
Chapter 8
Quantum Hardware II: cQED
and cirQED

8.1 Introduction

In a vacuum, which contains no free charges or currents, electric �E(x, y, z, t) and
magnetic �B(x, y, z, t) fields obey the following Maxwell equations (in Gaussian
units)
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(8.1)

Here c is the speed of light in the vacuum, and we used Newton’s dot notation
to denote time derivatives. Let’s consider the following ansatz for the electric
�E(z, t) = î E(z, t) and magnetic �B(z, t) = ĵ B(z, t) fields

B(z, t) = a(t) k exp(i(k z − π/2)) + h.c.

E(z, t) = ȧ(t)/c exp(ik z) + h.c (8.2)

where a(t) is a complex function of time t , k is a real number and h.c. is the complex
conjugate of the latter term. Plugging (8.2) into (8.1) we find that equations (I) and
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(II) are immediately satisfied as both �E and �B are functions of z and have no vector
components in the z-direction. Condition (III) is also satisfied but (IV) requires that

ä(t) + k2c2 a(t) = 0. (8.3)

We recognize (8.3) as the equation of motion for a simple harmonic oscillator. Its
solutions are a(t) = aω exp(±i ω t) where aω is a complex constant and ω = kc.
The time average, < �S >, over a single period 2π/ω, of the Poynting vector [1]

�S ≡ c

4π
�E × �B (8.4)

denotes an energy current (i.e., it has units of energy/area/time), and if a(t) =
aω exp(−iωt),

< �S >= |aω|2 ω

c
k̂. (8.5)

Thus (8.2) represents an electromagnetic wave that transmits energy along the z-
axis. For that wave, k is the wavenumber, and it is related to its wavelength λ =
2π/k; the distance by which the phase changes, at a single instance of time, from 0
to 2π . The rate of change of the phase at a given point in space is called the phase
velocity and is here given by the speed of light c.

Now let’s explore how these fields are modified in a setup in which two large
parallel (perfectly) conducting plates in the xy plane are situated at z = 0 and
z = d on the propagation axis. Though fields (8.2) satisfy Maxwell’s equations,
they do not satisfy boundary conditions (b.c.) at the plates. We require b.c. so that
�E(0, t) = �E(d, t) = 0 [1]. Consider the condition at z = 0, (8.2) stipulates that

E(0, t) ≡ E+(0, t) = −i
ω

c

(
aω exp(−iω t) − a∗

ω exp(iω t)
)

and so the boundary condition is not met for arbitrary values of t . Now,

E−(z, t) = i
ω

c

(
bω exp(iω t) exp(ik z) − b∗

ω exp(−iω t) exp(−ik z)
)

(8.6)

is also a possible solution to Maxwell’s equations. Its Poynting vector is directed
along the negative z-axis. Choosing bω = aω, and using the fact that Maxwell’s
equations are linear,

E+(z, t) + E−(z, t) = −2
ω

c
sin(ω t)

(
aω exp(ik z) + a∗

ω exp(−ik z)
)
, (8.7)

is also a possible solution. Choosing aω to be pure imaginary (i.e., aω = i|aω|),
aω + a∗

ω = 0, the b.c. at z = 0 is satisfied since,

E+(0, t) + E−(0, t) = −2
ω

c
sin(ω t)

(
aω + a∗

ω

)
= 0. (8.8)
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At z = d

E+(d, t) + E−(d, t) = −2ω/c sin(ω t)
(
aω exp(ik d) + a∗

ω exp(−ik d)
)

(8.9)

which, in general, does not vanish unless the exponential factors reduce to unity. The
latter condition is satisfied if k d = π n where n is an integer, and so the wavenumber

kn = πn

d
(8.10)

and the angular frequency ωn = knc assume discrete values determined by the value
of index n. Equation (8.7) is a standing wave solution illustrated in Fig. 8.1. The
values of index n determine the modes of the cavity. The lowest frequency ω0 =
πc/d corresponds to mode index n = 1. It is called the fundamental frequency,
whereas integer products of ω0 are harmonics of the fundamental frequency. By
adjusting the dimensions of the cavity, it is possible to tune the mode structure of
the standing waves.

8.2 Cavity Quantum Electrodynamics (cQED)

Standing wave (8.9), with wavenumber (8.10), satisfies both Maxwell’s equations
and boundary conditions. Our goal is a quantum version of this classical description,
a theory commonly called quantum electrodynamics or QED. Specifically, we are
interested in a quantum theory for radiation trapped in the cavity, hence the moniker
cavity QED, or cQED for short.

We follow the method proposed in [4] and express the standing wave solutions
E(z, t), B(z, t), for a given mode, by the following relations

E(z, t) = −
√

8π

L2d
P (t) sin(kn z)

B(z, t) =
√

8π

L2d
ωn Q(t) cos(kn z)

kn = nπ

d
ωn = knc (8.11)

where P(t),Q(t) are real parameters. With this ansatz, Maxwell’s equations require
that

Q̇(t) = P(t)

Ṗ (t) = −ω2
nQ(t), (8.12)

where the first line in (8.12) follows from condition (III) in (8.1), and the second
from condition (IV).
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Fig. 8.1 Standing wave for the n = 1 mode of electric field �E, plane polarized along x direction.
The solid line vectors represent �E at t = π/ω1. The dashed line vectors describe the field at
t = 3π/ω1. The standing wave oscillates in time with period 2π/ω1 between these two extremes

They are identical to the equations obtained from Hamilton’s principle if

H = 1

2

(
P 2 + ω2Q2

)
, (8.13)

since

∂H

∂P
= Q̇

∂H

∂Q
= −Ṗ .

The energy content of an electromagnetic field in a box of volume V = L2d is
given by the expression [1]

E = 1

8π

∫
dV

( �E · �E + �B · �B
)

, (8.14)

where the integral is over the volume of the box. In the region bounded by the
capacitor plates, whose dimension L is much greater than the spacing distance d

between the plates, we find that, using (8.11),

E = 1

2

(
P 2(t) + ω2

n Q2(t)
)

= ω2
n

2
A2. (8.15)



8.2 Cavity Quantum Electrodynamics (cQED) 187

The second identity follows from the SHO solutions to (8.12)

Q(t) = A cos(ωnt + φ) P (t) = −ωn A sin(ωnt + φ),

where A,φ are constants. The total energy in this box is constant and whose value
is given by Hamiltonian (8.13), In other words, parameters P,Q are conjugate
variables whose time development is governed by Hamiltonian (8.13).

Mathematica Notebook 8.1: Standing electromagnetic waves in a cavity and
the Fabry-Perot interferometer. http://www.physics.unlv.edu/%7Ebernard/
MATH_book/Chap8/chap8_link.html

We arrive at a quantum theory by elevating the canonical variables P,Q to
quantum variables so that

Q → Q P → P

[Q, P] = i h̄. (8.16)

With commutation relation (8.16), operators

an ≡ 1√
2h̄ωn

(P − iωn Q)

a†
n ≡ 1√

2h̄ωn

(P + iωn Q) (8.17)

obey

[
an, a†

n

]
= 1 (8.18)

and Hamiltonian,

H0 = 1

2

(
P2 + ω2

n Q2
)

= h̄ωn

(
a†
nan + 1/2

)
. (8.19)

Once again, we are led to the quantum theory of a SHO. Operators an, a†
n are

destruction and creation operators for a quantum excitation of the electromagnetic
field. We call this excitation a cavity photon, as it corresponds to a well defined
energy h̄ωn. Hamiltonian (8.19) and the commutation relations for an, a†

n are
identical to that of phonon excitations described in the previous chapter. A single
cavity photon, in mode n, is described by state

http://www.physics.unlv.edu/%7Ebernard/MATH_book/Chap8/chap8_link.html
http://www.physics.unlv.edu/%7Ebernard/MATH_book/Chap8/chap8_link.html
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a†
n |∅〉 ,

and N photons by the state

|Ψn〉 = 1√
N ! (an

†)N |∅〉 = 1√
N ! a†

n . . . a†
n︸ ︷︷ ︸

N times

|∅〉 , (8.20)

where an |∅〉 = 0. |Ψn〉 is an eigenstate of H0 so that

H0 |Ψn〉 = h̄ωn(N + 1/2) |Ψn〉 .

Because Maxwell’s equations are linear, the most general Hamiltonian is a sum
of Hamiltonians for each mode, i.e.

Hem =
∑

m

h̄ωm(a†
mam + 1/2) (8.21)

where a†
m, am are the corresponding creation and destruction operators for mode m,

and obey commutation relations

[
an, a†

m

]
= δnm

[
a†
n, a†

m

]
= [an, am] = 0. (8.22)

The vacuum state |∅〉 is defined so that

am |∅〉 = 0 (8.23)

for all values of m. Ket

|Ψ 〉 = 1√
Nn!Nm! . . . Nk! (an

†)Nn(am
†)Nm . . . (ak

†)Nk |∅〉 (8.24)

describes a state where Nm cavity photons are in mode m, Nn in mode n and Nk in
mode k.

In applications, it is desirable to have a single photon occupy the cavity. In that
case the system is in state |νn〉 ≡ a†

n |∅〉, for mode n, and the mean square value of
the electric field, is given by the expectation value

< �E · �E >≡ 〈νn| �E · �E |νn〉 . (8.25)

Using the expression (8.11) for �E and the relation

�E = −
√

8π

L2d
�P sin knz, �P =

√
h̄ωn

2

(
a†
n + an

)
î
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(8.25) reduces to

h̄ωn

4π

L2d
sin2(knz) 〈νn| (a†

n + an)
2 |νn〉 = h̄ωn

12π

L2d
sin2(knz), (8.26)

and is proportional to the average electric field energy density (energy/volume). For
the lowest frequency mode n = 1, where ωn ≡ ω, the electric field energy density
is proportional to sin2(πz/d) and has its maximum value at the center z = d/2 of
the plates. For the sake of economy in notation, and since we restrict our discussion
to a single photon mode, we ignore the mode subscripts in the expressions for the
photon destruction and creation operators a, a†.

A qubit, typically a two-level system such as an atom, is placed at the center
z = d/2 of the plates where it interacts with the quantized electric field. With �r
the position coordinate of the electric charge, the interaction energy is given by the
expression

ΔW ≡ −e �r · �E = −e x E(d/2) = e x

√
4π

L2d

√
h̄ω (a + a†) (8.27)

where x is the quantum operator associated with the x coordinate of the electron.
Let’s assume that the atom is represented by a rotor situated along the xz plane of
Fig. 8.1. Using the matrix representation for the rotor-electron operator x = R/2σX,
we obtain

ΔW = h̄ Ω σX

(
a + a†

)
=

Ω = eR

√
πω

V h̄
(8.28)

where R is the rotor radius and V = dL2 is the volume of the cavity confined by the
capacitor plates. Including Hamiltonian (7.25) for the rotor, and (8.19) for the single
mode cavity photons, the interacting atom (rotor)—cavity photon Hamiltonian is

H = h0 + h̄ω(a†a + 1/2) + h̄ Ω σX

(
a + a†

)

h0 = − h̄ ω0

2
σZ. (8.29)

In the interaction picture, these time-independent operators become time-dependent
operators via the prescription

a → exp(i H0 t/h̄) a exp(−i H0 t/h̄) = a exp(−i ω t)

a† → exp(i H0 t/h̄) a† exp(−i H0 t/h̄) = a† exp(i ω t) (8.30)

also
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σX → exp(i h0 t/h̄) σX exp(−i h0 t/h̄) = exp(i h0 t/h̄)(σ+ + σ−) exp(−i h0 t/h̄)

→ σ+ exp(i ω0 t) + σ− exp(−i ω0 t), (8.31)

and the product

σX

(
a + a†

)
→

(σ+ exp(i ω0 t) + σ− exp(−i ω0 t))
(

a exp(−i ω t) + a† exp(i ω t)
)

. (8.32)

Expanding (8.32) we find terms proportional to exp(±i(ω + ω0)t) and exp(±i(ω −
ω0)t). Close to resonance where ω ≈ ω0, it is only the latter terms that contribute in
the RWA approximation. Therefore, we are allowed to replace (8.28) with operator

h̄ Ω
(

a σ+ + a† σ−
)

.

In this approximation we obtain the Jaynes-Cummings Hamiltonian [4], a work-
horse of cQED,

HJC = − h̄ω0

2
σZ + h̄ω(a†a + 1/2) + h̄ Ω

(
a σ+ + a† σ−

)
. (8.33)

Indeed, we already met HJC in the trapped-ion scenario discussed in Chap. 7. There,
a SHO Hamiltonian describes the spectrum of phonon excitations, i.e., the “phonon
bus”, and here, cavity photons assume the role of the “bus”. With photon-atom
coupling, we can shuttle quantum information from qubits to cavity photons, and
vice-versa [2].

8.2.1 Eigenstates of the Jaynes-Cummings Hamiltonian

We seek energy eigenstates of Hamiltonian (8.33), i.e., solutions to

HJC |φ〉 = En |φ〉 . (8.34)

To that end it is useful to define the states

|n, 0〉 ≡ |n〉 ⊗ |0〉 |n, 1〉 ≡ |n〉 ⊗ |1〉 (8.35)

where |0〉 , |1〉 are atomic(rotor) qubit states, |n〉 the eigenstates of Hamiltonian
h̄ω(a†a + 1/2), and n is the photon occupation number. The cavity is tuned to
near resonance so that h̄ω ≈ h̄ω0 and states |φ0〉 ≡ |n, 0〉, |φ1〉 ≡ |n − 1, 1〉 are
nearly degenerate. For approximate solutions to (8.34), we posit the ansatz
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|φ〉 = c1 |φ0〉 + c2 |φ1〉 , (8.36)

and construct the matrix representation of the Jaynes-Cummings Hamiltonian with
basis |φ0〉, |φ1〉. Thus

HJC =
( 〈φ0| HJC |φ0〉 〈φ0| HJC |φ1〉

〈φ1| HJC |φ0〉 〈φ1| HJC |φ1〉
)

=
(

h̄ω0 n h̄Ω
√

n

h̄Ω
√

n h̄ω0 n

)
, (8.37)

where we used the fact that a† |n〉 = √
n + 1 |n〉. With ansatz (8.36) we obtain the

matrix representation of eigenvalue Eq. (8.34)

(
h̄ω0 n h̄Ω

√
n

h̄Ω
√

n h̄ω0 n

) (
c1

c2

)
= E

(
c1

c2

)
(8.38)

whose eigenvalues are

E± = h̄ω0 n ± h̄Ω
√

n (8.39)

corresponding to eigenstates

|φ+〉 = 1√
2

(|n, 0〉 + |n − 1, 1〉)

|φ−〉 = 1√
2

(|n, 0〉 − |n − 1, 1〉) (8.40)

respectively. Suppose a qubit in the ground state |0〉 is introduced into a cavity
containing n-single mode photons at t = 0. The Jaynes-Cummings Hamiltonian
predicts that the composite system evolves, for t > 0, according to

|ψ(t)〉 = exp(−iHJCt/h̄) |n, 0〉 =
exp(−iω0n t)

(
cos(Ω

√
n t) |n, 0〉 − i sin(Ω

√
n t) |n − 1, 1〉) . (8.41)

Equation (8.41) predicts a probability to find n photons in the cavity, and which
oscillates between the photon number n and n − 1 with a period determined by Ω

and
√

n. It is yet another manifestation of coherent Rabi-flopping. Energy quanta are
exchanged between the qubit and the electromagnetic field. Unlike Rabi-flopping of
a single qubit, cQED features flopping of entangled states of the qubit and photons.

Laboratory demonstrations of Rydberg atom qubits interacting with cavity
photons have verified the existence of the predicted oscillations. In S. Haroche’s
laboratory [2], a cavity comprised of a high-Q reflecting material confined single
mode photons for as long as 130 ms. It translates, given the dimensions of the
cavity, to a total transit distance of 40,000 km as the photon bounces back and forth
billions of times. At the same time Rydberg atoms whose qubits states are separated
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by an energy defect corresponding to 2πω0 = 51 GHz, are introduced into the
nearly resonant cavity. By using a method called non-demolition measurements, the
group was able to measure the cavity photon number after transit of the Rydberg
atom qubit. Measurements revealed the predicted oscillations in photon number
as a function of atom-cavity transit time t and confirmed the predicted strong-
coupling of an atom/ion with a quantized field. S. Haroche and D. Wineland shared
the 2012 Nobel prize in physics for their pioneering work in the domain of cavity
QED and ion-trap demonstrations respectively. In the Nobel committee statement,
they were cited “for ground-breaking experimental methods that enable measuring
and manipulation of individual quantum systems”, and “Their ground-breaking
methods have enabled this field of research to take the very first steps towards
building a new type of super fast computer based on quantum physics.”

8.3 Circuit QED (cirQED)

A descendant of cavity QED, circuit QED or cirQED, shows great promise as a
quantum computing and information platform. In a span of a dozen years or so,
cirQED has positioned itself from a dark-horse to a leading contender. Instead of
atoms, cirQED employs “artificial atoms” for its qubits and which are best described
with electronic circuit terminology. In cirQED, microwave photons supported by
planar superconducting transmission lines, or excitations of a superconducting
circuit operating at the quantum limit, serve the role of the cavity photon “bus”
in cQED.

8.3.1 Quantum LC Circuits

Let’s consider an electrical circuit that consists of conducting elements, such as
a capacitor and inductor connected in series (see Fig. 8.2 panel (a)). A capacitor
consists of two conductors that are separated, on which equal but opposite signed
charges ±Q reside. Those charges support an electric field in the space between the
conductors and, in turn, leads to a voltage difference ΔVC between the positive and
negative charged plates. It turns out that the ratio of charge Q and ΔVC is always
constant so that

Q/ΔVC = C (8.42)

where C is called the capacitance. The SI unit of capacitance is called the Farad,
or F , after the nineteenth century electro-magnetism pioneer Michael Faraday.
Capacitors store electric field energy and are found in a wide array of electric
circuit applications. Another common component in electric circuits, an inductor,
stores magnetic energy. The generic inductor is a conducting wire configured into
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a solenoid loop. As current winds around the loop, a magnetic field is set-up inside
and along the axis of the solenoid. If the magnetic field changes in time due a time
dependent current, the Faraday induction law stipulates that the circuit responds
with an induced electric field. The latter sets up a voltage difference between the
endpoints, or ports, of the inductor. Faraday’s law provides a precise relationship
between the voltage ΔVL difference and the time derivative of the current passing
through the solenoid. If Iab(t) is the current traversing from terminal a to terminal
b of a solenoid

ΔVL = −L
dIab

dt

ΔVL ≡ Vb − Va. (8.43)

The constant L is called the inductance of the circuit and is expressed in units of

Fig. 8.2 Circuit diagrams for
an LC. Circuit. Panel (a) is a
stand-alone LC circuit.
Panels (b) and (c) illustrate
LC circuits containing ports
that allow coupling to an
external voltage source

(a)

C L

(b)

B

C L

A

(c)

B

C
L

A

Henry, or H , after Joseph Henry. When the conducting leads of each capacitor
plate are connected, so that the circuit is closed, current flows to neutralize the
charge separation between the capacitor plates. Without an inductor, neutralization
occurs in a minuscule fraction of a second. With an inductor along the current
path, a counteracting potential prevents neutralization of the circuit. In the initial
stages of the discharge, the current increases in the inductor thereby increasing
the magnetic flux. The increasing magnetic flux reverses, because of induction, the
voltage polarity of the inductor. This scenario, in which electric and magnetic energy
is being shuttled back and forth between capacitor and inductor, is best expressed
mathematically. Since the current in the wire is the negative of the time rate of
change of the charge Q on the capacitor

I (t) = −dQ(t)

dt



194 8 Quantum Hardware II: cQED and cirQED

and assuming that outside each lumped circuit element the magnetic flux vanishes,
we appeal to the Kirchoff loop law [1], ΔVC + ΔVL = 0, or

Q(t)

C
= L İ(t)

Q̇(t) = −I (t), (8.44)

The second equation follows from the definition of current and we used the dot
notation for time derivatives. It is convenient to express (8.44) in terms of Φ(t) ≡
−L I (t), the magnetic flux associated with the inductor, and so

Q(t)

C
= −Φ̇(t)

Φ(t)

L
= Q̇(t). (8.45)

Let’s define the Hamiltonian

H = Φ2

2L
+ Q2

2C
(8.46)

where Φ is the conjugate momentum to variable Q. Hamilton’s equations lead to
the expressions

∂H

∂Φ
= Q̇ ⇒ Φ

L
= Q̇

∂H

∂Q
= −Φ̇ ⇒ Q

C
= −Φ̇, (8.47)

that are in harmony with (8.45).
Quantization of (8.46) proceeds by replacing the classical variables Φ,Q with

their quantum operators that obey the quantization rule [Φ, Q] = −ih̄. Defining the
operators

a =
√

Z0

2h̄

(
Q + i

Φ

Z0

)

a† =
√

Z0

2h̄

(
Q − i

Φ

Z0

)

Z0 ≡
√

L

C
(8.48)

we find that
[
a, a†

] = 1 and
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H = h̄ω
(

a†a + 1/2
)

ω = 1√
LC

. (8.49)

We arrived at yet another example involving a simple harmonic oscillator model
description. In Chap. 7, a SHO Hamiltonian (7.62) described vibrational excitation
about an equilibrium configuration of interacting ions. Equation (8.19) posits a SHO
model for quantum excitations of the electromagnetic field in a cavity. Above, (8.49)
describes the quantum excitation of a current in an LC circuit. Three disparate
physical systems are depicted by the SHO model, underscoring its universal utility.

With advances in the microelectronic engineering of superconducting elements,
LC circuits exhibiting quantum behavior have been realized in the laboratory. An
essential feature of superconducting micro LC circuits is the lack of dissipation,
i.e., the circuit does not contain resistive elements that drain and convert electric
and magnetic energy into heat. Under ordinary conditions, perfect conductors
(without dissipation) do not exist, but a superconductor can sustain a current
without significant dissipation. Therefore, microelectronic superconducting LC

circuits operating in the quantum regime can serve as a “bus” in quantum processing
applications. Because quantum LC circuits, photons, and phonons are all described
by the SHO model, a common theoretical framework is available. The converse is
also true; we can model cavity photons as excitations of an LC circuit.

Superconductivity, a phenomenon characterized by the apparent loss of resis-
tivity that allows the persistence of electric current, was discovered in 1911 by
Heike Kamerlingh Onnes. Superconductivity also displays the Meissner effect, the
rejection of magnetic fields in the transition from an ordinary conduction state to
a superconductor. Materials that exhibit super-conduction do so at extremely low
temperatures, typically at temperatures where helium gas becomes liquid, i.e., at
around 4 K. One Kelvin is equivalent to about −272.15 ◦C. In the past 30 years
or so a new class of materials displaying superconductivity at around 100 K had
been discovered. Fittingly, the phenomenon is called high-Tc superconductivity.
However, those materials have not yet found widespread application in electronic
circuitry.

In a micro-circuit with capacitance C = 10−11 F and inductance L = 10−9 H,
the quanta of energy is given by the expression

h̄ω = h̄
1√
LC

= 1.05 × 10−24 J

where J denotes the Joule, the SI unit of energy. Lets compare this figure of
merit with kBT , where kB is the Boltzmann constant, the ambient energy that
characterizes the environment. Or

T = h̄ω/kB ≈ 80 mK.



196 8 Quantum Hardware II: cQED and cirQED

At temperatures above this threshold exposure of the LC oscillator with the
environment threatens coherence and tends to classical behavior. Clearly, a viable
QCI platform based on present day superconducting technology requires a very cold
environment.

To build quantum gates we need to couple the LC circuits to qubits. In the
terminology of electronic circuit theory, this is accomplished by terminals or ports,
connected, as illustrated in Fig. 8.2, to the LC circuit. Typically, a time-dependent
voltage difference V (t) across the ports drives current I (t). We assume the time
dependence is sinusoidal so that

V (t) = Re(v exp(j ω t)) I (t) = Re(i exp(jω t)), (8.50)

(Note: in this section, we use the electrical engineering convention in which the
imaginary number i is replaced by the symbol j ) where v, i are complex numbers,
ω is a driving frequency, and Re represent the real part of these expressions. For
linear circuits, v is related to i via the relationship

v = i Z (8.51)

where Z is a complex number and is called the circuit impedance. In a lumped
circuit ∂ �B/∂t is assumed to vanish in regions of the circuit that are external to the
circuit elements, including capacitors, inductors, and resistors. Each is characterized
by an element impedance, defined according to the rules [1]

ZC = 1

j ω C
ZL = jω L ZR = R. (8.52)

Here ZC,ZL,ZR are impedances for a capacitor with capacitance C, inductor with
inductance L, and resistor with resistance R. For a circuit with elements connected
in series, as in panel (c) of Fig. 8.2, the effective impedance Z of the circuit is
the sum

Z = Z1 + Z2 + Z3 + . . .

where Zi is the impedance of element i. If the elements are connected in parallel,
as in panel (b) of Fig. 8.2,

1

Z
= 1

Z1
+ 1

Z2
+ 1

Z3
+ . . .

So for an LC circuit, with negligible resistance, connected in series

Z = 1

j ω C
+ j ωL = −j

1 − ω2LC

ωC
= (XC − XL) exp(−j π/2)
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where XC ≡ 1/ωC, XL ≡ ω L are the capacitance and inductive reactance
respectively. Inserting this expression into (8.51) we find that

I (t) = 1

XC − XL

cos(ω t + π/2 + φ0) (8.53)

where v = V exp(j φ0) and V is real. If the driving frequency ω is close to
ω0 = 1/

√
LC, the natural or resonance frequency of the LC circuit, the current

I (t) approaches its maximum value. At resonance ω = ω0, expression (8.53) is
undefined, but if we include a non-vanishing resistance R, we obtain

I (t) = V/R cos(ω0 t + φ0)

at resonance.

Mathematica Notebook 8.2: An Introduction to Transmission Line resonators.
http://www.physics.unlv.edu/%7Ebernard/MATH_book/Chap8/chap8_link.
html

8.3.2 Artificial Atoms

In one version of cirQED [3], a microwave transmission line resonator serves as the
analog of a cQED cavity. But, we also need the circuit analog of a qubit to develop
QCI capabilities. Unlike an atom/ion, the quantum energy defects in an LC circuit
are uniform and so are not suitable qubit candidates. In cirQED, a qubit is realized
with circuits containing Josephson junctions (JJ ), after Brian Josephson who first
predicted their behavior in the 1960s. Circuits containing Josephson junctions are
built to exhibit atom/ion-like features and, therefore, have also been called artificial
atoms.

Superconductivity is an inherently quantum mechanical effect, but unlike atoms,
molecules and other familiar systems that exhibit quantum behavior, superconduc-
tivity is a macroscopic phenomenon. A conductor supports about 1022 conduction
electrons per cubic cm, but in the superconducting state, they exhibit coherent
behavior by forming so-called Cooper pairs, after F. Cooper, who along with
colleagues Bardeen, and Schrieffer developed the modern low-temperature theory
of superconductivity, also know as the BCS theory. The theory posits that electrons
behave as a coherent collective entity much like a wave, rather than individual
classical billiard-like objects. Though the BCS theory is beyond the scope of our
discussion, we will rely on a more accessible phenomenological description that
allows us to predict the behavior of currents and charges near a Josephson junction.

http://www.physics.unlv.edu/%7Ebernard/MATH_book/Chap8/chap8_link.html
http://www.physics.unlv.edu/%7Ebernard/MATH_book/Chap8/chap8_link.html
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At its most fundamental level, a Josephson junction consists of two supercon-
ducting wires separated by a small gap filled by some non-conducting material
that cannot be bridged by ordinary currents. That sounds like a description for a
capacitor, and the Josephson junction does have an intrinsic capacitance but, unlike
a standard capacitor, Cooper pairs with charge 2 e can bridge the gap by a process
called tunneling. The latter is a common feature in quantum systems, but for our
purposes, we need not concern ourselves with details of tunneling theory, as long as
we accept it as a phenomenological fact.

8.3.3 Superconducting Qubits

Let na, nb represent the number of Cooper pairs on superconducting wires a, b

that form the boundary of the junction. We define phase parameters δa, δb for the
corresponding regions. These parameters arise from the need to describe the electron
gas by a quantum mechanical wave amplitude. For example, in our discussion of
the quantum rotor system, the wave amplitude was written in the form (7.17) which
includes a magnitude and a phase. Here the amplitude ψ ∼ √

n exp(iδ) describes the
collective behavior of electron pairs in a superconductor. The JJ is characterized
by the variables

δ ≡ δb − δa Q = 2e(na − nb)

where Q represents the excess charge and δ the phase difference across a junction.
In applying the BCS theory, Brian Josephson derived the following equations

δ̇ = 2e V

h̄

I = I0 sin δ (8.54)

where I (t) is the current (or supercurrent) flowing across the junction, V (t) the
voltage difference across the junction and I0 = EJ 2e/h̄ is a constant. The quantity
EJ is the Josephson energy, a measure of junction characteristics. Since the junction
also acts as a capacitor, V = Q/C and I = −Q̇, and we re-write (8.54) in the form

δ̇ = 2e Q

h̄ C

Q̇ = −I0 sin δ (8.55)

where C is the capacitance of the junction. In typical junctions, C is on the order of
10−12 F and I0 on the order of 10µA (A is an Ampere, the SI unit for current). We
define an effective Hamiltonian HJJ (Q,Φ)
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HJJ (Q,Φ) = EC (
Q

e
)2 + EJ (1 − cos(Φ/Φ0)).

EC ≡ e2

2C
Φ0 ≡ h̄

2e
(8.56)

where Φ = Φ0 δ is a generalized coordinate and Q its conjugate momentum. From
Hamilton’s equations

∂HJJ

∂Q
= Φ̇

∂HJJ

∂Φ
= −Q̇

it follows that

2ECQ

e2 = Φ0δ̇

EJ

Φ0
sin(Φ/Φ0) = −Q̇, (8.57)

which when substituting the definitions for EC,Φ0 is identical to the Josephson
equations (8.55).

Mathematica Notebook 8.3: Eigenstates of a Josephson junction. http://www.
physics.unlv.edu/%7Ebernard/MATH_book/Chap8/chap8_link.html

Suppose we are in the regime in which Φ/Φ0 < 1 and it is legitimate to express
cos(Φ/Φ0) as a power series in Φ/Φ0. We then obtain

HJJ = H 0
JJ + HNL

H 0
JJ = Q2

2C
+ Φ2

2LJ

(8.58)

where HNL consists of all terms beyond second order in the power expansion of the
argument, and

LJ ≡ Φ0

I0

is a self-inductance. H 0
JJ describes a SHO whereas HNL is an anharmonic

correction. The latter term allows JJ circuits to function as viable qubits. Because
HNL introduces anharmonicity, as shown in Fig. 8.3, to the harmonic potential

VSHO = Φ2

2LJ

http://www.physics.unlv.edu/%7Ebernard/MATH_book/Chap8/chap8_link.html
http://www.physics.unlv.edu/%7Ebernard/MATH_book/Chap8/chap8_link.html
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the energy eigenvalue defects of HJJ are not equally spaced. We express a system
governed by HJJ with the circuit shown in Fig. 8.4. In that figure the elements

0

1

Ò|

Ò|

Fig. 8.3 Artificial atom qubit energy spectrum for Hamiltonian (8.58). States |0〉 , |1〉 denote the
qubit states, whereas the dotted lines are, uniformly spaced, energy eigenstates of H 0

JJ . The dashed
curve represents VSHO , whereas the solid curve includes the anharmonic contribution HNL

corresponding to the JJ capacitance and self-inductance are connected in parallel
to the element denoted by the spider symbol. The latter is a non-linear circuit
component that represents the anharmonic contribution HNL in Hamiltonian (8.58).
Together they constitute an equivalent circuit containing only a single element,
represented by the boxed cross symbol in Fig. 8.4.

Mathematica Notebook 8.4: Charge, Phase and Flux artificial atom qubits.
http://www.physics.unlv.edu/%7Ebernard/MATH_book/Chap8/chap8_link.
html

In QCI applications it is desirable to have the JJ qubit coupled to a LC “bus.”
There are several ways of doing this, one of which is illustrated in Fig. 8.5. In
that figure, a JJ qubit is connected to a LC circuit via two capacitors. It can be
shown [6] that the Hamiltonian describing it is similar to the Jaynes-Cummings
Hamiltonian discussed in the previous section. There we noted how the eigenstates
of the latter exhibit entanglement between qubit and photon states. Analogously, we
expect entanglement of the JJ qubit with resonator quanta.

The system described by the circuit illustrated in (8.5) is somewhat simplistic.
In laboratory realizations, circuit involving non-linear JJ elements are coupled to a
complex network of linear elements, e.g., capacitors, resistors, and inductors. As
shown in the previous section, such a network is conveniently described by its
impedance. Knowing that a Josephson junction is equivalent to the circuit shown
in Fig. 8.4, we re-express the circuit in Fig. 8.5 with that shown in panel (a) of
Fig. 8.6. In it, we collected all linear elements, circumscribed by the dashed line,
and replaced them with a “black box” characterized by a single parameter, the black

http://www.physics.unlv.edu/%7Ebernard/MATH_book/Chap8/chap8_link.html
http://www.physics.unlv.edu/%7Ebernard/MATH_book/Chap8/chap8_link.html
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box impedance Z(ω) expressed as a function of the driving frequency ω. The non-
linear JJ element is coupled, as shown in panel (b) of Fig. 8.6, to the box. In a
procedure called black-box quantization [5], or BBQ for short, knowledge of Z(ω)

allows one to predict the energy spectrum, and basis vectors associated with it, of
the black box. The basis vectors can then be used to form a matrix representation,
which can be diagonalized, of the nonlinear term coupled to the black box. In this
way, a systematic procedure is available to find the spectrum and eigenstates for a
cirQED system.

B

C LJ

A

=

A

B

Fig. 8.4 Equivalent circuit for the JJ qubit shown by the crossed boxed symbol. We designate
the non-linear component, arising from HNR , with the spider symbol

Fig. 8.5 Josephson junction
qubit coupled to a resonator
circuit

C L

Resonator

qbit

Problems

8.1 Demonstrate that ansatz (8.2) satisfies conditions (I ), (II ), (III ) in (8.1).

8.2 Show that ansatz (8.2) satisfies condition (IV ) in (8.1), only if a(t) is a solution
to (8.3).

8.3 Verify that a(t) = aω exp(±i ωt) are solutions to (8.3), provided that ω = k c.

8.4 Using definition (8.4) for the Poynting vector, and ansatz (8.2), derive rela-
tion (8.5) for the time average of the Poynting vector.

8.5 Find the time average of the Poynting vector, for field configurations (8.6)
and (8.7). Comment.
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Fig. 8.6 A BBQ circuit

C L C LJ

(a)

Z(ω)

(b)

8.6 Show that �E(t) = î E(z, t) and �B(t) = ĵ B(z, t), where E(z, t), B(z, t) are
given by (8.11), satisfy the Maxwell equations in a vacuum.

8.7 Consider the single mode (mode index not shown) non-normalized photon state

|ψ〉 = |∅〉 + a†a† |∅〉 .

Evaluate 〈ψ | ψ〉. (Hint: to evaluate the expectation value of operator a a a† a†, use
commutation relations (8.22) to move the destruction operators toward the right so
that you can exploit (8.23) and “destroy the vacuum”.)

8.8 Consider the single mode (mode index not shown) photon state

|ψ〉 = 1√
2

(
|∅〉 + a† |∅〉

)
.

Find the expectation value 〈ψ | N |ψ〉, where N = a† a is a photon number operator.

8.9 For the state given in problem (8.8), calculate the variance

ΔN2 ≡ 〈ψ | N2 |ψ〉 − 〈ψ | N |ψ〉2 .
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8.10 For the fields defined in problem (8.6), evaluate expression (8.14) and verify
relation (8.15).

8.11 Using definition (8.25) verify relation (8.26).

8.12 For �E given in problem (8.6), find the expectation value

〈ψ | �E · �E |ψ〉

for the, single mode, state

|ψ〉 = 1√
2

a† |∅〉 + 1

2
a†a† |∅〉 .

The mode index of the creation operator is not shown.

8.13 Verify identities (8.30).

8.14 Using the basis states (8.35), evaluate the matrix representation of the Jaynes-
Cummings Hamiltonian and verify (8.37).

8.15 Using definitions (8.40) evaluate the expectation values

〈φ±| HJC |φ±〉 .

8.16 Evaluate the expectation value

〈ψ(t)| HJC |ψ(t)〉

where |ψ(t)〉 is given by (8.41).

8.17 Find the mean number of photons N, as a function of time, for state (8.41).
Evaluate the variance ΔN2 for this state.

8.18 Find the matrix representation ψ(t), with respect to basis vectors (8.35), of
ket (8.41). Show that it satisfies the Schroedinger equation

i h̄
∂ψ(t)

∂t
= HJC ψ(t),

where HJC is given by (8.37).

8.19 Consider the circuit comprised of linear elements and shown within the dashed
line in panel (a) of Fig. 8.6. Assume the unlabeled coupling capacitors in that circuit
have the value C/2. Find the impedance of this circuit as a function of a driving
term with angular frequency ω.

8.20 Evaluate the exercises in Mathematica Notebook 8.3.
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