
DMN Decision Execution
on the Ethereum Blockchain

Stephan Haarmann(B), Kimon Batoulis, Adriatik Nikaj, and Mathias Weske

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
stephan.haarmann@student.hpi.de,

{kimon.batoulis,adriatik.nikaj,mathias.weske}@hpi.de

Abstract. Recently blockchain technology has been introduced to exe-
cute interacting business processes in a secure and transparent way.
While the foundations for process enactment on blockchain have been
researched, the execution of decisions on blockchain has not been
addressed yet. In this paper we argue that decisions are an essential
aspect of interacting business processes, and, therefore, also need to be
executed on blockchain. The immutable representation of decision logic
can be used by the interacting processes, so that decision taking will be
more secure, more transparent, and better auditable. The approach is
based on a mapping of the DMN language S-FEEL to Solidity code to
be run on the Ethereum blockchain. The work is evaluated by a proof-
of-concept prototype and an empirical cost evaluation.

Keywords: Blockchain · Interacting processes · DMN

1 Introduction

Business processes are an acknowledged means to describe working procedures
in organizations [1]. Activities, their ordering, the data they work on, and orga-
nizational responsibilities can be represented in business processes, for instance
using the Business Process Model and Notation (BPMN) [2]. Recently, BPMN
has been accompanied by the Decision Model and Notation (DMN) [3] standard
to capture decision structure and decision logic, thereby achieving a separation
of concerns of process and decision logic [4]. More and more companies use both
standards to describe business processes and decisions taken by them. Process
enactment architectures are enhanced by decision engines that are capable of
executing decision logic during process executions.

While we currently witness a strong uptake of decision management in indus-
try, decision models are almost exclusively used to represent internal decisions
of a company, such as whether a specific credit can be granted or not. However,
many decisions are linked to more than one process and are part of interacting
business processes. Such processes have been subject to behavioral analysis [1,5].

To address the security and transparency needs of interacting business pro-
cesses, recently blockchain technology was proposed as an enactment platform
c© Springer International Publishing AG, part of Springer Nature 2018
J. Krogstie and H. A. Reijers (Eds.): CAiSE 2018, LNCS 10816, pp. 327–341, 2018.
https://doi.org/10.1007/978-3-319-91563-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91563-0_20&domain=pdf

328 S. Haarmann et al.

for interacting business processes [6]. Blockchains enable the execution of inter-
acting processes through software code to be run on a blockchain – so-called
smart contracts – even if the participants do not trust each other.

While this work introduces blockchain technology to execute interacting pro-
cesses, it does not address decisions that are taken by them. To close this gap,
in this paper we propose an approach to execute DMN decision models on an
Ethereum blockchain, thereby improving security, transparency, and auditing
of decisions taken by multiple interacting business processes. The approach is
based on a mapping of DMN decision models expressed in the language S-FEEL
to Solidity, the programming language of the Ethereum blockchain [7].

The remainder of this paper is structured as follows. In Sect. 2 we provide
an overview of DMN and of relevant aspects of blockchain technology. Section 3
contains the mapping of DMN decision models to Ethereum smart contracts. The
approach is evaluated with respect to the blockchain specific costs in Sect. 4. An
overview of related work is provided in Sect. 5. We discuss our research in Sect. 6.

2 Background

DMN decision models express requirements and logic of decisions. While the
execution of DMN in process orchestrations can be achieved by traditional soft-
ware systems, such as rule engines, decisions taken during interacting processes
have not been investigated. We claim that blockchain technology proves to be
useful in such settings due to a set of properties, which are provided in this
section. First, we introduce the reader to decision models by means of a running
example.

2.1 DMN

Decision Model and Notation (DMN) is a standard of the Object Management
Group (OMG) to model operative decisions of enterprises. A decision model
considers two layers: the requirements and the logic. The former provides a high
level view on the information required for a decision, while the latter provides
detailed information on how to take a decision [3].

For the remainder of this paper, we consider the following example: a man-
ufacturer of bearings offers his customers reimbursement for delivered defective
units. Therefore, a decision provides the fine as a ratio of the purchase price. In
order to perform the decision, both manufacturer and customer must provide
data. Figure 1 depicts the respective Decision Requirements Diagram (DRD), a
graphical representation of the decisions and their dependencies. A node repre-
sents an entity, such as data (rounded shapes) and decisions (rectangles). The
edges represent the information requirement relation indicating that data or
decision results are required by a decision. The example consists of two deci-
sions: SLA (service level agreement) and fine. SLA requires years as customer
and number of units as data input. The decision fine requires the output of SLA
and, additionally, the ratio of defective units. We marked the defective units in

DMN Decision Execution on the Ethereum Blockchain 329

gray because it is contributed by the customer. The other (white) data inputs
are provided by the manufacturer.

Fig. 1. Decision requirements diagram for the scenario; coloring of data input indicates
the provider of the respective data, as detailed in the text.

On a second level, decision models specify the decision logic. DMN offers
various notations, but we solely consider decision tables because they are most
widely used. The decision tables that we use in this paper represent rules hor-
izontally. A set of conditions on the data inputs is followed by specific decision
outputs.

Table 1. Decision table for the SLA

U Inputs Output
years as customer number of units SLA

Number Number {1,2 }
1 <2 <1000 1
2 <2 ≥1000 2
3 ≥ 2 < 500 1
4 ≥ 2 ≥ 500 2

Table 2. Decision table for the fine

U Inputs Output
defective units SLA Fine

Number {1,2 } Number

1 <5% 1 0%
2 [5%..10%] 1 2%
3 >10% 1 100%
4 <1% 2 0%
5 [1%..5%] 2 5%
6 >5% 2 105%

Tables 1 and 2 depict the decision tables for our scenario. The table body
consists of rules (i.e. four for SLA). In addition, the table header provides meta
information. It specifies the names and data types of inputs and outputs: years
as customer and number of units are numbers, the SLA is an enumeration with
the possible values 1 and 2. The upper left cell of the decision table contains the
hit-policy. The hit-policy determines in which order the rules of the table are
evaluated. The used hit-policy unique (U) indicates that no two rules overlap
in their conditions. Thus, at most one rule triggers for a specific input, and the
evaluation order does not matter. More generally, we distinguish between single
and multi-hit policies depending on the number of rules that contribute to the

330 S. Haarmann et al.

Table 3. A description of DMN hit-policies

Sign Name Description

U Unique At most one decision matches a given input

F First The rules are evaluated in order. The first rule that matches
the input determines the output

P Priority Output values must be enumerated and sorted according
to priorities. If multiple rules match, the output with the
highest priority is chosen

A Any If the condition of different rules overlap, the output must
be the same. Thus, the evaluation order is irrelevant

C Collect All rules are evaluated and the outputs of all matching rules
are collected. Afterwards an aggregation function (+, avg,
min, max) is applied

R Rule Order The results of all matching rules are returned in the order
of the rules

O Output Order Outputs are enumerated and ordered according to priorities.
The outputs of all matching rules are provided in the order
of their priority

decision’s result (one vs. multiple). Table 3 provides an overview of the different
hit policies. In this paper, we map all the elements of DMN decision models
and decision tables in particular to Source code for Ethereum. This includes all
elements mentioned above.

2.2 Blockchain Technology

Blockchain technology emerged with Bitcoin: a cryptocurrency whose transac-
tions are stored on a blockchain [8]. Ever since, the technology has been adapted
for different domains (e.g. BPM and logistics) and for various use-cases. However,
all adaptations rely on a set of core properties [9].

A blockchain is a linked list that uses hash pointers. It is shared by a peer-
to-peer network. Each element of the list is a block that stores transactions.
The blockchain represents a history of transactions that allows us to restore all
past and the present states. Some nodes, called miners, propose new blocks and
find consensus about the set and order of transactions. Once this is achieved,
all nodes share the same blockchain [10,11]. Thereby, relative immutability is
reached: every node can detect inconsistent changes (e.g. changing the past)
and reject respective transactions. However, if a majority of nodes agrees on a
different version, the chain is adapted accordingly. The probability of a block
being immutable increases as the number of succeeding blocks grows.

Another feature of (most) blockchains are cryptocurrencies. They are inher-
ent currencies that are passed between users to reward mining, to pay for trans-
actions, or to perform financial transactions. The so called 2nd generation of

DMN Decision Execution on the Ethereum Blockchain 331

blockchains additionally supports complex smart contracts: Turing complete
scripts, which are stored on the ledger and are executed by all miners. Thereby,
immutability, publicity, and cryptocurrencies become available for computer pro-
grams. Smart contracts are like classes in an object-oriented language: they
encapsulate data and functionality and can be instantiated.

Blockchains’ properties are powerful since they enable interactions between
participants without the need for trust. In recent research Mendling and others
investigated the challenges and opportunities for BPM [12]. For one, process
choreographies require trust between participants, but, as we have seen before,
a blockchain can be a replacement by offering tamper-proofed monitoring capa-
bilities. Implementations of process choreographies exist for both the Ethereum
[6] and the Bitcoin [13] blockchain.

3 Generation of Decision Contracts from DMN

In general, contracts are agreements, about services, products, and money that
participants agree to provide to each other. Decisions can be part of these agree-
ments. In order to make a decision, the information has to be provided and
logic needs to be executed. In an interactive process, each participant might
contribute data to a single decision. Thus, participants need to exchange data to
perform a certain decision. The DMN standard suggests to map each decision of
a decision model to a decision taken by a single participant. Consequently, each
participant will communicate the result of their decision such that others can
base their decisions on this result. Figure 2 shows a respective business process
collaboration for the running example: the manufacturer determines the SLA,
the output of which is used as input by the customer to calculate the fine. In
conclusion both decision results are exchanged.

Fig. 2. DMN suggestion for decisions in interactive processes applied to the running
example

332 S. Haarmann et al.

This method of realizing decisions has a major drawback: due to the lack of
a central mediator or state, participants must trust each other to provide the
correct information and to take the decisions in the right way. In case of a fraud,
conflict resolution is difficult: no accountable source of information exists and
an expensive lawsuit can follow.

Weber et al. showed that a blockchain provides accountable audits and can
be used as a trusted intermediary for interactive processes [6]. In the same fash-
ion, we use blockchain as an intermediary for decisions. The respective process
collaboration via blockchain is depicted in Fig. 3. We use Ethereum and smart
contracts to specify the executable decision logic. Further, participants can con-
tribute data to a decision via transactions, and smart contracts execute and log
decisions. This leads to a public audit trail, which consists of all information
required to reconstruct the decision making process: who provided which inputs,
what are the results, and how was the decision made.

Fig. 3. Blockchain based implementation of a sample decision in interactive processes

Figure 4 depicts the mapping on the model level, where concrete decision
tables are defined. As mentioned, a decision table defines the logic of a decision:
it specifies inputs, outputs, rules, and a hit-policy. In our approach, we map
each DMN decision table to a respective smart contract, which we call decision
contract. A decision contract encapsulates the logic of the translated decision
table and represents it in a function (called decide). Further, we provide two
auxiliary structures: a state contract and a factory contract. The state contract
encapsulates all inputs and outputs. The decision contract can, therefore, be
implemented in a stateless manner following the best practices of DMN. When-
ever a decision should be made, we provide a state contract instance with the
respective data to the decision contract, which updates the outputs (inside the
state contract) accordingly. The factory contract provides auxiliary functions

DMN Decision Execution on the Ethereum Blockchain 333

Decision Model Decision Contract

:DecisionTable:DecisionTable
<<focus>>

DecisionContract
<<focus>>

DecisionContract

-decide(state: StateContract)

<<auxiliary>>

FactoryContract
<<auxiliary>>

FactoryContract

-getDecisionContractInstance(): DecisionContract
-createInstance(): StateContract

<<auxiliary>>

StateContract
<<auxiliary>>

StateContract

1

0..*

1

0..*

1 11 1

1

1

1

1

The FactoryContract and the
StateContract are auxiliary:

FactoryContract: creates
and hold references to
instances
StateContract:
encapsualtes the data for
decisions

Fig. 4. Mapping of DMN decisions (left) to Ethereum smart contracts (right), smart
contracts are deployed on a blockchain

for instantiation: it creates and holds new state contract instances and lazily
initializes all decision contracts of a respective decision model.

The DMN standard provides the FEEL expression language to describe exe-
cution semantics of decisions. A subset of this language is called S-FEEL and
can be used to express decision tables. Such a decision table consists of inputs
and outputs, whereby, outputs can be input for other decision tables. A rule of
a S-FEEL decision table consists of unary tests for each input (statements that
evaluate to true or false for a specific value) and an expression for each output.

Our approach provides a translation of all these elements to Solidity source
code. Figure 5 shows the mapping of abstract S-FEEL elements to Solidity code
templates. The code is refined as further elements of the decision table are
mapped (e.g. for each model, we create one state contract, for each input and
output clause we add a respective attribute with a setter method to it). A deci-
sion contract additionally has an event : a mechanism to broadcast information.
It is used to publish the results of a decision. For each decision table, we cre-
ate one decision contract and for each rule we create/extend an if-statement by
adding the unary tests to its condition and the output expression to its con-
sequence. However, different hit policies require different rule generations. We
abstracted from this details in Fig. 5 but described them in Table 4.

3.1 Interaction with the Decision Contracts

In order to persist the participant’s agreement on a blockchain, it is sufficient
to deploy a single instance of the FactoryContract The FactoryContract is
capable of instantiating decision contracts and the state contract and, thereby
includes, the binary representation of the StateContract and the decision con-
tracts (SLADecisionContract, FineDecisionContract). For the remainder we
assume that a respective instance has been deployed.

334 S. Haarmann et al.

DMN Solidity

Decision
model

contract StateContract {[…]}

Decision
table

contract DecisionNameContract {
event DecisionName(address instance, […]);

function decide(address _state) {
StateContract state =

StateContract(_state);
[…]
DecisionName(_state, […]);

}

Input
clause

contract StateContract {
[…]
type name;
function setName(type _value) {

name = _value;
}

}
contract DecisionNameContract {

function decide(address _state) {
[…]
type name = state.name;
[…]

}
}

Output
clause

contract StateContract {
// same as input clause

}
contract DecisionNameContract {

Event DecisionName([…], type name);

function decide(address _state) {
type name;
[…]
DecisionName([…], name);
state.setName(name);

}
}

Rule

function decide(address _state) {
[…]
if (true […]) { […] }
[…]

}

Unary test

function decide(address _state) {
[…]
if ([…] && name comp value) {

[…]
}
[…]

}

Expression

function decide(address _state) {
[…]
if ([…]) {

[…]
name = expression;

}
[…]

}

name
type

name
type

U

name
type

comp
value

name
type

expression

U

U

U

U

U

Fig. 5. Mapping of DMN elements to Solidity elements

DMN Decision Execution on the Ethereum Blockchain 335

Table 4. Handling of different hit-policies in DecisionContracts

Hit-policy Description of mapping

Any, Unique, First Condition is stored as an if-else-if ; hence, the evaluation is
complete after the first rule hit

Priority Similar to Any, Unique, and First, but the rules are rear-
ranged according to the output priority

Rule Order Series of if-statement and output values are collected in
arrays

Collect Like Rule Order but an additional aggregation is applied in
a postprocessing step

Output Order Rules are rearranged in respect to the output order. Then,
they are handled like Rule Order

:Factory
Contract
:Factory
Contract

:SLADecision
Contract

:SLADecision
Contract

opt

[first run]

opt

[first run]

:FineDecision
Contract

:FineDecision
Contract

:State
Contract
:State

Contract

new SLADecision
Contract

slaDecision =
new SLADecisionContract

new FineDecisionContract

fineDecision = new FineDecisionContract

new StateContract(slaDecision, fineDecision)

state = new StateContract(-,-)

newInstance()

newInstance():state

loop

[un l all requirements are present]

loop

[un l all requirements are present]

set state variable/input

set state varialbe/input

setSLA(sla)
SLA(state,sla)

setSLA(-)

decide(state)

decide(state)
Fine(state,fine)

setFine(fine)
setFine(-)

Fig. 6. Sequence diagram showing the interactions of the sample contracts

336 S. Haarmann et al.

The sequence diagram in Fig. 6 shows the interaction of participants with
smart contracts as well as among smart contracts. A participant (e.g. the manu-
facturer) calls the FactoryContract to create a new instance. If it has not been
called before it initializes the decision contracts (i.e. SLADecisionContract and
FineDecisionContract), and then creates a new StateContract instance with
references to the decisions. The StateContract’s address is returned to the
caller. Participants can then set input variables (i.e. years as customer, number
of units, and defective units) on the StateContract, and thereby, provide the
requirements for a decision. Once all decision requirements are fulfilled, a par-
ticipant calls the decision(s) providing a StateContract instance. The decision
logic is executed, outputs are determined, and eventually the state contract is
updated. In this example, the output of SLA together with the defective units
fulfills the requirements for the second decision, which can then be called.

4 Evaluation

To evaluate the approach, we investigate its applicability on the basis of a set of
real life decision models. In addition, we provide an empirical cost evaluation of
the example introduced above.

4.1 Applicability of the Mapping

To study the applicability of the mapping on real life decision models, we imple-
mented the mapping in a proof-of-concept prototype. The prototype consists of
a compiler, which translates DMN models (serialized as XML) to Solidity source
code and is integrated into the Camunda modeler1. In this way, the Solidity
source code is automatically derived from the decision model during design time.

Since Solidity is a Turing-complete language, S-FEEL can be translated to
Solidity. However, due to Solidity’s restricted type system, we encountered some
engineering issues when defining the mapping.

S-FEEL’s type Number is a generic floating-point number, but Solidity sup-
ports only integers and fractions. Therefore, floating-point numbers need to be
represented with integers, which requires implementing auxiliary functions, for
example, to compare two integer-based floating-point numbers. Another limita-
tion comes from the fact that strings are stored as byte-arrays in Solidity, but
only one-dimensional arrays can be dynamically sized. Therefore, lists of strings
(requiring two-dimensional arrays) must be limited to items of a fixed length.
Such lists are, for instance, returned by multi-hit decision tables.

We used the prototype to translate a real life set of decision tables to Solidity
and from there to byte code for the Ethereum virtual machine. Our test data
set consisted of 51 DMN models that were designed by participants of an online
course on BPMN and DMN2. The prototype translated 46 of 51 models into

1 https://camunda.org/download/modeler/.
2 https://open.hpi.de/courses/bpm2016.

https://camunda.org/download/modeler/
https://open.hpi.de/courses/bpm2016

DMN Decision Execution on the Ethereum Blockchain 337

31

Successful (31)

11

Unsupported identifiers (11)

2

Type adjustment necessary (2)

2

Invalid operations (2)

2
Missing output def. (2)

3 Syntactically incorrect (3)

Fig. 7. Results of compiling the decision model test set to Solidity/Ethereum and
reasons for failure

Solidity code. Of the remaining five, two models were missing an output defini-
tion (optional in DMN but required for our compiler) and three were syntacti-
cally incorrect. Afterwards, we ran the Solidity compiler to produce byte code for
the Ethereum virtual machine. Out of the 46 remaining models 31 were compiled
successfully. Two tables used long strings and compiled after adapting the data
types manually. Eleven of the other 13 were not compiled, because identifiers
for inputs or outputs used characters (e.g., brackets) or words (e.g., “contract”)
that are reserved words in Solidity. The remaining two decision models used
comparison operators (<,≤,=,≥, >) on sets, which is forbidden in S-FEEL and
in Solidity. These results of the investigation are summarized in Fig. 7.

To conclude, the majority of the decision models could be translated to exe-
cutable Solidity code. Problems can occur because models are often used for
documentation and not defined precisely enough for execution. Furthermore,
special guidance during the modeling process could be helpful to prevent the use
of reserved words or characters or from omitting necessary information.

4.2 Cost Evaluation

Ethereum is a second generation blockchain that integrates the full capabilities
of a 1st generation blockchain—including a cryptocurrency called Ether. It is
used to pay for transactions, i.e., all operations that store information in the
blockchain. In our scenario, creating new contract instances, calling functions,
and raising events causes transactions. In Ethereum, transaction costs are cal-
culated in gas. Gas is an abstract unit that is mapped to Ether via a dynamic
gas-price; in this way, the transaction costs can stay stable even though the value
of Ether fluctuates.

The costs to instantiate smart contracts depend mainly on the required stor-
age. Table 5 lists the cost for each contract after manually optimizing the used

338 S. Haarmann et al.

Table 5. Instantiation costs for each contract and impact of features (based on avg.
gas price and exchange rate on 11/07/2017 from https://etherscan.io/chart/gasprice)

Contract Stripped No optimization Total

FactoryContract 1, 269, 518 gas 5.08e 153, 164 gas 0.61e 1, 422, 682 gas 5.69e

SLADecision 320, 558 gas 1.28e 41, 037 gas 0.16e 361, 595 gas 1.44e

FineDecision 494, 726 gas 1.98e 70, 869 gas 0.28e 565, 595 gas 2.26e

StateContract 172, 010 gas 0.69e 41, 233 gas 0.17e 213, 243 gas 0.86e

All 2, 256, 812 gas 9.03e 306, 303 gas 1.23e 2, 563, 115 gas 10.31e

data types and the respective savings. The FactoryContract is the most expen-
sive one (5e) because it stores an array of instances, which can grow indefi-
nitely and holds the definition of the other contracts to initialize them. The
FactoryContract is for convenience: its functionality can be executed off-chain.
This would save more than half of the instantiation costs. Moreover, we showed
before that DMN data types cannot be mapped perfectly to Solidity types. In
general, the latter supports more precise types, for example, integers of different
sizes; thus, we can optimize them manually. However, this optimization has a
relatively small impact on the costs saving only up to 1.23e.

All but the StateContract are initialized only once; if a decision is executed
frequently, high instantiation costs can be tolerated. See Table 5 for details. The
baseline costs of a single instance is the sum of instantiating the State-Contract,
calling setters, and executing the decision logic (includes setters for the outcome).
Figure 8 depicts the costs for a single instance. From bottom to top we sum
the different operations. We show both a version with and a version without
optimized types. It should come as no surprise that the instantiation is the most
expensive operation. One can see that the costs of a single instance are about
1.70e and type optimization saves up only 0.10e.

5 Related Work

Within the BPM community increasing interest is spent on blockchain technol-
ogy. Mendling et al. give an overview of challenges and opportunities that arise
from combining BPM and blockchains [12]. So far, existing research in this direc-
tion focuses mostly on business process choreographies. These efforts include an
Ethereum based solution to enable and monitor choreographies [6]. All messages
are logged and state progression is monitored via the blockchain. The current
consensus on the blockchain describes the current state of the choreography and
conform state progression is enforced. This concept has also been applied to the
Bitcoin blockchain [13].

A similar approach is Caterpillar—a blockchain enabled process engine [14].
However, none of these approaches consider decisions and decision models.
In Caterpillar XOR gateways are implemented by manually defining Solidity

https://etherscan.io/chart/gasprice

DMN Decision Execution on the Ethereum Blockchain 339

str
ipp

ed

+n
o o
pt
im
iza
tio
n

0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

·106
co
st
s
in

ga
s

co
st
s
in

E
ur
o

instantiation
set #units
set #years
set SLA

set defective
set fine

Fig. 8. Cost of an instance in gas and Euro—bottom to top: different operations, left
to right: additional features

code snippets. Implementing XOR gateways for choreographies is a challenging
task since a common understanding of both data and logic is required [2].

We propose smart contracts as a solution for implementing collaborative
business decisions. The term smart contract has been formed by Szabo [15].
Kõlvart et al. summarize different smart contract developments and describe
some opportunities of smart contracts on blockchains [16]. However, current
smart contracts are implemented using procedural languages such as Solidity.
In [17] Idelberger et al. discuss using logical programming languages instead
because the respective contracts are more comprehensible and less error-prone.
We build upon this idea by combining logical programming (decision tables)
with a model based approach.

Most blockchains are public. This limits their usage to non-sensitive data
[18]. The Ethereum community discusses this limitation and proposes secret
sharing decentralized autonomous organizations that use data partitioning to
sustain privacy [19]. Kosba and others take this idea further and present Hawk: a
blockchain, which supports smart contracts and protects privacy through encryp-
tion [20]. Privacy protecting blockchains (supporting smart contracts), are not
ready for productive usage, yet. Therefore, private and permissioned blockchains
can be used to create a peer-to-peer network with a restricted set of nodes.

340 S. Haarmann et al.

6 Conclusion and Discussion

Collaborative decisions span across multiple processes and organizations. They
apply to interacting business process and influence their behavior. In these cases,
it is difficult to establish a trusted exchange of data and a common understanding
of both the information and the decision logic [2]. Therefore, we proposed the
use of a decentralized blockchain as an intermediary entity. It saves both the
data that is required for the decision and the underlying logic. Based on the
blockchain technology, trust becomes obsolete due to a technical and reliable
mechanism. We also showed a prototypical implementation that automatically
translates DMN models into smart contracts. However, current limitations of the
type system of Solidity (a language to write smart contracts) requires manual
adjustment and workarounds, for example, to handle floating-point numbers.

To make our approach feasible, we extended the mapping with additional
features: A push mechanism calls decisions automatically from the state contract.
In addition, access rights limit the write access for each attribute to a set of
participants or contracts (addresses); hence, unauthorized users cannot temper
with the data. Further, only decision contracts can set their respective outputs.

An important issue of modern blockchains, such as Ethereum, is that all
data is public. Everything saved to the ledger is visible to every node. This is
not an issue for “public” contracts such as the terms of service of a company.
However, sensitive or enterprise internal data cannot be stored on the blockchain.
Alternatively, one can build a private or permissioned blockchain or use a new
kind of blockchain such as Hawk [20] that offers built-in privacy mechanisms
such as secret sharing decentralized autonomous organizations [19] and zero-
knowledge proofs.

To conclude, DMN decisions can be implemented with blockchain technol-
ogy making trust and a centralized third party, such as a DMN decision service,
obsolete. Therefore, we closed the gap left open by previous work to execute
interacting business processes on a blockchain by also taking the decision per-
spective into account.

Acknowledgements. We thank Alexander Kastius for his valuable contribution to
the prototype implementation.

References

1. Weske, M.: Business Process Management - Concepts, Languages, Architectures,
2nd edn. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28616-2

2. OMG: Business process model and notation, specification 2.0. Version 2 (2011)
3. OMG: Decision model and notation, specification 1.1. Version 1.1 (2016)
4. Batoulis, K., Meyer, A., Bazhenova, E., Decker, G., Weske, M.: Extracting decision

logic from process models. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.)
CAiSE 2015. LNCS, vol. 9097, pp. 349–366. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-19069-3 22

https://doi.org/10.1007/978-3-642-28616-2
https://doi.org/10.1007/978-3-319-19069-3_22
https://doi.org/10.1007/978-3-319-19069-3_22

DMN Decision Execution on the Ethereum Blockchain 341

5. van der Aalst, W.M.P., Weske, M.: The P2P approach to interorganizational work-
flows. In: Dittrich, K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS,
vol. 2068, pp. 140–156. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-45341-5 10

6. Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling, J.:
Untrusted business process monitoring and execution using blockchain. In: La
Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 329–347.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4 19

7. Dannen, C.: Introducing Ethereum and Solidity. Apress, Berkeley (2017). https://
doi.org/10.1007/978-1-4842-2535-6

8. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
9. Tschorsch, F., Scheuermann, B.: Bitcoin and beyond: a technical survey on decen-

tralized digital currencies. IEEE Commun. Surv. Tutor. 18(3), 2084–2123 (2016)
10. Narayanan, A., Bonneau, J., Felten, E.W., Miller, A., Goldfeder, S.: Bitcoin and

Cryptocurrency Technologies - A Comprehensive Introduction. Princeton Univer-
sity Press, Princeton (2016)

11. de Kruijff, J., Weigand, H.: Understanding the blockchain using enterprise ontology.
In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 29–43. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-59536-8 3

12. Mendling, J., Weber, I., et al.: Blockchains for business process management -
challenges and opportunities. CoRR abs/1704.03610 (2017)

13. Prybila, C., Schulte, S., Hochreiner, C., Weber, I.: Runtime verification for business
processes utilizing the bitcoin blockchain. CoRR abs/1706.04404 (2017)

14. López-Pintado, O., Garćıa-Bañuelos, L., Dumas, M., Weber, I.: Caterpillar: a
blockchain-based business process management system. In: Proceedings of the
BPM Demo Track and BPM Dissertation Award Co-Located with 15th Inter-
national Conference on Business Process Modeling (BPM 2017), Barcelona, Spain,
13 September 2017 (2017)

15. Szabo, N.: Formalizing and securing relationships on public networks. First Monday
2(9) (1997)

16. Kõlvart, M., Poola, M., Rull, A.: Smart contracts. In: Kerikmäe, T., Rull, A.
(eds.) The Future of Law and eTechnologies, pp. 133–147. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-26896-5 7

17. Idelberger, F., Governatori, G., Riveret, R., Sartor, G.: Evaluation of logic-based
smart contracts for blockchain systems. In: Alferes, J.J.J., Bertossi, L., Governa-
tori, G., Fodor, P., Roman, D. (eds.) RuleML 2016. LNCS, vol. 9718, pp. 167–183.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42019-6 11

18. Atzei, N., Bartoletti, M., Cimoli, T.: A Survey of Attacks on Ethereum Smart
Contracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp.
164–186. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-
6 8

19. Buterin, V.: Secret sharing DAOs: the other crypto 2.0 (2014)
20. Kosba, A.E., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain

model of cryptography and privacy-preserving smart contracts. In: IEEE Sympo-
sium on Security and Privacy, SP 2016, San Jose, CA, USA, 22–26 May 2016, pp.
839–858 (2016)

https://doi.org/10.1007/3-540-45341-5_10
https://doi.org/10.1007/3-540-45341-5_10
https://doi.org/10.1007/978-3-319-45348-4_19
https://doi.org/10.1007/978-1-4842-2535-6
https://doi.org/10.1007/978-1-4842-2535-6
https://doi.org/10.1007/978-3-319-59536-8_3
https://doi.org/10.1007/978-3-319-26896-5_7
https://doi.org/10.1007/978-3-319-42019-6_11
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8

	DMN Decision Execution on the Ethereum Blockchain
	1 Introduction
	2 Background
	2.1 DMN
	2.2 Blockchain Technology

	3 Generation of Decision Contracts from DMN
	3.1 Interaction with the Decision Contracts

	4 Evaluation
	4.1 Applicability of the Mapping
	4.2 Cost Evaluation

	5 Related Work
	6 Conclusion and Discussion
	References

