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and Fukaya Category

Alex Zhongyi Zhang

1 Symplectic Geometry

Definition 1 (symplectic form) Given a vector space V , a symplectic form ω is a
non-degenerate, anti-symmetric bilinear form. namely, ∀ v ∈ V,ω(v,w) = 0,∀ w ∈
V ⇐⇒ v = 0 and ω(v,w) = −ω(w, v). Such a vector space V is called a sym-
plectic vector space.

We know from linear algebra that all symplectic vector spaces must have even
dimensions. Let W ⊆ V,Wω := {v ∈ V,ω(v,w) = 0 ∀w ∈ W },
Definition 2 Given a symplectic vector space (V,ω), a subspace W ⊆ V is called
isotropic if W ⊆ Wω, i.e.ω|W = 0;

W is coisotropic if W ⊇ Wω ,
W is symplectic if ω|W is also a symplectic form on W .
W is Lagrangian if it is isotropic and dim W = 1

2dimV .

We have ∀ W ⊂ V , dim W+ dim Wω = dim V , therefore, Wωω = W . The
Euclidean spaceR2n is a symplectic vector space equippedwith the standard symplec-
tic form ω0 = ∑n

i=1 xi ∧ yi . Also, for any symplectic vector space, we have s sym-
plectic basis u1, . . . un; v1, . . . , vn such that ω(u j , uk) = ω(v j , vk) = 0,ω(u,vk) =
δk j . Namely, we have a map � : R2n → V such that �∗ω = ω0.

Definition 3 (symplectomorphism) Sp(V,ω) = {� ∈ Gl(V )
∣
∣�∗ω = ω}, the linear

isomorphisms that preserves the symplectic structure are called symplectomor-
phisms. Since we know that V � R

2n by the paragraph above, we can identify

This lecture note is written for a talk in Superschool on derived categories and D-branes in July,
2016 at University of Alberta.

A. Z. Zhang (B)
Columbia College of Columbia University in New York City, New York, NY, USA
e-mail: zz2375@columbia.edu

© Springer International Publishing AG, part of Springer Nature 2018
M. Ballard et al. (eds.), Superschool on Derived Categories and D-branes,
Springer Proceedings in Mathematics & Statistics 240,
https://doi.org/10.1007/978-3-319-91626-2_11

129

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91626-2_11&domain=pdf


130 A. Z. Zhang

Sp(V, w) as the maps {�∣
∣�∗ω0 = ω0} = {A∣

∣At J0A = J0}. If we identify R2n with
C

n , then J0 acts as i .

Lemma 4 Sp(2n) ∩ O(2n) = Sp(2n) ∩ Gl(n,C) = O(2n) ∩ Gl(n,C) � U (n),
and U (n) is a maximal compact subgroup of the symplectic group and Sp(2n) is
homotopy equivalent to U (n).

Sketch of proof.The first equation is amatter ofwriting down explicitly the definitions
and calculate. We have a polar decomposition ∀ � ∈ Sp(2n),� = U P whereU :=
� · (�t�)− 1

2 ∈ U (n). P = (�t�)
1
2 is symplectic symmetric and positive definite.

Let Ut := (�t�)− 1
2 t ∈ Sp(2n) for t ∈ [0, 1], this gives a deformation retract from

Sp(2n) to U (n). (Further details may be found in Chap.2 of [1].) �

Corollary 5 π1(Sp(2n)) = π1(U (n)) = π1(S1) � Z, where the second equality is
induced by the complex determinant function.

Now we try to associate an integer μ to any loop in the Lagrangian Grassman-
nian � : R/Z → LGr(n) such that μ(�1) = μ(�2) if and only if �1 and �2 are
homotopic. It should also satisfy μ(� ⊕ �′) = μ(�) + μ(�′), and λ0(t) = eπi t has
the number 1 associated to it. This integer is the Maslov index of the loop. Actu-
ally LGr(n) � U (n)/O(n), therefore, π1(LG(n)) = π1(U (n)/O(n)) � Z, which
is induced by μ.

More generally, we have theMaslov index for any 2nd relative homotopy group:

μ : π2(M, L) → Z

defined as follows: if amap u : (D2, S1) → (M, L) represent a class [u] ∈ π2(M, L),
we trivialize the pullback of the tangent bundle u∗T Mon D2 and get the trivial rank
2n bundle. Take the tangent bundle T L restricted to S1 along this trivialization which
gives a loop in LGr(n). Then we define the Maslov index of [u] as the Maslov index
for as above.

Theminimal Maslov number NL is defined as the smallest positive integer that
the image of the map μ hits in Z. We set NL = ∞ if the Maslov index μ vanishes.

Definition 6 (symplectic manifold) Now a symplectic structure on a smooth mani-
fold M is a non degenerate closed 2-form ω, namely (TqM,ωp) is a symplectic vec-
tor space ∀p ∈ M . Non-degeneracy implies that ωn = ω ∧ ω ∧ . . . ω doesn’t vanish,
which implies that M is oriented.

A symplectomorphismof (M,ω) = Symp(M,ω) := {φ ∈ Di f f (M)
∣
∣φ∗ω = ω}.

There is a systematic way to construct a symplectomorphism from a function
H : M → R. First define a vector field XH ∈ X (M,ω) by iXH ω = dH , the non-
degeneracy of ω implies the existence of such a vector field. Note since d(iXH ω) =
ddH = 0, we have LXH ω = (diX + iXd)ω = 0. Let ψt be the local flow generated
by XH , namely dψt

dt = XH (ψt ), then ψt is a symplectomorphism. In this case, we
call ψt the Hamiltonian flow generated by H .
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Now dH(Xh) = iXH ωXH = 0, thus XH is tangent to the level sets of H . For
example, if we were to have the height function on the sphere, then with the standard
symplectic form on the sphere induced volume form on R

3, we have ω = dθ ∧ dz,
then XH = ∂

∂θ
, the flow φt is rotation of S2 at constant speed.

Basic examples:

(1) (R2n,ω0)
(2) any oriented Riemann surface with area form;
(3) T

2n = R
2n/Z2n with the standard form ω0 on the quotient space.

(4) Cotangent bundle of any manifold. T ∗M with canonical 1-form λcan ∈
�1(T ∗M),ω = −dλcan , where λcan = ∑n

1 yidxi . Here the yi are the coordi-
nates for dxi , namely we have coordinate charts T ∗U → R

n × R
n, (q, v∗) �→

(x(q), y(q, v∗)), and T(q,0)(T ∗M) � T M ⊕ T ∗
q M .

Proposition 7 λcan is characterized by the property thatσ∗λcan = σ,∀ σ ∈ �1(M).

This is because if we write out σ = ∑
a j (x)dx j , then as a map in local charts,

we should get (x1, . . . , xn, a1(x), . . . an(x)), and σ∗(
∑

y jdx j ) = σ.

Proposition 8 The image of a 1-form σ is Lagrangian in T ∗M ⇐⇒ σ is closed.

Proof dσ = dσ∗λcan = σ∗(dλcan) = dλcan

∣
∣�σ. �

(5) CP
n and Fubini-Study form: Consider the function ρ on C

n: z �→log (|z|2 +
1). This function is strictly plurisubharmonic, with ∂∂̄ρ = 1

(|z|2+1)2 ; therefore

ωFS := 1
2∂∂̄ρ is Kähler.

Now on a chartU0 = (z1, . . . , zn) ⊆ CPn , the transition function on U = U0 ∩
U1 looks like ϕ0,1(z1, . . . , zn) = ( 1

z1
, · · · zn

z1
), this map maps (U ) biholomor-

phically onto itself with ϕ∗(log(|z|2 + 1)) = log(|z|2 + 1) + log(|z1|−2). Thus,
∂∂̄ϕ∗(log(|z|2 + 1)) = ∂∂̄ϕ∗(log(|z|2 + 1)) + ∂∂̄log(|z1|−2) = ∂∂̄ϕ∗(log
(|z|2 + 1)). So we can “glue” ϕ∗

i ωFS together to give a Kähler structure on
CP

n .

Nowwe introduce a very important property of symplecticmanifold,which claims
that locally, all symplectic manifolds look the same; however, the global structure
would be different.

Theorem 9 (Darboux) Given a symplectic manifold (M,ω), ∀ p ∈ M, there exists
a neighborhood Up ⊆ M such that ω restricted to Up is symplectomorphic to the
standard ω0 in R2n, where dim M = 2n.

The proof of Darboux’s theorem uses the so call Moser’s trick, details can be
found in Chap.2 of [1].
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2 Lagrangian Floer Colomology

Definition 10 (Lagrangian) Now let (M,ω) be a symplectic manifold, N ⊂ M is
isotopic if ω|N = 0.This implies that dimN ≤ 1

2dimM as ω is non-degenerate.If L
is isotopic and dim L = 1

2dim M , then we say L is Lagrangian.

Now suppose we have compact lagrangians L0, L1 ⊂ (M,ω), L0 � L1 ⇒ L0 ∩
L1 is a finite set of points.

Definition 11 (Monotone) We say a Lagrangian submanifold L ⊆ M isMonotone
if ∀ A ∈ π2(M, L) we have a fixed λ ∈ R

+ such that:

∫

A
ω = λ · μL(A)

From now on we work over monotone Lagrangians with minimal Maslov number
NL at least 2.

Definition 12 The Floer complex

CF∗(L0, L1) := � < L0 ∩ L1 >

Which is a �- vector space with basis = L0 ∩ L1 � := {�ai T λi |ai ∈ K, lim
i→∞λi =

+∞} is the Novikov field with coefficient in K.

If we have 2c1(T M) = 0 and the maslov class μL vanishes, then we can make
CF∗(L0, L1) a Z−graded complex, else it is Z2-graded.

Definition 13 Now given p, q ∈ L0 ∩ L1, define M̂(p, q, J ) = {u : R × [0, 1] →
M

∣
∣Du ◦ j = J ◦ Du, u(s, 0) ∈ L0, u(s, 1) ∈ L1, lim

s→∞u(s, t) = p, lim
s→−∞u(s, t) = q}.

Then we have an R action on M̂(p, q, J ) by r · u(s, t) = u(s + r, t), the moduli
space M(p, q, J ) := M̂(p, q, J )/R.

Remark 14 The equation Du ◦ j = J ◦ Du is just saying ∂J u = 0.

Now we define differential on the complex:

Definition 15 ∀p ∈ CF∗(L0 ∩ L1),

∂ p :=
∑

q∈L0∩L1,ind(β)=1

(#M(p, q,β, J ))T ω(β) · q, (1)

Where ω(β) is the energy of the J-holomorphic map u which is represented by β in
π2(M, L0 ∪ L1), it is defined as

ω(u) :=
∫

R×[0,1]
u∗ω =

∫ ∫

|∂u
∂s

|2dsdt ≥ 0
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Remark 16 If the linearized operator D ¯∂J,u
is surjective at ∀u ∈ M̂(p, q, J ), then

we have M̂(p, q, J ) is a manifold of dimension μL0∪L1(u) (the Maslov index of u,
note that π1((LGr)) = π1(U (n)/O(n)) � Z.)

Remark 17 Gromov’s compactness claims that given any positive upper bound E0

on energy, there are only finitely many homotopy class β = [u] such thatω(u) ≤ E0,
therefore,we know that theRHSofEq. 1 iswell defined.Namely, for anyfixed energy
E , #M(p, q,β, J )) is finite.

Proposition 18 Assume [ω] · π2(M, Li ) = 0 for i = 0, 1 and L0, L1 are oriented,
compact Lagrangians equipped with spin structure, then ∂ is well defined and satis-
fies ∂2 = 0, and the Lagrangian Floer cohomology HF∗(L0, L1) := H∗(CF(L0,

L1; ∂)) is independent of the almost complex structure J and invariant under Hamil-
tonian isotopes of L0 or L1.

The idea of the proof of ∂2 = 0 is to look at a J-holomorphicmap u withμ(u) = 2,
then Gromov’s compactness say that for a sequence of J−holomorphic maps with
bounded energy, there exists subsequence that converges to nodal configurations. In
the case when μ(u) = 2, we have three possible configurations.

(1) Sphere bubbles, a J-holomorphic sphere is connected to the J-holomorphic strip
at an interior point of the strip. This is the case when some energy concentrates
at the interior point.

(2) Disc bubble: a J-holomorphic disc connected with the J-holomorphic strip at a
point on L0 or L1, this is the case when some energy concentrates at a point on
the boundary.

(3) Broken strip, there are energy concentrates at ±∞.

Proposition 19 ω · π2(M, Li ) = 0 implies there are no disc bubbles or sphere bub-
bles.

Proof The idea is the energy of the bubbles have to be zero, which implies that they
are constant. Look at the long exact sequence of homology groups

· · · → π2(L) → π2(M) → π2(M, L)
∂−→ π1(L) → · · ·

Note that ω · π2(M, Li ) = 0 automatically implies that ∀ β ∈ π2(M, L),
∫
β ω = 0,

thus no disc bubbles with boundary on L0 or L1. Since ω|L = 0 by definition of
Lagrangian manifolds, we have ∀ η ∈ π2(L), we have

∫
η ω = 0. By the exactness at

π2(M), ∀ α ∈ π2(M), we have
∫
α ω = 0. Thus no sphere bubbles. �

Gromov compactness claims that after adding the 3 possible configurations,
M(p, q, J ) is compact. However, since ω · π2(M, Li ) = 0, we are only allowed
to have broken strips.

However, the signed count of the number of boundary points of a 1-dimensional
manifold is zero. A gluing theorem states that any broken strip is locally the limit of
a sequence of index 2 J-holomorphic strips. And
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∂M(p, q, [u], J ) =
∐

r∈L0∩L1[u′]+[u′′]=[u]
ind([u′])=ind([u′′])=1

(
M(p, r; [u′], J ) × M(r, q; [u′′], J )

)
(2)

HF∗(L , L) is defined as HF∗(L0,ϕH (L))whereϕH (L) is Hamiltonian isotopic
to L because HF∗ is invariant under Hamiltonian perturbation. namely the original
J-holomorphic equation is replaced with

∂u

∂s
+ J (u, t)

(
∂u

∂t
− XH (t, u)

)

= 0 (3)

Example 20 Consider L ⊆ T ∗L as the zero section of the cotangent bundle, suppose
f : L → R is aMorse function, let H = π∗ f , thenϕH ( f ) = �d f ⊆ T ∗L . Thus L ∩
ϕH (L) = critical points of f , and CF∗(L ,ϕ(L)) � CM∗( f ) (the Morse complex)
as vector space. The Moduli space of J-holomorphic strips from p to q corresponds
1−1 to the Moduli space of Morse flow liness from p to q. So we have an iso of
chain complex (CF∗(L ,ϕ(L), ∂) � (CM∗( f ), dM)

The main idea is that under “good” conditions, we have Lagrangian Floer homol-
ogy is isomorphic to theMorse homologywhich is isomorphic to the singular homol-
ogy.

Theorem 21 (Albers, 2007) For a 2n-dimensional, closed, symplectic manifold M
anda closed,monotone, Lagrangian submanifold L ⊂ M ofminimalMaslov number
NL ≥ 2, there exist homomorphisms

ϕk : HFk(L ,φH (L)) → Hn−k(L;Z/2) for k ≤ NL − 2

Where H : S1 × M → R is a Hamiltonian function and φH the corresponding
Hamiltoniandiffeomorphism.For n − NL + 2 ≤ k ≤ NL − 2,ϕk is an isomorphism.

See [2] for more details.

Remark 22 This morphism above is not always an isomorphism, a counterexam-
ple can be found in [3] where a construction by Audin and Polterovich provides
Lagrangian embeddings of spheres Sk into R2n .

Remark 23 We might imagine that every Lagrangian can be embedded locally in
T ∗L in a neighborhood byWeinstein’s Lagrangian neighborhood theorem below and
use the idea of zero section in Example20 to think of Lagrangian Floer homology
as Morse homology; however, Weinstein’s Lagrangian neighborhood theorem is a
local result, so we don’t always have a rigorous isomorphism globally.

Theorem 24 (Weinstein’s Lagrangian neighborhood theorem) ∀L ⊆ M a
Lagrangian sub manifold, there exists a neighborhood U that is symplectic to a
neighborhood of L ⊆ T ∗L.

Details of the proof can be found in Chap.3 of [1]
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3 Product Structure and Fukaya Category

Definition 25 We define μ1 : CF∗(L0, L1) → CF∗(L0, L1)[1] as the differential
∂. We can also define

μ2 : CF∗(L0, L1) ⊗� CF∗(L1, L2) → CF∗(L0, L2)

by the following equation:

μ2(p, q) :=
∑

q∈L0∩L2[u]:ind([u])=0

(#M(p, q, r; [u], J ))T ω([u]) r. (4)

Where M(p, p, r; [u], J )) denotes, for a disc with three given points z0, z1, z2 on
the boundary, a J-holomorphic map from D to M that represents [u] in π2(M) and
extends continuously to the closed disc, mapping the boundary arcs from z0 to z1, z1
to z2, z2 to z3 to L0, L1, L2 respectively, while the z0, z1, z2 are mapped to p, q, r
respectively.

Proposition 26 If ω · π2(M, Li ) = 0,∀i ∈ {0, 1, 2}, then μ2 satisfies the Leibniz
rule with proper signs with respect to ∂; in particular,

∂(μ2(p, q)) = ±μ2(∂ p, q) ± μ2(p, ∂q) (5)

The idea of the proof is similar to that of ∂2 = 0, we look at the index 1 moduli
spaces of J-holomorphic discs and their compactification. Still assuming transversal-
ity,M(p, q, r; [u], J ) is a smooth 1-dimensional manifold and admits a compactifi-
cationM(p, q, r; [u], J ) by adding nodal trees (there is no disc or sphere bubble by
the assumption that the symplectic form vanishes on relative homotopy classes). and
there can be strip breaking happening at any of the three points p, q, r . If it breaks
at p, it represents μ2(∂ p, q); at q then represents μ2(p, ∂q); if at r, then represents
∂μ2(p, q). Since the signed count of the boundary of a 1-dimensional manifold is 0,
we have Eq.5.

Therefore, μ2 defines a product in Floer cohomology as well, namely

[μ2] : HF∗(L0, L1) ⊗ HF∗(L1, L2) → HF∗(L0, L2).

If L0 = L1 = L2, then [μ2] is the cup product on HF∗(L).

Proposition 27 (Associativity of μ2) We have

μ2(p, μ2(q, r)) ± μ2(μ2(p, q), r) = ±μ3(∂ p, q, r) ± μ3(p, ∂q, r) ± μ3(p, q, ∂r)

± ∂μ3(p, q, r) (6)

This is because μ3(p, q, r) is defined similar as the sum of the number of J-
holomorphic maps of a disc (with four points z0, z1, z2, z3 on its boundary to M ,
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with the map converges to the points p, q, r, s ∈ M near the four points and the arcs
in between each adjacent pair of zi to Li ), weighted with the symplectic energy. Then
by Gromov compactness, the boundary of 1-dimensional moduli spaces are of two
kinds:

(1) Those with a broken strip on the boundary of D at a nodal point of D while
the other three marked points remain on ∂D, there are four of these, corresponding
to the four summands on the RHS of Eq.6.

(2) Those that corresponds to a degeneration of the domain to the boundary of
M̄0,4, namely to a pair of discs, each of whose boundary carries two marked points,
and the disc connects to the J-holomorphic strip with a nodal point, there are two
marked points left on the disc. There are two of these, corresponding to the two
summands on the LHS of Eq.6.

Thus the singed count of the number of boundary points of a 1-dimensional
manifold with boundary give Eq.6.

More generally, consider L0, . . . Lk ⊆ M , compact, oriented Lagrangians with
spin structure. pi ∈ Li−1 ∩ Li , we define

μk : CF(Lk−1, Lk) ⊗ · · · ⊗ CF(L1, L2) ⊗ CF(L0, L1) −→ CF(L0, Lk)

μk(pk, . . . , p1) =
∑

q∈L0∩Lk )[u]:ind([u])=2−k

(#M(p1, . . . , pk, q; [u], J ))T ω([u]) q, (7)

where the dimension of the moduli spaces are

dimM(p1, . . . , pk , q; [u], J ) = k − 2 + ind([u]) = k − 2 + deg(q) −
k∑

i=1
deg(pi ). (8)

The special case is when k = 1. We had

μ1 = ∂ : CF∗(L0, L1) → CF∗(L0, L1),

∂ p =
∑

q∈L0∩L1)[u]:ind([u])=1

(#M(p, q; [u], J ))T ω([u]) q

Proposition 28 If ω · π2(M, Li ) = 0, ∀i , then the operations μk satisfy the A∞-
relations

k∑

�=1

k−�∑

j=0

(−1)∗μk+1−�(pk, . . . , p j+�+1,μ
�(p j+�, . . . , p j+1), p j , . . . , p1) = 0, (9)

where ∗ = j + deg(p1) + · · · + deg(p j ).
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Example 29 (1) k = 1, Eq.9 is the same as μ2 = 0,
(2) k = 2, Eq.9 is the Leibniz’ rule
(3) k = 3, Eq.9 is the associativity law of [μ2] in HF∗.

For higher k, this gives an explicit homotopy for certain compatibility property
among the preceding ones.

The proof is similar to that of the associativity law, we study dimension-1 moduli
spaces of J-holomorphic discs and their compactification, fix p1, . . . pk and q, and [u]
such that ind[u] = 3 − k, assume J is chosen generically so we have transversality
and then M(p1, . . . pk, q; [u], J ) compactifies to a 1-dimensional manifold with
boundary, and the boundary points are either of an index 1 J-holomorphic strip
breaking off at one of the (k + 1) points or a pair of discs each contain at least two
marked points. Those consists of the summands of the Eq.9.

Definition 30 (Fukaya Category) Given a symplectic manifold (M,ω) such that
2c1(T M) = 0, consider the category consisting of the following data:

(1) Objects: compact, oriented Lagrangians Li equipped with spin structure, such
that [ω] · π2(M, Li ) = 0with vanishingMaslov index, togetherwith a spin struc-
ture.

(2) hom-spaces: hom∗
F(M)(L0, L1) := CF∗(L0, L1), with differential μ1 and com-

position μ2

(3) higher operations and A∞ relations (9) for μs .

See [4, 5] for more details.

Remark 31 In our previous definition, we may allow c1(T M),μL to be nonzero if
we only need a Z/2-grading; and we may also drop the spin structure if we are
content to work over characteristic 2.
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