Best models are somewhere in between.

The most accurate DNN models have three layers. Given that DNNs are able
to partially solve an optimization problem this is a surprisingly shallow DNN
architecture. Free energy of structures predicted by DNNs and by DE is shown
in Table 1. It was found that gradient norm clipping is very beneficial for DNN
training. Figure 5 shows the progress of DNN training with and without the use
of gradient norm clipping. Occurrence of very high gradients is rare, however
they substantially alter the progress of DNN training.

Using structures predicted by DNN in initial population of DE was found to
be beneficial. When using predicted initial population, DE converges to lower
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Fig. 5. DNN error during training via SGD. The upper plot shows the progress of usual
SGD procedure, while the lower plot shows SGD progress when gradient norm has a
predefined upper bound by using gradient norm clipping.
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Fig. 6. Progress of 30 runs of DE by using a random initial population or initial
population partially populated with solutions predicted by DNNs. Full line is the mean
over all runs, shaded area shows the range of central 66% of runs and the dashed line
shows the best run.

values of free energy (see Fig. 6). But the convergence is slightly less rapid for
predicted population which could indicate that the population is actually more
diverse. On the other hand, DE progresses are less dispersed among runs which
means that less runs are needed to find a satisfactory solution. In case of 1CB3
protein the predicted structures are in fact so good that all DE runs converge to
the best known solution in just 100 generations. For larger proteins the predicted
solution are not as good, however the DE performs considerably better when
using the predicted population.
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6 Conclusion and Future Work

In this paper it is shown that deep neural networks can be trained to partially
solve optimization problems belonging to a given class. The networks can be
successfully trained using reinforcement learning method by knowing only the
fitness function of the class of optimization problems. This is shown for the
class of protein structure optimization problems. The predicted solutions were
found to be good initial points for further optimization. Such trained networks
can be used to acquire moderately good solutions of optimization problem when
solution is needed very quickly. Therefore, the method is suitable for optimization
problems that need to be solved repeatedly and is a step towards automatic
heuristic construction.

For future work it should be possible to extend the method to combinatorial
optimization problem where unified methodology should be further developed.
The procedure of finding the best architecture of deep neural network could be
more automated so that depth and width of the network is automatically found.
The same goes for the training specification. Another opportunity for future
work is to combine supervised learning approach with reinforcement learning
approach so that the training is guided by both approaches simultaneously.
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Abstract. This paper compares four different methods for handling
the roaming behavior of fireflies in the firefly algorithm. The problems
of boundary constrained optimization forces the algorithm to actively
keep the fireflies inside the feasible area of possible solutions. The recent
CEC’17 benchmark suite is used for the performance comparison of the
methods and the results are compared and tested for statistical signifi-
cance.

Keywords: Firefly Algorithm · Boundary · Lévy flight

1 Introduction

Firefly Algorithm (FA) [1,2] is one of the modern and versatile optimization
algorithms developed by Yang in 2008. Since then, the FA has proven its robust
performance either on single objective [3] or many/multi-objective optimization
problems [4]. Recently, many new modifications have been introduced to improve
the results and overall quality of FA. Modifications like Lévy flights [5], or chaos-
driven FA [6] show the large potential of this modern algorithm.

One of the tasks left to discuss lies in the question what to do if fireflies (or
particles in general) try to violate defined boundaries by particular optimization
problem. When optimizing the real problem, very often are optimized parameters
limited. This is caused in many cases due to simple physical nature of the problem
(for example length cannot be in negative numbers). The violation of particle
could happen whenever a new position is evaluated thanks to the nature of the
metaheuristic optimization algorithm. Select the most suitable border strategy
is a difficult task as the numerous similar studies for PSO show [7,8].

Since there are no such studies for FA available in the literature, we have
decided to perform and present this original experimental research. In this paper,
three relatively common borders strategies (or rather methods) are implemented
and compared on CEC’17 benchmark set [9]. Also, a new hypersphere border
strategy [10], initially developed for PSO, is also tested and compared given its
promising results on some test functions.

The paper is structured as follows. The FA and its Lévy flight modification are
described in Sect. 2. The border strategies are in detail described in Sect. 3. The
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experiment setup is detailed in Sect. 4. Section 5 contains statistical overviews
of the results and performance comparisons obtained during the evaluation on
benchmark set. Finally, the paper is concluded in Sect. 6.

2 Firefly Algorithm

This optimization nature-based algorithm was developed and introduced by
Yang in 2008 [1]. The fundamental principle of this algorithm lies in simulating
the mating behavior of fireflies at night when fireflies emit light to attract a
suitable partner. The main idea of Firefly Algorithm (FA) is that the objective
function value that is optimized is associated with the flashing light of these
fireflies. The author for simplicity set a couple of rules to describe the algorithm
itself:

• The brightness of each firefly is based on the objective function value.
• The attractiveness of a firefly is proportional to its brightness. This means

that the less bright firefly is lured towards, the brighter firefly. The brightness
depends on the environment or the medium in which fireflies are moving and
decreases with the distance between each of them.

• All fireflies are sexless, and it means that each firefly can attract or be lured
by any of the remaining ones.

The movement of one firefly towards another one is then defined by Eq. (1).
Where x

′
i is a new position of a firefly i, xi is the current position of firefly i and

xj is a selected brighter firefly (with better objective function value). The α is a
randomization parameter and sign simply provides random direction −1 or 1.

x
′
i = xi + β · (xj − xi) + α · sign (1)

The brightness I of a firefly is computed by the Eq. (2). This equation of
brightness consists of three factors mentioned in the rules above. On the objec-
tive function value, the distance between two fireflies and the last factor is the
absorption factor of a media in which fireflies are.

I =
I0

1 + γrm
(2)

Where Io is the objective function value, the γ stands for the light absorption
parameter of a media in which fireflies are and the m is another user-defined
coefficient and it should be set m ≥ 1. The variable r is the Euclidian distance
(3) between the two compared fireflies.

rij =

√
√
√
√

d∑

k=1

(xi,k − xj,k)2 (3)

Where rij is the Euclidian distance between fireflies xi and xj . The d is
current dimension size of the optimized problem.
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The attractiveness β (4) is proportional to brightness I as mentioned in rules
above and so these equations are quite similar to each other. The β0 is the initial
attractiveness defined by the user, the γ is again the light absorption parameter
and the r is once more the Euclidian distance. The m is also the same as in
Eq. (2).

β =
β0

1 + γrm
(4)

One of the recent and quite commonly used modifications of FA lies in the
introduction of Lévy flights [5,11]. With this Lévy flights characteristic the new
modification of FA is called Lévy-flight Firefly Algorithm (LFA). This modi-
fication only customizes the computation of the position of fireflies described
originally in Eq. (1). The new modified version with Lévy flight is defined in (5).

x
′
i = xi + β · (xj − xi) + α · sign

⊕

Lévy (5)

The Lévy stands for Lévy flight randomization together with λ being the
randomization parameter as in the original equation. The product

⊕
means

entrywise multiplications. The Lévy distribution is drawn as (6).

Lévy ∼ u = t−λ (6)

Where parameter λ is another user-defined variable that controls the Lévy
distribution described in [5] and it should be set in range 1 < λ ≤ 3. The
pseudocode below shows the fundamentals of FA operations (Fig. 1).

Fig. 1. FA pseudocode.

3 Border Strategies

Every time, when a single objective function optimization problem has defined
a range where the best value is being found by the metaheuristic algorithm, one
of the many difficult tasks could arise to an operator or a user. After each step
of an algorithm, in this case after position update of a firefly, the new position
should be checked if it lies in the appropriate range or boundaries (inside space
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of feasible solution). In case that the new position of the particle is outside this
allowed region a certain correction has to be made. Several possible correction
methods or strategies could do the trick. However, select the most appropriate
is not an easy task since each of them could have a very different effect on
the algorithm ability to achieve a good solution. For this paper, the few most
common ones were selected and compared together to show how they could affect
the FA on different benchmark functions.

3.1 Hard Borders

The particle (or in this case firefly) cannot cross the given boundaries in each
dimension. This strategy is very simple to implement and is described as (7).

x
′
i =

⎧

⎨

⎩

xi = bu, if xi > bu

xi = bl, if xi < bl

xi, otherwise
(7)

Where xi is the position of i firefly before boundary check, the x
′
i is a newly

updated position after the boundary check and the bu and bl are the upper and
lower boundary given to each dimension.

3.2 Random Position

If a firefly violates the boundary in any dimension, the new position for this
firefly for a particular dimension is created between the lower and upper bound-
ary (with a pseudo-random uniform distribution). Again this strategy is rather
simple and very easy to implement.

3.3 Hypersphere

This strategy tries to simulate an endless hypersphere. To simplify this state-
ment, an example is given. If a firefly violates upper boundary limit, it appears
then in the search space but from the lower boundary. In other words, the upper
boundary is neighboring the lower one in corresponding dimension and vice
versa.

This strategy also brings one interesting and also an important feature. The
firefly has now two options how to achieve a new position when flying towards
another firefly. The new possible way is throughout the boundaries which are
now passable. The modification of previous Eq. (5) is given in (8).

x
′
i = xi + β · vij + α · sign

⊕

Lévy (8)

Where the vij is the vector of difference between particles i and j defined as
(9).

vij =

⎧

⎨

⎩

v̂ij , if |v̂ij | ≤ d
v̂ij mod (−d) , if (|v̂ij | > d ∧ |v̂ij | > 0)
v̂ij mod (+d) , if (|v̂ij | > d ∧ |v̂ij | ≤ 0)

(9)
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The v̂ij and range d are computed by formulas (10) and (11), where bu and
bl are again the upper boundary and lower boundary limits and xi and xj are
the fireflies i and j.

v̂ij = xj − xi (10)

d =

∣
∣bu − bl

∣
∣

2
(11)

3.4 Reflection

The reflection strategy [7] reflects the particle back to feasible space of solution if
it tries to violate the defined borders. This strategy tries to emulate the reflection
characteristic of for example a mirror. For violated dimension, the correction of
a position of a particle is computed as (12). Where again the bu and bl are the
upper boundary limit and lower boundary limit.

x
′
i =

⎧

⎨

⎩

x
′
i = bu − (xi − bu) , if xi > bu

x
′
i = bl +

(

bl − xi

)

, if xi < bl

xi, otherwise

(12)

4 Experimental Setup

The experiments were performed on a set of well-known benchmark functions
CEC’17 which are detailly described in [9]. The tested dimensions were 10 and 30.
The maximal number of function evaluation was set as 10 000 · dim (dimension
size). The lower and upper boundary was as bl = −100 and bu = 100 according
to CEC’17 definition. The number of fireflies was set to 40 for both dimension
sizes. Every test function was repeated for 30 independent runs and the results
were statistically evaluated. The benchmark itself includes 30 test functions in
four categories: unimodal, multimodal, hybrid and composite types. The global
minimum of each function is easy to determine as it is 100 ·fi where i is an order
of the particular test function.

The parameters of LFA were experimentally set as α = 0.2, λ = 1.5, γ = 0.01,
β0 = 0.5, and m = 1.

5 Results

The results of performed experiments are given in this section. Firstly, the results
overviews and comparisons are presented in Tables 1 and 2, which contain the
simple statistic like mean, std. dev., min. and max. values. Further, examples of
convergence behavior of the compared methods are given in Figs. 2, 3, 4 and 5.

Furthermore, we present the Friedman ranks with critical distance evaluated
according to the Bonferroni Dunn post-hoc test for multiple comparisons. The
visual outputs of multiple comparisons with rankings are given in Fig. 6. The
dashed line represents the critical distance from the best boundary method (the
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lowest mean rank). The critical distance (CD) value for this experiment has
been calculated as 0.8586; according to the definition given in (13) and value
qa = 2.5758; using k = 4 boundary methods and a number of data sets N =
30 (30 repeated runs). From the results, it is noticeable, that the hard border
and the reflective boundaries are the most favorable methods among the four
compared.

CD = qa

√

k (k + 1) / (6N) (13)

The illustrative comparisons depicted in Figs. 2, 3, 4 and 5 supported by the
results of Friedmann rank tests lend weight to the argument that the hypersphere
strategy often gives the much slower convergence speed. Although, there are two
exceptions to this statement (Figs. 4 and 5). The other strategies frequently
reach almost the same results. The differences between these strategies become
noticeable with the increase of the dimension size.

Fig. 2. Convergence plots of CEC2017 test functions f3 (left) and f9 (right) in 10D.
The blue line stands for Hard borders strategy, the orange line is for Random position,
the Hypersphere is in green color and the Reflection is in red. (Color figure online)

Fig. 3. Convergence plots of CEC2017 test functions f10 (left) and f15 (right) in 10D.
The blue line stands for Hard borders strategy, the orange line is for Random position,
the Hypersphere is in green color and the Reflection is in red. (Color figure online)
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Fig. 4. Convergence plots of CEC2017 test functions f27 (left) and f28 (right) in 10D.
The blue line stands for Hard borders strategy, the orange line is for Random position,
the Hypersphere is in green color and the Reflection is in red. (Color figure online)

Fig. 5. Convergence graph for f 10 dimension 30. The blue line stands for Hard borders
strategy, the orange line is for Random position, the Hypersphere is in green color and
the Reflection is in red. (Color figure online)

Fig. 6. Friedmann rank test comparison on CEC2017 test functions in 10D (left) and
30D (right) in 10D.
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6 Conclusion

In this original study, the impact of various border strategies on the performance
of the firefly algorithm is tested. The topic is actual due to the increasing variety
and complexity of optimization problems. As a benchmark for the performance
comparisons, the CEC 2017 set was used. It represents the most recent collection
of artificial optimization problems that vary in terms of modality and other
characteristics of the fitness landscape.

It may be concluded, that according to statistical data, the hard borders
and the reflection boundary strategy seem to be favorable over the other two
(random with slightly worse performance and hypersphere).

However, it seems that in the most cases, the border strategy does not have a
significant impact on the performance of the method (especially in lower dimen-
sions). The hypersphere boundary model stands out, mostly in the negative
way. Despite the fact that remaining strategies behave almost identical on most
problems, the most favorable strategies could be either the reflection or random
position. These two strategies are often picked also for PSO [8].

Despite that, the results of this study are useful as an empirical study for
researchers dealing with firefly algorithm. This research will continue in the
future with exploring the performance of firefly algorithm with different bound-
ary strategies on different fitness landscape models and real-world problems,
especially with a focus on the algorithm setup to achieve the best performance.
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Abstract. In the last decades the Vehicle Routing Problem (VRP) and
its ramifications, including the Capacitated Vehicle Routing Problem
(CVRP), have attracted the attention of researchers mainly because their
presence in many practical situations. Due to the difficulties encountered
in their solutions, such problems are usually solved by means of heuristic
and metaheuristics algorithms, among which is the Genetic Algorithm
(GA). The solution of CVRP using GA requires a solution encoding step,
which demands a special care to avoid high computational cost and to
ensure population diversity that is essential for the convergence of GA
to global optimal or sub-optimal solutions. In this work, we investigated
a new binary encoding scheme employed by GA for solving the CVRP.
Conducted experiments demonstrated that the proposed binary encoding
is able to provide good solutions and is suitable for practical applications
that require low computational cost.

Keywords: Genetic Algorithm · Solution encoding
Chromosome representation · Capacitated Vehicle Routing Problem

1 Introduction

Optimization of the logistics system has become one of the most important
aspects of the supply chain during the last three decades [1]. In this context,
many researchers have invested their efforts in solving various problems in this
segment, among them is the Vehicle Routing Problem (VRP).

In general, the VRP consists in defining the routes that a set of vehicles must
follow to supply the demand of certain customers, respecting the operational
restrictions imposed by the context that they are inserted. The most common
objectives of the VRP are minimize the total distance traveled, improve the
transport time, minimize the number of vehicles needed and reduce the total
cost of the routes [2]. One of the main ramifications of the VRP is the Capac-
itated Vehicle Routing Problem (CVRP), which is considered in this work and
explained in detail in Sect. 2.1.
c© Springer International Publishing AG, part of Springer Nature 2018
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In the literature there are several proposals to solve the VRP (and its rami-
fications) using different heuristic and meta-heuristics techniques, among which
are: Tabu Search, Genetic Algorithms, Simulated Annealing, Ant Colony Opti-
mization, Particle Swarm Optimization, Variable Neighborhood Search, and
Hybrid Meta-Heuristics [3]. The Genetic Algorithm (GA) stand out by its versa-
tility of construction and the good results that it has been demonstrated in solv-
ing complex problems, including VRP, as can be seen in Lau et al. [4]; Bermudez
et al. [5]; Wang and Lu [6]; Lee and Nazif [2]; Tasan and Gen [7]; Ursani et al.
[8]; Lu and Vincent [9]; Kuo et al. [10]; Vidal et al. [11]; Reiter and Gutjahr [12];
Osaba et al. [13] and Lima et al. [14].

A trivial way of encoding solutions for the VRP using GA is through a three-
dimensional binary matrix in which the rows are associated with the vehicles, the
columns with the costumers and the depth with the visitation order. However,
this encoding scheme demands high computational cost and may be inefficient
in terms of population diversity, which is essential to promote the convergence
to global optimum or sub-optimal solutions. Thus, many studies found in the
literature has shown concern about how to encode VRP solutions.

In this context, and differently from all above mentioned works which explore
improvements in the heuristic and meta-heuristic algorithms, this work is focused
in more efficient ways to encode solutions in GA. Specifically, we are proposing
a new binary encoding scheme in GA for Solving the CVRP, which constitutes
the main contribution of this work.

2 Theorectical Background

2.1 Capacitated Vehicle Routing Problem (CVRP)

The CVRP is one of the most basic version of VRP. In this problem all customers
have their demands previously defined which must be attend entirely by a fleet
of homogeneous vehicles, all of them running from only distribution center. In
the CVRP, just the vehicle capacity restriction is imposed [15], that is, the sum
of the demand of all customers belonging to a route does not exceed the capacity
of vehicle used to execute that route. Figure 1 illustrates an example of CVRP,
which involves two vehicles for meeting the demands of eighteen geographically
dispersed customers.

Let be G = (V,E) a graph in which V = 0 . . . n is the set of vertices that
represent the customers and E the set of edges, representing the paths connecting
the customers to each other and to the distribution center. Each edge (vi, vj) has
associated a cost Cij of the path between the costumers represented by vertices
i and j. When Cij = Cji, the problem is known as symmetrical, otherwise the
problem is identified as asymmetrical. A set of K identical vehicles with capacity
cv is allocated to the distribution center. For each customer v is associated a
demand dv, and for the distribution center is defined d0 = 0.

In summary, the CVRP consists of finding a set of routes, where each route
is traveled by a vehicle, with the objective to minimize the total cost of the
routes (TC), respecting the following restrictions: (1) each route must start and
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Fig. 1. Example of routing with the vehicles starting from a distribution center.

finish at the distribution center; (2) each customer must be visited just only time
and (3) the sum of the customers’ demands included in a route cannot exceed
the vehicle’s capacity. According to Vieira [3] the CVRP can be mathematically
formulated as follows:

Minimize TC =
nc∑

i=0

nc∑

j=0,j �=i

K∑

k=1

Cijxijk (1)

Subject to
K∑

k=1

nc∑

j=1

x0jk ≤ K (2)

nc∑

j=1

x0jk =
nc∑

j=1

xj0k = 1, k = 1, . . . ,K (3)

K∑

k=1

nc∑

j=0

xijk = 1, i = 1, . . . , nc (4)

nc∑

j=0

xijk −
nc∑

j=0

xijk = 0, k = 1, . . . ,Ki = 1, . . . , nc (5)

K∑

k=1

∑

i∈S

∑

j∈S

xijk ≤ |S| − v(S),∀S ⊆ V /{0}, |S| ≥ 2 (6)

nc∑

i=1

di
∑

i=0,j �=i

xijk ≤ cv, k = 1, . . . ,K (7)

xijk ∈ {0, 1}, i = 1, . . . , nc, j = 1, . . . , nc, k = 1, . . . ,K (8)

where: di is the demand of customer i; k: vehicle; K: set of vehicles; S: set
of customers; nc: Number of customers; v(S): Minimum number of vehicles to
attend S; cv: Capacity of vehicles; cij : cost of the path from customer i to
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customer j; TC: total cost of the routes; xijk: path from customer i to customer
j with vehicle k.

The Eq. 2 ensures that K vehicles will be used, while the Eq. 3 guarantees that
each route has its beginning and ending at the distribution center. Equation 4
defines that customers must be attended exactly one time and the Eq. 5 keeps
the flow ensuring that a vehicle arrives at a customer and out of it, preventing
that the route ends prematurely. The Eq. 6 prevents the formulation of routes
that do not include the distribution center. In this restriction, v(S) represents
the minimum number of vehicles required to attend a set of customers S. To
ensure that the number of vehicles used to attend the customers of set S is
not less than v(S), the restriction 6 establishes, indirectly, that the capacity of
the vehicle is not exceeded. However, to let this explicit, the Eq. 7 is used to
formulate the capacity restriction.

Finally, the Eq. 9 is used to evaluate the solutions generated by GA. It reflects
the value of the objective function (OF ) or fitness and involves the number of
vehicles used in the solution, violated restrictions (Eqs. 2 to 7) and the total cost
of routes (Eq. 1).

OF = TC + KWv + nrWr (9)

where: Wv is the weight assigned to the number of vehicles used in the solution;
nr is the number of violated restrictions and Wr is the weight given to the
violated restrictions.

2.2 Genetic Algorithm (GA)

The GA is an evolutionary computational technique that simulates the mech-
anisms of natural selection, genetics and evolution. In the last decades it has
been employed in several applications to solve complex optimization problems.
Its bias is how much better an individual adapts to its environment, the greater
their chances of surviving and generating offspring [16]. A GA individual rep-
resents a solution to the problem being solved. Each individual is defined as a
chromosome, consisting of genes, which represent variables of the problem, and
each position of a gene is defined as an allele.

In GA, the crossover operation consists in recombination of genes from
selected individuals, responsible to reproduce descendants more adapted to the
next generation. After a certain number of generations, it is common to occur
the loss of population diversity, which results in the premature stopping of the
GA leading to local optimum solutions. To avoid this problem, the mutation is
applied at a given rate of individuals (usually by randomly changing the alleles),
aiming to change the characteristic of the genes [17].

Other concepts associated with GAs are:

• Genotype: is related to the population in the computation space, in which
the solutions are represented to be easily understood and manipulated by
computers [18,19].
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• Phenotype: is related to the population in the real world solution space, in
which the solutions are represented to be interpreted in real world situations
[18,19].

• Encoding and Decoding: in the most cases, the phenotype and genotype
spaces are different. Encoding is an operation that transforms a solution from
the phenotype to genotype space, while decoding is responsible by transform-
ing a solution from the genotype to the phenotype space. The main encoding
schemes are: Binary, Value (integer, float, string, etc.), Permutation and Tree
[19,20]. Since these operations are carried out repeatedly during the fitness
value calculation (evaluation) in a GA, as illustrated in Fig. 2, they need to
be simple and fast.

Fig. 2. Encoding/decoding operations.

Based on the above explanation, it is observed that the encoding solution
scheme is an important step in the development of GA, since it is directly related
to the quality of the solutions found, as well as the computational time spent to
find them.

2.3 Some Recent Encoding Schemes Used in GA for Solving the
VRP and Its Ramifications

As observed in the recent literature, the most commonly used schemes for VRP
solution encoding are permutation and value (integer). Such representations can
be found, for example, in the works of Lu and Vincent [9], Lau et al. [4], Lee
and Nazif [2], Bermudez et al. [5] and Lima et al. [14].

Lu and Vincent [9] proposed a simple mixed encoding scheme (permuta-
tion and integer), illustrated in Fig. 3, which encapsulates a main chromosome
(permutation of costumers) and a ‘subchromosome’ formed by integer values
representing the number of customers on each route.

Fig. 3. Encoding scheme proposed by Lu and Vincent [9].
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Lau et al. [4] adopted an encoding scheme similar to that presented in [9], for
the Multidepot VRP, in which the subchromosome (first chromosome positions)
represents the number of costumers that each vehicle must attend, as well as the
depot each vehicle will depart to make deliveries (see Fig. 4).

Fig. 4. Encoding scheme proposed by Lau et al. [4].

It is important to note that in these cases additional mechanisms must be
used for route separation and also to bypass the problem of generating non-
feasible solutions after applying the crossover and mutation operators. However,
this latter mechanism is not clearly described in the above mentioned works.

Recently, Lima et al. [14] proposed a short binary encoding scheme for CVRP
in which the chromosome represents the set of customers that must be attended
by each vehicle, as can be seen in Fig. 5, while the sequence for visiting the
customers is solved by the Nearest Neighbor algorithm.

Fig. 5. Binary encoding scheme proposed by Lima et al. [14].

In this encoding scheme the alleles with value of 1 indicate the customers
that will be attended by a vehicle, that is represented by each line of the binary
matrix.

3 Materials and Methods

In the development of proposed encoding scheme, the programming language
C/C++ and GAlib library [21] were used. The GAlib is a free library widely
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used for solving combinatorial optimization problems. For evaluating the pro-
posal, experiments were performed and the results obtained were compared with
the best results found in the literature for a set of instances extracted from
Christofides and TSPLIB libraries, with up to 30 customers.

In the experiments we employed a desktop computer with the following con-
figurations: Intel Celeron 1.40 GHz processor; 4 GB of RAM; Windows 7 Ulti-
mate 32-bits operating system.

The following parameters (empirically defined) were employed by imple-
mented GA:

• Population Size = 1200;
• Number of Generations (used as stop criterion) = 5000;
• Population rate of replacement = 0.8;
• Elitism rate = 0.2;
• Crossover rate = 0.8;
• Selection Method = Roulette;
• Mutation rate = 0.01;
• Type of Mutation = Flip Bit.

4 Proposed Binary Encoding Scheme

The encoding scheme proposed in this work consists of a binary matrix of M =
nc ∗ 2 − 1 columns by K rows. The example shown in Fig. 6 illustrates the
solution encoding of a CVPR instance that involves nc = 7 costumers and K = 2
vehicles (as depicted in Fig. 1). The first nc columns of each row indicate the
costumers to be served by a vehicle, while the last nc − 1 columns consist of
a vector that indicates the permutations to be made in a matrix of integers
(Fig. 7), called permutation matrix, representing the order that the costumers
will be visited by the K vehicles.

Fig. 6. Proposed binary encoding scheme for CVPR.

The permutation matrix (that can be understood as a seed) containing nc
columns and K rows, shown in Fig. 7, is unique and must be generated before
the execution of GA using random permutations or some heuristic algorithm.
Thus, when it is combined with a GA chromosome (indicating the costumers to
be visited and how the visitation order will be permuted), a solution for CVRP
is generated, as shown in Fig. 8.
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Fig. 7. Permutation matrix (seed).

Fig. 8. Combining a permutation matrix with a chromosome to generate a solution for
CVRP.

In summary, combining a unique seed with the GA chromosomes a set of
different solutions for the CVRP is generated, each one providing the set of
customers to be visited by each vehicle as well as the order they will be visited.

It is valid to mention that the encoding scheme described here was inspired
by the work of Grassi [22], who proposed a similar way to represent solutions
to the Job-shop Scheduling Problem (FJSP), and is very different from those
employed in the VRP solution found in the literature, including the schemes
described in Sect. 2.3.

5 Experimental Results

To evaluate the proposed encoding scheme we executed the GA ten times for
each instance. Then, the results obtained were compared with the best solutions
found in the literature. To this end, we considered the optimal solutions presented
by Reinelt and Wenger [23] and by Ralphs et al. [24], respectively, for instances
extracted from Christofides and TSPLIB.

The quality of obtained solutions was evaluated by a measure known as GAP,
which is widely used in the literature to express how far the result obtained for
a problem is from the best result reported in the literature for that problem. In
our case, GAP = (OF − OFBest)/OFBest, being OF the best value of objec-
tive function (Eq. 9) obtained in the 10 executions of GA and OFBest the best
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solution found in the literature. In addition, we present in Table 1 results con-
sidering the population initiated in a random way (GA) and including in it a
feasible solution generated by Gillet & Miller heuristic (GA+GM).

Table 1. Experimental results of proposed scheme.

Instance OFBest GA GAP% GA+GM GAP% Time (s)

Eil7 114 114 0.00% 114 0.00% 30

Eil13 290 316 8.97% 308 6.21% 50

Eil22 375 472 25.87% 376 0.27% 100

Eil23 875 1025 17.14% 903 3.20% 110

Eil30 545 840 54.13% 750 37.61% 150

P-n16-k8 450 520 15.56% 462 2.67% 60

P-n19-k2 212 284 33.96% 255 20.28% 70

P-n20-k2 216 270 25.00% 255 18.06% 80

P-n21-k2 211 249 18.01% 229 8.53% 90

P-n22-k2 216 338 56.48% 268 24.07% 100

P-n22-k8 590 722 22.37% 618 4.75% 100

P-n23-k8 529 675 27.60% 574 8.51% 110

E-n13-k4 247 306 26.89% 302 22.27% 50

E-n22-k4 375 462 23.20% 390 4.00% 100

E-n23-k3 569 892 56.77% 690 21.27% 110

E-n30-k3 534 880 64.76% 687 28.65% 150

Average GAP% − − 29.6% − 13.14% −

As shown in Table 1, the proposed scheme provided good performance regard-
ing the quality of the solutions. Considering the results of GA+GM, the GAP in
most cases (except for instances “Eil30” and “E-n30-k3”) did not exceed 25%,
being that for 56% of tested instances the GAP was less than 10%. Still ana-
lyzing the GAP, the average value did not exceed 14%, highlighting the good
performance of our proposed approach.

With respect to computational cost, as can be seen in Table 1, the process-
ing time ranges from 30 s for the smallest instance (“Eil7”) to 150 s for larger
instances (“Eil30” and “E-n30-k3”). In addition, the results showed that the use
of Gillett & Miller heuristic to generate a feasible solution in the initial popula-
tion helps the GA to converge quickly to promising points in the search space,
generating solutions with good quality. It should be noted that the average time
spent in the execution of the Gillett & Miller algorithm was on average 1.7 s,
which shows that it does not compromise the computational cost of GA.

Despite the good results obtained by our approach, many improvements can
still be made in the proposed encoding scheme, such as: the use of more than one
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seed (matrix of permutation), the use of local search operators (k-opt, OR-opt,
k-Point Move and Cross-Exchange) and also by incorporating some local search
algorithm to refine the solutions generated by GA.

6 Conclusions

In this work we presented a new binary encoding scheme for GA to solve
the CVRP. From the computational experiments carried out with instances of
Christofides and TSPLIB, it was possible to conclude that the proposed scheme
provided good results considering the computational cost and the quality of solu-
tions. In addition, it was found that the chromosome representation is suitable
to met the specific characteristics of the CVRP, besides it is simple to interpret
and adapt. The experiments also pointed out that the use of Gillett & Miller
heuristic helped the convergence of GA to promising points in the search space.
In future works some improvements in the proposed scheme will be investigated,
such as: (i) the use of Clarke and Wright heuristic to generate feasible solutions
to be injected into the initial population of the GA; (ii) the use of local search
operators (k-opt, OR-opt, k-Point Move and Cross-Exchange), aiming to gen-
erate different solutions from the same seed; (iii) incorporate some local search
algorithm to refine the solutions generated by GA and (iv) apply the proposed
scheme in a large number of instances found in the literature, in order to evaluate
the applicability of our approach in real scenarios.
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Abstract. Class imbalance is among the most persistent complications
which may confront the traditional supervised learning task in real-world
applications. Among the different kind of classification problems that
have been studied in the literature, the imbalanced ones, particularly
those that represents real-world problems, have attracted the interest of
many researchers in recent years. In order to face this problems, different
approaches have been used or proposed in the literature, between then,
soft computing and ensemble techniques. In this work, ensembles and
fuzzy techniques have been applied to real-world traffic datasets in order
to study their performance in imbalanced real-world scenarios. KEEL
platform is used to carried out this study. The results show that different
ensemble techniques obtain the best results in the proposed datasets.
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1 Introduction

Class imbalance is among the most persistent complications which may confront
the traditional supervised learning task in real-world applications [1]. The prob-
lem appears when the number of instances in one of the classes significantly
outnumbers the number of instances in the other ones. This situation is a hand-
icap when trying to identify the minority class, as the learning algorithms are
not usually adapted to such characteristics. Without the loss of generality, it
can be assumed that the class of interest is the minority class, while the other
ones are the majority ones. Various applications demonstrate this characteristic
of high class imbalance, such as bioinformatics, e-business, information security,
and national security.

Among the different kind of classification problems that have been studied in
the literature, the imbalanced ones, particularly those that represents real-world
c© Springer International Publishing AG, part of Springer Nature 2018
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https://doi.org/10.1007/978-3-319-91641-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91641-5_16&domain=pdf


186 P. Lopez-Garcia et al.

problems, have attracted the interest of many researchers in recent years [2,3].
In particular, in traffic environments, the apparition of a particularly compli-
cated state of the road (i.e. traffic congestion) will represent a minority class for
prediction algorithms, while its proper detection in advance is a topic of interest
for administrations and users.

One of the most problematic issues in the development of actual cities is road
traffic. This problem is actually one of the most important study focuses of the
Intelligent Transportation Systems (ITS) field. In the last decades, intelligent
techniques such as those mentioned before have been applied to solve this prob-
lem. In particular fuzzy systems are used in [4] to infer the future state of the
road by combining several systems in a hierarchical way. In addition different
metaheuristics have been used in order to optimize systems, such as Support
Vector Machines [5] (SVM); Genetic Algorithms (GA) are used in [6], while
Particle Swarm Optimization (PSO) is implemented in [7], among others.

Recently, ensemble learning is a popular and significant research in data
mining and machine learning area. Ensemble classifiers have received consider-
able attention in applied statistics and machine learning for over a decade [8].
Several studies demonstrate that the practice of combining several models into
a aggregated one leads to significant gains in performance over its constituent
members [9].

The principal aim is to make a comparative study between the performance
of ensembles and fuzzy recent approaches in traffic state prediction, which is a
multi-classification problem with a high imbalance between classes. Data used
in this work come from two sources. The first one comes from cameras in the
city of Helmond (The Netherlands) collected by TASS International company1

and took part of the developing of different models for traffic systems in Horizon
2020 TIMON project2 (Enhanced real time services for optimized multimodal
mobility relying on cooperative networks and open data). Another data source
used for the development of this work is the data obtained in Lisbon (Portugal)
A5 highway, and used in the European Project ICSI (Intelligent Cooperative
Sensing for Improved Traffic Efficiency).

The rest of the paper is structured as follow. Section 2 contains the state of
the art of the two kind of techniques applied in this work: ensembles and meta-
heuristics. Section 3 is dedicated to the descriptions of the different methods
used for this comparative study. In Sect. 4 information about the datasets used
and its comparative is shown. Finally, in Sect. 5 the conclusions obtained for this
study are collected.

2 Background

In this section, a brief study of the state of the art is presented in order to
show the contributions of the community to the imbalance data problem using
ensembles (Sect. 2.1), in specially boosting and bagging algorithms, and meta-
heuristics (Sect. 2.2).
1 https://www.tassinternational.com/.
2 https://www.timon-project.eu/.

https://www.tassinternational.com/
https://www.timon-project.eu/
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2.1 Ensembles

Ensemble learning is defined as the use of multiple learning algorithms to obtain
better predictive performance that could be obtained from any of these algo-
rithms alone [10]. Over the last decade, this kind of approach has been used
in different themes such as optimization [11], medicine [12], or ITS [13]. Focus-
ing in imbalance classification problems, these algorithms can be found in many
articles. For example, in [14], Lim et al. propose a evolutionary cluster-based
oversampling ensemble framework. This method is based on contemporary ideas
of identifying oversampling regions using clusters. The evolutionary part of the
ensemble is used to optimize the parameters of the data generation method and
to reduce the overall computational cost. The proposal is applied to a set of 40
imbalance datasets.

Among the different ensemble techniques, two of them can be frequently
found in the literature applied to several themes: bagging and boosting tech-
niques [15]. While in bagging several models are created using different subsets
of the training set [16], in boosting, a set of weak learning algorithms create a
single strong learner and produce only one model [17]. Both kind of methods
have been used in imbalance classification.

Authors in [9] analyze different corrective and total corrective boosting algo-
rithms in order to present its own boosting algorithm adding a strong classifier
to the linear constraints of LPBoost. Besides, in [18], an Adaboost algorithm to
learn fuzzy-rule-based classifiers is proposed. Adaboost approach is applied to
approximate and descriptive fuzzy-rule bases, and the performance of the pro-
posed method is compared with other classification schemes applied on a set of
benchmark classification tasks.

Other example can be found in [19]. This article presents a research about
the Roughly Balanced Bagging and its basic properties that can influence its
classification performance. Variables such as the number of component classifiers,
their diversity, and ability to deal with difficult types of the minority examples
are studied. The experiments are carried out using synthetic and real life data.

The number of articles related with this theme is wide extended in the lit-
erature, which means that it is an active issue. In this section, some interesting
examples have been exposed, but, in order to give more information and related
articles about the problem we are dealing with, interested reader are referred to
[20–22] for different surveys about this issue.

2.2 Soft Computing Techniques Applied to Imbalance Datasets

Soft Computing techniques have been widely used since its presentation in 90’s
by Zadeh [23]. Machine Learning, Fuzzy Logic, and Evolutionary Computation
methods are inside the vast group of Soft Computing techniques. Techniques such
as GAs, SVM, Fuzzy Rule Based Systems, PSO and so on, have been developed
and applied to different themes along the years, showing their good performance
and the huge range of possibilities that they offer.
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Regarding Fuzzy Logic techniques, fuzzy logic methods have been used in
imbalance cases of study along the years. For example, in [24], a fuzzy technique
is developed to predict heart diseases. The technique is divided in three phases:
first, a fuzzy c-means clustering algorithm is used. Then, rules are generated
from the rough set theory, and those rules are used for prediction with the fuzzy
classifier.

Another case can be found in [25], where linguistic Fuzzy Rule Based Systems
have been applied to imbalance datasets to deal with the overlapping problems
between the concepts to be learned. This problem is more severe in imbalance
datasets due to the most of the techniques try to correctly classify the majority
class and, in cases of imbalance distribution of the data, it is the minority class
where the most important data can be found. Datasets used are extracted from
KEEL dataset repository.

Finally, authors of this study are aware of the huge amount of related papers
that can be found in the literature. In this work, we have mentioned some of the
most interesting research papers, in order to give an idea of the activity that is
being carried out in the community. For further information, we recommend the
reading of any of the review papers that can be found in the literature, such as
[26], or [27]. In this work, fuzzy methods will be used to study their performance
in a real imbalance scenario.

3 Techniques Used for the Comparative Study

As mentioned in previous sections, one of the aims of this work is to study the
performance of ensembles and fuzzy meta-heuristic techniques when they are
applied to imbalanced problems. A total of 10 techniques are chosen, divided in
two principal groups: six ensemble techniques, and four fuzzy ones. Due to the
limited space, only the name of the techniques as well as a brief description of
them are listed below:

– Ensemble techniques
1. AdaBoost (I) [28] is an adaptation of general Adaboost for imbalance

datasets.
2. MSSMOTE Bagging [29] oversamples minority class instances using

MSMOTE preprocessing algorithm. In this method both classes con-
tribute to each bag with N instances.

3. MSSMOTE Boosting [30] introduces synthetic instances in each iteration
of AdaBoost technique, using the MSMOTE data preprocessing algo-
rithm.

4. RUSBoost [31] removes instances from the majority class by random
undersampling the data-set in each iteration.

5. SMOTE Bagging [32] oversamples minority class instances using SMOTE
preprocessing algorithm.

6. SMOTE Boosting [33] introduces synthetic instances in each iteration of
AdaBoost technique, using the SMOTE data preprocessing algorithm.
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All ensemble techniques used in this work have C4.5 algorithm as base
classifier.

– Fuzzy Classification techniques
1. AdaBoost (C) [34] is a boosting algorithm, which repeatedly invokes a

learning algorithm to successively generate a committee of simple, low-
quality classifiers.

2. LogitBoost [35] is a backfitting algorithm, which repeatedly invokes a
learning algorithm to successively generate a committee of simple, low-
quality classifiers.

3. FARCHD-C [36] mines fuzzy association rules limiting the order of the
associations in order to obtain a reduced set of candidate rules with less
attributes in the antecedent.

4. C4.5 [37] is a decision tree generating algorithm that it induces classifi-
cation rules in the form of decision trees from a set of given examples.
C4.5 is based on ID3 algorithm.

It is important to remark that the different between AdaBoost(C) and
AdaBoost(I) is the base classifier. While the first one counts with fuzzy classi-
fiers, the second one uses a C4.5 algorithm as base classifier.

4 Experimentation

This section compiles the experimentation carried out in this work. Datasets used
in this work as well as the information related to them are exposed in Sect. 4.1
while the results, and statistic methods applied are summarized in Sect. 4.2.

4.1 Datasets and Preprocessing

Datasets used in this work contains real data from traffic cameras in the city of
Helmond (The Netherlands). This data is provided by TASS international (see
footnote 1) and used in the Horizon 2020 project TIMON project (see footnote
2) (Enhanced real time services for optimized multimodal mobility relying on
cooperative networks and open data). Congestion in the road is used as class
variable. In the raw data, this variable can take four different values: Normal,
Increasing, Dense and Congestion. In order to simplify and make the problem
equal to the techniques mentioned in the previous section, the classes have been
reduced by two: Normal (majority class) and Congestion value (minority class),
which includes Increasing, Dense and Congestion instances. Each dataset counts
with a total of 22 variables, which includes not only information about the speed,
the number of vehicles or the occupancy of the road, but the weather when data
was taken. Data used in this work are collected during two months by four
cameras, and divided in four different horizons of time (15, 30, 45 and 60 min
respectively), which makes a total of 16 datasets.

Besides, data collected from Lisbon highway A5 used in EU project ICSI3

have been also used. This highway is a 25 km long motorway in Portugal that
3 http://www.ict-icsi.eu.

http://www.ict-icsi.eu
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connects Lisbon to Cascais. Data used in this work was collected from seven sen-
sors displayed in the road and transformed into datasets. As well as in Helmond
datasets, congestion in the road is taken as class variable. In this case, this class
contains a value of congestion that appear in the next hour at a certain point
and can take as values LOW , if the number of vehicles are below the percentile
15; MED (Medium), if the it is between percentiles 15 and 30; and HIGH oth-
erwise. Following the same logic applied to previous datasets, LOW and MED
instances have been labeled as Normal (majority class) while HIGH instances
have been changed to Congestion label (minority class). Data was collected dur-
ing a month. The three first weeks are used as training data while the last week
of the month is used to validate the solutions. These datasets are called BRISA
datasets along the rest of the work.

Information about Imbalance Ratio (IR) and number of instances in each
dataset are shown in Table 1.

Table 1. Information about the datasets used in this work

Name of dataset N. instances IR

TASS datasets C1 5333 8.1

C2 5338 8.2

C28 5348 8.16

C47 5449 7

Brisa datasets CL600 721 2.04

CL1980 1441 2.26

CL3600 721 5.43

CL4000 1441 2.57

CL6800 721 2.13

CL8050 1441 2.25

CL9400 721 2.53

4.2 Results

KEEL software [38] has been used to carry out the experiments. In the case we
are dealing with, the module for imbalanced techniques are used. The experimen-
tations have been executed in a Intel Xeon E5 2.30 GHz with a RAM memory of
32 GB. Related with the configuration of the techniques used in the experimen-
tation, the default configuration given by KEEL has been retained. The Area
Under the Curve (AUC) has been used as error metric. To show TASS dataset
results, datasets are divided by id of the camera and horizon of time. Those
results are shown in Table 2. Bold values represent the two best results obtained
in each dataset.
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Table 2. AUC values obtained for each technique in each dataset and horizon of time
for TASS datasets

Techniques C1 C2 C28 C47

15 30 45 60 15 30 45 60 15 30 45 60 15 30 45 60

C4.5 .968 .958 .956 .963 .970 .954 .955 .955 .963 .949 .958 .962 .958 .964 .940 .953

FARCHD .805 .727 .642 .623 .788 .729 .612 .575 .808 .723 .667 .500 .829 .732 .642 .622

AdaBoost(C) .549 .563 .508 .500 .564 .614 .507 .501 .560 .540 .510 .500 .566 .541 .512 .501

LogitBoost .672 .668 .585 .537 .703 .678 .594 .548 .659 .657 .567 .531 .685 .662 .604 .560

AdaBoost(I) .939 .950 .957 .941 .951 .940 .950 .953 .952 .952 .938 .941 .950 .945 .930 .952

MSMOTEBagging .872 .942 .943 .941 .886 .939 .932 .929 .903 .945 .947 .936 .912 .937 .926 .927

MSMOTEBoost .916 .948 .935 .932 .936 .939 .925 .918 .939 .942 .940 .934 .935 .952 .934 .930

RUSBoost .976 .973 .971 .968 .973 .972 .967 .965 .972 .977 .968 .971 .971 .973 .968 .969

SMOTEBagging .916 .953 .936 .938 .923 .941 .934 .923 .937 .947 .943 .932 .893 .945 .926 .937

SMOTEBoost .956 .963 .960 .954 .946 .954 .954 .946 .946 .961 .959 .955 .952 .960 .958 .955

As it can be seen, three techniques stand out from the rest: RUSBoost,
SMOTEBoost, and C4.5. In case of RUSBoost, it obtains one of the two best
results in every dataset used, being the first one in each one of them. For SMOTE-
Boost, it gets one of the two best AUC values in 7 out of 16 datasets. Finally,
for C4.5, it achieves a value between the best two in 10 out of 16 datasets,
especially in C2 dataset. About the rest of the techniques, in general, ensemble
techniques obtain better results than fuzzy ones. Focusing in the fuzzy tech-
niques, though FARCHD and C4.5 achieves good performance in this problem
without changing anything in its execution, AdaBoost(C) and LogitBoost do
not obtain a considerable performance. In fact, AdaBoost(C) obtain the lowest
AUC values in every dataset in comparison with the rest of techniques. If both
AdaBoost techniques presented in this experimentation are compared, ensemble
version of AdaBoost (AdaBoost(I)) outperforms the fuzzy one. On the other
hand, taking into account ensemble techniques, RUSBoost outperforms the rest
of them, followed by SMOTEBoost. However, all the techniques obtain a good
performance in every dataset and horizon of time, which always achieve an AUC
value higher than 0.9. About the horizon of time, the increasing of this value
does not seem to affect to the performance of the techniques significantly. Only
AdaBoost(C) and LogitBoost notice the change of this value. The rest of the
techniques obtains almost the same performance when the horizon of time is
15 min than when it takes the value 60 min. Some of them (SMOTEBagging, C1
dataset) even improve its performance between these two horizons.

Table 3 contains the results obtained by each one of the techniques for each
BRISA dataset. As in the previous results, the two best values are highlighted
in bold.

The results show that MSMOTEBagging is the best technique so far in these
datasets, obtaining 4 out of 7 best values, following by RUSBoost and SMOTE-
Bagging, which both obtain 3 out of 7 best results. For the rest of the tech-
niques, about fuzzy techniques used, only AdaBoost (C) and LogitBoost obtain
bold values. Although their performance is not far from those obtained by the
best techniques, they do not reach the high AUC value obtained by the rest of
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Table 3. AUC values obtained for each technique in each Lisbon dataset

CL600 CL1980 CL3600 CL4000 CL6800 CL8050 CL9400

C4.5 .893 .919 .898 .945 .872 .940 .875

FARCHD .830 .955 .906 .928 .893 .951 .954

AdaBoost(C) .882 .938 .808 .938 .864 .948 .979

LogitBoost .853 .951 .891 .945 .884 .945 .975

AdaBoost(I) .886 .954 .859 .941 .852 .957 .892

MSMOTE-Bagging .924 .961 .928 .941 .909 .962 .867

MSMOTE-Boost .884 .957 .899 .954 .881 .965 .871

RUSBoost .902 .955 .919 .955 .909 .951 .896

SMOTEBagging .914 .958 .935 .958 .901 .954 .875

SMOTEBoost .928 .934 .915 .941 .897 .940 .921

the techniques. Adaboost (C) and LogitBoost obtain one bold value, in dataset
CL9400, being the two best techniques in the mentioned dataset. Comparing the
results obtained in the previous datasets, in this case, bagging techniques over-
pass boosting techniques, being RUSBoost the only one that can be compared
with the results obtained by them (Table 3).

In order to assess if the differences in performance among the techniques
studied here are significantly different we employed non-parametric tests fol-
lowing the guidelines given by Garćıa et al. in [39]. The procedure carried out
is described next. We first apply Friedman’s non-parametric test for multiple
comparison at a significance level α ≤ 0.05 to assess if we can reject the null
hypothesis of similar performance among all algorithms. If so, then we evalu-
ate if the performance of the best algorithm according to Friedman’s averaged
ranking versus the other classifiers is significantly better. To this end, we apply
Holm’s [40] and Finner’s [41] post-hoc tests at a significance level α ≤ 0.05 using
the best method as control algorithm. Following this procedure, we analyse the
performance of the algorithms globally over the two datasets.

We do the exercise of evaluating the performance of the methods over all
datasets. According to Friedman’s tests there exists significant differences among
algorithms. The averaged ranking displayed in Table 4 confirm that RUSBoost is
the most robust classifier followed by SMOTEBoost. On the contrary, the three
fuzzy algorithms are clearly the ones that show a worse performance, whereas
the result of the rest of algorithms is very similar. Using RUSBoost as control
algorithm for the Holm’s and Finner’s post-hoc tests, we observe in Table 5 that,
taking into account all datasets, it obtains significantly better AUC values that
the other studied methods, excepting SMOTEBoost, although even in this case
the significance level is quite near to the threshold, being equal to 0.07.
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Table 4. Average rankings of the
algorithms provided by Friedman’s
non-parametric test for multiple
comparisons over all datasets

Algorithm Ranking

AdaBoost(I) 4.9783

C4.5 4.2391

FARCHD 7.5652

AdaBoost(C) 9.1739

LogitBoost 8.1087

MSMOTEBagging 5.2609

MSMOTEBoost 5.3913

RUSBoost 1.8043

SMOTEBagging 5.0652

SMOTEBoost 3.413

Table 5. Adjusted p-value returned by Holm’s
and Finner’s post-hoc tests for all datasets

Algorithm Adjusted Adjusted
p-value Holm p-value Finner

AdaBoost(C) 0 0

LogitBoost 0 0

FARCHD 0 0

MSMOTEBoost 0.000353 0.000132

MSMOTEBagging 0.000541 0.000195

SMOTEBagging 0.001039 0.00039

AdaBoost(I) 0.001134 0.000486

C4.5 0.012778 0.007185

SMOTEBoost 0.07157 0.07157

5 Conclusions

In this work, ensemble and fuzzy rules techniques have been applied to imbalance
real traffic datasets in order to classify correctly the state of the road in a real
scenario. In this case, data collected from cameras in the city of Helmond (The
Netherlands), and from A5 Highway in Lisbon are used. Data from cameras was
collected by TASS international and used in H2020 TIMON project. In case of A5
highway, this data was used in ICSI project. The aim of this article is to compare
the performance of ensemble and fuzzy techniques in imbalance real scenarios.

As results, in Helmond datasets, ensemble techniques outperform those fuzzy
techniques used in the experimentation, with two techniques between the best
ones. Three techniques stand out the rest: RUSBoost, SMOTEBoost, and C4.5.
Among all, RUSBoost obtained at least one of the two best values in every
dataset used. For SMOTEBoost and C4.5, they obtained 7 out of 16 and 10 out
of 16 best values respectively. Regarding Lisbon datasets, ensemble techniques
again, specially Bagging techniques and RUSBoost, obtain better performance
than fuzzy techniques. All these results are checked using different statistical
tests.

As future works, other techniques for both groups can be used. Besides,
the experimentation could be applied to more datasets and other horizons of
time. Regarding this, one future work to take into account is to adapt ensemble
techniques to work with multiclass classification. This will increase the difficulty
of the problem as well as the IR of each dataset, making the data a good real
benchmark to use in comparatives like the presented in this paper.
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Abstract. This paper focuses on the design and implementation of a
bike route optimization approach based on multi-objective bio-inspired
heuristic solvers. The objective of this approach is to produce a set of
Pareto-optimal bike routes that balance the trade-off between the length
of the route and its safety level, the latter blending together the slope of
the different street segments encompassing the route and their average
road velocity. Additionally, an upper and lower restriction is imposed on
the time taken to traverse the route, so that the overall system can be
utilized for planning bike rides during free leisure time gaps. Instead of
designing a discrete route encoding strategy suitable for heuristic opera-
tors, this work leverages a proxy software – Open Trip Planner, OTP –
capable of computing routes based on three user-level preference factors
(i.e. safety, inclination and duration), which eases the adoption of off-the-
shelf multi-objective solvers. The system has been assessed in a realistic
simulation environments over the city of Bilbao (Spain) using multi-
objective bio-inspired approaches. The obtained results are promising,
with route sets trading differently distance for safety of utmost utility
for bike users to exploit fully their leisure time.

Keywords: Bike route planning · Multi-objective optimization
Time-constrained routing · Open Trip Planner · jMetal

1 Introduction

Thanks to the rapid advance of technology, transportation networks have become
increasingly complex along the last decade. This fact has led the mobility to be
a crucial aspect for society, affecting its quality of life directly. In this way, the
necessity for efficient transport means has increased the demand for Intelligent
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Transportation Systems (ITS), lying at the core of many initiatives focused on
shedding smartness and intelligence in different paradigms related to transporta-
tion and mobility [1].

Among such paradigms, route planning has gained more and more impor-
tance in the last years [2]. It is an undoubted fact that daily transits (e.g. from
home to work and return) have become a habit for many people worldwide. In
this context, by virtue of well-connected, advanced transport networks, travel-
ers and commuters change from one transportation mode to another every day.
Taking the underground, then the bus, and finishing the travel on foot is an
example of the typical traveling routine for many people nowadays. This multi-
modal transport aims at providing the traveler feasible routes between a certain
origin and destination, involving diverse public and private transportation modes
connected throughout different schedules [3].

In this context the so-called mono-modal route planning, which correspond-
ingly consists of routes performed by a single transport type, are also demanded
by people for very diverse purposes, not only by the need for reaching their jobs
as postulated above. Mono-modal routes performed by car, bike or foot are often
developed for leisure, last-mile packet delivery schedules, and public transport
planning, among others [4,5]. As in any other routing construction process sev-
eral route planners are available in the market or in the Web to help users design
optimal routes according to their needs and requirements. The study presented
in this work focuses in this latter case, specifically, in routes performed by bike.

In the last couple of decades a growing number of route planning systems
have been developed, which are freely available for the community of users.
These tools, mostly accessible from different platforms (with deployable versions
for computers, smartphones or tablets), are flexible enough to let users comfort-
ably query routes in any place and time. In all cases, one of the characteristics
shared by all route planners is that the provided portfolio of routes are strictly
based on parameters that the user enters as an input. However, it is intuitive
to think that the user could tolerate a certain degree of flexibility in his/her
inputs to the routing system, should this flexibility lead to better routes under a
certain optimality criterion (e.g. distance, travel time or exposure to traffic). As
surveyed next, the relative scarcity of contributions in the literature exploring
the implications of this flexibility in bike routes is what motivates to conduct
this study.

1.1 Related Work

Some studies can be found in the literature focused on bike route planning. To
begin with, a web-based platform is presented in [6] to help cyclists determine
safe and efficient routes. The system developed in that study calculates routes
using a weighted combination of five different metrics, which are considered
to optimize a trade-off among various safety and distance-related factors. A
heuristic multi-modal route planning system is introduced in [7], in which cycling
trips are considered. The system in that work enforces the user to select both
origin and destination of the route, along with other preferences. One of the
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tested scenarios is bike route from work to home in an energy-efficient manner.
In any case, authors use a single objective aggregating all route metrics.

Most existing planning systems for bike routing do not formulate the opti-
mality of explored routes from a multi-criteria or multi-objective approach, but
rather opt for aggregate metric models as the ones mentioned above. As a result,
planning systems cannot provide the users with diverse sets of suggested routes,
hence narrowing the amount and diversity of information provided to cyclists for
their decision making. A few exceptions have been published recently, as in [8],
where a multi-criteria bicycle routing problem is tackled. In this work, authors
develop a set of heuristics for speeding up the multi-criteria route search. Con-
cretely, the objectives to optimize in this problem are the comfort, duration and
inclination of the route. Additionally, the heuristic presented in that paper is
an extension of the standard multi-criteria label-setting algorithm [9]. Another
interesting example of this kind is the one proposed by Caggiani et al. in [10].
In this work, a multi-objective biking route choice model is proposed for a bike-
sharing mobile application. One of the research challenges addressed therein is
to offer the user the appropriate starting and ending bike hiring station. To
this end, the suggested origin station is set to the nearest one satisfying the
requirements of the user, whereas a similar criterion is applied for selecting the
destination station. The system developed in [10] informs the user with the start-
ing and ending bike sharing stations, and the best path to follow according to
time, distance, pollution and safety. Additionally, users can select an alternative
route according to the parameter that they are willing to prioritize.

1.2 Research Contribution

This manuscript aims at contributing to the observed scarcity of references deal-
ing with multi-objective bike route planning by undertaking the design and prac-
tical implementation of an bike path planning system for random bike routes gen-
eration, grounded on multi-objective bio-inspired optimization heuristics. Several
novel ingredients are introduced in our problem formulation, the most relevant
being (1) the consideration of lower and upper trip time constraints to model the
case where the planning system is used for e.g. leisure/sport; (2) the derivation
of a quantitative metric to evaluate the degree of safety associated to a given
route with respect to its topological profile and the speed of motor vehicles along
its segments; and (3) four different bio-inspired multi-objective solvers (namely,
NSGA-II [11], MOEA/D [12], SMS-EMOA [13], and SMPSO [14]) to efficiently
balance the Pareto trade-off between the safety level and the distance of the
route, always subject to the imposed time constraints. The (pseudo) Pareto-
optimal set of routes produced by any of these can be informed to the user if
the system so that he/she has the freedom to choose the one that matches best
his/her preferences with respect to the considered objectives.

The proposed system has been assessed in a realistic environment using Open
Trip Planner (OTP [15]) as the simulation framework. Experimental results from
three different use cases located in the city of Bilbao (Spain) are presented and
discussed, all using real data sources, namely, the Open Street Map of the city
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and its Digital Elevation Model (DEM). The analysis of the obtained route
portfolios evinces the practicality of the proposed approach, and paves the way
towards extending the problem formulation so as to accommodate other manifold
route metrics.

The rest of the paper is structured as follows. Section 2 formulates the bi-
objective optimization problem considered in this study, whereas Sect. 3 elabo-
rates on the considered multi-objective heuristics. Section 4 describes in detail
the deployed simulation environment. Next, the experimentation performed is
shown and discussed in Sect. 5. Finally, Sect. 6 ends the paper and outlines future
research.

2 Problem Definition

As has been explained beforehand, the problem tackled in this work is the opti-
mization of bike routes, bearing in mind two different objectives (distance and
safety of the route) and the compliance with lower and upper time constraints.
According to Fig. 1, the scenario model on which this problem is formulated
gravitates on the position (lat�, lon�) where all bike routes depart from, emu-
lating e.g. a bike ride that a user is willing to enjoy from home within his/her
limited leisure time. For simplicity in subsequent algorithmic explanations, we
assume that (lat�, lon�) ∈ [latmin, latmax] × [lonmin, lonmax], i.e. the scenario
and the produced routes themselves are located within a maximum square area.

: Initial point

(lonmin, latmin)

(lonmax, latmax)

: Route destination
points

Distance

In
cl
in
a
ti
o
n

S
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ty

ri
sk

Distance

fS(r)

fD(r)

Fig. 1. Schematic diagram of the routing scenario tackled in this paper.

In this scenario a route ri will be given by a variable-length sequence of
segments (s1i , . . . , s

Ni
i ), where sji denotes the j-th segment of route ri and Ni the

overall number of segments of the entire route. Each segment sji is composed by
a set of parameters,

sji
.= {(latj,oi , lonj,o

i ), (latj,di , lonj,d
i ), dji , t

j
i , α

j
i , v

j,max
i } (1)

that characterize the segment in terms of its latitude/longitude extremes (o:
origin, d: destination), its length dji ∈ R

+, the time tji ∈ R
+ taken to traverse

it by bike, its inclination profile αj
i ∈ R[0, 90], and maximum speed vj,max

i ∈
R[0, V max] of the road traffic along the segment, where V max is the maximum
admissible road vehicle speed as per the legislation of the scenario at hand.
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Given that we seek continuous routes, they should all fulfill (lat1,oi , lon1,o
i ) =

(lat�, lon�) and

(latj,di , lonj,d
i ) = (latj+1,o

i , lonj+1,o
i ), ∀j = 1, . . . , Ni − 1. (2)

Based on the above notation, the overall distance and time of the route will
be given by fD(ri)

.=
∑Ni

j=1 dji and T (ri)
.=

∑Ni

j=1 tji , i.e. the sum of segments’
distance/time.

Intuitively, the level of safety when a bike traverses route ri should be driven
by two different aspects: first, the inclination of its segments should be as close
to 0 as possible (namely, a flat segment) so that the rider does not loose control
of the bike due to either a high speed and risk to encounter unavoidable moving
obstacles along the segment (downhill), or a physically demanding uphill segment
that could put in danger the health of the biker and his/her capability to react
against vehicles in the opposite direction. All in all, it should be clear that the
inclination of the segment as per αj

i plays a crucial role when quantifying the
degree of safety of a segment. Based on this rationale and the notation introduced
above, we propose a measure of route safety as

fS(ri)
.=

Ni∑

j=1

(
dji/ cos αj

i

)vj,max
i /V max

(3)

from where it is straightforward to note that the higher the value of fS(ri) is, the
less safe route ri will be. In other words, fS(ri) must be conceptually conceived as
a measure of the risk assumed by the biker when traversing route ri, which should
be minimized in the problem formulation. The baseline user parameters required
for stating the problem also include an upper bound Tmax for the trip time T (ri)
needed to complete route ri. Routes ri′ for which T (ri) > Tmax should not be
allowed to appear in the eventually output set of routes. Correspondingly, the
minimum trip time is defined as a fraction ρ ∈ R[0, 1] of Tmax, such that a
feasible route ri should meet T (ri) ≥ ρ · Tmax in all cases. This parameter ρ is
input by the user to reflect his/her tolerance respect to the admissible maximum
time for the bike ride.

This notation being defined, the bike routing problem addressed in this paper
can be formulated as the discovery of a set of routes that balances their safety and
distance values in a Pareto optimal fashion satisfying, at the same time, lower
and upper bounds in regards to their total duration. Mathematically:

minimize
R ∈ R fS(r), maximize

R ∈ R fD(r), (4a)

subject to T (ri) ≤ Tmax, (4b)

T (ri) ≥ Tmin = ρ · Tmax, (4c)

(lat1,oi , lon1,o
i ) = (lat�, lon�) ∀ri ∈ R, , (4d)

(latj,di , lonj,d
i ) = (latj+1,o

i , lonj+1,o
i ), ∀j = 1, . . . , Ni − 1, (4e)

where R denotes a variable-length set of trip routes rooted on (lat�, lon�), and
R the number of all possible route sets satisfying this latter constraint.
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3 Considered Solvers

We have chosen four population-based bio-inspired algorithms to solve the above
bi-objective problem in a computationally efficient fashion. As a result, not only
we obtain an insight of the solutions that can be obtained, but we can also
determine which solver provides routes with best Pareto quality in terms of
convergence and diversity.

However, before proceeding with the explanation of the utilized solvers, we
delve into the strategy adopted to encode routes so that they can be handled
by their heuristic operators. In this regard the numerical encoding does not
represent a route by itself, but rather a set of factors that can be used to calculate
a route by means of the OTP route generation engine. This way, each candidate
route (rp) within the P -sized populations these algorithms is a vector comprising
the following five values:

– Latitude lat
Np
p and longitude lon

Np
p of the destination location of route rp.

Rather than using the true coordinates in the candidate, the relative difference
between the origin location (lat�, lon�) and the coordinates (lat

Np
p , lon

Np
p ) is

instead used.
– Safety preference (Sp ∈ R[0, 1]), which stands for the priority that the OTP

route planner should grant to the safety of the route. If this value is high,
routes with a high safety will be better rated and output by the engine.

– Inclination preference (Ip ∈ R[0, 1]): the importance that the planner endows
to the aggregate inclination of the route.

– Duration preference (Dp ∈ R[0, 1]): the importance that the route planner
gives to the duration of the route.

These values are modified along the execution by means of the bio-inspired
operators of every solver, repaired to ensure that Sp + Ip + Dp = 1 ∀rp in the
population, and delivered to the OTP engine as new routing requests to produce
routes based on the new set of preferences. Once created, every newly produced
route is evaluated in terms of safety and distance, and then ranked and sorted
as defined by the heuristic algorithm at hand.

In this regard, three of the selected algorithms are NSGA-II [11],
MOEA/D [12], and SMS-EMOA [13], which are archetypal of Pareto dom-
inance based, decomposition based, and indicator based evolutionary algo-
rithms, respectively. We also added a particle swarm optimization technique,
SMPSO [14], which has shown a remarkable performance in solving continuous
multi-objectives problems as the one we are dealing with. We briefly describe
these metaheuristics next:

– NSGA-II (Non-dominated Sorting Genetic Algorithm II) is a generational
genetic algorithm which has become the most well-known and widely used
multi-objective algorithm since it was first proposed. It applies a Pareto rank-
ing scheme to foster the convergence to the Pareto front and the crowding
distance density estimator to promote the diversity of the front of solutions
it is managing.
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– MOEA/D (Multi-Objective Evolutionary Algorithm Based on Decomposi-
tion) is a steady-state evolutionary algorithm based on an aggregative app-
roach with the aim of decomposing a multi-objective problem in a set of single-
objective subproblems that are solved at the same time by taking into account
information of a number of neighbors. We use in this paper the MOEA/DE
version [16], which uses differential evolution instead of the mutation and
crossover operators of the original proposal.

– SMS-EMOA (S-Metric Selection EMOA) is also an steady-state evolutionary
algorithm which is based on NSGA-II but, instead of using the crowding dis-
tance density estimator, it applies the concept of hypervolume contribution.
The idea is that, after applying the ranking procedure, the solution belonging
to the last rank having the lowest contribution to the hypervolume of the set
of solutions of that rank is removed.

– SMPSO (Speed-constrained Multi-objective PSO) is particle swarm optimiza-
tion algorithm whose main features is the use of a velocity constraint mech-
anism, to avoid the particles to fly beyond the limits of the search space,
and an external bounded-sized archive to store the non-dominated solutions
found during the search. This archive is used also for leader selection and
the crowding distance density estimator is used to remove solutions when it
becomes full.

4 Description of the Simulation Environment

As has been mentioned in previous sections, the developed route planning system
hinges on the route generation functionality provided by the OTP platform, an
open source framework for mono and multi-modal journey planning. It follows
a client-server model, and provides a map-based web and smartphone interface,
as well as a REST API for its use with third-party applications. OTP operates
with different open data standards, such as GeoTIFF, Protocol Buffers, Gen-
eral Transit Feed Specification (GTFS) and Open Street Map (OSM). Different
reason have motivated the use of this platform:

– OTP is open source in its entirety, easing its adaptation to the specific sim-
ulation scenarios considered in this study.

– OTP efficiently works with OSM, providing the structure to automatically
build the street network.

– OTP is well documented, updated, with an active, growing community of
developers. These situation facilitates the understanding and maintenance of
the platform.

The simulation platform developed in this study and architecturally illus-
trated in Fig. 2 relies on the Java project of OTP available in [15]. Specifically,
this repository contains the complete code of the OTP system and the client
for testing purposes. As can be read in the documentation of the project, “it
includes a REST API for journey planning as well as a map-based Javascript
client. Open Trip Planner can also create travel time contour visualizations and
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Fig. 2. Architecture of the deployed system.

compute accessibility indicators for planning and research applications”. As OTP
is open source, both parts have been adapted and modified to accommodate the
requirements of this study and to enable constraining the routes in time, and
the output of all segments comprising the generated route. Consequently, several
classes have been created in order to deploy these functionalities.

In order to focus the scope of this manuscript strictly on the heuristic domain,
implementation details on the modified OTP Java classes are not provided.
Instead, we just mention and describe two newly developed methods, which
are crucial for the understanding of the whole system: (1) evaluatePath(),
recurrently called by the algorithm to return the length and safety of the route
provided as an input; and (2) completeRouteGenerator(), which returns the
entire path calculated by the OTP engine from its encoded representation for
visualization and further analysis. Finally, it should be noted that the architec-
ture also integrates the jMetal framework [17] jointly with OTP for implementing
the considered multi-objective solvers.

5 Experimental Setup

In order to shed light on the empirical performance of the 4 multi-objective opti-
mization algorithms considered to deal with the posed routing problem, several
computer experiments have been carried out over different square areas located
in the city of Bilbao (Spain), bounded by coordinates (latmin, latmax) = (lat� −
0.1425, lat� + 0.1425) and (lonmin, lonmax) = (lon� − 0.0665, lon� + 0.0665).
Differences between scenarios yield from the selection of different initial points
(lon�, lat�) for the routes, so that topological changes in the urban areas
enclosed by such squares are expected to arise from the performed experiments.
These selected scenarios are characterized by a flat, a highly slopped (hilly) and
a hybrid terrain profile. This tailored choice permits to verify how the proposed
system and the considered heuristic solvers behave in geographically diverse
setups. Two different open data sources have been used for the deployment of
these real-world scenarios:

– OSM map les: the maps and street networks of the simulated scenarios
have been retrieved in the form of OSM map files from the Planet OSM
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public repository [18], using the open tool BBBike [19] to download them in
Protocolbuffer Binary Format (PBF). The downloaded OSM tiles contain all
nodes, ways and relations required to build the map. OSM files are directly
consumed by OTP, which automatically constructs the full road network.

– Digital Elevation Model : the elevations of the streets of Bilbao is downloaded
from SRTM Tile Grabber1 and directly consumed by OTP in GeoTIFF for-
mat. This format is a public domain metadata standard, which allows georef-
erencing information to be embedded within a TIFF file [20]. OTP uses these
files for assigning the corresponding elevation to the entire street network,
and it is employed for calculating the route flatness and safety.

Table 1. Parameter setting of the heuristics considered in the experimental benchmark.

Algorithm Parameter Value

All Population/swarm size 100
individuals/particles

Evaluations 5000

Independent runs 15

Mutation Polynomial mutation

| Probability 0.2 (once per every 5
decision variables)

| Distribution index ηm 20.0

NSGA-II SMS-EMOA Crossover Simulated binary
crossover

| Probability 1.0

| Distribution index ηm 20

MOEA/D Differential evolution scheme rand/1/bin

| CR 1.0

| F 0.5

Neighborhood size 20

Neighborhood selection probability 0.9

Max. number of replaced solutions 2

SMPSO Archive size 100

Density estimator Crowding distance

As the bike routing is a continuous optimization problem, we have configured
the algorithms with commonly accepted settings, without any attempt at finding
their best parameter configuration. A summary of the parameters is included in
Table 1. All the algorithms have a population size of 100 individuals (or particles
in the case of SMPSO) and use a polynomial mutation operator which is applied
1 http://dwtkns.com/srtm/.

http://dwtkns.com/srtm/
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with a probability of 0.2 (according to the typical value of 1.0 / L, where L = 5 is
the number of decision variables of the problem) and a distributed index equal to
20.0; the maximum number of function evaluations has been fixed to 5000. Both
NSGA-II and SMS-EMOA apply a simulated binary crossover, with a probability
of 1.0 and a distributed index equal to 20.0. MOEA/D follows a rand/1/bin
differential evolution scheme, with parameters CR = 1.0 and F = 0.5. The
values of the neighborhood size, the neighborhood selection probability, and
maximum number of replace solutions are 20, 0.9, and 2, respectively. SMSPO
has an external archive of a maximum size of 100 particles and applies the
crowding distance density estimator.

For proving the robustness of the methods and extracting fair and rigorous
conclusions, 15 independent runs have been made per algorithm for all problem
scenarios (see next section). To assess the performance of the algorithms, we
have used the so-called hypervolume [21], a Pareto compliant quality indicator
that takes into account both the convergence and diversity of the Pareto front
approximations returned by the solvers included in the benchmark.

Since we deal with an optimization problem whose true Pareto front is
unknown, we have generated a reference Pareto front for each instance by com-
bining all the non-dominated solutions computed in all the executions of all the
algorithms. This front will be used as a reference to compute the hypervolume.
Furthermore, in order to assess whether the differences between the algorithm
results have statistical significance, we have applied the Wilcoxon rank-sum text,
a non-parametric statistical hypothesis test which allows for a pairwise compari-
son between two samples. A significance level of 5% has been considered, meaning
that the differences are unlikely to have occurred by chance with a probability
of 95%.

5.1 Results and Discussion

To illustrate the fronts that each of the four compared algorithms have produced,
we include in Fig. 3 (next page) the approximations corresponding to the best
hypervolume values for the flat (first row), hybrid (second row) and hilly scenario
(third row). To ease the visualization of the solutions, the reference Pareto front
is included as a continuous line. We can observe how SMPSO excels at generating
a set of solutions that are on top of the reference Pareto front and that are
uniformly spread, including the extreme solutions. By contrast, MOEA/D fails
to generate a front with accurate convergence and widespread diversity.

The results of the hypervolume values obtained by the four metaheuristics
are presented in Table 2, which includes the median and interquartile range of
the 15 independent runs per algorithm and problem instance. Those cells with a
dark and light gray backgrounds indicates, respectively, the best and second best
indicator values. We can observe that the particle swarm optimization algorithm
SMPSO has produced the best (highest) values in the three considered scenarios.
NSGA-II and SMS-EMOA have yielded, respectively, two and one second best
values.
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Table 2. Median and Inter Quartile Range (IQR) of the hypervolume values obtained
by the algorithms. Best and second best median results have dark and light gray
backgrounds, respectively.

SMPSO NSGA-II MOEA/D SMS-EMOA
Flat scenario 5.80e− 018.8e−03 5.68e− 016.2e−03 5.27e− 017.5e−03 5.64e− 011.2e−02

Hybrid scenario 5.95e− 013.8e−03 5.79e− 011.0e−02 5.30e− 011.8e−02 5.74e− 011.2e−02

Hilly scenario 7.00e− 018.4e−03 6.13e− 015.0e−02 5.71e− 012.2e−02 6.20e− 018.2e−02
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Fig. 3. Estimated Pareto fronts with the best hypervolume values obtained by the four
compared algorithms for the flat (first row), hybrid (second row) and hilly (third row)
scenarios. The line stands for the reference Pareto front approximation.

To determine whether the differences between pair of algorithms are sta-
tistically significant, we have applied the Wilcoxon rank-sum test; the obtained
results are included in Table 3. In each cell, the three considered scenarios (plain,
medium, and high) are represented with one of the following symbols: “–” indi-
cates that there not statistical significance between the algorithms, “�” means
that the algorithm in the row has yielded better results than the algorithm in
the column with confidence, and “�” is used when the algorithm in the column
is statistically better than the algorithm in the row. We can observe that all the
differences are significant but the results of NSGA-II and SMS-EMOA, so we
can claim that SMPSO is the algorithm providing the best overall performance
in the context of the study carried out.
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Table 3. Wilcoxon test results. Each cell contains a symbol per problem (flat, hybrid,
hilly).

NSGA-II MOEA/D SMS-EMOA

SMPSO � � � � � � � � �
NSGA-II � � � − − −
MOEA/D � � �

The results provided by the hypervolume indicator are quantitative, in the
sense that they indicate which algorithm generates the fronts with better degrees
of convergence and diversity. However, they do not provide any insight about the
quality of the solutions. For that reason, we next include in Fig. 4 the reference
Pareto fronts for each of the three scenarios, and a visual representation of the
routes corresponding to the points in the estimated Pareto front of the hilly
scenario. Indeed differences are visually clear in regards to the distance of every
route: interesting is to note that the one in green traverses a urban area with
sharp slopes (namely, the urban core of the town of Portugalete within the
metropolitan area of Gran Bilbao).

Fig. 4. (Left) Reference Pareto fronts obtained for the three considered scenarios;
(Right) routes corresponding to the colored points in the reference Pareto front of
the hilly scenario. (Color figure online)

6 Conclusions and Further Work

In this work the design of time-constrained bike routes has been studied and
approached from a multi-criteria perspective. The focus has been placed on gen-
erating a group of open-destination bike routes based on three input parameters:
origin, maximum trip time and tolerance. The problem has been modeled as a
bi-objective paradigm balancing two conflicting objectives: the distance of the
route and its safety level, the latter blending together the inclination of segments
composing the route, their length and the speed of vehicles along each segment.
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For efficiently tackling this problem, four bio-inspired multi-objective optimiza-
tion methods have been used (namely, NSGA-II, SMS-EMOA, MOEA/D, and
SMPSO), and applied to three different real-world scenarios placed in Bilbao,
Spain. Experiments have been conducted in a realistic simulation environment
based on Open Trip Planner as the software simulation platform. The obtained
results reveal that the SMPSO solver outperforms its counterparts in the bench-
mark in terms of Pareto optimality as gauged by their hypervolume indicator.

Several research lines will be tackled in the near future. In short term, addi-
tional bio-inspired approaches are planned to be included in the benchmark to
assess whether they get to obtain better results in terms of Pareto spread and
dominance. In the longer term we intend to extend the problem formulation to
add new objectives such as the energy consumed by the user and air pollution
in the route. Real open data will be utilized to model this improved setup.

Acknowledgments. E. Osaba and J. Del Ser would like to thank the Basque Gov-
ernment for its funding support through the EMAITEK program. This work is also
partially funded by Grants TIN2017-86049-R and TIN2014-58304 (Ministerio de Cien-
cia e Innovación), and P11-TIC-7529 and P12-TIC-1519 (Plan Andaluz I+D+I).

References

1. Wang, F.Y.: Scanning the issue and beyond: transportation and mobility transfor-
mation for smart cities. IEEE Trans. Intell. Transp. Syst. 16(2), 525–533 (2015)

2. Bast, H., Delling, D., Goldberg, A., Müller-Hannemann, M., Pajor, T., Sanders,
P., Wagner, D., Werneck, R.F.: Route planning in transportation networks. In:
Kliemann, L., Sanders, P. (eds.) Algorithm Engineering. LNCS, vol. 9220, pp. 19–
80. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49487-6 2

3. Zografos, K.G., Androutsopoulos, K.N.: Algorithms for itinerary planning in mul-
timodal transportation networks. IEEE Trans. Intell. Transp. Syst. 9(1), 175–184
(2008)

4. Staunton, C.E., Hubsmith, D., Kallins, W.: Promoting safe walking and biking to
school: the marin county success story. Am. J. Public Health 93(9), 1431–1434
(2003)

5. Wang, S., Lin, W., Yang, Y., Xiao, X., Zhou, S.: Efficient route planning on public
transportation networks: a labelling approach. In: Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, pp. 967–982. ACM
(2015)

6. Turverey, R.J., Cheng, D.D., Blair, O.N., Roth, J.T., Lamp, G.M., Cogill, R.:
Charlottesville bike route planner. In: Systems and Information Engineering Design
Symposium, pp. 68–72. IEEE (2010)

7. Bucher, D., Jonietz, D., Raubal, M.: A heuristic for multi-modal route planning. In:
Gartner, G., Huang, H. (eds.) Progress in Location-Based Services 2016. LNGC,
pp. 211–229. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47289-
8 11
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Abstract. We introduce the ensemble of Kriging with multiple kernel
functions guided by cross-validation error for creating a robust and accu-
rate surrogate model to handle engineering design problems. By using
the ensemble of Kriging models, the resulting ensemble model preserves
the uncertainty structure of Kriging, thus, can be further exploited for
Bayesian optimization. The objective of this paper is to develop a Krig-
ing methodology that eliminates the needs for manual kernel selection
which might not be optimal for a specific application. Kriging models
with three kernel functions, that is, Gaussian, Matérn-3/2, and Matérn-
5/2 are combined through a global and a local ensemble technique where
their approximation quality are investigated on a set of aerodynamic
problems. Results show that the ensemble approaches are more robust
in terms of accuracy and able to perform similarly to the best performing
individual kernel function or avoiding misspecification of kernel.

1 Introduction

The computationally expensive nature of many real-world engineering optimiza-
tions hinders the crude of use of evolutionary algorithms (EA) and other meta-
heuristics for obtaining highly optimized designs. To this end, surrogate models
are now commonly deployed to act as a replacement for black-box functions
in order to accelerate the optimization process. There are basically two frame-
works to apply surrogate models, that is, to utilize them either as a global or
local surrogate model. Global surrogate models are particularly useful when the
number of design variables is low to moderate under the constraint of a limited
computational budget. On the other hand, local surrogate models are typically
used under the condition of high-dimensionality and moderate computational
budget, such as to assist the local search for memetic algorithm [1,2]. For a
comprehensive review of this topic, readers are referred to Jin [3] and Viana
et al. [4].

Kriging is one of the most widely used types of surrogate model for approx-
imating engineering functions. One powerful aspect of Kriging models is that
they provide a measure of estimation error that could be used to guide Bayesian
c© Springer International Publishing AG, part of Springer Nature 2018
P. Korošec et al. (Eds.): BIOMA 2018, LNCS 10835, pp. 211–222, 2018.
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optimization or error-based refinement in order to improve the approximation
quality [5]. The most widely used kernel function for constructing Kriging models
in the context of engineering design is the Gaussian kernel function. On the other
hand, Stein recommends that Matérn kernel function should be used instead of
Gaussian since the smoothness of Gaussian function is unrealistic for many real-
world processes [6]. It is worth noting that the best kernel function is highly
problem dependent; therefore, it is of utmost importance to correctly deploy a
proper kernel for optimum approximation accuracy.

One approach to combine or take the best from multiple surrogate models
is to perform an ensemble of surrogate models [7–11]. Traditionally, various sur-
rogate models such as radial basis function (RBF), Kriging, and support vector
regression are combined together, which results in the inapplicability of Bayesian
optimization (e.g., efficient global optimization [5]). Bayesian optimization can
be performed with the ensemble model if each of the constituent models pos-
sesses an uncertainty structure. In this paper, we propose to combine multiple
Kriging models with multiple kernel functions. The advantage of the ensemble
of Kriging models with various kernel functions is that the uncertainty structure
is still conserved. We tested the proposed framework on a set of aerodynamic
problems using various ensemble methods. In this paper, we limit the research
scope to only analyzing the approximation accuracy of the ensemble Kriging
models and compared them to those with single kernel function.

Note that the mixture of Kriging with kernel function is not totally a new
idea; in fact, this idea was first proposed by Ginsbourger et al. [12]. Ginsbourger
et al. approach uses the combination of Gaussian and exponential kernel func-
tion and mix them globally with Akaike weights; while in this paper, we uti-
lize the cross-validation (CV) error to mix the Kriging model with Gaussian
and advanced Matérn kernel function using both the global and local ensemble.
Moreover, Ginsbourger et al.’s method was only tested on Branin function while
we directly used engineering functions in our study.

2 Ensemble of Kriging

2.1 Kriging Model

We are interested in approximating a black box function y = f(x) with a Kriging
surrogate model, where x = {x1, x2, . . . , xm} and m is the dimensionality of the
decision variables. The Kriging approximation is modeled as a realization of a
stationary Gaussian process Y (x) reads as

Y (x) =
P−1∑

i=0

αiΨi(x) + Z(x), (1)

where Ψ (x) = {Ψ0(x), . . . , ΨP−1(x)} is a collection of regression polynomial
functions, α = {α0(x), . . . , αP−1(x)} is the vector of regression coefficients, and
Z is a stochastic process. In this paper, we use the ordinary Kriging which
assumes that the trend is a constant Ψ0.
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One building block of Kriging is the covariance function which represents
the similarity between two input points in the design space. There are several
choices to model this similarity using different types of kernel function. In this
paper, we opt for the Gaussian and Matérn class function due to their robustness
and popularity in various applications. We do not opt for the exponential func-
tion since based on our experiment in aerodynamic functions, it did not yield a
satisfactory accuracy. These kernel functions are explained in detail below.

Gaussian. The Gaussian kernel function is defined as

R(h, θ) = exp
(

−
m∑

k=1

(h

θ

)2
)

, (2)

where θ = {θ1, . . . , θm} are the vector of hyperparameters that needs to be
estimated and h =

∣∣x − x′∣∣.

Matérn Class. The general form of Matérn kernel function is expressed as

R(h, θ, ν) =
1

2ν−1Γ (ν)

(
2
√

ν
|h|
θ

)
Kν

(
2
√

ν
|h|
θ

)
, (3)

where ν ≥ 1/2 is the shape parameter, Γ is the Gamma function, and Kν is the
modified Bessel function of the second kind.

For ν = 3/2, the formulation of Matérn kernel function is defined as

R(h, θ, ν = 3/2) =
(

1 +
√

3|h|
θ

)
exp

(
−

√
3|h|
θ

)
, (4)

while for ν = 5/2 is defined as

R(h, θ, ν = 5/2) =
(

1 +
√

5|h|
θ

+
5h2

3θ2

)
exp

(
−

√
5|h|
θ

)
. (5)

The Matérn−3/2 and Matérn−5/2 are two forms that are widely used to model
real-world processes. We, therefore, used these two forms of Matérn kernel func-
tion in our study and compare it with the standard Gaussian.

A set of n observations points X = {x(1), . . . ,x(n)} and the responses
y = {y(1), . . . , y(n)} = {f(x(1)), . . . , f(x)(n)} are collected first in order to cre-
ate a Kriging surface. As opposed to the majority of the types of surrogate
model, Kriging allows the computation of both the prediction ŷ(x) and the
mean-squared error ŝ2(x).

The ordinary Kriging prediction for an arbitrary input variable reads as

ŷ(x) = μKR + r(x)T R−1(y − 1), (6)

with the mean-squared error of the Kriging prediction ŝ(x) reads as:

ŝ2(x) = σ2
(
1 − (r(x)T R−1r(x)) +

(
1 − 1T R−1r(x)

)2(
1T R−11

)−1)
. (7)
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Here, R is the n×n matrix with the (i, j) entry is corr[Z(x(i)), Z(x(j))], r(x) is
the correlation vector between x and X whose (i, 1) entry is corr[Z(x(i)), Z(x)],
and 1 is the vector of ones with length n. As we can see from this formulation,
the choice of kernel function enters the formulation through R and r(x). In this
paper, we opt for the standard technique of maximizing the likelihood function
to determine the hyperparameters. We do not go too much into details of the
Kriging method; readers are referred to other literatures such as [5,13].

Since the determination of a proper kernel function is not trivial, we advocate
the use of the ensemble of Kriging models with various kernel functions instead
of choosing just one specific kernel. We hypothesized that this would improve the
robustness and accuracy of Kriging models while still preserving the uncertainty
structure through the law of total expectation and total variance [12].

2.2 Ensemble of Kriging Models

Assuming that we possess K different surrogate models, the general form of the
ensemble of surrogate models reads as

f̂ens(x) =
K∑

i=1

wi(x)f̂i(x) (8)

where f̂1(x), . . . , f̂K(x) are K surrogate models to be combined into one model
and w(x) = {w1(x), . . . , wK(x)} are the weights that define the contribution of
each surrogate model to the ensemble function.

To perform the ensemble of surrogates, we need the information of the CV
error, i.e., e for each Kriging model. We firstly define ei = {e

(1)
i , . . . , e

(n)
i }, where

e(j) = y(x(j)) − ŷ(−j)(x(j)) is the CV error for sample j with the sample j is
removed from the experimental design, as the CV errors for surrogate i. For
Kriging models, the CV error can be obtained analytically without the need to
construct Kriging n times [14]. The simplest approach is to directly select the
Kriging model with the lowest CV error, where in this paper we opt for the
root-mean-squared error (RMSE) to compute the CV error for each surrogate.
However, as argued by Viana et al. [8], the ensemble of surrogate models is the
better approach since it uses all information from each constituent surrogate
model instead of directly choosing the best one in terms of the CV error.

There are two techniques to ensemble the function, that is, the global and
local ensemble approach which are explained below.

Global Ensemble. The global ensemble approach employs a constant weight
for each surrogate model in the range of the design space. In this paper, we opt
for Acar and Rohani’s approach [9] to construct the global ensemble. Here, the
constant weight w is found by solving the following minimization problem

min
w

MSEens = E
(
e2WAS(x)dx

)
= wTCw, (9)
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where MSEens is the mean squared error of the global ensemble, C is the matrix
of CV error and e2WAS is the mean-squared error of the weighted average surro-
gate. Following Viana et al.’s suggestion [8], we only used the diagonal matrix
of C to compute w = {w1, w2, . . . , wK} using Lagrange multipliers.

Local Ensemble. One downside of the global ensemble approach, in spite of
its simplicity, is its inability to cope with the locality of the response surface.
There are situations where Kriging with one type of kernel function is accurate
in a certain region while another kernel is more suitable in other regions of the
design space. To this end, the local ensemble is probably more suitable since it
allows a non-constant weight function to be used. In this paper, we opt for Liu
et al.’s approach [11] which originally proposed the method for creating the local
ensemble of radial basis function models; readers are also referred to this paper
for a more detail explanation about the method. Using Liu et al.’s approach, the
weight for surrogate j at a certain design point is calculated by

wj(x) =

⎧
⎨

⎩
if x �= xi :

∑n
i=1

d
−BiΘ

i∑
d
−BiΘ

i

,

if x = xi : Wij

(10)

where Θ is the attenuation coefficient that is automatically selected using CV
error, di is the distance between x and xi, Bi is the normalized global accuracy
of the constituent model that yields the the lowest error at xi, and W is the
observed weight matrix.

According to the law of total expectation, the prediction and variance from
the mixture of multiple Kriging models can be computed through the law of
total expectation and total variance [12], respectively. In this paper, we use the
UQLab open source software to construct the Kriging model [15].

3 Applications to Aerodynamic Problems

We consider two engineering test cases in order to demonstrate the efficacy of the
ensemble methods. The two problems considered are the subsonic and transonic
airfoil (i.e., the cross-section of an aircraft wing) design, with two subcases for
the subsonic airfoil problem. Here, the output of interest for all cases is the
drag coefficient (Cd), computed by a computational fluid dynamics method,
which measures the efficiency of aerodynamic bodies. For each test case, we
compared the Kriging model with Gaussian, Matérn-3/2, and Matérn-5/2 kernel
functions, the scheme that yields the lowest CV error (i.e., model selection),
local ensemble, and global ensemble. The Kriging quality is measured by the
squared correlation coefficient, i.e., R2. We also use the average performance
score (APS) [16] to compare various Kriging methods. APS indicates the number
of other methods that strictly dominate the method being investigated; thus, low
APS value denotes a good performing method.
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3.1 Subsonic Airfoil Problem

Design optimization of an airfoil in subsonic flow regime for low-speed is highly
useful for such applications as unmanned aerial vehicles or low-speed training
aircraft. For the subsonic airfoil problem, we used the PARSEC airfoil param-
eterization technique [17] (see Fig. 1 and Table 1) and we set the Reynolds and
Mach number to 3×106 and 0.3, respectively. Here, the first and second subcase
considers a fixed angle of attack of 2◦ and fix Cl = 0.5, respectively. The lower
and upper bound (i.e., lb and ub, respectively) for the subsonic airfoil problem
are shown in Table 1. Since this case is cheap, we could evaluate a large number
of samples for the training and validation set. We used training sample points
with n = 40 and n = 80 generated by Latin hypercube sampling with 1000
validation samples.

Fig. 1. Illustration of PARSEC airfoil parameterization.

Table 1. The upper and lower bounds for the subsonic airfoil problem.

Variable Definition lb ub

rle Leading edge radius 0.0108 0.0162

Xup Upper crest position in horizontal coordinates 0.3288 0.4932

Zup Upper crest position in vertical coordinates 0.0830 0.1245

ZXXup Upper crest curvature −0.8700 −0.5800

Xlo Lower crest position in horizontal coordinates 0.3254 0.4881

Zlo Lower crest position in vertical coordinates −0.0690 −0.0460

ZXXlo Lower crest curvature 0.3086 0.4629

αte Trailing edge direction −0.2286 −0.1524

βte Trailing edge wedge angle 0.1120 0.1680

Results for Subcase 1. The R2 results for the first subsonic case are shown
in Fig. 2. Comparison of Kriging models with single kernel function shows that
Gaussian is the most suitable kernel function for this particular problem, followed
by Matérn-5/2 and Matérn-3/2. The global ensemble and model selection are
the most robust multiple kernel approaches that can match the approximation
quality of the Kriging with the Gaussian kernel. On the other hand, the local
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ensemble is outperformed by two methods on a high number of sample points
(i.e., n = 80).

The weight distribution obtained from all 30 independent runs for n = 40
and n = 80 are shown in Figs. 3 and 4, respectively. First, the model selection
has a very strong tendency to select Gaussian kernel over the others for both
n; this indicates that the approximation quality of Kriging with the Gaussian
kernel is far superior over the Matérn kernels for this problem. For the global
ensemble scheme, there is a fairer distribution of kernel, where the kernel with
the highest portion is Gaussian followed by Matérn-5/2 and Matérn-3/2. We
observe a difference between the proportion of kernels for the global and local
ensemble, that is, the latter tends to favor Matérn-3/2 over Matérn-5/2. This
means that the Kriging model with Matérn-3/2 kernel is able to produce a locally
accurate approximation near the design points over the Matérn-3/2 kernel; this
trend is stronger with higher sample size. However, such scheme is not as optimal
as the global ensemble for this particular problem.
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(b) n = 80.

Fig. 2. R2 results for the first subcase of subsonic airfoil problem. The number inside
the bracket shows the corresponding APS value.
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Fig. 3. Distribution of the weights for the first subsonic case with n = 40.
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(b) Global ensemble.
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(c) Local ensemble.

Fig. 4. Distribution of the weights for the first subsonic case with n = 80.

Result for Subcase 2. The results for subsonic case 2 (see Fig. 5) reveal that
the global ensemble is able to compete with the two best-performing methods for
this problem, that is, Kriging with Matérn-3/2 and Matérn-5/2 kernel function.
In contrast to the first subsonic case, the performance of Kriging with Gaussian
kernel is not really satisfying as indicated by its high APS for both sample
sizes. The model selection approach does not perform so well in low sample
size, primarily due to the effect of low sample size on the CV accuracy. Results
also show that the local ensemble is more favorable compared to the model
selection, indicating that mixing several Kriging models with multiple kernel
function is more advantageous than model selection for this problem. However,
the fact that the local ensemble is outperformed by the global ensemble means
that the latter is even more favorable; also, the global ensemble is very easy
to be constructed. The corresponding weights are shown in Figs. 6 and 7. It is
interesting to see that although the ensemble approaches give more weights to
the Gaussian kernel, combination with other kernel functions yields a suppressing
effect to the inadequacy of Gaussian on this particular problem.
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Fig. 5. R2 results for the second subsonic airfoil case. The number inside the bracket
shows the performance score.
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(b) Global ensemble.
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(c) Local ensemble.

Fig. 6. Distribution of the weights for the second subsonic case with n = 80.
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Fig. 7. Distribution of the weights for the second subsonic case with n = 80.

3.2 Inviscid Transonic Airfoil Problem

The second sub-case is the design of inviscid (i.e., no friction) transonic airfoil
problem in Mach number of 0.73, which is the flying regime of a modern com-
mercial aircraft, and angle of attack of 2◦. The airfoil shape for the transonic
problem is parameterized by the Class Shape Transformation (CST) [18] method
with a total of 16 variables (i.e., 8 variables for each upper and lower surface).
We used the RAE 2822 airfoil shape as the datum and then varied the CST
shape parameters by ±20%. We set n to n = 50 and n = 100 by taking a subset
of random samples from the available 400 samples and then use the other subset
as validation samples.

The R2 results are depicted in Fig. 8 while the distributions of the generated
weight are shown in Figs. 9 and 10. We observe that the Gaussian kernel strictly
outperforms Matérn kernels, especially Matérn-3/2. Due to this significant per-
formance difference, the performance of the model selection scheme successfully
mimics that of the Kriging model with the Gaussian kernel. On the other hand,
the local and the global ensemble approach are outperformed by the model selec-
tion and Kriging with the Gaussian kernel; however, it is worth noting that the
ensemble schemes successfully avoid the relatively poor performance of Kriging
with Matérn-3/2 kernel and are also better than that of Matérn-5/2. In this
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regard, the ensemble schemes act as a safeguard that prevents a misspecification
of kernel that yields a relatively poor performance.

The trend of the weighting for the kernels shows a similar trend to that
of the subsonic airfoil case. In the inviscid transonic airfoil case, the weight
of Matérn-5/2 in the global ensemble scheme is more dominant than that of
Matérn-3/2, while it is the opposite case for the local ensemble. Especially on the
first subsonic and transonic airfoil case, Kriging with Matérn-5/2 kernel is more
globally accurate than that of Matérn-3/2; which explains why the local ensemble
scheme is less accurate than the global one since the former tends to give more
reward to the Matérn-3/2 kernel. However, when Bayesian optimization is to be
performed, there is a chance that the local ensemble scheme would be better
than the global ensemble due to that a local accuracy is more important for
optimization; empirical experiments are needed to test this hypothesis.
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Fig. 8. R2 results for the inviscid transonic airfoil case. The number inside the bracket
shows the performance score.
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Fig. 9. Distribution of the weights for the inviscid transonic airfoil case with n = 50.
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Fig. 10. Distribution of the weights for the inviscid transonic airfoil case with n = 100.

4 Conclusions and Future Works

In this paper, we studied the efficacy of the ensemble of Kriging with mul-
tiple kernel functions for approximating black-box engineering functions. Our
research is motivated by the need to create a robustly accurate surrogate models
without eliminating the advantage of uncertainty structure that can be used for
Bayesian sequential optimization strategy. To this end, we extend the previous
work in the ensemble of Kriging with multiple kernel functions by introducing
advanced kernel functions (i.e., Matérn class) besides the widely used Gaus-
sian. Further, we implement the global and the local ensemble technique to mix
multiple Kriging models. Since our primary objective is for engineering design,
we directly tested the approach on aerodynamic problems as representatives for
general engineering problems. It is shown that for the airfoil problems, the local
and ensemble approaches are robust in terms of the approximation quality, in
the sense that they could mimic the performance of the best performing kernel
or at least avoiding misspecification of the kernel. Comparing the two ensemble
approaches, the global ensemble is better in mixing multiple Kriging models than
the local ensemble; further, this also comes with a simpler method for computing
the weights. The model selection approach (i.e., select the model with the lowest
LOOCV error), although might outperform ensemble approaches when a single
kernel function is strictly better than the others, is prone to the misguidance of
the CV error in selecting the best model as shown in the results from the second
subsonic airfoil case.

For future works, benchmarking of the ensemble of Kriging models and those
with single-kernel function should be performed within the Bayesian optimiza-
tion context. Furthermore, the capability of the aforementioned approach should
also be investigated for applications besides optimization (e.g., uncertainty quan-
tification and global sensitivity analysis).
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Abstract. The ionizing radiation is used in the nuclear medicine field
during the execution of diagnosis exams. The administration of nuclear
radio pharmaceutical components to the patient contaminates the envi-
ronment. The main contribution of this work is to propose a path plan-
ning method for scanning the nuclear contaminated environment with a
mobile robot optimizing the traveled distance. The Genetic Algorithm
methodology is proposed and compared with other approaches and the
final solution is validated in simulated and real environment in order to
achieve a closer approximation to reality.

Keywords: Genetic Algorithm · Mobile robot · Path planning
Optimization

1 Introduction

Medical imaging is an area of knowledge with continuous technological innova-
tion, that develops new techniques for the medical diagnosis in order to provide
an image of the anatomy of the human body and its functions [1]. According
to NUMDAB (Nuclear Medicine Database), there are 1490 nuclear medicine
institutions in the world, of which 1288 are active. Actually, 0.69 million PET
(Positron Emission Tomography) and PET-CT (Computed Tomography) annual
examinations are registered in the world [2].

The nuclear medicine provides diagnosis tests that detect with some precision
when a certain part of the body has a change in the metabolism. The adminis-
tration of nuclear radio pharmaceutical components to the patient must be care-
fully done by specialists. Unfortunately, the patient can contaminate the envi-
ronment with physiologic needs. Moreover, environment and the patient should
c© Springer International Publishing AG, part of Springer Nature 2018
P. Korošec et al. (Eds.): BIOMA 2018, LNCS 10835, pp. 223–233, 2018.
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be isolated by a period of time regarding the decay of nuclear properties. The
inspection of the clearance of the environment is mainly made by human beings
that are exposured to the ionizing radiation that may cause the damage in the
organs and tissues. The scanning and measurement of the radiation can be done
resorting to a mobile robot that performs the acquisition based on a Geiger
counter. The path planning of the robot should guarantee that the complete
scan is performed and ensure the environment is clean and technicians can enter
the room. The presented paper addresses a path planning method that scans
the desired environment while optimizing the mobile robot travelled distance.
This optimization, based on Genetic Algorithm, is implemented in simulation
and real robot scenario and compared with other approaches that validates the
proposed methodology.

The paper is organized as follows: After a brief introduction, Sect. 2 presents
the related work. Then, Sect. 3 addresses problem formulation of path planning
to scan the environment. Section 4 presents the developed Genetic algorithm and
its operations. Section 5 presents the obtained numerical results and compares
it with a heuristic method for path planning. Finally, last section concludes the
paper and presents some future work.

2 Related Work

Path planning is crucial for autonomous mobile robots in various environments
with the presence of obstacles [3]. In the literature, path planning is defined as:
“Given a map and a goal location, path planning involves identifying a trajectory
that will cause the robot to reach the goal location when executed. Path planning
is a strategic problem-solving competence, as the robot must decide what to do
over the long term to achieve its goals” [4].

This subject is widely discussed by the academic community. The task of
moving the robot from a starting point to a target point avoiding obstacles and
running an optimized or near optimal path is a complex computational process.
Complexity increases as the environment has more known, unknown or dynamic
obstacles.

Several algorithms are used for the mobile robot path planning problem,
e.g, visibility chart [5], Voronoi diagrams [6,7], cell decomposition [8], potential
field [9], A* [10] and other methods found in the literature. According to [3]
“Each method differs in its effectiveness depending on the type of application
environment and each one of them has its own strength and weaknesses”.

Another approach used in the search to optimize path planning is based
on Genetic Algorithms [3,11–14]. In [3] this methodology was used with search
algorithm to carry out the path planning of starting point and end point avoiding
obstacles and collisions in the environment (static or dynamic where was used
an optimization in the mutation operator to optimize the path or seek a path
near the optimum). Already in [12], applying crossover and mutations to search
for an optimized path, using a connectivity grid to represent the plant where
the robot is inserted, the objective is to find the lowest path between the start
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and end points, avoiding repeating cells along the way, simplifying the fitness
function by analyzing path length.

Many approaches in path planning, even using Genetic Algorithm, seek only
to make the shortest, or most efficient, path between two distinct points (start
and target). However, our problem has a different framework, similar to the
classic travelling salesman problem (TSP). Considering a range of n cities where
the purpose of this problem is to start the route in city defined, visiting the
other cities only once, and them returning to the first city [15]. Considering
the possibility of the existence of several cities, the TSP becomes complex with
(n − 1)! possible routes to be calculated. The differences between our problem
and the travelling salesman’s problem is that the starting and ending points are
different and the robot must avoid collision with obstacles.

In the present work, we will adapt a Genetic Algorithm to find the smallest
path to perform a scan in the environment represented by a connectivity grid.
An example with this applicability is found in [16,17] works. We will initially res-
trict the problem to static environments, and future work will address dynamic
environments where there are unknown obstacles by the robot.

3 Problem Formulation

The challenge of path planning for robots is usually formulated as follows: given
a mobile robot and a description of an environment, we need to find a route
between two specified locations, the start and the end point. During the execu-
tion of the path the robot can not collide with obstacles and the optimization
criterion must be satisfied (i.e., shortest path) [13].

To simplify the path planning problem, it is necessary to make some assump-
tions. They are as follows:

– A path will be selected, always starting from a start point to a target point,
as show in Fig. 1.

– Known obstacles are mapped and represent a cell in the connectivity grid.
– The proposed algorithm acts on a connectivity grid arranged in a two dimen-

sional space (2D) or IR2 space.
– The robot does not perform movements in diagonal directions. It only moves

between interconnected points in horizontal and vertical directions in the grid
of connectivity, as show in Fig. 1.

– The robot should visit all cells, or points, that are free of obstacles in the grid
of connectivity at least once.

3.1 Problem Space Representation

Many works developed in the area of path planning for mobile robots, use a
graph grid of connectivity to represent the environment and obstacles. In the
present work we use a similar approach as presented in the papers [3,14], where
we modify the order of the values as shown in Fig. 1. The dark color represents
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Fig. 1. Connectivity grid (5× 5) and an example of possible points and segments.
Without an obstacle the 12 point will be a reachable point. (Color figure online)

obstacles, while the lighter colors represent obstacle-free cells. It is important to
remind that the size of the connectivity grid can vary, according to the resolution
of the desired scan.

4 Genetic Algorithm

In this section we will present the Genetic Algorithm (GA) used to solve the path
planning problem described in the section above. To facilitate understanding,
when referring to a gene, we are indicating a cell in the grid of connectivity.
When a chromosome is pronounced, it indicates a set of cells that connects the
start point to the end point.

4.1 Encoding Representation

The encoding method is one of the key steps in the GA design. The representation
of the possible paths to be realized by the robot, is known as chromosome [3,11,
14]. The path is encoded in a sequence of adjacent cells. This sequence is started
with the start cell (upper left corner) and ended with the destination (bottom
right corner) cell. The path consists of a variable number of segments formed
between two cells or waypoints. Each segment is a straight line which can be
vertical or horizontal. Diagonal segments are invalid. Figure 2 shows a possible
chromosome generated from the connectivity grid of Fig. 1.

Fig. 2. Possible chromosome of the GA initial population.
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4.2 Initial Population

The initial population is generated in order to respect the criteria of horizontal
and vertical movement allowed. The initial population is composed by a set of
chromosomes that are subjected to a random process, where each chromosome
starts at the start point and ends at the target point (see Figs. 1 and 2), and
each chromosome describes a path that should visit all the points of the grid of
connectivity at least once.

With the intention to reducing the search time of the evolutionary algorithm,
all the chromosomes generated by the initial population represent an executable
path, as in the papers [3,14,18].

To generate a chromosome of the initial population, the algorithm applies a
mask with an unitary cross as shape, where the center represents the current
point and the extremity of the cross represents the directions allowed for the
path. Each direction has a probability of choice according to the amount of
visits already undertaken. In other words, a point that was less visited is more
likely to be visited compared to its neighbors that were most visited. In this
way, all points have a probability of being chosen, guaranteeing a great diversity
for the initial population. The mask can be seen in Fig. 3a, where the possible
configurations are also shown depending on the availability of neighboring points
or in case the mask is centered at the end of the grid.

(a) All direc-
tions available.

(b) Three di-
rections avail-
able.

(c) Two di-
rections avail-
able.

(d) One Di-
rections Avail-
able.

Fig. 3. Geometry of the mask for the generation of the initial population.

The probability of each direction Probi, for i = 0, . . . , 3, is a function of the
visit cell number (ai) and n, that represents the number of available directions.
Probi, for i = 0, . . . , 3, can be defined as:

Probi =

⎧
⎨

⎩

∑n−1
k=0 ak − ai

(n− 1) · ∑n−1
k=0 ak

, for n > 1

1, for n = 1
(1)

The procedure ends when all cells are visited and the path terminates at the
end point of the connectivity grid.
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4.3 Crossover Operation

Crossover can be defined as a process of taking two parent solutions to pro-
duce a child. After reproduction process, the population is enriched with better
individuals. The goal of the operator is to find new structures that have a high
probability of causing significant improvements [19].

In the developed algorithm, the crossover consider two parents, selected ran-
domly, to produce two children. The first step of this process is to generate
the characteristic path of these two selected parents. The characteristic path is
a sequence of cells that are visited for the first time in the path. In this way,
individual and distinct information is stored for each parent. Each characteristic
path must begins at the starting point and ends at the endpoint (even if the
endpoint was previously visited).

Between two consecutive cells of the characteristic path there may be several
cells in the parent chromosome, which were already visited. Figure 4a illustrates
a situation where two characteristic paths are generated for two parents, where
a 3 × 3 grid was used to facilitate the understanding of this operation.

(a) Characteristic path. (b) Generation of new chromosomes.

Fig. 4. Crossover operation details. (Color figure online)

Only the garbage ranges can be used to generate the new chromosomes (off-
springs). Therefore a random point of the characteristic path is selected (in yel-
low in (a) and green in (b)), where between it and its subsequent point there is
garbage to be replaced by the smaller interval in the opposite parents that gene-
rated the characteristic path. Figure 4b shows in detail the process of generating
the new chromosomes.

4.4 Mutation Operation

Mutation operation prevents the algorithm from being trapped in a local mini-
mum. Mutation is an operator to maintain genetic diversity in the population.
It introduces new genetic structures in the population by randomly modifying
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some of its building blocks. It helps to escape from a local solution and maintains
diversity in the population to find structures that improve the path planning [19].
All chromosomes are candidates to be submitted in the mutation process with
a probability of Probm [18].

In order to prevent a mutation parent producing a infeasible path, the deve-
loped algorithm for the mutation operator was established to avoid all such cases,
i.e, all the paths generated after the mutation are feasible. As in the crossover
operator, the first procedure performed is to generate a characteristic path. Then,
a cell of the characteristic path is randomly chosen and its subsequent one where
a random path between them will be inserted. The generated random path allows
only horizontal and vertical movements. Figure 5 illustrates the operation for a
3 × 3 size connectivity grid.

Fig. 5. Detail of mutation operator.

4.5 Selection Process

In our work the goal is to obtain an optimal path, i. e., a path with the shortest
distance between the starting point and the end point by visiting all points of
the connectivity grid. In order to evaluate the chromosomes, the amount of cells
are analysed. The best path is the one with less cells in its chromosome. When
one of the chromosomes has (i × j) cells, i.e. when all points are visited only
once to accomplish all the visits, the path is fully optimized.

To get the best path it is necessary that the smallest paths are maintained
and transferred to the next generations. A selection process is proposed to obtain
the best parents and yet guarantee the diversity of the new populations. This
process consists of ordering all the chromosomes obtained in the current iteration
of the algorithm, considering the results of crossover and mutation operations,
and classifying them in ascending order. After ordering the chromosomes the
new population is selected, where 10% of the individuals are the ones with the
smallest paths and the remaining 90% are selected randomly from the ordered
chromosomes.

5 Numerical Results

In this section we will present the results obtained with the Genetic Algorithm
for the path planning to the problem described above. In order to evaluate the
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obtained results, we will compare with the heuristic method proposed in [16].
This heuristic planning method is based on eight different priorities of directions
for the robot, where the best priority is selected and executed by the robot.

To validate and test the results of the path planning algorithm, we used
the SimTwo Simulator [20]. In the simulation environment (Fig. 6a), the robot
follows the dimensions of real robot used in [17], as show Fig. 6b and c.

The test environment used has a dimension of 3 m long by 3 m wide. As
explained above, the size of the connectivity grid can be changed and conse-
quently the resolution of the scan as well. For the present work, an 8 × 8 grid
was used.

(a) SimTwo: 3D simula-
tion environment.

(b) Simulated robot. (c) Real Robot [17].

Fig. 6. Tools used to test the developed algorithm.

In this work we test three different situations. Situation A where there are
no obstacles and the optimal path is trivial. Situations B and C where there
are some known obstacles and it is not obvious the optimal path. The Genetic
Algorithm was executed ten times for each case, and the best result for each
problem is presented.

Figure 7 presents the Situation A where connectivity grid has no obstacles.
The performance of the Genetic Algorithm (GA) is presented in Fig. 7b where
is analysed the evolution of the chromosomes generations during a GA run. The
line referring to the heuristic method presents the number of waypoints visited
when it is applied in path planning and the ideal line represents the number of
obstacle-free waypoints present in the connectivity grid, i.e., the ideal size of the
chromosome. Then it is possible to observe that the heuristic planning obtains
better results when compared with the GA results in environments with simple
layout (without obstacles). The obtained solution of the two tested procedures
are illustrated in Fig. 7c and d.

Figure 8 presents the Situation B where connectivity grid has two known obs-
tacles. The performance of the Genetic Algorithm (GA) is presented in Fig. 8b
where is possible to observe that, after some iterations, the Genetic Algorithm is
capable to identify a better path when compared with the heuristic planning pro-
cedure. The obtained solutions of the heuristic planning and Genetic Algorithm
are illustrated in Fig. 8c and d, respectively.
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(a) Connectivity
grid 8× 8.

(b) Comparison of
algorithms.

(c) Path plan-
ning by heuris-
tic.

(d) Path plan-
ning by GA.

Fig. 7. Plan with a connectivity grid 8 × 8 without obstacles.

(a) Connectivity
grid 8× 8.

(b) Comparison of
algorithms.

(c) Path plan-
ning by heuris-
tic.

(d) Path plan-
ning by GA.

Fig. 8. Plan with a connectivity grid 8 × 8 with two known obstacles.

Figure 9 presents the Situation C where the connectivity grid has three known
obstacles. The performance of the Genetic Algorithm (GA) is presented in Fig. 9b
where it is possible to observe that GA obtains better solutions than the heuristic
planning procedure starting from the initial iterations.

The obtained solutions of the heuristic planning and Genetic Algorithm are
illustrated in Fig. 9c and d, respectively.

(a) Connectivity
grid 8× 8.

(b) Comparison of
algorithms.

(c) Path plan-
ning by heuris-
tic.

(d) Path plan-
ning by GA.

Fig. 9. Plan with a connectivity grid 8 × 8 with three known obstacles.
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Table 1. Number of visited cells: Heuristic Procedure and Genetic Algorithm method
comparison

Situation HP GA

A 70 75

B 75 71

C 83 72

The Table 1 presents the number of visited cells. So, analyzing the Genetic
Algorithm behaviour in the Situations A, B and C it is possible to conclude that
the GA method has better results in a more complex environment.

6 Conclusion and Future Work

The presented paper proposes a path planning using an adapted Genetic Algo-
rithm to perform a scan in environments with toxic substances. The path is
applied to a mobile robot that moves according to the computed trajectory.
It is desired to optimize the travelled distance by the robot while mapping all
the desired waypoints. In the environments with known obstacles, the efficiency
of the proposed Genetic Algorithm is relevant, identifying the optimal path in
complex situations. Thus, a more efficient trajectory is planned.

As future work we intend to apply the algorithm in dynamic environments
with also unknown obstacles and replace the SimTwo by the real robot for a
more realistic approach. Moreover, a real time constraint should be addressed
to solve the path during the scan.
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Abstract. Multi-Objective Evolutionary Algorithms (MOEAs) are one
of the most used search techniques in Search-Based Software Engineer-
ing (SBSE). However, MOEAs have many control parameters which must
be configured for the problem at hand. This can be a very challenging
task by itself. To make matters worse, in Multi-Objective Optimization
(MOO) different aspects of quality of the obtained Pareto front need to
be taken in to account. A novel method called MOCRS-Tuning is pro-
posed to address this problem. MOCRS-Tuning is a meta-evolutionary
algorithm which uses a chess rating system with quality indicator ensem-
ble. The chess rating system enables us to determine the performance
of an MOEA on different problems easily. The ensemble of quality indi-
cators ensures that different aspects of quality are considered. The tun-
ing was carried out on five different MOEAs on the Integration and
Test Order Problem (ITO). The experimental results show significant
improvement after tuning of all five MOEAs used in the experiment.

Keywords: Multi-Objective Optimization · Evolutionary algorithms
Parameter tuning · Search-Based Software Engineering
Class Integration and Testing Order · Chess rating system

1 Introduction

Search-Based Software Engineering (SBSE) is an approach where search-based
optimization algorithms are used to solve problems in software engineering [1].
One of the many areas that SBSE tackles is software testing [2]. Software test-
ing plays an important role in the software development life cycle, since it has
a direct impact on the quality of the software. However, generating tests is a
very difficult and costly task [3]. Since software testing is so complex, and exact
solutions cannot be found in reasonable time using deterministic methods, it
is no surprise that SBSE algorithms were applied in industrial cases [4,5]. One
of the most popular methods used in SBSE are Multi-Objective Evolutionary
Algorithms (MOEAs), which return a Pareto fronts. This enables the users to
choose a solution with the best trade-off between different objectives. However,
c© Springer International Publishing AG, part of Springer Nature 2018
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evolutionary algorithms have different control parameters. The choice of control
parameters has a great impact on the performance of an evolutionary algorithm
[6]. Setting control parameters can be very challenging, and is known as a param-
eter tuning problem [7]. Tuning of algorithms is very important. It can find good
control parameters which improve the algorithms performance. Also, with tuned
algorithms we can perform a fair comparison [8]. Algorithms with default param-
eters perform well on benchmark problems, but this is usually not the case for
real-world problems, since they are not studied in literature and we have little
knowledge about them.

To tackle this problem, we propose Tuning with a Chess Rating System
(CRSTuning) [8], adapted for Multi-Objective Optimization called MOCRS-
Tuning. The tuning process is guided by a self-adaptive Differential Evolution
(jDE) [9], which searches for optimal control parameter. By using a self-adaptive
algorithm, we removed the additional parameters needed for the tuning process.
The solutions in the population are evaluated with a Chess Rating System with
a Quality Indicator Ensemble (CRS4MOEA/QIE) [10]. The Quality Indicator
Ensemble ensures that the outcome of each candidate solution is evaluated with
different Quality Indicators (QIs), making sure that different aspects of quality
are taken into account [11]. We know by the No Free Lunch (NFL) theorem [12]
that it is not possible to find optimal parameter settings, but this holds only if
all possible search problems are considered. In our experiments, we limited our-
selves to the Integration and Testing Order (ITO) problem [13], which has been
shown that MOEAs can solve efficiently [14]. The ITO problem is concerned
with the order in which software components are to be integrated and tested,
such that the stubbing cost is minimised [15].

In our experiments, we applied the novel MOCRS-Tuning method to five
different MOEAs. The tuning was conducted on 8 real-world object-oriented
and aspect-oriented systems [4,13,14]. The comparison was conducted using the
Evolutionary Algorithms Rating System (EARS) framework [16]. The EARS
framework uses a chess rating system to rank and compare evolutionary algo-
rithms. The results show significant improvement of all five MOEAs with tuned
control parameters compared with the non-tuned (default) versions.

The remainder of the paper is organised as follows. A brief description of the
ITO problem is given in Sect. 2. The chess rating system for evolutionary algo-
rithms is described in Sect. 3. Section 4 describes the proposed tuning method.
The execution of the experiment and results are presented in Sect. 5. Finally, the
paper concludes in Sect. 6.

2 Integration and Testing Order

When performing a unit test in order to detect interaction problems between
units, they need to be integrated and tested in order. If a unit is required by
other units but is not yet available, it has to be emulated. An emulated unit is
called a stub, and it imitates some or all functions of the actual unit [15]. A stub
must be created for each unit that is not available during the integration process.
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Stubs are not desired for three reasons. First, stubs can be more complex than the
code they simulate. Second, since they require understanding of the semantics of
the simulated functions their generation cannot be fully automated. Third, some
stubs may be more error prone than their real counterparts [17]. Therefore, to
reduce the stubbing cost, such a sequence must be determined that it minimises
the stubbing cost [14]. This, however, is not a trivial task, and is known as the
Integration and Testing Order problem [13]. Since different factors (objectives)
influence the stubbing process, the problem should be treated as multi-objective
[14]. This makes it very suitable to be solved by MOEAs [13]. In our experiments
we used two objectives: Number of attributes and number of methods, which
have to be emulated in the stub if the dependencies between two modules are to
be broken. We used eight real systems in our experiments: MyBatis, AJHSQLDB
(HyperSQL DataBase), BCEL (Byte Code Engineering Library), JHotDraw,
HealthWatcher, JBoss, AJHotDraw, TollSystems. Information about the systems
such as number of dependencies, classes, aspects, and Lines of Code (LOC) is
given in Table 1.

Table 1. Details of the systems used for the ITO problem in the experiments.

Name Dependencies Classes Aspects LOC

AJHotDraw 1592 290 31 18586

AJHSQLDB 1338 276 15 68550

MyBatis 1271 331 - 23535

JHotDraw 809 197 - 20273

JBoss 367 150 - 8434

HealthWatcher 289 95 22 5479

BCEL 289 45 - 2999

TollSystems 188 53 24 2496

Fig. 1. A single game in CRS4MOEA/QIE.

3 Chess Rating System for Evolutionary Algorithms

For comparing and evaluating MOEAs we used a novel method called Chess
Rating System with a Quality Indicator Ensemble (CRS4MOEA/QIE) [10].
CRS4MOEA/QIE uses the Glicko-2 system [18] to rate and rank players. A
chess rating system is used to estimate a chess player’s skill level. Although it
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was initially intended to rank chess players, it can be applied to any competitor-
versus-competitor game. In our case, players are MOEAs. Figure 1 shows a single
game between two players (MOEAs). Each MOEA returns an approximation set
for the given problem. The two approximation sets are evaluated with a QI from
the ensemble, and the outcome of the game is decided. In a tournament players
play multiple games against all participating players for each given problem. A
tournament can have multiple independent runs. The outcomes of the games
are used to update each player’s rating R and rating deviation RD [18]. Each
unrated player has his rating set to 1500 and RD to 350 before the tournament
starts. The rating represents a player’s skill; the higher the rating, the higher
the skill. If the player performs better than expected his rating increases, and
decreases if they perform worse than expected. The rating deviation indicates
how reliable a player’s rating is. A small RD means a player plays often and
has a reliable rating. In contrast, if the RD is high, his rating is unreliable. The
chess rating system was used for comparison of MOEAs and for their evaluation
in the tuning process.

Fig. 2. MOCRS-tuning flowchart.

4 MOCRS-Tunning Method

Proposed method (MOCRS-Tunning) uses a meta-evolutionary approach in
order to tune the control parameters of MOEAs. Figure 2 shows a simple
flowchart of the tuning process. As input, we give it an MOEA, the problems
for which it will be tuned, QIs for evaluation of results, and control parame-
ters with their ranges to be tuned. First an initial population is created where
the control parameters are generated randomly. The initial population is then
evaluated using CRS4MOEA/QIE. In the tournament, multiple versions of the
given MOEA with different control parameters are competing with each other
on the given problems. At the end of the tournament, each version of MOEA
receives its rating R, which reflects its performance (fitness). In the main loop,
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the tuning process takes place and is guided by jDE and CRS4MOEA/QIE.
jDE is used to produce new solutions (MOEAs with different control parame-
ters) and CRS4MOEA/QIE to evaluate the newly produced solutions. In order
to evaluate the new solution it plays in a tournament with the old population.
If the new solution has a higher rating compared to its current version, it will
be added to the new population, otherwise the current solution is added. The
new population needs to be evaluated, since the rating of a player depends on
its current opponents. When the stopping criteria is meet the MOEA with the
highest rating in the population is returned.

5 Experiment

The experiment consists of three parts: Comparing MOEAs with their ’default’
control parameters, tuning of MOEAs, and comparing MOEAs with tuned
control parameters against MOEAs with default parameters. The experiment
was performed on five MOEAs: IBEA [19], MOEAD [20], NSGA − II [21],
PESA − II [22] and SPEA2 [23]. The Quality Indicator ensemble contained
five different QIs in all experiments: IGD+ [24], HV [25], R2 [26], MS [27] and
Iε+ [28]. The diversity of QIs ensures that all the aspects of quality are covered
[10]. In all experiments, MOEAs solved the ITO problem on eight previously
mentioned systems for which the stopping criteria was set to 300,000 evalua-
tions for each system. In the first and last parts we conducted a tournament for
the comparison using CRS4MOEA/QIE incorporated in EARS. The tournament
in the first and third parts contained the same problems and QIs as the tuning
process. For the comparison of MOEAs before and after tuning, the number of
independent runs in the tournament was set to 15. At the end of the tourna-
ment we plotted Rating Intervals (RI) of each MOEA using their rating and RD.
Using RIs, we are 95% confident that the player’s rating R is within an interval
[R − 2RD,R + 2RD]. If the rating intervals of two MOEAs do not overlap, then
they are significantly different, whereas, conversely, it is not necessarily true.

5.1 Comparing MOEAs with Default Control Parameters

Finding default parameters can be challenging, since they depend on the type of
problem. The default values are commonly provided by the author. However they
are usually available only for continuous types of problems, and rarely for com-
binatorial types such as the ITO problem. Therefore, we set the default values
of control parameters for all MOEAs based on the source code of combinatorial
operators found in the jMetal framework [29]. We limited the tuning process to
three control parameters: Population size μ, crossover probability ηc and muta-
tion probability ηm. Based on the jMetal framework, the default values of the
parameters are 100 for μ, 1.0 for ηc and 0.2 for ηm. The results of the tournament
are displayed in the form of Rating Intervals. The RD value of all participat-
ing MOEAs reached its minimum value (50) [30]. The Rating Intervals of all
MOEAs with default control parameters are shown in Fig. 3. The algorithms
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are ranked based on the rating, where the algorithm with the highest rating is
first. From the results, we can observe that NSGAII performed the best, and is
significantly better (Rating Intervals do not overlap) than MOEAD. PESAII,
IBEA and SPEA2 have a very similar rating and, consequently, their intervals
overlap almost entirely. There is a high probability that the order of these three
MOEAs would change if the tournament were repeated.

Fig. 3. 95% rating intervals of all MOEAs with default parameters.

Table 2. Control parameters of all five MOEAs after tuning.

μ ηc ηm

IBEA 173 0.63 0.9

MOEAD 192 0.50 0.98

NSGAII 108 1.00 0.86

PESAII 110 0.37 1.0

SPEA2 190 0.74 0.87

5.2 Tuning MOEAs

In the tuning process we limited the search space of control parameters. For pop-
ulation size the lower bound is set to 10 and the upper bound to 200. Mutation
and crossover probability have the same lower bound 0.1 and upper bound 1.0.
The population size (number of MOEAs) for jDE was set to 20, and the stopping
criteria was set to 20 generations. Table 2 shows the parameters of each MOEA
after the tuning process. We can observe that different MOEAs have very dif-
ferent control parameters, except for mutation ηm. All MOEAs seem to prefer
a higher mutation probability, meaning that higher exploitation is required for
the given problems.
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5.3 Comparing MOEAs with Tuned Control Parameters

After all MOEAs underwent tuning, we repeated the tournament from the first
part of the experiment for each MOEA. In each tournament, an MOEA with
tuned control parameters played against MOEAs which had their default param-
eters. This enabled us to detect performance improvement of each MOEA easily.
The resulting Rating Intervals are displayed in Figs. 4 to 8. The first Figure
(Fig. 4), shows the improvement of IBEA with tuned parameters. By compar-
ing the results to Fig. 3, we can see that IBEA jumped from third to first place
whilst the other MOEAs are almost unchanged. The tuning had a big impact
on IBEA’s performance, since it is significantly better than all other MOEAs.
Figure 5 shows the comparison of tuned MOEAD against MOEAs with default
parameters. Compared to Fig. 3, MOEAD jumped from last to first place mean-
ing, it is no longer significantly worse than NSGAII. Even though MOEAD is
first, it is not significantly better than any other MOEA. Since Rating Intervals
of all MOEAs overlap no claims about one MOEA outperforming another can

Fig. 4. Comparing IBEA with tuned parameters to MOEAs with default parameters.

Fig. 5. Comparing MOEAD with tuned parameters to MOEAs with default
parameters.
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Fig. 6. Comparing NSGAII with tuned parameters to MOEAs with default
parameters.

Fig. 7. Comparing PESAII with tuned parameters to MOEAs with default
parameters.

be made. Figure 6 shows the performance of the tuned NSGAII. With default
parameters it was already first, and significantly better than MOEAD. As we
can see from the results, this does not mean it cannot be improved. With tuned
parameters it performs significantly better than the rest. As we can see from
Fig. 7, tuning also had a positive effect on PESAII. It took the first place from
NSGAII, and is significantly better than the other MOEAs. The tuning of
PESAII also had an effect on the rating of MOEAD. It is no surprise that
MOEAD is outperformed by PESAII, since it is tuned and it was already out-
performed by NSGAII. However, now it is also outperformed by IBEA, and
the Rating Intervals are barely overlapping with SPEA2. This means that a big-
ger portion of MOEADs rating can be attributed to victories against PESAII.
Figure 8 show the performance improvement of tuned SPEA2. As with all other
MOEAs, it also jumped to the first place. With tuned parameters it outperforms
every MOEA except NSGAII. The improvement of SPEA2 also had a bigger
impact on the rating of MOEAD. Its Rating Interval shifted to the left, but not
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Fig. 8. Comparing SPEA2 with tuned parameters to MOEAs with default parameters.

Fig. 9. Comparing all tuned versions of MOEAs.

as much when compared with the tuned version of SPEA2. For a better com-
parison we performed a tournament where all tuned versions of MOEAs played
against each other. The resulting Rating intervals are displayed in Fig. 9. We
can see that tuning had the biggest impact on MOEAD. It is on par NSGAII,
whereas with default parameters it performed significantly worse (Fig. 3). The
remaining MOEAs improved almost identically. The order of SPEA2, PESAII
and IBEA has switched, but their intervals overlap like they do with default
parameters. However, the end user is most interested in the obtained approxi-
mation set. Therefore, we plotted the approximation set for system AJHSQLDB
obtained by MOEAD with default and tuned parameters on Fig. 10. The results
show that the approximation set obtained with tuned MOEAD has both bet-
ter convergence as spread. Overall, we can observe that MOCRS-Tuning was
very successful at improving the performance of MOEAs, which was reflected in
their rating and obtained approximation sets. The drastic changes in the perfor-
mance after tuning implies that control parameters play a very important role
in their execution, giving us a good reason as to why tuning is important, not
only in real-world applications, but also when conducting comparisons amongst
MOEAs.
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Fig. 10. Comparing approximation fronts of MOEAD with MOEAD − tuned for
system AJHSQLDB.

6 Conclusion

In this paper we presented a novel tuning method for multi-objective algorithms
called MOCRS-Tuning. The method uses a jDE for the search of optimal parame-
ters and a chess rating system with a Quality Indicator Ensemble for evaluation
of MOEAs. The tuning was performed on five different MOEAs. All MOEAs
were tuned for the real-world ITO problem on eight systems. All experiments
were conducted in the EARS framework. For the comparison between MOEAs
before and after tuning, and for the evaluation of solutions in the tuning pro-
cess, we used CRS4MOEA/QIE. The results have shown that tuned versions
of MOEAs have improved significantly compared to their versions with default
parameters. This has proven that every MOEA has a benefit when tuning is
performed, and that more emphasis needs to be given to control parameters
when using MOEAs. Since the tuning process incorporated a Quality Indicator
Ensemble, we have assured that different aspects of quality were considered in
the tuning process. Because we used eight systems in the tuning process, it was
extremely time-consuming. Therefore, each algorithm was tuned only once. The
tuning process for one MOEA takes approximately 23 h on a computer with an
Intel(R) Core(TM) i7-4790 3.60 GHz CPU and 16 GB of RAM.

For future work, we would like to speed up the tuning process, which would
enable additional tuning runs. In order to know with greater certainty whether
the parameters are suitable for a wider set of problems, tuned MOEAs need to be
run on additional systems which were not included in the tuning process. We also
intend to compare the results of tuned MOEAs with a state-of-the-art method
called Hyper-heuristic for the Integration and Test Order Problem (HITO) [4].
This would show us if a well tuned MOEA can compete with a state-of-the-art
algorithm. Additionally, we would like to tune MOEAs on problems with higher
numbers of objectives, to see how the number of objectives affects the tuning
process of control parameters.
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Abstract. This paper develops a surrogate-assisted particle swarm
optimization framework for expensive constrained optimization called
CONOPUS (CONstrained Optimization by Particle swarm Using Surro-
gates). In each iteration, CONOPUS considers multiple trial positions for
each particle in the swarm and uses surrogate models for the objective
and constraint functions to identify the most promising trial position
where the expensive functions are evaluated. Moreover, the current over-
all best position is refined by finding the minimum of the surrogate of
the objective function within a neighborhood of that position and sub-
ject to surrogate inequality constraints with a small margin and with
a distance requirement from all previously evaluated positions. CONO-
PUS is implemented using radial basis function (RBF) surrogates and
the resulting algorithm compares favorably to alternative methods on
12 benchmark problems and on a large-scale application from the auto
industry with 124 decision variables and 68 inequality constraints.

Keywords: Particle swarm optimization · Constrained optimization
Surrogate model · Radial basis function · Expensive function

1 Introduction

In many engineering optimization problems, the objective and constraint func-
tions are black-box in that their mathematical expressions are not explicitly
available. Moreover, accurate gradient information is often not available and so
classical optimization methods are not applicable. Particle swarm optimization
(PSO) (Kennedy and Eberhart [1]) is among the most popular metaheuristics
for solving these problems. In the PSO paradigm, the population of solutions
simulates the behavior of a swarm of agents or particles, such as a flock of birds
or a school of fish, as they collectively attempt to find some optimal state.

Numerous variants of PSO have been proposed and shown to be effective on
a wide variety of problems (e.g., [2–5]). Moreover, many PSO methods have been
developed to handle constraints (e.g., [6–9]). Now there are many optimization
problems for which the objective and constraint function values are obtained
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from time-consuming computer simulations. In these situations, only a relatively
small number of simulations can be carried out for the optimization process.
Hence, surrogates have been used to assist PSO by reducing the number of
function evaluations needed to obtain good solutions (e.g., Parno et al. [10], Jiang
et al. [11], Tang et al. [12], Sun et al. [13]). These surrogate-assisted PSO methods
are designed for bound-constrained problems where only the objective function is
expensive. There are very few, if any, surrogate-assisted PSO approaches where
surrogates are used to approximate both the objective and constraint functions.
Moreover, there are relatively few surrogate-assisted PSO methods that can be
used for high-dimensional problems with over 100 decision variables (e.g., Sun
et al. [13]). However, there are surrogate-assisted evolutionary algorithms for
constrained problems (e.g., Regis [14]) and non-evolutionary methods that use
surrogates to model the objective and constraints (e.g., Basudhar et al. [15],
Regis [16], Bagheri et al. [17]).

This paper solves constrained optimization problems of the form:

min {f(x) : G(x) = (g1(x), . . . , gm(x)) ≤ 0, � ≤ x ≤ u} (1)

where f, g1, . . . , gm are functions whose values at an input x ∈ R
d are obtained

from a deterministic and expensive computer simulation. The region [�, u] ⊂ R
d

defined by the bounds is referred to as the search space for problem (1). Here,
one simulation for a given input x ∈ [�, u] yields the values of f(x) and G(x).
This paper assumes that accurate gradient information for the objective and con-
straint functions are not available. Problem (1) is denoted by CBOP(f,G, [�, u]).

Since standard PSO is not expected to be effective when the objective and
constraint functions are expensive, this paper develops a surrogate-based app-
roach called CONOPUS (CONstrained Optimization by Particle swarm Using
Surrogates) to reduce the number of simulations in PSO for constrained prob-
lems. This method can be used for problems involving hundreds of decision
variables and many black-box inequality constraints. In each iteration, CONO-
PUS considers multiple trial positions for each particle in the swarm and then
uses surrogate models for the objective and constraint functions to identify the
most promising trial position. The simulations yielding the objective and con-
straint function values are then performed only at these promising trial positions.
Moreover, the current overall best position is refined by finding the minimum of
the surrogate of the objective function within some search radius of that posi-
tion and subject to surrogate inequality constraints with a small margin and
with a distance requirement from previously visited positions. In the numerical
experiments, CONOPUS is implemented using RBF surrogates and the result-
ing CONOPUS-RBF algorithm is compared to alternative methods, including
APSO (Accelerated Particle Swarm Optimization) (Yang [18]) and another PSO
for constrained problems, an RBF-assisted PSO without local refinement, and
an RBF-assisted evolutionary algorithm called CEP-RBF (Regis [14]), on 12
benchmark problems and on the large-scale MOPTA08 problem from the auto
industry (Jones [19]) with 124 decision variables and 68 black-box inequality
constraints. The results show that CONOPUS-RBF outperforms the other PSO-
based approaches and is competitive with CEP-RBF on the problems used.
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2 Constrained Particle Swarm Using Surrogates

2.1 Overview of the Proposed Method

As mentioned above, the use of surrogates in PSO have mostly been limited
to bound constrained problems where only the objective function is expensive.
This paper develops a new surrogate-assisted PSO framework for constrained
black-box optimization called CONOPUS (CONstrained Optimization by Par-
ticle swarm Using Surrogates) that extends the OPUS framework for bound-
constrained black-box optimization (Regis [20]). As in OPUS, multiple trial posi-
tions for each particle are considered in each iteration. However, in CONOPUS,
there are now surrogate models for each inequality constraint function in addi-
tion to the surrogate for the objective function. These surrogates are updated in
every iteration and, for each particle, they are used to identify the most promis-
ing among a large number of trial positions for this particle. Then, each particle
is moved to the most promising trial position and then the expensive simulation
is carried out only at these promising positions. In addition, CONOPUS refines
the current overall best position by finding a minimizer of the updated surrogate
model of the objective function within a relatively small radius around that posi-
tion (and within the bounds), subject to surrogate inequality constraints with a
small margin, and subject to a distance requirement from previously evaluated
points. The idea of a margin for the constraints was introduced in Regis [16]
and it is meant to facilitate the generation of feasible sample points, while the
distance requirement is meant to prevent the algorithm from generating sample
points that are close to previous sample points. The solution to this optimization
subproblem is referred to as a local refinement point. The expensive simulation
is then also carried out at this point. Hence, CONOPUS is essentially an accel-
erated PSO for constrained problems with the surrogates guiding where each
particle should go and helping to refine the current overall best position.

2.2 Algorithmic Framework

A constrained optimization algorithm needs to be able to compare two infeasible
solutions in the search space [�, u] and determine which one is more desirable.
This can be accomplished by means of a constraint violation (CV) function,
denoted by VG(x), which measures the degree of constraint violation of a point
x ∈ [�, u] with respect to the constraint function G(x). Commonly used examples
are VG(x) =

∑m
j=1[max{gj(x), 0}] and VG(x) =

∑m
j=1[max{gj(x), 0}]2, and here,

the former is used. Now given the objective function f and a CV function VG,
the definition below clarifies what is meant by an improving solution.

Definition 1. Let [�, u] ⊆ R
d be the search space and let G(x) be the constraint

function for problem (1). Moreover, let D =
{
x ∈ R

d : � ≤ x ≤ u, G(x) ≤ 0
}

be the feasible region of the problem. A point x1 ∈ [�, u] is an improvement
over x2 ∈ [�, u] if one of the following conditions hold: (a) x1, x2 ∈ D and
f(x1) < f(x2); (b) x1 ∈ D but x2 �∈ D; or (c) x1, x2 �∈ D and VG(x1) < VG(x2).



Surrogate-Assisted Particle Swarm with Local Search 249

Below (Algorithm 1) is the CONOPUS framework for constrained PSO using
surrogates that extends the OPUS framework in Regis [20] to constrained opti-
mization. In every iteration of a PSO algorithm, each particle is represented as a
point in the search space with an associated velocity vector. This velocity vector
is updated by using a linear combination of the velocity in the previous itera-
tion, the direction of the best position so far of the particle, and the direction
of the best position so far of any of the particles. The weights for the last two
components of this linear combination vary randomly from iteration to iteration
to allow for the exploration of the search space. Assume for now that a feasible
starting point is given but the method can be extended to deal with infeasible
starting points by considering a two-phase approach as in Regis [16] where the
first phase consists of finding a feasible point while the second phase proceeds
in the same manner described below.

In the notation below, s denotes the number of particles and t denotes the
time period. Here, only discrete time periods t = 0, 1, 2, . . . are considered. More-
over, x(i)(t) represents the position of particle i, where i = 1, . . . , s, during
time t and x

(i)
j (t) represents the jth coordinate or component of x(i)(t), where

j = 1, . . . , d. That is, x(i)(t) = (x(i)
1 (t), x(i)

2 (t), . . . , x(i)
d (t)). Moreover, y(i)(t) is

the best position visited by particle i while ŷ(t) is the best position visited by
any of the particles up to time t. In addition, v(i,�)(t) and x(i,�)(t) are the �th
trial velocity and �th trial position, respectively, for particle i during time t.

The CONOPUS framework begins by evaluating the points of the given
space-filling design over the search space [�, u] (Step 1). Then the initial swarm
positions are selected to be the s best points of the space-filling design with
respect to the objective function f and constraint violation function VG (Step 2).
In Step 3, the initial particle velocities are determined using the half-diff method
[21]. Next, in Step 4, the best position for each particle is initialized to the start-
ing position of the particle. Moreover, the overall best position is initialized to
the best position among the starting positions in terms of f and VG. In addition,
the collection of local refinement points E0 is initialized to the empty set.

Next, Step 5 fits m + 1 surrogate models s
(0)
t (x), s(1)t , . . . , s

(m)
t , one for the

objective function and one for each of the constraint functions, using all available
data points. These data points come from all positions visited by any particle
(given by

⋃t
j=0

⋃s
i=1{x(i)(j)}) and from all local refinement points (given by Et).

Then, Step 6 determines the new position of each particle by first considering
multiple trial velocities within the velocity limits for that particle (Step 6.1(a)),
generating the corresponding trial positions (Step 6.1(b)), projecting the trial
positions into the bounds in case they leave the search space (Step 6.1(c)), and
then using the surrogate to select the most promising among the trial positions
and then choosing this to be the new position of the given particle (Step 6.2).
Once the new positions for the particles have been determined, the simulator
is then run at these positions to obtain the objective and constraint function
values (Step 7). Again, the best position for each particle and the overall best
position by any particle are updated (Step 8).
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Algorithm 1. CONstrained Optimization by Particle swarm Using Surrogates.
Inputs: (1) CBOP(f, G, [�, u]); (2) CV function VG(x); (3) population size: s; (4) space-filling

design: {z(1), . . . , z(k)} ⊆ [�, u] with k ≥ s; (5) inertial weighting factor for each iteration:

i(t), where t is the iteration number; (6) cognition parameter: μ; (7) social parameter: ν; (8)
minimum and maximum velocities: vmin and vmax; (9) number of trial positions for each
particle: r; (10) type of surrogate model; (11) optimization solver for local refinement; (12)
search radius for local refinement: Δ > 0; (13) distance requirement from previous sample
points: ξ > 0; (14) initial margin for the surrogate inequality constraints: ε > 0; (15)
distance threshold to determine if points are too close: δ > 0; (16) maximum iterations:
Tmax

Output: The best point found by the algorithm.

1. Evaluate Design. For i = 1, . . . , k, run simulator to obtain f(z(i)) and G(z(i)).
2. Determine Initial Swarm Positions. Choose initial swarm positions x(1)(0), . . . , x(s)(0)

to be the s best points from {z(1), . . . , z(k)} according to f and VG.
3. Determine Initial Particle Velocities. For i = 1, . . . , s, generate u(i) uniformly at

random on [�, u] and set v(i)(0) = 1
2
(u(i) − x(i)(0)).

4. Initialize Best Position for Each Particle and Overall Best. Set y(i)(0) = x(i)(0),
i = 1, . . . , s, and let ŷ(0) be the best point in {y(1)(0), . . . , y(s)(0)} with respect to f and
VG. Set the iteration counter t = 0 and Et = ∅.

5. Fit Surrogates. Use all previous sample points

⎛

⎝

t
⋃

j=0

s
⋃

i=1

{x(i)(j)}
⎞

⎠

⋃

Et to build surro-

gates s
(0)
t (x), s

(1)
t , . . . , s

(m)
t for the objective and constraint functions.

6. Determine New Particle Positions. For i = 1, . . . , s
6.1 Generate Trial Positions. For � = 1, . . . , r

(a) (Generate Trial Velocities) For j = 1, . . . , d

v
(i,�)
j (t + 1) = i(t)v

(i)
j (t) + μω

(i)
1,j(t)(y

(i)
j (t) − x

(i)
j (t))

+ νω
(i)
2,j(t)(ŷj(t) − x

(i)
j (t)), where ω

(i)
1,j(t), ω

(i)
2,j(t) ∼ U [0, 1]

v
(i,�)
j (t + 1) = min(max(vmin, v

(i,�)
j (t + 1)), vmax)

End for.
(b) (Generate Trial Positions) x(i,�)(t + 1) = x(i)(t) + v(i,�)(t + 1)
(c) (Project Trial Positions) x(i,�)(t + 1) = proj[�,u](x

(i,�)(t + 1))
End for.

6.2 Select Promising Position Using Surrogate. Use the surrogate model st(x) to
select the most promising trial position for particle i among the points {x(i,1)(t+1),
x(i,2)(t + 1), . . . , x(i,r)(t + 1)}. Let x(i)(t + 1) be the most promising trial position
and let v(i)(t + 1) be the associated trial velocity.

7. Evaluate Swarm Positions. For each i = 1, . . . , s, run the simulator to obtain f(x(i)(t+1))
and G(x(i)(t + 1)).

8. Update Best Position for Each Particle and Overall Best. Set ŷ(t + 1) = ŷ(t). For
i = 1, . . . , s
(a) If x(i)(t + 1) is an improvement over y(i)(t + 1), then

Set y(i)(t + 1) = x(i)(t + 1).
If y(i)(t + 1) is an improvement over ŷ(t + 1), then ŷ(t + 1) = y(i)(t + 1).

(b) Else
Set y(i)(t + 1) = y(i)(t).

End if.

9. Refit Surrogates. Use all previous sample points

⎛

⎝

t+1
⋃

j=0

s
⋃

i=1

{x(i)(j)}
⎞

⎠

⋃

Et to refit sur-

rogates s
(0)
t (x), s

(1)
t , . . . , s

(m)
t for the objective and constraint functions.
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Algorithm 1. CONOPUS algorithm (continued)
10. Perform Local Refinement of Overall Best Position. Relabel all previous

sample points by v1, . . . , vn and let v∗
n be the best feasible point so far. Solve the

subproblem:

min s
(0)
t (x)

s.t. x ∈ R
d, � ≤ x ≤ u

‖x − v∗
n‖ ≤ Δ, ‖x − vj‖ ≥ ξ, j = 1, . . . , n

s
(i)
t (x) + ε ≤ 0, i = 1, 2, . . . , m

(2)

11. Check if Feasible Solution to Subproblem was Found. If a feasible solution
is found for Problem (2), then let x∗

t+1 be the solution obtained. Otherwise, let
x∗

t+1 be the best solution with respect to f and VG (infeasible for (2)) among a set
of randomly generated points within the search region {x ∈ [�, u] : ‖x−v∗

n‖ ≤ Δ}.
12. Determine if Minimizer of Surrogate is Far From Previous Points. If x∗

t+1

is at least of distance δ from all previously evaluated points, then do
12.1 Evaluate Minimizer of Surrogate. Run the simulator to obtain f(x∗

t+1)
and G(x∗

t+1).
12.2 Update Overall Best Position and Local Refinement Points. If x∗

t+1 is
an improvement over ŷ(t+1), then ŷ(t+1) = x∗

t+1 and set Et+1 = Et ∪{x∗
t+1}.

Else, set Et+1 = Et.
13. Check Termination Condition. If t < Tmax, then reset t ← t + 1 and go back

to Step 5. Else, STOP.

The algorithm then refits the surrogate models s
(0)
t (x), s(1)t , . . . , s

(m)
t to incor-

porate the newly evaluated points (Step 9) in preparation for local refinement
of the overall best point (Step 10). In this step, an optimization solver finds a
global minimizer x∗

t+1 of the surrogate for the objective s
(0)
t (x) within a ball of

radius Δ centered at the current overall best point ŷ(t + 1), within the search
space, subject to surrogate inequality constraints with a margin ε, and with
a distance requirement of ξ from all previous sample points. In the numerical
implementation, it is enough to find an approximate solution to this optimiza-
tion subproblem. If the subproblem solution (local refinement point) is not too
close to any previous sample point (at least distance δ), then the simulator is
run at this point (Step 12.1), and then the overall best position and the set of
local refinement points are also updated (Step 12.2). Finally, the algorithm goes
back to Step 5 if the termination condition has not been satisfied. Otherwise,
the algorithm stops and returns the overall best position found (Step 13).

2.3 A Radial Basis Function Model

CONOPUS can be implemented using any type of surrogate model that is contin-
uously differentiable and whose gradients are easy to calculate. This study uses
the radial basis function (RBF) interpolation model in [22] and the resulting
algorithm is referred to as CONOPUS-RBF. This RBF model has been used in
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various surrogate-based optimization methods (e.g., [14,16]). Fitting this model
involves solving a linear system with good theoretical properties and it differs
from the typical training methods for RBF networks in machine learning.

Suppose we are given n distinct points u(1), . . . , u(n) ∈ R
d with function

values h(u(1)), . . . , h(u(n)), where h is the objective or one of the constraint
functions. CONOPUS-RBF uses an interpolant of the form

s(x) =
n∑

i=1

λiφ(‖x − u(i)‖) + p(x), x ∈ R
d, (2)

where ‖ · ‖ is the Euclidean norm, λi ∈ R for i = 1, . . . , n, p(x) is a linear
polynomial in d variables, and φ has the cubic form: φ(r) = r3. Other possible
choices for φ include the thin plate spline, multiquadric and Gaussian forms. We
use a cubic RBF because of previous success with this model (e.g., [14,20]).

3 Numerical Experiments

CONOPUS-RBF is compared with alternative methods on the MOPTA08
benchmark problem [19] from the auto industry. The MOPTA08 problem
involves finding the values of the decision variables (e.g., shape variables) that
minimize the mass of the vehicle subject to performance constraints (e.g., crash-
worthiness, durability). It has one black-box objective function to be minimized,
124 decision variables that take values on a continuous scale from 0 to 1, and 68
black-box inequality constraints that are well normalized [19]. A Fortran code
for this problem is available at http://www.miguelanjos.com/jones-benchmark.

CONOPUS-RBF is also compared with the alternative methods on 12 test
problems used in Regis [14]. These include G7, G8, G9, G10, four 30-D prob-
lems from the CEC 2010 benchmark [23] (C07, C08, C14 and C15) and four
design problems, namely, Welded Beam, GTCD (Gas Transmission Compressor
Design), Pressure Vessel, and Speed Reducer. The number of decision variables,
number of inequality constraints, the region defined by the bounds, and the best
known feasible objective values for these problems are given in Regis [14].

To evaluate the effectiveness of the RBF surrogate strategy, CONOPUS-RBF
is compared with CONPSO, which is a standard PSO for constrained problems
obtained by removing the trial solutions and RBF surrogates in CONOPUS-RBF
and also the local refinement phase. To assess the effectiveness of the local refine-
ment strategy, CONOPUS-RBF is also compared with an RBF-assisted exten-
sion of CONPSO without local refinement called CONPSO-RBF. Moreover, it
is compared with an RBF-assisted evolutionary algorithm called CEP-RBF [14]
and with Accelerated Particle Swarm Optimization (APSO) [18].

All computational runs are carried out in Matlab 8.2 on an Intel(R)
Core(TM) i7-4770 CPU 3.40 GHz 3.00 GHz desktop machine. Each method is
run for 30 trials on all problems. The RBF-assisted methods are all initialized
using an affinely independent Latin Hypercube Design (LHD) with d+1 points.
The initial population of particles is chosen as a subset of the LHD with the

http://www.miguelanjos.com/jones-benchmark
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best objective function values. If there are not enough LHD points to form the
initial population, it is augmented by uniform random points over the search
space. The LHD is not needed by CONPSO and other non-surrogate methods.
However, experiments on the test problems suggest that the performance of PSO
when initialized by uniform random points over the search space is similar to its
performance when initialized by an LHD. To ensure fair comparison, all methods
use the same LHD in a given trial, but different LHDs are used in different trials.

In the numerical experiments, the population size for CONOPUS-RBF,
CONPSO-RBF and CONPSO is set to s = 5, 10, 20 (e.g., [7]). In some PSO
implementations, the inertial weighting factor i(t) varies with the iterations from
a high value (close to 1) to a low value. Here, it is fixed at i(t) = 0.72984 and
the cognition and social parameters are set to μ = ν = 1.496172 as recom-
mended in [24]. The minimum and maximum values for the components of the
velocity vectors are set to ∓ min

1≤i≤d
(ui − �i)/4, respectively. For CONOPUS-RBF,

the number of trial positions for each particle is r = 10d, the search radius for
local refinement is Δ = 0.05 min

1≤i≤d
(ui − �i), the distance requirement from pre-

vious sample points is ξ = 0.0005 min
1≤i≤d

(ui − �i), and δ = ξ. For CEP-RBF, the

parameters are μ = 5 parent solutions in each generation, and the number of
trial offspring for each parent in each generation is ν = min(1000d, 10000).

Parameter tuning can be used to obtain better algorithm performance when
the computational budget is limited [25]. However, for truly expensive func-
tions, this may not always be feasible and one can use parameter settings that
are reasonable based on previous algorithm performance. Besides, finding the
best parameter settings for CONOPUS-RBF is beyond the scope of this paper,
and our goal is not to show that it always outperforms other methods. Rather,
we wish to demonstrate that surrogates dramatically improve the performance
of PSO on constrained problems and that the resulting CONOPUS-RBF is a
promising approach when the number of simulations is limited.

4 Results and Discussion

CONOPUS-RBF is compared with alternatives on the 12 test problems using
data profiles [26]. To make it easier to present the results, two sets of comparisons
are performed: (1) CONOPUS-RBF vs CONPSO-RBF with different population
sizes (s = 5, 10, 20); and (2) CONOPUS-RBF vs other methods including APSO,
CONPSO, CONPSO-RBF and CEP-RBF.

Now the data profile of a solver s [26] is the function

ds(α) = |{p ∈ P : tp,s ≤ α(np + 1)}| /|P|, α > 0, (3)

where tp,s is the number of simulations required by solver s to satisfy the con-
vergence test defined below on problem p and np is the number of variables in
problem p. For a given solver s and any α > 0, ds(α) is the fraction of problems
“solved” by s within α(np + 1) simulations (equivalent to α simplex gradient
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Fig. 1. Data profiles for optimization methods on the test problems.

estimates [26]). Here, “solved” means the solver generated a point satisfying the
convergence test in Moré and Wild [26]. This test uses a tolerance τ > 0 and the
minimum feasible objective function value fL obtained by any of the solvers on a
particular problem within a given number of simulations μf and it checks if a fea-
sible point x obtained by a solver satisfies f(x(0))−f(x) ≥ (1− τ)(f(x(0))−fL),
where x(0) is the feasible starting point corresponding to the given problem.
Here, x is required to achieve a reduction that is 1 − τ times the best possible
reduction f(x(0)) − fL. In this study, τ = 0.05.

Figure 1 shows the data profiles of the various solvers on the test problems.
These profiles clearly show that CONOPUS-RBF is a dramatic improvement
over CONPSO for each of the population sizes s = 5, 10, 20. Moreover, for the
test problems considered and when the computational budget is limited, the best
results for CONOPUS-RBF and CONPSO are obtained when s = 5, followed
by s = 10 and then s = 20. A possible explanation for this is that with a smaller
population size, these algorithms are able to perform more iterations.

Next, Fig. 1 shows that CONOPUS-RBF with s = 5 is slightly better than
(5+5)-CEP-RBF after about 40 simplex gradient estimates and it is much better
than both CONPSO and CONPSO-RBF with s = 5. In particular, after 100 sim-
plex gradient estimates, CONOPUS-RBF with s = 5 satisfied the convergence
test for about 85% of the problems compared to about 82% for (5+5)-CEP-RBF,
about 72% for CONPSO-RBF with s = 5, about 53% for CONPSO and 35%
for APSO. Additional comparisons between CONOPUS-RBF and CONPSO-
RBF for s = 5, 10, 20 (not shown here) indicate that local refinement improves
performance when the population size is small.

Friedman’s nonparametric statistical test followed by a multiple comparison
procedure was also performed to determine if the mean rank of CONOPUS-RBF
is significantly better than that of other algorithms when s = 5 at a fixed com-
putational budget of 15(d + 1) for the CEC 2010 problems and 30(d + 1) for the
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Comparison of Optimization Algorithms on the MOPTA08 Problem (d = 124, m = 68)

 

 

CONOPUS−RBF (s = 5)
CONPSO−RBF (s = 5)
(5+5)−CEP−RBF
CONPSO (s = 5)
APSO (s = 5)

Fig. 2. Mean of the best feasible objective function value (over 10 trials) vs number of
simulations for various optimization methods on the MOPTA08 optimization problem.
Error bars represent 95% t-confidence intervals for the mean.

other test problems. The results show that CONOPUS-RBF is significantly bet-
ter than CONPSO and APSO on most of the test problems and it is significantly
better than CEP-RBF on three of the four CEC 2010 problems used.

Figure 2 shows the plot of the mean of the best objective function value (over
10 trials) obtained by each algorithm on the MOPTA08 problem as the number
of simulations increases. The error bars are 95% t confidence intervals for the
mean. This plot shows that on the MOPTA08 problem, CONOPUS-RBF with
s = 5 is better than (5 + 5)-CEP-RBF followed by CONPSO-RBF with s = 5
and these RBF-assisted methods are dramatically much better than CONPSO
and APSO with s = 5.

The advantage of CONOPUS-RBF over CEP-RBF may be partly due to the
local refinement procedure. Incorporating local refinement in CEP-RBF might
also improve its performance and the resulting algorithm might even outperform
CONOPUS-RBF. However, the results suggest that CONOPUS-RBF will still
be competitive with CEP-RBF with local refinement.

5 Summary and Future Work

This paper introduced the CONOPUS framework for a surrogate-assisted PSO
for computationally expensive constrained optimization. This method generates
a large number of trial positions for each particle in the swarm and uses surro-
gates for the objective and constraint functions to identify the most promising
trial position for each particle. The function evaluations are then carried out only
on the promising trial positions. Moreover, at the end of each iteration, CONO-
PUS refines the current best position of all particles by finding an approximate
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minimizer of the surrogate of the objective function within some neighborhood of
that best position and subject to surrogate inequality constraints with a small
margin and with a distance requirement from all previously visited positions.
CONOPUS was implemented using RBF surrogates and was shown to outper-
form the APSO algorithm and another constrained PSO with and without RBF
surrogates (CONPSO and CONPSO-RBF) for small population sizes of s = 5, 10
and 20 on the test problems. Moreover, CONOPUS-RBF with s = 5 is compet-
itive with a surrogate-assisted evolutionary algorithm CEP-RBF with the same
population size. In addition, CONOPUS-RBF with s = 5 outperforms all these
other alternatives on the large-scale MOPTA08 problem with 124 decision vari-
ables and 68 black-box inequality constraints. Overall, CONOPUS-RBF is a
promising algorithm for constrained expensive black-box optimization.

Future work will explore other ways to incorporate surrogates within the
PSO framework for constrained optimization and compare with other approaches
such as CEP-RBF with local refinement. Moreover, one can consider extensions
of the CONOPUS framework to multiobjective optimization and to problems
where there is noise in the objective and constraint functions. Finally, one can
also apply CONOPUS to other real-world optimization problems.
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Abstract. The identification of qualified peptides as ligands for diag-
nostic and therapeutic interventions requires the solution of multi- and
many-objective biochemical optimization problems. A MOEA has been
designed for molecular optimization with a combined indicator- and
Pareto-based selection strategy that encounters common classification
problems of the solutions’ quality with the rise of the problem dimen-
sion. Therefore, a sophisticated selection strategy is presented in this
work that selects the individuals for the succeeding generation related
to two general aspects in biochemical optimization: the first aspect
reflects the peptide quality and the second one the genetic dissimilarity
among the peptides in a population. The search behavior of this aspect-
based selection is compared to the traditional selection on generic 3- to
6-dimensional physiochemical optimization problems and the impact of
the reference point in the aspect-based selection is investigated.

Keywords: Aspect-based selection
Multi- and many-objective biochemical optimization

1 Introduction

Peptides have several attractive features as they are highly selective, of low
toxicity and are very effective in binding to targets. Due to these facts, peptides
are highly suitable as applicants for diagnostic and therapeutic agents. Peptides
as drug components have to fulfill several additional properties simultaneously
like a good cell permeability, high molecule stability and insoluble in aqueous
solutions [1].

The synthesis and laboratory analysis of peptides is a time and cost con-
suming process. In [2], a single-objective evolutionary algorithm for molecular
optimization has been reported revealing exponential fitness improvement of can-
didate molecules within 10 iterations. A sophisticated version of this approach
for multi-objective molecular optimization, referred to as COSEA-MO, has been
c© Springer International Publishing AG, part of Springer Nature 2018
P. Korošec et al. (Eds.): BIOMA 2018, LNCS 10835, pp. 258–269, 2018.
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reported and benchmarked in [3] identifying a selected number of highly qual-
ified molecules within a very low number of generations in the case of 3- and
4-dimensional physiochemical optimization problems. COSEA-MO is evolved as
in silico drug design process to identify a selected number of improved molecules
providing a wide range of genetic diversity. Molecule properties are determined
in the laboratory as numerical approximation models are challenging, therefore
only a very low iteration number of the process is performed (<10). COSEA-
MO uses dynamic deterministic variation operators and a mating pool of the
actual population and the offspring is generated after variation. A combined
indicator-based and fitness-proportionate selection determines the individuals
of the succeeding generation. The Pareto dominance principle as a part of the
selection strategy potentially induces problems in the case of Many-objective
Optimization Problems (MaOPs), referring to problems with more than three
objectives. A potential idea to overcome this is a sophisticated selection strategy
recently introduced in [4] to enhance COSEA-MO for many-objective molecular
optimizations. This selection strategy applies the Pareto dominance principle not
directly to the optimization problem, but to a two-dimensional problem cover-
ing two generic aspects of molecular optimization: the first aspect measures the
peptides’ quality, the second one measures the genetic dissimilarity of a peptide
relative to the current population. Since the aspect-based selection strategy is
not comprehensively analyzed so far, this work analyses the search behavior of
COSEA-MO with the aspect-based selection compared to the traditional selec-
tion on generic 3- to 6-dimensional physiochemical optimization problems as well
as the impact of the reference point in the aspect-based selection strategy.

The outline of this work is as follows: Sect. 2 references related work of
enhanced MOEA for MaOPs. Section 3 introduces the molecular optimization
problems and COSEA-MO with the traditional as well as aspect-based selection.
Section 4 presents the simulation onsets and the experimental results, which are
discussed in Sect. 5.

2 Related Work

MOEAs nowadays are categorized as Pareto-based, decomposition-based and
indicator-based methods and have a high potential to achieve excellent per-
formance in optimization problems with two or three objectives. Otherwise,
MOEA have substantial difficulties to solve MaOPs [5]. These difficulties are
to be found in the selection operators, the computational cost and visualization
of the solutions. Pareto-based MOEA like NSGA-II [6] experience a low effi-
ciency in terms of convergence as the selection criteria of NSGA-II is primary
Pareto-based. The consequence is a significant increase of the non-dominated
solutions as the Pareto principle has difficulties in distinguishing the individuals
of a population. As the term convergence is neglected, diversity is predomi-
nant, see e.g. [5]. For decomposition-based methods like MOEA/D [7], assigning
of weight vector values or a reference point in high dimensions is challenging.
Indicator-based problems like HypeE [8] produce highly increasing computa-
tional complexity caused by the hypervolume indicator. Improvement of these
algorithms for many-objective optimizations have been published addressing the



260 S. Rosenthal and M. Borschbach

challenge of convergence and diversity by methods of objective reduction, incor-
poration and preferences, modified dominance definitions and the introduction
of additional selection criteria:

Dimensionality reduction methods have been published dealing with redun-
dant objectives: In [9], a technique of selecting a subset of conflicting objectives
using a correlation-based ordering of objectives is presented. In [10], objective
reduction is formulated as a multi-objective search problem. Three formulations
are introduced of this problem: two formulations base on preservation of domi-
nance structure and one formulation utilizes the correlation between the objec-
tives. NSGA-II is applied to generate Pareto front subsets that offer decision
support to the user.

Preference-based many-objective evolutionary algorithms are developed pro-
viding a decision-maker search for user’s preferred solutions. In [11], a brushing
method is proposed to focus on a subset of Pareto optimal solutions on user’s
preference. In [12], a preference-inspired coevolutionary algorithm is proposed
applying the concept of a set of decision-makers preferences together with a
population of candidate solutions.

Alternative Pareto dominance principles have been proposed modifying the
definition of Pareto dominance. Alternative rules such as ε-dominance [13],
L-dominance [14], fuzzy- [15] and grid-dominance [16] have been published.

An established and improved MOEA for many-objective optimization is
NSGA-III [17]. The primary Pareto-based selection of NSGA-II is improved by
using the non-dominated sorting for the first aspect and a more complex niching
operator based on a set of predefined reference directions, termed weight vectors,
to address diversity. It is a challenge to design the weight vectors in real-world
applications. Furthermore, MOEA/DD and Two-Arch2 achieved excellent per-
formance in MaOPs [18]. MOEA/DD uses the Pareto dominance principle and
decomposition; Two-Arch2 is also based on Pareto dominance and an indicator.

3 Designed MOEA for Molecular Optimization

3.1 Physiochemical Optimization Problems

Four optimization problems with 3 up to 6 objective functions are applied pre-
dicting physiochemical peptide properties. The optimization problems comprise
molecular properties like charge, solubility in aqueous solutions, molecule size,
molecule stability and structure. The six physiochemical functions are generic
in the sense that the physiochemical properties are determined by descriptor
values of the amino acids in the molecule sequence and are provided by the open
source BioJava library [19]. A description of the determination methods is also
available here [19]: Needleman Wunsch Algorithm (NMW), Molecular Weight
(MW), Average Hydrophilicity (Hydro), Instability Index (InstInd), Isoelectric
Point (pI) and Aliphatic Index (aI).

NMW is a well known and used method for the global sequence alignment
of a solution to a pre-defined reference individual. This algorithm refers to the
common hypothesis that a high similarity between molecules refers to similar
molecular properties [20].
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MW is an important peptide property as a minimized MW ensures a good
cell permeability. MW of a peptide sequence of the length l is determined by the
sum of the mass of each amino acid (ai) plus a water molecule:
∑l

i=1 mass(ai) + 17.0073(OH) + 1.0079(H), where O (oxygen) and H (hydro-
gen) are the elements of the periodic system.

A common challenge of drug peptides is the solubility in aqueous solu-
tions, especially peptides with stretches of hydrophobic amino acids. Therefore,
Hydro is calculated by the hydrophilicity scale of Hopp and Woods [21] with
a window size equal to the peptide length l. An average hydrophilicity value
is assigned to each candidate peptide using the scales for each amino acid ai:
1
l · (

∑l
i=1 hydro(ai)).

The use of molecules as therapeutic agents is potentially restricted by their
instability and their potential degradation by enzymes in systemic application.
The stability is addressed by the InstInd as stability is a very important feature of
drug components. InstInd is determined by the Dipeptide Instability Weight Val-
ues (DIWV) of each two consecutive amino acids in the peptide sequence. DIWV
are provided by the GRP-Matrix [22]. These values are summarized and the final
sum is normalized by the peptide length l: InstInd = 10

l

∑l
i=1 DIWV (xi, xi+1).

pI of a peptide is defined as the pH at which a peptide has a net charge
of zero. A peptide has its lowest solubility at its pI. Therefore, the charge of a
peptide influence the solubility in aqueous solutions. The pI value is calculated
as follows: Firstly, the net charge for pH = 7.0 is determined. If this charge
is positive, the pH at 7 + 3.5 is calculated; otherwise the pH at 7 − 3.5 is
determined. This process is repeated until the modules of the charge is less or
equal 0.0001.

aI of a peptide is defined as the relative volume occupied by aliphatic side
chains consisting of the amino acids alanine (Ala), valine (Val), isoleucine (Ile)
and leucine (Leu). aI is regarded as a positive factor for the increase of ther-
mostability of globular molecules. aI is calculated according to the formula:
aI = X(Ala) + a · X(V al) + b · (X(Ile) + X(Leu)),
where X(Ala), X(V al), X(Ile) and X(Leu) are mole percent of the amino acids.
The coefficients a and b are the relative volume at the valine side chain (a = 2.9)
and Lei, Ile side chains (b = 3.9) to the side chain Ala.

Table 1. Physiochemical functions of the different optimization problems

Dimension Abbr. Objective functions

3D 3D-MOP NMW, MW, Hydro

4D 4D-MaOP NMW, MW, Hydro, InstInd

5D 5D-MaOP NMW, MW, Hydro, InstInd, pI

6D 6D-MaOP NMW, MW, Hydro, InstInd, pI, aI

Table 1 presents the composed physiochemical optimization problems with
the used abbreviations. These six objective functions comparatively act to
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reflect the similarity of a particular peptide and a pre-defined reference peptide:
f(CandidatePeptide) := |f(CandidatePeptide) − f(ReferencePeptide)|. There-
fore, the four objective functions have to be minimized and the optimization
problems are minimization problems.

3.2 Algorithm COSEA-MO

The presented COmponent-Specific Evolutionary Algorithm for Molecule Opti-
mization (COSEA-MO) [3] is designed to complement an in vitro drug design
process with a computer-assisting system aimed at the specific requirements of
such combined in vitro and in silico process: Firstly, several molecular proper-
ties are not predictable by numerical approximation models or descriptor value
sets and have to be determined in an in vitro process. As a consequence, the
evolutionary process has to provide a selected number of high-qualified peptides
within a very low number of generations and objective evaluations. Secondly,
the proposed optimized peptides have to be highly diverse in its primary genetic
structure and therefore, the algorithm has to propose the whole range from very
similar to very diverse peptide sequences in each iteration. Thirdly, the algo-
rithm has to be independent of problem-specific parameters as these are either
usually unknown or expert rule of thumbs in real-world application problems.

The algorithms briefly described in the following make use of a combi-
nation of deterministic dynamic variation operators and a selection strategy
for the determination of the individuals for the succeeding generation. The
traditional selection concept is tournament-based and a combination of fitness-
proportionate and indicator-based selection. The procedure of the proposed algo-
rithm is similar to NSGA-II. The initial population of COSEA-MO is generated
by N random individuals. Individuals are selected randomly from the actual pop-
ulation for variation. Parent and offspring sets are combined to a set of size 2N .
The succeeding generation of size N is generated by optionally applying either
the proposed indicator-based selection strategy, or the aspect-based selection
procedure.

The individuals in COSEA-MO represent peptides of length 20 consisting of
the 20 canonical amino acids. The individuals are encoded as character strings.
This encoding presents all feasible and only feasible solutions, which have an
equal probability to be presented. Tools for the determination of physiochemical
peptide properties often make use of this character encoding. Therefore, this
encoding does not require a conversion of the data format based on a character
set representing an amino acid chain.

The mutation and recombination operator are motivated by a suitable bal-
ance of global and local search. Deterministic dynamic variation operators are
suitable operators to achieve this purpose. The characteristic of deterministic
dynamic operators is the adaptation of mutation and recombination rates by a
predefined functional reduction with the iteration progress.

The recombination operator varies the number of recombination points over
the generations via a linearly decreasing function: xR(t) = l

2 − l/2
T · t, which
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depends on the length of the individual l, the total number of the genera-
tions T and the index of the current generation t. Three parents are used for
recombination.

An adapted version of the deterministic dynamic operator of Bäck and
Schütz [4] determines the mutation probabilities via the following function with
a = 5 pBS = (a + l−2

T−1 t)−1. The mutation rates of the traditional operator have
been adapted to a lower starting mutation rate by the parameter a = 5.

3.3 Indicator-Based Selection Strategy

The traditional selection concept of COSEA-MO starts with the tournament
selection of ts individuals from the population. These individuals are ranked
according to the Pareto dominance principle and the volume of each individual to
the zero point as ideal reference point is calculated. From this ranked tournament
set, the individuals with the lowest volume values are selected for the succeeding
generation with a probability p0, with the aim of guiding the search process in
direction of high quality solutions. With a probability 1 − p0, the individuals
are chosen from different fronts via Stochastic Universal Sampling (SUS). The
number of pointers in front-based SUS is equal to the number of fronts detected in
the ranking process. The segments are equal in size to the number of individuals
in each front. These steps repeat until the succeeding filial generation is complete.
Consequently, this selection strategy has two parameters, the tournament size
and the probability p0 for choosing the individuals from the first front. Default
values are ts = 10 and p0 = 50% according to previous simulation runs.

3.4 General Aspect-Based Selection

This section describes the alternative aspect-based selection strategy. A MaOP
is given by f : P −→ R

m, p −→ (f1(p), f2(p), . . . , fm(p)), whereby m > 3 is
the number of objectives fi as molecular functions which have to be minimized,
and P is the quantity of feasible molecules. The procedure of the novel selection
strategy is described in Algorithm 1. The strategy is ranked and binary tour-
nament based. The Pareto principle used for ranking is not directly applied on
the objective values but on a two-dimensional aspect-based minimization prob-
lem (line 4). The first aspect reflects the solutions’ quality by the calculation of
the Lp-norm of the objective values to a reference point (RP) (line 2), which is
either determined by the minimum of each objective provided by the population
members (line 1). Therefore, this reference point varies with the population.
Alternatively, in the experiments the zero point is selected as ideal reference
point RP. The second aspect refers to the general idea of maintaining a high
genetic dissimilarity within the populations. Needleman Wunsch Algorithm [23]
is chosen as global sequence alignment (line 3). COSEA-MO with aspect-based
selection is further termed nCOSEA-MO. The N -best individuals are selected in
the succeeding generation based on the rank (line 5) and the volume dominance
principle via binary tournament selection (line 6). L2-norm or Euclidean-norm
is used here in the experiments.
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Algorithm 1. Pseudo code of the aspect-based selection strategy
Input: Current population Pt with |Pt| = 2N , Pt+1 = {}
Calculation of the two indicator values for each solution:
1: RP := (mini1f1(pi1 ),mini2f2(pi2 ), . . . ,minimfm(pim )) ;

2: ∀p ∈ Pt: fLp−norm
(p) = Lp(f(p), RP );

3: ∀p ∈ Pt: diss(p) = 1
|Pt|

∑

p∈Pt

SequenceAlignment(p, Pt − p);

Selection process:
4: Ranking of Pt according to (fLp−norm, diss) into fronts Fi;

5: while |Pt+1| + |Fi| < N do
Pt+1 = Pt+1 ∪ Fi; i++;

end
6: binary tournament selection: while |Pt+1| < N do

select p1, p2 ∈ Pt \ {Pt+1}:
if (fLp (p1) ∗ diss(p1) < fLp (p2) ∗ diss(p2)) add p1 to Pt+1 ;

else add p2 to Pt+1;

end

4 Experimental Studies

The experiments are generally performed with the default population size of 100
motivated by previous experimental studies; the start population is randomly ini-
tialized. The individuals are 20-mer peptides composed of the 20 canonical amino
acids. Short peptides of length 20 are of specific interest because of their favor-
able properties as drugs. For statistical reasons, each configuration is repeated
30 times with 10 iterations. Firstly, the approximate Pareto optimal sets (PFs)
of COSEA-MO and nCOSEA-MO in each generation are compared in terms of
the established C-metric [24]

C(PF1, PF2) :=
| {b ∈ PF2 | ∃a ∈ PF1 : a � b} |

| PF2 | . (1)

C(PF1, PF2) = 0 means that no solution of PF2 is weakly dominated by at
least one solution of PF1, whereas C(PF1, PF2) = 1 implicate that all points
of PF2 are weakly dominated by PF1. This metric is usually not symmetric,
consequently C(PF1, PF2) and C(PF2, PF1) have to be determined. Therefore,
the C-metric value reflects the percentage of solutions that are weakly dominated
by one individual of the other approximate Pareto set.

PF of COSEA-MO is determined according to the molecular optimization
problem, whereas PF of COSEA-MO is determined according to the aspect-
based problem. The C-metric values are determined according to the objec-
tive values as usual. Tables 2, 3, 4, 5, 6 and 7 depict the C-metric values
C1 = C(nCOSEA-MO, COSEA-MO) and C2 = C(COSEA-MO, nCOSEA-MO)
for the 3D-MOP to 6D-MaOP with different selection parameter settings p0 and
reference point (RP) based on empirical and experimental findings.

4.1 Experimental Results

The experimental results are analyzed according to the following questions:
firstly, does a higher problem dimension have a different impact on the
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Table 2. 3D-MOP: (a) p0 = 50%, RP = min || (b) p0 = 50%, RP = 0

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

C1 0.88 0.87 0.9 0.9 0.81 0.73 0.73 0.5 0.68 0.7 0.78 0.83 0.83 0.79 0.64 0.67 0.69 0.58 0.6 0.6

C2 0.69 0.75 0.73 0.65 0.68 0.61 0.69 0.7 0.56 0.55 0.72 0.69 0.66 0.64 0.65 0.55 0.55 0.68 0.48 0.5

Table 3. 4D-MaOP: (a) p0 = 50%, RP = min || (b) p0 = 50%, RP = 0

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

C1 0.55 0.55 0.6 0.63 0.64 0.53 0.67 0.58 0.7 0.6 0.71 0.65 0.7 0.72 0.64 0.65 0.46 0.62 0.52 0.32

C2 0.55 0.45 0.44 0.51 0.46 0.53 0.51 0.48 0.5 0.56 0.51 0.55 0.56 0.46 0.5 0.49 0.54 0.54 0.46 0.52

Table 4. 5D-MaOP: (a) p0 = 50%, RP = min || (b) p0 = 50%, RP = 0

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

C1 0.48 0.36 0.38 0.38 0.33 0.29 0.24 0.22 0.18 0.22 0.5 0.45 0.35 0.32 0.3 0.22 0.3 0.23 0.21 0.17

C2 0.6 0.6 0.65 0.64 0.63 0.6 0.59 0.66 0.62 0.64 0.59 0.66 0.63 0.63 0.68 0.67 0.68 0.62 0.54 0.55

Table 5. 5D-MaOP: (a) p0 = 70%, RP = min || (b) p0 = 70%, RP = 0

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

C1 0.4 0.33 0.34 0.35 0.3 0.2 0.18 0.15 0.12 0.18 0.55 0.45 0.32 0.31 0.26 0.16 0.3 0.2 0.16 0.08

C2 0.59 0.52 0.62 0.61 0.61 0.56 0.56 0.64 0.58 0.62 0.57 0.57 0.62 0.56 0.58 0.55 0.55 0.46 0.47 0.5

Table 6. 6D-MaOP: (a) p0 = 50% and RP = min || (b) p0 = 50% and RP = 0

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

C1 0.32 0.26 0.43 0.29 0.26 0.24 0.25 0.25 0.22 0.25 0.4 0.4 0.41 0.38 0.37 0.36 0.28 0.19 0.28 0.37

C2 0.51 0.55 0.76 0.51 0.52 0.51 0.45 0.54 0.61 0.54 0.57 0.61 0.72 0.6 0.46 0.55 0.52 0.6 0.56 0.48

Table 7. 6D-MaOP: (a) p0 = 70% and RP = min || (b) p0 = 70% and RP = 0

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

C1 0.34 0.3 0.36 0.3 0.22 0.23 0.21 0.15 0.16 0.14 0.4 0.38 0.36 0.37 0.35 0.31 0.23 0.14 0.2 0.25

C2 0.46 0.5 0.42 0.48 0.56 0.58 0.56 0.55 0.6 0.54 0.53 0.54 0.48 0.53 0.52 0.59 0.57 0.61 0.52 0.5

performance of either or both selection strategies, indicator- or aspect-based?
Secondly, is there an impact of the selection parameters p0 or RP observable?
Thirdly, is there a fundamental difference in the search behavior of the different
selection configurations?

Tables 2, 3, 4, 5, 6 and 7 depict the C-metric values of nCOSEA-MO and
COSEA-MO with different parameter settings on the four optimization prob-
lems. A significant difference is observable comparing Tables 3(b), 4 and 5(a) with
Tables 5(b), 6 and 7(b): in the case of 3D-MOP and 4D-MaOP, C1 values are gen-
erally higher than those of C2, revealing that more candidate solutions identi-
fied by nCOSEA-MO weakly dominate the solutions of COSEA-MO than vice
versa within each of the 10 generations. Otherwise, in the case of 5D-MaOP and
6D-MaOP, C2 values are generally higher than those of C1, revealing that
more solutions of COSEA-MO weakly dominate solutions of nCOSEA-MO
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Fig. 1. Number of Pareto optimal solu-
tion in the case of nCOSEA-MO.

Fig. 2. Number of Pareto optimal solu-
tion in the case of COSEA-MO.

independent of the parameter settings. Figures 1 and 2 give an insight into the
number of approximate Pareto optimal solutions identified by COSEA-MO and
nCOSEA-MO in the test runs. nCOSEA-MO provides a significantly lower and
stable number of candidate solutions, whereas the solutions number of COSEA-
MO is generally higher and increases with the problem dimension as a conse-
quence of the Pareto dominance principle being directly applied to the objective
values. The number of Pareto optimal solutions of COEA-MO is increasing lin-
early from 3D-MOP to 4D-MaOP and this increasing rate slows down by a further
dimension increase. The average number of identified Pareto optimal solutions by
COSEA-MO is generally higher in the case of p0 = 70% than those of p0 = 50%.
As the approximate Pareto optimal sets of COSEA-MO are significantly larger
than those of nCOSEA-MO, the probability of identified promising peptides in
the sets of COSEA-MO is clearly higher than in the case of nCOSEA-MO.

Referring to the second question, there is no significant impact of the choice
of RP. Consequently, RP has no impact on the selection pressure independent of
the problem dimension. In the case of 5D-MOP and 6D-MaOP, the probability
of p0 and therefore the selection probability of the individuals for the succeeding
generation by the indicator is increased with the aim of raising the selection
pressure. A slight influence of the raise is observable as the C-metric values are
mainly slightly lower in the case of p0 = 70%, revealing that more peptides of
the approximate Pareto optimal sets are indifferent to each other.

To address the third question, a specific mapping method is applied to visu-
alize the peptide quality of each generation equally for all optimization problems
with the aim of analyzing the search behavior. The peptide quality of each gen-
eration is mapped into a point (x; y), where x is the volume of the gravity point
of the scatter plot to zero point as an ideal reference point. The coordinate y
is the standard deviation of the scatter plot points to the calculated reference
point symbolizing the average distance of the solutions points in each gener-
ation to the calculated gravity point of these solutions. Scatter plots of these
points are depicted in Figs. 3, 4, 5 and 6 for each optimization problem. Gener-
ally, it is observable that nCOSEA-MO has higher volumes of the gravity point
in the generations independent of the problem dimension but lower standard
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Fig. 3. 3D-MOP: peptide quality Fig. 4. 4D-MaOP: peptide quality

Fig. 5. 5D-MaOP: peptide quality Fig. 6. 6D-MaOP: peptide quality

deviations of the peptides in each generation to the gravity point in the cases of
3D-MOP and 3D-MaOP. Figures 5 and 6 reveal that the results of nCOSEA are
generally higher in the volume of the gravity points and die standard deviation.
The results of COSEA-MO with the probabilities p0 = 50% and p0 = 70% are
generally comparable in volume and standard deviation but remarkably low in
both terms compared to nCOSEA-MO. The volume values of the configuration
with p0 = 70% are slightly lower, a consequence of the higher probabilities of the
individuals to be selected into the succeeding generation by the ACV-indicator.
The peptides identified by COSEA-MO are more clustered in the search space,
which is a known property of the ACV-indicator. As a consequence, the indicator-
based selection tends to identify higher quality solutions in the case of the 5D-
and 6D-MaOP. nCOSEA-MO provides improved performance in the case of the
3D-MOP and 4D-MaOP. The analysis of the identified peptides of nCOSEA-MO
and COSEA-MO according to their physiochemical function values reveals an
interesting fact: the peptides identified by nCOSEA-MO are generally of signifi-
cantly lower MW, but have a higher average hydrophilicity and higher pI values
for 5D- and 6D-MaOP. As a consequence of the second aspect, the identified
peptides of nCOSEA-MO tend to have lower NMW values and therefore provide
a higher similarity to the reference peptide.
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5 Discussion and Conclusion

This works presents the performance comparison of a specific MOEA for molec-
ular optimization with optionally two different selection strategies in four multi-
and many-objective physiochemical optimization problems. The analysis of the
results reveal that nCOESA-MO with the aspect-based selection provides a per-
formance improvement in the case of the 3D-MOP and 4D-MaOP compared to
COSEA-MO with the indicator-based selection according to the C-metric val-
ues. In the cases of 5D- and 6D-MaOP, COSEA-MO provides a higher number
of qualified peptides compared to nCOSEA-MO having in mind that COSEA-
MO has significantly higher approximate optimal solution sets due to the Pareto
dominance principle. A further selection method is required to eliminate worse
candidate solutions for a subsequent laboratory analysis. Consequently, these
optimal sets of COSEA-MO have to be determined by a more sophisticated
method in further research work. An interesting point is the difference of the
optimal peptides identified by COSEA-MO and nCOSEA-MO regarding the
physiochemical properties: the identified peptides of nCOSEA-MO are generally
of a significantly lower MW, better NMW values on average but higher aver-
age hydrophilicity as well as pI values in higher dimensions. This makes the use
of nCOSEA-MO interesting in a practical sense even in the cases of 5D- and
6D-MaOP. A low MW is an important peptide property and therefore refer-
enced objective providing good cell permeability. Better NMW values indicate
a higher similarity to a predefined reference peptide and therefore potentially
higher similarity in molecule properties.

A further improvement of nCOSEA-MO is therefore part of the future work
as well as the evolution of a combination of these selection strategies for a robust
and good performance of COSEA-MO in multi- and many-objective molecular
optimization.
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Abstract. This paper presents an approach to recovering distributed
applications, which consist of software agents running on different com-
puters from drastic damages by disasters. The approach is inspired from
regeneration mechanisms in living things, e.g., tails of lizards. When
an agent delegates a function to another agent coordinating with it, if
the former has the function, this function becomes less-developed and
the latter’s function becomes well-developed like differentiation processes
in cells. It can also initialize and restart differentiated software agents,
when some agents cannot be delegated like regeneration processes. It is
constructed as a general-purpose and practical middleware system for
software agents on real distributed systems consisting of embedded com-
puters or sensor nodes.

1 Introduction

Hundreds of natural disasters occur in many parts of the world every year, caus-
ing billions of dollars in damages. This fact may contrast with the availability
of distributed systems. Distributed systems are often treated to be dependable
against damages, because in distributed systems data can be stored and exe-
cuted at multiple locations and processing must not be performed by only one
computer. However, all existing distributed systems are not resilient to damages
in the sense that if only one of the many computers fails, or if a single network
link is down, the system as a whole may become unavailable. Furthermore, in
distributed systems partially damaged by disasters surviving computers and net-
works have no ability to fill functions lost with damaged computers or networks.

On the other hand, several living things, including vertebrates, can regen-
erate their lost parts, where regeneration is one of developmental mechanisms
observed in a number of animal species, e.g., lizard, earthworm, and hydra,
because regeneration enables biological systems to recover themselves against
their grave damages. For example, reptiles and amphibians can partially regen-
erate their tails, typically over a period of weeks after cutting the tails. Regen-
eration processes are provided by (de)differentiation mechanism by which cells
in a multicellular organism become specialized to perform specific functions in a
variety of tissues and organs. The key idea behind the approach proposed in this
paper was inspired from (de)differentiation as a basic mechanism for regenera-
tion like living things. The approach introduces a (de)differentiation mechanism
c© Springer International Publishing AG, part of Springer Nature 2018
P. Korošec et al. (Eds.): BIOMA 2018, LNCS 10835, pp. 270–282, 2018.
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into middleware systems for distributed systems, instead of any simulation-based
approaches.1

Our middleware system aims at building and operating distributed applica-
tions consisting of self-adapting/tuning software components, called agents, to
regenerate/differentiate their functions according to their roles in whole applica-
tions and resource availability, as just like cells. It involves treating the undertak-
ing/delegation of functions in agents from/to other agents as their differentiation
factors. When an agent delegates a function to another agent, if the former has
the function, its function becomes less-developed in the sense that it has less
computational resources, e.g., active threads, and the latter’s function becomes
well-developed in the sense that it has more computational resources.

2 Example Scenario

Let us suppose a sensor network to observe a volcano. Its sensor nodes are located
around the volcano. Each of the nodes have sensors to measure accelerations
result from volcano tectonic earthquakes around it in addition to processors and
wired or wireless network interfaces. The locations of sensor nodes tend to be
irregular around the volcano.

A disaster may result in drastic damages in sensor networks. For example,
there are several active or dormant volcanoes in Japan. Sensor networks to detect
volcano ash and tremor are installed at several spots in volcanoes. Volcanic
eruptions, including phreatic eruptions, seriously affect such sensor networks.
More han half sensor nodes may be damaged by eruptions. Nevertheless, the
sensor networks should continue to monitor volcano tectonic earthquakes with
only their surviving nodes as much as possible.

Sensor nodes in a volcano are located irregularly, because it is difficult for
people to place such nodes at certain positions in volcanoes, because there are
many no-go zones and topographical constraints. Instead, they are distributed
from manned airplanes or unmanned ones. Therefore, they tend to be overpop-
ulated in several areas in the sense that the coverage areas of their sensors are
overlap or contained. To avoid congestion in networks as well as to save energy
consumption, redundant nodes should be inactivated.

3 Requirements

To support example scenarios discussed in the previous section, our approach
needs to satisfy the following requirements: Self-adaptation is needed when envi-
ronments and users’ requirements change. To save computational resources and
energy, distributed systems should adapt their own functions to changes in their
systems and environments. Saving resources is important in distributed systems
used in field, e.g., sensor networks, rather than data centers, including cloud

1 There is often a gap between the real systems and simulations. We believe that
adaptive distributed systems need more experiences in the real systems.
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computing. Our approach should conserve limited computational resources, e.g.,
processing, storage resources, networks, and energy, at nodes as much as possible.
Non-centralized management can support reliability and availability. Centralized
management may be simple but can become a single point of failures. Therefore,
our adaptation should be managed in a peer-to-peer manner. Distributed systems
essentially lack no global view due to communication latency between comput-
ers. Software components, which may be running on different computers, need
to coordinate them to support their applications with partial knowledge about
other computers. Our approach should be practical so that it is implemented as
a general-purpose middleware system. This is because applications running on
distributed systems are various. Each of software components should be defined
independently of our adaptation mechanism as much as possible. As a result,
developers should be able to concentrate their application-specific processing.

4 Approach: Regeneration and Differentiation

The goal of the proposed approach is to introduce a regeneration mechanism
into distributed systems like living things. Regenerations in living things need
redundant information in the sense that each of their cells have genes as plans
for other cells. When living things lose some parts of their bodies, they can
regenerate such lost parts by encoding genes for building the parts with differen-
tiation mechanisms. Differentiation mechanisms can be treated as selections of
parts of genes to be encoded. Since a distributed application consists of software
components, which may be running on different computers like cells, we assume
that software components have program codes for functions, which they do not
initially provide and our differentiation mechanisms can select which functions
should be (in)activated or well/less-developed.

Each software component, called agent, has one or more functions with
weights, where each weight indicates the superiority and development of its
function in the sense that the function is assigned with more computational
resources. Each agent initially intends to progress all its functions and period-
ically multicasts messages about its differentiation to other agents of which its
distributed application consist. Such messages lead other agents to degenerate
their functions specified in the messages and to decrease the superiority of the
functions. As a result, agents complement other agents in the sense that each
agent can provide some functions to other agents and delegate other functions
to other agents that can provide the functions.

5 Design

Our approach is maintained through two parts: runtime systems and agents.
The former is a middleware system for running on computers and the latter
is a self-contained and autonomous software entity. It has three protocols for
regeneration/differentiation.
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5.1 Agent

Each agent consists of one or more functions, called the behavior parts, and
its state, called the body part, with information for (de)differentiation, called
the attribute part. The body part maintains program variables shared by its
behaviors parts like instance variables in object orientation. When it receives
a request message from an external system or other agents, it dispatches the
message to the behavior part that can handle the message. The behavior part
defines more than one application-specific behavior. It corresponds to a method
in object orientation. As in behavior invocation, when a message is received from
the body part, the behavior is executed and returns the result is returned via
the body part. The attribute part maintains descriptive information with regard
to the agent, including its own identifier. The attributes contains a database for
maintaining the weights of its own behaviors and for recording information on
the behaviors that other agents can provide.

5.2 Regeneration

We outline our differentiation processes for regeneration (Fig. 1). The Appendix
describes the processes in more detail.

– Invocation of behaviors: Each agent periodically multicasts messages about
the weights of its behaviors to other agents. When an agent wants to execute
a behavior, even if it has the behavior, it compares the weights of the same or
compatible behaviors provided in others and it. It select one of the behaviors,
whose weights are the most among the weights of these behaviors. That is,
the approach selects more developed behaviors than less developed behaviors.

– Well/Less developing behaviors: When a behavior is executed by other agents,
the weight of the behavior increase and the weights of the same or behaviors
provided from others decrease. That is, behaviors in an agent, which are
delegated from other agents more times, are well developed, whereas other
behaviors, which are delegated from other agents fewer times, in a cell are
less developed.

– Removing redundant behaviors: The agent only provides the former behaviors
and delegates the latter behaviors to other agents. Finally, when the weights
of behaviors are zero, the behaviors become dormant to save computational
resources.

– Increasing resources for busy behaviors: Each agent can create a copy of itself
when the total weights of functions provided in itself is the same or more
than a specified value. The sum of the total weights of the mother agent and
those of the daughter agent is equal to the total weights of the mother agent
before the agent is duplicated.

– Reactivating dormant behaviors: When an agent does not receive messages
about the weights of behaviors provided in agents, treats such behaviors to
be lost. When it has the same or compatible behaviors, which are dormant,
it resets the wights of the behaviors, to their initial values. Therefore, they
are regenerated and differentiated according to the above process again.
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Fig. 1. Regeneration in agents

6 Implementation

To evaluate our proposed approach, we constructed it as a middleware system
with Java (Fig. 2), which can directly runs on Java VM running on VMs in
IaaS, e.g., Amazon EC2. It is responsible for executing duplicating, and deploy-
ing agents based on several technologies for mobile agent platforms. It is also
responsible for executing agents and for exchanging messages in runtime systems
on other IaaS VMs or PaaS runtime systems through TCP and UDP protocols.
Messages for exchanging information about the weights of differentiation are
transmitted as multicast UDP packets. Application-specific messages for invok-
ing methods corresponding to behaviors in agents are implemented through TCP
sessions.
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Fig. 2. Runtime system

Each agent is an autonomous programmable entity. The body part main-
tains a key-value store database, which is implemented as a hashtable, shared
by its behaviors. We can define each agent as a single JavaBean, where each
method in JavaBean needs to access the database maintained in the body parts.
Each method in such a JavaBean-based agent is transformed into a Java class,



An Approach for Recovering Distributed Systems from Disasters 275

which is called by another method via the body part, by using a bytecode-level
modification technique before the agent is executed. Each body part is invoked
from agents running on different computers via our original remote method invo-
cation (RMI) mechanism, which can be automatically handled in network dis-
connection unlike Java’s RMI library. The mechanism is managed by runtime
systems and provided to agents to support additional interactions, e.g., one-way
message transmission, publish-subscription events, and stream communications.
Since each agent records the time the behaviors are invoked and the results are
received, it selects behaviors provided in other agents according to the average
or worst response time in the previous processing. When a result is received
from another agent, the approach permits the former to modify the value of the
behavior of the latter under its own control. For example, agents that want to
execute a behavior quickly may increase the weight of the behavior by an extra
amount, when the behavior returns the result too soon.

7 Evaluation

This section describes the performance evaluation of our implementation.

7.1 Basic Performance

Although the current implementation was not constructed for performance, we
evaluated several basic operations in distributed systems consisting of eights
embedded computers, where each computer is a Raspberry Pi computer, which
has been one of the most popular embedded computers (its processor was Broad-
loom BCM2835 (ARM v6-architecture core with floating point) running at
700 MHz and it has 1 GB memory and SD card storage (16 GB SDHC), with
a Linux operating system optimized to Raspberry Pi, and OpenJDK. The cost
of transmitting a message through UDP multicasting was 17 ms. The cost of
transmitting a request message between two computers was 28 ms through TCP.
These costs were estimated from the measurements of round-trip times between
computers. We assumed in the following experiments that each agent issued
messages to other agents every 110 ms through UDP multicasting.

We evaluated the speed of convergence in our differentiation. Each computer
had one agent having three functions, called behavior A, B and C, where behavior
A invoked B and C behaviors every 200 ms and the B and C behaviors were
null behaviors. We assigned at most one agent to each of the computers. B
or C, selected a behavior whose weight had the highest value if its database
recognized one or more agents that provided the same or compatible behavior,
including itself. When it invokes behavior B or C and the weights of its and
others behaviors were the same, it randomly selected one of the behaviors. We
assumed in this experiment that the weights of the B and C behaviors of each
agent would initially be five and the maximum of the weight of each behavior
and the total maximum of weights would be ten.
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Fig. 3. Convergence in four agents with two behaviors (Left) and Convergence in eight
agents with two behaviors (Right)

Differentiation started after 200 ms, because each agent knows the presence
of other agents by receiving heartbeat messages from them. The right of Fig. 3
details the results obtained from our differentiation between four agents on
four computers and The left of Fig. 3 between eight agents on eight comput-
ers. Finally, two agents provide behavior B and C respectively and the others
delegate the two behaviors to the two agents in both the cases. Although the
time of differentiation depended on the period of invoking behaviors, it was inde-
pendent of the number of agents. This is important to prove that this approach
is scalable.

7.2 Sensor Networks Recovering from Damaged by Disasters

Let us suppose a sensor-network system consisting of 15 × 15 nodes connected
through a grid network, as shown in Fig. 4. The system was constructed on a
commercial IaaS cloud infrastructure (225 instances of Amazon EC2 with Linux
and JDK 1.7). This experiment permitted each node to communicate with its
eights neighboring nodes and the diameter of a circle in each node represents
the weight of a behavior. Nodes were connected according to the topology of the
target grid network and could multicast to four neighboring runtime systems
through the grid network. We assume that each agent monitors sensors in its
current node and every node has one agent.

We put agents at all nodes and evaluated removing of redundant agents.
Each agent has conflict with agents at its eights neighboring nodes, because
it can delegate its function to them, vice versa. Figure 5(i) shows the initial
weights of agents. (ii) and (iii) show the weights of behaviors in agents eight and
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Fig. 4. 15 × 15-Grid network on cloud computing

sixteen seconds later. Even though differentiated behaviors were uneven, they
could be placed within certain intervals, i.s., two edges on the grid network.
This proved that our approach was useful in developing particular functions of
software components at nodes.

ii) Weights (8 second later)i) Initial weights iii) Weights (16 second later)
Diameter is propostional to weight
of behavior at each agent Weight0 10

Fig. 5. Removing redundant agents

Figure 6(i) was the initial weights of agents on the network. We explicitly
made a flawed part in the network (Fig. 6(ii)). Some agents dedifferentiate them-
selves in nodes when a flawed part made in the network. In the experiment agents
around the hole started to activate themselves through dedifferentiation. The
weights of their behaviors converged according to the weights of their behaviors
to the behaviors of other newly activated agents in addition to existing agents.
Finally, some agents around the hole could support the behaviors on behalf of
the dismissed agents with the flawed part. This result prove that our approach
could remedy such a damage appropriately in a self-organized manner. This is
useful for sensing catastrophes, e.g., earthquakes and deluges.
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ii) Partial destructioni) Initial weights iii) 16 second later

Fig. 6. Regeneration to recover damage

ii) Weights (4 second later)i) Initial weights iii) Weights (8 second later)

Diameter is propostional to 
weight of behavior 
at each agent

Weight0 10

iv) Weights (12 second later) v) Weights (16 second later)

Fig. 7. Agents are differentiated in broadcasting to all agents

Next, we assume each node could multicast to all agents through the grid
network. Figure 7 shows only one agent is activated and the others are inactivated
after their differentiations, because the latter can delegate the function to the
former. We partitioned the grid network as shown Fig. 8(ii). The above half has
a well-developed behavior and the below half lacks such behavior. Therefore,
all agents in the below half reset their weights as shown Fig. 8(iii) and they
are differentiated. Finally, only one agent is activated on the below half part
(Fig. 8(iv)).
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ii) Network partitioningi) Stable phase iii) Reseting weights in 
partitioned area

Weight0 10

iv) Weights (4 second later) v) Weights (8 second later)

Diameter is propostional to 
weight of behavior 
at each agent

Fig. 8. Agents are differentiated in network partitioning

8 Related Work

We compare between our approach and other existing bio-inspired approaches for
distributed systems. The Anthill project [1] by the University of Bologna devel-
oped a bio-inspired middleware for peer-to-peer systems, which is composed of
a collection of interconnected nests. Autonomous agents, called ants can travel
across the network trying to satisfy user requests. The project provided bio-
inspired frameworks, called Messor [2] and Bison [3]. Messor is a load-balancing
application of Anthill and Bison is a conceptual bio-inspired framework based
on Anthill. One of the most typical self-organization approaches to distributed
systems is swarm intelligence [4,5]. Although there is no centralized control struc-
ture dictating how individual agents should behave, interactions between simple
agents with static rules often lead to the emergence of intelligent global behav-
ior. Suda et al. proposed bio-inspired middleware, called Bio-Networking, for
disseminating network services in dynamic and large-scale networks where there
were a large number of decentralized data and services [6,7]. Although they
introduced the notion of energy into distributed systems and enabled agents to
be replicated, moved, and deleted according to the number of service requests,
they had no mechanism to adapt agents’ behavior unlike ours. As most of their
parameters, e.g., energy, tended to depend on a particular distributed system.
so that they may not have been available in other systems. Our approach should
be independent of the capabilities of distributed systems as much as possible.
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Finally, we compare between our approach and our previous ones, because we
constructed several frameworks for adaptive distributed systems. One of them
enabled distributed components to be dynamically federated [8]. We also pre-
sented an early version of the proposed approach [9], but the version was designed
for adaptive services over enrich distributed systems, e.g., cloud computing. They
did not support any disaster management.

9 Conclusion

This paper proposed an approach to recovering distributed applications from vio-
lent damages, which might result from disasters. The approach is unique to other
existing approaches for disaster-tolerant approaches for distributed systems. It
was inspired from a bio-inspired mechanism, regeneration in living things. It was
also available at the edge of networks, e.g., sensor networks and Internet-of-Thing
(IoT). It enabled agents, which were implemented as software components, to
be differentiated. When a component delegated a function to another compo-
nent coordinating with it, if the former had the function, this function became
less-developed and the latter’s function became well-developed like differentia-
tion processes in cells. It could also initialize and restart differentiated software
components, when some components could not be delegated like regeneration
processes in lizards. It was constructed as a general-purpose and practical mid-
dleware system for software components on real distributed systems consisting
of embedded computers or sensor nodes.

Appendix

This appendix we describe our model for regenerating software components,
called agents, by using a differentiation mechanism in detail. We specify from 1-th
to n-th behaviors of k-th agent, as bk1 , . . . , b

k
n and the weight of behavior bki as wk

i .
Each agent (k-th) assigns its own maximum to the total of the weights of all its
behaviors. The W k

i is the maximum of the weight of behavior bki . The maximum
total of the weights of its behaviors in the k-th agent must be less than W k.
(W k ≥ ∑n

i=1 wk
i ), where wk

j − 1 is 0 if wk
j is 0. The W k may depend on agents.

In fact, W k corresponds to the upper limit of the ability of each agent and may
depend on the performance of the underlying system, including the processor.

Invocation of Behaviors

1. When an agent (k-th agent) receives a request message from another agent, it
selects the behavior (bki ) that can handle the message from its behavior part
and dispatches the message to the selected behavior (Fig. 1(a)).

2. It executes the behavior (bki ) and returns the result.
3. It increases the weight of the behavior, wk

i .
4. It multicasts a restraining message with the signature of the behavior, its

identifier (k), and the behavior’s weight (wk
i ) to other agents (Fig. 1(b)).2

2 Restraining messages correspond to cAMP in differentiation.
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The key idea behind this approach is to distinguish between internal and external
requests. When behaviors are invoked by their agents, their weights are not
increased. If the total weights of the agent’s behaviors,

∑
wk

i , is equal to their
maximal total weight W k, it decreases one of the minimal (and positive) weights
(wk

j is replaced by wk
j −1 where wk

j = min(wk
1 , . . . , wk

n) and wk
j ≥ 0). The above

phase corresponds to the degeneration of agents.

Well/Less Developing Behaviors

1. When an agent (k-th agent) wants to execute a behavior, bi, it looks up the
weight (wk

i ) of the same or compatible behavior and the weights (wj
i , . . . , w

m
i )

of such behaviors (bji , . . . , b
m
i ).

2. If multiple agents, including itself, can provide the wanted behavior, it selects
one of the agents according to selection function φk, which maps from wk

i and
wj

i , . . . , w
m
i to bli, where l is k or j, . . . ,m.

3. It delegates the selected agent to execute the behavior and waits for the result
from the agent.

The approach permits agents to use their own evaluation functions, φ, because
the selection of behaviors often depends on their applications. Although there
is no universal selection function for mapping from behaviors’ weights to at
most one appropriate behavior like a variety of creatures, we can provide several
functions.

Removing Redundant Behaviors

1. When an agent (k-th agent) receives a restraining message with regard to
bji from another agent (j-th), it looks for the behaviors (bkm, . . . bkl ) that can
satisfy the signature specified in the receiving message.

2. If it has such behaviors, it decreases their weights (wk
m, . . . wk

l ) and updates
the weight (wj

i ) (Fig. 1(c)).
3. If the weights (wk

m, . . . , wk
l ) are under a specified value, e.g., 0, the behaviors

(bkm, . . . bkl ) are inactivated.
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Abstract. This research deals with the modern and popular hybridiza-
tion of chaotic dynamics and evolutionary computation. It is aimed at
the influence of chaotic sequences on the population diversity as well as
the algorithm performance of the simple parameter adaptive Differential
Evolution (DE) strategy: jDE. Experiments are focused on the extensive
investigation of the different randomization schemes for the selection of
individuals in DE algorithm driven by the nine different two-dimensional
discrete chaotic systems, as the chaotic pseudo-random number genera-
tors. The population diversity and jDE convergence are recorded on the
15 test functions from the CEC 2015 benchmark.

Keywords: Differential Evolution · Complex dynamics
Deterministic chaos · Population diversity · Chaotic map

1 Introduction

This research deals with the mutual intersection of the two computational intel-
ligence fields, which are the complex sequencing and dynamics given by the
selected chaotic systems, and evolutionary computation techniques (ECT’s).

Together with this persistent development in above-mentioned mainstream
research topics, the popularity of hybridizing of chaos and metaheuristic algo-
rithms is growing every year. Recent research in chaotic approach for metaheuris-
tics uses various chaotic maps in the place of pseudo-random number generators
(PRNG).

The initial concept of embedding chaotic dynamics into the evolution-
ary/swarm algorithms as chaotic pseudo-random number generator (CPRNG)
is given in [1]. Firstly, the Particle Swarm Optimization (PSO) algorithm with
elements of chaos was introduced as CPSO [2], followed by the introduction of
chaos embedded Differential evolution (DE) [3], PSO with inertia weigh strategy
[4], and PSO with an ensemble of chaotic systems [5]. Recently the chaos driven
heuristic concept has been utilized in several swarm-based algorithms like ABC
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algorithm [6], Firefly [7] and other metaheuristic algorithms [8–11], as well as
many applications with DE [12].

The unconventional chaos-based approach is tightly connected with the
importance of randomization within heuristics as compensation of a limited
amount of search moves as stated in the survey paper [13]. This idea has been
carried out in subsequent studies describing different techniques to modify the
randomization process [14,15] and especially in [16], where the sampling of the
points is tested from modified distribution. The importance and influence of
randomization operations were also profoundly experimentally tested in simple
control parameter adjustment DE strategy [17].

The focus of this research is the deeper insight into the population dynamics
of the selected DE strategy (jDE) [18] when the directly embedded CPRNG
is driving the indices selection. Currently, DE [13,19,20] is a well-known evo-
lutionary computation technique for continuous optimization purposes solving
many difficult and complex optimization problems. Many DE variants have been
recently developed with the emphasis on control parameters self-adaptivity. DE
has been modified and extended several times using new proposals of versions,
and the performances of different DE variants have been widely studied and
compared with other ECTs. Over recent decades, DE has won most of the evo-
lutionary algorithm competitions in the leading scientific conferences [21–25], as
well as being applied to several applications.

The organization of this paper is following: Firstly, the motivation for this
research is proposed. The next sections are focused on the description of the
concept of chaos driven jDE, and the experiment background. Results and con-
clusion follow afterward.

2 Motivation and Related Research

Recently, chaos with its properties like ergodicity, stochasticity, self-similarity,
and density of periodic orbits became very popular and modern tool for improv-
ing the performance of various ECTs. Nevertheless, the questions remain, as to
why it works, why it may be beneficial to use the chaotic sequences for pseudo-
random numbers driving the selection, mutation, crossover or other processes in
particular heuristics.

This research is an extension and continuation of the previous successful
experiment with the single/multi-chaos driven PSO [5] and jDE [26], where the
positive influence of hidden complex dynamics for the heuristic performance
has been experimentally shown. This research is also a follow up to previous
initial experiments with different sampling rates applied to the chaotic sequences
resulting in keeping, partially/fully removing of traces of chaos [27].

The motivation and the novelty of the research are given by the investigating
the influence of chaotic sequences to the population diversity, connected with the
algorithm performance of the basic control parameter adjustment DE strategy:
jDE. This strategy was selected as a compromise between original simple DE and
the most recent Success-History based Adaptive Differential Evolution (SHADE)
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variants [25], where the influence of chaotic dynamics may be suppressed by the
complex adaptive process and operations with the archive.

3 Differential Evolution

This section describes the basics of original DE and jDE strategies. The original
DE [19] has four static control parameters – a number of generations G, popula-
tion size NP, scaling factor F and crossover rate CR. In the evolutionary process
of DE, these four parameters remain unchanged and depend on the initial user
setting. jDE algorithm, on the other hand, adapts the F and CR parameters dur-
ing the evolution. The mutation strategy for jDE is adapted from the original
DE. The concept of essential operations in jDE algorithm is shown in following
sections, for a detailed description on either original DE refer to [19] or for jDE
see [18].

3.1 jDE

In this research, we have used jDE with original DE “rand/1/bin” (1) mutation
strategy and binomial crossover (2).

Mutation Strategies and Parent Selection. The parent indices (vectors)
are selected either by standard PRNG with uniform distribution or by CPRNG
in case of chaotic versions. Mutation strategy “rand/1/bin” uses three random
parent vectors with indexes r1, r2 and r3, where r1 =U [1, NP ], r2 =U [1, NP ],
r3 =U [1, NP ] and r1 �= r2 �= r3. Mutated vector v i,G is obtained from three
different vectors x r1,x r2,x r3 from current generation G with the help of scaling
factor Fi as follows:

vi,G = xr1,G + Fi (xr2,G − xr3,G) (1)

Crossover and Selection. The trial vector u i,G which is compared with orig-
inal vector x i,G is completed by crossover operation (2). CRi value in jDE algo-
rithm is not static.

uj,i,G =
{
vj,i,G if U [0, 1] ≤ CRi or j = jrand
xj,i,G otherwise (2)

Where jrand is a randomly selected index of a feature, which has to be
updated (jrand = U[1,D]), D is the dimensionality of the problem.

The vector which will be placed into the next generation G+1 is selected
by elitism. When the objective function value of the trial vector u i,G is better
than that of the original vector x i,G, the trial vector will be selected for the next
population. Otherwise, the original will survive (3).

xi,G+1 =
{
ui,G if f (ui,G) < f (xi,G)
xi,G otherwise (3)
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3.2 Parameter Adjustment in jDE

The generated ensemble of two control parameters Fi and CRi is assigned to
each i -th individual of the population and survives with the solution if an indi-
vidual is transferred to the new generation. The initialization of values of F and
CR is designed to be either fully random with uniform distribution for each
individual in the population or can be set according to the recommended val-
ues in the literature. If the newly generated solution is not successful, i.e., the
trial vector has worse fitness than the compared original active individual; the
new (possibly) reinitialized control parameters values disappear together with
not successful solution. The both aforementioned DE control parameters may
be randomly mutated with predefined probabilities τ1 and τ2. If the mutation
condition happens, a new random value of CR ∈ [0, 1] is generated, possibly also
a new value of F which is mutated in [Fl,Fu]. These new control parameters are
after that stored in the new population. Input parameters are typically set to
Fl = 0.1,Fu = 0.9, τ1 = 0.1, and τ2 = 0.1 as originally given in [13,18].

4 Chaotic Systems for CPRNGs

Following nine well known and frequently utilized discrete dissipative chaotic
maps were used as the CPRNGs for jDE. With the settings as in Table 1, systems
exhibit typical chaotic behavior [28].

Table 1. Definition of chaotic systems used as CPRNGs

Chaotic system Notation Parameters values

Arnold cat map
Xn+1 = Xn + Yn(mod1)

Yn+1 = Xn + kYn(mod1)
k=2.0

Burgers map
Xn+1 = aXn − Y 2

n

Yn+1 = bYn + XnYn

a=0.75 and b=1.75

Delayed logistic
Xn+1 = AXn (1− Yn)

Yn+1 = Xn

A=2.27

Dissipative standard
map

Xn+1 = Xn + Yn+1(mod2π)

Yn+1 = bYn + k sinXn(mod2π)
b = 0.1 and k=8.8

Hénon map
Xn+1 = a − x2

n + byn

Yn+1 = xn

a=1.4 and b=0.3

Ikeda map

Xn+1 = γ + μ(Xn cosφ + Yn sinφ)

Yn+1 = μ(Xn sinφ + Yn cosφ)

φ = β − α/
(
1 + X2

n + Y 2
n

)
α = 6, β = 0.4, γ = 1
and μ = 0.9

Lozi map
Xn+1 = 1− a |Xn|+ bYn

Yn+1 = Xn

a=1.7 and b=0.5

Sinai map
Xn+1 = Xn + Yn + δ cos 2πYn(mod1)

Yn+1 = Xn + 2Yn(mod1)
δ = 0.1

Tinkerbell map
Xn+1 = X2

n − Y 2
n + aXn + bYn

Yn+1 = 2XnYn + cXn + dYn

a = 0.9, b = −0.6, c = 2
and d=0.5
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5 The Concept of ChaosDE with Discrete Chaotic
System as Driving CPRNG

The general idea of CPRNG is to replace the default PRNG with the chaotic
system. As the chaotic system is a set of equations with a static start position, we
created a random start position of the system, to have different start position
for different experiments. Thus we are utilizing the typical feature of chaotic
systems, which is extreme sensitivity to the initial conditions, popularly known
as “butterfly effect.” This random position is initialized with the default PRNG,
as a one-off randomizer. Once the start position of the chaotic system has been
obtained, the system generates the next sequence using its current position. Used
approach is based on the following definition (4):

rndreal = mod (abs (rndChaos) , 1.0) (4)

5.1 Experiment Design

For the population diversity analysis and performance comparisons in this
research, the CEC 15 benchmark was selected. The dimension D was set to
10. Every instance was repeated 51 times with the maximum number of objec-
tive function evaluations set to 100 000 (10, 000 × D). The convergence and
population diversity were recorded for all tested algorithm – original jDE and
nine versions of C jDE with different CPRNGs. All algorithms used the same
set of control parameters: population size NP = 50 and initial settings F = 0.5,
CR= 0.8. Experiments were performed in the environment of Java; jDE, there-
fore, has used the built-in Java linear congruential pseudorandom number gener-
ator representing traditional pseudorandom number generator in comparisons.
The Population Diversity (PD) measure used in this paper was described in [29]
and is based on the sum of deviations (6) of individual’s components from their
corresponding means (5).

xj =
1

NP

NP∑
i=1

xij (5)

PD =

√√√√ 1
NP

NP∑
i=1

D∑
j=1

(xij − xj)
2 (6)

Where i is the population member iterator and j is the vector component
iterator.

6 Results

Statistical results for the comparisons are shown in comprehensive Tables 2 and 3.
Table 2 shows the mean results, with the highlighting based on the Wilcoxon
sum-rank test with the significance level of 0.05; performed for each pair of orig-
inal jDE and C jDE. Ranking of the algorithms given in Fig. 1 was evaluated
based on the Friedman test with Nemenyi post hoc test. Figures 2, 3, 4 and 5
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Fig. 1. Ranking of the all algorithms based on the 51 runs and 15 functions of CEC2015
benchmark in 10D. Dashed line represents the Nemenyi Critical Distance.

Fig. 2. Convergence plot (left) and population diversity plot (right) of CEC2015 f1
in 10D.

7

Fig. 3. Convergence plot (left) and population diversity plot (right) of CEC2015 f2
in 10D.
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Fig. 4. Convergence plot (left) and population diversity plot (right) of CEC2015 f3
in 10D.

Fig. 5. Convergence plot (left) and population diversity plot (right) of CEC2015 f14
in 10D.

Fig. 6. Detailed population diversity plots for the selected pair of jDE and C jDE
driven by Sinai chaotic system (left f3 ) and (right f14 ), CEC2015 in 10D.

depict the graphical comparisons of the convergence plots and corresponding
population diversity plots provided for the selected five benchmark functions.
The Fig. 6 shows the detailed comparisons of population diversity plots (with
confidence intervals) for the selected pair of jDE and C jDE where the perfor-
mance is different. The results discussion is in the next section.
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7 Conclusions

The primary aim of this original work is to provide a more in-depth insight
into the inner dynamics of indices selection in DE. The focus is to experimen-
tally investigate the influence of different types of unconventional non-random
(chaotic) sequences to the population diversity as well as to the performance of
the simple parameter adjustment DE strategy, which is jDE. The findings can
be summarized as:

– Obtained graphical comparisons and data in Tables 2 and 3 support the claim
that jDE is sensitive to the chaotic dynamics driving the selection (mutation)
process through CPRNG. At the same time, it is clear that (selection of)
the best CPRNGs are problem-dependent. By using the CPRNG inside the
heuristic, its performance is (significantly) different: either better or worse
against other compared versions.

– The performance comparisons presented in Tables 2 and 3 reveal the fact
that only in one case the performance of C jDE is statistically significantly
better (f3 and Sinai map). Mostly the performance of compared pairs of
jDE and C jDE is similar, or in some cases, the chaotic versions performed
significantly worse. Such a worse performance was repeatedly observed for two
chaotic maps: Burgers and Tinkerbell. On the other hand, these two maps
usually secured robust progress towards function extreme (local) followed by
premature population stagnation phase, thus repeatedly secured finding of
minimum values. Overall, C jDE versions seem to be very effective regarding
finding min. values of the objective function (See Table 3).

– The population diversity plots in Figs. 2, 3, 4 and 5 supports the above-
mentioned facts. It is possible to identify 3 groups of population diversity
behavior in comparison with original j DE: less decreasing (Sinai, Henon,
Ikeda maps), more decreasing (Lozi, Arnold, Dissipative maps) and signifi-
cantly more decreasing (Delayed Logistic, Tinkerbell, Burgers maps).

– The selected paired diversity plots in Fig. 6 show that the diversity of the
population is maintained higher for a longer period. Therefore the exploration
phase supported by Sinai map based CPRNG is longer. This in return is
beneficial for the result of the optimization.

– The population diversity analysis supports the theory, that unique features of
the chaos transformed into the sequencing of CPRNG values may create the
subpopulations (or inner neighborhood selection schemes, i.e., lower popula-
tion diversity). Thus the metaheuristic can benefit from the searching within
those sub-populations and quasi-periodic exchanges of information between
individuals (see Fig. 3 for the sudden increase of diversity – the new search
region was explored and attracted some (group) of individuals). However, lot
of analyses and different scenarios (dimensional settings, etc.) are required in
the future.

The research of randomization issues and insights into the inner dynamic of
metaheuristic algorithms was many times addressed as essential and beneficial.
The results presented here support the approach for multi-chaotic generators [30]
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or ensemble systems, where we can profit from the combined/selective popula-
tion diversity (i.e. exploration/exploitation) tendencies, sequencing-based either
stronger or moderate progress towards the function extreme, all given by the
smart combination of multi-randomization schemes.
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Abstract. Recently, the use of surrogate models for robustness assess-
ment has become popular in various research fields. In this paper, we
investigate whether it is advantageous to use the sample data to build a
model instead of computing the robustness measures directly. The results
suggest that if the quality of the surrogate model cannot be guaranteed,
their use can be harmful to the optimization process.

Keywords: Robust optimization · Surrogate models · SPM motor

1 Introduction

The goal of robust engineering design is to optimize performance criteria while
minimizing the effect of manufacturing and operational uncertainties, i.e. find-
ing a solution that is robust to uncertain conditions [1]. Often in computer-aided
automated design based on finite element analysis (FEA), one solution evaluation
may take from a few seconds to several hours of computation, and conventional
robustness analysis (e.g. Monte-Carlo simulation) can require a large number of
evaluations. For this reason, most robust design schemes are considered unreal-
istic for practical applications.

In this context, surrogate models have been used in lieu of expensive simu-
lation code to estimate statistical measures of robustness [2–5]. The estimation
of statistical quantities, e.g. mean and variance, is not trivial. For instance, [5]
suggests that, in some circumstances, global surrogate models are not able to
provide accurate estimates of the required quantities. Thus, in [2,5], instead
of using a global surrogate model, local surrogates, fitted with samples in the
neighborhood of the point of interest, are used to estimate robustness.

The use of surrogate models implies the existence of sample data. Besides, the
use of local surrogate models implies the existence of data in the neighborhood
of the point of interest. If that is the case, one has samples to estimate the
robustness directly which in turn brings us to the following question: Do we
need surrogate models at all?

In order to investigate this question, we test the framework introduced in
[2,5] with 4 different types of surrogates plus a surrogate-less (direct calculation)
c© Springer International Publishing AG, part of Springer Nature 2018
P. Korošec et al. (Eds.): BIOMA 2018, LNCS 10835, pp. 295–306, 2018.
https://doi.org/10.1007/978-3-319-91641-5_25
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version in a set of benchmark analytical problems. In the tests, in addition to
the type of surrogate, we also vary the number of variables and the number of
samples selected for surrogate construction. We compare the surrogate models in
terms of the accuracy of the provided estimates, the insensitivity to the number
of samples and their distribution, and also in terms of the optimization algorithm
effectiveness. Finally, we use the surrogate-assisted robust design method in a bi-
objective robust optimization problem related to the design of a Surface-mounted
Permanent Magnet (SPM) motor.

2 Robust Optimization

In mathematical terms a general optimization problem can be stated as:

min f(x) s. t. x ∈ F (1)

where, f(x) is the objective function, x is the vector of design variables and
F represents the feasible region. The formulation shown in Eq. (1) does not
take into account the effect of the uncertainties that often arise in real-world
optimization problems. Thus, a more general definition for the objective function
f(x) would be: f = f(x + δ, α) where δ represents perturbations to the design
variables which arise from production tolerances and α are the uncontrollable
factors that arise from environmental and material uncertainties.

Robust optimization is a family of optimization approaches that tries to
account for uncertainties as the ones defined above. The main goal is to find the,
so called, robust solutions which present good performance and small variability
with respect to the sources of uncertainty.

This loose definition of robustness can be translated to different formulations
of the robust optimization problem such as, for instance, the minimization of the
worst-case scenario. In some design problems, however, the worst-case approach
can be regarded as too conservative, especially when the worst-cases are very
unlikely to happen. Therefore, in this paper, we are going to focus on statistical
measures of robustness.

The most commonly used statistical measure of the robustness of a given
design is the expected value (mean) given by:

μf (x) = E[f |x] =
∫

U(x)

f(x + δ, α)p(δ, α)dδdα (2)

where, p(δ, α) is the joint probability distribution of the uncertainties and U(x)
is an uncertainty set and defines the domain of δ and α for each x.

Although the mean gives a more realistic measure of the expected perfor-
mance, sometimes, it is also important to know the performance variability [4].
Therefore, in order to obtain robust solutions (designs) some measure of disper-
sion, such as the standard deviation σ, may also be incorporated in the problem
formulation. σ is defined by:

σf (x) =
√∫

U(x)
(f(x + δ, α) − E[f |x])2 p(δ, α)dδdα (3)
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3 Surrogate-Assisted Robust Optimization

An important concern in robust optimization is the computational cost related
to the robustness estimation, which normally involves the use of Monte-Carlo
sampling (MCS). When the sampling involves complex computational models,
such as, finite element analysis (FEA), the estimation of robustness may become
impractical. To reduce the computational cost, the framework described in Fig. 1
which uses an evolutionary algorithm (EA) as a search mechanism and surrogate
models for robustness estimation was proposed in [2].

This algorithm keeps an archive with all the solutions ever evaluated. In step
(6), a Latin-hypercube sampling plan (LHS) is generated in the uncertainty set,
U , of each offspring for robust assessment. The algorithm searches the archive
for the closest neighbor of each point in the LHS. If two points have the same
closest neighbor, the farther point from the point of interest in the archive is
evaluated with expensive simulation code. Thus, the algorithm takes advantage
of previously evaluated solutions and guarantees a reasonably well distributed set
of samples. In the next sections a set of possible surrogate models is presented.

1. initialize parent population
2. initialize archive
3. while not terminate do
4. generate offspring
5. for each offspring do
6. select archive points for surrogate construction
7. if no representative set of samples available then
8. get extra sample points
9. evaluate the extra sample points

10. add extra points to the archive
11. end if
12. construct local surrogate
13. evaluate robustness using surrogate
14. end for
15. select best offspring as new parent population
16. end while

Fig. 1. Surrogate-assisted algorithm for robust optimization

3.1 Polynomial Models

Given a n × 1 vector of responses, y, and a n × d matrix of observed variables,
X, where n is the number of samples, the relationship between y and X can be
described as:

y = Xβ + ε (4)

where, β is the vector of regression coefficients, and ε the error vector.
The model “training” consists of finding the least squares estimators, b, that

minimize the loss function defined in Eq. (5).

L =
n∑

i=1

ε2i = ε′ε = (y − Xb)T (y − Xb) (5)
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By taking the derivatives of Eq. (5) with respect to the regression coefficients
it is possible to find (see [6] for the detailed derivation) that the least squares
estimators of β are given by:

b = (XTX)−1XTy (6)

Thus, a prediction at an unseen point x is ŷ(x) = xb.

3.2 Kriging

Kriging [7] is an interpolation method that expresses the sought, unknown, func-
tion y(x) as a combination of a global model β with local deviations Z(x):

y(x) = β + Z(x) (7)

where, β approximates the global trend of the original function while Z(x) cre-
ates local deviations in order to approximate a possible multimodal behavior.

Mathematically, Z(x) is the realization of a stochastic process with zero
mean, variance σ2 and covariance given by:

Cov[Z(xi), Z(xj)] = σ2R (8)

R is the correlation matrix of all the observed data defined as:

R =

⎡
⎢⎣

R(x1,x2) · · · R(x1,xn)
...

. . .
...

R(x1,xn) · · · R(xn,xn)

⎤
⎥⎦ (9)

where, R(xi,xj) is the correlation function defined as:

R(xi,xj) = exp

(
−

k∑
l=1

θl|xil
− xjl

|2
)

(10)

Predicted values at new points are given by:

ŷ(x) = β̂ + r(x)TR−1(y − 1β̂) (11)

where 1 is the unit vector, β̂ is the estimated value of β given by Eq. (14), y
contains the response values of the sample points and rT is the correlation vector
between an untried point x and the sampled data points xi, i = 1, ..., n.

r(x)T = [R(x,x1), R(x,x2), ..., R(x,xn)] (12)

Training the kriging model consists of maximizing the likelihood function,
given by Eq. (13), in order to find the unknown parameters θl.

ln(L(θ)) = −n
2 ln(2π) − n

2 ln(σ2) − n
2 ln(|R(θ)|)

− (y−1β̂)T R(θ)−1(y−1β̂)
2σ2

(13)

β̂ = (1TR(θ)−1y)/(1TR(θ)−11) (14)

σ̂2 = ((y − 1β̂)TR(θ)−1(y − 1β̂))/n (15)
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3.3 Radial Basis Functions Neural Networks

Radial basis functions neural networks (RBFNN) can be implemented in numer-
ous ways. Here, the RBFNN with Gaussian basis functions [3] will be used. This
RBFNN has one hidden layer with n neurons, where n is also the sample size,
and one output layer. Each neuron in the hidden layer has the following form:

φk(x, ck) = exp
(
−‖x−ck‖2

2
σ2

k

)
1 ≤ k ≤ N (16)

where x is some input vector, ck is the kth training point which is also the center
of the basis function φk(·), and σ2

k controls the basis function width.
The output layer is the weighted sum of the hidden layer outputs. Given a

set of width parameters σk and training points T , consisting of input vectors ci

and targets yi, the RBFNN can be concisely expressed in matrix form as:

Φw = Y = [y1, y2, · · · , yN ]T (17)

where,

Φ =

⎡
⎢⎣

φ(c1, c2) · · · φ(c1, cn)
...

. . .
...

φ(c1, cn) · · · φ(cn, cn)

⎤
⎥⎦ (18)

If all the centers are pairwise different, the matrix Φ is positive-definite and
invertible [3]. Thus, the weight vector w can be computed through Eq. (17).
Once the weights are computed, predictions at untried points x are given by:

ŷ(x) = r(x) · w
r(x) = [φ(x, c1), φ(x, c2), · · · , φ(x, cN )]T

w = [w1, w2, · · · , wN ]T
(19)

3.4 Generalized Regression Neural Network

The Generalized Regression Neural Network (GRNN) is a simple yet powerful
regression model proposed in [8]. Different from other artificial neural networks
(ANNs), GRNNs do not use backpropagation for training. Instead, the predic-
tions are directly derived from the sampled data using the following formula:

ŷ(x) =

∑n
i=1 yi exp

(
− (x−xi)

T (x−xi)
2σ2

)
∑n

i=1 exp
(
− (x−xi)T (x−xi)

2σ2

) (20)

where, xis and yis are the sampled input vector and the respective response
values. σ is known as the smoothing parameter and controls the width of the
Gaussian functions.
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4 Computational Experiments

In order to test the described surrogates and the optimization framework
described in Sect. 3, three benchmark functions proposed in [9] for robust opti-
mization have been used. They are defined as follows:

f7a(x) = H(x2) ×
(∑D

i=3 50x2
i − S(x)

)
+ 1.5

H(x) = 1√
2π

πe−0.5( x−1.5
0.5 )2 + 2√

2π
πe−0.5( x−1.5

0.1 )2

S(x) =
{−x1.5

1 , if x2 < 0.8
−x1, if x2 ≥ 0.8
xi ∈ [0.2, 1.8]

(21)

f10a(x) = H(x2) ×
(∑D

i=3 50x2
i − x0.5

1

)
+ 1

H(x) = e−x2
cos(6πx)−x

4 + 0.5
xi ∈ [0.2, 0.8]

(22)

f16a(x) = G(x)

×
((

1 −
√

x1
G(x) − x1

G(x) sin(4πx1)
)

+ H(x1)
)

×
((

1 −
√

x2
G(x) − x2

G(x) sin(4πx2)
)

+ H(x2)
)

+ 0.5

H(x) = e−2x2
sin(12π(x+ π

24 ))−x

3 + 0.5

G(x) = 1 + 10
∑D

i=2 xi

D
xi ∈ [0.2, 0.8]

(23)

The uncertainty set is defined as U(x) = [x−0.2,x+0.2] for the three problems.

4.1 Surrogate Models for Robustness Assessment

The problem of estimating robustness using sampling is that the computed esti-
mates will depend on the sample data. Hence, different results may be obtained
for repeated evaluations at the same design parameter values. Such a noisy objec-
tive function may cause the following undesirable behavior [10]: (i) A superior
candidate solution may be believed to be inferior and get eliminated; (ii) an
inferior candidate may be believed to be superior and get selected for survival
and reproduction; and (iii) the objective values may not monotonically improve
over the generations.

Thus, a good methodology for robustness assessment should not only provide
accurate estimates of the sought measures but also present small variability with
respect to the number and the distribution of the samples.

With this in mind, in this section, the described surrogate models are evalu-
ated in the estimation of statistical measures of robustness, more specifically the
mean, μf , and the standard deviation, σf . In order to assess the quality of the
surrogates, the average relative error, Eq. (24), is used to estimate the accuracy,
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and the average coefficient of variation, Eq. (25), is used to estimate the noise
caused by the limited number of samples. These metrics are defined below.

e =
∑N

i=0 |ŝi − sref |/sref

N
(24)

where, ŝi is the estimated value, sref is the reference value computed with a
MCS of 106 samples and N is the number of experiments.

cv =
∑N

i=0 σ(ŝi)/μ(ŝi)
N

(25)

where, ŝi is the collection of all estimates computed for xi. The experiment was
designed as follows:

1. For each test function, 20 points were randomly selected in the design space;
2. For each selected point xi a random sample of k points in U(xi) was generated

and evaluated;
3. If surrogate models are used, the k samples are used to fit the surrogate (the

values of σ used by GRNNs and RBFNNs were set to 1.201 as suggested in
[11]). μf and σf are computed with a MCS of 106 samples evaluated with the
surrogate;

4. If surrogate models are not used, μf and σf are computed directly from the
k samples (DIRECT estimates);

5. This experiment was repeated 30 times for each xi.

Figure 2 illustrates this experiment for f(x) = x× sin(x)+12, where U(x) =
[x − 2, x + 2]. As mentioned before, the average relative error measures how
accurate the estimates are. The average coefficient of variation measures, in
some sense, the width of the shaded area (max − min estimates of each point)
which represents the noise.

Tables 1 and 2 show the average error and the coefficient of variation (in
parenthesis) obtained in the estimation of μf and σf , respectively. Dunn’s Test
of Multiple Comparisons [12] was used for the statistical analysis. Surrogate-
based estimates with average error significantly different (α = 95%) and better
than Direct are shown in blue. Significantly different (α = 95%) and worse than
Direct are shown in red. The column Problem consists of: problem name/number
of variables/number of samples ( k).

Table 1 shows that, in some of the tested problems, the use of Kriging
improved the accuracy of the estimates of μf . It has also reduced the noise
throughout independent executions when compared to the other models. GRNN
presented results close to the ones obtained when μf is directly estimated with
the samples (“Direct”). When Polynomials and RBFNN were used, the accuracy
decreased and the noise increased when compared with the other approaches.

As can be seen in Table 2, the estimation of σf with surrogates is more
complicated than it is for μf . In the majority of the tested scenarios, there was
no advantage in using surrogate models. Their use led, in most of the cases, to
higher levels of noise and less accurate estimates. The exception was the problem
f7a for which Kriging presented some improvement when compared with Direct.
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Fig. 2. Surrogate models for robustness estimation.

Table 1. Using surrogates for the estimation of μf .

Surrogate model

Problem Direct Kriging RBFNN GRNN 2nd-order
polynomial

f7a/5/10 0.095(0.118) 0.044(0.060) 0.092(0.121) 0.102(0.125) 0.083(0.106)

f7a/5/20 0.069(0.084) 0.008(0.011) 0.068(0.096) 0.068(0.084) 0.124(0.244)

f7a/5/40 0.050(0.061) 0.003(0.003) 0.049(0.068) 0.047(0.059) 0.016(0.019)

f7a/10/10 0.096(0.117) 0.090(0.114) 0.129(0.189) 0.092(0.113) 0.179(0.257)

f7a/10/20 0.066(0.081) 0.039(0.058) 0.064(0.088) 0.064(0.078) 0.066(0.081)

f7a/10/40 0.050(0.061) 0.008(0.015) 0.042(0.054) 0.043(0.053) 0.053(0.070)

f10a/5/10 0.150(0.189) 0.130(0.161) 0.458(0.676) 0.144(0.180) 1.243(5.228)

f10a/5/20 0.109(0.133) 0.052(0.072) 0.571(0.993) 0.104(0.131) 0.328(0.446)

f10a/5/40 0.076(0.095) 0.015(0.019) 0.541(0.783) 0.073(0.090) 0.102(0.130)

f10a/10/10 0.141(0.175) 0.140(0.173) 0.405(0.627) 0.150(0.189) 0.427(0.583)

f10a/10/20 0.101(0.122) 0.087(0.114) 0.242(0.315) 0.097(0.121) 0.249(0.330)

f10a/10/40 0.072(0.090) 0.032(0.048) 0.207(0.277) 0.073(0.091) 0.209(0.268)

f16a/5/10 0.057(0.072) 0.063(0.078) 0.196(0.320) 0.058(0.073) 0.140(0.197)

f16a/5/20 0.042(0.052) 0.041(0.050) 0.223(0.334) 0.044(0.055) 0.362(0.849)

f16a/5/40 0.030(0.037) 0.025(0.031) 0.325(0.515) 0.029(0.037) 0.043(0.055)

f16a/10/10 0.057(0.071) 0.059(0.073) 0.155(0.247) 0.056(0.071) 0.161(0.230)

f16a/10/20 0.039(0.049) 0.042(0.052) 0.092(0.121) 0.042(0.050) 0.089(0.115)

f16a/10/40 0.029(0.036) 0.027(0.033) 0.079(0.110) 0.030(0.037) 0.086(0.110)
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Table 2. Using surrogates for the estimation of σf .

Surrogate model

Problem Direct Kriging RBFNN GRNN 2nd-order
polynomial

f7a/5/10 0.173(0.215) 0.206(0.314) 0.184(0.223) 0.982(0.356) 0.252(0.212)

f7a/5/20 0.119(0.149) 0.039(0.041) 0.186(0.163) 0.982(0.253) 0.700(0.414)

f7a/5/40 0.079(0.098) 0.013(0.012) 0.120(0.103) 0.983(0.188) 0.035(0.038)

f7a/10/10 0.160(0.207) 0.915(3.112) 0.238(0.299) 0.978(0.304) 0.723(0.469)

f7a/10/20 0.120(0.148) 0.570(1.078) 0.163(0.189) 0.981(0.249) 0.290(0.182)

f7a/10/40 0.080(0.101) 0.122(0.282) 0.088(0.102) 0.982(0.180) 0.416(0.170)

f10a/5/10 0.177(0.228) 0.461(0.621) 1.128(0.682) 0.986(0.405) 7.103(1.262)

f10a/5/20 0.117(0.149) 0.179(0.254) 2.130(0.682) 0.989(0.367) 1.153(0.484)

f10a/5/40 0.085(0.106) 0.043(0.050) 2.234(0.575) 0.990(0.302) 0.229(0.229)

f10a/10/10 0.157(0.202) 0.947(3.786) 0.787(0.608) 0.983(0.306) 1.695(0.572)

f10a/10/20 0.101(0.125) 0.743(1.569) 0.557(0.406) 0.986(0.261) 1.114(0.324)

f10a/10/40 0.070(0.086) 0.294(0.555) 0.586(0.338) 0.989(0.241) 2.109(0.321)

f16a/5/10 0.190(0.235) 0.573(0.703) 1.270(0.814) 0.986(0.416) 1.120(0.526)

f16a/5/20 0.137(0.168) 0.401(0.375) 2.153(0.619) 0.988(0.339) 6.191(0.995)

f16a/5/40 0.093(0.115) 0.291(0.222) 3.186(0.795) 0.989(0.267) 0.215(0.238)

f16a/10/10 0.189(0.238) 0.952(3.196) 0.698(0.607) 0.982(0.347) 1.607(0.630)

f16a/10/20 0.133(0.166) 0.795(1.527) 0.581(0.505) 0.985(0.286) 0.999(0.334)

f16a/10/40 0.090(0.113) 0.521(0.673) 0.559(0.359) 0.988(0.250) 1.869(0.310)

4.2 Surrogate-Assisted Robust Optimization

In this section, we compare the aforementioned robustness estimation schemes
within the optimization framework presented in Sect. 3. Matlab’s genetic algo-
rithm (GA) [11] was used as search engine. Each version of the algorithm is used
to minimize μf or σf for the 5-variable versions of f7a, f10a and f16a. k is set
to 20, the algorithm stops when the number of generations reaches 200 and 20
independent runs are performed for each version.

Figure 3 presents the convergence curves of the minimization problems
regarding μf and σf for f10a and f16a. To generate these curves, the best indi-
vidual at each generation is evaluated using a Monte-Carlo simulation with 10000
samples. Given the 20 independent runs, the dots represent the average and the
bars represent the range of the best individuals’ fitness at that generation.

For the μf minimization problems, the framework versions with Kriging,
GRNNs and direct estimates (without surrogate models) presented the best
results which, in turn, can be explained by the error and coefficient of varia-
tion values in Table 1. For the σf minimization problems, as expected from the
results in Table 2, the version with direct estimates outperformed the others.
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f7a - Minimize μf f7a - Minimize σf

f10a - Minimize μf f10a - Minimize σf

f16a - Minimize μf f16a - Minimize σf

Fig. 3. Convergence curves

Interestingly, RBFNNs also presented good performance, despite the high pre-
diction errors. This indicates that, for the tested problems, the prediction errors
may have had minimal influence on the ranks of the candidate solutions in the
GA. Overall, as can be seen in Fig. 3, the results presented by the framework
with direct estimates were more consistent throughout the tested problems.

Figure 4(a) shows an example of a 3-phase 4-pole surface mounted permanent
magnet (SPM) motor. SPM motors have been widely used in applications such
as hybrid vehicles and robotics, and their performance highly depends on the
produced average torque (Tavg) and cogging torque levels (Tcog).

It has been shown in [13] that an electrical machine’s performance can be
significantly affected by small tolerances in the manufacturing process. In this
context, instead of optimizing for the nominal values, we optimize the expected
(or mean) performance. In this formulation, the tolerances are set to 2% of the
lower bound values, that is, U(x) = [x−d,x+d] where di = 0.02× li. The four
design variables are indicated in Fig. 4(a).
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To solve this problem, Kriging was combined with the Matlab multi-objective
genetic algorithm (MOGA) [11]. Given the results presented in the previous
section, Kriging seems to be the obvious choice for this kind of problem. For
the sake of simplicity, from here on, this method is going to be called as robust
multi-objective genetic algorithm (RMOGA).

Figure 4(b) shows the non-dominated solutions obtained using MOGA to
solve the optimization problem without uncertainties (non-robust front) and
RMOGA. The non-robust region is highlighted in the figure. It was observed
that those solutions are clustered in a small region of the design space which
means that a small change in the design variables is causing a large variation of
the performance. In the robust front, on the other hand, the solutions are well
distributed over the design space, representing the trade-offs between the two
objectives. It is worth noting that the front of the optimal designs moves toward
lower average torque and higher cogging torque levels if the robust approach is
used. This demonstrates the trade-off between performance and robustness in
this problem.

(a) SPM motor (b) Pareto-fronts

Fig. 4. SPM motor layout and solutions

5 Conclusion

In this paper, the use of surrogate models for robustness assessment has been
investigated. Although it has been shown that surrogate models may improve
the accuracy and reduce the noise caused by the small sample sizes, that does
not seem to happen very often. Even when the robustness estimation process
was improved, the optimization results did not seem to be affected. In fact, in
all the tested optimization problems, the surrogate-less method was either the
best or among the best performing methods.

Although Kriging presented good performance for the mean related problems,
for the general case, where no guarantees about the surrogate model’s accuracy
can be provided, it is safer to rely directly on the data acquired from the original
problem set-up. If the surrogate model cannot be carefully constructed, it may
end up introducing error and noise to the objective function instead of removing
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them. Although experiments in a larger set of problems with other types of
surrogate models may be required to provide a definitive answer to the question
proposed in the title, the results displayed here present a fair amount of evidence
showing that, in general, the use of surrogate models is not advantageous.

Acknowledgements. Frederico G. Guimarães would like to thank the Minas Gerais
State Agency for Research and Development (FAPEMIG).
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Abstract. This paper discusses the effect of distance based parame-
ter adaptation on the population diversity of the Success-History based
Adaptive Differential Evolution (SHADE). The distance-based param-
eter adaptation was designed to promote exploration over exploitation
and provide better search capabilities of the SHADE algorithm in higher
dimensional objective spaces. The population diversity is recorded on the
15 test functions from the CEC 2015 benchmark set in two-dimensional
settings, 10D and 30D, to provide the empiric evidence of a beneficial
influence of the distance based parameter adaptation in comparison with
the objective function value based approach.

Keywords: Distance-based parameter adaptation · SHADE
Population diversity

1 Introduction

The original Differential Evolution (DE) algorithm that was proposed for global
optimization by Storn and Price in [1] has three main control parameters: popu-
lation size NP, scaling factor F and crossover rate CR. As it was shown in [2,3],
the setting of these control parameters is crucial for the performance of the algo-
rithm, and there seems to be no universal setting, which is in accordance with
the famous no free lunch theorem [4]. Due to this fact, researchers in the DE field
are trying to overcome this problem with self-adaptive variants of DE, which do
not require fine-tuning of the control parameters to the given optimization task.
And since the DE research community is fairly active, there have been numerous
updated and improved DE versions over the last few years. Various directions of
the research were recently nicely surveyed in the Das, Mullick and Suganthan’s
paper [5].

One of the most successful novel variants of adaptive DE algorithm is Success-
History based Adaptive Differential Evolution (SHADE) [6]. Its superiority was
proved on the last five CEC competitions in continuous optimization, where
SHADE or its updated variants placed on the top ranks (CEC2013 – SHADE
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placed 3rd, CEC2014 – L-SHADE [7] placed 1st, CEC2015 – SPS-L-SHADE-
EIG [8] placed 1st, CEC2016 – LSHADE EpSin [9] placed on joint 1st place,
CEC2017 – jSO [10] placed 1st). Therefore, the SHADE algorithm was selected
as a basis for this study.

The adaptive mechanism in Tanabe and Fukunaga’s SHADE is based on the
improvement in objective function value from the original individual to the trial
individual. Scaling factor and crossover rate values that were used for the gener-
ation of successful trial individuals are then subject to the comparison based on
the objective function value improvement and the ones with the highest improve-
ment have the highest weights in the forthcoming calculation of the values that
will be stored in the algorithm’s memory of successful control parameter settings.
Thus, this approach benefits exploitation of the objective space rather than the
exploration. Due to this fact, the algorithm is subject to premature convergence
when solving optimization problems of higher dimensionalities. In this paper,
a novel approach, which considers the distance between the original and trial
individuals rather than the objective function improvement is analyzed from the
perspective of performance and its effect on population diversity. Maintaining of
the population diversity is an interesting task which was lately studied in numer-
ous papers. In [11], auto-enhanced population diversity is proposed, which regen-
erates individuals components based on the detection of stagnation in respective
dimension, in [12], a diversity-based population strategy serves for population
size management, in [13], population diversity is maintained by scattering indi-
viduals from the centre of the population whenever the variance in objective
function values of the population drops below certain level, and finally in [14],
population diversity is maintained at a predefined value by increasing or decreas-
ing the population size after each generation. The aforementioned approaches
to population diversity maintaining are based on artificial changes to the pop-
ulation, whereas approach proposed in this paper is based on a different view
at the information exchange between individuals, where the position change is
more valuable for the optimization than the objective function improvement.
Therefore, such approach does not lose any of the population shared knowledge,
which might be lost in artificial changes of the population. Proposed distance
based adaptation is also applicable to any SHADE-based algorithm.

The rest of the paper is structured as follows: The next Section describes orig-
inal DE algorithm, the Section that follows provides the description of SHADE
and Sect. 4 is devoted to the distance based parameter adaptation mechanism.
Sections 5, 6 and 7 deal with experimental setting, results, their discussion and
conclusion correspondingly.

2 Differential Evolution

The DE algorithm is initialized with a random population of individuals P , that
represent solutions of the optimization problem. The population size NP is set
by the user along with other control parameters – scaling factor F and crossover
rate CR.
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In continuous optimization, each individual is composed of a vector x of
length D, which is a dimensionality (number of optimized attributes) of the
problem, and each vector component represents a value of the corresponding
attribute, and of objective function value f (x ).

For each individual in a population, three mutually different individuals are
selected for mutation of vectors and the resulting mutated vector v is combined
with the original vector x in the crossover step. The objective function value f (u)
of the resulting trial vector u is evaluated and compared to that of the original
individual. When the quality (objective function value) of the trial individual
is better, it is placed into the next generation, otherwise, the original individ-
ual is placed there. This step is called selection. The process is repeated until
the stopping criterion is met (e.g., the maximum number of objective function
evaluations, the maximum number of generations, the low bound for diversity
between objective function values in population).

The following sections describe four steps of DE: Initialization, mutation,
crossover, and selection.

2.1 Initialization

As aforementioned, the initial population P with NP individuals is randomly
generated. For this purpose, the individual vector xi components are generated
by Random Number Generator (RNG) with uniform distribution from the range
which is specified for the problem by lower and upper bound (1).

xj,i = U
[
lowerj , upperj

]
for j = 1, . . . , D (1)

Where i is the index of a current individual, j is the index of current attribute
and D is the dimensionality of the problem.

In the initialization phase, a scaling factor value F and crossover value CR
has to be assigned as well. The typical range for F value is [0, 2] and for CR, it
is [0, 1].

2.2 Mutation

In the mutation step, three mutually different individuals x r1,x r2,x r3 from a
population are randomly selected and combined by the mutation strategy. The
original mutation strategy of canonical DE is “rand/1” and is depicted in (2).

vi = xr1 + F (xr2 − xr3) (2)

Where r1 �= r2 �= r3 �= i, F is the scaling factor, and v i is the resulting mutated
vector.

2.3 Crossover

In the crossover step, the mutated vector v i is combined with the original vector
x i to produce the trial vector u i. The binomial crossover (3) is used in canonical
DE.
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uj,i =
{
vj,i if U [0, 1] ≤ CR or j = jrand
xj,i otherwise (3)

Where CR is the used crossover rate value, and jrand is an index of an attribute
that has to be from the mutated vector v i (this ensures generation of a vector
with at least one new component).

2.4 Selection

The selection step ensures that the optimization will progress towards better
solutions because it allows only individuals of better or at least equal objective
function value to proceed into the next generation G + 1 (4).

xi,G+1 =
{
ui,G if f (ui,G) ≤ f (xi,G)
xi,G otherwise (4)

Where G is the index of the current generation. The basic concept of the DE
algorithm is depicted in pseudo-code below.

Algorithm pseudo-code 1: DE

Algorithm 1. DE
1: Set NP, CR, F and stopping criterion;
2: G = 0, xbest = {};
3: Randomly initialize (1) population P = (x 1,G,. . . ,xNP,G);
4: Pnew = {}, x best = best from population P ;
5: while stopping criterion not met do
6: for i = 1 to NP do
7: x i,G = P [i ];
8: v i,G by mutation (2);
9: u i,G by crossover (3);

10: if f (u i,G) < f (x i,G) then
11: x i,G+1 = u i,G;
12: else
13: x i,G+1 = x i,G;
14: end if
15: x i,G+1 → Pnew;
16: end for
17: P = Pnew, Pnew = {}, x best = best from population P ;
18: end while
19: return x best as the best found solution

3 SHADE

In SHADE, the only control parameter that can be set by the user is population
size NP, the other two (F, CR) are adapted to the given optimization task, a
new parameter H is introduced, which determines the size of F and CR value
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memories. The initialization step of the SHADE is, therefore, similar to DE.
Mutation, however, is completely different because of the used strategy “current-
to-pbest/1” and the fact that it uses different scaling factor value F i for each
individual. Crossover is still binary, but similarly to the mutation and scaling
factor values, crossover rate value CRi is also different for each individual. The
selection step is the same, and therefore following sections describe only the
different aspects of initialization, mutation and crossover.

3.1 Initialization

As aforementioned, the initial population P is randomly generated as in DE, but
additional memories for F and CR values are initialized as well. Both memories
have the same size H and are equally initialized, the memory for CR values is
titled MCR, and the memory for F is titled M F . Their initialization is depicted
in (5).

MCR,i = MF,i = 0.5 for i = 1, . . . , H (5)

Also, the external archive of inferior solutions A is initialized. Since there are
no solutions so far, it is initialized empty A = Ø, and its maximum size is set
to NP.

3.2 Mutation

Mutation strategy “current-to-pbest/1” was introduced in [15] and unlike
“rand/1”, it combines four mutually different vectors pbest �= r1 �= r2 �= i (6).

vi = xi + Fi (xpbest − xi) + Fi (xr1 − xr2) (6)

Where x pbest is randomly selected from the best NP×p individuals in the current
population. The p value is randomly generated for each mutation by RNG with
uniform distribution from the range [pmin, 0.2]. Where pmin = 2/NP . Vector x r1

is randomly selected from the current population, and vector x r2 is randomly
selected from the union of current population P and archive A. The scaling
factor value F i is given by (7).

Fi = C [MF,r, 0.1] (7)

Where MF,r is a randomly selected value (by index r) from M F memory and
C stands for Cauchy distribution, therefore the F i value is generated from the
Cauchy distribution with location parameter value MF,r and scale parameter
value 0.1. If the generated value F i > 1, it is truncated to 1, and if it is F i ≤0,
it is generated again by (7).

3.3 Crossover

Crossover is the same as in (3), but the CR value is changed to CRi, which
is generated separately for each individual (8). The value is generated from the
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Gaussian distribution with a mean parameter value of MCR.r, which is randomly
selected (by the same index r as in mutation) from MCR memory and standard
deviation value of 0.1.

CRi = N [MCR,r, 0.1] (8)

3.4 Historical Memory Updates

Historical memories M F and MCR are initialized according to (5), but its com-
ponents change during the evolution. These memories serve to hold successful
values of F and CR used in mutation and crossover steps (successful regard-
ing producing trial individual better than the original individual). During one
generation, these successful values are stored in corresponding arrays SF and
SCR. After each generation, one cell of M F and MCR memories is updated.
This cell is given by the index k, which starts at 1 and increases by 1 after each
generation. When it overflows the memory size H, it is reset to 1. The new value
of k -th cell for M F is calculated by (9) and for MCR by (10).

MF,k =
{

meanWL (SF ) if SF �= ∅
MF,k otherwise (9)

MCR,k =
{

meanWL (SCR) if SCR �= ∅
MCR,k otherwise (10)

Where meanWL() stands for weighted Lehmer (11) mean.

meanWL (S) =
∑|S |

k=1 wk • S2
k∑|S |

k=1 wk • Sk

(11)

Where the weight vector w is given by (12) and is based on the improvement in
objective function value between trial and original individuals.

wk =
abs (f (uk,G) − f (xk,G))

∑|SCR|
m=1 abs (f (um,G) − f (xm,G))

(12)

Moreover, since both arrays SF and SCR have the same size, it is arbitrary
which size will be used for the upper boundary for m in (12).

The pseudo-code of the SHADE algorithm is depicted below.

4 Distance Based Parameter Adaptation

The original adaptation mechanism for scaling factor and crossover rate values
uses weighted forms of means (11), where weights are based on the improve-
ment in objective function value (12). This approach promotes exploitation over
exploration, and therefore might lead to premature convergence, which could be
a problem especially in higher dimensions.



How Distance Based Parameter Adaptation Affects Population Diversity 313

Algorithm 2. SHADE
1: Set NP, H and stopping criterion;
2: G = 0, xbest = {}, k = 1, pmin = 2/NP, A = Ø;
3: Randomly initialize (1) population P = (x 1,G,. . . ,xNP,G);
4: Set M F and MCR according to (5);
5: Pnew = {}, x best = best from population P ;
6: while stopping criterion not met do
7: SF = Ø, SCR = Ø;
8: for i = 1 to NP do
9: x i,G = P [i ];

10: r = U [1, H ], pi = U [pmin, 0.2];
11: Set Fi by (7) and CRi by (8);
12: v i,G by mutation (6);
13: u i,G by crossover (3);
14: if f (u i,G) < f (x i,G) then
15: x i,G+1 = u i,G;
16: x i,G → A;
17: Fi → SF , CRi → SCR;
18: else
19: x i,G+1 = x i,G;
20: end if
21: if |A|>NP then
22: Randomly delete an ind. from A;
23: end if
24: x i,G+1 → Pnew;
25: end for
26: if SF �= Ø and SCR �= Ø then
27: Update M F,k (9) and MCR,k (10), k++;
28: if k > H then
29: k = 1;
30: end if
31: end if
32: P = Pnew, Pnew = {}, x best = best from population P ;
33: end while
34: return x best as the best found solution

The distance approach is based on the Euclidean distance between the trial
and the original individual, which slightly increases the complexity of the algo-
rithm by replacing simple difference by Euclidean distance computation for the
price of stronger exploration. In this case, scaling factor and crossover rate val-
ues connected with the individual that moved the furthest will have the highest
weight (13).

wk =

√∑D
j=1 (uk,j,G − xk,j,G)2

∑|SCR|
m=1

√∑D
j=1 (um,j,G − xm,j,G)2

(13)
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Therefore, the exploration ability is rewarded, and this should lead to avoidance
of the premature convergence in higher dimensional objective spaces. Such app-
roach might also be useful for constrained problems, where constrained areas
could be overcame by increased changes of individual’s components.

5 Experimental Setting

The CEC 2015 benchmark set states that each function should be run 51 times
and the stopping criterion should be set to 10,000 × D objective function evalu-
ations. These requirements were adhered to, and two-dimensional settings were
selected 10D and 30D to provide a robust comparison. The convergence and
population diversity were recorded for both versions of the tested algorithm –
original SHADE and SHADE with distance based parameter adaptation abbre-
viated to Db SHADE. The used population diversity measure is described in the
next section.

Both algorithm variants had the same set of variable parameters – population
size NP was set to 100, the maximum size of the optional archive |A| was set to
NP, and the historical memory size H was set to 10.

5.1 Population Diversity Measure

The Population Diversity (PD) measure used in this paper was described in [14]
and is based on the sum of deviations (15) of individual’s components from their
corresponding means (14).

xj =
1

NP

NP∑

i=1

xij (14)

PD =

√√
√
√ 1

NP

NP∑

i=1

D∑

j=1

(xij − xj)
2 (15)

Where i is the population member iterator and j is the vector component
iterator.

6 Results and Discussion

The comparative results for both dimensional settings are in Tables 1 and 2,
where the last column depicts the result of the Wilcoxon rank-sum test with sig-
nificance level of 0.05. No significant difference in performance between SHADE
and Db SHADE algorithm is represented by “=” sign when the SHADE algo-
rithm performs significantly better; there would be “−” sign and when the dis-
tance based version performs significantly better, the “+” sign is used. As it can
be seen from results in Table 1, the performance of both versions is compara-
ble with only one win for the Db SHADE algorithm. This was suspected as the
dimensionality of the problem is quite low, and the SHADE algorithm does not
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Table 1. SHADE vs. Db SHADE on CEC2015 in 10D.

f SHADE Db SHADE Result

Median Mean Median Mean

1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =

2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =

3 2.00E+01 1.89E+01 2.00E+01 1.92E+01 =

4 3.07E+00 2.97E+00 3.06E+00 2.98E+00 =

5 2.21E+01 3.42E+01 2.98E+01 4.52E+01 =

6 2.20E−01 2.97E+00 4.16E−01 8.08E−01 =

7 1.67E−01 1.88E−01 1.73E−01 1.91E−01 =

8 8.15E−02 2.69E−01 4.28E−02 2.06E−01 =

9 1.00E+02 1.00E+02 1.00E+02 1.00E+02 =

10 2.17E+02 2.17E+02 2.17E+02 2.17E+02 =

11 3.00E+02 1.66E+02 3.00E+02 2.01E+02 =

12 1.01E+02 1.01E+02 1.01E+02 1.01E+02 +

13 2.78E+01 2.78E+01 2.79E+01 2.76E+01 =

14 2.94E+03 4.28E+03 2.98E+03 4.66E+03 =

15 1.00E+02 1.00E+02 1.00E+02 1.00E+02 =

Table 2. SHADE vs. Db SHADE on CEC2015 in 30D.

f SHADE Db SHADE Result

Median Mean Median Mean

1 3.73E+01 2.62E+02 2.12E+01 2.42E+02 =

2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =

3 2.01E+01 2.01E+01 2.01E+01 2.01E+01 =

4 1.41E+01 1.41E+01 1.32E+01 1.31E+01 =

5 1.55E+03 1.50E+03 1.54E+03 1.52E+03 =

6 5.36E+02 5.73E+02 3.37E+02 3.48E+02 +

7 7.17E+00 7.26E+00 6.81E+00 6.74E+00 +

8 1.26E+02 1.21E+02 5.27E+01 7.38E+01 +

9 1.03E+02 1.03E+02 1.03E+02 1.03E+02 +

10 6.27E+02 6.22E+02 5.29E+02 5.32E+02 +

11 4.53E+02 4.50E+02 4.10E+02 4.16E+02 +

12 1.05E+02 1.05E+02 1.05E+02 1.05E+02 =

13 9.52E+01 9.50E+01 9.47E+01 9.50E+01 =

14 3.21E+04 3.24E+04 3.22E+04 3.24E+04 =

15 1.00E+02 1.00E+02 1.00E+02 1.00E+02 =
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Fig. 1. Convergence plots (top) and population diversity plots (bottom) of CEC2015
test functions f6 (left) and f7 (right) in 30D.

Fig. 2. Convergence plots (top) and population diversity plots (bottom) of CEC2015
test functions f8 (left) and f9 (right) in 30D.
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Fig. 3. Convergence plots (top) and population diversity plots (bottom) of CEC2015
test functions f10 (left) and f11 (right) in 30D.

tend to converge prematurely. The situation is more interesting in the second
table, where there are 6 significantly different results in performance, and all of
them are in favor of the Db SHADE algorithm.

The convergence comparison plots and population diversity plots with confi-
dence intervals are provided for the six functions in 30D, where the performance
is significantly different in Figs. 1, 2 and 3. In these figures, it can be seen that
the population diversity is maintained longer, which leads to a more explorative
manner during the exploration phase of the algorithm, while the exploitation
phase is still present in the later generations. As for the other functions from the
benchmark with no significant difference in results, the population diversity is
also higher in the case of Db SHADE algorithm, but it does not help to improve
the optimization result significantly. Therefore, the further study of the on-line
effects of the distance based adaptation is needed.

7 Conclusion

This paper provided an analysis of the effect of distance based parameter adap-
tation in SHADE algorithm to population diversity. The analysis was done on
two test cases – 15 test functions from the CEC2015 benchmark set in 10D and
30D. The presumption that the effect will be more visible in higher dimensional
setting was confirmed. It can be seen, that the diversity of the population is
maintained for a longer period, therefore prolonging the exploration phase and
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avoiding premature convergence of the algorithm. This is in turn beneficial for
the result of the optimization.

However, there is still too much of unused computational time and the ten-
dency for premature convergence is still strong. Therefore, the future research
direction for the authors is to address these issues.
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Abstract. Variable neighborhood search (VNS) is a well-known meta-
heuristic. Two main ingredients are needed for its design: a collection
M = (N1, . . . , Nr) of neighborhood structures and a local search LS
(often using its own single neighborhood L). M has a diversification
purpose (search for unexplored zones of the solution space S), whereas
LS plays an intensification role (focus on the most promising parts of S).
Usually, the used set M of neighborhood structures relies on the same
type of modification (e.g., change the value of i components of the deci-
sion variable vector, where i is a parameter) and they are built in a nested
way (i.e., Ni is included in Ni+1). The more difficult it is to escape from
the currently explored zone of S, the larger is i, and the more capability
has the search process to visit regions of S which are distant (in terms of
solution structure) from the incumbent solution. M is usually designed
independently from L. In this paper, we depart from this classical VNS
framework and discuss an extension, Collaborative Variable Neighbor-
hood Search (CVNS), where the design of M and L is performed in a
collaborative fashion (in contrast with nested and independent), and can
rely on various and complementary types of modifications (in contrast
with a common type with different amplitudes).

Keywords: Metaheuristics · Variable neighborhood search

1 Introduction

As depicted in [1], modern methods for solving complex optimization problems
are often divided into exact methods (e.g., dynamic programming, branch and
bound) and metaheuristics [2]. An optimal solution can always be found with
an exact method in a finite amount of time. Unfortunately, most real-life opti-
mization problems are NP-hard, and therefore, exact methods would require too
much computing time to find an optimal solution. For such difficult problems, it
is thus better to quickly find a satisfying solution. A streamline heuristic can be
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used if solution quality is not a crucial issue. Otherwise, a more advanced meta-
heuristic is recommended. There are mainly two classes of metaheuristics: local
search and population based methods. The former algorithms work iteratively on
a single solution (e.g., descent local search, tabu search, variable neighborhood
search), whereas the latter manage a set of solutions (e.g., genetic algorithms,
ant colonies, adaptive memory algorithms).

A local search starts from an initial solution. Next, in each iteration, a neigh-
bor solution s′ is generated from the current solution s by performing a move
on s (i.e., the structure of s is slightly modified to get s′, according to predefined
rules). In tabu search, to try to avoid cycling (i.e., coming back to an already
visited solution), a tabu list forbids to perform the reverse of recently performed
moves. The best non-tabu move is generally performed in each iteration. In most
local search algorithms, only one neighborhood structure is used (i.e., a solution
can only be modified according to a dedicated technique with a fixed ampli-
tude, like changing one component of the solution). In contrast, Variable Neigh-
borhood Search (VNS) [3] uses sequentially different neighborhood structures.
A generic version of VNS is given in Algorithm1, where N1, N2, . . . , Nr denote a
finite set of neighborhoods, Ni(s) is the set of solutions in the ith neighborhood
of solution s, and L is the neighborhood structure used in the local search LS.
In a classical VNS, the neighborhood structures N1, . . . , Nr actually rely on the
same type of move, but used with different amplitudes. For example, if a solu-
tion s is a vector, Ni consists in changing the value of i components of s. The
resulting collection M of neighborhood structures are thus dependent (i.e., they
rely on the same type of modification) and nested (i.e., Ni is included in Ni+1).

Algorithm 1. Variable Neighborhood Search (VNS)

Generate an initial solution s and set i = 1

While no stopping criterion is met, do

1. Shaking (diversification): generate a neighbor solution s′ in Ni(s).
2. Local search (intensification): apply some local search method (with neighborhood

L) with s′ as initial solution, and let s′′ be the returned solution.
3. Relocate the search: if s′′ improves s, move there (set s = s′′), and continue the

search with N1 (set i = 1); otherwise set i = i + 1, but if i > r, set i = r.

In this paper, starting from such a VNS framework, we discuss how the design
of the neighborhood structures N1, . . . , Nr and L can be enhanced in order to
be performed in a collaborative and integrated fashion (note that integrated col-
laboration also appears in some ant algorithms [4], but within a different frame-
work). The resulting VNS is called CVNS (for Collaborative VNS). In contrast
with the standard literature on VNS, depending on the involved problem struc-
ture, the following features can appear in CVNS: (A) a strategic use of destroying
neighborhood structures in M (i.e., moves which eliminate some pieces of the
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solution); (B) the use of a central memory Mem containing all the local minima
encountered during the search, which is employed to design the stopping condi-
tion of LS. On the one hand, feature (A) allows for the joint action of moves of
different types, resulting in a collaborative solution improvement process. On the
other hand, feature (B) offers a way to collaboratively improve the performance
of LS thanks to the sharing of information at a global level. In this contribution,
we discuss the use of such features, and the performance of CVNS is highlighted
with the use of three problems belonging to different fields: (1) job scheduling
with time-window penalties (Sect. 2 relying on [5]); (2) nonlinear global opti-
mization (Sect. 3 relying on [6]); (3) network design (Sect. 4 relying on [7]). Only
a baseline study is given for each problem, and the reader is referred to the above
three references to have more detailed information on the complexity issues, the
literature review, the parameter setting, and a finer-grained presentation of the
experiments, including the experimental conditions like the computer type, the
programming language, etc. The main numerical results are highlighted in this
work, which allows to observe the good performance of CVNS. A conclusion is
provided in Sect. 5. For recent VNS variants, the reader is referred to [8–10].

2 Job Scheduling with Time-Window Penalties

2.1 Presentation of the Problem (P)

Make-to-order production systems are relevant to face the customized products
requested at the clients level [11]. The associated just-in-time paradigm appears
as a relevant approach to reduce the inventory costs. In such a context and
because of the limited production capacity, scheduling jobs at the plant level
can result in rejecting some orders [12]. Surprisingly, the literature on order
acceptance problems involving earliness or tardiness penalties is limited [13,14].
Let (P) denote the considered NP-hard single-machine scheduling problem. It
has the following features: sequence-dependent setup times and costs, earliness
and tardiness penalties, and rejection penalties associated with the rejected jobs.

(P) can be presented as follows [15]. n jobs can be performed on a single
machine, but two jobs cannot be processed concurrently. With each job j, the
following information is associated: a due date dj , a deadline d̄j , a rejection
penalty uj , an available date r̄j , a release date rj , and a processing time pj .
Let Sj (resp. Cj) denote the starting time (resp. completion time) of job j.
The following constraints are imposed for each job j: Sj ≥ r̄j and Cj ≤ d̄j . If
an accepted job j is not fully performed in time-window [rj , dj ], a penalty is
encountered: if Sj < rj (resp. Cj > dj), an earliness (resp. tardiness) penalty
Ej(Sj) (resp. Tj(Cj)) is paid, where Ej(·) (resp. Tj(·)) is a non-increasing (resp.
non-decreasing) function. In addition, a setup time (resp. cost) sjj′ (resp. cjj′) is
encountered if two jobs j and j′ of different families are consecutively performed.
Idle times are allowed (indeed, they can have a positive impact on the earliness
penalties), but preemptions are forbidden. Let σ(s) (resp. Ω(s)) be the sequence
(resp. set) of accepted (resp. rejected) jobs associated with solution s. In order to
measure the earliness/tardiness penalties of any solution s, it is necessary to first
determine a starting time for each job of σ(s). This is performed with a timing
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procedure [15] (this task is complex as idle times are allowed). The objective
function to minimize is f(s) =

∑
j∈σ(s)

[
Ej(Sj) + Tj(Cj) + cps(j)j

]
+

∑
j∈Ω(s) uj ,

where ps(j) is the predecessor of job j in σ(s) (the predecessor of the first job is
a dummy job representing the initial state of the machine).

2.2 CVNS for (P)

VNS has been applied to single-machine scheduling problems with different pro-
duction environments [16]. When it is forbidden rejecting jobs, the neighborhood
structures often consist in slightly changing the production sequence with move
REINSERT or with move SWAP (as defined below). The strategic use of the
move DROP (consisting in rejecting some jobs) is proposed in CVNS for (P).

Two methods are proposed for (P) in [15]: GR (a greedy heuristic) and TS
(a tabu search using GR to generate an initial solution). GR consists in two
phases: (1) sort the jobs by increasing slack times (d̄j − r̄j −pj); (2) sequentially
insert the jobs in the solution s under consideration, at the position minimizing
the augmentation of the costs (but a job is rejected if it is cheaper than to do
it). Four types of moves are used in TS in order to modify the current solution
s: ADD moves a job from Ω(s) to σ(s); DROP moves a job from σ(s) to Ω(s);
REINSERT reschedules one job in σ(s); SWAP exchanges the positions of two
jobs in σ(s). If a move leads to an unfeasible solution s′ (as available dates
or deadlines are not respected), s′ is immediately repaired as follows: while s′

remains unfeasible, the job whose rejection leads to the smallest cost is removed
(and the starting/ending times are also updated with the timing procedure).
Four tabu structures were employed after applying a move on solution s. The
first forbids adding a dropped job for τ1 (parameter) iterations. The second
forbids dropping an added job for τ2 iterations. The third forbids (during τ3
iterations) moving again a job that has been swapped, reinserted or added. If j
has been reinserted or swapped, the fourth tabu status forbids moving a job j
between its two previous neighboring jobs (in σ(s)) for τ4 iterations.

In CVNS for (P), the initial solution is also generated by GR. The way to
switch from one neighborhood to another differs from the standard Algorithm1.
Ni(s) consists in randomly dropping i% of the jobs from σ(s) to Ω(s). Such
a move DROP is used here to diversify the search. Parameter i is managed in
order to focus the search away from the current solution when no improvement
has been made for a long period. More precisely, the proportion of removed
jobs grows exponentially with the number of iterations without improvement. In
step (1) of Algorithm 1, the selected solution is the best among k (parameter)
solutions generated randomly in Ni(s). In step (2) of Algorithm 1, the above
presented TS is applied for I (parameter) iterations, but without move DROP
(as it appears in the shaking process).

2.3 Results

The uniform distribution was used to generate all the data. Two values are
important for generating instances for (P): the number n of jobs, and a parameter
α impacting the time interval within which release dates and due dates are
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generated. Formally, a value Start is selected large enough, and End is computed
as Start + α

∑
j pj . Next, each rj (resp. dj) is randomly chosen in [Start, End]

(resp. [rj + pj , End]). Linear and quadratic penalties are investigated. More
precisely, the earliness (resp. tardiness) penalties are computed as wj(rj − Sj)qj

(resp. w′
j(Cj−dj)q′

j ). The weights wj and w′
j are randomly picked in {1, 2, 3, 4, 5},

whereas qj and q′
j are selected in {1, 2}. pj is an integer randomly generated in

[50, 100], and uj = βj · pj , where βj is an integer randomly picked in interval
[50, 200]. d̄j and r̄j are generated such that Tj(d̄j) = Ej(r̄j) = uj . The number
of job families is chosen randomly in [10, 20]. Finally, setup costs and setup times
are related (as in practice): the setup time sFF ′ between jobs of families F and
F ′ is selected randomly in [50, 200], and the corresponding setup cost cFF ′ is
computed as �γ · sFF ′�, where γ is randomly chosen in interval [0.5, 2].

The quick timing procedure proposed in [17] was adapted to evaluate a solu-
tion in TS and CVNS. GR, TS and CVNS were tested with a time limit T (n)
depending on n. As GR is quick, it is restarted as long as T is not reached, and
it finally returns the best generated solution among the restarts. Table 1 sum-
marizes the results. Column “Best-known” indicates the best-known objective
function value for each instance (in $). Next, for each method, the percentage
gap between the average result (over 10 runs) and “Best-known” is given. Both
local search approaches are better than GR, and CVNS outperforms TS. Indeed,
CVNS obtains the best results for 11 instances out of 15, versus 5 for TS. In
other words, a strategic use of move DROP appears to be a powerful exploration
tool: the ingredients added to TS to derive CVNS are thus efficient.

Table 1. Results for a job scheduling problem

n α Best-known [$] GR [% gap] TS [% gap] CVNS [% gap]

25 0.5 46,860 0.4 0.13 0.05

1 35,866 6.5 0 0

2 8,172 21.25 0.75 1.33

50 0.5 137,567 6.47 4.26 2.32

1 69,671 44.34 10.15 11.26

2 6,123 166.39 30.91 19.52

75 0.5 198,633 19.68 6.52 6.06

1 126,052 33.93 5.15 0.6

2 11,199 246.3 41.58 32.86

100 0.5 332,731 21.32 8.36 6.63

1 175,237 50.36 25.65 4.6

2 20,459 124.39 39.34 17.98

150 0.5 561,422 23.49 3.92 4.8

1 320,225 53.85 11.76 15.6

2 66,585 16.34 63.2 9.59

Average 55.67 16.78 8.88
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3 Nonlinear Global Optimization

3.1 Presentation of the Problem (P)

Problem (P) consists in finding a global minimum of the nonlinear optimization
problem minx∈Rn f(x), where function f : Rn → R is twice differentiable, but
has no special structure. Most of the literature on nonlinear optimization [18–
21] is usually dedicated on the global convergence of algorithms toward a local
optimum, with a fast local convergence. A point x� is a global (resp. local)
minimum of f if f(x�) ≤ f(x) for all x ∈ R

n (resp. if there exists ε > 0 such
that f(x�) ≤ f(x) for each x such that ‖x − x�‖ ≤ ε). An algorithm is globally
(resp. locally) convergent if it converges to a (local) minimum from any starting
point (resp. when it is converging to a (local) minimum when the starting point
x1 is in a given neighborhood of x�).

3.2 CVNS for (P)

The employed local search LS is able to prematurely stop its search if the iterates
are converging to an already identified local minimum or if they are reaching an
area of the solution space where no important improvement can be expected. LS
relies on a trust region framework [20]. It is interrupted if one of the following
conditions is verified: (1) a maximum number of iterations is reached; (2) LS
has converged to a local minimum up to the desired precision; (3) LS seems to
converge to an already identified local minimum; (4) the gradient norm is not
large enough when the objective function value is far from the value at the best
iterate; (5) a significant improvement of the objective function is not encoun-
tered. An efficient use of available information on f can strongly impact the
design of the neighborhood structures. It was proposed to analyze the curvature
of f at x based on the analysis of the eigenstructure of the Hessian matrix H,
the approximation of the second derivatives matrix of f at x.

The main loop of CVNS is designed as follows. Let x be the current solution
(which is the best visited solution, as in any classical VNS approach). Five
neighborhood structures N1, . . . , N5 are used (from the smallest N1 to the largest
N5), and each time a neighborhood structure Nk is used, p candidates x1, . . . , xp

(parameter tuned to 5) are generated in it and then improved with LS. If the
five so performed LS have been prematurely stopped, a quick option consists
in restarting the process with Nk+1. Otherwise (i.e., at least one local search
application converged to a local minimum), the list Mem of local minima is
updated. If the best local minimum of Mem is better (resp. not better) than x,
the process is restarted with N1 (resp. Nk+1), which represents a success (resp.
a failure). The overall algorithm stops if N5 has failed.

3.3 Results

CVNS was performed 100 times for each instance, and a run is successful if
CVNS finds a global minimum. Two measures of performance are considered:
the average percentage of success and the average number of function evaluations
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among the successful runs. This second criterion is very important when it is
computationally cumbersome to evaluate a solution [22]. CVNS is compared
with the following methods: (1) Direct Search Simulated Annealing (DSSA)
[23]; (2) Continuous Hybrid Algorithm (CHA) [24]; (3) Simulated Annealing
Heuristic Pattern Search (SAHPS) [25]; (4) Directed Tabu Search (DTS) [26].
Table 2 provides the number of successes over the 100 runs for 25 problems (left
information), and the average number of function evaluations for successful runs
on the same 25 problems (right information). Some of the cells associated with
competitors are empty if the corresponding information was not available. First,
CVNS appears to be the most robust method as it gets a success rate of 100% for
almost all instances. Second, CVNS has the lowest average number of function
evaluations for most instances. Interestingly, the efficiency of CVNS on Zakharov
(Zn) and Rosenbrock (Rn) functions is improving when the dimension n of the
problem augments from 2 to 10. CVNS is also able to significantly reduce the
average number of f -evaluations for instances R10 and Z10.

Table 2. Results for nonlinear global optimization

Problem CVNS CHA DSSA DTS SAHPS

RC 100 153 100 295 100 118 100 212 100 318

ES 100 167 100 952 93 1442 82 223 96 432

RT 84 246 100 132 100 252 100 346

SH 78 366 100 345 94 457 92 274 86 450

DJ 100 104 100 371 100 273 100 446 100 398

HM 100 335 100 225

GR6 100 807 90 1830

CV 100 854 100 1592

DX 100 2148 100 6941

Z2 100 251 100 215 100 186 100 201 100 276

Z5 100 837 100 950 100 914 100 1003 100 716

Z10 100 1705 100 4291 100 12501 100 4032 100 2284

Z50 100 17932 100 75520 0 177125

H3,4 100 249 100 492 100 572 100 438 95 517

H6,4 100 735 100 930 92 1737 83 1787 72 997

S4,5 100 583 85 698 81 993 75 819 48 1073

S4,7 100 596 85 620 84 932 65 812 57 1059

S4,10 100 590 85 635 77 992 52 828 48 1035

R2 100 556 100 459 100 306 100 254 100 357

R5 100 1120 100 3290 100 2685 85 1684 91 1104

R10 100 2363 83 14563 100 16785 85 9037 87 4603

R50 100 11934 79 55356 100 510505

R100 100 30165 72 124302 0 3202879
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4 Network Design

4.1 Presentation of the Problem (P)

In the context of large-scale production-distribution networks, the considered
problem (P) is an extension of the two-echelon multicommodity CFLPSS (capac-
itated facility location problem with single sourcing) with alternative facility con-
figurations, direct shipments from manufacturing facilities, and inventory holding
costs. The design of a supply chain network implies strategic decisions for: (1)
opening/closing production and distribution centers; (2) reconfiguring some of
these centers; (3) specifying their mission according to (a) the products they
have to produce or stock and (b) the customers they should deliver. The related
recent literature, usually on simpler problems, includes [27–30].

Consider a network made of sites for potential PDCs (production-distribution
centers) u ∈ U and DCs (distribution centers) w ∈ W . They represent locations
where a facility could be opened, or alternatively, existing facilities. The plants
are able to manufacture a set of finished products p ∈ P . A product is actually a
group of items needing the same type of production capacity. For each p, it may
be possible to produce it only on a subset of sites Up ⊆ U . The facilities have
to deliver external demand zones (group of ship-to-points located in a specified
geographical area) d ∈ D. Only a subset Pd ⊆ P of products might be requested
from a demand zone d. Finished products can be stocked in the PDCs, for
which the mission consists in supplying the DCs and some demand zones (direct
shipments). Each demand zone has to be delivered by a single source (either a
PDC or a DC). In addition, in order to satisfy some predefined service criteria
(e.g., next day delivery), a facility s ∈ S could deliver only a subset of demand
zones Ds ⊆ D or, conversely, only a subset Sd ⊆ S = U ∪ W of the sites are
positioned to supply a given demand zone d ∈ D.

The production/storage capacity and the fixed/variable costs characterize the
configuration of each existing facility. Alternative configurations can be imple-
mented for each potential site, corresponding to: (a) the addition of new space
and/or equipment to augment its capacity; (b) a re-engineering of current equip-
ments/layouts; (c) other facility specifications for the new sites. Therefore, a set
Js of possible configurations can be implemented for each site s ∈ S of the poten-
tial network. For the considered planning horizon, each configuration j ∈ Js is
characterized by the following information: a production capacity, a flexible stor-
age capacity, a fixed exploitation cost, and a variable throughput cost (covering
the relevant procurement/reception/production/handling/shipping expenses).
The objective function to minimize is the sum of the following costs: configura-
tion costs for the facilities (fixed + variable), inventory holding costs, and trans-
portation costs. The constraints to satisfy are: the capacity constraints, the flow
equilibrium in each node of the network, and the clients’ demand satisfaction.

4.2 CVNS for (P)

First, note that only feasible solutions are generated. The following options are
considered when performing a move: (1) each demand from zones d ∈ D is
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supplied by any of the open center s ∈ Sd while respecting the service criteria; (2)
the capacity constraints (i.e., minimum and maximum) of the used configurations
are all satisfied; (3) if there is a demand from a zone d which can only be supplied
from a single center (i.e., if |Sd| = 1), then the center is always set as open during
the search process. Moreover, if for each p ∈ Pd, the demand xpd from a zone
d ∈ Dw is reassigned to a DC w ∈ W , then a new requirement (equal to xpd) is
created for the opened PDCs that can ship product p to DC w. The same kind of
additional requirements can be designed when an existing PDC is closed. In both
cases, the requirements induced at the first echelon are assigned to the second
echelon center u with the lowest production and transportation cost, given that
a configuration j with sufficient capacity can be employed. If there is not enough
capacity, the outstanding requirement is attributed to the next best plant. This
implies that the DCs can be delivered by various plants.

Let W (v) ⊆ W (resp. U(v) ⊆ U) be the subset of opened DCs (resp. PDCs)
associated with solution v. In other words, a pair (W (v), U(v)) characterizes
each solution v. In the shaking phase of CVNS, the best neighbor solution is
chosen, and the stopping condition is a time limit. Five neighborhood structures
are used, denoted as N1 to N5. (1) v′ ∈ N1(v) if a PDC is closed but another
is opened. (2) v′ ∈ N2(v) if an additional PDC is opened. (3) v′ ∈ N3(v) if a
PDC is closed. (4) v′ ∈ N4(v) if an additional DC is opened. (5) v′ ∈ N5(v) if a
DC is closed. As the number of potential DCs is usually far above the number
of PDCs, it is appropriate to test many possibilities for W (v). Therefore, the
W -shift moves (i.e., a DC is closed but another is opened) will be employed
within the local search LS of CVNS.

Two important points related to the design of the above neighborhood struc-
tures should be raised: (1) which demand zones should be attributed to a center
that is newly available (this is identified with add/shift moves); (2) to which
centers must the demands of a closed center (identified with a drop-move or
a shift-move) be reassigned? In both cases, the involved costs are the configu-
ration/transportation/production/inventory costs. In order to tackle issue (2),
suppose that center s′ has to be opened. It is appropriate to assign demand zone
d ∈ Ds′ to s′ instead of its current supplier s if the sum of the costs is decreased,
and if the minimum capacity constraint remains satisfied for s. It was however
observed that such a reassignment of demands often leads to an infeasible solu-
tion s′ according to its minimum capacity constraint. To repair it, additional
clients are given to s′ as follows. While the minimum capacity constraint of s′ is
violated, a demand zone d ∈ Ds′ that is not already delivered by s′ is randomly
chosen. If there exists an assignment (s′′, d) (involving an already open s′′) that
leads to a solution with superior costs than the assignment (s′, d), then d is
assigned to s′. If such an assignment does not exist, s′ cannot be opened. Issue
(1) is tackled as follows. For each demand zone d associated with the investi-
gated center to be closed, d is simply reassigned to the best (according to the
costs) possible open center sb. In the two cases, the tightest center configuration
is chosen (i.e., the feasible capacity configuration with the smallest fixed cost).
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Let v denote the current solution. The five neighborhood structures are used
as follows, starting with M = {N1, . . . , N5}. In the shaking phase of Algorithm1,
instead of initially choosing i = 1, i is randomly picked in {1, 2, . . . , 5}, and the
best solution v′ in Ni(v) is chosen. LS is then applied on v′ to get v′′. Next, if
v′′ outperforms v, M is set to {N1, . . . , N5} and v is updated (i.e., set v = v′′).
Otherwise: if |M | > 1, Ni is removed from M ; but if |M | = 1, M is set back
to {N1, . . . , N5}. The next neighborhood structure in the shaking phase is then
randomly chosen in M .

The employed LS is a tabu search using the W -shift moves (w,w′) such that
w and w′ can supply common demand zones. When a W -shift move (w,w′) is
performed, it is then forbidden to close (resp. open) w′ (resp. w) for a certain
number of iterations. LS is stopped when a maximum number I of iterations
without improving the best solution encountered so far is reached. Note that the
use of filtering techniques [31] might be very helpful to reduce the search space.

4.3 Results

CVNS was tested on a 32-bit 2 GHz Dual Core computer with 1 GB of RAM.
An exact method relying on CPLEX was also developed. Random instances
with various sizes and cost structures were generated, based on realistic cases
documented in [32]. A uniform distribution is used to generate the demand
for the different demand zones, with lower/upper bounds based on the total
production capacity of the network. It was always assumed that demand zones
had to be delivered from facilities located at a distance up to 530 miles from its
centroid. Different sizes were obtained by modifying the potential PDCs (4 or 6,
with four possible configurations for each PDC), the potential DCs (60 or 100,
with two possible configurations for each DC), the demand zones (500 or 1000),
and the number of product families (3 or 20).

Average results (with computing times indicated in minutes) are summarized
in Table 3, depending on the instances characteristics. The percentage gaps of
CVNS are computed with respect to the optimal costs. The focus is put on four
components: the number |P | of products (3 or 20), the number |D| of demand

Table 3. Results for a network design problem

Characteristics CPLEX CVNS

Opt. cost [$] Time Gap [%] Time

|D| = 500 demand zones 69,207,275 341.58 0.89 12.5

|D| = 1000 demand zones 134,420,183.3 409.17 0.79 14.17

|P | = 3 products 25,726,628.25 217.92 1.43 13.33

|P | = 20 products 177,900,830 532.83 0.26 13.33

(|U |, |W |) = (4, 60) centers 103,763,688.3 297 0.99 10

(|U |, |W |) = (6, 100) centers 99,863,769.92 453.75 0.7 16.67
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zones (500 or 1000), the number of centers (|U | = 4 or 6 PDCs, |W | = 60 or
100 DCs). Anytime a component is fixed, the three other components vary. One
can conclude that on average: (1) CPLEX requires 375 min to find an optimal
solution; (2) CVNS is able to find very competitive solutions (as the average gap
is 0.84%) in 13 min. Moreover, CVNS appears to be very efficient with a large
number of products (indeed, the average gap gets close to 0.30% in such cases).
Finally, CVNS is more competitive if more decision variables are involved, which
is a good indicator if larger instances have to be tackled.

5 Conclusion

The performance of a metaheuristic can be evaluated according to several criteria
[1]: (1) quality (value of the obtained results according to a given objective
function); (2) speed (time needed to get competitive results); (3) robustness
(sensitivity to variations in problem characteristics and data quality); (4) ease
of adaptation; (5) ability to take advantage of problem structure. The CVNS
methodology has a good overall behavior according to these criteria. Indeed, for
the above presented applications, the solution encoding and the employed moves
account for the problem specific features. Next, CVNS is easy to adapt because
it only relies on two ingredients (which have to be designed in a collaborative
fashion): a local search LS and a collection M of neighborhood structures. In
addition, the strategic use of M plays a key role in robustness. The quickness
of LS leads to the quickness of CVNS (it is usually the case if an aggressive
method is used, such as tabu search). Finally, quality is ensured because of the
intensification capability of LS combined with the diversification ability of M .
Among the future works on CVNS, we can mention the integration of other
learning mechanisms [33] to better guide the search.
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