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Abstract We consider the linearized BGK equation and want to quantify uncer-
tainties in the case of modeling errors. More specifically, we want to quantify the
error produced if the predetermined equilibrium function is chosen inaccurately. In
this paper, we consider perturbations in the velocity and in the temperature of the
equilibrium function and consider how much the error is amplified in the solution.
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1 Introduction

Kinetic equation is a set of integro-differential equations that describe the collec-
tive behavior of many-particle systems. The to-be-solved unknown function is a
probability distribution of particles defined on the phase space, and kinetic equa-
tion characterizes its evolution in time and space. The equation typically has one
transport term representing the movement of particles and one collision operator that
describes the interactions between particles. The specific form of the transport and
the collision operators depends on the system one is looking at. Typically people use
radiative transfer equation for photon particles, the Boltzmann equation for rarified
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gas particles, the Fokker–Planck equation for plasma, and run-and-tumble models
for bacteria. There are many more other examples.

Uncertainty is a nature of kinetic theory. It has various of origins. The forms of
terms in the equation are usually unjustified due to the modeling error, the blurred
measurements are typically not enough to sufficiently determine the coefficients,
and the initial and boundary conditions are never provided as accurate as they are
supposed to be. They all contribute the inaccuracy of the system description. It is not
realistic to look for the most accurate description of systems, nor expect the exact
true solution, and thus, we instead look for possibilities of quantifying the uncertain-
ties, and ask if the error is controllable even if the models and measurements are not
accurate. As presented above, there are many origins of error, and in this paper, we
focus on the modeling error. More specifically, a typical way of simplifying kinetic
equations is to perform linearization around a predetermined equilibrium function
and compute the linearized kinetic equation, and we would like to understand the
error produced if the predetermined equilibrium function is chosen inaccurately. We
plan to answer this question from both analytical point of view and numerical point
of view. In particular, we would like to understand that given certain perturbation on
the predetermined equilibrium where we perform the linearization, by howmuch the
error is amplified in the solution, and how to characterize the perturbation numeri-
cally.

There have been many numerical techniques that were developed to address un-
certainties. One very popular category of methods is termed generalized polynomial
types. These include generalized polynomial chaos method (gPC) [12, 15, 16, 35],
and stochastic collocation method [5, 34]. These methods assume the uncertainties
in the parameters of the equations are reflected as a polynomial type in the solution.
And based on this assumption, one applies either the spectral method, or the pseudo-
spectral method, and expand the solution in the random direction using polynomials.
Another popular or even classical method is the Monte Carlo type method, which
also has many variations [6, 7, 13, 14]. With these methods, one simply samples
the random variable many times, and for each sample, the parameters are fixed and
the equation is considered deterministic, and one computes the equation. In the end,
one ensembles the solutions for the mean and the variance. Sometimes, mathemati-
cians categorize these methods based on if new implementations are needed. Since
the Monte Carlo type method and stochastic collocation method simply call the de-
terministic solver many times, the old algorithms are therefore recycled and they
are categorized as non-intrusive methods, while on the other hand, the traditional
generalized polynomial chaos method is intrusive, wherein a completely new imple-
mentation is needed. In terms of the convergence rate, it is well known that theMonte
Carlo method converges slowly, while the gPC type methods are spectral types along
the random directions, and automatically inherits the so-called spectral convergence:
Depending on the regularity of the solution in the random space, the method could
be either algebraically fast or exponentially fast.

We would like to adopt the gPC framework for its possible fast convergence.
To do that, in our setting, we mainly need to prove that the perturbation in the
solution continuously depends on the perturbation in the equilibrium function where
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we choose to perform linearization.According to the standard spectralmethod theory,
the higher degree of continuity means the faster convergence. Traditionally, this
framework has been successfully applied in treating elliptic type equation [3, 4, 9,
10, 36], and the analysis sometimes even suggests new algorithms that better explore
the solution structure [1, 8, 11, 18, 19, 30–33], butwhen applied onto hyperbolic type
equations, this framework sees limited success due to the intrinsic difficulties [2, 11]:
The solution develops non-smooth structure, breaking the assumptions the spectral
methods rely on.

The standard kinetic equation does not belong to either of the category mentioned
above but could produce both. Depending on the regime one is interested in, kinetic
equation would either converge to a hyperbolic type (such as BGK equation con-
verging to the Euler equation) or a parabolic type (such as radiative transfer equation
converging to the heat equation). On one hand, its transport term represents hyper-
bolic type and shows a traveling wave behavior; in the meantime, the collision term
in kinetic equations is all coercive terms and thus provides some dissipative behav-
ior and represents the parabolic type. This unique feature presents mathematicians
a new world to explore and it indeed triggers many studies recently. Some recent
results on the topic can be found in [17, 20–25]. We have to mention, however, most
of the proofs are accomplished on a case-by-case basis, and not necessarily in their
sharpest estimates, especially in the big space long time regime, except in [25] where
the authors started with an abstract form and were able to employ the hypocoercivity
for a uniform bound across regimes.

Follow the previous work, in this paper we explore the perturbation on the lin-
earization point. We take the BGK equation as a starting point and perturb u, the bulk
velocity, and T , the temperature in the equilibrium function, by z, a random variable.
The domain of z indicates the strength of the perturbation. And we would like to
study how f , the solution to the linearized equation, responds to the variations in z.

We lay out the equation and its basic assumptions in Sect. 2, together with detailed
studies of the convergence rate in time in the deterministic setting. Sections3 and 4
are respectively devoted to the study extended to equations in various of regimes, to
equations involving randomness, and to scenarios when both present.

2 Setup

The BGK equation, known as a simplified model of the Boltzmann equation, writes
as:

∂t F + v · ∇x F = 1

Kn
(M[F] − F) (1)

where F(t, x, v) is the distribution function living on phase space indicating the
distribution of rarified gas. M[F], the so-called Maxwellian function, is a Gaussian
distribution function:

M[F] = ρ

(2πT )d/2
exp− |v−u|2

2T , (2)
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with its macroscopic quantities defined implicitly by F such that the first d + 2
moments are the same: ∫

φ(M[F] − F)dv = 0 , (3)

with φ = [1, v, v2]T . This property is typically called conservation property, since it
immediately leads to density, momentum, and energy conservation:

∂t

∫
φFdv + ∇x

∫
v ⊗ vFdv = 0 . (4)

If we use the definition:

∫
Fdv = ρ(x) ,

∫
vFdv = ρ(x)u(x) , and

∫ |v|2
2

Fdv = E = 1

2
ρu2 + ρT .

(5)
then the first two equations express the conservation law of the density and mo-
mentum. Note that second term in the last equation cannot be presented using any
macroscopic quantities, and thus, the system is not closed.

Kn is termed the Knudsen number. It comes from rescaling the system by setting
t → t

Kn and x → x
Kn . When Kn is small, the system is seen in large domain and

long time scale and falls in the hyperbolic regime. More specifically, as Kn → 0, the
leading term in the equation reads:

1

Kn
(M[F] − F) = 0 ⇒ F = M[F] , (6)

and thus,
∫
v|v|2Fdv could be explicitly expressed and we rewrite equation as:

⎧⎨
⎩

∂tρ + ∇x · (ρu) = 0
∂tρu + ∇x (ρu ⊗ u + ρT ) = 0
∂t E + ∇x ((E + ρT )u) = 0

(7)

For linearization, we typically assume the solution is close enough to a particular
Maxwellian, meaning there exists f and M∗ such that:

F = (1 + f )M∗ , with | f | � 1 . (8)

Plug this ansatz back into the full BGK equation and ignore the higher order
expansion terms, we have:

∂t f + v · ∇x f = 1

Kn
L∗ f = 1

Kn
(m[ f ] − f ) ,
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where m is a quadratic function that shares the same moments with f , meaning:

〈φ ,m − f 〉∗ =
∫ ⎛

⎝ 1
v
v2

⎞
⎠ (m[ f ] − f )M∗dv = 0 . (9)

Here, we used the definition of the inner product:

〈 f, g〉∗ =
∫

f gM∗dv . (10)

This is the counterpart of the conservation law in linearized system since:

∂t

∫
φ f M∗dv + ∇x

∫
v ⊗ φ f M∗dv = 0 . (11)

Once again if Kn is small, then in the leading order f = m which leads to a closed
Euler system, termed acoustic limit:

∂tU + A · ∂xU = 0 . (12)

Here

A =
⎛
⎝ u∗ ρ∗ 0

T∗
ρ∗ u∗ 1
0 2T∗ u∗

⎞
⎠ , and U = [ρ̃, ũ, T̃ ]T , (13)

and the macroscopic quantities are defined by:

∫
f

⎛
⎝ 1

v
v2

⎞
⎠ dv =

⎛
⎝ ρ̃

ρ̃u∗ + ρ∗ũ
ρ̃(u2∗ + T∗) + 2ρ∗u∗ũ + ρ∗T̃

⎞
⎠ . (14)

There are several very well-known properties of the linear operator:

1 Coercive: 〈L∗ f , f 〉∗ ≤ 0,
2 Explicit null space: L∗ f = 0 f ∈ Span{1, v, v2},
3 Self-adjoint: 〈L∗ f , g〉∗ = 〈 f ,L∗g〉∗.

Combining item 2 and 3, it is easy to see 〈L∗ f , φ〉∗ = 0. If we consider f ∈
L2(M∗dv), one could expressL∗ more explicitly. By the definition ofm[ f ], it is easy
to see that it is in fact a projection of f weighted by M∗ on the quadratic function
space:

L∗ f = m − f = Π∗ f − f , with Π∗ f =
d+1∑
i=0

〈χi , f 〉∗χi , (15)

where χi are basis functions satisfying:
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1 Expand the space Span{χm,m = 0, · · · d + 1} = Span{1, v, v2},
2 Orthogonality 〈χm , χn〉∗ = δmn .

With the Maxwellian function M∗ predetermined, they are simply the first d + 2
Hermite polynomials associated with the Maxwellian. Even more if we set χm the
mth Hermite polynomial for all m, then

L∗ f = −
∞∑

m=d+2

〈χm , f 〉∗χm . (16)

This expression also explicitly suggests the coercivity of the operator.
The linearized BGK operator has been studied by many researchers. Serving as

the simplified version of the linearized Boltzmann equation. Its negative spectrum
provides dissipative behavior, which helps us in getting existence and uniqueness of
the solution at ease. In the boundary layer analysis, the nonlinear collision operator is
far frombeing understood, the linearized equation is the stepping stone for connecting
the Dirichlet data for the kinetic and the Dirichlet data for the interior Euler equation.
We mention several recent work on boundary layer analysis for the linearized BGK
equation here [26–29].

However, all these studies are based on the assumption that the Maxwellian M∗,
the function we linearize upon, is given a priori, which is typically not the case.
Taking numerical algorithm provided in [29] for example, we choose to perform
linearization upon the Maxwellian function provided from the previous time step
as an approximation to the true Maxwellian, which is in fact at least O(Δt) away
from the real Maxwellian. A natural question one needs to address there is: Is such
approximation a good approximation, or rather, if the Maxwellian chosen is off from
the accurate one by O(Δt), how much error does f contain.

Since M∗’s dependence on ρ∗ is linear, thus its reflection in f is of less interest.
We in this paper only study the possible deviation of the solution f when M∗ has a
uncertain u∗ and a uncertain T∗.

3 Variation in u

In this section, we study the solution’s response to deviations in u∗. We firstly repeat
the equation in 1D:

{
∂t f + v∂x f = L∗ f , (t, x, v) ∈ [0,∞) × R × R

f (t = 0, x, v) = fi(x, v)
,

with L∗ f = m − f such that 〈φ ,m − f 〉∗ = 0, and fi is the initial data. Assume
the Maxwellian:

M∗ = ρ∗√
2πT∗

exp

(
−|v − u∗|2

2T∗

)
(17)
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and assume that f decays fast enough to zero as x → ∞ such that 〈∂x f, f 〉x = 0.

With u∗(z) depending on a random parameter z.1 We would like to understand
the regularity of the solution f on z direction; namely, we need to find a good bound
for ∂z f in certain norm.

The standard way of pursuing such analysis is simply to take the derivative of
z on the entire equation for an equation for ∂z f , and then study the bound of ∂z f .
The bound could serve as a Lipschitz constant, and if small, numerical solvers that
require certain regularities could be applied. Sometimes, people go beyond the first
derivative and seek for high differentiation, and they are all bounded in a reasonable
way, spectral method could be proved to be a effective method.

If we follow that procedure, however, the difficulty would be immediate: The ran-
dom variable’s dependence is hidden in the operator throughL∗ in a very subtle way.
That means taking z derivative of the whole equation will produce very complicated
formulation on the right-hand side. We thus choose a easy way that overcomes it by
shifting the coordinates. Define

g(t, x, v) = f (t, x, v − u∗) , (18)

then the equation for g will have a trivial collision but a shifted transport term:

{
∂t g + (v + u∗)∂x g = L0g

g(t = 0, x, v) = gi(x, v) = fi(x, v − u∗)
, (19)

withL0 being associated with the Maxwellian with zero velocity. The z dependence
of the two functions could be easily written down:

∂zg = ∂z f − ∂v f ∂zu∗ , or ∂zg + ∂v f ∂zu∗ = ∂z f . (20)

Since ∂v f is more understood, for now we focus on studying ∂zg. We take the
derivative of the entire equation to get:

∂t∂zg + (v + u∗)∂x∂zg + ∂zu∗∂x g = L0∂zg ,

or by defining h = ∂zg and reorganize the equation:

∂t h + (v + u∗)∂xh = L0h − ∂zu∗∂x g . (21)

Immediately, we see that h satisfies also the linearized BGK equation but has one
more negative source term −∂zu∗∂x g compared with (19). To have a certain bound
of h, we mainly need to go through two steps:

1for practical purpose, the range of z is controlled by Δt but we study the general case here
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1 bound the source term: one needs to prove that the source term ∂zu∗∂x g is
bounded;

2 bound h itself: here we need to show that a bounded ∂x g will produce a bounded
h.

These two statements are summarized in the following two theorems.

Theorem 3.1. ‖∂x g‖2 is bounded. More specifically:

‖∂x g‖L2(dxdv)(t) ≤ ‖∂x gi‖L2(dxdv)

.

Proof. To show this, we first write down the equation for ∂x g. Take the derivative of
Eq. (19) with respect to x one gets:

{
∂t∂x g + (v + u∗)∂2

x g = L0∂x g

∂x g(t = 0, x, v) = ∂x gi(x, v)
. (22)

Here, we note that L0 is an operator on dv and commute with ∂x . It immediately
suggests that ∂x g satisfies the same equation as g in (19). Considering that the lin-
earized BGK equation is a dissipative system and the L2 norm decays in time, we
cite the following lemma:

Lemma 3.1. Suppose g satisfies equation (19), then

‖g‖L2(dxdv)(t) ≤ ‖gi‖L2(dxdv) (23)

where gi is the initial condition.

Proof. The proof is based on energy estimate. We multiply the equation by g and
integrate with respect to x and v, then:

〈∂t g , g〉x,v + 〈v∂x g , g〉x,v = 〈L0g , g〉x,v . (24)

Since we are considering the Cauchy problem, we throw the second term away.
The term on the right-hand side is negative considering the coercivity of the collision
operator.We then immediately get ∂t 〈g , g〉x,v ≤ 0, meaning the L2 norm of g decays
in time and thus:

‖g‖L2(dxdv)(t) ≤ ‖gi‖L2(dxdv) . (25)

�

Apply this lemma on (22), and we conclude with Theorem 3.1. �
With the boundedness of the source term ∂zu∗∂x g, we could start analyzing the

bound for h.
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Theorem 3.2. Suppose h = ∂zg satisfies (21), then ‖h‖L2(dxdv) grows at most lin-
early:

‖h‖L2(dxdv) � C‖∂x gi‖L2(dxdv)t . (26)

Here, f � g means f
g is bounded by a constant in large time. We care only about the

long-time behavior of the solution. The reason is that after order one time, the highest
order polynomial in time dominates the lower orders, and thus, one only needs to
specify the highest order coefficient.

Proof. It is once again energy method. We multiply (21) on both sides with h and
take the inner product in (x, v):

〈∂t h , h〉x,v = 〈L0h , h〉x,v − ∂zu∗〈∂x g , h〉x,v . (27)

Considering the coercivity of L0 the first term on the right disappear. And we use
Cauchy–Schwartz inequality to control the second term to get:

1

2

d

dt
‖h‖2L2(dxdv) ≤ ‖∂zu∗∂x g‖L2(dxdv)‖h‖L2(dxdv) . (28)

Assume |∂zu∗| < C , and it is known from Theorem 3.1 that

‖∂x g‖L2(dxdv) ≤ ‖∂x gi‖L2(dxdv),

then
d

dt
‖h‖L2(dxdv) ≤ C‖∂x gi‖L2(dxdv) (29)

which leads to a linear growth of h: ‖h‖L2(dxdv) � C‖∂x gi‖L2(dxdv)t . �

The theorem above states the bounded of the first derivative of g in z. One could
extend it to treat higher order derivatives.

Theorem 3.3. Denote h(n) = ∂n
z g, then ‖h(n)‖L2(dxdv) is bounded by tn:

‖h(n)‖L2(dvdx) � Cnt
n . (30)

Again we are mainly interested in the long-time behavior of the solution so it suffices
to consider only the highest order in time.

Proof. The proof is based on induction. According to the definition, h(0) = g and
Lemma 3.1 guarantees that h(0) is bounded by a constant, and h(1) is the h in Theo-
rem 3.2, and we have seen it is bounded by a linear growth. We thus perform math
induction, assuming h(k−1) is bounded by t k−1 we show that h(k) is bounded by t k .

We first take the kth-order derivative of Eq. (19):
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∂t∂
k
z g +

k∑
n=0

(
k

n

)
∂n
z (v + u∗)∂x∂k−n

z g = L0∂
k
z g ,

or moving the source term to the right:

∂t h
(k) + (v + u∗)∂xh(k) = L0h

(k) −
k∑

n=1

(
k

n

)
∂n
z u∗∂xh(k−n) .

According to our assumption, ∂n
z u∗ is bounded by a constant, one has:

〈∂t h(k) , h(k)〉x,v + 〈(v + u∗)∂xh(k) , h(k)〉x,v = 〈L0h
(k) , h(k)〉x,v

−
k∑

n=1

(
k

n

)
〈∂n

z u∗∂xh(k−n) , h(k)〉x,v .

which means:

1

2

d

dt
‖h(k)‖2L2(dxdv) ≤ Ck‖∂xh(k−n)‖L2(dxdv)‖h(k)‖L2(dxdv) , (31)

where we used the Cauchy boundary condition, the coercivity of L0, and Cauchy–
Schwartz inequality. By our assumption h(k−1) is bounded by t k−1, since ∂xh and h
satisfies the same equation, it can be extrapolated as ∂xh being bounded by the same
order, and then putting it back into (31), we have:

‖h(k)‖L2(dxdv) � t k , (32)

which finishes the math induction loop, and complete the proof. �

4 Variation in T

In this section, we want to study the solution’s response to the deviations in T∗.
Namely, we assume the Maxwellian defined in (17) has its T∗(z) depending on a
random parameter z. Once again, in order to get rid of the complicated dependence
of L∗ on z, we perform change of variable and define

p(t, x, v) = f

(
t, x,

v√
T∗

)
. (33)

Then p satisfies the equation
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{
∂t p + √

T∗v∂x p = L1 p

p(t = 0, x, v) = pi(x, v) = fi
(
x, v√

T∗

) , (34)

whereL1 is the collision operator associated with the Maxwellian with temperature
one, and pi is the initial data. Again we focus on studying ∂z p instead of ∂z f . Denote
q = ∂z p, we obtain its governing equation by taking the derivative in z of Eq. (34).
Rearranging the terms, we have:

∂t q + √
T∗v∂xq = L1q − ∂z(

√
T∗)v∂x p . (35)

This equation has the same structure as equation (21): It is a linearized kinetic
equation with a source term, and for the boundedness of q, we simply need to show
the boundedness of v∂x p. In the previous section, we showed that the source term
∂x g satisfies the same equation as g does and thereby was able to give the bound.
This is no longer the case here. Instead of writing the equation, we write:

v∂x p = L1 p − ∂t p√
T∗

, (36)

and are able to prove the following:

Theorem 4.1. Suppose q = ∂z p satisfies (35), then ||q||L2(dxdv) grows at most lin-
early:

||q||L2(dxdv) � C
(||pi ||L2(dxdv) + ||∂t pi ||L2(dxdv)

)
t

Proof. We once again use the energy method. We insert (36) into (35) and multiply
the obtained equation with q and take the inner product in (x, v):

〈∂t q , q〉x,v = 〈L1q , q〉x,v − ∂z
√
T∗√
T∗

〈(L1 p − ∂t p) , q〉x,v. (37)

Due to the coercivity of L1, the first term on the right disappears. For the second
term on the right, we use Cauchy–Schwarz and the triangle inequality

1

2

d

dt
||q||2L2(dxdv) ≤

∣∣∣∣∂z
√
T∗√
T∗

∣∣∣∣
(||L1 p||L2(dxdv) + ||∂t p||L2(dxdv)

) ||q||L2(dxdv) (38)

We assume

∣∣∣∣ ∂z
√
T∗√
T∗

∣∣∣∣ < C . Similar to Πx f in (15), Π1g can be represented as

Π1 f =
d+1∑
i=0

〈χ0
i , g〉1χ0

i
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with orthonormal basis fuctions χ0
i , where 〈·〉1 denotes integration with respect to

v with the weight M1. Then, ||L1 p||L2(M1dxdv) can be estimated by above using the
explicit expression of L1 and Cauchy–Schwartz inequality by

〈L1 p,L1 p〉x,v,1 = 〈
d+1∑
i=1

〈χi , p〉x,v,1 χi − p,
d+1∑
j=1

〈χ j , p〉x,v,1 χ j − p〉x,v,1

=
d+1∑
i=1

(〈χi , p〉x,v,1)2 − 〈p, p〉x,v,1 ≤ (d + 1)〈p, p〉x,v,1 − 〈p, p〉x,v,1

= d〈p, p〉x,v,1
(39)

Since the norm || · ||L2(M1dxdv) is equivalent to || · ||L2(dxdv), the term ||L1 p||L2(dxdv)

is also bounded by C ||p||L2(dxdv).
Realizing that ∂t p satisfies the same equation as p does, according toLemma (4.1),

their L2 norm decrease in time, meaning:

d

dt
||q||L2(dxdv) ≤ C

(||p||L2(dxdv)(t) + ||∂t p||L2(dxdv)(t)
)

(40)

≤ C
(||pi ||L2(dxdv) + ||∂t pi ||L2(dxdv)

)
, (41)

which leads to a linear growth of q:

||q||L2(dxdv) � C
(||pi ||L2(dxdv) + ||∂t pi ||L2(dxdv)

)
t . (42)

which concludes the proof. �

The lemma used in the theorem is stated in the following:

Lemma 4.1. Suppose p satisfies equation (34), then

‖p‖L2(dxdv)(t) ≤ ‖pi‖L2(dxdv) (43)

where pi is the initial condition.

Proof. The proof is analogous to the proof of Lemma 3.1. �

We can also extend the result of Theorem 4.1 to derivatives of higher orders. This
is done in the following theorem

Theorem 4.2. Suppose q(n) := ∂n
z p satisfies

∂t q
(n) +

n∑
k=0

(
n
k

)
∂(n−k)
z

(√
T∗

)
v∂xq

(k) = L1q
(n) (44)

for all n ∈ N0. Then
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||q(N )||L2(dxdv) � CN t N for all N ≤ n

where CN depends on ||L k
1 ∂ l

t q
(0)||L2(dxdv), k, l ≤ N.

Proof. We proof the statement via induction. For n = 0 and n = 1, we proved it in
Theorem 4.1 and Lemma 4.1. We have shown in Lemma 4.1 that if q(0) satisfies (34),
then ||q(0)||L2(dxdv) is bounded by ||q0

i ||L2(dxdv), and in Theorem 4.1 if q(1) satisfies
(35),we can replace v∂xq(0) by (36).We can show thatL1q(0) is bounded in L2(dxdv)
by ||p||L2(dxdv) and ∂t q(0) also satisfy (34) and can deduce that ||q(1)||L2(dxdv) is
bounded by C(||q(0)

i ||L2(dxdv) + ||∂t q(0)
i ||L2(dxdv))t , see the proof of Theorem 4.1.

Assume now that the statement is true for a fixed n ∈ N. We want to deduce that it
is true for n + 1. If q(n+1) satisfies

∂t q
(n+1) +

n+1∑
k=0

(
n + 1
k

)
∂(n+1−k)
z

(√
T∗

)
v∂xq

(k) = L1q
(n+1) (45)

we can replace v∂xq(n) in terms of ∂t q(n),L1q(n), v∂xq(N ), N < n from the equation
for q(n) given by (44). In the resulting equation, we can replace v∂xq(n−1) in terms of
∂t q(n−1),L1q(n−1), v∂xq(N ), N < n − 1 from the equation for q(n−1). Next, we can
replace v∂xq(n−2) from the equation for q(n−2) and so on until we do not have terms
with v∂xq(k) for some k < n + 1 any more. So all in all, we obtain an equation of
the form

∂t q
(n+1) + A(∂t q

(0),L1q
(0), . . . , ∂t q

(n),L1q
(n), T∗) + v∂xq

(n+1) = L1q
(n+1)

(46)
where A is a linear combination of ∂t q(0),L1q(0), . . . , ∂t q(n),L1q(n) with coeffi-
cients depending on T∗ of the form

(∂a
z (

√
T∗))b√
T∗

c for a, b, c ≤ n + 1 (47)

We can show that ∂t q(N ), N ≤ n satisfy the same equation as q(N ) similar as it
is done in Sect. 3 for ∂x g and g and L1q(N ), N ≤ n is bounded in L2(dxdv) by
||q(N )||L2(dxdv), and that they are bounded in L2(dxdv) by CN t N where CN depends
on ||L k

1 ∂ l
t q

(0)||L2(dxdv), k, l ≤ N due to the induction assumption. Finally, by the
energy method we can deduce from (46) that q(n+1) is bounded in L2(dxdv) by
Cn+1tn+1. �
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