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Abstract We found the precise condition for the decay as t → ∞ of
Besicovitch almost periodic entropy solutions of multidimensional scalar conser-
vation laws. Moreover, in the case of one space variable we establish asymptotic
convergence of the entropy solution to a traveling wave (in the Besicovitch norm).
Besides, the flux function turns out to be affine on the minimal segment containing
the essential range of the limit profile while the speed of the traveling wave coincides
with the slope of the flux function on this segment.
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1 Introduction

In the half-space Π = R+ × R
n , whereR+ = (0,+∞), we consider a conservation

law
ut + divxϕ(u) = 0, u = u(t, x), (t, x) ∈ Π. (1)

The flux vector ϕ(u) = (ϕ1(u), . . . , ϕn(u)) is supposed to be merely continuous:
ϕ(u) ∈ C(R,Rn). Recall the notion of Kruzhkov entropy solution of the Cauchy
problem for Eq. (1) with initial condition

u(0, x) = u0(x) ∈ L∞(Rn). (2)

Definition 1 ([6]). A bounded measurable function u = u(t, x) ∈ L∞(Π) is called
an entropy solution (e.s.) of (1), (2) if for all k ∈ R
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∂

∂t
|u − k| + divx [sign (u − k)(ϕ(u) − ϕ(k))] ≤ 0 (3)

in the sense of distributions on Π (in D ′(Π)), and

ess lim
t→0+ u(t, ·) = u0 in L1

loc(R
n). (4)

Here sign u =
{

1, u > 0,
−1, u ≤ 0

and relation (3) means that for each test function

h = h(t, x) ∈ C1
0(Π), h ≥ 0,

∫
Π

[|u − k|ht + sign (u − k)(ϕ(u) − ϕ(k)) · ∇xh]dtdx ≥ 0,

where · denotes the inner product in R
n .

Taking in (3) k = ±R, where R ≥ ‖u‖∞, we obtain that ut + divxϕ(u) = 0 in
D ′(Π); that is, an e.s. u = u(t, x) is a weak solution of this equation as well.

The existence of e.s. of (1), (2) follows from the general result of [12, Theorem 3].
In the case under consideration when the flux vector is only continuous the effect
of infinite speed of propagation appears, which may even lead to the nonuniqueness
of e.s. if n > 1, and see examples in [7, 8, 12], where exact sufficient conditions of
the uniqueness were also found. Nevertheless, if an initial function u0 is periodic in
R

n (at least in n − 1 independent directions), then the e.s. of (1), (2) is unique and
x-periodic; see [11], as well as the more general result [12, Theorem 11].

We will study problem (1), (2) in the class of Besicovitch almost periodic func-
tions. Let CR be the cube

{ x = (x1, . . . , xn) ∈ R
n | |x |∞ = max

i=1,...,n
|xi | ≤ R/2 }, R > 0.

We define the seminorm

N1(u) = lim sup
R→+∞

R−n
∫
CR

|u(x)|dx, u(x) ∈ L1
loc(R

n).

Recall (see [1, 9]) that the Besicovitch spaceB1(Rn) is the closure of trigonometric
polynomials, i.e., finite sums

∑
aλe2π iλ·x with i2 = −1,λ ∈ R

n , in the quotient space
B1(Rn)/B1

0 (R
n), where

B1(Rn) = {u ∈ L1
loc(R

n) | N1(u) < +∞}, B1
0 (R

n) = {u ∈ L1
loc(R

n) | N1(u) = 0}.

The spaceB1(Rn) is equipped with the norm ‖u‖1 = N1(u) (we identify classes in
the quotient space B1(Rn)/B1

0 (R
n) and their representatives). The space B1(Rn) is

a Banach space, and it is isomorphic to the completeness of the space AP(Rn) of
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Bohr almost periodic functions with respect to the norm N1. It is known (see, for
instance, [1]) that for each function u ∈ B1(Rn) there exists the mean value

ū = −
∫
Rn

u(x)dx
.= lim

R→+∞ R−n
∫
CR

u(x)dx

and, more generally, the Bohr–Fourier coefficients

aλ = −
∫
Rn

u(x)e−2π iλ·xdx, λ ∈ R
n.

The set
Sp(u) = { λ ∈ R

n | aλ 
= 0 }

is called the spectrum of an almost periodic function u(x). It is known [1] that the
spectrum Sp(u) is at most countable.

Now we assume that the initial function u0(x) ∈ B1(Rn) ∩ L∞(Rn). Let I =
−
∫
Rn u0(x)dx , and M0 be the smallest additive subgroup of Rn containing Sp(u0).
It was shown in [17] that an e.s. u(t, x) of (1), (2) is almost periodic with respect to

spatial variables. Moreover, u(t, x) ∈ C([0,+∞),B1(Rn)) (after possible correc-
tion on a set of null measure) and Sp(u(t, ·)) ⊂ M0, −

∫
Rn u(t, x)dx = I for all t ≥ 0.

The uniqueness of e.s. u(t, x) in the spaceC([0,+∞),B1(Rn)) is a consequence of
the following general result [17, Proposition 1.3], which holds for arbitrary bounded
and measurable initial functions.

Theorem 1. Let u(t, x), v(t, x) ∈ L∞(Π) be e.s. of (1), (2) with initial functions
u0(x), v0(x) ∈ L∞(Rn), respectively. Then for a.e. t > 0

N1(u(t, ·) − v(t, ·)) ≤ N1(u0 − v0). (5)

For completeness, we reproduce the proof.

Proof. Applying Kruzhkov doubling of variables method, we obtain the relation (see
[6, 12])

|u − v|t + divx [sign (u − v)(ϕ(u) − ϕ(v))] ≤ 0 in D ′(Π). (6)

We choose a function g(y) ∈ C1
0(R

n) such that 0 ≤ g(y) ≤ 1, and g(y) ≡ 1 in the
cube C1, g(y) ≡ 0 in the complement of the cube Ck , k > 1, and a function h =
h(t) ∈ C1

0(R+), h ≥ 0. Applying (6) to the test function f = R−nh(t)g(x/R) with
R > 0, we obtain

∫ ∞

0

(
R−n

∫
Rn

|u(t, x) − v(t, x)|g(x/R)dx

)
h′(t)dt +

R−n−1
∫

Π

sign (u − v)(ϕ(u) − ϕ(v)) · ∇yg(x/R)h(t)dtdx ≥ 0. (7)
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Making the change y = x/R in the last integral in (7), we derive the estimate

R−n−1

∣∣∣∣
∫

Π

sign (u − v)(ϕ(u) − ϕ(v)) · ∇yg(x/R)h(t)dtdx

∣∣∣∣ ≤

R−1‖ϕ(u) − ϕ(v)‖∞
∫

Π

|∇yg|(y)h(t)dtdy ≤ A

R

∫ +∞

0
h(t)dt, (8)

where A = ‖ϕ(u) − ϕ(v)‖∞
∫
Rn |∇yg|(y)dy. Here and below we use the notation

|z| for the Euclidean norm of a finite-dimensional vector z. Let

IR(t) = R−n
∫
Rn

|u(t, x) − v(t, x)|g(x/R)dx .

From (7) and (8), it follows that

∫ +∞

0
(IR(t) − At/R)h′(t)dt =

∫ +∞

0
IR(t)h′(t)dt + A

R

∫ +∞

0
h(t)dt ≥ 0

for all h(t) ∈ C1
0((0,+∞)), h(t) ≥ 0. This means that the generalized derivative

d
dt (IR(t) − At/R) ≤ 0, which readily implies that there exists a set F ⊂ (0,+∞) of
full Lebesgue measure (which can be defined as the set of common Lebesgue points
of functions IR(t), R ∈ Q) such that ∀t2, t1 ∈ F , t2 > t1, ∀R ∈ Q IR(t2) − At2/R ≤
IR(t1) − At1/R, that is IR(t2) ≤ IR(t1) + A(t2 − t1)/R. By the evident continuity of
IR(t) with respect to R, the latter relation remains valid for all R > 0. In the limit
as F � t1 → 0 we obtain, taking into account the initial conditions for e.s. u, v, that
∀t2 = t ∈ F for all R > 0

IR(t) ≤ IR(0) + At/R, (9)

where IR(0) = R−n
∫
Rn |u0(x) − v0(x)|g(x/R)dx . By the properties of g(y), we

find the inequalities

R−n
∫
CR

|u(t, x) − v(t, x)|dx ≤ IR(t) ≤

R−n
∫
CkR

|u(t, x) − v(t, x)|dx = kn(kR)−n
∫
CkR

|u(t, x) − v(t, x)|dx,

which imply that

N1(u(t, ·) − v(t, ·)) ≤ lim sup
R→+∞

IR(t) ≤ knN1(u(t, ·) − v(t, ·)). (10)

In view of (10), we derive from (9) in the limit as R → +∞ that N1(u(t, ·) −
v(t, ·)) ≤ knN1(u0 − v0) for all t ∈ F . To complete the proof, it only remains to
notice that k > 1 is arbitrary.
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Remark 1. As was established in [13, Corollary 7.1], after possible correction on a
set of null measure any e.s. u(t, x) ∈ C(R+, L1

loc(R
n)). In particular, without loss

of generality, we may claim that relation (9) holds for all t > 0. This implies in the
limit as R → +∞ that the statement of Theorem 1 holds for all t > 0 as well. The
continuity property allows also to replace the essential limit in initial condition (4)
by the usual one.

Our main results are contained in Theorems 2, 4, indicated below.

Theorem 2. Assume that the following non-degeneracy condition holds for the flux
components in “resonant” directions ξ ∈ M0:

∀ξ ∈ M0, ξ 
= 0 the functions u → ξ · ϕ(u)

are not affine in any vicinity of I = u0. (11)

Then, an e.s. u(t, x) ∈ C([0,+∞),B1(Rn)) satisfies the decay property

lim
t→+∞ u(t, ·) = I inB1(Rn). (12)

Condition (11) is precise: if it fails, then there exists an initial data u0 ∈ B1(Rn) ∩
L∞(Rn) with the properties Sp(u0) ⊂ M0, u0 = I , such that the corresponding e.s.
u(t, x) of (1), (2) does not satisfy (12).

Remark 2. The decay of almost periodic e.s. was firstly studied by H. Frid [5] in
the class of Stepanov almost periodic function. This class is natural for the case of
smooth flux vector ϕ(u), when an e.s. u(t, x) of (1), (2) exhibits the property of finite
speed of propagation. The decay of such solutions was established in the stronger
Stepanov norm but under rather restrictive assumptions on the dependence of the
length of inclusion intervals for ε-almost periods of u0 on the parameter ε.

Notice that in the case of a periodic function u0 the group M0 coincides with the
dual latticeL ′ to the latticeL of periods of u0, and in this case, Theorem 2 reduces
to the following result [15] (see also the earlier paper [14]):

Theorem 3. Under the condition

∀ξ ∈ L ′, ξ 
= 0 the functions u → ξ · ϕ(u)

are not affine in any vicinity of I =
∫
Tn

u0(x)dx (13)

an e.s. u(t, x) ∈ C([0,+∞), L1(Tn)) satisfies the decay property

lim
t→+∞

∫
Tn

|u(t, x) − I |dx = 0. (14)

Here T
n = R

n/L is the n-dimensional torus, and dx is the normalized Lebesgue
measure on T

n.
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Remark that in the caseϕ(u) ∈ C2(R,Rn) the assertion ofTheorem3was established
in [3]. Now we consider the case of one space variable n = 1 when (1) has the form

ut + ϕ(u)x = 0, (15)

where ϕ(u) ∈ C(R). As above, we assume that u0 ∈ B1(R) ∩ L∞(R) and that M0

is the additive subgroup of R generated by Sp(u0). For an almost periodic function
v(x) ∈ B1(R), we denote by S(v) the minimal segment [a, b] containing essential
values of v(x). This segment can be defined by the relations

b = min{ k ∈ R | (v − k)+ = max(v − k, 0) = 0 inB1(R) },
a = max{ k ∈ R | (k − v)+ = 0 inB1(R) }.

As is easy to verify, the above minimal and maximal values exist and a ≤ b.
Our second result is the following unconditional asymptotic property of conver-

gence of an e.s. u(t, x) to a traveling wave:

Theorem 4. There is a constant c ∈ R (speed) and a function v(y) ∈ B1(R) ∩
L∞(R) (profile) such that

lim
t→+∞(u(t, x) − v(x − ct)) = 0 inB1(R). (16)

Moreover, Sp(v) ⊂ M0, v̄ = I = u0, and ϕ(u) − cu = const on the segment S(v).

We remark, in addition to Theorem 4, that the profile v(y) of the traveling wave
and, if v 
≡ const, its speed c are uniquely defined. Indeed, if (16) holds with v =
v1, v2, c = c1, c2, respectively, then v1(x − c1t) − v2(x − c2t) → 0 inB1(R) as t →
+∞, which implies the relation

lim
t→+∞(v1(y) − v2(y + (c1 − c2)t)) = 0 inB1(R). (17)

By the known property of almost periodic functions (see, for example, [1]), there
exists a sequence tr → +∞ such that v2(y + (c1 − c2)tr ) →

r→∞ v2(y) inB1(R) (this is

evident if c1 = c2). On the other hand, in view of (17) v2(y + (c1 − c2)tr ) →
r→∞ v1(y)

inB1(R) and hence v1 = v2 inB1(R). Further, ifΔc = c1 − c2 
= 0, then it follows
from (17) in the limit as t = tr + h/Δc → +∞ that v2(y) = v2(y + h) in B1(R)

for each h ∈ R. Therefore,

v2(y) = −
∫
R

v2(y + h)dh = −
∫
R

v2(h)dh = v2 = const.

Thus, for the nonconstant profile v = v2 the speed c1 = c2 = c is uniquely deter-
mined. We also remark that ‖v‖∞ ≤ ‖u0‖∞ because by the maximum principle
|u(t, x)| ≤ ‖u0‖∞ a.e. in Π .
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Theorem4defines the nonlinear operator T onB1(R) ∩ L∞(R), which associates
an initial function u0 with the profile v(y) = T (u0)(y) of the limit traveling wave
for the corresponding e.s. of problem (15), (2). In Theorem 5 below, we establish
that T does not increase the distance inB1(R).

Remark 3. In the case n = 1, the statement of Theorem 2 follows from Theorem 4.
Indeed, under the assumptions of Theorem 2, v(y) = I in B1(R). Otherwise, a <

I < b, where [a, b] = S(v) and, by Theorem 4, ϕ(u) = cu + const in the vicinity
(a, b) of I . But the latter contradicts to assumption (11) of Theorem 2.

Note that in the periodic case Theorems 4, 5 were proved in [16].

2 Proof of Theorem 2

We assume firstly that the initial function is a trigonometric polynomial u0(x) =∑
λ∈Λ aλe2π iλ·x . Here Λ = Sp(u0) ⊂ R

n is a finite set. The minimal additive sub-
group M0

.= M(u0) of Rn containing Λ is a finite generated torsion-free abelian
group, and therefore, it is a free abelian group of finite rank (see [10]). There-
fore, there is a basis λ j ∈ M0, j = 1, . . . ,m, so that every element λ ∈ M0 can be
uniquely represented as λ = λ(k̄) = ∑m

j=1 k jλ j , k̄ = (k1, . . . , km) ∈ Z
m . In partic-

ular, the vectors λ j , j = 1, . . . ,m, are linearly independent over the field of rational
numbers Q. We introduce the finite set J = { k̄ ∈ Z

m | λ(k̄) ∈ Λ } and represent the
initial function as

u0(x) =
∑
k̄∈J

ak̄e
2π i

∑m
j=1 k jλ j ·x , ak̄

.= aλ(k̄).

By this representation u0(x) = v0(y(x)), where

v0(y) =
∑
k̄∈J

ak̄e
2π i k̄·y

is a periodic function on R
m with the standard lattice of periods Zm while y(x) is a

linear map from R
n to R

m defined by the equalities y j = λ j · x = ∑n
i=1 λ j i xi , λ j i ,

i = 1, . . . , n, being coordinates of the vectors λ j , j = 1, . . . ,m. We consider the
conservation law

vt + divy ϕ̃(v) = 0, v = v(t, y), t > 0, y ∈ R
m, (18)

ϕ̃(v) = (ϕ̃1(v), . . . , ϕ̃m(v)), where

ϕ̃ j (v) = λ j · ϕ(u) =
n∑

i=1

λ j iϕi (v) ∈ C(R), j = 1, . . . ,m.
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As was shown in [11, 12], there exists a unique e.s. v(t, y) ∈ L∞(R+ × R
m) of

the Cauchy problem for Eq. (18) with initial function v0(y) and this e.s. is y-
periodic, i.e., v(t, y + e) = v(t, y) a.e. inR+ × R

m for all e ∈ Z
m . Besides, in viewof

[13, Corollary 7.1], we may suppose that v(t, ·) ∈ C([0,+∞), L1(Tm)), where
T
m = R

m/Zm is an m-dimensional torus (which may be identified with the fun-
damental cube [0, 1)m). Formally, for u(t, x) = v(t, y(x))

ut + divxϕ(u) = vt +
n∑

i=1

m∑
j=1

(ϕi (v))y j
∂y j (x)

∂xi
=

vt +
n∑

i=1

m∑
j=1

(ϕi (v))y j λ j i = vt +
m∑
j=1

(ϕ̃ j (v))y j = 0.

However, these reasons are correct only for classical solutions. In the general case
v(t, y) ∈ L∞(R+ × R

m), the range of y(x) may be a proper subspace of Rm (for
example, this is always true if m > n), and the composition v(t, y(x)) is not even
defined. The situation is saved by introduction of additional variables z ∈ R

m .
Namely, the linear change (z, x) → (z + y(x), x) is not degenerated; i.e., it is a
linear automorphism of Rm × R

n . Since v(t, y) is an e.s. of Eq. (18) considered
in the extended half-space t > 0, (y, x) ∈ R

m+n , then the function u(t, z, x) =
v(t, z + y(x)) satisfies the relations

|u − k|t + divx [sign (u − k)(ϕ(u) − ϕ(k))] =
|v − k|t +

n∑
i=1

m∑
j=1

[sign (v − k)(ϕi (v) − ϕi (k))]y j
∂y j (x)

∂xi
=

|v − k|t +
m∑
j=1

n∑
i=1

[sign (v − k)(ϕi (v) − ϕi (k))]y j λ j i =

|v − k|t +
m∑
j=1

[sign (v − k)(ϕ̃ j (u) − ϕ̃ j (k))]y j ≤ 0 in D ′(R+ × R
m+n).

Evidently, the initial condition

lim
t→0+ u(t, z, x) = u0(z, x)

.= v0(z + y(x)) in L1
loc(R

m+n)

is also satisfied; therefore, u(t, z, x) is an e.s. of (1), (2) in the extended domain
R+ × R

m+n . Since Eq. (1) does not contain the auxiliary variables z ∈ R
m , then (cf.

[17, Theorem 2.1]) for all z ∈ E ⊂ R
m , where E is a set of full measure, the func-

tion v(t, z + y(x)) is an e.s. of (1), (2) with initial data v0(z + y(x)) ∈ B1(Rn).
Therefore, v(t, z + y(x)) = uz(t, x) a.e. in Π , where, in accordance with [17, The-
orem 1.6], uz(t, x) ∈ C([0,+∞),B1(Rn)) is a unique almost periodic e.s. of (1),



On the Longtime Behavior of Almost Periodic Entropy … 399

(2). Therefore, we may find a countable dense set S ⊂ R+ and a subset E1 ⊂ E of
full measure such that uz(t, x) = v(t, z + y(x)) inB1(R) for all t ∈ S, z ∈ E1.

Further, as follows from independence of the vectorsλ j , j = 1, . . . ,m, overQ, the
action of the additive group Rn on the torus Tm defined by the shift transformations
Tx z = z + y(x), x ∈ R

n is ergodic; see [17] for details. By the variant of Birkhoff
individual ergodic theorem [4, Chap. VIII] for every w(y) ∈ L1(Tm) for a.e. z ∈ T

m

there exists the mean value

−
∫
Rn

w(z + y(x))dx =
∫
Tm

w(y)dy. (19)

In view of (19), there exists a set E2 ⊂ E1 of full measure such that for z ∈ E2

and all t ∈ S

−
∫
Rn

|uz(t, x) − I |dx = −
∫
Rn

|v(t, z + y(x)) − I |dx =
∫
Tm

|v(t, y) − I |dy.

Since uz(t, x) ∈ C([0,+∞),B1(Rn)), v(t, ·) ∈ C([0,+∞), L1(Tm)), while the set
S is dense in [0,+∞), we find that property

−
∫
Rn

|uz(t, x) − I |dx =
∫
Tm

|v(t, y) − I |dy (20)

remains valid for all t ≥ 0.Observe that v0(z + y(x)) → v0(y(x)) = u0(x) as z → 0
in B1(Rn) (and even in AP(Rn)). Hence, by Theorem 1 in the limit as E2 � z →
0 uz(t, x) → u(t, x) in C([0,+∞),B1(Rn)), where u(t, x) is the e.s. of original
problem (1), (2). Therefore, relation (20) in the limit as z → 0 implies the equality

−
∫
Rn

|u(t, x) − I |dx =
∫
Tm

|v(t, y) − I |dy. (21)

Further, for every k̄ = (k1, . . . , km) ∈ Z
m

k̄ · ϕ̃(u) =
m∑
j=1

n∑
i=1

k jλ j iϕi (u) = λ(k̄) · ϕ(u),

where λ(k̄) = ∑m
j=1 k jλ j ∈ M0. By condition (11), the functions u → k̄ · ϕ̃(u) are

not affine in any vicinity of I = u0 = ∫
Tm v0(y)dy. We see that non-degeneracy

requirement (13) is satisfied, and by [15, Theorem 1.3]

lim
t→+∞

∫
Tm

|v(t, y) − I |dy = 0.

Now it follows from (21) that
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lim
t→+∞ −

∫
Rn

|u(t, x) − I |dx = 0,

i.e., (12) holds.
In the general case u0 ∈ B1(Rn) ∩ L∞(Rn), we choose a sequence u0m ,m ∈ N, of

trigonometric polynomials converging to u0 inB1(Rn) and such that Sp(u0m) ⊂ M0,
u0m = I (for instance,wemay choose theBochner–Fejér trigonometric polynomials;
see [1]). Let um(t, x) be the corresponding sequence of e.s. of (1), (2) with initial data
u0m(x), m ∈ N. By Theorem 1 and Remark 1, this sequence converges as m → ∞
to the e.s. u(t, x) of the original problem in C([0,+∞),B1(Rn)). We have already
established that under condition (11) e.s. um(t, x) satisfy the decay property

lim
t→+∞ um(t, ·) = I inB1(Rn).

Passing to the limit as m → ∞ in this relation and taking into account the uniform
convergence um(t, ·) →

m→∞ u(t, ·) inB1(Rn), we obtain (12).

In conclusion, we demonstrate that condition (11) is precise. Indeed, if this condi-
tion is violated, then there is a nonzero vector ξ ∈ M0 such that ξ · ϕ(u) = τu + c on
some segment [I − δ, I + δ], where τ, c, δ ∈ R, and δ > 0. Obviously, the function

u(t, x) = I + δ sin(2π(ξ · x − τ t))

is an e.s. of (1), (2) with the periodic initial function u0(x) = I + δ sin(2π(ξ · x)).
We see that u0 = I , Sp(u0) ⊂ {−ξ, 0, ξ} ⊂ M0 but the e.s. u(t, x) does not converge
to a constant inB1(Rn) as t → +∞.

The proof of Theorem 2 is complete.

3 Proof of Theorem 4

If the flux function ϕ(u) is not affine in any vicinity of I , then by Theorem 2 the
function v(y) ≡ I , and the segment S(v) = [I, I ] = {I }. Otherwise, suppose that
the function ϕ(u) is affine in a certain maximal interval (a, b), where −∞ ≤ a <

I < b ≤ +∞: ϕ(u) − cu = const in (a, b).
Assuming that b < +∞, we define u+ = u+(t, x) as the e.s. of (15), (2) with

initial function u0(x) + b − I > u0. By the comparison principle [7, 8, 11, 12]
u+ ≥ u a.e. in Π . We note that −

∫
R
(u0(x) + b − I )dx = b while ϕ(u) is not affine in

any vicinity of b (otherwise, ϕ(u) is affine on a larger interval (a, b′), b′ > b, which
contradicts the maximality of (a, b)). By Theorem 2 u+(t, ·) → b inB1(R) as t →
+∞, and it follows from the inequality u ≤ u+ that (u(t, ·) − b)+ → 0 as t → +∞
in B1(R). Similarly, if a > −∞, then u ≥ u−, where u− = u−(t, x) is an e.s. of
(15), (2) with initial function u0(x) + a − I < u0. By Theorem 2 again the function
u−(t, ·) → a as t → +∞ in B1(R) because −

∫
R
(u0(x) + a − I )dx = a while the
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function ϕ(u) is not affine in any vicinity of a. Therefore, (a − u(t, ·))+ →
t→+∞ 0 in

B1(R). The obtained limit relations can be represented in the form

u(t, ·) − sa,b(u(t, ·)) →
t→+∞ 0 inB1(R), (22)

where sa,b(u) = min(b,max(a, u)) is the cut-off function at the levels a, b (it is
possible that a = −∞ or b = +∞).

We set w(t, x) = sa,b(u(t, x)) and choose a strictly increasing sequence tk > 0
such that tk → +∞ and N1(u(tk, ·) − w(tk, ·)) ≤ 2−k . Since a ≤ w(t, x) ≤ b while
ϕ(u) = cu + const on (a, b), then the e.s. of (15) with initial data w(tk, x) at t = tk
has the form u = w(tk, x − c(t − tk)). By Theorem 1 (with the initial time tk) for all
t > tk

−
∫
R

|w(t, x) − w(tk , x − c(t − tk))|dx = −
∫
R

|sa,b(u(t, x)) − sa,b(w(tk , x − c(t − tk)))|dx

≤ −
∫
R

|u(t, x) − w(tk , x − c(t − tk))|dx ≤ −
∫
R

|u(tk , x) − w(tk , x)|dx ≤ 2−k .

Substituting t = tl , where l > k, into this inequality, we obtain

−
∫
R

|w(tl , x + ctl ) − w(tk , x + ctk)|dx = −
∫
R

|w(t, x) − w(tk , x − c(tl − tk))]dx ≤ 2−k .

Thus, w(tk, x + ctk), k ∈ N, is a Cauchy sequence in B1(R). Therefore, this
sequence converges as k → ∞ to some function v(x) ∈ B1(R) ∩ L∞(R) inB1(R).
It is clear that the segment S(v) ⊂ [a, b] and therefore ϕ(u) − cu = const on S(v).
Since Sp(w(tk, x + ctk)) = Sp(w(tk, ·)) ⊂ Sp(u(tk, ·)) ⊂ M0, the same inclusion
holds for the limit function: Sp(v) ⊂ M0. Finally, as follows from Theorem 1, for
t > tk

−
∫
R

|u(t, x) − v(x − ct)|dx ≤ −
∫
R

|u(tk , x) − w(tk , x)|dx + −
∫
R

|w(tk , x) − v(x − ctk)|dx =

−
∫
R

|u(tk , x) − w(tk , x)|dx + −
∫
R

|w(tk , x + ctk) − v(x)|dx ≤

2−k + N1(w(tk , · + ctk) − v) → 0

as t → +∞ (then also k = max{ l | t > tl } → +∞). We see that relation (16) is
satisfied. To complete the proof of Theorem 4, it only remains to notice that

∀t > 0 u(t, ·) = −
∫
R

u(t, x)dx = I, v = −
∫
R

v(x − ct)dx

and (16) implies that v = I .
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In conclusion, we show that the operator u0 → v = T (u0), defined in the Intro-
duction, does not increase the distance inB1(R).

Theorem 5. Let u01(x), u02(x) ∈ B1(R) ∩ L∞(R) and v1 = T (u01)(x), v2 =
T (u02)(x). Then

−
∫
R

|v1(x) − v2(x)|dx ≤ −
∫
R

|u01(x) − u02(x)|dx . (23)

Proof. Let u1(t, x), u2(t, x) ∈ C([0,+∞),B1(R)) ∩ L∞(Π) be e.s. of (15), (2)
with initial data u01, u02, respectively. By Theorem 4

δ(t) = −
∫
R

|u1(t, x) − v1(x − c1t)|dx + −
∫
R

|u2(t, x) − v2(x − c2t)|dx →
t→+∞ 0,

where c1, c2 are constants. We can choose a sequence tk > 0 such that tk → +∞ as
k → ∞, and N1(v2(x + (c1 − c2)tk) − v2(x)) ≤ 1/k. Then, with property (5) taken
into account,

−
∫
R

|v1(x) − v2(x)|dx = −
∫
R

|v1(x − c1tk) − v2(x − c1tk)|dx ≤

−
∫
R

|v1(x − c1tk) − v2(x − c2tk)|dx + −
∫
R

|v2(x − c2tk) − v2(x − c1tk)|dx =

−
∫
R

|v1(x − c1tk) − v2(x − c2tk)|dx + −
∫
R

|v2(x + (c1 − c2)tk) − v2(x)|dx ≤

−
∫
R

|u1(tk, x) − u2(tk, x)|dx + δ(tk) + 1/k ≤ −
∫
R

|u01(x) − u02(x)|dx + δ(tk) + 1/k.

In the limit as k → ∞, this inequality implies (23).

Remark 4. In view of Theorem 1 the map F , which associates an initial data u0 ∈
B1(Rn) ∩ L∞(Rn)with the e.s. u(t, x) ∈ C([0,+∞),B1(Rn)) of problem (1), (2),
is a uniformly continuous map from B1(Rn) to C([0,+∞),B1(Rn)). Therefore,
it admits the unique continuous extension on the whole space B1(Rn). By analogy
with [2], the corresponding function F(u0) = u(t, x) ∈ C([0,+∞),B1(Rn)) may
be called a renormalized solution of (1), (2) with possibly unbounded almost periodic
initial data u0. By the approximation techniques, all our results can be extended to
the case of renormalized almost periodic solutions.
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