
VizDSL: A Visual DSL for Interactive
Information Visualization

Rebecca Morgan1(B), Georg Grossmann1, Michael Schrefl1,
Markus Stumptner1, and Timothy Payne2

1 University of South Australia, Adelaide, SA 5000, Australia
rebecca.morgan@mymail.unisa.edu.au

2 Lockheed Martin STELaRLab, Edinburgh, SA 5111, Australia

Abstract. The development of systems of systems or the replacement of
processes or systems can create unknowns, risks, delays and costs which
are difficult to understand and characterise, and which frequently result
in unforeseen issues resulting in overspend or avoidance. Yet maintain-
ing state of the art processes and systems and utilising best of breed
component systems is essential. Visualization of disparate data, systems,
processes and standards can help end users to understand relationships
such as class hierarchy or communication across system components bet-
ter. There are many visualization tools and libraries available but they
are either a black box when it comes to specifying possible interactions
between end users and the visualization or require significant program-
ming skills and manual effort to implement. In this paper we propose
a visual language called VizDSL that is based on the Interaction Flow
Modeling Language (IFML) for creating highly interactive visualizations.
VizDSL can be used to model, share and implement interactive visual-
ization based on model-driven engineering principles. The language has
been evaluated based on interaction patterns for visualizations.

Keywords: Model-driven visualization · Domain-specific modelling
Interactive information visualization · IFML

1 Introduction

Modern operational systems are often large, complex and composed of dis-
tributed systems of heterogeneous components. Lack of integration and interop-
erability is costly and often not discovered until late in the development process.
Identification of issues, such as non-matching concepts between specifications,
or just getting an understanding of the scope of an implementation effort is a
significant challenge and can be achieved using modelling over different abstrac-
tion levels [1] and domains [2]. An example system discussed in this paper lies
in the digital hand over of design documents to the operation and maintenance

Rebecca Morgan was supported by the Australian Government Research Training
Program Scholarship and by Lockheed Martin Australia.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Krogstie and H. A. Reijers (Eds.): CAiSE 2018, LNCS 10816, pp. 440–455, 2018.
https://doi.org/10.1007/978-3-319-91563-0_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91563-0_27&domain=pdf


VizDSL: A Visual DSL for Interactive Information Visualization 441

area in the integrated energy industry using specific standards. The information
contained in these standards is very complex, often spanning several parts with
hundreds of pages containing several hundred concepts and relationships. Under-
standing the specifications is extremely challenging and time consuming, even
for domain experts like engineers in the energy industry who need to approve
what kind of information is passed between information systems and that the
information is semantically correct and represented by those standards. Visual-
ization of the standard specifications can be used to reduce the time taken to
gain this understanding.

While engineers in this space are reasonably fluent in data modelling and
data mapping concerns they are not IT experts or developers who are required to
create customised visualizations. Currently, customised visualizations are often
hard coded at a low level requiring domain, IT and programming expertise.
The solution cannot be reused for other visualizations and is a black box where
it is not clear how the visualization and interactivity is specified. If commercial
visualization tools are used instead, significant difficulties can be faced in terms of
interoperability and extensibility, communication of visualization design between
users, product lifespan and support.

The goal of our research is to address these issues by developing a visualiza-
tion tool based on model-driven engineering principles that creates interactive
visualizations quickly for end users to explore and understand complex seman-
tic structures. In this paper, we describe a platform-independent and extensible
modelling language, VizDSL, which allows non-IT experts to describe, model
and create interactive visualizations, quickly and easily.

The paper uses a case study from the energy industry based on our ongo-
ing project work which motivated this research and also provides realistic large
scale industrial datasets [3]. Lockheed Martin Australia is now supporting this
project because of similar requirements in the visualization of complex system
architecture frameworks.

The contribution of this paper is threefold: (1) compared to [4] in which we
introduce VizDSL, we describe in this paper the detailed metamodel of VizDSL,
(2) discuss the implementation and (3) evaluate the implementation based on
the visual patterns identified by Heer and Agrawala [5]. In the following, we
discuss first the background of the VizDSL approach and related work and then
describe the metamodel and the evaluation in more detail.

2 Background

Ensuring interoperability in the face of increasingly large and complex enterprise
systems is challenging and expensive. Model driven engineering (MDE) is a way
of addressing the difficulties inherent in dealing with complex system architec-
tures. MDE focuses on the model as the primary development driver, rather than
the code [6]. Interoperability is assisted by the model being independent of the
implementation platform, as well as the provision of customised and reusable
software. In MDE, the code is generated directly from the model, as opposed to



442 R. Morgan et al.

traditional code-driven development, where the model is referred to separately
as an information source during the primary process of writing the code. In
MDE, Domain Specific Languages (DSLs) are used to represent domain models
in a relatively concise and efficient way [7] leading to greater productivity and
reduced costs. In this context, DSLs are used in conjunction with transformation
engines/code generators to generate required artifacts such as source code [8].
DSLs with modelling support are used as part of domain specific development,
for effective code generation from the model artifacts.

IFML. An example of a DSL with modelling support is the Interaction Flow
Modeling Language (IFML)1. IFML uses a graphical notation to create visual
models of content, user interaction and controls for front end applications. IFML
provides a modelling language which sits between a user interface and the code.
IFML has been recently accepted as a standard by the OMG for front-end design
and it is well established through its predecessor WebML. A commercial imple-
mentation of IFML is available through WebRatio2. IFML can be extended
through its specification written in UML.

Visualization. Visualization amplifies cognition [9] and facilitates knowledge
sharing between different user groups with different levels of expertise and expe-
rience, without requiring extensive background knowledge or training [10–15].
There is a growing need to support information visualization in a way which
is compatible with MDE. Visualization techniques are used as part of MDE to
visualise the code, the problem domain and the models used to describe the
domain. Models are frequently represented graphically, as a formal specification
using graphical syntax, or in an informal sense as a quick means of communi-
cating key features and ideas. Knowledge of underlying semantic structures is
of fundamental importance in MDE. This knowledge is collected and shared by
visualising semantic information, such as hierarchical, relational or entity-based
semantic information, or some combination of these [16].

Although there has been significant research conducted in the areas of visu-
alization tools and techniques, there are no existing visualization tools which
can be used to create, share and implement visualizations using model driven
techniques and which are based on accepted standards.

To address these gaps, we have developed a graphical DSL which facilitates
the creation of interactive visualizations called VizDSL [4]. In [4], we introduced
the concept of VizDSL without providing extension details. Since VizDSL is
platform-independent and extensible through its UML profile, it is important
to provide IFML extension details, to aid implementation in the community. In
this paper, we describe the metamodel with the visual syntax of VizDSL and
its implementation using the Domain Modelling Environment (DoME) and the

1 http://www.ifml.org.
2 https://www.webratio.com/site/content/en/home.

http://www.ifml.org
https://www.webratio.com/site/content/en/home


VizDSL: A Visual DSL for Interactive Information Visualization 443

Agile Visualization package3. Further it includes an industry application and
evaluation of the framework.

VizDSL takes a model-based approach rather than a procedural approach
to the design process, to meet integration and interoperability requirements in
the context of MDE. Since VizDSL has been designed with the aims of MDE in
mind, strong support for semantic visualization is provided, including the ability
to design interactive visualizations with a hierarchical navigational structure.
Before we describe VizDSL in more detail, we discuss its role in the engineering
of information systems within an oil & gas industry project.

2.1 Industry Application

To provide context for the application of the proposed DSL, the following section
discusses a real life case study which provided the motivation for developing
VizDSL. The Open Industrial Interoperability Ecosystem (OIIE)4 provides a
supplier neutral interoperability ecosystem, aimed at asset intensive industries
such as the defense industry and the integrated energy industry. The OIIE frame-
work uses system-of-systems interoperability and employs a portfolio of stan-
dards for components of representative business processes. These standards are
selected according to industry requirements, adoption and community engage-
ment. One instance of the OIIE is found in the Oil and Gas Interoperability
(OGI) Pilot5. The OGI Pilot is a public collaborative interoperability test bed
for the OIIE within the oil and gas industry. Participating organisations in the
OGI Pilot include BP, SAP and Yokogawa Electric.

An area of active interest in the OGI Pilot lies in digital information han-
dover, for example, the transfer of operations and management related informa-
tion from Engineering, Procurement and Construction (EPC) systems to systems
that owner/operators are using. In order for safe plant operation and production
to occur, operations and management systems must be populated with structural
information about the plant, including operating parameters, product data and
serialized assets. Businesses in the design domain generally use the ISO 15926
standard for information models, while businesses in the operations and main-
tenance domain generally use MIMOSA.

For interoperability, the standards must be mapped to each other as part of
the digital information handover process. Due to the complexity of the standards
information, it is necessary to identify and visualize the hierarchical structure
obtained from formal standard specifications, quickly and efficiently, so that this
mapping can be established.

2.2 Industry Requirements

From our previous work [4] and from the identified organizational problem as
discussed in Sect. 2.1, the following requirements have been identified:
3 http://agilevisualization.com.
4 http://www.mimosa.org/open-industrial-interoperability-ecosystem-oiie.
5 http://www.mimosa.org/oil-and-gas-interoperability-ogi-pilot.

http://agilevisualization.com
http://www.mimosa.org/open-industrial-interoperability-ecosystem-oiie
http://www.mimosa.org/oil-and-gas-interoperability-ogi-pilot


444 R. Morgan et al.

R1 Semantic Visualization Using MDE Techniques: Although there are
a significant number of visualization solutions available, these solutions tend
to rely on procedural programming techniques, with or without graphical user
interfaces [4]. Procedural programming techniques are not as well suited to repre-
senting information in terms of entities, relationships and hierarchical structure
as the model driven approach due to the lower level of abstraction.

Requirement: There is a need for a graphical DSL which can be used to model
and implement interactive visualizations. This DSL should be able to visualise
complex information such as that contained in the OIIE standards and should
be able to visualise semantic structures as well as data content.

R2 Creating Complex Interactive Visualizations Without Program-
ming Experience: With respect to the motivating example given above, the
information contained in the standards is currently represented using static visu-
alizations which have been hard coded by software engineers. This approach is
problematic. The size and complexity of the information being presented means
that static visualizations are not very effective in matching concepts. The struc-
ture of the visualization, what it will represent and how it will be represented,
has to be inferred directly from the code, which leads to difficulties in commu-
nication for non-IT experts, such as design engineers. It would be preferable, in
this case, if they are able to create their own visualizations without the need to
rely on a third party with necessary programming skills.

Requirement: There is a need for a visualization DSL which can be used by
non-IT experts to quickly and easily create highly interactive visualizations.

R3 Support for Standards-Based Interoperability: The problems faced in
information handover in the OGI Pilot are further complicated by the fact that
the OGI Pilot, as part of the OIIE, employs system-of-systems interoperability.
This implies that a visualization solution must remain independent while able to
act in concert with other systems used in the OGI Pilot. Standards are employed
in interoperable systems to ensure a common grounds for information exchange.

Requirement : There is a need for a visualization DSL which can be employed as
part of a heterogeneous system of interoperable components, and which should
be based on a standard to increase its adoption.

3 Related Work

There has been significant interest in the field of visualization in recent times.
In the following section, we discuss Model Driven Visualization, a framework for
the creation of visualizations using concepts from MDE. VizDSL fits into the
Model Driven Visualization framework as a DSL which describes software visu-
alizations. We give a brief overview of DaisyViz, another model-based approach
to information visualization and briefly discuss CloudMap and RALph, as exam-
ples of graphical DSLs which follow a similar structure to VizDSL, although they
are not related to visualization as such.



VizDSL: A Visual DSL for Interactive Information Visualization 445

Model Driven Visualization: One proposed approach to visualization in
MDE is Model Driven Visualization (MDV) [17–19]. MDV is a model based,
platform independent approach to creating visualizations which uses the MDE
concepts of metamodels and transformations to describe the structure of visu-
alization tools. One of the open problems identified in [18] was the lack of a
suitable transformation language; support was requested to help build a suitable
DSL for describing software visualization.

The MDV reference architecture recommends meta-models for the domain
and the viewers. Bull [19] noted that there was a need for a DSL for describing
software visualization, which can be used for describing translations between
domain and viewer meta-models. In [19], it was noted that the work on MDV
had focused primarily on the static data structures behind the specification of
a view model and that modelling languages could support a broader range of
options for view control and behaviour which is addressed in part by VizDSL.

In comparison to presented work, MDV provides a framework for visualiza-
tion in the context of MDE but cannot be used to create visualizations. VizDSL
provides a language to model and execute model-driven visualization.

DaisyViz: DaisyViz [20] is a model-based user interface toolkit for the develop-
ment of domain-specific information visualization applications without program-
ming. DaisyViz uses three declarative models: data, visualization and control.
The data model uses relational database schema to manage data, the visualiza-
tion model is used to define the visual representation of data and the control
model is used to describe the information visualization tasks and techniques
used in the views. While DaisyViz has a textual syntax, VizDSL uses a visual
modelling language, which improves understandability for non-IT experts.

CloudMap: CloudMap [21] presents a visual notation for representation and
management of cloud resources. Notational constructs include entities, links,
probes and control actions. These notation constructs were identified and sub-
sequently specified after user surveys. CloudMap implements an interactive
mindmap visualization for the navigation of cloud resources, detection and dis-
play of events (event management system) and manual and automated actions.
The end results were promising, with significantly improved efficiency. CloudMap
focuses solely on the visualization of cloud resources whereas VizDSL can be used
to visualize any schema or structured data.

RALph: RALph [22] presents a graphical notation for visual modelling of
resource selection conditions in process models. The underlying semantic con-
cepts were identified on previous experience and case studies. RALph was inte-
grated into a platform which uses BPMN and provides a graphical editor based
on Oryx. Evaluation of RALph is not currently available, however, the authors
intend to evaluate the understandability and learnability of RALph in the future,
using the Physics of Notation [13]. As with CloudMap, RALph is restricted to
a particular domain, in this case, resource assignments in business processes.
VizDSL is general purpose in that it is not limited to any particular information
domain.



446 R. Morgan et al.

4 VizDSL

In this section, an overview of VizDSL, the graphical notation for VizDSL and
discussion of the proposed VizDSL extensions to IFML is given.

VizDSL takes a model driven approach to visualization in the form of a DSL
which can be used to model interactive visualizations with a focus on represen-
tation of semantic information. VizDSL takes the form of a graphical language
since there are cognitive benefits to using graphical languages [23] and graph-
ical languages are more effective in conveying information to non-IT experts
[13]. To ensure standards-based interoperability, VizDSL makes use of existing
standards. A natural candidate to form the basis of VizDSL is the Information
Flow Modeling Language (IFML) released by the OMG: (1) it is a standard, (2)
follows MDE principles and (3) can be used to specify user interactions. How-
ever, IFML originated from the WebML language aiming at model-driven Web
engineering and not the development of interactive information visualizations.
Hence, the first step in the development of VizDSL was to identify how to extend
IFML with appropriate concepts such as Data and Interaction for modelling
interactive visualizations of data specifications. The goal of this research was to
develop a modelling language that is independent from the implementation of a
visualization and can be executed by different visualization libraries.

For testing the execution of the language the Agile Visualization framework
was chosen because it is open source, highly customisable and has strong out
of the box support for interactions, animations and web browser integration. It
is flexible enough to create completely new visualization techniques. The first
step and also challenge in the design of VizDSL was (1) to identify the gap
between IFML and Agile Visualization concepts and (2) the integration of both.
In some cases the IFML metamodel could be extended with the visualization
concepts in a straight forward manner, e.g., place the ViewContainer from Agile
Visualization as subclass of ViewElement in IFML. However, in some cases it
was not trivial, e.g., IFML has no or only limited support when it comes to
direct representation of data sources including layouts and themes and how they
should be associated with other concepts in the metamodel. Below we discuss
the extensions of IFML which represent the VizDSL metamodel:

In Fig. 1, the core visual notation for VizDSL is shown. The visual notation
is based on the IFML visual notation (shapes in grey), with new notations for
the proposed extensions (shapes in white).

In Fig. 2, the class diagram for VizDSL is shown. The VizDSL classes from
top left to bottom right which can also be found in IFML are Parameter, Parame-
terBinding, ParameterBindingGroup, ViewElement, ViewComponentPart, Event,
Action, ViewComponent and ActionEvent. These classes have been extended
in VizDSL with additional attributes. New classes introduced by VizDSL from
top left to bottom right in Fig. 2 are Data, Layout, Theme, Menu, Shape,
MenuItem, Element, Edge, Interaction, and Animation. Remaining classes are



VizDSL: A Visual DSL for Interactive Information Visualization 447

Fig. 1. VizDSL visual notation

VizDSLObject and ViewContainer are IFML classes which have been modified
for VizDSL6. Below some of the classes are described in more detail.

VizDSLObject: This is the VizDSL root class. Like in IFML, which has the
root class InteractionFlowElement, a root class is required in VizDSL that cap-
tures generic attributes that are inherited by subclasses, e.g., parameter rela-
tionship attribute which maps data to visual objects (see also below about the
Data concept).

ViewContainer: ViewContainer is present in IFML and was extended to
represent complex structures by adding new subclasses Structure, Relationships,
Comparison and Detail. Generic concepts Elements and Edges are rendered on
ViewContainers, so a relationship was required to model this. Further, View-
Containers are associated with Layouts, a Theme, Menus, Interactions and
Animations.

Data: One of the significant extensions to IFML is the Data class. Although
IFML provides means of describing content and data, it does not contain an
explicit concept to describe them. This is required to directly represent data
source as part of the visualization design process, rather than having to create
another data model using a different language. The Data class is associated with
the IFML Parameter class, which provides a way of mapping data to visual
objects represented using the VizDSLObject class.

Layout and Theme: These two classes were introduced to provide users with
the capability to use different layout algorithms (Layout) and to create a con-
sistent style for multiple views (Theme) as there is no way for defining layouts
in themes in IFML.

6 In a color-printed version of this paper the IFML classes with extended attributes are
in black, new introduced classes are in green and modified classes are in red.



448 R. Morgan et al.

F
ig
.
2
.
V

iz
D

S
L

cl
a
ss

d
ia

g
ra

m



VizDSL: A Visual DSL for Interactive Information Visualization 449

Menu and MenuItem: Interactive menus were not directly supported by IFML
but are required for interactive visualizations. As with Themes, Menus are
reusable and can be associated with multiple ViewContainers.

Shape: The Shape class was introduced as a means of defining the visual
attributes of the primary visual components for the proposed VizDSL View-
Component classes: Elements and Edges. Each Element and Edge is associated
with a Shape, which is used to map visual attributes to the final display.

Element: The Element class was introduced to provide visual representations
of entities, which was identified as a requirement for the VizDSL language in
Sect. 2.2. Elements can be associated with multiple ViewContainers, Edges and
with other Elements, by nesting.

Edge: Together with Elements, Edges make up the fundamental visual com-
ponents of a VizDSL visualization. Edges represent relations between entities,
which is one of the requirements for VizDSL as identified in Sect. 2.2. Each Edge
is from one Element to another Element and is associated with a Shape, which
provides the visual representation of the Edge. As with Elements, Edges can be
associated with multiple ViewContainers. Each Edge is associated with a to and
from element.

Interaction: The Interaction class is a child of the IFML Action class. Inter-
actions are triggered by IFML Events. Events are occurrences which affect the
state of the application, such as clicking on the mouse. When an Event occurs,
an Action is triggered. The Interaction class was introduced in VizDSL to rep-
resent required user interactions, such as selection, drag and drop, dragging,
highlighting, labelling, popups, scrollbars and zooming.

Animation: As with the Interaction class, the Animation class was introduced
as a child of the IFML Action class. Animations are well supported in Agile
Visualization and can provide a greater level of engagement with visualizations.
Animations are triggered by an Event and include abstract zoom, color transi-
tions, layout transitions and stepping, resizing and rotation.

5 Implementation

In the following section, details are given for a prototype implementation of
VizDSL using DoME in conjunction with the Roassal visualization engine that
implements Agile Visualization. For this particular implementation, the Roassal2
package was used in the VisualWorks development environment. Roassal also
works in Pharo, an open source Smalltalk environment; VisualWorks was chosen
because DoME is only available in VisualWorks.

Domain Modelling Environment (DoME): We used the DoME for a pro-
totype implementation of VizDSL. DoME is an integrated set of model-editing,
metamodelling and analysis tools. We are using DoME to extend IFML and
create an editor for our proposed VizDSL. In this editor we can create models



450 R. Morgan et al.

that are executable and generate interactive visualizations in Agile Visualiza-
tion. DoME is available through VisualWorks7, the commercial implementation
of Smalltalk. The VizDSL metamodel was defined using DoME, in order to create
interactive model editors which can be used to define VizDSL diagrams.

Agile Visualization: The Agile Visualization package was used to render visu-
alizations. Agile Visualization is written in Smalltalk and is available in Pharo,
the open source Smalltalk implementation, or in VisualWorks, the commercial
Smalltalk implementation. Agile Visualization was originally developed for the
visual analysis of software systems and takes an object-oriented approach to
visualization. Agile Visualization was chosen because it supports the identified
requirements except for providing a graphical language (for which we can use
IFML) and it provides basic building blocks to create the majority of existing
visualizations.

6 Evaluation

We have evaluated the framework against the requirements mentioned in
Sect. 2.2 and against software design patterns in information visualization. Before
we discuss this in more detail, the industry application is demonstrated on the
visualization of ISO 15926.

6.1 Industry Application: Visualization of ISO 15926

To illustrate the capabilities of VizDSL, we have used VizDSL to model and
implement an interactive visualization of the ISO 15926 standard. As mentioned
in Sect. 2.1, the ISO 15926 standard is generally used by the EPC domain. The
information contained in ISO 15926 is complex and visualization of the hierarchi-
cal structure is necessary for interoperability. The ISO 15926 standard describes
320 classes with associated attributes and relationships. The relatively high num-
ber of classes means that static visualizations of the hierarchical structure are
cluttered and difficult to understand. In this case, it is more useful to create an
interactive visualization with drill-down navigation, since this eliminates unnec-
essary visual clutter and allows users to focus more effectively on areas of interest.

VizDSL was used to model and implement an interactive visualization of
the ISO 15926 hierarchy (shown in Fig. 3). In Fig. 3 the Data source refers to
the ISO 15926 classes and subclasses, which are assigned to a collection named
classes through a parameter binding group. There is one View Container for this
visualization, containing Elements on the classes collection, colored according to
the number of subclasses, with Edges from each Element to its superclass. Inter-
actions include element selection and details on demand. Menus include node
expansion for drilling down, Theme and Layout selection and element finder.

7 http://www.cincomsmalltalk.com/main/products/visualworks.

http://www.cincomsmalltalk.com/main/products/visualworks


VizDSL: A Visual DSL for Interactive Information Visualization 451

Fig. 3. VizDSL model for an interactive visualization of the ISO 15926 hierarchy

6.2 Evaluation Against Requirements

R1 Semantic Visualization Using MDE Techniques: From the example
implementation described above, it is evident that VizDSL meets this require-
ment, as it was successfully used to model and execute an interactive visualiza-
tion of the complex information contained in the ISO 15926 standard.

R2 Creating Complex Interactive Visualizations Without Program-
ming Experience: It is important to find a balance between understandabil-
ity and expressiveness when developing a domain specific modelling language.
One of the primary drivers behind the development of VizDSL is the need for
non-IT experts to quickly and easily create complex interactive visualizations
and as such, understandability is of fundamental importance. IFML, on which
VizDSL is based on, was designed for the web development community, which is
multidisciplinary and covers a broad spectrum of IT and non-IT skills [24], sim-
ilar to our target audience. The design principles behind IFML which support
model usability and understandability (conciseness, extensibility, implementabil-
ity, reusability, default modelling patterns and details) is transferred to VizDSL
as an extension of IFML.

One of the primary advantages of MDE is the ability to represent complex
systems at a relatively high abstraction level, which increases understandability.
Again, the example described above highlights that this was possible without
writing a single line of code and cannot be achieved with any framework men-
tioned in the related work section. A comparable visualization to the example
above in the popular D3.js JavaScript library is the d3.layout.tree8 which requires
8 http://mbostock.github.io/d3/talk/20111018/tree.html.

http://mbostock.github.io/d3/talk/20111018/tree.html


452 R. Morgan et al.

170 lines of code. A non-IT expert is not able to write this and that particular
D3 example does not even support menus as does the VizDSL example above.

R3 Support for Standards-Based Interoperability: VizDSL, as an exten-
sion of the IFML standard, takes advantage of an existing and widely accepted
language for modelling user interaction and navigation. As an extension of IFML,
a VizDSL model can be connected to other models describing the structural
aspects of systems. For example, a VizDSL model can be connected to a UML
class diagram to visualize software system structure.

6.3 Software Design Patterns for Information Visualization

Further, we have chosen to evaluate VizDSL using the software design patterns
for information visualization as identified by Heer and Agrawala [5], since this
is a comprehensive list of patterns. Heer and Agrawala identified a series of
twelve design patterns for the domain of information visualization: Reference
Model, Data Column, Cascaded Table, Relational Graph, Proxy Tuple, Expres-
sion, Scheduler, Operator, Renderer, Production Rule, Camera, Dynamic Query
Binding. In the following section, we discuss how VizDSL applies to a selection
of these interaction patterns.

Reference Model. Separate data source from visual attributes.
VizDSL separates the data source from the visual attributes by using the

Data class to represent the data, the ViewComponent subclasses Element and
Edge to represent visual components, the ViewContainer class to represent the
view and the presentation classes Layout and Theme for the visual style.

Renderer. Rendering of visual items performed by dedicated, reusable models
which map visual attributes into pixels.

VizDSL uses the Shape, Layout and Theme classes to render attributes.

Operator. Decompose visual data processing into a series of composable opera-
tors, enabling flexible and reconfigurable visual mappings.

VizDSL supports visual data processing using operators by means of the
various types of Layout, Interaction, Animation and Shape classes. For example,
the Layout class can be used as a basis for composing a custom hybrid layout
using a combination of layout types, element groups and edges.

Dynamic Query Binding. Allow data selection and filtering criteria to be
specified dynamically using direct manipulation interface components.

VizDSL supports the use of dynamic query binding using callbacks in the
Event and Action classes. As an example, users can select elements from the
visualization by clicking on them, which will add the element model to a fil-
ter group. This filter group can be used as the focus for the next view when
navigating through the visualization.



VizDSL: A Visual DSL for Interactive Information Visualization 453

Operator. Decompose visual data processing into a series of composable opera-
tors, enabling flexible and reconfigurable visual mappings.

VizDSL uses a series of composable builders throughout the visualization
pipeline, by the use of classes which are mapped to data structures, visual
attributes and control mechanisms such as interactions.

7 Conclusion

In this paper, we have proposed a novel approach for the creation and imple-
mentation of interactive visualizations by the development of a visual modelling
language (VizDSL). VizDSL extends IFML using its UML profile which facili-
tates interoperability between models. VizDSL can be used to design and create
highly interactive visualizations which improve understanding of both data con-
tent and underlying semantic structures.

Evaluation of the quality of modelling languages presents some challenges in
the absence of an established modelling language quality evaluation framework
[25]. In [26], an empirical framework to evaluate the usability of modelling tools
in terms of satisfaction, efficiency and effectiveness is presented; we will be
evaluating usability in this sense by means of user studies with users taken from
the OGI Pilot. Future work will also include using the feedback obtained from
the usability studies to refine and extend the VizDSL metamodel, with more
work on code generation.

References

1. Grossmann, G., Igamberdiev, M., Stumptner, M.: Benefits and challenges of multi-
level modelling for ecosystem interoperability. In: Proceedings of BDI4E Workshop
at I-ESA (2016)

2. Grossmann, G., Jordan, A., Muruganandha, R., Selway, M., Stumptner, M.:
Enabling information interoperability through multi-domain modeling. In:
Harmsen, F., Proper, H.A. (eds.) PRET 2013. LNBIP, vol. 151, pp. 16–33.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38774-6 2

3. Selway, M., Stumptner, M., Mayer, W., Jordan, A., Grossmann, G., Schrefl, M.:
A conceptual framework for large-scale ecosystem interoperability and industrial
product lifecycles. Data Knowl. Eng. 109, 85–111 (2017)

4. Morgan, R., Grossmann, G., Stumptner, M.: VizDSL: towards a graphical visuali-
sation language for enterprise systems interoperability. In: Proceedings of Sympo-
sium on Big Data Visual Analytics (BDVA). IEEE (2017)

5. Heer, J., Agrawala, M.: Software design patterns for information visualization.
IEEE Trans. Visual Comput. Graph. 12(5), 853–860 (2006)

6. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in
Practice, 2nd edn. Morgan & Claypool Publishers, San Rafael (2017)

7. Jones, C., Jia, X.: Using a domain specific language for lightweight model-driven
development. In: Maciaszek, L.A., Filipe, J. (eds.) ENASE 2014. CCIS, vol. 551,
pp. 46–62. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27218-4 4

https://doi.org/10.1007/978-3-642-38774-6_2
https://doi.org/10.1007/978-3-319-27218-4_4


454 R. Morgan et al.

8. Schmidt, D.C.: Guest editor’s introduction: model-driven engineering. Computer
39, 25–31 (2006)

9. Fill, H.G.: Visualisation for Semantic Information Systems, 1st edn. Gabler Verlag,
Wiesbaden (2009)

10. Howse, J., Stapleton, G., Taylor, K., Chapman, P.: Visualizing ontologies: a case
study. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L.,
Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 257–272. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6 17

11. Kocbek, S., Kim, J.D., Perret, J.L., Whetzel, P.L.: Visualizing ontology mappings
to help ontology engineers identify relevant ontologies for their reuse. In: Proceed-
ings of 4th International Conference on Biomedical Ontology (2013)

12. Burgstaller, F., Stabauer, M., Morgan, R., Grossmann, G.: Towards customised
visualisation of ontologies. In: Proceedings of the Australasian Computer Science
Week Multiconference (ACSW), pp. 1–10. ACM Press (2017)

13. Moody, D.: The physics of notations: toward a scientific basis for constructing
visual notations in software engineering. IEEE Trans. Softw. Eng. 35(6), 756–779
(2009)

14. Aranda-Corral, G.A., Borrego-Diaz, J., Chavez-Gonzalez, A.M.: Repairing concep-
tual relations in ontologies by means of an interactive visual reasoning: cognitive
and design principles. In: Proceedings of the 3rd IEEE International Conference
on Cognitive Infocommunications (CogInfoCom), pp. 739–744. IEEE (2012)

15. Voigt, M., Pietschmann, S., Meißner, K.: Semantic Models for Adaptive Interactive
Systems. Human-Computer Interaction, pp. 1–25 (2013)

16. Nazemi, K., Burkhardt, D., Ginters, E., Kohlhammer, J.: Semantics visualization -
definition, approaches and challenges. Procedia Comput. Sci. 75, 75–83 (2015)

17. Bull, R.I., Favre, J.M.: Visualization in the context of model driven engineering.
In: MDDAUI (2005)

18. Bull, R.I., Storey, M.A., Favre, J.M., Litoiu, M.: An architecture to support model
driven software visualization. In: Proceedings of the 14th IEEE International Con-
ference on Program Comprehension (ICPC), pp. 100–106. IEEE (2006)

19. Bull, R.I.: Model driven visualization: towards a model driven engineering approach
for information visualization. Ph.D. thesis (2008)

20. Ren, L., Tian, F., Zhang, X., Zhang, L.: DaisyViz: a model-based user interface
toolkit for interactive information visualization systems. Visual Lang. Comput.
21(4), 209–229 (2010)

21. Weerasiri, D., Barukh, M.C., Benatallah, B., Jian, C.: CloudMap: a visual notation
for representing and managing cloud resources. In: Nurcan, S., Soffer, P., Bajec,
M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 427–443. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-39696-5 26

22. Cabanillas, C., Knuplesch, D., Resinas, M., Reichert, M., Mendling, J., Ruiz-
Cortés, A.: RALph: a graphical notation for resource assignments in business
processes. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015.
LNCS, vol. 9097, pp. 53–68. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-19069-3 4

23. Sendall, S., Kozaczynski, W.: Model transformation: the heart and soul of model-
driven software development. IEEE Softw. 20(5), 42–45 (2003)

24. Brambilla, M., Fraternali, P.: Interaction Flow Modeling Language: Model-Driven
UI Engineering of Web and Mobile Apps with IFML, 1st edn. Morgan Kaufmann,
San Francisco (2015)

https://doi.org/10.1007/978-3-642-25073-6_17
https://doi.org/10.1007/978-3-319-39696-5_26
https://doi.org/10.1007/978-3-319-19069-3_4
https://doi.org/10.1007/978-3-319-19069-3_4


VizDSL: A Visual DSL for Interactive Information Visualization 455

25. Giraldo, F.D., Espana, S., Giraldo, W.J., Pastor, O.: Modelling language quality
evaluation in model-driven information systems engineering: a roadmap. In: Pro-
ceedings of 9th IEEE Conference on Research Challenges in Information Science
(RCIS), pp. 64–69 (2015)

26. Condori-Fernandez, N., Panach, J.I., Baars, A.I., Vos, T., Pastor, O.: An empirical
approach for evaluating the usability of model-driven tools. Sci. Comput. Program.
78(11), 2245–2258 (2013)


	VizDSL: A Visual DSL for Interactive Information Visualization
	1 Introduction
	2 Background
	2.1 Industry Application
	2.2 Industry Requirements

	3 Related Work
	4 VizDSL
	5 Implementation
	6 Evaluation
	6.1 Industry Application: Visualization of ISO 15926
	6.2 Evaluation Against Requirements
	6.3 Software Design Patterns for Information Visualization

	7 Conclusion
	References




