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Abstract We consider a multi-component mixture of inert gas in the kinetic regime
by assuming that the total number of particles of each species remains constant. In
this article, we shall illustrate our model for the case of two species. To account for
thermal effects, we extend a BGK model based on the presence of a collision term
for each possible interaction (Klingenberg et al., A consistent kinetic model for a
two-component mixture with an application to plasma. Kinet Relat Models 10:444–
465, 2017, [19]) by including ES-BGK effects.We prove consistency of the extended
model like conservation properties, positivity of all temperatures, H-theorem, and
convergence to a global equilibrium in the shape of a global Maxwell distribution.

Keywords Multi-fluid mixture · Kinetic model · ES-BGK equation · H-theorem

Introduction

In this paper, we shall concern ourselves with a kinetic description of gases. This is
traditionally done via the Boltzmann equation for the density distributions f1 and f2.
Under certain assumptions, the complicated interaction terms of theBoltzmann equa-
tion can be simplified by a so-called BGK approximation, consisting of a collision
frequency multiplied by the deviation of the distributions from local Maxwellians.
This approximation should be constructed in a way such that it has the same main
properties of the Boltzmann equation, namely conservation of mass, momentum,
and energy, further it should have an H-theorem with its entropy inequality and the
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equilibrium must still be Maxwellian. BGK models give rise to efficient numerical
computations, which are asymptotic preserving, that is they remain efficient even
approaching the hydrodynamic regime [6, 7, 10–12, 20]. However, the drawback
of the BGK approximation is its incapability of reproducing the correct Boltzmann
hydrodynamic regime in the asymptotic continuum limit. Therefore, a modified ver-
sion called ES-BGK approximation was suggested by Holway in the case of one
species [16]. The H-Theorem of this model then was proven in [3] and existence and
uniqueness of solutions in [21].

Here, we shall focus on gas mixtures modeled via an ES-BGK approach. In
the literature, there is a BGK model for gas mixtures suggested by Andries, Aoki,
and Perthame in [4] which contains only one collision term on the right-hand side.
Extensions of this model to an ES-BGK model for gas mixtures are given by Groppi
in [14] or themodel byBrull [5] with an extension leading to a correct Prandtl number
in the Navier–Stokes equation, adapting the ES-BGK model for mixtures.

In this paper, we are interested in an extension to an ES-BGK model of a BGK
model for gas mixtures [19] which just like the Boltzmann equation for gas mixtures
contains a sum of collision terms on the right-hand side. Other examples of ES-
BGK models for gas mixtures are the models of Gross and Krook [13], Hamel [15],
Asinari [1]. The advantage of this extended model is that we have free parameters
to possibly being able to determine macroscopic physical constants like viscosity or
heat conductivity when taking the limit to the Navier–Stokes equations.

The outline of the paper is as follows: in Sect. 1, we will present the BGK model
for two species developed in [19]. In Sect. 2, we suggest extensions to an ES-BGK
model for mixtures and prove the corresponding H-Theorem.

1 The BGK Approximation

In this section, we will present the BGKmodel for a mixture of two species and men-
tion its fundamental properties like the conservation properties and the H-theorem.

For simplicity in the following, we consider a mixture composed of two differ-
ent species, but the discussion can be generalized to multi-species mixtures. Thus,
our kinetic model has two distribution functions f1(x, v, t) > 0 and f2(x, v, t) > 0
where x ∈ � ⊂ R

3 and v ∈ R
3 are the phase space variables and t ≥ 0 the time.

The distribution functions are determined by two equations to describe their time
evolution. Furthermore, we only consider binary interactions. So the particles of one
species can interact with either themselves or with particles of the other species.
In the model, this is accounted for introducing two interaction terms in both equa-
tions. These considerations allow us to write formally the system of equations for the
evolution of the mixture. The following structure containing a sum of the collision
operator is also given in [8, 9].

Furthermore, for any f1, f2 : � ⊂ R
3 × R

3 × R
+
0 → R with (1 + |v|2) f1, (1 +

|v|2) f2 ∈ L1(R3), f1, f2 ≥ 0 we relate the distribution functions to macroscopic
quantities by mean-values of fk , k = 1, 2



Kinetic ES-BGK Models for a Multi-component Gas Mixture 197

∫
fk(v)

⎛
⎜⎜⎝

1
v

mk |v − uk |2
mk(v − uk(x, t)) ⊗ (v − uk(x, t))

⎞
⎟⎟⎠ dv =:

⎛
⎜⎜⎝

nk
nkuk
3nkTk
Pk

⎞
⎟⎟⎠ , k = 1, 2, (1)

where nk is the number density, uk the mean velocity, and Tk the mean temperature of
species k, k = 1, 2. Note that in this paper, we shall write Tk instead of kBTk , where
kB is Boltzmann’s constant.

We are interested in a BGK approximation of the interaction terms. This leads
us to define equilibrium distributions not only for each species itself but also for the
two interspecies equilibrium distributions. We choose the collision terms as BGK
operators and denote them for future references by Q11, Q12, Q21, and Q22. Then
the model can be written as:

∂t f1 + ∇x · (v f1) = ν11n1(M1 − f1) + ν12n2(M12 − f1),

∂t f2 + ∇x · (v f2) = ν22n2(M2 − f2) + ν21n1(M21 − f2),
(2)

with the Maxwell distributions

Mk(x, v, t) = nk√
2π Tk

mk

3 exp(−
|v − uk |2

2 Tk
mk

), k = 1, 2,

Mkj (x, v, t) = nkj√
2π Tkj

mk

3 exp(−
|v − ukj |2

2 Tkj
mk

), k, j = 1, 2, k �= j,

(3)

where ν11n1 and ν22n2 are the collision frequencies of the particles of each species
with itself, while ν12 and ν21 are related to interspecies collisions. To be flexible
in choosing the relationship between the collision frequencies, we now assume the
relationship

ν12 = εν21, 0 < ε ≤ 1, (4)

ν11 = β1ν12, ν22 = β2ν21, β1, β2 > 0. (5)

The restriction ε ≤ 1 is without loss of generality. If ε > 1, exchange the notation 1
and 2 and choose 1

ε
. In addition, we assume that all collision frequencies are positive.

The structure of the collision terms ensures that if one collision frequency
νkl → ∞, the corresponding distribution function becomes a Maxwell distribution.
In addition at global equilibrium, the distribution functions become Maxwell distri-
butions with the same velocity and temperature (see Sect. 2.8 in [19]). The Maxwell
distributions M1 and M2 in (3) have the same moments as f1 and f2, respectively.
With this choice, we guarantee the conservation of mass, momentum and energy in
interactions of one species with itself (see Sect. 2.2 in [19]). The remaining param-
eters n12, n21, u12, u21, T12, and T21 will be determined using conservation of total
momentum and energy, together with some symmetry considerations.
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If we assume that

n12 = n1 and n21 = n2, (6)

u12 = δu1 + (1 − δ)u2, δ ∈ R, (7)

and

T12 = αT1 + (1 − α)T2 + γ |u1 − u2|2, 0 ≤ α ≤ 1, γ ≥ 0, (8)

we have conservation of the number of particles, total momentum, and total energy
provided that

u21 = u2 − m1

m2
ε(1 − δ)(u2 − u1), (9)

and

T21 =
[
1

3
εm1(1 − δ)

(
m1

m2
ε(δ − 1) + δ + 1

)
− εγ

]
|u1 − u2|2

+ε(1 − α)T1 + (1 − ε(1 − α))T2,

(10)

see Theorems 2.1, 2.2, and 2.3 in [19].
We see that without using an ES-BGK extension, we already have three free

parameters in (7) and (8) in order to match coefficients like the Fick’s constant or the
heat conductivity in the Navier–Stokes equations. But when we derive the Navier–
Stokes equations by a Chapman–Enskog expansion fk = f 0k + ε̃ f 1k + ε̃2 f 2k + · · · ,
one can show that |u1 − u2|2 is of order ε̃2, so γ from (8) does not appear in the first
order Navier–Stokes equations and therefore cannot be used to match parameters
there.

In order to ensure the positivity of all temperatures, we need to impose restrictions
on δ and γ ,

0 ≤ γ ≤ m1

3
(1 − δ)

[
(1 + m1

m2
ε)δ + 1 − m1

m2
ε

]
, (11)

and

m1
m2

ε − 1

1 + m1
m2

ε
≤ δ ≤ 1, (12)

see Theorem 2.5 in [19].
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This summarizes our kinetic model (2) in of two species that contains three free
parameters. More details can be found in [19].

2 Extensions to an ES-BGK Approximation

2.1 Extension of the Single Relaxation Terms

Motivatedby theneed tofinda two species kineticmodel that allowsus tomodel phys-
ical parameters better we extend the above model by generalizing the Maxwellians.
The simplest choice is to only replace the collision operators which represent the
collisions of a species with itself by the ES-BGK collision operator for one species
suggested in [2]. Then the model can be written as:

∂t fk + ∇x · (v fk) = νkknk(Gk − fk) + νk j n j (Mkj − fk), k, j = 1, 2, j �= k,
(13)

with the modified Maxwell distributions

Gk(x, v, t) = nk√
det (2π T k

mk
)

exp(−1

2
(v − uk) · (

Tk

mk
)−1 · (v − uk)), k = 1, 2,

(14)

and M12, M21 the Maxwellians described in the previous section. G1 and G2 have
the same densities, velocities, and pressure tensors as f1 respective f2, so we still
guarantee the conservation of mass, momentum, and energy in interactions of one
species with itself. Since the first term describes the interactions of a species with
itself, it should correspond to the single ES-BGK collision operator suggested in [2].
So we choose T1 and T2 as

Tk = (1 − μk)Tk1 + μk
Pk

nk
, (15)

with μk ∈ R, k = 1, 2 being free parameters which we can choose in a way to fix
physical parameters in the Navier–Stokes equations. So, all in all, together with the
parameters in themixtureMaxwellians (7) and (8), we now have five free parameters.

Since we wrote T −1
k we have to check if Tk is invertible. Otherwise, the model

is not well-posed. For the one species tensor, this is done by the following theorem
proven in [2].

Theorem 1. Assume that fk > 0. Then Pk
nk

has strictly positive eigenvalues. If we

further assume that − 1
2 ≤ μk ≤ 1, then Tk has strictly positive eigenvalues and

therefore Tk is invertible.
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2.1.1 Equilibrium and Entropy Inequality

In global equilibrium when f1 and f2 are independent of x and t , the right- hand side
of (13) has to be zero. In this case, we get

f1 = 1

ν11n1 + ν12n2
(ν11n1G1 + ν12n2M12).

If we compute the velocities of this expression, we can deduce u1 = u2 for δ �= 1. If
we compute the temperatures of this expression using u1 = u2, we get

T1 = 1

ν11n1 + ν12n2
(ν11n1T1 + ν12n2(αT1 + (1 − α)T2)),

which is equivalent to T1 = T2 for α �= 1. So let T := T1 = T2 and use u1 = u2. If
we compute pressure tensors, we get

(ν11n1 + ν12n2)P1 = ν11n1T1 + ν12n2T12
= ν11n1(1 − μ1)T 1 + ν11n1μ1P1 + ν12n2T 1,

which is equivalent to

(ν11n1 + ν12n2 − ν11n1μ1)P1 = (ν11n1 + ν12n2 − ν11n1μ1)T 1,

which is P1 = T 1 for δ, α �= 1, μ1 ≤ 1. This means that the pressure tensor of f1
and f2 is diagonal and f1, f2 are Maxwellian distributions with equal mean velocity
and temperature. δ = 1 or α = 1 are cases in which the mixture Maxwellians do not
contain the velocity or the temperature of the other species, see (7) and (8). In this
case, the two gases do not exchange information and a global equilibrium cannot be
reached.

Theorem 2 (H-theorem for the mixture). Assume that f1, f2 > 0 are solutions to
(2). Assume the relationship between the collision frequencies (5), the conditions
for the interspecies Maxwellians (7), (9), (8), and (10) and the positivity of the
temperatures (11), then

∫
(ln f1) Q11( f1, f1) + (ln f1) Q12( f1, f2)dv +

∫
(ln f2) Q22( f2, f2) + (ln f2) Q21( f2, f1)dv ≤ 0,

with equality if and only if f1 and f2 are Maxwell distributions with equal velocity
and temperature.

Proof. The fact that
∫
ln fk Qkk( fk, fk)dv ≤ 0, k = 1, 2with a criteria for equality

follows from the H-Theorem of the ES-BGKmodel for one species, see [2]. The fact
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that
∫
ln f1Q12( f1, f2)dv + ∫

ln f2Q21( f1, f2)dv ≤ 0 with a corresponding crite-
ria for equality follows from the H-Theorem of the BGK model for mixtures, see
Theorem 2.7 in [19].

2.2 Alternative Extensions to an ES-BGK Model

In this subsection, we also want to replace the scalar temperatures in the mixture
Maxwellians by a tensor. In the first model, the terms (v j − ukj ) fk(vi − uki ) for
i �= j do not appear in the relaxation operator. To obtain a more detailed description
of the viscous effects in the mixture, we take into account these cross terms during
the relaxation process. Then the model can be written as:

∂t fk + ∇x · (v fk) = νkknk(Gk − fk) + νk j n j (Gkj − fk), k = 1, 2, k �= j,
(16)

with the modified Maxwell distributions

Gk(x, v, t) = nk√
det(2π Tk

mk
)

exp(−1

2
(v − uk) · (

Tk

mk
)−1 · (v − uk)) k = 1, 2,

Gkj (x, v, t) = nk√
det(2π

Tk j
mk

)

exp(−1

2
(v − uk j ) · (

Tk j

mk
)−1 · (v − uk j )) k = 1, 2, k �= j.

(17)

Again, the conservation of mass, momentum, and energy in interactions of one
species with itself is ensured by this choice of the modified Maxwell distributions
G1 and G2 which have the same densities, velocities, and pressure tensor as f1 and
f2, respectively. In addition, the choice of the densities in G12 and G21, we also
guarantee conservation of mass in interactions of one species with the other one.

If we extend T12 and T21 in the same fashion to a tensor as in the case of one
species, we obtain

T12 = (1 − μ12)(αT1 + (1 − α)T2)1 + μ12
αP1 + (1 − α)P2

n1
+ γ |u1 − u2|21, (18)

T21 = (1 − μ21)((1 − ε(1 − α))T2 + ε(1 − α)T1)1

+ μ21
(1 − ε(1 − α))P2 + ε(1 − α)P1

n2
+ (

1

3
εm1(1 − δ)(

m1

m2
ε(δ − 1) + δ + 1) − εγ )|u1 − u2|21.

(19)

If we check the equilibrium distributions as in Sect. 2.1.1, we obtain the following
restrictions on μ12 and μ21 given by
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μ12 = 1 + (1 − μ1)
n1
n2

ν11

ν12
, (20)

and

1

n21
[−(α − 1)2μ2

12n
2
2ν

2
12 + n1

n22
((

μ21

ε
− μ21 + αμ21)n1ν12 + (μ2 − 1)n2ν22)

·(n1((α − 1)μ21n1 + 1

ε
(μ21 − 1)n2)ν12 + (μ2 − 1)n22ν22)] = 0,

(21)

An alternative choice to (18), (19), which is less complicated, is given by

T12 = α
P1

n1
+ (1 − α)T21 + γ |u1 − u2|21, (22)

T21 = (1 − ε(1 − α))
P2

n2
+ ε(1 − α)T11

+ (
1

3
εm1(1 − δ)(

m1

m2
ε(δ − 1) + δ + 1) − εγ )|u1 − u2|21. (23)

This choice still contains the temperature of gas 1, since the trace of the pressure
tensor is the temperature.

In (22) compared to (18), we replace only the temperature T1 of species 1 by the
pressure tensor P1 while we keep the temperature T2. This asymmetric choice can be
motivated by the theory of “persistence of velocity” described by Jeans in [17, 18].
He argues that in the post-collisional speed of particle 1 there is a memory of the
pre-collisional speed of particle 1. In the single species, BGK equation this yields to
the choice of

T = (1 − μ)T 1 + μP, −1

2
≤ μ ≤ 1,

the tensor chosen in the well-known ES-BGK model, where μP preserves the mem-
ory of the off-equilibrium content of the pre-collisional velocity. This can be rewritten
as

T = T 1 + μtraceless[P],

where traceless[P] denotes the traceless part of P. So the off-equilibrium part is
contained in μtraceless[P]. Doing this analogously for two species, we arrive at

T12 = T121 + α

n1
traceless[P1].

If we plug in the definition of T12 given by (8), we end up with (22).
With the second choice, the model is well-defined, because T12 and T21 are

invertible as a combination of strictly positive matrices as soon as all coefficients
in front of these matrices are positive, which is the case due to (11) and (12). The
first choice needs additional conditions coming from the restrictions on μ12 and μ21



Kinetic ES-BGK Models for a Multi-component Gas Mixture 203

given by (20) and (21). The first one leads to

μ1 ≤ n2
n1

ν12

ν11
+ 1,

such that μ12 given by (20) is positive. The requirement of positivity of μ21 leads to
a corresponding restriction on μ2 using (21).

2.2.1 Equilibrium and Entropy Inequality

The aim of this subsection is to discuss the property of equilibrium and the entropy
inequality for the alternative extensions described in Sect. 2.2 with the tensors (18),
(19) respective (22), (23). For the tensors (18), (19), we proved the property of
equilibriumand theH-Theorem inSect. 2.1.1 in the particular case forμ12 = μ21 = 0
for simplicity, but we can also prove it in the general case. In this section, we will
prove an entropy inequality for the alternative model (22), (23). First we will check
that the equilibrium distributions are Maxwellians. In global equilibrium, when f1
and f2 are independent of x and t , the right-hand side of (16) has to be zero. In this
case, we get

f1 = 1

1 + 1
β2
1

n2
n1

(G1 + 1

β2
1

n2
n1

G12).

If we compute the temperatures of this expression, we get

T1 = 1

1 + 1
β2
1

n2
n1

(T1 + 1

β2
1

n2
n1

(αT1 + (1 − α)T2)),

which is equivalent to T1 = T2 for α �= 1. So denote T := T1 = T2. If we compute
pressure tensors, we get

(1 + 1

β2
1

n2
n1

)P1 = T1 + 1

β2
1

n2
n1

T12

= (1 − ν1)T + ν1P1 + 1

β2
1

n2
n1

αP1 + 1

β2
1

n2
n1

(1 − α)T 1

which is equivalent to

((1 − ν1) + 1

β2
1

n2
n1

(1 − α))P1 = ((1 − ν1) + 1

β2
1

n2
n1

(1 − α))T 1,

which is P1 = T 1 for ν1, α �= 1. That means that the pressure tensors of f1 and f2
are diagonal and they are Maxwellian distributions with equal mean velocity and
temperature.
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Next, we want to prove the H-Theorem of the simpler model (22) and (23). For
this proof, we need the following lemmas.

Lemma 1. (Brunn–Minkowski inequality). Let 0 ≤ a ≤ 1 and A, B positive sym-
metric matrices, then

det(aA + (1 − a)B) ≥ (det A)a(det B)1−a .

Proof. The proof is given in [2].

Lemma 2. Assuming (22) and (23) and the positivity of all temperatures and pres-
sure tensors (11), we have the following inequality

S := (detT12)
ε(detT21) ≥ (det

P1

n1
)ε det

P2

n2
.

Proof. Using the definition of T12, we get

detT12 = det(α
P1

n1
+ (1 − α)T21 + γ |u1 − u2|21).

Since γ is non-negative, we can estimate the expression by dropping the positive
term on the diagonal γ |u1 − u2|21

detT12 ≥ det(α
P1

n1
+ (1 − α)T21).

With the Brunn–Minkowski inequality, we obtain

detT12 ≥ (det
P1

n1
)α(det T21)1−α.

In a similar way, we can show it for T21, so all in all we get

S ≥ (det
P1

n1
)αε(det T21)ε(1−α)(det

P2

n2
)1−ε(1−α)(det T11)ε(1−α).

Consider the logarithm of this equation

ln S ≥ εα ln

(
det

(
P1

n1

))
+ ε(1 − α) ln (det (T21))

+(1 − ε(1 − α)) ln

(
det

(
P2

n2

))
+ ε(1 − α) ln (det (T11)) .

We use that ln (det (Ti1)) = Tr(ln (Ti1)), Ti = Tr Pi
3ni

and denote the eigenvalues of
Pi
ni
by λi,1, λi,2 and λi,3. Since the pressure tensors are symmetric, we can diagonalize
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them and use that Ti = Tr P

3ni
= 1/3(λi,1 + λi,2 + λi,3).

ln S ≥ εα(ln λ1,1 + ln λ1,2 + ln λ1,3) + ε(1 − α)3 ln
1

3
(λ1,1 + λ1,2 + λ1,3)

+(1 − ε(1 − α))(ln λ2,1 + ln λ2,2 + ln λ2,3) + ε(1 − α)3 ln
1

3
(λ2,1 + λ2,2 + λ2,3).

Since ln is concave, we can estimate ln 1
3 (λ1,1 + λ1,2 + λ1,3) from below by

1
3 (ln λ1,1 + ln λ1,2 + ln λ1,3) and obtain

ln S ≥ ε ln

(
det

(
P1

n1

))
+ ε(1 − α) ln

(
det

(
P2

n2

))
.

This is equivalent to the required inequality.

Remark 1. From the case of one species ES-BGK model, we know that

∫
Gk lnGkdv ≤

∫
Gk,μk=1 lnGk,μk=1dv ≤

∫
fk ln fkdv,

for k = 1, 2, see [2], where Gk,μk=1 denotes the modified Maxwellian where μk = 1
in the tensor (15).

Theorem 3. (H-theoremformixture).Assumeα, δ �= 1. Assume f1, f2 > 0. Assume
the relationship between the collision frequencies (5), the conditions for the inter-
species Maxwellians (7), (9), (22) and (23) and the positivity of the temperatures
(11), then

∫
(ln f1) Q11( f1, f1) + (ln f1) Q12( f1, f2)dv +

∫
(ln f2) Q22( f2, f2) + (ln f2) Q21( f2, f1)dv ≤ 0,

with equality if and only if f1 and f2 are Maxwell distributions with equal mean
velocity and temperature.

Proof. The fact that
∫
ln fk Qkk( fk, fk)dv ≤ 0, k = 1, 2 is shown in proofs of the

H-theorem of the single ES-BGK-model, for example, in [2]. In both cases, we have
equality if and only if f1 = M1 and f2 = M2.
Let us define

S( f1, f2) := ν12n2

∫
ln f1(G12 − f1)dv + ν21n1

∫
ln f2(G21 − f2)dv.

The task is to prove that S( f1, f2) ≤ 0. Since the function H(x) = x ln x − x is
strictly convex for x > 0, we have H ′( f )(g − f ) ≤ H(g) − H( f ) with equality if
and only if g = f . So
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(g − f ) ln f ≤ g ln g − f ln f + f − g. (24)

Consider now S( f1, f2) and apply the inequality (24) to each of the two terms in S.

S( f1, f2) ≤ ν12n2

[∫
G12 lnG12dv −

∫
f1 ln f1dv −

∫
G12dv +

∫
f1dv

]

+ν21n1

[∫
G21 lnG21dv −

∫
f2 ln f2dv −

∫
G21dv +

∫
f2dv

]
,

with equality if and only if f1 = G12 and f2 = G21. If we compute the velocities of
f1 = G12 and f2 = G21,we can deduceu1 = u12 andu2 = u21 which lead tou1 = u2
using the definitions of u12, u21 given by (7) and (9). Analogously, computing the
temperatures, we get T12 = T21 = T1 = T2 =: T . Finally, computing the pressure
tensors, we obtain P1

n1
= P2

n2
= T 1, which means that we have equality if and only if

f1 and f2 are Maxwellians with equal temperatures and velocities.
Since G12 and f1 have the same density and G21 and f2 have the same density

too, the right-hand side reduces to

ν12n2(
∫

G12 lnG12dv −
∫

f1 ln f1dv) + ν21n1(
∫

G21 lnG21dv −
∫

f2 ln f2dv).

Since
∫
G lnGdv = n ln( n√

det( 2πT
m )

) − 3
2n for G = n√

det( 2πT
m )

3 e−(v−u)·( T
m )−1·(v−u),

we will have that

ν12n2

∫
G12 lnG12dv + ν21n1

∫
G21 lnG21dv

≤ ν21n1

∫
G2,μ2=1 lnM2,μ2=1dv + ν12n2

∫
G1,μ1=1 lnG1,μ1=1dv,

provided that

ν12n2n1 ln
n1√

det(2π T 12
m1

)

+ ν21n2n1 ln
n2√

det(2π T 21)

m2

≤ ν12n2n1 ln
n1√

det(2π P1
m1

)

+ ν21n2n1 ln
n2√

det(2π P2
m2

)

,

which is equivalent to the condition

(detT12)
ε(detT21) ≥ (det

P1

n1
)ε det

P2

n2
,

proven in Lemma 2.
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With this inequality, we get

S( f1, f2) ≤ ν12n2[
∫

G1,μ1=1 lnG1,μ1=1dv −
∫

f1 ln f1dv]

+ ν21n1[G2,μ2=1 lnG2,μ2=1dv −
∫

f2 ln f2dv] ≤ 0.

The last inequality follows from Remark 1. Here, we also have equality if and only
if f1 = M1 and f2 = M2, but since we already noticed that equality also implies
f1 = G12 and f2 = G21.

Define the total entropy H( f1, f2) = ∫
( f1 ln f1 + f2 ln f2)dv. We can compute

∂t H( f1, f2) + ∇x ·
∫

( f1 ln f1 + f2 ln f2)vdv = S( f1, f2),

by multiplying the BGK equation for the species 1 by ln f1, the BGK equation for
the species 2 by ln f2 and integrating the sum with respect to v.

Corollary 1. (Entropy inequality for mixtures). Assume f1, f2 > 0. Assume a
fast enough decay of f to zero for v → ∞. Assume relationship (5), the conditions
(7), (9), (22) and (23) and the positivity of the temperatures (11), then we have the
following entropy inequality

∂t

(∫
f1 ln f1dv +

∫
f2 ln f2dv

)
+ ∇x ·

(∫
v f1 ln f1dv +

∫
v f2 ln f2dv

)
≤ 0,

with equality if and only if f1 and f2 are Maxwell distributions with equal bulk
velocity and temperature.

In summary, the ES-BGKmodels (13), (16) have five free parameters. We expect
this will aid in determining macroscopic physical constants, analogously to how it
is done in [14].
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