
CrowdSheet: An Easy-To-Use One-Stop
Tool for Writing and Executing Complex

Crowdsourcing

Rikuya Suzuki, Tetsuo Sakaguchi(B), Masaki Matsubara, Hiroyuki Kitagawa,
and Atsuyuki Morishima

University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
rikuya.suzuki.2015b@mlab.info, {saka,masaki,mori}@slis.tsukuba.ac.jp,

kitagawa@cs.tsukuba.ac.jp

Abstract. Developing crowdsourcing applications with dataflows
among tasks requires requesters to submit tasks to crowdsourcing ser-
vices, obtain results, write programs to process the results, and often
repeat this process. This paper proposes CrowdSheet, an application
that provides a spreadsheet interface to easily write and execute such
complex crowdsourcing applications. We prove that a natural extension
to existing spreadsheets, with only two types of new spreadsheet func-
tions, allows us to write a fairly wide range of real-world applications.
Our experimental results indicate that many spreadsheet users can easily
write complex crowdsourcing applications with CrowdSheet.

Keywords: Rapid development · Complex crowdsourcing
Expressive power analysis

1 Introduction

Crowdsourcing involving dataflow among tasks (i.e., the results of some tasks
affect other tasks) is called complex crowdsourcing, and is a promising approach
for a wide range of applications [14] such as writing articles and filling in tables.
Complex crowdsourcing is ubiquitous even in real-world applications. For exam-
ple, asking people to provide photos that contain suspected “red imported fire
ants” and a location and to filter out obviously different ones, and then ask-
ing experts to check whether the remainder really are red imported fire ants, is
complex crowdsourcing.

As crowdsourcing allows us to realize things previously impossible with com-
puters only, enabling many people to easily develop complex crowdsourcing will
have an impact on people’s problem-solving abilities. However, the development
is not an easy task for many people at present.

As a running example, suppose that we are holding an academic conference
with parallel programme sessions (e.g., session 1 A and 2A in room A; session 1B
and 2B in room B; session 1 A and 1B at the same time), and want to estimate
c© Springer International Publishing AG, part of Springer Nature 2018
J. Krogstie and H. A. Reijers (Eds.): CAiSE 2018, LNCS 10816, pp. 137–153, 2018.
https://doi.org/10.1007/978-3-319-91563-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91563-0_9&domain=pdf


138 R. Suzuki et al.

Fig. 1. Flow for complex crowdsourcing with running example: (1) Capacity task; enter
the number of audience seats in the room. (2) Upload task; upload a photo taken in
the session or report “no seat”. (3) Estimation task; estimate the number of attendees
in the session.

the number of attendees in each session except demos and posters. To this end,
we solve our problem using three types of microtasks. The underlying idea is that
we may be able to estimate the number of attendees in each session, if we know
the room capacity (i.e., the number of audience seats in each room) and have
photos taken in the session. Figure 1 illustrates the flow. First, for each room, we
make a “capacity task” to ask workers to enter the number of audience seats in
the room. Second, for each session of the program, we create an “upload task”
to ask workers to upload a photo taken in the session if the audience seats exist
(e.g., in general presentation sessions), or to report that there is no audience
seats if the seats are removed in some sessions such as demos and posters. If a
worker uploads a photo with audience seats, we submit the third task, called the
“estimation task” to ask workers to analyze the picture and the room capacity
and to estimate the number of attendees in the session. If it is reported that
there is no audience seats (e.g., in demo & poster sessions), we do not issue the
estimation task.

The flow can be implemented with current crowdsourcing services as follows:
(1) Submit the capacity and upload tasks to the crowdsourcing service: (2) wait
for the workers to complete the tasks, and then download the results in some
manner: (3) check whether each uploaded picture was taken in a room with
audience seats and, if so, submit an estimation task for the session and download
the results. Using this procedure, we need to submit tasks to crowdsourcing
services, obtain results, write programs, and use tools to process the results.
This process is often repeated. If we want to improve data quality, we have to
implement our own code for it (e.g., duplicated tasks), which is not separated
from the essential logic of the application.

This paper proposes CrowdSheet, an easy-to-use, one-stop tool for imple-
menting complex crowdsourcing (Fig. 2). CrowdSheet provides a spreadsheet
interface for easily writing complex dataflows with a variety of microtasks, with
crowdsourcing services such as Amazon Mechanical Turk (MTurk) in its back-
end. Whereas many other solutions focus on how to optimize the execution plans,
our focus is on making it easy for a wide range of people to exploit the power of
complex crowdsourcing. Our design principle separates the concerns on aspects



CrowdSheet: An Easy-To-Use One-Stop Tool 139

Fig. 2. (Top) CrowdSheet Overview: Tasks are submitted to crowdsourcing platforms
according to the dataflow description in spreadsheets. (Bottom) Execution Process:
Without CrowdSheet, the user has to wait for the first set of tasks to be completed,
download the result, often filter it, and upload the second set of tasks based on the
results. The process becomes more complicated if the user has more than three sets
of tasks. With CrowdSheet, the user is released immediately after writing expressions
and pressing the submit button and the spreadsheet cells will be filled with the results
of completed tasks.

such as quality and costs from the essential logic of applications; CrowdSheet
accepts independent modules implementing techniques for generating alternative
execution plans [24] (omitted in this paper).

With CrowdSheet, the user is released after writing simple expressions and
pressing the submit button. Tasks are automatically submitted and the spread-
sheet cells are gradually filled with the results of completed tasks.

Because of its simplicity, the spreadsheet paradigm has been widely accepted
by people who are not IT experts. Each cell contains either a value (numerical or
string) or a function to compute a value whose parameters are often taken from
other cells. CrowdSheet builds on this paradigm and provides two predefined
functions to define and invoke tasks, whose parameters are often taken from
other cells.

Although the idea is simple, coming up with a good design was non-trivial. We
carefully designed CrowdSheet as a natural extension of existing spreadsheets
with only two additional spreadsheet functions, while guaranteeing reasonable
expressive power with our theoretical analysis results. As shown in Sect. 6, more
than 60% of 33 participants who usually had experience using spreadsheets could
implement complex crowdsourcing using CrowdSheet.

The contributions of this paper are as follows.

Spreadsheet Paradigm for Crowdsourcing. This paper shows a set of
functions allows us to implement complex crowdsourcing with the spreadsheet
paradigm. The design conforms to a common spreadsheet framework and extends



140 R. Suzuki et al.

it naturally. A running example is used to demonstrate how CrowdSheet easily
facilitates the implementation.

Theoretical Analysis. Theoretical analysis is conducted to identify the expres-
sive power of CrowdSheet. More specifically, a class of programs in another lan-
guage that is equivalent to CrowdSheet expressions is identified and used to
demonstrate its limitation. In addition, we explain that some of the crowdsourc-
ing applications surveyed in [26] can be implemented as long as certain conditions
are satisfied.

Implementation. We give constructive proof of our idea by implementing
CrowdSheet with Microsoft Excel and two crowdsourcing platforms, although
our concept is not restricted to particular spreadsheets and crowdsourcing plat-
forms. Through the explanation, we not only show that the concept is feasible,
but also identify the detailed semantics of the extended functions for Crowd-
Sheet.

Usability Evaluation. We evaluate whether ordinary spreadsheet users can use
CrowdSheet to write complex crowdsourcing applications by recruiting users via
a crowdsourcing service and asking them to write applications with CrowdSheet.

2 Related Work

Complex crowdsourcing beyond simply submitting a set of tasks leads to many
attractive applications [5,7]. Although many tools have been proposed for opti-
mizing complex crowdsourcing [10,18,21], which try to find execution plans con-
sidering execution times, monetary costs, and data quality, only a few abstrac-
tions that support the development of complex crowdsourcing applications have
been proposed. For example, CrowdForge is MapReduce abstraction [14], Crowd-
Lang uses control flow diagrams [19], CyLog uses a logic-based abstraction
[11,20], and Lukyanenko and others discuss conceptual modeling principles for
crowdsourcing [16]. Our spreadsheet paradigm is unique in that it not only is
different from the others but can also foster end-user development of complex
crowdsourcing applications, which we believe can make a meaningful difference
in the real world. CrowdSheet has the same spirit as the system presented by
Kongdenfha et al. [15], although the domain and problems are different. In addi-
tion, this paper discusses the appropriateness of the proposed design through
theoretical analysis (that shows a natural and small extension of existing spread-
sheets leads to wide ranging of expressive power) and usability studies (that show
that many ordinary spreadsheet users can implement complex crowdsourcing
with CrowdSheet). It is worth noting that the design of CrowdSheet is indepen-
dent of the optimization techniques, in the sense that it can be combined with
existing techniques as long as the description can be mapped to the abstractions
used in the techniques. Such mappings can be automatically generated because
CrowdSheet has formal semantics.

Various proposals have been made as regards office applications with crowd-
sourcing platforms in their backends [8,23]. In contrast to them, CrowdSheet



CrowdSheet: An Easy-To-Use One-Stop Tool 141

Fig. 3. udTask functions and the generated tasks by user-defined task template

is a general-purpose engine for implementing complex crowdsourcing. Google
Spreadsheet and CrowdFill [22] actualize another approach related to spread-
sheets and crowdsourcing. Whereas in this approach, the spreadsheet interface
helps workers to enter data efficiently, CrowdSheet helps requesters to implement
their complex crowdsourcing.

Tyszkiewicz [25] showed that a relational database can be implemented using
only spreadsheet functions. Our theoretical result is compatible with it in the
sense that the expressive power of CrowdSheet does not allow transitive closure.

Data quality is always an important issue in crowdsourcing [6,12,17]. Crowd-
Sheet adopts a declarative feature that separates the application logic and mech-
anisms for improving data quality [24], where independent modules rewrite the
code generated by CrowdSheet to propose alternative execution plans for improv-
ing data quality. Consequently, CrowdSheet can be combined with a variety of
techniques (e.g., worker selection and majority consensus) for improving the data
quality in crowdsourcing. Incorporation of related novel notions, such as social
computing units [9], into our framework is an interesting future work.

3 CrowdSheet

CrowdSheet is a spreadsheet with a crowdsourcing platform in its backend
(Fig. 2). It allows requesters to use functions to invoke microtasks and to control
dataflows that can be used in the same manner as other spreadsheet functions
(e.g., sum and average)1.

TI-Functions. Task Invocation (TI) Functions invoke tasks. Each TI-function
generates a task with specified parameters and submits it to the crowdsourcing
platform. Subsequently, it receives the task result when the task is completed.
Figure 2 shows an example of this. entryTask (String question) generates a task
with a specified question and a text field, and submits it to the crowdsourcing
platform. Another example is choiceTask (String question, Range choices),
which generates and submits a task with a specified question and a list of choices,
and returns the result.
1 In our current implementation, TI-functions cannot be combined with other func-

tions in the same cell. However, this is not an essential limitation because expressions
in the cell can refer to the results of TI-functions in other cells.



142 R. Suzuki et al.

CrowdSheet also allows us to invoke microtasks with user-defined task tem-
plates (Fig. 3). udTask (String templateID, Range parameters) is a TI-function
that submits a task with a specified task template and returns the result. A
requester can easily register their user-defined task templates to CrowdSheet.
First, the requester writes a task template in HTML containing place holders
where the values of parameters will be embedded. Next, they upload the file to
our system with an associated templateID to be used when requesters call the
function2.

C-Functions. CrowdSheet has one C-function, called evaluateIf, which con-
trols task invocations. evaluateIf (String condition, String then-value, String
else-value) returns the then-value if the specified condition holds and returns
the else-value otherwise. The two values can be specified by cell references. For
example, the condition could be “A3 < 5,” which means cell “A3” is smaller
than 5, and the then-value refers to a cell containing a TI-function, and the
else-value could be a value “None”. A C-function is different from the usual if-
function of spreadsheets in that it allows for lazy evaluation of tasks if it involves
references to task invocations. Therefore, the TI-function referred to by the C-
function is evaluated only when the C-function finds that the condition is true.
C-functions are useful if a requester wants to conditionally invoke tasks, as in
the estimation tasks in the running example.

How to Use CrowdSheet. The running example can be easily implemented as
shown in Fig. 4. We assume that the sheet already has columns that store rooms

Fig. 4. CrowdSheet description in running example

Fig. 5. CrowdSheet implementation

2 Each task template is also associated with the payment information for workers.



CrowdSheet: An Easy-To-Use One-Stop Tool 143

(Column H) and sessions (Column A). First, a requester writes and uploads task
templates for the three types of tasks. Then, they encode the logic in CrowdSheet
as follows: (1) Put TI-functions into Column I of each room (row) for invocation
of the capacity task, (2) put references to the results of the capacity tasks in
Column C, (3) put TI-functions into Column D of each session (row) for invoca-
tion of the upload tasks, and (4) put TI- and C-functions into Columns E and
F for invocation of the estimation tasks if the room for the session has audience
seats. Note that a user can write TI- and C-functions for only one session and
one room, and then drag the mouse to copy them for others.

Then, the user clicks on the “submit” button to submit tasks. When the user
clicks on the “retrieve” button, the cells containing TI- or C-functions change
to the result value if the task is complete at that time. Naturally, the user can
click on the “retrieve” button at any point to obtain the intermediate results.

4 Implementation

Figure 5 shows the main components of our CrowdSheet implementation. We used
Microsoft Excel and Crowd4U [13], but can adopt other services, such as Google
Sheets and MTurk (We have already implemented modules for MTurk [24]).

In order to use CrowdSheet, the user has to download an Excel file with
EXCEL add-ins for CrowdSheet. The sheet contains “submit” and “retrieve”
buttons in it.

The submission module (implemented as an EXCEL add-in) passes the
CrowdSheet description (i.e., all cells in the spreadsheet) to the translation mod-
ule, which then translates it into an intermediate expression written in CyLog,
a programming language for human-machine computations [11,20]. The logic
encoded in the expression is executed by Crowd4U, and the tasks are submit-
ted to crowdsourcing services such as MTurk and the Crowd4U native task pool.
Workers then perform tasks on crowdsourcing services. If specified in the expres-
sion, Crowd4U dynamically generates tasks using the results of other tasks.

Fig. 6. Fragment of a CyLog program



144 R. Suzuki et al.

When the CrowdSheet user clicks on the “retrieve” button, the retrieve mod-
ule (implemented as an EXCEL add-in) retrieves the latest results stored in
crowdsourcing services at that time and inserts the retrieve results into the cells
containing TI- or C-functions.

The user can also write and upload HTML files for user-defined task tem-
plates. The task template translator is an independent module that takes each
HTML file as input, assigns a template id to it so that the template can be used
in TI-functions.

4.1 CyLog Overview

As a means to define the formal semantics and discuss its expressive power,
we use CyLog [20], a rule-based language for crowdsourcing. The basic data
structure in CyLog is a relation, which is a table to deal with a set of tuples that
conform to the schema of the relation. A program written in CyLog consists
of three sections: schema, rules and views. The schema section describes the
schema of the relations. The rules section has a set of rules, each of which fires
(is executed) if its condition is satisfied. The views section describes HTML
templates to be used as the interface with workers. In the following discussions,
we explain only the rules section. The schema section is straightforward and we
assume that they are appropriately given. The HTML templates in the views
section are supplied by the task template translator in Fig. 5.

Facts and Rules. The main component of a CyLog program is the set of
statements. Figure 6 shows a set of statements, each of which is preceded by a
label (such as Pre1) for explanation purposes. A statement is either a fact or
a rule. A rule has the form head ← body. In the figure, Pre1 to Pre6 are facts.
Pre7 and R1 to R6 are rules. Each fact or head is given in the form of an atom,
while each atom consists of a predicate name (e.g., Session) followed by a set
of attributes (such as sid, rid, and sname). Optionally, each attribute can be
followed by a colon with a value (e.g., :“Session 1A”) or an alias (e.g., :s). Each
body consists of a sequence of atoms.

A fact describes that the specified tuple is inserted into a relation. For exam-
ple, Pre1 is a fact that inserts a tuple whose values for attributes sid, rid, and
sname are 1, 1, and “Session 1A” respectively into relation Session3.

A rule specifies that, for each combination of tuples satisfying the condition
specified in the body, the tuple described in head be inserted into a relation.
Atoms in the body are evaluated from left to right and variables are bound to
values that are stored in the relation specified by each atom. For example, Pre7
is a rule that inserts a tuple having sid, rid, sname, and rname into relation
SRoom if sid, rid, and sname are in Session and the rid and rname in Room.
In other words, for each combination of a tuple in Session and a tuple in Room

3 CyLog adopts the named perspective [3], which means that the variables and values
in each atom are associated with attributes by explicit attribute names, not by their
positions.



CrowdSheet: An Easy-To-Use One-Stop Tool 145

whose rid attributes match each other, it inserts a tuple having sid, rid, sname,
and rname values into relation SRoom.

Open Predicates. CyLog allows predicates to be open, which means that the
decision as to whether a tuple exists in the relation is performed by humans
when the data cannot be derived from the data in the database. For example,
the head of R1 is followed by /open and is an open predicate. If a head is an
open predicate, CyLog asks humans to give values to the variables that are not
bound to any values in the body (e.g., capacity in R1 and URI in R2).

Task Predicates. A task predicate (preceded by !) represents a relation imple-
menting a task pool, in which each tuple corresponds to a task instance. For
example, R2 defines a task predicate !CapacityTask in which each tuple corre-
sponds to one capacity task. In general, each tuple in a task predicate is created
for a combination of tuples including (1) ones to supply data to be presented
to workers in the task screen and (2) open tuples to store the task results. For
example, R3 creates a capacity task instance for a combination of (1) a tuple
in Room(rid, rname), whose rname is used to show workers the name of the
room in the task screen, and (2) a tuple in Capacity(rid, capacity), where
capacity contains an open value. In the rule body, ?Capacity(rid, capacity)
is a predicate that holds when it contains an open tuple. Note that open tuples
for Capacity are supplied by R1.

Block Style Rules. Each rule P ← P1, P2, . . . , Pn can be written in the block
style P1{P2{. . . {Pn{P ; } . . .}. For example, Pre7 in Fig. 6 can be written as fol-
lows:

Session(sid:s, rid, sname) {

Room(rid, rname) {

SRoom(sid:s, rid, sname, rname);

}

}

where SRoom(sid, rid, sname, rname) is the head of the rule. The block style
provides a concise expression when we have many rules that have the same body

Fig. 7. Patterns for CyLog code generation: SR (SR-is), TP (TP-is), and CP (CP-is)



146 R. Suzuki et al.

atoms (e.g., P1{P2;P3; } for P2 ← P1;P3 ← P1;). In addition, the block style
allows us to use the else clause. For example, R5 inserts a tuple having the
result “0” into Estimation(sid, rid, result) if the URI value is “no seat”.

4.2 Semantics of CrowdSheet Descriptions

CyLog Program for the Running Example. R1 to R6 in Fig. 6 constitute
a set of rules that is equivalent to the CrowdSheet description shown in Fig. 4.
(Rules Pre1 to Pre7 are rules we intend to use to explain CyLog and do not
have expressions in the figure.)

R1 to R4 generates two types of tasks for asking workers to count the number
of seats in the room and take a picture of the session. R5 states that if the results
of the capacity task is not “0”, the estimation result of the number of audiences
is open; otherwise, we take the value “0” as the estimation result. R6 generates
a task for estimation of the number of people in the audience in each session, if
the estimation result is open.

Mapping to CyLog Rules. The semantics of CrowdSheet descriptions is
defined by a method that maps a CrowdSheet description to CyLog rules. A
CrowdSheet description is mapped to CyLog rules consisting of the following
three components (Fig. 7).

Shared Rules (SR) a set of rules to give common functionalities to generate
tasks.

TI-function Pattern (TP) a set of rules generated for each TI-function
appearing in the sheet.

C-function Pattern (CP) a set of rules generated for each C-function in the
sheet.

The TP or CP for a function specified in the cell at (x, y) is fired only once
when their parameter values are ready. Note that (x, y) is a pair of constant
values, not variables.

Shared Rules and TI-function Pattern. Assume that we have a TI-function
with Template k in a cell at (x, y), and its parameters are stored in cells at
(x1, y1), . . . , (xnk

, ynk
). Then, the translator generates a one SR (consisting of

SR-1 and SR-2) and one TP (consisting of two rules: TP-1 and TP-2) for the
function.

SR works as follows. First, SR-1 makes the cell value open if the task is ready.
Then, SR-2 generates an instance of the Template-k task if the value is open.

TP works as follows. First, TP-1 constructs a tuple to store parameters for
the TI-function at (x, y). Here, Paramk is a predicate to store parameters
for TI-functions with Template k, where the key loc stores the locations of the
cells at which TI-functions are placed on the spreadsheet. As a result, TP-1
inserts a tuple containing parameters for the TI-function at (x, y) into Paramk.
The predicate Cell(loc : (x, y), value) stores the value in the cell at (x, y).



CrowdSheet: An Easy-To-Use One-Stop Tool 147

Next, TP-2 states that the task is ready to be evaluated if we have all parameters
to invoke the task. Here, the predicate Ready(loc) stores the locations of those
TI-functions that are ready to be evaluated.

If we had more than one TI-function for the same Template K, the translator
would only generate TPs for the TI-functions. The shared rules do not depend
on the locations of cells and are commonly used by every TP for Template k.

Rules for C-functions. Assume that we have a C-function in the cell at
(x, y), and the condition specified in the C-function requires values in cells
at (x1, y1), . . . , (xm, ym). Note that the “then” and “else” clauses can refer to
values in other cells. Here, we assume that the then-value parameter of the C-
function refers to a TI-function located at (xb, yb) and the else-value parameter
refers to a value v at (xc, yc).

Then, the translator generates rules in the following two steps. First, it gen-
erates the CP for the C-function, as shown in Fig. 7. CP-1 to CP-2 make the task
at (xb, yb) ready only when the condition holds and we have all of its parame-
ters. CP-4 copies the value at (xc, yc) to the cell at (x, y) if the condition is not
satisfied. Second, for each reference to a TI-function contained in the then-value
or else-value parameters, the original rule for creating Ready tuples (i.e., TP-2)
is removed, because the tuple is created by CP-2 when the condition is satisfied.

5 Expressive Power

In this section, we prove that there is a class P of CyLog programs such that every
program in P has a CrowdSheet description equivalent to it, and vice versa.

5.1 CrowdSheet to CyLog

First, we identify the conditions satisfied by any CyLog program that defines
the semantics of a CrowdSheet expression.

Theorem 1. Let p be a CyLog program converted from a CrowdSheet descrip-
tion. Then, p satisfies all of the following conditions.

C1. Every task generated by p returns only one value4.
C2. There exists a natural number N such that p generates at most N tasks.
C3. p generates tasks of predefined task templates only.

Proof. The conditions are derived from the limitations of spreadsheets and
the CrowdSheet design. The first condition is derived from the fact that the
output of each spreadsheet function is inserted into one spreadsheet cell. The
second states that an infinite number of functions can not be written in a sheet
because TI-functions have to be explicitly written in cells. The third is derived
from the design policy stating that the task-design functionalities are out of
4 Tasks can return more than one value with composite values (omitted owing to lack

of space).



148 R. Suzuki et al.

the spreadsheet paradigm, i.e., new templates of tasks can not be defined with
spreadsheet functions. Every program mapped from a CrowdSheet description
(Sect. 4.2) satisfies the three conditions. �.

Definition 1. We define P as a class of CyLog programs that satisfies all con-
ditions C1, C2, C3 identified by Theorem 1.

5.2 CyLog to CrowdSheet

Second, we prove that every CyLog program in class P can be converted into
a set of CyLog fragments of shared rules, TPs, and CPs. The fundamental idea
of the proof is to map each task invocation to a virtual spreadsheet space, such
that every task result is associated with a unique location (corresponding to a
cell in the virtual spreadsheet). In this manner, every TI-function or C-function
can refer to the results of other tasks in the mapped spreadsheet.

First, we consider a simple case; we prove that every program in P ′ can be
converted into a set of CyLog fragment patterns.

Definition 2. P ′ is a class of CyLog programs in which each program in P ′

satisfies all of C1, C2’, and C3, where,

– C2’ p generates exactly N tasks and no function uses the results of other
functions as its parameters.

Theorem 2. Every program p in P ′ can be converted into a set of TPs and
shared rules.

Proof. Let pred seqq,k be a sequence of CyLog predicates (filled with constant
values) that computes a set of parameters d1, . . ., dnk

to be used for invoking
tasks with Template k. Here, q is a unique number associated to such a sequence,
independent of k (i.e., q is unique in all pred seqq,k with any ks). Because the
total number of task invocations is fixed by N , the number of task invocations
generated by each pred seqq,k is also fixed. Let Nq,k be that number. In addition,
as no task uses the results of other tasks as its parameters, all parameters are
constant values. Therefore, we can construct a set of cells in a virtual spread-
sheet to store those parameters generated by pred seqq,k. For that purpose, we
“expand” pred seqq,k by generating the following CyLog fragments Nq,k times.

pred seqq,k, condi {
Cell(loc : lnew1 , value : d1);

. . .
Cell(loc : lnewk , value : dk);

}

Here, condi(1 ≤ i ≤ Nq,k) is a condition to choose a tuple for one task, and lnewi

is a constant value to represent a new cell location that has not been used yet. In
this way, we obtain all “virtual” cells that can be referred to by task invocations.

Then, we generate the following CyLog fragment for each sequence of param-
eters for invoking a task with Template k.



CrowdSheet: An Easy-To-Use One-Stop Tool 149

TP-1: Paramk,q(loc : lnew, d1, . . . , dnk)
<- Cell(id : l1, value : d1), . . . , Cell(id : lk, value : dk),

TP-2: Ready(loc) <- Paramk,q(loc : lnew, d1, . . . , dnk);

Where li is the location of the parameter used for the ith parameter to invoke the
task, and lnew is the new location to store the task result. The combination of the
rules and shared rules is equivalent to CyLog rules generated from a CrowdSheet
description. Therefore, there is a CrowdSheet description that is equivalent to
any p in P ′. �

Note that each loc has a unique value such that each task result can be
referred to by other tasks as a parameter. loc does not have to be in the form
(x, y), as long as the values serve as unique identifiers for spreadsheet cells.

This way, any value to be used as a parameter is assigned to a unique location.
The following lemma is important.

Lemma 1. For every task t in any program in the class P, there exists a number
Nt < N s.t. t is ready after Nt tasks are completed.

Proof. If this does not hold, then N is not a fixed number, which is a contra-
diction. �

Note that for every task t in programs in the class P ′, Nt = 0. We use
Lemma 1 and gradually increment Nt to prove the following theorem (proof
omitted).

Theorem 3. Every p in P can be converted into a set of TPs, CPs, and SRs. �

5.3 Expressive Power in Terms of Applications

An important question that entails from this is the question of what the
expressive power means for real-world applications. To answer this question, we
reviewed a survey [26] to ascertain the expressive power of CrowdSheet in terms
of real-world applications. Note that being able to write an application does not
equate to being able to implement it as is. We are interested in whether we can
use CrowdSheet to implement applications that are functionally equivalent to
the applications in surveyed.

There are two major limitations in CrowdSheet. The first is that each task is
explicitly distinguished with others and must be an instance of a task template.
This hinders CrowdSheet from implementing certain kinds of games where the
interactive user interface is important. Secondly, it does not allow recursive task
invocations so that any CrowdSheet expression cannot issue an infinite number
of microtasks.

The survey [26] grouped crowdsourcing applications into four groups: vot-
ing systems, information sharing systems, games, and creative systems. First,
most of the voting systems operated on MTurk and, in most cases, it is imple-
mented with microtask interfaces. Therefore, as the number of tasks is fixed,



150 R. Suzuki et al.

CrowdSheet can implement voting systems. Second, information sharing sys-
tems, including Wikipedia and YouTube. In this case, the ability to issue an
infinite number of tasks is essential. Therefore, we surmise that CrowdSheet is
not appropriate to implement such systems. Third, games are crowdsourcing
applications that have been developed in line with ESP games [4]. For many
games, an interactive interface is essential and a microtask interface only is not
enough to implement effective game experiences. CrowdSheet is not appropriate
to implement such games. Finally, creative systems, such as The Sheep Market
[1] can be implemented if the number of tasks is limited. There are systems that
can be implemented with the microtask interface, and we believe that certain
kinds of creative systems can be implemented with CrowdSheet.

Our conclusion is that although CrowdSheet is not a perfect tool, it has a
reasonable expressive power to be able to implement some of real-world appli-
cations.

6 Usability Evaluation

We recruited workers with prior experience using Microsoft Excel and spread-
sheet functions and asked them to write CrowdSheet expressions to implement
an application that is isomorphic to the running example presented in Sect. 1.

6.1 Settings

Worker Recruitment. We recruited workers as follows. First, we submitted
300 tasks to Yahoo! Crowdsourcing [2] to ask workers to answer questions on
how to use Microsoft Excel, in order to find workers who can use spreadsheet
functions, i.e., workers who are potentially able to write CrowdSheet expressions.
The questions included how to use Excel’s if function to solve a given problem
in Excel. Three hundred (300) workers participated in the task, with each worker
receiving 2 JPY (about 0.02 USD). 110 out of the 300 participants gave correct
answers to the questions. Next, we submitted the “CrowdSheet” tasks (which we
will explain next) to Yahoo!Crowdsourcing, with the condition that each worker
could accept to perform only one of the submitted CrowdSheet tasks and would
receive 10 JPY (about 0.09 USD) for the task. The tasks were visible only to
the 110 workers who gave correct answers to the first task.

CrowdSheet Tasks. The CrowdSheet task consisted of two parts. In the first
part, the workers were asked to write CrowdSheet expressions with only TI-
functions for issuing entryTasks and choiceTasks having data flow among them.
In the second part, the workers were asked to write CrowdSheet expressions with
the combination of TI- and C-function to implement the running example in
Fig. 1. Each part began with a tutorial to explain TI-functions entryTask and
choiceTask (in the first part) and C-funcion evaluateIf (in the second part),
and then asks workers to write CrowdSheet descriptions in the matrix of text
forms simulating the CrowdSheet interface.



CrowdSheet: An Easy-To-Use One-Stop Tool 151

6.2 Results

Table 1 shows the results obtained. 33 out of the 110 workers accepted to perform
the CrowdSheet tasks. 19 workers did not accept to perform the tasks. 58 workers
did not access to the task at all. If we look at the numbers for Part 2, which
asked workers to write expressions for a more difficult application, 15 workers
out of the 33 workers gave correct answers and 6 workers gave correct answers
with minor mistakes (such as typo and lack of the closing parenthesis). The
remaining 12 workers made essential mistakes. An example of a mistake is a
wrong choice of TI-function. For example, a worker issued choiceTask task
instead of an estimation task, because choiceTask was used in the tutorial part.
Another example is missing parameters of TI-tasks, which could be corrected if
the spreadsheet supported interactive syntax error check. The sum of workers in
the first two categories was 21, which is 63.6% of the workers who performed the
CrowdSheet tasks. The results suggest that many workers with experience using
Excel and its spreadsheet functions were able to use CrowdSheet, even though
they were using it for the first time and had received only a simple CrowdSheet
functions tutorial.

Table 1. Evaluation Result

Correct (minor error) Incorrect Did not accepted Ignored Total

Part 1 (only TI-functions) 31 (3) 2 19 58 110

Part 2 (TI- and C-functions) 21 (6) 12

The average of the time spent by participants for performing a CrowdSheet
task (reading the tutorials and writing CrowdSheet descriptions for two scenar-
ios) was about 10 min (598.2 s). For reference, a skilled programmer who use
MTurk needed 28 min to implement tasks with the same data flow as the part 2
(submitting tasks and processing data) with MTurk, excluding the time required
for him to wait for workers to complete the first step tasks. This suggests that we
can expect many spreadsheet users can quickly learn and easily use CrowdSheet.

7 Summary

This paper proposed CrowdSheet, a spreadsheet for writing and executing com-
plex crowdsourcing applications. We explained the design and a possible imple-
mentation, gave a theoretical analysis of its expressive power, and discussed
the power and limitations for implementing real-world applications. Further, we
presented experimental results showing that many users with spreadsheet expe-
rience are able to write complex crowdsourcing applications with CrowdSheet.
In future work, we plan to make it generate codes in the form closer to that
described by humans. This will make it easier to use CrowdSheet as a tool for
implementing the basic functions of applications and rewriting the generated
code to add functionalities beyond the expressive power of CrowdSheet.



152 R. Suzuki et al.

Acknowledgement. This work was partially supported by JST CREST GrantNum-
ber JPMJCR16E3, Japan.

References

1. The sheep market. http://www.thesheepmarket.com/
2. Yahoo! crowdsourcing. http://crowdsourcing.yahoo.co.jp
3. Abiteboul, S., et al.: Foundations of Databases: The Logical Level, 1st edn.

Addison-Wesley Longman Publishing Co., Inc., Boston (1995)
4. von Ahn, L., et al.: Labeling images with a computer game. In: Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, pp. 319–326. ACM
(2004)

5. Akiki, P., et al.: Crowdsourcing user interface adaptations for minimizing the bloat
in enterprise applications. In: Proceedings of ACM SIGCHI 2013, pp. 121–126
(2013)

6. Allahbakhsh, M., et al.: Quality control in crowdsourcing systems: issues and direc-
tions. IEEE Internet Comput. 17(2), 76–81 (2013)

7. Artikis, A., et al.: Heterogeneous stream processing and crowdsourcing for urban
traffic management. In: Proceedings of EDBT 2014, vol. 14, pp. 712–723 (2014)

8. Bernstein, M.S., et al.: Soylent: a word processor with a crowd inside. Commun.
ACM 58(8), 85–94 (2015)

9. Candra, M.Z.C., Truong, H.-L., Dustdar, S.: Provisioning quality-aware social com-
pute units in the cloud. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC
2013. LNCS, vol. 8274, pp. 313–327. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-45005-1 22

10. Franklin, M., et al.: Crowddb: answering queries with crowdsourcing. In: Proceed-
ings of ACM SIGMOD 2011, pp. 61–72. ACM (2011)

11. Fukusumi, S., Morishima, A., Kitagawa, H.: Game aspect: an approach to separa-
tion of concerns in crowdsourced data management. In: Zdravkovic, J., Kirikova,
M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 3–19. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-19069-3 1

12. Hung, N.Q.V., et al.: Erica: expert guidance in validating crowd answers. In: Pro-
ceedings of ACM SIGIR 2015, pp. 1037–1038. ACM (2015)

13. Ikeda, K., et al.: Collaborative crowdsourcing with crowd4u. PVLDB 9(13), 1497–
1500 (2016)

14. Kittur, A., et al.: Crowdforge: crowdsourcing complex work. In: Proceedings of the
24th Annual ACM UIST, pp. 43–52. ACM (2011)

15. Kongdenfha, W., et al.: Rapid development of spreadsheet-based web mashups. In:
Proceedings of WWW 2009, pp. 851–860. ACM (2009)

16. Lukyanenko, R., et al.: Conceptual modeling principles for crowdsourcing. In: Pro-
ceedings of the 1st International Workshop on Multimodal Crowd Sensing, pp. 3–6.
ACM (2012)

17. Lukyanenko, R., et al.: The IQ of the crowd: understanding and improving infor-
mation quality in structured user-generated content. Inf. Syst. Res. 25(4), 669–689
(2014)

18. Marcus, A., et al.: Crowdsourced databases: query processing with people. In:
CIDR (2011). http://hdl.handle.net/1721.1/62827

http://www.thesheepmarket.com/
http://crowdsourcing.yahoo.co.jp
https://doi.org/10.1007/978-3-642-45005-1_22
https://doi.org/10.1007/978-3-642-45005-1_22
https://doi.org/10.1007/978-3-319-19069-3_1
http://hdl.handle.net/1721.1/62827


CrowdSheet: An Easy-To-Use One-Stop Tool 153

19. Minder, P., Bernstein, A.: CrowdLang : a programming language for the systematic
exploration of human computation systems. In: Aberer, K., Flache, A., Jager, W.,
Liu, L., Tang, J., Guéret, C. (eds.) SocInfo 2012. LNCS, vol. 7710, pp. 124–137.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35386-4 10

20. Morishima, A., et al.: Cylog/Game aspect: an approach to separation of concerns
in crowdsourced data management. Inf. Syst. 62, 170–184 (2016)

21. Park, H., et al.: Deco: a system for declarative crowdsourcing. Proc. VLDB Endow.
5(12), 1990–1993 (2012)

22. Park, H., et al.: Crowdfill: collecting structured data from the crowd. In: Proceed-
ings of the 2014 ACM SIGMOD International Conference on Management of Data,
pp. 577–588. ACM (2014)

23. Quinn, A.J., et al.: AskSheet: efficient human computation for decision making
with spreadsheets. In: Proceedings of CSCW 2014, pp. 1456–1466. ACM (2014)

24. Suzuki, R., et al.: Crowdsheet: instant implementation and out-of-hand execution
of complex crowdsourcing. In: Proceedings of ICDE 2018 (2018)

25. Tyszkiewicz, J.: Spreadsheet as a relational database engine. In: Proceedings of
ACM SIGMOD 2010, pp. 195–206. ACM, New York (2010)

26. Yuen, M.C., et al.: A survey of crowdsourcing systems. In: 2011 IEEE Third Inter-
national Conference on Privacy, Security, Risk and Trust (PASSAT) and 2011
IEEE Third Inernational Conference on Social Computing (SocialCom), pp. 766–
773. IEEE (2011)

https://doi.org/10.1007/978-3-642-35386-4_10

	CrowdSheet: An Easy-To-Use One-Stop Tool for Writing and Executing Complex Crowdsourcing
	1 Introduction
	2 Related Work
	3 CrowdSheet
	4 Implementation
	4.1 CyLog Overview
	4.2 Semantics of CrowdSheet Descriptions

	5 Expressive Power
	5.1 CrowdSheet to CyLog
	5.2 CyLog to CrowdSheet
	5.3 Expressive Power in Terms of Applications

	6 Usability Evaluation
	6.1 Settings
	6.2 Results

	7 Summary
	References




