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Abstract In this paper, a robust and adaptive framework of finite volume solutions
for steady Euler equations is introduced. On a given mesh, the numerical solutions
evolve following the standard Godunov process and the algorithm consists of a
Newton method for the linearization of the governing equations and a geometrical
multigrid method for solving the derived linear system. To improve the simulations,
an h-adaptive method is proposed for more efficient discretization by means of local
refinement and coarsening of the mesh grids. Several numerical issues such as the
regularization of the system, selection of the reconstruction patch, treatment of the
curved boundary, aswell as the design of the error indicatorwill be discussed in detail.
The effectiveness of the proposed method is successfully examined on a variety of
benchmark tests, and it is found that all simulations can be implemented well with
one set of parameters, which shows the robustness of the method.

Keywords Steady Euler equations · Finite volume method · Adaptive method
A posteriori error estimation · Newton iteration

1 Introduction

In the study of the compressible flow, Euler equations are one fundamental governing
equations and have been playing an important role in a variety of practical applica-
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tions such as optimal design of the vehicle shape [15], physical-based simulations in
animation [31].

Steady-state flow is a typical phenomenon in the fluid dynamics in which the
distributions of the physical quantities will not change with the time evolution. Such
phenomena exist in several realistic fluid dynamics applications. For example, when
an aeroplane is in its cruise state in the stratosphere, the fluid dynamics around
the aeroplane can be described reasonably by the steady state. The theoretical and
numerical studies on the steady-state flow have great importance on the applications
such as the optimal design on the vehicle shape. In a classical optimization framework
for the optimal design, the objective functional is optimized subject to several shape
parameters. In the whole simulation, dozens of, or maybe hundreds of, steady-state
flows need to be determined with different configurations. Hence, efficiency of the
steady-state solver becomes crucial in the practical simulations.

Although there have been lots of work available in the market for solving steady
Euler equations by using finite difference methods [54], finite element methods [16],
spectral methods [28], the existence of the discontinuous solutions such as shock
and contact discontinuity makes the use of the finite volume methods [29, 33], dis-
continuous Galerkin methods [10], spectral volume methods [51] more competitive.
Besides the ability on representing discontinuous solutions, thesemethods also intro-
duce the flux to preserve the conservation property of the simulation, which makes
these methods more attractive towards delivering physical simulations. It is worth
mentioning that, recently, the fast sweeping method [12, 13] was proposed to solve
steady Euler equations, and excellent numerical results were obtained. In our pre-
vious works [21–26], an adaptive framework of finite volume solutions has been
developed for solving steady Euler equations.

There are several challenges on developing quality high-order finite volumemeth-
ods for solving Euler equations. One of the most important challenges is the solution
reconstruction. In the original Godunov scheme, the cell average is used directly
to evaluate the numerical flux. The advantage of Godunov is very attractive, i.e.
the maximum principle can be preserved naturally. However, the piecewise con-
stant approximation makes the scheme too dissipative to generate high-resolution
solution; hence, the solution variation needs to be recovered to deliver high-order
approximation for the exact solution. In the solution reconstruction, a nontrivial issue
is to develop quality limiter functions to restrain the possible nonphysical oscillation,
which is listed in [52] as one challenge for developing high-order numerical methods
for computational fluid dynamics. Another challenge is efficiency of the algorithm.
By propagating the time-dependent system for sufficiently long time is obviously
not a good idea for obtaining the steady state of the system since the low efficiency.
To effectively accelerate the simulation, several classical techniques such as local
time-stepping, enthalpy damping, residual smoothing, multigrid methods and pre-
conditioning techniques [6] have been developed and applied. Towards the efficient
discretization of the governing equations, adaptive methods such as r -adaptive meth-
ods [37, 38, 46], h-adaptive methods [5, 18, 39, 43], and hp-adaptive methods [19,
50] have been developed and still attract more and more research attention. Nowa-
days, with the dramatic development of the computer hardware, the capacity of the
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high-performance computing cluster is also improved significantly. Hence, parallel
algorithms based on OpenMP [1], OpenMPI [2] as well as GPU [53] become more
and more popular in the community of computational fluid dynamics [34].

In this paper, we introduce an adaptive framework of finite volume solutions for
the steady Euler equations. On a givenmesh, the solver consists of a Newton iteration
for the linearization of the governing equations and a geometrical multigrid method
for solving the linear system. To resolve the issue on the quality high-order solution
reconstruction, the non-oscillatory k-exact reconstruction is proposedwhich provides
a unified strategy for high-order reconstruction. To handle the efficiency issue, h-
adaptive method is introduced in our method and an adjoint-based a posteriori error
estimation method is developed to generate quality error indicator. Some numerical
issues such as regularization of the linearized system are also introduced. Numerical
tests successfully show the robustness and effectiveness of the proposed method.

The rest of the paper is organized as follows. In Sect. 2, the steady Euler equations
and finite volume discretization are introduced. In Sect. 3, the solution reconstruction
will be introduced and the non-oscillatory k-exact reconstruction method will be
described in detail. In Sect. 4, our methods on partially resolving the efficiency issue
of the simulations are summarized and the adjoint weighted residual indicator as
well as implementation are introduced in detail. Three numerical tests are delivered
in Sect. 5 in which the robustness and effectiveness of the proposed framework are
successfully demonstrated. Finally, the conclusion is given.

2 Finite Volume Framework for Steady Euler Equations

2.1 Governing Equations

The inviscid two-dimensional steady Euler equations are given as

∇ · F(U ) = 0, (1)

where U and F(U ) denote the conservative variables and flux given by

U =

⎡
⎢⎢⎣

ρ

ρu
ρv

E

⎤
⎥⎥⎦ , and F(U ) =

⎡
⎢⎢⎣

ρu ρv

ρu2 + p ρuv

ρuv ρv2 + p
u(E + p) v(E + p)

⎤
⎥⎥⎦ , (2)

respectively. Here (u, v)T , ρ, p, and E denote the velocity, density, pressure, and
total energy, respectively. To close the system, we use the following equation of state
in this paper,

E = p

γ − 1
+ 1

2
ρ(u2 + v2), (3)
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where γ = 1.4 is the ratio of the specific heats of the perfect gas.
Before we get involved in the numerical methods for solving (1), let us introduce

the notations as follows to facilitate the description. The computational domain is
denoted by Ω , and T = {Ki }, i = 1, 2, . . . , Ntri is its associated triangulation in
which Ki is the i th triangle in the mesh, and Ntri is the total number of the triangle
elements in the mesh.

2.2 Newton Linearization

Certain linearization is needed since the nonlinearity of the governing Eq. (1), and
Newton iteration is employed in our work. Below we would briefly summarize the
implementation of the Newton iteration on our problem. People may refer to [21,
23, 24, 26, 39] for the details.

The governing Eq. (1) is discretized as follows. First of all, the integral form of
(1) on Ω is given by

∫
Ω

∇ · F(U )dxdy =
∑
K i

∫
K i

∇ · F(U )dxdy = 0. (4)

Then Green’s theorem gives the following equation,

∑
K i

∑
ei, j∈∂K i

∫
ei, j

F(U ) · ni, j ds = 0, (5)

where ei, j means the common edge of the elementKi and its neighbour elementK j ,
and ni, j means the unit out normal vector of ei, j with respect to the element Ki . In
the simulation, numerical flux F̄(Ui ,Uj ) is used to replace the unknown flux F(U ).
Hence, the above equations are approximated by the following ones

∑
K i

∑
ei, j∈∂K i

∫
ei, j

F̄(Ui ,Uj ) · ni, j ds = 0. (6)

To resolve the nonlinearity of (6), Newton method is employed here. We assume
that the approximation of the solution at the kth step, U (k), is known, and then the
approximation of the solution at the (k + 1)th step, U (k+1) = U (k) + ΔU (k), can be
found by solving
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∑
K i

∑
ei, j∈∂K i

∫
ei, j

F̄(U (k+1)
i ,U (k+1)

j ) · ni, j ds

=
∑
K i

∑
ei, j∈∂K i

∫
ei, j

F̄(U (k)
i + ΔU (k)

i ,U (k)
j + ΔU (k)

j ) · ni, j ds = 0,

(7)
for ΔU (k)

i which is increment of the conserved quantity on the elementKi to the kth
approximation of the solutions. By Taylor theorem and only keeping the linear part,
the linear system for ΔU can be written as

∑
K i

∑
ei, j∈∂K i

∫
ei, j

∂ F̄

∂Ui
· ni, j dsΔU (k)

i +
∑
K i

∑
ei, j∈∂K i

∫
ei, j

∂ F̄

∂Uj
· ni, j dsΔU (k)

j

= −
∑
K i

∑
ei, j∈∂K i

∫
ei, j

F̄(U (k)
i ,U (k)

j ) · ni, j ds.
(8)

Regularization is necessary to solve the linear system (8). The issue is resolved
by introducing the local residual LRi = ∑

ei, j∈∂K i

∫
ei, j

F̄(U (k)
i ,U (k)

j ) · ni, j ds, i.e. the
regularized system is written as

α
∑
K i

||LRi ||1ΔU (k)
i +

∑
K i

∑
ei, j∈∂K i

∫
ei, j

∂ F̄

∂Ui
· ni, j dsΔU (k)

i

+
∑
K i

∑
ei, j∈∂K i

∫
ei, j

∂ F̄

∂Uj
· ni, j dsΔU (k)

j = −
∑
i

L Ri ,

(9)

where || · ||1 is the l1 norm, and α > 0 is a parameter to weight the regularization.
So far, the only unknown quantity in (9) is the numerical flux F̄ . In the simulation,

this quantity is obtained by solving a local Riemann problem in which the left and
right states are determined by the solutions in the elementKi and its neighbourK j .
There are several Riemann solvers available in the market, and HLLC [48] is used
in our simulations.

A natural choice for the left and right states for Riemann problem is the cell
average of each conserved quantity. In this case, a piecewise constant approximation
of the conserved quantity is supposed, and only first-order numerical accuracy can
be expected. To improve the numerical accuracy, more accurate left and right states
in Riemann problem are desired and this can be achieved by high-order solution
reconstruction.



26 G. Hu et al.

3 Solution Reconstruction

With the assumption of sufficient regularity, Taylor theorem gives the following
substitution for the unknown function U (x, y) in the element K

U (x, y) = U (xK , yK ) + ∂U

∂x
|xK ,yK (x − xK ) + ∂U

∂y
|xK ,yK (y − yK )

+1

2

∂2U

∂x2
|xK ,yK (x − xK )2 + ∂2U

∂x∂y
|xK ,yK (x − xK )(y − yK )

+1

2

∂2U

∂y2
|xK ,yK (y − yK )2

+ · · · ,

(10)

where (xK i , yK i ) is the barycentre of the elementKi . The task of the reconstruction
is to recover those coefficients ∂αU/(∂xα1∂yα2), α = α1 + α2, with the cell average
Ūi = 1/|Ki |

∫
K i

U (x, y)dxdy of the conserved quantityU (x, y) in the elementKi ,
where |Ki | is the area of the element Ki .

The most popular reconstruction in the market is the linear reconstruction, i.e.

U (x, y) ≈ U (xK , yK ) + ∂U

∂x
|xK ,yK (x − xK ) + ∂U

∂y
|xK ,yK (y − yK ) := P1(x, y).

(11)
It is noted that with the assumption of the linear distribution of U (x, y) in Ki , the
constant term in (11) is the cell average, i.e. U (xK i , yK i ) = Ūi . Hence, the linear
reconstruction is to recover the gradient of U (x, y) in Ki . There are two ways to
evaluate the gradient ∇U = (∂U/∂x, ∂U/∂y)T . One is the following Green–Gauss
theorem [6], ∫

K i

∇Udxdy =
∫

∂K i

Unds. (12)

Since the linearity of U , ∇U is a constant. Hence,

∇U |K i = 1

|Ki |
∫

∂K i

Unds. (13)

Replacing U on the edge ei, j by using the average (Ūi + Ū j )/2, the above integral
can be approximated by

∇U |K i ≈ 1

|Ki |
∑
ei, j

1

2
(Ūi + Ū j )ni, j |ei, j |. (14)

The implementation of Green–Gauss approach is quite simple. However, the numer-
ical accuracy of such approximation heavily depends on the regularity of the mesh
grids. Also, it is not trivial to extend the method to the high-order cases. People may
refer to [11] for the quadratic reconstruction with Green–Gauss method.
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Fig. 1 Reconstruction patch
for the element Ki,0

Ki,0

Ki,12 Ki,1 Ki,5

Ki,10

Ki,6

Ki,2

Ki,7
Ki,11

Ki,3

Ki,4

Ki,8

Ki,9

Toovercome the above issues, the least squaremethod becomes a very competitive
candidate on solution reconstruction since its ability on delivering accurate solution
even on skewed unstructured grids and on natural extension to high-order cases. To
implement the least square reconstruction on the elementKi , a reconstruction patch
Pi is needed first. In the case of the linear reconstruction, a natural choice for Pi

is Ki itself as well as its three Neumann neighbours. For example, for the element
Ki,0 = Ki in Fig. 1, the patch of the linear reconstruction for it can be chosen as
Pi = {Ki,0,Ki,1,Ki,2,Ki,3}.

With Pi for Ki , the gradient ∇U |K i,0 = (∂U/∂x |K i,0 , ∂U/∂y|K i,0)
T can be

solved from the following minimization problem,

argmin
∂U
∂x , ∂U

∂y

∑
K j∈P i ,K j �=K i,0

||P1
i (xK j , yK j ) − Ū |K j ||22. (15)

The extension to the high-order reconstruction is straightforward for the least
square approach. In the case of quadratic reconstruction, a larger patch containing at
least 6 elements is needed since there are more unknowns included in (10). Amethod
to enlargePi is to introduceNeumann neighbours of theNeumann neighbours ofKi .
However, it is found that generating Pi by selecting Ki and its Moore neighbours
is a better choice, especially when the adaptive strategy is used in the simulation,
based on our numerical experience. In this case, the patch Pi becomes

Pi = {Ki,0,Ki,1,Ki,2,Ki,3,Ki,4,Ki,5,Ki,6,Ki,7,Ki,8,Ki,9,Ki,10,Ki,11,Ki,12}.

Now the unknown quantity U (x, y) is approximated by

U (x, y) ≈ P1(x, y) + 1

2

∂2U

∂x2
|xK ,yK (x − xK )2 + ∂2U

∂x∂y
|xK ,yK (x − xK )(y − yK )

+1

2

∂2U

∂y2
|xK ,yK (y − yK )2

:= P2(x, y)
(16)

To preserve the conservative property of the reconstructed polynomial, the mini-
mization problem we need to solve becomes
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argmin
∂U
∂x , ∂U

∂y , ∂2U
∂x2

, ∂2U
∂∂y , ∂2U

∂y2

∑
K j∈P i

∥∥∥ 1

|K j |
∫
K j

P2
i (x, y)dxdy − Ū |K j

∥∥∥
2

2
. (17)

Remark 1 The above method is k-exact reconstruction [3]. To solve (17) directly,
a large amount of integrals need to be evaluated during the reconstruction. In [42],
a numerical trick is introduced to effectively save the computational resource. In
the trick, several integrals are calculated beforehand, and then the linear system
consists of those integrals by algebraic operations. Recently, the parallel k-exact
reconstruction is developed [17], which significantly improves the efficiency of the
reconstruction.

Remark 2 The conservative of U in Ki cannot be guaranteed strictly by solving
(17) in the least square sense. To preserve the conservative property rigorously, the
constant term in P2

i (x, y) is adjusted to make 1
|K i,0|

∫
K i,0

P2
i (x, y)dxdy = Ūi .

For all high-order reconstructions (≥ linear reconstructions), limiting process is
necessary to restrain the nonphysical oscillation, especiallywhen there is shock in the
solution. For linear reconstruction, there are several mature limiters available for the
unstructured meshes such as the limiter of Barth and Jespersen [4], and the limiter of
Venkatakrishnan [49]. Compared with the limiter of Barth and Jespersen, the limiter
of Venkatakrishnan has better property towards the differentiability; hence, it has
better performance on the steady-state convergence. Although these limiters work
well for the linear reconstruction, it is nontrivial for the higher-order extension. People
may refer to [41] for the contribution towards this direction. It is worth mentioning
that quality limiter for high-order methods was listed as one of the challenges in
developing high-order numerical methods for computational fluid dynamics in [52].

Weighted essentially non-oscillatory (WENO) scheme is well known for its abil-
ity on delivering high-order and non-oscillatory numerical solutions [30, 55]. For
WENO implementation on unstructured meshes, people may refer to [30] for details.
Besides the solution reconstruction, WENO has been also used as a limiter in the
discontinuous Galerkin framework [40, 44, 45, 56]. In our works [21–26], WENO
reconstruction is introduced for the solution reconstruction. Below is a brief sum-
marization for the WENO reconstruction with the assumption of the locally linear
distribution of the solutions.

In WENO reconstruction, besides the reconstruction patch Pi,0 = Pi for Ki,0

in Fig. 1, we also solve the optimization problem (15) on patchesPi,1 = {Ki,0,Ki,1,

Ki,4,Ki,5}, Pi,2 = {Ki,0,Ki,2,Ki,6,Ki,7}, and Pi,3 = {Ki,0,Ki,3,Ki,8,Ki,9}.
Correspondingly, besides the polynomial P1

i,0 = Pi from Pi,0, we also have the
candidate polynomials P1

i,1, P
1
i,2, P

1
i,3 from Pi,1, Pi,2 and Pi,3, respectively. For

each candidate P1
i, j , j = 0, 1, 2, 3, a smoothness indicator is defined by

Sj =
(

(
∂U

∂x
| j )2 + (

∂U

∂y
| j )2

)
|K j,0|. (18)

Then the weight for each polynomial is calculated by
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ω j = ω̃ j∑
k ω̃k

, ω̃ j = 1

(ε + Sj )2
, (19)

and the final polynomial for the element Ki is given by

P1
i =

∑
j

ω j P
1
i, j . (20)

Remark 3 In the definition of ω̃ j in (19), a parameter γ j [20, 30] is used as the
numerator. γ j there is designed for preserving the higher order accuracy of P1

i , i.e.
P1
i (xGQ, yGQ) = P2

i (xGQ, yGQ)where P2
i (x, y) is a quadratic polynomial obtained

by solving (16). With γ j and the nonlinear weight ω j , the reconstructed polyno-
mial Pi can preserve the third-order numerical accuracy and restrain the nonphysical
oscillation effectively in the meantime [20, 30]. However, an extra quadratic recon-
struction problem (16) as well as the parameters γ j need to be calculated, which
would slow down the simulation efficiency. In our algorithm, the numerator 1 is used
instead of γ j to avoid the extra calculations and the h-adaptive method is introduced
to remedy the accuracy issue.

The WENO reconstruction can be extended to higher order directly. People may
refer to [25, 26] for our works on non-oscillatory k-exact reconstruction.

In the traditional reconstructions, the polynomial is obtained by certain method
first, and then the limiter is introduced to remove or restrain the possible oscillation.
Recently, Chen and Li developed an integrated linear reconstruction (ILR) method
[8] in which an optimization method is proposed and solved locally for each element
to construct the polynomial. The advantages of ILR include (i) the reconstruction can
be finished by solving a single problem, i.e. the reconstructing and limiting processes
are combined together, (ii) the local maximum principle is preserved theoretically by
ILR, and (iii) no parameter is used in the reconstruction. An improved ILR method
can be found in the paper [7].

4 Towards Efficiency

Efficiency is crucial for an algorithm in its practical applications. Since the Newton
iteration is used for the linearization, a series of linearized system need to be solved
in solving a steady Euler system, which means that the efficiency of the linear solver
is important for an efficient simulation. Furthermore, in one of the most important
applications for steady Euler solver, i.e. the optimal design of the vehicle shape,
a series of steady Euler systems with different configurations need to be solved in
a single design process. Hence, how to improve the efficiency of the steady Euler
solver is also worth studying in detail.

For the first issue, a geometrical multigrid solver is developed to solve the lin-
earized system in our algorithm [21, 23–26, 39]. In this geometrical multigrid solver,
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the coarse meshes are generated by the volume agglomeration method [6, 32]. Then
the error on the coarse meshes is smoothed by blocked lower-upper Gauss–Seidel
method proposed in [9]. People may refer to our works for the details of the imple-
mentation and performance of the solver.

To resolve the second issue mentioned above, the algorithm can be improved
from the following aspects. First of all, it is the acceleration of the convergence of
the Newton iteration. In (9), the local residual of the system is used to regularize
the system. It is noted that this is a similar acceleration technique to the local time-
stepping method [6]. In both methods, local information is used to improve the
simulation. In local time-stepping method, the time-dependent Euler equations are
solved and the Courant–Friedrichs–Lewy (CFL) number is chosen locally depending
on the characteristic speed in the current control volume; hence, the evolution of the
system is not uniform in the whole flow field. In the region with low characteristic
speed, a larger CFL number can be chosen to speedup the convergence to the steady
state. In our method, there is no temporal term in the equations and we use local
residual to regularize the system. If the system is far from the steady state locally,
the local residual is a large quantity, which corresponds to effect in solving time-
dependent problem with a small CFL number. On the other hand, local residual
would be a small quantity when the system is close to the steady state locally which
corresponds to the large CFL number case. Based on our numerical experience, the
local residual regularization works very well in all cases and the simulations are not
sensitive to the selection of the parameter α in (9).

The second way to improve the implementation efficiency is to develop efficient
discretization. In the case that there is large variation of the solution in the domain,
especially there is shock in the solution, numerical discretization on a uniform mesh
is obviously not a good idea since too many mesh grids are wasted in the region
with gentle solution. In the market, adaptive mesh methods are popular towards the
efficient and nonuniform discretization of the governing equations. For example,
r -adaptive methods have been successfully used in solving Euler equations [27,
36–38, 46, 47]. In our algorithm, h-adaptive methods are introduced towards the
efficient numerical discretization [21, 22, 25, 26, 39]. To handle the local refinement
or coarsening of the mesh grids efficiently, an hierarchy geometry tree (HGT) is
developed. People may refer to [35] for HGT details. It is worth mentioning that
CPU time on local refinement or coarsening is nothing compared with the whole
CPU time in the simulation with HGT.

Another important component in adaptive method is the error indicator. The qual-
ity of the error indicator determines the quality of the nonuniform discretization.
There are basically two types error indicators in the market. One is feature-based
error indicators which depend on the numerical solution, and the other one is error
indicators based on the a posteriori error estimation. In our works, several feature-
based error indicators are tested in the h-adaptive framework such as the gradient of
the pressure [21, 26, 39] and entropy [21, 26]. Recently, an adjoint-based a posteriori
error estimation method is developed towards minimizing the numerical error of a
quantity of interest [25]. Adjoint-based analysis is a very useful tool in the applica-
tions of optimal design of vehicle shape [15] and the error estimation [14]. Below is



On Robust and Adaptive Finite Volume Methods for Steady Euler Equations 31

a brief summary of our adjoint-based error indicator, and people may refer to [25]
for the details.

Suppose that UH is the solution on the mesh T H , and J (UH ) is the quantity
of interest. In the practical applications, the quantity of interest J (UH ) could be
the drag or lift in the simulations of flow through an airfoil, or other application-
related quantities. Now, we are interested in the error of J (UH ), i.e. J (U ) − J (UH )

where J (U ) is the exact evaluation of the quantity of interest depending on the exact
solutionU . In most cases, J (U ) is nonlinear. Then the linearization of the difference
gives

J (U ) − J (UH ) ≈ ∂ J

∂U
(U −UH ). (21)

By defining the residual R(U ) := ∇ · F(U ), the linearization of the difference
between the exact residual and approximate residual gives

R(U ) − R(UH ) ≈ ∂R

∂U
(U −UH ), (22)

which follows

U −UH ≈
(

∂R

∂U

)−1

(R(U ) − R(UH )). (23)

By plugging the above expression into (21), we get

J (U ) − J (UH ) ≈ ∂ J

∂U

(
∂R

∂U

)−1

(R(U ) − R(UH )) := ψT (R(U ) − R(UH )),

(24)
where the adjoint ψT can be obtained by solving

(
∂R

∂U

)T

ψ = ∂ J

∂U
. (25)

The implementation in [25] is as follows. First, the meshT H is uniformly refined
one time to get the new meshT h . Then the solutionUH onT H is interpolated onto
T h to get an approximationUH

h which is used in (24) to replaceU . Since we assume
that the system is solved completely on T H , the quantity R(UH ) can be reasonably
ignored in (24). There are two ways mentioned in [25] to solve the adjoint problem
(25). One is to evaluate two Jacobian matrices in (25) on T h first, and then the
equation is solved on T h . The other one is to do the same thing on T H . Compared
with the former one, the advantage of the latter strategy is that the size of the system
is much smaller, i.e. the size is only 25% of the one in former case. Furthermore,
since UH is a quality approximation to U on T H , the linear problem (25) can be
solved smoothly. It is noted that based on our numerical experience, direct evaluation
of ∂ J/∂U and ∂R/∂U onT h with the interpolation approximationUH

h would bring
difficulty on solving (25) and several Newton iterations for (9) withUH

h as the initial
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guess are necessary for the improvement. On the other hand, the disadvantage of the
latter strategy is that the convergence order of the numerical methodwill be sacrificed
a little bit. This is understandable since the information from the finer mesh would
generate more accurate error estimation.

The third strategy to improve the efficiency of our steady Euler solver is to resort
to the parallel computing. Since the operations on solution reconstruction, evaluation
of the numerical flux, and the cell average update are local, OpenMP [1] has been
introduced to realize the parallel computing on these operations in [22] in which a
reactive Euler system is solved to simulate detonation. To handle large-scale sim-
ulations, the parallelization based on MPI becomes necessary. We are working on
the parallelization of our algorithm based on domain decomposition method and
OpenMPI [2], and the results will be reported in the forthcoming paper.

5 Numerical Tests

In this section, the following three numerical tests will be implemented to demon-
strate the effectiveness of our method,

• Subsonic flow around a circular cylinder,
• Inviscid flow through a channel with a smooth bump,
• Transonic flow around a NACA 0012 airfoil.

All simulations in this paper are supported by AFVM4CFD [21–26, 39] which is
a C++ library developed and maintained by the authors and collaborators.

5.1 Subsonic Flow Through a Circular Cylinder

In this section, the subsonic flow passing a circular cylinder is simulated. The com-
putational domain is a ring, and the radii for the inner and outer circles are 0.5 and 20,
respectively. The configuration of the flow in the far field is as follows. The density
is 1, the Mach number is 0.38, the velocity vector is (cos θ, sin θ)T where θ is attack
angle and θ = 0◦ in this case. The configuration for far field flow is also used as the
initial condition for our Newton iteration.

The method with non-oscillatory 2-exact reconstruction is implemented on five
meshes with 240, 504, 800, 1776, and 3008 grid points, respectively. Since the
flow in the domain is subsonic, inviscid, and vortex free, the entropy of the flow
should be a constant same to that in the far field. Hence, we use the L2 error of
the entropy production to evaluate the convergence of the method which shown
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Fig. 2 Convergence curves for the inviscid flow through the circle

Fig. 3 Left: The Mach number isolines generated with WENO 2-exact reconstruction. Right: The
corresponding mesh

in Fig. 2. As a comparison, the results obtained with linear reconstruction in [24]
are also demonstrated here. It can be observed from the figure that both linear and
quadratic methods successfully generate theoretical convergence curves. The mesh
grids around the inner circle as well as the isolines of the Mach number can be
observed from Fig. 3.
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5.2 Inviscid Flow Through a Channel with a Smooth Bump

In this subsection, the inviscid flow through a channel with a smooth bump is sim-
ulated by adaptive method with non-oscillatory 2-exact reconstruction. This test is
a benchmark test listed in [52] in which the detailed setup for the simulation can be
found.

In Fig. 4, the following three results are shown. The first result is the conver-
gence curve generated on four successively and uniformly refined meshes. It can be
observed obviously the theoretical curve is recovered very well. The second result is
the convergence curve generated by adaptive method with error indicator obtained
only by the local residual. It is observed that the adaptive method generates much
better convergence curve, compared with the one generated by uniformly refining
the mesh. The nonuniform distribution of the mesh grids with 5940 points as well
as the corresponding isolines of the Mach number can be observed from Fig. 5 (bot-
tom). The third result is the convergence curve generated by adaptive method with
error indicator obtained by adjoint weighted residual. In the simulation, the following
functional is used as the quantity of interest,

J (U ) = 1

|Ω|
∫

Ω

|s∞ − s|
s∞

dxdy, (26)

where s∞ = p∞/ρ
γ
∞ is the far field entropy, and p∞ and ρ∞ are the far field pres-

sure and density, respectively. From Fig. 4, it can be observed that adjoint weighted
residual gives the best convergence result among three results. In Fig. 5 (top), the
distribution of the mesh grids with 3387 points and the isolines of Mach number are
shown with adjoint weighted residual method. It can be seen that the adjoint method

Fig. 4 Convergence curves
of the entropy production
with different methods
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Fig. 5 Mesh profiles and Mach isolines obtained from adjoint-based mesh adaptation with 3387
mesh grids (upper row) and residual-based mesh adaptation with 5940 mesh grids (lower row)

helps to assign more mesh grids in the region in which the entropy is more sensitive
to the local residual. Hence, this explains that with adjoint weighted residual, better
result can be generated with less mesh grids, compared with the second result in
which only local residual is used.

5.3 Transonic Flow Around a NACA 0012 Airfoil

The last numerical test is for the transonic flow through a NACA0012 airfoil. The
purpose is to show the advantage of adjoint weighted method on accurately calcu-
lating the quantity of interest in the practical applications such as drag coefficient in
this test, i.e.

J (U ) =
∫

∂Ωa

pβ · nds, (27)

where ∂Ωa is the surface of the airfoil, and n is the unit outer normal vector with
respect to ∂Ωa . The parameter β in the above formula is given as

β =
⎧⎨
⎩

(cosα, sin α)T /C∞, for drag calculation,

(− sin α, cosα)T /C∞, for lift calculation,

where C∞ = 0.5γ p∞Ma2∞l, and Ma∞ and l are the far field Mach number of the
flow and the chord length of the airfoil, respectively.

The far field flow is set up with the following configuration. The density is 1, the
Mach number is 0.8, and the velocity vector is (cos θ, sin θ)T with the attack angle
θ = 1.25◦. The far field flow state is again used as the initial guess for the Newton
iteration.

In Fig. 6 (left), the convergence history of Newton iteration on 11 successively
and adaptively refined meshes is shown and it can be observed that the residual can
be reduced towards the machine epsilon efficiently in all meshes which demonstrates
the effectiveness of the algorithm. In Fig. 6 (right), the advantage on using adaptive
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Fig. 6 Left: Residual convergence history with adaptively and successively mesh refinements
for NACA0012 airfoil with 0.8 Mach number and 1.25◦ attack angle; Right: the corresponding
convergence history of the drag coefficient (solid line), while the dashed line shows the results
given by the uniformly refining mesh

Fig. 7 Left: The mesh profile after 5 adaptive refinement. Middle: The corresponding isolines of
the Mach number. Right: The isolines of the x-momentum from the adjoint problem

method with error indicator generated by adjoint weighted residual is demonstrated
obviously, i.e. the convergence curve of the drag coefficient generated by the adaptive
method is much superior to that generated by uniformly refining the mesh and to
reach almost the same numerical accuracy (around 1.0e − 05), only over 10% mesh
grids are needed by the adaptivemeshmethod, comparedwith the uniform refinement
strategy. Figure7 shows the mesh grids around the airfoil (left), the isolines of the
Mach number (middle), and the isolines of x-momentum from the adjoint problem
(right). It can be seen that with the adjoint weighted residual, the upper and lower
shocks as well as leading edge and tail region are successfully resolved, which
guarantees the accurate calculation of drag coefficient.

Remark 4 It is worthmentioning that in all simulations in this paper and our previous
works [21, 23–26], the convergence of Newton iteration is smooth and efficient.
Furthermore, the convergence is not sensitive to the selection of the parameters,
which shows the robustness of our method.

Remark 5 In simulations with curved boundary, the direction of the out normal vec-
tor on the Gauss quadrature point is adjusted according to the exact curve. With this
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correction, the performance of the method with high-order solution reconstruction
can be significantly improved and people may refer to the simulation on Ringleb
problem in [26] for details. However, there are still errors on the other quadrature
information such as the position and weight of the quadrature point. Moreover, to
develop a framework for the optimal design of the vehicle, a flexible and powerful
tool to handle the curved boundary approximation is desirable. In our forthcoming
paper, the nonuniform rational B-splines (NURBS) will be introduced in our method
to handle the curved boundary issue and preliminary results show the excellent per-
formance of the new method.

6 Conclusion

In this paper, an efficient and robust framework of adaptive finite volume solutions on
steady Euler equations is introduced. The governing equations are discretized with
finite volume method, and the framework consists of the Newton iteration for the
linearization of the Euler system and a geometrical multigrid method for solving the
linearized system. A non-oscillatory k-exact reconstruction is developed to deliver
quality solution reconstruction to linear and higher-order cases. To improve the solver
efficiency, the h-adaptive method is introduced in the method and an adjoint-based a
posteriori error estimationmethod is developed to generate quality error indicator for
the adaptive method. Numerical results successfully show the desired convergence
behaviour of the method, and quality nonuniform meshes generated by the adaptive
method.
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