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Abstract. This paper presents an overview of uncertainty assessment
in agent-based simulations, mainly related to land use and cover change.
Almost every multiagent-based simulation review has expressed the need
for statistical methods to evaluate the certainty of the results. Yet these
problems continue to be underestimated and often neglected. This work
aims to review how uncertainty is being portrayed in agent-based simu-
lation and to perform an exploratory study to use statistical methods to
estimate uncertainty. MASE, a Multi-Agent System for Environmental
simulation, is the system under study. We first identified the most sen-
sitive parameters using Morris One-at-a-Time sensitivity analysis. The
efforts to assess agent-based simulation through statistical methods are
paramount to corroborate and improve the level of confidence of the
research that has been made in land use simulation.

1 Introduction

Land use and cover change (LUCC) investigation are of importance to promote
insightful management of Earth’s land use to refrain environmental damage.
Moreover, LUCC is a complex process that relates the interaction between envi-
ronmental, economic and social systems at different temporal and spatial scales.
Computational frameworks are the most used technique to simulate LUCC mod-
els for its ability to cope with its complexity.

Agent-based model (ABM) has been incorporated into LUCC models, and
many other real-world problems, to explicitly simulate the effects of human deci-
sions in complex situations. They are based on the multi-agent system paradigm
that features autonomous entities that interact and communicate in a shared
environment. These entities perceive the environment, reason about it and act
on it to achieve an internal objective. Therefore, ABM can capture emergent
phenomena and provide an original description of the modeled system.

The Multi-Agent System for Environmental simulation (MASE) is a freeware
software developed at the University of Brasilia. MASE is a tool for exploring
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potential impacts of land use policies that implement a land use agent-based
model [28]. Considering the purpose and reliance upon external data, MASE
may be characterized as a predictor-type agent-based simulation (ABS)
model [12]: a data-driven model with the overall goal of performing medium
to long term predictions. MASE simulations were calibrated to match available
GIS data [4]. Simulation results were validated according to a standard method-
ology for spatially explicit simulations [27] and then compared to similar frame-
works [29]. MASE performance was found to be higher than other 13 LUCC
modeling applications with nine different traditional peer-reviewed LUCC mod-
els according to [27]. Despite this fact, the lack of uncertainty assessment and
sound experimentation is the main reason for criticism and questioning about
the real contribution of frameworks to decision support for LUCC.

According to [3], any ABS has levels of uncertainty and errors associated with
it. ABS continues to harbor subjectivity and hence degrees of freedom in the struc-
ture and intensity of agent’s interactions, learning, and adaptation [18]. There
are significant chances of finding results which may be the consequence of biases.
Furthermore, almost every ABS review have expressed the need for statistical
methods to validate models and evaluate the results to improve the transparency,
replicability and general confidence in results derived from ABS. These problems
continue to be underestimated and often neglected. Some authors [12], likewise,
argued that validation is one of the most important aspects of a model building
because it is the only means that provides some evidence that a model can be
used for a particular purpose. However, at least 65% of the models in their survey
were incompletely validated. Of the models validated in some way, surprisingly
less than 5% used statistical validation techniques. Traditionally, ABS types of
systems are difficult to analyze given their non-linear behavior and size [6].

Treatment of uncertainty is particularly important and usually difficult to
deal with in the case of ABM’s stochastic models. While acknowledging the dif-
ferences in data sources and the causes of inconsistencies, there is still need to
develop methods to optimally extract information from the data, to document
the uncertainties and to assess common methodological challenges. To look away
could reinforce inconsistent results and damage the integrity and quality of sim-
ulation results.

This work aims to briefly discuss how uncertainty is being portrayed in ABS
and to perform an exploratory study to use statistical methods to estimate uncer-
tainty in a LUCC agent-based prediction simulation tool. The MASE system will
be the simulator under study. The Cerrado case study simulations [29] will be
the basis for the analysis. As a first investigation step, we assessed the uncer-
tainty within the inputs and configuration parameters of the simulation. Our final
goal would be to document, quantification and to foresee its propagation impacts
in the results. A particular challenge in performing measurements is coming up
with appropriate metrics. The thorough experimentation and repeatability would,
therefore, improve our understanding of the uncertainty and relations among the
variables that characterize a simulation. The remainder of the paper is structured
as follows. In Sect. 2, we present some background on uncertainty and in Sect. 3
some related work. In Sect. 4, we summarize the MASE characteristics and case
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study. We also present the methodology for the exploratory study. In Sect. 5 we
show results together with discussions. In Sect. 6 we conclude with a summary.

2 Overview of Uncertainty in ABS

The relevance of the treatment of uncertainty is dependent of the modeling
objective. Requirements regarding model uncertainty may be less critical for
social learning models, where communication and interaction among stakehold-
ers would be of more significance. Conversely, parameters, measurements, and
conditions used for model runs influence much more data-based predictions of
future states. Projection, forecasting and prediction models are usually very
affected by the variation of a system output from observed models.

Also, there are different sources of uncertainty that can influence the predic-
tion of a simulation model. It can arise from simulation variability in stochastic
simulation models or from structural uncertainty within assumptions of a model.
We will emphasize input uncertainty, what McKay [24] defined as incomplete
knowledge of ‘correct’ values of model inputs, including model parameters. If the
inputs of a model are uncertain, there is an inherent variability associated with
the output of that model. Therefore it is crucial to communicate it effectively to
stakeholders and technical audiences when outputting model predictions.

Uncertainty in environmental prediction simulations may limit the reliability
of predicted changes. This issue is one of the recurrent conclusions of the Inter-
governmental Panel on Climate Change (IPCC). Back at 1995, IPCC stated that
“uncertainties in the simulation of changes in the physical properties have a major
impact on confidence in projections of future regional climate change” [13] and
that was necessary to reduce uncertainties to increase future model capabilities
and improve climate change estimates. Since 2010, IPCC dedicates an integral fea-
ture of its reports to the communication of the degree of certainty within IPCC
assessment findings [23]. In the most recent report, IPCC assesses a substan-
tially larger knowledge base of scientific, technical and socio-economic literature
to reduce uncertainty and uses a large number of methods and formalization [7].
Especially for future predictions, validating a model’s predictive accuracy is not
straightforward due to a lack of appropriate data and methods for ‘validation’ [15].
That is another reason why applications, frameworks, and methods of formaliza-
tion in this research area are relevant and should be promoted.

Regarding the type of modeling, there are approaches such as Bayesian net-
works, able to explicitly deal with uncertainty in the interpretation of data,
measurements or conditions. In contrast, other approaches such as ABMs require
the development of comprehensive or compelling analysis of output data and a
lot of resource-intensive attention [18]. The level of testing required to develop
this understanding is rarely carried out, mainly due to time and other resource
constraints [15].

Indeed, uncertainty assessment in ABM can be a hard task for even relatively
small models. Due to their inherent complexity, ABS are often seen as black boxes,
where there is no purpose in explaining why the agents acted as they did, as long as
the modeler presents some form of validation (i.e., shows a good fit). According
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to Marks [22], ABMs simulations can prove existence, but not in general neces-
sity. Despite that, there is a research effort to make ABS more transparent and
to demonstrate that the simulations behave as intended through efforts in stan-
dardization in simulation model analysis and result sharing [21]. Besides from ver-
ification, uncertainty assessment aims to increase understanding, to improve the
reliability of the predicted changes and to inform the degree of certainty of key
findings. To achieve this effort, some techniques and methods such as uncertainty
and sensitivity analysis should be part of the modeling process.

Uncertainty Quantification is defined as the identification, characterization,
propagation, analysis and reduction of uncertainties. Sensitivity analysis (SA)
is defined as the study of how uncertainty in the output of a model can be
apportioned to different sources of uncertainty in the model input [30] and is
a method to assess propagation of uncertainties. SA responds the question of
which inputs are responsible for the variability of outputs. Local SA explores
the output changes by varying one parameter at a time, keeping all the others
constant. Although it is a useful and straightforward approach, it may be loca-
tion dependent. Global SA gives a better estimate of uncertainty by varying all
parameters at the same time by using probability density functions to express
the uncertainty of model parameters. Uncertainty analysis is a related broader
uncertainty propagation practice to SA. It focuses rather on quantifying uncer-
tainty in model output, addressing the variability of results. Ideally, uncertainty
and SA should be run in tandem.

3 Related Work

There are a growing number of attempts to assess uncertainty in ABS. However,
there is a lack of specific guidance on effective presentation and analysis of the
simulation output data. There is a variety of approaches to quantifying or reduce
uncertainty. The work of [18] offers an overview of the state-of-the-art methods
on the social simulation area, in particular examining the issues around vari-
ance stability, SA and spatiotemporal analysis. Because of our interest in LUCC
simulations, we choose to review how those approaches are being applied and
communicated on spatially-explicit simulations.

In [1], the authors propose an algorithm as an alternative to goodness-of-
fit traditional validation to answer if the agents in a simulation are behaving
as expected. To them, the key for effective interaction in multi-agent applica-
tions is to reason explicitly about the behavior of other agents, in the form of
a hypothesized behavior. This approach would allow an agent to contemplate
the correctness of a hypothesis. In the form of a frequentist hypothesis test, the
algorithm allows for multiple metrics in the construction of the test statistic
and learns its distribution during the interaction process. It is an interesting
approach to addressing the uncertainties within the model and agents behav-
ior. We believe it would be even more effective if coupled with an uncertainty
quantification technique.

The work of [26] assesses uncertainty that is characteristic of spatially explicit
models and simulations. The authors propose a benchmarking scheme of LUCC
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modeling tools by various validation techniques and error analysis. The authors
investigate LUCC tools that are based on map comparisons to analyze the accu-
racy of LUCC models in terms of quantity, pixel by pixel correctness and LUCC
components such as persistence and change. Also, they investigated the map
outputs of these simulations to test the fidelity of spatial patterns and the con-
gruency of the simulation maps from different modeling tools. Although the
variability of LUCC models does not allow strict comparisons, there is still room
for improvements in methodologies, validation and uncertainty quantification.

The work of [8] assesses model output analysis through a global SA, a com-
monly used approach for identifying critical parameters that dominate model
behaviors. They use the Problem Solving environment for Uncertainty Analy-
sis and Design Exploration (PSUADE) software, to evaluate the effectiveness
and efficiency of widely used qualitative and quantitative SA methods. Each
method is tested using a variety of sampling techniques to screen out the most
relevant parameters from the insensitive ones. The Sacramento Soil Moisture
Accounting (SAC-SMA) model, which has thirteen tunable parameters, is used
for illustration. The South Branch Potomac River basin near Springfield, West
Virginia in the U.S. is chosen as the study area. The authors show how dif-
ferent sampling methods and SA measurements can indicate different sensitive
and insensitive parameters and that a comprehensive SA is paramount to avoid
misleading results.

The work of [20] also performed a global SA to show which model parameters
are critical to the performance of land surface models. The authors considered
40 adjustable parameters in The Common Land Model and therefore compare
different SA methods and sampling. The size of each sample would vary as well.
The sampling techniques and SA measures that were considered optimal were
distinct from the results found by [8], meaning that not all LUCC ABS propagate
uncertainty the same way.

Another approach was performed by [17], also in a LUCC model. They use
the method of independent replication. In the case study, the authors replicated
the simulation 12 times for each mechanism and computed the mean values of
the impact indicators and their confidence intervals (CI) at a reliability of 95%.
They used uncertainty quantification to define a minimum certainty threshold
in the simulation outputs.

All these authors used several indicators to measure the variability of model
results based on changing input parameters. Table 1 illustrates a brief comparison
among those works. MASE exploratory uncertainty assessment will be described
in the next sections. A large panel of statistical tools exist to help with the
accuracy of the predictions such as Dakota1, PSUADE [32], UQ-PyL2, MEME
Suite3 and MC2MABS [2]. There are initiatives to apply the potential of classic
Design of Experiments (DOE) for ABS [16,21]. ABS field of research would
benefit from a systematic empirical research with standardized procedures, but

1 https://dakota.sandia.gov/.
2 http://www.uq-pyl.com/.
3 http://meme-suite.org/.

https://dakota.sandia.gov/
http://www.uq-pyl.com/
http://meme-suite.org/
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ABS idiosyncrasies in model output turn the task even harder. Researchers so
far failed to reach consensus and to determine sound methodological guidelines.
Hence the studies are still mostly investigative and exploratory.

Table 1. Overview of the general characteristics of each related work

Reference Model Uncertainty methods

[1] Generic ABS Correctness Hypothesis test and run-
time statistical verification in the
agent’s behavior

[26] Land use models Image statistical comparison of
pixel/maps and error analysis to find
uncertainty drivers

[8] SAC-SMA hydrological model Global SA with 15 sampling tech-
niques, 9 different sample sizes and 12
SA methods

[20] Land surface model Local SA and 4 Global SA methods
with 3 sampling techniques, and 6 sam-
ple sizes

[17] LUDAS: land use ABS Independent Replications and Confi-
dence Intervals to assess output vari-
ation

MASE MASE: land use ABS Global SA with different sample config-
urations, independent replications, and
Confidence Intervals

4 MASE Exploratory Study

The MASE Project4 objective is to define and implement a multi-agent tool for
simulating environmental change. MASE enables modeling and simulations of
LUCC dynamics using a configurable user model. The multi-agent architecture is
composed of three hierarchical layers (from top to bottom) [29]: a User Interface
(UI), a Pre-processing and an Agent layer. In the agent layer, there are cell agents
representing land units hosting natural processes, such as crop/forest grow, and
there are transformation agents, representing human agents and their behavior
as farmers or cattle rancher.

The Cerrado-LUCC model of MASE is used as a test problem. The simu-
lations depict the land use and cover changes of the most endangered biome
in Brazil. The Cerrado is the second largest biome in South America and har-
bors significant endemism and biodiversity. The landscape has been undergoing
severe transformation due to the advance of cattle ranching and soy produc-
tion. To promote transparency and replicability, the Cerrado-LUCC simulation

4 Software Availability: http://mase.cic.unb.br/.

http://mase.cic.unb.br/
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model was documented and described employing the standard ODD-protocol
(Overview, Design concepts, and Details) [10,11]. We also applied empirically
grounding ABM mechanisms for the characterization of agent behaviors and
attributes in socio-ecological systems [31]. In this article, we provide some core
information of MASE and the Cerrado-LUCC Model, mainly about the param-
eters and outputs. Readers who are interested in the details of this model and
the implementation of MASE multi-agent system should refer to [28,29], respec-
tively.

The input of the simulation is a couple of grid raster maps consisting of
the land cover of the region, from two different time periods (an initial and a
final map). Also, each simulation carries a set of maps to describe the physical
characteristics of the environment, such as water courses, water bodies, slope,
buildings, highways, environmental protected areas, and territorial zoning maps.

The simulations are calibrated from the two time-steps and project the land
use and cover change for future steps. The result of a MASE simulation is a cou-
ple of predicted maps (Fig. 1), with the allocation of change and a set of metrics
calculated during runtime. The resulting image is submitted to a goodness-of-fit
measurement and the quality and errors of the quantity of change and allocation
of land use change are calculated.

Fig. 1. A land cover predicted map of the Cerrado in Federal District, Brazil

Methodology

The objective is to perform an exploratory analysis, based on classical statis-
tics, to reduce uncertainty and to understand how the model behave. MASE
LUCC model is under input uncertainty investigation, to calculate their influ-
ence in the simulation output. For exploratory purposes, we want insight on the
parameters that affects the multi-agent system implementation, so we selected
a subset of Cerrado-LUCC model inputs for this demonstration. The subset of
input parameters of the multi-agent system are displayed in Table 2: TA-Number
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of Transformation Agents, TG- Number of Group Transformation Agents, IE-
Potential of Individual Exploration and GE- Potential of Group Exploration.
These parameters characterize the instantiation of MASE agents and therefore,
should be analyzed regarding uncertainty.

Table 2. MASE multi-agent input configuration parameters

ID Parameter Description Range

I1 TA Number of transformation agents [1, 100]

I2 TG Number of group transformation agents [10, 100]

I3 IE Potential of individual exploration [1, 500]

I4 GE Potential of group exploration [1, 1500]

The number of transformation agents is a parameter that reflects the number
of computational agents (in the multi-agent system paradigm) instantiated in
a simulation run. In this study case, one agent does not represent one single
individual. The Cerrado-LUCC model was formulated based on an empirical
characterisation of agent behaviors, proposed by [31], with two basic steps: the
development of behavioral categories and the scaling to the whole population
of agents. TA was derived from the Brazilian Agricultural Census of 2006 and
comprises a set of Producer legal status. The range of 1 to 100 is an abstraction to
the 3407 register producers in the region that may be active or inactive in a given
period. The details of this agent characterization are thoroughly illustrated in
[29]. Likewise, a particular type of agent is GT, which represent not an individual
but an organization, cooperative, business or so. The range is an abstraction of
the 548 group producers, 10 of which have permanent exploration licenses.

The potential of exploration, individual or of a group, represent the impact
an agent can produce in the natural vegetation cover of a cell during a step. In
the Cerrado LUCC Model, considering the deforestation process, the potential
of exploration is again an abstraction for the amount of m3 of wood that can
be obtained from a particular grid cell, until a nominal limit that represents
resource depletion.

In addition to the final LUCC maps, the simulation generates a set of metrics
as results, mainly spatial analysis measurements, which includes pixel by pixel
comparison, a quantitative and an allocation agreement. Those measurements
are certain statistical LUCC indices to determine the produced map accuracy,
proposed by [27]. It includes an objective function called the figure of merit
(FoM), a ratio between correct predicted changes and the sum of observed and
predicted changes. To evaluate the response of the model to the different param-
eters, the experiments considered the outputs described in Table 3 and tried to
identify and quantify the influence of the simulation input configurations on the
model outputs. The identification (ID) of each of the outputs follows the num-
bering of its generation in the file .csv produced by MASE at the end of each
simulation.
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Table 3. MASE output parameters

ID Output Description

O1 TM Total time of the simulation

O4 FoM Figure of merit

O5 PA Image producer’s accuracy

O6 UA Image user’s accuracy

O7 WC Pixel’s Wrong Change: observed change predicted as persistence

O8 RC Pixel’s Right Change: observed change predicted as change

O9 WP Pixel’s Wrong Persistence: observed change predicted as persistence

To identify and analyze these uncertainties we performed a method of elemen-
tary effects (EE) of global SA on the MASE LUCC model. For this calculation,
we used the software package developed by Tong [32] called PSUADE, contain-
ing various methods for parameter study, numerical optimization, uncertainty
analysis and SA.

Screening methods are based on a discretization of the inputs in levels, allow-
ing a fast exploration of the system behavior [14]. The aim of this type of method
is to identify the non-influential inputs with a small number of model calls. The
most used screening method is based on the one-parameter-at-a-time (OAT)
design, where each input is varied while fixing the others. The simplicity is one
of OAT’s advantages, but there are drawbacks when applying to ABM. For one,
it does not consider parameter interactions and may cover a slight fraction of
the input space.

The EE method we chose to apply is the Morris method (MOAT) proposed
by [25] and refined by [5], an expansion of the OAT approach that forsakes the
strict OAT baseline. It means that a change in one input is maintained when
examing a switch to the next input and the parameter set is multiply repeated
while randomly selecting the initial parameters settings. EE is suited for spatially
explicit simulations, usually computationally expensive models with large input
sets.

MOAT allows classifying the inputs into three groups: inputs having a neg-
ligible effect, inputs having large linear effects without interactions and inputs
having significant non-linear and interaction effects. In overall effect and interac-
tion effect of each parameter can be approximated by the mean μ and standard
deviation σ of the gradients of each parameter sampled from r.

The MOAT sampling technique was designed for the particular MOAT
method. The work of [8] details how the MOAT sampling works: the range
of each parameter is partitioned into p − 1 equal intervals. Thus the parameter
space is an n-dimension p-level orthogonal grid, where each parameter can take
on values from these p determined values.

First, r points are randomly generated from the orthogonal grid; and then,
for each of the r points, other sample points are generated by perturbing one
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dimension at a time. Therefore, sample size will be (n + 1) · r. For the sampling
size, [19] report that one needs at least 10 · n samples to identify key factors
among the parameters.

To avoid the effect size on the sample, we determining a minimum sample size
of 800(= 20 · 4), for four inputs. For MOAT sampling we used 160 replications,
resulting in sample size of 800(= (4 + 1) · 160).

Moreover, as in other stochastic models, it is not advisable to draw conclu-
sions from a single MASE simulation run. For an initial uncertainty assessment,
we applied the method of independent replications proposed by [9]. We run the
model approximately eighty-five thousand times (an arbitrary choice to explore
all the input parameter space) and randomly clustered the results into five inde-
pendent replication groups. We computed the mean values of the outputs and
their confidence intervals (CI) at a reliability of 95%. Another approach to esti-
mating the uncertainty of the model output is to study the variance in the
model outputs by using the Coefficient of Variation (CV) (the ratio of the stan-
dard deviation σ of a sample to its mean μ), to compare the variance of different
frequency distributions.

5 Results

In the current work, we analyzed four input parameters, displayed in Table 2,
regarding the multi-agent configuration of MASE LUCC model. First, we present
the results of the SA. Figure 2 presents the EE of CERRADO-LUCC model
parameters. Figure 2 (left) illustrates the modified means of MOAT gradients
and also their spreads based on bootstrapping. The results show that GE and TA
are the most sensitive parameters in term of having the largest average median
(26.466 and 25.205, respectively). The other two parameters have median sensi-
tivities close to zero, denoting the impact of these parameters on the simulation
output is minimal.
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Figure 2 (right) is a MOAT diagram that shows a consensus view among mean
μ and standard deviation σ of the gradients of each parameter sampled from r.
The more sensitive the parameter, the closer it is to the upper right corner of
the graph. These results show a positive correlation between input and output
uncertainties. Since GE and TA describe the amount of land transformation in a
simulation, high values of these parameters will increase the model output. GE
is the most sensitive parameter, followed by TA. To understand and to reduce
uncertainty within this two variables will, therefore, reduce the uncertainty of
the simulation as a whole.

GE represents the amount of land cover that is transformed by a group of
human agents in a cell of the map. GE is a sensitive value for it indicates the
voracity and velocity of the current land exploitation, what will directly affect
the result of the simulation. GE is probably sensitive because the socio-economic
groups responsible for large-scale cattle ranching and permanent agriculture are
the principal driver of deforestation in Cerrado. Their rates of land change are
more significance than the number of groups, what explain TG as an insensi-
tive parameter to the output. As for TA, the more agents one instantiates in a
simulation, more land cover will be affected, higher will be the land use trans-
formation rates. Conversely, the potential of exploration of a single individual is
less determinant than the number of single individuals acting on the land, with
SA indicating TA a sensitive and IE as an insensitive parameter.

To investigate MOAT sensitivity results, we used different replications times
r and different levels p to know for sure the relevance of the parameters as
displayed in Fig. 3. It is possible to see that even within the same method, results
may vary. The results for four replications are not very consistent with the other
replication results, mainly with the mean. The results with r = 56, r = 108 and
r = 160 present minor variations. We can infer that four replications are not
enough to identify the parameters sensitivity in the MASE model successfully
and therefore the number of replications should be higher to be effective.
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Table 4 is a summary of the Basic Output Statistics of the MASE LUCC
model. Each replication is assigned by i = [1 . . . 5], the sample mean from the
coefficient variation by CVi, and the mean of all replications by Z̄. We performed
independent replications to verify the variation of the indicators, and for an
initial analysis, we consider this variation as noise (uncertainty). Any impact
conclusions in predictions can only be drawn if the changes in standards are
greater than the uncertainty rate. Therefore, we have a first threshold to define
if some result is valid, compared to the simulations behavior.

We also estimated the expected average FoM for simulations, using the five
replication grouped results (b = 5). Considering the Z̄FoM = 43.87 and the
estimated Variance V̂R = 100.99, we have an approximately 100(1 − α)% two-
sided CI for θ, according to the formalization proposed by [9]. For level α = 0.05,
we have t0.025,4 = 2.78, and gives [31.39, 56.34] as a 95% CI for the expected FoM
for MASE simulations.

Table 4. Coefficient of variation for MASE outputs

Output CV1 CV2 CV3 CV4 CV5 Z̄

Time 0.300 0.130 0.250 0.260 0.200 0.230

Figure of merit 0.015 0.011 0.008 0.007 0.090 0.100

Producer’s accuracy 0.015 0.011 0.008 0.007 0.009 0.010

User’s accuracy 0.006 0.005 0.004 0.004 0.003 0.004

Wrong change 0.030 0.030 0.030 0.030 0.020 0.030

Wrong persistence 0.007 0.007 0.008 0.008 0.013 0.009

Right change 0.015 0.011 0.008 0.008 0.009 0.010

6 Conclusions

In this study, we first identified the most sensitive parameters for the MASE
LUCC model using MOAT SA. We investigated some proper sampling design
and sample size needed for MOAT screening the parameters effectively. Although
these conclusions are model-specific, it corroborates possible variation among
sampling techniques and SA methods.

This paper is the first exploratory study towards quantifying uncertainty
within MASE simulations. Following experiments must be done to promote more
standardization to this effort through the application of Design of Experiments.
We look forward to investigating further on the model parameters, analyzing the
remaining inputs besides the agent’s quantities and their impacts.

This paper is the first exploratory study towards quantifying uncertainty
within MASE simulations. The presented results allow us to understand the
uncertainty when defining the parameters of the simulation of the LUCC model
under study. Our feeling is that the uncertainty is very high which means that
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either model need to dramatically improve or LUCC policy need to be reevalu-
ated. Most simulation tools fail to validate models and to state the uncertainty
in simulation results. Consequently, policymakers and the general public develop
opinions based on misleading research that fails to give them the appropriate
interpretations required to make informed decisions. The efforts to assess ABMs
through statistical methods are paramount to corroborate and improve the level
of confidence of the research that has been made in LUCC simulation.
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