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1 Introduction

This short note is a survey about an explicit construction for mirror families of
Calabi–Yau varieties, due to Batyrev and later generalized by Batyrev–Borisov, that
uses toric geometry and polar duality for lattice polytopes. The construction is about
Calabi–Yau hypersurfaces in a Fano toric variety.

Historically, after the first example of the quintic threefold [1], many other exam-
ples of Calabi–Yau threefolds and mirror pairs were constructed using hypersurfaces
in weighted projective spaces. For some of these examples though, the mirror was
missing. Batyrev’s construction [2] put these examples in a more systematic frame-
work and provided themissingmirrors.Moreover it was later generalized to complete
intersections in Fano toric varieties by Batyrev–Borisov [3], and brought combina-
torics and toric geometry into the picture. It also partly inspired the Gross–Siebert
program [4–6].

The material for this contribution is mostly taken from Cox’s expository paper
“Mirror Symmetry and Polar Duality of Polytopes” [7], and parts of Cox–Katz,
“Mirror Symmetry and Algebraic Geometry” [8] (in particular Sects. 4.1 and 4.2).
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2 Polar Duality of Lattice Polytopes

Batyrev’s construction relates mirror pairs with a duality for lattice polytopes.

Definition 1 A polytope Δ is the convex envelope Conv(x1, . . . xm) of a finite num-
ber of points in R

n .

A supporting hyperplane of a polytope Δ is a hyperplane H in R
n such that

Δ ∩ H �= ∅, and Δ is completely contained in one of the two closed half-spaces that
H determines in R

n . A face of a polytope Δ is the intersection Δ ∩ H , where H
is a supporting hyperplane. This is again a polytope. The dimension of a polytope
is the dimension of the affine subspace of Rn spanned by Δ. Every polytope Δ

determines a unique minimal set of points {v1, . . . , vk}, called its vertices, such that
Δ = Conv(v1, . . . , vk). These points also coincidewith the faces ofΔof dimension 0.

Recall also that a lattice M is a free abelian group of finite rank, i.e. an abelian
group isomorphic to Zn for some n. Sometimes it is better not to choose a basis (i.e.
the subset corresponding to the standard basis ofZn via some isomorphismM ∼= Z

n),
but we will always assume to have chosen one.

Definition 2 A lattice polytope is a polytope in some affine spaceRn whose vertices
have coordinates in Zn .

From now on we will assume that our lattice polytopes are full dimensional (i.e.
they are not contained in any proper affine hyperplane of the ambient space) and that
0 ∈ Int(Δ). Here Int(Δ) denotes the topological interior of Δ, which also coincides
with the complement of all proper faces.

The dual or polar Δ◦ of Δ is another polytope, defined by

Δ◦ = {a ∈ R
n | 〈a, b〉 ≥ −1 for all b ∈ Δ}

= {a ∈ R
n | 〈a, v〉 ≥ −1 for all vertices v of Δ} (by convexity)

where we denote by 〈·, ·〉 the standard scalar product of Rn . Note that if one does
not want to choose a basis of the lattice M , then the same formulas define the
dual of a polytope Δ ⊆ MR := M ⊗ R as a polytope in the dual vector space Δ◦ ⊆
M∨

R
= M∨ ⊗ R, and in this case 〈·, ·〉 : MR × M∨

R
→ R denotes the natural pairing

(v, f ) �→ f (v).
It is not hard to check that the setΔ◦ is indeed a polytope (by the second description

it follows that it is a finite intersection of half-spaces, so it is enough to show that it
is bounded).

Example 1 IfΔ is the square [−1, 1] × [−1, 1] thenΔ◦ is the polygon with vertices
(±1, 0), (0,±1), as in the following picture.
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Δ
(-1,1) (1,1)

(-1,-1) (1,-1)

Δ ◦
(0,1)

(1,0)

(0,-1)

(-1,0)

One can also check that (Δ◦)◦ = Δ, so that this operation is indeed a “duality.”
Moreover, there is an inclusion-reversing combinatorial correspondence between
i-dimensional faces of Δ and (n − 1 − i)-dimensional faces of Δ◦.

The polytopeΔ◦ is not always a lattice polytope. For example, it is easily verified
that (2Δ)◦ = 1

2Δ
◦, and the latter might not be a lattice polytope. This applies to the

previous example, as 1
2Δ

◦ = Conv((± 1
2 , 0), (0,± 1

2 )) is not a lattice polytope in that
case.

Definition 3 A lattice polytope Δ is reflexive if (0 ∈ Int(Δ) and) Δ◦ is a lattice
polytope.

There are a few equivalent characterizations of this property. We will mention a
couple of these; for details, see for example [9, Chap. 2].

One can prove that every facet (i.e. codimension 1 face) F of a polytope Δ has a
unique inward-pointing normal vector uF such that

F = {a ∈ Δ | 〈a, uF 〉 = −1}.

In Example 1, if F is the segment [−1, 1] × {1}, then uF = (0,−1), and for the other
facets we get the other vertices of the dual Δ◦.

In fact we always have Δ◦ = Conv(uF | F a facet of Δ), so that

Proposition 1 A lattice polytope Δ is reflexive if and only if every uF ∈ R
n is a

lattice point (i.e. is in Zn ⊆ R
n).

Another characterization is the following (which is given as the definition of a
reflexive polytope in [2]):

Proposition 2 A lattice polytope Δ is reflexive if and only if for every facet F of Δ
there is no lattice point between the affine hyperplane spanned by F and its translate
passing through the origin.

As a consequence, the origin is the only lattice point in the interior of a reflexive
polytope Δ.
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Remark 1 From the last observation, via the results of [10], it follows that in every
dimension n there is only a finite number of reflexive lattice polytopes up to integral
change of coordinates (i.e. transformation by an element of GL(n,Z)). For n = 2
there are 16 equivalence classes, for n = 3 they are 4 319 and for n = 4 (which is
the important case for Mirror Symmetry, since it corresponds to 3-folds) there are
473 800 776 (!) equivalence classes (this was proven in [11]).

The idea for BatyrevMirror Symmetry is that this duality among lattice polytopes
realizes Mirror Symmetry for Calabi–Yau hypersurfaces in Fano toric varieties, as
we will explain in the next sections.

3 Varieties from Lattice Polytopes

A lattice polytope in R
n gives rise to a projective variety. This process is part of a

long story, the theory of toric varieties (see [9, 12]).

Definition 4 A toric variety is a normal algebraic variety X with an open embedding
T ⊆ X of a torus T = (C×)n and an action T × X → X that extends the multipli-
cation action of T on itself.

It turns out that this set of data is completely encoded by a combinatorial poly-
hedral object in a lattice (the co-character lattice of the torus Hom(C×, T ), usually
denoted by N in the literature), called a fan: this is a collection of cones, intersecting
nicely (i.e. along common faces). The geometry of the toric variety is completely
controlled by the combinatorics of this object: geometric properties of the variety
can be translated in combinatorial or convex-geometric properties of the fan, and
some algebraic invariants (for example sheaf cohomology of divisors) are explicitly
computable. Because of this, toric varieties are usually a useful testing ground for
new conjectures and theories about varieties in general.

A lattice polytope is an alternative incarnation of the underlying combinatorics of
a certain class of toric varieties. Strictly speaking, the polytope also records the infor-
mation of a torus invariant ample divisor on X , that gives in particular embeddings
in projective space.

Here is a quickway to define the toric variety XΔ associated to a lattice polytopeΔ.
First note that any lattice point m = (a1, . . . , an) ∈ Z

n gives a “Laurent monomial”

tm = ta11 · · · tann
which is a regular function on the torus (C×)n (so that negative exponents make
perfect sense).

Now we need to assume that Δ has “enough lattice points”, or else modify it a
bit. This is a technical condition, called normality of the polytope: a lattice polytope
Δ ⊆ R

n is normal if for all n,m ∈ N we have
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(nΔ) ∩ Z
n + (mΔ) ∩ Z

n = ((n + m)Δ) ∩ Z
n.

Here nΔ denotes the dilated polytope {a ∈ R
n | a = nb for some b ∈ Δ}, and +

denotes the Minkowski sum of polytopes, defined as

Δ + Δ′ = {a + b ∈ R
n | a ∈ Δ, b ∈ Δ′}

for polytopesΔ,Δ′ ⊆ R
n . For example, one can show that the standard simplexConv

(0, e1, . . . , en) ⊆ R
n is a normal polytope, while the polytope Conv(0, e1, e2, e1 +

e2 + 3e3) ⊆ R
3 is not normal. Here and in what follows, as customary, ei denote the

elements of the standard basis of Rn .
If Δ is not normal, one uses instead the polytope kΔ (which will be normal for

k ≥ n − 1, see [9, Theorem 2.2.12]) in the construction that follows. This is related to
ampleness versus very ampleness of the toric divisor encoded by the given polytope
Δ. There is also a property of polytopes called very ampleness, implied by normality,
and relevant for this construction. See [9, Sect. 2.2] for details.

Assuming that Δ is normal, consider Δ ∩ Z
n = {m0, . . . ,mk}, which is a finite

set, and the map

(C×)n → P
k given by (t1, . . . , tn) �→ [tm0 : · · · : tmk ]

where tmi is theLaurentmonomial described above.Thismap turns out to be injective,
and one defines the toric variety XΔ as the closure of its image.

Reflexive lattice polytopes give rise, in this manner, to projective Fano toric vari-
eties. Recall that “Fano” means that the anticanonical divisor −KXΔ

is ample, for a
smooth variety. We will allow some singularities and say that a variety X is Fano if
it is Gorenstein and the dual of the dualizing sheaf ω∨

X (which is a line bundle) is
ample.

Proposition 3 [8, Proposition 3.5.5] The toric variety XΔ is Fano if and only if Δ

is a reflexive polytope.

Lattice points onΔ also give interesting hypersurfaces in XΔ: keeping the notation
as before, the equation

a0t
m0 + · · · + akt

mk = 0 (1)

defines a hypersurface in (C×)n (for any given coefficients a0, . . . , ak ∈ C), and the
closure of this in XΔ is then a hypersurface V ⊆ XΔ. Moreover, if Δ is reflexive
every such hypersurface is a divisor in the same divisor class, the anticanonical class
| − KXΔ

|.
Example 2 The quintic threefold in P4 can be recovered using this construction. Let
Δn denote the standard simplex Conv(0, e1, . . . , en) in Rn .

Let us take Δ ⊆ Z
4 to be

5Δ4 − (1, 1, 1, 1) = {a ∈ R
4 | a = 5b − (1, 1, 1, 1) for some b ∈ Δ4}.
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In other words, Δ is the convex envelope of the vectors

(−1,−1, −1, −1), (4, −1, −1, −1), (−1, 4, −1, −1), (−1,−1, 4, −1), (−1,−1, −1, 4)

obtained from the vertices 0, 5e1, 5e2, 5e3, 5e4 of 5Δ4 by subtracting the vector
(1, 1, 1, 1).

This is a reflexive polytope in R
4, and by applying the construction described

above, one can check that XΔ = P
4, and that (after homogenizing the corresponding

Eq. (1)) the hypersurface V is an arbitrary quintic threefold in P
4 (the exponent

vectors that show up in the lattice points of Δ give all homogeneous monomials of
degree 5 after homogenizing).

4 Batyrev’s Construction

We can now talk about Batyrev’s construction. Given a reflexive n-dimensional poly-
tope Δ, one can consider the projective toric variety XΔ (of dimension n), which
will be a Fano toric variety, and a general divisor in the anticanonical linear system
V ∈ | − KXΔ

|. For example one can take V to be determined by a Laurent polyno-
mial as in Eq. (1). For the moment let us pretend that everything is smooth (typically
this is false).

A (nice) anticanonical hypersurface in aFanovariety is going to have trivial canon-
ical bundle (by the adjunction formula KD = (KX + D)|D), so, taking for granted
that also the other conditions about vanishing of cohomologies will be satisfied, it is
going to be a Calabi–Yau variety, of complex dimension n − 1. The basic idea is that
by considering the dual Δ◦ and a general divisor in the anticanonical linear system
of XΔ◦ , we get a different Calabi–Yau variety V ◦ which should be mirror to V (or
rather, the family of hypersurfaces V should be mirror to the family of hypersurfaces
V ◦ - we will make this abuse of terminology from now on).

In reality things are more technical, because often XΔ is too singular, and needs
to be resolved via blowups in order for the divisor V to be a “nice” Calabi–Yau
variety (i.e. with nice singularities). One also wants the resolution to be crepant, i.e.
to preserve the canonical bundle, and for n ≥ 3 the projective toric variety given by
an n-dimensional lattice polytope does not need to admit a full crepant resolution
(i.e. producing a smooth variety as its outcome), so the best one can do is partially
resolve it.

Blowing up along a torus-invariant subvariety is quite convenient using toric
language, because it corresponds to combinatorial operations on the fan and polytope
associated to the toric variety. We will not go into details here, we will only mention
that Batyrev introduces the notion of a “maximal projective crepant partial (MPCP)
desingularization” for XΔ, corresponding to certain triangulations of the polytope
Δ. This is a birational map X ′ → XΔ which partially resolves the singularities of
XΔ and preserves the canonical divisor. By taking a general anticanonical divisor
on X ′ we get a nice Calabi–Yau variety V (see [8, Proposition 4.1.3]). These MPCP
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desingularizations always exist in this context, and usually there is more than one
choice.

By choosing a MPCP for XΔ and one for XΔ◦ , we get Calabi–Yau varieties V and
V ◦ as general anticanonical sections of the partial resolutions, and these should form
mirror pairs. In the case of threefolds (so when Δ lives in R

4), V and V ◦ actually
turn out to be smooth. Some of the expected consequences of Mirror Symmetry have
indeed been proven for Batyrev mirrors V and V ◦.

Recall that, for a smooth projective complex variety X , theHodge number h p,q(X)

is the dimension dim Hq(X,Ω
p
X ) as a complex vector space, where Ω

p
X = ΩX ∧

· · · ∧ ΩX is the wedge product of p copies of the sheaf of Kähler differentials ΩX of
X . The Hodge numbers are usually arranged in a diagram called theHodge diamond,
depicted below for dim X = 3.

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h3,1 h2,2 h1,3

h3,2 h2,3

h3,3

These numbers have two important symmetries: Hodge theory implies that h p,q =
hq,p, and Serre duality implies that hn−p,n−q = h p,q . If in addition X is a Calabi–
Yau threefold, we also have h0,0 = h3,0 = 1 and h1,0 = h2,0 = 0, so that the above
diagram can be simplified to the following one

1

0 0

0 h1,1 0

1 h2,1 h2,1 1

0 h1,1 0

0 0

1

whose only relevant numbers are h1,1 and h2,1. Recall also that these Hodge num-
bers h1,1 = dim H 1(X,ΩX ) and h2,1 = dim H 1(X,Ω2

X ) = dim H 1(X, TX ) (where
TX

∼= Ω∨
X is the tangent bundle of X , and we used the fact that Ω3

X
∼= OX ) give

the number of parameters of deformations of a complexified Kähler class on X ,
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and of the complex structure of X respectively. Mirror symmetry predicts that
h1,1(X) = h2,1(X∨) and h2,1(X) = h1,1(X∨), where X∨ denotes the mirror of X ;
in other words, the Hodge diamonds of X and X∨ should be related by a reflection
with respect to a diagonal line through the center.

More generally, if X is a Calabi–Yau manifold of dimension bigger than 3, Mirror
symmetry predicts (among other facts) that h p,q(X) = hn−p,q(X∨) and hn−p,q(X) =
h p,q(X∨). For Batyrev’s construction, indeed this is known to be the case for p =
q = 1 (see below for some discussion about the general statement).

Theorem 1 ([8, Theorem 4.1.5], [2, Theorem 4.4.3]) The “Hodge numbers Mirror
Symmetry” for p = q = 1 holds for Batyrev mirrors, i.e. we have the equality of
Hodge numbers h1,1(V ) = hdim V−1,1(V ◦) and hdim V−1,1(V ) = h1,1(V ◦).

If we perform the construction starting from a reflexive lattice polytope Δ ⊆ R
4,

so that dim V = dim V ◦ = 3, then this is all that is needed to get the full symmetry
relation between the Hodge diamonds of V and V ◦. The proof of the theorem is
a computation of the Hodge numbers by using the dictionary of toric geometry to
reduce to combinatorics.

There are also other (partial) results about correspondence of complex/Kähler
moduli spaces and correlation functions of the A-model and B-model, that we will
not get into. See [8, Section 4.1.2] for a thorough discussion.

On the other hand, there are still also some open questions: it is not known

1. whether using this construction with a 4-dimensional reflexive polytope, V and
V ◦ give isomorphic SCFTs (this is known for some cases, like the quintic three-
fold);

2. whether for a reflexive n-dimensional polytope with n ≥ 5, the relations h p,q

(V ) = hdim V−p,q(V ◦) and hdim V−p,q(V ) = h p,q(V ◦) hold or not.

Question (2) has been partially answered in later work of Batyrev and Borisov [13].
Namely, they prove that for the string-theoreticHodge numbers h p,q

st (defined in [14]),
one has the equalities h p,q

st (V ) = hdim V−p,q
st (V ◦) and hdim V−p,q

st (V ) = h p,q
st (V ◦)

where V and V ◦ are Batyrev mirrors. Their result [13, Theorem 4.15] actually also
covers the more general case of complete intersections in Fano toric varieties of [3].
Moreover, if V is smooth or q = 1, then h p,q

st (V ) = h p,q(V ), so with these assump-
tions the answer to question (2) is known to be positive.

5 The Quintic Threefold

The original example of Mirror Symmetry for the quintic threefold falls into this
general framework.We already saw how to obtain the quintic as a Calabi–Yau hyper-
surface in the Fano toric variety P

4, using a polytope Δ in Example 2.
The dual of that polytope Δ is

Δ◦ = Conv(e1, e2, e3, e4, (−1,−1,−1,−1)).
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In fact, Δ has 5 facets F1, F2, F3, F4, F5, with supporting hyperplanes with equa-
tions xi = −1 for 0 ≤ i ≤ 4 and x1 + x2 + x3 + x4 = 1. The corresponding inner
normal vectors (i.e. the vector uF such that the facet F is described as the inter-
section of Δ with the hyperplane 〈a, uF 〉 = −1) are then given by e1, e2, e3, e4 and
(−1,−1,−1,−1) respectively. The claim now follows by the description of Δ◦
as Δ◦ = Conv(uF | F a facet of Δ). Note that both Δ and Δ◦ are combinatorially
standard simplices (in the sense that there is a bijection between their faces and the
faces of a standard simplex, compatible with inclusion and intersections), but the
way they are positioned in the lattice is important. For example Δ has 125 lattice
points, whereas Δ◦ has only 6.

Using Δ◦ as lattice polytope, one can check that XΔ◦ can be identified with the
quotient P4/G, where G is the group

G = {(a1, a2, a3, a4, a5) ∈ (Z/5)5 | a1 + a2 + a3 + a4 + a5 = 0}/(Z/5).

Here the quotient is by the diagonal subgroup, and G acts on P
4 by multiplication

by roots of unity in the obvious way.
Indeed, the primitive lattice generators of the rays of the normal fan of Δ◦ (which

is the fan corresponding to the toric variety XΔ◦ ) are precisely the vertices

(−1,−1, −1, −1), (4, −1, −1, −1), (−1, 4, −1, −1), (−1,−1, 4, −1), (−1,−1, −1, 4)

of Δ. if we denote by M ⊆ Z
4 the sublattice generated by these vectors, then by [9,

Proposition 3.3.7] there is an isomorphism XΔ◦ ∼= XΔ◦, M/(Z4/M), where XΔ◦, M
denotes the toric variety corresponding to the polytope Δ◦ with respect to the lattice
M , and the quotient is for the natural action of the finite group (Z4/M) on XΔ◦, M .
The quotient (Z4/M) is isomorphic to the group G described above, and XΔ◦, M is
isomorphic to P

4, as can be verified by checking that the normal fan of Δ◦ in M is
isomorphic to the fan for P4. See [9, Example 5.4.10] for more details.

As mentioned above the polytope Δ◦ has 6 lattice points (the five vertices and the
origin), so Eq. (1) in this case becomes

c0 + c1t1 + c2t2 + c3t3 + c4t4 + c5t
−1
1 t−1

2 t−1
3 t−1

4 = 0

which by using the coordinates of P4 and homogenizing (in a “toric” sense - see [9,
Sect. 5.4]) becomes

c0x
5
0 + c1x

5
1 + c2x

5
2 + c3x

5
3 + c4x

5
4 + c5x0x1x2x3x4 = 0.

By rescaling the coordinates one can assume c0 = c1 = c2 = c3 = c4 = 1. This
recovers the equation

x50 + x51 + x52 + x53 + x54 + ψx0x1x2x3x4 = 0
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that gives the mirror pencil of hypersurfaces (after resolving the singularities).

6 Further Developments

Batyrev–Borisov [3, 15] generalize the above to Calabi–Yau complete intersections
in Fano toric varieties. The combinatorics becomes more complicated, but the basic
idea is similar.

This time, the starting data is an (r + d)-dimensional reflexive polytope Δ,
together with a decomposition as a Minkowski sum

Δ = Δ1 + · · · + Δr

where Δi are lattice polytopes containing the origin (possibly on their boundary).
This is called a nef-partition. The lattice points of each Δi determine a family of
hypersurfaces of the Fano toric variety XΔ, and choosing for each i a generic hyper-
surface Vi among these, the intersection V1 ∩ · · · ∩ Vr is a a d-dimensional complete
intersection Calabi–Yau variety, that needs to be partially resolved, as in the case of
hypersurfaces.

To produce the mirror family the idea is to use polar duality again, but with a
variation with respect to the hypersurface case, because the origin might not be an
interior lattice point of Δi . Instead, one defines polytopes ∇i by the formula

∇i = {a ∈ R
d | 〈a, b〉 ≥ −1 for all b ∈ Δi and 〈a, b〉 ≥ 0 for all b ∈ Δ j , j �= i}.

One can prove that∇i are lattice polytopes containing the origin, and the Minkowski
sum∇ = ∇1 + · · · ∇r is a reflexive polytope of dimension r + d. This gives the dual
nef-partition, and by applying the same procedure outlined above, one obtains the
mirror of the subvariety corresponding to the original nef-partition. See [7, Sect. 6]
or the original papers for more details.

TheGross–Siebert program [4–6]mixes SYZMirror Symmetrywith theBatyrev–
Borisov construction. The idea of that is the following: given a Calabi–Yau manifold
X , in order to find amirror X∨, degenerate it (in a niceway) to a union of toric varieties
glued along toric strata (i.e. orbits for the action of the torus on the respective toric
variety). Note that this “degenerate” variety will not be smooth.

From the degeneration one can extract combinatorial gadget (which actually has
more structure...), called the dual intersection complex, that one can dualize via a
discrete Legendre transform, in a way that is similar to the polar polyhedron con-
struction. From the dual of the dual intersection complex we can construct a central
fiber, again union of toric varieties glued along toric strata, and (with a lot of work!)
construct a smoothing. The idea is that the smoothing should be mirror to the X that
we started with.

In [16] Gross compares this construction to the one of Batyrev–Borisov. He shows
that indeed nef-partitions give rise to toric degenerations, and that the algorithm
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that we crudely outlined above produces the same result as the Batyrev–Borisov
construction.

Acknowledgements I am happy to thank the anonymous referee for useful comments and sugges-
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