
Introduction to Stability Conditions

Rebecca Tramel

1 Motivation

Let X be a smooth projective Calabi–Yau variety over C. Then Db(X), the derived
category of coherent sheaves on X , is equivalent to the category of D-branes on
X [9]. In [10], Douglas defined a notion of stability for D-branes on X called �-
stability. This notion of stability was meant to pick out BPS-branes on X . In [7],
Bridgeland aimed to define a notion of stability directly for objects in Db(X) which
would correspond to �-stability for D-branes. Bridgeland’s stability can be defined
on any triangulated category, and hence has been studied in other cases, such as for
varieties which are not Calabi–Yau.

2 Definition of Stability

2.1 Example: P
1

Consider the example of Coh(P1), the category of coherent sheaves on P
1. The

objects in this category are all direct sums of the following building blocks:

1. Line bundles O(n), n ∈ Z.
2. Torsion sheaves Onx , x ∈ P

1.

There are two invariants which can be assigned to each type of sheaf. First, there is
the rank of the sheaf. The rank of a line bundle is 1, and the rank of a skyscraper
sheaf is 0. Further, there is the degree of the sheaf. The degree of the line bundle
O(n) is n, and the degree of the torsion sheaf Onx is n.

Both the rank and degree functions can be defined more generally for any sheaf
on P

1. Both invariants are additive on short exact sequences. So, for example, the
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rank and degree ofO(2) ⊕ O(4) ⊕ Ox are 2 and 7 respectively. Similarly, all objects
in Db(Coh(P1)) are extensions or shifts of line bundles and torsion sheaves, hence
we could define the degree and rank functions for any objects in Db(Coh(P1)).

We can define a group homomorphism Z : K (Db(Coh(P1))) → C as

Z(E ·) = −degree(E ·) + i rank(E ·)

for E · ∈ Db(Coh(P1)). This is well-defined since degree and rank are additive
on short exact sequences. Further, if we consider the subcategory Coh(P1) inside
Db(Coh(P1)), the image is the upper half plane.

degree

rank

O(−1)O(1)O(2) O. . . . . .

OxOx ⊕ Oy. . .

1

2

3

For each E · ∈ Db(Coh(P1)) we can write Z(E ·) = m(E ·)eπiφ(E) for some
m(E ·) > 0. We call m(E ·) the mass of E · and φ(E ·) the phase of E ·. Note that
for objects E in Coh(P1), the phase lies in the range 0 < φ(E) ≤ 1.

For E ∈ Coh(P1), we say E is Z -stable if for all subsheaves F � E , φ(F) <

φ(E). We say E is semistable if for all subsheaves F � E , φ(F) ≤ φ(E). It is easy
to check that the only stable sheaves are line bundles and skyscraper sheaves, and
that a sheaf is semistable if and only if it is either a direct sum of skyscraper sheaves
or a direct sum of line bundles all of the same degree.

We can use this fact to construct a filtration of a sheaf E ∈ Coh(P1) whose suc-
cessive quotients are semistable sheaves of strictly decreasing phase as follows.
We write E = ⊕

xi∈P1 Ox ⊕ ⊕s
j=1 O(n j ) for a collection of points xi ∈ P

1 and
n1 ≥ n2 ≥ · · · ≥ ns . Then we can construct a filtration
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0 E1 E2 · · · Et E

⊕
xi∈P1 Oxi

⊕
nj=n1

O(nj)
⊕

nj=ns
O(ns)

by building E out of its summands, one type at a time. Such a filtration is called a
Harder-Narasimhan, or HN, filtration.

2.2 Definition

Definition 2.1 Let D be a triangulated category. A heart of a bounded t-structure is
a full additive subcategory A of D satisfying

1. Homi (A, B) = 0 for i < 0 and A, B ∈ A.
2. Objects in Db(X) have filtrations by cohomology objects in A. That is, for all

nonzero E · ∈ Db(X), there is a sequence of exact triangles

0 = E·
0 E·

1 E·
2 · · · E·

n−1 E·
n = E·

A·
1 A·

2 A·
n

such that Ai [−ki ] ∈ A for integers k1 > · · · > kn .

Definition 2.2 ([7, Proposition 5.3]) A Bridgeland stability condition is a pair σ =
(Z ,A) where Z : K0(Db(X)) → C is a group homomorphism and A is a heart of a
bounded t-structure. The pair must further satisfy that

1. Z(A \ {0}) ⊆ {reiπφ | r > 0, 0 < φ ≤ 1}. Define the phase of 0 �= E ∈ A to be
φ(E) := φ. We say E ∈ A is Z -semistable if for all nonzero subobjects F ∈ A
of E , φ(F) ≤ φ(E). E is Z -stable if for all nonzero subobjects F ∈ A of E ,
φ(F) < φ(E).

2. The objects of A have Harder-Narasimhan filtrations with respect to Z . That is,
for every E ∈ A there is a unique sequence of inclusions

0 = E0 ⊆ E1 ⊆ · · · ⊆ En−1 ⊆ En = E

such that the successive quotients Ei/Ei−1 are Z -semistable, and the phases
φ(E1/E0) > φ(E2/E1) > · · · > φ(En−1/En−2) > φ(En/En−1).

There is an alternate definition of a Bridgeland stability condition, given in [7,
Definition 5.1]. I will give this definition as well. First, we must define a slicing of a
triangulated category.



52 R. Tramel

Definition 2.3 A slicing P of a triangulated category D consists of full additive
subcategories P(φ) for each φ ∈ R satisfying

1. For all φ ∈ R, P(φ + 1) = P(φ)[1].
2. If φ1 > φ2, A1 ∈ P(φ1), and A2 ∈ P(φ2), then Hom(A1, A2) = 0.
3. For every E ∈ D, there is a finite sequence of real numbers

φ1 > φ2 > · · · > φn

so that there is a sequence of exact triangles

0 = E·
0 E·

1 E·
2 · · · E·

n−1 E·
n = E·

A·
1 A·

2 A·
n

such that Ai ∈ P(φi ) for each i = 1, . . . , n.

Definition 2.4 A stability condition σ = (Z ,P) on D consists of a group
homomorphism Z : K (D) → C and a slicing P such that if 0 �= E · ∈ P(φ), then
Z(E ·) = m(E)eπiφ(E ·) for some m(E ·) ∈ R>0.

In this definition, the semistable objects of phase φ are defined to be the objects
of P(φ). Note that the phase of an arbitrary E · ∈ D is not well-defined, only the
objects of slicings P(φ) have well-defined phase.

This definition is equivalent to the previous definition. The heartA is replaced by
the category P(0, 1], the extension closure of the collection of objects in P(φ) for
0 < φ ≤ 1. That this category is necessarily abelian is shown in [7, Proposition 5.3].
In fact, one can show that all the subcategories P(φ) are abelian [7, Lemma 5.2].

3 Examples

3.1 Curves

For a smooth projective curve C of genus g, stability conditions can be constructed
of the type described for P

1, with heart Coh(S) and central charge Z = −degree +
i rank. Note that for g > 0, sheaves are more complicated, and vector bundles are
no longer necessarily direct sums of line bundles. Hence HN filtrations must be
constructed more carefully.

There is an action of G̃L
+
(2, R) [7, Lemma8.2] on the space of stability conditions

on C (or on any smooth projective variety). If we consider an element of this group
to be a pair (T, f ) where T is a linear transformation from R

2 to R
2 which is

an orientation preserving isomorphism, and f : R → R is increasing, and satisfies
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f (φ + 1) = f (φ) + 1 for all φ ∈ R, then it acts on a stability condition (Z ,P) by
replacing Z with T−1Z , and replacing P(φ) with P( f (φ)).

In fact, if g > 0, then up to the action of G̃L
+
(2, R) the previous construction of

stability conditions on a curve in terms of rank and degree gives all possible stability
conditions on C [11]. There are other possible stability conditions on P

1 described
in [5, 12].

3.2 Quivers

First, consider the following quiver, Q.

A representation V of this quiver consists of a choice of two vector spaces, V1 and
V2, and two linear maps x and y from V1 to V2.

V1 V2

x

y

Suppose we wish to define a stability condition on Q. We may start with the
abelian category Rep(Q). If we pick any two numbers z1, z2 ∈ C which lie in the
upper half plane or along the negative real axis, we can define a central charge

Z(V ) = z1dim(V1) + z2dim(V2).

In other words, we choose the images of the two simple representations, S1 and S2,
pictured below.

S1 :

C 0

0

0
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S2 :

0 C

0

0

We can then extend our central charge to complexes of representations by requiring it
to be additive on exact triangles. We claim that the pair (Rep(Q), Z) is a Bridgeland
stability condition on Db(Rep(Q)).

The fact that the image of Rep(Q) lies in the upper half plane follows from the
fact that dimensions are positive, and from the choice of z1 and z2. It remains to
show that each representation V of Q has an HN filtration. This is argued nicely in
[2, Theorem 2.1.6]

It is interesting to note in this example how the choice of z1 and z2 controls which
representations are stable. Suppose first that we pick z2 so that its phase is larger than
z1. S2 is a subobject of any representation for which V2 �= 0, and S1 is a quotient
of any representation for which V1 �= 0. Hence no object can be stable besides the
simple representations.

On the other hand, suppose we choose z1 so that its phase is larger than z2. Then
again, S1 and S2 are necessarily stable. Now, however, so is any representation for
which V1 and V2 are one-dimensional. Hence, these stable objects are parameterized
by the choice of linear maps x, y. Up to scaling, we can suppose x = 1. In this way,
we see a one-to-one correspondence between stable representations of Q and points
of P

1.
Reference [6] shows that there is an equivalence of categories Db(Rep(Q)) ∼=

Db(Coh(P1)). This equivalence is given explicitly by the functor RHom(O ⊕
O(1),−) : Db(Coh(P1)) → Db(Rep(Q)). Such an equivalence always sends a heart
of a bounded t-structure to a heart of a bounded t-structure. Hence if we consider
the stability conditions we have constructed here on Rep(Q), there should be corre-
sponding stability conditions on a heart inDb(Coh(P1)). Note that the inverse image
of Rep(Q) under this equivalence is not Coh(P1), so this already gives an example
of a stability condition on P

1 with a heart that is not Coh(P1). The heart on P
1 we

get via this map can also be constructed by the process of tilting, described below.

3.3 Surfaces, Threefolds, and Higher Dimensional Varieties

Let X be a smooth projective variety of dimension n. In order to define a central
charge, we may wish to start with the example of curves and generalize the ideas
of degree and rank. In order to do this, we may choose an ample divisor ω on X ,
and use the Chern characters of sheaves on X to define the central charge. This is
convenient, since these quantities are once again additive on short exact sequences.
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For a sheaf E ∈ Coh(X) (or an object E · ∈ Db(Coh(X)), our numerical invariants
are now ωn · ch0(E·),ωn−1 · ch1(E·), . . ., ω0chn(E·). Note that if n = 1, this does not
depend on the choice of ω, and gives us exactly the rank and degree of E .

However, it is not possible to define a stability condition on the heart Coh(X)with
central charge in terms of these quantities for n > 1. Hence we must find a different
choice of abelian subcategory of Db(Coh(X)). One technique for constructing new
hearts inside Db(Coh(X)) is called tilting. In order to perform the process of tilting,
one chooses two full additive subcategories T and F in Coh(X) which form what is
called a torsion pair.

Definition 3.1 A torsion pair in a heart A is a pair (T ,F) of full additive subcate-
gories of A such that

1. If T ∈ T and F ∈ F , then Hom(T, F) = 0.
2. For all E ∈ A there is an object T ∈ T and F ∈ F so that the sequence 0 →

T → E → F → 0 is exact.

We then replace our category Coh(X) with the tilt

A# = {E · ∈ Db(X) | H 0
A(E ·) ∈ T , H−1

A (E ·) ∈ F , Hi
A(E ·) = 0 for i �= 0,−1}

whose elements are 2-term complexes with restrictions on cohomology. This process
can then be repeated to construct more hearts.

If X is a surface, it is shown in [1, 8] that this process can be used to construct
stability conditions on X . In particular, we choose another class B ∈ NSR(X), and
then can write the central charge formula explicitly as

Z(E ·) = −
∫

X
eB+iωch(E·).

In particular, [1] shows that this central charge, paired with a heart which is a single
tilt of Coh(X) given explicitly in terms of ω and B, give a stability condition on X .

For n > 2, one might hope a similar process might work. We might hope that the
same central charge formula, and a heart constructed in terms of ω and B by tilting
Coh(X) perhaps n − 1 times could give a stability condition on X . Unfortunately,
this has been difficult to prove. It is conjectured true for threefolds in [4], with the
heart given explicitly, although the exact conjecture in [4] has been shown not to
hold for certain threefolds in [14]. It is shown only for certain threefolds, in [3, 4,
13].
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