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Abstract In water distribution network, instantaneous changes in valve and pump
settings introduce jumps and sometimes impulses. In particular, a particular impul-
sive phenomenon which occurs due to sudden closing of valve is the so-called water
hammer. It is classically modeled as a system of hyperbolic partial differential equa-
tions (PDEs). We observed that under some suitable assumptions the PDEs usually
used to describe water flows can be simplified to differential algebraic equations
(DAEs). The idea is to model water hammer phenomenon in the switched DAEs
framework due to its special feature of studying such impulsive effects. To compare
these two modeling techniques, a system of hyperbolic PDE model and the switched
DAE model for a simple setup consisting of two reservoirs, six pipes, and three
valves is presented. The aim of this contribution is to present results of both models
as motivation for the claim that a switched DAE modeling framework is suitable for
describing a water hammer.

Keywords Water hammer · Solution theory · Switched system · Dirac impulse

1 Introduction

The occurrence of hydraulic transients in the operation of water distribution net-
work is inevitable. Such transients are planned or accidental changes of the network
configuration. These sudden structural changes can have dramatic effects in flow
regimes, ranging from pump defects to catastrophic pipeline failures. The flow of
water in pipes is usually modeled as system of nonlinear hyperbolic balance laws
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(i.e., partial differential equations—PDEs); see, for example, [4], where the sudden
structural changes lead to large peaks and fast transients in the solution.

We propose tomodel such fast transients in the framework of switched differential
algebraic equation (switched DAE). This framework was originally introduced for
modeling electrical circuits [12] and allows a precise mathematical description of
peaks and fast transients in the form of Dirac impulses and jumps.

Our focus in this paper is on the so-called water hammer, which results from
sudden changes of velocity in pipelines and can cause large pressures magnitudes.
It is usually created by rapidly closing valves, shutting off or restarting pumps. Our
goal is to show that these pressure peaks occurring in the PDE simulations can be
well approximated by a suitable switched DAE model.

The paper is organized as follows. In Sect. 2, the water network and its compo-
nents are defined as a graph and the mathematical models of the pipes and other
components (like reservoir and valves) are introduced. In Sect. 3, we study in detail
a simple water network which exhibits a water hammer; in particular, we derive
the corresponding PDE model as well as a switched DAE model. In Sect. 4, we
describe the solution theory used in solving our sample network problem. In Sect. 5,
a numerical comparison of the PDE and switched DAE model is presented.

2 Mathematical Model

The structure of a water network can be modeled as a graph G = (V,E) where V is
the set of nodes and E ⊆ V × V is the set of edges. Each edge e ∈ E corresponds to
a pipe of the water network, and the nodes v ∈ V are the connections or endpoints of
pipes, including junctions, pumps, valves, or reservoirs. We denote by γ −

v (γ +
v ) the

set of all indices of edges ei ∈ E outgoing (ingoing) from (to) the node v ∈ V; see
Fig. 1 for an illustration of this notation.

In themodel of water network elements, the twomain physical quantities pressure
and flow are involved. Those values at the endpoints of the pipes are related to each

Fig. 1 A node v with three incident edges ei , e j , ek ; here, γ +
v = {i} and γ −

v = { j, k}
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other corresponding to the type of node. Furthermore, the modeling of the flow
in the pipes also involves density of the water. Usually, water is assumed to be
incompressible; i.e., the density is assumed to be constant. However, our focus is on
modeling the water hammer effect and for this it is necessary to take into account
the (slight) compressibility of water.

2.1 Models of Water Flow in Pipe

One can model water flow in a pipe in two different ways depending on whether
the compressibility of water is taken into account or not. In order to study transient
phenomena likewater hammer, it is necessary tomodel compressibility; in particular,
density and mass flow become space-dependent quantities. On the other hand, to
understand the qualitative behavior, in particular, in large networks, it often suffices
to model water as incompressible fluid. We will briefly introduce both models in the
following.

2.1.1 Compressible Flow in a Pipe

Following [1, 13] we use the following pressure law for compressible fluids:

P(ρ) = Pa + K
ρ − ρa

ρa
, (1)

where K > 0 is the so-called bulk modulus, Pa > 0 is the atmospheric pressure, and
ρa > 0 is the density at atmospheric pressure. The bulk modulus is related to the
speed of sound c > 0 as follows:

c2 = ∂P

∂ρ
= K/ρa . (2)

Note that β := 1/K is the so-called compressibility coefficient. We consider a com-
pletely filled pipe of length L > 0 with mass density ρ(x, t) > 0 and mass flux
q(x, t) ∈ R both defined on [0, L] × R+. The compressible flow of water in the pipe
can be modeled by the balance law of the following form [3, Sect. 2]:

∂tρ + ∂xq = 0,

∂t q + ∂x

(
q2

ρ
+ P(ρ)

)
= −c f

q |q|
2Dρ

,
(3)

with the pressure law P : R+ → R+ given by (1) and where c f > 0 is the friction
against the pipe wall and D > 0 is the diameter of the pipe. The initial condition for
(3) is:
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q(x, 0) = q0(x) and P(ρ(x, 0)) = p0(x) x ∈ [0, L], (4)

for some initial flow q0 : [0, L] → R and some initial pressure p0 : [0, L] → R+.
Note that the initial condition is given implicitly in terms of the pressure and not
explicitly in terms of the density. The reason is that the pressure is the more relevant
physical quantity, in particular, when the pipes are coupled with other water network
elements. When the individual pipes are connected with other elements of the overall
water distribution network, additional boundary and so-called coupling conditionwill
be imposed.

2.1.2 Coupling Conditions at Intersection Nodes

The balance law (3) has to be completed by initial, boundary, and coupling con-
ditions across the whole network. Suppose the initial data Pl(ρl(x, 0)) = pl,0 and
ql(x, 0) = ql,0 are given for each pipe l in the network, where ρl, ql , and Pl denote
density, flow, and pressure along each pipe edge el . Admissible boundaries must
be chosen in accordance with the characteristics. Preservation of mass yields the
coupling condition

∑
l∈γ +

v

ql(L , t) =
∑
l∈γ −

v

ql(0, t). (5)

and consistency of pressure yields

pi (L , t) = p j (0, t), ∀i ∈ γ +
v , j ∈ γ −

v , ∀v ∈ V. (6)

Condition (5) is an analogue of Kirchoff’s current law for electrical circuits.

2.1.3 Quasi-Stationary Water Flow Model

After some initial transient behavior, the water flow in the pipe may be assumed
to get stationary; i.e., the flow is location-independent and we write Q(t) = q(x,t)

A
(mass flux is mass flow per unit area), where A = πD2/4 is the area of the pipe.
Furthermore, the density is assumed constant in space and time; i.e., ρ(x, t) = ρ for
(x, t) ∈ [0, L] × R+ and the pressure variable p(x, t) is not coupled to the density
via (1) anymore (in particular, water is considered incompressible). The remaining
dynamical behavior in the variables Q(t), P0(t) = p(0, t) and PL(t) = p(L , t) can
be described by the following ODE [2, 5, 6]:

dQ

dt
+ A

L
(PL − P0) + c f Q |Q|

2DAρa
= 0. (7)
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2.2 Other Network Elements

2.2.1 Reservoir

A reservoir is a node in the water network graph with arbitrary mass flow but with
given pressure. For example, if a node vi is designated as reservoir then pressure at
this node will be set as constant.

2.2.2 Valve

Avalve is a control elementwhich can be opened or closed and is located at one end of
an edge. A closed valve here is modeled as a boundary condition at the corresponding
end of the pipe in the form of a prescribed zero flow (instead of the corresponding
pressure consistency 6). As an example, assume ei , e j ∈ E are connected at junction
node v, and a valve is located at the end of pipe e j , then if the valve is open we just
have the coupling conditions (5) and (6); in case the valve is closed instead of (6),
we have the boundary condition q j (L , t) = 0 and hence, due to (5), also qi (0, t) = 0
(if more than two pipes are incident with v, then there may still be a nonzero flow
through the node even if the valve is closed).

3 Analysis of a Simple Water Network

We want to study the water hammer effect on a simple water network consisting
of two reservoirs located at nodes vR1 and vR2 , with given pressure pvR1 and pvR2 ,
respectively, and six pipes each of length L . Three valves V1, V2 and V3 are located
at the end of pipes 4 and 5 and at the beginning of pipe 6, respectively, as shown in
Fig. 2. We assume here that these three valves are opened and closed synchronously;
the asynchronous case is ongoing research.

3.1 PDE Mode1

Each pipe is modeled by system of balance laws given by (3) with pressure law (1)
and for pipe i and will look as follows,

∂tρi + ∂xqi = 0,

∂t qi + ∂x

(
q2
i

ρi
+ P(ρi )

)
= −c fi

qi |qi |
2Diρi

.
(8)
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Reservoir

vR1 v1 v2

v3 v4 vR2

V1

V2 V3

Pipe−5

Pipe−1

Pipe−3

Pipe−2

Pipe−4

Pipe−6

Fig. 2 Simple water network with two reservoirs at nodes vR1 and vR2 , six pipes, and three syn-
chronous valves at node v4

For the sake of simplicity, we are using identical friction factors and diameters, i.e.,
c fi = c f , Di = D, ∀i ∈ {1, · · · , 6}. Denote with Pi (x, t) = P(ρi (x, t)) the pressure
in the i th pipe.

In contrast to [7], we present here a water hammer on a network with multi-
ple valves so we need to take more coupling conditions into account: The vertices
v1, v2, v3 are coupling vertices and modeled by (6) and (5). At node v4 valves are
present at each incident pipe and it is assumed that they are initially open and simul-
taneously closed at t = tS , resulting in the time-varying boundary condition:

{
(5), (6) at v4 t ∈ (0, tS),

qV1 = qV2 = qV3 = 0, t > tS.
(9)

In the following, the pressure at the valves is denoted by pV1(t) = P4(L , t), pV2(t) =
P5(L , t) and pV3(t) = P6(0, t), respectively; moreover, qV1(t) = q4(L , t), qV2(t) =
q5(L , t), qV3(t) = q6(0, t).

3.2 Switched DAE Framework

The quasi-stationary model (7) together with the corresponding coupling conditions
for a setup as shown in Fig. 2 leads to a switched DAE of the form,

Eσ ẋ = Aσ x + f + gσ (x), (10)
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with x = (Q1, Q2, Q3, Q4, Q5, Q6, P1, P2, P3, P4, PV1 , PV2 , PV3)
� and

σ(t) =
{
1, t ∈ [0, tS), V1, V2, V3 open,

2, t ≥ tS, V1, V2, V3 closed.

The equations of the network when t ∈ [0, tS) are given as follows,

−dQ1

dt
=c1(Pv1 − PR1) + c2Q1 | Q1 |, (11a)

−dQ2

dt
=c1(Pv2 − Pv1) + c2Q2 | Q2 |, (11b)

−dQ3

dt
=c1(Pv3 − Pv1) + c2Q3 | Q3 |, (11c)

−dQ4

dt
=c1(PV1 − Pv2) + c2Q4 | Q4 |, (11d)

−dQ5

dt
=c1(PV2 − Pv3) + c2Q5 | Q5 |, (11e)

−dQ6

dt
=c1(PR2 − PV3) + c2Q6 | Q6 |, (11f)

Q1 − Q2 − Q3 = 0 (11g)

Q3 − Q5 = 0 (11h)

Q2 − Q4 = 0 (11i)

Q5 + Q4 − Q6 = 0, (11j)

PV1 − P4 = 0, (11k)

PV2 − P4 = 0, (11l)

PV3 − P4 = 0, (11m)

where c1 = A
L > 0 and c2 = c f

2DAρa
> 0. For t ≥ tS Eqs. (11k), (11l), (11m) will be

replaced by

Q4 = 0, Q5 = 0, Q6 = 0. (12)

In terms of the nonswitched DAE (10), we have
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Ep=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

-1 0 0 0 0 0 0 0 0 0 0 0 0
0 -1 0 0 0 0 0 0 0 0 0 0 0
0 0 -1 0 0 0 0 0 0 0 0 0 0
0 0 0 -1 0 0 0 0 0 0 0 0 0
0 0 0 0 -1 0 0 0 0 0 0 0 0
0 0 0 0 0 -1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, Ap=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 c1 0 0 0 0 0 0
0 0 0 0 0 0 -c1 c1 0 0 0 0 0
0 0 0 0 0 0 -c1 0 c1 0 0 0 0
0 0 0 0 0 0 0 -c1 0 0 c1 0 0
0 0 0 0 0 0 0 0 -c1 0 0 c1 0
0 0 0 0 0 0 0 0 0 0 0 0 -c1
1 -1 -1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 -1 0 0 0 0 0 0 0 0
0 1 0 -1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 -1 0 0 0 0 0 0 0
0 0 0 1-sp 0 0 0 0 0 -sp sp 0 0
0 0 0 0 1-sp 0 0 0 0 -sp 0 sp 0
0 0 0 0 0 1-sp 0 0 0 -sp 0 0 sp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−PvR1
0
0
0
0

PvR2
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, gp(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

c2Q1|Q1|
c2Q2|Q2|
c2Q3|Q3|
c2Q4|Q4|
c2Q5|Q5|
c2Q6|Q6|

0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(13)

where p = 1, 2 and s1 = 1 and s2 = 0.

4 Discussion on Switched DAEs

Note that the switched DAE (10) contains a nonlinear term gσ (x); therefore, the
distributional solution framework [10, 11] cannot be applied directly. Nonlinear
switched DAEs were investigated in [9], but this approach excludes Dirac impulses
in x by definition, because if a Dirac impulse occurs in the solution x of (10) (which
we actually desire to capture the water hammer effect) then it is unclear how gσ (x)
has to be evaluated in general (e.g., what is the sine of a Dirac impulse). Here we
have a special structure which we can write in the following form

g(x) = N g(M x),

M = [
I{6×6} O{6×7}

]
, N = M�.

gi (Qi ) = −c2Qi |Qi | i = 1, · · · , 6.

This special structure allows us to extend the distributional solution theory from the
linear case to thenonlinear case, c.f. [7]. Tokeep it simple here, consider the individual
equation − dQi

dt = c1(Pvi − PvR1 ) + c2Qi | Qi | and let us denote by Qi (t−s ), Qi (t+s )

the flow before and after the switching time ts . When the valves are closed all flows
become zero, in particular, Qi (t+s ) = 0 and since in general Qi (t−s ) �= 0 there will
be Dirac impulse in dQi

dt at the switching time ts . In fact, the impulse part of dQi

dt at
ts is given by

dQi

dt
[ts] = Qi (t

+
s ) − Qi (t

−
s )δts = −Qi (t

−
s )δs
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and for t > ts we have dQi

dt = 0 because Qi is identically zero. Altogether we can
conclude from (11) together with (12) that for t ≥ ts :

Pv1 = 1

c1
Q1(t

−
s )δts + PR1 = 1

c1
Q1(t

−
s )δts + PR1 ,

Pv2 = 1

c1
Q2(t

−
s )δts + Pv1 = 1

c1
(Q2(t

−
s ) + Q1(t

−
s ))δts + PR1 ,

Pv3 = 1

c1
Q3(t

−
s )δts + Pv1 = 1

c1
(Q3(t

−
s ) + Q1(t

−
s ))δts + PR1 ,

PV1 = 1

c1
Q4(t

−
s )δts + Pv2 = 1

c1
(Q4(t

−
s ) + Q3(t

−
s ) + Q1(t

−
s ))δts + PR1 ,

PV2 = 1

c1
Q5(t

−
s )δts + Pv3 = 1

c1
(Q5(t

−
s ) + Q3(t

−
s ) + Q1(t

−
s ))δts + PR1 ,

PV3 = 1

c1
Q6(t

−
s )δts + PR2 = 1

c1
Q6(t

−
s )δts + PR2 .

(14)

The coefficient in front of δts determines the impulse length. For t > ts it is clear that
all pressures will settle down as

pv1 = pv2 = pv3 = pV1 = pV2 = PR1 , pV3 = PR2 .

5 Comparison of both Modeling Approaches

Our focus here is to observe the jump and Dirac impulse in the pressure, due to
the instantaneous closure of valves located at V1, V2. In particular, we assume that
the PDE solution on [0, tS) is stationary; i.e., qi (t, x) i = 1, · · · , 6 is approximately
constant in time and space (or in otherwords,when the valves are closed the dynamics
in all pipe have approximately settled down). For numerical simulations,we use Flux-
Corrected Transport (FCT) scheme and artificial viscosity (<0.25) where solution
is nonsmooth. Figure3 shows the results for the pressure value at V1 (similar plots
result also for the pressure at V2) over the time interval [3s, 8s] with initial values

qi (0, x) ≡ 0, ρi (0, x) ≡ 1 × 103

and pipes parameters:

Pa = 1.01 × 106, β = 1

K
= 4 × 10−9, ρa = 1000,

L = 5, D = 0.5, c f = 0.02.

We have chosen a moderate ratio between length and diameter of pipe, so that the
water hammer effect is better visible. The parameters Pa , ρa and β are physical
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3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
0.5

1

1.5
·109

ts ε

P
V
2

valve open: [0, ts)
valve closed transition: [ts, ts + ε)
valve closed settled: [ts + ε, ∞)

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

0.5

1

1.5
·109

ts

t (Time)

P
V
2

valve open: [0, ts)
valve closing at: [ts]
valve closed: (ts, ∞)

Fig. 3 Comparison of pressure profile PDE models (pV2 ) (above) and switched DAE model (PV2 )
(below), profile for pV1 is approximately symmetrical

parameters, and c f is chosen via the so-called moody chart; see, for example, [8].
Figure3 clearly shows a strong pressure spike just after the switching time tS = 4s;

the pressure oscillatoryly settles to a new pressure value say P
1
R . The same behavior

occurs for PV2 which settles to P
1
R . Instead of running the simulation for a very long

time, we just chose a settling time ε > 0 and took the average of the pressures on
the interval (tS + ε, T ] where T > tS + ε is our overall simulation time, i.e., with
x = L

P
1
R := 1

T − (tS + ε)

∫ T

tS+ε

pV1(x, t) dt.

P
2
R := 1

T − (tS + ε)

∫ T

tS+ε

pV2(x, t) dt.

With
ε = 1.5, T = 8

we obtain
P
1
R ≈ P

2
R ≈ 8.23 × 108.
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Table 1 Comparison of pressure at valves V1 and V2 for PDE and switched DAE model

β P
1
R P

2
R

∣∣∣P1
R−PvR1

(t+S )

∣∣∣
PvR1

(t+S )

∣∣∣P2
R−PvR1

(t+S )

∣∣∣
PvR1

t+S )

15.0 · 10−9 8.1613 · 108 8.2494 · 108 8.3 · 10−03 2.4 · 10−03

9.0 · 10−9 8.2644 · 108 8.2419 · 108 4.2 · 10−03 1.4 · 10−03

4.0 · 10−9 8.2401 · 108 8.2408 · 108 1.2 · 10−03 1.3 · 10−03

5.0 · 10−10 8.2329 · 108 8.2352 · 108 3.5 · 10−04 6.3 · 10−04

2.0 · 10−10 8.2317 · 108 8.2348 · 108 2.6 · 10−04 5.8 · 10−04

The value predicted by the switched DAE solution for t > ts from (14) is,

PvR1 (t
+
S ) = PR1 ≈ 8.23 × 108.

In Table1, the relative error between P
i
R , i = {1, 2} and PvR1 (t

+
S ) is presented for

decreasing compressibility coefficients β. In order to compare the peak in PV1 , PV2

just after the valve is closed with the Dirac impulse PV1 [tS] and PV2 [tS] in response to
the switching time, we recall that a Dirac impulse δts at ts > 0 can be approximated
by a sequence of functions t �→ δε

ts (t) such that δε(t) = 0 for t �= [ts, ts + ε] and∫ ts+ε

ts
δε
ts (t) dt = 1. We therefore make the ansatz for pV1 and PV2 ,

pV1 ≈ P
imp1tS δε(t) + P

1
R, pV2 ≈ P

imp2tS δε(t) + P
2
R t ∈ (tS, T ].

Hence, we can approximate the magnitude of the “smoothed-out” Dirac impulse
occurring in the PDE model as follows:

P
imp1tS :=

∫ tS+ε

tS

pV1 − P
1
R dt.

analogously for pV2 ,

P
imp2tS :=

∫ tS+ε

tS

pV2 − P
2
R dt.

The Dirac impulse induced by the switched DAE is defined from (14), i.e.,

PV1 [tS] = 1

c1
(Q4(t

−
s ) + Q3(t

−
s ) + Q1(t

−
s ))δts =: P imp1tS δts ,

PV2 [tS] = 1

c1
(Q5(t

−
s ) + Q3(t

−
s ) + Q1(t

−
s ))δts =: P imp2tS δts .
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Table 2 Impulse length comparison

β P
imp1tS P

imp2tS P
imp1tS P

imp2tS

∣∣∣∣∣P
imp1tS −P

imp1tS

∣∣∣∣∣
P
imp1tS

∣∣∣∣∣P
imp2tS −P

imp2tS

∣∣∣∣∣
P
imp2tS

15.0 · 10−9 5.7821 · 107 5.7831 · 107 5.1137 · 107 5.1137 · 107 0.1307 0.1309

9.0 · 10−9 3.3944 · 107 3.3951 · 107 3.8590 · 107 3.8590 · 107 0.1204 0.1202

4.0 · 10−9 3.0906 · 107 3.0918 · 107 2.8407 · 107 2.8407 · 107 0.0880 0.0884

5.0 · 10−10 2.0299 · 107 2.0292 · 107 2.1096 · 107 2.1096 · 107 0.0378 0.0381

2.0 · 10−10 1.8450 · 107 1.8457 · 107 1.8482 · 107 1.8482 · 107 0.0017 0.0014

A comparison between P
imp1tS with P imp1tS and P

imp2tS with P imp2tS for different values
of the compressibility coefficient β is presented in Table2. For large β the approxi-
mation is not very accurate; however, for decreasing compressibility the accuracy of
the approximation improves.

Similar as for the PDE simulations, we assume that the DAE is stationary before
we switch, i.e., dQi

dt (t−s ) = 0 for i ∈ {1, · · · , 6} before closing of the valve. It should
be noted that although the compressibility coefficientβ does not affect the parameters
of the switched DAE model, it does affect the initial value q0, because this is chosen
to match the stationary solution of the balance law (8) considered on [0, tS) which
depends on β.

6 Conclusion

We have presented a switched DAE model for water hammer on a simple setup,
which we compared with a compressible nonlinear system of balance laws. With
the support of numerical simulations of the PDE model, we justified our conjecture
that a switched DAE model is a good approximation for the PDE model with small
compressibility coefficient. In future, we will focus on a formal proof of convergence
as well as the treatment of larger networks with asynchronously closed valves.
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