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Abstract We propose a generalized polynomial chaos-based stochastic Galerkin
method (gPC-sG) for the Fokker–Planck–Landau (FPL) equationwith randomuncer-
tainties. The method can handle uncertainties from initial or boundary data and the
neutralizing background. By a gPC expansion and the Galerkin projection, we con-
vert the FPL equation with uncertainty into a system of deterministic equations.
A consistency result is proven for the approximation of the collision operator. To
compute efficiently the collision kernel under the gPC expansion, we use a singular
value decomposition (SVD) combined with a fast spectral method for the collision
operator. For high-dimensional random inputs, we adopt a sparse basis and use the
sparsity of a set of basis-related coefficients and the Lax–Friedrichs splitting to avoid
all the SVD involved. Numerical experiments verify the efficiency of the gPC-sG
method.
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1 Introduction

First derived by Landau [6] as the grazing collision limit of the Boltzmann equation,
the Fokker–Planck–Landau (FPL) or Landau equation is a collisional kinetic model
that describes the non-equilibrium dynamics of charged particles in a plasma [16].

Let f = f (t, x, v) be the density distribution function of particles, where t is the
time, x is the space, and v is the velocity. The FPL equation with the mean-field term
(also known as the Vlasov–Poisson–Landau equation) reads

∂t f + v · ∇x f + E(t, x) · ∇v f = Q( f, f ), t > 0, x ∈ Ω ⊂ R
dx , v ∈ R

dv , (1)

where E(t, x) is the electric field given by

E(t, x) = −∇xφ(t, x), (2)

and φ(t, x) is a self-consistent electrostatic potential function satisfying the Poisson
equation

Δxφ(t, x) = μ(x) −
∫
Rdv

f (t, x, v) dv, (3)

where μ(x) is a neutralizing background satisfying

∫
Rdx

μ(x) dx =
∫
Rdx

∫
Rdv

f (t, x, v) dv dx . (4)

Q( f, f ) on the right-hand side of (1) is the FPL collision operator that models
binary interactions among particles:

Q( f, f )(v) = ∇v ·
∫
Rdv

A(v − v∗)[ f (v∗)∇v f (v) − f (v)∇v∗ f (v∗)] dv∗. (5)

Here A(w) is a semi-positive definite matrix defined by

A(w) = Ψ (w)

(
I − w ⊗ w

|w|2
)

, (6)

where I is the identity matrix. For inverse power law potentials,Ψ (w) = |w|γ+2 with
−3 ≤ γ ≤ 1. The case γ = −3 corresponds to the Coulomb interaction which is of
primary importance in plasma applications.

The collision operator Q( f, f ) possesses some important physical properties: it
preserves mass, momentum, and energy

∫
Rdv

Q( f, f )φ(v) dv = 0, φ(v) = 1, v, |v|2; (7)



A Stochastic Galerkin Method … 3

and satisfies the entropy dissipation inequality (the H -theorem)

∫
Rdv

Q( f, f ) log f dv ≤ 0. (8)

The equality only holds when f attains the local equilibrium (Maxwellian)

f (v) = M(v) = ρ

(2πT )dv/2
e− (v−u)2

2T , (9)

where ρ, u, T are the density, bulk velocity, and temperature defined as

ρ =
∫
Rdv

f dv, u = 1

ρ

∫
Rdv

v f dv, T = 1

dvρ

∫
Rdv

(v − u)2 f dv. (10)

Equation (1) needs to be supplemented with appropriate initial condition

f (0, x, v) = f 0(x, v), (11)

where f 0 can be chosen as, for example, the local equilibrium (9). For boundary con-
dition, a commonly used one is the Maxwell boundary condition: For any boundary
point x ∈ ∂Ω , let n(x) be the unit inward normal vector to the boundary, then the
inflow boundary condition is specified as

f (t, x, v) = g(t, x, v), v · n > 0, (12)

g(t, x, v) := (1 − α) f (t, x, v − 2(v · n)n) + α

(2π)
dv−1
2 T

dv+1
2

w

e
− v2

2Tw

∫
v·n<0

f (t, x, v)|v · n| dv,

(13)

where Tw = Tw(t, x) is the temperature of the wall (boundary). The constant α (0 ≤
α ≤ 1) is the accommodation coefficient with α = 1 corresponding to the purely
diffusive boundary, and α = 0 the purely specular reflective boundary.

In the past decades, the FPL equation (1) has been studied extensively both the-
oretically and numerically. The readers are referred to [16] for a review of the main
mathematical aspects, and the recent paper [1] and references therein for relevant
numerical methods. In spite of the vast amount of existing research, the study of the
FPL equation has mostly remained deterministic and ignored uncertainty. In real-
ity, however, there are many sources of uncertainties that can arise in this equation:
imprecise measurements for initial boundary conditions and physical parameters;
incomplete knowledge of the fundamental interaction mechanism between particles;
and so on. Understanding the impact of these uncertainties is critical to the simula-
tions of complex plasma systems and will allow scientists and engineers to obtain
more reliable predictions and perform better risk assessment. The goal of this paper
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is to develop an efficient stochastic numerical method for uncertainty quantification
(UQ) of the FPL equation (1).

The basic framework of ourwork is built on a probabilistic approachwhichmodels
the uncertain parameters as random variables. In the FPL equation (1), this amounts
to consider the distribution function

f = f (t, x, v, z), z ∈ Iz ∈ R
d , (14)

nowdepending on an extra argument z—a d-dimensional randomvectorwith support
Iz collecting all possible uncertainties in the system. For instance, one may consider
z = (zμ, zini, zbdry), where zμ, zini, zbdry denote, respectively, the random parameters
arising from

• the neutralizing background (3): μ = μ(x, zμ);
• the initial condition (11): f (0, x, v, z) = f 0(x, v, zini) for x ∈ Ω;
• the boundary condition (12): f (t, x, v, z) = g(t, x, v, zbdry) for x ∈ ∂Ω .

Wewill further assume the components of z are alreadymutually independent random
variables obtained through some dimension reduction technique, e.g., Karhunen–
Loève expansion [9], and do not pursue the issue of random input parameterization
in this paper.

To properly model the propagation of uncertainties, we adopt the generalized
polynomial chaos-based stochastic Galerkin (gPC-sG)method, which is widely used
in the UQ simulations nowadays [2, 3, 10, 13, 17, 18]. Simply speaking, this method
seeks to approximate the unknown function f via an orthogonal polynomial series:

f (t, x, v, z) ≈
K∑

k=1

fk (t, x, v)Φk (z) := f K (t, x, v, z), fk (t, x, v) =
∫
Iz

f (t, x, v, z)Φk (z)π(z) dz,

(15)
where {Φk(z)} is a set of d-variate polynomials of degree up to m which satisfy

∫
Iz

Φ j (z)Φk(z)π(z) dz = δ jk, 1 ≤ j, k ≤ K ,

withπ(z) being the probability distribution of z and δ jk the Kronecker delta function.
The number of basis functions is K = (m+d

m

)
. Equipped with this gPC representation,

one then proceeds as follows: (1) Substitute the expansion (15) into the original
equation and conduct a Galerkin projection. This usually results in a system of
coupled deterministic equations for the gPC coefficients { fk}Kk=1 requiring different
treatment from the corresponding deterministic equation. (2) Solve the gPC system.
(3) Use { fk}Kk=1 to reconstruct the solution in Iz via (15), or construct the solution
statistics directly, e.g., the mean and standard deviation can be retrieved as

E[ f ] = f1, S[ f ] =
√√√√ K∑

k=2

f 2k . (16)
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For the FPL equation, the main difficulty associated with solving the gPC-sG
system lies in the evaluation of the nonlinear collision operator. Similar to the work
[5], we propose a fast algorithm to efficiently compute the collision operator under
the Galerkin projection. The acceleration is achieved by combining a singular value
decomposition (SVD) of the collision kernel with the fast spectral method in the
deterministic case [11].

In the cases where the random domain Iz is high-dimensional, i.e., d is large,
the usual gPC-sG method may fail to be affordable since the number of basis func-
tions K = (m+d

m

)
is too large. To circumvent this difficulty, we use the sparse wavelet

basis as in our previous work [15]. We use N -level hierarchical piecewise
polynomial functions of degree at most m as basis functions in one dimension and
use a standard sparse grid construction to obtain basis functions in d-dimensional
random spaces.With this basis, one can achieve an accuracy of O(Nd2−N (m+1))with
K = O((m + 1)d2N Nd−1) basis functions. The accuracy is O(K−(m+1)

(log K )(m+2)(d−1)) in terms of K . This method is much more efficient than the usual
gPC-sG method if d is large.

When using the sparse grid method, K can still be too large to make an SVD of
order K affordable. Thus the following two difficulties arise. The first one is that
one can no longer afford the SVD approach for the collision operator. To avoid it,
we notice the sparsity of a basis-related tensor Sb,i jk proved in [15]. As a result,
one can compute the collision operator directly with low computational cost. The
second difficulty is that a direct computation of the numerical flux for the mean-field
term requires a diagonalization of constant flux matrices of order K . To avoid this
diagonalization, we utilize the local Lax–Friedrichs splitting [7]. In this way, one can
compute the second-order upwind flux without diagonalization of the flux matrices.

The rest of this paper is organized as follows. Section 2 describes in detail the gPC-
sG method for the FPL equation with uncertainty. Section 3 discusses the spatial and
time discretization. In Sect. 4, we give a consistency analysis of the gPC-sG method
for the collision operator. In Sect. 5, we give a sparse wavelet method for problems
with high-dimensional random inputs. Extensive numerical results are presented in
Sect. 6. Finally, the paper is concluded in Sect. 7.

2 The gPC-sG Method for the FPL Equation
with Uncertainties

In this section, we describe the gPC-sG method for the FPL equation with uncer-
tainty. We start by substituting the truncated gPC expansion (15) into Eq. (1).
Upon a standard Galerkin projection, this yields a system of equations for the gPC
coefficients fk :
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∂t fk(t, x, v)+v · ∇x fk(t, x, v) + ∇v ·
∫
Iz

E(t, x, z) f K (t, x, v, z)Φk(z)π(z) dz

= Qk( f
K , f K )(t, x, v), 1 ≤ k ≤ K ,

(17)
where Qk( f K , f K ), the kth mode of the collision operator, is defined as

Qk( f
K , f K ) :=

∫
Iz

Q( f K , f K )(t, x, v, z)Φk(z)π(z) dz. (18)

To simplify the forcing term, note that

Ek(t, x) = −∇xφk(t, x), Δxφk(t, x) = μk(x) −
∫
Rdv

fk(t, x, v) dv, (19)

where μk(x) = ∫
Iz

μ(x, z)Φk(z)π(z) dz are the gPC coefficients of the neutralizing
background μ. Then the integral term in (17) becomes

∫
Iz

(
K∑
i=1

Ei (t, x)Φi (z)

)⎛
⎝ K∑

j=1

f j (t, x, v)Φ j (z)

⎞
⎠Φk(z)π(z) dz =

K∑
j=1

Akj (t, x) f j (t, x, v),

(20)
with

Akj (t, x) :=
K∑
i=1

Si jk Ei (t, x), Si jk =
∫
Iz

Φi (z)Φ j (z)Φk(z)π(z) dz. (21)

To simplify the collision term, we define the bilinear FPL collision operator as

Q( f, g)(v) = ∇v ·
∫
Rdv

A(v − v∗)( f (v∗)∇vg(v) − f (v)∇v∗g(v∗)) dv∗, (22)

Then the collision term (18) can be expressed as

Qk( f
K , f K ) =

K∑
i, j=1

Si jk Q( fi , f j ). (23)

Due to the double summation in (23), a direct evaluation of the collision opera-
tor Qk would be very expensive. To reduce the computational cost, we follow the
approach proposed in [5]. Specifically, we pre-compute the singular value decom-
position (SVD) of the matrix {Si jk}i j for each k:

Si jk =
Rk∑
r=1

Uk
ir V

k
r j , (24)
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where Rk is the numerical rank of the matrix. Plugging (24) into (23) and rearranging
terms give

Qk( f
K , f K ) =

Rk∑
r=1

Q
(
gkr , h

k
r

)
, gkr :=

K∑
i=1

Uk
ir fi , hkr :=

K∑
j=1

V k
r j f j . (25)

Therefore, we reduce the original double summation into a single one. To compute
the bilinear term Q

(
gkr , h

k
r

)
, we apply the fast spectral method introduced in [11] for

the deterministic FPL collision operator. See Appendix for a brief description of this
method. The numerical complexity of such a computation is O(Ndv

v log Nv) where
Nv is the number of mesh points in each velocity direction, and dv is the dimension
of the velocity space. Thus, for each k, the cost of computing Qk is O(RkNdv

v log Nv)

with Rk ≤ K , and K = (m+d
m

)
is the dimension of d-variate polynomials of degree

up to m (note that the direct evaluation of Qk based on (23) requires O(K 2N 2dv
v )

operations).
The initial data is given by

fk(0, x, v) = f 0k (x, v) =
∫
Iz

f 0(x, v, z)Φk(z)π(z) dz. (26)

The Maxwell boundary condition is given by

fk(t, x, v) = gk(t, x, v), x ∈ ∂Ω, v · n > 0, (27)

with n the inward normal of ∂Ω , and

gk(t, x, v) :=
∫
Iz

g(t, x, v, z)Φk(z)π(z) dz. (28)

We consider the case where the wall temperature Tw and the accommodation coeffi-
cient α may depend on z. We assume that α(z) = ∑K

k=1 αkΦk(z). Then

g(t, x, v, z) :=(1 − α(z)) f K (t, x, v − 2(v · n)n, z)

+ α(z)

(2π)
dv−1
2 Tw(x, z)

dv+1
2

e− v2

2Tw (x,z)

∫
v·n<0

f K (t, x, v, z)|v · n| dv. (29)

Substitute into (28), one gets

gk =
K∑
j=1

(∫
Iz

(1 − α(z))Φk(z)Φ j (z)π(z) dz

)
f j (t, x, v − 2(v · n)n)

+
K∑
j=1

Dkj (x, v)
∫
v·n<0

f j (t, x, v)|v · n| dv,
(30)
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where

Dkj (x, v) =
∫
Iz

α(z)

(2π)(dv−1)/2Tw(x, z)(dv+1)/2
e− |v|2

2Tw (x,z) Φk(z)Φ j (z)π(z) dz, (31)

is a matrix that is time-independent hence can be pre-computed.

3 The Spatial and Time Discretization

In order to solve the Galerkin system (17), we split it into three steps:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t fk + v · ∇x fk = 0,

∂t fk +
K∑
j=1

Akj (t, x) · ∇v f j = 0,

∂t fk = Qk( f
K , f K ).

(32)

Note that each Akj is a vector of length dv. To achieve second-order accuracy in time,
we use the Strang splitting and the second-order Runge–Kutta method for each step.
For the transport step, we employ a second-order MUSCL scheme with the minmod
slope limiter [7]. For the forcing step, we discuss the case dv = 1 for simplicity.
The general case follows by computing the fluxes dimension by dimension. In the
case dv = 1, for each fixed x , since (Akj ) is a symmetric matrix depending on x but
not on v, the equation becomes a system of linear hyperbolic equations in v with
constant characteristic speeds which can be solved by upwind schemes. Thus we can
diagonalize the matrix A, find the Riemann invariants, and use the MUSCL scheme
on each Riemann invariant. To be precise, suppose A is written as

A = P−1DP,

where P = (Pkj ) is an invertible matrix, and D is a diagonal matrix. Then the forcing
step equations can be written as

∂t f̄k + Dkk∂v f̄k = 0,

where f̄k = ∑K
j=1 Pkj f j . These equations in f̄k are hyperbolic with constant char-

acteristic speeds and therefore can be solved by the MUSCL scheme. And then fk
is computed by

fk =
K∑
j=1

(P−1)k j f̄ j .

For the collision step, we use the fast algorithm mentioned above to compute Qk .
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To choose the time step Δt , we notice first that it has to satisfy the CFL condition
from the transport step, which is Δt ≤ Δx

Rv
, where Rv is the largest possible charac-

teristic speed. In addition, it has to satisfy the CFL condition from the forcing step,
which is Δt ≤ Δv

C1
, where the constant C1 = maxx,z |E(t, x, z)| is the maximum of

the electric field. Furthermore, due to the parabolic nature of the FPL collision oper-
ator, one has the following constraint for the collision stepΔt ≤ Δv2

C2
,where the con-

stant C2 ∼ maxx,z
∫
Rdv A(v − v∗) f (t, x, v∗, z) dv∗ is the maximum of the strength

of diffusion of the collision operator. Thus one should choose Δt to satisfy the three
restrictions.

4 Consistency Analysis of the gPC-sG Method
for the Collision Operator

Here we give a consistency analysis of the gPC-sG method for the FPL collision
operator. For simplicity, the random variable z is assumed to be one-dimensional in
this section.

Suppose the exact solution to the spatial homogeneous FPL equation

∂t f = Q( f, f ), (33)

is

f (t, v, z) =
∞∑
k=1

fk(t, v)Φk(z), fk(t, v) =
∫
Iz

f (t, v, z)Φk(z)π(z) dz. (34)

Given the gPC approximation of f :

f ≈ f K (t, v, z) =
K∑

k=1

fk(t, v)Φk(z), (35)

To analyze the consistency of the gPC-sG method, one substitutes the exact solution
f into the scheme

∂t fk ≈ Qk( f
K , f K ), (36)

and estimate the difference of the LHS and the RHS. Since f solves Eq. (33), one
has

∂t fk = Qk( f, f ). (37)

Thus it suffices to analyze Qk( f, f ) − Qk( f K , f K ), the numerical truncation error
of the collision operator. We will use the following lemma proved by Pareschi et al.
[12]:



10 J. Hu et al.

Lemma 1. Let g, h ∈ L2
v , then

‖Q(g, h)‖L2
v
≤ C‖h‖L1

v
‖g‖H 2

v
. (38)

We estimate the error of collision operator as follows:

|Qk( f, f ) − Qk( f
K , f K )|2

=
∣∣∣∣
∫
Iz

[Q( f, f ) − Q( f K , f K )]Φk(z)π(z) dz

∣∣∣∣
2

≤
∫
Iz

|Q( f, f ) − Q( f K , f K )|2π(z) dz
∫
Iz

|Φk(z)|2π(z) dz.

Notice

|Q( f, f ) − Q( f K , f K )|2 = |Q( f, f − f K ) − Q( f K − f, f K )|2
≤ 2[|Q( f, f − f K )|2 + |Q( f K − f, f K )|2],

Then one gets

|Qk( f, f ) − Qk( f
K , f K )|2 ≤ 2

∫
Iz

[
|Q̄( f, f − f K )|2 + |Q̄( f K − f, f K )|2

]
π(z) dz.

(39)
Integrating in v and using the lemma, we get

‖Qk( f, f ) − Qk( f
K , f K )‖2L2

v

≤ C
∫
Iz

(‖ f K‖2L1
v
‖ f − f K‖2H 2

v
+ ‖ f − f K‖2L1

v
‖ f ‖2H 2

v
)π(z) dz

≤ C
∫
Iz

(‖ f − f K‖2H 2
v
+ ‖ f − f K‖2L1

v
)π(z) dz,

where C will be a generic positive constant in the sequel. The second inequality
above is obtained by assuming that the L1

v and H 2
v norms of f are bounded, and

those norms of f K are uniformly bounded in K . Also, notice that

‖ f − f K‖ ≤ CN K
−N , ∀N ≥ 1, (40)

inwhich the norms are L1
v or H

2
v . The termCN K−N comes from the spectral accuracy

of the projection operator, assuming that f ∈ HN+2
v . Plug into (40), we end up with

the estimate
‖Qk( f, f ) − Qk( f

K , f K )‖2L2
v
≤ CN K

−2N . (41)

which shows the spectral consistency of the gPC-sGmethod for the collision operator.
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Remark 1. In the proof, we assume that the L1
v and H 2

v norms of f are bounded,
and those norms of f K are uniformly bounded in K . The regularity of f for the FPL
equation without the forcing term is proved by Guo [4] assuming that the initial data
is close enough to the global Maxwellian in a suitable Sobolev space. The result was
extended to the equation with external force by Li and Yu [8]. No result is known
for the equation we consider, where the force is self-consistent. Furthermore, the
regularity of f K is completely open. However, numerically we always observe the
boundedness of these norms. Therefore, these assumptions are reasonable.

5 A Remark on High-Dimensional Random Spaces

If the random space is high-dimensional, the usual gPC expansion, which requires
K = (m+d

d

)
basis functions where m is the maximal degree of polynomials and d

is the dimension of the random space, can be prohibitively expensive. To handle
this difficulty, we adopt the sparse technique we proposed in [15]. Using locally
supportedpiecewise polynomials and ahierarchical construction, this techniquegives
a basis with K = O((m + 1)d2N Nd−1) basis functions, where N is the number of
hierarchical levels, and m is the maximal degree of polynomials. The accuracy is
O(Nd2−N (m+1)), which is O(K−(m+1)(log K )(m+2)(d−1)) in terms of K .

With this sparse basis, the number of basis can still be moderately large so that the
SVD method for the collision operator as well as the diagonalization of the forcing
term matrix A in (32) are no longer affordable. To avoid the SVD for the colli-
sion operator computation, we follow [15] and compute Qk = ∑K

i, j=1 Si jk Q( fi , f j )
directly. The following sparsity result was proven: The number of pairs (i, j) for
which there is at least one k with Si jk �= 0 is no more than O((m + 1)2d22N Nd+1),
compared to the total number of pairs O((m + 1)2d22N N 2d−2). Only for such pairs
it is required to compute Q( fi , f j ), and thus the computational cost for Qk is still
greatly reduced if N and d are large.

To avoid the diagonalization of the forcing term matrix A, we discuss the case
dv = 1 for simplicity. The caseswith larger dv can be treated dimension by dimension.
In the case ofdv = 1,weuse the local Lax–Friedrichs splitting for the second equation
of (32) as follows:

∂t f + 1

2
(A(x) − β(x)I )∂vf + 1

2
(A(x) + β(x)I )∂vf = 0, (42)

where f = ( f1, . . . , fK ), I is the identity matrix of order K , and β(x) is a local
(in each cell) upper bound of the absolute values of the eigenvalues of the symmet-
ric matrix A(x). The eigenvalues of the first flux matrix (A(x) − β(x)I ) are all
negative, while those of the second one are all positive. Thus one can use a second-
order upwind scheme with the minmod slope limiter on each flux terms without
diagonalizing the matrices.
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6 Numerical Results

In all the numerical examples here, except for the Landau damping, we take the
physical domain to be the one-dimensional (dx = 1) interval [0, 1] and the velocity
domain to be two-dimensional (dv = 2). In all the examples, except for the six-
dimensional random domain example, we take the periodic boundary condition. We
discretize the physical domain into Nx grid points uniformly:

x j =
(
j − 1

2

)
Δx, Δx = 1

Nx
, j = 1, . . . , Nx .

The velocity domain is truncated into [−Rv, Rv]2 and discretized into Nv points in
each dimension:

v j1, j2 =
(

−Rv + ( j1 − 1

2
Δv),−Rv + ( j2 − 1

2
Δv)

)
, Δv = 2Rv

Nv
, j1, j2 = 1, . . . , Nv.

Rv is big enough so [−Rv, Rv]2 contains the support of the solution.
We assume the random variable z obeys uniform distribution on [−1, 1]d . In the

first three examples, we take d = 1. In the fourth example, we take d = 2. These
examples are computed by the gPC-sG method with the gPC basis being the nor-
malized Legendre polynomials. For the last example, d = 6, and we use the sparse
method given in the previous section.

6.1 Random Initial Data: A Shock Tube Problem

We take the random initial data to be the equilibrium with macroscopic quantities

{
ρl = 1 + 0.2

(
z+1
2

)
, ul = 0, Tl = 1, x ≤ 0.5,

ρr = 0.125, ur = 0, Tr = 0.25, x > 0.5.

We take
Nx = 100, Nv = 32, Rv = 6, K = 7, Δt = 0.001,

and compute the solution at t = 0.1 by the sG method. The result is compared with
the solution by the stochastic collocation (sC) method with the same parameters and
Nz = 10Gauss–Legendre quadrature points; see Fig. 1. To implement the sCmethod,
we take Nz Gauss–Legendre quadrature points {z j }Nz

j=1 in the random domain and
then solve the (deterministic) FPL equation at each z j . Finally, themean and standard
deviations of any quantity f are computed by
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Fig. 1 Random initial data: expectation and standard deviation of macroscopic quantities. Solid
line: sC, Nx = 100, Nv = 32, Rv = 6, Nz = 10, Δt = 0.001. Dots: sG, Nx = 100, Nv =
32, Rv = 6, K = 7, Δt = 0.001

E[ f ] =
Nz∑
j=1

f (z j )wj , S[ f ] =
√√√√ Nz∑

j=1

f (z j )2wj − (E[ f ])2, (43)

wherewj is the quadrature weight of the point z j . For the sCmethod, we verified that
the solution with Nz = 20 quadrature points is indistinguishable with the solution
with Nz = 10 quadrature points. Therefore, the Nz = 10 solution is good enough as
a reference solution. This is also true for other numerical examples except the last
one.

One can see from Fig. 1 that the results of two methods agree well. This shows
that the sG method has good accuracy.

6.2 The Landau Damping

Weuse the Landau damping to test our sGmethod for the forcing term. For simplicity,
we omit the collision term. The physical space is the interval [0, 4π ] with periodic
boundary condition, and the velocity domain is one-dimensional. The random initial
condition is
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Fig. 2 Landau damping:
expectation and standard
deviation. Solid line: sC,
Nx = 64, Nv = 128,
Rv = 6, Nz = 10,
Δt = 0.03. Dots: sG,
Nx = 64, Nv = 128,
Rv = 6, K = 7, Δt = 0.03.
Upper curve: expectation.
Lower curve: standard
deviation

0 1 2 3 4 5 6 7 8 9
10 −4

10 −3

10 −2

10 −1

100

101

t

L2 (E
)

f 0(x, v) = 1√
2π

(1 + (0.5 + 0.1z) cos(0.5x))e− |v|2
2 .

We take

Nx = 64, Nv = 128, Rv = 6, K = 7, Δt = 0.03,

for the sG method and compare with the sC method with the same parameters and
Nz = 10. We compare the expectation and standard deviation of the magnitude of
the electric field for t from 0 to 9.

It can be seen from Fig. 2 that the results from two methods agree well, which
shows the accuracy of the sG method. Since the uncertainty is small, the expectation
is similar to the result of [14]. The standard deviation in both examples also shows
oscillation in time, and this needs further theoretical explanations.

6.3 A Random Neutralizing Background

We take the deterministic initial data as the equilibrium with macroscopic quantities

ρ = (2 + sin(2πx))/3, u = (0.2, 0), T = (3 + cos(2πx))/4, (44)

and the random background as

μ(x, z) = 2

3
(1 + 0.2z sin(4πx)). (45)

We take

Nx = 100, Nv = 32, Rv = 8, K = 7, Δt = 0.001, (46)
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Fig. 3 Random background: expectation and standard deviation of macroscopic quantities. Solid
line: sC, Nx = 100, Nv = 32, Rv = 8, Nz = 10, Δt = 0.001. Dots: sG, Nx = 100, Nv =
32, Rv = 8, K = 7, Δt = 0.001

and compare the solution by the sC method with the same parameters and Nz = 10
Gauss–Legendre quadrature points at t = 0.1. One can see fromFig. 3 that the results
of two methods agree well, even for the standard deviations whose magnitude is
small. This shows that the sG method can efficiently handle the uncertainties from
the neutralizing background.

6.4 An Example with a Two-Dimensional Random Variable

To demonstrate that our sG method is efficient for more than one random dimension,
we give a test of our method on an example with two-dimensional random domain
Iz1,z2 = [−1, 1]2. The gPC basis is taken to be {Φk1(z1)Φk2(z2)} where Φk(z) is the
normalized Legendre polynomial of degree k, and k1 + k2 ≤ m. The initial data is
given by

f 0(x, v) = ρ0(x)

4πT 0(x)

(
e
− |v−u0(x)|2

2T 0(x) + e
− |v+u0(x)|2

2T 0(x)

)
,
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Fig. 4 Two-dimensional test with random initial data: expectation and standard deviation ofmacro-
scopic quantities. Solid line: sC, Nx = 100, Nv = 32, Rv = 6, Nz = 10, Δt = 0.001. Dots: sG,
Nx = 100, Nv = 32, Rv = 6, m = 5, Δt = 0.001

where
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ0(x, z) = 1

3

(
2 + sin(2πx) + 1

2
sin(4πx)z1 + 1

3
sin(6πx)z2

)
,

u0 = (0.2, 0),

T 0(x, z) = 1

4

(
3 + cos(2πx) + 1

2
cos(4πx)z1 + 1

3
cos(6πx)z2

)
.

The numerical parameters are

Nx = 100, Nv = 32, Rv = 6, m = 5, Δt = 0.001,

and the result is compared at t = 0.1 with the sC method with the same parameters
and Nz = 10 collocation points in each dimension. The result is shown in Fig. 4. It
can be seen that the results of the two methods agree well, which shows the accuracy
of the sG method for two-dimensional random domains.
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Fig. 5 Six-dimensional random domain example, using sparse sG: expectation and standard devi-
ation of macroscopic quantities. Nx = 100, Nv = 32, Rv = 8, Δt = 0.001, m = 0, N = 3

6.5 An Example with a Six-Dimensional Random Domain

We finally give an example with a six-dimensional random domain. To deal with the
high-dimensionality, we use the sparse sG method mentioned in Sect. 5.

We take the initial data as the equilibrium with

ρ(x, z) = 1 + exp(−100(x − 0.5)2) sin(10(x − 0.5))(0.5 + 0.1z2),

u(x, z) = 0, T = 1 + 0.5 exp(−100(x − 0.4 − 0.01z1)
2), (47)

and boundary data as the Maxwell boundary with

Tw = 1 + 0.2z3, α = 0.5 + 0.3z4. (48)

The random background is given by

μ(x, z) = 1 + 0.1z5 sin(2πx) + 0.2z6 cos(2πx). (49)

We choose numerical parameters as

Nx = 100, Nv = 32, Rv = 8, Δt = 0.001.
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We use the sparse basis with m = 0, N = 3 to solve the equation, and the result is
shown in Fig. 5. One can clearly see that near the center of the domain, the mean and
standard deviation of the density and the temperature are diffused due to the kinetic
transport term, and those of the velocity exhibit more complicated behavior due to
the forcing term. The most interesting phenomena is that near the left boundary, the
effect of the boundary condition is not influential on the mean, but is dominating
the standard deviation. In fact, for all the three standard deviations, one can see that
the uncertainty comes from boundary and propagates into the domain. Note that for
this example with six random dimensions, with the sparse approach, only 138 basis
functions are needed.

7 Conclusion

In this paper, we propose a gPC-based stochastic Galerkin method for the Fokker–
Planck–Landau equation with random uncertainties. By a gPC expansion and
Galerkin projection, we convert the FPL equation with uncertainty into a system
of deterministic equations. We prove the consistency of the gPC-sG method for the
collision operator as well as accelerate the computation of the collision kernel by a
singular value decomposition combined with a fast spectral method. We adopt the
sparse method from [15] to handle high-dimensional random inputs. To avoid the
expensive SVD operations, we take advantage of the sparsity of the tensor Sb,i jk for
the computation of the collision operator and use a flux splitting for the mean-field
term. Numerical results show the efficiency of the stochastic Galerkin method.
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