
Chapter 1
A Quantum Mechanic’s Toolbox

1.1 Bits and Qubits

The basic unit of information is called a bit. It represents a binary-valued quantity
such as a yes/no answer to a question, the position of the toggle for an on/off switch,
or a stop/go decision. For example, a light bulb can either be in the on or off state and
thus serve as a storage device for a single bit of information. All digital computing
machines, no matter how large and complex, are constructed from indivisible bits.
Typically, the integers 0 and 1 denote the value of a bit. The qubit is a similar but
distinct concept. I will elaborate on the difference between the two in subsequent
discussions, but for now, we differentiate qubits from bits by a simple change in
notation so that

0 → |0〉 (1.1)

1 → |1〉

where |0〉, |1〉 are the two possible states of the qubit.

1.1.1 Binary Arithmetic

The values 0, 1 of a bit form the letters of an alphabet that we call the binary
number system. Just as words in the English language are concatenations of the
26 letters that comprise the western alphabet, so can a two-character bit alphabet
form “words”. The Morse code, where the “dash” and “dot” intervals are the two
letters of the alphabet, is a familiar example of that proposition. The “book” of life
written on a DNA polymer has four letters in its alphabet.
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Bits are also used to represent numbers. Obviously, the integer 0 is represented
by the bit whose state is 0 and the number 1 by the bit whose value is 1. How about
the integers 2, 3 . . . ? Consider the string

1100010

which is interpreted by the following algorithm,

1100010 → 1 × 26 + 1 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 0 × 20

and has the value 98 in the base ten system. Each entry in the string represents a
coefficient of consecutive powers of 2n, where n is an integer. Note that

98 = 0 × 102 + 9 × 101 + 8 × 100

conforms to this algorithm but powers of 10n replace 2n, and the coefficients of each
term are the symbols 0, 1, 2 . . . 9.

Mathematica Notebook 1.1: The binary system and operations within it http://
www.physics.unlv.edu/%7Ebernard/MATH_book/Chap1/chap1_link.html

Imagine a set, or register, of five light bulbs. As each light bulb can store a bit
of information, a little thought shows that this register can store one of 25 = 32
integers at any single instant of time. For example, reverting to qubit notation, the
number 26 is represented by the physical state

|11010〉.

In this notation, the first light bulb, starting from the right-hand side (r.h.s), is off,
the second one is on, the third is off, while the fourth and fifth bulbs are in the on
position. Consider the following expression

|11010〉 + |00101〉. (1.2)

What should the + symbol signify here and how can we interpret this construct?
At first sight, it might seem reasonable to define it as the arithmetic operation of
addition so that |11010〉+|00101〉 is equal to |11111〉 which represents the integer 31
in binary form. It is apparent, under scrutiny, that this definition is unsatisfactory for
the following reason. We agreed that |11010〉 represents a physical state in which the
light bulbs have the corresponding on-off values at a single instance of time. Thus
the expression |11010〉 + |01001〉 suggests a register of light bulbs simultaneously
in two different configurations at the same time, an absurd proposition and so
construct (1.2) appears to be meaningless.

http://www.physics.unlv.edu/%7Ebernard/MATH_book/Chap1/chap1_link.html
http://www.physics.unlv.edu/%7Ebernard/MATH_book/Chap1/chap1_link.html
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Let’s posit a five-qubit register comprised of the quantum mechanical analog
of a light bulb, that I call a qbulb. Because atoms/ions obey the laws of quantum
mechanics (QM), it is plausible to define a qbulb register as an array of five atoms,
each of which can be toggled on and off, in analogy with a light bulb.1 A more
precise definition is forthcoming in later chapters. As a quantum system, this array
of atoms/ions must obey the postulates of the quantum theory. Within this theory,
we will show how to make sense of expression (1.2). Before elaborating on this
statement, let’s first embark on a short mathematical detour.

1.2 A Short Introduction to Linear Vector Spaces

Consider a set of objects α, β, γ · · · . We say that these objects belong to a linear
vector space V provided that

(i) There exists an operation, which we denote by the + sign, so that if α, γ are
any two members of the vector space V then so is the quantity α + γ .

(ii) For scalar c, there exists a scalar multiplication operation defined so that if β

is a vector in V then so is c β = β c. If a, b are scalars a b β = a(b β).

(iii) Scalar multiplication is distributive, i.e. c(α + β) = c α + cβ, also for scalar
a, b, (a + b)α = aα + bα.

(iv) The + operation is associative, i.e. α + (β + γ ) = (α + β) + γ.

(v) The + operation is commutative, i.e. α + β = β + α.

(vi) There exists a null vector 0 which has the property 0 + α = α for very vector
α in V .

(vii) For every α in V there exists an inverse vector −α that has the property

α + −α = 0.

Numerous mathematical structures form vector spaces. Perhaps the most familiar
are the vectors that define a direction in space. Convince yourself that the set of
numbers on the real number line form a vector space. Do the set of all integers
constitute a vector space?

Armed with these definitions, we are ready to tackle, in the context of the five-
qbulb register, the postulates of quantum mechanics. Because our discussion here is
limited to the five-qbulb register, we stress the tentative nature of these postulates
by labeling them as meta-postulates or m-postulates for short.

m-Postulate I Following a measurement (observation) of this quantum register,
we observe only one out of the 32 possible qbulb-on/off configura-
tions. Immediately after that measurement the register is found in
the state corresponding to the values measured.

1David Wineland [7], shows that such a notion is not as fanciful as might first appear.
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For example, if the measurement resulted in the first qbulb on, the second off,
the last three on, the state corresponding to this measurement is |11101〉, and the
postulate asserts that the system occupies this state immediately after measurement.
The verity of this postulate appears to be self-evident. It almost seems not
worthwhile stating as it surely applies to the classical counterpart of this system.
After introducing the second postulate we will appreciate its significance and
implications.

m-Postulate II a The possible 32 states of our qubit register are vectors in a
linear vector space.

According to this postulate, and property (i) of the itemized list above, expres-
sion (1.2) must also be a vector in this space. Indeed so is

|Φ〉 ≡
|00000〉 + |00001〉 + |00010〉 + |00011〉 + |00100〉 + |00101〉 + |00110〉 + |00111〉
|01000〉 + |01001〉 + |01010〉 + |01011〉 + |01100〉 + |01101 〉 + |01110〉 + |01111〉
|10000〉 + |10001〉 + |10010〉 + |10011〉 + |10100〉 + |10101〉 + |10110〉 + |10111〉
|11000〉 + |11001〉 + |11010〉 + |11011〉 + |11100〉 + |11101〉 + |11110〉 + |11111〉,

(1.3)

as is any combination defined by the + operation. This property, that a quantum state
|Ψ 〉 can be expressed as a linear combination of other quantum states, is sometimes
called the superposition principle (Fig. 1.1).

m-Postulate II b A complete physical description of this quantum register is
encapsulated by a vector |Ψ 〉 in this vector space.

What is a complete physical description? A classical register requires an itemization
of bulbs that are on/off to characterize its physical state. For the quantum version
of this system, m-Postulate II states that an abstract quantity, a vector |Ψ 〉, that is a
linear combination of states in which the system finds itself after a measurement is
made, defines the system. For example, suppose the complete physical description
of our quantum register is given by the vector (state) (1.3), i.e. |Φ〉. Construct |Φ〉
suggests that all possible on/off configurations exist at the same time, a strange
proposition that counters everyday experience. If we are going to make sense of
this theory, the necessity for m-Postulate I becomes apparent. If |Φ〉 does exist, m-
Postulate I insures that we observe only one of the possible qbulb configurations.
In addition, immediately after that observation |Φ〉 “collapses” into that particular
state. The above scenario should stimulate lots of questions, perhaps even healthy
skepticism. m-Postulate II argues for a “reality” in which all possible outcomes exist
at the same time. m-Postulate I grounds us because it prevents direct observation of
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Fig. 1.1 The
|11010〉 + |01001〉
superposition state prior to
measurement (left panel). The
measured register value
11010 results in the collapse
of the amplitude into state
|11010〉. The normalization
constant is not shown in this
figure. The yellow bulbs are
in the on-state, denoted by the
binary digit 1

this “reality”. The theory as expressed by these postulates reminds us of the child’s
conundrum; is the moon there when we are not watching it? [5].

We have not yet addressed the question; which of the possible 32 configurations
do we observe after a measurement on a system described by |Φ〉? m-Postulate I
guarantees that one of the configurations is found but says nothing about which one.
To answer this question we look toward another postulate, sometimes called the
Born rule, after Max Born one of the founders of the quantum theory. But first we
need to provide additional structure to our linear vector space. That discussion leads
us to consider a special type of vector space called a Hilbert space.

1.3 Hilbert Space

We pointed out that if |α〉 is a vector so is c |α〉 where c is a scalar quantity. In
Hilbert space the scalar c is generally a complex number. Consider the following
linear combination of n vectors

c1 |α1〉 + c2 |α2〉 + . . . cn |αn〉. (1.4)

If this sum equates to the null vector 0 only if c1 = c2 · · · = cn = 0 then the
set of vectors |α1〉, |α2〉, . . . |αn〉 are said to be linearly independent. A space that
admits n linear independent vectors, but not n+1, is called an n-dimensional space.
In general, a Hilbert space allows infinite dimension [2, 4] but we are primarily
concerned, in this text, with Hilbert spaces spanned by a finite and denumerable set
of basis vectors. The Hilbert space of the five-qbulb system has dimension 32.

1.3.1 Dirac’s Bra-Ket Notation

The inner, or scalar product is a Hilbert space structure that provides a measure
of the degree of “overlap” between two vectors. The dot product of two vectors
in ordinary three-dimensional Euclidian space is an example of the latter. Here we
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will be a little bit more abstract and introduce the bra-ket notation to define an
inner product. Indeed, we already made use of this notation in the previous sections
where we employed the symbol | . . .〉 to denote a vector in Hilbert space. It is called
a ket and was introduced by the brilliant twentieth century physicist Paul Dirac,
an architect of the modern quantum theory. Throughout this text, we will employ
ket notation to describe quantum states. For example, ket |Ψ 〉 is a vector in Hilbert
space where the symbol Ψ nested within the ket is an identification parameter.

Having established ket notation, we introduce a new linear vector space called
dual space. For our purposes, it is convenient to think of dual space as a mirror
image of the vectors (or kets) in Hilbert space. For example, the ket |α〉 has a mirror
counterpart in dual space. The label α should also parameterize it, but we cannot use
ket notation as this vector “lives” in a different linear vector space. Dirac suggested
the notation 〈α| to denote it and called the symbol 〈. . . | a bra. Keeping in mind that
every ket |β〉 has a corresponding bra 〈β|, we require that the ket

|Ψ 〉 = c1|α1〉 + c2 |α2〉 + . . . cn |αn〉 (1.5)

has a bra counterpart. The rule for generating a bra 〈Ψ | from ket |Ψ 〉 is

〈Ψ | = c∗
1〈α1| + c∗

2 〈α2|, . . . c∗
n 〈αn|. (1.6)

The expansion coefficients for the bra vector are complex conjugates of the
corresponding coefficients in ket space. Kets and bras are added to each of their
kind, so the following expression

|Ψ 〉 + 〈Φ|

is meaningless, but we are allowed to build additional structures by certain
combinations of kets and bras. Two constructs which use kets and bras as its building
blocks are expressions that have the form

〈Φ|Ψ 〉 (1.7)

and

|Ψ 〉〈Φ|. (1.8)

The former (1.7), denotes an inner product and evaluates to a complex number. The
latter expression (1.8) is called an outer product, and it is neither a scalar or vector.
Later we show how it can be interpreted as an operator. Both structures enable
various transformations and manipulations of vectors in Hilbert space. Let’s first
discuss the inner, or scalar, product. The scalar quantity defined by expression (1.7)
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provides a measure of overlap between the vectors |Φ〉, |Ψ 〉.2 According to Dirac
notation, the inner product of two vectors in Hilbert space |Φ〉, |Ψ 〉 is formed by
taking the dual of |Φ〉, i.e. the bra 〈Φ|, and placing it side-by-side, as if a Lego�
block, with the ket |Ψ 〉. We also require that

〈Φ|Ψ 〉 = 〈Ψ |Φ〉∗, (1.9)

i.e. they are complex conjugates of each other. According to condition (1.9), we
recognize that 〈Ψ |Ψ 〉 = 〈Ψ |Ψ 〉∗ and so the inner product of a vector with itself
must be a real number. An additional postulate requires

〈Ψ |Ψ 〉 ≥ 0. (1.10)

Property (1.10) allows us to affix a “length”
√〈Ψ |Ψ 〉 to any vector, in particular, if

〈Ψ |Ψ 〉 = 1 that vector is said to be of unit length or normalized.
We now state Dirac’s distributive axiom for inner products. Given two vectors

|Ψ 〉 = c1|α1〉 + c2|α2〉 and |Φ〉 = d1|α1〉 + d2|α2〉 the inner product of |Ψ 〉 with
|Φ〉 is

Dirac’s distributive axiom for scalar products

〈Ψ |Φ〉 =
(
c∗

1〈α1| + c∗
2〈α2|

)(
d1|α1〉 + d2|α2〉

)
=

c∗
1d1〈α1|α1〉 + c∗

1d2〈α1|α2〉 + c∗
2d1〈α2|α1〉 + c∗

2d2〈α2|α2〉. (1.11)

The axiom shows how to distribute the inner product of a compound expression with
all its components. Two vectors |α1〉 and |α2〉 are said to be orthogonal if they have
a null inner product, i.e.

〈α1|α2〉 = 〈α2|α1〉 = 0.

Suppose we have a set, in an n-dimensional Hilbert space, of n normalized linear
independent vectors |α1〉, |α2〉, . . . |αn〉 that are mutually orthogonal. That is if for
each |αi〉

〈αi |αj 〉 = δij (1.12)

for all i, j (Here, δij is the Kronecker delta which has the property δij = 1 if i = j ,
otherwise δij = 0). The set of vectors |αi〉 that satisfies those properties are said to
form a basis for the vector space. You are probably familiar with the unit vectors,
î, ĵ, k̂ that constitute a basis for three-dimensional Euclidean space.

2In older textbooks the definition for the inner product is given by the alternative notation
(|Φ〉, |Ψ 〉) and does not rely on the use of dual space.
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m-Postulate III a The 32 vectors itemized on the right-hand side of (1.3) form
a basis that spans the Hilbert space of the five-qubit register.

According to this postulate any of these vectors, for example, |10110〉, is orthogonal
to all other vectors itemized on the r.h.s of (1.3) and each vector has unit length.
Basis vectors are orthonormal, meaning that they are both orthogonal and have unit
length. According to m-Postulate II b

|Ψ 〉 =
n∑

i=1

ci |αi〉 (1.13)

and if we require that |Ψ 〉 has unit length, i.e. 〈Ψ |Ψ 〉 = 1, we find that

〈Ψ |Ψ 〉 =
n∑

i=1

n∑
j=1

c∗
i cj 〈αi |αj 〉 =

n∑
i=1

n∑
j=1

c∗
i cj δij =

n∑
i=1

|ci |2 = 1. (1.14)

Taking the inner product of |αm〉 with |Ψ 〉, we obtain

〈αm|Ψ 〉 =
n∑

j=1

cj 〈αm|αj 〉 =
n∑

j=1

cj δmj = cm (1.15)

where we used the orthonormality condition (1.12).
Before proceeding further it’s useful to consolidate our understanding of this

formalism with more familiar examples from vector calculus. We are all accustomed
to expressions like,

	A = Ax î + Ay ĵ + Az k̂.

It is a vector in 3-d Euclidian space expressed in terms of the unit basis vectors
î, ĵ, k̂. The latter are a set of orthonormal vectors since

î · ĵ = î · k̂ = ĵ · k̂ = 0

and

î · î = ĵ · ĵ = k̂ · k̂ = 1.

The scalars Ax,Ay,Az are the components of vector 	A so that, using the orthonor-
mality properties of the basis,

Ax = 	A · î Ay = 	A · ĵ Az = 	A · k̂.
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Similarly, the Hilbert space vector

|Ψ 〉 = c1 |α1〉 + c2 |α2〉 + · · · cn |αn〉 (1.16)

is a linear combination of orthonormal basis vectors |αi〉. Using orthonormality
we find,

c1 = 〈α1 |ψ〉 , c2 = 〈α2 |ψ〉 , . . . cn = 〈αn |ψ〉 . (1.17)

The similarity of expressions (1.16), (1.17) with the corresponding relations for
vector 	A should be apparent. In the next section we discuss and elaborate on the
Hilbert space outer product (1.8), but before going there let’s review an analogous
construct, the dyadic in Euclidean space. For the space covered by the basis vectors
î, ĵ, k̂, a dyadic is a bilinear expression such as î ĵ or any of the other eight
combinations of basis vectors. A dyadic is positioned either before, or after, a vector
	A so that

ĵ k̂ 	A ≡ ĵ(k̂ · 	A) = ĵ Az

	A ĵ k̂ ≡ ( 	A · ĵ)k̂ = k̂ Ay. (1.18)

Table 1.1 summarizes some similarities between vector calculus constructs in
Euclidean space and the Hilbert space of a n-qubit system.

Table 1.1 Examples and comparison of three-dimensional Euclidean space structures with
n-dimensional Hilbert space analogues

Structure Euclidean space Hilbert space

Basis expansion 	A = Ax î + Ay ĵ + Az k̂ |Ψ 〉 = c1 |α1〉 + c2 |α2〉 + · · · cn |αn〉
Inner product 	A · 	B 〈Φ |Ψ 〉
Basis components Ax = 	A · î, . . . etc. ci = 〈αi |Ψ 〉 i = 1, 2 . . . n

Outer product (dyadic) ĵ k̂, . . . etc. |αi〉
〈
αj

∣∣

At this stage of the narrative, it is useful to introduce a new, more econom-
ical, notation to represent basis vectors. In this alternative notation |00000〉 ≡
|0〉5, |00010〉 ≡ |2〉5, |01001〉 ≡ |9〉5, etc., i.e., we label each basis ket by the
Roman numeral value of the binary number label. The subscript 5 reminds us that
we are labeling a five-qubit register. Therefore |Φ〉 = ∑31

i=0 |i〉5 and 〈Φ|Φ〉 =∑31
i=0

∑31
j=0 5〈i|j 〉5 = 32 where the last identity follows from the fact that basis

vectors are orthonormal. Because vectors in Hilbert space have a length, we attach
an addendum to m-Postulate II b and require physical states to be of unit length,
i.e. 〈Ψ |Ψ 〉 = 1. We are now in a position to state the Born rule for our five-qubit
register.

m-Postulate III b (the Born rule) If the five-qubit register is in state |Ψ 〉 =∑31
i=0 ci |i〉5 then a measurement yields the qbulb configuration

corresponding to one of the 32 states |i〉5, with probability
pi = |ci |2 = |〈i|Ψ 〉5|2. The condition 〈Ψ |Ψ 〉 = 1, insures
that

∑
i pi = 1.
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The Born rule addresses the question not answered by m-Postulate I. To explore and
appreciate its import we invoke a hypothetical gedanken experiment.3 Imagine 1000
experimenters who each have a five-qbulb register in their respective laboratories.
Furthermore, assume that each system is described by an identical state vector |Ψ 〉.
Each qbulb configuration is measured and m-Postulate I asserts that a measurement
finds one of 32 possible configurations. The scientists tabulate the results of their
measurements in lab books and convene a meeting later in the day to compare the
data. A possible tally might look like that given in Table 1.2. For this trial, the

Table 1.2 Tally of results for
the gedanken experiment

Measurement 00000 01000 10001 11000

# of observations 101 209 321 369

scientists observed only four configurations out of the possible 32. In summary,
101 physicists found all qbulbs (atoms/ions) in the off position corresponding to
collapsed state |0〉5, 209 found that only the second qbulb (from the left) is on,
corresponding to collapsed state |8〉5 and 321 scientists found a configuration in
which the first and last bulbs are on, corresponding to collapsed state |17〉5. Finally,
369 found that the two left-most qbulbs are on, corresponding to the state |24〉5. The
frequency interpretation of probability tells us that, after a large number N of trials,
the probability of obtaining the i′th result pi = (# of trials resulting in choice i)/N.
Clearly,

∑
i pi = 1.

Mathematica Notebook 1.2: An Introduction to Probability Theory http://
www.physics.unlv.edu/%7Ebernard/MATH_book/Chap1/chap1_link.html

With this tabulated data we venture an educated guess for state |Ψ 〉. One
reasonable hypothesis is

|Ψ 〉 =
√

101

1000
|0〉5 +

√
209

1000
|8〉5 +

√
321

1000
|17〉5 +

√
369

1000
|24〉5, (1.19)

as it is consistent with the Born rule. However, it is not a unique choice. The
expansion coefficients ci are complex numbers and |ci |2, the probability measure,
is un-changed if the coefficients are altered by an arbitrary phase β, i.e., ci →
exp(iβ)ci . For example, if the coefficient c0 = √

101/1000 of the first term in
sum (1.19) is replaced by −i

√
101/1000 the probability distribution is unchanged.

Also, the frequency interpretation does not guarantee those outcomes unless N →
∞. So repeating the experiment with another set of 1000 trials, a small number
could, because of statistical fluctuations, instantiate configurations that do not
appear in Table 1.2.

3Thought experiment.

http://www.physics.unlv.edu/%7Ebernard/MATH_book/Chap1/chap1_link.html
http://www.physics.unlv.edu/%7Ebernard/MATH_book/Chap1/chap1_link.html
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m-Postulate-III b informs us that quantum mechanics is a probabilistic theory
where full knowledge of the system, i.e., |Ψ 〉, does not guarantee a definite outcome
for a measurement. It does offer a probability distribution of outcomes for an
ensemble of measurements. Knowing |Ψ 〉 we can predict the relative outcome of any
configuration, let’s say 11100, over the other 31 possibilities. Born’s rule and (1.15)
tells us that evaluation of |〈11100|Ψ 〉|2 provides us with that information.

I live and work in Las Vegas, a city whose existence attests to the predictive
power of probabilistic inference. With the Copenhagen interpretation of quantum
mechanics, Born’s rule illuminates the mystery behind expressions like |10001〉 +
|10011〉. In that interpretation, there is no reality4 where configurations 10001
and 10011 are simultaneously in “existence”. Born’s rule simply provides an
operational algorithm for calculating probabilities of possible outcomes in an
experiment. However, once a measurement is made, m-Postulate I requires that the
system “collapses” into the basis state corresponding to that measurement outcome.
Immediately after that measurement, since all ci = 0, save the state j in which the
system “collapses” to, a subsequent measurement has probability 1, or certainty, for
that outcome.

1.3.2 Outer Products and Operators

In this section, we use Dirac’s bra-ket formalism to construct an outer product. We
first state Dirac’s distributive axiom for outer products. Given states |Ψ 〉 = c1|α1〉+
c2|α2〉 and |Φ〉 = d1|α1〉 + d2|α2〉 the outer product of |Ψ 〉 with |Φ〉 is

Dirac’s distributive axiom for outer products

|Ψ 〉〈Φ| =
(
c1|α1〉 + c2|α2〉

)(
d∗

1 〈α1| + d∗
2 〈α2|

)
= (1.20)

c1d
∗
1 |α1〉〈α1| + c1d

∗
2 |α1〉〈α2| + c2d

∗
1 |α2〉〈α1| + c2d

∗
2 |α2〉〈α2|.

Consider the outer product X ≡ |Φ〉〈Ψ |. According to Dirac notation we are
allowed to place it in front of a ket |Γ 〉, or to the right of a bra 〈Γ |, i.e. the constructs
X |Γ 〉 and 〈Γ | X are valid expressions in Hilbert and dual space respectively.
However, the expressions |Γ 〉 X, X〈Γ | are illegal.

Dirac’s associative axiom for outer products states that

Dirac’s associative axiom for outer products For an outer product X and ket |Γ 〉

X |Γ 〉 =
(
|Φ〉〈Ψ |

)
|Γ 〉 = |Φ〉

(
〈Ψ |Γ 〉

)
= c |Φ〉

where c ≡ 〈Ψ |Γ 〉, Also

4There exist alternative descriptions, including the many-worlds interpretation of QM [1, 6] and
the consistent histories approach [3, 6], but in this monograph we adhere to orthodox dogma.
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〈Γ | X = 〈Γ |
(
|Φ〉〈Ψ |

)
=

(
〈Γ |Φ〉

)
〈Ψ | = 〈Ψ | d

d ≡ 〈Γ |Φ〉. (1.21)

According to (1.21), placing an outer product to the left of a ket, “un-hinges” the
bra vector 〈Ψ | from X and “locks” it onto the right-most ket |Γ 〉 forming the scalar
product, i.e., the complex number 〈Ψ |Γ 〉. The result is a new ket c |Φ〉. In short,
outer product X “operates” on vector |Γ 〉 and transforms it to vector c |Φ〉 in Hilbert
space. When operating on bra vectors, it plays a similar role in dual space. Evidently,
outer products play an essential role in facilitating transformations of vectors in
Hilbert space. Thus the outer product allows us to construct operators in Hilbert
space. We can think of operators as objects that map vectors to other vectors in
Hilbert space.

According to (1.21) we find that the dual of the transformed vector X |Γ 〉 is
〈Φ| c∗ where c∗ = 〈Γ |Ψ 〉. So the dual of X|Γ 〉 �= 〈Γ | X. There is an outer product
called X† that has the following property.

Definition 1.1 The adjoint operation For operator X and ket |Φ〉, the dual of

X |Φ〉 is given by the expression 〈Φ| X† for all |Φ〉. X† is called the adjoint, or
conjugate transpose, operator to X.

Definition 1.2 Hermitian operators Operators X that have the property

X = X† (1.22)

are called Hermitian, or self-adjoint, operators.

Definition 1.3 Unitary operators Operator U is a unitary operator, if

U U† = U† U = 1 (1.23)

where 1 is a unit operator, i.e. 1|Ψ 〉 = |Ψ 〉 for all |Ψ 〉 in Hilbert space.

Both Hermitian and unitary operators play a central role in quantum computing and
information (QCI) applications.

We know that operators map, or transform, a vector in Hilbert space to another
vector in that same space. A special class of mappings, generated by operator X,
have the following property. For some vectors |Φ〉,

X |Φ〉 = φ |Φ〉 (1.24)

where φ is a scalar. An equation of this type is called an eigenvalue equation. The
vector |Φ〉 is called an eigenvector, and the constant φ is called the eigenvalue
associated with that eigenvector. Two theorems [2] that concern important properties
of Hermitian operators, are
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Theorem 1.1 The eigenvalues of a Hermitian operator are real numbers.

Theorem 1.2 If the eigenvalues of Hermitian operator are distinct, then the
corresponding eigenvectors are mutually orthogonal. If some of the eigenvalues are
not distinct, or degenerate, then a linear combination of that subset of eigenvectors
can be made to be mutually orthogonal.

Let’s investigate how some of these concepts relate to our five-qubit register.
Because we are performing all operations in 32-dimensional Hilbert space, kets
|j 〉5 will simply be replaced with the symbol |j 〉. Consider operator N6 ≡
|00110〉〈01100|, or in the alternate notation |6〉 〈6|. First, note that N6 is Hermitian,
and according to Theorem 1.1, its eigenvalues are real numbers. Indeed, the
eigenvalues for N6 are 1 and 0, associated with eigenvectors |6〉 and kets |j 〉 for
j �= 6 respectively.

Proof Using Dirac’s associative axiom

N6 |6〉 = (|6〉 〈6|) |6〉 = |6〉 (〈6|6〉) = 1 |6〉

and

N6 |j 〉 = |6〉 (〈6|j 〉) = 0 |j 〉 j �= 6

where we have used the orthonormality property of the vectors |j 〉. Note that the
eigenvalue 0, is associated with each of the |j �= 6〉 eigenvectors. It is 31-fold
degenerate because each |j �= 6〉 share the same eigenvalue. Convince yourself that
the eigenvectors of N6 also satisfy Theorem 1.2.

Let’s define yet another operator, N ≡ ∑31
j=0 j (|j 〉〈j |). Here, outer product

(|j 〉〈j |) is multiplied by the integer j that labels each ket. Now

N† =
31∑

j=0

j (|j 〉〈j |)† =
31∑

j=0

j (|j 〉〈j |) = N (1.25)

and is therefore Hermitian.
Its eigenvectors |j 〉 are labeled by j which happens to be an eigenvalue of N.

According to the Born rule, a measurement, with device N of the qbulb register
in state |Ψ 〉, yields the probability pj = |〈j |Ψ 〉|2 that the register is found in the
j ’th configuration. In other words, pj is calculated by taking the inner product of
the ket that is an eigenvector of N, that is |j 〉 with the system state vector |Ψ 〉.
The eigenvalue associated with this ket is the measured configuration index. For
this reason, operator N is a configuration, or occupation number, measurement
operator, as its eigenvalues identify each possible configuration label revealed by
a measurement.
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1.3.3 Direct and Kronecker Products

Up to this point, we introduced and discussed almost all foundational postulates,
theorems, and definitions that are needed to describe a five-qbulb quantum register.
To explore Hilbert spaces beyond the five-qubit example, we need to introduce an
additional tool, that of the direct, or tensor, product. When we think of points in a
plane as an ordered pair (x, y), we recognize it as the pairing of a x-axis coordinate
with a coordinate on the y-axis number line. The pair is called a Cartesian product
of two lower dimensional vector spaces, i.e., the real x and y-axis number lines. In
the same way, we build higher-dimensional Hilbert spaces from direct products of
single qubit Hilbert spaces. Below, we will show how to construct a register that
contains an arbitrary number of qubits from a constituent, lower dimensional space
via direct products.

First, let’s discuss in more detail a single qubit system of Hilbert space dimension
2. The kets |0〉1 and |1〉1 are possible basis vectors as we require them to be linearly
independent and orthonormal. The subscript reminds us that ket |0〉1 differs from
ket |0〉5. The latter represents a five-qubit register in which all qbulbs are in the
off-position, whereas the former denotes the off-position of a single qbulb. In the
subsequent discussion, we will assume, unless otherwise stated, that vectors |0〉, |1〉
are single-qubit vectors and ignore the subscript. Any state vector |Ψ 〉 in this Hilbert
space can be expressed as a linear combination of those two basis kets. A single
qbulb (e.g., a two-state atom) serves as a physical realization of this Hilbert space.

Definition 1.4 The direct product. Given kets |a〉, |b〉 their direct product is given
by the expression

|a〉 ⊗ |b〉.

Suppose a, b ∈ 0, 1, i.e. both |a〉, |b〉 are single qubit basis kets. Itemize all distinct
combinations of indices a, b to get

|0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉. (1.26)

Note that the direct product of |a〉 with |b〉 is not the same as the direct product of
|b〉 with |a〉, i.e.

|a〉 ⊗ |b〉 �= |b〉 ⊗ |a〉.

Without proof we state the following.

Theorem 1.3 Given a Hilbert space of dimension d that is spanned by basis vectors
|b〉, and the single qubit vector |a〉 for a ∈ 0, 1, the direct products |a〉 ⊗ |b〉 for all
a, b are basis vectors in a Hilbert space of dimension 2d. The dual vector for

c |a〉 ⊗ |b〉
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is

c∗ 〈b| ⊗ 〈a|

for all values of a, b.

Note the ordering of the bra vectors from that of the corresponding kets. According
to this theorem vectors |a〉 ⊗ |b〉 allow inner products with all vectors in the direct
product Hilbert space. Let’s assume that |a〉 , |b〉 , |c〉 , |d〉 are single qubit states.
Given |Ψ 〉 = c1|a〉⊗|b〉+c2|c〉⊗|d〉, and |Φ〉 = d1|a〉⊗|b〉+d2|c〉⊗|d〉 the inner
product 〈Ψ |Φ〉 is obtained by application of Dirac’s axiom in the following manner

(
c∗

1〈b| ⊗ 〈a| + c∗
2〈d| ⊗ 〈c|

)(
d1|a〉 ⊗ |b〉 + d2|c〉 ⊗ |d〉

)
=

c∗
1d1〈b|b〉 〈a|a〉 + c∗

1d2〈b|d〉 〈a|c〉 + c∗
2d1〈c|a〉 〈d|b〉 + c∗

2d2〈c|c〉 〈d|d〉 =
c∗

1d1 + c∗
2d2. (1.27)

where the last identity follows from the orthonormality property of the single-qubit
kets. Using (1.27) we find that the four vectors itemized in (1.26) are also mutually
orthonormal, e.g. (〈0| ⊗ 〈0|)(|0〉 ⊗ |0〉) = 〈0|0〉 〈0|0〉 = 1, (〈0| ⊗ 〈0|)(|0〉 ⊗
|1〉 = 〈0|0〉 〈0|1〉 = 0, etc. Because direct products are a common feature in our
subsequent discussions, use of the ⊗ symbol becomes somewhat cumbersome. Let’s
drop the ⊗ symbol and re-express the four kets in (1.26) as follows

|00〉, |01〉, |10〉, |11〉. (1.28)

There should be no ambiguity with this notation as long as we accept an implicit
understanding that it is shorthand for the direct product of two qubits. In this notation
|Ψ 〉 = c1|ab〉 + c2|cd〉, and |Φ〉 = d1|ab〉 + d2|cd〉. The inner product 〈Ψ |Φ〉 is
given by the following expression

(
c∗

1〈ba| + c∗
2〈dc|

)(
d1|ab〉 + d2|cd〉

)

and, when expanded, evaluates to c∗
1d1 + c∗

2d2, in harmony with result (1.27).
The kets itemized in (1.28) reminds us of the notation used to describe five-

qubit kets. In that case, each ket was labeled by its binary number representation.
Kets (1.28) are similarly labeled, except that the dimension of Hilbert space is 22

and so the kets are enumerated accordingly. In analogy with the five-qubit notation,
we could label the basis vectors in (1.28) as

|0〉2, |1〉2, |2〉2, |3〉2. (1.29)

The subscript refers to the fact that the number of qubits n = 2, and the dimension
of Hilbert space is d = 2n. With this notation, it is straightforward to construct a
higher dimensional Hilbert space from qubit constituents. For example, consider the
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direct product of qubit |a〉, a ∈ 0, 1 with kets (1.26). It should be clear, if we make
use of Theorem 1.3, that this product generates the basis kets

|0〉3, |1〉3, |2〉3, |3〉3,

|4〉3, |5〉3, |6〉3, |7〉3 (1.30)

in a d = 23 dimensional Hilbert space. Generalization to direct products of n-qubits
follows. We now recognize that the Hilbert space of our five-qbulb register can be
expressed as a direct product of 5 individual qubits. For a modest number of n-qubits
the dimension of Hilbert space d = 2n is huge.

We can think of direct products as qubit entries in different slots. For example,
the register |100〉, or |4〉3, is a direct product (starting from the right and going left)
of ket |0〉 in slot 1, ket |0〉 in slot 2, and ket |1〉 in slot 3. According to Theorem 1.3
the bra vector associated with this ket is 〈001|. So now the slot order for bra vectors
is reversed from that of ket space, i.e., going from left to right bra 〈0| is in slot 1, 〈0|
is in slot 2, and 〈1| is in slot 3. If we take an inner product of this three-qubit vector
with |abc〉 (a, b, c ∈ 0, 1) then, according to (1.27), the inner product

〈001|abc〉 = 〈1|a〉 〈0|b〉 〈0|c〉.

Each qubit ket in a given slot “hooks” up with the bra in that same slot.
Using the slot analogy we can also express multi-qubit operators, such as X6 and

N, introduced in the previous section, as direct products of single qubit operators.
Operators, or outer products, are not vectors and so we should not use the same
symbol to define products of the latter. Instead, we employ the symbol ⊗̃ to denote
products of operators. Given |ab〉 ≡ |a〉 ⊗ |b〉 and |cd〉 ≡ |c〉 ⊗ |d〉.

|ab〉〈dc| = (|a〉 ⊗ |b〉)(〈d| ⊗ 〈c|) ≡ |a〉〈c|⊗̃|b〉〈d| (1.31)

The symbol ⊗̃ is called the Kronecker product. In this expression, the outer product
|b〉〈d| “operates” only on a qubit in slot 1, whereas |a〉〈c| operates on qubits in slot
2. For example, consider the two-qubit state |Ψ 〉 = c1|01〉 + c2|10〉 then, according
to Dirac’s axiom,

(|ab〉〈dc|) |Ψ 〉 = c1(|a〉〈c|⊗̃|b〉〈d|)|01〉 + c2(|a〉〈c|⊗̃|b〉〈d|)|10〉 =
|ab〉

(
c1 〈c|0〉〈d|1〉 + c2〈c|1〉〈d|0〉

)
= |ab〉

(
c1 〈cd|10〉 + c2 〈cd|01〉

)
.

(1.32)

The two-qubit operator |ab〉〈dc|, when operating on two-qubit state |Ψ 〉, projects
the latter into vector c |ab〉 where the constant c = c1 〈cd|10〉 + c2 〈cd|01〉.

In the next chapter, we introduce matrix representations of states and operators
and, in that framework, we will find that the operation ⊗̃ is equivalent to the
direct product operation ⊗. With definitions for direct products of kets and the
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corresponding Kronecker products of operators, we generalize and re-frame the
postulates itemized in the previous sections for an arbitrary n-qubit register.

Postulate I Kets |0〉, |1〉 constitute a basis for the qubit Hilbert space. An n-
qubit register is spanned by basis vectors that are direct products
of n-qubits |a〉 ⊗ |b〉 ⊗ |c〉 . . . |n〉, where a, b, c · · · n ∈ 0, 1.

Postulate II A full description of the system is encapsulated by a vector |Ψ 〉,
of unit length, in this 2n dimensional Hilbert space.

Postulate III (Born’s rule) The act of measurement associated with Hermi-
tian operator A results in one of its eigenvalues. The probability
for obtaining a nondegenerate eigenvalue a is given by the
expression |〈a|Ψ 〉|2 where |a〉 is an eigenvector of A that
corresponds to eigenvalue a. If the eigenvalue a is degenerate,
the probability to find that value is

∑
i |〈ai |Ψ 〉|2 where the sum

is over all i in which ai = a.
Postulate IV (collapse hypothesis) Immediately after measurement by A

with result a, the system is described, up to an undetermined
phase, by state vector |a〉. If a is degenerate, the system is in a
linear combination of the corresponding eigenvectors.

We now recognize that a five-qbulb state, lets say |22〉 = |10110〉 is shorthand
for the direct product |1〉 ⊗ |0〉 ⊗ |1〉 ⊗ |1〉 ⊗ |0〉. It is an eigenstate, with eigenvalue
j = 22, of operator N22 = 22 |10110〉〈01101|, equivalent to the Kronecker product

N22 = 22 |1〉〈1|⊗̃|0〉〈0|⊗̃|1〉〈1|⊗̃|1〉〈1|⊗̃|0〉〈0|. (1.33)

Let’s define the single qubit operators n ≡ |1〉〈1| and 1 ≡ |0〉 〈0| + |1〉 〈1|. Since
n|0〉 = 0, n|1〉 = 1 |1〉, n is an occupation number operator for a single qubit,
whereas 1 is an identity operator. It has the property 1|0〉 = |0〉, 1|1〉 = |1〉, and
(1 − n) = |0〉〈0|. With these definitions we re-express (1.33 ) as

N22 = 22 P22

P22 = n⊗̃(1 − n)⊗̃n⊗̃n⊗̃(1 − n) =
n⊗̃1⊗̃n⊗̃n⊗̃1 − n⊗̃1⊗̃n⊗̃n⊗̃n − n⊗̃n⊗̃n⊗̃n⊗̃1 + n⊗̃n⊗̃n⊗̃n⊗̃n

(1.34)

The operator P22 is called a projection operator and has the properties

P22P22 = P22,

P22|22〉 = |22〉 and for j �= 22 P22|j 〉 = 0.
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Throughout this chapter, we focused primarily on one type of measurement, that
for the configuration occupation number j of a register. Postulate III allows other
measurement devices as there are no restrictions on operator A as long as it is
Hermitian. So what other measurement possibilities arise? An obvious choice is
a measurement for the occupation number of a qbulb in a given slot, disregarding
the values for the other qbulbs. For example, if we are only interested on the state
of the qbulb in slot 3 we can define the measurement operator

P3 ≡ 1⊗̃1⊗̃ n ⊗̃1⊗̃1

which also happens to be a projection operator. For any basis ket |j 〉, P3|j 〉 = |j 〉,
if slot 3 is in the on position and it is zero otherwise. However, there are many kets
with this property including

|00100〉, |00101〉, |00110〉, |00111〉
|01100〉, |01101〉, |01110〉, |01111〉
|10100〉, |10101〉, |10110〉, |10111〉
|11100〉, |11101〉, |11110〉, |1111〉.

Each of these kets is an eigenstate of P3 with eigenvalue 1. They are 16-fold
degenerate and Postulate III tells us that the probability to find the qbulb of slot 3
to be in the on position is

∑
j |〈j |Ψ 〉|2 where the sum is over all states |j 〉 itemized

above. Obviously, because there are multiple qubits in a register, many possibilities
for occupation type measurements arise. For example, we could measure the state
of only a single qbulb in a given slot, or permutations for several qbulbs at a
time. The various operators associated with all such measurements can ultimately
be expressed, as in (1.34), by sums of direct products involving the single qubit
operators 1, and n. Are there other possibilities not involving occupation type
measurements? To investigate this question let’s consider the simplest system, the
single qbulb or qubit. The qbulb can either be on or off and one might, incorrectly,
conclude that the measurement operator n exhausts all possibilities in this Hilbert
space. But consider the following operator

A ≡ |0〉〈1| + |1〉〈0|.

A is Hermitian, i.e., A = A† and so it is a measurement device candidate. But what
does A measure since it is not expressed solely by n and 1? It turns out that, for a
real qubit, there does exist a measurement device associated with this operator. We
will discuss it, and others, in detail in the next chapter. That discussion will force
us to reconsider the simple qbulb analogy employed in this chapter. Instead of a
quantum light bulb having two distinct properties, we will learn that a real qubit is
multi-faceted and forces us to broaden our conception of what it means for the qbulb
to be in the on or off state. Nevertheless the qbulb analogy is still very useful as the
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eigenstates |j 〉n, also called the computational basis, of the configuration number
operator N = ∑2n−1

j=0 j (|j 〉 〈j |)n play a special role in quantum information theory.

Mathematica Notebook 1.3: The Born rule and projective measurements.
http://www.physics.unlv.edu/%7Ebernard/MATH_book/Chap1/chap1_link.
html

Before proceeding to that discussion in the next chapter, we need address two
issues not yet discussed. In addition to the four postulates itemized above, there is
a fundamental postulate that tells us how the state vector |Ψ 〉 evolves in time. We
defer that discussion to Chap. 3. Now, consider the state

|Ψ 〉 =
2n−1∑
j=0

cj |j 〉 (1.35)

for an n-dimensional register. It is expressed as an expansion over the computational
basis |j 〉. For the sake of simplicity, we dropped the subscript index that defines
the latter as n-dimensional basis kets. As the computational basis vectors are
orthonormal, let’s take the scalar product of both sides of (1.35) with ket |m〉, where
m is an arbitrary index 0 ≤ m ≤ 2n − 1. We find

〈m|Ψ 〉 =
2n−1∑
j=0

cj δmj = cm (1.36)

where we used the fact 〈i|j 〉 = δij . Now relation (1.36) must be true for all values
of m and so inserting this identity back into (1.35) we obtain

|Ψ 〉 =
2n−1∑
j=0

〈j |Ψ 〉|j 〉 =
2n−1∑
j=0

|j 〉〈j |Ψ 〉. (1.37)

Now according to Dirac’s rule for inner products this sum should be the same as

|Ψ 〉 =
( 2n−1∑

j=0

|j 〉〈j |
)

|Ψ 〉

and which only makes sense if the sum between the parenthesis has no effect on the
n-dimensional qubit state |Ψ 〉. In other words (1.37) implies that

2n−1∑
j=0

|j 〉〈j | = 1⊗̃1⊗̃1⊗̃ · · · ≡ 1. (1.38)

http://www.physics.unlv.edu/%7Ebernard/MATH_book/Chap1/chap1_link.html
http://www.physics.unlv.edu/%7Ebernard/MATH_book/Chap1/chap1_link.html
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Relation (1.38) is called the closure, or completeness, property for any set of n

qubits. We will often make use of this property in our subsequent discussions.
The symbol 1 represents an identity operator in the full n-qubit Hilbert space. In
subsequent chapters we will use this symbol to represent the identity without explicit
reference to the dimensionality of the Hilbert space.

Problems

1.1 Evaluate the exercises in Mathematica Notebook 1.1.

1.2 Given the set of polynomials of degree 3 in variable x, Pa = a0 +a1x +a2x
2 +

a3x
3, where a0 . . . a3 are real numbers. Let the binary operation Pa + Pb denote

ordinary addition. Show that set Pγ constitutes a linear vector space.

1.3 Answer the exercises in Mathematica Notebook 1.2

1.4 The state

|ψ〉 = 1√
6

|01101〉 +
√

2

3
|11111〉 + 1√

6
|00001〉

describes a register of five qbulbs. (a) Calculate the probability that the first qbulb is
in the on position, after making a measurement with device 1⊗̃1⊗̃1⊗̃1⊗̃n (b) What
is the probability that all qbulbs are in the on position, after a measurement with
device n⊗̃n⊗̃n⊗̃n⊗̃n. (c) Calculate the probability that at least three qbulbs are
found in the off-position. (d) A measurement reveals the occupation configuration
01101. Immediately after that measurement another measurement with N is made.
Calculate the probability that at least three qbulbs are in the off-position.

1.5 Given the states |ψ〉 = 1√
6
|01101〉 +

√
2
3 |11111〉 + i√

6
|00001〉 and |Φ〉 =

1√
2

|01101〉 + 1√
2

|01111〉. Evaluate 〈Φ |Ψ 〉, |Φ〉 〈Ψ | and |Ψ 〉 〈Φ|.
1.6 Consider operator X = |Φ〉〈Ψ |, show that X† = |Ψ 〉〈Φ|. Hint: use this
expression for X† and operate it on bra 〈Γ |. Compare the result with that obtained
by X |Γ 〉.
1.7 Re-express the following states |17〉5 , |5〉5 , |12〉5 in binary notation, i.e.,
|k4k3k2k1k0〉, ki ∈ {0, 1}.
1.8 Consider the operator X ≡ exp(iα) |00110〉 〈00100| + |00111〉 〈11111|. Eval-
uate X |Φ〉 where |Φ〉 is given by Eq. (1.3) in the text.

1.9 Show that operator, in the Hilbert space of a single qubit, X ≡ |0〉 〈1| + |1〉 〈0|
is Hermitian. Solve the following equation

X |ψ〉 = λ |ψ〉
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for the state |ψ〉. Hint: express |ψ〉 = c1 |0〉 + c2 |1〉, and solve for the coefficients
c1, c2. Show that this equation admits solutions only for select values of parameter λ.

1.10 In the Hilbert space of three qubits, consider the operator

A ≡ |000〉 〈000| + 2 |001〉 〈100| − 2 |010〉 〈010| +
3 |100〉 〈001| + |011〉 〈110| − |101〉 〈101| .

Find all the eigenvalues and eigenvectors of A. Identify the degenerate eigenvalues
and show that any linear combination of the corresponding eigenvectors are also
eigenstates of A.

1.11 In a two-qubit Hilbert space, consider the operator

A = |00〉 〈01| + |10〉 〈00| + |01〉 〈10| + |10〉 〈01| .

Find the eigenvalues and eigenstates of A.

1.12 Given the single qubit operators

A = |0〉 〈0| + |1〉 〈1| , B = i |0〉 〈1| − i |1〉 〈0| ,

show that [A, B] ≡ AB − BA = 0. Find the eigenstates for operator B and show
that they are also eigenstates of operator A. What are the eigenvalues associated
with operator A?

1.13 Prove the following: for two Hilbert space operators A, B, so that [A, B] = 0,
show that, if A has non-degenerate eigenstates |a1〉 , |a2〉 , . . . , then the kets |ai〉 are
also eigenstates of operator B.

1.14 Prove Theorems 1.1 and 1.2.

1.15 Given operator A in an n-dimensional Hilbert space with orthonormal eigen-
vectors |a1〉 , |a2〉 , . . . , |an〉, prove that A = ∑n

i ai |ai〉 〈ai |, where ai is the
eigenvalue associated with |ai〉.
1.16 Show that operator

U = cos θ |0〉 〈0| + exp(iφ) sin θ |0〉 〈1| + exp(−iφ) sin θ |1〉 〈0| − cos θ |1〉 〈1| ,

where θ, φ are real parameters, is unitary.

1.17 Consider the operator X = |0〉 〈1| + |1〉 〈0|, evaluate

X̃ = UXU†

where U is given in problem 1.16.

1.18 Find the eigenvalues and eigenstates for operator X̃ given in problem 1.17.
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1.19 Evaluate Ỹ = UYU† where, Y = −i |0〉 〈1| + i |1〉 〈0| and U is defined in
problem 1.17. Demonstrate that

[
X̃, Ỹ

]
= 2i Z̃

where Z̃ = U(|0〉 〈0| − |1〉 〈1|)U†, and X̃ is defined in problem 1.17.

1.20 Consider the operator

P = 2 n⊗̃n⊗̃n + 1⊗̃1⊗̃n − n⊗̃1⊗̃n − 1⊗̃n⊗̃n.

Show that P is a projection operator.
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