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Abstract We are interested in three-phase flows involving the liquid and vapor
phases of one species and a third inert gaseous phase. We describe these flows by a
single-velocity multiphase flowmodel composed of the phasic mass and total energy
equations, the volume fraction equations, and the mixture momentum equation. The
model includes stiffmechanical and thermal relaxation source terms for all the phases
and chemical relaxation terms to describe mass transfer between the liquid and vapor
phases of the species that may undergo transition. The homogeneous hyperbolic por-
tion of the equations is solved numerically via a finite volume wave propagation
scheme. Relaxation terms are treated by routines that exploit algebraic equilibrium
conditions for the relaxed states. We present numerical results for a three-phase
cavitation tube test, showing that the predicted wave speed for different levels of
activation of instantaneous relaxation processes agrees with the theoretical findings
on the sub-characteristic interlacing of the wave speeds of the corresponding hierar-
chy of relaxed models. A two-dimensional simulation of an underwater explosion is
also presented.
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1 Introduction

Weare interested in the simulation of three-phase flows involving the liquid and vapor
phases of one species and a third non-condensable gaseous phase. Applications are,
for instance, the simulation of flows around high speed cavitating underwater devices
[13] and themodeling of underwater explosions [2, 15].Wedescribe thesemultiphase
flows by a hyperbolic single-velocity compressible flow model with stiff pressure
relaxation, which extends the two-phase formulation that we have considered in
previous work [11]. The model includes thermal relaxation terms to account for heat
transfer processes between all the phases and chemical relaxation terms to describe
mass transfer between the liquid and vapor phases of the species that may undergo
transition. Similar multiphase models have been, for instance, presented in [7, 13].
The formulation that we adopt here with phasic total energy equations is particularly
convenient to develop a mixture-energy-consistent numerical model, in the sense
defined in [11] for the two-phase case (see also Sect. 3). The homogeneous hyperbolic
portion of the equations is solved numerically via a finite volume wave propagation
scheme that uses a simple HLLC-type Riemann solver. Stiff relaxation source terms
are handled by efficient numerical procedures that exploit algebraic equilibrium
conditions for the relaxed states. One special focus of this work is the study of
the effects of heat and mass transfer on the speed of wave propagation. We first
derive analytical expressions of the speed of sound of the relaxed multiphase models
associatedwith the different levels of activation of infinitely fast relaxation processes,
and we demonstrate that sub-characteristic conditions hold. We then show through a
one-dimensional three-phase cavitation tube experiment that the behavior of thewave
speed predicted numerically is consistent with our theoretical findings. This paper is
organized as follows. In Sect. 2, we present the multiphase flow model under study.
Here we also analyze the characteristic speeds of the relaxed models associated
with the parent relaxation model. In Sect. 3, we illustrate the numerical method
that we have developed to solve the three-phase flow equations. Some numerical
experiments are finally presented in Sect. 4, including a two-dimensional simulation
of an underwater explosion.

2 Single-Velocity Multiphase Compressible Flow Model

We consider an inviscid compressible flow composed of N phases that we assume in
kinematic equilibrium with velocity u. In this work, we are specifically interested in
three-phase flows, N = 3; nonetheless, we shall present here a general multiphase
flow formulation. The volume fraction, density, internal energy per unit volume,
and pressure of each phase will be denoted by αk , ρk , Ek , pk , k = 1, . . .N , respec-
tively. We will denote the total energy for the kth phase with Ek = Ek + ρk

|u|2
2 .

The saturation condition is
∑N

k=1 αk = 1. The mixture density is ρ = ∑N
k=1 αkρk ,

the mixture internal energy is E = ∑N
k=1 αkEk , and the mixture total energy is
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E = ∑N
k=1 αkEk = E + ρ

|u|2
2 . Mechanical and thermal transfer processes are con-

sidered in general for all the phases. We assume that one species in the mixture can
undergo phase transition, so that it can exist as a vapor or a liquid phase, and mass
transfer terms are accounted for this species only. We will use the subscripts 1 and
2 to denote the liquid and vapor phases of this species. We describe the N -phase
flow under consideration by a compressible flowmodel that extends the six-equation
two-phase flow system that we studied in [11]. The model system is composed of the
volume fraction equations for N − 1 phases, the mass and total energy equations for
all the N phases, and d mixture momentum equations, where d denotes the spatial
dimension:

∂tαk + u · ∇αk = ∑N
j=1 Pkj , k = 1, 3, . . . ,N , (1a)

∂t(α1ρ1) + ∇ · (α1ρ1u) = M , (1b)

∂t(α2ρ2) + ∇ · (α2ρ2u) = −M (1c)

∂t(αkρk ) + ∇ · (αkρku) = 0 , k = 3, . . . ,N , (1d)

∂t(ρu) + ∇ ·
(
ρu ⊗ u +

(∑N
k=1 αkpk

)
I

)
= 0 , (1e)

∂t(α1E1) + ∇ · (α1(E1 + p1)u) + Υ1 = − ∑N
j=1 pI1jP1j + ∑N

j=1 Q1j +
(
gI + |u|2

2

)
M ,

(1f)

∂t(α2E2) + ∇ · (α2(E2 + p2)u) + Υ2 = − ∑N
j=1 pI2jP2j + ∑N

j=1 Q2j −
(
gI + |u|2

2

)
M ,

(1g)

∂t(αkEk ) + ∇ · (αk (Ek + pk )u) + Υk = − ∑N
j=1 pIkjPkj + ∑N

j=1 Qkj , k = 3, . . . ,N .

(1h)

The non-conservative terms Υk appearing in the phasic total energy Eqs. (1f)–(1h) are given
by

Υk = u ·
(
Yk∇

(∑N
j=1 αjpj

)
− ∇(αkpk )

)
, k = 1, . . . ,N , (1i)

where Yk = αkρk

ρ
denotes the mass fraction of phase k. In the system above, Pkj

and Qkj represent the volume transfer and the heat transfer, respectively, between
the phases k and j, k, j = 1, . . .N . The termM indicates the mass transfer between
the liquid and vapor phases indexed with 1 and 2. The transfer terms are defined as
relaxation terms:

Pkj = μkj(pk − pj) , Qkj = ϑkj(Tj − Tk) , M = ν(g2 − g1) , (2)

where Tk denotes the phasic temperature, gk the phasic chemical potential, and
where we have introduced the mechanical, thermal, and chemical relaxation param-
eters μkj = μjk ≥ 0, ϑkj = ϑjk ≥ 0, and ν = ν12 = ν21 ≥ 0, respectively. Note that
Pkj = −Pjk andQkj = −Qjk . The quantities pIkj = pIjk are interface pressures and gI
is an interface chemical potential. We shall assume that mechanical equilibrium is
reached instantaneously for all the phases, μkj = μjk ≡ μ → +∞; that is, mechan-
ical relaxation processes are infinitely fast. Following [14], we then consider that
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thermal and chemical relaxation processes are either inactive, ϑkj = 0, ν = 0, or
they act infinitely fast, ϑkj → +∞, ν → +∞. Heat and mass transfer may be acti-
vated at selected locations, for instance, at interfaces for a phase pair (k, j), identified
by min(αk , αj) > ε, where ε is a tolerance.

The closure of the system (1) is obtained through the specification of an equation
of state (EOS) for each phase pk = pk(Ek , ρk), Tk = Tk(pk , ρk). Here in particular
we will adopt the widely used stiffened gas (SG) equation of state:

pk (Ek , ρk ) = (γk − 1)Ek − γk
k − (γk − 1)ηkρk and Tk (pk , ρk ) = pk + 
k

κvkρk (γk − 1)
,

(3)
where γk , 
k , ηk , and κvk are constant material-dependent parameters. The corre-
sponding expression for the phasic entropy is sk = κvk log(T

γk
k (pk + 
k)

−(γk−1)) +
η′
k , where η′

k = constant, and gk = hk − Tksk . The parameters for the SG EOS for the
liquid and vapor phases of the species that may undergo transition are determined
by imposing that the theoretical saturation curve defined by g1 = g2 matches the
experimental one for the considered material [6]. The mixture pressure law is deter-
mined by the mixture energy relation E = ∑N

k=1 αkEk(p, ρk), where we have used
the mechanical equilibrium conditions pk = p, ∀k = 1, . . . ,N in the phasic energy
laws Ek(pk , ρk).

Since here wewill consider relaxation parameters either= 0 or→ ∞, a specifica-
tion of the expression for the interface quantities pIkj, gI is not needed. Nevertheless,
let us remark that the definition of these interface quantities must be consistent with
the second law of thermodynamics, which requires a nonnegative entropy production
for the mixture. By writing the equation for the mixture entropy and by following
the arguments in [3], one can infer the following sufficient consistency conditions:
pIkj ∈ [min(pk , pj),max(pk , pj)], and gI ∈ [min(g1, g2),max(g1, g2)].

Themodel (1) is hyperbolic, and the associated speed of sound cf (non-equilibrium
or frozen sound speed) is

cf =
√
√
√
√

N∑

k=1

Ykc2k , (4)

where ck is the speed of sound of phase k, which can be expressed as
ck = √

Γkhk + χk , where hk = (Ek + pk)/ρk is the specific enthalpy of phase k,
Γk = (∂pk/∂Ek)ρk , and χk = (∂pk/∂ρk)Ek .

2.1 Hierarchy of Multiphase Relaxed Models and Speed
of Sound

In the considered limit of instantaneous mechanical relaxation μkj ≡ μ → ∞, the
model system (1) reduces to a hyperbolic single-velocity single-pressure model
which is a generalization of the five-equation two-phase flow model of Kapila et
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al. [5]. The reduced pressure equilibrium model can be derived by means of asymp-
totic techniques. Denoting with p the equilibrium pressure, we obtain the following
relaxed system, composed of 2N + d equations:

∂tα1 + u · ∇α1 = K1∇ · u + Γ1

ρ1c21

∑N
j=2 Q1j − α1

ρc2p
ρ1c21

∑N
j,i=1
i>j

Qji

(
Γj

ρjc2j
− Γi

ρic2i

)

+ ρc2p
ρ1c21

(

(Γ1(gI − h1) + c21)
∑N

j=1
j �=k

αj

ρjc2j
+ (Γ2(gI − h2) + c22)

α1

ρ2c22

)

M , (5a)

∂tαk + u · ∇αk = Kk∇ · u + Γk

ρk c2k

∑N
j=1
j �=k

Qkj − αk
ρc2p
ρk c2k

∑N
j,i=1
i>j

Qji

(
Γj

ρjc2j
− Γi

ρic2i

)

+ ρc2p
αk

ρk c2k

(
Γ2(gI−h2)+c22

ρ2c22
− Γ1(gI−h1)+c21

ρ1c21

)
M , k = 3, . . . ,N , (5b)

∂t(α1ρ1) + ∇ · (α1ρ1u) = M , (5c)

∂t(α2ρ2) + ∇ · (α2ρ2u) = −M , (5d)

∂t(αkρk) + ∇ · (αkρku) = 0 , k = 3, . . . ,N , (5e)

∂t(ρu) + ∇ · (ρu ⊗ u + pI) = 0 , (5f)

∂tE + ∇ · ((E + p)u) = 0 , (5g)

where
Kk = ρc2pαk

∑N
j=1
j �=k

αj

(
1

ρk c2k
− 1

ρjc2j

)
= αk

(
ρc2p
ρk c2k

− 1
)

. (6)

In the relations above, we have introduced the pressure equilibrium speed of sound
cp (a generalization of Wood’s sound speed), defined by

cp =
(

ρ

N∑

k=1

αk

ρkc2k

)− 1
2

. (7)

Let us note that the source terms in the volume fraction Eqs. (5a), (5b) result from
the asymptotic limit of instantaneous pressure relaxation.

More generally, a hierarchy of hyperbolic multiphase flow models can be estab-
lished based on the assumptions on equilibria attained by different combinations of
instantaneous relaxation processes. In particular, we study here the expression of the
speed of sound for the relaxedmodels in the hierarchy, similar to [3, 4].We can derive
the following results, valid for any equation of state, whose full demonstrationwill be
detailed elsewhere, together with the derivation of (5). First, assuming instantaneous
mechanical equilibrium μjk ≡ μ → +∞ for all the phases and thermal equilibrium
ϑkj ≡ ϑ → +∞ forM phases, 2 ≤ M ≤ N , we obtain a hyperbolic relaxed system
of 2N − M + 1 + d equations characterized by the speed of sound cpT ,M , defined
by

1

cpT ,M
2

= 1

cp2
+ ρT

∑M
k=1 Cpk

M−1∑

k=1

Cpk

M∑

j=k+1

Cpj

(
Γj

ρjc2j
− Γk

ρkc2k

)2

, (8)
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where T denotes the equilibrium temperature, Cpk = αkρkκpk , κpk = (∂hk/∂Tk)pk
(specific heat at constant pressure), and we recall Γk = (∂pk/∂Ek)ρk . If additionally
we assume instantaneous chemical relaxation between the liquid and vapor phases
1 and 2, ν → +∞, we obtain a hyperbolic relaxed system of 2(N − M + 1) + d
equations characterized by a speed of sound cpTg,M , defined by

1

cpTg,M 2
= 1

cpT ,M
2

+ ρT
∑M

k=1 Cpk

(
M∑

k=1

ΓkCpk

ρkc2k
− 1

T

(
dT

dp

)

sat

M∑

k=1

Cpk

)2

, (9)

where we have introduced the derivatives (dT/dp)sat evaluated on the liquid–vapor
saturation curve. Analogously to the two-phase case [3], it is easy to observe that sub-
characteristic conditions hold; namely, the speed of sound of the N -phase mixture
is reduced whenever an additional equilibrium assumption is introduced: cpTg ≡
cpTg,N ≤ cpTg,M , cpT ≡ cpT ,N ≤ cpT ,M , and cpTg < cpT < cp < cf .

Remark. In [11], an additional term of the form M/ρI was written in the volume
fraction equation of the six-equation two-phase model, with ρI representing an inter-
face density. Similar to [3], this term is not included in the present multiphase model
(1). The purpose of the term M/ρI in [11] was to indicate the influence of the mass
transfer process on the evolution of the volume fraction. Nonetheless, the rigorous
derivation of the pressure-relaxed model (5) from the system (1) reveals that indeed
mass transfer terms affect αk via the pressure relaxation process, as we observe from
the contribution ofM appearing in (5a), (5b). Note that neglecting the termM/ρI in
the six-equation model of [11] does not affect the numerical model and the numeri-
cal results presented there, since ν = 0 or ν → ∞, and the numerical procedure for
treating instantaneous chemical relaxation consists in imposing directly algebraic
thermodynamic equilibrium conditions.

3 Numerical Method

We focus now on the numerical approximation of the multiphase system (1), which
we can write in compact vectorial form as

∂tq + ∇ · F (q) + ς(q,∇q) = ψμ(q) + ψϑ(q) + ψν(q) , (10)

where q = [α1, α3, . . . , αN , α1ρ1, . . . , αNρN , ρu, α1E1, . . . , αNEN ]T ∈ R
3N−1+d is

the vector of the unknowns, F (q) represents the conservative portion of the sys-
tem, and ς(q,∇q) is the non-conservative term. The source terms ψμ, ψϑ , and ψν

in the system above contain mechanical, thermal, and chemical relaxation terms,
respectively. To numerically solve the system (10), we use the same techniques that
we have developed for the two-phase model in [11]. A fractional step method is
employed, where we alternate between the solution of the homogeneous system
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∂tq + ∇ · F (q) + ς(q,∇q) = 0 and the solution of a sequence of systems of ordi-
nary differential equations (ODEs) that take into account the relaxation source terms
ψμ, ψϑ , and ψν . As in [11], the resulting method is mixture-energy-consistent, in
the sense that (i) it guarantees conservation at the discrete level of the mixture total
energy; (ii) it guarantees consistency by construction of the values of the relaxed
states with the mixture pressure law. The method has been implemented by using the
libraries of the clawpack software [10].

3.1 Solution of the Homogeneous System

To solve the hyperbolic homogeneous portion of (10), we employ the wave propaga-
tion algorithms of [8, 9], which are a class of Godunov-type finite volume methods
to approximate hyperbolic systems of partial differential equations. We shall con-
sider here for simplicity the one-dimensional case in the x direction, and we refer
the reader to [9] for a comprehensive presentation of these numerical schemes. We
assume a grid with cells of uniform size Δx, and we denote withQn

i the approximate
solution of the system at the ith cell and at time tn, i ∈ Z, n ∈ N. The second-order
wave propagation algorithm has the form

Qn+1
i = Qn

i − Δt

Δx
(A+ΔQi−1/2 + A−ΔQi+1/2) − Δt

Δx
(F̃i+1/2 − F̃i−1/2) . (11)

Here A∓ΔQi+1/2 are the so-called fluctuations arising from Riemann problems at
cell interfaces (i + 1/2) between cells i and (i + 1), and F̃i+1/2 are correction terms
for (formal) second-order accuracy. To define the fluctuations, a Riemann solver
must be provided. For the present work, we have developed a numerical scheme
in one and two spatial dimensions for the three-phase case, N = 3, by adopting a
HLLC-type Riemann solver analogous to the one that we have presented in [11]
for the two-phase case. This solver guarantees conservation of the partial densities
αkρk , the mixture momentum ρu, and themixture total energyE = ∑N

k=1 αkEk . This
simple HLLC-type solver omits the discretization of the non-conservative terms Υk

in the phasic energy equations. We refer to [11] for a discussion on this point and
the rationale for this approach. We just remark here that for the two-phase case we
have done comparisons of this HLLC-type solver with Riemann solvers that take
into account the non-conservative terms Υk , including a Roe-type solver [11, 12]
and a new Suliciu-type solver [1], and no relevant differences were observed in the
results. Details on the Suliciu-type solver will be reported elsewhere.
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3.2 Relaxation Steps

Similar to [7, 11], the numerical relaxation procedures to handle infinitely fast trans-
fer processes are based on the idea of imposing directly equilibrium conditions to
obtain a simple systemof algebraic equations to be solved in each relaxation sub-step.

3.2.1 Mechanical Relaxation

We consider the solution of the system ∂tq = ψμ(q) in the limit μkj ≡ μ → ∞.
We denote with superscript 0 the quantities at initial time, which come from the
solution of the homogeneous system, and with superscript ∗ the quantities at final
time, which are the quantities at mechanical equilibrium. First, we easily see that
the exact solution of the system of ODEs gives (αkρk)

∗ = (αkρk)
0, k = 1, . . . ,N ,

and (ρu)∗ = (ρu)0, E∗ = E0, hence u∗ = u0 and E∗ = E0. We then integrate the
equations for the phasic total energies by approximating the interface pressures pIkj
with their values at equilibrium p∗

Ikj = p∗. This gives N equations of the form

(αkEk)
∗ − (αkEk)

0 = (αkEk)
∗ − (αkEk)

0 = −p∗(α∗
k − α0

k ), k = 1, 2, . . . ,N .

(12)
Imposing the pressure equilibrium conditions pk = p∗, ∀k = 1, . . . ,N , at final time
the phasic internal energies are then expressed as E∗

k = Ek(p∗, (αkρk)
0/α∗

k ). With
these relations, system (12) and the constraint

∑N
k=1 αk = 1 give N + 1 equations

for the unknowns α∗
k , k = 1, . . . ,N , and p∗. For the particular case of the SG EOS,

the problem can be reduced to the solution of a polynomial equation of degree N for
the equilibrium pressure p∗. Furthermore, for the case studied here with three phases,
N = 3, and two gaseous phases governed by a SG EOS with 
k = 0 (see Eq. (3)),
the polynomial equation of degree 3 for p∗ reduces to a quadratic equation, whose
physically admissible solution is easily found.

3.2.2 Thermal Relaxation

If thermal relaxation terms are also activated, then we consider the solution of a sys-
tem of the form ∂tq = ψμ(q) + ψϑ(q), with μkj ≡ μ → ∞ for all phase pairs, and
ϑkj ≡ ϑ → ∞ for some desired pairs (k, j). Let us assume instantaneous thermal
equilibrium for M phases, 2 ≤ M ≤ N , in addition to mechanical equilibrium for
all phases. We will denote equilibrium values with the superscript ∗∗. Then, similar
to the case of pressure relaxation, we can write (αkρk)

∗∗ = (αkρk)
0, k = 1, . . . ,N ,

(ρu)∗∗ = (ρu)0, E∗∗ = E0, and E∗∗ = E0. Moreover, we write N − M equations
of the form (12) with (·)0 replaced by (·)∗ and (·)∗ replaced by (·)∗∗, the mechan-
ical equilibrium conditions p∗∗

k = p∗∗, ∀k = 1, . . . ,N , and the thermal equilibrium
conditions T ∗∗

k = T ∗∗ for M phases. All these relations give a system of algebraic
equations to be solved for the equilibrium values α∗∗

k , p∗∗. As for the mechanical
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relaxation step, the solution of this system of algebraic equations can be reduced to
the solution of a polynomial equation of degree N for the pressure p∗∗ when the SG
EOS is adopted. The problem reduces further to the solution of a quadratic equation
for the case N = 3 with two gaseous phases governed by SG pressure laws with

k = 0.

3.2.3 Thermo-Chemical Relaxation

If thermo-chemical relaxation is activated for the species that may undergo liquid–
vapor transition, then we need to solve a system of ODEs of the form ∂tq =
ψμ(q) + ψϑ(q) + ψν(q), with μkj ≡ μ → ∞ for all phase pairs, ϑkj ≡ ϑ → ∞ for
some phase pairs (k, j), and ν → +∞ for the phase pair (1, 2). Let us assume instan-
taneous thermal equilibrium forM phases, including at least the phases 1 and 2. We
denote the quantities at thermodynamic equilibrium with the superscript⊕. First, we
can write ρ⊕ = ρ0, (ρu)⊕ = (ρu)0, E⊕ = E0, and E⊕ = E0. Moreover, we write
N − M equations of the form (12) with (·)0 replaced by (·)∗∗ and (·)∗ replaced by
(·)⊕, the mechanical equilibrium conditions p⊕

k = p⊕, ∀k = 1, . . . ,N , the thermal
equilibrium conditions T⊕

k = T⊕ for M phases, and the chemical equilibrium con-
dition g⊕

1 = g⊕
2 . This set of algebraic equations can be solved for the values of the

equilibrium pressure p⊕, the equilibrium volume fractions α⊕
k , and the equilibrium

densitiesρ⊕
k . For the case of the SGEOSconsidered here,we use a solution procedure

similar to the two-phase case [11]. First, we reduce the set of algebraic conditions
excluding the chemical equilibrium relation to the solution of a quadratic equation
for the temperature as a function of the equilibrium pressure, T⊕ = T⊕(p⊕). Then,
the expression of T⊕(p⊕) is introduced into the equilibrium condition g⊕

1 = g⊕
2 . This

gives an equation for p⊕, which is solved by Newton’s iterative method.

4 Numerical Experiments

We now present some numerical experiments for three-phase flows involving the
liquid and vapor phases of water and a third non-condensable phase. The parameters
of the SG EOS for water are those used in [11] (we use hereafter the subscripts
l and v for liquid and vapor, respectively): γl = 2.35, γv = 1.43, ηl = −1167 ×
103 J/kg, ηv = 2030 × 103 J/kg, 
l = 109 Pa, 
v = 0 Pa, κvl = 1816 J/(Kg · K),
κvv = 1040 J/(Kg · K), η′

l = 0 J/(Kg · K), η′
v = −23.4 × 103 J/(Kg · K).

4.1 Three-Phase Water Cavitation Tube

We perform a test that is similar to the two-phase cavitation tube experiment pre-
sented in [11, 14]. We consider a tube filled initially with liquid water with a uni-
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formly distributed small amount of water vapor αwv = 10−2 and a small amount of
air (non-condensable gas) αg = 10−1. Air is modeled as an ideal gas with γg = 1.4
(ηg = 0 J/kg, 
g = 0 Pa). The initial pressure is p0 = 105 Pa, and the initial densi-
ties correspond to the temperature T0 = 354 K. A velocity discontinuity is set at the
initial time at the middle of the tube, with u0 = −20 m/s on the left and u0 = 20 m/s
on the right. We use 3000 grid cells over the interval [0, 1], and CFL = 0.5. We
perform the simulation with different levels of activation of instantaneous relaxation
processes: (i) only mechanical relaxation (p-relaxation); (ii) mechanical relaxation
for all the three phases and thermal relaxation for the liquid–vapor pair only (pT (lv)-
relaxation); (iii)mechanical and thermal relaxation for all the phases (pT -relaxation);
(iv) mechanical relaxation for all the phases and thermal and chemical relaxation for
the liquid-vapor pair (pT (lv)g-relaxation); (v) mechanical and thermal relaxation
for all the phases and chemical relaxation for the liquid-vapor pair (pTg-relaxation).
Second-order results are displayed in Fig. 1 for the pressure, the velocity, the total
gaseous volume fraction αwv + αg, and the vapor mass fraction. In all the cases, we
observe two rarefactions propagating in opposite directions that produce a pressure
decrease in the middle region of the tube, and, correspondingly, an increase of the
total gaseous component. For the cases with activation ofmass transfer, i.e., pT (lv)g-
and pTg-relaxation, two evaporation waves develop, causing an increase of the vapor
mass fraction in the middle region. Note that in these cases the pressure decreases in
the cavitation zone until the saturation value is reached, whereas the pressure reaches
much lower values here if mass transfer is not activated. By inspecting the results,
we observe that the speed of the leading edges of the two rarefactions decreases
for any additional instantaneous thermal equilibrium process that we activate in the
computation, consistently with the sub-characteristic property demonstrated theo-
retically for the hierarchy of relaxed models in Sect. 2.1. Let us note that chemical
relaxation is not active here around the rarefaction fronts since mass transfer in this
test is activated under the metastability condition Tliquid > Tsat(p).

4.2 Underwater Explosion Close to a Rigid Surface

In this test, we simulate a cylindrical underwater explosion (UNDEX) close to a
rigid surface. Following [15], we consider an initial bubble of highly pressurized gas
(combustion products) surrounded by liquidwater and located near an upper flat wall.
Three fluid components are involved in this problem: liquid water, water vapor, and
combustion gases. The domain is [−0.6, 0.6] × [−0.7, 0]m2, and the bubble initially
is located at (xb, yb) = (0,−0.22)m, and it has radius rb = 0.05 m. Inside the bubble,
we set initially a pressure p = 8290 × 105 Pa, a gas density ρg = 1400 kg/m3, and
volume fractions αwl = αwv = 10−8 for the water phases. Outside the bubble, we
set p = 105 Pa, T = 303 K, and the volume fractions αwv = 10−4 and αg = 10−7,
for water vapor and gas, respectively. An ideal gas law is used for the combustion
gases, with γg = 2. In this test, thermal and chemical relaxation are activated for the
liquid–vapor water pair only. This explosion problem is characterized by a complex
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Fig. 1 Numerical results for the pressure, velocity, total gas volume fraction, and vapor mass
fraction for the water cavitation tube test

pattern of shocks and rarefaction waves [15], and the likely occurrence of creation
and collapse of vapor cavities in the liquid region close to the wall, due to the strong
rarefactions and subsequent recompression. We show in Fig. 2 pseudo-color plots of
the pressure at two different times. At t = 0.2 ms (upper left plot), the circular shock
created by the explosion has reflected from the wall; at time t = 0.35 ms (lower
left plot), a low-pressure cavitation region has developed close to the surface. The
pressure and water vapor mass fraction histories in time at the point (0, 0) at the
center of the wall are also displayed in the two plots on the right of Fig. 2. We clearly
observe the pressure peak corresponding to the instant at which the circular shock
hits the wall, the drop of the pressure and consequent growth of a vapor region in
this zone, which eventually disappears due to the recompression at later times. In
the literature, these type of UNDEX problems are typically simulated by simpler
single-fluid models [15], or by two-phase flow models [2] that are only able to
describe mechanical cavitation processes, that is growth/collapse of gas cavities due
to pressure variations, with no liquid-vapor transition. In contrast, our three-phase
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Fig. 2 Numerical results for the UNDEX experiment. Left: pressure field at time t = 0.2ms (top)
and t = 0.35ms (bottom). The thick solid circle line indicates the water/bubble interface. Right:
pressure history (top) and vapor mass fraction history (bottom) at the point (0, 0) at the center of
the wall

flow model allows a more accurate description of the thermodynamics of cavitation
processes, which involve liquid–vapor phase change.

5 Conclusions

We have presented a numerical model for multiphase compressible flows involving
the liquid and vapor phases of one species and a third inert gaseous phase. The model
includes mechanical, thermal, and chemical relaxation processes. The multiphase
equations are solved by a mixture-energy-consistent finite volume wave propagation
method combined with simple and robust procedures for the stiff relaxation terms.
Numerical results show the efficiency of the presented method in modeling complex
wave patterns with thermal and mass transfer processes. An analytical study of the
characteristic speeds of the hierarchy of relaxed models associated with the parent
relaxation model has been also presented. The presented model is an extension of the
two-phase flow model that we have introduced in [11]. This novel extension allows
us the simulation of problems where the dynamical appearance of vapor cavities and
evaporation fronts in a liquid is coupled to the dynamics of a third non-condensable
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gaseous component governed by its own equation of state. An example of application
illustrated in the present work is the simulation of an underwater explosion close to
a rigid wall, where highly pressurized combustion gases (non-condensable phase)
trigger cavitation processes in a liquid. Another application example can be found
in [13].
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