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Abstract We present here an explicit finite volume scheme on unstructured meshes
adapted to first-order hyperbolic systems under constraints in bounded domains. This
scheme is based on the work (Coudière, Vila, Villedieu in C R Acad Sci Paris Sér I
Math 331:95–100, 2000, [3]) in the unconstrained case and the splitting strategy of
Després, Lagoutière, Seguin (Nonlinearity 24:3055–3081, 2011, [4]). We show that
this scheme is stable under a Courant–Friedrichs–Lewy condition (and convergent
for problems posed in the whole space), and we illustrate the solution constructed
by this scheme on the example of the simplified model of perfect plasticity. From
the theoretical point of view, the interaction between the constraint and the boundary
of the domain in the model of perfect plasticity is encoded by a nonlinear boundary
condition. With this numerical approach, we will show that, even if this scheme uses
the underlying linear boundary condition, the results are consistent with the nonlinear
model (and in particular with the nonlinear boundary condition).
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1 Introduction

The aim of this article is to examine the numerical approximation of Friedrichs’
equations under constraints (posed in the whole space or in bounded domains).
To do so, we use a popular method for hyperbolic problems: the method of finite
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volumes (for a detailed presentation of this method, we refer to [5, 6]). Although
there is an important number of schemes that have been developed, the analysis of the
convergence and its rate of schemes on unstructured meshes for multidimensional
problems (i.e., the domain is a subset of Rn with n > 1, and the solution belongs to
R

m with m > 1) are still in its infancy.
However, the article [9] has established a rate of convergence for the RKDG

scheme (see [2]), using P0 finite elements in space and the RK1 scheme in time, on
unstructured meshes for generic Friedrichs’ systems of the following form

{
∂tU +∑n

j=1 ∂ j (AiU ) + BU = f, in (0, T ) × R
n,

U (0, x) = U0(x), in Rn,
(1)

where U : (t, x) ∈ (0, T ) × R
n → R

m , Ai : (t, x) ∈ (0, T ) × R
n → M

m×m
sym , B :

(t, x) ∈ (0, T ) × R
n → M

m×m , f : (t, x) ∈ (0, T ) × R
n → R

m and M
m×m (resp.

M
m×m
sym ) is the space of m × m (resp. symmetric) matrices with real coefficients. A

similar analysis has been performed in the note [3] on bounded domains.
In addition, the study of the convergence of a scheme based on the Rusanov

scheme on Cartesian meshes has been performed in [4] for constrained Friedrichs’
systems. In fact, to show the existence of aweak solution (in the sense ofDefinition 1)
to the constrained Friedrichs’ system

{
∂tU +∑n

j=1 A j∂ jU = 0 in (0, T ] × R
n; U (0, x) = U 0(x) if x ∈ R

n,

U (t, x) ∈ C if (t, x) ∈ [0, T ] × R
n,

(2)

whereC is a fixed closed and convex subset ofRm (with 0 ∈ ◦
C ), the authors construct

a numerical solution with a two-step scheme such that a subsequence converges to
a weak solution of (2). In this paper, we extend the strategy of [4] to schemes on
unstructured meshes and to problems posed in bounded domains.

In Sect. 2, we recall some notations and define our finite volume scheme on
unstructured meshes for constrained Friedrichs’ systems in bounded domains.

In Sect. 3, we recall some results of [4] on constrained Friedrichs’ systems in the
whole space and state a convergence result in the whole space on a similar scheme (to
the one presented in Sect. 2 on bounded domains). This result tells us that the finite
volume scheme on unstructured meshes, based on the work [9], associated with a
projection step has the same rate of convergence (in the space L2((0, T ) × R

n;Rm))
as in the unconstrained case (obtained in [9]).

In Sect. 4, we show that the scheme presented in Sect. 2 is stable (under a Courant–
Friedrichs–Lewy condition) in the space L∞(0, T ; L2(Ω,Rm)).

Then in Sect. 5, we briefly recall the equations of the simplified model of the
dynamical perfect plasticity problem (described in [1]) and how this problem is
related to the constrained Friedrichs’ systems.

Finally, in Sect. 6, we illustrate the solution constructed by this scheme on the
example of the simplified model of the dynamical perfect plasticity problem and
show that the interaction between the constraint and the boundary condition that
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Fig. 1 An unstructured
meshes of the square
[0, 1] × [0, 1]. Here the
polytopes are triangles

has been underlined theoretically by the nonlinear boundary condition can also be
observed numerically.

2 Description of the Scheme

In this section, we present the general framework of this work and the scheme we are
interested in. Let Th be a triangulation of Ω ⊂ R

n (a n-dimensional polytope); i.e.,
Th = (Ki )i∈I , withI ⊂ N, is a family of open nonempty convex polytope such that
∪i∈I Ki = Ω , for all i �= j , Ki ∩ K j = ∅ and h = supi∈I (diamKi ) < +∞. The set
of edges of a polytope K is denoted EK . We introduce the following notations (see
also Fig. 1),

mK ,m∂K : L n-measure of K ,H n−1-measure ∂K ,

e ∈ EK : an edge ((n − 1)-dimensional polytope) of K with H n−1-measure me,

EK i,EK b : the set of interior edges e of K , the set of boundary edges e of K ,

νKe : the unit exterior normal of K on the edge e with νKe=(ν1Ke
, ν2Ke

, . . . , νnKe
),

Ke : neighboring cell of K with K ∩ Ke = e.

We also suppose that the triangulation is regular in the sense that there exists a
constant C1 > 0 (independent of the triangulation Th) such that

∀K ∈ Th, C1h
n ≤ mK , and ∀K ∈ Th, ∀e ∈ EK C1h

n−1 ≤ me.

We want to investigate the numerical approximation (using finite volume schemes)
of the following constrained Friedrichs system

{
∂tU +∑n

i=1 Ai∂iU = f, on (0, T ) × Ω; U (0, x) = U0(x), on Ω,

(Aν − Mν)U = 0, on (0, T ) × ∂Ω; U (t, x) ∈ C , a.e in (0, T ) × Ω
(3)
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where C ⊂ R
m is a closed convex (independent of t and x) with 0 ∈ ◦

C , Aν =∑n
i=1 Aiν

i with ν = (ν1, . . . , νn
)
is the unit exterior normal to Ω , and Mν is a non-

negative symmetric matrix that encodes the boundary condition and has to satisfy
some algebraic conditions (see [8, Sect. 2.1]).

Remark 1. In particular, due to the hypotheses on Aν and Mν , we have

1. For all k ∈ R
m , there exists a unique triple (k0, k−, k+) such that k = k0 + k− +

k+ and k0 ∈ ker Aν , k− ∈ (ker(Aν − Mν)) ∩ ImAν , and k+ ∈ (ker(Aν + Mν)) ∩
ImAν .

2. For all k, κ ∈ R
m , 〈k|Aνκ〉 = 〈k−|Aνκ−〉 + 〈k+|Aνκ+〉.

The equations of (3) have to be understood in a weak sense (see Definition 1 for
the case Ω = R

n and Sect. 5 for the general case). To approximate the solutions
of this kind of problem, we first forget about the constraint and use a finite volume
scheme (explicit in time) based on the note [3]. More precisely, we use a piecewise
constant approximation of U , denoted by Vh , such that

∀(t, x) ∈ [t p, t p+1) × K , Vh(t, x) = v
p
K , with v0

K = 1

mK

∫
K
U0(x) dx,

where 0 = t0 < t1 < · · · < t N+1 = T (t p+1 − t p = Δt), and in a first step, we con-
struct

mK

Δt

(
v
p+1,∗
K − v

p
K

)
+
∑
e∈EK

gKeme = f p
K := 1

mKΔt

∫ t p+1

t p

∫
K
f (t, x) dx dt,

where AKe =∑n
i=1 Aiν

i
Ke

and we define the interior fluxes (e ∩ ∂Ω = ∅),

gKe = (AKe)
+v

p
K︸ ︷︷ ︸

Outcoming flow from K to Ke

+ (AKe)
−v

p
Ke

,︸ ︷︷ ︸
Incoming flow in K from Ke

(4)

where we denote (AKe)
− (resp. (AKe)

+) the negative (resp. positive) part of AKe , and
the (centered) boundary fluxes,

gKe = AKe + MKe

2
v
p
K , (5)

with MKe = MνKe
a matrix satisfying the conditions of [8, Sect. 2.1] (see also

Remark 1). In order to take account of the constraint, we simplify project on each
cell K the value v

p+1,∗
K onto the set C . Hence, the second step is

v
p+1
K = PC

(
v
p+1,∗
K

)
.



A Numerical Approach of Friedrichs’ Systems … 325

where PC is the projection onto C . It leads us to the following scheme for U0 ∈
L2(Rn;C ),

⎧⎪⎨
⎪⎩

∀K ∈ Th, v0
K = 1

mK

∫
K U0(x) dx,

∀K ∈ Th,∀0 ≤ p ≤ N , v
p+1,∗
K = v

p
K − Δt

mK

∑
e∈EK

gKeme + Δt f p
K ,

∀K ∈ Th,∀0 ≤ p ≤ N , v
p+1
K = PC

(
v
p+1,∗
K

)
.

(6)

Thanks to the following discrete Green formula

∑
e∈EK

AKeme = 0 ⇔
∑
e∈EK b

AKeme +
∑
e∈EK i

(AKe)
+me =

∑
e∈EK i

−(AKe)
−me, (7)

one can rewrite the first step of the scheme (6) in a nonconservative form

v
p+1,∗
K − v

p
K

Δt
=
∑
e∈EK i

me

mK
(AKe)

−(v
p
K − v

p
Ke

) −
∑
e∈EK b

me

mK

MKe − AKe

2
v
p
K + f p

K .

(8)

Remark 2. Wedenote by 〈;〉 the canonical scalar product ofRm and |.| the associated
norm. By abuse of notation, we also use the notation |.| for the (matrix) operator norm
associated with the canonical norm of Rm .

Remark 3. When Ω = R
n , one can use the scheme (6) to approximate the solution

of the problem (2). In that case, all the sums over EK b are empty sums.

3 Previous Results on Constrained Friedrichs’ Systems
in the Whole Space

The aim of this section is to recall the definition of weak solutions to Friedrichs’
systems under convex constraints in the whole space and to state some numerical
results about these systems. We consider the following Cauchy problem: find U :
[0, T ] × R

n → R
m such that

{
∂tU +∑n

j=1 A j∂ jU = 0 in (0, T ] × R
n; U (0, x) = U 0(x) if x ∈ R

n,

U (t, x) ∈ C if (t, x) ∈ [0, T ] × R
n,

(9)

where C is a fixed (i.e., independent of the time and space variables) nonempty
closed and convex subset of Rm containing 0 in its interior, the matrices A j are
m × m symmetric matrices independent of time and space, and T > 0. This type of
nonlinear hyperbolic problems has been introduced in [4] where a notion of weak
solutions to problem (9) has been defined.
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Definition 1. LetU 0 ∈ L2(Rn,C ) and T > 0. A functionU ∈ L2([0, T ] × R
n,C )

is aweak constrained solutionof (9) ifwehave for allκ ∈ C andφ ∈ C∞
c ([0, T [×R

n)

with φ ≥ 0,

∫ T

0

∫
Rn

(
|U − κ|2∂tφ +

n∑
j=1

〈
U − κ; A j (U − κ)

〉
∂ jφ
)
dx dt

+
∫
Rn

|U 0(x) − κ|2φ(0, x) dx ≥ 0.

(10)

We recall here the existence and uniqueness result of [4].

Theorem 1. Assume that U 0 ∈ L2(Rn,C ). There exists a unique weak constrained
solution U ∈ L2([0, T ] × R

n,C ) to (9) in the sense of Definition 1.

The existence of a solution has been obtained in [4] thanks to a finite volume
scheme on Cartesian grids. At each time step, the scheme first let the solution evolve
according to the Rusanov scheme without taking care about the constraint. Then, on
each mesh they project the solution onto the set of constraints.

Thanks to this splitting strategy and to a compactness argument (which relies on
the fact that the mesh is Cartesian), they show that the numerical solution admits a
convergent subsequence and they prove that the limit of this subsequence has to be
a solution of (9) in the sense of Definition 1.

In this paper, we use this splitting strategy for schemes defined on unstructured
meshes. One can show that the scheme (6) (see Remark 3) enjoys the same rate of
convergence as in the unconstrained case (for the complete proof, see [7]).

Theorem 2. Let U ∈ H 1((0, T ) × R
n;C ) be a dissipative solution associated with

the initial condition U0 ∈ H 1(Rn;C ). Let Vh be the solution constructed from U0

thanks to the scheme (6) (see Remark 3). Then we have,

‖U − Vh‖L2((0,T )×Rn;Rm ) ≤ C
√
h,

for some constant C depending on ε, n, T , U0 and the matrices Ai .

4 Stability in Time of Schemes

Once we know that the strategy of [4] combined with the scheme, analyzed in [9],
leads to a convergent scheme (on unstructured meshes) for constrained Friedrichs’
systems in (0, T ) × R

n , one can analyze this splitting strategy on bounded domains
(i.e., for Problem (3)). In this section, we prove that the scheme (6) enjoys a stability
property under a Courant–Friedrichs–Lewy condition. For simplicity, we decide to
derive this stability property in the case where the source term is null. In that case,
the L2(Rn)-norm of the solution does not increase in time.
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Proposition 1. Suppose that the following CFL condition holds:

max

(
sup

K ,e∈EK

Δtm∂K

mK

∣∣(AKe)
−∣∣ , sup

K ,e∈EK b

Δtm∂K

mK

∣∣(MKe − AKe)/2
∣∣
)

≤ 1, (11)

the scheme (6) is stable; i.e., the approximate solution Vh satisfies (here f ≡ 0)

∀t ∈ [0, T ], ‖Vh(t, ·)‖L2(Rn;Rm ) ≤ ‖U0‖L2(Rn;Rm ) .

Proof. From the nonconservative form (8), we have

v
p+1,∗
K =

∑
e∈EK

me

m∂K
v
p+1,∗
K (e),

where we set

v
p+1,∗
K (e) =

{
v
p
K + Δtm∂K

mK
(AKe)

−(v
p
K − v

p
Ke

), if e ∈ EK i,

v
p
K − Δtm∂K

mK

MKe−AKe
2 v

p
K , if e ∈ EK b.

Observe that we have for all e ∈ EK i, since (AKe)
− ∈ M

m×m
sym ,

|v p,∗
K (e)|2 = |v p

K |2 − Δtm∂K
mK

(− 〈v p
K ; (AKe)

−v
p
K

〉+ 〈v p
Ke

; (AKe)
−v

p
Ke

〉)
+Δtm∂K

mK

〈
v
p
K − v

p
Ke

;
(
Id + Δtm∂K

mK
(AKe)

−
)

(AKe)
−(v

p
K − v

p
Ke

)
〉

Using the CFL condition, we obtain that

∀y ∈ R
m,

〈(
Id + Δtm∂K

mK
(AKe)

−
)
y; y
〉

≥ 0. (12)

In particular, if we apply (12) to y = (−(AKe)
−)1/2 (v

p
K − v

p
Ke

), it yields

|v p,∗
K (e)|2 ≤ |v p

K |2 − Δtm∂K

mK

(− 〈v p
K ; (AKe)

−v
p
K

〉+ 〈v p
Ke

; (AKe)
−v

p
Ke

〉)
. (13)

Now, if e ∈ EK b, we have, again since AKe and MKe belong toMm×m
sym ,

|v p+1,∗
K (e)|2 = |v p

K |2 − Δtm∂K

mK

〈
v
p
K ; MKe − AKe

2
v
p
K

〉

−Δtm∂K

mK

〈
MKe − AKe

2

(
Id − Δtm∂K

mK

(
MKe − AKe

2

))
v
p
K ; v

p
K

〉
. (14)
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Similarly, the CFL condition (11) implies that for all y ∈ R
m , we have

〈
Id − Δtm∂K

mK

(
MKe − AKe

2

)
y; y
〉

≥ 0,

and algebraic manipulations (see Remark 1) tell us that

〈
MKe − AKe

2

(
Id − Δtm∂K

mK

(
MKe − AKe

2

))
v
p
K ; v

p
K

〉

=
〈(

Id − Δtm∂K

mK

(
MKe − AKe

2

))
M1/2

Ke
(v

p
K )+; M1/2

Ke
(v

p
K )+
〉

≥ 0,

which implies that (14) becomes

|v p+1,∗
K (e)|2 ≤ |v p

K |2 − Δtm∂K

mK

〈
v
p
K ; MKe − AKe

2
v
p
K

〉
.

Using convexity, it yields

|v p+1,∗
K |2 ≤ |v p

K |2 − Δt

mK

∑
e∈EK i

(− 〈v p
K ; (AKe)

−v
p
K

〉+ 〈v p
Ke

; (AKe)
−v

p
Ke

〉 )
me

− Δt

mK

∑
e∈EK b

〈
v
p
K ; MKe − AKe

2
v
p
K

〉
me.

Furthermore, if we use the relation (7), we obtain

|v p+1,∗
K |2 ≤ |v p

K |2 − Δt

mK

∑
e∈EK i

(〉
v
p
K ; (AKe)

+v
p
K

〉+ 〈v p
Ke

; (AKe)
−v

p
Ke

〉 )
me

− Δt

mK

∑
e∈EK b

〈
v
p
K ; AKe + MKe

2
v
p
K

〉
me.

(15)

Remark that, thanks to Remark 1, we have for all e ∈ EK b

〈
v
p
K ; AKe + MKe

2
v
p
K

〉
= 〈(v p

K )−; MKe(v
p
K )−
〉 ≥ 0.

Consequently, from (15) and since for all y ∈ R
m , |PC (y)| ≤ |y|, we obtain

|v p+1
K |2 ≤ |v p

K |2 − Δt

mK

∑
e∈EK i

(〈
v
p
K ; (AKe)

+v
p
K

〉+ 〈v p
Ke

; (AKe)
−v

p
Ke

〉)
me. (16)
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Then, we remark

∑
K∈T h

∑
e∈EK i

(〈
v
p
K ; (AKe)

+v
p
K

〉+ 〈v p
Ke

; (AKe)
−v

p
Ke

〉)
me = 0.

Consequently, summing the inequality (16) over K ∈ Th and from p = 0 to q − 1,
where t ∈ [0, T ] and q an integer such that t ∈ [tq , tq+1) (or q = N + 1 if t = T ),
leads to the stability property.

5 The Simplified Model of the Dynamical Perfect Plasticity

Let us briefly recall the equations of this model and the two points of view that one
can use to describe its (theoretical) solution. First, the equations, derived from the
physics of solids (see [1, Sects. 3.1 and 3.2]), of this simplified model of dynamical
perfect plasticity are

{
∂tv − divσ = f, ∇v = ∂tσ + ∂t p,
|σ | ≤ 1, and 〈σ ; ∂t p〉 = |∂t p|. (17)

where v : Ω × [0, T ] → R is the velocity of the material, σ : Ω × [0, T ] → R
2 the

Cauchy stress tensor, and p : Ω × [0, T ] → R
2 the plastic deformation tensor andΩ

is a open bounded subset ofR2. The tensor σ is constrained to stay in the unit closed
Euclidean ball of R2, denoted B. To these equations, we add initial and boundary
conditions. The boundary condition, that comes from the hyperbolic point of view,
is the following nonlinear one

〈σ ; ν〉 + T (v) = 0, on (0, T ) × ∂Ω, (18)

where T (z) = min(−1,max(z, 1)). It shows a threshold on the velocity (due to the
constraint) in the boundary condition. We also need an initial condition

(v, σ )(t = 0) = (v0, σ0) (19)

that has to satisfy two hypotheses

〈σ0; ν〉 + v0 = 0 H 1 on ∂Ω, (20)

|σ0| ≤ 1 a.e. in Ω. (21)

The first condition asserts that the initial condition has to satisfy the hyperbolic
boundary condition that one could use in the unconstrained case, and the second
condition states that the initial condition satisfies the constraint. In fact, one can
show (see [1, Proposition 7.1]) that the solution of this simplified model satisfies the
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following inequality for all (k, τ ) ∈ R × B and all ϕ ∈ W 1,∞(R × R
2) (with ϕ ≥ 0

and compactly supported in R × R
2)

∫ T

0

∫
Ω

(
(v − k)2 + |σ − τ |2) ∂tϕ dx dt +

∫
Ω

(
(v0 − k)2 + |σ0 − τ |2)ϕ(0) dx

− 2
∫ T

0

∫
Ω

(σ − τ) · ∇ϕ(v − k) dx dt + 2
∫ T

0

∫
Ω

f (v − k)ϕ dx dt

+ 2
∫ T

0

∫
∂Ω

(σ · ν − τ · ν)(T (v) − k)ϕ dH n−1 dt ≥ 0. (22)

Thanks to (18) and algebraic manipulations, one has

(σ · ν−τ · ν)(T (v) − k)

= 1

4

(
(k + τ · ν)2 − (T (v) − k − (σ · ν − τ · ν))2

) ≥ 1

4
(k + τ · ν)2 ,

(23)

Equation (23) allows us to rewrite (22), using the hyperbolic variableU =t (v, σ ) as∫ T

0

∫
Ω

|U − κ|2 ∂tϕ +
2∑

i=1

〈U − κ; Ai (U − κ)〉 ∂iϕ + 2 〈F;U − κ〉ϕ dx dt

+
∫

Ω

|U0 − κ|2 ϕ(t = 0) dx +
∫ T

0

∫
∂Ω

〈κ+; Mνκ+〉 ϕ dH n−1(x) dt ≥ 0,

(24)

where F =t ( f, 0, 0), U0 =t (v0, σ0), κ =t (k, τ )

A1 =
⎛
⎝ 0 −1 0

−1 0 0
0 0 0

⎞
⎠ , A2 =

⎛
⎝ 0 0 −1

0 0 0
−1 0 0

⎞
⎠ and Mν =

⎛
⎝1 0 0
0 (ν1)2 ν1ν2

0 ν1ν2 (ν2)2

⎞
⎠ , (25)

and κ+ stands for the projection onto (ker(Aν + Mν)) ∩ ImAν . The fact that Eq. (24)
is satisfied for all κ and allϕ is the definition of a solution to Problem (3) (see also [8]).
In addition, when the solutionU is inW 1,∞([0, T ]; L2(Ω;C ), one can show (see [1,
Sect. 7]) that Eqs. (17)–(19) are equivalent to this definition of a weak constrained
solution to Problem (3).

6 A Numerical Test on the Simplified Model
of the Dynamical Perfect Plasticity

Now that this mechanical problem has been put into the hyperbolic framework (3),
the simplified model of dynamical perfect plasticity can be approached thanks to the
scheme described in Sect. 2. One important point to notice first is that this scheme
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does not include a special treatment at the boundary to model the nonlinear boundary
condition (18). Indeed, we only take into account the constraint thanks to a projection
step on everymesh and the first step of this scheme uses the linear boundary condition

(Aν − Mν)U = 0 ⇔ 〈σ ; ν〉 + v = 0. (26)

Our goal now is to test numerically the interactions between the boundary condition
and the constraint for this particular hyperbolic system under constraint and to see
if the nonlinear boundary condition is obtained with this scheme. The major point
that allows us to bring to light these facts is the velocity threshold overrun in the
boundary condition (18). To observe this overrun, we present here one test case (for
more test cases, see [7, Sect. 4.4]).

The test is based on the following formal motivation: We want to observe large
velocities near the boundary. But if we look at the equation of motion

∂tv − divσ = f,

we see that if f is positive (for example) near the boundary (for each time), then the
velocity is going to increase over time near the boundary. Hence, we present a test
case when the source term f varies from −50 to 50 near the boundary and is equal
to zero elsewhere.

This test allows us to obtain large velocity near the boundary (i.e., |v| � 1 near
∂Ω) and to bring to light that the nonlinear boundary is taken into account by our
scheme. For this test case, we use the following data

• Spatial domain : Ω = [0, 1] × [0, 1]. Our mesh is regular and contains 80000
triangles.

• Final time : T = 1. We use 800 time steps, and consequently, the CFL condi-
tion (11) is approximately equal to 0.71.

• Initial data : In this test, we use data that touch the boundary x = 1. The initial
velocity v0 is null outside the open ball B1 of radius 0.3 and center (1, 0.5), and
v0 is equal to−1 on the open ball B2 of radius 0.25 and center (1, 0.5). In the strip
between these two balls, we join these two constants using a C 1 connection. It
is important to notice that −1 ≤ v0 ≤ 0. In order to satisfy the (linear) boundary
condition at x = 1, the first component ofσ is equal to−v0. The second component
of σ is null on Ω . Consequently, we have v0 + 〈σ ; ν〉 = 0 on ∂Ω . Remark also
that the initial data belong to the convex set of constraints.

• The term source f is equal to 100y − 50 for all t ∈ [0, T ], for all y ∈ [0, 1] and
x > 0.8 and to 0 elsewhere.

We decide to highlight the interaction between the constraint and the boundary at
time t = 0.5 in Fig. 2. In this figure, we display the velocity (top left of the figure), the
first component, denoted σ1 in the following, of σ (top right), the second component
(bottom left), denoted σ2, and the term σ1 + T (v) (which is involved in the boundary
condition at x = 1: σ1 + T (v) = 0).
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Fig. 2 Test case at time t = 0.5

We observe that the introduction of our term source in the strip [0.8, 1] × [0, 1]
allows us to get a large velocity (i.e., |v| � 1) near the boundary x = 1 (see Fig. 2a).
The theoretical boundary condition implies that in this situation we should see that
σ1 = −1 at the upper end of the boundary x = 1 (and, consequently, σ2 = 0 due
to the constraint) and σ1 = 1 at the lower end of the boundary x = 1 (and σ2 = 0
due to the constraint). Numerically, the scheme produces a solution that matches the
mathematical model (see Fig. 2b, c). Consequently, the nonlinear boundary condition
is satisfied by the numerical approximation (see Fig. 2d) despite the fact that we
have not implemented any particular treatment at the boundary to get this nonlinear
boundary condition. This fact may be seen as a first validation of our scheme.



A Numerical Approach of Friedrichs’ Systems … 333

References

1. J.-F. Babadjian, C. Mifsud, Hyperbolic structure for a simplified model of dynamical perfect
plasticity. Arch. Ration. Mech. Anal. 223(2), 761–815 (2017)

2. B. Cockburn, C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite ele-
ment method for conservation laws. II. General framework. Math. Comp. 52(186), 411–435
(1989)

3. Y. Coudière, J.-P. Vila, P. Villedieu, Convergence d’un schéma volumes finis explicite en temps
pour les systèmes hyperboliques linéaires symétriques en domaines bornés. C. R. Acad. Sci.
Paris Sér. I Math. 331(1), 95–100 (2000)

4. B. Després, F. Lagoutière, N. Seguin, Weak solutions to Friedrichs systems with convex con-
straints. Nonlinearity 24(11), 3055–3081 (2011)

5. R. Eymard, T. Gallouët, R. Herbin, Finite volume methods, inHandbook of Numerical Analysis,
vol. VII (North-Holland, Amsterdam, 2000), pp. 713–1020

6. R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied
Mathematics (Cambridge University Press, Cambridge, 2002)

7. C.Mifsud,Variational and hyperbolicmethods applied to constrainedmechanical systems. Ph.D.
thesis, Université Pierre et Marie Curie (2016)

8. C. Mifsud, B. Després, N. Seguin, Dissipative formulation of initial boundary value problems
for Friedrichs’ systems. Commun. Partial Differ. Equ. 41(1), 51–78 (2016)

9. J.-P. Vila, P. Villedieu, Convergence of an explicit finite volume scheme for first order symmetric
systems. Numer. Math. 94(3), 573–602 (2003)


	A Numerical Approach of Friedrichs' Systems Under Constraints in Bounded Domains
	1 Introduction
	2 Description of the Scheme
	3 Previous Results on Constrained Friedrichs' Systems  in the Whole Space
	4 Stability in Time of Schemes
	5 The Simplified Model of the Dynamical Perfect Plasticity
	6 A Numerical Test on the Simplified Model  of the Dynamical Perfect Plasticity
	References




