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1 Introduction

These are expanded notes based on a talk given at the Superschool on Derived
Categories and D-branes held at the University of Alberta in July of 2016. The goal
of these notes is to give a motivated introduction to the Strominger-Yau-Zaslow
(SYZ) conjecture from the point of view of homological mirror symmetry.

The SYZ conjecture was proposed in [35] and attempts to give a geometric expla-
nation for the phenomena of mirror symmetry. To date, it is still the best template for
constructing mirrors X̌ to a given Calabi–Yau n-fold X . We aim to give the reader
an idea of why one should believe some form of this conjecture and a feeling for the
ideas involved without getting into the formidable details. We assume some back-
ground on classical mirror symmetry and homological mirror symmetry as covered
for example in the relevant articles in this volume.

Should the readers appetite be sufficiently whet, she is encouraged to seek out
one of the many more detailed surveys such as [2, 3, 10–12, 18–20] etc.

2 From Homological Mirror Symmetry to Torus Fibrations

Suppose X and X̌ aremirror dual Kähler Calabi–Yau n-folds. Kontsevich’s homolog-
ical mirror symmetry conjecture [29] posits that there is an equivalence of categories

Fuk(X) ∼= Db(Coh(X̌))
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between1 the Fukaya category of X and the derived category of X̌ . This should make
precise the physical expectation that “the A-model on X is equivalent to the B-model
on X̌ .” The basic idea of the correspondence is summarized by the following table:

A-model on X B-model on X̌

Objects Lagrangians with flat U (m)-connection (L ,∇) (complexes) of coherent sheaves F
Morphisms Floer cohomology groups HF∗(L , M) Ext groups Ext∗(F,G)

Endomorphism algebra HF∗(L , L) = H∗(L) Ext∗(F,F)

Nowwe can now try to understand how this correspondence shouldwork in simple
cases. The simplest coherent sheaves on X̌ are structure sheaves of points Op and
indeed X̌ is the moduli space for such sheaves:

{Op : p ∈ X̌} ∼= X̌ .

Therefore there must be a family of Lagrangians with flat connections (L p,∇p)

parametrized by p ∈ X̌ and satisfying

H∗(L p) ∼= Ext∗(Op,Op).

Let us compute the right hand side explicitly.
This question is local so we can reduce to an affine neighborhood U of p. Since

U is smooth at p, then p is the zero set of a sectionOU → V ∼= O⊕n
U . Dualizing, we

obtain an exact sequence

V ∗ s �� OU
�� Op

�� 0

that we can extend by the Koszul resolution

0 �� ∧n V ∗ sn �� ∧n−1 V ∗ sn−1 �� . . .
s2 �� V ∗ s �� OU �� Op �� 0 .

where

sk(v1 ∧ . . . ∧ vk) =
k∑

i=1

s(vi )v1 ∧ . . . ∧ v̂i ∧ . . . ∧ vk .

Truncating and applying Hom(−,Op) gives us

0
∧n Vp

�� ∧n−1 Vp
�� . . .�� Vp

�� kp�� 0��

1One should work with the dg/A∞ enhancements of these categories but we ignore that here.
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where kp is the skyscraper sheaf at p, Vp is the fiber of V , and all the morphisms are
0 since s(w) vanishes at p for any w. It follows that

Ext∗(Op,Op) =
n⊕

k=0

k∧
Vp

where Vp is an n-dimensional vector space (in fact isomorphic by the section s to
TpU ).

Therefore we are looking for Lagrangians L p in X with

H∗(L p) ∼=
n⊕

k=0

k∧
Vp

where Vp is an n-dimensional vector space. If we stare at this for a while, we realize
this is exactly the cohomology of an n-torus; H∗(L p) ∼= H∗(T n). This suggests that
points p ∈ X̌ might correspond to Lagrangian tori in X with flat connections.

We are led to consider the geometry of Lagrangian tori in the symplectic manifold
(X,ω). The first thing to note is that under the isomorphism T X ∼= T ∗X induced
by the symplectic form, the normal bundle of a Lagrangian L is identified with its
cotangent bundle:

NL X ∼= T ∗L .

In fact,more is true. There is always a tubular neighborhoodof Nε(L) in X isomorphic
to a neighborhood of L in NL X , and under this identification we get that Nε(L) is
symplectomorphic to a neighborhood of the zero section in T ∗L with the usual
symplectic form by the Weinstein neighborhood theorem [38, Corollary 6.2].

On the other hand, if L ∼= T n is an n-torus then T ∗L ∼= R
n × T n is the trivial

bundle. Therefore we can consider the projection

μ : R
n × T n → R

n .

This is a Lagrangian torus fibration over T ∗L over an affine space. The restriction
of μ to the tubular neighborhood Nε(L) under the aforementioned identification
equips X with the structure of a Lagrangian torus fibration, at least locally around a
Lagrangian torus.

The SYZ conjecture predicts that this is true globally: given a Calabi–Yau mani-
fold X for whichwe expect mirror symmetry to hold, then X should be equippedwith
a global Lagrangian torus fibration μ : X → B which locally around smooth fibers
looks like the fibration T ∗T n → R

n over a flat base. By the previous discussion, X̌
should be the moduli space of pairs (L ,∇) where L is a Lagrangian torus fiber of
μ and ∇ is a flat unitary connection on the L . However μ can, and often will, have
singular Lagrangian fibers (see Remark 2.1.ii) and understanding how these singular
fibers affect X̌ is the greatest source of difficulty in tackling the SYZ conjecture.
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Let us momentarily restrict to the open locus B0 ⊂ B over which μ has smooth
torus fibers and denote the restriction μ0 : X0 → B0. Then there is an open subset
X̌0 ⊂ X̌ for which the description as a moduli space of pairs (L ,∇) of a smooth
Lagrangian torus fiber of μ0 equipped with a flat unitary connection makes sense.
We can ask what structure does X̌0 gain from the existence of μ : X → B?

Viewing B0 as the space of smooth fibers ofμ, there is a naturalmap μ̌0 : X̌0 → B0

given by (L ,∇) �→ L . Now a flat unitary connection ∇ is equivalent to a homomor-
phism

Hom(π1(L),U (m)).

Since X̌0 must be 2n real dimensional and μ̌0 is a fibration over an n real dimensional
base, the fibers must be n real dimensional and so m = 1. That is, the fibers of μ̌0

are given by
Hom(π1(L),U (1)) ∼= (L)∗

the dual torus of L . Ignoring singular Lagrangians, X̌0 ⊂ X̌ is equipped with a dual
Lagrangian torus fibration μ̌0 : X̌0 → B0 ⊂ B!

Conjecture 1 (Strominger-Yau-Zaslow [35]) Mirror Calabi–Yau manifolds are
equipped with special Lagrangian fibrations

X

μ
���

��
��

��
� X̌

μ̌����
��
��
��

B

such that μ and μ̌ are dual torus fibrations over a dense open locus B0 ⊂ B of the
base.

Remark 2.1 (i) We will discuss the notion of a special Lagrangian and the reason
for this condition in 2.1.

(ii) Note that unless χ(X) = 0, then the fibration μ must have singularities. Indeed
the only compact CY manifolds with smooth Lagrangian torus fibrations are
tori.

(iii) From the point of view of symplectic geometry, Lagrangian torus fibrations are
natural to consider. Indeed a theorem of Arnol’d and Liouville states that the
smooth fibers of any Lagrangian fibration of a symplectic manifold are tori [8,
Sect. 49].

This conjecture suggests a recipe for constructing mirror duals to a given Calabi–
Yau X . Indeed we pick a μ : X → B and look at the restriction μ0 : X0 → B0 to the
smooth locus. Thenμ0 is a Lagrangian torus fibrationwhichwemay dualize to obtain
μ̌0 : X̌0 → B0. Then we compactify X0 by adding back the boundary X \ X0 =: D
and hope that this suggests away to compactify the dual fibration to obtain amirror X̌ .
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It turns out the story is not so simple and understanding how to compactify X̌0 and
endow it with a complex structure leads to many difficulties arising from instanton
corrections and convergence issues for Floer differentials. Furthermore this strategy
to construct the dual depends not only on X but also on the chosen fibration μ and
indeed we can obtain different mirrors by picking different fibrations, or even from
the same fibration by picking a different “compactification” recipe. This leads to
mirrors that are Landau-Ginzburg models and allows us to extend the statement of
mirror symmetry outside of the Calabi–Yau case ([9, 28], etc). Finally, there are
major issues in constructing Lagrangian torus fibrations in general. Indeed it is not
known if they exist for a general Calabi–Yau, and in fact they are only expected to
exist in the large complex structure limit (LCSL) [24, 30]. This leads to studying
SYZ mirror symmetry in the context LCSL degenerations of CY manifolds as in the
Gross-Siebert program [20, 21]. We discuss these ideas in more detail in Sect. 5.

2.1 Some Remarks on Special Lagrangians

As stated, the SYZ conjecture is about special Lagrangian (sLag) torus fibrations
rather than arbitrary torus fibrations. Recall that a Calabi–Yau manifold has a non-
vanishing holomorphic volume form � ∈ H 0(X,�n

X ).

Definition 2.2 ALagrangian L ⊂ X is special if there exists a choice of� such that

Im(�)|L = 0.

There are several reasons to consider special Lagrangians:

• SLags minimize the volume within their homology class. In physics this corre-
sponds to the fact these are the BPS branes (see Sect. 2.2). Mathematically, this
corresponds to the existence of a conjectural Bridgeland-Douglas stability condi-
tion on the Fukaya category whose stable objects are the special Lagrangians (see
for example [27]).

• SLags give canonical representatives within a Hamiltonian isotopy class of
Lagrangians. Indeed a theorem of Thomas and Yau [37, Theorem 4.3] states that
under some assumptions, there is a unique sLag within each Hamiltonian defor-
mation class.

• The deformation theory of sLag tori is well understood and endows the base B
of a sLag fibration with the structures needed to realize mirror symmetry, at least
away from the singularities. We will discuss this in more detail in Sect. 4.1.

However, it is much easier to construct torus fibrations than it is to construct sLag
torus fibrations and in fact its an open problem whether the latter exist for a general
Calabi–Yau. Therefore for many partial results and in many examples, one must
get by with ignoring the special condition and considering only Lagrangian torus
fibrations.
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2.2 A Remark on D-branes and T-Duality

Strominger-Yau-Zaslow’s original motivation in [35] differed slightly form the story
above. Their argument used the physics of D-branes, that is, boundary conditions
for open strings in the A- or B-model.2

They gave roughly the following argument for Calabi–Yau threefolds . The mod-
uli space of D03 B-branes on X̌ must the moduli space of some BPS A-brane on
X . The BPS condition and supersymmetry necessitate that this is a D3 brane con-
sisting of a special Lagrangian L equipped with a flatU (1) connection. Topological
considerations force b1(L) = 3 and so the space of flat U (1) connections

Hom(π1(L),U (1)) ∼= T 3

is a 3 torus. Thus X̌ must fibered by D3 A-branes homeomorphic to tori and by
running the same argument with the roles of X and X̌ reversed, we must get a
fibration by tori on X as well.

The connection with homological mirror symmetry, which was discovered later,
comes from the interpretation of the Fukaya category and the derived category as
the categories of topological D-branes for the A- and B-model respectively. The
morphisms in the categories correspond to massless open string states between two
D-branes.

Now one can consider what happens if we take a D6 B-brane given by a line
bundle L on X̌ . By using an argument similar to the one above, or computing

Ext∗(L,Op) ∼= k[0],

we4 see that there is a one dimensional space of string states between L and Op.
Therefore the Lagrangian S in X dual to L must satisfy

HF∗(S, L) = k[0].

Remembering that the Floer homology groups count intersection points of
Lagrangians, this suggests that S must be a section of the fibration μ.

In summary, the SYZ Conjecture states that mirror symmetry interchanges D0

B-branes on X̌ with D3 Lagrangian torus A-branes on X and D6 B-branes on X̌
with D3 Lagrangian sections on X . On a smooth torus fiber of the fibration, this
is interchanging D0 and D3 branes on dual 3-tori. This duality on each torus is
precisely what physicists call T -duality and one of the major insights of [35] is that
in the presence of dual sLag fibrations, mirror symmetry is equivalent to fiberwise
T -duality.

2For background on D-branes see for example [2] or the other entries in this volume.
3D0, D3, …denote 0-dimensional, 3-dimensional, …D-branes.
4That is, k in degree zero and 0 in other degrees.



The SYZ Conjecture via Homological Mirror Symmetry 169

3 Hodge Symmetries from SYZ

The first computational evidence that led to mirror symmetry was the interchange of
Hodge numbers

h1,1(X) = h1,2(X̌)

h1,2(X) = h1,1(X̌)
(1)

for compact simply connected mirror Calabi–Yau threefolds X and X̌ . Thus the first
check of the SYZ conjecture is if it implies the interchange of Hodge numbers. We
will show this under a simplifying assumption on the SYZ fibrations.

Let f : X → B be a proper fibration and let i : B0 ⊂ B be the locus over which
f is smooth so that f0 : X0 → B0 is the restriction. Then the higher direct image of
the constant sheaf Rp f∗R is a constructible sheaf with

i∗Rp f∗R ∼= Rp( f0)∗R

for each p ≥ 0. Furthermore, Rp( f0)∗R is the local system on B0 with fibers the
cohomology groups H p(Xb, R) for b ∈ B0 since f0 is a submersion.

Definition 3.1 We say that f is simple if we can recover the constructible sheaf
Rp f∗R by the formula

i∗Rp( f0)∗R ∼= Rp f∗R

for all p ≥ 0.

Proposition 3.2 Suppose X and X̌ are compact simply connectedCalabi–Yau three-
folds with dual sLag fibrations

X

μ
���

��
��

��
� X̌

μ̌����
��
��
��

B

such that μ and μ̌ are simple. Assume further that μ and μ̌ admit sections. Then the
Hodge numbers of X and X̌ are interchanged as in (1).

Before the proof, we will review some facts about tori. If T is an n-torus, there is
a canonical identification

T ∼= H1(T, R)/�T

where �T denotes the lattice H1(T, Z)/tors ⊂ H1(T, R). Then the isomorphism
H 1(T, R) ∼= H1(T, R)∗ induces an identification

T ∗ ∼= H 1(T, R)/�∗
T
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where �∗
T = H 1(T, Z)/tors ⊂ H 1(T, R). It follows that H1(T ∗, R) = H 1(T, R)

and �T ∗ = �∗
T . More generally, denoting V = H1(T, R), there are isomorphisms

H p(T, R) ∼=
p∧
V ∗,

H p(T ∗, R) ∼=
p∧
V .

After fixing an identification
∧n V ∼= R, Poincaré duality gives rise to isomorphisms

H p(T, R) ∼= Hn−p(T ∗, R)

compatible with the identification �∗
T = �T ∗ .

Proof of Proposition 3.2 Applying the above discussion fiber by fiber to the smooth
torus bundle μ0 : X0 → B0, we obtain an isomorphism of torus bundles

R1(μ0)∗(R/Z) := (R1(μ0)∗R)/(R1(μ0)∗Z/tors) ∼= X̌0

over B. Similarly X0
∼= R1(μ̌0)∗(R/Z) and Poincaré duality gives rise to

Rp(μ0)∗R ∼= R3−p(μ̌0)∗R.

By the simple assumption on μ and μ̌ it follows that

Rpμ∗R ∼= R3−pμ̌∗R. (2)

We want to use this isomorphism combined with the Leray spectral sequence to
conclude the relation on Hodge numbers.

Let us analyze the cohomology of X and X̌ . First, H 1(X, R) = 0 by the simply
connected assumption and so H 5(X, R) = 0 by Poincaré duality. This implies the
Hodge numbers h0,1(X), h1,0(X), h2,3(X) and h3,2(X) are all zero. By Serre duality,
h2,0 = h0,2(X) = h0,1(X) = 0. Furthermore, h1,3 = h3,1 = h1(X,�3

X ) = h0,1 = 0
by the Calabi–Yau condition. Finally, h3,3 = h0,0 = 1 is evident and h0,3 = h3,0 =
h0(X,�3

X ) = 1 again by the Calabi–Yau condition. Putting this together gives us the
following relation between Hodge numbers and Betti numbers:

h1,1(X) = b2(X) = b4(X) = h2,2(X)

b3(X) = 2 + h1,2(X) + h2,1(X) = 2(1 + h1,2(X))

Of course the same is also true for X̌ . Thus it would suffice to show

b3(X̌) = 2 + h1,1(X) + h2,2(X) = 2(1 + h1,1(X)) (3)
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fromwhich it follows that h1,1(X) = h1,2(X̌) as well as h1,1(X̌) = h1,2(X) by apply-
ing the same argument to X .

The sheaves R3μ∗R and R0μ∗R are both isomorphic to the constant sheafR. As X
is simply connected, so is B sowededuceH 1(B, R) = 0 and similarly H 2(B, R) = 0
by Poincaré duality. Thus H 1(B, R0μ∗R) = H 2(B, R0μ∗R) = H 1(B, R3μ∗R) =
H 2(B, R3μ∗R) = 0 and Hi (B, R jμ∗R) = R for i, j = 0, 3. Next the vanishing
H 1(X, R) = H 5(X, R) imply that H 0(B, R1μ∗R) = H 3(B, R2μ∗R) = 0. Apply-
ing the same reasoning to μ̌ and using the isomorphism (2), we get

H 0(B, R2μ∗R) = H 0(B, R1μ̌∗R) = 0,

H 3(B, R1μ∗R) = H 3(B, R2μ̌∗R) = 0.

Putting this all together, the E2 page of the Leray spectral sequence for μ becomes

R

d1

������
�����

�����
�����

����� 0 0 R

0 H 1(B, R
2μ∗R) H 2(B, R

2μ∗R) 0

0 H 1(B, R
1μ∗R)

d2

������
�����

�����
�����

�����
� H 2(B, R

1μ∗R) 0

R 0 0 R

with the only possibly nonzero differentials depicted above. We claim in fact that d1
and d2 must also be zero.

Indeed let S ⊂ X be a section of μ. Then S induces a nonzero section s ∈ R ∼=
H 0(B, R3μ∗R) since it intersects each fiber in codimension 3. Furthermore S must
represent a nonzero cohomology class on X and so s ∈ ker(d1). This forces d1 to
be the zero map since H 0(B, R3μ∗R) is one dimensional. Similarly, the fibers of μ
give rise to a nonzero class in f ∈ H 3(B, R0μ∗R) ∼= R. Since the class of a fiber is
also nonzero in the cohomology of X as the fibers intersect the section, then f must
remain nonzero in coker(d2); that is, d2 must be zero.

This means the Leray spectral sequence for μ degenerates at the E2 page and
similarly for μ̌. In particular, we can compute

h1,1(X) = b2(X) = h1(B, R1μ∗R) = h1(B, R2μ̌∗R),

h2,2(X) = b4(X) = h2(B, R2μ∗R) = h2(B, R1μ̌∗R),

where we have again used (2). Therefore we can verify

b3(X̌) = 2 + h1(B, R2μ̌∗R) + h2(B, R1μ̌∗R) = 2 + h1,1(X) + h2,2(X)
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as required. �

Remark 3.3 The argument above (originally appearing in [16]) was generalized by
Gross in [17] to obtain a relation between the integral cohomologies of X and X̌ .

The reader may object that there are several assumptions required in the above
result. The existence of a section isn’t a serious assumption. Indeed all that was
required in the proof is the existence of a cohomology class that behaves like a
section with respect to cup products. As we already saw in 2.2, mirror symmetry
necessitate the existence of such Lagrangians on X dual to line bundles on X̌ and
vice versa. The simplicity assumption, on the other hand, is serious and isn’t always
satisfied. However, this still gives us a good heuristic check of SYZmirror symmetry.

4 Semi-flat Mirror Symmetry

In this section we will consider the case where μ and μ̌ are smooth sLag fibrations
so that B0 = B. This is often called the semi-flat case.

In this case we will see that the existence of dual sLag fibrations endows B with
the extra structure of an integral affinemanifoldwhich results in a toymodel ofmirror
symmetry on B. In fact, we will see that the dual SYZ fibrations can be recovered
from this integral affine structure. Finally, we will discuss an approach to realize
HMS conjecture in the semi-flat case.

4.1 The Moduli Space of Special Lagrangians

The starting point is the following theorem of McLean:

Theorem 4.1 (McLean [32, Sect. 3]) Let (X, J,ω,�) be a Kähler Calabi–Yau n-
fold. Then the moduli space M of special Lagrangian submanifolds is a smooth
manifold. Furthermore, there are natural identifications

Hn−1(L , R) ∼= TLM ∼= H 1(L , R)

of the tangent space to any sLag submanifold L ⊂ X.

The idea is that a deformation of L is given by a normal vector field v ∈
C∞(NL X, R). Then we obtain a 1-form α ∈ �1(L , R) and an n − 1-form β ∈
�n−1(L , R) by contraction with ω and Im� respectively:

α = −ivω,

β = ivIm�.
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It turns out that α and β determine each other and that v induces a sLag deformation
of L if and only if α and β are both closed. This gives the above isomorphisms by
the maps v �→ [α] ∈ H 1(L , R) and v �→ [β] ∈ Hn−1(L , R) respectively.

Note in particular that the isomorphism TLM ∼= H 1(L , R) depends on the sym-
plectic structure ω and the isomorphism TLM ∼= Hn−1(L , R) depends on the com-
plex structure through the holomorphic volume form �.

Definition 4.2 An integral affine manifold M is a smooth manifold equipped with
transition functions in the affine group R

n
� GLn(Z). Equivalently it is a manifold

M equipped with a local system of integral lattices � ⊂ T M .

The equivalence in Definition 4.2 can be seen by noting that if the transition
functions of M are affine transformations, they preserve the integral lattice defined
in local coordinates by

� := Span
Z

(
∂

∂y1
, . . . ,

∂

∂yn

)

⊂ TU. (4)

On the other hand, if there exists a local system of integral lattice � ⊂ T M with
a compatible flat connection ∇ on T M , then on a small enough coordinate patch
we can choose coordinates such that � is the coordinate lattice and the transition
functions must be linear isomorphisms on this lattice.

The vector spaces H 1(L , R) and Hn−1(L , R) glue together to form vector bun-
dles on M. Explicitly, if L ⊂ X × M is the universal family of sLags over M
with projection π : L → M then these bundles are R1π∗R and Rn−1π∗R respec-
tively. Similarly, the integral cohomology groups H 1(L , Z)/tors ⊂ H 1(L , R) and
Hn−1(L , Z)/tors ⊂ Hn−1(L , R) glue together into local systems of integral lat-
tices R1π∗Z/tors ⊂ R1π∗R and Rn−1π∗Z/tors ⊂ Rn−1π∗R. Applying Theorem
4.1 fiber by fiber yields two integral affine structures on M:

Corollary 4.3 There are isomorphisms R1π∗R ∼= TM ∼= Rn−1π∗R which endow
M with two integral affine structures given by the integral lattices

R1π∗Z/tors ⊂ R1π∗R ∼= TM,

Rn−1π∗Z/tors ⊂ Rn−1π∗R ∼= TM.

Poincare duality induces an isomorphism TM ∼= T ∗M exchanging the lattices and
their duals.

4.2 Mirror Symmetry for Integral Affine Structures

4.2.1 From SYZ Fibrations to Integral Affine Structures

Now let us return to the case of dual SYZ fibrations
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X

μ
���

��
��

��
� X̌

μ̌����
��
��
��

B

where both μ and μ̌ are smooth. Then dim B = n = dim H 1(L , R) is the dimension
of the moduli space of sLag n-tori in X and so B must be an open subset of the
moduli space M.

In particular, byCorollary 4.3, the symplectic formω and the holomorphic volume
form � on X induces two integral affine structures on B explicitly given by

�ω := R1μ∗Z/tors ⊂ R1μ∗R ∼= T B,

�� := Rn−1μ∗Z/tors ⊂ Rn−1μ∗R ∼= T B.

Wecall these theKähler and complex integral affine structures respectively. Similarly
the symplectic and holomorphic forms ω̌ and �̌ on X̌ induce two other integral affine
structures

�ω̌ := R1μ̌∗Z/tors ⊂ R1μ̌∗R ∼= T B,

��̌ := Rn−1μ̌∗Z/tors ⊂ Rn−1μ̌∗R ∼= T B,

on B. The fact that these torus fibrations are dual implies natural isomorphisms

R1μ∗R ∼= Rn−1μ̌∗R,

Rn−1μ∗R ∼= R1μ̌∗R.

The top isomorphism exchanges �ω and ��̌ while the bottom isomorphism
exchanges �ω̌ and ��. We can summarize this as follows: SYZ mirror symmetry
for smooth sLag torus fibrations interchanges the complex and Kähler integral affine
structures on the base B.

4.2.2 From Integral Affine Structures to SYZ Fibrations

We can go in the other direction and recover the mirror SYZ fibrations μ and μ̌ from
the integral affine structures on the base B. The key is the following proposition:

Proposition 4.4 Let (B,� ⊂ T B) be an integral affine manifold. Then the torus
fibration T B/� → B has a natural complex structure and the dual torus fibration
T ∗B/�∗ → B has a natural symplectic structure.

Proof Locally we can find a coordinate chart U ⊂ B with coordinates y1, . . . , yn
such that � is a coordinate lattice as in (4). Then the coordinate functions on TU
are given by y1, . . . , yn and x1 = dy1, . . . , xn = dyn and we can define holomorphic
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coordinates on TU by z j = x j + √−1y j . Since the transition functions on B pre-
serve the lattice, they induce transition functions on T B that are holomorphic with
respect to these coordinates giving T B the structure of a complex manifold.

Consider the holomorphic functions defined locally by

q j := e2π
√−1z j .

These functions are invariant under integral affine transition functions as well as
global translations by � and so they give a compatible system of holomorphic coor-
dinates for T B/�.

Similarly, in local coordinatesU where� is the coordinate lattice, then�∗ ⊂ T ∗U
is generated by dy1, . . . , dyn as a lattice in T ∗U . Therefore the standard symplectic
structure on T ∗B is invariant by �∗ and descends to T ∗B/�∗. ��

Now suppose B is a smooth manifold equipped with two integral affine structures
�0,�1 ⊂ T B as well as an isomorphism T B ∼= T ∗B such that �0

∼= (�1)
∗ and

�1
∼= (�0)

∗. Then we have dual torus fibrations

X

μ
���

��
��

��
� X̌

μ̌����
��
��
��

B

where X := T B/�0
∼= T ∗B/(�1)

∗ and X̌ := T ∗B/(�0)
∗ ∼= T B/(�1). This con-

struction satisfies the following properties:

(a) if �0 and �1 are the integral affine structures associated to SYZ dual torus
fibrations as in Sect. 4.2.1, then this construction recovers the original fibrations;

(b) �0 determines the complex structure of X and the symplectic structure of X̌ ;
(c) �1 determines the symplectic structure of X and the complex structure of X̌ .

As a result we recover one of the main predictions of mirror symmetry: deformations
of the complex structure on X are the sameas deformations of the symplectic structure
on X̌ and vice versa.

Remark 4.5 There is an extra piece of structure on B that we haven’t discussed. This
is a Hessian metric g realizing the identification T B ∼= T ∗B. Recall that a Hessian
metric is a Riemannian metric that is locally the Hessian of some smooth potential
function K . The two integral affine structures on B endow it with two different sets
of local coordinates and the potential functions in these coordinates are related by
the Legendre transform. In fact the complex and symplectic structures constructed
in Proposition 4.4 can be recovered from the potential function so mirror symmetry
in this context is governed by the Legendre transform [25] [2, Sect. 6.1.2].
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4.3 The SYZ Transform

To finish off the discussion of semi-flat mirror symmetry, we turn our attention to
the HMS conjecture. The goal is to construct a geometric functor

� : Fuk(X) → Db(Coh(X̌))

from the Fukaya category of X to the derived category of coherent sheaves on X̌
using the geometry of the dual fibrations. The first step is to produce an object of
Db(Coh(X̌)) from a Lagrangian L ⊂ X equipped with a flat unitary connection. We
will attempt to do this by exploiting the interpretation of a point p ∈ X as a flat
U (1)-connection on the dual fiber.

Let L ⊂ X be a Lagrangian section of μ corresponding to a map σ : B → X ,
equipped with the trivial connection. By restricting L to each fiber of μ, we obtain a
family of flat U (1)-connections

{∇σ(b)}b∈B

on the fibers of μ̌ : X̌ → B. These glue together to give a flat U (1)-connection on a
complex line bundle L on X̌ . It turns out this connection gives L the structure of a
holomorphic line bundle on X̌ (endowed with the complex structure constructed in
the last subsection).

This construction was generalized by [7] (see also [31]) as follows. As X is the
moduli space of flat U (1)-connections on the fibers of μ̌ : X̌ → B, there exists a
universal bundle with connection (P,∇P) on X ×B X̌ . Now given (L , E,∇) where
L ⊂ X is a multisection transverse to the fibers of μ and (E,∇) is a flat unitary vector
bundle on L , define the SYZ transform by

�SY Z (L , E,∇) := (prX̌ )∗((prL)∗E ⊗ (i × id)∗P)

where prL , prX̌ : L ×B X̌ → L , X̌ are the projections and (i × id) : L ×B X̌ →
X ×B X̌ is the inclusion.Note that�SY Z (L , E,∇) comes equippedwith a connection
we denote ∇(L ,E,∇).

Theorem 4.6 ([7, Theorem 1.1]) If L ⊂ X is Lagrangian, then ∇(L ,E,∇) endows
�SY Z (L , E,∇) with the structure of a holomorphic vector bundle on X̌ . When X
and X̌ are dual elliptic curves fibered over S1, then every holomorphic vector bundle
on X̌ is obtained this way.

Viewingholomorphic vector bundles as objects in Db(Coh(X̌)),wehope to extend
the SYZ transform to an equivalence � : Fuk(X) → Db(Coh(X̌)), thus realizing
the HMS conjecture. While this hope hasn’t been realized in general, it has in some
special cases.

When X and X̌ are dual elliptic curves fibered over S1, a HMS equivalence �

is constructed by hand in [34]. One can check that their functor � does indeed
extend the SYZ transform �SY Z . In fact, assuming Theorem 4.6, it is not so hard
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to construct � at least on the level of objects. Each coherent sheaf on the curve X
can be decomposed as a direct sum of a torsion sheaf and a vector bundle. Vector
bundles are taken care of by Theorem 4.6. Torsion sheaves are successive extensions
of skyscrapers at points which correspond to S1 fibers ofμ : X → B. Formore recent
work on understanding the SYZ transform see [12] and the references therein.

5 Constructing Mirrors

We now move on to the general problem of constructing mirrors. Given a Kähler
Calabi–Yau n-fold (X, J,ω,�), the SYZ conjecture suggests the following strategy
for constructing a mirror.

5.0.1 Strategy

(i) produce a special Lagrangian fibration μ : X → B;5

(ii) dualize the smooth locus μ0 : X0 → B0 to obtain a semi-flat mirror
μ̌0 : X̌0 → B0;

(iii) compactify X̌0 to obtain a CY n-fold with a dual SYZ fibration μ̌ : X̌ → B;
(iv) use the geometry of the dual fibrations to construct a HMS equivalence

� : Fuk(X) → Db(Coh(X̌)).

5.0.2 Obstacles

There are many obstacles to carrying out 5.0.1 and (ii) is the only step where a totally
satisfactory answer is known as we discussed in Sect. 4.

Producing sLagfibrations on a compactCalabi–Yaun-folds is a hardopenproblem
in general. Furthermore, work of Joyce [26] suggests that even when sLag fibrations
exist, they might be ill-behaved. The map μ is not necessarily differentiable and
may have real codimension one discriminant locus in the base B. In this case B0 is
disconnected and one needs to perform steps (ii) and (iii) on each component and
then glue.

Compactifying X̌0 to a complex manifold also poses problems. There are obstruc-
tions to extending the semi-flat complex structure on X̌0 to any compactification. To
remedy this, one needs to take a small deformation of X̌0 by modifying the complex
structure using instanton corrections.

5This choice is the reason that X may have several mirrors.
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Step (iv) has been realized in some special cases (e.g. [1, 3–5, 30] and references
therein) but a general theory for producing an equivalence � given an SYZ mirror
is still elusive.

5.1 Instanton Corrections

The small deformation of the complex structure on the dual X̌0 is necessitated by
the existence of obstructed Lagrangians. The point is that the Fukaya category of X
doesn’t contain all pairs (L ,∇) of Lagrangians with flat connection but only those
pairs where L is unobstructed.

ALagrangian L is unobstructed if certain counts of holomorphic discs bounded by
L cancel out so that the Floer differential satisfies d2 = 0. In particular, if L doesn’t
bound any nonconstant holomorphic discs, then it is unobstructed. A problem arises
if μ : X → B has singular fibers because then the smooth torus fibers may bound
nontrivial holomorphic discs known as disc instantons. For example, any vanishing
1-cycle on a nearby fiber sweeps out such a disc.

To construct the dual X̌ as a complex moduli space of objects in the Fukaya
we need to account for the effect of these instantons on the objects in the Fukaya
category. This is done by modifying the semi-flat complex structure using counts of
such disc instantons.

In fact, one can explicitly write down the coordinates for the semi-flat complex
structure described in Sect. 4 in terms of the symplectic area of cylinders swept out by
isotopy of nearby smooth Lagrangian fibers as in Sect. 5.3. Then the discs bounded
by obstructed Lagrangians lead to nontrivial monodromy of the semi-flat complex
on X̌0 which is an obstruction to the complex structure extending to a compactifica-
tion X̌ . The instanton corrections are given by multiplying these coordinates by the
generating series for virtual counts of holomorphic discs bounded by the fibers.

For more details on instanton corrections, see for example [1, 10, 36].

5.2 From Torus Fibrations to Degenerations

Heuristics from physics suggest that X will admit an SYZfibration in the limit toward
a maximally unipotent degeneration.6 It was independently conjectured in [24, 30]
that if X → D is such a degeneration over a disc (where X = Xε for for some small
ε � 1) and gt is a suitably normalizedmetric onXt , then theGromov-Hausdorff limit
of the metric spaces (Xt , gt ) collapses the Lagrangian torus fibers onto the base B
of an SYZ fibration. Furthermore, this base should be recovered as the dual complex
of the special fiber of X → D endowed with the appropriate singular integral affine

6That is, a degeneration with maximally unipotent monodromy. These are sometimes known as
large complex structure limits (LCSL).
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structure. Then one can hope to reconstruct the instanton corrected SYZ dual directly
from data on B.

This allows one to bypass the issue of constructing a sLag fibration by instead
constructing a maximally unipotent degeneration. Toric degenerations are particu-
larly well suited for this purpose. This is the point of view taken in the Gross-Siebert
program [20, 21] and gives rise to a version of SYZ mirror symmetry purely within
algebraic geometry. In this setting the instanton corrections should come from loga-
rithmic Gromov-Witten invariants of the degeneration as constructed in [6, 13, 23]
and these invariants can be computed tropically from data on the base B. For more
on this see for example [18, 19, 22].

5.3 Beyond the Calabi–Yau Case

The SYZ approach can also be used to understand mirror symmetry beyond the case
of Calabi–Yau manifolds. The most natural generalization involves log Calabi–Yau
pairs (X, D) where D ⊂ X is a boundary divisor and the sheaf ωX (D) of top forms
with logarithmic poles along D is trivial. That is, D is a section of the anticanonical
sheaf ω−1

X and X \ D is an open Calabi–Yau.
In this case the mirror should consist of a pair (M,W ) consisting of a complex

manifold M with a holomorphic function W : M → C. The pair (M,W ) is known
as a Landau-Ginzburg model and the function W is the superpotential [28]. Homo-
logical mirror symmetry takes the form of an equivalence

� : Fuk(X, D) → MF(M,W )

between a version of the Fukaya category for pairs (X, D) and the category ofmatrix
factorizations of (M,W ). Recall that a matrix factorization is a 2-periodic complex

(

. . . �� P0
d �� P1

d �� P0 �� . . .

)

of coherent sheaves on M satisfying d2 = W . By a theorem of Orlov [33], the cate-
gory MF(M,W ) is equivalent to the derived category of singularities Db

sing({W =
0}).7

The SYZ conjecture gives a recipe for constructing the Landau-Ginzburg dual
(M,W ). Here we give the version as stated in [9]:

Conjecture 2 Let (X, J,ω) be a compact Kähler manifold and D a section of K−1
X .

Suppose μ : U = X \ D → B is an SYZ fibration where U is equipped with a holo-
morphic volume form �. Then the mirror to (X, D) is the Landau-Ginzburg model
(Ǔ ,W ) where

7Here we’ve assumed for simplicity that the only critical value of W is at 0 ∈ C.
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μ̌ : Ǔ → B

is the SYZ dual fibration equipped with the instanton corrected complex structure
and the superpotential W is computed by counting holomorphic discs in (X, D).

We briefly recall the construction of the superpotential. Let μ0 : U0 → B0 be the
smooth locus of the fibration so that Ǔ0 is the semi-flat dual. Consider a family of
relative homology classes AL ∈ H2(X, L; Z) as the Lagrangian torus fiber L varies.
Then the function

zA : Ǔ0 → C zA(L ,∇) = exp

(

−
∫

AL

ω

)

hol∇(∂AL).

is a holomorphic local coordinate on Ǔ0.
Let

m0(L ,∇) =
∑

β∈H2(X,L;Z)

nβ(L)zβ

where nβ(L) is Gromov-Witten count of holomorphic discs in X bounded by L and
intersecting D transversally.8 This is a holomorphic function on Ǔ0 when it is defined
but in general it only becomes well defined after instanton correcting the complex
structure. The idea is that the number nβ(L) jumps across an obstructed Lagrangian
L that bounds disc instantons in X \ D. Instanton corrections account for this and so
m0 should extend to a holomorphic function W on the instanton corrected dual Ǔ .

In fact m0 is the obstruction to Floer homology constructed in [15]. That is,
d2 = m0 where d is the Floer differential on the Floer complex CF∗(L , L). This
explains why the Landau-Ginzburg superpotential W should be given by m0. If
one believes homological mirror symmetry, then obstructed chain complexes in the
Fukaya category should lead to matrix factorizations with W = m0 on the mirror.

Example 5.1 Let X = P
1 with anticanonical divisor {0,∞} = D. Then U = C

∗
admits a sLag fibrationμ : U → B where B is the open interval (0,∞) andμ−1(r) =
{|z| = r} is a circle. The dual is Ǔ = C

∗ is also an algebraic torus and there are no
instanton corrections since all the fibers of μ are smooth. Each sLag circle L ⊂ U ⊂
X cuts X into two discs D0 and D∞ whose classes satisfy [D0] + [D∞] = [P1] in
H2(X, L; Z) so that the corresponding coordinate functions z0 and z∞ on Ǔ satisfy
z0z∞ = 1. Furthermore,

exp

(

−
∫

D0

ω

)

exp

(

−
∫

D∞
ω

)

= e−A

where A = ∫
P1 ω is the symplectic area. Furthermore, it is easy to see that n[D0](L) =

n[D1](L) = 1. Putting it together and rescaling by a factor, we obtain the superpo-
tential

8More precisely, the sum is over curve classes β with Maslov index μ(β) = 2.



The SYZ Conjecture via Homological Mirror Symmetry 181

W = z0 + e−A

z0
: C

∗ → C.

A similar argument works for any Fano toric pair (X, D) where μ is the moment
map, B is the interior of the moment polytope P , Ǔ = (C∗)n is an algebraic torus,
and W is given as a sum over facets of P [9, 14].
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