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Abstract We present an overview on some recent works in collaboration with S.
Bianchini (see Bianchini and Modena in Lagrangian representation for solution to
general systems of conservation laws [9] and the Ph.D. thesis Modena in Interaction
functionals, Glimm approximations and Lagrangian structure of BV solutions for
hyperbolic systems of conservation laws [15]), inwhichwe propose away to describe
BV solutions to hyperbolic systems of conservation laws in one space dimension
from a Lagrangian point of view.
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1 Introduction

One of the key observations in fluid dynamics is that the fluid flow can be described
from twodifferent (and in some sense complementary) points of view: theLagrangian
points of view (in which the trajectory in space–time of each single fluid particle is
tracked) and the Eulerian point of view (in which one looks at fluid motion focusing
on fixed locations in the space through which the fluid flows as time passes).

From a mathematical perspective, such duality between the Lagrangian and the
Eulerian approach can be seen, for instance, in the framework of the continuity
equation: {

∂t v(t, x) + divx
(
v(t, x)b(t, x)

) = 0,

v(0, x) = v̄(x),
(1)

where v : [0,∞) × R
d → R is the unknown and b : [0,∞) × R

d → R
d is a given

vector field. It is well known that, under suitable regularity assumptions, the solution
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to (1) can be written, for any time t ∈ [0,∞), as

v(t, ·)L 1 = X(t)�
(
v̄L 1

)
, (2)

where X : [0,∞) × R
d → R

d is the flow generated by the ODE

⎧⎨
⎩

∂X

∂t
(t, y) = b(t,X(t, y)),

X(0, y) = y,
(3)

L d is the Lebesgue measure on R
d and � denotes the push-forward in the sense of

measures.1

In the framework of the continuity equation, the Lagrangian and the Eulerian
approach help each other: For instance, in the smooth setting, one can use the ODE
(3) (Lagrangian approach) to solve the PDE (1) (Eulerian approach), while in the non-
smooth setting one can use the PDE to solve the ODE (see [13]). The duality between
the two approaches can be used not only to prove the existence of solutions, but also
to prove their uniqueness and their stability and to investigate further properties of
them, like their fine structure, their regularity, and so on. In few words, we could
say that two is better than one: what cannot be done using the Lagrangian approach
could be hopefully done using the Eulerian one, and vice versa.

For these reasons, it is an interesting question whether systems of conservation
laws {

∂t u + ∂x F(u) = 0,

u(0, x) = ū(x),
u = u(t, x) ∈ R

n, t ≥ 0, x ∈ R, (4)

can be analyzed from a Lagrangian point of view. Here, F : R
n → R

n is a generic
smooth function, which is only assumed to be strictly hyperbolic; i.e. its differential
DF(u) has n distinct real eigenvalues in each point of its domain. We restrict our
analysis to one space dimension, since this is the setting where a satisfying well-
posedness theory for entropic solutions is available.2

For a scalar conservation law with a smooth initial datum, the method of char-
acteristics provides a reasonable Lagrangian approach to the problem. Such method
was extended by C. Dafermos (through the notion of generalized characteristics in
[12]) to systems whose characteristic fields are either genuinely nonlinear or linearly
degenerate,3 and to initial data which are just BV . However, Dafermos’ approach can
not be further generalized to systems where the flux F has no convexity properties.

1If A, B are sets, A ,B are σ -algebras on A, B, respectively, and f : A → B is a measurable
function, then for any measure μ on (A,A ), the push-forward f�μ is the measure on (B,B),
defined by f�μ(E) = μ( f −1(E)) for any E ∈ B.
2By entropic solution, we mean a solution obtained as limit of vanishing viscosity approximations;
see [3].
3See [11] for the definition of genuinely nonlinear or linearly degenerate characteristic fields.
Roughly speaking, it amounts to say that the flux F has some strong convexity property.
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Another Lagrangian approach in the analysis of conservation laws was proposed
by T.-P. Liu in [14], where he introduced the notion of wave tracing for the waves
present in an approximate solution to the system (4), constructed by means of the
Glimm scheme. However, in [14], only approximate solutions (which in some sense
are just piecewise constant functions) are considered.

Recently, some papers appeared in which a Lagrangian analysis is developed for
the exact (and not approximate) entropic solution to conservation laws with a flux F
which does not satisfy any convexity assumption. In particular,

• in [4, 5] (see also for a previous, slightly different approach [10]) S. Bianchini and
E.Marconi develop a Lagrangian approach for the solution to the Cauchy problem
associated to a scalar conservation law (n = 1), whose flux F : R → R is any
smooth function and whose initial datum ū ∈ L∞(R) is any bounded function;

• in [9, 15] S. Bianchini and the author develop a Lagrangian approach for the
solution to the Cauchy problem associated to a system of conservation laws (n ≥
1), whose flux is any smooth strictly hyperbolic function and whose initial datum
ū ∈ BV (R) is a function of bounded variation.

In both cases, the starting point is the analysis of BV entropic solutions to scalar
conservation laws. The extension to L∞ initial data (for the scalar equation) [4, 5]
or to systems [9, 15] requires, however, several new ideas. The goal of this notes
is to present the notion of Lagrangian representation for BV entropic solutions to
systems of conservation laws (4), proposed in [9, 15], and to present the main ideas
behind the construction of such Lagrangian representation, focusing in particular on
the difficulties in extending the scalar BV analysis to the system case.

As a final remark, we would like to stress that both in the scalar case and in the
system one, the Lagrangian analysis is done in the same setting in which the well-
posedness of the Cauchy problem is already know.We do not want to use Lagrangian
methods to prove such well-posedness again. Rather, the aim of our new Lagrangian
tools is to analyze in a more precise way the solution u to the Cauchy problem
(4), in order to prove further properties of it. As an example, in the scalar case, the
Lagrangian approach can be used to prove the concentration of entropies (see the
papers by Bianchini and Marconi [4, 5]); in the system case, the Lagrangian tools
can be used to study the fine structure of the solution (see the paper by Bianchini and
the author [9] and the Ph.D. thesis of the author [15]).

2 Analysis of BV Solutions to Scalar Conservation Laws

The starting point of our analysis is the study of entropic BV solutions to scalar
conservation laws{

∂t u + ∂x F(u) = 0,

u(0, x) = ū(x),
ū ∈ BV (R) with compact support, F : R → R smooth.

(5)
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The first question we have to answer is: What is a good notion of Lagrangian rep-
resentation of the solution to (5)? A hint in this direction is given by the following
observation: ByVol’pert’s rule4 the distributional derivative ∂xu (which is ameasure,
being u ∈ BV ) satisfies the 1D continuity equation

∂t (∂xu) + ∂x (λ̂(t, x)∂xu) = 0 in a distributional sense, (6)

where

λ̂(t̄, x̄) :=
{
F ′(u(t̄, x̄)) if x �→ u(t̄, x) is continuous at x̄,
F(u(t̄,x̄+))−F(u(t̄,x̄−))

u(t̄,x̄+)−u(t̄,x̄−)
if x �→ u(t̄, x) has a jump at x̄ .

(7)

Mimicking (1)–(2)–(3), we give the following definition.

Definition 1. A Lagrangian representation for the entropic solution u to (5) is a
triple (W,X, ρ), where

1. W ⊆ R is a bounded interval; its elements are denoted byw and are calledwaves;
2. X : [0,∞) × W → R is ‖F ′‖L∞ -Lipschitz in t for fixed w and increasing in w

for fixed t , and it is called flow or position function;
3. ρ : W → [−1, 1] is called density function,

such that for a.e. time t ∈ [0,∞)

∂xu(t, ·) = X(t, ·)�
(
ρL 1|W ) in the sense of measures (8)

and
∂X

∂t
(t,w) = λ̂(t,X(t,w)) for |ρ|L 1 − a.e.w ∈ W. (9)

Remark 1. Notice that (8) is the analog of (2) and (9) is the analog of (3); only two
differences must be observed:

• In (8), the term which is transported is an absolute continuous measure w.r.t.L 1,
even if the initial datum ∂x ū has a jump part or a Cantor part;

• In (9), in general X(0,w) 
= w; i.e., w is just the label of a particle with no rela-
tionship with its starting point.

Definition 1 provides a (hopefully) good notion of Lagrangian representation. How
can we now explicitly construct the objects W,X, ρ satisfying the properties above?

As usual in the theory of conservation laws, the idea is to consider a sequence of
approximate solutions (uq)q∈N solving the approximate Cauchy problem

{
∂t uq + ∂x Fq(uq) = 0,

uq(0, x) = ūq(x),
(10)

4The Vol’pert’s rule (see, for instance, [1, Theorem 3.96]) is the chain rule for the derivative of the
composition F(u(x)) of a Lipschitz function F with a BV function u.
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where Fq is the piecewise affine interpolation of F with grid size 2−q and ūq is
a piecewise constant function taking values in 2−q

Z such that ‖ūq − ū‖L1 → 0 as
q → ∞. The solution uq to (10) can be constructed by means of the wavefront
tracking algorithm (see [11, Chap.4]), and it is a piecewise constant function with
values in 2−q

Z for any time t which converges strongly in L1 to the entropic solution
of (5), as q → ∞.

Since uq(t, ·) is piecewise constant, it is not difficult to construct by hand a
Lagrangian representation of it.5 Now, the family {Xq}q is pre-compact in L1([0,∞)

× R), since, by Definition 1, eachXq is ‖F ′‖-Lipschitz in t for fixedw and increasing
in w for fixed t ; the family {ρq} is weakly∗ pre-compact in L∞(W ). Therefore, up to
subsequences, Xq → X strongly in L1 and ρq → ρ weakly∗ in L∞.

Equation (8) is then easily obtained passing to the limit in the corresponding
equation for approximations

∂xu
q(t) = Xq(t)�

(
ρqL 1|W ) (11)

and using that uq → u in L1.
On the contrary, Eq. (9) cannot be deduced directly from the corresponding equa-

tion for the approximations

∂tX
q(t,w) = λ̂q(t,Xq(t,w)), (12)

since, in general, for fixed t , λ̂q(t) ◦ Xq(t) � λ̂(t) ◦ X(t), as the following example
shows.

Example 1. Assume that u is a solution of the scalar conservation law ∂t u +
∂x F(u) = 0, taking values in the finite set {uL , uM , uR}, with uL , uM , uR ∈ R and
uL < uM < uR , as described in Fig. 1.

Assume that the sequence of approximations (uq)q is given by uq(t, x) := u(t −
1/q, x). Notice now that at time t̄ , uq(t̄, ·) is made by two consecutive jumps, while

5This can be done, for instance, in the following way. Assume for simplicity uq (t, ·) is right
continuous. Set Ūq (x) := Tot.Var.(ūq ; (−∞, x]). Set Wq := (0, Tot.Var.(ūq )],

Xq (0,w) := (Ūq )−1(w), ρq (w) :=
{
1 if uq has a positive jump at Xq (0,w),

−1 if uq has a negative jump at Xq (0,w).

Set also for simplicity uq (w) := ´ w
0 ρq (w′)dw′. Denote by {(t j , x j )} j the points in the (t, x)-plane

where two wavefronts in uq collide (the discontinuity points at t = 0 are treated as collision points).
By recursion, assume Xq (t, ·) is defined on [0, t j ] and let us define it on (t j , t j+1]. Assume that at
(t j , x j ) the outgoing Riemann problem is (uL , uR) with uL < uR (the case uR < uL is completely
similar). Set A(w) := min{max{uq (w′) | w′ ≤ w}, uR} for any w ∈ Xq (t j )−1(x j ) and then

Xq (t,w) := x j +
[ dconv[uL ,uR ]F

q

du
(A(w))

]
(t − t j ) for any w ∈ Xq (t j )

−1(x j ) and any t ∈ (t j , t j+1].
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Fig. 1 The solution u(t, x) to the scalar conservation law ∂t u + ∂x F(u) = 0 and the function F(u)

u(t̄, ·) ismadebya single jump,which is given, roughly speaking, by the juxtaposition
of the two jumps in the approximations.

By (9), all the waves w located in xq1 have speed

σ1 := ∂tX
q(t̄,w) = λ̂q(t̄, xq1 ) = F(uM) − F(uL)

uM − uL
,

all the waves w located in xq2 have speed

σ2 := ∂tX
q(t̄,w) = λ̂q(t̄, xq2 ) = F(uR) − F(uM)

uR − uM
,

while in the exact solution all the waves w should have speed

σ := ∂tX(t̄,w) = λ̂(t̄, x̄) = F(uR) − F(uL)

uR − uL
.

Unfortunately, in general σ1, σ2 
= σ and thus λ̂q(t̄) ◦ Xq(t̄) � λ̂(t̄) ◦ X(t̄) as q →
∞.

To overcome this problem and recover (9), we can proceed as follows (the argu-
ment is taken from [4]). From (6) and (8), we get for every ϕ ∈ C∞

c ((0,∞) × R)

¨
u∂t∂xϕdxdt =

¨
∂xϕ(t, x)λ̂(t, x)∂x u(t, dx)dt =

¨
∂xϕ(t,X(t,w))λ̂(t,X(t,w))ρ(w)dwdt.

On the other side, testing (8) against ∂tϕ, we get

¨
u∂t∂xϕdxdt = −

¨
∂tϕ(t,X(t,w))ρ(w)dwdt =

¨
∂xϕ(t,X(t,w))∂tX(t,w)ρ(w)dwdt.

Therefore,

∂x

[
X(t)�

(
ρ(λ̂(t,X(t, ·)) − ∂tX(t, ·))L 1|W

)]
= 0.
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Equation (9) follows, just observing that X(t, ·) takes values in a compact set and
that ∂tX(t,w) is constant on waves having the same position (since w �→ X(t,w) is
increasing).

3 Analysis of Linear Systems of Conservation Laws

We wish now to extend the scalar analysis done in the previous section to the system
case. As a first step in this direction, let us study the linear system of conservation
laws

∂t u + A∂xu = 0, where A is a n × n strictly hyperbolic matrix, (13)

together with an initial datum u(0, ·) = ū ∈ BV (R).
Let λ1, . . . , λn be the n distinct real eigenvalues of A, r1, . . . , rn be the right

eigenvectors (i.e., Ark = λkrk) normalized such that |rk | = 1, l1, . . . , ln be the left
eigenvectors (i.e., lk A = λklk), normalized such that lk · rh = δkh .

Our aim is to find a good definition of Lagrangian representation for the solution
to the linear system (13) and to explicitly construct such Lagrangian representation.
This is easily done, observing that the scalar product of (13) with lk gives the n scalar
equations ∂t (lk · u) + λk∂x (lk · u) = 0, with constant field λk .

Therefore, by the analysis in Sect. 2, for each k we can find a set Wk (called the
set of k-waves), a flow Xk : [0,∞) × Wk → R and a density ρk : Wk → [−1, 1], as
in Definition 1, such that

∂x (lk · u) = Xk(t)�
(
ρkL

1|Wk

)
and

∂tXk(t,w) ≡ λk . (14)

Definition 2. A Lagrangian representation of the solution to the linear system (13)
is thus defined as a family of n triples (Wk,Xk, ρk), k = 1, . . . , n, (with the same
regularity properties as the ones described in Definition 1) such that

∂xu(t) =
n∑

k=1

∂x (lk · u)rk =
n∑

k=1

Xk(t)�
(
ρkL

1|Wk )rk (15)

and the ODE (14) holds for every k = 1, . . . , n.

The existence of such a Lagrangian representation for the solution to the linear
system (13) is then an immediate consequence of the scalar analysis done in Sect. 2.
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4 The Riemann Problem

Before moving to the analysis of the nonlinear system (4), we need to recall some
basic facts about the entropic solution to the Riemann problem, i.e., the Cauchy
problem (4) with a piecewise constant initial datum

u(0, x) = ū(x) =
{
uL if x < 0,

uR if x ≥ 0,
with uL , uR ∈ R

n close enough to 0. (16)

It is shown in [3] that for any k = 1, . . . , n it is possible to define a neighborhood
Dk ⊆ R

n+2 of the point (0, 0, λk(0)) ∈ R
n × R × R and two functions r̃k : Dk →

R
n , λ̃k : Dk → R; rk(uk, vk, σk) (resp. λk(uk, vk, σk)) is called the kth generalized

eigenvector (resp. the kth generalized eigenvalue) at (uk, vk, σk) ∈ R
n × R × R.

It is also shown in [3] that, given uL , uR ∈ R
n close enough to 0, one can find n

curves γk : Ik → Dk ⊆ R
n+2, k = 1, . . . , n, defined on the intervals

Ik :=
{

[0, sk] if sk ≥ 0,

[sk, 0] if sk ≤ 0,

satisfying the fixed point problem (if sk > 06)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
uk(τ ) = uL

k + ´ τ

0 r̃k(uk(ς), vk(ς), σk(ς))dς, uL
k =

{
uL if k = 1,

uk−1(sk−1) if k > 1,

vk(τ ) = fk(τ ) − conv[0,sk ] fk(τ ),

σk(τ ) = d
dτ

conv[0,σk ] fk(τ ),

(17)
with fk defined by fk(τ ) := ´ τ

0 λ̃k(uk(ς), vk(ς), σk(ς))dς and the conv[a.b] g
denotes the convex envelope of a function g on the interval [a, b], i.e., the biggest
convex function which stays below g.

The right-continuous solution to the Riemann problem (4), (16) is now given by
the BV function

u(t, x) =

⎧⎪⎨
⎪⎩
uL if x/t ≤ σ1(0),

uk(τ ) if x/t = σk(τ ),

uR if x/t ≥ σn(τ ).

6If sk < 0 the convex envelope conv[0,sk ] fk(τ ) must be substituted by the concave envelope
conv[sk ,0] fk(τ ).
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5 Definition of Lagrangian Representation for Systems

We can now finally move to the analysis of the nonlinear system (4). As in the linear
case, let λ1(u), . . . , λn(u) be the n distinct real eigenvalues of A(u) := DF(u),
r1(u), . . . , rn(u) (resp. l1(u), . . . , ln(u)) be the right (resp. left) eigenvectors.

Trying to extend Definition 2 (and, in particular, Eqs. (14), (15)) from the linear to
the nonlinear case, the first problem we have to face is that λk and rk are not constant
anymore, but they depend on u. As in the scalar case (see (7)), we have thus to find
a good definition of kth eigenvalue λ̂k(t̄, x̄) and kth eigenvector r̂k(t̄, x̄) at a given
point (t̄, x̄).

If x �→ u(t̄, x) is continuous at x̄ , the natural choice is to set r̂k(t̄, x̄) := rk(u(t̄, x̄))
and λ̂k(t̄, x̄) := λk(u(t̄, x̄)).

If x �→ u(t̄, x) has a jump at x̄ between uL := u(t̄, x−) and uR := u(t̄, x+), we
solve the Riemann problem (uL , uR), defining the curves (uk(·), vk(·), σk(·)) as in
(17), and we set

r̂k(t̄, x̄) :=
 

r̃k(uk(ς), vk(ς), σk(ς))dς, λ̂k(t̄, x̄) :=
 

λ̃k(uk(ς), vk(ς), σk(ς))dς.

Notice that, in the case of a scalar equation, the definition of λ̂(t̄, x̄) given above
coincides with (7).

After this preparation, we can now propose the following definition of Lagrangian
representation for the solution to the nonlinear system (4). Compare it with Defini-
tions 1 and 2.

Definition 3. A Lagrangian representation for the entropic solution u to (4) is a
family of n triples (Wk,Xk, ρk), k = 1, . . . , n, where

1. Wk ⊆ R is a bounded interval, whose elements are calledwaves of the kth family;
we also assume for simplicity that Wk ∩ Wh = ∅ for k 
= h;

2. Xk : [0,∞) × Wk → R is ‖DF‖L∞ -Lipschitz in t for fixed w and increasing in
w for fixed t , and it is called kth flow or kth position function;

3. ρk : [0,∞) × Wk → [−1, 1] is uniformly BV in time for a.e. w, and it is called
kth density function;

such that for a.e. t ∈ [0,∞)

∂xu(t) =
n∑

k=1

Xk(t)�
(
ρk(t)L

1|Wk )r̂k(t) in the sense of measures (18)

and
∂Xk

∂t
(t,w) = λ̂k(t,Xk(t,w)) for |ρk(t)|L 1-a.e.w ∈ Wk . (19)

Remark 2. The main difference between Definition 3 and Definitions 1 and 2 is
that the density function ρ = ρ(t,w) is now allowed to be a function of time. This
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seems strange in comparison with Formula (2) for the continuity equation. However,
this dependence on time cannot be avoided: It comes from the well-known fact that
nonlinear interactions between wavefronts, taking place at times t > 0, can create
new wavefronts.

Nevertheless, the total amount of created waves can be bounded a priori (see
[2]): This implies that the length of the set of waves Wk can be bounded by
C(F) Tot.Var.(ū) and that ρ can be chosen uniformly BV in time for a.e. wave.
Here, C(F) is a constant which depends only on F .

6 Construction of a Lagrangian Representation

In Sect. 5, we proposed a possible definition of Lagrangian representation for the
entropic solution u to the system (4). In this section, we state the main theorem of
these notes, i.e., the existence of such a Lagrangian representation, and we present a
sketch of its proof.

Theorem 1. There exists a Lagrangian representation for the entropic solution to
the system (4), in the sense of Definition 3.

Sketch of the proof.The proof follows a path similar to the onewe used in the scalar
case.We start by taking a sequence of piecewise constant approximate solutions (uq )q
(constructed through the wavefront tracking algorithm or the Glimm scheme) which
converges in L1 to the exact entropic solution u to (4).

For each uq , it is not difficult to construct by hand a Lagrangian representation
(as we did for the scalar conservation law in Sect. 2), i.e., for each k = 1, . . . , n, a
set of k-waves Wk (which we assume to be independent of q, without restriction), a
flow Xq

k : [0,∞) × Wk → R and a density ρ
q
k : [0,∞) × Wk → [−1, 1] such that:

• for a.e. time t ∂xuq(t)=∑n
k=1 X

q
k (t)�

(
ρ
q
k (t)L 1|Wk

)
r̂ qk (t, ·) i.e. for anyϕ ∈ C∞

c (R),

−
ˆ

ϕ′(x)uq(t, x)dx =
n∑

k=1

ˆ

Wk

ϕ(Xq
k (t,w))ρ

q
k (t,w)r̂ qk (t,Xq

k (t,w))dw; (20)

• for a.e. time t and for |ρq
k |L 1 almost every w ∈ Wk

∂tX
q
k (t,w) = λ

q
k (t,X

q
k (t,w)). (21)

Exactly as in the scalar case, the regularity properties of Xq
k , ρ

q
k imply that there

exist Xk : [0,∞) × Wk → R, ρk : [0,∞) × Wk → [−1, 1] such that, up to subse-
quences,Xq

k (t) → Xk(t) strongly in L1(Wk) and ρ
q
k (t) → ρk(t)weakly∗ in L∞(Wk),

for a.e. time t . To complete the proof of Theorem 1, we have thus to pass to the limit
in Formulae (20), (21) to get (18), (19), respectively.

In the scalar case, first we passed to the limit in (11) (corresponding here to
(20)) to obtain (8) (corresponding here to (18)); then, we used (8) to prove (9)
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(corresponding here to Eq. (19)). Example 1 showed that it is not possible to obtain
(9) directly passing to the limit in its approximate version (12), because in general
λ̂q(t) ◦ Xq(t) � λ̂(t) ◦ X(t).

In the system case, we cannot repeat the same argument (i.e., first passing to
the limit in (20) to get (18) and then use (18) to prove (19)), because in (20) there
is already a term r̂ qk (t) ◦ Xq

k (t) which most likely does not converge in general to
r̂k(t) ◦ Xk(t), exactly as λ̂q(t) ◦ Xq(t) did not converge in general to λ̂(t) ◦ X(t) in
the scalar case. We thus need some new ideas to pass to the limit in (20), (21).

Example 1 shows that the are times (as time t̄ in that example) for which there is no
hope for r̂ qk (t) ◦ Xq

k (t) (resp. λ̂
q
k (t) ◦ Xq

k (t)) to converge to r̂k(t) ◦ Xk(t) (resp. λ̂k(t) ◦
Xk(t)). However, the same example suggests that these times are strong interaction
times, i.e., roughly speaking, times when many waves undergo a major change of
their speed. For instance, in Example 1, λ̂q(t) ◦ Xq(t) → λ̂(t) ◦ X(t) for every time,
except the time t̄ where a strong interaction between wavefronts takes place.

The strategy is thus to find a way to identify a priori those times of strong interac-
tion in the solution u, to show that the set of such times has zero Lebesgue measure
(or even that it is countable), and to prove that, up to those times, we can pass to the
limit in (20), (21).

To identify such bad times, we introduce, for each approximate solution uq , the
Radonmeasureμq := ∑n

k=1 |∂t (ρq∂tX
q
k )|, which measure the change of the speed of

the waves. Being uq a piecewise constant function with a finite number of disconti-
nuity lines,μq is just a finite sum of Dirac’s deltas. For instance, for the configuration
described in Example 1, μq is just a single Dirac’s delta, located in the point (t̄, x̄),
with size |σ1 − σ ||uM − uL | + |σ2 − σ ||uR − uM |.

Notice that, by construction of the Lagrangian representation in the approxima-
tions, for each uq the times where waves can change their speed, i.e., times of strong
interaction, are exactly those times t for which μq({t} × R) > 0.

Next, we prove that there is a Radon measure μ such that μq → μ weakly∗ in the
sense of measures (see Remark 3 below for a comment about the existence of μ).

To conclude the proof, it is now enough to prove that if t is not a time of strong
interaction; i.e., by definition, if t is a time such that

μ
({t} × R

) = 0 (22)

(and this happens for all but a countable number of times), then we can pass to the
limit in (20), (21) to get (18), (19), respectively. This would conclude the proof of
Theorem 1.

Proving this last fact (i.e., passing to the limit in (20), (21)) is a major part of
the proof of Theorem 1, which, however, requires the introduction of several ad hoc
notations and contains rather technical steps. Therefore, in these notes, it is omitted.
We just spend some words about the general strategy.
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For each approximate solution uq at each time t , through a fixed point procedure
similar to the one described in Sect. 4 for solving the Riemann problem, we associate
to each wave w ∈ Wk , a point

(ûqk (t,w), v̂qk (t,w), σ̂
q
k (t,w)) ∈ R

n × R × R,

such that for each time t and each point x ∈ R for which Xq
k (t)

−1(x) 
= ∅,

r̂ qk (t, x) ≈
 

X(t)−1(x)
r̃k(û

q
k (t,w

′), v̂qk (t,w
′), σ̂ q

k (t,w′))ρ(t,w′)dw′

and, similarly, for the exact solution u at each time t , we associate to each w ∈ Wk

a point
(ûk(t,w), v̂k(t,w), σ̂k(t,w)) ∈ R

n × R × R,

such that for each time t and each point x ∈ R for which Xk(t)−1(x) 
= ∅,
r̂k(t, x) ≈{
r̃k(ûk(t,w), v̂k(t,w), σ̂k(t,w)) if u(t, ·) is continuous at x = X(t,w),
ffl
X(t)−1(x) r̃k(ûk(t,w

′), v̂k(t,w′), σ̂k(t,w′))ρ(t,w′)dw′ if u(t, ·) has a jump at x .

Similar expressions hold for λ
q
k (t, x), λk(t, x). We then prove that if t is not a time

of strong interaction, i.e. if (22) holds, then ûqk → ûk , v̂
q
k → v̂k , σ̂

q
k → σ̂k in some

appropriate topologies. Using this fact, we finally show that r̂ qk (t) ◦ Xq(t) → r̂k(t) ◦
X(t) and λ̂

q
k (t) ◦ Xq(t) → λ̂k(t) ◦ X(t), thus concluding the proof of Theorem 1. ��

Remark 3. Proving that the sequence (μq)q is weakly∗ pre-compact in the sense of
measure, i.e., proving that |μq | ≤ C( f, ū), where C is a constant which depends on
f and the initial datum ū, but not on q, is not trivial at all. It amounts to prove that the
total amount of change of speed of the waves present in an approximate solution uq

μq
([0,∞) × R

) =
n∑

k=1

ˆ

Wk

Tot.Var.
(
ρq(·,w)∂tX

q
k (·,w); [0,∞)

)
dw

is uniformly bounded byC( f, ū). Such estimate is proved in [6–8], using a quadratic
interaction potential.
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