
Evaluating Several Design Patterns and Trends
in Big Data Warehousing Systems

Carlos Costa1,2(&) and Maribel Yasmina Santos2

1 CCG - Centre for Computer Graphics, Guimarães, Portugal
carlos.costa@dsi.uminho.pt

2 ALGORITMI Research Centre, University of Minho, Guimarães, Portugal
maribel@dsi.uminho.pt

Abstract. The Big Data characteristics, namely volume, variety and velocity,
currently highlight the severe limitations of traditional Data Warehouses (DWs).
Their strict relational model, costly scalability, and, sometimes, inefficient per-
formance open the way for emerging techniques and technologies. Recently, the
concept of Big Data Warehousing is gaining attraction, aiming to study and
propose new ways of dealing with the Big Data challenges in Data Warehousing
contexts. The Big Data Warehouse (BDW) can be seen as a flexible, scalable
and highly performant system that uses Big Data techniques and technologies to
support mixed and complex analytical workloads (e.g., streaming analysis, ad
hoc querying, data visualization, data mining, simulations) in several emerging
contexts like Smart Cities and Industries 4.0. However, due to the almost
embryonic state of this topic, the ambiguity of the constructs and the lack of
common approaches still prevails. In this paper, we discuss and evaluate some
design patterns and trends in Big Data Warehousing systems, including data
modelling techniques (e.g., star schemas, flat tables, nested structures) and some
streaming considerations for BDWs (e.g., Hive vs. NoSQL databases), aiming to
foster and align future research, and to help practitioners in this area.
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1 Introduction

Big Data has become a relevant concept for organizations looking to achieve high
business value, and it is commonly defined by its unquantifiable characteristics (vol-
ume, variety, velocity, value and veracity) [1, 2]. The threshold for which data becomes
“big” is subjective, so it remains as an abstract concept [3], being often defined as data
“too big, too fast, or too hard for existing tools to process” [4]. The concept gained
significant notoriety in many business areas, such as healthcare, retail, manufacturing
or modern cities [3, 5].

Big Data is a relatively recent scientific and technical topic, although there are already
some efforts of standardizing constructs and logical components of general Big Data
Systems (e.g., NIST Big Data Reference Architecture) [6]. Nevertheless, the concept of
Big Data Warehousing is even more recent, with even more concerning ambiguity and
lack of standard approaches. The BDW can be defined by its characteristics and design
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changes, including: massively parallel processing; mixed and complex analytical work-
loads (e.g., ad hoc querying, data mining, text mining, exploratory analysis and materi-
alized views); flexible storage to support data from several sources; real-time operations
(stream processing, low latency and high frequency updates); high performance with fast
insights and near real-time response; scalability to accommodate growing data, users and
analysis; use of commodity hardware to lower costs; and interoperability in a federation of
multiple technologies [7–15].

Big Data Warehousing represents a paradigm shift for organizations facing several
challenges in their traditional Data Warehousing platforms, namely bottlenecks
throughout the collection, storage, processing and analysis of data, due to high demand
of input/output efficiency, scalability and elasticity, which can be achieved through
parallel storage and processing [3, 16, 17]. The strict modelling approach of traditional
DWs is another relevant concerning factor [8], which only highlights the relevance of
BDWs. Nevertheless, the state-of-the-art in BDW reflects the young age of the concept,
as well as ambiguity and the lack of common approaches to build BDWs according to
their characteristics.

Consequently, this work aims to provide guidance when building BDWs, by
evaluating several design patterns and trends to avoid potential pitfalls that are inevi-
tably the consequence of a never-ending sea of doubts in these emerging contexts,
including: are multidimensional models viable in Big Data Warehousing contexts?
How does the size of the dimension tables affect query performance? Should we use
nested structures in BDWs? For streaming scenarios, are NoSQL databases a more
suitable option than Hadoop, and how data volume affects them? All the insights
provided by this paper are the result of a laboratory experiment (see Sect. 3) using an
in-house developed extension of the Star Schema Benchmark (SSB) [18], which is a
Data Warehousing benchmark using the multidimensional modelling strategy [11],
whose data model is based on the TPC-H Benchmark [19], an ad hoc querying
benchmark based on an operational database. Therefore, this laboratory experiment
focuses on an extended version of the SSB, the SSB+ [20], and integrates the eval-
uation activity of a broader research process using the Design Science Research
Methodology for Information Systems [21] to propose a set of foundations for Big Data
Warehousing.

This paper is organized follows: Sect. 2 describes related work; Sect. 3 presents the
SSB+ benchmark used in this work; Sects. 4 and 5 evaluate several design patterns and
trends in Big Data Warehousing; Sect. 6 concludes with some remarks about the
undertaken work.

2 Related Work

Regarding the work related to Big Data Warehousing, some works explore imple-
mentations of DWs on top of Not Only SQL (NoSQL) databases, such as
document-oriented [22], column-oriented [22] and graph models [23], despite the fact
that they were mainly designed to scale Online Transactional Processing (OLTP)
applications [24].
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Moreover, there are works focusing on the storage technologies and optimizations
for BDWs, discussing SQL-on-Hadoop systems like Hive [25] and Impala [26], or
improving these technologies through new storage and processing mechanisms, namely
using the ORC (Optimized Row Columnar) file format, an efficient columnar format for
data analytics, or using Tez, an interactive and optimized execution engine [27]. Some
authors propose advancements in analytical and integration mechanisms suitable for
BDWs [28–30]. Other works present implementations in specific contexts, which can
be related to certain characteristics of a BDW, such as the DW infrastructure at
Facebook [31] or DW applications in medicine [32].

Currently, the state-of-the-art shows that the design of BDWs should focus both on
the physical layer (infrastructure) and logical layer (data models and interoperability
between components) [13], and, in general terms, it can be implemented using two
strategies: the “lift and shift” strategy, wherein the capabilities of traditional and relational
DWs are augmented with Big Data technologies, such as Hadoop or NoSQL to solve
specific use cases, thus a use case driven approach instead of a data modelling approach,
which often leads to possible uncoordinated data silos [33]; or the “rip and replace”
strategy, wherein a traditional DW is fully replaced by Big Data technologies [13, 14].
However, current non-structured practices and guidelines are not enough. The commu-
nity needs rigorously evaluated models and methods to design and build BDWs.

In previous works, we have been focusing on different aspects of Big Data Ware-
housing, in an attempt to provide scientifically supported methods in these contexts.
Among these works we can highlight the following: the evaluation of several
SQL-on-Hadoop systems [34]; the evaluation of star schemas [11], flat tables and par-
titions for the modelling and organization of BDWs [35]; and the proposal of architec-
tures to implement BDWs in Smart Cities and Industries 4.0 [36, 37]. This paper
continues this line of research, providing a rigorous evaluation obtained through the
benchmarking (laboratory experiment–Sect. 3) of several practices related to BDWs.

3 Research Method: Laboratory Experiment Using the SSB+

This section presents the SSB+, an extension of the SSB benchmark [18] that we
developed to overcome the lack of workloads that combine volume, variety and
velocity of data, with adequate customization capabilities and integration with current
versions of different Big Data technologies. It can also be used to evaluate different
modelling strategies (e.g., flat/denormalized structures, nested structures, star schemas)
and different workload considerations (e.g., dimension tables’ size, streaming).

3.1 Data Model and Queries

The SSB+ Benchmark data model (Fig. 1) is based on the original SSB Benchmark, so
all the original tables remain the same (“lineorder”, “part”, “supplier”, “customer”),
with the exception of the “date” dimension, which has been streamlined to remove the
several temporal attributes that are not used in the 13 original SSB queries. The 13
queries were only modified to comply with the ANSI SQL joins’ syntax, in order to
provide an optimal execution plan in the query engines’ optimizers, and, obviously,
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13 new queries were created to support the new flat “lineorder” table. These changes
allow us to compare the advantages and disadvantages of star schemas and flat structures.

Moreover, the SSB+ also considers two different dimensions’ size: the original
TPC-H sizes [19]; and the original SSB dimensions’ size, which are smaller tables that
represent typical dimensions in the retail context. This SSB+ feature allow us to
understand the impact of the dimension’s size in star schema-based BDWs.

Regarding the streaming workloads of the SSB+ Benchmark, a new “time”
dimension table is included, as the stream has a “minute” granularity. This new
dimension can then be joined to the new “social part popularity” streaming fact table,
as well as other existing dimensions like “part” and “date”. A flat version of this fact
table is also available for performance comparison purposes. The “social part popu-
larity” table contains data from a simulated social network, where users express their
sentiments regarding the parts sold by a certain organization. Three new queries were
developed for both the star schema-based BDW and the flat-based BDW. All the
applications, scripts and queries for the SSB+ Benchmark can be found in the
respective GitHub repository [20].

3.2 System Architecture and Infrastructure

The SSB+ Benchmark takes into consideration several technologies to accomplish
different goals, from data Collection, Preparation and Enrichment (CPE) workloads to
querying and OLAP tasks. These technologies are presented in Fig. 2. Starting with the
CPE workloads, for batch data, the SSB+ considers a Hive script with several beeline
commands that load the data from HDFS to the Hive tables in ORC file format.
Regarding streaming data, a Kafka producer generates simulated data at configurable
rates, and this data is processed by Spark streaming that finally stores it in Hive and
Cassandra. Streaming data is stored both in Hive and Cassandra for benchmarking
purposes (see Sect. 5).

Fig. 1. SSB+ data model. Extended from [18].
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For querying and OLAP, this work considers both Hive on Tez and Presto, which
are two robust and efficient SQL-on-Hadoop engines [34], used in this work to observe
if the conclusions hold true for more than one engine, since one of them may perform
better with certain data modelling strategies, for example. However, in the streaming
workloads, only Presto is used, since it targets interactive SQL queries over different
data sources, including NoSQL databases, which is not a very proclaimed feature in
Hive, although it can also be achieved. Besides, despite Tez’ tremendous improvements
to Hive’s performance, Hive on Tez may not be considered a low-latency engine, as it
tends to be often outperformed by more interactive SQL-on-Hadoop engines [26, 34].
However, other SQL-on-Hadoop engines can be used, as long as the appropriate scripts
are added to the SSB+ Benchmark. All the content of the SSB+ repository [20] is open
to the public, in order to facilitate any change or extension.

The infrastructure used in this work is a 5-node Hadoop cluster with 1 HDFS
NameNode (YARN ResourceManager) and 4 HDFS DataNodes (YARN NodeMan-
agers). The hardware used in each node includes: 1 Intel core i5, quad core, with a
clock speed ranging between 3.1 GHz and 3.3 GHz; 32 GB of 1333 MHz DDR3
Random Access Memory (RAM), with 24 GB available for query processing;
1 Samsung 850 EVO 500 GB Solid State Drive (SSD) with up to 540 MB/s read speed
and up to 520 MB/s write speed; 1 gigabit Ethernet card connected through Cat5e
Ethernet cables and a gigabit Ethernet switch. The operative system in use is CentOS 7
with an XFS file system, and the Hadoop distribution is the Hortonworks Data Platform
(HDP) 2.6.0. Besides Hadoop, a Presto coordinator is also installed on the NameNode,
as well as 4 Presto workers on the 4 remaining DataNodes. All configurations are left
unchanged, apart from the HDFS replication factor, which is set to 2, as well as
Presto’s memory configuration, which is set to use 24 GB of the 32 GB available in
each worker (identical to the memory available for YARN applications in each
DataNode/NodeManager).

4 Batch OLAP for Big Data Warehouses

This section discusses the performance of batch OLAP queries (processing of large
amounts of data stored in the BDW’s batch storage) for BDWs using two modelling
approaches: star schemas and flat tables, considering the impact of dimensions’ size in
star schemas, and the effects of misusing nested structures in Hive tables.

Fig. 2. SSB+ architecture.
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4.1 Star Schemas vs. Flat Tables: The Impact of Dimensions’ Size

Large dimensions can have a considerable impact in star schema-based DWs, as they
require more time to compute the join operations between the fact tables and the
dimension tables. In previous papers, we used larger dimensions’ sizes (TPC-H original
tables) [35], and concluded that star schemas can be largely outperformed by flat tables.
Although this may not be the usual scenario for many traditional contexts, such as store
sales analysis, for example, larger dimensions are typically found in several Big Data
contexts, such as Amazon, which has hundreds of millions of customers and parts, or
Facebook, which easily surpasses 1 billion users nowadays. Nevertheless, there are also
several Big Data contexts wherein dimensions can have a small size, because many
organizations can generate millions or billions of transactions only based on a small set
of parts, customers and suppliers, for example. For this reason, it becomes interesting to
analyze the performance impact caused by dimensions with different sizes. Figure 3
illustrates the results of the Scale Factor (SF) = 300 workload for large and small
dimensions (around 1.8 billion sales transactions).

At first glance, looking at Hive’s workloads in Fig. 3, the result is surprising. While
with large dimensions the flat table is generally the modelling approach with better
performance, it is surpassed by the star schema in the small dimensions workload. This

Fig. 3. Large-scale batch SSB+ SF = 300 workload. Star schema with large dimensions
(SS-LD); star schema with small dimensions (SS-SD); flat table with large dimensions (FT-LD);
flat table with small dimensions (FT-SD). Hive SS-LD/FT-LD based on [35].
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shows that with Hive, modelling the BDW using multidimensional structures can not
only save a considerably amount of storage size (2.5x in SSB+), but also, as Fig. 3
demonstrates, it can bring significant performance advantages. In this scenario, we
conclude that if Hive is able to perform a map/broadcast join, having a larger flat
(denormalized) structure may not be beneficial for highly dimensional data like sales
data. For the SSB+ flat table, the overhead caused by a storage size that is 2.5x bigger
leads to a performance drop, and may become a bottleneck for the Hive query engine.
Considering only Hive’s results, if the dimensions are small, the star-schema approach
would be the most appropriate modelling strategy. Consequently, in certain contexts, it
makes sense to model parts of the BDW’s data that way.

However, very often Big Data does not adequately fit into the strictures of multi-
dimensional and relational approaches (e.g., high volume and velocity sensor data,
social media data). Moreover, taking a closer look at Presto’s workloads, which are
typically much faster than Hive’s workloads, it can be observed that, generally, the star
schema with smaller dimensions is significantly slower than the corresponding flat
table. Even more surprising, the star schema with smaller dimensions is slower than the
flat table with the higher attributes’ cardinality (corresponding to larger dimensions).
Overall, the star schema with smaller dimensions takes 57% more time to complete the
workload when compared to the equivalent flat table. The discussion in this subsection
is an adequate example to show why we use two SQL-on-Hadoop systems, as the
insights retrieved from the workloads may vastly differ depending on the system.

Summarizing the conclusions, there is no hard rule. In certain Big Data Ware-
housing contexts, practitioners need to consider their limitations regarding storage size
and the characteristics of a particular dataset: is data highly dimensional? Are the
dimensions big enough to make inefficient/impossible the use of map/broadcast joins?
Furthermore, practitioners may need to perform some preliminary benchmarks with
sample data before fully committing to either the extensive use of star schemas or the
use of flat tables. Nevertheless, if we only look at query execution times, the results
provided in this paper show that the best scenario includes the use of flat tables queried
by Presto.

4.2 Are Nested Structures in Tables Always Efficient?

Nested structures like maps, arrays and JSON objects can be significantly helpful in
certain contexts. For example, in [36], in which we discuss the implementation of a
BDW in a Smart City context, is one of these contexts, as geospatial analytics is a
priority, including several complex and nested geometry attributes. Sales analysis is
another context where practitioners may find appealing the application of nested
structures, namely using a less granular table “orders” with the granularity key “order
key” and using a nested structure to store the data about the products sold in a particular
order (e.g., “product name”, “quantity”, “revenue”). Nevertheless, are nested struc-
tures the most efficient solution every time? Do the processing of less rows and the
smaller storage footprint always create tangible advantages?

Using a SF = 300 workload, the nested table has 95 GB, while the flat table has
139 GB, and the equivalent star schema has only 51 GB. This new nested model is also
able to reduce the number of rows from 1.8 billion to just 450 million, since the data
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regarding the lines of the order is stored in a nested structure, namely an array of
Structs. For this test, Q4.1 was chosen, because it involves the need to aggregate and
filter data that is stored in the nested attribute “lines” across several dimensions. This
allows the evaluation of applying different SQL operators to nested attributes, such as
lambda expressions, besides the more traditional ones (e.g., Group By, Where).

At first glance, these numbers look promising, but Fig. 4, which presents the results
of executing the SF = 300 Q4.1 in all modelling approaches, tells a different story.
Despite saving storage space and having much less rows, the nested table is the least
performant modelling approach. It can be concluded that storing a large number of
dimensions’ attributes in a complex structure like an array of Structs may result in a
large overhead regarding query processing times. Such data modelling strategy requires
the use of lambda expressions (or lateral views) to answer Q4.1, in which Presto wastes
the majority of its time. Highly complex nested structures that will be accessed
sequentially to answer most of the queries may not be a good design pattern. These
results do not mean that processing nested structures are always bad for performance.
Nested structures offer great flexibility and can be efficient for certain access patterns,
allowing the introduction of new analytical workloads in the BDW, such as intensive
geospatial simulations and visualizations.

5 Streaming OLAP for Big Data Warehouses

Streaming scenarios are common in Big Data Warehousing contexts. The BDW must
be able to adequately deal with high velocity and frequencies regarding CPE work-
loads. Daily or hourly batch CPE workloads may not always be the most effective or
efficient solution to solve specific problems, and streaming CPE workloads can be very
useful in these cases. This section evaluates the performance of BDWs in streaming
scenarios, while discussing several concerns that practitioners must take into consid-
eration regarding stream processing (e.g., Spark streaming, Storm) and storage (e.g.,
HDFS, Hive, Cassandra, HBase).

Regarding storage technologies, there are two main approaches: using Hive or
HDFS, which adequately deal with the sequential access workloads typically found on
OLAP queries, but that are not the most adequate for random access (useful for
streaming data). In contrast, NoSQL databases like Cassandra are efficient in random

Fig. 4. Performance of a nested table in the SSB+ context. Star schema with large dimensions
(SS-LD); flat table with large dimensions (FT-LD); nested table (NT).
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access scenarios, but typically fall short in sequential access workloads (useful for
OLAP). This section evaluates the performance of Hive and Cassandra as streaming
storage systems, using both a star schema and a flat table (see Fig. 1). The data flow is
as follows:

1. A Kafka producer generates 10 000 records each 5 s;
2. A Spark streaming application with a 10 s micro batch interval consumes the data

for that interval and stores it in Hive and Cassandra;
3. Presto is used to query Hive and Cassandra, every hour, over a period of ten hours.

5.1 How Data Volume Affects the Streaming Storage Component

The streaming storage system of a BDW can only store so much data before its
performance starts to degrade, reason why we need to periodically move the data from
the streaming storage to the batch storage. Therefore, in this subsection, we analyze
how data volume affects the performance of the streaming storage component of the
BDW. Figure 5 illustrates the total execution time for all streaming queries (Q5, Q6
and Q7) during a ten-hour workload with roughly constantly increasing data volume.
All queries are executed each hour for Hive and Cassandra, and both for the flat table
and the star schema.

There are several interesting insights that emerge in these tests. The first one
focuses on the overall effect of data volume on Hive and Cassandra, in which we
conclude that as hours pass by, the increase in the workload’s execution time can be
modelled as a linear function. As the data volume increases, a significant performance
drop is expected in Cassandra, since as previously argued, sequential access over large
amounts of data is not one of its strong points. However, this is not expected in Hive,

Fig. 5. Cassandra and Hive SSB+ streaming results. Star schema (SS); flat table (FT).
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since as we demonstrated in [35], when using an interactive SQL-on-Hadoop engine to
query Hive, one is able to achieve much faster execution times than the results obtained
in this streaming workload, even with significantly higher SFs (e.g., 30 = 180 000 000
rows).

Despite this observation, detailed afterwards, it can also be concluded that Hive is
always much faster than Cassandra until the mark of 58 million rows is reached. At this
moment, it becomes clear that the Spark streaming micro batch interval is too short for
the demand, and, therefore, the application generated over 9500 small files in HDFS
(storage backend for Hive). This causes the streaming micro batches to be consequently
delayed, making the results inconclusive, as the number of rows stored in Hive does not
match the number of rows stored in Cassandra. Overall, it can be concluded that having
small micro batch intervals when using Hive severely deteriorates the performance of
the system. This insight corroborates the argument regarding the overhead of having
many small files stored in Hadoop [38].

Cassandra also shows some delay in write operations when being queried by
Presto, causing the Spark streaming application to queue a few micro batch jobs.
However, this phenomenon is significantly less concerning than Hive’s phenomenon,
as the streaming system is able to control the load without too much delay. Besides, this
is not caused by an increase in data volume, but rather by a concurrency issue and
resource starvation while Presto queries are running. We can always sacrifice data
timeliness by increasing the micro batch interval. However, in order to compare the
results between Cassandra and Hive, the write latency and throughput should be
identical. In this case, Cassandra adequately handles 20 000 rows each 10 s without
significant delays, despite being slower, while Hive fails to do so, despite being faster
for all workloads under the 58 million rows mark. This efficiency problem is discussed
in more detail in the next subsection, among other relevant considerations regarding
streaming for BDWs.

Another interesting analysis focus is the performance of flat tables and star schemas
in streaming contexts. In our tests, performance is considerably similar, i.e., the star
schema is marginally faster when using Cassandra, while the flat table is marginally
faster when using Hive. After monitoring query execution, we concluded that the major
difference is the time Presto spends reading from Cassandra, as the flat table is mar-
ginally larger. Moreover, in the SSB+ Benchmark, the star schema for the streaming
scenario is not very extensive or complex, which in this case favors this modelling
approach, since queries do not have to join an extensive set of tables. Despite this, it
can be concluded that both modelling strategies are feasible, without any significant
performance drawback. When using the star schema, as the dimension tables are stored
in Hive, it can also be concluded that using a SQL-on-Hadoop system like Presto, it is
also feasible and efficient to combine dimension tables stored in Hive (e.g., “part” and
“time”) with streaming tables stored in Cassandra. These insights motivate practi-
tioners to build BDWs according to the SSB+ architecture (Fig. 2).

5.2 Considerations for Effective and Efficient Streaming OLAP

A successful streaming application can be seen as an adequate balance between data
timeliness and resource capacity. To explain these trade-offs, this subsection is divided
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into three main problems that emerge in our tests, presenting possible solutions to
overcome them: high concurrency in multi-tenant clusters can cause severe resource
starvation (multiple users and multiple technologies); storage systems oriented towards
sequential access (e.g., Hive/HDFS) may present some problems when using small
micro batch intervals; operations to move data between streaming and batch storage
systems and CPE workloads should be properly planned with adequate resource
availability.

Starting with the first problem, in Big Data Warehousing contexts shared-nothing
and scale-out infrastructures are promoted [8], being typically capable of
multi-tenancy, i.e., handling the storage and processing needs of several Big Data
Warehousing technologies and users. Streaming applications, such as the one discussed
in the previous subsection, typically require a nearly constant amount of CPU and
memory for long periods. Data arrives at the system continuously, thus it needs to
assure that the workload has the adequate amount of resources available.

A common setup, used in this work, would be a producer (e.g., Kafka), a consumer
(e.g., Spark streaming), a storage system (e.g., Cassandra, Hive), and a query and
OLAP engine (e.g., Presto). At first glance, the first three components of this setup may
seem to work perfectly fine. However, once we add the query and OLAP engine,
resource consumption in the cluster can get significantly high, and the performance of
the streaming application may suffer, because we did not choose the adequate trade-off
between data timeliness and resource capacity. Take as an example Fig. 6. If observed
carefully, in certain periods of time coinciding with the time interval when Presto
queries are running, there is a significant increase in the total delay of Spark streaming
micro batches, caused by an increase in processing time, which consequently causes a
significant increase in the scheduling time of further micro batches.

In this case, this happens because there is not enough resource capacity in the
current infrastructure to handle the processing demands of Spark streaming, Cassandra
and Presto running simultaneously. In these periods, these technologies are mainly
racing for CPU usage, and the initial Spark streaming micro batch interval of 10 s is not
enough to maintain the demands of the streaming application. Again, these insights

Fig. 6. Spark streaming monitoring GUI showing resource starvation when using Cassandra and
Presto simultaneously.
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bring us back to the trade-off: either resource capacity is increased, in this case more
CPUs or CPU cores, or the micro batch time interval is raised, which inevitably affects
data timeliness. In this benchmark, queries are only executed each hour, therefore the
system is only affected during these periods, but in real-world applications, users are
constantly submitting queries, which makes this consideration hard to ignore.

Regarding the use of storage systems like Hive for streaming scenarios, as seen in
the previous subsection, it has its advantages, namely faster query execution times than
Cassandra. Nevertheless, this performance advantage comes at a cost: as data volume
increases, the number of small files stored in HDFS rises considerably, generating a
significant load on the system. One small file is created for each RDD partition, in this
case each 10 s (micro batch interval). In a matter of hours, the Hive table contains
thousands of small files. As the number of files increases, HDFS metadata operations
take more time, affecting the time it takes for Spark streaming to save the data in Hive.

A write operation in HDFS includes steps like searching for the existence of the file
and checking user permissions [39], which with thousands of files can take longer than
usual. Nevertheless, we need to highlight that this problem can be solved by applying
an adequate partition scheme to streaming Hive tables, e.g., partitioning by “date” and
“hour”, which creates a folder structure containing fewer files in each folder, and
therefore reducing the time to execute metadata operations. With thousands of small
files in the same folder, the system is under intensive load and the Spark streaming
application starts queuing hundreds of micro batches. Micro batches are queued when
the Spark application cannot process them before the defined interval, in this case 10 s.
Again, the pre-defined micro batch interval of 10 s is not able to assure that the data is
processed before the next batch, and the performance of the streaming application is
compromised.

In Hive’s case, the small files problem is more severe than the concurrency issue
shown by running Cassandra and Presto simultaneously. In Hive’s case, even
increasing resource capacity is not the best solution, and we should prefer higher micro
batch intervals, which will consequently create bigger files. Moreover, it is significantly
important to periodically consolidate these into bigger files, or moving them into
another table that contains large amounts of historical data. It must be remembered that
Hadoop prefers large files, further partitioned, distributed and replicated as blocks.

Finally, and taking into consideration the phenomena discussed above, workloads
to move data between the streaming storage and the batch storage, as well as CPE
workloads should be carefully planned when streaming applications are using the
cluster’s resources. These operations can be really heavy on CPU and memory, and can
unexpectedly cause resource starvation, as seen with Presto and Cassandra running
simultaneously. Practitioners should not take this lightly, and Linux Cgroups, YARN
queues and YARN CPU isolation can be extremely useful to assure that the current
infrastructure is able to properly assure a rich, complex and multi-tenant environment
such as a BDW. These techniques assure that resources are adequately shared by
multiple applications, by assigning the resources according to the expected workloads.

Furthermore, practitioners should evaluate their requirements regarding data
timeliness, and avoid small micro batch intervals for streaming applications when not
needed, as well as plan the execution of intensive background applications. More
resource capacity may not always be the answer, since even in commodity hardware
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environments, buying hardware always come at a cost. In the meanwhile, making some
of these changes may increase efficiency without any relevant cost.

6 Conclusion

This paper provided scientific results to support the analysis and understanding of
several design patterns and trends in Big Data Warehousing, hoping to foster future
research and to support design and implementation choices in real-world applications
of BDWs. We discussed the trade-offs between star schemas and flat tables, using large
and small dimensions; the usefulness and efficiency of nested structures in BDWs (e.g.,
array, maps, JSON objects); and several streaming considerations like storage perfor-
mance, micro batch intervals and multi-tenancy concerns.

The main results provided by this paper are as follows: flat tables tend to outper-
form star schemas, both with large and small dimensions, but there are contexts
wherein star schemas show some advantages; nested structures bring several benefits to
BDWs (e.g., geospatial analytics using GeoJSON objects), but are not efficient when
we use the attributes in the nested structures to apply heavy filtering or aggregation
functions; Hive tends to outperform Cassandra as a streaming storage system, but after
a certain period, the number of small files being generated overloads HDFS when
performing metadata operations and causes a severe delay in Spark streaming micro
batches; interactive SQL-on-Hadoop systems like Presto can efficiently combine a
streaming fact table stored in a NoSQL database (e.g., Cassandra) with historical
dimensions stored in the batch storage (e.g., Hive), achieving a similar performance to
the flat-based fact tables; periodically, we need to move data from the streaming storage
to the batch storage of a BDW, in order to maintain the interactivity of the system; in
multi-tenant environments, severe attention must be paid to the trade-off between the
cluster’s resource capacity and the streaming micro batch intervals.

For future work, we aim to assess the overall impact (e.g., redundancy and updates)
of flat (denormalized) structures for BDWs, and to extend the SSB+ to support new
technologies like Hive LLAP and Kudu, for example.
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