
A Visual Interactive Environment
for Engineering Knowledge Modelling

Ewa Grabska, Barbara Strug, and Grażyna Ślusarczyk(✉)

Jagiellonian University, Kraków, Poland
{ewa.grabska,grazyna.slusarczyk}@uj.edu.pl

Abstract. Today, the field of modelling of engineering knowledge needs facil‐
itating the specification and programming tasks associated with the modelling of
complex systems. In this paper a graphical formalism is suggested as a way to
tackle the system modelling problems more quickly. Composition graph (CP-
graph) rewriting is suggested as a basis for visual modelling tools. Nodes of a CP-
graph have explicit connection elements called bonds to which edges are attached.
The proposed Visual MOdelling with GRaphs (VIZMOGR) system offers a
simple graphical interface for conceptual designing artifacts, in which outline
solutions are determined by spatial and structural relationship of the principal
components and major functions. The system allows the user to create structure
components of the model in the form of CP-graph nodes labelled by icons repre‐
senting artifact’s components. Creating edges between bonds of nodes is
controlled by means of label-dependent rules. To modify created CP-graphs
VIZMOGR system provides schemes of rules, which are most often applied to
develop graphs. Moreover VIZMOGR system supports attributed CP-graphs by
enabling the user to propagate semantic information and to capture parametric
modeling knowledge. The benefits of the proposed approach and usefulness of
VIZMOGR system are shown using examples of designing bridges.

Keywords: Knowledge modelling · Composition graph · Graph rewriting

1 Introduction

Today, the modelling of knowledge is made very complex by the use of multiple disci‐
pline-specific models. Integration of these models is difficult because different scientific
bases are applied [1]. We are at a point in history when there exists an obvious need for
facilitating the specification and programming tasks associated with the modelling of
complex systems.

We consider here the process of modelling corresponding to early stages of design,
called conceptual design, where primary decisions are to be made. The product of these
stages is meant as an outline solution to a design problem in which spatial and structural
relationships of the principal components are fixed, and major functions are determined.
The outline solution can be easily represented by a graph [2].

In this paper a graph formalism is suggested as a way to tackle the system modelling
problems more quickly. The consequence of using this formalism is stimulation of visual

© Springer International Publishing AG, part of Springer Nature 2018
I. F. C. Smith and B. Domer (Eds.): EG-ICE 2018, LNCS 10863, pp. 219–230, 2018.
https://doi.org/10.1007/978-3-319-91635-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91635-4_12&domain=pdf


thinking that means taking advantage of our innate ability to see, discovering ideas that
are otherwise invisible, developing these ideas quickly and intuitively, and then sharing
them with others. Composition graph (CP-graph) rewriting is proposed as a basis for
visual modelling tools. Intuitively, a CP-graph is a graph where nodes have explicit
connection elements called bonds [3]. Edges are attached to bonds which express the
properties of the connections (see Fig. 1). Graph rewriting consists of replacing a
subgraph in the graph being processed by another graph, thus giving the possibility of
creating a new graph out of the original graph algorithmically. We focus on CP-graph
rewriting systems that have been used to synthesize models in a wide variety of domains
such as architectural design, computer games, computational grids and Finite Element
Method [4, 5].

Fig. 1. An example of a CP-graph structure.

There exist a number of tools for generating graphs such as PROGRESS, AGG,
Fujaba, GROOVE, but they are usually specialized for experts of a particular subject
and focus on different areas. An interesting tool for graph rewriting is PORGY, which
uses port graphs [6]. Ports, like bonds, are connection elements between edges and nodes
defined on the syntactic level. However, the difference between ports and bonds is
fundamental, since bonds are also interpreted on the semantic level. This interpretation
plays an essential role in building a layer of meaning during the initial phase of model‐
ling, called conceptualization.

The existing systems can be considered in the framework of Computational Design
Synthesis (CDS). CDS aims to support conceptual design through formalization and
computer aided process of finding solutions for knowledge-based design tasks. The lack
of popularity of CDS in industry is evident. This lack of acceptance is caused by a great
effort required to acquire knowledge and skills necessary to formalize tasks, limited range
of applications, lack of reuse of existing design knowledge, lack of modeling standards
and tool integration [7]. For instance, CDC is often discussed within the framework of
local graph transformations, specified by graph rewriting rules for transforming subgraphs
of limited sizes. The graph approach is fundamental because it allows to consider both the
product modelling and the process modelling. There exist many formal graph approaches
to the application of graph rewriting but their use most often requires skills to formalize
tasks. The main purpose of this paper is to facilitate the specification of graph rewriting
rules by presenting steps of applying them on the visual level.

220 E. Grabska et al.



The proposed VIZMOGR (Visual MOdelling with GRaphs) system is a visual envi‐
ronment that allows users to define CP-graphs and rewriting rules, and to apply these
rules in an interactive way or via the use of a strategy with memory, where successive
rewriting steps depend on the history of the previous ones [8]. VIZMOGR system offers
a simple graphical interface that allows users to visualize and analyse the dynamics of
finding solutions for knowledge-based design tasks. The graph rewriting in the system
is based on the GraphTool engine [4, 5]. In the first step of modelling, when the user
analyses relevant entities and organizes them into concepts and relations, he can decide
on shapes and colours of elements creating a graph structure of the model. It turns out
that visual perception of graph structures in graphic design is based on the same neural
machinery that is used to interpret the everyday environment [9]. A kind of natural
semantics, which is fundamental in reasoning, is built on the basis of user’s patterns.

VIZMOGR system offers the support for attributed CP-graphs. Within each project
there is a file that is used for creating declaration of attributes that can be later assigned
to any object defined in the project. Each rewriting rule can be equipped with a predicate
of applicability specifying conditions under which the rule can be used. These predicates
are in the form of expressions with parameters being attributes assigned to CP-graph
nodes and edges and therefore describe semantic properties of CP-graphs to which rules
can be applied.

The benefits of the proposed approach and usefulness of VIZMOGR system are
shown using examples of designing bridges.

2 CP-Graph Representation of Designs

In the proposed VIZMOGR system design objects are internally represented by means
of CP-graphs. A CP-graph is a labelled and attributed graph, where nodes represent
components of artefacts and are labelled by names of components they represent. More‐
over, attributes specifying properties of components are assigned to nodes representing
them. To each node a number of bonds expressing potential connections between
components is assigned. Edges of a CP-graph represent relations between components.
Non-symmetrical relations are represented in a directed CP-graph, where nodes are
equipped with two types of bonds: in-bonds and out-bonds and directed edges are drawn
from out-bonds to in-bonds. Figure 1 shows an example of a generic CP-graph structure
with directed edges, which represents a designed model. In this CP-graph, for instance
the node “label7” and the node “lbl3” are connected by the directed edge which is drawn
from the out-bond of the former node to the in-bond of the latter one.

Bonds of CP-graph nodes, which are not engaged are called free and represent places
on components where other components can be attached. In Fig. 1 the node “label7”
has one free in-bond, whereas the node “lbl3” has one free out-bond. Each free bond of
a node signals a potential connection of a node with other nodes [3]. Undirected CP-
graphs have only one type of bonds. In Fig. 2b a CP-graph representing the structure of
the bridge shown in Fig. 2a is undirected, i.e., its edges represent symmetrical relations.
This structure is a solution internal representation obtained as a result of the modeling
process controlled by the user and described in the next section. Nodes of this CP-graph

A Visual Interactive Environment for Engineering Knowledge Modelling 221



represent abutments, pylons, beams and two types of cables, which constitute structural
components of the bridge, and are labeled as ab, bm, pl, cb1 and cb2, respectively. Bonds
assigned to nodes are connected by undirected edges representing relations between
bridge components. The edge labels fx and hn denote fixed and hinged connections
between components of the bridge. The edge label jn denotes the join relation.

Fig. 2. A bridge and a CP-graph representing it.

3 VIZMOGR System Characteristics

The proposed system offers a simple graphical interface that allows users to visualize
and analyse the dynamics of solutions for knowledge-based design tasks. The system
enables the user to create CP-graphs corresponding to design drawings being early
solutions.

At first, in the conceptualization phase, the user specifies icons representing object
structural components the design drawings are to be generated of together with their
labels. In this way a set ΣV of labels which correspond to the icons is determined. Then,
a set of graph nodes labelled by icons is created.

Exemplary icons, which are used in case of designing bridges to represent structural
components of models, together with their labels are presented in Fig. 3a. Therefore set
ΣV contains labels ab, pl, bm, sp, ar1, ar2, cb1, cb2 and cb3, which represent abutments,
pylons, beams, supports, two types of arches, and three types of cables.

When we see CP-graph nodes with icons we are relying on the same neural machi‐
nery that is used to interpret the everyday environment. This natural semantics permeates
the visual thinking. Abstract phrases such as connected or contained within are not
considered metaphoric. In our approach the interplay between CP-graph nodes with
icons is considered. Two CP-graph nodes connected by edges represent related compo‐
nents. The places of connections are represented by small circles in nodes called
bonds. CP-graph nodes can contain bonds which are not connected by edges. They are
called free and signal potential connections of a node with other nodes. CP-graph nodes
with labels in the form of icons and with bonds assigned to them are shown in Fig. 3b.

Visual relations which can occur between icons are also specified and a set ΣΕ of
labels representing types of possible relations between object components, is deter‐
mined. For bridges, the set ΣE contains labels fx, hn and jn, which represent relations
corresponding to fixed and hinged connections between components of bridges, and the
join relation, respectively. When the user analyses relevant entities and organizes them

222 E. Grabska et al.



into concepts and relations, he can decide on shapes and colours of elements representing
graph nodes. Moreover, for each node a set of attributes specifying properties of a
corresponding component can be specified.

The CP-graph is created by adding selected nodes and connecting their bonds by
edges representing relations between components corresponding to nodes. It is worth
noting that starting with designing a fragment of the bridge structure in the form of a
configuration of nodes with icons, the location of individual nodes can be easily deter‐
mined by the relations (for instance below, on the left) among graphical primitives in
the bridge drawing (see Fig. 4).

Fig. 4. (a) A fragment of a bridge (b) a CP-graph corresponding this fragment.

Fig. 3. (a) Icons representing components of bridges, (b) CP-graph nodes representing these
components.

A Visual Interactive Environment for Engineering Knowledge Modelling 223



Creating edges between bonds of nodes is controlled by means of label-dependent
rules. If the created edge is directed, its source and target bonds are automatically
converted into out-bonds and in-bonds, respectively. The system gives also the possi‐
bility to label edges, remove nodes and edges, and change labels of both nodes and edges.

In Fig. 5 the first screen of GUI of VIZMOGR system is presented. In the left-hand
side window the available icons with their labels are shown. In the right-hand side
window a CP-graph representing a preliminary design can be created.

Fig. 5. A screenshot of the first part of VIZMOGR GUI, where CP-graphs can be created.

CP-graphs representing design drawings can be further modified by automatically
applying sequences of CP-graph transformation rules selected by the user. The graph
rewriting is based on the GraphTool engine [4, 5].

A CP-graph rewrite rule consists of two CP-graphs L and R (see Fig. 6a). The former
(L) describes a subgraph of a derived CP-graph that after application of the rewriting
operation is replaced by the latter (R), which is embedded in the rest CP-graph. Bonds
of CP-graph nodes, which are not connected with edges are called free. They play an
important role in the rewriting operation. Graphs L and R with the same number of free
bonds can easily replace each other with the constant embedding in the rest part of the
CP-graph.

Figure 6b shows a visualization of the rewriting rule with constant embedding for L
and R. The rhombus, in which to each red solid edge one blue dotted edge is assigned,
indicates a bond of R which replaces a bond of L in the derived CP-graph. VIZMOGR
system allows users to define rewriting rules with other embeddings by drawing red

224 E. Grabska et al.



solid edges with rhombuses for all free bonds of the CP-graph L and drawing blue dotted
edges connecting free bonds of the CP-graph R with appropriate rhombuses.

In order to modify created CP-graphs, firstly CP-graph transformation rules are
specified by the user. VIZMOGR system offers five schemes of rules, which are
presented in Fig. 7. These schemes correspond to rules which are most often applied in
order to develop graphs. The rule presented in Fig. 7a allows for adding a new node and
connecting its bond by an edge with a bond of the existing node. The rule from Fig. 7b
allows for adding a new node and connecting its bonds by edges with bonds of the two
already existing nodes. The rules shown in Figs. 7c–e allow for adding two new nodes
with bonds connected by an edge and connecting bonds of them with bonds of the
existing node. The difference in rules from Fig. 7c–e lies in location of free bonds in the
nodes of the rule right-hand sides. The embedding of the scheme rules is indicated using
rhombuses. The user has also the possibility to define his own rule schemes.

Fig. 7. Five CP-graph transformation rule schemes.

Fig. 6. (a) Two CP-graphs L and R, (b) a visualization of embedding. (Color figure online)

A Visual Interactive Environment for Engineering Knowledge Modelling 225



After selecting a given rule scheme the user gives labels of ΣV to nodes and labels
of ΣE to edges, specifies numbers of bonds for nodes, and direction of edges. Schemes
adapted for modelling bridges are presented in Fig. 8. The first and third scheme (p1 and
p3) have been adapted twice, while schemes p2 and p5 only once. It should be noted
that after schemas adaptation the right and left-hand sides of rules can have different
number of free bonds. This is admissible, as the embedding transformation is defined
by rhombuses. We assume that the nodes of the left-hand side of a rule are found in a
derived CP-graph if they have at least the same number of free bonds in this CP-graph.
The other bonds, either engaged or free, assigned to the matched nodes remain
unchanged during the rule application.

Fig. 8. CP-graph transformation rule schemes adapted for bridge modelling.

Applying CP-graph transformation rules leads to generation of different CP-graphs
representing possible design object structures with geometry and material properties
specified by graph attributes. There often exists a need to preserve or even to propagate
some information throughout the modelling process. VIZMOGR system offers the
support for attributed CP-graphs. Within each project attributes can be declared and
assigned to CP-graph elements. The user defines the way of transferring the values of
attributes from the left to the right hand side. The possibility of relating attributes of
right-hand sides of CP-graph rules to attributes of their left-hand sides enables us to
propagate semantic information and also to capture parametric modeling knowledge.

In case of bridge design to nodes of both sides of rules the attributes length and span,
which specify the length of the corresponding bridge fragments and the remaining span
of the bridge, respectively, are assigned. The initial value of the span attribute is
decreased after adding nodes representing new bridge elements. For example in the rule
presented in Fig. 8d the value of the attribute span of the node v1 labelled bm on the rule
right-hand side is equal to the value of the attribute span assign to the node v of the left-
hand side decreased by the length of the beam represented by the node v1 of the right

226 E. Grabska et al.



hand side. In the rule presented in Fig. 8f the value of the attribute length of the node v1
labelled cb2 on the rule right-hand side has to be the same as the value of the same
attribute assigned to node v of the rule left-hand side.

Each rewriting rule can be equipped with a predicate of applicability specifying
conditions under which the rule can be used. These predicates are in the form of expres‐
sions with parameters being attributes assigned to CP-graph nodes and edges and there‐
fore describe semantic properties of CP-graphs to which rules can be applied. For
example the rule, which corresponds to elongating the bridge by adding a new fragment
(see Fig. 8d), can be applied under the condition that the remaining span of the bridge
is longer than 100 m, i.e., span(v) > 100. Moreover, the rewriting rules can access and/
or modify so called memory which is a common set of variables. Then successive
rewriting steps can depend on the history of the previous ones.

In Fig. 9 the screen of GUI of VIZMOGR system, where CP-graph transformation
rule schemes can be adapted to a given application domain, is presented. In the left-hand
side window the available rule schemes are shown. The selected one is marked by the
black frame. The same scheme during the adaptation process is shown in the central
window. In the right-hand side window icons with their labels, which can be used in the
adaptation, are presented. In the bottom window the values of attributes assigned to CP-
graph nodes can be specified.

Fig. 9. A screenshot of the second part of VIZMOGR GUI, where CP-graph transformation rules
can be adapted.

A Visual Interactive Environment for Engineering Knowledge Modelling 227



CP-graph transformation rules applied to initial CP-graph representations of draw‐
ings generate structures representing new designs. In VIZMOGR system the user can
easily define the strategy of controlling CP-graph rewriting process, by drawing a graph,
called control diagram, which specifies the possible order of applying CP-graph rules.
The ordered sequences of rules, which can be obtained in this diagram, reflect the course
of the design process.

In Fig. 10 a control diagram, which specifies the possible order of applying CP-graph
transformation rules shown in Fig. 8, is presented. Rule numbers p1 to p6 correspond
to rules illustrated in Figs. 8a to f, respectively. Starting from the node labelled ab and
applying rules in the sequences p1,p2; p1,p6,p5,p2; p1,p6,p4,p3,p5,p2 and
p1,p6,p4,p3,p4,p3,p4,p3,p5,p2 results in CP-graphs representing bridges from
Figs. 11a–d, respectively.

Fig. 10. A control diagram for bridge design.

Fig. 11. Bridges represented by CP-graphs obtained using different sequences of rules.

The proposed VIZMOGR system is easy to adapt to a wide range of applications, as
CP-graph elements and rule schemes are defined in a generic way. Sets of labels, nodes
with bonds and transformation rules can be defined for multiple applications in different
domains. The system is easy to use as the structure of available schemes of CP-graph
transformation rules can be intuitively understood. Moreover, new schemes can be
added in a simple way. Therefore, the proposed approach efficiently supports the task

228 E. Grabska et al.



of encoding various types of knowledge. The system also facilitates the specification of
CP-graph rewriting rules by presenting steps of applying them in the visual way.

4 Conclusion

In this paper the prototype interactive system which supports modelling of engineering
knowledge has been described. In the unified graphical environment the user can select
icons representing object structural components and determine relations between them
in order to obtain preliminary designs. On the basis of these designs their internal repre‐
sentations in the form of CP-graphs are obtained automatically. The conceptual phase
of the object design process is also supported by providing schemes of CP-graph trans‐
formation rules in a visual editor. These schemes are adapted for a given application
domain and used for modifying graph structures by applying sequences of rules selected
by the user. In this way different CP-graphs representing possible design object struc‐
tures with geometry and material properties specified by graph attributes are obtained.
The presented examples show the way in which the system supports encoding knowl‐
edge needed to create bridge designs.

In the next steps of our research the catalogues of icons for various design domains
will be developed. The memory of graph rules will be used to ensure the presence of a
predefined number of selected components within a designed object and to preserve
some required characteristics of the design. Moreover the system should enable the user
to specify design requirements, and then by checking obtained CP-graph structures
verify satisfaction of these requirements by the created design solutions.

References

1. McMahon, C.: Open issues in design informatics. In: Proceedings of the International
Conference on Methods & Tools for CAE – Concepts and Applications, pp. 7–12. Bielsko-
Biała (2017)

2. Helmes, B.: Object-Oriented Graph Grammars for Computational Design Synthesis
(Dissertation), Institution Technische Universität München (2013)

3. Grabska, E.: Graphs and designing. In: Schneider, H.J., Ehrig, H. (eds.) Graph Transformations
in Computer Science. LNCS, vol. 776, pp. 188–202. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-57787-4_12

4. Palacz, W., Paszyńska, A., Świderska, I., Ślusarczyk, G., Strug, B., Grabska, E.: GraphTool:
a visual support for generating graph models of artefacts. In: Proceedings of the International
Conference on Methods & Tools for CAE – Concepts and Applications, pp. 81–86. Bielsko-
Biała (2017)

5. Palacz, W., Paszyńska, A., Świderska, I., Ślusarczyk, G., Strug, B., Grabska, E.: GraphTool:
case studies. In: Proceedings of the International Conference on Methods & Tools for CAE –
Concepts and Applications, pp. 75–80. Bielsko-Biała (2017)

6. Fernandez, M., Kirchner, H., Pinaud, B.: Strategic Graph Rewriting: an Interactive Modelling
Framework, [Research Report]. Inria, LaBRI, King’s College London (2017)

A Visual Interactive Environment for Engineering Knowledge Modelling 229

http://dx.doi.org/10.1007/3-540-57787-4_12
http://dx.doi.org/10.1007/3-540-57787-4_12


7. French, M.J.: Conceptual Design for Engineers, 3rd edn. Springer, London (1999)
8. Strug, B., Paszyńska, A., Paszyński, M., Grabska, E.: Using a graph grammar system in the

finite element method. Int. J. Appl. Math. Comput. Sci. 23, 839–853 (2013)
9. Ware, C.: Visual Thinking for Design. Morgan Kaufmann, Elsevier (2008)

230 E. Grabska et al.


	A Visual Interactive Environment for Engineering Knowledge Modelling
	Abstract
	1 Introduction
	2 CP-Graph Representation of Designs
	3 VIZMOGR System Characteristics
	4 Conclusion
	References




