
Introduction to Topological String
Theories

Kento Osuga

1 Mathematical Background

In this section, we give mathematical definitions and some results that physicists
might not be familiar with, but these are necessary to understand the topological
A-model and B-model and mirror symmetry. See [1, 2] for more details.

1.1 Complex Manifolds

Anm-dimensional complexmanifold is defined to be a 2m-dimensional realmanifold
which locally looks Cm with holomorphic transition functions, hence any complex
manifold is a real manifold. The converse is however not always true and we need
to introduce the concept of complex structure. Let M be an 2m-dimensional real
manifold with tangent bundle T M and cotangent bundle T ∗M , and we denote by
�(⊗k T M ⊗l T ∗M) the space of tensor fields of rank (k, l). We define an almost
complex structure J ∈ �(T M ⊗ T ∗M) to be a smooth tensor field of rank (1,1) on
M satisfying J a

c J c
b = −δa

b . Then we define the Nijenhuis tensor N which locally
takes the form

N a
bc = J d

b (∂d J a
c − ∂c J a

d ) − J d
c (∂d J a

b − ∂b J a
d ). (1)

If N = 0 everywhere, J is called a complex structure. It is proven that an
2m-dimensional real manifold can be considered to be an m-dimensional complex
manifold only if it admits a complex structure J . Roughly speaking, a complex
structure tells how to mix local coordinates (zi , z̄i ).
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1.2 Calabi–Yau Manifold

A Hermitian metric h on a complex vector bundle E over a complex manifold M is
a smooth section h ∈ �(E ⊗ E) satisfying

h(u, v̄) = h(ū, v), h(u, ū) ≥ 0, u, v ∈ E . (2)

Locally h can be written as
h = hab̄dza ⊗ dzb̄. (3)

The Riemannian metric g on complexified cotangent bundle T ∗
C M is defined to

be the real part of the Hermitian metric

g = 1

2
(h + h̄). (4)

On the other hand, the imaginary part

ω = i

2
(h − h̄), (5)

is called the Hermitian form. All h, g, ω are compatible with a complex structure
J , i.e., h(u, v̄) = h(Ju, J v̄). Also note that any of these three uniquely determines
the other two. A Kähler manifold is defined to be a complex manifold with the non-
degenerate closed Hermitian form dω = 0 and ω in this case is called a Kähler form.
It is known that locally a Kähler form is given by a so-called Kähler potential K as

ωab̄ = igab̄ = i∂a ∂̄b̄ K . (6)

One can calculate the Riemann tensors by the Riemannian metric g and it turns
out that all Rab = Rāb̄ = 0 on a Kähler manifold. A Calabi–Yau manifold is defined
to be a compact Ricci flat Kähler manifold, which is our interest in topological string
theories.

1.3 Cohomologies

On a complex manifold M , we define a (p,q)-form1 which locally is given as

A = Aa1···apb1···bq (z, z̄)dza1 ∧ · · · ∧ dzap ∧ dz̄b1 ∧ · · · ∧ dz̄bq . (7)

1Do not be confused with type (k,l) tensors.
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The space of p-forms on M is the direct sum of the space of (p − q, q) forms over q.
Accordingly there exists three different exterior derivatives, namely d which maps
p-forms to (p + 1)-forms, ∂ which maps (p, q)-forms to (p + 1, q)-forms and ∂̄

which maps (p, q) to (p, q + 1)-froms. They are all nilpotent.
Let us denote d-cohomology, ∂-cohomology and ∂̄-cohomology by H p(M),

H p,q
∂ (M), and H p,q

∂̄
(M) respectively. Then a Kähler form ω is, for example, in

H 2(M) and also in H 1,1(M). There is no relation among these cohomologies in
general but if M is a Kähler manifold, it is known that H p,q

∂ (M) = H p,q
∂̄

(M) and

H p(M) =
⊕

H p−q,q(M). (8)

We call h p,q = dim H p,q(M) the Hodge numbers of M and for a Kähler manifold
they satisfy the following relations

h(p,q) = h(q,p), h(p,q) = h(m−p,m−q). (9)

1.4 Chern Class

Let us consider a connection form2 ω̃ on M and define the curvature form Ω as

Ω = dω̃ + ω̃ ∧ ω̃. (10)

Then the Chern class is defined as

c(M) = det

(
I + iΩ

2π

)
= c0(M) + c1(M) + c2(M) + · · · , (11)

where nth Chern class cn(M) is given by the term with n powers of Ω .
In particular, we find

c0(M) = 1, c1(M) = iTr(Ω)

2π
. (12)

For a Calabi–Yau manifold, it is known that c1(M) = 0, which becomes a key to
define the B-model in Sect. 6. Note that the requirement of the Ricci flatness is indeed
equivalent to the requirement c1(M) = 0.

One may be concerned that this definition relies on a connection ω̃ so different
choices of a connection gives different Chern classes. However, this turns out to be
an overthinking. The Chern classes are independent of the choice of connection.

2This is called a spin connection in supergravity.
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1.5 Moduli Spaces of Calabi–Yau manifolds

We denote a Calabi–Yau manifold by MC within this subsection. There is a theorem
by Calabi and Yau that given a complex manifold with vanishing first Chern class,
there is precisely one Calabi–Yau manifold in each Kähler class. We thus define
the moduli space MC of Calabi–Yau manifolds to be a space of all possible Kähler
classes and complex structures on MC . It is shown that h2,0 = h0,2 are fixed by
dim(MC), and especially they are zero if dim(MC) ≥ 3.

It is suggested that the Kähler part of M is related to H 1,1(MC) since ω ∈
H 1,1(MC). More precisely, the tangent space of it is isomorphic to H 1,1(MC). On
the other hand, the complex structure part of M is more complicated in general so
let us stick on M of dimensions three. In this case, the tangent space of infinitesimal
deformation of complex structure of M is shown to be isomorphic to H 2,1(M). In
fact one can explicitly calculate some of the Hodge numbers for the Calabi–Yau
3-fold and the hodge diamond becomes

1
0 0

0 h1,1 0
1 h2,1 h2,1 1
0 h1,1 0

0 0
1

(13)

Themirror symmetry between twoCalabi–Yau threefolds is a duality under reflec-
tion along the diagonal line, i.e. by interchanging h1,1 and h2,1, or in other words
H 1,1(M) (Kähler classes) and H 2,1(M) (complex structures) of two mirror pair the-
ories.

2 Topological and Cohomological Field Theory

Discussions in this section and here after are based on [2, 3]. Our interests in quantum
field theories are correlation functions, or observables, of physical operators in some
certain background. Here a background includes a choice of a manifold, metric and
coupling constants. A topological field theory, TFT, is defined to be a theory if all
physical observables are independent of the choice of the metric. So obviously any
observable has no explicit dependence of the metric, though it implicitly can.

This is a quite powerful requirement. Since one can freely change the metric and
coordinates in TFT, and these two end up with changing insertion points of local
operators without varying observables. That is, order of operators does not matter
and observables are independent of insertion points in contrast to standard quantum
field theories.
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A cohomological field theory, CohFT or sometimes called a Witten’s type TFT,
is a TFT with the following properties.

• There is a global Grassmann scalar symmetry operator Q such that Q2 = 0.
• All physical operators Oi are Q-closed, {Q,Oi } = 0.
• The vacuum state is Q-symmetric, Q|0 = 0.
• The EM tensor Tμν is Q-exact, Tμν = {Q, Gμν}, where Gμν is some operator.

The first three are properties of any quantum field theory with a BRST charge.
These three ensure that observables of physical operators Oi are invariant under a
Q-exact shift with some operator Λ

Oi ∼ Oi + {Q,Λi }. (14)

The fourth one is crucial tomake a theory topological. Let us consider a functional
derivative of an observable with respect to the metric g. Since physical operators are
required to be independent of the metric, we have

δ

δgμν
〈Oi1 · · ·Oin 〉 = i

∫
DφOi1 · · ·Oin

δS

δgμν
ei S[φ],

= i 〈Oi1 · · ·Oin {Q, Gμν}〉 ,

= 0, (15)

where φ is a field in the theory.
As a simple example, if the action is Q-exact, the theory is a CohFT since the

functional derivative with respect to the metric should be also Q-exact. Further since
the action is given by

exp
i

h

{
Q,

∫

M
V

}
, (16)

we have

d

dh
〈Oi1 · · ·Oin 〉 = 0. (17)

Therefore in this case, all correlation functions are given in the classical limit
(h → 0).

2.1 Nonlocal Operators

Consider an observable of physical local operators {Oi (xi )}. Since topological invari-
ance of the theory implies that it is independent of insertion points xi , the derivative
with respect to, for example, x1 vanishes
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dx1 〈O1(x1) · · ·Ok(xk)〉 = 〈dO1(x1) · · ·Ok(xk)〉 = 0. (18)

This means that dO must be Q-exact

dO (0)(x1) = {Q,O (1)(x1)}, (19)

where we denote the original physical operator by O (0) and the associated local
operator by O (1). If C is a closed circle in M , then

U (C) =
∮

C
O (1) (20)

is Q-closed. In fact,

{Q, U (C)} =
∮

C
dO (0) = 0. (21)

Topological invariance implies that δU (C) under small displacements ofC should
be Q-exact. Since Stoke’s theorem gives for a small area A with two boundaries
C1, C2, ∮

C1

O (1) −
∮

C2

O (1) =
∫

A
dO (1), (22)

it is again shown that dO (1) must be Q-exact dO (1) = {Q,O (2)}. Thus we have
another nonlocal operator for a closed two-dimensional surface S.

U (S) =
∫

S
O (2). (23)

One can of course repeat this procedure and eventually obtain a Q-closed nonlocal
operator

U (M) =
∫

M
O (m), (24)

where m is dimensions of M . Since this is independent of the metric by construction
and Q-closed, one can freely addO (m) into the action S with some coupling constants
without spoiling the cohomological property.

3 Twisted N = 2 Supersymmetry

Let us consider a two-dimensional N = 2 supersymmetric theory in the superfield
formulation. There are two bosonic local variables z, z̄ and two Grassmann vari-
ables θ± and their complex conjugate θ̄±. In our conventions, we define θ̄− to be a



Introduction to Topological String Theories 215

complex conjugate of θ+. This is because under the Lorentz transformation z �→
e2iαz, Grassmann variables are changed as

θ± �→ e±iαθ±, θ̄∓ �→ e±iαθ̄±. (25)

In the superfield formulation, the set of supersymmetry generators is represented
by

H = − d

idx0
= −i(∂z − ∂z̄),

P = − d

dx1
= −i(∂z + ∂z̄),

M = 2z∂z − 2z̄∂z̄ + θ+
∂

∂θ+
+ θ̄+

∂

∂θ̄+
− θ−

∂

∂θ−
− θ̄−

∂

∂θ̄−
, (26)

Q± = ∂

∂θ±
+ i θ̄±∂±,

Q± = − ∂

∂θ̄±
− iθ±∂±,

where z = x1 + i x0. Note that the complex conjugate of ∂θ̄+ is −∂θ− . Their commu-
tators are

[M, H ] = −2P, [M, P] = −2H,

[M, Q±] = ∓Q±, [M, Q±] = ∓Q±, (27)

{Q±, Q±} = P ± H,

and others are zero. Note that transformations of supercharges under the Lorentz
operator M are a half of those of H, P which represents that they are spinorial
quantities.

Let Φ be a superfield, then a super transformation is given by a Grassmann
parameter ε± as δΦ = (ε− Q+ + ε+ Q−)Φ. However since there are no constant
covariant spinors ε± for arbitrary manifolds, these supersymmetries Q± are not
global in general.

Fortunately since we have two supersymmetries, there is an additionalU (1) sym-
metry, called an R-symmetry, between them and it plays an important role in con-
structing a CohFT. In particular, consider the following two independent RV , RA

transformations

RV : (θ+, θ̄+) �→ (e−iβθ+, eiβ θ̄+), (θ−, θ̄−) �→ (e−iβθ−, eiβ θ̄−),

RA : (θ+, θ̄+) �→ (e−iβθ+, eiβ θ̄+), (θ−, θ̄−) �→ (eiβθ−, e−iβ θ̄−),
(28)
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and they leave z, z̄ invariant. That is, these are rotation among Grassmann variables.
Their generators in terms of θ and nonzero commutators are given by

FV = −θ+
∂

∂θ+
+ θ̄+

∂

∂θ̄+
− θ−

∂

∂θ−
− θ̄+

∂

∂θ̄−
,

FA = −θ+
∂

∂θ+
+ θ̄+

∂

∂θ̄+
+ θ−

∂

∂θ−
− θ̄−

∂

∂θ̄−
,

(29)

[FV , Q±] = +Q±, [FV , Q±] = −Q±,

[FA, Q±] = ±Q±, [FA, Q±] = ∓Q±.
(30)

Note that these commutators are different from those in (27), though they are similar
as FV , FA are basically generators of U (1).

Now we get to a crucial argument. Let us define a new Lorentz operator as

MA = M − FV , or MB = M − FA, (31)

then their commutators with H, P remains unchanged while those with supercharges
are

[MA, Q+] = −2Q+, [MB, Q+] = −2Q+,

[MA, Q−] = 0, [MB, Q+] = +2Q+,

[MA, Q+] = 0, [MB, Q+] = 0,

[MA, Q−] = +2Q−, [MB, Q−] = 0. (32)

A theory with the Lorentz generator MA is called A-twisted and one with MB is
B-twisted. In an A-twisted theory, if one defines Q A = Q+ + Q− then we have

[MA, Q A] = 0, {Q A, Q A} = 0, (33)

The first commutator shows that Q A transforms as a scalar under the Lorentz trans-
formation MA so does its associated parameter εA. That is, Q A-symmetry is globally
defined. The second equation suggests that one can construct a CohFT with Q A.

Similarly in a B-twisted model, commutators with Q B = Q+ + Q− are

[MB, Q B] = 0, {Q B, Q B} = 0, (34)

which suggests the existence of another CohFT. Note that these observations only
guarantee the first condition for a CohFT. We will explicitly see in the next section
that we can indeed construct two CohFTs from N = 2 supersymmetric theory.
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4 Sigma Model and R-anomalies

We study a supersymmetric nonlinear sigma model in two dimensions, which gives
the topological A-model and B-model after twisting. Let Σ be a Riemann surface of
two dimensions and M be a target space of complex dimensions m with the metric g
then the sigma model governs maps Φ : Σ → M . The on-shell action of this model
is given as

S = 2t
∫

Σ

d2z

(
1

2
gI J ∂zφ

I ∂z̄φ
J + i

2
gI J ψ

I
−Δzψ

J
−

+ i

2
gI J ψ

I
+Δz̄ψ

J
+ + 1

4
RI J K Lψ I

+ψ J
+ψ K

− ψ L
−

)
, (35)

where t is a coupling constant and Δ is the covariant derivative with respect to the
metric on both Σ and M .

Let K , K be the canonical, and anti-canonical line bundles ofΣ andT 1,0M, T 0,1M
be the complexified tangent bundles of M respectively. Then each field lives in

φa ∈ Φ∗(T 1,0M), (36)

φā ∈ Φ∗(T 0,1M), (37)

ψa
+ ∈ K 1/2 ⊗ Φ∗(T 1,0M), (38)

ψ ā
+ ∈ K 1/2 ⊗ Φ∗(T 0,1M), (39)

ψa
− ∈ K

1/2 ⊗ Φ∗(T 1,0M), (40)

ψ ā
− ∈ K

1/2 ⊗ Φ∗(T 0,1M). (41)

If M is Kähler, then it has the supersymmetry transformations listed below. (If M is
not Kähler, it is still supersymmetric, just not with (2,2) supersymmetry, only (1,1).)

Let ε−, ε̄− ∈ K −1/2 and ε−, ε̄− ∈ K
−1/2

. Then the super transformation laws with
these parameters are respectively

δφa = iε−ψa
+ + iε+ψa

−,

δφā = i ε̄−ψ ā
+ + i ε̄+ψ ā

−,

δψa
+ = −ε̄−∂zφ

a − iε+ψb
−�a

bcψ
c
+,

δψ ā
+ = −ε−∂zφ

ā − i ε̄+ψ b̄
−�ā

b̄c̄
ψ c̄

+, (42)

δψa
− = −ε̄+∂z̄φ

a − iε−ψb
+�a

bcψ
c
−,

δψ ā
− = −ε+∂z̄φ

ā − i ε̄−ψ b̄
+�ā

b̄c̄
ψ c̄

+.
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Now let us discuss the R-anomalies. For simplicity, we drop the a-indices and
±-indices. In quantum field theories with fermions, one needs to be careful about
their zero modes. In our model (35), the following part is problematic

∫
Dψ Dψ exp(ψΔψ). (43)

If ψ is expanded as ψ = ∑
ψ(k), it is given by

∏

k,l

∫
dψ(k)dψ

(l)
exp

(
ψ

(l)
Δψ(k)

)
. (44)

Thus if ψ has some zero modes, the path integral vanishes since
∫

dθ = 0 for any
Grassmann variable θ . We give some facts below which we omit proofs since they
are too technical:

• Except in some special cases, one can show that the number of zero modes of ψ±
is |k±| and that of ψ± is zero if k± is positive, while the number of zero modes of
ψ± is zero and that of ψ± is |k±| if k± is negative.

• k± satisfy k+ = −k−. Thus one can choose k = k− then there are k zero modes of
ψ−, ψ+, and no zero modes of ψ+, ψ− if k ≥ 0.

• k is given by the first Chern class of the target space as

k =
∫

φ(Σ)

c1(M). (45)

• The last term is small perturbation in string scale. However since small perturbative
effect is not expected to give some change of the integer number k± in topological
theories, we ignore the contribution from this term to k±.

Therefore in this model, we need to insert local operators to have nonzero observ-
ables and those are given in the following form

∫
Dψ+ Dψ+ Dψ− Dψ−Wa1···ak b̄1···b̄k

(
k∏

i=1

ψ
ai− ψ

b̄i

+

)
ei S, (46)

where we have assumed k ≥ 0. Equation (28) shows that the product of ψ− and ψ+
is invariant under the RV -symmetry, while it is not under RA. Thus the RA-symmetry
is broken unless k = 0. We arrive at the same conclusion if k ≤ 0. This implies that
the A-twisting is defined for any Kähler target space, but the B-twisting can only
be defined for Calabi–Yau target spaces since otherwise the RA symmetry is not
well-defined. In the next section, we twist this sigma model into the A-model and
B-model to investigate more details.
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5 The A-model

In the A-model, the spinors live in the following bundles

ψa
z := ψa

+ ∈ K ⊗ Φ∗(T 1,0(M)),

χa := ψa
− ∈ Φ∗(T 1,0(M)),

χ ā := ψ ā
+ ∈ Φ∗(T 0,1(M)), (47)

ψ ā
z̄ := ψ ā

− ∈ K ⊗ Φ∗(T 0,1(M)).

By (42), by setting ε− = ε+ = 0 and ε+ = ε, ε− = ε to be constants, we have

δφa = iεχa

δφā = i ε̄χ ā

δχa = δχ ā = 0 (48)

δψa
z = −ε̄∂zφ

a − iεχb
−�a

bcψ
c
z

δψ ā
z̄ = −ε∂z̄φ

ā − i ε̄χ b̄
−�ā

b̄c̄
ψ c̄

z̄

Note that δ2, or Q2
A vanishes up to the equations ofmotion.We can of course consider

the off-shell formalism and then Q2 = 0 without using the equations of motion.
The on-shell action becomes

S = 2t
∫

Σ

dz

(
1

2
gI J ∂zφ

I ∂z̄φ
J + igābψ

ā
z̄ Δzχ

b

+igab̄ψ
a
z Δz̄χ

b̄ + 1

2
Rab̄cd̄ψ

a
z ψ b̄

z̄ χ cχ d̄

)
,

∼ i t
∫

Σ

dz{Q A, V } + t
∫

Σ

Φ∗(ω), (49)

where the second term is the pull back of the target space Kähler form and the last
line is true up to terms vanishing by the ψ-equations of motion. This does not make
any difference in the A-model as shown shortly. V is given by

V = gab̄

(
ψa

z ∂zφ
b̄ + ψ b̄

z̄ ∂z̄φ
a
)

. (50)

The second termof (49) dependsonlyon the cohomologyclass ofω and thehomotopy
class of the map Φ. Let us denote it by i tβ · ω then the action is given by

S = −tβ · ω +
∫

Σ

{Q A, V }. (51)
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We can put i tβ · ω out from the path integral so a physical observable takes the form

〈
∏

a

Oa〉 = e−tβ·ω
∫

DφDχ Dψ
∏

a

Oaeit{Q A,
∫

V }. (52)

As discussed in Sect. 2, the path integral part is independent of t hence we can
calculate it in the classical limit as long as �(tβ · ω) > 0. The t-dependence factor
is called an instanton number.

The remaining terms in the Lagrangian can be written as

{Q A, V } = L − 2tgab̄

(
∂zφ

a∂z̄φ
b̄ − ∂zφ

b̄∂z̄φ
a
)

, (53)

In particular, it includes only ∂z̄φ
a and ∂zφ

ā . Then one realizes that L is minimized
(classical limit) when φ is holomorphic

∂z̄φ
a = ∂zφ

ā = 0. (54)

Thus the A-model sums over holomorphic maps fromΣ → M . In general, the space
of such maps is finite hence the path integral reduces to a finite dimensional integral
and it is known to be m(1 − g) for a Calabi–Yau manifold where g is the number of
genus of Σ .

Note that the instanton factor obviously depends on the choice of Kähler classes
while it is independent of complex structures of M hence all information about
complex structures of M is embedded in the definition of V . If one modifies a
complex structure of M , the variation of the action gives

δS = {Q A,

∫

M
δV }, (55)

which is irrelevant in CohFTs. Therefore, the A-model depends on the Kähler classes
on M but not their complex structures.

5.1 Local Operators

In order to construct local operators independent of both the worldsheet metric and
diffeomorphism, one can use only φ, χ but not ψ because ψ behaves as a vector
and the z-indices should be either contracted by the metric or integrated out into
a nonlocal operator. χ is on the other hand a fermion even after twisting hence a
well-defined local operator is in the form

OA = Aa1···apb̄1···b̄q
(φ)χa1 · · ·χap χ b̄1 · · ·χ b̄q . (56)
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By using (48), a simple calculation shows

{Q A,OA} = −Od A (57)

with d the exterior derivative acting on A. Indeed the de Rham cohomology on M
turns out to be isomorphic to the Q A-cohomology of the A-model as long as we
consider only local operators.

Let us come back to the question why there is no need of terms vanishing by
the ψ-equations of motion in (49). One can define a new operator Q̃ A such that
the second line of (49) is given by equality but instead the transformation law for
ψ in (48) is modified. Then one can of course consider another topological theory
with Q̃ A and what potentially changes is only the Q̃ A-cohomology, i.e. the form
of local operators. However since Q̃ A-operations on φ, χ are precisely the same as
Q A-operations, local operators given in (56) is not modified at all. Therefore there
is no topological difference between the A-model with Q A and Q̃ A.

After twisting, spinors are not in the same bundle as before so that the number of
zero modes is also different. For example, it is known that the number of zero modes
of χ is

k = m(1 − g), (58)

if the target space is a Calabi–Yau manifold, which is the same as the dimensions
of the space of the map φ3 and no zero modes of ψ for k ≥ 0. If k is negative,
one can regard that there is no zero mode of χ but |k| zero modes of ψ . However
in this case, one cannot construct local topological theories because ψ should be
inserted which is either nonlocal or is contracted by the worldsheet metric. Thus
nonzero observables in the local A-model are only the partition function if g = 1
and (m, m)-point functions if g = 0.

6 The B-model

In the B-model, the spinors live in the following bundles

ψa
+ ∈ K ⊗ Φ∗(T 1,0(M)),

ψa
− ∈ K ⊗ Φ∗(T 1,0(M)),

ψ ā
+ ∈ Φ∗(T 0,1(M)), (59)

ψ ā
− ∈ Φ∗(T 0,1(M)).

3This is not a coincidence. One can intuitively see from the isomorphism between d-cohomology
and Q A-cohomology by using the transformation laws of φ, χ .
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It is convenient to define spinors as

ηā = ψ ā
+ + ψ ā

−,

θa = gab̄(ψ
ā
+ − ψ ā

−), (60)

ρa
z = ψa

+, ρa
z̄ = ψa

−,

then by setting ε− = ε+ = 0 and ε̄− = ε+ = ε to be constants, the super transfor-
mations become much simpler than those of the A-model

δφā = iεηā,

δρ = −εdφa, (61)

δφa = δηā = δθa = 0.

The B-model Lagrangian is

L = t
∫

Σ

d2z

(
gI J ∂zφ

I ∂z̄φ
J + igab̄η

ā(Δzρ
b
z̄ + Δz̄ρ

b
z )

+iθa(Δz̄ρ
a
z − Δzρ

a
z̄ ) + Rab̄cd̄ρ

a
z ρc

z̄ η
b̄gd̄eθe

)
,

= i t
∫

Σ

d2z{Q B, V } + tW, (62)

where

V = gab̄

(
ρa

z ∂z̄φ
b̄ + ρa

z̄ ∂zφ
b̄
)

, (63)

W = −
∫

Σ

(
θa Dρa + i

2
Rab̄cd̄ρ

a ∧ ρcηb̄gd̄eθe

)
, (64)

where Δ is the extended exterior derivative on Σ . Note that this is an equality and
we did not use any equations of motion, unlike the A-model. Note that since W is an
integral of a (1,1)-form overΣ , it is independent of the worldsheet metric. Therefore
this model satisfies the requirements to be a CohFT.

Just like the A-model, any local operator should be consisted of φ, θ and η thus
it takes the form

OB = B
a1···ap

b̄1···b̄q
(φ)θa1 · · · θap η

b̄1 · · · ηb̄q , (65)

and by (61), one simply gets

{Q B,OB} = −O∂̄ B . (66)
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In contrast to the A-model, local operators include θ so that we cannot use the θ

equations of motion. Note that since B
a1···ap

b̄1···b̄q
in (65) has not only subscripts but also

superscripts, the Q B-cohomology is isomorphc to ⊕p,q Hq(M,∧pT 1,0M).
Fortunately this θ -dependence of W makes the B-model rather simpler. Since θ is

linear in W , and V is independent of it, one can redefine θ �→ θ/t hence we can get
rid of the t-dependence of the W term. The remaining V term is Q B-exact hence it
is independent of t . Accordingly any observable in B-model is proportional to some
power of t coming from the path-integral measure and local operators.

The path integral part is calculated in the classical limit similar to the A-model.
In the B-model, the V term has both (∂z̄φ

a, ∂zφ
ā) and (∂zφ

a, ∂z̄φ
ā) so that the

Lagrangian is minimized when

∂z̄φ
a = ∂zφ

ā = ∂zφ
a = ∂z̄φ

ā = 0. (67)

This is just a set of constant maps Φ : Σ → M . The space of such maps is a copy
of M hence the path integral simply reduces to an integral over M .

The number of fermion zero modes again changes after twisting. If the target
space is a Calabi–Yau, it is known that the difference of the number of η, θ zero
modes and that of ρ zero modes is k = m(1 − g). Note that the objects integrated
over M is not a (0, m)-form but (m, m)-form thus it is natural to contract with a
holomorphic (m, 0)-form Ω

Ba1···am

b̄1···b̄m
�→ B

a1···ap

b̄1···b̄q
Ωa1···ap Ωa′

1···a′
p
. (68)

Therefore, an observable of the B-model is an integral of wedge products of forms B
and Ω over M , which one can classically calculate. It is shown for Calabi–Yau man-
ifolds that the space of holomorphic (m,0)-forms is isomorphic to that of ∧d T 1,0M .

All properties of the B-model discussed so far are much simpler than those of the
A-model. The only thing which is not so clear yet to see is that it is independent of
Kähler classes. In fact a tedious calculation shows that a modification of the Kähler
metric on M changes W in (62) by {Q, · · · }. On the other hand, it is easy to see
by the above argument that it depends on complex structures since observables are
determined by the choice of the holomorphic (m, 0)-form Ω . As a conclusion the
A-model and B-model are a mirror pair under interchange of their Kähler class and
complex structure.

7 The Fixed Point Theorem

Weexplainwhy themapsφ reduce to holomorphicmaps in the A-model and constant
maps in the B-model here in an alternative way.

Consider an arbitrary quantum field theory with a group of symmetry G. Let F
be the configuration space of all fields in the theory then the path integral of some
operator O is
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∫

F
Oe−S = Vol(G) ·

∫

F/G
Oe−S +

∫

F0

Oe−S, (69)

where F0 is a subspace invariant under the G-action. Notice that if G is Grassmann,
Vol(F) should be also Grassmann and which implies that it vanishes because

∫
dθ =

0. Therefore the first term is zero.
Now let us consider F to be a nilpotent group then F0 is defined by fields such

that δΦ = 0. In the A-model (48) gives

∂z̄φ
a = ∂zφ

ā = 0, (70)

while in the B-model we have by (61)

dφa = 0. (71)

Thus F0 is the space of holomorphic maps in the A-model and the space of constants
maps in the B-model respectively.

8 Topological String Theories

We only focus on closed string theories so that there is no need to worry about
boundary conditions. The main difference between topological field theories and
topological string theories is whether or not we path-integrate over the worldsheet
metric hμν . This makes theories more interesting.

8.1 R-anomalies

Note that the sigma model given in Sect. 4 becomes a super-conformal field the-
ory once we couple the worldsheet metric in the action. There are three (bosonic)
local symmetries, namely two diffeomorphisms and the Weyl symmetry, in two-
dimensional CFT and the number of independent components of the metric is also
three. Thus one can always locally gauge-fix the metric in the flat form

hμν = ημν. (72)

However this is globally impossible since there are parameters that cannot be
gauged away. In general, there is no parameter for a sphere, one parameter for a
torus, the famousmodular parameter τ , and for higher genus there aremg = 3(g − 1)
parameters left.

Let us first consider the g > 1 case, for which the number of parameters is
3(g − 1). Conformal transformations in two dimensions are equivalent to holomor-
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phic transformations hence these modular parameters in fact describe change of
complex structure on Σ , which can be parametrized by μz

z̄, μ̄
z̄
z as

dz �→ dz + cμz
z̄d z̄, dz̄ �→ dz̄ + c̄μ̄z̄

zdz (73)

where c, c̄ are infinitesimal constants. After gauge-fixing the metric, one still need
to integrate over this 3(g − 1)-dimensional moduli space M̃g . The measure of M̃g

should be invariant under coordinate transformations of Σ so μz
z̄, μ̄

z̄
z should be con-

tracted by Gzz, Gz̄z̄ and integrated over Σ , where G is the Q-partner of the EM
tensor4. Thus, let (mi , m̄i ) be coordinates on M̃g then it is natural to guess the form
of the measure as

∫

M̃g

3(g−1)∏

i

dmi dm̄i

∫

Σ

Gzzμ
z
z̄(i)

∫

Σ

Gz̄z̄μ̄
z̄
z(i). (74)

It is indeed proven that this is correct, that is, this is invariant under coordinate
transformations on M̃g . We have arrived at the first crucial point of topological string
theories. Even though the metric itself is independent of R-transformation, its path
integral measure is not invariant under R-transformation because of fermionic fields
G, G. One can then see that the product of these twoG, G has no RV -chargewhile the
RA-charge is 2, thus the total RA-charge is 6(g − 1). On the other hand as discussed
before, the fermion zero mode requires 2m(1 − g) RA-charges after twisting to be
nonzero. Therefore the partition function vanishes for any genus g > 1 unlessm = 3,
a Calabi–Yau threefold.

For a sphere, there is no modular parameter so one can copy all results from
topological filed theories and observables of (3, 3)-forms are evaluated. The only
difference is that one needs to fix three rotational symmetries of a sphere. In particular
for a Calabi–Yau threefold, this can be done to consider three -point functions with
three marked points. That is, these points are fixed as a gauge choice.

For a torus, there is one modular parameter so we need to insert one local (1,1)-
form to have nonzero observables because then the RA-charge is consistent. Similar
to the case for a sphere, there is a axial symmetry on a tours hence the insertion point
of the local operator should be fixed.

As a summary for Calabi–Yau threefolds, nonzero observables of local operators
are a three-point function of (3,3)-forms on a sphere, a one-point function of (1,1)-
forms on a torus and partition functions for any higher genus.

4This result should be rigorously achieved by the Fadeev-Popov method so that the contracting
tensor is suggested to be fermionic and Gzz, Ḡ z̄z̄ are the most natural choice.
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8.2 Weyl Anomaly

In CFT, there is another anomaly we have to consider carefully, which is the Weyl
anomaly coming from the central charge of the Virasoro algebra

[Lm, Ln] = (m − n)Lm+n + c

12
m(m2 − 1)δm+n, (75)

and similarly for the right moving modes L̄m .
To twist a theory, we need to use the R-symmetry, which is a U (1) symmetry.

Thus by the Noether theorem, there exist associated conserved currents J (z), J̄ (z̄).
For open strings, J̄ (z̄) is the complex conjugate of J (z), on the other hand for closed
strings, they are independent. The modes of J satisfy

[Lm, Jn] = −n Jm+n, [Jm, Jn] = c

3
mδm+n, (76)

and similarly for J n . Thus by using these currents J, J , we can define the new stress
tensors as

T̃ ± = T ± 1

2
∂ J, T̃ ± = T ± 1

2
∂̄ J , (77)

and we denote their modes as L̃±
m, ˜̄L ±

m . This is another important point of topological
string theories that the newmodes simply obey theWitt algebra, i.e. no central charge.

[L̃±
m, L̃±

n ] = (m − n)L̃±
m+n, [L̃ ±

m, L̃ ±
n ] = (m − n)L̃ ±

m+n. (78)

As a result, there is no Weyl anomaly.
It turns out that this shift of the stress tensors is equivalent to the A-twisting or

B-twisting. In this sense, twisted string theories are somewhat more fundamental
to define anomaly-free consistent theories. For simplicity, let us choose + for both
definitions in (77) then the zero modes are

L̃0 = L0 − 1

2
J0, (79)

and similarly for the left-moving mode. The generators of the R-symmetry and the
new Lorentz symmetry M̃ are defined as

FL = 2π i J0, FR = 2π i J̄0, (80)

M̃ = 2π i(L̃0 − L̃0) = M − 1

2
(FL − FR), (81)

where M is the generator of the Lorentz symmetry before the shift. (29) implies
that FV + FA only acts on +-indices, i.e. left-moving indices and FV − FA on
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left-moving indices. That is, they are the generators of left- and right-moving
currents and it is natural to identify them with FL and FR . More accurately, they
are identified as

FV = 1

2
(FL + FR), FA = 1

2
(FL − FR). (82)

Thus (81) is none other than the Lorentz generator for the B-model and a similar

argument works for the A-model if one choose − sigh in the T̃ shift (77).
Further discussions about topological string theories, in particular nonlocal oper-

ators, are left to [2].
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